
TABLEAU-BASED THEOREM PROVING FOR A CONDITIONAJA LOGIC 

Christine Groeneboer 

B.Sc., University of Wisconsin, 1974 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

L 

" ~hrisune Groeneboer 1987 

SIMON FRASER UNIVERSITY 

. July 1987 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author. 



Approval 

Name: R. Christine Groeneboer 

Degree: Master of Science 

Title of Thesis: Tableau-based Theorem Proving for a Conditional Logic 

Examining Committee: 
Chairperson: Dr. Binay Bhattacharya 

-. V V y  

Dr. J= Delgrande , 
I Senior Supervisor 

I 

. - - - 

\ 

Dr. Robert Hadley 

- .  
Dr. ~ e r d n i c a  6 a h 1  
External Examiner 

Date ~ ~ ~ r o v z d  



PARTIAL COPYRIGHT LICENSE 

i hereby grant  t o  Simon Fraser Un ive rs i t y  the r i g h t  t o  lend 

my thesis,  proJect o r  extended essay ( t he  t i t l e  o f  which i s  shown below) 

t o  users o f  the Simon Fraser Un ive rs i t y  L ibrary,  and t o  make p a r t i a l  o r  

s i ng le  copies only f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any o ther  un ive rs i t y ,  o r  other educational i n s t i t u t i o n ,  on 

i t s  own behalf o r  f o r  one o f  i t s  users, i f u r t he r  agree t h a t  permission 

f o r  mu l t i p l e  copying o f  t h i s  work f o r  scho lar ly  purposes may be granted 

by me o r  the Dean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  publication o f  t h i s  work f o r  f i nanc ia l  gain sha l l  not be allowed 

wi thout  my w r i t t e n  permission. 

T i t l e o f  Thes i s/PFejsct/E- 

A BEAU - A A s E ~  THEoRGM PRO J r ~ J G  FOR A 

C o m m  D ~ J A L  L o ~ c  

Author: . - 

(s ignature) 

(name 1 

(date) 



Abstract 

This thesis presents a tableau-based approach to theorem-proving for a conditional logic. Condi- 

tional logics are those logics concerned with statements of the form "if a then P." A nth-functional 

semantics for the material conditional a 3 P is that a 2 P is equivalent by definition to a Vj3. Then 

whenever a is true, so is j3. For example, penguin(x) 3 bird(x) is true because for every x such that x is a 

penguin, x is a bird. 

However, exception-admitting conditional knowledge such as knowledge about laws of nature, 

natural kinds, and properties of kinds is not readily formalized with material conditionals. Many of the 

properties of material conditionals fail for such "natural conditionals," e.g., transitivity: penguins are birds, 

birds normally fly, but it is not the case that penguins normally fly. Logic N is a conditional logic devised 

to represent the relation between natural kinds and properties of kinds. A variably strict conditional opera- 

tor "*" is added to propositional logic. Informally, "a + P" means "in the normal course of events, if a 

then p" or "all other things being equal, if a then P." 

A tableau-based approach to theorem-proving for conditional logic N is presented A tableau 

represents an attempt to construct a model in which +o is satisfiable in order to prove o. If such a model 

can be constructed, o is invalid. Otherwise such a model is shown to be impossible to construct, and o is 

therefore valid. This approach is based on semantic diagrams for modal logics and temporal logics. The 

method is shown to be sound and complete and has been implemented in program Validate, an automated 

theorem-prover for conditional logic N. 

iii 



DEDICATION 

to Rob, Jessica, and Cara 



ACKNOWLEDGEMENTS 

I would like to thank my senior supervisor James Delgrande for his guidance, encouragement, and 

support. It is greatly appreciated. Thanks to members of the committee, Nick Cercone and Robert Hadley, 

for discussions and comments on the thesis. I would also like to acknowledge the contribution of the exter- 

nal examiner, Veronica Dahl. Encouragement from and discussions with fellow graduate students, espe- 

cially those in Radandt Hall, helped to make the experience a pleasant one. Thanks in particular to Pierre 

Massicotte for his contribution to programming. Financial support from the research grant of James Del- 

grande, the School of Computing Science, and Simon Fraser University is gratefully acknowledged. My 

deepest appreciation to family and friends for their support and understanding throughout the entire effort. 



Table of Contents 

. ........................................................................................................................... Chapter 1 Introduction .. 
....................................................................................................................... 1 . Natural Kinds 

2 . Conditional Logics ............................................................................................................... 
3 . A Logic for Kinds ................................................................................................................ 

.............................................................................................................................. 4 . Overview 

. ................................................................*.....-................................ Chapter 2 A Theorem Prover for N 

1 . Introduction .......................................................................................................................... 
2 . Background .......................................................................................................................... 

................................................................................................. 2.1. Tableau Sys terns 

2.2. Semantic Diagrams ............................................................................................. 
.......................................................................................................................... 3 . N-Diagrams 

......................................................................................................... 3.1. The Method 
3.2. Building the Semi-complete Structure ............................................................... 

....................................................................... 3.3. Generating RTFC Configurations 
3.4. Testing Configuration Consistency ..................................................................... 
3.5. Algorithm NTP ................................................................................................... 

............................................................................................................. 3.6. Summary 
.................................................................................................................. Chapter 3 . Correctness Proof 

1 . Consistency .......................................................................................................................... 
............................................................................................................................ 2 . Soundness 

............................................................................................. 2.1. Proof of Axiom A0 

.............................................................................................. 2.2. Proof of Axiom A1 

............................................................................................. 2.3. Proof of Axiom A2 

2.4. Proof of Rule RO ................................................................................................. 
....................................................................................................................... 3 . Completeness 

.......................................................................... 3.1. Structural Template Generation 

3.2. Arrow-set Generation ........................................................................................ 
3.3. Consistency Testing ............................................................................................ 

Chapter 4 . An Automated Theorem Prover for N .................................................................................. 
1 . The Representation ............................................................................................................... 
2 . Program Validate .................................................................................................................. 
3 . Data Shuctures ..................................................................................................................... 
4 . Complexity ........................................................................................................................... 
. ........................................................................................................................... Chapter 5 Conclusions 

............................................................................................................. 1 . Summary ................ -. 
2 . Further Research .................................................................................................................. 

vi 



Appendix 1 . Tableau Branch-Extension Rules for Modal and First-order Logics ................................. 
........................................................................................... Appendix 2 . Program VALIDATE Manual 

............................................................................................................................... Introduction 
......................................................................................................... . Part I Using the Program 

1 . Introduction ............................................................................................................ 
1.1. Logic N ................................................................................................. 
1.2. Method of N-diagrams .......................................................................... .. . 

2 . Input ....................................................................................................................... 
. .................................................................................................................... 3 Output 

4 . Running the Program ............................................................................................. 
5 . Sample UO ............................................................................................................. 

Part II . Maintaining the Program .............................................................................................. 
1 . Introduction ............................................................................................................ 
2 . The Algorithm ......................................................................................................... 
3 . Function Types ....................................................................................................... 

3.1. Data Structures ..................................................................................... 
3.2. Tests ...................................................................................................... 
3.3. List Manipulation ................................................................................. 

4 . Function Descriptions ............................................................................................ 
References ............................................................................................................................................... 

vii 



List of Tables 

.......................................................................................... Table 2.1. Summary of a-rules and p d e s  
Table 2.2. Summary of a-rules and p-rules for value assignments ....................................................... 
Table 2.3. Arrow sets generated from the CF templates of Figure 2.13. ................................................ 
Table 2.4. Forced values for o = ((A=> C) A (B + C)) 2 ((A A B) + C) .............................................. 

. * 
Table 2.5. Arrow constraints for o = ((A* C) A (B * C)) 3 ((A A B) + C) ........................................ 

....................................... Table 2.6. A counterexample for o = ((A* C) A (B =z= C)) 2 ((A A B) a C) 

Table 2.7. Forced values for o = ((A + B) A (A + C)) 2 (A + (B A C)) ............................................. 
...................................... Table 2.8. Arrow constraints for o = ((A + B) A (A =B C)) I, (A + (B A C)) 

Table 3.1. Forced values for SCS(a) for A1 .......................................................................................... 
Table 3.2. Arrow consmaints for SCS(a) for A1 ................................................................................... 
Table 3.3. Forced values for SCS(b) for A1 .......................................................................................... 
Table 3.4. Arrow constraints for SCS(b) for A1 ................................................................................... 

............................................................................................................ Table 3.5. Forced values for A2 

...................................................................................................... Table 3.6. Arrow constraints for A2 

............................................... Table 4.1. N-structure for w = (((A a B) A (A C)) 3 (A + (B A C))) 



List of Figures 

.................................................. Figure 2.1. A tableau proof of ((A 3 C) A (B 2 C) A (A v B)) I> C 

.......................................................................................................... Figure 2.2. Alternative rectangles 
. * Figure 2.3. Initial rectangle for w = Mp = 4 7p .  ................................................................................ 1 

................... ........................................................... Figure 2.4. Complete system for o = Mp = -L7p .; 

Figure 2.5. N-diagrams representing the truth conditions for the ==. operator ...................................... 
Figure 2.6. Semi-complete system Ndiagrams for o = (((A + C) A (B 3 C)) 3 ((A A B) s C)) . 

Figure 2.7. Semi-complete-structure for w = ((A + B) (B + A)) ........................................................ 
Figure 2.8. Structural templates for the semi-complete structure of Figure 2.6. ................................... 
Figure 2.9. System of equivalence-class templates for three worlds .................................................... 
Figure 2.10. An equivalence-class template for four worlds ................................................................. 
Figure 2.1 1 . Fitting worlds into an equivalence-class template ............................................................ 

..................................... Figure 2.12. A configuration template for four worlds w2, w3, w4, ws : ............ 
Figure 2.13. Configuration templates generated from equivalence-class templates of Figure 2.9. 
.................................................................................................................................................................. 

...................... Figure 2.14. A hierarchy of structures for w = (((A + B) A (B => C)) 2 (A A B + 0) 
............................... Figure 2.15. A configuration containing mutually inconsistent arrows : ................ 

Figure 2.16. The modified structural hierarchy for 61 = (((A - B) A (B => C)) 3 (A A B => C)) . 
.................................................................................................................................................................. 

.................... Figure 2.17. A consistent configuration for w = (((A + B) A (B => 0 )  3 (A A B - C)) 
. ..................... Figure 2.18. Semi-complete structure for w = (((A =c- B) A (A + C)) 3 (A + (B A C)) : 

Figure 2.19. Structural template from the SCS for w = (((A B) A (A =s C)) 3 (A * (B A C)) . 
.................................................................................................................................................................. 

Figure 3.1. Semi-complete structure for A0 .......................................................................................... 
Figure 3.2. Semi-complete structure for A1 .......................................................................................... 
Figure 3.3. Structural templates for Figure 3.2(a). ................................................................................ 
Figure 3.4. Structural templates for Figure 3.2(b). ................................................................................ 
Figure 3.5. Semi-complete structure for A2 .......................................................................................... 
Figure 3.6. Structural templates from semi-complete structure for A2 ................................................. 
Figure 3.7. Semi-complete structure for RO .......................................................................................... 
Figure 3.8. Structural template for RO ................................................................................................... 
Figure 3.9. Proof of RO .......................................................................................................................... 
Figure 3.10. Proof of RO ........................................................................................................................ 
Figure 3.1 1 . Proof of RO ........................................................................................................................ 
Figure 3.12. Pro~f of RO ........................................................................................................................ 
Figure 3.13. Proof of RO ........................................................................................................................ 



Figure 3.14. Proof of RO ........................................................................................................................ 
............................................................................................... Figure 3.15. Tree of structural templates 

Figure 3.16. Successive equivalence templates for q = 3 classes and n = 5 world labels ..................... 
................................................................................ Figure 3.17. Proof of reflexive case for lemma 10 

Figure 3.18. Proof of lemma 10 ..................................................................................................... ....... 
Figure 4.1. Semi-complete structure for w = (((A + B) A (A + C)) 3 (A * (B A C)) ......................... 
Figure 5.1. Inclusion representation of the material conditional ........................................................... 

................................................................................. Figure 5.2. Properties of the material conditional 

Figure 5.3. An example in which A 2 B is false ................................................................................... 
Figure 5.4. Left-downward nonmonotonicity ........................................................................................ 



Chapter 1. Introduction 

This thesis presents a tableau-based approach to theorem proving for a conditional logical system N. 

Logic N extends classical propositional logic by adding a variably strict conditional operator The gen- 

eral saucture of the formal semantics for N is based on a possible worlds approach. The theorem prover is 

a refutation procedure based on the model theory of N rather than the axiomatic basis of N. An attempt is 

made to construct a falsifying model for a wff o. If such a model can be constructed, then ~o is satisfiable 

and o is invalid. Otherwise a falsifying model is shown to be impossible. In this event ~o is unsatisfiable, 

and o is therefore valid. The method of N-diagrams is presented to accomplish model construction. The 

method consists of rectangles representing worlds, arrows representing accessibility between worlds, and 

rules for building models based on the definition of truth in the model theory. This approach to theorem 

proving is shown to be sound and complete. Program Validate, an automated theorem prover for N incor- 

porating the method of N-diagrams, is presented and the computational complexity of the algorithm 

analyzed. 

Logic N is intended to provide an approach to the representation of knowledge about prototypes and 

prototypical properties. Consider the statements "birds fly," "ravens are black," "water boils at 100" C." . 
Such statements are arguably not intended to be understood as universal laws. Penguins do not fly, nor do 

birds with broken wings. Albino ravens are not black, and water samples with a high mineral content boil 

at temperatures lower than 100" C. The problem is that not every member of the kind possesses all the pro- 

perties associated with the kind. 

Exception-admitting knowledge poses some special representation problems. A truth functional 

semantics for the material conditional is given by A 3 B =#-A VB.  Thus material implication does not 

allow exceptions. As a representation, the material conditional is fine for (1) terms which have analytic 

definitions such as "bachelor" or "square," (2) nouns derived by aansformation from verbal forms such as 

"hunter = one who hunts," and (3) statements such as "penguins are birds."* Though conventional logics do 

N has been extended to full first-order in [Delgrande 871. 
It has been argued that perhaps material implication is too strong even for statements of type (3). Remember when 

whales were thought to be fishes [Btachman 851. 



possess the expressive power to represent exception-allowing knowledge, the representation is not readily 

formulated in a straightforward manner. "Exceptions in representation systems arise as a result of (1) the 

sometimes unpredictable nature of the world, which produces atypical situations, and (2) the inadequacies 

of current representation formalisms in dealing with 'natural' concepts (as used by people)" Wperance 

80, p.2].3 

Interesting nondefinitional exceptionless general statements are rare. Thus automated commonsense 

reasoners require an exception-allowing capacity. Past approaches to this problem in A1 include default 

logics and prototype theory. The advantage of default reasoning lies in its ability to consistently extend a 

set of beliefs. A prototype theory is useful if the goal is prediction of properties given an individual, or 

prediction of kinds given a set of properties. 

Semantic problems arise with both of these approaches, though, when the goal is to represent rela- 

tions between natural kinds and their attributes. As an example, consider blackness and ravenhood. Given 

that individual a is a raven and that it is not known that a is albino, then assume by default that a is black. 

However, the relation between blackness and ravenhood, whatever it may be, is presumably independent of 

a set of beliefs in a knowledge base. 

1. Natural Kinds 

Natural kind t e r n  refer to a group of nouns whose members stand for naturally occurring classes 

such as "lemon," "bird," or "water." Past views of natural kinds have been categorized in [de Sousa 841 by 

the following: 

(1) As essences which (a) determine that a thing is what it is, and (b) make up a necessary condition of 

its continued existence as that thing. Essences are to be discovered through scientific inquiry. 

(2) An Empiricist or Lockean view in which the real nature of kinds is considered unknowable. Boun- 

daries between classes of kinds are set by our concepts rather than irreducible essential properties of 

Lesperance distinguishes two classes of exceptional conditions: generic and individual. Generic exceptions arise when 
constraints in the definition of a category are violated, while individual exceptions involve violation of constraints in pattic- 
ular individual objects. So, for example, the property of nonflight in penguins is a generic exception to flight in birds, 
whereas the property of nonflight in a broken-winged raven is an individual exception. 



kinds. The extension of our concepts is determined by the intension. 

(3) a "modern" view in which natural kind names are perceived as rigid designators, i.e., natural kinds 

are selected on the basis of typical samples, and members of the same class are selected in every pos- 

sible world. The goal of science is to discover the essential natures of kinds as in (1). This category 

includes the views of [Kripke 721 m m a m  751 [Schwartz 791 [Salmon 811. 

Procedural semantics provides rules of the form "every member of a kind has that essential nature which 

usually causes the properties associated with the kind" [Hadley 871. Such a view has the advantage that 

even if our knowledge about the essential nature of a kind changes, the rules do not. 

The main approaches to natural kinds representation in A1 have been default reasoning and prototype 

theory. Reiter [78] [80] [811 [83] uses the term default reasoning to refer to a process of deriving conclu- 

sions based upon patterns of inference of the form "in the absence of any information to the contrary, 

assume ..." The role of a default is seen as a means of completing the underlying incomplete first-order 

theory in order to allow the necessary inferences. Defaults are then insauctions for creating an extension 

of this incomplete theory. An extension may be thought of as an acceptable set of beliefs about the world 

being represented. Different applications of the default rules may yield different extensions. 

A default is an expression of the form 

where a(x), Pl(x), ..., Pm(x), y(x) are wffs whose free variables are among those of x =XI, xz, ..., x,. a(x) is 

the prerequisite of the default, Pl(x), Pz(x), ..., P~(x)  the justification, and y(x) the consequent. A default is 

closed iff none of a, PI, ..., P, y contains a free variable. A default theory is a pair (D,W) where D is a set 

of defaults, and W a set of closed wffs. A default theory is closed iff every default of D is closed. Intui- 

tively, the set of defaults can be seen as extending the first-order theory W. For example, consider the fol- 

lowing default theory about ravens: 

W= { (x)raven(x) 3 bird(x) J , D= { r m e ' $ $ & w  } . 

The first-order formula in W expresses the idea that if x is a raven then it cannot help but be a bird, while 



the default rule says that if it can be derived that x is a raven and it can be consistently assumed that x is 

black, infer that x is black. Etherington and Reiter [83] present an algorithm for reasoning with defaults. 

Because firsborder logic is undecidable, application of the theory is restricted to a decidable subset, acyclic 

inheritance hierarchies. Deigrande [87] discusses some of the inadequacies of the default-theory approach: 

(1) the aforementioned unintuitive semantics based on consistency with a set of beliefs, 

(2) the inability to reason about the defaults, e.g., given that "ravens are (normally) black" and "albino 

ravens are (normally) not black" we might want to conclude that "nonalbino ravens are normally 

black," 

(3) seemingly inconsistent sentences can coexist if one is an element of W and the other an element of D 

because the default rule would never be applied, e.g., "ravens are birds" and "normally ravens are not 

birds." The same applies if both sentences are elements of D: one of the default rules would not be 

applied. 

A1 approaches related to default reasoning are presented in [Fahlman 791 [Fahlrnan, Touretsky, van Rog- 

gen 811 Vouretsky 841 [CottreU84] McCarthy 801 McDerrnott and Doyle 801 Woore 831. 

The second approach to natural kinds representation in A1 is prototype theory [Rosch 781. Accord- 
L 

ing to this view natural kinds systems are organized as hierarchical taxonomies, or category systems. Attri- 

butes are seen at least in part as constructs of the perceiver. Membership in the extension of a kind or 

category is determined on the basis of similarity to a prototype [Quine 771. One application of prototype 

theory has been the use of frames Winsky 751. Frames can be viewed as a network of nodes and relations, 

with the top levels representing things which are always aue and lower leirels consisting of terminals, or 

"slots," which may be filled with default assignments. Default assignments may later be displaced by new 

information which better fits the current instance or situation. Collections of related frames are linked 

together in frame Jystems. Such systems work well for prediction of properties given an individual, or for 

prediction of a kind given a list of properties. 

Brachrnan [85] addresses the issue of whether default-oriented frames/semantic networks can 

represent arbitrary concepts and their interrelationships. It is argued that if any interesting nondefinitional 

property is potentially cancellable, then the interpretation of frameslnodes must be as strictly default 



conditions thereby excluding definitions and even contingent universal statements. Reiter's default logic is 

capable of representing certain knowledge as uncancellable since a default theory includes a set W of first- 

order formulae. Yet the problems of semantics remain. 

2. Conditional Logics 

Conditional logics in general and N in particular are concerned with extensions of classical logics to 

include weaker forms of implication. System N [Delgrande 863 provides a propositional logic with the 

addition of a variably strict conditional operator + , where A * B is interpreted as "all other things being 

equal, if A then B," or "ignoring exceptional conditions, if A then B," or "in the normal course of events, if 

A then B." Thus, Raven(x) e Black(x) is interpreted as "in the normal course of events, ravens are black." 

Material conditionals exhibit the following properties: 

(1) strengthening the antecedenr (A 3 C) I- (A A B) 2 C 

(2) modus ponens: A, A 3 B FB 

(3) transitivity: ((A 3 B) A (B 3 C) )  2 ( A  3 C') 

(4) law of the excluded middle: (A 2 B )  v (A 2 4) 

(5)  contraposition: (A 3 B) = (4 3 4) 

(6 )  strong deduction: ( ( A  A B )  3 C )  = (A 3 (B 2 C))  

Property (I), strengthening the antecedent, is also referred to as lef-downward monotonicity. If the 

material conditional A 3 B is true, then conditions can be conjoined to the antecedent, i d  the implication 

remains aue. However, for representation of natural kinds we might want to assert a set of sentences such 

as: 

Raven(x) + Black(x) 

Raven(x) A Albino(x) 4 l a c k ( x )  

Raven(x) A Albino(x) A Victim - -  of oil - spill(x) Black(x) 

This property of strengthening the antecedent and possibly obtaining a change in the consequent to its 

negation is referred to as lefr-downward nonmonotonicity. The goal is to obtain a system in which a set of 



such assertions is satisfiable while the antecedents are all true. We gain leftdownward nonmonotonicity at 

the expense of modus ponens. This must be so because if we had: 

A, B, A*C, A h B + 4  

then we could conclude both C and 4. We also lose strong deduction and contraposition in such systems. 

Other properties of the material conditional we would like to see weakened for the representation of 

natural kinds are transitivity and the law of the excluded middle. For example, platypuses are mammals, 

mammals (normally) give birth to live young, but platypuses (normally) lay eggs (failure of transitivity). 

Also we might like to remain neutral about the relations between kinds and properties not usually associ- 

ated with the kind (failure of the law of the excluded middle). 

Similar systems have been developed for other types of reasoning, most notably those of Stalnaker 

[68] and Lewis [73] for the analysis of the traditional problems of counterfactual conditionals. Counterfac- 

tual conditionals are statements of the form "if something which is not the case had been the case, then 

something else would have been true." Conditionals concerning natural kinds, or natural conditions, and 

counterfactual conditionals share the characteristics of left-downward nonmonotonicity and failure of tran- 

sitivity. They differ in that counterfactual reasoning deals with conditionals in which the antecedent is 

false while the conditional may be true or false. In the case of natural conditionals the antecedents are true, 

but the classical conditionals may be jointly inconsistent. Related work in analyzing counterfactual condi- 

tionals is dealt with in mute 751, subjunctive conditionals in Pollock 761, and conditional obligation in 

[van Fraasen 721. For discussions of the characterizations of conditional logics in general see [Chellas 753 

mute 801 Weltman 851 [van Benthem 841 [Jemings 871. 

The general structure of the formal semantics for such systems is based on a set of worlds in which 

sentences of the language have "truth values." Each sentence has a definite value of "true" or "false" in 

each world Thus three different meanings for "affirming" a proposition p can be distinguished: 

(1) p is true in a single world (fact) i 

(2) p is true in a subset of worlds (hypothesis) 

(3) p is true in all worlds in all models (valid). 



Conditional statements are of interest when they are valid or used in hypotheses. Their use in hypotheses is 

generally as a "filter," i.e., to assume p as a hypothesis is to select the subset of worlds in which p is true. 

The application of the possible worlds approach to the analysis of conditionals is due largely to Stal- 

naker [Pollock 761. Stalnaker and Lewis view a counterfactual conditional as a "filter" which selects the 

"nearest" or "most similar" world i to the world in which the hypothesis is being tested, such that the 

antecedent is true at world i. In accordance with Lewis's interpretation, A + B, read "if it were the case 

that A then it would be the case that B, is true at a given world i if in the set of worlds (or "sphere") most 

similar to i that have A true, also have B true, and for no world in the sphere is A 3 B false. 

3. A Logic for Kinds 

In the case of natural conditionals, the basis of the accessibility relation among possible worlds is 

uniformity, or "unexceptionalness." More formally, the accessibility relation E is said to hold between two 

worlds wl and w2 ( E w ~ w ~ )  just when wy is at least as unexceptional as wl. A + B is true with respect to a 

world w just when (1) the least exceptional worlds which have A true have B true also, and in no less 

exceptional world is A 3 B false, or (2) A is false at al l  worlds accessible from w. 

E is characterized by the following properties: 

Reflexive: Eww for al l  worlds w. 

Transitive: If Ewlwz and Ewzw3 then Ewlw3. 

Forward Connected: If Ew~wz and Ewlw then either Ewws or Ew3w. 

Forward connectedness ensures that every two worlds accessible from the same world are themselves com- 

parable. 

The language N consists of a denumerable set of atomic sentences P=@o,pl, - }, the logical con- 

nectives -, (negation) and 2 (material conditional), and the variably strict conditional +. The connectives 

A (conjunction), V (disjunction), and n (equivalence) can be defined in terms of negation and material impli- 

cation. 

Sentences of N are interpreted with respect to a model structure M = <W, E, P> where W is a set, E is 

a reflexive, transitive, forward connected, and terminating binary relation on W, and P is a function which 



maps atomic sentences onto subsets of W. W may be thought of as a set of possible worlds, E an accessi- 

bility relation on the worlds in W, and P a mapping of atomic sentences onto those worlds in W where a 

sentence is true. Ewlw is interpreted as "w is at least as unexceptional as WI." The symbol P:A is used to 

indicate that A is a fact, i.e., is true in the model structure M in world w. More formally: 

(i) I=: p. iff WE Pen)  for every n. 

(ii) I$ 1 A iff not t,,M A. 

(iii) I=: A 3 B iff if A then B. 

(iv) l=fA e B iff (a) there is a W I E  W so that E w l  and kzA and PEB and there is no W ~ E  W so that 

Ewlw and kEA and I< 7 B, or (b) for every W I E  W where E w l ,  pE A. 

If +:A, then A is true in model structure M in world w (a fact). If PA, then A is valid, i.e., true in 

every world in every model structure. A is satisftable iff 4 is not valid. 

Since theorems of classical propositional calculus are theorems of N, any of the usual sets of axioms 

of PC and modus ponens may be adopted. In addition, the following formally characterizes the variable 

conditional operator * : 

N is closed under the rules: 

If A=B then infer (A e C) = (B C) 



The &sired result that {A1 - B, A1 A A2 =+ 1 B} be satisfiable is obtained. Failure of transitivity 

is evidenced in the satisfiability of the following sets: 

{A*B,B+ C, l ( A +  C)J and 

which is desirable in order to express sentences such as "ravens are (normally) black, black things are not 

white, so ravens are (normally) not white." 

4. Thesis Overview 

The approach to theorem-proving for N is presented in Chapter 2. The method of N-diagrams, a 

refutation procedure developed to test N-validity, incorporates the techniques of semantic tableaux. Sec- 

tion 1 of Chapter 2 provides an introduction to the method of N-diagrams. Section 2 provides background 

on tableau systems and semantic diagrams. The method of N-diagrams is then presented in detail in sec- 

tion 3. A summary of the approach is provided in section 4. 

The proof of correctness of the theorem-proving algorithm is presented in Chapter 3. The correct- 

ness proof demonstrates that the method is consistent (section 1 of Chapter 3), and sound (section 2) and 

complete (section 3) with respect to the model theory. 

Chapter 4 is concerned with the automation of the method of N-diagrams. Section 1 of Chapter 4 is 

an examination of the representation of a system of N-diagrams. The algorithm for the automated theorem 

prover is given in section 2 and the main data structures described in section 3. An analysis of the compu- 

tational complexity of the algorithm is provided in section 4. Conclusions and directions for further 

research are presented in Chapter 5. 



- 10- 

Chapter 2. A Theorem Prover for N 

1. Introduction 

The theorem prover for N is a refutation procedure based on the model theory of N rather than the 

axiomatic basis of N. An attempt is made to construct a falsifying model for a wff w. If such a model can 

be constructed, w is invalid. Otherwise a falsifying model is shown to be impossible, and o is therefore 

valid. 

The goal is to prove a. A secondary goal is established to prove lo satisfiable. If lo is satisfiable 

then o cannot be valid by the definition of truth in the model theory. If ~o is unsatisfiable then w is valid. 

To is satisfiable if there exists a world w in some model structure M in which lo is true. 

Lower case Greek letters are used to denote formulas. A formula in which the main operator is +, 

e.g., A - B, is referred to as a y-fonnula. An N-model is a model structure <W, E, P> in which the follow- 

ing conditions are met: 

For every world wi, no subformula and its negation are both true at wi. 

If I=: n 4 n then (a) there exists a world wi such that EWi  and ~ E Y I  and kti% and no wj such that 

I=: yi and k -  iy* or (b) pE YYI for all wi such that E w .  

If k:l(Yi - B) then there exists a world wi such that E W i  and e i y i  and ~<~ln and either (a) 

there exists no world w, such that Ewwj and ptyi and $y2, or (b) if there exists such a w,, then 

Ew,w~. 

E relates the elements of W so that reflexivity, transitivity, and forward-connectedness hold. 

Condition (1) says that the assignments of truth at worlds are consistent, i.e., true cannot be assigned to any 

subformula and its negation. Conditions (2) and (3) ensure that the truth conditions for the + operator are 

met at each world in the model. 

The theorem-proving procedure attempts to construct an N-model for lo in order to prove o. If an 

N-model is found, lo is satisfiable, and w is invalid. The N-model for ~o serves as a counterexample. If, 

on the other hand, an N-model for lo is impossible, then lo is unsatisfiable, and o is valid. 



The proof procedure is an extension of the tableau-based semantic diagrams of Hughes and Cress- 

well [68] and Rescher and Urquhart [71]. All relevant reflexive, transitive, and forward-connected (RTFC) 

model configurations for -a are generated and tested, where a model configuration, or configuration, is a 

diagrammatic representation of a model str~cture.~ If a consistent configuration is found, the procedure 

returns the configuration. If every configuration is inconsistent, then o is valid. Section 2 provides an 

introduction to tableau systems and semantic diagrams. The method of N-diagrams is then presented in 

section 3. 

2. Background 

2.1. Tableau Systems 

The procedure for testing N-validity is a tableau-based system. The roots of such systems can be 

traced back to Gentzen [35]. His sequent calculus is generally applied in an "upsidedown" fashion, starting 

with the desired result and working upward to axioms. Beth [59] and Hintikka [55] developed proof pro- 

cedures called tableau systems which formulate the problem "upsidedown" from the beginning. The pro- 

cedures are refutation systems, i.e., an attempt is made to refute a given formula. If the attempt fails, the 
& 

formula should be valid. 

Smullyan [68] applied these ideas to classical logic, simplifying the methods and making them more 

elegant Oppacher and Suen [86] implemented an automated tableau-based theorem prover for full first- 

order logic based on Smullyan's analytic tableau in which the control structure has been augmented with 

heuristics. Extensions of Beth's intuitionistic tableau systems were developed by Fitting [83]. Tableau 

systems have also evolved for modal logics [Kripke 63, Hughes and Cresswell 68, Fitting 831 and temporal 

logics [Rescher and Urquhart 7 11. 

By rclevunf model configuration is meant a model configuration in which only relevant value assignments at each 
world are considered. Every atomic sentence has a definite truth value at each world in a model structure. For example, 
there are many models in which p: 71 4 % and pz ~1 and kz ')2 .ad E m .  These models vary in the assignment 
of truth values to other atomic sentences, but that is of no concern. h e  main concern is that Yl and % are both true at wl 
and wl is accessible to W thereby confirming J=: Yl + ')2. 



The method of tableau involves an attempt to construct a falsifying model for a given formula. If a 

falsifying model can be constructed, then the formula is invalid Otherwise it is shown that such a model 

is impossible to construct, and the formula is therefore valid. The standard notion of propositional formula 

is characterized in the following. 

Definition. The set of formulas is precisely defined by: 

(1) Any propositional variable (atomic formula) is a formula. 

(2) IfX is a formula, then so is 4. 

(3) If X, Y are formulas, then so are (X A Y), (X v Y), (X 3 Y). 

Definition. According to the uniqueness of decomposition property, for every formula X, one and only one 

of the following conditions holds [Smullyan 68; proofs that propositional languages have this property are 

given in Church 56, Kleene 521: 

(1) X is a propositional variable. 

(2) There is a unique-formula Y such that X = YY. 

(3) There is a unique pair XI, Xz and a unique binary connective b such that X = (XI b X2). 

Definition. The degree of a formula refers to the number of occurrences of the logical connectives A, V, 3 ,  . 
within a formula: 

(1) A variable is of degree 0. 

(2) If X is of degree n, then 4 is of degree n + 1. 

0 

(3) If X, Y are of degree nl, n2, then X A Y, X V Y, X 2 Y are each of degree nl + nz + 1. 

Definition. The notion of subformula as described in [Smullyan 681 follows. An immediate subformula is 

given by: 

(1) Propositional variables have no immediate subformulas. 

(2) -X has X as an immediate subformula and no others. 

(3) Formulas X A Y, X v Y, X 1 Y have X, Y as immediate subformulas and no others. 



A subformula is given by: 

(1) IfX is an immediate subformula of Y, or if X is identical with Y, then X is a subformula of Y. 

(2) If X is a subformula of Y, and Y is a subformula of 2, then X is a subformula of Z. 

Then any subformula of X must have degree less than the degree of X. 

Definition. A signed formula refers to an unsigned formula X preceded by T or F. Informally, lX asserts 

that formula X is true, FX asserts that X is false. 

Definition. A tableau system consists of (1) a tree with root FZ, where Z is the formula to be proven, and 

(2) rules for extending branches of the tree. For the propositional case there are two types of rules, a-rules 

and p-rules, for the assignment of truth values to the immediate subformula of a formula These rules are 

given in Table 2. 

Table 2.1. Summary of a-rules and p-rules. 

a 
I 

TX TY F(XA Y) FX FY 

FX FY T(XVY) TX TY 

T X F Y  T ( X 3  Y) FX TY 

TX TX T ( 7 X )  FX FX 

Note that al, a2 are direct consequences of a while at least one of PI, P2 follows from P. In terms of Tar- 

skian semantics, a iff p( a1 and az, and k t  $ iff $' or k t  P2 The rules are further surnmar- 

ized in the table below, where "I" means or: 

The classification of F -X as an a-formula and T -X as a bformula is arbitrary. It is, however, desirable to categor- 
ize them as separate f m u l a  types if characterizations of the rules are to be examined. For example, consider some proper- 
ties of conjugation. The conjugate of a signed formula is the result obtained from changing T to F o r F  to T. Thus, the con- 
jugate of any a is a f3, and the conjugate of a f3 is an a These properties would not hold if F -X and T -X were both a- or 
Bformulas. 



For modal and first-order augmentation of the branch extension rules see Appendix 2. 

Rules are applied in the following way. Given an a-formula on branch 8 of tree T, extend branch 0 

and each of its branches with al, a2. Given a p-formula on branch 0, extend 8 and each of its branches by 

branching Pi to the left and j32 to the right. A branch is closed if: 

(1) For some formula A, TA and FA both appear on a branch 8, 

(2) TI appears on 8, where I is the logical constantfalse, or 

(3) F-r appears on 0, where T is the logical constant true. 

A branch is open otherwise. A tree or tableau is closed if all of its branches are closed. A closed tableau 

for FZ is a proof of Z [Smullyan 681. Once a rule is applied to an a or P, that formula is marked and never 

used again, not even in deriving a contradiction to close a branch. 

The following example illustrates the tableau method. The problem is to prove that 

(((A 3 C) A (B 3 C)) A (A V B)) 3 C is a tautology. The parenthesized numbers to the left of a line are L 

used only for identification. The parenthesized numbers to the right indicate the line from which the 

current line was &rived The proof is given in Figure 2.1. 

The a-rule "given F(X 2 Y) infer TX, FY" is applied to line (1) yielding (2) and (3). A signed variable (line 

(3)) cannot be used to create new lines, but (2) yields (4) and (S), and (4) yields (6) and (7). Lines (S), (6), 

and (7) are p-formulas. Line (5) requires a branching to (8) and (9). The branch extension rules extend 

each path which goes through the a- or p-formula Thus, line (6) requires branching from (8) to (10) and 

(11) as well as from (9) to (12) and (13). Lines (8) and (10) contain a contradiction, TA and FA, so that 

branch is closed (marked with an X), and so on. All branches are closed, so the tableau is closed and 

(((A 3 C) A (B 3 C)) A (A v B)) 3 C is a tautology. 

After a finite number of steps a tableau is complete since: 



Figure 2.1. A tableau proof of ((A 3 C) A (B 3 C) A (A v B)) 3 C. 

Application of the branch extension rules decomposes formulas into immediate subformulas. 

An immediate subformula of X must have degree less than X. 

Signed variables have no immediate subformulas. 

Each line in a tableau is used only once to create new lines (except for signed variables). 

Smullyan [68] suggests some heuristics for tableau construction: 

Close a branch as soon as a contradiction is reached. 

Give priority to a-rules. Repetition of al, a 2  to all subsequent branches is then avoided. al ,  a 2  

occur instead with a above the branching. 

Mark a line once it has been used to indicate it need not be considered again. 



The method of tableau can also be used to show that Xi, X2, ..., Xn I- Y, i.e., Y is a truth functional 

consequence of XI, X2, ..., Xn. A tableau can be constructed starting with F((X1 A X2 A - - A X $ 3  Y) or 

starting with: 

Txt 

m2 

23. Semantic Diagrams 

Since the truth conditions for the variable conditional operator + are based on a possible-worlds 

semantics, a proof procedure for N must have the capacity to manipulate worlds. This capacity is evi- 

denced in the method of semantic diagrams of Hughes and Cresswell [68] for modal logics and Rescher 

and Urquhart [71] for temporal logics. Let us examine the semantic diagrams of Hughes and Cresswell in 

more detail. The method is essentially a tableau technique consisting of: b 

(1) rectangles representing the relevant state of affairs or conditions which hold at worlds, 

(2) labels identifying rectangles (worlds), 

(3 )  arrows indicating accessibility, i.e., an arrow from rectangle wi to rectangle w, indicates that w, is 

accessible from wi, and 

(4) rules for building the diagrams. 

An attempt is made to construct a falsifying model for a given formula utilizing the method. Let us 

h t  review the propositional case which obviates the accessible worlds machinery. This machinery will 

later be examined in detail with a modal example. 

Consider the propositional formula o = (A A B) 3 (A v B). The goal is to provide a model in which o 

is shown to be false or to prove such a model impossible to construct. The notion of Boolean valuations is 



used instead of interpretations in the context of semantic diagrams. A valuation assigns 1 (true) or 0 (false) 

to formulas and subformulas. The truth value for o in a falsifying model is 0. Thus, we begin by placing a 

zero under the main operator of o: 

I (Ah B) 2 (AVB) I 

The application of the rules of propositional logic forces the assignment of the value 1 to the antecedent 

and 0 to the consequent of a false implication (an a-rule): 

(Ah B) 3 (AVB) I 
Application of the rules for a true A and a false v (a-rules) result in the following assignments: 

Inconsistencies arise in the value assignment of both 0 and 1 to A and to B. The rectangle containing such 

an inconsistency is said to be inconsistent. Thus a falsifying model is impossible to construct, and o is 

valid. The a- and j3-rules are presented in Table 2.2 in the context of semantic diagrams. 

Efficiency is improved if a-rules are applied first, then p-rules. The a-rules are applied by assigning the 

appropriate value(s) to the operand(s) of an a-formula. For example, given A A B assigned 1, A is assigned 

1, and B is assigned 1. p-formulas are dealt with in the following way. According to Hughes and 

Cresswell's system a t is placed under the leftmost P in a rectangle w,. Limiting the number of f's to one 

per rectangle ensures that at most three alternatives are generated from any one rectangle w,. The rule for 

alternatives (p-rules) creates two (or three) new rectangles, wj(13, Wj(ia3 (or wj(g, wj(ir3, wj(iir3) SO that each is a 

replica of wj to which distinct alternative-case value assignments have been made, e.g., Figure 2.2. Rectan- 

gle w, is inconsistent iff each alternative case wj(9, wj(ii), w,(iii) is inconsistent. 



Figure 22. Alternative rectangles. 



Table 2.2. Summary of a-rules and P-rules for value assignments. 

a a1 a 2 1 1  P Alternative cases 

The rule for alternatives is illustrated with o = ((A 3 B )  A (B 3 C)) 3 (A 3 C). We begin by writing 

w in a rectangle labelled wl and placing a zero under the main operator: 

The application of the rules of propositional logic forces the assignment of the value 1 to the antecedent 

and 0 to the consequent of a false implication (an a-rule): 

These assignments in turn require that the following value assignments be made: 



A  cross is placed under the leftmost P: 

New rectangles for the alternative cases are created: 

New rectangles for the alternative cases to wl(0 are creW. 

w, (iii) 

( ( A ~ B ) A ( B ~ C ) ) I ( A ~ C )  

0 1 0 1  1  0  1 0 0  

t 



Each alternative case leads to an inconsistency, so rectangle wl(g is inconsistent. New rectangles are next 

created for the alternative cases to wl(i3: 

Each alternative case leads to an inconsistency, so rectangle wl(i) is inconsistent. Finally, new rectangles 

for the alternative cases to wl(ii11 are created: 

Each alternative case leads to an inconsistency, so wl(ii1 is inconsistent. Each alternative case to wl, i.e., 

wl(0, wl(9, wl(~3, is inconsistent, so wl is inconsistent, and o is valid. 



- 22 - 

Next examine the propositional formula o = (A 3 C) 3 (C 3 A). A  zero is placed under the main 

operator and the following forced value assignments made: 

New rectangles are created for the alternative cases to wl: 

Rectangles w1(1) and wl(ii,7 lead to inconsistencies, but wl(ii) is consistent The value assignment of 0 to A 

and 1 to C demonstrates a falsifying model, and o is invalid 

wl (ii) 

This method is just a modified tableau system. The first step, which places a zero under the main 

operator, corresponds to a tableau which starts with the signed formula Fa, where o is the given formula. 

Then the rules of propositional logic (a- and P-rules) are applied in both systems until no more rules apply. 

For example, the proof of validity of o = (((A 3 B )  A (B 3 C)) I, (A 2 C)) using Smullyan's method is as 

follows: 

(AxC)3 (Cz ,A)  

0 1 1 0  1 0 0  



All branches are closed, so the formula is valid. Next examine the tableau for o = ((A =, C) =, (C ZJ A)) 

using Smullyan's method: 

There is at least one open path, so (A r, C) r, (C 2 A) is invalid. 

Next consider a modal example. Let L be the necessity operator and M the possibility operator. 

Asterisks are used to mark the occurence of a modal operator within a rectangle. The rule for putting in 

asterisks requires that: 



(1) an asterisk be placed above each L assigned 1 and each M assigned 0, and 

(2) an asterisk be placed under each L assigned 0 and each M assigned 1. 

Rule ( 1 )  marks v-formulas, formulas in which the main operator is an L assigned 1 or an M assigned 0.  v- 

formulas L o  (Mo) force the assignment of 1 (0) to o at all accessible worlds. Rule (2) marks x-formulas, 

formulas in which the main operator is an L assigned 0 or an M assigned 1. x-formulas Lo (Ma) force the 

assignment of 0 ( 1 )  to o at some accessible world. 

There are four rules for a new world. Rules ( 1 )  and (2) below are v-rules and (3) and (4) are x-rules: 

(1) If an asterisk occurs above Lo in world wi, then in all worlds accessible from wi, o must be assigned 

1. 

(2) If an asterisk occurs above Mo in world wi, then in all worlds accessible from wi, w must be assigned 

0. 

(3) If an asterisk occurs beneath Lo in world wi, then there must exist a world accessible from wi in 

which o is assigned 0. 

(4) If an asterisk occurs beneath Mo in world wi, then there must exist a world accessible from wi in 

which o is assigned 1. 
L 

The method is illustrated by testing the T-validity of o = Mp=-L-p. T is a modal logic character- 

ized by a reflexive accessibility relation. Wff o is written in a rectangle labelled wl, a zero placed under 

the main operator, and the false equivalence marked with a cross as in Figure 2.3. 

The rule for alternatives is applied creating wl(i) and wl(ki as in Figure 2.4. wl(g contains the case in which 

Mp is assigned 1 and 4 7 p  is assigned 0. This forces the assigment of 1 to L-p, 1 to ~ p ,  and 0 to p. The 

L assigned 1 is marked with an asterisk above, and the M assigned 1 is marked with an asterisk below. 

Applying the x-rule for a true possibility operator, there must exist some world w2 in which p is true. How- 

ever, the asterisk above L requires that in all worlds accessible from wl(,i ~p must be true. Rectangle wz is 

inconsistent since p is assigned both 0 and 1 ,  and wl(,] is therefore inconsistent. Similarly wl(i,> leads to an 

inconsistency. Therefore, wl is inconsistent and o is valid. 



Figure 23. Initial rectangle for o = Mp = 4 7 p .  

Figure 2.4. Complete system for w = Mp = 4 - 1 p .  

0 



To summarize the method of semantic diagrams, we begin by writing the formula to be tested in a 

rectangle labelled wl and placing a 0 under the main operator. In each rectangle wi rules are applied first 

which infer direct consequences (a- and v-rules). Rectangles other than wl are built by applying rules: 

(1) rule for putting in asterisks, 

(2) rule for a new world, 

(3) rule for altematives. 

The system is complete for a wff o when the rules have been applied as o f p  as possible. A rectangle wi 

in a complete system is inconsistent if: 

(1) both 0 and 1 have been assigned to the same subformula in Wi, 

(2) an inconsistent rectangle is accessible from wi, or 

(3) all of its alternatives are inconsistent. 

A formula o is valid iff the first rectangle, wl, in a complete system of semantic diagrams is inconsistent. 

b 

3.1. The Method 

The theorem-prover for N is a refutation procedure based on the model theory of N as opposed to the 

axiomatic basis of N. In order to prove o ,  an attempt is made to construct a consistent N-model for ~ o .  

An extension of the semantic diagrams technique for modal and temporal logics is used to build a structure 

from which all relevant N-models can be generated. If any one of these N-models is consistent, then l o  is 

satisfiable and o invalid. The consistent N-model serves as a counterexample. If, on the other hand, every 

N-model is inconsistent, then -a is unsatisfiable, and o is therefore valid. 

The theorem prover is comprised of two parts. The first part builds a structure which characterizes 

possible N-models for lo. The second part generates and tests diagrammatic representations of N-models 

for -..lo called configurations. In the following description of N-diagrams refer to Figure 2.5 which illus- 

trates the auth conditions for the variably strict conditional operator *. 



Figure 2.5. N-diagrams representing the truth conditions for the + operator. Figure 2.5(a) illustrates 

the conditions under which A + B is true at a world wi. Figure 2.5(b) shows the conditions 

under which A + B is false at wi. 

A system of N-diagrams consists of: 

(1) rectangles, 

(2) labels, 

(3) arrows, 

(4) not-arrows, 

(5) ORs, and 

(6) rules for constructing the diagrams. 

There are two types of rectangles: (a) rectangles representing the relevant state of affairs or conditions 

which hold at a world, and (b) rectangles representing the conditions or constraints on accessibility from a 

world. Associated with each rectangle is a label, an element from the set W of an N-model. A rectangle of 

type (a) labelled wi contains the set of relevant sentences of N which are true at wi. For example, the rec- 

tangle labelled wi in Figure 2.5(a) represents a world wi in which A + B is true, whereas Figure 2.5(b) 



represents a world wi in which A - B is false. Associated with a rectangle of type (b) is a primed label, 

e.g., rectangle wj" of Figure 2.5(a) contains the conditions which cannot hold at any rectangle wk such that 

there exists an arrow from wj to wk. 

An arrow is used to represent the accessibility relation E. An arrow from rectangle wi to rectangle wj 

indicates that Ewlwj holds, i.e., the world represented by rectangle wj is accessible from the world 

represented by rectangle wi. The symbolism Awiwj is used to indicate that there exists an arrow in an N- 

diagram from rectangle wi to rectangle Wj. Thus an arrow Awiwj corresponds to Ewiwj in an N-model. SO 

world wj is accessible from wi in Figure 2.5(b) since there exists an arrow from rectangle wi to rectangle wj. 

There is an implicit arrow from each rectangle to itself because the accessibility relation is reflexive. 

A not-arrow, * , leaving rectangle wi indicates that there are constraints imposed upon any rectangle 

w, such that Awiw, exists. A rectangle into which a not-arrow enters contains the prohibited conditions. 

The conditions are forbidden by the &finition of truth in an N-model. For example, Figure 2.5(a) 

represents a situation in which there can be no arrow A w j ~ j "  where A is aue and B false at rectangle wj". 

An OR in a diagram indicates that either one accessibility path or the other must hold. There are two 

cases in which ORs occur: 

(1) between an arrow from wi to wj and a not-arrow from wi, where rectangle wj was created due to a 

true a-subformula in wi, 

(2) between a not-arrow from wj to wj' and a pair of arrows, one from wj to wj' and the return-arrow 

from wj' back to wj. 

Case (1) arises when yl a y~ is assigned 1 at wi. Then there must be an accessible world wj where yl and % 

are both true, or yi is false at al l  accessible worlds. Case (2) arises when yl - .).L is assigned 0 at wi. Then 

there must be an accessible world wj where 9 is true and y2 false either there is no world w; where yl and 

yz are both me, or Awj'wj coexists. An example of case (1) is in Figure 2.5(a) where either: 

(a) there is an arrow Awiwj and a rectangle wj where A and B are both true, and no arrow Awjwk such that 

A is true and B false at rectangle wk, OR 



(b) for every arrow Awiwj, A is false at rectangle wj. 

Case (2) is illustrated in Figure 2.5(b) where either: 

(a) there exists no arrow Awjwj' where A and B are both true at rectangle wj', OR 

(b) if there is such an arrow Awjwj', then Awj'wj must also exist. 

Since N subsumes propositional logic, the valid wffs of classical propositional logic are valid wffs of 

N. The theorem-prover for N, then, requires the propositional rules for the assignment of truth values to 

the immediate subformulas of propositional formulas plus a rule for the assignment of truth values to the 

immediate subformulas of y-formulas. Thus the method of N-diagrams consists of three types of rules for 

the assignment of truth values: a-rules, j3-rules, and y-rules. Truth assignments are made in terms of 

Boolean valuations rather than interpretations. The a-rules and j3-rules are summarized in Table 2.2. 

Apply a-rules by assigning the appropriate value(s) to the operand(s) of an a-subformula. For example, 

given the a-formula A 2 B assigned 0, assign 1 to A and 0 to B. Assignments to operand(s) made by the 

application of a-rules follow as direct consequences from the value assigned the a-subformula 

The rule for crosses serves to mark a j3-subformula. A cross is placed under the leftmost j3- 

subformula in rectangle wj. Apply j3-rules in the construction of N-diagrams according to the following 

rule: 

Rule for alternatives. If a t occurs beneath an equivalence (or other j3-subformula)in rectangle wj, 

draw two (three) new rectangles wx~, wj(q (wm, wj(8, wxiii)) which are identical 

copies of wj. Assign a distinct alternative-case value assignment to each new 

rectangle. 

Note that no arrows are drawn from rectangle w, to its alternatives. The arrows entering w, are copied over 

to each alternative, however. We now have, in effect, a system of two (three) N-diagrams, identical to the 

original except that one of wj(11, wj(ig (wj(i), wKi+ wj(iii1) replaces wj in each. 

A formula or subformula whose main operator is a =+ is referred to as a y-formula or y-subformula. 

The rule for asterisks serves to mark a y-subformula. An asterisk is placed under each * assigned 0 or 1. 

The y-rules are stated as follows: 



(1) I = ~ A - B  iff (a) there exists a wl E W such that E w l  and ~ E A  and p z  B and there exists no 

w2 E W such that Ewlw2 and I=:A and ~ E - I B ,  or (b) for all wl E W such that E w l ,  k t 4 .  

(2) I=~T(A*B) iff there exists a wl E W such that E w l  and F ~ A  and k z 4  and either (a) there 

exists no w2 E W such that Ewlm and FEA and FE B, or (b) if there is such a rn then Ew2wl. 

The y-rules are expressed in terms of N-diagram construction in the rules for nou worlds: 

(1) If an asterisk occurs beneath a == assigned 1 at wi, create a new rectangle wj in which the antecedent 

is true and the consequent is true. (Refer to Figure 2.5(a).) Place an arrow from rectangle wi to new 

rectangle w,. Create another rectangle wj' in which the antecedent is true. Place a not-arrow from 

rectangle wi to rectangle wj'. Place an OR between the arrow from wi to wj and the not-arrow from 

wi to w:. Create another rectangle w y  in which the antecedent is true and the consequent false. 

Place a not-arrow from rectangle w, to rectangle w;. 

(2) If an asterisk occurs beneath a == assigned 0 at wi, create a new rectangle wj in which the antecedent 

is true and the consequent false. (Refer to Figure 2.5(b).) Place an arrow from rectangle wi to rectan- 

gle w,. Create another rectangle wj' in which the antecedent and the consequent are both true. Place 

a not-arrow from rectangle wj to rectangle wj'. Place an arrow from rectangle wj to rectangle wj' and 

from rectangle wj' to rectangle w,. Place an OR between the not-arrow and the double-arrows con- 

necting Wj and w:? 

The method of N-diagrams thus provides tools for model construction: 

(1) labelled rectangles representing worlds in an N-model, 

(2) a set of sentences of N within a rectangle wi denoting the set of relevant true sentences at world wi, 

(3) arrows representing the accessibility relation E between worlds, 

(4) unlabelled rectangles containing sentences of N which denote constraints on accessibility from a 

world, 

- -  

In practice the primed labels are dropped from rectangles representing the conditions on accessibility from a rectangle. 
They have been used here to avoid confusion. 



(5) not-arrows which emanate from labelled rectangles, wi, and enter unlabelled rectangles denoting 

constraints on accessibility from wi, 

(6) ORs denoting alternative states of affairs either of which satisfy the definition of truth for =E-, and 

(7) rules for assigning consequential truth values to subformula given the initial assignment of 0 to o, 

e.g., a-, p-, y-rules, rules for crosses, alternatives, asterisks, and new worlds. 

The theorem-prover for N (NTP) is based upon this method of N-diagrams. The application of the 

method of N-diagrams to the theorem prover is developed with a simple, but inefficient NTP algorithm 

called NTH. A more efficient algorithm is presented in a later section. Algorithm NTPl is given below: 

Algorithm NTPl 
Input: wff 

Output: valid, invalid 

1. Initialize the system of N-diagrams 
1.1. Write the w ff inside a rectangle 

1.2. Label the rectangle wl 
1.3. Assign 0 to the main operator of the wff 

2. Build "characterizing structure" (or semi-complete structure) 

2.1 Apply rules of the method as often as possible 

3. Generate RTFC configurations 

4. Test RTFC configurations 

5. If a consistent RTFC configuration is found then return the configuration 

Else wff is VALID 

To prove the given wff o  we try to find a configuration in which ~ o  is satisfiable. Steps 1 and 2 generate a 

structure which characterizes N-models for ~ o .  This "characterizing structure" is not an N-model because 

it contains ORs. Removal of the ORs from the characterizing structure generates alternative structures 

called templates. These templates are not yet N-models because they are not forward-connected. Thus sets 

of arrows are added to the templates and tested for consistency (steps 3 and 4). A template to which a set 

of arrows has been added is called a configuration. If a consistent RTFC configuration for ~ o  is found, o  

is invalid. Otherwise o  is valid. The next sections examine the steps of the algorithm in detail and provide 

examples. 



3.2. Building the Semi-complete Structure 

The approach to theorem-proving presented here is one of model construction. The goal is to find a 

consistent model for 7 a. Thus the characteristics shared by all possible relevant consistent models must 

be determined. What worlds are required for such a model? What sentences must be true at each world in 

the model? How must these worlds be related? 

The method of N-diagrams is employed to answer these questions. The procedure is illustrated with 

an example. Let w = (((A * C) A (B + C)) 2 (A A B + C)). Write w into a rectangle labelled wl and place 

a 0 under the main operator: 

Apply the propositional a- and p-rules to obtain consequential value assignments to subformula of w: 

Apply the rule for asterisks to mark each +-subformula: 

Apply the rules for new worlds wherever an asterisk occurs. We obtain the diagram of Figure 2.6. The 

structure obtained once the rules have been applied as often as possible is referred to as a semi-complete 

system of N-diagrams, or semi-complete structure or SCS for short. It is semi-complete in the sense that 

more accessibility relations must be added since forward-connectedness and transitivity do not hold in such 

structures consisting of more than two worlds. The semi-complete structure for o= (((A* C) A (B=> 

C)) 3 (A  A BT>C)) is shown in Figure 2.6. Such a structure is the characterizing structure referred to ear- 

lier. 



Figure 2.6. Semi-complete system of N-diagrams for o = (((A .o C) A CB * C)) 3 (A A B * C)). 

Note that for o only one semi-complete structure exists. Many are possible, though, if a wff contains 

a P-subformula. In the case that a =+subformula occurs within the scope of a P-subformula, for example, 

we get quite different semi-complete structures. Consider the SCS for o = ((A + B) V (B + A)) 

shown in Figure 2.7. Because o is a p-formula with =+subformulas A - B, B + A; we obtain a system 

of three SCS, (a), (b), (c), each of which is used to generate configurations. 

The SCS specifies a limit on the worlds required in any consistent relevant model and specifies a 

minimum set of sentences which must be true at those worlds. For example, from the SCS of Figure 2.6 for 

o it can be determined that any consistent model must consist of worlds wle, wz., w3#, w4; corresponding to 

wl, w2, w3, w4 such that wl. E W, w4. E W, wy E W or -A is true at all worlds accessible from wls, and 

w3' E W or 1 B is true at all worlds accessible from wit. w4. E P(A A B), w4. E P( C), and wl. E P( o) 

holds in any consistent relevant model for o. If w2. E W, then w2. E P(A), w2. E P(C); if w3. E W, then 

Wie E P( 7 B) for all wi. such that Ewlwi.. 



Figure 2.7 Semi-complete-stmcture for o = ((A =z- B) (B P A)). 



33. Generating RTFC Configurations 

The goal, then, is to generate all possible relevant RTFC configurations from the SCS. Recall that 

71 % is true at rectangle wi if either: 

(1) there exists arrow Aw~w, such that 71, % are both assigned 1 at wj and there exists no rectangle wk 

where y~ is assigned 1 and y2 0 such that Aw,wk exists, or 

(2) for every Aw'w,, 71 is assigned 0 at w,. 

Therefore consistent model structures may exist in which wy E W and others may exist in which wj. d W. 

Both of these paths, or branches, along the SCS must be investigated, so we generate new diagrams each 

one consisting of an alternative path. 

A structural template, or template, is defined as an SCS in which for each yl => p assigned 1 at wi, 

one of the following conditions holds: 

(a) Aw,w, (and its associated diagram fragment) of truth condition (1) have been removed. 

(b) The not-arrbw (and its associated unlabelled rectangle) imposing alternative truth condition (2) have 

been removed. 

From the SCS of Figure 2.6, four templates are-generated as is evidenced in Figure 2.8. Both Aw1w2 and 

AWIW have been removed from the SCS in Figure 2.8(a), Aw~wz and the not-arrow alternative to w have 

been removed in (b), AWIW~ and the not-arrow alternative to w2 have been removed in (c), and both not- 

arrows have been removed in (d). A corresponding set of worlds for W can be determined from each tem- 

plate. For example, the template of Figure 2.8(c) constrains the set of models to those in which 

W={WI~,W~~,W~.~, where WI*, w2; w4# correspond to WI, w, w4 respectively. 

The accessibility relation is, however, RTFC, and the templates comprised of more than two rectan- 

gles are not forward-connected. The next step in configuration generation, then, requires the addition of 

sets of arrows to the templates. The sets of arrows must connect the labelled rectangles of the template in 

such a way that forward-connectedness and transitivity hold. These properties are expressed in t e r n  of 

RTFC configuration construction by the following rules: 



Figure 2.8 Structural templates for the semi-complete structure of Figure 3.6. 



FC: If Awiwj and A w ~ w ~  both exist, then either (1) Awjwk, (2) Aw~w~,  or (3) both AWjwk and A w ~ w ~  exist. 

T: If Awiwj and A w ~ w ~  exist, then A w ~ w ~  exists. 

We can now more formally define a configuration as a template to which a set of arrows has been 

added so that each pair of rectangles in the template is connected. If the added set of arrows is such that the 

properties of forward-connectedness and transitivity hold, then the configuration is said to be an RTFC 

configuration. (Reflexivity is implicit in the template.) 

A simple, but inefficient approach to arrow-set generation is to generate all possible arrow sets which 

connect the template, then test each for transitivity. Note that each pair of rectangles wl, wj is already con- 

nected by Aw~w~.  So mow-set generation is concerned with connecting al l  labelled rectangles in the tem- 

plate except wl? There are three different ways of connecting each pair of labelled rectangles by rule FC, 

and there are (3) pairs of labelled rectangles. Therefore there are 3(9 or 0(3'@) mow sets to consider. 

Each set must be tested for transitivity. If the test fails, the arrow set is rejected In the worst case the 

arrow set fully connects the template. Then the arrow set is transitive, so the test for the presence of AwIwk 

is done for each of the O(n3) pairs Awiwj and Aw~w~. Thus the worst case complexity of the transitivity test 

for an arrow set is O(n4), and the complexity of the approach is 0(3'@n4). 

This approach can be avoided, fortunately, if we view a set of worlds in terms of equivalence classes 

with respect to the accessibility relation E. The RTFC relation imposes a well-ordering on equivalence 

(EQ) classes of worlds. A set of worlds within an EQ class is, of course, related in such a way that 

reflexivity, transitivity, and symmetry (and thus forward-connectedness) hold. 

The goal is to generate only those arrow sets which relate the rectangles in an RTFC pattern. 'In 

model terms, a well-ordering on EQ classes of worlds may consist of from 1 to n EQ classes, where n is the 

number of worlds in the set W. For example, if n = 3 the possibilities are as shown in Figure 2.9. Each 

diagram of Figure 2.9 is referred to as an equivalence-class template, or EQ template. The outer rectangles 

of the figure represent EQ classes of worlds with respect to accessibility. The inner rectangles represent 
- - 

In the case of nested s-subformula, a =-subformula containing a s-subformula, transitive arrows from wl to the 
nested rectangles must be added. 'Ihese arrows a n  added to the template. 



Figure 2.9 System of equivalence-class templates for three worlds. 



individual worlds. In Figure 2.9(a) all n worlds are in one EQ class. Figure 2.9(b) and (c) each represent a 

well-ordering on two EQ classes. The "topmost" EQ class of Figure 2.9(b) is a set consisting of one world, 

whereas the topmost EQ class of (c) contains two worlds. Figure 2.9(d) represents a well-ordering on n EQ 

classes, each class consisting of one world 

An arrow from equivalence class EQm to equivalence class EQp means that for each world wi in 

EQ, Ewiwj for each world in EQp. For example, the arrow in the template of Figure 2.10 denotes E w ~ w ~ ,  

Ewzws, E w ~ w ~ ,  EW~WS. EWZW and Ewwz hold because wz and w are in the same EQ class, and the same 

applies to Ew4ws and Ewsw4. 

An mow from EQm to EQp means that accessibility "runs downward," i.e., Ewiwj but not Ewjwi, for 

wi in EQ, and w, in EQp If Ewjwi does hold, then E w ~ w ~  must hold for any other wk in EQ, by transitivity. 

Ew~w, already holds since wk is a member of EQ,. Therefore EQ, and EQp collapse into one EQ class. 

So there are EQ-class templates consisting of from 1 to n EQ classes, and the number of worlds 

within each EQ class varies (Figure 2.9(b) and (c)). Additionally, there are various ways of "fitting" the 

worlds of W into an EQ template. For example, there are three ways of fitting worlds w2, w3, w4 into the EQ 

template of Figure 2.9(b) as shown in Figure 2.1 1.. 

An EQ template into which a set of rectangle labels (denoting worlds) has been fit is referred to as a 

conjigwarion template, or CF template. Arrow sets are generated from CF templates according to the fol- 

lowing algorithm. 

Algorithm Arrowset 

1. arrowset t {} 

2. Repeat 

2.1 For each wi in topmost EQ class do 

(a) For each wj, i#j, in topmost and lower EQ classes do 

arrowset + arrowset u {Awiwj} 

2.2 Remove topmost EQ class 

Until no EQ classes left 

To illustrate the algorithm consider the CF template of Figure 2.12. Step 1 initializes arrowset to the empty 

set. The first iteration of step 2.1 yields arrowset equal to { A W ~ W ~ , A W ~ W ~ , A W ~ W ~ )  and the second 



Figure 2.10 An equivalence-class template for four worlds. 

Figure 2.11 Fitting worlds into.an equivalenceclass template. 



Figure 2.12 A configuration template for four worlds w2, w3, wh ws. 



arrowset equal to {Aw3w4, AW~WS, Aww~, Aw~w, AW~WS, Aw~w~}. Step 2.2 removes EQl, so EQz becomes 

the topmost EQ class. The for loop of step 2.1 yields avowset equal to 

{Aww~, AWWS, AW~WZ, A w ~ w ~ ,  AW~WS, AW~WZ, AWSWZ}. EQ2 is removed, but EQ3 is the "bottom" EQ class 

and contains no pairs Wi, wj. SO the set of arrows generated from the CF template of Figure 2.12 is 

C-4~3~4, AWWS, AW~WZ, Aw4~3, AW~WS, AW~WZ, AWSWZ}. 

To return to the example o = (((A+C) A (B-C)) ZI ((A A B)=>C)), we get the templates of Figure 

2.9 for three worlds. In order to generate all possible sets of RTFC arrows, we must fit wz, w3, w4 into each 

EQ template in all combinations. There is only one way of fitting wz, w3, w4 into the template of Figure 

2.9(a), i.e., Figure 2.13(a), three possibilities for Figure 2.9(b) as in Figure 2.13(b), three possibilities for 

Figure 2.9(c) as in Figure 2.13(c), and six possibilities for Figure 2.9(d) as in Figure 2.13(d). The arrow 

sets generated from these CF templates are shown in Table 2.3. 

Table 23. Arrow sets generated from the CF templates of Figure 2.13. 

The work accomplished up to this point for o = (((AaC) A (BaC)) 3 (A A B=>C)) is summarized 

in the structure hierarchy of Figure 2.14. The method begins by assigning 0 to o = (((A=> C) A (B=> 

C))  2 (A A B=>C)) (level 1 of the hierarchy). The semi-complete structure for o assigned 0 (Figure 2.6) is 



Figure 2.13 The configuration templates generated from the equivalence-class templates of Figure 3.9. 



Figure 2.14 A hierarchy of structures used in the construction of relevant RTFC configurations for 

o = ( ( ( A  =>B)A(B =+ C ) ) 2 ( A A B  => 0). 



constructed (level 2 of the hierarchy). More than one SCS is constructed for wffs containing P-subformula, 

so level 2 may contain more than one node. From the SCS we obtain alternative structural templates (of 

Figure 2.8) STl, ST2, ST3, ST4 (level 3 of the hierarchy). By applying the arrow set generator described pre- 

viously we get the relevant RTFC configurations C1, ..., Czo (level 4). Cs, ..., C20 contain arrow sets 

AI, ..., A13 respectively, of Table 2.3. 

These RTFC configurations represent all relevant models in which w is false. If any one is con- 

sistent, w is invalid; otherwise w is valid. Therefore the next step involves testing configurations for con- 

sistency. 

3.4. Testing Configuration Consistency 

We can now formally define inconsistency within a configuration. Any rectangle in which both 0 

and 1 have been assigned to the same subformula is an inconsistent rectangle. An arrow Awiwj is con- 

sistent if the conditions on accessibility from wi are consistent with the conditions which hold at wj. Recall 

that the conditions on accessibility from wi are the negations of the subfmula in unlabelled rectangles 

connected to wi by not-arrows. This means that Awiwj is consistent iff the conditions on accessibility from 

wi and the conditions at wj, i.e., the sentences true at w,, are satisfiable. b 

Thus we can obtain a formula AwIwj' denoting an mow Awiwj in which Aw'wj' is the conjunction of 

the set of sentences true at wj and the negations of the subformula in unlabelled rectangles connected to wi 

by not-arrows. Aw'wj' is inconsistent if both 0 and 1 have been assigned to the same subformula of Aw'wj'. 

An inconsistent arrow is an arrow Awiwj for which A w ~ w ~ '  is inconsistent. For example, the structural tem- 

plate of Figure 2.8(b) contains an inconsistent arrow AWIW~.  The conditions on accessibility from wl 

require that 4 be assigned 1 at all accessible rectangles, but A is assigned 1 at w4. 

A generated arrow set may contain more than one arrow entering the same rectangle, say Awiwj, 

Awkwj. It may also be the case that Awiwj is consistent and Awkwj is consistent, but together the two are 

mutually inconsistent. This situation arises in the configuration of Figure 2.15. Here 

Aw~w~'=T(A A IS) A A A 4 ,  A w ~ w ~ ' =  7(B A - 4 9  A A A 4. AYW~'  is satisfiable by the assign- 

ment of 1 to A and B and 0 to C, and this is the only assignment which satisfies Awzw4'. A w ~ w ~ )  is satisfied 



Figure 2.15 A coniiguration containing mutually inconsistent arrows. 



by the assignment of 1 to A and 0 to B and C, and this is the only assignment which satisfies Aw~w~' .  SO 

Awzw4' is consistent only if B is assigned 1 at rectangle w4, and A w ~ w ~ '  is consistent only if B is assigned 0 

at rectangle w4. The two obviously cannot consistently coexist. 

Note that in the case of a rectangle wi created by the rule for new worlds from a false + (e.g., w4 in 

Figure 2.15), there are alternative conditions on accessibility from wi. Aw,wj is consistent if the negation of 

the forbidden value assignments are consistent with the conditions at wj, or Awjwi coexists. If Awjwi coex- 

ists, then the truth conditions are satisfied regardless of the value assignments at wj. Thus Awwj' is defined 

as the conjunction of each formula AwIwj' such that AwIwj is an arrow of the configuration except where 

Awjwi coexists and Wi was created due to a false +. Awwj' can be simplified by factoring out the conditions 

at wj. Then Awwj' becomes the conjunction of the conditions which hold at wj and the conditions on acces- 

sibility from Wi, for each Wi such that A w ~ w ~  is an arrow of the configuration (except where Awjwi coexists 

and wi was created due to a false *). Awwj' is inconsistent if both 0 and 1 have been assigned to the same 

subformula of Awwj'. A mutually inconsistent set of arrows is a set of arrows {Aw~w~, ..., Awkwj} for which 

Awwj' is inconsistent. 

An inconsistent configuration is &fined as follows: 

(1) A configuration containing an inconsistent rectangle is inconsistent. 

(2) A configuration containing an inconsistent arrow is inconsistent. 

(3) A configuration containing a mutually inconsistent set of arrows is inconsistent. 

(4) A configuration containing a set of arrows which connects rectangles in such a way that forward- 

connectedness or transitivity fails is inconsistent. 

If we employ the arrow-set generation approach which makes use of the well-ordering on EQ classes of 

labels we do not have to be concerned with type (4) inconsistency. Every codguration generated is 

RTFC. 

Consider once again the structural template of Figure 2.8(b). Every configuration generated from 

this template contains the template plus a set of arrows embedded into the template to connect each pair of 

rectangles. Therefore every configuration generated from the template of Figure 2.8(b) is inconsistent 



because each contains the inconsistent arrow AWIW~. Likewise if the structural template contained an 

inconsistent rectangle, every configuration generated from the template is inconsistent. Thus an incon- 

sistent structural template is defined as follows: 

(1) A structural template containing an inconsistent rectangle is inconsistent. 

(2) A structural template containing an inconsistent arrow is inconsistent. 

(3) A structural template from which every generated configuration is inconsistent, is inconsistent. 

To improve efficiency, arrow and rectangle consistency tests are performed on each structural tem- 

plate before arrow-set generation is begun. If a test fails, the structural template is inconsistent, and no 

configurations are generated from this template. The branch of the structural hierarchy containing this tem- 

plate is in effect closed (in the sense of a closed tableau branch). Using this technique on our example 

o = (((A* C) A (B-.C)) 3 (A A B * C)), we get the structural hierarchy of Figure 2.16, a modification of 

Figure 2.14. A structural template STi is also inconsistent if every cofiguration generated from STi is 

inconsistent. 

A semi-complete structure each of whose structural templates is inconsistent, is inconsistent. If for 

any wff o rectangle wl is an explicitly inconsistent rectangle, then o is valid since rectangle wl contains 

exactly one sentence of N, o ,  and it is assigned 0. In this case o is proven before the SCS is built. w is 

valid iff one of the following conditions hold: 

(1) Rectangle wt is explicitly inconsistent. 

(2) Every SCS for o is inconsistent. e 

All that remains is to test each configuration for consistency. A configuration consistency test is 

accomplished by the following algorithm: 

1. Sort arrows of the configuration according to the rectangle entered 
2. Repeat 

2.1, Determine Awwj' for the set of arrows entering wj 
2.2. Test Aww: 

Until some Awwj' is inconsistent or all Awwj' tested 
3. If an inconsistency is found return inconsistent 

Else return consistent 



Figure 2.16 The modified structural hierarchy for o = (((A s, B )  A (B => C))  3 (A  A B => C)). 



We do not need to test each individual arrow additionally. If Awiwj' is inconsistent then Awwj' is incon- 

sistent because Awiwj' is a subformula of Awwj'. If any configuration consistency test returns consistent, 

then algorithm NTPl returns invalid. If all configuration tests return inconsistent, then NTH returns valid. 

The configuration consistency test is repeated for every configuration in the case that o is valid. The 

Awwj' are the same in many configurations. In order to improve the efficiency of configuration testing, an 

alternative approach is developed Each arrow is tested only once and the results kept in a table of forced 

values. We want to know what must be true at wj in order for Aw'wj to be consistent. Awiwj' is tested for 

consistency, i.e., Awiwj' is assigned 1 and the consequential values determined. Assignments to proposi- 

tional variables, --subformula, and P-subformula are stored in the table. The table of forced values for 

our example o = (((A-C) A (B*C)) 3 (A A B+C)) is given in Table 2.4. 

Table 2.4. Forced values for o = ((A =E. C) A (B - C)) 3 (( A A B) =B C). 

Arrows I A B C 

Arrow Aw4wz forces the assignment of 0 to B at w2, but A w ~ w ~  is consistent if B is assigned 0 or 1 at w2. 

Arrows A W W ~  and A w ~ w ~  are each inconsistent arrows, so no consistent configuration can contain either of 

these arrows. Information about constraints imposed upon any consistent configuration is stored in a table 

of arrow constraints (see Table 2.5). 



Table 2.5. Arrow constraints for o = (((A+C) A (B=>C)) 2 (A A B+C)). 

Aww4 cannot occur 

Aww4 cannot occur 

The first step in configuration testing, then, requires a check to see if any of the arrow constraints are 

contradicted. Arrow sets AI, A2, A3 of Table 2.5 each contain Awzw4 and A w ~ w ~  contradicting both con- 

straints. (Of course, a configuration is inconsistent even if only one constraint is contradicted.) However Aq 

generates the configuration of Figure 2.17. A w ~ w ~  is consistent since B is assigned 0 at w2, and A w ~ w ~  is 

consistent since A is assigned 0 at w3. Each arrow is consistent, all arrows are mutually consistent, and all 

rectangles are consistent. Thus is satisfiable, and o is invalid. Table 2.6 serves as a counterexample. 

In this N-model W =  {wl, w2, w3, w4}, E = {Ewlwl, Eww2, E w ~ w ~ ,  E w ~ w ~ ,  EWIW~, EWIW~, EWIW~, 

Ew4w2, Ew4w3, Ew2w3, Ew3w2). The function P is defined by the table itself. For example, P(A) = {w4 

%}. Values for the propositional variables A, B, C have been left blank at wl. They can consistently be 

assigned 0 or 1 at wl in any combination. To have a definite rule, assign 1 to such variables. 

Note that as soon as a consistent configuration is found, the invalidity of o is determined We do not 
b 

need to look at any other configurations. Therefore an obvious improvement to algorithm NTPl is to test 

configurations as they are generated rather than generating all configurations and then testing. Steps 3 and 

4 of NTPl then become: 

3. Repeat 
Generate an RTFC configuration 
Test the configuration 

Until all RTFC configurations tested or a consistent configuration found 

If we "bend the rule for alternatives, we can attain a further improvement in efficiency. Apply the 

rule as usual at wl. At other rectangles, however, delay applying the rule unless the P-subformula contains 

a +-subformula. In this way we avoid building a system of three SCS which vary only in the assignment 

of values to pl and j32 at some rectangle wi, izl. It may be the case that mows entering wi force an assign- 

ment to pl or p2. The example in the next section contains such a P-subformula 



Figure 2.17 A consistent configuration for o = (((A => B )  A (3 => C)) 3 (A A B => C)). 

- -- 

I Table 2.6. A counterexample for w = (((A => C) A (B => C)) 3 (A A B => C). 

Table 2.6. An N-model counterexample for o = (((A => C) A (B => C)) 3 (A A B * C). Only relevant value assign- 

ments at a world appear in the table. The accessibility relations are depicted in the form of a well- 

ordering on equivalence classes. 

worlds A B C A v B  

1 1 0  1  

1 0 1  

0 1 1  

A s C  

1  

1  

B s C  

1  

1  

A A B s C  

0  

0  

(((AsC)A(B*C))3(AAB*C) 

0  



35. Algorithm NTP 

The improved algorithm, NTP, is presented and illustrated with an example proof. 

Algorithm NTP 
Input: wff 
Output: valid, invalid 
1. Initialize the system of N-diagrams 

1 .l. Write the wff in a rectangle 
1.2. Label the rectangle WI 

1.3. Assign 0 to the main operator of the wff 
2. Build the semi-complete saucture(s) 

2.1. Repeat 
Apply a-rules 
Apply rules for crosses, asterisks, and modified rule for alternatives 
Apply rule for new worlds 

Until rules applied as often as possible 
3. Repeat {for each semi-complete structure) 

Generate structural templates from SCS 
Build tables of forced values and arrow constraints 
Repeat {for each structural template} 

Repeat {for each EQ template of q = 1 to n classes) 
Repeat {for each EQ template of q classes} 

Repeat {for each CF template} 
Generate an RTFC configuration 
Test the configuration 

Until all CF templates processed or ccf 
Until all EQ templates of q classes processed or ccf 

Until all EQ templates processed or ccf 
Until all structural templates processed or ccf 

Until all alternative SCS processed or ccf 

The abbreviation ccf in the algorithm stands for "consistent configuration found." Let us examine the proof 

of o = (((A-B) A (AaC))  3 ( A a B  A C)) using algorithm NTP. The SCS for o is given in Figure 2.18. 

Note that the rule for alternatives is waived at w4. Arrow AWIW~ is inconsistent in any structural template 

containing the not-arrow alternative to wz or w3. Thus only one structural template is consistent at this 

stage, the template of Figure 2.19. 

The next step is to test each arrow and store the results in the table of forced values, Table 2.7. The 

table of arrow constraints stores the implications of the information in the table of forced values. Let us 

examine each group of arrows sorted according to the rectangle entered (Table 2.7 is already sorted in this 

way.) We are looking for mutual inconsistencies. Arrow A w ~ w ~  forces the assignment of 1 to B and 0 to C 

at w4, but A w ~ w ~  forces the assignment of 0 to B and 1 to C at w4. Thus Aw2w4 and Aw3w4 cannot coexist in 



Figure 2.18. Semi-complete structure for w = (((AeB) A (A+C)) 3 ( A e B  A C)). 

Figure 2.19. Structural template from the semi-complete structure for w = (((A=> B) A (A=> C)) 3 (A=> 

B A C)). 

any consistent configuration, and this is noted in the table of arrow constraints. 

The group of arrows entering wz appear at first glance to be incompatible. However, recall that the 

conditions on accessibility from w4 (a rectangle created by the rule for a false *) are such that if the for- 

bidden conditions do occur at an accessible rectangle w,, then arrow Aw,w~ must also exist. Thus if A, B, C 

are all assigned 1 at wz, A w ~ w ~  is still consistent iffAw2w4 co-occurs. So another constraint on any arrow 



-- I Table 2.7. Forced values for o = ((A * B) A (A 5.0) 3 (A * (B A C)). 

set is that if A W ~ W  and A w 4 w  occur, then Awzw4 must co-occur. If Amw2 occurs and Aw4w2 does not, 

then Aww4 must occur by rule FC. So if A w ~ w ~  occurs then Aww4 must co-occur, whether or not A w 4 w  

is present If A m w  and Awzw4 coexist, then Aww4 must coexist by transitivity. 

The same situation arises in the group of arrows entering w. We note that if A w w 3  occurs then 

A w ~ w ~  and Awzw4 must co-occur. These observations are summarized in Table.2.8. 

I Table 2.8. Arrow constraints for o = (((A 5. B) A (A * C)) 3 (A * B A C)). 

(1) Aww4 and Aww4 cannot coexist 

(2) If Aw3wz exists then A w ~ w ~  and A w ~ w ~  must coexist 

(3) If Awzw3 exists then A w ~ w ~  and A w ~ w ~  must coexist 

Next the arrow sets of Table 2.5 are generated and tested, one by one. Each arrow set contradicts at 

least one of the arrow constraints. Thus every configuration is inconsistent, and the structural template 

from which the configurations were generated is therefore inconsistent. Every other structural template has 

been shown to be inconsistent (before any configurations were generated). Therefore the SCS is incon- 

sistent, and 4 is unsatisfiable. It follows that o is valid. 

Observe that it can be derived from the arrow constraints that no consistent RTFC pattern of arrows 

is possible: 



(a) Aw3w cannot occur by constraints (1) and (2) 

(b) Aw2w cannot occur by constraints (1) and (3) 

(c) One of Awzw3, Aww2 must occur by forwardconnectedness 

(d) Contradiction: (c) and (a) and (b) 

A contradiction can be derived from the set of constraints on RTFC patterns of arrows. But these con- 

straints were derived from the table of value assignments which are forced in order to make each arrow 

consistent. No RTFC set of arrows can satisfy these constraints. Thus no consistent RTFC set of m w s  is 

possible. It follows that no consistent RTFC configuration is possible, and the structural template contain- 

ing this set of rectangles is inconsistent. All other structural templates are inconsistent, so o is valid. The 

validity of w is thus determined without generating any configurations. In the case of an invalid w, no such 

derivation is, of course, possible. 

3.6. Summary 

To summarize the procedure, we begin by writing the wff to be proven, w, in a rectangle labelled wl 

and placing a 0 under the main operator. In each rectangle apply a-rules first Rectaf~gles other than wl 

are constructed according to the following rules: 

(1) rule for crosses, 

(2) modified rule for alternatives, 

(3) rule for asterisks, 

(4) rule for new worlds. 

A system of N-diagrams for w is semi-complete when the rules have been applied as often as possi- 

ble. The semi-complete structure may contain ORs and not-arrows alternative to labelled rectangles. So 

all possible structural templates are generated from the SCS. A preliminary test is performed on each tem- 

plate. A template containing an inconsistent arrow or an inconsistent rectangle is inconsistent. No 

configurations are generated from an inconsistent sauctural template. 



If at least one consistent template remains, then construction of the table of forced values begins. 

Rows of the table are labelled with the set of arrows which fully connects the labelled rectangles of the 

SCS.~ Column headings are the relevant subformulas. Each arrow is tested and forced values placed in the 

table. These forced values are the value assignments to subformula which must hold at w, in order for 

Aw~w, to be consistent. 

The next step is to look for mutual inconsistencies among arrows entering the same rectangles. 

These inconsistencies must be avoided in our search for a consistent RTFC configuration. The restrictions 

imposed by the mutual inconsistencies are stored in the table of arrow constraints. 

An RTFC set of arrows is generated and tested for compatibility with the set of arrow constraints. If 

incompatible, that set of arrows is rejected and the next set generated and tested until all sets have been 

tested or a compatible set found A compatible set of arrows when added to the structural template forms a 

consistent configuration for ~ o .  o is therefore invalid. If no compatible set is found, then +JI is 

unsatisfiable and o valid. 

If a consistent configuration is found, the corresponding N-model is defined by: 

(1) W = {wi I wi is a rectangle label in the configuration} 

(2) E = {Ewiwj I Awiwj is an arrow in the configuration) 

(3) P = table of world values. 

The table of world values is constructed in the following way. Column headings are the relevant subfor- 

mula at rectangles; row labels are the rectangle labels of the configuration. Fill in value assignments to 

subformulas according to the following algorithm: 

To improve efficiency omit arrows Awiwl and include AWIW,, including k l ,  only when the stmctural template 
contains not-arrows imposing conditions on accessibility from Wl. 



1. For each arrow Awiw, in the table of forced values do 

If wi was created by rule for a false + and Awjwi coexists 

Then ignore A w ~ w ~  

Else add value assignments from table of forced values to world values 

2. If Awlwl is not in table of forced values then add initial assignment of 

0 to o and consequential values to relevant subformulas of o 

from rectangle wl 

The corresponding N-model serves as a counterexample, and w is invalid. Table 2.6 represents the N- 

model corresponding to the consistent configuration of Figure 2.17, for example. 



Chapter 3. Correctness Proof 

The proof of correctness presented in this chapter is inspired by the proofs for some conditional log- 

ics in Purgess 811, for T-, S4-, and S5-diagrams in Wughes and Cresswell 681, for temporal logics in 

Bescher and Urquhart 711, and for tableaux systems in [Smullyan 681. The model theory of N is sound 

and complete with respect to the proof theory. The proof is presented in lDelgrande 871. Therefore if it 

can be shown that the algorithm is correct with respect to the model theory, then it follows that the algo- 

rithm is sound and complete with respect to the proof theory. Briefly, the correctness proof demonstrates 

that algorithm NTP is consistent (section l), and sound (section 2) and complete (section 3) with respect to 

the model theory. 

1. Consistency 

The goal is to establish that the algorithm is consistent in the sense that no formula and its negation 

are both provable. The proof is based upon two lemmas and the completeness result of section 3. It is 

demonstrated that the algorithm terminates in a finite number of steps (lemma I), and is unambiguous 

(lemma 2). By the completeness result every wff provable by the algorithm (referred to as an NTP-valid . 
wff) is valid in the model theory and therefore a theorem of the axiomatic system However, no formula 

and its negation can both be theorems. Thus it remains to prove lemmas 1 and 2. The completeness result 

is presented in section 3. 

Lemma 1. The method of N-diagrams terminates in a finite number of steps. 

Proof. The method consists of two main parts: (1) building a semi-complete system of N-diagrams, and 

(2) generating and testing all possible sets of arrows which, when added to the semi-complete structure 

form RTFC configurations. Thus part (1) terminates when the SCS is constructed. An SCS is a system of 

N-diagrams in which the rules of the method have been applied as often as possible so that: 

(a) for every rectangle containing a t, i.e., a P-subformula, the appropriate alternative diagrams have 

been constructed according to the rule for alternatives, 



(b) for every rectangle not containing a T, new worlds have been created for each asterisk under a =s 

operator according to the rule for new worlds. 

The procedure terminates earlier in the event that the initial rectangle wl is shown to be inconsistent. 

The number of rectangles created due to the application of the rule for alternatives is finite, 3" at 

most, where n is the number of rectangles containing a t. This assertion follows from the facts that: 

(1) A finite formula contains a finite number of symbols. 

(2) At most three alternative rectangles are created for each rectangle in which a T occurs. 

(3) Each alternative rectangle contains the same value assignments as the rectangle containing the 

plus one alternative assignment to the P-subformula 

The number of rectangles created due to the application of the rules for new worlds is also finite. In 

order to demonstrate this assertion it is convenient to define the y-degree of a  f o d a .  The y-degree of a 

formula refers to the number of occurrences of the =e symbol within the formula Specifically: 

(1) A variable is of degree 0, as is any formula containing no =e operator. 

(2) If yl, % are of degrees nl, n2, respectively, then yl=e yz is of degree s+ nz + 1. 

The y-degree of a rectangle is the sum of the y-degrees of the formulas within the rectangle. Then if rec- 

tangle wj is created due to an asterisk under a + operator at Wi, the y-degree of wj is at least one less than 

the y-degree of wi. This follows from the rule for new worlds because the con-ditions at rectangle wj are the 

antecedent and the consequent (or its negation) of a subformula yl * yz at wi. If nl, n2 are the y-degrees of 

yl, n then the ydegree of wi is at least nl + n2 + 1, whereas the y-degree of wj is nl + n2. Eventually rectan- 

gles containing only propositional formulas are reached. These rectangles contain no asterisks, so the rules 

for new worlds can no longer be invoked. 

Part (2) of the method generates and tests configurations. The procedure terminates if a consistent 

configuration is found or all configurations have been tested. The given wff is valid iff every RTFC 

configuration is inconsistent. Even in the case of a valid wff requiring generation of all possible 

configurations, the number of configurations is finite. Suppose the naive generator is used which returns 

sets of arrows ensuring the configuration is connected but not necessarily transitive. The number of sets of 



arrows generated is large but finite, dIJ), where n + 1 is the number of rectangles in the SCS. (There are 

three ways of connecting each of (?) pairs of rectangles.) Thus the method of N-diagrams always ter- 

minates in a finite number of steps. 

Lemma 2. The method of N-diagrams yields an unambiguous result. 

Proof. For any wff o each SCS is either shown to be consistent or shown to be inconsistent. An SCS is 

inconsistent if one of the following conditions holds: 

(1) Rectangle wl is explicitly inconsistent. 

(2) Each structural template is inconsistent, i.e., every RTFC configuration is inconsistent. 

A consistency test fails iff both 0 and 1 are assigned to the same subformula. Thus each consistency test 

yields an unambiguous result. The method can be applied to any wff o of N. o is placed in rectangle wl 

and assigned 0. The rules of the method are applied to build the SCS. In cases (1) or (2) the procedure ter- 

minates and returns valid. Otherwise the procedure terminates earlier, i.e., as soon as a consistent RTFC 

configuration is found. 

2. Soundness 

The model theory of N has been shown to be sound and complete with respect to the proof theory in 

mlgrande 871. Thus every wff valid in the model theory is a theorem of N. If in addition every theorem 

of N is NTP-valid, then it follows that every valid wff is NTP-valid. The soundness proof demonstrates 

this last point. 

e 
Theorem 1. Every valid wff is NTP-valid. 

It is first proven that every theorem of N is NTP-valid (lemma 3). The proof of theorem 1 follows by tran- 

sitivity from the soundness and completeness of the model theory with respect to the proof theory and 

lemma 3. 

Lemma 3. Every theorem of N is NTP-valid. 

Proof. The proof is straightforward but tedious. It must be shown that each axiom of the system is valid 

and that each rule preserves validity. An alternative axiomatic basis for N is given by: 



2.1. Proof of Axiom A0 

The SCS for A0 is shown in Figure 3.1. Rectangle w2 is explicitly inconsistent, thus the template is 

inconsistent. There is only one template, so the SCS is inconsistent. It follows that A => A is NTP-valid. 

2.2. Proof of Axiom A1 

The SCS for A1 is given in Figure 3.2. If both altemative rectangles wl(9 and wl(~) are inconsistent 

then wl is inconsistent, and A1 is NTP-valid. The structural templates for Figure 3.2(a) are given in Figure 

3.3. Templates (a)-(@ are all inconsistent because: 

(1) ws and Awlws must be in every template. 

(2) AWIWS is inconsistent in any template containing the not-arrow alternative to w3. 

(3) Therefore w3 andAwiw3 must be in every template. 

(4) ButAwlw3 is inconsistent in any template containing the not-arrows alternative to w2 or w4. 

Template (h) is consistent at this stage, so the next step is to build the table of forced values (Table 

3.1) and the table of arrow constraints (Table 3.2). It can be deduced from the table of constraints that no 

consistent configuration is possible: 

(a) AW~WS and Aw4ws must exist by (1) and (3) and forward-connectedness. 

(b) Aw3w4 must exist by (2) and (4) and forward-connectedness. 

(c) Aw3ws must exist by (a) and (b) and transitivity. 

(d) AW~WS cannot exist by (a) and (4). 



Figure 3.1 Semi-complete structure for AO. 



Figure 3.2 Semi-complete structure for Al.  

Wl ti) 

CASU A 8*4) 3 C A ~ C ~ E W ~ )  
1 / 1 0  1 0 0  * * * * 









Figure 3.3 Structural templates for Figure 4.2(a). 



Table 3.1. Forced values for SCS(a) for Al. 

Arrows 

Aw3w2 

A w 4 ~ 2  

Aww2 

Aw2w3 

A w 4 ~ 3  

Awsw3 

Aww4 

Aww4 

Awsw4 

Awws 

Awws 

AWWS 

Table 3.2. Arrow constraints for SCS(a) of Al. 

(1) If Aw4w exists then Awws and A W ~ W S  must coexist 

(2) I ~ A W ~ W ~  exists then A y w s  and Aw4ws must coexist 

(3) If A W W ~  exis& then Aw4ws and Awws must coexist 

(4) Awsws and Aw4ws cannot coexist 



A contradiction is reached in (c) and (d). No configuration can satisfy these constraints, and the SCS is 

therefore inconsistent. 

Next consider the SCS of Figure 3.2(b). The structural templates are given in Figure 3.4. Templates 

(a)-(g) are all inconsistent because: 

(1) w4 andAw1w4 must be in every template. 

(2) Awlws is inconsistent in any template containing the not-arrow alternative to wz. 

(3) Therefore wz and Awlwz must be in every template. 

(4) But Awlwz is inconsistent in any template containing the not-arrows alternative to w3 or WS. 

Template (h) is consistent at this stage, so the next step is to build the table of forced values (Table 

3.3) and the table of arrow constraints (Table 3.4). It can be deduced from the table of constraints that no 

consistent configuration is possible: 

(a) A w ~ w ~  and Awsw4 must exist by (2) and (4) and forward-connectedness. 

(b) Awzws must exist by (1) and (3) and forward-connectedness. 

(c) A w ~ w ~  must exist by (a) and (b) and transitivity. 

(d) Awzw4 cannot exist by (a) and (3). 

A contradiction is reached in (c) and (d). No configuration can satisfy these constraints, and the SCS is 

therefore inconsistent. Thus both SCS are inconsistent, and A1 is NTP-valid. 

23. Proof of Axiom A2 

The SCS for A2 is shown in Figure 3.5. The structural templates are given in Figure 3.6. Template 

(a) is inconsistent because at least one of A, B must be m e  at rectangle w4. Template (b) is inconsistent by 

the following argument At least one of Aww4 Aw4w must be consistent by FC. A w ~ w ~  is consistent only 

if Ayw4 coexists. But A w ~ w ~  is inconsistent since the not-arrow alternative to w2 forces B to be assigned 1 

at w4 (and C is assigned 0 at w4). Template (c) is determined to be inconsistent in an analogous way. Rec- 

tangles w2 and w4 must be connected, but Aw4w2 requires that A w ~ w ~  coexist. However Awzw4 is incon- 

sistent since the not-arrow alternative to w forces the assignment of 1 to A at w4 (and C is assigned 0 









fi, 
Figure 3.4 Structural templates for Figure 4.2(b). 



Table 3.3. Forced values for SCS(b) for Al .  

Arrows 

Tabk 3.4. Arrow constraints for SCS(b) for A t  I 
(1) If Awsw exists then A W W ~  and Awsws must coexist 

(2) If AWSW exists then Aww4 and Awsw4 must coexist 

(3 )  Awzw4 and Awsw4 cannot coexist 

(4 )  If Amws exists then AWSW~ andAww4 must coexist 



Figure 3.6 Structural templates from semicomplete structure for A2. 



there). 

Template (d) is next considered. Table 3.5 of forced values for A2 is constructed and the derived 

constraints stored in Table 3.6. A contradiction is reached in (1) and (2) and (3). No configuration can 

satisfy these constraints, and the SCS is therefore inconsistent. It follows that A2 is N'b-valid. 

2.4. Proof of Rule RO 

All that remains for the soundness proof is to show that rule RO is validity preserving. RO states that 

if l-(BlA . . -  ABn)3B then k ( A *  BlA - - .  A A 3  B$3A* B. Thus it must be shown that if 

(BlA . - .  AB,)r>Bisvalid,then(A* B I A  . . -  AA=>Bn)3A*Bisvalid. Awffoisvalidiffi t is 

true in all worlds in all models, i.e., there can be no world where o is false. This condition is forced with 

~o - a, and we obtain the SCS of Figure 3.7. 

Rectangle wz is explicitly inconsistent Therefore every consistent configuration must include the 

not-arrow alternative to w2. The not-arrows alternative to w3, ..., wn+z are inconsistent with the conditions 

at rectangle W B + ~ .  But rectangle wn+3 must occur in every consistent configuration. Thus there is only one 

structural template consistent at this point, the template of Figure 3.8. Labelling of the rectangles is altered 



Table 35. Forced values for A2. 

Arrows A B C AVB 

Table 3.6. Arrow constraints for A2. 

(1) AWZW~ must exist 

(2) A w ~ w ~  must exist 

( 3 )  Awzw4 andAw3w4 cannot coexist 



Figure 3.7 Semi-complete structure for RO. 

Figure 3.8 Structural template for RO. 



so that the subscript of the rectangle label matches the subcript of B for BI, ..., B,. Label wl is changed to 

w1*. 

Note that at rectangle w,+ 1 B1 A - - . A B, must be assigned 0 since B is 0 and (B1 A - - A Be) 3 B is 

assigned 1. In order that BI A . . - A B, be assigned 0 at least one of B1, ..., B ,  say Bi, must be assigned 0 at 

w,+ I as in Figure 3.9. Forwardconnectedness forces at least one of AwLw,+ 1, Awn+ I W ~  to exist. However, . 

Awiwn+ I is inconsistent since A is assigned 1 and Bi 0 at w,+ 1. Thus Awn+ lwi must exist. Because 

Awiw,+l is inconsistent and A is assigned 1 at wi, B must be assigned 0 at wi as in Figure 3.10. The same 

pattern arises at wi as at w,+ I. B is assigned 0, and (Bl A - - A B,) 2 B is assigned, 1. Therefore at least 

one of BI, ..., B ,  say Bj, j # i, must be assigned 0 at wi. 

One of Awiwj, Awjwi must be consistent, but Awjwi is incOr~sistent since A is assigned 1 and Bj 0 at wi. 

In order for Aw~w, to be consistent, Bi must be assigned 1 at wj as in Figure 3.1 1. Transitivity requires that 

Aw,+lwj exist. Since A is assigned 1 at w,, either B is 0 at w, or Awjw,+l coexists. If Awjw,+ 1 exists, 

though, AwLwn+ 1 must coexist by transitivity. AwLw,+ 1 has already been shown to be inconsistent, how- 

ever. Therefore B must be assigned 0 at w, as in Figure 3.12. The pattern continues thusly (see Figure 

3.13). It must be the case that at least one of B1, ..., B,, say Bk, k # i, j, is assigned o at w,. Awjwk must exist 

since Aw~w, is inconsistent. Transitivity forces A w ~ w ~  and Awn+ lwk. Aw~w,+ 1 Cannot exist because 

A w ~ w ~ +  1 has already been shown to be inconsistent. 

This pattern continues for all Bx, 1 I x I n. Rectangle w,- I requires that at least one of B1, ..., B, be 

assigned 0 at w,. But only one unassigned Bx remains. The other Bx's must be assigned 1 at w,- I? We 

obtain the situation in Figure 3.14. The double-shafted dotted arrow between w: and w,- 1 represents an 

mow from w,- 2 plus al l  transitive arrows coming into w,- I. It is used to simplify the picture. 

Note that at w, all the previous Bx are assigned 1 as well as B,. Thus Bl A . . . A B, is assigned 1. 

Since (Bl A . A B,) 3 B must be assigned 1, B must also be assigned 1. But the transitive arrow 

Awn+ lw, requires that Aw,w,+ 1 coexist if A and B are both assigned 1 at w,. Aw,w,+ 1 cannot coexist, 

though. If it does, transitivity requires that Aw~w,+ 1 coexist, and that arrow has already been demonstrated 

The subscript n does not necessarily match the n of B1, ..., B,. It just refers to the fact that aN of the Bi's have been 
included in the argument. 



Figure 3.9 Proof of RO. 

Figure 3.10 Proof of RO. 



a 

Figure 3.11 Proof of RO. 

Figure 3.12 Proof of RO. 



Figure 3.13 Proof of RO. 



Figure 3.14 Proof of RO. 



to be inconsistent. Therefore no consistent configuration is possible, and the given wff is valid. 

RO is, then, validity preserving. It has been shown that each axiom of the system is NTP-valid and 

that the rule preserves validity. Therefore every theorem of N is NTP-valid. It follows by transitivity from 

the soundness and completeness of the model theory with respect to the proof theory and lemma 3 that 

every valid wff is NTP-valid. This concludes the soundness proof. 

3. Completeness 

It remains to be proven that every NTP-valid wff is valid in the model theory. 

Theorem 2. If o is NTP-valid then p a. 

Contrapositive of theorem 2. If o is not valid in the model theory then o is not NTP-valid. 

o is not valid iff To is satisfiable by the definition of truth in the model theory. o is not NTP-valid iff 

there exists a consistent configuration in which o is assigned 0 at WI. Substitution of these equivalences 

into the contrapositive yields: 

(T2). If +I is satisfiable then there exists a consistent configuration in which o is assigned 0 at wl. 

It is T2 that is established in the following proof. Theorem 2 follows directly from T2 as shown 

above. Let S be any satisfiable set of formulas of N. The set S can be extended and yet retain satisfiability 

by lemmas 4,5(a), 5(b). 

Lemma 4. If a E S and S is satisfiable, then S u {a~, az} is satisfiable. 

Proof. If S is a satisfiable set containing a, an a-formula, then a is true. If a is true, then each of its 

operands al, a 2  is also true. Therefore S u {al, az} remains satisfiable. 

Lemma 5(a). If PES and S is satisfiable, then at least one of S u {PI}, S u {P2} is satisfiable. Alterna- 

tively: 

Lemma 5(b). If PE S and S is satisfiable, then at least one of S u {PI, Pz}, S u {+31, b}, S u {PI, 4321 is 

satisfiable. 

Proof. If S is a satisfiable set containing P, a p-formula, then P is true. If P is true, then at least one of PI, 

P2 is true. Therefore at least one of S u {PI}, S u {P2} remains satisfiable. Alternatively, if P is true then 



at least one of the following is true: (1) P1 and p2  are both true, (2) PI is false and P2 is true, or (3) PI is 

true and P2 is false. (At least one of pl, az is true in each of these possibilities.) Therefore at least one of S 

u {PI, P2}, S u {+I, b}, S u {PI, -.Pd is satisfiable. 

New satisfiable sets can be spawned from S according to lemmas 6 and 7. 

Lemma 6. If y E S and S is satisfiable at a world wi, then either Sj = {yl, yz} is satisfiable at some world wj, 

or S u {-y~} is satisfiable. 

Proof. If S is a satisfiable set containing y, a *-subformula, then y is true. If y is true, then (1) there exists 

an accessible world wj where yl and y~ are both true, or (2) l y i  is true at all accessible worlds. Thus 

Sj = {yl, w} is satisiable at wj, or {ly~) is satisfiable at all accessible worlds. But accessibility is reflexive 

so that S u { ~ y l }  is satisfiable in case (2). 

Lemma 7. If -q E S and S is satisfiable at a world wi, then Sk = {y~, yz} is satisfiable at some world wk. 

Proof. If S is a satisfiable set containing -q, then -ry is true and y false. If y is false, then there exists an 

accessible world wk where yl is true and yz false. Thus Sk = {yl, l y z }  is satisfiable at wk. Q.ED. 

Let S = {lw}. S is satisfiable by the antecedent of the hypothesis. The set S can be extended in such 

a way that satisfiability is maintained, and new satisfiable sets spawned by applying lemmas 4,5(a), 5(b), 6, 
8 

and 7 as often as possible. If -m is satisfiable then there is some world, wl, in some model structure M in 

which S is satisfiable, i r ,  for al l  S such thatp, E S, l=Ep. (wi E P(p.)). 

For each p. such that p. is a true y, p t  yi o 'p, (1) there exists a Wj E W, E w ~ w ~ ,  such that ptyl and 

p:yZ and no wk E W such that E w ~ w ~  and p E y ~  and l=:lyz, or (2) p'+% for al l  wi such that EWIW~. For 

each p. such that p. is a false y, pEl(yi => n),  there exists a wj E W such that EWIW~ and ptyl and 

p:-n and either (1) there exists no wk E W such that Ewj~k and and or (2) if there exists 

such a wk, then ~w,wk.lO 

However, these are precisely the rules used to build the semi-complete structure of NTP. 

Propositional-rule assignments are made to subformula of the formulas within a rectangle and the truth 

conditions for * used to create new rectangles. If tableaux such as Smullyan's are used at each rectangle, 

lo Substitute Wl for wl in the above for the nested case wherry (1% E Sl, 1 Z 1, i.e., pE (-.~)YI => n .  



then lemma 5(a) applies, i.e., there is an open branch containing the elements of S u j31 or S u az if the 

branch containing S and j3 E S is open. If the rule for alternatives is used instead, we get three (or two) 

new rectangles wi(13, wj(g, wj(ii9 containing S u {PI, k}, S u { - @ I ,  Pz}, S u (j31,lPz) respectively. Rec- 

tangle wj is inconsistent iff each of wi(,>, wj(ii), wj(iii) is inconsistent. (Proof in Bughes and Cresswell 68, pp. 

100-101, 114-1 IS].) Thus wj is consistent iff at least one of wit9, Wj(i9, Wj(iii) is consistent. 

New rectangles created by the rule for new worlds contain m, yz assigned 1 if yl => yz is assigned 1 

at the world from which the rule was invoked, and p assigned 1, yz assigned 0 if yl => yz is assigned 0. 

Not-arrows to unlabelled rectangles indicate conditions on accessibility from associated labelled rectan- 

gles. 

The accessibility relation E connects the elements of the set W in such a way that reflexivity, transi- 

tivity, and forward-connectedness hold in the model structure M, but forward-connectedness fails in the 

semi-complete structure. Thus it remains to be shown that (1) NTP correctly generates structural templates 

from an SCS, (2) NTP correctly generates RTFC arrow sets, and (3) NTP correctly performs consistency 

tests. If each of these conditions is true, then if is satisfiable then NTP finds a consistent configuration. 

It has already been shown that the algorithm terminates in a finite number of, steps and is unambiguous. 

3.1. Structural Template Generation 

The algorithm for generating structural templates from an SCS builds a tree in which the set of nodes 

along each branch forms a template. The root contains wl plus the set of labels for rectangles in the SCS 

c r e w  by the rule for a false *. This set is then included in every branch since it is at the root of the tree. 

Algorithm Structural-Template 

1. root c {wl} 

2. For each wi in SCS created by the rule for a false * at wh do 

root t root u {wi} 

3. For each Wi in SCS created by the rule for a true * at wh do 

extend tree by branching at each leaf to the left with wi and 

to the right with the not-arrow fiom wh (wr, -6) 



Steps 1 and 2 create the root of the tree. Step 3 creates two new branches at each leaf, one to the rectangle 

wi and the other to the not-arrow from wh. For example, the algorithm generates the tree of Figure 3.15 

from the SCS of Figure 3.6. The templates from this tree are shown in Figure 3.8. In this way we get tem- 

plates of all combinations of labels and not-arrows, each containing only one element from each alternative 

label-not-arrow pair. 

33. Arrow-set Generation 

The accessibility relation imposes a well-ordering on equivalence classes of rectangle labels (the set 

W of the model structure M). It is this view of arrow sets as a well-ordering on equivalence classes of 

labels which forms the basis of the arrow-set generation algorithm. The configuration template represents 

this well-ordering. Given any arrow set, the configuration template can be determined by the following 

algorithm Configuration-Template. 

Algorithm Configuration-Template 

1. Remove reflexive arrows from arrowset 

2. Place wl in topmost box, box1 

3. Remove all arrows Awl wj from mrowset 

4 .  Group arrows by wi, the rectangle Aw'wj leaves 

5. For each wi in at least one Awiwj do 

5.1. If wi is not already in a box thetl 

Put wi in boxi 

Put boxi just below box1 

5.2. For each Awiwj do 

If Awjwi E arrowset then 

Put Wj in b ~ x i  

Remove Awjwi from arrowset 

Else Put wj in boxj below boxi 

Remove Awiwj from arrowset 

6. Add am>ws from each boxi to boxj such that boxj is below boxi 

Every wj is accessible from wl because each w, was created by one of the following rules: 



Figure 3.15 Tree of structural templates. 



(1) rule for new worlds applied at wl, 

(2) rule for new worlds applied at wi in the nested =+ case, or 

(3) rule for alternatives. 

In case (1) Awlw, is an arrow of the SCS, in case (2) Awiw, is an arrow of the structural template by transi- 

tivity. In case (3) wj is actually one of w,(g, wj(i9, wj(k3 created due to a P-subformula at wj. Each arrow 

entering wj then enters each of its alternatives. Thus Awl wAQ ( A W ~ W ~ ~ ~ ,  AwlwAG$ exists. 

By rule FC, then, each pair of rectangles other than wl must be connected. wl is already connected 

by Awlwj. We do not need to consider arrows Awjwl for the following reason. If Awlwj or rectangle w, is 

inconsistent then any configuration containing Awlwj and Awjw1 is still inconsistent. Conversely if a 

configuration containing both Awlw, and AwJwl is consistent, then if Aw,wl is removed the resulting 

configuration is still consistent. 

Likewise we do not have to consider reflexive arrows when applying the rule for new worlds. For 

example, consider A + C assigned 1 at wi. Let wi be the accessible rectangle in which A and C are both 

assigned 1, assuming this can consistently be done. Accessibility from wi is now further constrained by the 

restriction that there can be no A w ~ w ~  where A is assigned 1 and C 0 at wk. But if this-is consistent then so 

is a configuration containing w, created by the rule for new worlds to make A + C true at wi. This is so 

because (1) transitivity requires that for each arrow Awhwi, Awhwk must also exist since Awiwj exists, and 

(2) forward-connectedness requires that for each arrow Aw~w~, Wj and wk must be related. However, a 

configuration omitting w, could be inconsistent while a configuration including wj is consistent 

The arrow-set generation algorithm, then, must be capable of finding all possible ways of connecting 

all pairs of rectangles such that the properties of RTFC hold. Let W be the set of rectangle labels. Because 

RTFC accessibility imposes a well-ordering on equivalence classes of labels, we need to find all possible 

combinations of EQ classes and all possible orderings of the classes. Each combination of EQ classes 

CI, ..., C, is a set of subsets of W such that each element of W occurs in exactly one Ci. A particular com- 

bination of EQ classes is represented by a configuration template. If the template contains the cardinalities 

of the EQ classes as opposed to the elements of W (labels), then the template is referred to as an EQ tem- 

plate. 



Let q = the number of EQ classes in a template, n = the cardinality of W, and si = the cardinality of 

Ci. The range of Si is from 1 to n, and therefore q also ranges from 1 to n. si = n when q = 1, and 

Si = 1,l I i In, when q = n. Let eqtemp be an EQ template and cjtemp a configuration template. Step 3 of 

algorithm NTP involved in generating and testing configurations is given in algorithm NTP-Step-3. 

Algorithm NTP-Step3 
1. Repeat {for each SCS} 

2. Generate structural templates from SCS 
3. Build tables of forced values and arrow constraints 
4. Repeat {for each structural template} 

5. q c o  
6. Repeat {for each eqtemp of q = 1 to n classes} 

7. q c -  q+l 
8. Initialize eqtemp for q classes 
9. Repeat {for each eqtemp of q classes} 

10. Initialize cftemp from eqtemp 
11. Repeat {for each cfiemp} 

12. Generate arrowset 
13. Test configuration 
14. d c q-1 
15. Get next cfemp 

Until d = 0 {all configurations tested} or ccf 
16. c t q-1 
17. Get next eqtemp of q classes 

Until c = 0 {all eqtemps of q classes tested} or ccf 
Until q = n {all eqtemps tested} or ccf 

Until all sauctural templates tested or ccf 
18. Get next SCS 

Until all alternative SCS processed or ccf 

As soon as a consistent configuration is found, the algorithm terminates. Otherwise all possible relevant 
I 

RTFC configurations are generated and tested. The repeat loop of step 6 ensures that all eqtemps consist- 

ing of from one to n classes are generated (or a consistent configuration found). The repeat loop of step 9 

ensures that all possible cardinalities and orderings of the cardinalities of EQ classes for an eqtemp of q 

classes are generated (or a consistent configuration found). The repeat loop of step 11 ensures that all pos- 

sible combinations of elements of W are generated for a given eqtemp (or a consistent configuration 

found)." In the worst case all RTFC configurations are generated, and the algorithm must be able to 

achieve this. 

For the remainder of the discussion the clause "or a consistent configuration found" will be omiaed 



Next we need to look more closely at how the templates and arrow sets are generated. The details of 

step 8, initializing eqtemp for q classes, is given below: 

1. F o r i c  l t o q - l d o  

S i t  1 

2. s q t  n-q-  1 

Recall that q = the number of EQ classes in the template, si = the cardinality of EQ class Ci, and n = the 

cardinality of W. Each time q is incremented (step 7) eqtemp is initialized to a set of q EQ classes such that 

si = 1 for C1, ..., C,I. sq, the cardinality of the "bottommost" class, is initialized to n - q - 1. 

When all possible arrow sets have been generated from an eqtemp of q classes, step 17 gets the next 

eqtemp of q classes. The details of step 17 are given in algorithm Get-next-eqtemp. 

Algorithm Get-next-eqtemp 

1. c e q - 1  

2. Ifc,Othen 

3. Repeat 

(a) sc c sc + 1 

(b) sum c 0 

(c) sum e sum of sl to sc 

(d) suml e 0 

(e) F o r i c c +  1 tog- 1 do 

S i c  1 

suml c s u m l +  1 

(f) s , tn-sum-sum1 

(g) I f sum+q-c>  n t h e n c t c -  1 

Unt i lsum+q-cInorc=O 

The topmost classes are held constant while varying the bottommost classes until all combinations have 

been generated. Then the next higher class is incremented, and so on, in order to get all possible combina- 

tions.  he current eqtemp is updated by incrementing the EQ class just above the bottommost class. The 

cardinalities of the classes above and including C,I (Cc) are summed. The cardinalities of the classes 

below Cc and above Cq are reset to 1. sq for Cq is reset to the remaining number of labels n - sum - sml. 



The sum of the cardinalities of the classes must be equal to n, and step 3(a) allows the sum of the si to go 

over n. Thus the sum is checked in step 3(g), and if it goes over n, c is decremented. The whole process is 

repeated for the next EQ class above CP1, Ce2, and so on. When the cardinality of the topmost class goes 

over n - q + 1, all eqtemps for q classes have been generated, and c becomes 0. Therefore the loop ends. 

To illustrate note the successive values of eqtemp for q = 3 classes and n = 5 labels of Figure 3.16. When 

Figure 3.16(c) is updated s2 is incremented to 4. But the sum of CI to Cc is 5, and each Ci including C, 

must have at least one element. The sum then goes over n, so c is decremented, and sc for the next class 

above CP1 is incremented (Figure 3.16(e)). Figure 3.16(h) is the last eqtemp generated for q = 3 classes. 

The next iteration increments sl to 4, but 4 + 1 + 1 > (n = S), and c becomes 0. Control returns to the 

repeat loop of step 6 of algorithm NTP-Step3 where q is incremented. Thus the loop of step 9 generates 

al l  possible combinations of cardinalities of q EQ classes. Step 6 gets all eqtemps of from 1 to n classes. 

Next consider the repeat loop of step 11 which gets all possible cjtemps from any given eqtemp. 

Configuration generation is based upon an ordered list of rectangle labels. Step 10 initializes the first 

cftemp. The details of step 10 are given in algorithm Initializecftemp. 

Algorithm Initialize-cftemp 

1. subworlds t worlds 

2. F o r i t  1 toqdo 

Ci + () 

F o r j t  1 tosido 

Ci + append Ci (car worlds) 

subworlds t (cdr subworlds) 
I 

Worlds is an ordered list of the labels of the structural template, q is the number of EQ classes in 

eqtemp, Ci refers to EQ class i, and si is the cardinality of Ci. The algorithm puts the first si elements of the 

remaining worlds into class Ci. For example, let worlds = (wl, w2, w3, w4, ws) and eqtemp (1 2 2). Then C1 

becomes (wl), C2 (w, Y), and C3 ( ~ 4 ,  WS). Any given cfremp is updated to the next successive cftemp in a 

way analogous to the updating of eqtemp. The difference is that a cftemp contains the actual labels 

whereas eqtemp contains the cardinality of each' class. Thus "incrementing" a class is much more 



Figure 3.16 Successive equivalence templates for q = 3 classes and n = 5 world (rectangle) labels. 



complicated than adding 1 to the cardinality of the class. Instead one label is removed from the class and 

the next successive label in worlds is added to the class. The details are given in algorithm Get-next- 

cftemp. 

Algorithm Get-next-cftemp 

Let worlds = an ordered list of the labels of the structural template 
ek = kth element of Ci 
q = the number of EQ classes 
d=indextoEQclassC 
si = the number of worlds in Ci 

1. d t q - 1  
2. Ifd>Othen 

3. Repeat 
4. subworlds c worlds 
5. Fori=l tod-1)do 

subworlds c subworlds - Ci 
6. k c  sd+ 1 
7. Repeat 

k t k + l  
8. worlds t (cdr (member ek of Cd subworlds)) 

Until (length worlds) 2 sd - k + 1 or k = 1 
9. If (length worlds) 2 sd - k +1 then 

10. Fori=ktosddo 
C d t  Cd- ei 

11. Fori=ktosddo 
Cd c append (cdr worlds) 
worlds c (cdr sworlds) 

12. subworlds c subworlds - Cd 
13. F o r i = d + l  toqdo 

Ci = 0 
For j = 1 to si do 

Ci t append Ci (car subworlds) 
subworlds t (cdr subworlds 

E l s e d c d -  1 
Until d = 0 or consistent configuration found 

The symbol ek refers to the kth element of Ci, d is ax; index to EQ class C, and worlds, q, si are as before. 

Step 1 ensures that we start with Cd= CQ-17 the class just above C,. Step 5 removes all labels in classes 

above Cd from subworlds, the set of remaining worlds. Step 8 finds ek, the W element of Cd, (the last ele- 

ment of Cd in the first iteration of the loop) and sets sworlds to the remainder of the list of worlds. If 

worlds is not long enough to fill classes Cd to Cq (repeat loop of step 7), k is decremented and the process 

repeated for the second to the last element of class Cd, k and so on. 



If list sworlds is long enough to fill classes Cd to Cq, the k* to the last labels of Cd are removed from 

Cd (step 10). These elements are then replaced with the first sd- K + 1 elements of worlds (step 11). The 

new labels of Cd are removed from worlds (step 12) and the remaining classes initialized to the remaining 

elements of subworlds (step 13). If al l  combinations of labels within class Cd have been generated, d is 

decremented and the process repeated for the next class above the old Cd. When all possible combinations 

of labels have been tried for class Ci, d becomes 0, and the loop ends. Figure 3.13 shows the cfemps gen- 

erated from the eqtemps of Figure 3.9 for worlds w, w, w4. 

Arrow sets are generated from a cfemp according to algorithm Arrowset 

Algorithm Arrowset 

1. arrowset c {} 

2. Repeat 

2.1 For each wi in topmost EQ class do 

(a) For each w,, ifj ,  in topmost and lower EQ classes do 

arrowset c arrowset u { A w ~ w ~ }  

2.2 Remove topmost EQ class 

Until no EQ classes left 

A configuration template determines a unique set of arrows. Step 1 initializes arrowset to the empty set 

Step 2.l(a) adds arrows from wi to each wj in the same and lower classes. The outer for loop of step 2.1 

ensures that this is done for each wi in the current topmost EQ class. Step 2.2 removes the topmost class to 

ensure that step 2.1 is carried out for all EQ classes in the eqtemp. As a result each pair of labels within 

any EQ class is connected by both Aw'w, and Aw,w~, and each wi is connected to each wj in lower EQ 

classes in one direction only, Aw~w,. Thus we get a well-ordering on EQ classes of worlds with respect to 

the accessibility relation E. 

33. Consistency Testing 

It has been established that the procedure is capable of finding all the relevant RTFC configurations. 

It must also be confirmed that only inconsistent configurations are rejected. Let wi' be the set of relevant 

true sentences at rectangle wi. A configuration is consistent if the following conditions are met: 



(1) For all i, wi' is satisfiable. 

(2) I f  y E wi' then (a) there exists an arrow Awiwj and rectangle wj where v, 3 E wj' and no AW~W and 

rectangle wk where yl, 1 %  E w i ,  or (b) i y ~  E wj' for all j such that Awiwj exists. 

(3) I f  -~y E wi' then there exists an arrow Aw;w~ and rectangle wj where yl, 7% E wj' and either (a) there 

exists no arrow Awjwk and rectangle wk where yl, y2 E w i ,  or (b) if there is such a wk, then arrow 

Awkwj ~0exists. 

(4) The set of arrows in the configuration connect the rectangles in an RTFC pattern. 

(5 )  There exists no subset of arrows {Awiwj, ..., Awkwj} entering a rectangle Wj in which the conjunction 

of the conditions on accessibility from wh, i I h I k, and the conditions at w, are unsatisfiable. 

If any one of these conditions is violated, the configuration is inconsistent The first three conditions are 

concerned with the set of sentences true at a rectangle wi. To use the terminology of Smullyan [68], a Hin- 

tikka set is defined as follows. Let a be an a-formula with operands al, a2; P be a p-formula with 

operands P I ,  p2; y be a m e  ==-formula and i y  a false ==-formula both with operands 71, %. A +formula 

is a formula in which the main operator is a +. A Hintikka set is a set satisfying the following conditions 

forallu, p,y,iyinwi': 

Ho: No variable and its negation are both elements of wi'. 

HI:  N y and its negation ~y are both elements of wi'. 

Hz: I f  a E wi', then a1 E wi' and a2 E wi'. 

H3: If p E w[, then pl E wi' or a2 E wi'. 

H4: If Y E  wi', then (1) there exists a wj E W such that Ew;w~, and yi E wj' and % E wj' and there is no 

wk E W such that Ewjwk and yi E w i  and i y 2  E w i ,  or (2) there exists no wj such that Ewiwj and 

n E wj'. 

Hs: If l y  E wi', then there exists a wj E W such that Ewiw, and yl E wj' and 1 %  E wj' and either (1) there 

exists no wk E W such that Ewjwk and yl E w i  and yz E w i ,  or (2) if there exists such a wk, then 

Ew~w,. 



Lemma 8. Every Hintikka set is satisfiable. 

Proof. The analogous proofs for Hintikka sets of propositional and first-order logics are given in [Smul- 

lyan 681. The goal is to find an interpretation in which every element of the set wi' is true. This objective is 

accomplished by assigning to each propositional variable and y-subformula which occurs in at least one 

element of wi' a truth value as follows: 

(1) If p E wi', assign the value true top. 

(2) If -p E wi', assign the value false top. 

(3) If neither p E wi' nor l p  E wi', then assign true or false top, say true. 

(4) If y E wi', then assign the value true to y. 

(5) If -~y E wi', then assign the value false to y. 

(6) If neither y E wi' nor l y  E wi', then assign true or false to y, say true. 

Note that rules (1) and (2) ((4) and (5)) are compatible if wi' is a Hintikka set because of condition HO 

(HI). Now it must be shown that every element of wi' is true under this interpretation. The proof is an 

induction on the degree of the elements of wi'. It follows immediately from rules (1) and (2) that every 

propositional variable is true under this interpretation. Any element X of wi' of degree greater than 0 is 

either an a-, p-, or y-subformula. If X is a y-subformula, X is true under this interpretation by rules (4) and 

(5). For X an a- or P-subformula assume all elements of degree lower than X are true. Then either: 

(1) X is an a-subformula a1 E wi' and a2 E wi' by Hz. But a1 and a2 are of degree less than X and are 

therefore true by the induction hypothesis. If a1 and a 2  are both true then a (X) is true. 

(2) X is a P-subformula. P1 E wi' or p2  E wi. by H3. But PI (P2) is of degree less than X and is therefore 

true by the induction hypothesis. If one of PI, p2 is true then P (X) is true. QED. 

Thus if the set w: forms a Hintikka set, then wi' is satisfiable by lemma 8. But this is precisely what 

we get (or can obtain) when a consistent configuration is found and translated to an N-model. The table of 

forced values contains the consequential values obtained when Awiwj' is assigned 1 for each Awiwj in the 

configuration. These are the value assignments which must hold at wj in order that arrow Awiwj be con- 

sistent. In translating to the N-model, called world-values, the relevant true sentences at each world wj are 



obtained from the table of forced values in the following way: 

For each wj do 

For each arrow Awiwj do 

If wi was created due to a false =+ and Awjwi coexists then 

ignore Awiwj 

Else add forced values to world-values for wj 

Lemma 9. The set of relevant true sentences at each world in an N-model world-values is a Hintikka set, 

or can be extended to a Hintikka set by lemmas 4,5(a), 5(b), 6,7. 

Proof. At this stage the value assignment to PI, p2 is determined for any P-subformula at any wj in the 

table of forced values either: 

(1) as a consequent of the initial assignment of 1 to Awiw:, or 

(2) as a result of a delayed application of the rule for alternatives. 

If a propositional variable A is irrelevant at a world wj, then the value 1 is assigned to A at w,. The arrow 

consistency test assigns 1 to Awiwj', the conjunction of the conditions on accessibility from wi and the con- 

ditions at wj, and determines assignments which follow as consequences from this initial assignment. In the . 
second phase of testing, mutual inconsistencies in the table of forced values are determined. Restrictions 

prohibiting the co-occurence of mutually inconsistent mows are stored in the table of arrow constraints. 

Each generated arrow set is tested for compatibility with the arrow constraints. Therefore conditions Ho, 

H I  for Hintikka sets are met for any world (rectangle) wi. 

All propositional variables which occur in o are included in the table of world values and assigned 

values as discussed previously. Thus either Hz is met, or if not, wi' can be extended to include al, a 2  by 

lemma 4. Condition H3 holds by (1) a forced value to make an arrow consistent, (2) the rule for altema- 

tives, or (3) an extension of wi' by lemma 5(a) or 5(b). 

Conditions H4 and Hs are met for the following reasons. The semi-complete structure is built pre- 

cisely to meet these conditions. If an accessible world (rectangle) is inconsistent, it is rejected. If a world 

cannot simultaneously meet all the conditions on accessibility from the worlds to which it is accessible, 



then it is rejected. 

Lemma 10. If w, was created to make A 9 C true (false) at wh and wj' is consistent, then A =B C is true 

(false) at every Wi such that arrow Awiw, exists. 

 roof. If Aw;w, exists then for every Awjwk, A w ~ w ~  must coexist by transitivity. But A w ~ w ~  is consistent iff 

the conditions on accessibility from w, are consistent with the conditions at wk. The conditions on accessi- 

bility from wj are precisely those which make A + C true (false) at wh, for AWAW,. 

A * C must also be true (false) at Wj, for Awjwj. Suppose it is not. Then we get the situation in Fig- 

ure 3.17(a), (b). If w, was created to make A + C true at WA then there can be no accessible wk where A is 

assigned 1 and C 0; but in order for A * C to be false at wj there must exist such a wk (see Figure 3.17(a)). 

Arrow A w ~ w ~  is inconsistent, and A + C must be true at wj. 

If w, was created to make A + C false at WA then there can be no accessible wk where A and C are 

both assigned 1 unless arrow Awkw, also exists. There must exist such a wk to make A + C true at wj (see 

Figure 3.17(b)), but Aw~w, cannot coexist due to the conditions on accessibility from wk. Therefore A + C 

must be false at wj. 

Suppose A =s C is not true (false) at some wi such that arrow Aw,w, exists. Then we get the situation 

in Figure 3.18(a), (b). Since Awiwj and A w ~ w ~  coexist, forward-connectedness requires that rectangles wj, 

wk be connected (see Figure 3.18(a)). However Awjwk is inconsistent, and Awkwj is inconsistent because it 

requires the coexistence of inconsistent arrow Aw,wk. Thus A * C must be true at wi. By the same argu- 

ment, A =B C must be false at wi in Figure 3.18(b). Q.E.D. 

Arrow ~wlw~Oexists in every configuration for all w,. Thus if A + C is true (false) at wj (where wj 

was created to make A =B C true (false) at some wh), then A - C is true (false) at wl. If for all j, w, is con- 

sistent, then all the *-subformula are simultaneously consistent at wl. Alternatively, if any one rectangle 

w, is inconsistent or a subset of arrows entering wj is mutually inconsistent, then at least one +-subformula 

is inconsistent with respect to the configuration. There may be other consistent configurations, though. 

Thus the consistency tests reject those configurations in which conditions Ho, HI, H4, HS are contradicted, 

and it has been shown that wi' can be extended to meet conditions H2, H3 by lemmas 4,5(a), 5(b), 6,7. By 

lemma 8 every Hintikka set is satisfiable. Thus the sets wi' are satisfiable. 



Figure 3.17 Proof of reflexive case for lemma 10. 



Figure 3.18 Proof of lemma 10. 



Thus algorithm NTP applies rules based upon the definition of truth in the model theory in order to 

build a structure, SCS, consisting of the minimal elements required to find a consistent configuration for 

~ o .  However the SCS is missing arrows connecting all pairs of rectangles so that RTFC hold. We have 

seen that the algorithm is capable of producing al l  possible RTFC configurations. Each configuration is 

tested and rejected if inconsistent. If a consistent configuration is found, the configuration is translated to 

an N-model, the table of world values. The table of world values represents an N-model in which is 

satisfiable in some world w, i.e., kf ~ o .  If every configuration is inconsistent, then lo is unsatisfiable 

and o  is valid. 

The method of N-diagrams is consistent, sound, and complete with respect to the model theory of N. 

It has been shown in [Delgrande 871 that the model theory is sound and complete with respect to the proof 

theory. By transitivity, then, the method of N-diagrams is sound and complete with respect to the proof 

theory. 



Chapter 4. An Automated Theorem Prover for N 

The present chapter is concerned with the automation of the method of N-diagrams. Section 1 is an 

examination of the representation of a system of N-diagrams. The algorithm for the automated theorem 

prover is given in section 2. The main data structures are described is section 3, and an analysis of the 

complexity of the algorithm performance is presented in section 4. 

1. The Representation 

A system of N-diagrams is represented as a table consisting of three columns: 

(1) world labels, 

(2) conditions which hold at a world, and 

(3) conditions for accessible worlds. 

For example, the SCS for o = (((A * B) A (A + C))  3 (A ==> (B A C)) )  is shown in Figure 4.1. 

Figure 4.1. Semi-complete structure for o = (((A+B) A ( A = & ) )  3 (A=>B A C)). 

The corresponding table is shown in Table 4.1. A table representing a system of N-diagrams shall be 

referred to as an N-structure. 



I Table 4.1. Natructun for a, = (((A s B) A (A 9 C)) 2 (A * (B A C))). 

Recall that a system of N-diagrams consists of (1) labels, (2) rectangles, (3) arrows, (4) not-arrows, 

(5) ORs, and (6) rules for constructing the diagrams. Labels are represented in the "world" column. The 

contents of labelled rectangles are represented in the "conditions at worldn column. Entries in this column 

are the relevant conditions which are true at a given world. So A A B is true at world (rectangle) w2 in Fig- 

ure 4.1. The contents of unlabelled rectangles are represented in the "conditions for accessible worlds" 

column. Entries in this column are (1) the relevant conditions which must be true at any world accessible 

from the given world, or (2) arrows representing accessibility to some world. The notation Aw~w~ is used to 

name an arrow from wi to wj. For example, the arrow from wl to w4 in Figure 4.1 is represented in row 

wl, column "conditions for accessible worlds" as Awlw-41 i.e., w4 is accessible from wl. 

worlds 

w1 

y 

w 

~4 

The contents of unlabelled rectangles are negated and placed in the "conditions for accessible worlds 

column." So the contents of the unlabelled rectangle at the head of the not-mow leaving rectangle y in 

conditions at world 

10 

AAB 

AAC 

AA-t(BAC) 

Figure 4.1 appears in the N-structure as 4 VB in row wz, column "conditions for accessible worlds." Thus 

conditions for accessible worlds 

(AWIW~ ViA)  A   awl^ VTA) A A W I W ~  

4 v B  

4 V C  

( 4  v i ( B  A C)) V A w ' w ~  

at all accessible worlds from w2 either A is false or B is true. An OR in a system of N-diagrams is 

represented as a logical v symbol in an N-structure. For example, (Awlwz v TA) in row wl, column "condi- 

tions for accessible worlds" of Table 4.1 represents the arrow from wl to w2, "OR," and the contents of the 

unlabelled rectangle alternative to w2. This means that either (1) there is an arrow from wl to wz, or (2) 4 

is true at all worlds accessible from wl. 

Note the arrow Aw'w-4 in row w-4, column "conditions for accessible worldsn of Table 4.1. w' may 

be thought of as a variable for a world. The notation is used to denote conditions for accessibility from a 

world created due to a false * . Negative numbers are used as labels for such worlds to facilitate 

identification of these worlds. For example, w4 was created to make A + (B A C) false at wl. At any 



world w' accessible from w-4 4 v7(B A C) must be true or if it is false then w-4 must be accessible for w'. 

Thus reading across the table at row w3, for example, we get "at world w3 A and C are both true, and 

at every world accessible from w3 either A is false or C is true." The rule for new worlds is used to extend 

the N-structure, whereas the rule for alternatives spawns new N-structures identical to the original to which 

an alternative assignment is added. 

2. Program Validate 

The purpose of program Validate is to determine the validity of well-formed formulas (wffs) 

expressed in conditional logical system N. Since N subsumes propositional logic, the program handles wffs 

of propositional logic as well. A wff of N is given as input, and Validate returns either a message stating 

that the given wff is valid or a message stating that the given wff is invalid. If invalid, a set of value assign- 

ments to variables is also returned in which the wff evaluates to false. 

The automated theorem prover for N is an implementation of the method of N-diagrams. An attempt 

is made to construct a consistent configuration for -..lo in order to prove o. If such a configuration can be 

constructed, the given wff is invalid Otherwise such a configuration is shown to be impossible to con- 

struct, and the wff is therefore valid. The program is written in Frmz Lisp code. b 

Program Validate is an implementation of algorithm N-Theorem-Prover. To summarize the pro- 

cedure, steps 1 and 2 initialize and build a table called nstruct which represents the semi-complete structure 

of N-diagrams. Step 3 generates and tests RTFC configurations from each structural template of the semi- 
0 

complete structure. Step 3 is repeated until all RTFC configurations have been generated and tested or a 

consistent configuration for -..lo is found. A more detailed look at how these goals are accomplished is pro- 

vided in the following discussion. 

Step 1. A wff is entered in one of two ways: (1) interactively within the loop instigated by function 

interact, or (2) as an argument to function test. Function test calls prefix to convert wff to prefix notation. 

The main operator is assigned 0 when test calls apply-rules sending it arguments f l and  0. Nstruct is ini- 

tialized to wl where -..lo is true. 



Algorithm N-Theorem-Prover 
Input: wff 
Output valid, invalid 
1. Initialize nstruct 

1.1. Getyf 
1.2. Put @in prefix form 
1.3. Assign 0 to the main operator of @ 

2. Build nstruct, the semi-complete structure(s) 
2.1. Repeat 

Apply a-rules 
Apply rules for crosses, asterisks, and modified rule for alternatives 
Apply rule for new worlds 

Until rules applied as often as possible 
3. Repeat {for each semi-complete structure} 

3.1 Generate structural templates from SCS 
3.2. Test templates 
3.3. If template is inconsistent then remove template from paths 
3.4. If paths # {} then 

3.5 Build necvals and arrows {tables of forced values and arrow constraints} 
3.6 Repeat {for each structural template} 

q+-0 
3.7. Repeat {for q = 1 to n classes in eqtemp} 

9 + 9 + l  
Initialize eqtemp for q classes 

3.8. Repeat {for each eqtemp of q classes} 
Initialize config template from eqtemp 

3.9 Repeat {for each confrg template} 
Generate arwset 
Test configuration 
d c q - 1  
Get next conjig template . 

Until d = 0 (all conjig templates tested} or ccf 
c t q - 1  
Get next eqtemp of q classes 

Until c = 0 {all eqtemps of q classes tested }or ccf 
Until q = n {all eqtemps tested} or ccf 

Until all sauctural templates tested or ccf 
Get next SCS 

Until all alternative SCS tested or ccf 

Step 2. Function apply-rules is called from test to apply propositional rules to wff. The application 

of the rules results in the construction of valassns, mustbe, and gen, data structures from which alternative 

value assignments to variables and gamma-subformulas are generated. Application of the rule for new 

worlds results in the extension of nsrruct to the SCS once the rules have been applied as often as possible. 

Step 3. The second phase of the algorithm generates and test RTFC configurations. If at any point 

in step 3 a consistent configuration is found, the algorithm terminates. The outer loop is repeated for each 

SCS as there may be more than one. Structural templates are generated from the current SCS and stored in 



paths (step 3.1). The templates are tested and inconsistent templates removed from paths (steps 3.2, 3.3). 

If at least one template remains in paths, then necvals, the table of forced values, and arrows, the table of 

arrow constraints, are built (step 3.5). 

The loop of step 3.6 is repeated for each structural template remaining in paths. Structural templates 

consisting of more than two worlds are not forward-connected Therefore an arrow in one direction or the 

other or both must be added between each pair of worlds in the configuration to make the configuration 

RTFC. However, all possible ways of adding arrows need not be tested. Transitivity fails for some combi- 

nations. Thus only sets of arrows which create RTFC configurations are generated. This type of genera- 

tion is accomplished in the following way. 

The accessibility relations and worlds in a configuration are viewed in terms of a well-ordering on 

equivalence classes of worlds (steps 3.6-3.9). Reflexivity and transitivity hold, but symmetry is not 

imposed by the accessibility relation. Thus there may occur from one to n equivalence classes, where n is 

the number of worlds in the configuration, excluding wl (step 3.7). Eqtemp is the data structure represent- 

ing the current equivalence class structure. The ordering of EQ classes also varies (step 3.8). For example, 

if there are three worlds in a configuration (excluding WI), then the successive values of eqtemp are: (3), (1 

2), (2 I), (1 1 1). From each eqtemp consisting of more than one equivalence class, there are different 

ways in which the world labels may be fitted into the equivalence classes (step 3.9). Consider worlds w2, 

~ j ,  w4 and eqtemp (1 1 1). There are six ways of fitting three worlds labels into three equivalence classes: 

(2 3 4), (2 4 3), (3 2 4), (3 4 2), (4 2 3), (4 3 2). Config is the data structure representing the current permu- 

tation of world labels from eqtemp. Arwset is the data structure representing the set of arrows to be added 

to a sauctural template to form an RTFC config. It is generated from config and tested for consistency. If 

consistent, a false model has been found. Anvset, path, and wrldvals, the set of value assignments to 

relevant variables and gamma-subformulas at each world in the configuration, are returned. These data 

structures describe the false model. If inconsistent, the next RTFC configuration is generated and tested. 

This cycle continues until all RTFC configurations have been tested or a consistent configuration found. 

The functions of program Validate are of three main types: (1) those which build or modify the data 

structures, (2) those which perform consistency tests, and (3) those which manipulate lists. See Appendix 



2 for full documentation of the automated theorem prover. The user manual is given in Part I of the appen- 

dix and the maintenance manual in Part 11. 

3. Data Structures 

The present section is comprised of (1) descriptions of the main data structures of program Validate 

and (2) lists of the functions which manipulate them. The documentation for each data structure consists of 

four parts: 

(1) a header comprised of the name of the data structure in bold, 

(2) a short description of the structure, 

(3) an example, and 

(4) a list of the functions responsible for initializing, building, or modifying the data structure. 

The data structures appear in the order in which they arise within the program 

The formula to be tested for N-validity is entered in infix notation in one of two ways. It is either , 

entered at the terminal and read through functions interact and readexpr or entered as an argument to func- 

tion test. Functions prefix and prefixw convert f l t o  prefix notation, whereas function inorder converts a 

wff in prefix form to infix form. A wff in infix form is in the order operand-operator-operand, or 

operator-operand if the operation is negation. A wff in prefix form is in the order operator-left operand- 

right operand, or operator-operand if the operation is negation. For example, given 

(((A B) A (A C)) 3 (A =B (B A C))) in infix notation, its prefix form is 

( I ( A ( * A B ) ( * A C ) ) ( * A ( A B C ) ) ) .  



valassns, mustbe 

Function apply-rules assigns 0 to the main operator of wfand applies the rules of propositional logic 

for the assignment of truth values to variables and to y-subformula Mustbe is the data structure containing 

top level a-assignments to variables and y-subfornula, whereas valassns contains a list of alternative value 

assignments as in the case of a true logical v. For example, from wff (((A + B) A (B + A)) 3 (A=B)) we 

get: 

mustbe: (( * A B 1) (+ B A 1)) 

valassns: (((A 1) (B 0)) ((A 0) (B 1))). 

The functions which build or modify valassns and mustbe are apply-rules, apply-betarule, avalues, bvalues, 

alpha, beta, gamma, init-mustbe. 

Gen is the generator by which the next alternative set of value assignments can be obtained from 

valassns and mustbe. The generator consists of a list of numbers, 0-2, the length of which is equal to the 

maximum number of ORs in valassns. For example, given: 

mustbe: ((A 0)) 

gen is initialized to (-1). When gen is (0) the first set of value assignments is ((A 0) (B 1) (C 0)); for gen 

(1) the set of value assignments is ((A 0) (B 0) (C 1)); for gen (2) ((A 0) (B 0) (C 0)). The functions which 

build or modify gen are init-gen, depth, maxnum, buildgen, update-gen, next-assn. 

nstruct 

Nstruct is the main data structure in the program. It is a table representing a system of N-diagrams. 

Given the system of Figure 4.1 nsnuct is: 



The numbers in the first column of the table are world labels. Note that a world created from a false + is 

given a negative label. This makes it easy to distinguish these worlds from worlds created due to a true + 

when it is necessary to do so (e.g., in building arrow constraints). The second column consists of the 

relevant true conditions at a world. This is the information inside the rectangles of the diagrams. So for 

example, A and B are both true at world w2 above. 

The third column consists of the conditions which must hold at worlds accessible to the current 

world. Consider row 1 of the example nstruct. The third column contains arrows (A 1 2), (A 1 3), (A 1 

-4). The conditions on accessibility from world wl are that: 

(1) either there is an accessible world w2 or A is false at all accessible worlds, 

(2) either there is an accessible world w3 or A is false at all accessible worlds, and 

(3) there must be an accessible world w-4. 

At worlds accessible to world y it must be the case that either A is false or C,is true. ((I cannot be 

the case that A is true and C false.) At worlds accessible to world w-4 (created from a false at w l )  either 

(1) A is false or (B A C) is true (it cannot be the case that A and (B A C) are both true), or (2) if A and (B A C) 

are both true, then there must be an arrow back to world w-4. The functions which build or modify nstruct 

are init-nstruct, build, gamma-true, gamma-false, modifiedt, modifiedf, newrowt, newrowf, update-nstruct, 

update-worlds. 

arrows 

Arrows is a data structure containing information about transitive arrows, inconsistent arrows, arrows 

which cannot co-occur, arrows which must co-occur, nested-arrows, and betas in arrows and/or worlds. 

An example Structure Arrows follows: 



Row (+ (A 2 4)) means that arrow (A 2 4) must occur in any configuration in which worlds wz and w4 are 

both present. Row (' (A 2 3)) indicates that arrow (A 2 3) is inconsistent and therefore cannot occur in any 

consistent configuration. Row (' (A 4 2) (A 3 2)) indicates that arrows (A 4 2) and (A 3 2) cannot co-occur 

in any consistent configuration. Row (-+ ((A -5 2) (A 3 2)) (A 2 -5)) means that if arrows (A -5 2) and 

(A 3 2) co-occur, then (A 2 -5) must also occur. This case arises when arrow (A 3 2) forces value assign- 

ments at world wz which in turn makes (A -5 2) inconsistent unless (A 2 -5) also occurs. Similarly row 

(+ ((A -5 3) (A -6 3)) (V (A 3 -5) (A 3 -6))) indicates that if arrows (A -5 3) and (A -6 3) ccmccur, then 

either (A 3 -5) or (A 3 -6) must also occur in the configuration. Row (@ (A 2 4) ((A 1 4))) represents tran- 

sitive arrows. If arrow (A 2 4) occurs in a configuration then arrow (A 1 4) must also occur since accessi- 

bility is uansitive. 

An asterisk indicates the occurrence of a beta-subformula Row (* -6) means that there exists a 

beta-subformula within the conditions at world w-6. Row (* (A 4 -5)) means that a beta-subformula occurs 

within either the conditions for accessibility from w4 or the conditions at w-5. Thus the arrow of necvals 

(A 4 -5) contains a beta-subformula. Row (* (1 (' ( A A B)))) indicates that not-arrow (1 ( -  ( A A B))) 

contains a beta-subformula. The functions which build or modify arrows are updated-arws, wkworlds, 

wkworld, gsum, update-arws, trans, get-trans, modfarws, update-arrows, double-arw, ifwiwj, ifwi, 

updated-arrows, cant-co-occur, cannot, cant, check-pairs, upd-arw, betanots, add-arws, beta-nestednecs. 

necvals 

Necvals is a data structure consisting of the set of arrows to be added to a configuration to make it 

FCT. Associated with each arrow is (1) the set of value assignments which must hold in order that the 

arrow be consistent, and (2) the term "cons" or "incons" to indicate the consistency of the arrow, for 



example: 

(((A 3 2) (A 1) (B 1) (C 1) cons) 
((A -4 2) (A 1) (B 1) (C 0) cons) 
((A 2 3) (A 1) (B 1) (C 1) cons) 
((A -4 3) (A) (B) (C) cons (A 3 -4)) 
((A 2 -4) (A) (B) (C) incons) 
((A 3 -4) (A 1) (B 0) (C 0) cons)). 

From the example necvals we see that arrows (A 3 2), (A -4 2), (A 2 3), and (A 3 -4) are all consistent. 

Arrow (A -4 3) is consistent as long as arrow (A 3 -4) also occurs in any configuration in which (A -4 3) 

occurs. Arrow (A 2 -4) is inconsistent. This information is used to build arrows. The functions which 

build or modify necvals are test-arrows, update-necvals, check-wprime, add-vals, add-val, rtnarws, awjwi, 

hit-necvals, generate-test. 

paths 

Paths is a data structure which represents all possible structural templates along the semi-complete 

structure of N-diagrams. Consider the system of N-diagrams of Figure 4.1. Paths for this semi-complete 

structure is: 
b 

The first path represents a configuration in which two worlds exist, WI and w-4. There are two not-arrows 

both indicating that A must be false at all worlds accessible from wl. The last path represents a semi- 

complete structure in which four worlds exist, wl, wz, w3, and w-4. There are no not-arrows on this path. 

The functions which build or modify paths are init-paths, transitive, intrans, complete, comp, newnrows, 

nested-paths, expanded, newrows, test-template, test-temp, addlbase2. 



worldvals, wrldvals 

Data structure worldvals contains value assignments to variables and gamma-subformula which must 

hold at each world. It is initialized to the conditions which hold at each world from mtruct. Consider an 

example: 

At world wl A and B are true, C false, A B true, and C e B false. At world w-3 A and B are both false 

and C hue, whereas at wz A and B are both true and C false. The functions which build or modify world- 

vals are init-worldvals, update-wvals, wigamma, upd-worldvals. 

Wrldvals has the same form as worldvals. In fact it is initialized to worldvals. Once an arrow set has 

been determined to form an RTFC configuration, the values which must hold in order for the added arrows 

to be consistent (from necvals) are added to wrldvals. If that arrow set is found to be inconsistent, then 

wrldvals is re-initialized to worldvals and the next arrow set generated and tested If, on the other hand, the 

configuration is found to be consistent, wrldvals, arwset, and path are returned as a f&e model. The func- 
b 

tions which build or modify wrldvals are upd-wrldvals, update-newvals. 

WemP 

Data structure eqtemp is the equivalence class Jemplate from which a configuration template (and 

subsequently an arwset) is generated. Eqtemp is initialized to one equivalence class containing al l  worlds 

in the configuration (excluding wl). Once all possible configurations have been generated, eqtemp is incre- 

mented. For example, if there are three worlds (excluding wl) in the current semi-complete structure, the 

successive values of eqtemp are: 



(3) (2 1) 

(4) (111) 

Eqtemp (1) consists of one equivalence class containing all three worlds. Eqtemp (2) consists of two 

equivalence classes, the first containing one world, the second two worlds: 

Eqtemp (3) also consists of two equivalence classes, the first containing two worlds and the second one 

world: 

Eqtemp (4) consists of three equivalence classes, one world in each: 

The functions which build or modify eqtemp are init-eqtemp, next-eqtemp. 



config 

Data structure conjig is the current configuration of worlds (generated from eqtemp) from which the 

set of added arrows is generated. So if the current eqtemp is (2 1) and worlds on the current path are w2, 

q ,  and w4, then conjig has the following successive values: 

The values of conjig represent all possible ways in which the world labels can be fitted into the current 

eqtemp. The first conjig above represents a configuration comprised of two equivalence classes, the first 

containing worlds w2 and q ,  the second containing world w4: 

The functions which build or modify conjig are init-config, init-class, next-config, next-world. 

Data structure arwset is the set of arrows added to the semi-complete structure to form an RTFC 

configuration. It is generated from conjig in the following way: 

Algorithm Arrowset 

1. arrowset t {} 

2. Repeat 

2.1 For each wi in topmost EQ class do 

(a) For each wj, i#j, in topmost and lower EQ classes do 

arrowset c arrowset u {Awiw,} 

2.2 Remove topmost EQ class 

Until no EQ classes left 



Thus the set of arrows generated from config ((2 3) (4) (5 6)) is {(AwzwJ), (Aww), (Awsw~), (Aw~ws), 

(Aw2w4), (Awws), (Aw~w~), (AYw~), (Aw~ws), (Aw~w~), (Aw4ws), (Aw~w~)). The functions which build or 

modify m s e t  are get-arwset, update-arwset, cl, ci, upd-arwset. 

alterns 

Data structure alterns is a list of alternative value assignments to propositional variables at each 

world in the configuration. Variable assignments which must hold (from wrldvals) are appended to the 

alternatives for the remaining unassigned variables. This structure is designed to handle situations in which 

application of the rule for alternatives was delayed. In some cases arrow@) force assignments to PI, fh, for 

some p-formula, but in others they do not. Alterns provides the alternative assignments without generating 

all the alternative SCS. Consider an example: 

B and C must both be true at world wl, but A may be true or false. There is only one alternative value 

assignment to variables at worlds w and w-3 above. The fuhctions which build or modify alterns are get- 

alternatives, get-alterns, get-alts, upd-alterns, addlbase2. 

4. Complexity 

The present section is concerned with the analysis of the computational complexity of algorithm N- 
Theorem-Prover. The following variable definitions are used in the analysis. Let: 

k = the number of symbols in wf 
f = the degree of wjf 

b = the P-degree of wff 
a = the a-degree of wf 
g = the y-degree of wff 

n = the number of worlds in the structural template, omitting WI  

p = the number of worlds in SCS created due to a m e  +-subfornula 



q = the number of EQ classes in eqtemp 

Ci = the ih EQ class in eqtemp 
si = the cardinality of Ci 

Note that: 

(2) n S g, n = g in templates containing all p worlds created by the rule for a true *. 

(3) p I n, p = n = g when no worlds have been created by the rule for a false =e. 

The complexity of step 1 of the algorithm is O(k) to put @in prefix notation. Step 2 builds O(3b) 

SCS each containing n + 1 worlds. The modified rule for alternatives creates fewer SCS, but in the worst 

case each j3-subformula consists of ysubformula forcing the construction of 0(3b) SCS. Thus the com- 

plexity of step 2 is O(3bn). 

Step 3 generates and tests configurations. In the worst case all possible conligurations must be gen- 

erated. The outer loop is repeated for each of the 0(3b) SCS. Step 3.1 generates structural templates from 

the current SCS. Each of the p worlds created by the rule for a true * extends the generating tree by 

adding two branches to each leaf. Thus O(29 smtural templates are generated. However, p = n in the 

worst case, so the complexity of step 3.1 is O(2"). 
b 

Step 3.2 tests each template for consistency. Awlwj' is tested, 1 I j 5 n, as well as Awiwj' for nested 

m w s  Awiwj. Each test is O((f - b' + 3b0a')n), and the test is performed on O(2") templates. 

Steps 3.3 and 3.4 are done in constant time. Step 3.5 builds necvals and arrows. Construction of 

necvals requires testing (y) arrows where each test is O(f - b'+ 3b'a'), whereas arrows requires com- 

parison of r value assignments for n sets of arrows with n - 1 arrows in each set. Thus the complexity of 

step 3.5 is O(n2Cf - b' + 36b3 + nr(n - 1)). 

The repeat loop of step 3.6 is iterated for each of O(2") structural templates, and step 3.7 for q = 1 to 

n classes in eqtemp (O(n)). Step 3.8 is repeated for each eqtemp of q classes. The number of possible 

eqtemps of q classes is an arithmetic progression from 1 to n - q + 1. Each si can be at most n - q + 1, 

where si is the cardinality of EQ class Ci. The sum of all si in an eqtemp must equal n. The sum of an 

arithmetic progression is given by: 



where a1 is the first term, a, the last term, and n is the number of terms in the progression. Thus we obtain: 

possible eqtemps of q classes. 

Step 3.9 is repeated for each conjig generated from an eqtemp. There are (gl)(f;-S1)  - - (it) possi- 

ble ways of fitting n world labels into an eqtemp of q classes and si worlds within class Ci, 1 I i I q. Gen- 

erating and testing anvset is ~((g)).  Thus the complexity of algorithm N-Theorem-Prover is given by: 

Note that as q approaches 1 the fourth term approaches O(n2), and the third term approaches n (when q = 1, 

the third term is 1). As q approaches n the third term approaches n!, and the fourth term approaches 1. 
- 

Thus algorithm N-Theorem-Prover is exponential. 



- 120 - 

Chapter 5. Conclusions 

1. Summary 

This thesis has presented a tableau-based approach to theorem proving for a conditional logic. Logic 

N extends classical propositional logic by adding a variably strict conditional operator +. The formal 

semantics for N is based on a possible worlds approach. The basis of the accessibility relation among pos- 

sible worlds is uniformity, or "unexceptionalness," i.e., accessibility relation E is said to hold between two 

worlds wl and wz just when w2 is at least as unexceptional as wl. 

The theorem prover is a refutation procedure based on the model theory of N rather than the 

axiomatic basis of N. An attempt is made to construct a falsifying model for a wff o. If such a model can 

be constructed, then ~o is satisfiable and o is invalid. The falsifying model serves as a counterexample. 

Otherwise a falsifying model is shown to be impossible. In this event is unsatisfiable, and o is there- 

fore valid. The method ofN-diagrm is presented to accomplish model construction. The method utilizes 

rectangles representing worlds, arrows representing accessibility between worlds, and rules for building 

models based on the definition of truth in the model theory. b 

The approach is based on techniques of tableau and semantic diagrams. The method of semantic 

diagrams for modal logics such as T, S4, and $5 differs from the method of N-diagrams in a significant 

way, though, in part because of the different accessibility relations in these systems. The accessibility rela- 

tion for T is reflexive, for S4 reflexive and transitive (but not forward-connected), and for S5 reflexive, tran- 

sitive, and symmetric (fully connected). As a result, there is a unique system of diagrams for these logics 

and the diagrams are complete after applying the rules of the method as often as possible. However, the 

accessibility relation E for N is reflexive, transitive, and forward-connected (between S4 and S5). Once the 

construction rules have been applied as often as possible, the system of N-diagrams is only semi-complete. 

Forward-connectedness and transitivity must be imposed. The semi-complete structure is then used to gen- 

erate RTFC configurations by adding RTFC sets of arrows to templates of the semi-complete structure. 



What this means is that diagrams in a system of more than one semantic diagram differ only in alter- 

native value assignments to the operands of the P-subformula within rectangles. New diagrams are only 

required when the rule for alternatives is applied. New diagrams are similarly required in a system of N- 

diagrams. Additionally, though, the conditions for a true y-subformula in N contain an alternative. It is 

from these alternatives that we obtain the templates from a semi-complete structure. Further, the RTFC 

patterns of arrows must be added to the templates. Thus diagrams in a system of N-diagrams may contain 

different labelled rectangles and different patterns of arrows connecting labelled rectangles. 

Both methods employ tableau techniques. Applying the modified rule for alternatives, we in effect 

obtain a tableau within each rectangle. However, the unmodified rule for alternatives creates different 

diagrams, one for each alternative value assignment to the operands of the P-subformula, whereas a tableau 

branches to the left and to the right in the case of a P-subformula. 

The approach provides a simple, pictorial procedure for proving wffs of N. The approach has been 

implemented in program Validate, an automated theorem prover for logic N. Full documentation is 

presented in Appendix 2. Part I provides a manual for users of the program, part 11 a manual for rnaintain- 

ing the program The computational complexity of the algorithm has been shown to be exponential. This 

is as expected because all known algorithms for propositional logic are exponential, and N subsumes pro- 

positional logic. 

Logic N provides an approach to the representation of knowledge about prototypes and prototypical 

properties of kinds. The exception-admitting quality of such knowledge poses some special representation 

problems. Not every member of the kind possesses all the properties associated with the kind It seems 

that, in general, models of how things work are more easily formulated than models of how things "go 

wrong." It has been argued that logic N deals with these problems more appropriately than other 

approaches in AI. The logic is, however, without modus ponens. Delgrande [87] has presented an 

approach in which modus ponens can be effectively used. 



2. Further Research 

Some areas for further work are: (1) extension of the theorem-proving approach to first-order N, (2) 

application of the approach to other conditional logics, and (3) improvements to the arrow-set generation 

process. The extension to first-order requires implementation of the first-order rules given in Appendix 1. 

Quantilication applies within one world only, so the extension is straightforward. A first-order augmenta- 

tion would further require some kind of heuristics or restrictions to handle the loss of decidability. The 

heuristics used by Oppacher and Suen [863 in their implementation of a tableau-based ht-order theorem 

prover could be used. The goal with a first-order howledge base is often to reason about individuals, and 

in this case we have a decision procedure for individuals. 

The implementation is easily extended to other normal conditional logics such as the logic for coun- 

terfactual conditionals of Lewis. It is only the last component dealing with the accessibility relation E 

which applies directly to N. The rule for new worlds remains unchanged because the mth conditions for 

the variable conditional are the same for the class of normal conditional logics. 

An enhancement of the arrow-set generation process might be feasible by reconfiguring the genera- 

tor. In applying the method of N-diagrams it was demonstrated that in the case of vaid wffs, validity can 

be &rived from the table of arrow constraints. The automated theorem prover does not currently make use 

of this characteristic. No such derivation is, of course, possible for invalid wffs. Thus an implementation 

would require some heuristics for deciding when to give up trying. 

The goal is to use the information in the table of arrow constraints to build configurations which 

might be consistent rather than enumerating all possible configurations in some order. For example, if 

"Awiw, cannot exist" is in the table, then no consistent configuration contains arrow Awiwj, and every con- 

sistent configuration contains Awjwi. The goal is to modify the generator so that the only sets of arrows 

generated contain Awj~i and omit Awiwj. 

A possible approach is to replace the single enumerative generator with a hierarchy of generators so 

that reconfiguration of the generation process on the basis of a priori information is possible. The table of 

arrow constraints provides us with a priori information regarding arrow subsets which must coexist, cannot 

coexist, or single arrows which must exist or cannot exist. The goal is to reconfigure the generating system 



so that those mow sets characterized by the exclusion information are not generated. The well-ordering 

on equivalence classes of worlds with respect to the accessibility relation makes such an approach attrac- 

tive. Alternatively, or in addition, mow sets can be characterized by inclusion information. A similar 

approach has been proposed for enumerative learning systems in [Holte and Wharton 861. 

Another area that warrants further investigation is the separation of representation and reasoning 

mechanisms. Perhaps some conditional logics are more suited to the representation of exception-allowing 

information whereas others are more appropriate for reasoning about individuals. If translation between 

logics is straightforward, as in the case of N and default logic, this might be a viable approach for comrnon- 

sense reasoning systems. The following discussion provides some background on conditional logics in 

general. 

The early view of conditional statements of the form "if A then B" was one of class inclusion. The 

following historical perspective is from [Jennings 871. According to this perception, "if A then B" is true 

just when {A} s {B}, where {P} is the set (or "proposition") representing P, the set of "occasions," 

"worlds," "situations," or "models," in a universe of possible states ("occasions," "worlds," etc.) in which P 

is true. This semantics is illustrated with the Venn diagrams of Figure 5.1. A first-order representation for 

inclusion is given by: 

Vx,x E {A} 3y,y E {B}hx=y. 

Material conditionals exhibit the following properties: 

(a) transitivity: ((A 3 B) A (B 2 C)) 3 (A 3 C) 

(b) modus ponens: A, A 2 B + B ' 

(c) contraposition: (A I> B) = (4 3 4) 

(d) law of the excluded middle: (A 3 B) v (A 3 4) 

(2) strengthening the antecedent: (A 3 C) 1- (A A B) 2 C 



Figure 5.1 Inclusion representation of the matexid conditional. A =I B is true in (a) and false in (b). 



(3) weakening the consequent: (A 3 B) I-A 3 (B v C) 

(4) (A3(BAC))3((AAB)=jC) 

(f) strong deduction: ((A A B) 3 C) 3 (A 3 (B ZI 0) 

The "is included in" relation is clearly transitive as demonstrated in Figure 5.2(a). Figure 5.2(b) illustrates 

confirmation property (2), strengthening the antecedent. This property of the material conditional allows us 

to conclude that (A A B) 3 C) is true whenever A 2 C is true. In terms of Venn diagram (b): 

(1) I fA~Cthen{A}s{C}.  

(2) { A I n  {Bls{A}. 

(3) Thus by transitivity {A A B} E {C}. 

Figure 5.2(c) illustrates confirmation property (3), weakening the consequent. This property of the 

material conditional allows us to conclude A 3 (B v C) whenever A 3 B is true. In terms of Venn diagram 

(a :  

(1) If A 3 B then {A} r {B}. 

(2) {BlE{BlUCC). 

(3) Thus by transitivity {A} r {B v C). 

As a representation, the material conditional is fine for (1) terms which have analytic definitions such 

as "bachelor" or "square," (2) nouns derived by transformation from verbal forms such as "hunter = one 

who hunts," and (3) statements such as "penguins are birds." In cases (1) and (2) {A} E {C} and {C) E; 

{A}. For example, let {A} represnt the set of squares and {C) the intersection of the set of plane figures, 

the set of objects with four equal sides, and the set of objects with four right angles. For statements of type 

(3) {A} E; {C} and {C} r {A}, e.g., {creature-with-heart}, {creature-with-kidneys}, or {A} c {C), e.g., 

@enguin} c {bird). 

However, some if-then statements are arguably not intended to be understood as universal law. For 

example, "ravens are black," "water boils at 100' C," mles of thumb, or "natural language conditionals" 

[Jennings 831 such as "If I strike this match it will light." In these cases we want to allow exceptions 

without falsifying the conditional. Let {A} be the set representing ravens, {B} the set representing things 



Figure 5.2 Properties of the material conditional: (a) transitivity, (b) strengthening the antecedent, and 

(c) weakening the consequent. 



that are black, and {C} the set representing albino things. It is not the case that {A} r; {B} as is illustrated 

in Figure 5.3. For example, albino ravens are represented in {A} but outside {B}, (though it is not neces- 

sarily the case that {C} n {B} - 0 , e.g., an albino raven which becomes the victim of an oil spill). State- 

ments of this kind exhibit the property of strengthening the antecedent and obtaining the negation of the 

consequent, referred to as left-downward nonmonotonicify. This property is illustrated in Figure 5.4, where 

{A}, {B}, {C} are as above. 

Recall the inclusion representation for A I> B: 

VX,XE {A}3y,y€ { B } A ~ = y .  

The problem is the universal quantification of elements of A. Three approaches to this problem may be 

taken: 

(1) restrict the antecedent set {A}, 

(2) extend the consequent set {B}, 

(3) weaken identity. 

Approach (1) restricts the antecedent set {A} to members of {A} which are included in {B}. Thus subsets 

of {A} are considered where B imposes the restrictions on A, i.e., "if a preferred set of A then B." Approach 
b 

(2) extends the consequent B to include all members of {A}. Thus a superset of B is considered where A 

determines how B is extended. 

DeMorgan in 1864 proposed a semantic approach which if applied to the inclusion representation 

yields (3): O 

3 R E G: Vx, x E {A} 3 Y ,  y E {B} A xRy, 

where G is a set of relations one of which may be identity, and R is a relation of G. Another possibility is 

to drop the restriction that the same R must relate elements of {A} and {B}. 

Each approach yields a different kind of logic. Conditional logics based on semantical approach (1) 

are referred to as ldn logics (left-downward nonmonotonic), and those of (2) run logics (right-upward non- 

monotonic). Approach (3) yields quantum logic. (For more on the conditional in quantum logic see [Har- 

degree 761 Wittelstaedt 781.) 



Figure 5.3 An example in which A 3 B is false. 

Figure 5.4 icft-downward nonmonotonicity. 



The choice of an approach depends upon the particular application. Perhaps a Idn logic is more 

appropriate for the representation of properties of kinds, relations between kinds, and natural laws, 

whereas a run logic might be more suited to diagnostic or default reasoning. For an example of the former, 

consider the statement "water boils at 100•‹ C." Let { A }  be the set representing water samples and { B }  the 

set representing things that boil at 100•‹ C. There may be particular samples of water which boil at lower 

temperatures, those with a high mineral content, for example. It seems more natural to restrict the set { A }  

to pure samples than to extend {B}  to include things that do not boil at 100•‹ C. Perhaps there are associ- 

ated with such statements implicit assumptions that the water sample is pure, the pressure at a certain level, 

etc. If such assumptions are made then we are in effect restricting the antecedent. Similarly, we might 

prefer to restrict the set representing ravens rather than extend the set representing black things to include 

white things in a treatment of "ravens are black." 

Alternatively, a run logic may be more suited to reasoning in diagnostic or default systems. For 

example, a medical system returns a diagnosis given a set of symptoms. It seems more natural to say 

something like "this set of symptoms indicates disease B v C v D" as opposed to restricting the set of symp- 

toms. Similarly, a default system may be asked to predict properties of an individual given its kind. A 

semantical approach which allows disjunction of predictions may be preferred. 



Appendix 1. Tableau Branch-Extension Rules for Modal and First-order Logics 

An extension to the tableau method to handle the modal operators (necessity) and 0 (possibility) 

due to [Fitting 831 are shown in Table A2. 

Table Al .  Modal rules for the assignment of truth values. 

F O X  FX T O X  

Note that +: v = E w l ,  Vwl p: vo and t=f E = EWWI, 3 wi e, IIO. 
The extension to first-order logic requires two rules in addition to the a- and p-rules [Fitting 831: 

I Table AZ. Rules for first-order quantiRers. I 

Fitting's y-rules apply for any constant a ,  and the 6-rules for any parameter new to the branch. 



Appendix 2. Program VALIDATE Manual 

The purpose of program VALIDATE is to determine the validity of well-formed formulas (wffs) 

expressed in conditional logical system N [Delgrande 861. Since N subsumes propositional logic, the pro- 

gram handles wffs of propositional logic as well. A wff of N is given as input, and VALIDATE returns 

either a message stating that the given wff is valid or a message stating that the given wff is invalid. If 

invalid, a set of value assignments to variables is also returned in which the wff evaluates to false. 

The algorithm is an implementation of the method of N-diagrams, a tableau-based approach with 

modifications to handle the possible worlds semantics of logic N. An attempt is made to construct a falsi- 

fying model. If such a model can be constructed, the given wff is invalid Otherwise such a model is 

shown to be impossible to construct, and the wff is therefore valid. The program is written in Franz Lisp 

code and is intended to be run on the Franz Lisp interpreter. 

The manual is divided into two main parts: (1) using the program, and (2) maintaining the program. 

Part I concerns the use of program VALIDATE. It is intended to be comprehensible to readers with no 

knowledge of computer programming. Section 1 provides an overview of logic N and the method of N- 

C 

diagrams. Instructions for entering data are given in section 2, for interpreting the output in section 3, and 

for running the program in section 4. Section 5 provides sample input.output. 

Part 11 provides information helpful for program maintenance. It is assumed that the reader of part 11 

has programming knowledge, of Lisp in particular. Section 1 of part I1 consists of a brief outline of what 

the program does. The algorithm is presented in section 2. Section 3 presents the functions arranged in 

categories according to the type of work performed. There are three main types of functions in program 

VALIDATE. (1) those which build or modify data structures, (2) those which perform tests, and (3) those 

which manipulate lists. The last section of part 11 provides a description of each function. 



- 132 - 

PART 1. USING THE PROGRAM 

1. Introduction 

The purpose of program VALIDATE is to determine the validity of well-formed formulas (wffs, see 

Section 2) expressed in conditional logical system N [Delgrande 861. Since N subsumes propositional 

logic, the program handles wffs of propositional logic as well. A wff of N is given as input, and VALI- 

DATE returns either a message stating that the given wff is valid or a message stating that the given wff is 

invalid. If invalid, a set of value assignments to variables is also returned in which the wff evaluates to 

false. The program is written in Franz Lisp code and is intended to be run on the Franz Lisp interpreter. 

1.1. Logic N 

System N provides a propositional logic with the addition of a variably strict conditional operator 3 

where A a B is interpreted as "all other things being equal, if A then B," or "in the normal course of 

events, if A then B." Consider a statement such as "Ravens are black." Representing this statement with the 

material conditional operator 3 of propositional logic, we obtain Raven 3 Black which requires that every 

raven be black. This does not precisely capture the intension of the statement. Raven a Black, interpreted 

as "in the normal course of events, if a thing is a raven then it is black," on the other hand, allows for albino 

ravens, featherless ravens, etc. The * operator seems more suited to the representation of knowledge of 

this kind. 

The semantics for the variable conditional operator * rests upon the notion of possible worlds and 

an accessibility relation between worlds. More formally, the accessibility relation E is said to hold between 

two worlds wl and w2 (EWIW) just when wz is at least as unexceptional as wl. A + B is true with respect 

to a world wl just when (1) the least exceptional worlds which have A true have B true also, and in no less 

exceptional world is A 3 B false, or (2) A is false at all worlds accessible from wl. A B is false at a 

world wl just in case there exists some world wz accessible from world wl where A is true and B false and 

either (1) there exists no world w3 accessible from w2 where A is true and B is true, or (2) if there is an 



accessible world w3 where A and B are both true, then w2 is also accessible from w3. The accessibility rela- 

tion is reflexive, transitive, and forward-connected. The property of forward-connectedness states that if 

Ewlwz and E W I W ~  then either ( 1 )  Ew2w3, (2) Ew~w, or (3) both Ew2w3 and EW~WZ hold, i.e., any two 

worlds accessible from the same world are themselves related. 

Other characteristics of the logic are: 

( 1 )  strengthening of the antecedent and a possible associated change in the consequent to its negation, 

(2 )  failure of transitivity, 

(3 )  a weakened form of transitivity, and 

(4 )  lack of a standard law of the excluded middle. 

For example, 

( 1 )  { A  + B, A  h C 1 B }  is satisfiable, 

(2)  { A  + B, B  + C, ( A  C) } ,  { A  3 B, B  + C, -, (A  + C)}  are satisfiable, 

(3)  "If (A - B )  and p (B 3 C) then (A  + C)" is valid, and 

(4 )  (( -, (A  B))  3 ( A  -.I B ) )  is satifiable while 7 1 A 3 ( (A  - B )  3 ( A  + -.I B))  is 

valid. 

13. Method of N-diagrams 

Program VALIDATE is a tableau-based theorem-prover for conditional logic N. An attempt is made 

to construct a falsifying model for a given wff. If such a model can be constructed, then the wff is invalid 

Otherwise it is shown that such a model is impossible to construct, and the wff is therefore valid. 

The method of N-diagrams is used in the construction of models. A system of N-diagrams consists 

of: 

(1) rectangles, 

(2) labels, 



(3) arrows, 

(4) not-arrows, 

(5) ORs, and 

(6) rules for building the diagrams. 

A rectangle represents .the relevant state of affairs or conditions which hold at some world. Figure 1 

represents the truth conditions for the variable conditional operator * using N-diagrams. 

Figure 1. N-diagrams representing the truth conditions for the * operator. Figure l(a) illustrates the 

conditions under which A + B is true at a world wi. Figure l(b) shows the conditions under 

which A =e B is false at wi. 

The rectangle labelled wi in Figure l(a) represents a world wi in which A + B is true, while Figure l(b), 

represents a world wi in which A + B is false. An arrow from one world (rectangle) to another indicates 

that the world at the head of the arrow is accessible from the world at the tail of the arrow. So world wj is 

accessible from wi in Figure l(b), i.e., Ewiwj holds in Figure l(b). There is an implicit arrow from each 

rectangle to itself because the accessibility relation is reflexive. A not-arrow, -H, indicates that there can 

be no world accessible from the world at the tail of the not-arrow in which the conditions hold represented 

in the rectangle at the head of the not-arrow. For example, in Figure l(a) there can be no world accessible 



from world w, in which A is true and B false. The OR between an arrow and a not-arrow or between a 

not-arrow and a pair of double-arrows (an arrow and its rem-arrow) indicates that either one accessibility 

path or the other must hold Thus in Figure l(a) either (1) there is a world w, accessible from wi where A 

and B are both true, and no world accessible from w, where A is true and B false, OR (2) there is no world 

accessible from wi in which A is true. In Figure l(b) either there is no world wj' accessible from w, where A 

and B are both true OR if there is such a world wj' then w, must also be accessible from wj', i.e., there must 

also be an arrow back to wj from wj'. 

There are two rules for creating new worlds according to the truth conditions for the =P operator. 

(1) If an asterisk occurs beneath a assigned 1 at wi, create a new rectangle wj in which the antecedent 

is true and the consequent is true. (Refer to Figure l(a).) Place an arrow from rectangle wi to new 

rectangle wj. Create another rectangle wj' in which the antecedent is true. Place a not-arrow from 

rectangle wi to rectangle wj'. Place an OR between the arrow from wi to wj and the not-arrow from 

wi to wj'. Create another rectangle wj" in which the antecedent is true and the consequent false. 

Place a not-arrow from rectangle w, to rectangle wj". 

(2) If an asterisk occurs beneath a * assigned 0 at wi, create a new rectangle wj in which the antecedent 

is true and the consequent false. (Refer to Figure l(b).) Place an arrow from rectangle wi to rectan- 

gle w,. Create another rectangle wj' in which the antecedent and the consequent are both true. Place 

a not-arrow from rectangle w, to rectangle wj'. Place an arrow from rectangle Wj to rectangle wj' and 

from rectangle wj' to rectangle w,. Place an OR between the not-arrow and the double-arrows con- 

necting Wj and wj'. 

The algorithm for deciding N-validity is given in Algorithm N-DIAGRAMS. 

The procedure is demonstrated with two examples. Consider the wff 

(((A + B) A (A + C)) 3 (A (B A C))), where A is the logical and operator, 2 the material conditional 

operator, and + the variable conditional operator. Executing step one we get: 



Algorithm N-DIAGRAMS 

Input: wff 

Output valid, invalid 

1. Initialize the system of N-diagrams 

1.1. Write the wff in a rectangle 

1.2. Label the rectangle wl 

1.3. Assign 0 to the main operator of the wff 

2. Build the semi-complete structure(s) 

2.1. Repeat 

Apply a-rules 

Apply rules for crosses, asterisks, and modified rule for alternatives 

Apply rule for new worlds 

Until rules applied as often as possible 

3. Repeat {for each semi-complete structure} 

Generate an RTFC configuration 

Test the configuration 

Until all RTFC configurations tested or a consistent configuration found 

4. If all configurations have been tested and found inconsistent 

Then return VALID 

Else return the consistent configuration 

Step two involves the application of propositional rules for assignment of truth values to subformulas. 

Whenever a * operator is assigned a value, an asterisk is placed beneath the assigned value: 

One is assigned to the antecedent of the false implication above and 0 to the consequent. One is assigned 

to both operands of the true logical and in the antecedent. Applying the rules for creating new worlds we 

obtain: 



Observe that the not-arrows alternative to worlds wz and w3 are inconsistent with the arrow to world w4. 

Thus worlds w2, w3, w4 must occur in any consistent N-diagram, or configuration: 

Recall that the accessibility relation is reflexive, transitive, and forward-connected (RTFC). Therefore 

arrows must be added to the structure above in order that the RTFC properties hold. Step four generates all 

possible sets of arrows to create RTFC configurations and tests them. The fully-connected configuration is 

generated first: 



The above configuration is inconsistent since the arrow from w2 to w4 (Awzw4) requires that B have value 1 

and C 0 at w4 whereas arrow Aww4 requires that C have value 1 and B 0 at w4. Thus A w ~ w ~  and A w ~ w ~  

cannot co-occur in any consistent configuration. This observation eliminates RTFC configurations contain- 

ing the following sets of arrows: {Awzwq, Awzw3, Aw3w4 AW~W}, { A w ~ w ~ ,  A w ~ w ~ ,  AWZW~, Aw~w}, 

{Awzwq, Aw3~4, AWZW, A w w } ,  {Awzw~, Aww4, A w ~ w ~ } ,  { A w w ,  A w w ,  A W Z W ~ } , { A W ~ ~ ,  AWZW~, 

Aw3w2, A w ~ w ~ ,  A w ~ w ~ ,  Aw4w). 
b 

Observe also that if arrows Awwz and A W ~ W  co-occur within a configuration, Awzw4 must also 

appear in the configuration. This is so because Aww2 forces C to have value 1 at w2, and A w ~ w ~  requires 

the return-arrow Awzw4 since C is assigned 1 at w2. This observation eliminates configurations containing 

the following sets of arrows: { A w ~ w ~ ,  Aw4~3, AWZW~, A w ~ w ~ } ,  { A w ~ w ~ ,  Aw~w, Aww2, Aw~wz}, { A W ~ W ~  

A w ~ w ~ ,  A w ~ w ~ } ,  { A w ~ w ~ ,  A w ~ w ~ ,  A w ~ w ~ } .  Similarly if arrows A w ~ w ~  and A w ~ w ~  CO-occur, then A w ~ w ~  

must also appear in the configuration. This eliminates the remaining sets of arrows which form RTFC 

configurations: {Awzwq, A w ~ w ~ ,  A w ~ w ~ } ,  {Aw~wz, A w ~ w ~ ,  A w ~ w ~ } ,  {Awzw~, AW~WZ, A w ~ w ~ ,  Aw4w). NO 

consistent RTFC configuration is possible, and the wff is valid 

Next consider the wff ((A A B) 3 ((A + B) V (B + A))), where A is the logical and operator, 3 the 

material conditional operator, =E- the variable conditional operator, and v the logical or operator. 



- 139 - 

Execution of steps one and two gives: 

Applying the rules for creating new worlds (step three), we obtain: 

Next the fully-connected configuration is generated and tested. The set of arrows (Awzw3, Aw3wz) is added 

to the saucture above to obtain: 



Each arrow is then tested. Awzw3 is consistent because A has value 0 at w3, and Aw3wz is consistent 

because B has value 0 at w2. The configuration is RTFC, its arrows consistent, and its rectangles con- 

sistent. Thus a false model exists, and the wff is invalid. Program VALIDATE is an implementation of 

this method of N-diagrams for deciding N-validity. 

2. Input 

Program VALIDATE is a procedure for determining whether a given formula of logic N is valid 

Thus the input to the program is a well-formed formula (wff) of N. The notion of wff is described by the 

following recursive rules: 

(1) Any propositional variable (atomic formula) is a wff. 

(2) H A  is a wff, then so is ( - A). 

(3) If A, B are wffs then so are (A A B), (A v B), (A @ B), (A => B), (A <-> B). 

Six operations are known to the program. The symbols to be entered for the operators are in bold: 

(1) ' : negation 

(2) A : conjunction, logical and 

(3) v : disjunction, logical or 

(4) @ : material conditional 

(5) => : variable conditional 

(6) <=> : equivalence. 

A variable may be any Lisp atom other than the operators. There must be a space separating operators and 

variables, e.g., (' A), not (-A). Wffs are entered in infix notation, i.e., operand-operator-operand, or 

operator-operand, if the operation is negation. 

Wffs must be unambiguous. Parentheses are used to disambiguate wffs by placing a pair of 

parentheses around each occurrence of an operator and its operand(s), for example: 



(' ((A => C) A ((A A B) => ( -  C)))) 

( -  A) 

( A v ( -  A)) 

((A => B) @ (((A A B) => C) @ (A => C))). 

3. Output 

The program returns one of two messages: 

(1) The formula a is valid. 

(2) The formula a is invalid. 

In the case that a wff is determined to be invalid, a false model is also returned. There may be many dif- 

ferent models in which the wff evaluates to false. The program returns the first one it finds. If even one 

false model exists, then the wff is invalid. For example, consider the wff 

((((A => B) v (C => B)) A (A A C)) @ B). The program returns the following message: 

The formula ((((A => B) v (C => B)) (A C)) @ B) is invalid. 
A false model exists: 
world value-assignment 
((1 (A 1) (C 1) (B 0) ((A => B) 1) ((C => B) 0)) 
(-3 (C 1) (B 0) (A 0)) 
(2 (A 1) 03 1) (C 0)))) 
m w s  
((A -3 2) (A 2 -3) (A 1 -3) (A 1 2)))) 

The input wff is echoed in the first line. The third line consists of column labels. So the numbers compris- 

ing the first column are world labels, whereas the second column consists of relevant value assignments to 

variables andlor *-subformula.* The list following the heading "arrows" comprises the set of arrows indi- 

cating accessibility relations among the worlds. In the model above there is a world W I  where A is true (has 

truth value I), B is false, C is true, A * B is true, and C B is false, a world w-3 where C is true, and A 

and B false, and a world w2 where A and B are true and C false. World wz is accessible from wl and w-3, 

* A *-subformula is a subformula in which the main operator is the =- operator. 



whereas world w-3 is accessible from wl and w. 

This information can be translated into a system of N-diagrams in the following way: 

(1) Draw a rectangle for each world label in the world column. 

(2) Label the rectangles with the appropriate world labels. 

(3) Place the value-assignments in the appropriate rectangles. 

(4) For each arrow Awiwj in the list of arrows, draw an arrow from rectangle wi to rectangle w,. 

(5)  For each not-arrow (wi ("a)) in the List of arrows, draw a rectangle. Place the subformula (-a) in 

the rectangle. Place a 1 under the main operator. Draw a not-arrow from rectangle wi to the newly 

created rectangle. 

The system of N-diagrams for the example above is: 

4. Running the Program 

Program VALIDATE is run on a Franz Lisp interpreter. It may be run interactively or from a file of 

Lisp commands. A list of 42 example wffs have been entered into a file called examples. These formulas 

can then be referred to by their names fl-f42. 

The following commands instigate an interactive session: 

sfu-cmpt% lisp 
Franz Lisp, Opus 38.9 1 
-> (load 'cmufncs) 
[fasl /usr/localllib/lisp/cmufncs.o] 
t 
-> (load 'cmuenv) 



[load /usr/local/lib/lisp/cmuenv.l] 
[fasl lusrllocaYliWlisplcmumacs.o] 
[fasl /usr/localAib/lisp/cmufncs.ol 
[fasl /usr/local/lib/lisp/cmutpl.ol 
[fasl /usr/local/lib/lisp/cmuflle.ol 
t 
l.(dskin validate) 
[load validate] 
(validate) 
2.(dskin examples) 
[load examples] 
(examples) 

The first command causes a change from the operating system environment (Unix in this case) to the Franz 

Lisp environment The user responds to the first "->" prompt with "(load 'cmufncs)" and to the second 

with "(load 'cmuenv)". These two load commands set up the Lisp environment, loading the library of 

built-in Lisp functions, etc. The system responds with the lines in brackets and the "t." The &kin command 

loads the given file into the current Lisp environment. As a result of the command (dskin validate), pro- 

gram VALIDATE can now be used Function interact initiates an interactive loop: 

3.(interact) 
Enter wff to be validated or nil to terminate session 
((A => B) @ (((A B) => C) @ (A => c))) 
(The formula ((A => B) @ (((A B) => C) @ (A => C))) is valid) 
Enter wff to be validated or nil to terminate session 
(((A => B) a (B => A)) @ (A <=> B)) 
((The formula (((A => B) (B => A)) @ (A c=> B)) is invalid. A false model exists:) 
(world value-assignment ((1 (A 1) (B 0) ((A => B) 1) ((B => A) 1)) (2 (A 1) (B 1)) (3 (B 1) (A 1)))) 
(arrows ((A 2 3) (A 3 2) (A 1 2) (A 1 3)))) 
Enter wff to be validated or nil to terminate session 
nil 
Session terminatednil 

The program responds to the command (interact) with "Enter wff to be validated or nil to terminate ses- 

sion." A wff is entered next for testing. The program responds with the valid message or the invalid mes- 

sage. Note that responding to the prompt "Enter wff to be validated or nil to terminate session" with nil ter- 

minates the interactive session.' The user is, however, still in the Lisp environment. Command (exit) 

causes a change from the Lisp environment back to the operating system environment. Before exiting, 

* 'he  Lisp print command prints "nil" following the argument to the print, e.&, "Session CenI'Ii~tednil." 



though, function test can also be used to validate wffs: 

4.(test f8) 
((The formula (((A => C) * (B => C)) @ ((A * B) I> C)) is invalid. A false model exists:) 
(world value-assignment ((1 (A 0) (C 0) (B 0) ((A => C) 1) ((B => C) 1) (((A B) => C) 0)) 
(-4 (A 1) (B 1) (C 0)) (2 (A 1) (C 1) (B 0)) (3 (B 1) ( c  1) (A 0)))) 
(arrows ((A -4 2) (A -4 3) (A 2 3) (A 3 2) (A 1 -4) (A 1 2) (A 1 3))))nil 
S.(test '(((A => B) * (' (A => (- C)))) @ ((A * C) => B))) 
(The formula (((A => B) A (' (A => (' C)))) @ ((A * C) => B)) is valid.)nil 
6.(exit) 
sfu-cmpt% 

Note that a single quote precedes a formula when function test is called as in line 5, but not when the argu- 

ment to test is the name of a formula as in line 4. No quote is used when entering wffs within the interact 

loop. Command (exit) returns the user to the operating system environment. 

Another option is to put the Lisp commands in a file, then run Lisp with the file as input and direct 

the output to another file. This is accomplished in the following way. Create a file, say testw$Cs, and insert 

the commands: 

(load 'cmufncs) 
(load 'cmuenv) 
(&kin validate) 
(dskin examples) 

Next enter calls to function test for each wff to be validated and command (exit) to leave the Lisp environ- 

ment 

(test f l )  
(test f2) 
(test f3) 
(test f4) 
(test '((((A => B) A ((A B) => C) A) @ (A => C))) 
(test '((A A B) @ (A => B))) 
(exit) 

Then all that has to be done is to type the following line from the operating system environment 

%lisp < testwffs > results 



The results for each wff tested will be in file results. File ex.resulrs contains editor commands which for- 

mat the results into a more readable form. Formatting is accomplished by typing the following line from 

the operating system environment 

%ex results < ex.results 

File results will then be formatted in a more readable style. 

5. Sample I/0 

The following is a sample interactive session: 

sfu-cmpt% lisp 
Franz Lisp, Opus 38.91 
-> (load 'cmufncs) 
[fasl /usr/localllib/lisp/cmufncs.o] 
1 

-> (load 'cmuenv) 
[load /usr/local~lib/lisp/cmuenv.l] 
[fasl /usr/loc~lib/lisp/cmumacs.ol 
[fasl lusr/localllibllisplcmufncs.o] 
[fasl /usr/localllib/lisp/cmutpl.o] 
[fasl /usr/localllib/lisp/cmufile.o] 
t 
1 .(&kin validate) 
[load validate3 
(validate) 
2.(dskin examples) 
goad examples] 
(examples) 
3.(interact) 
Enter wff to be validated or nil to terminate session 
((A => B) @ (((A B) => C) @ (A => C))) 
(The formula ((A => B) @ (((A a B) => C) @ (A => C))) is valid) 
Enter wff to be validated or nil to terminate session 
(((A => B) (B => A)) @ (A <=> B)) 
((The formula (((A => B) (B => A)) @ (A <=> B)) is invalid. A false model exists:) 
(world value-assignment ((1 (A 1) (B 0) ((A => B) 1) ((B => A) 1)) (2 (A 1) (B 1)) (3 (B 1) (A 1)))) 
(arrows ((A 2 3) (A 3 2) (A 1 2) (A 1 3)))) 
Enter wff to be validated or nil to terminate session 
A = > A  
(The formula (nil nil nil) is invalid A false model exists: ((A 0))) 
Enter wff to be validated or nil to terminate session 
Error: NAMESTACK OVERFLOW 
<I>: Error: Unbound Variable: A 
45: (reset) 
[Return to top level] 
4.(interact) 



Enter wff to be validated or nil to terminate session 
(A => A) 
(The formula (A => A) is valid.) 
Enter wff to be validated or nil to terminate session 
nil 
Session terrninatednil 
S.(test f8) 
((The formula (((A => C) A (B => C)) @ ((A B) => C)) is invalid. A false model exists:) 
(world value-assignment ((1 (A 0) (C 0) (B 0) ((A => C) 1) ((B => C) 1) (((A A B) => C) 0)) 
(-4 (A 1) (B 1) (C 0)) (2 (A 1) (C 1) (B 0)) (3 (B 1) (C 1) (A 0)))) 
(arrows ((A -4 2) (A -4 3) (A 2 3) (A 3 2) (A 1 -4) (A 1 2) (A 1 3))))nil 
6.(test f l l )  
(The formula (((A => C) A (B => C)) @ ((A v B) => C)) is valid.)nil 
7 .(test '((A A B) @ (A => B))) 
((The formula ((A A B) @ (A => B)) is invalid. A false model exists:) 
(world value-assignment ((1 (A 1) (B 1) ((A => B) 0)) (-2 (A 1) (B 0)))j 
(arrows ((A 1 -2))))nil 
&(test '(((A => B) (' (A => (' C)))) @ ((A * C) => B))) 
(The formula (((A => B) (' (A => (' C)))) @ ((A C) => B)) is valid.)nil 
9.(exit) 
sfu-cmpt% 

Note that: 

(1) No quote precedes a wff entered inside the interact loop. 

(2) No quote precedes the name of a wff. 

(3) A single quote precedes a wff entered as an argument to function test. 

(4) A wff must be entered in infix notation inside the interact loop and as an argument to function test. 

(5) The name of a wff cannot be used inside the interact loop but may be used as an argument to func- 

tion test. 

(6) When a formula is entered which is not well-formed or is ambiguous, Lisp returns an error message. 

For example, "A => A is entered in the sample session, and "Error: NAMESTACK OVERFLOW" 

is returned. Command (reset) returns the user to the top level within the Lisp environment. Com- 

mand (interact) gets the user back into the loop where the wff is entered in its proper form "(A => 

A)". 

(7) Nil ends the loop created by the interact command. 

(8) Command (exit) ends the Lisp session and returns the user to the operating system environment. 



To illustrate the second option, file tesnvffs is created containing: 

(load 'cmufncs) 
(load 'cmuenv) 
(dskin validate) 
(dskin examples) 
(print "formula fl") 
(test f l )  
(print "formula f2") 
(test f2) 
(print "formula f3") 
(test f3) 
(print "formula f 6 )  
(test f6) 
(pint "formula ((A B) @ (A => B))") 
(test '((A A B) @ (A => B))) 
(print "formula (((A => B) ̂ (' (A => (- 0))) @ ((A A C) => B)Y) 
(test '(((A => B) - (' (A => (' C)))) @ ((A A C) => B))) 
(print "done") 
(exit) 

Then the following two lines are typed from the operating system environment 

%lisp < testwffs > results 

%ex results < ex.results 

Results now contains: 

formula f l  
The formula (' ((A => C) ((A A B) => (' C)))) is invalid 
A false model exists: 

formula f2 
The formula ((A => B) @ (((A A B) => C) @ (A => C))) is valid 

formula f3 
The formula (((A => B) A (A => C)) @ (A => (B A C))) is valid. 

formula f6 
The formula (((A => B) A (B => A)) @ (A <=> B)) is invalid. 
A false model exists: 

world value-assignment 
((1 (A 1) (B 0) ((A => B) 1) ((B => A) 1)) 



formula ((A A B) @ (A => B)) 
The formula ((A A B) @ (A => B)) is invalid. 
A false model exists: 

formula (((A => B) A (' (A => (' C)))) @ ((A A C) => B)) 
The formula (((A -7 B) (' (A => (- C)))) @ ((A C) => B)) is valid. 

File test.&ta contains the Lisp function calls to test the wffs in file exmnples. To obtain formatted 

results for these formulas type the two lines: 

%lisp < tes~data > results 

%ex results < ex.results 



- 149 - 

PART 11. MAINTAINING THE PROGRAM 

1. Introduction 

The purpose of program VALIDATE is to determine the validity of well-formed formulas (wffs) 

expressed in conditional logical system N [Delgrande 861. Since N subsumes propositional logic, the pro- 

gram handles wffs of propositional logic as well. A wff of N is given as input, and VALIDATE returns 

either a message stating that the given wff is valid or a message stating that the given wff is invalid. If 

invalid, a set of value assignments to variables is also returned in which the wff evaluates to false. 

The algorithm is an implementation of the method of N-diagrams, a tableau-based approach with 

modifications to handle the possible worlds semantics of logic N. An attempt is made to construct a con- 

sistent configuration. If such a configuration can be constructed, the given wff is invalid. Otherwise such a 

configuration is shown to be impossible to construct, and the wff is therefore valid. The program is written 

in Franz Lisp code and is intended to be run on the Franz Lisp interpreter. 

2. The Algorithm 

Program VALIDATE is an implementation of the method of N-diagrams. A table called nstruct is 

built which represents the semi-complete structure of N-diagrams. Then, for each structural template on 

the semi-complete structure, RTFC configurations are generated and tested until all RTFC configurations 

have been tested or a consistent configuration is found. The algorithm for the implementation follows: 

Step 1. A wff is entered in one of two ways: (1) interactively within the loop instigated by function 

interact, or (2) as an argument to function test. Function test calls prefix to convert wfto prefix notation. 

The main operator is assigned 0 when test calls apply-rules sending it arguments wfand 0. Nstruct is ini- 

tialized to wl where -.lo is true. 

Step 2. Function apply-rules is called from test to apply propositional rules to wjJ The application 

of the rules results in the construction of valassns, mustbe, and gen, data structures from which alternative 

value assignments to variables and gamma-subformulas are generated. Application of the rule for new 



Algorithm NTP 
Input: wff 
Output: valid, invalid 
1. Initialize nstruct 

1.1. Get wf 
1.2. Put wff in prefix form 
1.3. Assign 0 to the main operator of w,f 

2. Build the semi-complete swcture(s) 
2.1. Repeat 

Apply a-rules 
Apply rules for crosses, asterisks, and modified rule for alternatives 
Apply rule for new worlds 

Until rules applied as often as possible 
3. Repeat {for each semi-complete structure} 

3.1 Generate shuctural templates from SCS 
3.2. Test templates 
3.3. If template is inconsistent then remove template frompaths 
3.4. If paths i {} then 

3.5 Build necvals and arrows {tables of forced values and arrow constraints} 
3.6 Repeat {for each structural template} 

q+O 
3.7. Repeat {for q = 1 to n classes in eqtemp} 

q + q + l  
Initialize eqtemp for q classes 

3.8. Repeat {for each eqtemp of q classes} 
Initialize config template from eqtemp 

3.9 Repeat {for each config template} 
Generate arwset 
Test configuration 
d t q - 1  
Get next config template * 

Until d = 0 {all config templates tested} or ccf 
c t q - 1  
Get next eqtemp of q classes 

Until c = 0 {all eqtemps of q classes tested }or ccf 
Until q = n {all eqtemps tested} or ccf 

Until all structural templates tested or ccf 
Get next SCS 

Until all alternative SCS tested or ccf 

worlds results in the extension of nstruct to the SCS once the rules have been applied as often as possible. 

Step 3. The second phase of the algorithm generates and test RTFC configurations. If at any point 

in step 3 a consistent configuration is found, the algorithm terminates. The outer loop is repeated for each 

SCS as there may be more than one. Structural templates are generated from the current SCS and stored in 

paths (step 3.1). The templates are tested and inconsistent templates removed from paths (steps 3.2, 3.3). 

If at least one template remains in paths, then necvals, the table of forced values, and arrows, the table of 

arrow constraints, are built (step 3.5). 



The loop of step 3.6 is repeated for each structural template remaining in paths. Structural templates 

consisting of more than two worlds are not forward-connected. Therefore an arrow in one direction or the 

other or both must be added between each pair of worlds in the configuration to make the configuration 

RTFC. However, all possible ways of adding arrows need not be tested. Transitivity fails for some combi- 

nations. Thus only sets of arrows which create RTFC configurations are generated. This type of genera- 

tion is accomplished in the following way. 

The accessibility relations and worlds in a configuration are viewed in terms of a well-ordering on 

equivalence classes of worlds (steps 3.6-3.9). Reflexivity and transitivity hold, but symmetry is not 

imposed by the accessibility relation. Thus there may occur from one to n equivalence classes, where n is 

the number of worlds in the configuration, excluding wl (step 3.7). Eqtemp is the data structure represent- 

ing the current equivalence class structure. The ordering of EQ classes also varies (step 3.8). For example, 

if there are three worlds in a configuration (excluding WI), then the successive values of eqtemp are: (3), (1 

2), (2 I), (1 1 1). From each eqtemp consisting of more than one equivalence class, there are different 

ways in which the world labels may be fitted into the equivalence classes (step 3.9). Consider worlds w2, 

~ 3 ,  w4 and eqtemp (1 1 1). There are six ways of fitting three worlds labels into three equivalence classes: 

(2 3 4), (2 4 3), (3 2 4), (3 4 2), (4 2 3), (4 3 2). Config is the data structure representing the current permu- 

tation of world labels from eqtemp. Amset is the data structure representing the set of arrows to be added 

to a structural template to form an RTFC config. It is generated from confrg and tested for consistency. If 

consistent, a false model has been found. Amser, path, and wrldvals, the set of value assignments to 

relevant variables and gamma-subformulas at each world in the configuration, are returned. These data 

structures describe the false model. If inconsistent, the next RTFC configuration is generated and tested. 

This cycle continues until all RTFC configurations have been tested or a consistent configuration found. 

3. Function Types 

The functions of program VALIDATE can be categorized on the basis of the type of work per- 

formed. There are three main types of functions: (1) those which build or modify the data structures, (2) 

those which perform tests, and (3) those which manipulate lists. Section 3.1 provides a description of the 



main data structures of program VALIDATE and lists the functions which initialize, build, or modify them 

Section 3.2 presents the functions which perform tests, whereas the list manipulation functions are 

presented in section 3.3. 

3.1. Data Structures 

The present section concerns the functions which initialize, build, or modify data structures. The 

functions are grouped according to the data structures they manipulate. The section is comprised of 

descriptions of the main data structures of program VALIDATE and lists of the functions which manipu- 

late them. The documentation for each data structure consists of four parts: 

(1) a header comprised of the name of the data structure in bold, 

(2) a short description of the structure, 

(3) an example, and 

(4) a list of the functions responsible for initializing, building, or modifying the data structure. 

The data structures appear in the order in which they arise within the program. 

The formula to be tested for N-validity is entered in infix notation in one of two ways. It is either 

entered at the terminal and read through functions interact and readexpr or entered as an argument to func- 

tion test. Functions prefix and prefixw convert wfl to prefix notation, whereas function inorder converts a 

wff in prefix form to infix form. A wff in infix form is in the order operand-operator-operand, or 

operator-operand if the operation is negation. A wff in prefix form is in the order operator-left operand- 

right operand, or operator-operand if the operation is negation. For example, given 

(((A + B) A (A + C)) @ (A (B A a)) in infix notation, its prefix form is 

(@(  ̂ (+AB) (+AC) ) (+A(  ABC))). 



valassns, mustbe 

Function apply-rules assigns 0 to the main operator of wfand applies the rules of propositional logic 

for the assignment of truth values to variables and to gamma-subformula. Mustbe is the data structure con- 

taining top level alpha assignments to variables and gamma-subformula, whereas valassns contains a list of 

alternative value assignments as in the case of a true logical v (OR). For example, from ~ $ 7  

(((A B) A (B + A)) @ (A - B)) we get: 

mustbe: (( A B 1) (e B A 1)) 

valassns: (((A 1) (B 0)) ((A 0) (B 1))). 

The functions which build or modify valassns and mustbe are apply-rules, apply-betarule, avalues, bvalues, 

alpha, beta, gamma, init-mustbe. 

Gen is the generator by which the next alternative set of value assignments can be obtained from 

valassns and mustbe. The generator consists of a list of numbers, 0-2, the length of which is equal to the 

maximum number of ORs in valassns. For example, given: 
b 

mustbe: ((A 0)) 

gen is initialized to (-1). When gen is (0) the first set of value assignments is ((A 0) (B 1) (C 0)); for gen 

(1) the set of value assignments is ((A 0) (B 0) (C 1)); for gen (2) ((A 0) (B 0) (C 0)). The functions which 

build or modify gen are init-gen, depth, maxnum, buildgen, update-gen, next-assn. 

nvals, nmust, ngen 

These data structures have the same form.as valassns, mustbe, and gen but are used in the case that a 

gamma-subformula occurs within the scope of a beta-subformula. When this case arises there is more than 

one alternative nstruct to test. The functions which build or modify nvals, nmust, and ngen are init-nmust, 

apply-rules, apply-betarule, avalues, bvalues, alpha, beta, gamma, init-gen, depth, rnaxnum, buildgen, 



update-gen, next-nassn. 

nstruct 

Nstruct is the main data structure in the program. It is a table representing a system of N-diagrams. 

Given the system of Figure 2, 

Figure 2. Semi-complete system of Ndiagrams for formula (((A * B )  A (A * C))  .@I (A * (B A 0)). 
b 

nstruct is: 

The numbers in the first column of the table are world labels. Note that a world created from a false is 

given a negative label. This makes it easy to distinguish these worlds from worlds created due to a true e 

when it is necessary to do so, e.g., in building arrow constraints. The second column consists of the 

relevant true conditions at a world. This is the information inside the rectangles of the diagrams. So for 

example, A and B are both true at world w2 above. 



The third column consists of the conditions which must hold at worlds accessible to the current 

world. Consider row 1 of the example nstruct. The third column contains arrows (A 1 2), (A 1 3), (A 1 

-4). The conditions on accessibility from world wl are that: 

(1) either there is an accessible world w2 or A is false at all accessible worlds, 

(2) either there is an accessible world ws or A is false at all accessible worlds, and 

(3) there must be an accessible world w-4. 

At worlds accessible to world w3 it must be the case that either A is false or C is true. (It cannot be 

the case that A is true and C false.) At worlds accessible to world w4 (created from a false * at wl) either 

(1) A is false or (B A C) is true (it cannot be the case that A and (B A C) are both true), or (2) if A and 

(B A C) are both true, then there must be an arrow back to world w4.  The functions which build or modify 

nstruct are init-nstruct, build, gamma-true, gamma-faise, modifiedt, modifiedf, newrowt, newrowf, update- 

nstruct, update-worlds. 

arrows, nested-arws 

Arrows is a data structure containing information about transitive arrows, inconsistent arrows, arrows 
b 

which cannot co-occur, arrows which must co-occur, nested-arrows, and betas in arrows andlor worlds. 

An example structure Arrows follows: 

Row (+ (A 2 4)) means that arrow (A 2 4) must occur in any configuration in which worlds wz and w4 are 

both present. Row (- (A 2 3)) indicates that arrow (A 2 3) is inconsistent and therefore cannot occur in any 

consistent configuration. Row (' (A 4 2) (A 3 2)) indicates that arrows (A 4 2) and (A 3 2) cannot co-occur 

in any consistent configuration. Row (+ ((A -5 2) (A 3 2)) (A 2 -5)) means that if arrows (A -5 2) and 



(A 3 2) co-occur, then (A 2 -5) must also occur. This case arises when arrow (A 3 2) forces value assign- 

ments at world w2 which in turn makes (A -5 2) inconsistent unless (A 2 -5) also occurs. Similarly row 

(+ ((A -5 3) (A -6 3)) (V (A 3 -5) (A 3 -6))) indicates that if arrows (A -5 3) and (A -6 3) co-occur, then 

either (A 3 -5) or (A 3 -6) must also occur in the configuration. Row (@ (A 2 4) ((A 1 4))) represents tran- 

sitive arrows. If arrow (A 2 4) occurs in a configuration then arrow (A 1 4) must also occur since accessi- 

bility is transitive. 

An asterisk indicates the occurrence of a beta-subformula Row (* -6) means that there exists a 

beta-subformula within the conditions at world w-6. Row (* (A 4 -5)) means that a beta-subformula occurs 

within either the conditions for accessibility from w4 or the conditions at w-s. Thus the arrow of necvals 

(A 4 -5) contains a beta-subformula. Row (* (1 (' ( A A B)))) indicates that not-arrow (1 (' ( A A B))) 

contains a beta-subformula. The functions which build or modify arrows are updated-arws, wkworlds, 

wkworld, gsum, update-arws, trans, get-trans, modfarws, update-arrows, double-arw, ifwiwj, ifwi, 

updated-arrows, cant-co-occur, cannot, cant, check-pairs, upd-arw, betanots, add-arws, beta-nestednecs. 

Nested-arws has the same form as arrows but handles nested-arrows and their return-arrows. Once 

nested-arws is built, it is appended to arrows. The functions which build or modify nested-anus are mus- 

tarws, checkarws, update-nestarws, checkwks, cons-wks, upd-nestarws. 

necvals, nested-necs 

Necvals is a data structure consisting of the set of arrows to be added to a configuration to make it 

RTFC. Associated with each arrow is (1) the set of value assignments which must hold in order that the 

arrow be consistent, and (2) the term "cons" or "incons" to indicate the consistency of the arrow, for exam- 

ple: 

(((A 3 2) (A 1) (B 1) (C 1) cons) 
((A -4 2) (A 1) (B 1) (C 0) cons) 
((A 2 3) (A 1) (B 1) (C 1) cons) 
((A -4 3) (A) (B) (C) cons (A 3 -4)) 
((A 2 -4) (A) (B) (C) incons) 
((A 3 -4) (A 1) (B 0) (C 0) cons)). 



From the example necvals we see that arrows (A 3 2). (A -4 2), (A 2 3), and (A 3 -4) are all consistent. 

Arrow (A -4 3) is consistent as long as arrow (A 3 -4) also occurs in any configuration in which (A -4 3) 

occurs. Arrow (A 2 -4) is inconsistent. This information is used to build arrows. The functions which 

build or modify necvals are test-arrows, update-necvals, check-wprime, add-vals, add-val, rtnarws, awjwi, 

init-necvals, generate-test. 

Nested-necs has the same form as necvals but handles nested-mows and their return-arrows. Once 

nested-necs is built, it is appended to necvals. The functions which build or modify nested-necs are 

update-nested-necs, doublearew-incons, nestedarw-incons, test-rtnarw. 

svals, smust, sgen 

These data structures have the same form as valassns, mustbe, and gen but are used in testing mow 

and not-arrow consistency. The functions which build or modify svals, smust, and sgen are incons-smust, 

apply-rules, apply-betarule, avalues, bvalues, alpha, beta, gamma, init-gen, depth, maxnum, buildgen, 

update-gen, next-sassn, nsat, add-arw. 

paths b 

Paths is a data structure which represents all possible alternative structural templates along the 

semi-complete structure of N-diagrams. Consider the system of N-diagrams of Figure 2. Paths for this 

semi-complete structure is: 

0 

The first path represents a configuration in which two worlds exist, WI and w4. There are two not-arrows 

both indicating that A must be false at all worlds accessible from wl. The last path represents a semi- 

complete structure in which four worlds exist, wl, w2, w3, and wd. There are no not-arrows on this path. 



The functions which build or modify paths are init-paths, transitive, intrans, complete, comp, newnrows, 

nested-paths, expanded, newrows, test-template, test-temp, add1 base2. 

worldvals, wrldvals 

Data structure worldvals contains value assignments to variables and gamma-subformula which must 

hold at each world. It is initialized to the conditions which hold at each world from nstruct. Consider an 

example: 

At world wl A and B are true, C false, A + B true, and C + B false. At world w-3 A and B are both false 

and C true, whereas at wz A and B are both true and C false. The functions which build or modify world- 

vals are init-worldvals, update-wvals, wigamma, upd-worldvals. 

Wrldvals has the same form as worldvals. In fact it is initialized to worldvals. Once an arrow set has 

been determined to form an RTFC configuration, the values which must hold in ord& for the added arrows 
b 

to be consistent (from necvals) are added to wrldvals. If that arrow set is found to be inconsistent, then 

wrldvals is re-initialized to worldvals and the next arrow set generated and tested If, on the other hand, the 

configuration is found to be consistent, wrldvals, anvset, and path are returned as a false model. The func- 

tions which build or modify wrldvals are upd-wrldvals, update-newvals. 

eqtemp 

Data structure eqtemp is the equivalence class template from which a configuration template (and 

subsequently an anvset) is generated. Eqtemp is initialized to one equivalence class containing all worlds 

in the configuration (excluding wl) .  Once all possible configurations have been generated, eqtemp is incre- 

rnented For example, if there are three worlds (excluding wl) in the current semi-complete structure, the 

successive values of eqtemp are: 



Eqtemp (1) consists of one equivalence class containing all three worlds. Eqtemp (2) consists of two 

equivalence classes, the first containing one world, the second two worlds: 

Eqtemp (3) also consists of two equivalence classes, the first containing two worlds and the second one 

world: 

Eqtemp (4) consists of three equivalence classes, one world in each: 

The functions which build or modify eqtemp are init-eqtemp, next-eqtemp. 



con fig 

Data structure config is the current configuration of worlds (generated from eqtemp) from which the 

set of added arrows is generated. So if the current eqtemp is (2 1) and worlds on the current path are w2, 

~ 3 ,  and w4, then config has the following successive values: 

The values of config represent all possible ways in which the world labels can be fitted into the current 

eqtemp. The first config above represents a configuration comprised of two equivalence classes, the first 

containing worlds w2 and w, the second containing world w4: 

The functions which build or modify config are init-config, init-class, next-config, next-world. 

arwse t 

Data structure anvser is the set of arrows added to the semi-complete structure to form an RTFC 

configuration. It is generated from config in the following way: 

Algorithm Arrowset 

1. amowset c {} 

2. Repeat 

2.1 For each wi in topmost EQ class do 

(a) For each wj, i#j, in topmost and lower EQ classes do 

arrowser c arrowser u {Awiw,} 

2.2 Remove topmost EQ class 

Until no EQ classes left 



Thus the set of arrows generated from config ((2 3) (4) (5 6)) is {(Aw~w~), (Awwz), (Awswg), (Aw~ws), 

(Aw2w4), (Awzw~), (Aw2wg), (Aww~), (Aw~ws), (Aw~w~) ,  (Aw~ws), (Aw~w~)}. The functions which build or 

modify anvset are get-arwset, update-arwset, cl,  ci, upd-arwset. 

accessbl 

Data structure accessbl contains gamma-subformulas from wrldvals which can be verified, i.e., for 

which accessible worlds wj exist making the value assigned gamma at wi hold. These subformula are then 

removed from wrldvals. This is done so that a gamma which can be verified before trying alternatives does 

not have to be re-verified for each alternative value assignment from alterns. Consider an example: 

The gamma ((A + B) + (B * A)) is verified to be false at wl since (A * B) is true and (B * A) false at 

w-2. The form of accessbl is the same as that of worldvals and wrldvals. The functions which build or 

modify accessbl are build-accessbl, get-accessbl. 

alterns, altern 

Data structure alterns is a list of alternative value assignments to propositional variables at each 

world in the configuration. Variable assignments which must hold (from wrldvals) are appended to the 

alternatives for the remaining unassigned variables. This structure is designed to handle situations in which 

application of the rule for alternatives was delayed. In some cases arrow(s) force assignments to PI, p2, but 

in others they do not. Atlerns provides the alternative assignments without generating all the alternative 

SCS. Consider an example: 



B and C must both be true at world wj, but A may be true or false. There is only one alternative value 

assignment to variables at worlds wz and w-3 above. The functions which build or modify alterns are get- 

alternatives, get-alterns, get-alts, upd-altems, addlbase2. 

Data structure altern is initialized to alterns. To get an alternative list of value assignments to vari- 

ables at each world in the configuration, the first element of the set of alternatives at each world is returned. 

Altern is then updated by removing an alternative element. The next time altern is accessed a new set of 

alternatives is returned. The successive values of altern for the example alterns above are: 

The alternatives generated from these values are: 

The functions which build or modify altern are next-altern, update-altern. 

3.2. Tests 

There are three main types of functions which perform tests: (1) type tests, (2) consistency tests, and 

(3) false-configuration tests. Type and consistency tests perform a test, then return t if the test is passed 

and nil otherwise. Type testing determines whether the given argument is of a certain type, or if elements 

of a certain type occur within a list argument. Consistency checking determines whether or not the given 



argument(s) are inconsistent. An argument may be a subformula, an arrow, a set of value assignments, a 

not-arrow and the conditions at a world, etc. False-configuration testing performs a consistency check on a 

configuration, then returns the configuration if consistent, and nil otherwise. The following lists identify 

these functions: 

Consistency checking: altassns, applies, b=>sat, caselbeta, case2beta, case3beta, check-necvals, check- 

nested, consistent, consistenm, determ, doublearw-incons, elim'path, foundwj, incons, incons+, incons', 

incons->, incons-arwset, incons-beta, incons=>beta, incons-betaconds, incons-betanecs, incons-betanots, 

incons-gamma, incons-necvals, incons-notarrows, incons-notarws, incons-smust, incons-winot-arws, 

incons-winots, inconsistent, nestedarw-incons, no-access, no-accesswk, nsat, orfalse=>, or=>fal se, reflexl, 

reflexive, reflex-test, reflexwl, test-betas, test-config, test-notarrows, test-norms, test-rtnarw, test- 

sernicomp, verify, verify=>, verif=>O, verify=>O, verif=>l, verify=>l, verify-false=>, verify-true=>, 

verify-wval=>, verify-wvals=>. 

Type testing: alpha, alphascope, altlist, arrowp, beta, diffv, diffval, diffvals, gamma, in, in-any, inarw, 

nested, nested-arrow, nested-gammas, notarrowp, op, ored, orpath, propvar, ~ r o ~ w f f ,  toplevel-var, 

varassn. 

False-configuration testing: generate-test, gen&test-configs, test-path, test-paths, validate, validnest, 
b 

verify-falseconfig, verify-flsconfig, verify-fconlig 

33. List Manipulation 

The functions in the list manipulation category modify lists in one of three ways. The "get" functions e 

get a list of elements of a certain type from the list argument to the function, or find a certain element in a 

list. The "remove" functions remove certain elements from a list argument to the function. The elements 

to be removed are usually given as an argument as well as the list from which the elements are to be 

removed. The "change form" functions alter the form of the arguments. For example, function inorder 

converts a wff in prefix form to infix form. The following lists identify these functions: 

Get: accesswj, access-worlds, allpaths, back, checkdarw, count, element-of, elernn, find, findlist, findn, 

findrow, findworlds, front, get-alternatives, get-alterns, get-alts, get-ands, get-arws, get-betas, get-conds, 



get-fconfig, getfmodel, get-gamma, get-genlist, get-mustbe, get-notarws, get-path, get-valist, get-vals, get- 

varassns, get-van, get-wiarws, get-winots, get-worldlist, get-worlds, get-wrlds, infix-assns, infix-gammas, 

infix-notarws, intersect, intersection, patharws, sumtop, top, update -$terns, wjconds, wjs, w h e t  

Remove: check-paths, &l, delet, delet-ands, elim-elem, remv-access, remvdup, remvdups, remv-incons, 

remvlist, remv-mustvals, remv-nested, remvnull, remv-semiarws, remvar, remv-wiarws, remvwinots, 

remvwkset, wiconds. 

Change form: andform, andwff, converted, flat, inorder, merge, prefix, prefixw, subf-rules, subval, 

transform, valsubf. 

4. Function Descriptions 

This section consists of descriptions of the functions of program VALIDATE. The documentation 

for each function is comprised of four parts: 

(1) a header which includes the function name and arguments to the function, 

(2) a short description of what the function does, 

(3) a list of other user-defined functions the current function calls, marked by "Calls:" in bold, and 
b 

(4) a list of other user-defined functions which call the current function, marked by "Called from:" in 

bold. 

The functions appear in the present section in the same or&r in which they occur in the program 

(interact) 

Function INTERACT enables wffs to be entered and tested interactively. The function calls READEXPR 

to read the input wff. TEST is called to validate the wff. The interactive session is terminated when the 

wff read is NIL. 

Calls: readexpr, test. 

Called from: terminal to instigate an interactive session. 



(readex pr) 

Function READEXPR prompts the user for an input wff and reads the wff. 

Calls: no other user-defined functions. 

Called from: interact. 

(test nwff) 

Function TEST initializes variables and calls VALIDATE to test a given wff. The function returns "valid" 

if the formula is valid, and a false model otherwise. 

Calls: inconsistent, prefix, apply-rules, init-mustbe, init-gen, inorder, validate, first-am. 

Called from: interact, or from terminal to test a wff. 

(validate nwff vassn must fmodel) 

Function VALIDATE calls NEXT-ASSN to get a new list of value assignments. The alternatives are 

tested for consistency until one is found to be false, or all alternatives have been tested. The function 

returns FMODEL, a falsifying model, if the given wff is invalid, and NIL otherwise. . 

Calls: consistent, consistentn, inorder, propwff, getfmodel, next-assn, nested-gammas, build, hit-nstruct, ' 

nested, generate-test. 

Called from: test. 

(inorder nwff) 

Function INORDER converts a wff in prefix notation back to left-operand-operator- right-operand form. 

The function returns the converted wff. 

Calls: propvar. 

Called from: test, validate, get-fconfig, infix-notarws, infix-gammas. 



(consistent assns) 

Function CONSISTENT returns T if VARVALS, a list of propositional variables and the values assigned 

to them, is consistent. A value assignment is consistent if all assignments to a particular variable are the 

same value. The function returns NIL if any variable has been assigned both 0 and 1. 

Calls: inconsistent. 

Called from: validate, nsat, verify-me=>, verify-false=>, no-access, accesswj. 

(consistentn false-model) 

Function CONSISTENTN returns T if function GENERATE-TEST returns a falsifying model, and NIL 

otherwise. 

Calls: no other user-&fined functions. 

Called from: validnest, test-paths. 

(inconsistent vals) 

Function INCONSISTENT returns T if the given assignment of values to variables is inconsistent, and NIL 

otherwise. A value assignment is inconsistent if both 0 and 1 are assigned to the same variable or subfor- 

mula 

Calls: incons-gamma, get-gamma, incons, remvlist. 

Called from: test, consistent, test-rtnarw, add-arw, reflexl, incons-smust, check-necvals, test-notarws, 

incons=>heta, b=>sat. 

(incons-gamma gammas) 

Function INCONS-GAMMA checks the value assignments to gamma-subformula for consistency. The 

function returns T if an inconsistency is found, and NIL otherwise. 

Calls: in, front. 

Called from: inconsistent 



(get-gamma vals gammas) 

Function GET-GAMMA returns a list of the gamma-subformula in the given list VALS. 

Calls: no other user-defined functions. 

Called from: validnest, inconsistent, nested. 

(incons vals) 

Function INCONS returns T if the given assigments of values to variables is inconsistent, and NIL other- 

wise. A value assignment is inconsistent if both 0 and 1 are assigned to the same variable or subformula 

Calls: in, findlist. 

Called from: inconsistent. 

(getfmodel assns newlist) 

Function GETFMODEL returns the given list ASSNS from which duplicates have been removed. 

Calls: no other user-defined functions. 

Called from: validate, generate-test, update-wvals, nestedarw-incons, test-rtnarw, ?st-config, get-fconfig, 

merge, b=>sat b 

(apply-rules subf val) 

Function APPLY-RULES applies alpha-, beta-, gamma-rules and returns an appended list of value assign- 

ments to propositional variables. 

Calls: propvar, alpha, avalues, beta, apply-betarule, gamma. 

Called from: test, apply-betarule, alphascope, incons-smust. 

(apply-betarule subf val) 

Function APPLY-BETARULE calls APPLY-RULES to get each alternative assignment for a beta- 

subformula. The function returns a list of the alternative assignments. 

Calls: apply-rules, bvalues. 



Called from: apply-rules. 

(propvar subf) 

Function PROPVAR returns T if su 

Calls: in. 

~bf is a propositional variable, and NIL otherwise. 

Called from: apply-rules, prefixw, inorder, get-vars, valsubf. 

(propwff wff) 

Function PROPWFF returns T if the given formula is propositional, and NIL otherwise. 

Calls: in. 

Called from: validate. 

(prefix wff3 

Function PREFIX returns a copy of the given wff in prefix form. 

Calls: propvar. 

Called from: test. 

Function PREFIXW returns a listed copy of the given wff in prefix form. 

Calls: propvar. 

Called from: prefix. 

(init-mustbe varvalues varval mustbe) 

Function INIT-MUSTBE initializes MUSTBE to variable assignments which must be in order that the 

given wff be false. These elements are removed from VARVALS. The function returns initialized 

MUSTBE. 

Calls: varassn, front, back. 



Called from: test. 

(varassn v) 

Function VARASSN returns T if V is an assignment to a variable or a gamma-subformula, and NIL other- 

wise. 

Calls: no other user-defined functions. 

Called from: init-mustbe, top-level-var, altlist, get-mustbe, remvar, hit-nmust. 

(iit-gen vassn) 

Function INIT-GEN initializes GEN to a list of 0's with last element equal to -1. The length of the list is 

equal to the maximum number of OR'S in VASSN. 

Calls: ored, depth, buildgen. 

Called from: test, nested, incons-smust. 

(depth vassn ands dep) 

Function DEPTH finds the maximum-length path of OR'S in the given list VASSN. 

Calls: top-level-vat, remvar, altlist, maxnum. 

Called from: init-gen. 

(maxnum numlist n) 

Function MAXNUM returns the greatest element in a list of positive numbers. 

Calls: no other user-&fined functions. 

Called from: depth. 



(buildgen len gen) 

Function BUILDGEN returns a list of length LEN consisting of 0's with the last element equal to -1. 

Calls: no other user-defined functions. 

Called from: init-gen. 

(first-assn vassns must) 

Function FIRST-ASSN gets the first assignment from the value assignments VASSNS, the toplevel vari- 

able assignments MUST, and the generator GEN. The function returns MUST if VASSNS is null. Other- 

wise function NEXT-ASSN is called to get a possible false model. 

Calls: next-assn. 

Called from: test. 

(next-assn vassn must) 

Function NEXT-ASSN gets a list of value assignments from VASSN, MUST, and GEN to be tested for 

consistency. The function returns a list of top-level value assign- merits to variables. . 

Calls: addlbase3, in, get-am. 

Called from: validate, first-assn. 

(get-assn vassn generator) 

Function GET-ASSN gets a new set of value assignments from VASSN and GENERATOR. The function 

returns a list of toplevel value assignments to variables. 

Calls: ored, buildassn. 

Called from: next-assn, next-nassn, next-sassn. 



(buildassn vassn an&) 

Function BUILDASSN returns a new set of top-level value assignments to variables. 

Calls: top-level-var, get-mustbe, remvar. 

Called from: get-assn. 

(update-gen genr genl gen2) 

Function UPDATE-GEN SETQ's GEN in the case that a beta with less than three alternative sets of value 

assignments is found. The effect is that all null sets of value assignments are skipped over. The function 

returns updated GEN. 

Calls: no other user-defined functions. 

Called from: buildassn. 

(addlbase3 oldlist newlist) 

Function ADDlBASE3 increments the given list of numbers OLDLJST with base 3 addition. The function 

returns the incremented list of numbers. 

Calls: no other user-defined functions. 

Called from: next-assn, next-nassn, next-sassn. 

(addlbase2 oldlist newlist) 

Function ADDlBASE2 increments the given list of numbers OLDLIST with binary addition. The function 

returns the incremented list of numbers. 

Calls: no other user-&fined functions. 

Called from: allpaths, get-alts. 



(ored olist) 

Function ORED returns T if the given list OLIST is a list of elements to be ORed, and NIL otherwise. 

Calls: top-level-var. 

Called from: init-gen, get-assn. 

(altlist vals) 

Function ALTLIST returns T if the given list VALS consists of sublists of alternative value assignments to 

variables, and NIL otherwise. 

Calls: varassn. 

Called from: depth, remvdups, count. 

(top-level-var vals) 

Function TOP-LEVEL-VAR returns T if VALS contains a variable assigment (as distinct from a list of 

alternatives) at the top level, and NIL otherwise. 

Calls: varassn. 

Called from: depth, buildassn, ored. 

(get-mustbe must varvalues) 

Function GET-MUSTBE finds variable assignments which must be in order that the given subformula be 

an alternative. The difference between GET-MUSTBE and function INIT-MUSTBE is that there is no setq 

on VARVALS. The function returns a list of the variable assignments which must be within the given sub- 

formula. 

Calls: varassn. 

Called from: buildassn, incons-smust. 



(remvar varvalues newv) 

Function REMVAR returns a copy of VARVALUES from which toplevel variable assignments have been 

removed. 

Calls: varassn. 

Called from: depth, buildassn, incons-smust. 

(alpha subf val) 

Function ALPHA returns T if SUBF is an alpha-subformula, and NIL otherwise. 

Calls: no other user-&fined functions. 

Called from: apply-rules. 

(beta subf val) 

Function BETA returns T if SUBF is a beta-subformula, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: apply-rules. 

(gamma subf) 

Function GAMMA returns T if SUBF is a gamma-subformula, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: apply-rules. 

(avalues op val) 

Function AVALUES returns a list consisting of the values to be assigned the left-hand and right-hand 

operands respectively. AVALUES is called when it is known that the SUBF is an alpha-subformula. 

Calls: no other user-defined functions. 

Called from: apply-rules. 



(bvalues op val) 

Function BVALUES returns a list consisting of alternative value assignments to a beta-subformula Each 

sublist consists of the values to be assigned the left- and right-hand operands respectively. 

Calls: no other user-defined functions. 

Called from: apply-rules. 

(init-nstruct nwff) 

Function INIT-NSTRUCT returns table NSTRUCT initialized to the information for world 1. 

Calls: no other user-defined functions. 

Called from: validate. 

(build nstruct vals w) 

Function BUILD builds the N-structure from the current set of value assignments Fh4ODEL. The function 

retums NSTRUCT, a table of worlds, the conditions which hold at each world, and the conditions on acces- 

sibility from each world, updated to reflect the occurrence of true and false => operators. 

Calls: in, gamma-we, gamma-false. 

Called from: validate, update-nstruct, buildnested 

(gamma-true w ante conseq nstruct) 

Function GAMMA-TRUE updates NSTRUCT to reflect a true =>. A new world is created. The condi- 

tions for accessibility of the world from which the new world is accessible are updated. The function 

returns updated NSTRUCT. 

Calls: modifiedt, findrow, newrowt, 

Called from: build. 



(gamma-false w ante conseq nstruct) 

Function GAMMA-FALSE updates NSTRUCT to reflect a false ->. A new world is created. The condi- 

tions for accessibility of the world from which the new world is accessible are updated. The function 

returns updated NSTRUCT. 

Calls: modifiedf, findrow, newrowf. 

Called from: build. 

(modifiedt row wno new ante) 

Function MODIFIEDT adds to the world from which a new world is accessible, the path to that new world 

created for a uue =>. The function returns updated NSTRUCT. 

Calls: front, back. 

Called from: gamma-true. 

(modifiedf row wno new) 

Function MODIFIEDF adds to the world from which a new world is accessible, the path to that new world 

created for a false =>. The function returns updated NSTRUCT. 

Calls: front, back. 

Called from: gamma-false. 

(newrowt new ante conseq) 

Function NEWROWT creates a new world and sets up the conditions which hold at the new world and the 

conditions for worlds accessible from the new world. The function returns the newly created row built for 

a true =>. 

Calls: no other user-defined functions. 

Called from: gamma-true. 



(newrowf new ante conseq) 

Function NEWROWF creates a new world and sets up the conditions which hold at the new world and the 

conditions for worlds accessible from the new world. The function returns the newly created row built for 

a false =>. 

Calls: no other user-&fined functions. 

Called from: gamma-false. 

(nested-gammas nstruct) 

Function NESTED-GAMMAS returns T if NSTRUCT contains nested => operators, and NIL otherwise. 

Calls: in. 

Called from: validate, init-paths. 

(nested nstructr) 

Function NESTED handles the case in which a => operator occurs nested within the scope of another => 

operator. The function calls GENERATE-TEST if no => operator occurs within the scope of a beta opera- 

tor, and VALIDNEST otherwise. b 

Calls: buildbs, generate-test, validnest, remvdups, get-vals, init-gen, get-worlds, init-worlds, get-gamma, 

next-nassn. 

Called from: validate. 

(validnest betas worlds fmodel) 

Function VALIDNEST is called in the case that nested => operators occur within the scope of beta opera- 

tors. GENERATE-TEST is called with each alternative NSTRUCT until all alternatives have been tried or 

a false model is found. The function returns a false model if one is found, and NIL otherwise. 

Calls: consistenm, generate-test, update-nstruct, updated-arws, get-gamma, next-nassn. 

Called from: nested. 



(update-nstruct nstruct vals worlds) 

Function UPDATE-NSTRUCT calls BUILD to update NSTRUCT using WORLDS to determine the world 

from which newly created worlds are accessible. The function returns updated NSTRUCT. 

Calls: build, update-worlds. 

Called from: validnest. 

(update-worlds worlds) 

Function UPDATE-WORLDS decrements the number of => operators at a world after a new world has 

been created and NSTRUCT updated. The function returns updated WORLDS. 

Calls: no other user-defined functions. 

Called from: update-nstruct. 

(updated-arws arws nstruct worlds) 

Function UPDATED-ARWS adds transitive arrows to ARWS in the case that nested => operators occur 

within the scope of a beta operator. The function returns updated ARWS. 

Calls: update-arm, wkworlds. 

Called from: validnest. 

(wkworlds worlds nstruct) 

Function WKWORLDS returns a list of new worlds created which are accessible from a world in which 

nested => operators occur. 

Calls: wkworld, gsum. 

Called from: updated-arws. 



(wkworld world nstruct totalw wks) 

Function WKWORLD returns a list of new worlds created accessible from a world in which nested => 

operators occur. 

Calls: no other user-&fined functions. 

Called from: wkworlds. 

(gsum worlds gammasum) 

Function GSUM returns the total number of nested => operators in WORLDS. 

Calls: no other user-defined functions. 

Called from: wkworlds. 

(remvdups betas newlist) 

Function REMVDUPS removes duplicate value assignments to P> operators from BETAS. 

Calls: altlist, in, remvdup. 

Called from: nested. 

(remvdup alist newlist) 

Function REMVDUP removes a duplicate value assignment to => operators from an alternative list. 

Calls: in. 

Called from: remvdups. 

(get-vals betas vals) 

Function GET-VALS returns a list of the alternative values for => operators nested within the scope of beta 

operators. 

Calls: no other user-&fined functions. 

Called from: nested. 



(get-worlds betascope worlds) 

Function GET-WORLDS returns a list of the worlds in which nested => operators occur, and the number 

of nested => operators occurring at each world. 

Calls: count, in. 

Called from: nested. 

(count betas world worlds) 

Function COUNT counts the number of nested gammas at a world. The function returns updated 

WORLDS. 

Calls: altlist, front, back, find, in. 

Called from: get-worlds. 

(init-worlds betascope worlds) 

Function INIT-WORLDS initializes WORLDS to a list of sublists consisting of each world in which nested 

=> operators occur and a 0. The function returns initialized WORLDS. sp Calls: no other user-defined 

functions. 

Called from: nested. 

(next-nassn betas) 

Function NEXT-NASSN gets a list of value assignments from BETAS and NGEN to be tested for con- 

sistency. The function returns a list of top-level value assignments. 

Calls: addlbase3, in, get-assn. 

Called from: nested, validnest. 



(buildbs ntable arws betas) 

Function BUILDBS builds BETAS, the set of nested => operators occumng within the scope of a beta 

operator. The function has the side effect that NSTRUCT is updated to reflect nested => operators in the 

scope of alpha operators, and adds transitive arrows to ARROWS, a data structure indicating arrows which 

must co-occur, arrows which cannot co-occur, and transitive arrows. The function returns BETAS. 

Calls: in, buildnested. 

Called from: nested, buildnested. 

(buildnested conds wj ntable arws betas) 

Function BUILDNESTED is called in the case that nested -> operators occur within the scope of alpha or 

beta operators. The function calls BUILDBS with appropriately updated NSTRUCT, ARWS, BETAS. 

Calls: alphascope, buildbs, build, back, findrow, update-arws, wjconds, findlist, in. 

Called from: buildbs. 

(alphascope conds) 

Function ALPHASCOPE checks for nested => operators within the scope of an alpha operator. The func- 

tion returns T if such a => if found, and NIL otherwise. 

Calls: apply-rules, init-nmust, in. 

Called from: buildnested. 

(init-nmust varvalues varval nmust) 

Function INIT-NMUST initializes NMUST to variable assignments which must be in order that the given 

subformula be satisfiable. These elements are removed from NVALS. The function returns initialized 

NMUST and seq's NVALS. 

Calls: varassn, front, back. 

Called from: alphascope. 



(wjconds wj conds wks) 

Function WJCONDS returns a list of the worlds accessible from world wj given the list of conditions for 

accessibility from wj. 

Calls: no other user-&fined functions. 

Called from: buildnested 

(update-arws arws wj wlconds wks) 

Function UPDATE-ARWS adds transitive arrows to ARWS necessitated by nested => operators. The 

function returns updated ARWS. 

Calls: trans. 

Called from: updated-arws, buildnested. 

(trans arws wj wlconds wk) 

Function TRANS returns a list of the arrows required due to transitivity when nested => operators occur. 

Calls: in, get-trans. 

Called from: update-arws. 

(get-trans arws wj wk awiwk) 

Function GET-TRANS searches ARWS for arrows (A wi wj). The function returns a list of the arrows (A 

wi wk) required by transitivity. 

Calls: modfarws. 

Called from: trans. 

(modfarws awiwj wk awiwk) 

Function MODFARWS returns a list of transitive arrows (A wi wk) given a list of arrows (A wi wj). 

Calls: no other user-&fined functions. 

Called from: get-trans. 



(generate-test nstruct arrows) 

Function GENERATE-TEST generates RTFC configurations and tests them for consistency. If a double 

inconsistency is found, the wff is valid, and the function returns NIL. Otherwise the configuration consist- 

ing of all worlds in one equivalence class is tested. If it is consistent, the false model is returned. Other- 

wise, if there is at least one not-arrow remaining, configurations along the not-arrow paths are tested. If a 

consistent not-arrow configuration is found, that false model is returned. Otherwise the remaining 

configurations are tested for consistency. If no consistent configuration is found, the wff is valid, and the 

function returns NIL. Otherwise the false model is returned. Thus function GENERATE-TEST returns 

NIL if the wff is valid, and a false model otherwise. 

Calls: test-paths, rtnarws, test-arrows, remv-semiarws, init-necvals, get-worldlist, getfmodel, get-van, 

patharws, init-paths, update-arrows. 

Called from: validate, nested, validnest. 

(test-paths nstruct necvals arrows paths) 

Function TEST-PATHS tests configurations generated from each serni-complete structure of PATHS. The 

function returns a false model if the wff is invalid, and NIL otherwise. 

Calls: consistenm, test-path, init-worldvals. 

Called from: generate-test. 

(init-worldvals nstruct path wvals) 

Function INIT-WORLDVALS returns a list of the value assignments at each world which must be. 

Calls: arrowp, findrow, update-wvals. 

Called from: test-p&. 



(update-wvals sonds wj wvals nstruct arw) 

Function UPDATE-WVALS updates WVALS to include the conditions at the given world WJ. It is deter- 

mined whether WJ contains (1) a nested => within the scope if a beta, (2) a nested =>, or (3) no nested =>. 

Case (1) value assignments are made from BMODEL and nested-subformula value assignment rules 

applied, (2) value assignments are made from NSTRUCT and nested-subformula value assignment rules 

applied, and (3) value assignments are made from NSTRUCT. 

Calls: incons-smust, in, nested-arrow, getfmodel, wigarnma, findrow. 

Called from: init-worldvals. 

(nested-arrow arw nstruct) 

Function NESTED-ARROW returns T if the given arrow (A wi wj) is a nested-arrow, that is, wj was 

created due to a => at wi, and NIL otherwise. This is to distinguish transitive-arrows from nested-arrows. 

Calls: in, findrow. 

Called from: update-wvals. 

(wigamma condsatwj wivals) b 

Function WIGAMMA is applied in the case of nested-arrows (A wi wj), i'=l, where wj was created due to 

the occurrence of a => at wi. Then that gamma-subformula at wi has the same value assignment at wj. 

The function returns the value assignment to that gamma. 

Calls: no other user-defined functions. e 

Called from: update-wvals. 

(test-path nstruct necvals arrows path worldvals) 

Function TEST-PATH tests a given semi-complete structure for consistency. First the arrows and not- 

arrows on the path are tested for consistency. Then a configuration of added-arrows is generated and 

tested. Configuration generation and testing continues until a false configuration is found or all 

configurations have been med. The function returns a false configuration if found, and NIL otherwise. If 



WORLDVALS contains an inconsistene world, NIL is returned. 

Calls: test-semicomp, gen&test-configs, get-wrlds. 

Called from: test-paths. 

(test-semicom p path nstruct) 

Function TEST-SEMICOMP performs consistency tests on arrows and not-arrows of PATH, a semi- 

complete structure. Each not-arrow (wi (- &)) is tested against (1) each other not-arrow (wi (' &l)), (2) 

each arrow (A wi wj) separately, and (3) the conditions at wi (reflexivity test). Nested- and transitive- 

arrows (A wi wj), i -= 1, and their return-arrows (A wj wi) are tested for consistency, and NECVALS and 

ARROWS updated accordingly. The function returns T if an inconsistency is found in one of the first three 

tests (the path is then inconsistent), and NIL otherwise. 

Calls: incons-notarws, betanots, doublearw-incons, check-nested, checkarws. 

Called from: test-path. 

(betanots path) 

Function BETANOTS updates ARROWS to reflect the occurrence of not-arrows with beta subformulas. b 

The function returns NIL. 

Calls: notarrowp, altassns. 

Called from: test-semicomp. 

(incons-notarws notarws path nstruct) 

Function INCONS-NOTARWS performs not-arrow consistency testing, checking each not-arrow (wi (' 

&)) against (1) each other not-arrow (wi ('&I)), (2) each arrow (A wi wj), and (3) the conditions at wi 

(reflexivity test). The function returns T if any inconsistency is found, and NIL otherwise. 

Calls: notarrowp, incons-winots, get-winots, get-wiarws, remvwinots. 

Called from: test-semicomp. 



(notarrowp elem) 

Function NOTARROWP returns T if the given ELEM is a not-arrow, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: betanots, incons-notarws, get-winots, remvwinots,incons-notarrows, get-notarws, case3beta, 

infix-notarws. 

(get-winots wi path wis) 

Function GET-WINOTS returns a list of ANDed not-arrows on PATH emanating from wi. 

Calls: notarrowp, andwff. 

Called from: incons-notarws, incons-notarrows. 

(get-wiarws wi path wis) 

Function GET-WIARWS returns a list of arrows (A wi wj) on PATH which emanate from wi. 

Calls: arrowp. 

Called from: incons-notarws, test-betas. 

(remvwinots wi not-arws notarws) 

Function REMVWINOTS returns NOTARWS from which not-arrows from wi have been removed. 

Calls: notarrowp. 

Called from: incons-notarws, incons-notarrows. 

(incons-winots wi winotarws wiarws nstruct) 

Function INCONS-WINOTS tests the mutual consistency of all not-arrows (wi (' A)) on PATH. Function 

INCONS-WDJOT-ARWS is called to test the consistency of the not-arrows against each arrow (A wi wj) 

separately. Function INCONS-WINOTS returns T if an inconsistency is found, and NIL otherwise. 

Calls: altassns. 

Called from: incons-notarws. 



(incons-winot-arws wi winotarws wiarws nstruct wvals) 

Function INCONS-WINOT-ARWS tests the mutual consistency of not-arrows (wi (' A)) and arrows (A wi 

wj), all from wi. WORLDVALS is updated to reflect the conditions which must be true in order for an 

arrow to be consistent with the not-arrows. The function returns T if the elements are mutually incon- 

sistent, and NIL otherwise. 

Calls: reflex-test, andwff, andform, transform, findrow, altassns, upd-worldvals. 

Called from: incons-winots. 

(upd-worldvals mustvals wj wvals) 

Function UPD-WORLDVALS seq's WORLDVALS to reflect conditions required at wj due to a not- 

arrow (wi (- &)) and arrow or nested-arrow (A wi wj). The function updates WORLDVALS and returns 

NIL. 

Calls: findrow, front, back. 

Called from: incons-winot-arws, reflex-test, reflexwl, nestedarw-incons. 

(reflex-test wi winotarws condswi) b 

Function REFLEX-TEST tests the given NOTARW against the conditions at wi. If i-1 then, for the sake 

of efficiency, value assignments to NOTARW are made and appended to FALSEMODEL since that work 

has already been done for the conditions at world 1. WORLDVALS is updated to reflect the conditions 

which must be true at wi in order to be consistent with NOTARW. The function returns T if an incon- 

sistency is found, and NIL otherwise. 

Calls: reflexwl, andform, transform, altassns, andwff, upd-worldvals. 

Called from: incons-winot-arws. 



(reflexwl notconds wlconds) 

Function REFLEXWI tests not-arrow (wl (' &)) against FALSEMODEL value assignments at world 1 for 

consistency. The function returns T if the two are inconsistent, and NIL otherwise. 

Calls: altassns, andwff, upd-worldvals. 

Called from: reflex-test. 

(andform valassns subf) 

Function ANDFORM returns a given set of value assigments translated to an ANDed formula 

Calls: andwff, transform. 

Called from: incons-winot-arws, reflex-test, nestedarw-incons, test-rtnarw. 

(transform valassn) 

Function TRANSFORM returns a given VALASSN translated according to the following rules: (=> A C 

1) := (=> A C); (A 1) := A; (=> A C 0) := (' (=> A C)); (A 0) := (' A). 

Calls: no other user-defined functions. 

Called from: incons-winot-arws, reflex-test, andform, nestedarw-incons, test-rtnarw. 

(remv-nested conds) 

Function REMV-NESTED returns the conditions for accessibility from a world wj with arrows to nested 
w 

worlds removed. 

Calls: in. 

Called from: doublearw-incons, test-betas. 

(doubleaw-incons path nstruct nestednecs) 

Function DOUBLEARW-INCONS performs consistency tests on nested-arrows on the given PATH. 

NESTED-NECS is updated with nested- and transitive-arrows and their return-arrows. The function 

returns T if the two are mutually inconsistent, and NIL otherwise. 



Calls: arrowp, nestedarw-incons, remv-nested, findrow. 

Called from: test-semicomp. 

(nestedanv-incons wi wj condsfromwi condsfromwj nestednecs) 

Function NESTEDARW-INCONS tests nested- and transitive-arrows (A wi wj), i'=l, for consistency. 

NESTED-NECS is updated accordingly. The function returns T if a double-arrow inconsistency is found, 

and N L  otherwise. 

Calls: altassns, andwff, andform, transform, findrow, test-rtnarw, update-nested-necs, getfmodel, upd- 

worldvals. 

Called from: doublearw-incons. 

(test-rtnarw wvals nestednecs wi wj condsfromwj) 

Function TEST-RTNARW tests return-arrow (A wj wi) for consistency. WORLDVALS and NESTED- 

NECS are updated to reflect the consistency/inconsistency of (A wj wi). The function retums T if an 

inconsistency arises which makes the whole path inconsistent, and NIL otherwise. 

Calls: altassns, andwff, andform, transform, findrow, update-nested-necs, inconsistent, getfmodel. 

Called from: nestedarw-incons. 

(update-nested-necs a m  mustvab nestednecs nestanv inconsist) 

Function UPDATE-NESTED-NECS updates NESTED-NECS to reflect the consistency1 inconsistency of 

nested-mows and their return-arrows and the necessary value assignments if consistent. The function 

returns updated NESTED-NECS. 

Calls: in, findrow, front, back. 

Called from: nestedarw-incons. test-rtnarw. 



(checkarws nnecs narws) 

Function CHECKARWS checks each arrow in NARWS for inconsistency or consistency dependent upon 

the co-occurrence of the return-arrow. NARWS is updated appropriately. The function returns updated 

NARWS. 

Calls: in, arrowp. 

Called from: test-semicomp. 

(check-nested necvals path narws nnecs) 

Function CHECK-NESTED compares NESTED-NECS and NECVALS for inconsistency in value assign- 

ments and appropriately updates NESTED-ARWS. The function returns T if an inconsistency is found 

which makes the entire path inconsistent, and NIL otherwise. 

Calls: mustarws, in, arrowp, update-nestarws. 

Called from: test-semicomp. 

(mustarws path narws) 

Function MUSTARWS seq's NESTED-ARWS to include nested and transitive arrows from PATH which 

must be present in any configuration from the current PATH. The function returns NIL. 

Calls: no other user-defined functions. 

Called from: check-nested. 

(update-nestaws nanvs rowk nnecs necvals) 

Function UPDATE-NESTARWS checks pairs of arrows (A wi wk) (A wj wk) for consistency of value 

assignments at wk. NESTED-ARWS is updated appropriately. The function returns updated NESTED- 

ARWS. 

Calls: upd-nestarws, checkwks. 

Called from: check-nested. 



(checkwks rowk necrow narws) 

Function CHECKWKS checks value assignments at the two given arrows (A wi wk) (A wj wk) for con- 

sistency. NARWS is updated appropriately. The function returns updated NARWS. 

Calls: in, arrowp, cons-wks. 

Called from: update-nestarws, upd-nestarws. 

(cons-wks rowk necrow) 

Function CONS-WKS returns F if value assignments at ROWK and NECROW are consistent, and NIL 

otherwise. 

Calls: diffval. 

Called from: checkwks. 

(diffval valassn necrow) 

Function DIFFVAL returns T if the given value assignments are inconsistent, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: cons-wks. 

(upd-nestanvs nanvs rowk necvals) 

Function UPD-NESTARWS compares value assignments at ROWK of NESTED-NECS with those of 

NECVALS at wk and updates NESTED-ARWS appropriately. The function r e m s  updated NESTED- 

ARWS. 

Calls: checkwks. 

Called from: update-nestarws. 



(test-arrows necvals nstruct newnecvals) 

Function TEST-ARROWS tests each arrow for consistency, and adds values which must be assigned to 

variables in order that the arrow be consistent to NECVALS. The function returns updated NECVALS. 

Calls: front, back, find, update-necvals. 

Called from: generate-test. 

(update-necvals a rw nstruct vals newnecvals) 

Function UPDATE-NECVALS tests the given arrow ARW (A wi wj) for consistency. The AND of the 

conditions for worlds accessible from wi and the conditions at wj are tested. Any necessary values are 

added to VALS. The function returns updated VALS from NECVALS. 

Calls: incons-smust, andwff, wiconds, findrow, check-wprime, add-vals, add-am, next-sassn. 

Called from: test-arrows. 

(wiconds conds) 

Function WICONDS returns the conditions for worlds accessible from wi with nested wows removed, and 

(A wprime wi) arrows removed in the case of worlds with negative labels (worlds created due to a false 

gamma). 

Calls: in. 

Called from: update-necvals. 

(check-wprime arw rtnanv vals newnecvals) 

Function CHECK-WPRIME is called when arrow (A wi wj) has been found to be inconsistent. The func- 

tion determines whether world wi was created from a false or true gamma If from a true gamma, then 

VALS is returned with "incons" appended. If from a false gamma, then the arrow (A wj wi) is checked. If 

this arrow is inconsistent, VALS is returned with "incons" appended; if consistent, VALS is returned with 

"cons" and arrow (A wj wi) appended; if "checkrtnarw" appears in NECVALS for arrow (A wj wi), then 

"cons" and (A wj wi) are appended to NECVALS for arrow (A wi wj). If (A wj wi) has not yet been tested 



for consistency, "checkmrarw" is appended to NECVALS for arrow (A wi wj). The function returns 

updated VALS. 

Calls: in, findrow. 

Called from: update-necvals. 

(add-vals smust vals) 

Function ADD-VALS adds value assignments which must be the case in world wj in order that arrow (A 

wi wj) be consistent, to NECVALS. The function returns updated VALS. 

Calls: in, add-val. 

Called from: update-necvals. 

(add-vai val vals) 

Function ADD-VAL adds value assignment VAL to the variable in VALS. The function returns updated 

VALS. 

Calls: front, back, find. 

Called from: add-vals. 

(add-am smust svals sprev model nullcount) 

Function ADD-ARW checks all alternative value assignments for consistency. The function returns 

SPREV which is null if all alternatives are inconsistent, and equal to value assignments which must be the 

case if a consistent value assigment is found. The function differs from other functions designed to test 

alternatives in that it further determines whether there is exactly one consistent value assignment. 

Calls: inconsistent, next-sassn, intersect. 

Called from: update-wvals, update-necvals, test-notarws. 



(intersect setl set2) 

Function INTERSECT calls function INTERSECTION with the shortest list as argument 1 in order to 

improve efficiency. 

Calls: intersection. 

Called from: add-arw. 

(intersection setl set2 isect) 

Function INTERSECTION returns the intersection of lists SET1 and SET2. 

Calls: no other user-defined functions. 

Called from: intersect. 

(remv-semianvs necvals newnecvals semiarws) 

Function REMV-SEMIARWS returns NECVALS from which arrows of the semicomplete structure have 

been removed. 

Calls: in, &let. 

Called from: generate-test. 

(pathanvs paths arws) 

Function PATHARWS returns a list of the arrows in the semi-complete structures of PATHS. 

Calls: add-arws. 

Called from: generate-test. 

(add-anvs path arws) 

Function ADD-ARWS adds arrows from PATH to ARWS omitting duplicates. The function returns 

updated ARWS. 

Calls: in, arrowp. 

Called from: patharws. 



(arrowp elem) 

Function ARROWP returns T if the given list is an arrow, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: init-worldvals, get-wiarws, doublearw-incons, checkarws, check-nested, add-aws, double- 

arw, remv-incons, incons->, check-necvals, beta-nestednecs, case2beta. 

(rtnarws necvals newnecs) 

Function RTNARWS checks NECVALS for arrows (A wi wj) containing "checlatnarw." If the return 

arrow (A wj wi) is inconsistent, then (A wi wj) is inconsistent. Otherwise (A wi wj) is consistent. The 

function returns updated NECVALS.. 

Calls: in, awjwi. 

Called from: generate-test. 

(awjwi rtnarw arw newnecs) 

Function AWJWI checks the return arrow (A wj wi) when a "checkrtnarw" occurs in ?JECVALS for arrow 

(A wi wj). If (A wj wi) is inconsistent, "checkrtnarw" is changed to "incons" for (A wi wj). Otherwise 

"checlamarw" is changed to "cons (A wj wi)." The function returns updated NEWNECS. 

Calls: in, findrow, front, back. 

Called from: rmarws. 

(update-arrows necvals arrows) 

Function UPDATE-ARROWS checks NECVALS for inconsistent arrows, arrows which cannot co-occur, 

and arrows which must co-occur. The function returns updated ARROWS. 

Calls: cant-co-occur, doube-arw. 

Called from: generate-test. 



(double-arw arrows ncv) 

Function DOUBLE-ARW checks NECVALS for double-arrow inconsistencies. If such an inconsistency is 

found, ARROWS is updated, and any paths containing both worlds wi and wj are removed from PATHS. 

ARROWS is also updated to reflect necessary return-arrows. The function returns updated ARROWS. 

Calls: in, findrow, updated-arrows, check-paths, arrowp, ifwiwj, ifwi. 

Called from: update-arrows. 

(ifwiwj wi wj arrows) 

Function IFWIWJ updates ARROWS to reflect the occurrence of arrows (A -wi -wj) and (A -wj -wi) 

which must co-occur. The function returns updated ARROWS. 

Calls: no other user-defined functions. 

Called from: double-arw. 

(ifwi wi wj arrows) 

Function IFWI updates ARROWS to reflect the occurrence of arrows (A wi wj), (A wj wi) such that if (A 

wi wj) occurs, then (A wj wi) must occur. The function returns updated ARROWS. 

Calls: no other user-&fined functions. 

Called from: double-arw. 

(updated-arrows wi wj arrows paths) 

Function UPDATED-ARROWS adds "imposbl" worlds wi, wj to ARROWS. Wi, wj are impossible in the 

sense that both cannot co-exist in any semi-complete structure. The function returns updated ARROWS. 

Calls: no other user-&fined functions. 

Called from: double-arw. 



(check-paths wi wj paths newpaths) 

Function CHECK-PATHS returns PATHS with any paths containing impossible worlds wi and wj 

removed. 

Calls: in. 

Called from: double-arw. 

(cant-co-occur arrows ncv) 

Function CANT-CO-OCCUR updates ARROWS to reflect the occurrence of inconsistent arrows and 

arrows which cannot co-occur; e.g., (A wi wk) and (A wj wk) each require different value assignments to a 

variable, say A, at wk. The function returns updated ARROWS. 

Calls: cannot, whet, remvwkset. 

Called from: update-arrows. 

(wkset ncv worldk) 

Function WKSET returns the set of arrows in NCV to world wk. 

Calls: no other user-defined functions. 

Called from: cant-co-occur. 

(remvwkset wk ncv) 

Function REMVWKSET returns NCV from which the set of arrows to world wk has been removed. 

Calls: no other user-&fined functions. 

Called from: cant-co-occur. 

(cannot worldk arrows) 

Function CANNOT calls REMV-INCONS to remove inconsistent arrows from WORLDK and function 

CANT to check each pair of arrows for consistency. The function returns updated ARROWS. 

Calls: remv-incons. 



Called from: cant-co-occur. 

(remv-incons set worldk arw) 

Function REMV-INCONS returns the set of arrows to world wk from which inconsistent arrows have been 

removed. ARROWS is setq'd to indicate the occurrence of incon- sistent arrows. 

Calls: in, arrowp. 

Called from: cannot. 

(cant worldk arrows) 

Function CANT calls CHECK-PAIRS to check each pair of arrows in the set of consistent arrows to world 

wk for mutual consistency. If inconsistent, ARROWS is updated. The function returns updated 

ARROWS. 

Calls: check-pairs. 

Called from: cannot. 

(check-pairs arw worldk arrows) 

Function CHECK-PAIRS returns ARROWS updated to reflect the occurrence of pairs of arrows from a set 

of arrows to world wk which are mutually inconsistent. 

Calls: diffvals, upd-arw. 

Called from: cant. 

(diffvals vall va12) 

Function DIFFVALS returns T if a variable has a different value in each given arrow, and NIL otherwise. 

Calls: diffv. 

Called from: check-pairs. 



(diffv vall va12) 

Function DIFFV returns T if one of VALI, VAL2 is assigned the value 1 and the other 0, and NIL other- 

wise. 

Calls: no other user-&fined functions. 

Called from: diffvals. 

(upd-am a m 1  arw2 arrows) 

Function UPD-ARW updates ARROWS in the case that a pair of mutually inconsistent arrows is found. 

The arrows are checked to determine whether one or both of the world labels to world wk is negative. In 

this case return-arrows need to be examined, otherwise the arrows cannot co-occur. The function returns 

updated ARROWS. 

Calls: no other user-&fined functions. 

Called from: check-pairs. 

(init-paths nstruct) 

Function INIT-PATHS generates the incomplete N-structure (before forwardconnected arrows are added). 

The function returns data stnrcture PATHS representing the incomplete diagram. 

Calls: nested-gammas, get-conds, test-template, expanded, transitive, nested-paths. 

Called from: generate-test. 

(get-conds world conds newlist) 

Function GET-CONDS returns a list of the worlds accessible from a world in which each world is a top- 

, level element. 

Calls: delet, find, checkdarw. 

Called from: init-paths, nested-paths. 



(checkdarw wi conds) 

Function CHECKDARW returns listed CONDS if CONDS is of the form (v (A wi wj) (' a)) or (A wi wj), 

and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: get-conds. 

(test-template template newtemp nstruct) 

Function TEST-TEMPLATE tests not-arrows for consistency. An inconsistent not- arrow is removed from 

TEMPLATE. The function returns updated TEMPLATE. 

Calls: test-temp, get-an&, delet-ands. 

Called from: init-paths. 

(test-temp andlist orlist notas temp world nstruct) 

Function TEST-TEMP checks each not-arrow within a given row of TEMPLATE for consistency with 

ANDLIST. The not-arrow is also checked with non-gamma conditions at the world from which it 

emanates. This is necessary because of the reflexive property. The function returns updated TEMP. 

Calls: reflexive, elim-elem, elim-path. 

Called from: test-template. 

(elim-elem e I) 

Function ELM-ELEM removes the given element E from the row in which it appears and returns the 

updated list L. 

Calls: front, back, element-of, delet. 

Called from: test-temp. 



(reflexive notarw world nstruct) 

Function REFLEXIVE tests not-arrows for consistency with the non-gamma conditions at the world from 

which it emanates. If inconsistent, the not-arrow will be removed from TEMPLATE. The function returns 

T if the not-armw is inconsistent with the reflexive property, and NIL otherwise. 

Calls: reflexl, altassns, andwff, findrow. 

Called from: test-temp. 

(elim-path notarw andlist nstruct) 

Function ELIMPATH tests a not-arrow for consistency with non-gamma conditions at worlds which must 

be accessible to the world from which the not-arrow emanates. The function returns T if the not-arrow is 

inconsistent, and NIL otherwise. 

Calls: altassns, andwff, converted. 

Called from: test-temp. 

(andwff subfl subf2) 

Function ANDWFF returns the AND of the two given subformulas. 

Calls: no other user-defined functions. 

Called from: get-winots, incons-winot-arws, reflex-test, reflexwl, andform, nestedarw-incons, test- 

rmarw, update-necvals, reflexive, elim'path, converted, test-notarws, test-betas, incons-betanots. 

0 

(converted a m  semi nstruct) 

Function CONVERTED converts an arrow to the conditions to be tested for consistency. An arrow (A wi 

wj) from the semi-complete structure is converted to the conditions which hold at wj. An added arrow (A 

wi wj) is converted to the AND of the conditions for accessibility from wi and the conditions at wj. The 

function returns the converted arrow. 

Calls: findrow, andwff. 

Called from: elim'path. 



(reflexl notanv) 

Function REFLEX1 tests a not-arrow emanating from world 1 with the non-gamma conditions at world 1. 

The function returns T if the not-arrow is inconsistent, and NIL otherwise. 

Calls: incons-smust, inconsistent, nsat, next-sassn. 

Called from: reflexive. 

(altassns subf) 

Function ALTASSNS checks alternative assignments for consistency. The function returns T if the given 

SUBFormula is inconsistent, and NIL otherwise. 

Calls: incons-smust, add-arw, next-sassn. 

Called from: betanots, incons-winots, incons-winot-arws, reflex-test, reflexwl, nestedarw-incons, test- 

rtnarw, reflexive, elim-path. 

(incons-smust sub0 

Function INCONS-SMUST sets up the variables to generate value assignments for arrowconsistency test- 

ing. SVALS, SMUST, SGEN, and SPREV, are seq'd. The function returns T if SMUST is inconsistent, 
& 

and NIL otherwise. 

Calls: inconsistent, apply-rules, get-mustbe, remvar, init-gen. 

Called from: update-wvals, update-necvals, reflexl, altassns, test-notarws, incons=>beta. 

(nsat smust svals smodel) 

Function NSAT tests each alternative value assignment for consistency. The function returns T if the value 

assignment is inconsistent, and NIL otherwise. 

Calls: consistent, next-sassn. 

Called from: reflexl, incons=>beta. 



(next-sassn svals smust) 

Function NEXT-SASSN gets a list of value assignments from SVALS and SGEN to be tested for con- 

sistency. The function returns a list of top-level value assignments. 

Calls: addlbase3, in, get-assn, next-sassn. 

Called from: update-wvals, update-necvals, add-arw, reflexl, nsat, test-notarws, incons-beta, b=>sat. 

(transitive arws paths) 

Function TRANSITIVE returns PATHS with transitive arrows added. 

Calls: intrans. 

Called from: init-paths. 

(intrans arw paths newpaths) 

Function INTRANS checks each row of paths for an arrow from arrows which requires the addition of a 

transitive arrow. The function returns PATHS with added transitive arrows. 

Calls: in, front, back. 

Called from: transitive. 

(complete template paths) 

Function COMPLETE returns PATHS with arrows added for nested =>'s and transitivity. 

Calls: comp, expanded. 

Called from: init-paths. 

(comp wj exprow paths newpaths) 

Function COMP returns PATHS expanded for added nested arrows and not-arrows. 

Calls: inarw, newnrows, front, back. 

Called from: complete. 



(newnrows exprow path rows) 

Function NEWNROWS returns a given row expanded due to the addition of nested arrows. 

Calls: no other user-&fined functions. 

Called from: comp. 

(inarw wj plist) 

Function INARW returns T if an arrow (A wi WJ) occurs in PLIST, and NIL otherwise. 

Calls: no other user-&fined functions. 

Called from: comp. 

(nested-paths nstruct template) 

Function NESTED-PATHS returns TEMPLATE updated to reflect the occurrence of nested => operators. 

Calls: in, get-conds. 

Called from: init-paths. 

(get-worldlist nstruct worlds) 

Function GET-WORLDLIST returns a list of the worlds in NSTRUn. 

Calls: no other user-&fined functions. 

Called from: generate-test. 

(get-vars nwff vars) 

Function GET-VARS returns a list of sublists consisting of the propositional variables in the given wff. 

Calls: propvar, op. 

Called from: generate-test, test-config. 



Function OP returns T if the given subformula is an operator, and NIL otherwise. 

Calls: in. 

Called from: get-van. 

(init-necvals wj worlds vars necvals) 

Function INIT-NECVALS initializes data structure NECVALS, a list of all possible arrows and values of 

variables which must be in order for an arrow to be consistent. The function returns NECVALS initialized 

to a table consisting of a column of arrows, and columns for each propositional variable in the formula 

Calls: wjs. 

Called from: generate-test. 

(wjs wj worlds vars wjlist) 

Function WJS returns a list of the arrows to world wj and the propositional variables in the given wff. 

Calls: no other user-defined functions. 

Called from: init-necvals. 

(expanded olist) 

Function EXPANDED returns PATHS initialized so that each row is a path with no OR'S. 

Calls: orpath, newrows. 

Called from: init-paths, complete. 

(orpath plist) 

Function ORPATH returns T if the given list contains an OR path, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: expanded. 



(newrows row) 

Function NEWROWS is given a path from TEMPLATE and returns new rows derived from the path in 

which each row is a path containing.no OR's. 

Calls: allpaths, get-ands, delet-ands, get-genlist. 

Called from: expanded. 

(get-ands row andlist) 

Function GET-ANDS returns a list of nodes on the path which must be, exclusive of any OR's. 

Calls: no orher user-defined functions. 

Called from: test-template, newrows. 

(delet-ands row newr) 

Function DELET-ANDS returns a row of NOTARWS with AND'S removed and only OR's remaining. 

Calls: no other user-defined functions. 

Called from: test-template, newrows. 

(get-genlist olist glist) 

Function GET-GENLIST returns a list of 0's of length equal to the length of the list of OR's. 

Calls: no other user-defined functions. 

Called from: newrows. 

(allpaths world andlist orlist genlist newlist) 

Function ALLPATHS returns a list of all paths containing no OR's derived from the given row of paths. 

Calls: addlbase2, get-path. 

Called from: newrows. 



(get-path world orlist genlist path) 

Function GET-PATH returns a path with no OR'S given a list of OR'S and AMYs. 

Calls: no other user-defined functions. 

Called from: allpaths. 

(in e 1) 

Function IN determines whether E is an element of list L at any level of nesting of sublists. The function 

returns T if E is in L, and NIL otherwise. 

Calls: in-any. 

Called from: incons-gamma, incons, propvar, propwff, next-assn, nested-gammas, remvdups, remvdup, 

get-worlds, count, next-nassn, buildbs, buildnested, build, alphascope, trans, update-wvals, nested-arrow, 

remv-nested, update-nestednecs, checkarws, check-nested, wicands, check-wprirne, add-vals, remv- 

semiarws, add-arws, rtnarws, awjwi, double-arw, check-paths, remv-incons, next-sassn, intrans, nested- 

paths, op, incons+, incons', incons->, check-necvals, findworlds, get-varassns, remv-mustvals, verif=> 1, 

verify-flsconfig, verify-true=>, verify-false=>, orfalse=>, applies, incons-betanecs, incons-beta, 

incons=>beta, infix-assns. b 

(in-any e 1) 

Function IN-ANY finds each sublist at each level of nesting to determine whether or not E is in L. The 

function returns a concatenated list of T's. The number of T's in the returned list is equal to the number of 

times E occurs in L. If E is not in L, then NIL is returned. 

Calls: no other user-defined functions. 

Called from: in. 



(front e 1) 

Function FRONT returns the head of a list L up to, but not including, element E of the list L. 

Calls: no other user-defined functions. 

Called from: incons-gamma, init-mustbe, modifiedt, modifiedf, count, init-nmust, upd-worldvals, upd- 

alterns, update-nested-necs, test-arrows, add-val, awjwi, elim-elem, intrans, comp, delet, del, next-config, 

next-world, check-necvals, upd-wrldvals, gen&test-configs, update-altern. 

(back e 1) 

Function BACK returns the tail of a list L'beginning with the element succeeding element E to the last ele- 

ment of list L. 

Calls: no other user-defined functions. 

Called from: init-mustbe, modifiedt, modifiedf, count, buildnested, init-nmust, upd-worldvals, update- 

nested-necs, test-arrows, add-val, awjwi, elim-elem, intrans, comp, delet, del, upd-wrldvals, upd-alterns. 

(find elem 1) 

Function FIND searches L for any substructure whose CAR is equal to ELEM. The function returns the 

fkst such substructure, or NIL if no such substructure is found. 

Calls: findlist. 

Called from: count, test-arrows, add-val, get-conds, valsubf. 

s 

(findn num elem 1) 

Function FINDN searches L for any substructure whose CAR is equal to ELEM. The function returns the 

nth such substructure, assuming an index base of 1, or NIL if no such substructure is found. 

Calls: findlist. 

Called from: no function of program VALIDATE. 



(findlist elem I) 

Function FINDLIST searches L for any substructure whose CAR is equal to ELEM. The function returns a 

concatenated list of all occurrences of such substructures, or NIL if no such substructure is found. 

Calls: no other user-defined functions. 

Called from: incons, buildnested, find, findn. 

(findrow elem 1) 

Function FINDROW searches L for a substructure whose CAR is equal to ELEM. The function returns the 

first such substructure, or NIL if no such substructure is found. 

Calls: no other user-defined functions. 

Called from: gamma-me, gamma-false, buildnested, init-worldvals, update-wvals, nested-arrow, incons- 

winot-arws, upd-worldvals, doublearw-incons, nestedarw-incons, test-rtnarw, update-nested-necs, update- 

necvals, check-wprime, awjwi, double-arw, reflexive, converted, incons-necvals, check-necvals, upd- 

wrldvals, test-notarrows, verif=>l, verif=>O, update-altern, verify-true>, verify-false=>, no-access, 

accesswj, test-betas, incons-betanots, incons-beta, incons=>beta. 

(remvlist elems 1) 

Function REMVLIST returns a copy of list L from which each element of ELEMS has been removed. 

Calls: no other user-defined functions. 

Called from: inconsistent, gen&test-configs, nextconfig, b=>sat. 

(delet s 1) 

Function DELET returns a copy of list L from which element S has been deleted. S need not be a top-level 

element of L. If S occurs more than once in L, then the first occurrence of S is deleted from L. 

Calls: . del, front, back 

Called from: remv-semiarws, get-conds, elim-elem. 



(del s I newl) 

Function DEL is called from DELET in the case where S is not a top-level element of L. The function 

returns the new list NEWL, which is the list L from which S has been deleted. 

Calls: element-of, front, back. 

Called from: delet. 

(elemen t-of s 1) 

Function ELEMENT-OF returns the substructure of L in which S is a toplevel element. 

Calls: no other user-defined functions. 

Called from: elim-elem, del, access-worlds. 

(gen&test-configs path necvals arrows worldvals worlds config) 

Function GEN&TEST-CONFIGS generates and tests configurations for consistency. It is determined 

whether added-arrows are required. If so, sets of arrows are generated which, in combination with PATH, 

form RTFC configurations. Each configuration is tested for consistency. The cycle is repeated until a con- 

sistent configuration is found, or all configurations have been tested and found to be inconsistent. The * 

function returns a false configuration, if found, and NIL otherwise. 

Calls: test-config, get-arwset, elemn, next-config, remvlist, flat, front. 

Called from: test-path. 

(next-eqtemp eqtemp eqs ws level) 

Function NEXT-EQTEMP determines the next equivalence-class template from the previous one. The 

function returns the new EQUIVTEMP. 

Calls: init-eqtemp, elemn, sumtop, top. 

Called from: next-config. 



(elemn n 1) 

Function ELEMN returns the nth element of the given list L. 

Calls: no other user-defined functions. 

Called from: gen&test-configs, next-eqtemp, next-config, next-world 

(iit-eqtemp c w equiv) 

Function INIT-EQTEMP returns an equivalence-class template of C classes for W worlds. 

Calls: no other user-defined functions. 

Called from: next-eqtemp. 

(top 1 len) 

Function TOP returns the first LEN elements in list L. 

Calls: init-class. 

Called from: next-eqtemp. 

(sumtop l bum) 

Function SUMTOP returns the sum of the top LEN elements in L. 

Calls: no other user-defined functions. 

Called from: next-eqtemp. 

(init-class remworlds leng) 

Function INIT-CLASS returns a list of the top leng elements in the given list REMWORLDS. 

Calls: no other user-defined functions. 

Called from: top, init-config, next-world. 



(next-config config class size worlds remworlds) 

Function NEXT-CONFIG returns the next combination of worlds in equivalence classes, given the previ- 

ous combination. If all combinations of worlds have been tried for the current equivalence-class template, 

the next equivalenceclass template is determined, and a combination returned. 

Calls: next-world, elemn, init-config, next-eqtemp, remvlist, flat, front. 

Called from: gen&test-configs. 

(flat 1) 

Function FLAT returns a list of the atoms in the given list L. 

Calls: no other user-defined functions. 

Called from: gen&test-configs, next-config, access-worlds. 

(iit-config eqtemp worlds newconfig) 

Function INIT-CONFIG seq's CONFIG to the initial configuration given a new equivalence-class tem- 

plate and a set of worlds. 

Calls: init-class. 

Called from: next-config. 

(next-world eqclass size pos worlds) 

Function NEXT-WORLD determines the next worlds to be included within an equivalence class. The 

function returns NIL if all combinations of worlds within the class have been tried, and the new class other- 

wise. 

Calls: elemn, front, init-class. 

Called from: next-config. 



- 212 - 

(el wrlds worlds arwset) 

Function C1 returns a list of arrows generated from an equivalence class, i.e., the worlds within an 

equivalence class are fully-connected. The function returns NIL if the equivalence class consists of 0 or 1 

worlds). 

Calls: update-arwset. 

Called from: get-arwset. 

(update-arwset w worlds anvset) 

Function UPDATE-ARWSET adds arrows from W to worlds in WORLDS to ARWSET. 

Calls: no other user-defined functions. 

Called from: cl. 

(get-wrlds path worlds) 

Function GET-WRLDS returns a list of the worlds (other than world 1) on PATH. 

Calls: no other user-defined functions. 

Called from: test-path. 

(get-anvset config arwset) 

Function GET-ARWSET returns the set of arrows generated from the given CONFIG. 

Calls: no other user-defined functions. 
e 

Called from: genktest-configs. 

(ci class1 classi anvset) 

Function CI-returns the set of arrows from each world in CLASS 1 to each world in the other i classes. 

Calls: upd-arwset. 

Called from: get-arwset. 



(upd-arwset class1 classi arwset) 

Function UPD-ARWSET returns the set of arrows from each world in CLASS1 to each world in CLASSI. 

Calls: get-arm. 

Called from: ci. 

(get-anvs w classi anvset) 

Function GET-ARWS returns the set of arrows from given world W to each world in CLASSI. 

Calls: no other user-defined functions. 

Called from: upd-arwset. 

(test-config arwset config path necvals arrows worldvals worlds) 

Function TEST-CONFIG tests the consistency of the given configuration generated from CONFIG and 

PATH. The constraints placed on arrows (stored in ARROWS) in any consistent configuration are com- 

pared with ARWSET to determine whether any constraints are violated. Necessary values from 

NECVALS are added to WRLDVALS, a copy of WORLDVALS updated with value assignments which 

must be under the current configuration. WORLDVALS contains values which must be under the current 

PATH. Not-arrows (wk (' &)) are tested against the conditions at world wi in the case that k '- 1 and (A 

wk wi) occurs in ARWSET but not in PATH. If the configuration is consistent, then VERIFY- 

FALSECONFIG is called to verify the gamma and beta subformulas. The function returns a false 

configuration if found, and NIL otherwise. 

Calls: incons-arwset, incons-necvals, incons-notarrows, verify-falseconfig, get-betas, beta-nestednecs, 

get-alternatives, getfmodel, get-van. 

Called from: gen&test-configs. 



(incons-arwset arwset arrows worlds) 

Function XNCONS-ARWSET checks ARWSET for consistency with the conditions in ARROWS. The 

function returns T if an inconsistency is found and NIL otherwise. 

Calls: incons-, incons->, incons+. 

Called from: test-config. 

(incons+ mustarw arwset) 

Function INCONS+ returns T if MUSTARW is not in ARWSET, and NIL otherwise. 

Calls: in. 

Called from: incons-arwset. 

(incons- imposbl arwset) 

Function INCONS' returns T if ARWSET contains the impossible world(s) in IMPOSBL, and NIL other- 

wise. If IMPOSBL contains more than one world, it means that these worlds cannot co-occur. 

Calls: in. 

Called from: incons-arwset. 

(icons-> condl arwset worlds) 

Function INCONS-> returns T if ARWSET contains the antecedent of CONDL but not the consequent, and 

NIL otherwise. 

Calls: in, arrowp. 

Called from: incons-arwset. 

(incons-necvals anvset necvals wvals) 

Function INCONS-NECVALS adds value assignments from NECVALS to WRLDVALS for each arrow in 

ARWSET. The function returns T if an inconsistency is found, and NIL otherwise. 

Calls: check-necvals, findrow. 



Called from: test-config. 

(check-necvals w necrow wvals) 

Function CHECK-NECVALS checks for consistency the value assignments of NECROW and the value 

assignments of WRLDVALS. If consistent, the value assignments of NECROW are added to 

WRLDVALS. The function returns T if an inconsistency is found, and NIL otherwise. 

Calls: in, arrowp, inconsistent, front, findrow, upd-wrldvals, remvnull. 

Called from: incons-necvals. 

(upd-wrldvals mustvals wj wvals) 

Function UPD-WRLDVALS setq's WRLDVALS to reflect conditions required at wj due to a not-arrow 

(wi (' &)) and arrow or nested-arrow (A wi wj). The function updates WRLDVALS and retums NIL. 

Calls: findrow, front, back. 

Called from: check-necvals, test-notarws. 

(incons-notarrows arwset path wrldvals notarws worlds) b 

Function INCONS-NOTARROWS tests for consistency not-arrows (wk (' &)) against the conditions at 

world wi in the case that k '= 1 and (A wk wi) occurs in ARWSET but not in PATH. The function returns 

T if inconsistent, and NIL otherwise. 

Calls: notarrowp, test-notarrows, get-winots, findworlds, remvwinots. 

Called from: test-config. 

(findworlds wk worlds path arwset wrlds) 

Function FINDWORLDS finds worlds wi for which arrow (A wk wi) occurs in ARWSET but not in 

PATH. The function retums a list of such worlds, or NIL if none occur. 

Calls: in. 

Called from: incons-notarrows. 



(test-notarrows notconds wk wrldvals wrlds) 

Function TEST-NOTARROWS tests not-arrows (wk (' &)) and the conditions at world wi in the case that 

k '= 1 and (A wk wi) appears in ARWSET but not in PATH. In other cases the (' &) and conditions at wi 

would have been tested previously. The function returns T if an inconsistency is found, and NIL otherwise. 

Calls: test-notarws, findrow. 

Called from: incons-notarmws. 

(test-notarws notconds condswi wi wivals wk) 

Function TEST-NOTARWS tests for consistency not-arrows from. WK and the conditions at world WI 

where (A wk wi) is in ARWSET but not in PATH. If consistent, WRLDVALS is updated The function 

returns T if an inconsistency is found, and NIL otherwise. 

Calls: incons-smust, andwff, inconsistent, upd-wrldvals, add-am, next-sassn. 

Called from: tes t-notarrows. 

(get-betas arws betarws) 

Function GET-BETAS returns ARWS adjusted so that only beta occurrences remain. 

Calls: no other user-&fined functions. 

Called from: test-config. 

(beta-nestednecs path arws) 

Function BETA-NESTEDNECS returns ARROWS with beta markers to nested-mows from PATH and 

their return-arrows added. 

Calls: mowp. 

Called from: test-config. 



(remvnull necassns assns) 

Function REMVNULL returns a list of value assignments from which null assignments have been 

removed. 

Calls: no other user-defined functions. 

Called from: check-necvals. 

(get-alternatives wrldvals vars alterns) 

Function GET-ALTERNATIVES returns a list of alternative value assignments to propositional variables 

at each world in the configuration. Variable assignments which must be from WRLDVALS are appended 

to the alternatives for the remaining unassigned variables. 

Calls: get-alterns, get-varassns. 

Called from: test-config. 

(get-alterns mustvals vars) 

Function GET-ALTERNS gets a list of alternative assignments to variables at a. world. The variable 

assignments which must be (Erom WRLDVALS) are appended to the alternatives for the remaining unas- 

signed variables. The function returns a list of alternative variable assignments. 

Calls: get-alts, remv-mustvals, get-valist. 

Called from: get-alternatives. 

(get-alts mustvals vars alterns vals) 

Function GET-ALTS returns a list of alternative value assignments to variables at a world. The variable 

assignments which must be (from WORLDVALS) are appended to the alternatives for the remaining unas- 

signed variables. 

Calls: update-alterns, add1 base2. 

Called from: get-alterns. 



(update-alterns vars vals mustvals alterns altern) 

Function UPDATE-ALTERNS returns AL'IERNS with an alternative value assignment to variables 

appended- 

Calls: no other user-defined functions. 

Called from: get-alts. 

(get-valist varlength valist) 

Function GET-VALIST returns a list of 0's of length VARLENGTH. 

Calls: no other user-defined functions. 

Called from: get-alterns. 

(get-varassns wivals varassns) 

Function GET-VARASSNS returns a list of value assignments to variables as distinct from assignments to 

gamma subformulas. The function returns NIL if WIVALS contains no variable assignments at world wi. 

Calls: in. 

Called from: get-alternatives. 

(remv-mustvals mustvals vars) 

Function REMV-MUSTVALS returns a list of VARS from which variables in MUSTVALS ;have been 

removed. 

Calls: in. 

Called from: get-alterns. 

(subval subf) 

Function SUBVAL takes a SUBFormula in which values have been substituted for propositional variables 

and returns the value assignment for the SUBFormula. 

Calls: subf-rules, determ. 



Called from: incons-betaconds. 

(subf-rules opr opdl opd2) 

Function SUBF-RULES takes an operator and one or two operand values, and returns a value for the sub- 

formula. 

Calls: no other user-defined functions. 

Called from: subval. 

(determ opr opdl opd2) 

Function DETERM returns T if a value for the subformula can be determined with knowledge of the value 

of only one operand, and NIL otherwise. For example, if either operand is false, (^ A B) is false. 

Calls: no other user-defined functions. 

Called from: subval. 

(valsubf subf varassns) 

Function VALSUBF returns SUBFormula in which all occurrences of propositional variables have been 

replaced with their respective values from VARASSNS. 

Calls: propvar, find. 

Called from: incons-betaconds. 

(get-notarws wi path wis) 

Function GET-NOTARWS returns a list of not-arrows from world wi. 

Calls: notarrowp. 

Called from: no function of program VALIDATE. 



(build-accessbl wvals path anvset aceessbl) 

Function BUILD-ACCESSBL determines the gammas in WVALS for which accessible worlds wj exist 

making the value assigned gamma at wi hold. The function returns a list of such accessible worlds for each 

world wi in WVALS. 

Calls: get-accessbl. 

Called from: verify-falseconfig. 

(get-accessbl wi wivals path arwset accessbl) 

Function GET-ACCESSBL determines the gammas in WVALS for which accessible worlds wj exist mak- 

ing the value assigned the gamma at wi hold. The function returns a list of such accessible worlds. 

Calls: verif=>l, verif=>O. 

Called from: build-accessbl. 

(verif=>l wi gamma* arwlist path) 

Function VERIF=>l determines whether a world wj exists which makes a gamma at.wi true. In this case 

there appears: 1) arrow (A wi wj) in ARWSET, 2) arrow (A wi wj) in PATH if i-1, 3) wi=wj, or 4) not- 

arrow (wi (- &)). For gamma (=> &1 $2 l), the conditions at world wj are (^ &l &2) or there exists a 

not-arrow (wi (' &I)). The function returns T if such a world wj or not-arrow (wi (' &I)) is found, and 

NIL otherwise. 

Calls: findrow, in, verify=>l. 

Called from: get-accessbl. 

(verifysl  wi gamma* arwlist) 

Function VERIFY=>I determines whether a world wj exists which makes the GAMMA* true at world WI. 

In this case the arrow (A wi wj) appears in ARWLIST. For gamma (=> &1 &2 I), the conditions at wj are 

(^ &1 &2). The function returns T if wj exists, and NIL otherwise. 

Calls: no other user-defined functions. 



Called from: verif=> 1. 

(verif=>O wi gamma* arwlist) 

Function VERIF=>O determines whether a world wj exists which makes a gamma at wi false. In this case 

arrow (A wi wj) appears in ARWSET, or if i=1, then the arrow appears in PATH, or it may be the case that 

i=j. For gamma (=> &l &2 O), the conditions at wj are (̂  & l  (' &2)). The function returns T if such a 

world wj is found, and NIL otherwise. 

Calls: findrow, verify=>O. 

Called from: get-accessbl. 

(verify=>O wi gamma* arwlist) 

Function VERIFY=>O determines whether a world wj exists which makes GAMMA* false at world WI. 

In this case the arrow (A wi wj) appears in PATH and for gamma (=> &1 &2 O), the conditions at wj are (^ 

&l (' &2)). The function returns T if wj exists, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: verif=>O. 

(remv-access accessbl wvals newvals) 

Function REMV-ACCESS returns WVALS from which gammas have been removed if there exists an 

accessible world wj, and the conditions at wj make the value assigned the gamma at wi hold. 

Calls: update-newvals. 

Called from: verify-falseconfig. 

(update-newvals accessbl wivals) 

Function UPDATE-NEWVALS returns WIVALS from which gammas in ACCESSBL have been 

removed. 

Calls: no other user-&fined functions. 



called from: remv-access. 

(next-altern altern vals) 

Function NEXT-ALTERN returns an alternative list of value assignments to propositional variables at each 

world in WRLDVALS. 

Calls: no other user-defined functions. 

Called from: verify-fconfig. 

(update-altern altern alterns) 

Function UPDATE-ALTERN modifies ALTERN so that the next call to NEXT-ALTERN gets a new 

ALTEFWative value assignment to propositional variables at worlds in WRLDVALS. The function 

returns updated ALTERN. 

Calls: front, findrow. 

Called from: verify-fconfig. 

(verify-falseconfig arwset config path arrows wrldvals alterns) 

Function VERIFY-FALSECONFIG verifies that the given configuration ARWSET is indeed a false 

configuration. The function has two goals: 1) to verify that the values of gamma subformulas actually hold 

by checking for accessible worlds (or reflexive accessibility), and 2) to verify that the value assignments 

meet with conditions imposed by beta subformulas which may not appear in WRLDVALS. The function 

returns the false model if found, and NIL otherwise. 

Calls: verify-flsconfig, build-accessbl, remv-access. 

Called from: test-config. 



(verify-&config arswet config path arrows accessbl wvals alterns) 

Function VERIFY-FLSCONFIG determines whether further verification is required. If a beta marker 

appears in ARROWS or an unverified => in WVALS, then function VERIFY-FCONFIG is called to do the 

verification. Otherwise a false configuration is returned. 

Calls: in, get-fconfig, merge, verify-fconfig. 

Called from: verify-falseconfig. 

(verify-fconfig arwset config path arrows accessbl wvals altern alterns) 

Function VERIFY-FCONFIG verifies that the given configuration ARWSET is indeed a false 

configuration. VERIFY-FCONFIG is called in the case of a configuration composed of more than two 

worlds. The function has two goals: 1) to verify that the values of gamma subformulas actually hold by 

checking for accessible worlds (or reflexive accessibility), and 2) to verify that the value assignments meet' 

with conditions imposed by beta subformulas which may not appear in WRLDVALS. The function returns 

the false model if found, and NIL otherwise. 

Calls: verify, get-fconfig, merge, next-altern, update-altern. 

Called from: verify-flsconfig. 

(verify anvset config path arrows accessbl wvals altern) 

Function VERIFY attempts to verify that the given false configuration is indeed false. Since WRLDVALS 

contains only value assignments which must be at each world, there may be consrraints incurred by beta 

subformulas which do not appear in WRLDVALS. For example, given (" (v A B) C 1) only (C 1) appears 

in WRLDVALS, but (v A B 1) disallows ((A O)(B 0)). If a gamma subformula is nested within a beta, the 

gamma must also be verified. The function returns T if the ALTERNative value assignments at each world 

are consistent with the betas and gammas, and NIL otherwise. 

Calls: verify-wvals=>, test-betas. 

Called from: verify-fconfig . 



(verify-wvals=> wvals altern accessbl arwset config) 

Function VERIFY-WVALS=> returns T if for each world in WVALS, the values assigned gammas are 

verified, and NIL otherwise. 

Calls: verify-wval=>. 

Called from: verify. 

(verify-wval=> wi gams altern accessbl arwset config) 

Function VERIFY-WVAL=> returns T if for each gamma at world wi, the value assigned the gamma is 

verified, and NIL otherwise. 

Calls: verify=>. 

Called from: verify-wvals->, b=>sat. 

(get-fconfig model arwset path) 

Function GET-FCONFIG formats the configuration for printing. 

Calls: inorder, infix-assns, infix-notarws, getfrnodel. 

Called from: verify-flsconfig, verify-fconfig. 

(infix-notarws nots ink) 

Function INFIX-NOTARWS converts not-arrows from prefix to infix notation so that the output is in a 

more readable form. The function returns a list of arrows and not-arrows in which the not-arrow subfor- 

mulas are in infix form. 

Calls: notarrowp, inorder. 

Called from: get-fconfig. 



(infix-assns assns infix) 

Function INFIX-ASSNS convert. gamma-subformula in a false model from prefix to infix notation so that 

the output is in a more readable form. The function returns the false model with gamma-subformulas in 

infix form. 

Calls: in, infix-gammas. 

Called from: get-fconfig. 

(infix-gammas assns infix) 

Function INFIX-GAMMAS returns a list of variable assignments and gamma-subformula assignments in 

which gamma-subformulas have been converted from prefix to infix form. 

Calls: inorder. 

Called from: infix-assns. 

(merge altern wvals accessbl newlist) 

Function MERGE merges lists ALTERN, WVALS, AND ACCESSBL so that value assignments from 

each list for a world are combined and duplicates removed. The function returns a list containing value ' 

assignments from each given list for each world. 

Calls: getfmodel. 

Called from: verify-flsconfig, verify-fconfig. 

(verify=> wi gam altern accessbl arwset config) 

Function VERIFY=> attempts to verify the value assigned a gamma subformula at world wi. The function 

returns T if the value assigned the gamma is consistent with the value assignments to variables at other 

worlds in the configuration, and NIL otherwise. 

Calls: verify-true=>, verify-false=>. 

Called from: verify-wval=>. 



(verify-true=> wi gam altern accessbl config) 

Function VERIFY-TRUE=> attempts to verify that the given gamma subformula GAM is indeed true. 

There are three cases in which the gamma (=> &l &2) is true at wi: 1) ((&I l)(&2 1)) is consistent at wi, 

and there exists no accessible wj, (A wi wj), where ((&l 1)(&2 0)) holds, 2) (& 0) holds at all accessible 

worlds, i.e., there exists no wj, (A wi wj), where (& 1) holds, or 3) there exists accessible world wj, (A wi 

wj), where ((&l 1)(&2 1)) and there exists no accessible world wk, (A wj wk), where ((&I 1)(&2 0)). The 

function returns T if either of the three cases occur, and NIL otherwise. 

Calls: in, findrow, consistent, no-access, access-worlds, foundwj. 

Called from: verify=>. 

(verify-false=> wi gam altern accessbl config) 

Function VERIFY-FALSE=> attempts to verify that the given gamma subformula GAM is indeed false. 

There are two cases in which the gamma (=> &l &2) is false at world wi: 1) ((&l l)(&2 0)) holds at 

world wi and there exists no world wk, (A wi wk), where ((&l l)(&2 I)), or if such a world wk does exist, 

then (A wk wi) is also in the configuration, or 2) there exists an accessible world wj, (A wi wj), where ((&l 

1)(&2 0)) holds and there exists no world wk, (A wj wk), where ((&I 1)(&2 1)) holds, or if there exists 

such a world wk, then (A wk wj) is also present in the configuration. The function returns T if the gamma 

is verified, and NIL otherwise. 

Calls: in, findrow, consistent, accesswj, access-worlds, orfalse=>, or=>false. 

Called from: verify=>. 

(access-worlds wi config) 

Function ACCESS-WORLDS returns a list of worlds accessible to world wi, i.e., a list of worlds wj such 

that (A wi wj) occurs in the configuration. 

Calls: element-of, flat. 

Called from: verify-true=>, verify-false=>, foundwj, no-accesswk, or=>false. 



(no-access conds accworlds altern) 

Function NO-ACCESS attempts to verify that there exists no world wj, (A wi wj), where CONDS hold. 

The value assignments to variables at each accessible world wj is tested for consistency with the forbidden 

CONDS. The function returns T if CONDS is consistent with the variable assignments at no accessible 

world wj, and NIL otherwise. 

Calls: consistent, findrow. 

Called from: verifytrue=>, no-accesswk. 

(accesswj conds accworlds altern wjs) 

Function ACCESSWJ returns a list of worlds wj such that (A wi wj), and CONDS is consistent with 

ALTERN at wj. The function returns NIL if no such world wj is found. 

Calls: consistent, findrow. 

Called from: verify-false=>, foundwj, orefalse. 

(foundwj wi conds config altern) 

Function FOUNDWJ attempts to verify that a gamma subformula (=> &1 &2) is true in the case that there 

exists a world wj accessible to wi, (A wi wj), where condition ((&I 1)(&2 1)) holds, and there exists no 

world wk accessible to wj, (A wj wk), where ((&I 1)(&2 0)) holds. The function retums T if the gamma 

subformula is found to be true, and NIL otherwise. 

Calls: accesswj, access-worlds, no-accesswk. 

Called from: verify-true=>. 

(no-accesswk conds wjs accworlds altern config) 

Function NO-ACCESSWK determines whether there exists some world wj in WJS such that there exists no 

world wk accessible to wj, (A wj wk), where CONDS is consistent with ALTERN at wk. The function 

returns T if such a world is found, and NIL otherwise. 

Calls: no-access, access-worlds. 



Called from: foundwj. 

(orfalse=> wj wks arwset) 

Function ORFALSE=> returns T if for each world wk in WKS accessible to wj, (A wk wj) occurs in 

ARWSET, and NIL otherwise. 

Calls: in. 

Called from: verify-false=>, or=>false. 

(or=>false wjs wks conds arwset config altern) 

Function OR=>FALSE determines whether, for some world wj in WJS, either there exists no accessible 

world wk in WKS where ((&l 1)(&2 1)) holds, or if there is such a world wk, then (A wk wj) is also in 

ARWSET. The function returns T if such a world wj is found, and NIL otherwise. 

Calls: orfalse=>, accesswj, access-worlds. 

Called from: verify-false>. 

(test-betas arwset config path arrows accessbl wvals altern) b 

Function TEST-BETAS attempts to verify that the given A L T E R N ~ ~ ~ ~ ~  set of value assignments to vari- 

ables is consistent with beta constraints on variable value assignments which would not appear in 

WRLDVALS. For example, given (̂  (v A B) C 1) only (C 1) appears in WRLDVALS, but (v A B 1) disal- 

lows ((A O)(B 0)). There are four cases in which betas may occur: 1) in the conditions at a world wi, 2) in 

an arrow in NECVALS, 3) in not-arrows (wk (-I%)) where (A wk wi) occurs in PATH, and 4) in not-arrows 

(wk (' &)) where (A wk wi) occurs in ARWSET but not in PATH. Case (4) is already taken care of by case 

(1) if the beta lies in wi and/or case (3) if the not-arrow contains a beta. If a gamma is nested within a beta, 

then function VERIFY=> is called to verify the value assigned the gamma The function returns T if the 

value assignments of ALTERN are consistent with betas in ARROWS, and NIL otherwise. 

Calls: caselbeta, applies, findrow, incons-beta, case2beta, incons-betanecs, andwff, remv-nested, 

case3beta, incons-betanots. 



Called from: verify. 

(applies case type arwliist) 

Function APPLIES determines whether the given CASE of a beta applies in the current configuration. For 

example, CASE1 beta applies only if the world is in PATH, CASE2 if the arrow is in ARWSET, CASE3 if 

the not-arrow is in PATH, and CASEA would already have been checked in CASEl andlor CASES. The 

function returns T if the beta applies, and NIL otherwise. 

Calls: in. 

Called from: test-betas. 

(caselbeta marker) 

Function CASElBETA returns T if the given beta marker is of type CASE1, i.e., a beta in the conditions at 

a world, and NIL otherwise. 

Calls: no other user-defined functions. 

Called from: test-betas. 

(case2beta marker) 

Function CASEZBETA returns T if the given beta marker is of type CASE2, i.e., a beta in an arrow from 

NECVALS, and NIL otherwise. 

Calls: arrowp. 

Called from: test-betas. 

(case3beta marker) 

Function CASESBETA returns T if the given beta marker is of type CASE3, i.e., a beta in a not-arrow on 

PATH, and NIL otherwise. 

Calls: notarrowp. 

Called from: test-betas. 



(incons-betanots wk conds arwset config path accessbl wvals altern) 

Function INCONS-BETANOTS verifies betas in not-arrows from WK at each world wi for which (A wk 

wi) occurs in ARWSET. INCONS=>BETA is called if a => occurs in the not-arrow, and INCONS- 

BETACONDS is called otherwise. The function returns T if for some world wi, the ALTERNative value 

assignment and beta in the not-arrow are inconsistent, and NIL otherwise. 

Calls: incons-beta, andwff, findrow. 

Called from: test-betas. 

(remv-wiarws wi arws arwset) 

Function REMV-WIARWS removes arrows emanating from world WI in ARWS. The function returns the 

remaining set of arrows. 

Calls: no other user-defined functions. 

Called from: incons-betanots. 

(incons-betanecs wj wi conds arwset config path accessbl wvals altern) 

Function INCONS-BETANECS verifies betas in arrows (A wj wi) in NECVALS. If j is less than 0 and the ' 

arrow inconsistent with ALTERN, then the beta is still consistent if (A wi wj) also occurs in ARWSET. 

The function returns T if the beta is inconsistent with the given ALTERNative value assignmnent to vari- 

ables, and NIL otherwise. 

C a l k  incons-beta, in. 

Called from: test-betas. 

(incons-beta wi conds arwset config path accessbl wvals altern) 

Function INCONS-BETA determines whether a => occurs in CONDS. If so, function INCONS=>BETA 

is called which returns T if the ALTERNative value assignment is inconsistent with the beta, and NIL oth- 

erwise. If no => occurs, function INCONS-BETACONDS is called which also returns T if the ALTERNa- 

tive value assignment is inconsistent with the beta, and NIL otherwise. 



Calls: in, incons=>beta, incons-betaconds, findrow, upd-altems. 

Called from: test-betas, incons-betanots, incons-betanecs. 

(incons-betaconds conds altrow) 

Function INCONS-BETACONDS verifies that a formula containing a beta subformula is consistent with 

the ALTERNative value assignment to variables in the case that no =>'s occur in CONDS. The function 

returns T if CONDS and ALTROW are inconsistent, and NIL otherwise. 

Calls: subval, valsubf. 

Called from: incons-beta. 

(incons=>beta wi conds arwset config path accessbl w a l s  altern) 

Function INCONS=>BETA verifies that a formula containing a beta subformula is consistent with the 

ALTERNative value assignment to variables in the case that a => occurs in CONDS. The function returns 

T if CONDS and ALTERN, WVALS, and ACCESSBL are inconsistent, and NIL otherwise. 

Calls: incons-smust, inconsistent, findrow, upd-altems, in, b=>sat, next-sassn, nsat. 

Called from: incons-beta. 

(b=>sat smust svals smodel wi altern accessbl anvset config) 

Function B=>SAT attempts to verify that a set of value assignments is consistent in the case that a gamma 

subformula occurs within a beta The function returns T if an inconsistency is found, and NIL otherwise. 

Calls: inconsistent, next-sassn, remvlist, getfmodel, verify-wval=>. 

Called from: icons=>beta. 

(upd-alterns alternrow alternsrow) 

Function UPD-ALTERNS removes from ALTERNS a set of value assignments to variables at row wi of 

ALTERNS when such a row is found to be inconsistent with beta constraints at wi. The function SETQ's 

ALTERNS and returns T. 



Calls: front, back. 

Called from: incons-beta, incons=>beta. 



References 

Beth, E. W., The Foundations of Mathematics, North-Holland, 1959, revised edition 1964. 

Brachman, R. J., "'I Lied about the Trees' or Defaults and Definitions in Knowledge Representation," The 
A I  Magazine, vol6, no. 3, 1985, pp 80-93. 

Burgess, J.P., "Quick Completeness Proofs for Some Logics of Conditionals," Notre Dame Journal of Phi- 
losophy, vol. 22, no. l ,  1981, pp 76-84. 

Chellas, B.F., "Basic Conditional Logic," Journal of Philosophical Logic 4, 1975, pp 133-153. 

Church, A., Introduction to Mathematical Logic I, Princeton, 1956. 

Cottrell, G., "Re: Inheritance Hierarchies with Exceptions," AAAI Workshop on Nonmonotonic Reasoning, 
New Patz, New York, October 1984, pp 33-56. 

Delgrande, J., "A Foundational Approach to Conjecture and Knowledge," Ph.d. thesis, Dept. of Computer 
Science, University of Toronto, Ontario, 1985. 

Delgrande, J., "A Propositional Logic for Natural Kinds," AI-86, Sixth Canadian Conference on Artificial 
Intelligence, Montreal, Canadian Society for Computational Studies of Intelligence, May 1986, pp 
44-48. 

Delgrande, J., "A First-Order Conditional Logic for Prototypical Properties," to appear, AI Journal, 1987. 

de Sousa, R., "The Natural Shiftiness of Natural Kinds," Canadian Journal of Philosophy, vol. XN. no. 4, 
1984, pp 561 -580. 

b 

Etherington, D., and Reiter, R., "On Inheritance Hierarchies with Exceptions," Proceedings AAAI-83, 
1983, pp 104-108. 

Fahlrnan, S., NETL: A System for Representing and Using Real-World Knowledge, MIT Press, 1979. 

Fahlman, S., Touretsky, D., and van Roggen, W., "Cancellation in a Parallel Semantic Network," Proceed- 
ings of the Seventh International Conference on AI, Vancouver, B.C., 1981, pp 257-263. 

Fitting, M.C., Proof Methods for Modal and Intuitionistic Logics, Reidel Publishing, Dordrecht, Holland, 
1983. 

Gentzen, G., "Investigations into Logical Deduction," in The Collected Papers of Gerhard Gentzen, M.E. 
Szabo (ed.), North-Holland Publishing Company, Amsterdam, 1969, pp 68-131. 

Hadley, R., "Model-Theoretic vs. Procedural Semantics," Technical Report LCCR TR 87-10, School of 
Computing Science, Simon Fraser University, 1987. 

Hardegree, G., "The Conditional in Quantum Logic," in P. Suppes (ed.), Logic and Probability in Quantum 
Mechanics, Reidel Publishing, Dordrecht, Holland, 1976. 



Hintikka, J., "Form and Content in Quantification Theory," Acta Philosophica Fennica, vol. 8, 1955, pp 7- 
55. 

Holte, R., and Wharton R., "Generative Structure in Enumerative Learning Systems," AI-86, Sixth Cana- 
dian Conference on Artificial Intelligence, Montreal, Canadian Society for Computational Studies of 
Intelligence, May 1986, pp 11-16. 

Hughes, G.E., and Cresswell, MJ., An Introduction to Modal Logic, Methuen and Col. Ltd., 1968. 

Jennings, R., "The Natural Conditional," presented at the Western Canadian Philosophical Association, 
October 1983. 

Jennings, R., "An Eddy in the Theory of Conditionals," in preparation. 

Kleene, S.C., Introduction to Mathematics, Princeton: Van Nostrand, 1952. 

Kripke, S., "Semantical Considerations on Modal Logics," Acta Philosophica Fennica, Modal and Many- 
valued Logics, 1963, pp 83-94. 

Lesperance, Y., "Handling Exceptional Conditions in PSN," Proceedings of the Third Conference of the 
Canadian Society for Computational Studies of Intelligence, Victoria, B.C., 1980, pp 63-70. 

Lewis, D., CounterJactuals, Harvard University Press, 1973. 

McCarthy, J., "Circumscription - A Form of Non-Monotonic Reasoning," Artificial Intelligence, vol. 13, pp 
27-39,1980. 

McDermott, D., and Doyle, J., "Non-Monotonic Logic I," Artificial Intelligence, vol. 13, 1980, pp 41-72. 

Mittelstaedt, P., Quantum Logic, Reidel Publishing, Dordrecht, Holland, 1978. 

Moore, R.C., "Semantical Considerations on Nonmonotonic Logic," Proceedings IJCAI-83, Karlsruhe, 
1983, pp 272-279. 

Minsky, M., "A Framework for Representing Knowledge," in The Psychology of Computer Vision, P.H. 
Winston (ed.), McGraw-Hill, 1975, pp 21 1-277. 

Nute, D., "Counterfactuals," None Dame Journal of Formal Logic. vol. I6,1975,476-482. 

Nute, D., Topics in Conditional Logic, Philosophical Studies Series in Philosophy, vol. 20, Reidel Publish- 
ing, Dordrecht, Holland, 1980. 

Oppacher, F., and Suen, E., "An Efficient Tableau-based Theorem Prover," AI-86, Sixth Canadian Confer- 
ence on Artificial Intelligence, Montreal, Canadian Society for Computational Studies of Intelli- 
gence, May 1986, pp 31-35. 

Pollock, J., Subjunctive Reasoning, Philosophical Studies Series in Philosophy, Reidel Publishing, Dor- 
drecht, Holland, 1976. 



Pumam, H., "Is Semantics Possible?," in Naming, Necessity, and Natural Kinds, S.P. Schwartz (ed), Car- 
nell University Press, 1977, pp 182- l 18. 

Quine, W.V., "Natural Kinds," in Naming, Necessity, and Natural Kinds, S.P. Schwartz (ed.), Cornell 
University Press, 1977, pp 155-175. 

Reiter, R., "A Logic for Default Reasoning," Artifzcial Intelligence 13, 1980, pp 81-132. 

Reiter, R., "On Reasoning by Default," Proceedings of the Second Symposium on Theoretical Issues in 
Natural Language Processing, Urbana, Illinois, July 25-27, 1978. 

Reiter, R., and Criscuolo, G., "On Interacting Defaults," Proceedings ZJCAI-81, Vancouver, B.C., 1981, pp 
270-276. 

Reiter, R., and Criscuolo, G., "Some Representational Issues in Default Reasoning," Computation and 
Mathematics with Applications, 9(1), 1983, pp 15-27. 

Rosch, E., "Principles of Categorization," in Cognition and Categorization, E. Rosch and B.B. Lloyds 
(eds.), Lawrence Erlbaum Associates, 1978. 

Salmon, N., Reference and Essence, Princeton, N J., Princeton University Press, 198 1. 

Schwartz, S., "Natural Kind Terms," Cognition, vol. 7, 1979, pp 301-315. 

Smullyan, R.M., "A Unifying Principle in Quantification Theory, Proceedings of the National Academy of 
Sciences, June 1963. 

Smullyan, RM., First-Order Logic, Springer-Verlag, Berlin, 1968. 

Stalnaker, R.F., "A Theory of Conditionals," in Studies in Logical Theory, N. Rescher (ed.) Basil ' 

Blackwell, Oxford, 1968, pp 98-1 12. 

Touretsky, D., "Inheritable Relations: A Logical Extension to Inheritance Hierarchies," Theoretical 
Approaches to Natural Language Understanding, 1984. 

van Benthem, J., "Foundations of Conditional Logic," Journal of Philosophical Logic, vol. 13, 1984, pp 
303-349. 

van Fraassen, B.C., "The Logic of Conditional Obligation," Journal of Philosophical Logic I, 1972, pp 
417-438, 1972. 

Velanan, F., Logics for Conditionals, Ph.d thesis, University of Amsterdam, Netherlands, 1985. 


