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Abstract 

Drosoplzila nemo encodes a serine threonine MAP kinase that is involved in 

patterning and cell fate determination. nemo participates in crosstalk with several 

pathways; with studies linking the vertebrate homologue, nlk to the TGFP pathway. 

TGFPs are structurally related extracellular polypeptides including the Bone 

Morphogenetic Proteins (BMPs) that are potent regulators of development. 

In Drosophila the BMP molecules Decapentaplegic (Dpp) and Glass bottom boat 

(Gbb) promote vein formation while Nemo promotes intervein fates. Genetic studies 

revealed that Nemo counteracts the effects of components of the BMP pathway; and 

nemo mutant pupal wings show high levels of BMP signalling activity in ectopic veins, 

supporting an inhibitory role for Nemo on BMP activity. 

These studies show that nemo may act as a negative regulator of TGFP signalling; 

and supports the emerging roles of nemo as an important regulator of signalling in 

different pathways. 
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Chapter One: Introduction 

Multicellular organisms develop from a single cell that differentiates into distinct 

and specialized tissues. This process requires well organized and coordinated signals 

between individual cells; a function that is achieved through effective communication 

between cells. This ensures correct patterning and organization of the embryo into the 

distinct structures that make up the adult body. Cell-cell communication is also vital in 

regulated growth, homeostasis and defensive mechanisms in the adult body. Genetic 

pathways play fundamental roles in development; and interact with each other to ensure 

that cells receive the appropriate signals at the right time and in the required amounts. 

The importance of these pathways and their regulation in development is manifest in the 

several developmental conditions associated with loss or deregulation of their 

components. This has made the challenge to understand and characterize genetic 

pathways and their modes of action very crucial in addressing several developmental 

problems. 

The transforming growth factor beta family 

Members of the transforming growth factor P (TGFP) family of growth factors 

have been shown to play important roles in various biological processes. The family 

consists of structurally related soluble extracellular polypeptides which have diverse roles 

in growth and development, homeostasis, and repair of tissues in both vertebrates and 

invertebrates (Massague, 1998; Rafiery and Sutherland, 1999). The importance of this 



pathway is demonstrated in the multitude of human disorders that are associated with its 

dysfunction. Among the effects of TGFQ on target cells is cell cycle arrest at the G1 

phase and the loss of this growth inhibitory effect due to defects in TGFP signalling is 

one of the possible causes of cancer (Massague, 1998). Abnormal TGFQ activity is also 

implicated in a number of inflammatory disorders. Excessive TGFQ signalling underlies 

various disorders of the kidney, lung, liver, and other organs (reviewed in Massague, 

1998). 

The TGFQ family of growth factors are characterized by the presence of six 

conserved cysteine residues, and consists of three major subfamilies namely TGFPs, 

Activins and Bone Morphogenetic Proteins (BMPs). The TGFP subgroup is involved in 

early embryonic development and also has roles in late development and in adult tissues. 

It also functions as a growth inhibitor of most cell types including epithelial cells, 

endothelial cells, haematopoietic cells and lymphocytes (reviewed in Miyazono, 2000). 

Activins and BMPs perform vital roles in early embryogenesis and direct patterning of 

the early embryo. In addition BMPs are further involved in the morphogenesis of most 

tissues. Signalling by this family of proteins controls the development and homeostasis of 

almost all cell types, and constitutes a bulk of intercellular signals between cells. The 

importance of the TGFP family has led to its characterization in most organisms and it is 

found to be well conserved in both vertebrates and invertebrates. Table 1 lists some 

components of the TGFP pathway in various organisms. 

A family of transmembrane protein serinelthreonine kinases (Types I and I1 

receptors) transduce the TGFP signal from the extracellular matrix to the cytoplasm. The 

receptors activate the Smad family of cytoplasmic proteins which move into the nucleus 



to regulate the transcription of target genes. There are three kinds of Smads; receptor 

regulated Smad (R-Smad) that binds to the receptors and mediate signalling; common 

mediator Smad (Co-Smad) which takes part in TGFP signalling by associating with the 

R-Smads; and inhibitory Smad (I-Smad) that antagonizes ligand-dependent signalling. 

In Drosophila, the BMP subclass of TGFP has been well characterized and 

includes Glass bottom boat (Gbb), Decapentaplegic (Dpp) and Screw (Scw) (Padgett et 

al., 1987; Wharton et al., 1991; Arora et al., 1994; Doctor et al., 1992; Khalsa et al., 

1998). Dpp has a variety of biological roles including dorsoventral patterning of the 

embryo, gut formation, as well as outgrowth and patterning of the eye and wing imaginal 

discs (Sekelsky et al., 1995). Gbb is also involved in larval cuticle patterning, midgut 

morphogenesis and wing vein patterning (Doctor et al., 1992; Khalsa et al., 1998; 

Wharton et al., 1999). Dpp and Gbb form heterodimers and act together to regulate 

development in certain contexts; but also have independent roles, in which case they 

signal as homodimers. Scw play roles in the patterning of the dorsal epidermis (Ray and 

Wharton, 2001). These ligands signal through a common Type I1 receptor called Punt 

(Put), but utilize different Type I receptors. Dpp and Gbb signals are mediated through 

Thickveins (Tkv) while Saxophone (Sax) is employed in Scw signalling (Nguyen et al., 

1998). Recently another Type I1 receptor, Wishful thinking (Wit) has been identified and 

was shown to mediate BMP signalling at neuromuscular junctions (Marques et al., 2002; 

2003). The R-Smad Mothers against Dpp (Mad) and the Co-Smad, Medea (Med) mediate 

signalling downstream of Tkv. Mad and Medea are homologues of vertebrate Smadl and 

Smad4 respectively. Among the target genes of Dpp signalling is the inhibitory Smad, 



Daughters against Dpp (Dad) which is related to vertebrate Smads 6 and 7 and is 

involved in a feedback loop to inhibit Dpp signalling (Tsuneizumi et al., 1997). 

The Types I and I1 receptors are glycoproteins that share conserved features, 

including an N-terminal extracellular region, a transmernbrane domain and a C-terminal 

kinase domain (Shi and Massague, 2003). The major difference between these receptors 

is the presence of a 30-amino acid region preceding the kinase domain in the Type I 

receptors. This region consists of a characteristic glycine-serine (TTSGSGSGLP) 

sequence and is therefore referred to as the GS domain, which contributes to the 

activation state of the receptors (reviewed in Massague, 1998; Zimmerman and Padgett, 

2000). The GS domain exists in a wedge-like conformation within the catalytic domain of 

the receptor, thus rendering it inactive in the absence of a ligand (Huse et al., 1999). The 

active TGFP ligands exist as dimers that are stabilized through hydrophobic interactions 

and disulphide bonds (Shi and Massague, 2003). In the absence of ligand, the receptors 

exist as homodimers at the cell surface but the ligand dimers generally recruit them into 

heterotetrameric complexes (thereby bringing these two receptors in close proximity with 

each other) (Fig. 1). The formation of these receptor complexes is crucial for signalling 

by the receptors (reviewed in Massague, 1998; Derynck and Zhang, 2003), as it allows 

easy access of the Type I receptor to the activated type I1 receptor. The ligands induce 

autophosphorylation of the Type I1 receptor on serine residues in its kinase domain. The 

activated Type I1 receptor then phosphorylates the Type I receptor on serine and 

threonine residues in its GS region, causing the GS region to be dislodged from the 

catalytic domain. It is important that the Type I receptor remains inactive and only 

induced through ligand activation of the Type I1 receptor. There is evidence from yeast 



and mammalian cells that indicate that certain proteins bind to the GS domain of the 

Type I receptor to prevent its phosphorylation in the absence of ligand (Huse et al., 

1999). 

Figure 1: The TGFB pathway 

ECM 

Abbreviations: ECM- Extracellular matrix, GS- GS domain; KD- Kinase domain I- Type I receptor; II- 
Type 11 receptor. The TGFB ligands bind to the receptors as homodimem, and induce receptor hetero- 
oligomerization and phosphorylation of the Type I receptor in the GS domain by the Type 11 receptor. 
SARA presents R-Smad to the activated Type I receptor, and R-Smad is phosphorylated. Phosphorylated 
R-Smad complexes with Co-Smad and moves into the nucleus to associate with co-activators or repressors 
to regulate transcription of target genes. I-Smads compete with R-Smads for biding to the receptor, and 
also block R-SmadICo-Smad oligomerization. Smurftargets R-SmadII-Smad for degradation. 

An essential component of the pathway is the Smad family of proteins that 

mediate signalling downstream of the Type I receptors in the cytoplasm. The Smads 

typically consist of conserved N-terminal Mad homology l(MH1) and a C-terminal Mad 

homology 2 (MH2) domains which are separated by a poorly conserved proline-rich 



linker region (Christian and Nakayama; 1999) (Fig. 2). Both MHI and MH2 domains are 

present in R-Smads and Co-Smads but the I-Smads lack an MHI domain. The MH2 

domain interacts with receptors as well as DNA binding proteins and transcription 

factors. This domain contains a number of serine residues (SSXS) located at its C 

terminal end, the distal two of which are necessary for activation by the receptors. The 

MHI domain is involved in DNA binding. In the inactivated state, the MHI and MH2 

domains interact and this interaction leads to inhibition of MH2 transcriptional and 

biological activity. The MH1 domain therefore inhibits MH2 activation in the absence of 

signalling; hence providing a level of regulation of signalling. The linker region is 

important in homo-oligomerization of the Smads, and also contains MAPK 

phosphorylation sites that provide a potential point of crosstalk with other pathways 

(reviewed in Massague, 1998). 

The R-Smad is recruited to the activated Type I receptor and is phosphorylated on 

the two distal C-terminal serines SXS. Once activated, R-Smad associates with the Co- 

Smad. This R-SmadICo-Smad complex then translocates to the nucleus to regulate the 

transcription of target genes. The pathway specific Smads (R-Smad and Co-Smad) exist 

as monomers but are induced to form homo-oligomers and hetero-oligomers in response 

to receptor activation (Kawabata et al., 1998). Smad oligomerization is mediated through 

the MH2 domain. The subcellular localization of Smads is controlled to regulate 

signalling. There is a nuclear localization signal (NLS) made up of a Lys-Lys-Leu-Lys 

sequence located at the N-terminal region of the Smads that ensure their nuclear import. 

On the other hand, a Leucine-rich nuclear export signal (NES) in the vertebrate Co-Smad, 

Smad4 keeps it in the cytoplasm in unstimulated cells (Watanabe et al., 2000). 



Figure 2: Schematic diagram showing the structure and domains of Smads 

Co-Smad 

Linker 

PY 
MHl and MH2 inhibit each other in the absence of ligand; activated receptor phosphorylates R-Smad on 
the C-terminal distal mine residues. MH1 domain is important for binding to DNA, and is missing in I- 
Smads which also have a longer linker region. Also shown are various motifs that play essential roles in 
Smad signalling and interaction. NLS in both R- and Co-Smads enhance their nuclear import, while NES 
induce export of Co-Smad fiom the nucleus. The PY motifs in the linker region of R-Smads and I-Smads 
are important for interacting with the WW motif of Smurf, and could be targeted by other proteins 

Ligand-induced complex formation between R- and Co-Smad is thought to be necessary 

to relieve their nuclear export (reviewed in Itoh et al., 2000). The mechanisms regulating 

Smad localization are not well understood; however emerging evidence indicate that 

cytoplasmic and nuclear retention factors may be involved. These factors are presumably 

selective in interacting with Smads, with cytoplasmic factors binding preferentially to 

monomeric Smads, while nuclear factors likely bind to complexed Smads (reviewed in 

ten Dijke and Hill, 2004). For example, the nuclear export protein, chromosome region 

maintenance 1 (CRM1) was shown to bind to the NES region of Smad4 (Pierreux et al., 

2000; Watanabe et al., 2000), while importin-a interacts with the NLS of the same Smad 

to induce its nuclear import (Pierreux et al., 2000; Watanabe et al., 2000; Xiao et al., 



2003). Interaction with the activated receptor is therefore critical in determining the 

localization of Smads, as it will presumably induce their release from cytoplasmic 

retention factors and promote their association with nuclear import factors. Hence in the 

absence of ligand, both R and Co-Smads remain chiefly in the cytoplasm, and move into 

the nucleus only after phosphorylation of the R-Smads by the activated receptor. 

Smads are shown to be presented to the receptor by an anchor protein, Smad 

anchor for receptor activation (SARA). SARA contains a central - 

Fab 1 p/Y_OTP/yacl p/EEAl (FYVE) domain, consisting of two zinc-finger motifs. FYVE - 

domains are present in several proteins that mediate endocytic vesicular traffic; and are 

known to bind phosphatidylinositol-3-phosphate to tether proteins at endosomal 

membranes (Wurmser et al., 1999). SARA resides at the cell membrane through the 

lipid-binding FYVE domain; and interacts with Smads through its Smad-binding domain. 

It also contains a C-terminal domain which binds the Type I receptor. In this way, SARA 

promotes effective recruitment of R-Smads to the receptor (Fig. 1). The R-Smad-SARA 

complex is disrupted upon phosphorylation of the R-Smads, thus allowing the Smads to 

move into the nucleus (Tsukazaki et al., 1998). 
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Control of gene expression by Smads 

Once in the nucleus the R-SmadICo-Smad complex interacts with co-activators or 

co-repressors that determine their transcriptional activity. This final step in TGFP 

signalling is important in determining which genes are turned on in response to different 

TGFB signals and in varying contexts. Irrespective of the TGFB ligand that activates 

them, R- and Co-Smads recognize and bind with low affinity to the sequence CAGAC 

(also referred to as Smad binding element (SBE)) on DNA (Shi et al., 1998) and thus 

require DNA-binding co-factors to allow efficient regulation of specific target genes 

(Massague and Chen, 2000). The cell-specific expression of these co-factors determines 

which cells express TGFS-responsive genes both spatially and temporally. As such, these 

co-factors are selective in the kinds of TGFB target genes they activate, through 

differential association with individual Smads, leading to pathway specific activation of 

various TGFP target genes (Table 2). For example, the winged-helixlforkhead family 

member forkhead gctivin ~ignal  iransducer- 1 (FAST- 1 ) interacts with Smad2 and Smad4 

to mediate the expression of the Mix.2 gene in Xenopus, in response to activin-like 

signals. FAST-I does not associate with other Smads and hence does not promote BMP 

signalling for example. On the other hand, the 30 zinc finger nuclear protein Qlf-IIEBF 

associated zinc factor (OAZ), associates with the Smadl -Smad4 complex in Xenopus to - 

promote the expression of BMP-induced Xvent2. OAZ is limited to the BMP pathway 

and mediates BMP target gene expression only. In Drosophila, the homeobox 

transcription factor tinman cooperates with Mad and Medea to regulate its own 

transcription in response to BMP signalling (Massague and Wotton 2000; Zimmerman 

and Padgett, 2000). 



Table 2: Various Smad transcriptional regulators and their effects on signalling 

Organism 

V) - 

I Activin I Smad2,3,4 I FAST-1 I mix.2, nodal, I activation 

BMP 
TGFP 
TGFP 
TGFP 
TGFP 

Ligand type 

TGFP 
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TGFP, 
Activin 
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Activin 
TGFP, 

Q 
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c7 .= 

Abbreviations: Act, Activin; FAST, forkhead activin signal transducer; MSG, melanocyte specific gene; 
sal, spalt; SIP, Smad interacting protein; SkiISnoN, Sloan-Kettering avian retrovirus/ski-related novel gene. 

Effect 
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activation 
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? 
? 
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? 

FAST-2 
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T L 
n 

Smads interact with the cyclic adenosine mono phosphate (CAMP) response 

binding (CREB) binding protein (CBPlp300) through the MH2 domain, and use them as 

transcriptional co-activators to induce target gene transcription (Janknecht and Wells, 

1998). Drosophila Mad is shown to interact with the CBPlp300 homologue Nejire (Nej) 

to activate transcription of Dpp target genes (reviewed in Torres-Vazquez, 2001). CBP 

and p300 have histone acetylase iransferase (HAT) activity which enables them to 

modify chromatin structure, and probably expose specific promoter sequences to DNA 

binding proteins such as the Smads (Massague and Wotton, 2000). The HAT activity of 

these co-activators on DNA enhances transcriptional activation. Conversely, histone 

d e a a l s e s  (HDACs) repress transcription by causing tighter nucleosomal packing of - 

repression 
repression 
repression 
repression 
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Smad2 
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DNA and impair the accessibility of promoter sequences to transcription factors. Some 

transcriptional co-repressors inhibit transcription by recruiting the HDACs. An example 

is the TGFP inhibitory factor (TGIF), a homeodomain protein that forms a complex with 

Smads and recruits HDACs to inhibit Smad transcriptional activity. The structurally 

related proto-oncogenes Ski and SnoN also repress Smad transcriptional activity by 

recruiting the HDACs. Another repressor, Smad nuclear interacting protein 1 (SNIP 1) is 

found to interact with Smad4 and CPBlp300 to suppress TGFP signalling (reviewed in 

Itoh et al., 2000). As a result of all these interactions Smad transcriptional activity in the 

nucleus is well regulated both temporally and spatially in response to specific TGFP 

signals. TGFP signalling usually leads to direct activation of target genes; however 

evidence suggests that signalling may also activate genes indirectly by de-repressing 

certain target genes from the effects of inhibitors. This view is supported by studies from 

dauer development in C. elegans. In response to unfavourable environmental conditions, 

C. elegans L3 larvae arrest as dauer, a state that allows them to survive and move away 

from suboptimal conditions. The Co-Smad-related protein, DAF-3 induces dauer 

formation even under ideal conditions. This activity of DAF-3 is inhibited by BMP 

signalling to prevent worms from undergoing dauer arrest under optimal conditions 

(reviewed in Patterson and Padgett, 2000). DAF-3 is similar to Co-Smads but appears to 

have distinct functions (Patterson and Padgett, 2000). DAF-3 is also shown to recognize 

and bind to the sequence, GTCTG in the myo-2 gene to repress its transcription. The 

myo-2 gene product is a component of the pharyngeal muscle in C. elegans (Thatcher et 

al., 1999). This inhibitory activity of DAF-3 is also repressed by TGFP signals (Thatcher 

et al., 1999). Another example is found in Drosophila, where the transcriptional 



repressor, Brinker inhibits the transcription of Dpp target genes. Dpp signalling leads to 

inhibition of Brinker activity, as a result de-repressing and allowing the transcription of 

these genes (Jazwinska et al., 1999). 

Regulators of TGFP signalling 

There are several mechanisms in place to ensure that cells do not receive 

excessive TGFP signals. A number of negative regulators (including I-Smads) exist to 

monitor TGFP signal levels in the cell. The I-Smads function mainly as negative 

feedback antagonists of TGFP signalling. These Smads lack the C-terminal 

phosphorylation sites (i.e. the SSXS motif, Fig. 2) and as such are able to bind to the 

receptor without being phosphorylated. It is proposed that these proteins inhibit signalling 

through competing with the R-Smads for binding to the Type-I receptor as well as 

competing with Co-Smads for association with activated R-Smads (Itoh et al., 2000). 

Smad6 and Smad7 are the inhibitory Smads in vertebrates and specifically repress BMP 

signalling; however Smad7 is able to antagonize other TGFP signals as well (Nakao et 

al., 1997). Smad7 is recruited to the Type I receptor by the serinelthreonine kinase 

receptor-associated protein (STRAP) to exert its effect on signalling (Datta and Moses, 

2000). In Drosophila, Dad, which is induced in response to Dpp signalling, functions in a 

negative feedback loop to inhibit Dpp. Similar to the scenario in vertebrates, Dad is 

proposed to interact with Mad to prevent it fiom being activated by the receptor; and also 

competes with Mad for binding to the type I receptor, Tkv (Tsuneizumi et al., 1997). The 

antagonistic function of I-Smads in the feedback circuit ensures that TGFP signalling is 

well modulated. 



Emerging studies also ascribe positive roles to I-Smads in TGFP signalling. 

Smad6 and Smad7 were shown to mediate TGFP-induced adipocyte differentiation, while 

Smad7 upregulation by TGFP is found to be critical in apoptosis of prostate carcinoma 

cells (Choy et al., 2000; Landstrom et al., 2000). The mechanism of this positive 

modulation of signalling by I-Smads is however not clear. I-Smads are predominantly 

nuclear and are exported to the cytoplasm in response to signalling (reviewed in Itoh et 

al., 2000) probably to effectively modulate signalling. Given the conserved nature of the 

Smads in various organisms, it is surprising that no I-Smad has yet been discovered in C. 

elegans (Patterson and Padgett, 2000). 

There are additional factors that control TGFP signalling at different levels of the 

pathway. A number of studies show that certain proteins regulate the accessibility of the 

ligands to the receptors. Ligands of the TGFP subfamily are expressed as inactive 

precursor molecules that are cleaved in the secretory pathway into an amino terminal 

propeptide and a carboxy-terminal fragment which is the mature growth factor. A number 

of proteins including thrombospondin-1 (TSP-I), act on the inactive molecules to make 

them functional (Crawford et al., 1998). Unlike TGFP, Activins and BMPs are 

synthesized as active molecules but their activity in the extracellular matrix is regulated 

by a number of antagonists (Miyazono et al., 2000) that bind and prevent their access to 

the receptors. Both Activins and BMPs are inhibited by the secreted glycoprotein, 

Follistatin. Activin induces the release of follicle stimulating hormone (FSH) from the 

pituitary, an effect inhibited by Follistatin which prevents binding of Activin to the 

receptors. In a similar way, Follistatin counteracts the inhibitory action of BMPs on 

Xenopus neural fate (Hemmati-Brivanlou et al., 1994). Other BMP antagonists are the 



secreted proteins Chordin and Noggin, both of which are expressed in the Spemann's 

organizer (a signalling centre located at the dorsal lip of the amphibian gastrula 

blastopore) of the amphibian embryo and inhibit BMP-induced ventral mesoderm 

(Zimmermann et al., 1996; Piccolo et al., 1996). Both Noggin and Chordin contain 

cysteine-rich (CR) repeats and prevent BMPs from interacting with the receptors. Short 

gastrulation (Sog) is the Chordin homologue in Drosophila which antagonizes BMP 

ligands (Holley et al., 1996). Sog is found to inhibit the activity of Screw, and genetic 

data also show that Sog has inhibitory effects on signalling mediated by Dpp (Yu et al., 

1996). These negative regulators ensure that signalling is activated in the right cells; and 

also help establish concentration gradients of the ligands across the developing embryo 

(Marques et al., 1997). The latter role is very important due to the morphogenetic nature 

of the ligands and the varying concentration-dependent roles they perform in directing the 

specification of different parts of the embryo. 

Another important and complex aspect of TGFP signalling is the presence of 

agonists that inhibit the activities of the extracellular antagonists enumerated above. This 

action is mediated by secreted metalloproteases which cleave the BMP antagonists to 

release free and active ligands. These include Drosophila Tolloid and Tolloid-related 1 

(Tlr-1) and their orthologues in Xenopus (Xolloid) and human (BMPI and hTldl). 

Xolloid acts on Chordin while Tolloid interacts with Sog in Xenopus and Drosophila 

respectively to relieve the repression of the respective BMP ligands (reviewed in 

Massague and Chen, 2000). Ashe and Levine (1999) observed that the interaction 

between Sog and Tolloid is needed to establish a gradient of Dpp activity which 

subdivides the dorsal ectoderm of the Drosophila embryo into amnioserosa and dorsal 



epidermis. Conley and colleagues (Conley et al., 2000) recently identified another 

possible Drosophila BMP agonist, Crossveinless-2, which presumably inhibits the action 

of Sog during crossvein specification. The Twisted gastrulation (Tsg) protein performs a 

complex role to act as an agonist and antagonist in different contexts. In Xenopus, Tsg 

binds to Chordin-BMP complex to modulate signalling, and help release the active BMP 

ligand (Oelgelschlager et al., 2000; 2003). Recent studies however suggest inhibitory 

roles for Tsg in BMP signalling; and implicate it to enhance the activity of both Chordin 

and Sog (Ross et al., 2001; Chang et al., 2001). The exact role Tsg is playing in BMP 

signalling is open to debate. 

Apart from ligand function, other proteins target the receptors to regulate 

signalling. Among these is the BMP and activin membrane-bound inhibitor (BAMBI), a 

transmembrane protein which shares sequence similarity with type I receptors in the 

extracellular domain (Onichtchouk et al., 1999). BAMBI forms heterodimers with Type I 

receptors and interferes with their activation. This protein is reported to strongly inhibit 

both BMP and activin signalling in Xenopus; and is also shown to act in a negative 

feedback loop to suppress BMP signalling during Xenopus embryogenesis (Onichtchouk 

et al., 1999). 

Signalling is also regulated by other proteins that control R-Smad availability. 

Smad ubiquitination regulatory factors (Smurfs) are a group of ubiquitination ligases that 

bind specifically to R-Smads and target them for proteosome-mediated ubiquitination and 

subsequent degradation (Ebisawa et al., 2001; Tajima et al., 2003). Smurfl is an E3 

ubiquitin ligase which contains the homologous to E6AP GOOH-terminus (HECT) and 

WW protein-protein interacting domains; the latter of which is involved in interacting 



with the PY motif of a proline-rich sequence present in the linker region of Smads 

(Massague and Chen, 2000). In Xenopus, Smurfl binds Smadl and induces its 

degradation; and ectopic expression of Smurfl inhibits Smadl-induced ventralization in 

embryos (Zhu et al., 1999). Smurfl and Drosophila Smurf (DSmurf) were also shown to 

recruit Smad7 and Dad respectively to the Type I receptor to enhance their inhibitory 

activity (Podos et al., 2001; Suzuki et al., 2002). 

Recent evidence also implicates microtubules as regulators of TGFP signalling in 

the cytoplasm. Dong et a1 (2000) showed that Smads are bound to microtubules (through 

P-tubulin); and probably become dissociated only after their phosphorylation by 

receptors. This interaction is likely to tether Smads in the cytoplasm to prevent their 

nuclear import and subsequent leaky activation of target genes in the absence of signal. 

Crosstalk between TGF$ and other signalling pathways 

In addition to the numerous factors that tightly control TGFP signalling at various 

levels, the pathway is M h e r  regulated through its integration with other signalling 

networks. Smad proteins provide several points of integration and interaction between 

signals arising from the TGFP family and other pathways. The mitogen activated protein 

kinases (MAPKs) p38 and Jun-N terminal kinase (JNK) enhance TGFP signalling. On the 

other hand, Smad7 is activated by signals from a number of sources including tumor 

necrosis factor alpha (TNFa) through NF-K B; and Interferon gamma (IFN y) through the 

Janus kinaseslsignal transducers and activators of transcription (JAWSTAT) pathway. In 

addition, activated Ras under the influence of the Epidermal Growth Factor (EGF) 

activates the extracellular signal regulated kinases (Erk) to block the R-Smad ICo-Smad 

complex from translocating into the nucleus (reviewed in Itoh et al., 2000). 
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Role of Nemo-like kinases in TGFP signalling 

A potential candidate that may be involved in regulating TGFP signalling is the 

Nemo-like kinase (Nlk); a mitogen activated protein kinase (MAPK) with important roles 

in development. Perhaps the strongest link between TGFP signalling and Nlks is through 

the TGFP activated kinasel (Takl). Takl is a MAPK kinase kinase (MAPKKK) which is 

activated in response to TGFP signalling (Yarnaguchi et al., 1995). The MAPK pathway 

mediates signalling downstream of various receptors to produce numerous cellular 

responses. This pathway is made up of three protein kinases, MAPKKK, MAPKK, and 

MAPK. MAPKKK phosphorylates and activates MAPKK, which in turn phosphorylates 

MAPK (Nishida and Gotoh, 1993). Takl activates a number of MAP kinases in culture, 

including JNK, p38 and Nlk (Moriguchi et al., 1996; Shirakabe et al., 1997; Wang et al., 

1997; Ishitani et al., 1999). Studies demonstrate that Tak activates Nlk homologues in 

response to TGFP signalling in mice and worms (Ishitani et al., 1999; Meneghini et al., 

1999; Shin et al., 1999). These findings implicate Nlks as potential modulators of TGFP 

signalling. Other targets of Takl including JNK and p38 also regulate TGFP signalling 

(Derynck and Zhang, 2003) although it is not known if they do so in response to Takl. 

Developmental roles of nlks 

Nemo-like kinases are proline-directed serine threonine protein kinases that play 

various roles in cell fate determination and pattern formation. The genes encoding these 

proteins are well conserved evolutionarily, with homologues in Drosophila (nemo), 

Caenorhabditis elegans (lit-]) and vertebrates (nemo-like kinases). Nlk and its 

homologues regulate various signalling pathways, including Wnt in C. elegans, Xenopus 

laevis and Drosophila (Meneghini et al., 1999, Rocheleau et al., 1999, Ishitani et al., 



1999, Verheyen et al., 2001; Zeng and Verheyen, 2004). Nemo (nrno) was first identified 

in Drosophila as an important component of eye formation. The Drosophila compound 

eye consists of roughly 800 eye units, termed ommatidia. Each of these can be visualized 

as a secreted hexagonal lens in the adult fly eye. Inside the ommatidium are 20 cells 

consisting of 8 photoreceptors and 12 accessory and pigment cells. The photoreceptor 

cells within the eye undergo a precise series of rotations during their development. nrno is 

found to be required for the correct orientation of these photoreceptors; and loss of nmo 

manifests itself in a change from the hexagonal to square shape of the lens (Choi and 

Benzer, 1994). nmo also has roles in cell fate specification during wing development in 

Drosophila with mutations in the gene affecting the specification of veins and the size of 

the wing (Choi and Benzer, 1994; Verheyen et al, 2001). Nemo also regulates embryonic 

development and apoptosis (Verheyen et al., 2001; Mirkovic et al., 2002) in Drosophila. 

In C. elegans, lit-1 plays a central role in the asymmetrical cell division and cell 

fate specification (Meneghini et al., 1999; Rocheleau et al., 1999). During embryogenesis 

asymmetrical divisions delineate the anterior cells from their posterior counterparts; with 

lit-1 functioning to specify posterior cell fates (Shin et al., 1999). Nlks have been shown 

to be involved in vertebrate development as well. In Xenopus xNlk is essential for neural 

development during embryogenesis. Kortenjann and colleagues (Kortenjann et al., 2001) 

demonstrate roles for mNlk in embryogenesis, neural development and haematopoiesis in 

mice. These authors showed that mice lacking mNlk die during embryogenesis; or are 

growth retarded with various neurological disorders. These mice also display aberrant 

differentiation of bone marrow stromal cells. The importance of Nlks in development has 

led to efforts to understand and characterize their activity. Emerging studies reveal roles 



for Nlks in modulating various signalling pathways; the most characterized of these 

interactions is in crosstalk with the Wnt pathway. 

Nlks and regulation of Wnt signalling 

The Wnt secretory proteins control many important developmental decisions 

including embryogenesis, specification of cell fate and polarity, body axis formation and 

neural development. The Wnt signal proceeds through at least two distinct pathways 

referred to as canonical (p-catenin-dependent) (Fig. 3)  and non-canonical (p-catenin- 

independent) pathways (Fig. 4). In the canonical pathway, Wnt signalling is mediated by 

the cytoplasmic transcriptional coactivator, p-catenin. In the absence of Wnt signal, f3 

catenin forms a complex with a group of inhibitors including Glycogen Synthase Kinase 

3P (GSK3P), the Adenomatous Polyposis Coli (APC) protein, and Axin. This interaction 

leads to phosphorylation of p-catenin and its subsequent degradation. The Wnt ligands 

bind to the Frizzled receptors, leading to the activation of the cytoplasmic protein 

Dishevelled (Dsh), which consequently inhibits GSK 3P and thereby stabilizes the 

cytoplasmic pool of p-catenin. P-catenin then translocates to the nucleus and forms a 

complex with the high-mobility-group (HMG) class of transcription factors, lymphoid 

enhancer factor 1 (Lef 1) and T-cell factor (TCF) to activate transcription of target genes. 

There is a deviation from this general scenario in C. elegans, where a Lef/TCF-like 

protein acts as a transcriptional repressor of Wnt signalling. Therefore in C. elegans, the 

p-catenin homologue WRM-1 inhibits the activity of the Lef IITCF homologue, POP-1 

to allow the transcription of target genes (reviewed in Wodarz and Nusse, 1998). 

Wnt signalling is well regulated in development to allow correct specification of 

body parts. Several studies support a role for Nlks in modulating Wnt signalling both 
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positively and negatively. In C. elegans, the Takl homologue, MOM-4 (More of MS-4) 

and the Nlk homologue LIT-1 cooperate with the Wnt signalling pathway to down- 

regulate POP-1 (Meneghini et al., 1999; Rocheleau et al., 1999). LIT-1 is activated by 

MOM-4 and forms a complex with WRM-1, this LIT-IIWRM-1 complex then moves 

into the nucleus to phosphorylate POP-1 and induce its nuclear export to allow the 

transcription of Wnt target genes (Shin et al., 1999). Recently Thorpe and Moon (2004) 

reported the finding that Nlk acts with p-catenin to de-repress Wnt target genes in 

Zebrafish, placing Nlk as a co activator of canonical Wnt signalling. 



Figure 3: The canonical Wnt pathway 
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The Wnt ligands interact with the Fz receptors leading to the phosphorylation of Dsh. Dsh in turn inhibits 
the destruction complex made up of APC, Axin and GSK-3P; to stabilize j3-catenin in the cytoplasm. Free 
P-catenin moves into the nucleus where it interacts with the LeVTCF transcription factors to regulate the 
transcription of target genes. 



Figure 4: 
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Abbreviations: CamKII- Calmodulin-kinase II; Fmi- Flamingo; Pk- Prickle; PKC- Protein kinase C; ROK- 

Stbm-strabismus. Signalling through the non-canonical Wnt pathway is not fully understood; the figures 

presented above represent simplified versions of the two characterized lineages. (A) The PCP pathway: 

Wnt ligands interact with the Fz, and Fmi transmembrane proteins leading to the activation of Dsh; and 

subsequently Rho and ROK which influence target gene transcription in the nucleus. Another lineage 

involves the membrane proteins Stbm and Pk downstream of Fmi to regulate target genes. This latter part 

of the pathway is less understood. (B) The Ca '+-dependent pathway is activated when G proteins 

downstream of Fz activate membrane-tethered Dsh. Dsh then activates intracellular calcium ion which 

signals through one of two mediators; PKC or CamKII to influence targets. 



This is in contrast to what is seen in mammalian cells, where the TaklNlk 

pathway phosphorylates and down-regulates Lef- 1 ITcf, preventing the p-catenin-Tcf 

complex from binding to DNA and thus inhibiting transcriptional activity downstream of 

Wnt signalling (Ishitani et al., 1999; 2003). This result is supported by studies in Xenopus 

where Nlk prevents double axis formation induced by overexpression of p-catenin 

(Ishitani et al., 1999). Studies in Drosophila also indicate that nmo is an inhibitor of 

Wingless (Wg) signalling. Zeng and Verheyen (2004) showed that Nemo suppresses Wg- 

dependent gene expression in the wing disc, and affects the stability of the p-catenin 

homologue, Armadillo (Arm). Nemo is also shown to bind Arm (Bessette, Zeng and 

Verheyen, Unpublished data). However the effect of this binding is not known. 

In most instances signalling pathways employ negative feedback circuits to 

monitor their activity in a precise manner. Nlks have been demonstrated in recent studies 

to act in feedback loops to monitor Wnt signalling. Smit and colleagues (Smit et al., 

2003) showed that the Takl/NLK pathway (which inhibits Wnt signalling) is activated in 

response to Wnt signalling in vertebrates. In the Drosophila wing imaginal disc, high Wg 

signalling induces the transcription of nemo which acts to inhibit Wg (Zeng and 

Verheyen, 2004). 

In addition to the canonical pathway, new studies reveal a positive role for Nlks in 

the non-canonical Wnt pathway. The non-canonical Wnt pathway uses other mediators in 

the place of p-catenin to achieve signalling downstream of Wnt ligands and receptors. 

This pathway is divided into two separate branches, the planar cell polarity (PCP) and 

calcium ion (Ca '+)-dependent lineages. The PCP pathway controls planar tissue polarity 

in Drosophila and convergent extension (CE) movements during gastrulation in 



vertebrates. A number of proteins including the membrane protein Strabismus (Stbm), the 

LIM domain protein Prickle (Pk), the seven-pass trans-membrane cadherin Flamingo 

(Fmi), and the small guanosine triphosphate (GTPases) Rho, and Rho kinase (ROK) 

make up this pathway. Certain Wnt ligands (e.g. WntSa and Wntll) also induce the 

release of intracellular calcium which activates downstream kinases including the 

Calmodulin protein kinase I1 (CarnKII) and protein kinase C (PKC) (reviewed in Veeman 

et al., 2003). There is evidence that non-canonical Wnt signalling may antagonize the 

canonical pathway (Torres et al., 1996; Park and Moon, 2002; Topol et al., 2003; 

Veeman et al., 2003). 

The first evidence for involvement of Nlk proteins in the non-canonical Wnt 

pathway came from studies in Drosophila. Two studies by Choi and Benzer (1 994) and 

Verheyen et al., (2001) show that nmo mutants exhibit defects in PCP signalling. This 

finding is buttressed by recent evidence from vertebrates. In mammalian culture, Nlk 

functions as a downstream effector of the non-canonical Wnt ligand, Wnt-5a to inhibit P - 

catenin signalling (Ishitani et al., 2003a); while Zebrafish nlk interacts genetically with 

the non-canonical wntll homologue, silberblick (slb) to regulate gastrulation movements 

(Thorpe and Moon, 2004). 



Role of Nlk in signalling crosstalk 

Apart fiom the Wnt pathway, emerging evidence also implicates Nlks in crosstalk 

with other signalling pathways. This is through a new role of the Nlks as repressors of 

transcriptional co-activators such as the CREB binding protein (CBP/p300), thus 

repressing the transcriptional activity of several transcription factors including Nuclear 

Factor kappa B (NFkB), Smads and p53, all of which utilize CBPlp300 to activate 

transcription (Yasuda et al., 2004). As a result Nlk is likely to inhibit a wide range of 

signalling pathways that employ these transcription factors. 

Although Nlks are linked to the TGFP pathway through Takl, the potential 

involvement of these kinases in modulating TGFP signalling is not well characterized. 

Given the numerous roles Nlks play in regulating signalling in other pathways, the major 

aim of this thesis is to investigate any possible interaction between nmo and the TGFP 

pathway in Drosophila. 

TGFP signalling and wing development in Drosophila 

The wing of the fruitfly, Drosophila melanogaster presents an excellent model for 

uncovering the intricate genetic interactions that govern development in multicellular 

organisms. Drosophila possesses a pair of wings for flight that are attached to the second 

thoracic segment of the body. The adult wing consists of a wing blade in which linear 

cuticular structures known as veins are distributed in a characteristic pattern among 

groups of intervein cells. Vein cells are more compact and differentiate dark pigmented 

cuticle, hence are easily distinguished fiom intervein cells (de Celis, 2003, Milan et al., 



1997) (Fig. 5). The veins provide structural rigidity to the wing and also carry 

haemolymph, axons and in some cases trachea (transverse veins do not carry trachea) 

(reviewed in de Celis and Diaz-Benjumea, 2003). 

In Drosophila there are four longitudinal veins (L2-L5) that span the length of the 

wing, and two transverse veins (anterior crossvein, acv, and posterior crossvein, pcv) that 

connect the longitudinal veins L3 and L4, as well as L4 and L5, respectively. There are 

two incomplete longitudinal veins L1 and L6 which are located in the anterior and 

posterior compartments, respectively, of the wing. In addition, there is a marginal vein 

(M) that spans the length of the anterior wing margin (de Celis, 2003) (Fig. 5). The 

differentiation and positioning of these veins is maintained in the wildtype Drosophila 

wing through the activities of many genes. Subtle wing defects in Drosophila are readily 

identified, and many of the genes controlling wing vein patterning in the fly have been 

characterized (de Celis, 2003; Sturtevant and Bier, 1995) and have been found in most 

cases to play similar roles to direct development in other organisms. These features make 

Drosophila wing development a good model for studying genetic interactions that govern 

pattern formation during development. 



Figure 5: Structure of the adult Drosophila wing. 

Abbreviations: L1-L6- longitudinal veins; acv- anterior crossvein; pcv-posterior crossvein; M- marginal 
vein. The adult wing has longitudinal (Ll-L6) and transverse (acv and pcv) veins arranged in a species- 
specific pattern among intervein cells. The marginal vein spans the anterior wing margin, ending at the tip 
of L3. Specification of all these veins and intervein cells is controlled by specific genetic programs. Vein 
cells are densely packed and more pigmented than intervein cells. 

Vein development in the imaginal disc 

Drosophila undergoes complete metamorphosis (i.e. distinct stages with 

specialized body patterns adapting to the needs of each stage). The fertilized egg hatches 

into a mobile larva, which undergoes three successive molts (referred to as instars) to 

form an immobile pupa from which the adult fly emerges. The structures that give rise to 

the adult body are formed in the embryo and proliferate separately during larval 

development (Snodgrass, 1954; Anderson, l963a, b, l972b.: in Cohen, 1993). Epidermal 

structures of the adult head, thorax (including the wings and legs), and external genitalia 

are formed from sac-like structures called imaginal discs; while the adult abdominal 

epidermis derives from cells known as histoblast nests ( Cohen, 1993). 



Vein specification occurs in three successive stages, starting with the 3rd instar 

wing disc and involves interaction between various gene products. A number of genes 

regulated by Hedgehog (Hh), Decapentaplegic (Dpp), Notch and epidermal growth factor 

receptor (EGFR) pathways play significant roles in specifying vein and intervein regions 

in the wing. 

The precursor cells that form the wing disc are subdivided into anterior and 

posterior, as well as dorsal and ventral halves through the differential expression of the 

engrailed (en) and apterous (ap) genes respectively (Fig. 6A). en is expressed in 

posterior cells and repressed in anterior cells; while ap is expressed specifically in dorsal 

cells. These genes also influence the expression of other genes to maintain distinct 

anterior-posterior (A-P), as well as dorsal-ventral (D-V) compartments. The A-P 

boundary is set up during embryogenesis but the D-V boundary only appears in the 

second larval instar (Diaz-Benjumea and Cohen, 1993). Both en and ap activate various 

genes that contribute to growth and patterning of the disc. These subdivisions are 

maintained into the pupal stage. Vein specification is initiated in mid third instar along 

the A-P axis of the wing disc. en encodes a homeobox transcription factor and regulates 

the expression of other genes, which direct vein specification among other functions. 

Proteins encoded by the hedgehog (hh) and dpp genes play essential roles in the growth 

and specification of vein and intervein territories within the disc. 



Figure 6: Subdivisions of the 3rd instar wing imaginal disc 
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Abbreviations: A/P, antero-posterior; DN, dorso-ventral. (A)The wing disc is divided along two planes: 
anterior and posterior; dorsal and ventral. These divisions arise, and are maintained through differential 
gene expressions. Posterior cells express en, which is repressed in anterior cells. Likewise, up is expressed 
in the dorsal half, but repressed in the ventral domain. The adult wing arises from the wing blade region of 
the disc. This region folds during pupal development to bring dorsal and ventral halves in contact with each 
other. The D N  boundary becomes the future wing margin. (B) The interaction between various genes 
directs the specification of veins along the A/P boundary of the wing blade, on either surface i.e. ventral 
and dorsal. 



hh is a direct target of En and as a result is activated in the posterior compartment 

(where the en gene is expressed); however it encodes a secretory protein that diffuses to 

the anterior region to activate target genes, including the TGFP gene, dpp. Other targets 

of Hh include specific transcription factors that direct the specification of different 

longitudinal veins as well as intervein tissue. Dpp protein has long range effects and 

diffuses to reach most cells in the disc. The major mediators of Dpp signalling in the disc 

are the genes of the spalt complex, spalt (sal) and spalt-related (salr). These genes 

encode zinc finger domain transcription factors and control the positioning of provein 

territories (de Celis, 1996; de Celis et al., 2000, Milan et al., 2000). The combined effects 

of Hh and Dpp signalling therefore divides the third instar wing disc into individual 

proveins and interveins along the proximo-distal axis (mediated by specific transcription 

factors), accompanied by a general increase in the size of the disc. 

Once provein and intervein territories are specified, other factors ensure their 

integrity, width and continual maintenance of their respective fates. The EGFR and Notch 

pathways maintain vein and intervein fates respectively within the disc, and regulate each 

other's activity to maintain the position and width of the proveins. EGFR signalling is 

maintained in the centre while Notch signalling is restricted to the borders of each 

provein. In the middle of the third larval instar expression of the rhomboid (rho) gene is 

initiated in all vein primordia (Bier, 2000) probably due to Dpp activity (Yu et al, 1996). 

Rho and the EGFR ligand Star, activate the EGFR pathway in the centre of the proveins. 

As a result of EGFR signalling, the Notch ligand Delta (Dl) is expressed in the proveins. 

Dl and another ligand Serrate (Ser) are expressed in the centre, and activate Notch 



signalling at the edges of the proveins. The major function of Notch signalling is to 

maintain the width of the proveins by restricting EGFR signalling to the centre of the 

vein territory. This activity is mediated by the expression of a member of the Enhancer of 

split genes, E(spl)mb, which inhibits Rho and Star on the border of the proveins and 

prevents vein formation in these regions (de Celis et al., 1996; de Celis et al., 1997). 

Figure 7: A simplified schematic of genetic interactions guiding wing development. 

Posterior Anterior Entire imaginal disc and pupa 

Abbreviations: Dl, Delta; N, Notch; Rho, Rhomboid; Ser, Serrate; S, Star. Wing vein patterning is initiated 
from the posterior region of the wing disc, where En activates hh. Hh activates several genes (including 
dpp) that mediate vein and intervein fates. Dpp and Hh activities lead to the specification of veins among 
intervein cells. In both the imaginal disc and pupa, EGFR is activated by Rho and Star in the centre of the 
veins. EGFR in turn activates the Notch ligands Ser and Dl, which activate N in intervein cells. Notch acts 
to limit the width of the vein cells by inhibiting EGFR on the vein borders. EGFR activity is thought to be 
indirectly regulated by Dpp. 



Vein development in the pupa 

By the end of the third larval instar, the effects of Hh, Dpp, EGFR and Notch 

pathways create distinct regions where the longitudinal veins will later differentiate 

among intervein spaces. The actual differentiation of provein regions into vein cells 

occurs during pupal development, and also requires different sets of genes. For example, 

the expression of the blistered (bs) gene is maintained in the intervein cells, whereas 

expression of two POU-domain containing genes, ventral veinless (vvl) and nubbin (nb) 

are restricted to the proveins (de Celis et al., 1995; de Celis, 1998). The activities of these 

genes help maintain the subdivision of the wing blade into pro-vein and intervein 

territories during early pupal development. 

One major consequence of EGFR signalling is the activation of dpp expression in 

the provein cells where it drives the differentiation of veins (Yu et al, 1996; de Celis, 

1997). Dpp in turn contributes to maintain the expression of Dl and rho in the vein cells, 

hence reinforcing vein differentiation. 

Shortly after pupariation, the wing disc everts and folds back onto itself, allowing 

the corresponding dorsal and ventral surfaces to be in contact (Garcia-Bellido and de 

Celis, 1992). Vein and intervein territories are specified (separately) in both the ventral 

and dorsal surfaces of the wing; however during disc eversion, there are inductive signals 

from either surface that control correct vein specification on both surfaces (Milan et al, 

1997). These dorso-ventral inductive signals define the final vein differentiation pattern 

in the wing (Garcia-Bellido and de Celis, 1992). 

Unlike their longitudinal counterparts which are specified in third larval instar, 

crossveins only appear at late pupal stages (Conley et al., 2000). The acv is formed from 



components of both dorsal and ventral epithelia, while the pcv is formed entirely from the 

ventral epithelium, but depends on inductive signals arising from the dorsal epithelium 

(reviewed in Marcus, 2001). Although longitudinal vein development is well 

characterized, the development of the crossveins is not clearly understood. Genetic 

studies reveal roles for genes belonging to the crossveinless (cv) family, namely cv, cv-2, 

cv-c, cv-d, in the specification of the crossvein fate. Mutants of these genes lack one or 

both crossveins (reviewed in Diaz-Benjumea and de Celis, 2003), confirming the 

importance of these loci in crossvein development. In addition, various studies link BMPs 

as possible mediators in cross vein formation; as reductions in BMP genes have led to 

losses of the acv and pcv (Yu et al., 1996; de Celis, 1997; Haeny et al., 1998; Khalsa et 

al., 1998; Nguyen et al., 1998; Wharton et al., 1999; Ray and Wharton, 2001). The 

similarities in the effects of mutations in the cv and BMP genes support a possible 

collaboration between these genes to promote crossvein formation. In fact, the two cv 

genes that have been molecularly characterised so far (cv and cv-2) are found to encode 

proteins that may mediate BMP signalling. 

Crossveinless 2 (Cv-2) (Conley et al., 2002) and its vertebrate homologues 

(Coffinier et al., 2002; Moser, et al., 2003 Binnerts et al., 2004) contain the characteristic 

cysteine-rich (CR) domains similar to that found in the BMP antagonists, Sog and 

Chordin. The CR domains in Sog and Chordin are important for binding to the BMPs 

(Larrain et al., 2000); which suggest that Cv-2 may bind BMPs through the CR domain. 

Moser and colleagues (Moser et al., 2003) demonstrate that mammalian Cv-2 binds 

BMPs in vitro, in support of this hypothesis. Unlike the BMP antagonists however, Cv-2 

appears to have a positive effect on BMP signalling, probably through competition with 



the antagonists to bind the ligands and enhance their activity (Conley et al., 2000). This 

positive effect on BMP signalling is likely to be mediated through the presence of VWF 

domains in Cv-2, which makes it distinct from the antagonist, Sog (Conley et al,, 2000). 

Conley et a1 demonstrated the need for Cv-2 for efficient BMP signalling during the 

development of the crossveins, and proposed that it may be necessary to protect the 

ligands from cleavage by Sog, or it may be needed to activate the ligands themselves 

(Conley et al., 2000). The other gene crossveinless (cv), is found to encode a protein that 

is similar to the BMP modulator Twisted gastrulation (Tsg) (Ross et al., 2001; Vilmos et 

al., 2001). Recall that Tsg forms complexes with BMPs and their antagonists to modulate 

signalling (Oelgeschlager et al., 2000, 2003; Ross et al., 2001; Shimmi and O'Comor, 

2003). However, the exact effect of Cv on BMP signalling is not well understood. 

The importance of BMPs in crossvein development is further revealed through the 

overexpression of the BMP antagonist Sog which leads to loss of the acv and pcv (Yu et 

al., 1996). Interestingly, misexpressed Nmo also leads to a variable loss of the pcv; 

suggesting a role for nemo in crossvein development. The sensitivity of the pcv to both 

BMPs and Nemo therefore provided a perfect assay to investigate the involvement of 

nmo in TGFP signalling. Several studies from our lab indicate that nmo is involved in 

wing patterning where it probably promotes the specification of intervein fates and 

inhibits vein fates in intervein regions (Verheyen et al., 2001; Mirkovic et al., 2002). This 

role is supported by two facts: nmo mutant wings exhibit ectopic veins emerging from the 

pcv between L4 and L5 (indicative of a role for nemo in the correct formation of the pcv); 

beneath L5 and above L2. Furthermore, nmo transcript is localized in the intervein 

regions and excluded from all vein primordia in the pupal wing (Verheyen et al., 2001). 



Various gene products are strategically distributed to regulate specific fates during wing 

disc and pupal development. An example is the bs gene which is expressed in the 

intervein cells to suppress the vein fate. The localization of nmo transcript coupled with 

the mutant wing phenotypes, suggest that nmo probably acts to promote intervein fates 

during wing development. Other studies in our lab revealed that nmo exhibits genetic 

interactions between other intervein-promoting genes such as net and px; and seem to 

inhibit EGFR signalling (K. Charish, unpublished results). 

nmo's role as an intervein-determining gene places it as a possible regulator of 

BMP signalling, given that BMPs promote vein-fates. This interaction is characterized at 

various levels of the BMP pathway in this study. 



Chapter Two: Materials and Method 

Drosophila stocks and handling 

Flies were kept on standard media made of cornmeal, molasses, yeast and agar. 

The following strains were obtained from Bloomington stock centre: 

yl  w1118; P(1ac W)DadjlE4/TM3 Sbl Dpps[l l]/cyo 

gbb4 was a kind gift from Kristi Wharton. nmoadk'; and UAS-nmo c5-le are 

DB24 described in Mirkovic et al., 2002. nmo was described in D. Bessette (MSc Thesis, 

Simon Fraser University, 2003). UAS-tkv and UAS-Sog were obtained from Ethan Bier 

(University of California, San Diego). en-Gal4 was kindly provided by Norbert Perrimon 

(Harvard University). 

ptc-Gal4 is expressed along the AIP domain of the wing disc, while en-Gal4 is 

expressed in the posterior margin of the wing. Also, A9-Gal4 is expressed in the dorsal 

wing pouch of the imaginal disc, whereas 69B-Gal4 is ubiquitously expressed in the 

wing. 



Dissection and mounting of wings 

Wings were dissected from adult flies and washed in 100% ethanol, then mounted 

in Aquamount (BDH). Wings were handled at the hinge region to prevent damage. 

Aging, fixation and dissection of pupae 

White prepupae were picked from bottles and placed on a moist kimwipe in a 

petridish, and aged at 25OC for 19, 26 or 28 hours. The aged pupae were cut at the head 

and tail ends, and then fixed in 4% formaldehyde in PBS at 4 OC overnight. Pupal wings 

were dissected away from the body in Phosphate Buffered Saline (PBS) and fixed for 5 

minutes in methanol. 

Antibody Staining 

Fixed pupal wings were washed in PBS and incubated with primary antibodies at 

4•‹C overnight. The following primary antibodies were used at the concentrations 

indicated: rabbit anti-pMad, (from Tetsuya Tabata and P. ten Dijke), 1:10,000 in PBT 

(0.1% Tween 20 in PBS); and rabbit anti-P-galactosidase, (Promega), 1:5,000 in PBT. 

Wings were later washed in PBT containing 0.2% bovine serum antigen (BSA); and 

incubated with secondary antibody. Biotinylated goat-anti-rabbit (Jackson 

ImmunoResearch laboratories Inc.) was used as secondary antibody at a concentration of 

1 :200 in PBT; and detected with Streptavidin Texas Red (Jackson Immunoresearch) at a 

concentration of 1 : 1,000 in PBT, in all cases. 



In situ hybridization 

Digoxigenin (DIG)-labelled RNA probes were made using the DIG labelling kit 

(Roche) which allows the synthesis of RNA from promoter sequences by polymerase 

enzyme, using linear DNA (as a template) and ribonucleotides. The synthesis of new 

RNA strand involves the incorporation of a DIG-labelled uracil every 20-25 nucleotides. 

The synthesized RNA strand (probe) is able to pair with its complementary strand of 

RNA in tissues and is detected through staining with an antibody that specifically binds 

to DIG. Anti-sense probe is complementary to, and binds to the sense RNA; while sense 

probe does not bind to the RNA that is made from the sense strand of DNA. The sense 

probe is therefore used as a control to confirm specific localization of RNA transcript. 

cv-2 cDNA was provided by Amy Ralston (Blair lab, University of Winsconsin, 

Madison), as an insert in the pGEM vector with the promoters T7 and SP6 flanking the 

insert at the 5' and 3' ends respectively. The restriction enzymes Xho I (at the 5' end) and 

Hind I11 (at the 3' end) were used to clone the insert into the vector. Sog cDNA was 

obtained from Invitrogen Inc. in the pBluescript SK+ vector. The insert was cloned 

between T7 (at the 5' end) and T3 (at the 3' end) promoters of the pBluescript vector. The 

restriction enzymes Cla I (located at the 5' end) and Pst I (located at the 3' end) were used 

to clone the cDNA in to the vector. 

The cDNAs were linearized by digestion with specific restriction enzymes, and 

were used to generate sense or antisense probes. Linearized DNA was run on agarose gel 

to confirm the size, and later gel purified to extract the DNA. Riboprobes were generated 

through in vitro transcription. The linear DNA (from cv-2 or sog insert respectively) 

served as templates in a transcription reaction in which ribonucleotides were used to 



synthesize the probe. cv-2 cDNA was digested with Hind I11 and transcribed from the T7 

promoter, using T7 polymerase to generate a sense probe, while DNA digested with Xho 

I was used with SP6 polymerase to make antisense probe from the SP6 promoter. sog 

antisense probe was synthesized from the T3 promoter using the T3 polymerase and 

DNA digested with Pst I. On the other hand, the sense strand was made using T7 

polymerase to initiate transcription from the T7 promoter, using DNA digested with Cla I 

as template. The ribonucleotides used in these transcription reactions are contained in a 

DIG labelling mix made up of 10 mM adenosine triphosphate (ATP), 10 mM cytosine 

triphosphate (CTP), 10 mM guanosine triphosphate (GTP), 6.5 mM uridine triphosphate 

(UTP), 3.5 mM DIG-labelled UTP. Other components of the transcription reaction are 

transcription buffer (Roche): 400 mM Tris-HC1, pH 8.0; 60mM MgC12, 100 mM 

dithioerythritol (DTE), 20 mM spermidine, 100 mM NaCl, 1 p1 unitlml RNase inhibitor. 

1 pg of linear DNA was added to 2p1 1 OX DIG RNA labelling mix; 2p1 1 OX transcription 

buffer; 2p1 of appropriate RNA polymerase and sterile distilled water as needed to make 

up 20p1 final volume; in an eppendorf tube on ice. The tube was centrifuged at 13,000 

rpm briefly to mix the components and was later incubated at 37C for 2 hours. The 

transcription reaction was stopped by adding 2p1 of 0.2 M EDTA (pH 8.0). 

Fixed pupal wings were washed in PBT and digested with 0.2% proteinase K in 

PBT. The wings were then re-fixed in 4% formaldehyde in PBT at room temperature for 

25 min. In situ hybridization was performed according to Sturtevant and Bier (1 996). 

Pupal wings were incubated with probe at 55 "C overnight; and incubated with anti-DIG 

antibody (Roche, at a concentration of 1 in 2,000 in PBT) overnight at 4 "C. mRNA 

localization was detected through alkaline phosphatase reaction, using 20p1 Nitro-Blue 



Tetrazolium chloride/5-Bromo-4-Chloro-3-indolylphosphate p-Toluidine salt 

(NBTIBCIP) in lml of alkaline phosphatase buffer. Pupal wings were mounted in 80% 

glycerol and observed under the light microscope. 



Chapter Three: Results 

Genetic interaction between BMP components and nemo 

The roles of nmo and the BMPs, dpp and gbb, in wing development implicate 

nmo as a potential regulator of BMP signalling. Phenotypic analyses of the BMP genes 

confirm that they promote vein formation in the wing. Losses of either dpp (not shown) 

or gbb generally leads to loss of veins (Fig. 8F), and produce ectopic vein phenotypes 

when overexpressed (Fig. 8C, see loss of pcv). In contrast, loss of nmo produces extra 

veins in the wing (Fig. 8B), while its overexpression produces loss of veins (Fig. 8E). 

Interestingly, the phenotype induced by misexpression of Nmo resembles that of the 

misexpressed BMP antagonist Sog (Fig. 8D); and is very similar to gbb mutants (Fig. 

8F). These wing phenotypes support a possible role for nmo in TGFP signalling, and like 

sog, it probably functions to inhibit the pathway. 

The possible interaction between these genes was tested through genetic studies, 

using nemo and components of the BMP pathway. As described above, the BMP proteins 

Dpp and Gbb signal through the Type I receptor Tkv; and overexpression of Tkv leads to 

increased activation of the BMP pathway (de Celis, 1997). Thus, the BMP pathway was 

activated ectopically through the overexpression of the Tkv protein, using the UAS- Gal4 

system (Brand and Perrmimon, 1993). In this system, the Gal4 gene is inserted in front of 

a genomic enhancer that drives Gal4 expression in specific tissues. Gal4 binding sites 

(Upstream activating sequences, UAS) are inserted within the promoter region of the 



gene to be misexpressed, allowing this gene of interest to be activated in those cells in 

which Gal4 is produced, when flies bearing these two separate lines are crossed together. 

Figure 8: nmo and BMPs exhibit opposing phenotypes. 

wildtype 

Loss of hnction nmo mutants exhibit ectopic veins (significantly) between L4 and L5 (B, arrow); and are 
similar to wings overexpressing the BMP gene, gbb (C, arrow). Ectopically expressed nmo leads to loss of 
the pcv (E, arrowhead) and resembles wings ectopically expressing the BMP antagonist Sog (D). A similar 
phenotype is also seen in the gbb loss of function mutant (F, arrowhead); demonstrating opposing roles of 
nmo and BMPs in crossvein development. 

The patched (ptc) gene is expressed along the AIP boundary of the wing disc; 

along the same domain that Dpp is expressed, so theptc-Gal4 epidermal driver was used 

to overexpress tkv in the wing. ptc Gal4>UAS-tkv flies develop wings that are slightly 

smaller than wildtype, and also show a fusion of veins L3 and L4 (Fig. 9C). In contrast 

wings from flies overexpressing nmo under the ptc-Gal4 driver do not show any severe 

phenotype (Fig. 9B). Overexpression of these two genes in the same fly resulted in a 

dramatic rescue of the UAS-tkv phenotype, with almost complete separation of veins L3 

and L4 (Fig. 9D). In a separate study, A. Zeng (Verheyen Lab) found that expressing a 



constituvely active Tkv receptor results in flies with bifurcated wings, and this phenotype 

is rescued by the expression of UAS-nmo (A. Zeng, unpublished results). Our lab also has 

found a similar effect of nmo on the BMP cytoplasmic mediator, Mad. Overexpression 

of UAS-mad produced wings that are broader than wildtype and show defects in vein 

patterning; again this phenotype is suppressed by ectopically expressing nmo in the same 

background (Zeng A., 2004, unpublished data). 

Figure 9: Nmo antagonizes BMP signalling 

wildtype 

Overexpression of nmo under the ptc-Gal4 driver produces a phenotype (B) that is similar to wildtype (A). 
However, ptc-Gal4>UAS-tkv results in the fusion of the veins L3 and L4 (C); but these veins are separated 
to almost wildtype positions by ptc-Gal4> UAS nmoCS~" (D) .  



The above results strongly support a possible antagonistic interaction between 

nrno and BMPs. This fact was pursued fbrther by examining possible genetic interaction 

between nrno and the Dpp antagonist dad. Tsuneizumi and colleagues (Tsuneizumi et al., 

1997) demonstrated that Dad specifically inhibits Dpp signalling; so in a bid to clarify 

nmo's role in the pathway, mutational analysis was carried out between nrno and dad. A 

P element insertion into the dad gene (used to monitor dad transcription) produces no 

visible wing phenotype (Fig. lOB), however dad-lacZ,nmo double mutants produce 

wings with ectopic vein phenotypes more severe than is seen in nrno mutants alone (Fig. 

10C and D). This may indicate a synergistic relationship between dad and nmo, and 

further supports the view that nrno may be exerting an inhibitory effect on the BMP 

pathway. 

Nemo's effect on BMP signalling 

The Smadl homologue, Mad is a central component of BMP signalling in 

Drosophila, and is phosphorylated by activated Tkv in response to ligand stimulation. 

Phosphorylation of Mad is therefore often used as a measure of BMP signalling 

(Tanimoto et al., 2000), and an antibody that is directed against the phosphorylated Mad 

(pMad) protein is employed to detect signalling levels. BMP signalling is very crucial for 

vein development and is needed in the pupal wings for the correct formation of the veins 

(de Celis, 2003). I carried out pMad staining in pupal wings either mutant for nrno or 

overexpressing nrno to determine whether nmo has any effect on the signalling level of 

the BMP ligands. As can be seen in Fig. 11 pMad staining is present along all the veins 



but is missing from intervein territories in the wildtype wing (Fig. 1 lA), supporting the 

need for BMP signalling in vein specification. 

Figure 10: loss of dad enhances nrno ectopic vein phenotype 

wildtype 

dad-lacZ wings ( B )  do not show any obvious phenotype and look like wildtype (A). However, these wings 
display ectopic vein phenotypes when combined with nmoadk' in the same background; and are more severe 
than the nrno phenotype alone (compare arrows in D and C). 

This staining pattern is also observed in the overexpressed nrno background (Fig. 11E); 

however nrno mutant pupal wings show ectopic pMad staining in the extra veins (Fig. 

11B and F). In addition to BMP signalling, other pathways such as the EGFR pathway 

promote vein formation during the pupal stage so high pMad levels may be the result of 

an indirect effect of nrno on one of these pathways. BMP signalling however is found to 

be required for the specification of the crossveins between 18-20 hours after puparium 

formation (apf) (Conley et al., 2000). Most of the extra veins in nrno mutant wings are 

around the region of the posterior crossvein, raising the possibility that they are of the 

same fate as the pcv. The pMad staining was therefore repeated at 19 hours apf to 
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confirm that the results observed earlier are due to changes in BMP signalling levels. 

Interestingly, the same ectopic staining was observed at 19 hours apf (Fig. 11E). This 

experiment was performed on the more severe dad-lacZ,nmo double mutant pupal wings 

and high pMad levels were observed in the extra veins (Fig. 11C). This increases the 

possibility that Nemo is targeting the BMP pathway and the high pMad levels in nmo 

wings is due to the loss of the inhibitory activity of Nemo on the pathway. nmo's effect 

on BMP signalling was also observed in the wing imaginal disc by A. Zeng (Verheyen 

Lab), who noticed comparatively high pMad levels in clones of cells in the imaginal disc 

that lose nmo activity (unpublished results). Together these results suggest that Nemo 

negatively regulates BMP signalling and its loss may lead to high levels of signalling 

from these ligands. 

Figure 11: pMad is elevated in nmo ectopic veins 

Anti-pMad staining of 26 hr old (A-C), and 19 hr old @-F) pupal wings. pMad is present along the veins, 
with no detectable difference in the levels in wildtype and ecto ically expressed 69B-Ga14>UAS nmoc5-'" 
(mmpare D to E). However mutant n m  wings; mod' and nmogBz4 (B and F respectively); as well as dad- 
l a c ~ n r n o ~ '  (C) wing show pMad staining in ectopic veins (arrows in B; C, and F). 
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Although the genetic interaction and pMad levels reveal that nmo may have 

antagonistic effects on BMP signalling this effect will be irrelevant without any influence 

on target gene expression. The significance of Nemo's activity on BMP signalling was 

examined by monitoring the transcription levels of the Dpp target gene, dad. Recall that 

dad is expressed in response to Dpp signalling but acts in a negative feedback loop to 

suppress Dpp activity (Tsuneizumi et al., 1997). One way of measuring transcriptional 

activity of Drosophila genes is through enhancer trap insertion of the E. coli lacZ gene 

under the control of the enhancer of a target gene. The lac2 gene activity is detected by 

staining for the P-galactosidase protein (a product of l a d )  levels to determine the 

transcriptional activity of the target gene (O'Kane and Gehring, 1987). This technique 

0824 was used to determine the transcription of dad in dad-lac~,nmo"~~'/nmo pupal wings, 

through anti - p-galactosidase staining of pupal wings. dad is expressed in the intervein 

regions and appears to be elevated on the borders of the veins in dad-lac2 pupal wings 

(Fig. 12A and C) probably to regulate the activity of Dpp and limit it to the veins. In the 

nmo background expression is slightly elevated around the ectopic veins (Fig. 12 B and 

D); indicating that nmo may be required to suppress Dpp signalling in these regions. This 

effect was also seen in imaginal wing discs, where dad expression is suppressed by 

ectopic nmo (A. Zeng, 2004, unpublished results). 

Effect of Nemo on BMP pathway components 

Since the evidence seen so far strongly indicates that nmo is having a negative 

impact on TGFP signalling; it is important to identify the exact way it is interacting with 

the pathway as well as how it is exerting its effect on the pathway. In an effort to 



characterize the interaction, I looked at the effects of Nemo on other components of the 

BMP pathway. 

Figure 12: nmo inhibits ectopic dad transcription 

Anti-j3-galactosidase staining of 19 hr (C, D); and 26 hr pupal wings. Expression is localized in the 
intervein cells and is enriched along the vein borders (probably to inhibit Dpp-induced ectopic vein 
formation); but is excluded from the vein cells in dad-lacZ. Ectopic veins in nmo mutants however show 
dad expression (arrows in B and D); indicating that nmo is affecting BMP target gene expression in regions 
that correspond to ectopic veins. 

As discussed above, Sog has been reported to inhibit the BMP pathway probably 

through binding to, and cleaving the ligands. Evidence for the inhibitory action of Sog in 

this pathway in wing development is demonstrated through the opposite phenotype 

induced by the overexpressed protein compared to the mutant phenotype of the BMP 



genes (compare Fig. 8D to F) which is characterized by loss of vein tissue in the 

crossveins. In support of this view, Yu and colleagues reported that Sog is a Dpp 

antagonist and inhibits Dpp activity in intervein tissues (Yu et al., 1996). I explored the 

possibility of sog and nmo acting through a similar pathway to inhibit BMP signalling. 

This was done by misexpressing Sog in a nmo background. Overexpression of sog under 

the en-Gal4 driver leads to the loss of both crossveins (Fig. 13B). As discussed above, 

BMPs play significant roles in crossvein specification and their loss leads to the absence 

of these veins (Fig. 8F) (de Celis, 1997; Haerry et al., 1998; Khalsa et al., 1998; Nguyen 

et al., 1998; Wharton et al., 1999; Ray and Wharton, 2001), therefore the loss of 

crossvein phenotype displayed by flies overexpressing Sog indicates that Sog might be 

interfering with BMP-mediated development of the crossveins (Yu et al., 1996; Conley et 

al., 2000). The specific loss of the crossveins could be due to the fact that the crossveins 

are formed in tissues that are originally specified as intervein early in wing development 

(Conley et al., 2000), the same tissues where sog normally expressed (Yu et al., 1996). 

As discussed above, the crossveins appear late in pupal development at a stage when 

longitudinal veins and intervein tissues are already specified, so the crossveins are 

formed within designated intervein tissue (Conley et al., 2000). Recall that loss of nmo 

leads to the formation of ectopic veins some of which are located near the pcv (Fig. 13C). 

The overexpression of sog in this nmo mutant background led to the rescue of nmo 

ectopic vein phenotype; however the UAS-sog phenotype (i.e. loss of both crossveins) is 

unchanged (Fig. 13D). This interaction is complicated by the presence of ectopic veins 

between L2 and L3 (Fig. 13D, arrows) which are difficult to explain. 



Figure 13: nrno shows a complex interaction with sog. 

nrno ectopic veins (arrows in C) are rescued through misexpression of sog in the posterior compartment of 
the wing; however there is no change in the phenotype caused by ectopic expression of sog; i.e. loss of the 
crossveins (arrowheads B and D). The interaction is complicated by the presence of ectopic veins between 
L3 and L4 (arrow in D). 

Although this result does not confirm any interaction between sog and nmo, it 

consolidates nmo's antagonistic role on the BMP pathway, since the ectopic veins 

induced by loss of nrno in the posterior region of the wing are rescued by overexpressing 

sog (Fig. 13D). The high levels of Sog may thus be preventing the formation of ectopic 

veins (a role that nrno is likely to perform in wildtype wings) in the absence of nrno 

function. If this assumption is true, then nrno may also be acting in a parallel pathway to 

sog but they both ultimately inhibit BMP activity. 

There is no conclusive evidence that nrno interacts with sog from the experiment 

above, hence the investigation of interaction between nrno and the BMP components was 

extended to the cv genes. As noted above, these genes are critical to the formation of the 

crossveins, and their mutants exhibit similarities to mutations in the BMP genes. One 



would suspect a possible collaboration between BMPs and Cv proteins in crossvein 

specification, as proposed by Conley et al., (2000), who showed that Cv-2 may be 

required to potentiate BMP signalling in the crossvein. The first effort then was to 

determine if the BMPs interact with the cv genes. I therefore generated double mutants 

between dpp and the cv genes, cv-2 and cv-c to examine genetic interactions between 

them. These double mutants display only the dpp phenotype (Fig. 14E and F), suggesting 

a genetic interaction, and also placing BMPs downstream of these cv genes. This is not 

surprising, in light of the proposed role of the Cv-2 protein for instance, in activating 

BMP ligands (Conley et al., 2000). It is possible then that the other crossveinless genes 

may perform similar roles in modulating BMP signalling in the crossvein. 

With the evidence of this possible interaction, I then proceeded to find out 

whether nmo interacts with these genes. This was done by generating double mutants 

between nmo and each of the cv genes, cv, cv-2, cv-c, and cv-d. Mutants for the cv genes 

produce wings that lack the pcv (cv-2', cv-cl, and cv-dl; Fig. 15 C, D and E) or both the 

acv and pcv (cvl, Fig. 158). The nmo mutant alleles used nmoDB2'and nmoadkl both show 

0824 ectopic veins near the pcv (Fig. 15 A and F respectively) and the nmo allele also 

show ectopic veins beneath L5 (Fig. 15A). Double mutants generally displayed an 

additive phenotype which is characterized by the cv loss of crossveins, and nmo ectopic 

veins (Fig. 15G, I, and J), except in the case of cv-2; nmo mutants where the nmo ectopic 

vein phenotype is lost completely; although the wings retain the round shape of nmo 

mutant wings (Fig. 15 H). This finding demonstrates that cv-2 suppresses the nmo ectopic 

vein phenotype; and it is possible that these two genes interact at some level. 



Figure 14: cv genes show genetic interaction with dpp. 

wildtype cv-2' 

Loss of dpp leads to truncations of the tip of veins L4 and L5 (D, arrows) and loss of the cv genes cv-2 and 
cv-c results in loss of the pcv (arrowheads in B and C respectively). Double mutants of both dpp and either 
of the cv genes resulted in the display of the dpp phenotype (compare arrows in E and F to D). 
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Any possible effect of nrno on the BMP pathway through 0 - 2  is likely to be 

intracellular, since Nlk is shown to be localised in the cytoplasm or the nucleus (Brott et 

al., 1997); and the structure of Cv-2 suggests it is secretory and mainly extracellular 

(Conley et al., 2000). Since nrno and vertebrate n l h  are found to influence the effect of 

transcription factors (e.g. LefITcf and CBPlp300) as reviewed above; a possible means of 

interaction might be at the level of transcription of the 0 - 2  gene. I therefore monitored 

the effect of nrno on the transcription of the cv-2 through in situ hybridization, a method 

that allows transcript levels to be detected within tissues. 

Using this method, cv-2 transcript levels were monitored in overexpressed Nemo 

and nmo mutant backgrounds in 28 hour pupal wings. Previous studies show that cv-2 

expression is highest at 28 hours apf (Conley et al., 2000). cv-2 transcript is located 

mainly in the two pcv in wildtype wings (Fig. 16A), and my results agree with published 

results (Conley et al., 2000). I used the 69B-Gal4 epidermal driver to ectopically express 

nrno in the wing; and did not observe any clear difference in the cv-2 transcript levels in 

the pupal wings of this genotype compared to wildtype (Fig. 16B). In this genotype the 

pcv is generally reduced or absent so this result is not surprising. However, in nmo 

mutant pupal wings cv-2 transcript is present in high amounts in the ectopic veins (Fig. 

16C) suggesting that Nemo may be required under wildtype conditions to inhibit cv-2 

transcription in the regions corresponding to extra veins. This will explain the similar 

levels of expression in wildtype and ectopically expressed nrno wings since any transcript 

in these cases is limited to the regular crossveins. 

Although the in situ hybridization supports the assumption that nrno may be 

repressing cv-2 transcription; it does not link it directly to this activity. 



Figure 16: nmo regulates 0-2 transcription 

cv-2 in situ hybridization of 28 hr old pupal wings. The cv-2 transcript is localized in the crossveins and 
appears to be unchanged in wildtype and misexpressed 6 9 ~ - ~ a l 4 > ~ ~ ~ - n m o " ~ - ' "  (arrowheads in A and B 
respectively). It is however very high in nmoDBZ4 ectopic veins (arrows in C). Expression is slightly reduced 
in wings losing one copy of cv-2 (D), but there is no noticeable change in expression in the nmo mutant 
background, whether the wings have one Q or both (F) copies of cv-2 (arrows in E and F). 

I attempted to see whether reduced levels of cv-2 activity will result in a 

corresponding reduction of transcript levels in nmo mutant background. The cv-2' allele 

is a hypomorph and shows reduced transcript levels as a heterozygote compared to 

wildtype levels (Conley et al., 2000). Surprisingly, there was no difference in cv-2 

message levels in either heterozygous or homozygous cv-2 in nmo mutant backgrounds 

(Fig. 16E or F). I conclude that loss of nmo may override any changes in cv-2 

transcription in the heterozygous wing, thus leading to the high cv-2 transcript levels. 

Also since the ectopic veins are present in these wings, cv-2 transcription is likely to go 

up; whether it is present in wildtype or heterozygous amounts. 



One common feature of most genes that promote intervein fate (including nmo) is 

that their mutants exhibit ectopic veins in the wing. Since the high transcript levels are 

located within these extra veins in nmo wings, it is possible that all genes that promote 

the intervein fate may control cv-2 transcription in a manner similar to nmo. If this is true 

then one will assume that other intervein-determining genes will likely have a similar 

effect on cv-2 transcription. I monitored the expression in mutants of another gene, net, 

that like nmo promotes intervein fates, and shows ectopic veins in similar regions of the 

wing as nmo (compare Fig. 17B and C). Consistently, cv-2 expression is detected within 

the extra veins in net mutants (Fig. 17F, arrowheads), and more importantly appear to be 

of similar level compared to nmo mutants (compare Fig. 17E to F). 

The above results indicate that cv-2 levels must be well regulated to ensure 

correct vein specification; and support roles for nmo and other intervein-promoting genes 

in this regulation. Given the fact that cv-2 is implicated in BMP signalling, nmo's effect 

on the pathway may be at the level of cv-2 transcription. 

There is also a possibility of nmo positively controlling the transcription of the 

sog gene as a means of inhibiting the pathway, so I used in situ hybridization to follow 

the expression of sog at 19 and 26 hours apf in the pupal wings. However there is no 

change in the level of sog expression in wildtype , ectopic, or mutant nmo wings (Fig. 

18A-E). 



Figure 17: nmo and nei produce similar effects on cv-2 transcription 

wildtype nrnoDBz4 net' 

net' 

A-C shows adult wings and D-F are 28 hour pupal wings showing cv-2 transcript localization. cv-2 in situ 
hybridization in net1 pupal wings exhibit similar high expression in ectopic veins (F arrowheads), as seen in 
nmo (E). 

Figure 18: nmo shows no effect on sog transcription. 

wildtype nrnouu24 

sog in situ hybridization in wildtype (A and D); nmoDB24; and 6 9 ~ - ~ a l 4 > ~ ~ ~ - n m o ' ~ - ' "  pupal wings, at 26 
hr apf (A-C), and 19 hr apf @ and E). sog expression levels appear to be unchanged in all cases. 



Chapter Four: Discussion 

nmo in vein development 

The studies presented above support a regulatory role for Nemo on TGFO 

signalling during wing development in Drosophila. The phenotypes of nmo mutants 

alone suggest the need for this gene in maintaining correct fates in the wing (Verheyen et 

al., 2001; Mirkovic et al., 2002). Additionally, nmo is expressed in the intervein regions 

(Verheyen et al., 2001) in pupal wings and may be regulating intervein differentiation. 

The ectopic vein phenotypes in nmo mutant wings coupled with the localization of the 

transcript in pupal wings gives strong credence to a role in preventing vein formation. 

Nemo antagonizes the BMP pathway 

As discussed above the specification of vein or intervein fates in the Drosophila 

wing is directed by distinct sets of genes which interact to allow correct distribution of 

these structures in the wing. Generally intervein-determining genes (such as bs and net) 

act to promote intervein fates by suppressing vein-determining genes (such as EGFR) in 

regions that differentiate into intervein cells. Both dpp and gbb promote the formation of 

veins, while nmo likely promotes intervein fates. It is possible that nmo may interact with 

the BMP genes to suppress their effects in intervein regions. The interaction between nmo 

and tkv (the Type I BMP receptor) (Fig. 9) support the assumption that nmo may be an 

antagonist of TGFP signalling. Further evidence supporting this line of thought is the 

similar results (as in the case of tkv and nmo) obtained using another positive modulator 

of TGFO signalling, Mad (Zeng A, unpublished results) which produced a phenotype that 



is rescued by nrno when both are overexpressed. Also the severity of ectopic veins seen in 

nrno mutants in combination with dad- lad  further argues for a possible inhibitory role of 

nrno on this pathway. Since dad was shown to antagonize Dpp signalling (Tsuneizumi et 

al., 1997), it is possible that both dad and nrno are needed to effectively inhibit the 

activities of Dpp in vein development. Perhaps the strongest evidence that implicates nmo 

as a negative regulator is the high levels of ectopic pMad in nmo mutant pupal wings. As 

discussed above, pMad levels represent one of the ways through which BMP signalling 

activity is measured. Interestingly, pMad levels remain localized mainly within the 

regular veins but are present in the ectopic veins in nrno mutants, clearly demonstrating a 

role for nmo in suppressing BMP signalling, probably at regions where the ectopic veins 

differentiate in nmo mutants. 

As explained above, vein formation is well regulated to maintain the species- 

specific pattern in Drosophila melanogaster. Several genes identified as promoting 

intervein fates have been shown to repress the activities of vein-promoting genes outside 

the vein-competent domains. A well characterized example is the bs gene which is 

expressed in the intervein regions and inhibits vein formation at the third instar and the 

pupal stages. Also net is shown to inhibit the expression of rho in intervein cells 

(Brentrup et al., 2000). Recall that rho is expressed in the vein cells where it mediates 

EGFR signalling at both larval and pupal stages. Another example is the restriction of 

EGFR signalling to larval and pupal provein cells by Notch. BMPs play prominent roles 

to promote vein fate in the wing; hence they need to be controlled to allow correct vein 

patterning. Nemo may be one of several inhibitory genes that may suppress BMP 

signalling in certain regions of the wing to ensure correct vein specification. The results 



presented in this study support such an antagonistic role for Nmo on BMP signalling. 

However the exact mechanism(s) through which this regulation might be occurring is not 

known and a number of possibilities are discussed below. 

Regulation of signalling 

Tkv 

As reviewed earlier, the Type I receptor is subject to regulation to prevent ligand- 

independent signalling. This regulation could be used as a means of suppressing ligand- 

induced signalling by regulators. Nemo may therefore be acting on the cytoplasmic 

region of Tkv to lock it in a non-functional state which could explain the rescue of the 

UAS-tkv phenotype by UAS-nmo. On the other hand, nmo may interact with, and inhibit 

other components of the pathway to produce the same effect on Tkv as observed. 

dad 

Dad has been shown to specifically antagonize Dpp signalling (Tsuneizumi et al., 

1997); if nmo also acts to inhibit BMP signalling, then the effect of losing both nmo and 

dad might be enough to permit uncontrolled TGFP signalling resulting in the more severe 

ectopic wing vein phenotype (Fig. 9D). However, it is possible that Dad interacts with 

Nemo physically, implying they both need each other's activity to fully exert their effects 

on TGFP signalling. Such a co-operation between I-Smads and other proteins has been 

seen by others. For example, Yasuda et a1 demonstrated that Tob protein is able to 

repress BMP signalling in Xenopus through its interaction with I-Smads (Yasuda et al., 

2003). Smurfs also induce nuclear export of I-Smads and have been shown to mediate 

their inhibitory activity on TGFP signalling in vertebrates (Ebisawa et al., 2001). There is 



no evidence so far which identified an activator for Dad, and Nemo could be a potential 

candidate. This interaction between Dad and Nemo if true, may be necessary to activate 

Dad's binding to the receptor or Mad. It may also allow Dad to be recognized by Dsmurf, 

which will induce its nuclear export. We are currently doing biochemical studies to 

determine whether nmo and dad might be interacting physically and the relevance of this 

possible interaction on Dad's inhibitory role in TGFP signalling. 

Mad 

Mad presents yet another potential source of crosstalk between the BMP pathway 

and Nemo. R-Smads are targeted by several proteins to regulate TGFI) signalling. These 

Smads contain MAPK phosphorylation sites (PXSP sequence) in their linker region (Itoh 

et al., 2000; Massague, 1998) (Fig. 2). MAPK phosphorylation of Smads at these sites 

prevents the nuclear accumulation of Smad complexes (Kretzschmar et al., 1997a, 1999) 

and is believed to be a means of regulating TGFI) signalling (Massague, 1998). In 

vertebrate cells, the MAPK Erk under the influence of Ras phosphorylates the R-Smads 

on their linker domain, and prevents their ligand-induced nuclear import, resulting in 

impaired TGFD signalling. It is also believed that other kinases can equally target these 

Erk phosphorylation sites in Smads (reviewed in Derynck and Zhang, 2003). In view of 

this, it may be true that Nemo phosphorylates Mad in these regions to impair BMP 

signalling. This is quite interesting, as analysis between mouse Nlk and Erk reveal some 

similarity between these proteins (Brott, 1998). Additionally, A. Zeng (Verheyen lab) 

recently found that Nemo binds Mad in cell culture, raising the possibility of Nemo 

acting through Mad to affect TGFP signalling. It is possible that Nemo phosphorylates 

Mad at MAPK sites in its linker region; preventing it from translocating to the nucleus 



and thus inhibiting BMP target genes. As discussed earlier, Smurfs target Smads for 

proteosome mediated-degradation; and recognize Smads through a PY motif in the linker 

region (Fig. 2). It is possible that Nemo may be required to phosphorylate Mad to allow 

DSmurf to recognize and degrade it. One may also argue that the binding of Nemo to 

Mad is likely to prevent the phosphorylation of Mad by the receptors. Any of these, if 

true might explain the elevated pMad levels in the absence of functional Nemo. 

Transcriptional regulation of mediators 

In theory, it is possible that Nemo inhibits transcriptional activity of the Smads on 

target genes as a means of suppressing signalling; especially since Nlk plays a similar 

role in regulating Wnt signalling in vertebrates (Ishitani et al., 1999). As mentioned 

earlier, Nlk is found to inhibit the transcriptional activity of Smads indirectly by 

repressing the Smad transcriptional coactivator, CBPlp300 (Yasuda et al., 2003). The 

level of ectopic pMad staining seen in the absence of Nemo activity however suggests 

that Nemo might be functioning upstream, or at the level of Mad; or may influence the 

transcription of mediators or regulators of TGFP signalling. 

Sog has been shown to inhibit BMP signalling, especially in wing development 

(Yu et al., 1996). The complexity of the genetic interaction between nmo and sog as well 

as nmo's lack of influence on sog transcription probably rules out sog as a possible 

mediator of nmo's effect on the BMP pathway. Further genetic studies using loss of 

function alleles of sog may be important in making this assumption. 

The Cv-2 protein has been linked with the BMP pathway as a positive modulator 

(Conley et al., 2000); and the results presented here (Fig. 14E) support the view that cv-2 



is acting upstream of BMPs and may be essential to their function. This leaves Cv-2 in 

an important position in the BMP pathway, and its levels may be essential in regulating 

the pathway. Nemo's effect on cv-2 transcription raises the possibility that it may be 

interacting with the BMP pathway through its regulation of cv-2 transcription. It is likely 

that nmo downregulates cv-2 transcription in the interveins; and its absence is what 

causes elevated transcription of cv-2 as seen in the ectopic veins (refer to Fig. 16C). 

Double mutants of nmo and cv-2 show more of the cv-2 phenotype (Fig. 15H) implying 

that cv-2 may be downstream of Nemo function; probably at the level of transcriptional 

regulation. It is striking that both cv-2 expression and pMad levels are elevated in the 

nmo ectopic veins. One may conclude then that lack of the inhibitory effect of Nemo on 

cv-2 message may lead to hyperactivation of the BMP pathway (accounting for the high 

pMad levels) in regions that correspond to the extra veins. It may also be true that Nemo 

is affecting both events simultaneously to effectively control signalling. 

A drawback to the assumption above is that cv-2 transcription is equally affected 

by another intervein-determining gene; net (Fig. 17F). However, BMP-induced activity 

may be controlled through the suppression of cv-2 transcription in the intervein region by 

certain genes that promote intervein fate, including net and nmo. This perception could be 

true, given that the cv-2 transcript is localized specifically in the crossveins, and appear 

only in the ectopic veins in both net and nmo mutants. This specific localization will 

imply that the ectopic veins seen in these mutants are of the crossvein fate. Insect wings 

are thought to have arisen from ancestors with many veins that have undergone 

progressive loss of veins through evolution (de Celis and Diaz-Benjumea, 2003). It is 

suggested that crossveins might have arisen as a result of fusion between some 



longitudinal veins during evolution (Garcia-Bellido and de Celis, 1992; de Celis and 

Diaz-Benjumea, 2003). Probably Drosophila have evolved certain genes (including cv-2) 

to maintain the crossveins; and others (including net and nrno) to prevent reversal to the 

ancestral state (i.e. appearance of ectopic veins) through the repression of cv-2 

transcription. Cv-2 may in turn function through the BMP pathway (among others) to 

promote the crossvein fate as demonstrated already (Conley et al., 2000) and in this 

study. Therefore net and nmo may both inhibit BMP signalling by virtue of repressing cv- 

2 transcription. There is no evidence that net functions to inhibit BMP signalling; 

probably pMad staining of net mutants could be useful in testing this possibility. 

The TGFP pathway is controlled by various regulators to ensure correct signal 

levels in the cell. Nmo and its homologues are emerging as regulators of signalling 

pathways to mediate correct development in various organisms. Results from this study 

suggest potential involvement of nmo in regulating TGFP signalling in the Drosophila 

wing. The initial evidence that connected nmo to the TGFP pathway is through Takl, but 

studies so far indicate that dTakl might not be playing any role in wing development 

(Mihaly et a1 2001; Vidal et al., 2001). nmo's effect on wing development may therefore 

be independent of Takl. Recently two additional tak-like genes have been identified in 

Drosophila, so their characterization will be useful to determine whether the taWnmo 

pathway contributes to wing vein patterning. 

In this study however nrno appears to function as an inhibitor of the TGFP 

pathway in wing development. This activity is presumably essential to prevent BMP- 

induced ectopic vein formation in the wing. Further studies will be important to address 

the question of how nrno specifically interacts with the pathway. This regulatory role of 



nmo may be of high significance in addressing developmental conditions that may be due 

to excessive TGFP signalling. It will be interesting to see if this possible interaction 

occurs in other organisms, including vertebrates. 
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