
AN INVESTIGATION OF TYPE-SPECIFIC 

OPTIMISTIC, PESSIMISTIC, AND HYBRID 

CONCURRENCY CONTROL 

YvonneCoady 

B.Sc., Gonzaga University, Spokane, 1985 

THESIS SUBMllTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Yvonne Coady I988 

SIMON FRASER UNIVERSITY 

December I988 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author. 



APPROVAL 

Name: Yvonne Coady 

Degree: Master of Science 

Title of thesis: An investigation of Type-Specific 

Optimistic, Pessimistic, and Hybrid 

Concurrency Control 

Examining Committee: 

Chairman: Dr. Joseph Peters 

Dr. Stella Atkins 
Senior Supervisor 

~ r V ~ & S h u n ' f u k  
Committee Member 

Dr. Tiko Kameda 
External Examiner 

Date Approved: December 9,1988 

i i  



PARTIAL COPYRIGHT LICENSE 

I hereby grant t o  Simon Fraser Universl ty the r i g h t  t o  lend 

my thesis, project o r  extended essay ( the t i t l e  of  which i s  shown below) 

t o  users of  the Simon Fraser Universl ty Llbrary, and t o  make p a r t i a l  o r  

s ing le  copies only fo r  such users o r  i n  response t o  s request from the 

l i b r a r y  o f  any other universi ty,  or other educational i ns t i t u t i on ,  on 

i t s  own behalf o r  for  one of i t s  users. I fur ther  agree t h a t  permission 

f o r  mul t ip le  copying of t h l s  work for  scholar ly purposes may be granted 

by me or  the Dean of Graduate Studies. It i s  understood t h a t  copying 

o r  publication of t h l s  work f o r  financial gain shal l not be allowed 

without my wr i t ten  permission. 

T it l e of Thes i s/Project/Extended Essay 

An I n v e s t i g a t i o n  of Type-Specif ic  O p t i m i s t i c ,  P e s s i m i s t i c ,  and Hybrid 

Concurrency C o n t r o l  

Author: 

(signature) 

Monica Yvonne Coady 

( name 

December 9; 1988 



Abstract 

In general-purpose distributed systems, abstract objects may be manipulated by 

concurrent actions called "extended transactions". A server provides the 

necessary access operations and concurrency control for each object. By 

exploiting semantic information, the standard pessimistic servers can be replaced 

with efficient optimistic servers, and also with hybrid servers combining features 

of both pessimistic and optimistic concurrency control. The finest granularity at 

which different synchronization methods can be used is on a per-conflict level. 

This thesis describes a novel implementation of a hybrid server for a 

user-defined abstract object, a semiqueue. The semiqueue server may be 

customized so that every conflicting operation (executed by concurrent extended 

transactions) may be treated either pessimistically or optimistically, depending 

on the expected level of conflict. Performance studies show that this hybrid 

server is more efficient over a range of conflicts than a purely pessimistic or 

purely optimistic server when some types of conflicts are expected to be frequent, 

and others are expected to be rare. The results generalize to other shared data 

structures, showing the practicality and effectiveness of this approach. 
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Background and Fundamental Concepts 

1.1 Introduction to Extended Transactions 

Recently, some innovative research has been devoted to general purpose 

methodologies involving an extension of the traditional transaction model1 which 

could potentially simplify the construction of general purpose distributed 

applications [Schwarz84, Spector83, Spector85, Weih185, Herlihy861. This renovation 

of the classical model provides distributed application programmers with a 

mechanism for customizing concurrency constraints on shared abstract objects and 

ensures an atomic (all-or-nothing) effect of a group of type-specific operations. As 

opposed to the traditional model, this extended transaction model applies to data 

structures other than records, operations other than simple READS and WRITES, and 

applications outside of the conventional database domain. Consequently, extended 

transactions have the potential to be a valuable tool for organizing and structuring 

computations in general purpose distributed systems. 

The purpose of extending the conventional transaction model to applications 

outside of the database domain is to simplify the construction of many types of 

. A transaction typically consists of several READ operations performed on a set of 
records known as the transaction's red set, and/or several WRITE operations 
performed on a set of records known as the transaction's write set . 



distributed programs. This can be accomplished by lightening the burden on 

application programmers through the simplification of synchronization issues. 

Further, the extended transaction model can provide a flexible way of maintaining 

arbitrary application-dependent consistency constraints without unnecessarily 

restricting concurrent processing of application requests. 

In order to accommodate the additional requirements of general-purpose 

distributed systems, the extended transaction model must include an effective 

method of concurrency control for extended transactions operating on abstract data 

types. A concurrency control scheme allows operations from simultaneously active 

transactions to be interleaved in such a way that each transaction is provided with a 

consistent view of the system state, as if it were executing alone. This effect is 

formally known as serializability . 

Frequently, the serializability requirement is too strong and can significantly 

reduce the amount of concurrency a synchronization mechanism has the potential 

to provide [Spector83]. For example, a semiqueue [Weih185, Schwarz841 is a species 

of queue that allows for more concurrency than a strictly FIFO queue because it does 

not guarantee to dequeue items in the order they were enqueued, and as a result, all 

previously enqueued objects (that are not already locked) are eligible for dequeuing. 

Concurrency constraints for the nonserializable abstract type semiqueue are such 

that two Enqueue operations do not conflict, nor do an Enqueue and a Dequeue 

that access different items, and likewise, two Dequeue operations that attempt to 

remove different items do not conflict. 



Exploitation of semantic information associated with the consistency 

constraints of type specific operations can also be used to achieve greater concurrency 

since well-informed decisions can be made regarding the necessity of transaction 

delay or abort. For example, consider the abstract type directmy and a corresponding 

operation Insert(entry) [Spector83]. Within the context of simple READ and 

WRTTE operations, Insert modifies the directory and therefore is considered to be 

equivalent to a WRITE operation. In terms of conventional database 

synchronization schemes, WRITE operations on the same data item from two 

concurrently active transactions always cause a conflict. Intuitively, however, when 

one considers the semantics of insertion, it is apparent that a conflict between 

concurrent transactions inserting different entries is nonessential. We return to this 

example later (in Section 6), showing how semantic information is used to reduce 

the number of conflicting operations to just a few. 

1.2 Pessimistic and Optimistic Concurrency Control 

Fundamental approaches used by concurrency control schemes can be broadly 

categorized as either pessimistic or optimistic methods. In a pessimistic approach, 

. conflicts are identified during a transaction's execution and resolved by imposing a 

delay on some transactions. Conversely, in an optimistic approach, conflicts are 

identified at the end of a transaction's execution and resolved by aborting and 



restarting some transactions at a later time. Standard pessimistic and optimistic 

concurrency control mechanisms for database management systems have been based 

on two-phase locking [Eswaran761 and validation [Kungtll], respectively. The 

following sections give a high level description of the methods by which these two 

schemes achieve concurrency control. 

1.2.1 Pessimistic Concurrency Control: Two-Phase Locking 

In order for a locking technique to guarentee serializability, a transaction must 

proceed through two phases: a growing phase in which it must request all locks, 

and a subsequent shrinking phase wherein it releases locks and cannot issue any 

new lock requests [Eswaran761. The rules associated with the allocation and 

releasing of locks on individual items are the following: 

Rule 1. Seperate transactions cannot simultaneously possess locks which are 
in conflict. 

Rule 2. When a transaction releases a lock it cannot obtain further locks. 

Within a database environment where operations consist solely of READS 

- and WRITES, two-phase locking provides concurrency control through the use of 

READ-locks and WRITE-locks. These locks conflict in the following manner: 



Hence, mutiple readers are allowed, but a readers and writers exclude each other, 

and a writer will also exclude other writers. 

Although adherence to these rules guarentees serializability, one snag 

inherent in two-phase locking is deadlock, which may result whenever transactions 

are forced to wait for the release of certain locks (according to Rule 1 above). 

Consequently, some effective method of transaction abort must be included with 

this technique. In order to facilitate this, it is necessary for a transaction to hold all 

locks until the end of its execution, just in case it becomes necessary to undo its 

changes [Kung81]. This way, backing up an active transaction which has become part 

of a deadlock situation consists of undoing all of the effects of its updates, usually 

recorded on a log kept by the system, releasing all of its locks and restarting its 

execution. 

1.2.2 Optimistic Concurrency Control: Validation 

Originally, optimistic techniques for concurrency control in database systems 

totally eliminated locking due to the fact that the following undesirable properties 

are inherent in such schemes [Kung81]: 



- The effective level of concurrency can be severely restricted since 
all locks are held until the end of a transaction. 

- The overhead imposed by lock maintainence and deadlock detection 
can be substantial (e.g., 10% of total execution in System R tHarder831) 
and unnecessary in some cases (e.g., READ-only transactions). 

Consequently, given a situation where conflicts can be assumed to be rare, a locking 

mechanism is not only nonessential, but also expensive. 

Within an optimistic approach, the transactions of a database can be 

considered to pass through at least two of the following three distinct phases 

[Harder83]: 

READ VALIDATE WRITE 
I I - - - - - - - - I I 

BOT EOT 

( -- time --> ) 

The READ phase constitutes the "execution" of the transaction, hence all of the 

transaction's READ and/or WRITE operations are performed during this phase. An 

intentions list for each transaction is maintained such that operations performed 

on behalf of a given transaction are directed to this private buffer. Modifications to 

data are all inflicted upon local copies that remain in this buffer, as opposed to 

directly modifying the global item. The subsequent VALDATION phase is entered 



when a transaction has completed all its operations. This phase ensures that all the 

accesses and changes made by a transaction do not result in any loss of consistency 

within the database (i.e., it ensures serializability). Consequently, any violation of 

consistency involving the validating transaction will be detected as a conflict in this 

phase. If a conflict is uncovered during validation, it can be resolved by backing up 

the validating transaction and restarting it as new. This is accomplished simply by 

throwing out that transaction's intentions list and starting again. Finally, in the 

WRlTE phase, all local copies of data in a transaction's intentions list are made 

global. Only those transactions that successfully complete validation enter into this 

phase, and the combined execution of the VALlDATION and subsequent WRITE 

phases of a transaction must proceed in an uninterrupted (i.e., atomic) fashion. 

1.2.3 Integration of Pessimistic and Optimistic Techniques 

An optimistic approach to concurrency control allows for the unsynchronized 

execution of transactions and relies on commit-time validation to detect conflicts 

and enforce serializability. As opposed to pessimistic techniques which introduce 

delays, within an optimistic scheme conflict resolution is accomplished by 

. transaction abort. The element of optimisim in this approach stems from the fact 

that this technique is efficient only if validation succeeds with sufficient frequency. 

That is, an optimistic approach is only cost-effective if the level of conflict is 



sufficiently low. Conversely, a robust pessimistic scheme is less efficient when the 

level of conflict is low (due to unnecessary locking overhead), and increasingly 

cost-effective when the conflict level is sufficiently high. As a result, optimistic and 

pessimistic approaches to concurrency control are appropriate under opposing sets of 

conditions, which can be characterized by the probability of conflict among 

transactions. This would seem to indicate that a cost-effective synchronization 

model should therefore be equipped with not just one technique or the other, but 

both [Kung81, Vidyasankar84, Herlihy861. This dual mechanism, or hybrid 

approach, could then allow for the selective application of the most appropriate 

method of concurrency control on a situation dependent basis. 

1.3 Thesis Overview 

The work presented here is an exploration of a recently proposed method for 

synchronizing extended transactions accessing shared abstract objects through a 

server [Herlihy86]. This type-specific method supports a hybrid approach by the 

selective use of an optimistic concurrency control technique on a per conflict-type 

basis in conjunction with a two phase locking (pessimistic) approach. A purely 

optimistic, a purely pessimistic, and a hybrid server are designed according to this 

method and implemented for the abstract data type semiqueue. Through the 

evaluation of the performance and implementation issues associated with each 



server, along with a further example of its application to the directory data type, we 

demonstrate the practicality and efficiency of this highly flexible method and 

establish the effectiveness of its hybrid support. Fundamental characteristics of 

type-specific optimistic, pessimistic and hybrid control are established, along with the 

identification of the most appropriate environments for each. 

Section 2 gives an overview of previous work using semantic information to 

increase concurrency for extended transactions. Section 3 describes an example, the 

semiqueue data structure, the operations on the semiqueue, and the conflicts which 

arise between extended transactions accessing the object concurrently. Section 4 

presents the implementation details of our hybrid semiqueue server, including a 

description of its data structures and the operations which use them. Section 5 

presents the results of our tests, which subjected each of our servers to varying 

degrees of transaction conflict. This is followed in Section 6 by an evaluation of the 

respective behavior of each approach. To extend these results to other data 

structures, we then analyze the application of this method to a second data structure, 

a directory . Section 7 presents our conclusions and discusses possible directions for 

further research. 



2 Previous Work on Concurrency Control for 
Extended Transactions 

2.1 Fast Path: A Successful Approach for Database Transactions 

A leading commercial database management system currently employed 

world-wide is IBM's IMS/VS [Gawlick85,O'Nei186]. The concurrency control 

scheme used by this system, known as Fast Path, has the proven ability to sustain 

impressive transaction rates within banking environments (180 Debit/Credit 

transactions per second reported in 1983 [Gawlick85]). One of the most innovative 

and successful features of this system's design (1974) is the incorporation of semantic 

information and optimistic techniques into its treatment of frequently accessed fields 

or "hot spot" data. 

When applied to frequently accessed data such as shared counters, common 

locking techniques impose severe bottlenecks that can have a crippling effect on an 

entire database system. This result is inherent in the fact that once an item is locked 

by a transaction, it must remain locked for the duration of that transaction. Fast 

Path attempts to avoid these bottlenecks by abandoning conventional pessimisitic 

methods in "hot spot" situations. These situations most commonly involve 

summary data such as "Quantity On Hand" or "Total Cash Received", and are 

normally kept in main storage. Semantic information associated with these specific 

data types reveals that most of the updates involving these fields are of an 



increment or decrement nature. Consequently, these operations can be most 

effciently made without explicit retrieval and replacement of the records. If, for 

example, the desired modification was to replace a quantity of 1000 by 1005, the 

database system can simply add 5 to 1000 [Gawlick85]. Operations on summary data 

are performed by MODIFY requests, that have the following form: 

MODIFY: database 
record 
attribute 
operation ( one of +, -, *, /, or :=) 
value 

Before actually modifying an attribute, however, Fast Path allows the 

programmer to issue special VERIFY requests to ensure that an attribute bears some 

relation (<, <=, =, >=, >) to a known value. These requests are checked again during 

commit processing. In keeping with the characteristic properties of optimistic 

techniques, the MODIFY requests are not actually performed until commit time, 

after all the VERIFY requests have been reevaluated. A VERIFY request has the 

following form: 

VERIFY: database 
record 
attribute 
relation ( one of <, <=, =, >=. >) 
value 



Due to the fact that an attribute is not actually updated until the end of a 

transaction, the first set of VERIFY requests are not crucial and are intended only to 

supply confidence since they cannot guarantee success. They can, however, provide 

the application program with a basis for executing an alternative branch of logic in 

the event that the verification criterion are not currently met. For example, if 

"Quantity On Hand" must remain nonnegative, the application could include: 

if VERIFY qoh >= const -> 
MODIFY qoh:= qoh - const 

else <alternative branch > 

The second execution of the VERIFY requests are generated by the system at commit 

time and used to determine if a transaction's MODIFY requests should be executed 

and subsequently committed. In the case where verification fails, the transaction is 

aborted. Otherwise, the attribute is locked and subsequently modified. By 

postponing the actual modification of an attribute until the end of a transaction, Fast 

Path shortens the duration for which a lock is held on a "hot spot", and 

consequently is better able to avoid bottlenecks than common locking techniques. 

2.2 Argus and TABS : Conventional Pessimistic Approaches for 
Extended Transactions 

Argus [Liskov83] and TABS [Spector851 are two existing systems that provide 

pessimistic based support for extended transactions on user-defined abstract types. 



Both rely on two phase locking and the standard definitions of READ/WRITE lock 

conflict. Argus is an integrated programming language/system designed to support 

the construction and execution of distributed programs, and the TABS prototype is a 

general purpose facility explicitly designed for extended transactions. Within both of 

these systems, a distributed program consists of a group of servers (known as 

guardians in Argus anddafa servers in TABS) communicating via operation 

invocations. Each server encapsulates one or more data objects and the operations 

used to manipulate them. These operations provide the sole means by which 

servers can access each other's data objects. Arguments are consequently passed by 

value in order to guarantee that all direct references to an object are contained 

within that object's server; processes within a single server, however, can share 

objects directly. Seperate processes are spawned to execute each operation 

invocation and each server must provide access control and synchronization for the 

data objects it contains. 

Although both systems employ this client/server model to support 

transactions on shared abstract types, their subsequent user interfaces are very 

different, with Argus being the simpler of the two to use [Spector85]. To guarantee 

proper synchronization of concurrent transactions, Argus supplies a special MUTEX 

object to provide concurrency control and TABS relies on the semantics associated 

with coroutines and the application programmer to explicitly lock shared types. The 

following sections investigate the treatment of the abstract data type semiqueue 



within Argus (section 2.2.1) and TABS (section 2.2.2), then briefly outline the TABS 

system and define the focus of our work within such a facility (section 2.2.2.1). 

2.2.1 Argus 

Argus provides linguistic support for atomic actions (i.e., transactions). 

Actions are the prinicipal way of performing computations in Argus -- they start at 

one guardian and can spread to others via operations invocations known as handler 

calls. Atomicity is accomplished through an atomic data type [Weihl85] construct 

which is composed of a set of operations and data objects that are implemented in 

such a way that concurrent actions accessing these objects are serializable. Some of 

these atomic data types are built-in (e.g., atomic arrays) and others can be 

user-defined. 

Operations on built-in atomic data types are all classifed in terms of 

conventional READS and WRITES and serializability is accomplished by an 

augmented two phase locking scheme. As with conventional two phase locking 

mechanisms, locks are acquired automatically when an action calls an operation 

and are held until that action commits or aborts. In Argus, however, when a write 

lock is obtained on a built-in type, a version or copy of the object is made, and the 

operations of this action are directed to this copy, as opposed to the global data. This 



new version of the object is retained if the action goes on to commit, otherwise it is 

forgotten (this is analogous to the use of intentions lists described in section 1.2.2). 

As previously mentioned in the Introduction, in some cases users may find 

that serializability is too severe a concurrency constraint to inflict upon actions that 

access certain shared abstract types. Consequently, Argus also provides support for 

extended transactions on nonserializable, user-defined abstract types such as a 

semiqueue. If a user had no choice but to rely on the built-in atomic array data type 

provided by the Argus system to model a semiqueue, the potential increase in 

concurrency could not be exploited. The Enqueue and Dequeue invocations would 

consist of a WRITE and a READ-WRITE combination of operations, respectively, 

and consequently these operations would be mutually exclusive, even if they were 

performed on seperate items. That is, a built-in atomic array type does not provide 

support for individually lockable elements. 

It is assumed that new, user-defined atomic types like semiqueues can be 

defined in terms of Argus' built-in atomic types. Thus, the actual implementation 

of a user-defined atomic type consists of a combination of atomic and nonatomic 

objects, where nonatomic objects contain information that is unrestrictively 

available to concurrently executing transactions, and atomic objects are used to hold 

information neccessary for the correct interpretation of this nonatomic data. To 

support this use of built-in atomic objects, Argus provides specialized extensions to 

their regular operations. These extensions enable operations to determine whether 



an action which modifies a nonatomic component of a user-defined atomic object 

hascommitted, aborted, or is still active. Depending on which of these three states 

an action is in, its modified version can be available, ignored or withheld from 

other actions, respectively. 

In order to exploit the type-specific properties of abstract objects and allow for 

the increase in concurrency that knowledge of these semantics can permit, Argus 

exploits the distinction between action concurrency and process concurrency. 

Action concurrency refers to actions (which consist of one or more operations) that 

are considered to be active simultaneously, whereas process concurrency is used to 

depict two or more processes (which represent executing operations) executing on 

the same object at the same time. "Coarse-grained" action concurrency is more 

crucial than "fine-grained" process concurrency with respect to performance issues. 

This can be attributed to the fact that actions have the potential to take a very long 

time -- thus there are more serious consequences if they are permitted to exclude 

each other than there are if (typically smaller) processes lock each other out. Locks 

on built-in atomic objects are used to synchronize actions, whereas process 

synchronization is accomplished by means of a mutex data type. A mutex object is 

merely a container for another object and it enforces mutual exclusion of the 

operations that access the object it contains. For example: 

is a mutex object which contains an array of integers. Consequently, all operations 



performed on this array will necessarily behave exclusively. 

A process can take control of a mutex object using the seize statement. If some 

other process has possession of the object, this process waits until that possession is 

released. Although this wait should be relatively short, it introduces a further level 

where deadlock could potentially arise (in the event that each concurrent process 

attempts to seize more than one mutex object). Consequently, a run time check for 

this type of deadlock must be performed every time a process is forced to wait for 

possession of a mutex object. If several processes are waiting, one is selected fairly. 

Once a process has seized a mutex object, it is possible to release possession 

temporarily with a pause statement. After a process executes a pause, it waits for a 

system determined amount of time and then attempts to regain possession. The 

following high-level description of a semiqueue implementation will help to 

demonstrate the role built-in atomic types and mutex objects can play in the 

representation of user-defined atomic types. 

Within a user-defined atomic type, built-in atomic types are used to determine 

the state of an action (i.e., commited, aborted, or active) and mutex objects are used 

to synchronize user processes (i.e., operations). In the case of a semiqueue of 

integers in Argus, one effective implementation strategy is to enqueue the integers 

in a nonatomic array enclosed by a mutex object [Weihl85] . This way, concurrent 

actions accessing the array, which have the potential to be long, need not always shut 

each other out - however, the processes that execute the operations on behalf of 



these actions, which will be relatively short, are muttrally exclusive. Hence, any 

operation that reads or modifies the array must first seize control of it. 

The built-in atomic type, atomic-variant , is associated with each integer in 

the mutex array to record the status of the action that inserted or deleted that 

element. Atomic-variants can be in one of two states, "present" or "absent", which 

are identified by a "tag" that has an associated value. If an element's state is 

"present", then the associated value is the enqueued integer. The value of an 

element in an "absent" state is ignored. Since concurrency control for the 

atomic-variant is governed by Argus' two phase locking technique, any 

modifications made by an action to the state of an element in the semiqueue are 

strictly local until that action commits. Conflict only occurs when an action attempts 

to Dequeue an element which has been either Enqueued by a currently active 

action or accessed by a concurrent Dequeue operation. Technically, this semiqueue 

can be represented as (Figure 2.1): 

mutex[buffer] 
where buffer == array[qitein,value] 

qitem == atomic-variant[present: int, absent: nil] 
value == integer 



I Buffer = array [qi tem, value] 

1 Buffer [atomic-varl,val] 

1 Buffer [atomic-var2,vall 

Buffer [atomic_var3,val] 

Buffer [atomic-var?,val] 

( state Ivalue I 
[ state Ivalue I 

The semiqueue is modeled by an array, "Buffer", of atomic-variants, each 
containing <state> and <value> data. This array is contained within a 
mutex object, hence operations to access the array are mutually exclusive. 

Figure 2.1: A Semiqueue in Argus 

Enqueue and Dequeue operations execute in the following manner. An 

Enqueue operation first associates a new atomic-variant object with the incoming 

value, then seize s the mutex object and adds this new item to the array (it may 

have to wait for another operation to release the mutex object). The tag associated 

with this value becomes "present" if the action performing that Enqueue operation 

later commits, and is permanently set to "absent" if it aborts. A Dequeue operation 

seize s the mutex object and then searches for an eligable element, one of which is 



selected arbitrarily. This element's tag is then changed to "absent", and its associated 

value is returned. In the event that a Dequeue operation is unsuccessful in finding 

an available element, a pause statement is executed and the search is resumed at a 

later time. If the action calling the Dequeue operation commits, then the tag is set to 

"absent" permanently, otherwise, if the calling action aborts, the qitem 's state is 

returned to "present". Qiterfi s with a state which has been permanently set to 

"absent" by either an aborted Enqueue or a committed Dequeue, are removed from 

the array by a garbage collection routine. 

It is important to notice that the array-type in the mutex object is not atomic. 

Consequently if any changes were inflicted upon the integers of the array by actions 

that later aborted, these modifications could not be undone. Thus if a Dequeue 

operation were to actually over-write the integer value of an item in the array 

(instead of just changing its status), this operation could not be reversed if the 

calling action later aborted. Qitems on the other hand, which are the built-in atomic 

types associated with each integer of the array, are implemented such that any 

changes made by an action to the status of an element can be undone in the event 

that the action does not commit (i.e., local modifications can be thrown out). 



22.2 TABS 

The creators of the TABS prototype a te  the following two reasons for choosing 

a pessimistic locking scheme to accomplish concurrency control [Spedor85]: 

(1) Locking has been proven to be an efficient synchronization 
mechanism in many commercial database management systems. 

(2) When locking is local to servers, it can be customized to provide 
better performance. For example, type-specific locking fSchwarz841 . 

Type-specific locking allows for more concurrency than traditional READ/WRTTE 

locking by using semantic information associated with abstract types to define 

type-specific locking modes and customized compatibility relations. Unfortuately, 

however, TABS is currently restricted to traditional READ/WRITE modes. 

In TABS, a serniqueue can be implemented as an array of individually lockable 

elements, bounded by HEAD and TAIL pointers (Figure 2.2). Since items may be 

removed from anywhere within this queue, gaps between these pointers must be 

identifiable. In order to accomplish this, all array elements have an associated 

boolean value, InLlse , which indicates whether that element actually contains a 

value that is currently being stored in the semiqueue. Enqueue and Dequeue set 

and clear this bit, respectively. Enqueue adds a new element to the semiqueue by 

writing the integer below the TAIL pointer, setting the InUse bit to true, and 

reassigning the TAIL pointer to this new element. Dequeue scans the array for the 



first eligibile element, returns its value and removes it by clearing the Inuse bit. 

Elements that are not considered eligible are either locked or have In Use set to false. 

A garbage collection routine eventually removes these elements from the array. 

These Enqueue and Dequeue operations are implemented as coroutines in the 

semiqueue data server. Each incoming request is treated as a seperate coroutine 

invocation, and a coroutine switch is made when an operation is forced to wait for a 

lock. The semantics of these coroutines ensure that only one transaction at a time 

can update the TAIL pointer, and provide a service that is similar to that of the 

mutex object in Argus. 

InUse InUse - InU 

Value Value Value 0 0 0 

HEAD TAIL 

Figure 2.2: A Semiqueue in TABS 

The amount of concurrency that this implementation allows with respect to 

Enqueue and Dequeue operations is identical to that of the Argus implementation, 

and can be demonstrated by the following conflict table (where id and id ' represent 

distinct items): 



As this table suggests, the fact that TABS allows a semiqueue to be implemented as 

individually lockable elements permits the uninhibited concurrent execution of all 

transactions that access different items in the semiqueue. In the event that a 

transaction aborts, its effects are undone by backtracking through a log kept by the 

system and restoring the appropriate semiqueue elements to their previous state. 

2.2.2.1 Components of TABS 

Within the experimental design of a TABS, four basic components provide 

support for distributed extended transactions: recovery management to handle 

hardware failures, transaction management for implementing commit protocols 

and allocating globally unique transaction identifiers, communication managment 

to handle access to the network, and name dissemination for locating objects in the 

system. A distributed transaction can then access objects at more than one site and 

still be an atomic unit of work . The system components of a TABS node can be 

illustrated as follows (Figure 2.3): 



I (1 Application p G q  

lobpal lobjectl I Data Server I I Data Server I 
Transaction / 

Accent Kernel I 

TABS is implemented in Pascal 
running on a modified version of 
the Accent operating system. 
"Applications" initiate transactions 
and call data servers to perform 
operations on objects. 
Data servers are programmed with 
aid of system libraries for doing 
synchronization, recovery and commit. 

TABS system components include: 
Recovery Manager for recovery and 
log management; Transaction 
Manager for handling transactions; 
Communication Manager for network 
communication and a Name Server 
for name dissemination. 

Figure 2.3: The Basic Components of a TABS Node 

Within the context of a system such as TABS, our work focuses on the 

syncrhonization issues that are local to a single data server. 



2.3 Serial Dependency Relations: 
A Tool for Defining Type-Specific Concurrency Control 

Serial dependency relations [Spector83, Schwarz84, Herlihys] provide a means 

of incorporating semantic information into the specification of consistency 

constraints for type-specific operations. A serial dependency defines the order in 

which two concurrently executing transactions operate on a common object. In a 

general purpose system, a set of proscribed serial dependencies can be defined for 

each shared object type and used to identify type-specific conflicts. This section is 

dedicated to an informal examination of the notation and use of dependency 

relations to define type-specific consistency constraints. Formal and extensive 

treatment for optimistic and pessimistic methods can be found in [Herlihys] and 

[Schwarz84], respectively. 

Let the equation: D: Ti:X --> T-:Y represent the dependency D, that is 
O J 

formed when transaction Ti performs operation X , and transaction T i 
subsequently performs Y on the same object o. The set of ordered pairs of 

transactions {(T-,T.)) for which D: Ti:X --> T-:Y holds, forms a relation, denoted 
1 O I 

If T. < T-, (that is, if ) are one of the ordered pairs in the set that 
l D J  

denotes the relation " <D ") then this means that Ti precedes T. and T. depends I J 

on Ti under the dependency D. 

A set of proscribed serial dependencies can be used to define conflicts between 



operations that use semantic information in the following way. Consider the 

limited semantics of the standard definitions of READ and WRITE operations 

within a conventional database. In total, there are four possible dependencies 

between a pair of transactions that access a common object [Schwarz84]: 

Dl: Ti: READ -->, Tj: READ Ti reads an object subsequently read by T. J 
DZ: Ti: READ -->, Tj: WRITE Ti reads an object subsequently modified by Tj 
D3: Ti: WRITE -->, Tj: READ Ti modifies an object subsequently read by Tj 
D4: Ti: WRITE -->, Tj: WRITE Ti modifies an object subsequently modified by Tj 

Of these four, dependencies of type Dl are considered to be insignificant due to the 

fact that they do not affect the outcome of transactions, and hence their ordering 

does not affect serializibility. That is, given a pair of transactions Ti and Ti that both 

read a shared object o , the semantics of the READ operation are such that no 

transaction can determine whether Ti < ~ 1  Tj or Tj < ~ 1  Ti. Hence, the set of 

proscribed dependency relations for these operations is (D2, D3, D4) (which 

correspond to the definition of conflicts among READ/WRITE operations presented 

in section 1.2.1). 

When proscribed dependencies are used to define conflicts, serializibility can be 

redefined as orderability (i.e., the property of being cycle free) with respect to the 

- union of the set of proscribed dependency relations. For example, a READ/WIUTE 

concurrency control scheme allows for multiple readers by permitting cycles to form 



in the C D ~  relation, while preventing cycles in the union of < ~ 2 ,  < ~ 3  and 9 4 .  

Consider the following two serializible schedules of operations [Schwarz84]: 

TI: READ(object-1) T2: READ(object-1) 
T2: READ(object-1) TI: READ(object-1) 
TI: WRITE(object-1) TI: WRITE(object-1) 

In the first schedule, TI < ~ 1  T2, and T2 < ~ 2  TI, which forms a cycle in the relation 

< ~ 1  u D2, but the relation < ~ 2  u D3 u ~4 cycle free. The second schedule reverses 

the first two steps, thus removing the cycle, and still has an identical effect on the 

system's state. Consequently, both schedules are orderable with respect to 

<D2 u D3 u D4. 

In contrast, consider the two schedules: 

TI: READ(object-1) T2: WRITE(object-1) 
T2: WRITE(object-1) TI: READ(object-1) 
TI: WRITE(object-1) TI: WRITE(object-1) 

The first can be shown to violate serializibility due to the fact that it is not orderable 

with respect to < ~ 2  u D3 u ~ 4 .  Here, TI < ~ 2  T2 and T2 < ~ 4  TI, thus it contains a 

cycle in < ~ 2  u D4 , which is a subrelation of 9 2  u D3 u D4. The second schedule 

reverses the first two steps, removing the cycle, and the resulting schedule is 

orderable with respect to the union of the set of proscribed dependencies. 



Serial dependency relations are used to define type-specific conflicts in each of 

our optimistic, pessimistic and hybrid implementations. As demonstrated in 

Section 3, each of these three approaches to concurrency control requires different 

dependencies to be included among their proscribed set of relations. 

2.4 Optimistic Techniques: Conflict-based Validation 

Confict-bused validation [Herlihy86] is the technique that forms the basis of our 

optimistic implementation. In keeping with traditional approaches to optimistic 

concurrency control, a conflict-bused approach works by defining each abstract data 

object as being a composite of two components: a permanent state and a set of 

intentions lists. An object's permanent state records the effects of transactions 

which have successfully terminated and there is an intentions list, recording 

tentative changes, for each active transaction which has accessed the object. When a 

transaction commits, changes in its intentions list are applied to the permanent state 

of the object. Before a transaction may commit, however, it must be validated. 

Given that an event consists of an operation invocation and a response, 

conflict-based validation is based on predefined conflicts between pairs of events. 

a For example, consider an abstract data type, Account, and its two associated 

operations Credit and Debit, which increase and decrease the balance of Account 



by a specified amount, respectively. If the amount specified to be debited exceeds the 

balance of Account, an Overdraft is signalled and the balance is left unchanged. 

The following sequence of events (called a history ), demonstrates how an object's 

state can be modelled: 

Conflicting events for this data type would be the following (where " X  indicates a 

conflict and events in the columns are executed prior to the corresponding events in 

the rows): 

Credit/Ok Debit/Ok Debit/Over 
Credit/Ok 
Debit/Ok X 
Debit / Over X 

As this table indicates, there are only two types of conflicts among these events. 

A successful Debit (Debit /Ok) conflicts with a prior successful debit, and an 

Overdraft (Debit/Over) conflicts with a prior credit. These conflicts are defined by 

the proscribed serial dependency relations that exist between these events (section 

2.3). In other words, the "success" of a Debit operation is dependent upon prior 

DebitlOk events. Consequently, a DebitlOk event executed by validating 

transaction can invalidate DebitlOk events that were performed by other actively 



executing transactions. Likewise, an Overdraft signal will depend on prior 

CreditlOk events since a committed addition to the balance could, potentially, 

invalidate an overdraft condition. 

If concurrent transactions accessing the same shared data object do not contain 

any conflicting events, then none of their events are invalidated and hence their 

intentions lists will be applied to the permanent state of the object in the order that 

they validate (this ordering can be imposed either by assigning unique transaction 

numbers or using a system of logical clocks and timestamps). 

Employing ments as the units of conflict, in contrast to the mere invocations 

which pessimistic schemes typically employ, has a direct effect on concurrency. In 

most pessimistic schemes, a lock must be acquired before invoking an operation, 

thus conflicts are defined between invocations as opposed to complete events. By 

basing validation on events, the additional information from an invocation's 

results can be used to validate more interleavings than would be legal in most 

pessimistic techniques, and consequently allow for an increased level of 

concurrency. For example, within an event based model, a Credit operation is 

compatible with a successful Debit operation, but not with an attempted 

DebitJOverdraft. Within an invocation based model, there would be no distinction 

between a successful and an unsucessful Debit operation. A comparision of the 

following two tables demonstrates the dramatic contrast between the number of 

conflicts that exist for the Account data type in an event based approach as opposed 



to an invocation based model: 

EventJEvent: 
Credit /Ok Debit /Ok Debit /Over 

Credit/Ok 
Debit/Ok X 
Debit / Over X 

Invocation/Invocation: 
Credit/Ok Debit /Ok Debit/ Over 

CreditIOk X X 
Debit/Ok X X X 
Debit / Over X X X 

Consequently, an event based model can support an enhanced level of concurrency 

over invocation based models because it exploits information about the state of an 

object in much the same way as Fast Path (section 2.1). 

2.4.1 The Validation Phase 

Within an optimistic scheme, concurrency control techniques are employed 

during a transaction's VALIDATION phase. Validation techniques can be 

classified into two categories [Harder83]: bachard and forward oriented 

concurrency control (BOCC and FOCC, respectively). Basically, given transaction Tj 

that is trying to validate, BOCC checks for conflicts between Tj and transactions that 



were concurrently executing with Tj that have previously validated. If there are any 

conflicts of this kind, then Tj has been invalidated and must be aborted. With this 

same Tj, FOCC would check for conflicts between Tj and transactions that were 

concurrently executing with Tj that are still active. If there are any conflicts of this 

kind, then several courses of action can be taken, the simplest of which is to abort 

transaction Tj. The following explanations of BOCC and FOCC rely on unique 

transaction identification numbers, assigned at the end of each transaction's READ 

phase, to impose a total ordering. Transactions are assumed to enter the Validation 

and possible subsequent WRITE phase one at a time [Harder83]. 

2.4.1.1 Backward Oriented Concurrency Control 

In BOCC, given a transaction Tj that is attempting to validate, all transactions 

that were running concurrently with Tj, but have subsequently validated, must be 

checked for conflicts. That is, for the transaction Tj with transaction number T(j), 

and for all transactions Ti with transaction numbers T(i), such that T(i) < T(j), (i.e., 

each Ti finished its READ phase before Tj) backward validation ensures that Tj did 

not access any object that was later overwritten by any Ti. The following diagram 

. illustrates Tj's validation scenario: 



Tact " 

In the situation depicted above, applying BOCC during Tj's validation phase means 

that the objects accessed during the read phase of Tj, known as the read set of Tj, 

have to be checked against the objects written by T2 and T3, known as the write set 

of T2 and T3. If Tj's red set has any objects in common with either of these write 

sets, then the only solution is to abort Tj (since T2 and T3 have already been 

validated). This implies that in order to facilitate BOCC, all the write sets of a group 

of concurrently executing transactions must be kept until the last member of that 

group has committed. 

2.4.1.2 Forward Oriented Concurrency Control 

If the scheduler is attempting to validate Tj using FOCC, instead of comparing 

Tj's read set with the write sets of validated transactions as in BOCC, active 

transactions are checked for conflicts. In FOCC, the write set of a transaction being 



validated is compared with the read sets of all concurrently executing transactions 

that not only started their execution subsequent to the beginning of Tj's execution, 

but also have not yet completed their READ phase. Consequently, concurrency 

control is ultimately tied to transactions that perform WRITE operations, and 

READ-only transactions can be validated automatically. For a transaction Tj that is 

trying to commit, the following scenario captures a FOCC scheme: 

Write 
1- 

In the above diagram, the write set of the transaction seeking validation, Tj, must be 

checked against the read sets of active transactions that began execution subsequent 

to the start of Tj, which are Tactl and Tact2. In the event that Tj's write set has an 

object in common with one or both of these read sets, one of several conflict 

resolution strategies could be applied [Harder83]. The most direct of these is an 

"immediate abort" approach, where the transaction that is trying to be validated, Tj, 

is aborted when such a conflict is detected. 

It is important to note that since FOCC must examine potentially dynamic read 

sets of concurrently active transactions, validation can be intricate. A 



straightforward approach, however, is to perform validation in a system-wide 

critical section [Harder83]. 

2.5 Hybrid Concurrency Control for Extended Transactions 

Type-specific two phase locking (section 2.2.1) and conflict-based validation 

(section 2.4) are the respective pessimistic and optimistic components of a recently 

introduced hybrid concurrency control method for extended transactions which 

forms the basis of our hybrid implementation [Herlihy86]. Within conflict-based 

validation, there appears to be no substantial difference with regards to performance 

issues between FOCC and BOCC [Herlihy86]. We chose FOCC because its validation 

is inherently more optimistic due to the fact that its "immediate abort" strategy 

could abort a transaction due to a conflict with a transaction which, in turn, is not 

guaranteed to be validated (i.e., there could be more cyclic starts). Within our 

simulation, this approach's extreme optimism serves to be an appropriate counter 

part to the pessimistic approach for comparison purposes. 

A hybrid synchronization mechanism supports the selective application of 

optimistic or pessimistic control on a per operation basis for an abstract object in a 

distributed system. Within this approach, the appropriate concurrency control 

mechanism can be applied according to a probability of occurance that can be 



expected for each type of conflict. Conflicts that have a high probability of occuring 

can be governed by a pessimistic technique, whereas conflicts that are expected to 

occur at a sufficiently low frequency could rely on an optimistic method. The 

following is a high level discription of the methodology by which this type of mixed 

control could be accomplished. 

Serial dependency relations are used to define conflicts between pairs of events. 

The optimistic component of this compound approach, forward oriented 

conflict-based validation [Herlihy%l, relies on these conflicts to determine which, if 

any, transactions should be aborted. In the same way, the pessimistic component of 

this approach, type-specific two phase locking [SchwarzM, Herlihya], can employ 

these conflicts to determine which transactions should be delayed. For instance, as 

previously established (section 2.4), the serial dependency relations for the events 

associated with the Account data type define conflicts between the events DebitlOk 

and DebitlOk, as well as between CreditlOk and DebitlOverdraft . Within a hybrid 

approach, it is possible to make further distinctions about how each of these types of 

conflicts is to be controlled. That is, given an Account data object where the balance 

is expected to cover all debits, but for which concurrent debits are frequent, the 

probability of conflicts between two DebitJOk events can be expected to be high, 

while conflicts between CreditlOk and Debitloverdraft events will occur with a 

much lower frequency. In this case, a cost-effective hybrid scheme could treat the 

first type of conflict pessimistically while the latter could be treated optimisitically. 



This situation can be depicted as follows (where "P"= pessimistic conflict and "0= 

optimistic conflict replace the generic "X" conflict that was used in section 2.4): 

Credit/Ok Debit/Ok Debit/Over 
Credit/Ok 
Debit /Ok P 
Debit / Over 0 

When a transaction executes an event that is governed by an optimistic 

conflict, it is given an optimistic lock (0-lock) for that event. A transaction can only 

be validated if no other transaction holds an optimistic lock for a conflicting event. 

That is, given a transaction Ti that is attempting to validate (via FOCC) and holds an 

0-lock for the event CreditlOk , and an active transaction, Tj, which holds an 

0-lock for the event Debit/Overdrajl, Ti must be aborted. All 0-locks are released 

upon transaction termination. 

In contrast, P-locks must be requested after a transaction executes an 

operation invocation, but before it updates its intentions list. If any other 

transaction holds a conflicting P-lock , the lock is refused and the operation must be 

retried. That is, given a transaction, Ti, which is attempting to execute the event 

DebitlOk , and a transaction, Tj, which already holds a P-lock for the event 

DebitlOk , Ti must be delayed and its operation invocation retried. When a P-lock 

can be successfully obtained, the intentions list is updated and the event's response 



returned to the calling transaction. As with 0-locks, all P-locks are released upon 

transaction termination. 

2.6 Performance Evaluation 

Numerous studies have been dedicated to examining the performance of 

concurrency control algorithms for conventional database systems [Thanos83, 

Franaszek85, Agrawal87, Pun87, Wolfson871. A common complaint associated with 

studies like these is that their results often appear to be contradictory and 

inconclusive. As suggested in [Agrawal87], the discrepancies that arise between 

different evaluations can be attributed to the fact that every study is based on its own 

unique set of performance modelling assumptions. In order to allow for a 

comparison between our results and other studies, we first had to establish a 

common and acceptable performance metic. 

Presently, studies on the performance of concurrency control mechanisms that 

exploit semantic knowledge are sparse. One such study [Cordon851 compares the 

performance of a concurrency control scheme that utilizes application specfic 

semantics to conventional two phase locking. The purpose of this comparison is to 

- determine the conditions under which the higher complexity of overhead associated 

with the application dependent mechanism pays off. This work brings attention to 



the possibility that the cost of a customized mechanism may outweigh its potential 

gains in concurrency if its overhead is much higher than that of conventional 

methods. 

Through the use of a simulated distributed database management system 

model, this work has established that the level of conflict was the most dominant 

performance factor in the comparison. In an environment such as a large database 

where references are widely dispersed and probability of conflict is consequently low, 

conventional two phase locking schemes outperform an application dependent 

strategy. This is due to the fact that the conventional approach has smaller 

overhead. But for environments in which the probability of conflict is expected to be 

high, application dependent methods can significantly improve the system's 

response time. The reason for this is the increased amount of concurrency schemes 

such as these can support. 

Similarly, as previously discussed (section 1.2.3), the level of conflict can be 

used to determine which of the optimistic or pessimistic techniques is most 

cost-effective. As concluded in [Kung81], optimistic methods are superior to 

traditional locking methods in environments where transaction conflict is rare, but 

inferior where transaction conflict is more frequent. 

Relying on the level of conflict as a suitable performance metric and 

amalgamating the conclusions of [Cordon851 with [Kung81] results in the following 

expectations for the ordering of conventional locking (PESS), locking based on 



semantic knowledge (SK), and optimistisic (OPT) methods of concurrency control: 

Performance 
Best Mediocre Worst 

Lmel of Conflict High: SK PESS OPT 
Low: OPT PESS SK 

Figure 2.4: Expected Performance under High and Low Levels of Conflict 

In keeping with these studies, we use the percentage of conflict as our 

performance variable within our transaction simulation model. Subsequently, we 

examine the relative behaviors of the optimistic, pessimistic and hybrid semiqueue 

servers as they are subjected to an increasing percentage of conflict. Since this, to our 

knowledge, is the first implementation of the techniques presented in 

[Herlihy86], we are specifically interested in establishing some notion of a threshold 

percentage of conflict for these methods. In accordance to the results previously 

construed from [Cordon851 and [Kung81] (Figure 2.4), there should be some level of 

conflict where the performance of locking based on semantic knowledge and 

optimistic approaches intersect. Below this threshold percentage, the optimistic 

technique outperforms semantic based (type-specific) locking, whereas above the 

threshold, type specific locking becomes superior. By close examination of this and 

other implementation dependent performance results, we establish some 

characteristics that generalize to applications of these techniques to other abstract 

data types. 



3 An Example: The Semiqueue Server 

A semiqueue is one example of a shared abstract object that has been employed 

by existing extended transaction facilities (Argus and TABS, section 2.2) to 

demonstrate their ability to support an increased level of concurrency over 

traditional facilities. As previously established, a queue of this kind allows for more 

concurrency than strictly FIFO queues because the ordering of its elements is not 

important. The events we defined for our semiqueue include: Enq(item)/OkO, 

which simply enqueues an "item" and returns an "ok" response; Deq()/Ok(item), 

which returns an "item" from the semiqueue; DeqOIFailedO , which indicates that 

the semiqueue is empty; and EualO/Ok(#items), which counts the number of items 

in the semiqueue and returns the total . An outline of our optimistic, pessimistic 

and hybrid semiqueue servers and their respective use of dependency relations to 

identify conflicts is presented in the sections that follow. 

3.1 The Optimistic Server: Four Proscribed 
Dependency Relations 

In the context of Herlihy's optimistic event-based synchronization scheme, the 

foilowing serial dependency relations define conflicts for semiqueues (where the 

events in the columns are executed prior to the events in the corresponding rows): 



As this table indicates, there are four proscribed dependency relations, reflecting the 

facts that an Enq(i)/Ok() event will invalidate both a DeqOIFailedO and an 

EvalO/Ok(#items) event (XI, X2), and a DeqO/Ok(i) event will invalidate both a 

DeqO/Ok(i) (where i represents one unique element) and an Eva1 O/Ok(#items) 

event (X3, X4). More formally, the proscribed set of dependencies can be represented 

as: 

Given a transaction, Ti, that is attempting to validate (according to forward 

oriented, conflict-based validation), if there are any conflicts between the events 

executed in Ti and other active transactions, Ti will be aborted. For example, if Ti 

tries to execute an Enq(i)/OkO event, and another active transaction has executed 

' DeqOJFailedO or Eval()/Ok(#items) , then Ti is aborted. Likewise, if Ti tries to 

execute a Deq()/Ok(i) event, and another active transaction has executed 

DeqOJOkW or Eva1 O/Ok(#items), then Ti cannot be successfully validated (ie is 



aborted). 

The optimistic server treats all four of the conflict relations mentioned above 

optimisticially through the use of optimistic locks (0-locks ) and intentions lists. 

0-locks are automatically granted each time a transaction executes an event which 

could potentially be invalidated (ie those events on the right side of the dependency 

equations Dl-D4, eg: EvalO/Ok(#items) ). An intentions list serves as a local buffer 

to record the tentative changes made to the shared object by an active transaction. A 

transaction, Ti, can be validated iff there are no transactions that hold an 0-lock for 

an event that conflicts with an event in Ti 's intentions list. If Ti can be 

successfully validated, the tentative changes recorded in its intentions list are 

applied to the shared semiqueue and its 0-locks are released. 

3.1.1 Implementation Outline of the Optimistic Server 

0-locks for Deq()/Failed, Eval/Ok(#items), and DeqO/Ok(i) events are 

implemented simply as boolean flags associated with the transaction number 

(Tnum ) of the calling transaction (in the case of Deq()/Ok(i), there is also a flag 

associated with the element i ). Whenever a transaction executes one of these 

events, it is automatically granted the appropriate 0-lock and then updates its 

intentions list accordingly. A transaction's intentions list takes the form of two 



seperate lists which record the tentative changes made by enqueue and dequeue 

operations respectively. The first is a doubly linked list of locally enqueued items 

that becomes attached to the semiqueue if the transaction is successfully validated, 

and the second is a linked list of pointers to elements in the shared semiqueue that 

the active transaction "intends" to dequeue. A more in-depth look at this server's 

implementation details is presented in Section 4. 

3.2 The Pessimistic Server: Seven Proscribed 
Dependency Relations 

Once a transaction has executed an event (ie Enq(i)lOk, DeqO/Ok(i), 

Deq()/FailedO or Eval/Ok(#items) ) at the pessimistic semiqueue server, it requests 

a pessimistic lock (P-lock) for that event before updating its intentions list. If any 

other transaction holds a conflicting lock, the lock is refused, the event is discarded, 

and the transaction must retry the invocation (which may return a different 

response). When a P-lock can be granted, the transaction's intentions list is updated 

and the response is returned. Once a transaction has successfully obtained all of its 

P-locks and has completed execution, its intentions list is applied to the global object 

and its P-locks are subsequently released. 

- Pessimistic conflicts are defined by a set of proscribed dependencies which, 

unlike the optimistic conflict relations, must be symmetric since the commit order 



of transactions is unknown at the time conflicts are detected. The following table 

depicts the seven pessimistic conflicts that exist between semiqueue events: 

The above conflicts consist of the original four proscribed dependency relations 

previously defined for an optimistic server (Dl, D2, D3, and D4), along with their 

symmetric counter-parts (D5, D6 and D7). Hence, the proscribed set of dependencies 

can be denoted as follows: 

Dl: Ti:Enq(i)/Ok() ->q Tj:DeqO/FailedO (XI 
D2: Ti:Enq(i) /Ok() ->q Tj:Eval() /Ok(#items) (X2) 
D3: Ti:DeqO/Ok(i) ->q Tj:Deq()/Ok(i) (=I 
D4: Ti:Deq()/Ok(i) ->q Tj:Eval()/Ok(#items) (X4) 

D5: Ti:DeqO/FailedO ->q Tj:Enq()/Ok() (X5) (inversion of Dl) 
D6: Ti:Eval()/Ok(#items) ->q Tj: Enq(i)/Ok() (X6) (inversion of D2) 

D7: Ti:EvalO/Ok(#items) ->q Tj: Deq(i)/Ok() (X7) (inversion of D4) 

It is important to note that within the context of a pessimistic server, one of 

these conflicts, D3, should be treated differently from all the rest. This kind of 

conflict would arise between two transactions attempting to dequeue the same item, 

and thus it would be pointless to make one of them wait for the other to finish 

executing if the semiqueue has yet another item that is eligible for dequeueing. 



Consequently, the state of the semiqueue can be used to determine whether or not 

conflicts of this kind necessarily introduce a delay (this is similar to the treatment of 

dequeue operations in both Argus and TABS). 

3.2.1 Implementation Outline of the Pessimistic Server 

As with the optimistic implementation, the pessimistic server uses a doubly 

linked list for the shared semiqueue, and a two-part intentions list for each active 

transaction: an enqueue list, consisting of a local, doubly linked list of elements to 

be enqueued, and a dequeue list consisting of a pointers to shared items the 

transaction "intends" to dequeue. These lists are treated in a manner identical to 

that of the optimistic server. 

As previously established, in situations where a transaction's request for a 

P-lock is denied (due to the fact that another transation already holds a P-lock for a 

conflicting event), the event must be discarded and the transaction must retry the 

invocation. In order to accomodate these delayed/blocked operations, special 

wakz-up calls have been included in the protocol associated with the releasing of 

P-locks. For example, with an Enq operation, the server checks to ensure that no 

. other active transaction holds a P-lock on either a DeqOIFaiIed0 or an 

Eval/Ok(#items) event (Dl andD2above). If thereisaconflict, theEnq 



invocation will block, waiting to receive a wake-up message. Wake-up messages are 

sent out to blocked operation invocations every time a transaction that has 

performed an event which conflicts with the blocked operation has released an 

appropriate P-lock. This way, when a transaction that executed a DeqOIFailedO 

event has released its Deq()/FailedO P-lock, the blocked Enq operation will be 

reactivated and retried. If this P-lock happened to be the blocked Enq 's sole 

impediment, the operation proceeds, otherwise it will be blocked again and must 

wait for the next wake-up message. 

When a transaction has successfully obtained all of its neccesary P-locks and 

has finished executing, it inflicts the changes recorded in its enqueue and dequeue 

intentions list to the global state of the semiqueue. Once these changes have been 

accomplished, the committing transaction's P-locks can be released and wake-up 

calls issued to any blocked invocations that could benefit by these releases. 

3.2.2 Deadlock 

Given two transactions, TI and T2, and the following combination of events: 

TI: Deq()/Ok(i) 
T2: DeqO/Ok(j) 
TI: E d - -  BLOCKED, waiting for wake-up from T2 
T2: E d - -  BLOCKED, waiting for wake-up from TI 



it becomes evident that some kind of deadlock prevention or resolution mechanism 

must be included in this pessimistic server. Currently, a prevention mechanism for 

simple deadlock that can arise between two transactions has been implemented. 

This mechanism is invoked just before a transaction blocks, and given TI that is 

about to block on 7'2, enforces the following rule: 

Deadlock Rule: For TI to block on T2, T2 can not already be blocked on a lock 
type that TI possesses. 

Consequently, in the example above, T2 will not wait for TI since TI is already 

blocked and waiting for the release of T2's Deq/Ok(j) Flock. In this situation, T2 

would be aborted and have to be restarted. 

The question now remains: is this mechanism robust enough to handle 

deadlock between more than two transactions? The answer to this depends on the 

type of circular waits that can arise between transactions. We show that all circular 

waits of length n contain a cycle of length two, so this mechanism is sufficient. 

Proof: The following diagram (Figure 3.1) depicts the conflicts that exist 

between the four possible semiqueue events: DeqlFailed, Enq(i)/Ok, Eval/#items, 

and Deq/Ok(i) (where each arc = a conflict): 



Dl D6 D4 

Figure 3.1: Pessimistic Conflict Relations 

As previously mentioned, in the context of a pessimistic server these conflicts are 

necessarily symmetrical due to the fact that the commit order of transactions is 

unknown when these conficts are detected. 

Consider the structure of a deadlock situation between three transactions, TI, 

T2 and T3, which execute the following events: 

In order for a circular wait to arise between all three of these transactions, they must 

all be blocked in the following manner (where Evi, Evk and Ev, have all been 

completed, and Eve, Evl and Ev, are blocked according to the arcs): J 



In order for a situation such as this to arise, where a circular wait developes 

between three transactions that does not include a cycle of length two, the following 

properties must hold: 

Ev. does not confict with Evm (since this would create a cycle of length two) J 
and therefore Evm is not equal to Evk. 

E v ~  does not confict with E v ~  (since this would create a cycle of length two) 
and therefore Evm is not equal to Ev~ .  

Evn does not confict with Evk (since this would create a cycle of length two) 
and therefore Evi is not equal to Evk. 

These properties cannot be achieved by the events associated with this particular 

implementation of a semiqueue since they require each blocked transaction to 

complete execution of one of the four possible events that has not yet been executed 

by the other transactions. That is, TI, T2 and T3 must successfully complete 



execution of Ev~, Evk and Evm, respectively, before this circular wait can arise and 

since none of these events are the same, they must represent three of the four 

possible semiqueue events. As demonstrated in Figure 3.1, no combination of more 

than two distinct events can be successfully completed by concurrent transactions 

without causing a conflict. As a result, all circular waits of length n must contain 

cycles of length two, and subsequently the prevention method that disallows cycles 

of length two from forming is adequate for our implementation. 

3.3 A Hybrid Server: Four Proscribed Dependency Relations 

The four proscribed dependency relations for an optimistic serniqueue server 

modelled after Herlihy's conflict-based validation technique [Herlihy86] can be 

illustrated as follows (Figure 3.2): 

Figure 3.2: Optimistic Conflict Relations 

A pessimistic semiqueue server, as previously discussed, must also handle the 



symmetric counter parts to these conflicts, which results in the addition of relations 

D5, D6 and D7 (Figure 3.1). 

The hybrid server considered here treats all conflicts optimistically except for 

the conflict defined by the dependency relation D3. This configuration was 

arbitrarily selected from the z4 (where 4 is the number of conflicts defined by the 

proscribed serial dependency relations for the optimistic server) possible hybrid 

combinations. This particular type of hybrid server is designed to be appropriate in a 

situation where concurrent Deq/Ok(i) events are expected to be frequent, but the 

conflicts defined by dependencies Dl, D2 and D4 are expected to be rare. Hence the 

hybrid conflicts can be represented as follows (Figure 3.3): 

Figure 3.3: Hybrid Conflict Relations 

In this hybrid scheme, any conflicts of type D3 are resolved pessimistically (indicated 

with the darker arc) by introducing delays, whereas conflicts of type Dl, D2 and D4 

are resolved optimistically (indicated with the lighter arcs) by transaction abort. 

As with the pessimistic server, the hybrid server includes a mechanism which 

can prevent deadlock between two transactions. 



3.4 The Simulation Model 

Our implementation simulates optimistic, pessimistic and hybrid concurrency 

control mechanisms for extended transactions based on the techniques presented in 

[Helihy86]. Although our simulation model is simple, we believe that it captures, 

on a small scale, the fundamental concurrency considerations addressed by both 

Argus and TABS. Within each of these systems a distributed program consists of a 

group of servers communicating via operation invocations (section 2.2). Each 

server completely encapsulates at least one data object and the operations that 

manipulate it, and consequently is responsible for controlling the concurrent access 

of transactions operating on its object(s). Both systems adhere to the philosophy 

that "fine-grained" operation concurrency is much less important than 

"coarse-grained" transaction concurrency and, as a result, the execution of operations 

within each server is mutually exclusive. 

In keeping with these systems, we also employed a client/server model to 

support extended transactions. A full implementation of a formal transaction 

system however, was not appropriate at this stage. Instead, we implemented servers 

that could potentially operate within the type of environment defined in both Argus 

and TABS, and simulate the presence of a formal transaction system by 

"spoon-feeding" operation invocations to each server as if they were coming from 

active transactions. A more detailed discussion of our simulation is presented in 



Section 5. 



4 Implementation Details 

4.1 The Semiqueue and Intentions Lists 

Our implementation is done in Version 1 of the SR programming language 

[Andrews87, Andrews881 running under the Sun UNTX 4.2 operating system (release 

3.41~. Each of the optimistic, pessimistic and hybrid servers uses a doubly linked list 

for the shared semiqueue. Each node in this list contains an integer value (since this 

is a semiqueue of integers) and the appropriate optimistic or pessimistic locking 

information. Qhead and Qtail mark the beginning and end of the semiqueue, 

respectively (Figure 4.1). 

Qhead 
NODES: p = Previous Link 

null 

7 

v = Value 
1 = Lock 
n = Next Node Pointer 

Figure 4.1: The Shared Semiqueue 

p v l  

Qtail 

/\ 

, source code for each of the three servers is presented in the appendix. 

/\ 

n P v l n  0 0 0 p v  1 n 
null 



Within our simulation every active transaction is identifiable by a unique 

transaction number, Tnum. For every Tnum, each of the optimistic, pessimistic 

and hybrid servers maintains an intentions list. This list has two components: an 

enqueue (Enq ) list and a dequeue (Deq ) list. 

The enqueue component consists of a doubly linked list of elements to be 

enqueued, and the dequeue component consists of a singly linked list of pointers to 

the shared elements of the semiqueue (Figure 4.2 and Figure 4.3). When a 

transaction successfully commits, the Enq list is attached to the end of the shared 

semiqueue, Qtail is updated, and the appropriate elements associated with the Deq 

component of the transaction's intentions list are removed from the semiqueue. In 

the event of transaction abort, however, these lists are thrown out. 

Enq-head[Tnuml Enq-tail[Tnum] 

Figure 4.2: Enq Intentions List 

The nodes of the enqueue component of each transaction's intentions list are 

identical to those of the shared semiqueue (Figure 4.1). This facilitates the method of 

appending the entire Enq intentions list at commit time. 



NODES: s e = Shared Element Pointer 
n = Next Node 

Figure 4.3: Deq Intentions List 

4.2 The Operations 

4.2.1 Optimistic Operations 

Within the forward oriented optimistic server, the Enq (enqueue) operation is 

invoked with the calling transaction's Tnum and the integer value to be enqueued. 

A new node is created, assigned this value, and added to the end of Tnurn's Enq 

intentions list. The response associated with this operation, which is always "OK" 

(i.e., the event Enq(i)/Ok), is then returned to the calling transaction. There are no 

optimistic locks allocated for an Enq event since (as discussed in section 3.1) this 

event can not be invalidated by any other event. 

The Deq (dequeue) operation is also invoked with the calling transaction's 

Tnum, and either returns a value from the semiqueue (constituting the event 

Deq/Ok(value) ) or a failed response (DeqIFailed ). Given a situation where the 



Enq intentions list associated with the calling Tnum is not empty, an item is simply 

removed from the head of this list (since Tnum regards these elements as being 

enqueued). If, however, this list is empty, the semiqueue is scanned for an eligible 

element. Any element that is not already in the Deq intentions list of the calling 

transaction is eligible. In order to easily identify which elements are in the Deq 

intentions list of a given Tnum, each element in the semiqueue provides Deq 

0-locks (associated with DeqlOk(va1ue) events) for all active transactions. These 

Olocks are implemented as an array3 (for Tnums from 1 to N, where N is the 

maximum number of concurrently active transactions invoking the server) in the 

lock portion of the semiqueue nodes (Figure 4.4). 

When a transaction is searching for an eligible element, it first checks its own 

Deq 0-lock associated with that element (Deq 0-lock[Tnum]). If it is not already 

locked, another check is made to see if any other transaction already holds an 0-lock 

on this element (flagged by Deq 0-lock[N+l] , which is set when an element is 

0-locked by any transaction). This additional check to ensure that the element is 

not already in the Deq intentions list of another transaction demonstrates the 

optimistic server's use of state based information. 

3 Version 1 of SR does not support boolean arrays in records, hence we were forced 
to use integer. 



Figure 4.4: Deq 0-locks in an Optimistic Semiqueue Node 

If there is an eligible element that is not 0-locked by any other transaction, then 

that element's Deq 0-lock[Tnum] is set, the element is flagged as having been 

0-locked (Deq 0-lock[N+l]), a pointer to the element is added to Tnum's Deq 

intentions list, and the value is returned. But, if all eligible elements are 0-locked by 

other transactions, the first eligible element among them is selected. This selection 

will ultimately produce a conflict (proscribed dependency D3, section 3.1) that will be 

resolved during validation. If there are no elements eligible for dequeuing, a 

Deq-Failed 0-lock is set for the calling transaction, and a failed response 

(constituting a DeqlFailed event) is returned. The server maintains one 

Deq-Failed 0-lock for each Tnum (1 to N) in a boolean array (Figure 4.5). 

An Eva1 operation is invoked with the Tnum of the calling transaction and 

returns the total number of elements in the semiqueue. From the point of view of 

the calling transaction, this total includes the elements in that transaction's Enq 

intentions list, plus the elements in the shared semiqueue, minus the number of 



elements in the transaction's Deq intentions list. The result of this tally is returned 

to the calling transaction, and an EvaI/(#items) 0-lock is set for that Tnum. As with 

the Deq-Failed 0-locks, the server maintains one Eval 0-lock for each Tnum in a 

boolean array (Figure 4.5). 

Figure 4.5: Deq/Failed and Eval 0-locks 

TheValidation operation is also invoked with the calling transaction's Tnum. 

As with other operations, it executes with mutal exclusion and basically proceeds in 

the following manner: 

Stev One: (According to Proscribed Dependencies Dl and D2 section 3.1) 
if Enq Intentions list[Tnum] # 0 -> 

for all transaction numbers, i, # Tnum -> 
if (Deq-Failed-Olock[i] or Eval-Olock[i] ) -> 

ABORT(Tnum) and return 
fi 

af 
fi 



Stev Two: (According to Proscribed Dependencies D3 and D4 section 3.1) 
if Deq Intentions list[Tnum] # 0 -> 

for all transaction numbers, i, # Tnum -> 
if ((Deq-Olock[i] and Deq-Olock[Tnum] {for any element} or 

Eval-OlockIi] ) -> 
ABORT(Tnum) and return 

fi 
af 

fi 

Step Three: 
Commit Enq and Deq Intentions lists. 
Release all 0-locks held by Tnum. 

Due to the fact that our simulation was contrived to test situations where the 

number of active transactions was approximately equal to the maximum number of 

concurrent transactions supported by the server, steps one and two above check all 

Tnums, not just explicitly active transactions (section 2.4.1.2). 

The Abort operation called during steps one and two of validation simply 

discards the intentions list and 0-locks associated with Tnum. Our simulation 

model does not include an automatic transaction restart mechanism. 

4.2.1.1 Implementation Tradeoffs 

Some of the implementation features of the optimistic server provide less than 

optimal performance. For example, instead of relying on boolean arrays to represent 



transaction 0-locks, an alternative approach could use linked lists of transaction 

identification numbers. In particular, this would greatly simplify the lock portion of 

each element in the shared semiqueue (Figure 4.6): 

Figure 4.6: A Linked List of Deq 0-locks ih an Optimistic Semiqueue Node 

The use of linked lists in this way could potentially enhance the performance of the 

Enq operation but at the same time diminish the performance of the Deq 

operation. An Enq(i)/Ok event could benefit by virtue of the fact that the new 

serniqueue node is much smaller and consequently faster to create. A Deq/Ok(i) 

event, however, could be hindered by the list-searching overhead the linked list of 

Deq 0-locks would introduce. For example, when attempting to establish the 

eligibility of an element for dequeuing, the optimistic server first checks that the 

calling transaction does not already have a Deq 0-lock set for that element. This 



would require a search of the list of Deq 0-locks associated with the lock portion of 

the element in question, and hence add to the overhead of a Deq operation. Low 

level performance tradeoffs of this kind were not, for the most part, considered to be 

as crucial as higher level tradeoffs. 

The most important high level tradeoff we encountered deals with the 

optimistic integrity of this server. The fact that the states of Deq 0-locks associated 

with transactions other than the calling transaction are taken into account when 

selecting an appropriate element for dequeuing does not demonstrate true 

optimism. Further, this "cheating" promotes the premature identification of 

Deq/Ok(i) -> Deq/Ok(i) conflict types during the READ phase of a transaction (i.e., 

pre-validation) in the situation where all eligible elements are already 0-locked by 

transactions other than the calling transaction. Since selecting an element that is 

already 0-locked by another transaction will ultimately result in transaction abort of 

one or the other 0-lock owners, it would appear to be reasonable to abort the calling 

transaction during its READ phase. Although, from a performance standpoint this 

would potentially cut back on the amount of wasted work, from an integrity 

standpoint it would degenerate the optimistic server to some kind of pessimistic 

derivative that relies on abort as opposed to delay for conflict resolution. 

Consequently, even though this type of conflict can easily be identified before 

validation, we chose not to exploit this information in order to preserve the 

optimistic nature of the server and provide a more appropriate counterpart for 



comparison purposes to the pessimistic server. 

4.2.2 Pessimistic Operations 

As with the optimistic server, the pessimistic server also maintains Enq and 

Deq intentions lists (Figures 4.2 and 4.3). When a transaction invokes an Enq 

operation, the server first checks to ensure that no other active transaction holds a 

P-lock on either a DeqlFailed or an Eval/(#items) event (Figure 4.7). If no such 

conflict exists, then it assigns the calling transaction a P-lock for an Enq(i)/Ok event, 

and adds the element to the local Enq intentions list. I f ,  on the other hand, there is 

a conflict, the Enq invocation will block, waiting to receive a "wake-up" message 

(section 4.2.2.2). Wake-up messages are sent out to blocked operation invocations 

every time a transaction that has performed an event that conflicts with the blocked 

operation has released its P-locks. This way, when a transaction that executed a 

DeqlFailed event has released its DeqlFailed P-lock, the blocked Enq operation 

will be reactivated and retried. If this Flock happened to be the blocked Enq's sole 

impediment, the operation proceeds, otherwise it will be blocked again and must 

wait for the next wake-up message. 



Figure 4.7: Deq/Failed, Eval and Enq P-locks 

As with the optimistic server, a Deq invocation begins with a check of the 

calling transaction's local Enq intentions list. I f  it is not null, an item is removed 

from this local list (the Enq P-lock for this transaction will be released if this was the 

only item in the list, and invocations blocked by this type of lock will be sent a 

wake-up message at this time). If, however, there are no local items in the Enq 

intentions list, the transaction must access the shared semiqueue. 

As opposed to the locking information associated with the nodes of the 

optimistic semiqueue, nodes of the pessimistic semiqueue only require one Deq 

P-lock (Figure 4.8). This reflects the fact that only one transaction can hold a 

pessimistic lock on a shared element at any given time. Since elements that have a 

Deq Flock associated with the calling Tnum are not available for dequeuing, the 

first thing the server does is assess the number of eligible items. Since Deq P-locks 

are merely boolean values, one of the most immediate, yet admittedly crude, ways of 

accomplishing this was to compare the number of elements in the calling 

'transaction's Deq intentions list with the number of elements in the shared 

semiqueue. If all eligible elements are Flocked by other transactions, Tnum 



becomes blocked (according to the proscribed dependency D3, section 3.2) and waits 

for a wake-up call from either a committing transaction that has enqueued new 

elements, or an aborting transaction that was attempting to remove shared items. 

Figure 4.8: A Deq P-lock in a Pessimistic Semiqueue Node 

If, however, there are no eligible elements in the semiqueue, the transaction 

needs to obtain a P-lock for a DeqlFailed event, and hence a check is made to ensure 

that no other transaction has performed an Enq(i)/Ok event. If no such conflict 

exists, the invocation is assigned a P-lock for a DeqlFailed event and returns a failed 

result to the caller, otherwise the operation invocation will block, and wait to 

receive a wake-up message. 

Once this operation has been unblocked, the server rechecks the semiqueue 

for eligible elements. If there is one, a Deq/Ok(i) P-lock for this transaction must be 

associated with the node, and hence a further check must be made that no other 

transaction has performed an Eval/(#items) event. 



Again, if there is a conflict, the invocation will be blocked, waiting to be 

awoken by a transaction that released an Eval P-lock. When this Deq is unblocked 

it must ensure that there still is an eligible item in the the semiqueue. If there is 

one, it associates a Deq P-lock with that element, adds a pointer to its Deq intentions 

list and returns the value of the element to the caller. Otherwise, it must try to 

obtain a P-lock for a Deq/Fail& event, and the whole process starts over again. (In 

its current form, this server is unfair to Deq operations since Enq and Eval events 

could lock them out indefinitely. This situation could be avoided by assigning a 

priority to the waiting Deq operation.) 

An Eval operation invocation is handled similarly to the Enq operation. 

When a transaction invokes an Eval operation, the server first checks to ensure that 

no other active transaction holds a P-lock on either a Deq/Ok(i) or an Enq(i)/Ok 

event. If no such conflicts exist, then it assigns the calling transaction a P-lock for an 

Eval event, and returns a total to the caller (this total takes into account the calling 

transaction's intentions list). However, if there is a conflict, the Eval invocation 

will block until it receives a wake-up message. 

When a transaction has successfully obtained all of its neccesary P-locks and 

has finished executing, it inflicts the changes recorded in its Enq and Deq intentions 

list to the global state of the semiqueue by invoking an atomic Global-Update 

operation. Once these changes have been accomplished, the committing 

transaction's P-locks can be removed and wake-up calls made to any blocked 



invocations that could benefit by these releases. 

4.2.2.1 Deadlock Detection 

As previously discussed (section 3.2.2), the pessimistic server includes a 

mechanism (operation Deadlock-Check ) which can prevent deadlock between two 

transactions. Specifically, this mechanism considers the following five cases: 

Case I: ABORT(Ti) if Ti is about to block on an Enq(item)/Ok event and there 
exists a Tj such that: 

(i) Tj holds a DeqOlFailed P-lock and 
(ii) Tj is waiting for the release of a lock-type that Ti holds. 

Case 11: ABORT(Ti) if Ti is about to block on a DeqO/Ok(item) event and there 
exists a Tj such that: 

(i) Tj holds a DeqOIOk P-lock and 
(ii) Tj is waiting for the release of a lock-type that Ti holds. 

Case Dk ABORT(Ti) if Ti is about to block on a DeqlFailed event and there exists 
a Tj such that: 

(i) Tj holds an EnqlOk P-lock and 
(ii) Tj is waiting for the release of a lock-type that Ti holds. 

Case IV: ABORT(Ti) if Ti is about to block on an Eval/(#items) event and there 
exists a Tj such that: 

(i) Tj holds an EnqlOk or a DeqlOk P-lock and 
(ii) Tj is waiting for the release of a lock-type that Ti holds. 

Case V: ABORT(Ti) if Ti is about to block on an EnqlOk or a DeqlOk event and 
there exists a Tj such that: 

(i) Tj holds an Eval/(#itms) P-lock and 
(ii) Tj is waiting for the release of a lock-type that Ti holds. 



4.2.2.2 Wake-Up Messages 

Wake-up messages are issued to all blocked operations whenever a transaction 

releases a P-lock that could potentially unblock a waiting operation. Flocks are 

released whenever a transaction commits, aborts, or dequeues the last element in its 

enqueue intentions list (section 4.2.2). 

When a transaction commits (i.e., enters the Global-Update procedure), its 

enqueue intentions list is appended to the end of the semiqueue, the shared 

elements that are referenced by the dequeue intentions list are removed, and all 

P-locks are released. Before the server becomes available to handle new operation 

requests, however, wake-up calls are issued to all the appropriate blocked operations 

after the committing transaction's P-locks have been released. Given that Tnum is 

the transaction number of the committing transaction and N is the maximum 

number of active transactions supported by the server, wake-up calls are performed 

in the following manner (in accordance to dependencies Dl  - D7 described in section 

3.2): 

if Tnum held an Enq P-lock -> 
for all transaction numbers t from 1 to N (other than Tnum) -> 

if t is blocked in a Deq/Failed event -> 
issue a Wake-up tail to the operation 
and wait for a response 

fi 



if Tnum held a DeqlFailed or Eval P-lock -> 
for all transaction numbers t from 1 to N (other than Tnum) -> 

if t is blocked in an Enq/Ok event -> 
issue a Wake-up call to the operation 
and wait for a response 

fi 
af 

fi 

if Tnum held an Eval P-lock -> 
for all transaction numbers t from 1 to N (other than Tnum) -> 

if t is blocked in a Deq/Ok(i) event -> 
issue a Wake-up call to the operation 
and wait for a response 

fi 
af 

fi 

if Tnum held an Enq P-lock or Deq P-lock 
(for any shared semiQ item) -> 

for all transaction numbers t from 1 to N (other than Tnum) -> 
if t is blocked in a Eval/(#items) event -> 

issue a Wake-up call to the operation 
and wait for a response 

fi 
if t is blocked in a Deq invocation -> 

issue a Wake-up call to the operation 
and wait for a response 

fi 
af 

fi 

When a blocked operation receives a wake-up call, it first checks to see if it can 

.be unblocked. In the case where there has been a release of the appropriate P-lock 

type and the operation can proceed, it is performed at this time and control is 



returned to the issuer of the wake-up call once its execution is complete. If, 

however, it is still blocked by other P-locks, it merely reblocks and control is returned 

to the issuer of the wake-up call. 

The Abort procedure issues essentially the same wake-up calls as those listed 

for for the Global-Update procedure, but it must handle D3 a little differently. A 

waiting Deq invocation could potentially be unblocked by a committing transaction 

that has either enqueued or dequeued elements. In the case where a committing 

transaction has enqueued a new element, i , this element becomes eligible and the 

blocked Deq invocation could subsequently perform a Deq/Ok(i) event. Or, in the 

case where all shared elements that are not already Deq P-locked by the blocked 

transaction are removed by the committing transaction, the blocked invocation 

could subsequently perform a DeqlFailed event. When a transaction is being 

aborted, however, the release of an Enq P-lock does not coincide with the addition of 

eligible elements to the semiqueue. Similarly, the release of Deq P-locks does not 

result in the removal of elements. Instead, the release of Deq-Plocks associated with 

shared elements of the semiqueue by an aborting transaction makes those elements 

eligible for dequeuing once more. Hence, wake-up calls (for D3) are only given 

when the aborting transaction's Deq intentions list is thrown out, and not issued 

upon release of Enq P-locks. 

Special attention must be paid to dequeue operations which access items that 

are local to a transaction's enqueue intentions list since they constitute a special case 



where an Enq P-lock could be released. When a transaction's dequeue operation 

removes the only item that is local to its enqueue intentions list, it is no longer 

necessary for that transaction to hold an Enq P-lock. Since the release of this lock 

could potentially unblock any Deq/Failed events that have been forced to wait, 

wake-up calls (in accordance to Dl) are issued at this time, before the server becomes 

available for new operation invocations. 

4.2.3 Hybrid Operations 

The hybrid server combines the boolean arrays of 0-locks from the optimistic 

server (Figure 4.5) with the semiqueue node-types of the pessimistic server (Figure 

4.8). As previously established (section 3.3), the four proscribed dependency relations 

employed by the hybrid method are treated as follows: 

Dl: Ti:Enq(i) /Ok() ->q Tj:Deq() /Failed() (Optimistic) 
D2: Ti:Enq(i)/Ok() ->q Tj:Eval()/Ok(#items) (Optimistic) 

D3: Ti:DeqO /Ok(i) ->q Tj:Deq()/Ok(i) (Pessimistic) 
D4: Ti:Deq(i)/Ok() ->q Tj:Eval()/Ok(#items) (Optimistic) 

The implementation of the Enq and Eval operations in this server are identical to 

those described for the optimistic server (section 4.2.1), and a Deq operation closely 

resembles the pessimistic implementation. 



As with the other servers, a Deq operation is invoked with the Tnum of the 

calling transaction and begins with a check of that Tnum's local Enq intentions list. 

If this list contains at least one element, the Deq operation removes this element 

and returns its value (unlike the pessimistic server, there are no locks associated 

with this server's optimistic Enq operation), otherwise the shared semiqueue is 

accessed. If the semiqueue is either empty or all elements are already Flocked by the 

calling transaction (i.e., there are no eligible elements), a failed result is returned 

and an 0-lock is allocated for this DeqlFailed event. If, however, all eligible 

elements are P-locked by other transactions, the Deq invocation is blocked 

(according to proscribed dependency D3 above). As with the pessimistic server, 

wake-up calls are issued from any validating transaction that has enqueued at least 

one item or any aborting transaction that was attempting to dequeue a shared 

element. When awoken, this invocation re-examines the shared queue for eligible 

elements, and this process starts again. 

Since the hybrid server only treats one type of conflict pessimistically, the 

Deadlock-Check operation is much less substantial than that of the pessimistic 

server. Instead of considering the five cases outlined in section 4.2.2, only one case 

needs to be dealt with: 

Case 11: ABORT(Ti) if Ti is about to block on a DeqO/Ok(item) event and there 
exists a Tj such that: 

(i) Tj holds a DeqOlOk P-lock and 
(ii) Tj is waiting for the release of a lock-type that Ti holds. 



Due to the fact that the only blocking lock-type is a DeqlOk P-lock, deadlock could 

arise only after two active transactions have both successfully dequeued items from 

the shared semiqueue, and then they both block on subsequent Deq invocations. 

The Abort operation essentially remains the same as in the pessimistic and 

optimistic servers; intentions lists are thrown out and all locks are released. 

In order to accommodate both the optimistic and pessimistic treatment of 

conflicts, the hybrid server includes both theValidation and Global-Update 

operations. As within the optimistic server, validation (section 4.2.1) proceeds 

through step one and a modified version of step two (which excludes an 0-lock 

check for Deq/Ok events since they are handled pessimistically): 

Step Two: if Deq Intentions list[Tnum] # 0 -> 
for all transaction numbers, i, # Tnum -> 

if Eval_Olock[i] -> 
ABORT(Tnum) and return 

fi 
af 

fi 

The Global-Update operation inflicts the changes recorded in a transaction's Enq 

and Deq intentions list onto the global state of the semiqueue, at which point all 

locks can be removed and the appropriate wake-up calls can be issued. 



5 Tests and Results 

In an effort to establish some relative performance characteristics, we subjected 

each of the pessimistic, optimistic and hybrid semiqueue servers to four sets of tests. 

The purpose of each test set was to determine the servers' behavior under increasing 

levels of type-specific conflict. The particular conflict types tested are the four 

prosaibed serial dependencies originally defined for the optimistic server (section 

3.1), which are also included in the proscribed dependency sets for each of the 

pessimistic and hybrid approaches. 

In order to evaluate the respective performances of each of the three 

approaches fairly, all tests were carefully contrived to accomplish the same amount 

of "work" at each server (i.e., within a given level of concurrency, each server must 

successfully execute the same number and type of events). Operation requests from 

different transactions are simulated by invoking a server with unique transaction 

identification numbers used to represent active transactions in the system. Each of 

the servers is capable of supporting up to 100 concurrently active transactions at any 

given time, with transaction identification numbers ranging from Trans(1) to 

Trans(100). 



5.1 Testing Enq(i)lOk --> DeqOIFailed and 
EnqWOk --> EvaU(#items) Conflict Types 

The first conflict type tested among the sewers deals with the proscribed 

dependency Dl: 

Dl: Ti: Enq(i)/Ok() -->q Tj: Deq()/Failed() 

In this set of tests, each server attempts to handle its maximum of 100 concurrently 

active transactions, and each transaction must successfully enqueue (that is, perform 

Enq(i)/Ok events) 100 elements. Conflict is introduced as a result of the fact that at 

the very beginning of the test, one of the transactions, Trans(Tnum ), performs a 

DeqlFailed event. The percentage of conflict is then determined by the number of 

transactions blocked or aborted due to their conflict with the active transaction 

Trans(Tnum ). This percentage of conflict is controlled by running the tests with 

different values of Tnum (where the actual percentage of conflict would be Tnum- 

1 in each test4). The pessimistic, optimistic and hybrid tests for this type of conflict 

were devised as follows: 

Pessimistic Enq(i)/Ok -> DeqIFailed Test: 

(i) Trans(Tnum ) performs an DeqlFailed event and then performs 
Enq(i)/Ok events for 100 elements. 

P Our tests results were based on Tnum values of 1,31,61 and 91 to arrange 0%, 
30%, 60% and 90% conflict levels, respectively. The results included in this 
performance analysis represent the best times obtained from multiple tests run 
when the system load was light, but not negligible. 



(ii) Trans(1) through Trans(Tnum -1) each attempt to Enq an 
element, but all are blocked by Trans(Tnum ). 

(iii) Trans(Tnum ) performs a Global-Update , unblocking Trans(1) 
through Trans(Tnum -I), which each then complete their initial 
Enq(i)/Ok events after receiving their respective wake-up 
messages. 

(iv) Trans(1) through Trans(Tnum -1) execute Enq(i)/Ok events for 
99 more elements each. 

(v) Trans(Tnum +1) through Trans(100) execute Enq(i)/Ok events 
for 100 elements each. 

(vi) All transactions except Trans(Tnum ) perform Global-Update. 

Optimistic Enq(i)/Ok --> DeqlFailed Test: 

(i) Trans(Tnurn ) performs an DeqlFailed event. 

(ii) Trans(1) through Trans(100) each perform Enq(i)/Ok events for 
100 elements. 

(iii) Trans(1) through Trans(Tnum ) attempt Validation (in that 
order), but only Trans(Tnum ) goes on to its Write phase, the rest 
are aborted as a result of the conflict with Trans(Tnum ). 

(iv) Trans(1) through TrandTnum -1) are redone. 

(v) All transactions except Trans(Tnum ) complete their respective 
Validation and Write phases. 

Hybrid Enq(i)/Ok -> DeqlFailed Test: 

(i) Trans(Tnum ) performs an DeqlFailed event. 

(ii) Trans(1) through Trans(100) perform Enq(i)/Ok events for 
100 elements each. 

(iii) Trans(1) through Trans(Tnum ) attempt Validation, but only 
Trans(Tnum ) goes on to execute Global-Update , the rest are 



aborted. 

(iv) Trans(1) through Trans(Tnum -1) are redone. 

(v) All transactions except Trans(Tnum ) successfully perform 
Validation and subsequently proceed to Global-Update . 

Due to the optimistic nature of the hybrid server's handling of this type of conflict, 

the hybrid test differs from the optimisitic test only in the inherent fact that 

optimisticvalidation includes a Write phase, whereas hybrid Validation relies on a 

seperate Global-Update procedure (steps (iii) and (v)). 

Identical steps were followed to contrive the second set of tests, which deals 

with the proscribed dependency D2: 

D2: Ti: Enq(i)/Ok() --zq Tj: Eval/(#items) 

In these tests, Eval/(#items) is substituted for DeqlFailed as the event performed 

by Trans(Tnum ) to introduce conflict. Not surprisingly, (since Trans(Tnum ) 

executes Eval(#items) on a an empty semiqueue) these test results are 

indistinguishable from those produced by the tests of conflict type Dl (Figure 5.1). 

5.1.1 Results 

The respective performance of the semiqueue servers as they are subjected to 

an increasing percentage of Enq(i)/Ok -> DeqlFailed and Enq(i)/Ok -> Eval/(#items) 



conflict type is as follows (where performance times are reported to the nearest 

second): 

Time (in secs) for 100 transactions ta perform 100 Enq(i)/Ok events 
and/or one Deq/Failed, Eval/(#items) event. 

Server Tvpe: Optimistic Pessimistic Hybrid 
Conflict Level: 0% I1 16 5 

30% 14 16 7 
60% 18 16 10 
90% 21 17 12 

Which can roughly be depicted as: 

Time $ 
in 28 

- Optimistic 

- Hybrid 

Seconds - Pessimistic 

Percentage of 
Conflict 

Figure 5.1: Enq(i)/Ok -> DeqlFailed and Enq(i)/Ok -> EvaI/(#items) conflicts 

These results indicate that when subjected to an increasing level of the type specific 

conflict defined by dependencies Dl and D2, the pessimistic server's performance 

remains virtually unaffected, the optimistic server's performance steadily 

deteriorates and the hybrid server out performs the other servers throughout the set 

of tests. 

In the pessimistic server's case, the fact that these tests are heavily work 



intensive (i.e., 100 concurrent transactions enqueuing 100 elements each) makes fie 

additional cost of Wake-up calls that accompany an increasing level of transaction 

conflict essentially negligable. That is, since the number and type of events executed 

at each level of conflict is the same, its performance is basically unchanging. In 

comparison to the other servers, when there are no conflicts among transactions the 

pessimistic server is the most expensive. This can be attributed to the fact that the 

pessimistic Enq(i)/Ok event requires more locking overhead than it does in the 

other servers. 

With the optimistic server, the amount of work that must be redone is directly 

proportional to the percentage of conflict in each test. That is, at 30%, 60% and 90% 

conflict, 30,6O and 90 of the 100 transactions must be redone. Consequently, since 

the amount of work steadily increases as the percentage of conflict increases, the 

amount of time required to process the work inceases, forcing its performance to 

steadily deteriorate. It is interesting to note that the threshold value where the 

optimistic and pessimistic servers' performance intersect is at approximately 50% for 

these particular types of conflict. 

In the environment created by these tests, the performance of the hybrid server 

is superior to both the optimistic and pessimistic servers at any given percentage of 

conflict. Although the hybrid server treats the conflict types being tested 

optimistically (consequently requiring that more work must be done as the 

percentage of conflict increases), the affect on performance is not as significant for 



the hybrid server as it is for the optimistic server. This is due to the fact that the 

Enq(i)/Ok event is less expensive in the hybrid server since the nodes of the hybrid 

semiqueue require only one Flock for its pessimistic DeqO/Ok(i) event (section 

4.2.3, Figure 4.8), whereas the optimistic semiqueue requires N+1 (where N the 

maximum number of concurrent transactions, i.e., 100 in this case) 0-locks in each 

node (section 4.2.1, Figure 4.4). 

5.2 Testing the DeqO/Ok(i) --> DeqO/Ok(i) Conflict Type 

The third set of tests deals with the proscribed dependency D3: 

D3: Ti: Deq()/Ok(i) ->q Tj: DeqO/Ok(i). 

Within these tests, each server is again attempting to handle its maximum of 100 

concurrently executing transactions, of which we determine that 99 transactions 

must successfully dequeue (that is, perform DeqO/Ok(i) events) 30 elements each. 

In order to simulate this type of conflict, the semiqueue is initially set up with 2970 

shared elements. To establish a controlled percentage of conflict similar to the first 

two sets of tests, transaction Trans(1) acts as a "dummy" transaction and holds 

DeqO/Ok(i) locks on ((Tnum -1)*30) of these elements. During the test, once the 

desired level of (Tnum - 1)% conflict has been achieved, Trans(1) is forcefully 

aborted (just for testing purposes), making its previously locked elements once again 



eligible for dequeueing by other transactions. These tests proceed as follows: 

Pessimistic DeqO/Ok(i) --> DeqO/Ok(i) Test: 

(Trans(1) performs a Deq/Ok(i) event on (Tnum-l)*30 elements -- 
this is not included in the timing results of the test.) 

(i) Trans(2) through Trans(lO1-Tnum ) perform Deq/Ok(i) for 
30 elements each. 

(ii) Trans(lO2-Tnum ) through Trans(100) each attempt to Deq one 
element, but all are blocked. 

(iii) Trans(1) is manually aborted (for test purposes only), and 
blocked transactions complete their initial Deq/Ok(i) events. 

(iv) Trans(l02-Tnum ) through Trans(100) each perform 29 more 
Deq/Ok(i) events. 

(v) All transactions except Tnwn(1) perform Global-Update. 

(Trans(1) performs a Deq/Ok(i) event on (Tnum-l)*30 elements -- 
this is not included in the timing results of the test.) 

(i) Trans(2) through Trans(100) each perform Deq/Ok(i) events for 
30 elements. 

(ii) Trans(l02-Tnum ) through Trans(100) attempt Validation , but all 
abort. 

(iii) Trans(1) is manually aborted (for test purposes only). 

(iv) Trans(l02-Tnum ) through Trans(100) are redone. 

(v) All transactions except Trans(1) successfully perform Validation 
and their subsequent Write phases. 
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Due to the pessimistic nature of this type of conflict in the hybrid server, the hybrid 

test for this type of conflict is identical to that of the pessimistic server's, except for 

the inclusion of Validation (in step (v)): 

Hybrid DeqO/Ok(i) --> Deq()/Ok(i) Test: 

(Trans(1) performs a Deq/Ok(i) event on (Tnum-l)*30 elements -- 
this is not included in the timing results of the test.) 

(i) Trans(2) through Trans(lO1-Tnum ) perform Deq/Ok(i) for 
30 elements each. 

(ii) Trans(l02-Tnum ) through Trans(100) each attempt to Deq one 
element, but all are blocked. 

(iii) Trans(1) is manually aborted (for test purposes only), and 
blocked transactions complete their initial Deq/Ok(i) events. 

(iv) Trans(l02-Tnum ) through Trans(100) each perform 29 more 
Deq/Ok(i) events. 

(v) All transactions except Tnum(1) successfully perform Validation 
and Global-Update. 



5.2.1 Results 

Time (in secs) for 99 trans to Deq 30 items each 

112 - 
- 

Server: Opt Pess Hyb 
98 - 

Conflict: 0% 39 58 58 
W o  64 59 59 - 
W o  87 59 60 Time 84 - 
9090 111 60 60 in - 

Seconds 70 , - Optimistic - Hybrid & 

Pessimistic 

Percentage of 
Conflict 

Figure 5.2: Deq/Ok(i) -> Deq/Ok(i) conflicts 

As with the previous results obtained by testing the type specific conflicts 

defined by dependencies Dl and D2, within these tests the pessimistic server's 

performance remains essentially unaffected by an increasing percentage of conflict 

and the optimistic server's performance deteriorates proportionally. Due to the 

pessimistic nature of the hybrid server's handling of this type of conflict, the hybrid 

server's performance is virtually equivalent to that of the pessimistic server's. It is 

interesting to note that the percentage of conflict representing the threshold between 



optimistic and pessimistic performance falls below 30% for this type of conflict. 

5.3 Testing the Deq/Ok(i) --> EvaY(#items) Conflict Type 

The final set of tests deals with the proscribed serial dependency D4: 

With these tests, the semiqueue initially has 3000 items, and each of the 100 

transactions must dequeue 30 elements. In addition to performing these events, 

Trans(Tnum ) also performs an Eval/(#items) event (as in section 5.1.1) on the 

initial queue. The tests proceed as follows: 

Pessimistic Deq/Ok(i) -> Eval/(#items) test: 

(i) Trans(Tnum ) performs an Eval/(#items) event and 30 ~eq/Ok(i) 
events. 

(ii) Trans(1) through Trans(Tnum -1) attempt to Deq one element 
each, and all are blocked on Trans(Tnum ). 

(iii) Trans(Tnum ) performs a Global-Update , all blocked transactions 
are subsequently woken up and able to complete their initial 
Deq/Ok(i) events. 

(iv) Trans(1) through Trans(Tnum -1) each perform 29 more 
Deq/Ok(i) events. 

(v) Trans(Tnum +1) through Trans(100) each perform 30 Deq/Ok(i) 
events. 



(vi) All transactions except Trans(Tnum ) perform a Global-Update. 

Optimistic Deq/Ok(i) -> Eval/(#items) test: 

(i) Trans(Tnum ) performs an Eval/#items event. 

(ii) Trans(1) through Trans(100) each perform 30 Deq/Ok(i) events. 

(iii) Trans(1) through Trans(Tnum ) perform Validation , but only 
Trans(Tnum ) proceeds to its Write phase, the rest are aborted. 

(iv) Trans(1) through Trans(Tnum -1) are redone. 

(v) All transactions except Trans(Tnum ) perform Validation and go 
on to their respective Write phases. 

Once again, due to the optimistic nature of this type of conflict in the hybrid server, 

the hybrid test is identical to that of the optimistic server except for the fact that 

Global-Update is a separate invocation. 

5.3.1 Results 

The results in Figure 5.3 indicate, when subjected to an increasing level of the 

type specific conflict defined by dependency D4, the pessimistic server's performance 

is still virtually unaffected and the optimistic server's performance deteriorates. 

This time the hybrid server is out performed by the others throughout this set of 

tests. 



The performance of the pessimistic server under these test conditions is 

essentially the same as its performance in the previous set of tests for the 

Deq/Ok(i) ->Deq/Ok(i) type of conflict. This indicates that the additional events 

performed in these tests for the Deq/Ok(i)-> Eval/(#items) type of conflict (which 

are an Eva1/(3000) event along with 30 more Deq/Ok(i) events because all 100 

transactions are dequeuing as opposed to 99 in the previous tests) are insignificant in 

the pessimistic context. Once again, its performance is unaffected by an increasing 

percentage of conflict due to the fact that the same number and type of events are 

being processed in each case. 

Time (in secs) for 100 trans to Deq 30 elements each 
and perform one Eval/(#items) event 

Server: Opt Pess Hyb 
Conflict: 0% 42 59 59 

30% 47 59 70 
60% 58 59 87 
90% 73 59 107 

Time 
in 

Seconds 

- Optirnis tic - Hybrid - Pessimistic 

Percentage of 
Conflict 

Figure 5.3: Deq/Ok(i) --> Eval/(#items) conflicts 



A comparison of these performance results with those of the previous set of 

tests (Figure 5.2) indicates that the optimistic server is more sensitive than the robust 

pessimistic server to the additional performance costs introduced by the EvaZ/(3000) 

event and the 100th transaction's execution of 30 Deq/Ok(i) events (which are the 

only difference between the tests in Figure 5.2 and Figure 5.3). This is demonstrated 

by the discrepancy between the performance of the optimistic server at 0% conflict in 

Figure 5.2 and Figure 5.3 (39 secs vs 42 secs), whereas the performance of the 

pessimistic server was virtually unaffected (58 secs vs 59 secs). Almost immediately, 

however, as the percentage of conflict increases, these initial costs are absorbed by the 

gains associated with the elimination of unsuccessful searches for eligible elements. 

That is, in the tests for conflicts defined by D3, before a transaction can set its Deq 

0-lock on an element that is already 0-locked by another transaction, it must first 

search the entire semiqueue for an unlocked element. Since these fruitless searches 

do not occur under the test conditions for conflicts defined by D4, the Deq/Ok(i) 

events are less expensive and consequently the costs of redoing them are less. This 

is demonstrated by the discrepancy between the performance of the optimistic server 

at 90% in Figure 5.2 and Figure 5.3 (111 secs vs 73 secs). It is interesting to note that 

under these conditions the threshold value where the performance results for the 

pessimistic and optimistic servers intersect is at approximately 60%. 

In the case of the hybrid server, its performance is equivalent to the pessimistic 

server at 0% conflict, then deteriorates as the percentage of conflict increases. This is 



due to the fact that the cost of the hybrid Deq/Ok(i) event is largely determined by 

the overhead associated with the pessimistic treatment of the conflict type defined 

by D3, whereas the handling of the Deq/Ok(i) -> EvaI/(#ifems) conflict type defined 

by D4 is optimistic. This means that an increasing number of relatively expensive 

Deq/Ok(i) events must be redone as the percentage of conflict increases, which 

results in an even more dramatic deterioration of performance than the optimistic 

server. 



6 Evaluation and Extension 

6.1 Relative Behavior 

Clearly, the tests performed in our study are representative of only a very small 

sample of the type of transaction that could potentially access this shared abstract 

object. A "typical" extended transaction defies definition however, due to the fact 

that number and type of events executed by each transaction is dependent on the 

application from which it is issued. Consequently, instead of attempting to provide 

a representative sampling of extended transactions, the intent of these tests is to 

establish some of the fundamental characteristics that determine the relative 

behavior of the three different concurrency control methods. Identifying these 

characteristics can serve to better define the environments in which each approach is 

most effective. 

6.1.1 Pessimistic Behavior 

One of the most fundamental characteristics inherent in any pessimistic 

locking method is the fact that it does not allow for any wasted work. As a result, 

within the environment of our "work intensive" tests, the pessimitic server's 



performance is essentially unaffected by the increasing level of transaction conflict. 

Another beneficial aspect of type-specific locking is that deadlock prevention and the 

method by which transactions are unblocked can be customized through the 

exploitation of semantic information (section 4.2.2.1 and section 4.2.2.2). 

Of course, as with any pessimistic locking scheme, the major disadvantage 

associated with this method is the fact that the inherent overhead incurred by lock 

management and deadlock prevention (or detection) is superfluous when the level 

of conflict is sufficiently low. The effect of this locking overhead in our servers can 

be demonstrated by comparing the pessimistic and optimistic performance results at 

0% conflict (Figure 5.1: 16 vs 11 secs, Figure 5.2: 58 vs 39 secs, and Figure 5.3: 59 vs 42 

secs). In an environment where the percentage of conflict is sufficiently low, the 

additional overhead associated with lock management in the pessimistic case can be 

be partially attributed to the fact that the proscribed dependencies used to define 

type-specific conflicts must be symmetrical in a pessimistic scheme, and hence it has 

more conflict types than its optimistic counter-part. 

Further additional overhead is inherent in our implementation of the 

pessimistic technique due to its manditory check for conflicts after the execution of 

each event. For example, each time an element is to be enqueued in the pessimistic 

approach, a conflict check for DeqlFailed or Eva1 Flocks must be performed before 

updating the calling transaction's Enq intentions list. In the optimistic approach 

however, this type of conflict check is executed at most once during the validation 



phase of a given transaction, regardless of how many Enq(i)/Ok events that 

transaction performed. 

6.1.2 Optimistic Behavior 

The major advantages associated with the optimistic approach directly 

correspond to the disadvantages mentioned in the context of the pessimistic 

method. That is, there is an absence of the overhead inherent in locking 

management and deadlock prevention, there are fewer conflicts to be considered due 

to the fact that the proscribed dependency relations are not symmetrical, and conflict 

detection can be cheaper when it does not have to be on a per event basis. A further 

advantage of this particular optimistic approach is its ability to sustain an impressive 

level of performance relative to its pessimistic counter-part up until a substantial 

level of transaction conflict has been established. Taking the average threshold 

value of the four sets of tests we ran (which represent the only types of conflict 

encountered by the optimistic approach), the optimistic server is able to perform 

better than or at least as well as the pessimistic server up until the level of conflict 

rises above approximately 45%. 

One of the major disadvantages inherent in all optimistic approaches is the 

fact that under increasing levels of conflict, the problem of wasted work intensifies. 



The set of tests associated with the type specific conflict defined by D3: Deq/Ok(i)-> 

Deq/Ok(i), (Figure 5.2) best demonstrates the dramatic contrast in the amount of 

wasted work performed by the pessimistic and optimistic servers. In the pessimistic 

version of this test at 90% conflict, once all of the shared elements have been 

P-locked the pessimistic server attempts to execute one Deq/Ok(i) event for each of 

the 90 different transactions involved in the conflict. Every Deq invocation searches 

the semiqueue and then becomes blocked until the dummy transaction, Trans(l), is 

aborted. In contrast, the optimistic server executes 30 Deq/Ok(i) events for each of 

the 90 different transactions, all of which must be redone. Furthermore, each of 

these optimistic Deq operations search the entire semiqueue for an eligible element 

before setting an 0-lock on an element that is already locked by another transaction. 

The fact that a single element (node) in the semiqueue could potentially be 0-locked 

by all the concurrent transactions in the system requires that 0-lock information for 

each transaction to be associated with every element of the semiqueue. The fact that 

nodes in the hybrid server do not include this extensive 0-lock information (section 

6.1.3) and that its performance in the first two sets of tests (Figure 5.1) is notably 

superior to the optimistic server indicates that these locks can be burdensome. 



6.1.3 Hybrid Behavior 

The hybrid server was designed (section 3.3) to be appropriate under conditions 

where concurrent Deq/Ok(i) operations are expected to be frequent (hence, conflicts 

of type D3 are treated pessimistically) but all other conflict types are expected to be 

rare (and therefore are treated optimistically). 

In theory, the advantage of the hybrid methodology we used (as presented in 

[Herlihy86] ) is that it enables the appropriate optimistic or pessimistic concurrency 

control method to be applied on a per conflict-type basis according to the associated 

probability of the conflict. As demonstrated by the first two sets of tests in our study 

(Figure 5.1), this method can exploit the combined individual strengths of both the 

optimistic and pessimistic approaches and subsequently outperform both methods 

under certain conditions. The strength provided by the optimistic component of the 

hybrid server is the low overhead costs associated with its fewer type-specific 

conflicts and its minimal needs for pessimistic lock management and deadlock 

detection. The strength provided by the hybrid server's pessimistic component is 

the fact that the extensive 0-lock information associated with each element of the 

semiqueue is simply replaced by one P-lock. Consequently, the hybrid server's 

performance is superior to that of the optimistic server in our first two sets of tests 

. (Figure 5.1). Equally as encouraging are the results from the third set of tests (Figure 

5.2) which demonstrate the hybrid server's ability to handle pessimistic conflict types 



at a performance level that is on par with the pessimistic server's performance. 

The major disadvantage associated with the hybrid approach is that although 

this method can combine the individual strengths of both its optimistic and 

pessimistic components, it can also combine their weaknesses. This is most 

obviously demonstrated within the context of the fourth set of tests we performed 

(Figure 5.3). These tests study D4, the Deq/Ok(i)->Eval/(#itms) conflict type. In the 

hybrid server, Deq/Ok(i) events are inherently expensive due to the locking and 

deadlock prevention overhead associated with its pessimistically treated conflict 

Deq/Ok(i)->Deq/Ok(i). This expense can be considered to be the weakness 

contributed to the hybrid approach by its pessimistic component. The weakness of 

its optimistic component is its inherent increase in the amount of wasted work 

under increasing percentages of conflict. In the hybrid test for D4, the relatively 

expensive Deq/Ok(i) events are involved in a conflict that is treated optimistically. 

Hence this lavish operation is repeatedly redone and the resulting performance of 

the hybrid server becomes lamentable as the percentage of conflict increases. Since 

hybrid performance is not just dependent on the level of transaction conflict but also 

contingent on the particular type of conflict encountered, this approach is only 

appropriate within very narrow and controlled conditions. Involving a hybrid 

operation that includes abundant pessimistic overhead in an optimistically treated 

conflict type will inevitably lead to atrocious performance relative to pure optimistic 

or pessimistic behavior. 



6.1.4 Summary of Behavior 

The major advantages, disadvantages, and appropriate environment for each 

of the pessimistic, optimistic and hybrid approaches studied here can be summarized 

in the following way: 

PURE 

PESSIMISTI( 

PURE 

OPTIMISTIC 

HYBRID 

ADVANTAGES 

1. No wasted work. 
2. Unaffected by conflicts. 
3. Customizable deadlock 

detection & unblocking. 

1. Absence of pessimistic 
overhead (lock/deadlock) 

2. Fewer type-specific 
conflicts. 

1. Offers opt/pess choice 
according to associated 
probability of conflict. 

2. Can exploit combined 
strengths. 

DISADVANTAGES ENVIRONMENT 

I 
1. High overhead at low % Best suited for 

of conflict. situations where 
2. Syrnrnetricial conflicts. expected level of 
3. Conflict detection check all conflicts > 45% 

of both methods when situations where 
pessimistic overhead is % of conflict 
in an optimistic conflict. varies with each 

1. Much wasted work at 
higher levels of conflict. 

2. Extensive 0-locking 
can introduce overhead. 

Figure 6.1: Fundamental Characteristics of Pessimistic, 
Optimistic and Hybrid Techniques 

Best suited for 
situations where 
expected level of 
all conflicts c 45% 



6.2 Extension: Directories 

The effectiveness of the customizable type-specific method of concurrency 

control studied here can be further exemplified by its application to another abstract 

object. Consider a directory object which supports the following types of events5: 

Insert(str, capa)/Ok() - inserts capability capa into with key string str. 
Insert(str, capa)/FailedO -- a failed insert event due to duplicate key string. 
Delete(str)/Ok() - deletes capa stored with str . 
Delete(str)/Failed() -- a failed delete event due to str not found. 
Lookup( str)/Ok(capa) -- searches for a capa with key str. 
Lookup(str)/Failed() -- a failed lookup event due to str not found. 
Eval()/Ok(#entries) - returns the number of entries in the directory. 

The use of semantic information associated with the type-specific directory 

operations can greatly increase the amount of concurrency allowed by a 

synchronization scheme. For example, if a conventional READ/WRITE locking 

scheme was used to control these operations, Insert and Delete could each be 

treated as a READ operation followed by a WRITE operation, whereas Lookup and 

Eva1 could each be treated as READS. In terms of pessimistic concurrency 

restrictions, a successful Lookup("foo") invocation would be blocked trying to 

obtain a READ lock if another transaction performed a successful Delete("furnl') 

. An event consists of an operation and a response. 



event, thus holding a WIUTE lock on the directory. This restriction on concurrency 

is unnecessary, and can be alleviated through the use of a type-speafic approach. 

The number of proscribed serial dependencies needed to define type-speafic 

conflicts can be minimized by dividing the seven possible events associated with the 

directory data type into three lock classes [Schwarz84]: 

M = for events that "Modify" a particular entry: 
Insert(str, capa)/OkO, Delefe(str)/OkO . 

E = for events that only "Look" at a particular entry: 
Lookup(str)/OkO, Lookup(str)lFailedO, 
Insert(str, capa)/Failed 0, Delete(str)/FailedO. 

E = for events that cannot be isolated to a particular entry: 
EvalO/Ok(#entries). 

The resulting set of proscribed dependencies for the purely optimistic and 

purely pessimistic approach can then be defined in terms of these lock classes as 

follows: 

Optimistic Proscribed Dependencies: 

D1: Ti: M(str ) -->d Tj: M(str ) Ti modifies a key subsequently modified by Tj 
D2: Ti: M(str ) -->d Tj: L ( s ~  ) Ti modifies a key subsequently looked at by Ti 
D3: Ti: M(str ) -->d Tj: E Ti modifies a key and Tj subsequently "Evals ". 

Pessimistic Proscribed Dependencies: - 

D1: Ti: M(str ) -->d Tj: M(s~Y ) (same as above) 
D2: Ti: M(str ) -->d Tj: L(str ) (same as above) 



Ti: M(str ) -->d T.: E I (same as above) 
Ti: L(str ) -->d T-: M(str ) (making the dependency D2 symmetrical) I 
Ti: E ->d Tj: M(str ) (making the dependency D3 symmetrical) 

As with the semiqueue example, this type-specific treatment of conflicts thus 

defines a directory object as a collection of individually lockable elements. 

We would expect the relative performance of optimistic and pessimistic 

treatment of this directory object to roughly correspond to the behavior exhibited by 

our implementation of optimistic and pessimistic semiqueue servers (section 6.1.1 

and 6.1.2). That is, a purely optimistic technique can be expected to outperform a 

purely pessimistic technique at low levels of transaction conflict due to the inherent 

overhead associated with the increased number of pessimistic conflict types and its 

increased frequency of conflict checks (section 6.1.1). An exact threshold percentage 

of conflict where optimistic techniques begin to be outperformed by pessimistic 

techniques would be contingent on implementation dependent factors. Due to the 

similar nature of the operations associated with each object however, we would 

expect this to also roughly correspond to our semiqueue results. 

The configuration of the three conflict types defined by Dl, D2 and D3 for the 

optimistic server can be illustrated as follows: 



Figure 6.2: Directory Dependencies 

Since there are three conflict types, there are z3 possible optimistic/pessimistic 

conflict-type combinations (including purely optimistic and purely pessimistic 

schemes). 

In situations where reliable information is available regarding the expected 

frequency of conflict types, a hybrid scheme could provide more effective 

concurrency control than either of the purely optimistic or pessimistic techniques. 

For example, when the data structure is seldom modified, but frequently looked up, 

D2 should be treated pessimistically while Dl  and D3 should be treated 

optimistically. This combination would lead to more efficient Eva1 and Modify 

operations than a purely pessimistic scheme, provided that the level of conflict for 

D l  and D3 remained low, and yet resolve conflicts of type D2 more effectively than 

an purely optimistic scheme. In this example, the hybrid server could be expected to 

outperform both the optimistic and pessimistic schemes. 



7 Conclusions and Further Research 

7.1 Conclusions 

Extended transactions have the potential to be a valuable tool for organizing 

and structuring computations in general purpose distributed systems IHerlihy86, 

Spector83, Spector85, Spector87, Weihl851. The role of optimistic concurrency 

control in synchronization schemes that attempt to exploit type-specific properties of 

abstract objects within this vast application domain is largely undefined and 

unexplored. [Herlihy861 presents new type-specific optimistic techniques for objects 

in distributed systems that can be applied selectively in conjunction with pessimistic 

techniques on a per conflict-type basis. The results from our implementation of 

optimistic, pessimistic and hybrid semiqueue servers based on Herlihy's 

synchronization method confirm the conjecture that optimistic concurrency control 

may yet have a place in general purpose systems. 

It is not unreasonable to assume that some reliable information regarding the 

expected frequency of conflict types would be available to the implementor of a 

shared abstract object. The customizable method of type-specific concurrency control 

studied here presents a means of exploiting this information and devising the most 

effective approach to concurrency control based on this knowledge. Our simulation 

served to demonstrate how this method can provide an entire spectrum of viable 



and effective means of synchronizing extended transactions, ranging from purely 

pessimistic to purely optimistic techniques, within independent data servers. We 

were also able to determine the most appropriate environment for each of the 

optimistic, pessimistic and hybrid implementations. 

Our results demonstrate the inherent robustness of typespecific pessimistic 

techniques, establish an impressive threshold percentage between the optimistic and 

pessimistic techniques, and identify important idiosyncrasies of the hybrid approach. 

Unlike the complete transaction systems of TABS and Argus however, our focus 

was only on one aspect of a general purpose distributed transaction facility: 

concurrency control within a single data server. Although we were able to establish 

the worthiness of optimistic methods within independent data servers, the impact 

the introduction of these techniques have on a general purpose distributed system as 

a whole is as yet undetermined. 

The goal of research in this area is to simplify the chore of implementing 

correct and efficient synchronization properties for abstract objects used in 

distributed applications. A general purpose distributed transaction facility however, 

not only has to be simple to use, but it needs to provide efficient and flexible support 

for user defined abstract types. Implementors should be able to choose how they 

want their abstract objects to be treated. Towards this goal, the distributed 

transaction processing system, Camelot [SpedorS'T], (the successor to the TABS 

prototype [Spector85]), supports two compatible types of synchronization: standard 



pessimistic locking and hybrid atomicity, which has features of both timestamps and 

locking. Within single data servers, synchronization implementations can be 

tailored to provide pessimistic type-specific locking [Spector87]. We believe that the 

inclusion of the optimistic techniques studied here into general purpose systems 

such as this would provide users with a more complete spectrum of synchronization 

methods and consequently add to the efficiency and flexibility of the system as a 

whole . 

7.2 Further Research 

Possible directions for further research include the implementation of a 

protocol for validating distributed transactions, the development of an appropriate 

user interface for specifying type-specific consistency constraints, and the exploration 

of the ramifications associated with the use of prevalidation transaction abort in the 

optimistic approach. 

To be compatible with pessimistic methods such as two phase locking which 

serialize transactions in commit order, the optimistic method studied here must not 

only validate transactions in commit timestamp order but also apply transactions' 

. intentions lists in that order. Within our simulation model, the localvalidation 

and subsequent WRITE phase of a committing transaction are implemented within 



the same procedure, ensuring that only one transaction at a time can validate at a 

data server and that intentions lists are automatically applied in the the same order 

that transactions validated. 

With distributed transactions however, a transaction could potentially require 

validation on several distinct sites before being able to procede to its WRITE phase. 

Consequently, validation of distributed transactions requires a much more rigorous 

protocol than our "automatic" approach. The expanded version of [ ~ e r l i h ~ 8 6 ] ~  

presents two possible protocols for validating distributed transactions, and addresses 

the issue of recoverability for the optimistic method studied here. 

Since the purpose of a high performance extended transaction facility is to 

reduce the complexity associated with implementing shared abstract objects in 

distributed applications, a major priority is to make these facilities easy to use. The 

user interfaces of TABS and Camelot consist of system libraries to provide low level 

primitives which enable users to tailor their servers and explicitly control the setting 

of locks. Argus, on the other hand, hides some of its synchronization facilities in a 

language run-time system that mechanically imposes transparent support for 

built-in atomic types, and relies on the aid of a mufex object for the implementation 

of nontrivial servers. Although Argus is regarded as being easier to use for simple 

objects, it is difficult to compare the amount of work required by each approach to 

Received through personal correspondence. 



implement more complex servers, and a formal performance comparison is not yet 

available [Spector85]. It is possible, however, that flexibility and efficiency have been 

sacrificed in Argus' higher level approach for the sake of user-friendliness. The 

greatest challenge associated with developing an appropriate user interface for 

specifying complex type-specific consistency constaints therefore lies with striking a 

balance between flexibility, efficiency and user-friendliness. 

As previously discussed (section 4.2.1.1), the exploitation of state based 

information and pre-validation transaction abort could potentially reduce the 

amount of wasted work performed by the optimistic semiqueue server if the 

validating transaction must be aborted. Although this approach could be more 

accurately classified as a drastic pessimistic method that relies on transaction abort 

instead of delay, it could substantially improve our optimistic server's performance. 

The potential problem assoicated with this exploitation of optimistic locking 

information during the READ phase of a transaction is the overhead introduced by 

conflict detection. In its purest form, an optimistic approach offers a cost effective 

alternative to pessimistic methods under conditions where the level of conflict is 

sufficiently low by virtue of the fact that it contains less locking overhead. Since 

conflict detection contributes to locking overhead, allowing it in the READ phase 

may cancel out the advantages introduced by the optimistic method. Further 

exploration into these performance tradeoffs is required before the application of 

this technique could be considered to be generally applicable within type-specific 



optimistic methods. 



Appendix 

op Enq(Tnum:int; i:int) returns Enq-res:int (call1 
op Eval(Tnum:int) returns item-count:int (call) 
op Deq_rand(Tnum:int) returns rand:int (call) 
op Deadlock_Check(blocker:int; Tnum:int) 
retumsabortedbol (call) 

op Abort(Tnmt) (call) 
op Global_Update(Tnum:int) returns g1ob:bool (call) 

op Wakeup-EnqO #Wakeup Calls 
op Wakeup-Eva10 
op Wakeup-DFO 
op Wakeup-DOKO 
op Wakeup-FOKO 

# N is the maximum number of concurrently 
# transactions this server can support 

type node = rec(prev-1ink:ptr node 
valueint 

Deq-Plockint 
next_link:ptr node) 

# Nodes of the semiQ 

type Deq-ptr-node = rec(Deq_link: ptr node # Nodes of Deq intnts 
nxt: ptr Deq-ptr-node) 

var Qhead, Qtail, element: ptr node # Ptrs for accessing the semiQ 
var Deq-Failed-Plock[l Nl : boo1 # P-locks for Deq/Failed events 
varEval_Mock[l:N]: boo1 # P-locks for Eval/#items events 
var Enq-PIock[l N: boo1 # P-locks for Enq/Ok events 
var head[lN], tail[l:Nl: ptr node # Ptrs for Enq intentions lists 
var Dee_Pointers[lN]: ptr Deqptr-node # Ptrs for Deq intentions lists 

var retry-en@ N: boo1 # Flag for blocked Enq op 



var retry_eval[l:Nl: bool 
var ~try~dfUN1: boo1 
var retry-dok[l Nl: bool 
var retry-fok[lN]: bool 

initial 
Qhead = null 
Qtail := null 
fa i:= 1 to N -> 

Deq_Failed_Plock[i] := false 
Eval-Plock[i] := false 
Enq_Plock[i] := false 
head[i] := null 
tail[il:= null 
Deg_Pointers[i] := null 
retry_eval[i] := false 
retry_enq[il := false 
retry_df[il := false 
retry_dok[i] := false 
retry_fok[il := false 

a f 
end 

Flag for blocked Eval op 
Flag for blocked Deq/Failed 
Flag for blocked Deq/Ok 
Flag for blocked Deq op 

# Initialize SemiQ head pointer 
# Initialize SemiQ tail pointer 
# For all Tnums initialize: 
# Deq/Failed P-lock 
# Eval/(#items) P-lock 
# Enq(i)/Ok P-lock 
# Enq intentions head 
# Enq intentions tail 
# Deq intentions 
# Flags for blocked ops 

...................................... 
# Abort - called by Deadlock-Check 

proc Abort(Tnum) 

var local_element: ptr node # Ref to SemiQ and Enq intentions 
var Deltemp: ptr Deq-ptr-node # Ref to Deq intentions 
var dequed-items: bool 
var DF-flag: boo1 # Flags DF Plock 
var Enq-flag: boo1 # Flags Enq Mock 
var Eval-flag: boo1 # Hags Eva1 Plock 

if head[Tnum] != null -> # If Enq intentions is not empty 
local-element:= head[Tnum] # Throw it away 
do local-element != null -> 

head[Tnum] := local-elementA.next-link 
free(loca1-element) 
local-element:= head[Tnum] 

od 
fi 

dequed_items:= false 
if Deq_Pointers[Tnum] != null -> # If Deq intentions is not empty 



J2q-temp:= Deq_Pointe~s[Tnuml # Throw it away 
do Deatemp != null -> 

Deq-tempA.w-linkA.Deq-Plock := 0 
Deq_Pointers[Tnum] := Deq_tempA.nxt 
free(Deq3emp) 
Deq-temp := Deg_Pointers[Tnum] 

od 
dequed-items:= true # Flag the Deq 

fi 

retry_dok[Tnum] := false # Re-init blocked flags 
retry_df[Tnum]:= false 
retry_enq[Tnum] := false 
retry_eval[Tnum] := false 
retryetryfok[Tnum] := false 

DF-flag:= false 
if Deq-Failed-Plock[Tnuml -> 

Deq-Failed-Plock[Tnum] := false 
DF-flag:= true 

fi 

Enq-flag:= false 
if Enq"4P10ck[Tnum] -> 

Enq-Plock[Tnuml:= false 
Enq-flag:= true 

fi 

Eval-flag:= false 
if Eval_Plock[Tnum] -> 

Eval_Plock[Tnum] := false 
Eval-flag := true 

fi 

if DF-flag or Eval-flag -> 
fa i:=l to N st i!=Tnum -> 

if retry_enq[i] -> Wakeup-EnqO 
d v e  Enq-awoke0 

fi 
a f 

fi 

if Enq-flag -> 
fa i:=l to N st i!=Tnum -> 

if retry-df[i] -> Wakeup-DFO 
receive DF-awoke0 

fi 
a f 

fi 
if Ensflag or dequed-items -> 

# If Tnum has Deq/Failed lock 
# Release it 
# Flag DF Plock 

# If Tnum has Enq P-lock 
# Release it 
# Flag Enq Plock 

# If Tnum had Eval P-lock 
# Release it 
# Flag Eval Plock 

# If DF or Eval Plock released 

# Wake-up all Mocked enq ops 

# If Enq Plock released 

# Wake-up all blocked Deq/Fails 

# If Enq Plock or shared elmts released 



fa i:=l to N st i!=Tnum -> 
if retry_eval[il-> Wakeup-Eva10 # Wake-up all blocked Eval ops 

receive Eval-awoke0 
fi 

a f 
fi 

if dequed-items -> # If Tnwn had Deqed items 
fa i:= 1 to N st i!=Tnum -> 

if retry-fok[il-> Wakeup-FOKO # Wake-up all blocked Deq ops 
nxeive FOK-awoke0 

fi 
a f 

fi 

if Eval-flag -> 
fa i:= 1 to N st i!= Tnum-> 

if retry_dok[il-> Wakeup-DOKO # Wake-up all blocked Deq/Oks 
receive DOK-awoke0 

fi 
a f 

fi 

proc Deadlock-Check(blocker,Tnum) returns aborted 

# '%locker" is the Tnum of the transaction that holds a 
# P-lock of the type "Tnum" is about to block on... 

aborted:= false 
if (retry_dok[blockerl or # If blocker is waiting in a Deq/Ok event 

retry-enqlblockerl) and # or blocker is waiting in an Enq/Ok event 
Eval-Plocl<lTnum] -> # and Tnum holds an Eva1 P-lock 
write("AB0RTING TRANSACTION,Tnum,"on Eval-Plock") 
AbortCrnum) # Abort Tnum 
aborted:= true 

[I retry_df[blockerl and # If blocker is waiting in a Deq/Failed event 
EngPlock[Tnum] -> # and Tnum holds a P-lock 
write("AB0RTING TRANSACTION,Tnum,"on Enq-Plock") 
AbortCrnum) # Abort Tnum 
aborted:= true 

[I retrytryevallblockerl and # If blocker is waiting in an Eval/#items 
(EngPlock[Tn=I or # and Tnum has an Enq P-lock or Deq P-lock 



Deq-Pointers[Tnum]!=null) -> 
write("AB0RTING TRANSACTION,Tnum,"on Enq or Deq Plock) 
AborttTnum) # Abort Tnum 
aborted:= true 

[I retry-enqtblockerl and # If blocker is waiting in an Enq/Ok event 
Deq-Failed-Plock[Tnuml -> # and Tnum has a Deq Failed P-lock 
write("AB0RTING TRANSACTION,Tnum,"on Deq Failed Plock") 
AborKTnum) # Abort Tnum 
aborted:= true 

0 retry_fok[blocker] and # If blocker is waiting in a Deq event 
Deq-Pointers[Tnum] != null -> # and Tnum has Deqed items 
write("AB0RTING TRANSACTION,Tnum,"on Deq FOK) 
AborOnum) # Abort Tnum 
aborted:= true 

fi 

end 

proc Enq(Tnum,i) returns Enq-res 
var local-element: ptr node 
var abort: boo1 

retry-enq[Tnum]:= false # Initialize waiting flag 

fa i:= 1 to N st i!= Tnum -> 
if Deq-Failed-Plock[i] or # If any trans. holds a Deq/Failed lock 

Eval-Plock[i] -> # or an Eva1 P-lock 
retry-enq[Tnum] := true # Set the waiting flag 
exit 

fi 
af 

do retry-enq[Tnum] -> # If there is a conflict ... 
abort := false 
fa i:= 1 to N st i!= Tnum -> # Deadlock chck before blocking 

if Deq_Failed_Plock[i] -> 
abort:= Deadlock-Check(i,Tnum) 
if abort -> exit fi 

fi 
if Eval-Plock[i] -> 

abort:= Deadlock-Check(i,Tnum) 
if abort -> exit fi 

fi 
af 



if abort -> Enq-re:= -9999 # Resolve deadlock with abort 
lvtum # of calling transaction 

fi 

Eng~es=& # If no deadlock, WAIT 
reply 
d v e  WakeupEnqO # (for a wake-up call) 
retry-enq[Tnum]:= false 
fa i:= 1 to N st i!= Tnum -> # Unblocked -> conflict check 

if Deq-Failed-Plock[i] or 
Eval-Plock[i] -> 

n31-y-enq[Tnuml:= true # If conflict, block again 
exit 

fi 
af 
send Enq-awoke0 

od 

Enq-Plock[Tnum]:= true 
local-element= new(node) 
localalelementA.value:=i 
local-element A .Deq_Plock := 0 
local-element A .prev-link:= null 
local-elementA.next-link= null 

# When not blocked: 
# Assign an Enq P-lock 
# Create a new node 
# Assign it the value 
# Init Deq P-lock for node 
# Init pointers for node 

if head[Tnum] = null -> 
head[Tnum]:= local-element 
tail[Tnum]:= local-element 

# Add node to Enq intnts list 

[I else -> 
tail[TnumIA.next-link:= local-element 
local-elementA.prev-link:= tail[Tnum] 
tail[Tnuml:= local-element 

fi 
En%-= 1 # Return "ok  result 

end 

proc Eval(Tnum) returns item-count 

var local-element: ptr node 
var local-deq: ptr Lkqptr-node 
var abort: boo1 

# Ref to SerniQ and Enq intnts 
# Ref to Deq intentions 

retry_eval[Tnum] := false 
fa i:= 1 to N st i!=Tnum -> # Check all other transactions 

if Deq-Pointers[il != null or # for conflicting locks 



Enq-Plock[i] -> 
retry-eval[Tnum] := true 
exit 

fi 
af 

do retry-eval[Tnum] -> # If a conflict exists 
abort := false 
fa i:= 1 to N st i!= Tnum -> # Do a Deadlock check 

if Deq-Pointers[i]!=null -> 
abort:= Deadlock-Check(i,Tnum) 
if abort -> exit fi # Abort if necessary 

fi 
if Enq-Plock[i] -> 

abort:= Deadlock-Check(i,Tnum) 
if  abort -> exit fi 

fi 
af 

if abort -> 
item-count= -9999 
return 

fi 

item-count :=a 
reply 
receive Wakeup-EvalO 
retry_eval[Tnum]:= false 
fa i:= 1 to N st i!= Tnum -> 

if Deq-Pointers[i] != null 
or EnqPlock[i] -> 

retry-eval[Tnum] := true 
exit 

fi 
af 
send Eval-awoke0 

od 

Eval-Plock[Tnum]:= true 
item-count=O 
element:= Qhead 

do (element != null) -> 
item-count++ 

# If aborted, return -9999 

# Wait for wakeup call 

# When unblocked, check all trans 
# for conflicts 

# If conflicts -> block again 

# When unblocked, assign Eva1 P-lock 

element:= elementA.next-link 
od 

local-element:= head[Tnuml 
do (localocalelement != null) -> 

iternterncount++ 

# Count items in semiQ 

# Add elements from Enq intentions 



local-deq := Deq_Pointers[Tnum] # Subtract elements in Deq intnts 
do (local-deq != null) -> 

item-count- 
local-dq := local_deqA.nxt 

od 

end 

proc Deq-rand(Tnum) returns rand 

var abort: bool 
var start-again : bool 
var found-one : bool 
var num-dequed : int 
var num-queued : int 
var local-element: ptr node 
var Deq-temp: ptr Deq-ptcnode 

# It is ok to play in your own back yard. 

if head[Tnum] != null -> # If Enq intentions not empty 
local_element:= head[Tnum] # Deq an element from there 
rand:= locallelementA .value 
head[Tnum] := local-elementA.next-link 

if head[Tnum] = null -> # If 0 elements now in Enq int. 
Enq-Plock[Tnuml:=false # Release P-lock 
fa i:=l to N st i!= Tnum -> 

if retry-dfIi1-> Wakeup-DFO # Wake-up blocked Deq/Failed 
receive DFawokeO 

fi 
af 

fi 
free(loca1-element) 
retvn 

[I else -> 
start-again := true 
retry-dflTnum] := true 

# Flag to restart Deq op 
# Flag to restart -/Failed 

do start-again -> 



num-dequed:= 0 
num-queued= 0 
Deq-temp:= Deq_Pointers[Tnum] 
do -temp != null -> # Count items in Deq intnts 
num-degued++ 
-temp := Deq-tempA.nxt 

od 
element := Qhead 
do element != null -> # Count items in semiQ 
num-queued++ 

element := elementA.next-link 
od 

if num-dequed = numumqueued -> # If no eligible items 
nAry_df[Tnum] := false 
fa i:= 1 to N st i!= Tnum -> # Check for conflicts 

if E~Q-Plock[i] -> # If some Enq P-lock exists 
retry-MTnuml:= true # Block Deq/Failed event 
exit 

fi 
af 
if retry-MTnum] = false -> # If not blocked 
rand := -99 
Deq-Failed-Plock[Tnuml := true # Deq/Failed P-locked 

Ieturn 
0 else -> # Otherwise, if blocked 

abort := false 
fa i:= 1 to N st i!= Tnum -> # Do Deadlock check 

if Eng_Plock[i] -> 
abort:= Deadlock-Check(i,Tnum) 
if abort -> exit fi 

fi 
# If necessary, abort 

if abort -> rand:= -9999; return fi 
rand :=& 

"=ply 
nxeive Wakeup-DFO # Wait for Wakeup call 
send DF-awoke0 

fi 

0 else-> # If there are eligible elrnnts: 
~etry_dflTnum] := false 

fi 
od 

mtry-foHTnum] := true 
do retry-fok[Tnum] -> 

found-one := false 
element := Qhead 



if found-one -> 
xvtry-dok[Tnum] := false 
fa i:= 1 to N st i!=Tnum -> 

if Eval-Plock[i] -> 
Fetry-dok[Tnuml:=true 
exit 

fi 
af 

# If unlocked element 
# Flag it "found" ... 

do element != null and -found-one -> # Search SerniQ 
if elernentA.Deq_Plock = 0 -> 
foundundone := trbe 

0 else -> 
element := elementA.next-link 

fi 
od 

# If "found" elrnnt 

# Check for conflict 

if rev-dok[Tnuml -> 
abort := false 
fa i:= 1 to N st i!= Tnum -> 

if Eval_Plock[i] -> 
abort:= Deadlock-Check(i,Tnum) 
if abort -> exit fi 

fi 
af 

if abort -> rand := -9999; return fi 
rand:= 466 
reply 
receive WakeupDOKO 
send DOK-awoke0 

# If conflict exists, 

# Do Deadlock check 

# Abort if necessary 

# Wait for Wakeup call 

0 else -> # Otherwise, take item 
rand:= elementA .value 
elementA.Deq-Plock := 1 # P-lock semiQ node 
Deq_temp:= new(Deq_ptr-node) # Add to Deq intnts 
%tempA .Dq-link:= element 
Deq-tempA.nxt= Deq_Pointers[Tnum] 
Deq_Pointers[Tnuml:= Deq-temp 
retry-fok[Tnuml := false 
Iletum 

fi 

Oelse-> # If elig i tems P-locked 
abort := false 
fa i:= 1 to N st i!= Tnum -> 

if Deg_Pointers[il!= null -> # Do Deadlock check 
abort := Deadlock~Check(i,Tnum) 
if abort -> exit fi # Abort if necessary 

fi 
af 



if abort -> rand := -9999; return fi 
rand := -666 
reply 
receive Wakeup-FOKO # Wait for wakeup call 
send FOK-awoke0 
ifQhead =null-> # If semiQ is empty 
retryretrydU'numl := true # Retry Deq/Faild event 
retry-foktTnum1 := false 

fi 
fi 

od 
od 

fi 
end 

proc Global-Update(Tnum) returns glob 
var Deatemp: ptr Dqptr-node 
var dequed-items: boo1 
var Enq-flagboo1 
var DF-flagboo1 
var Eval-flag:bool 

if head[Tnum] != null -> # If Enq intentions not empty 
if Qhead != null -> # Add it to SemiQ 

QtailA.next-link := head[Tnum] 
head[TnumlA.prev-link := Qtail 
Qtail := tail[Tnum] 

[I else -> 
Qhead := head[Tnuml 
Qtail := tail[Tnum] 

fi 
headfmnuml:= null 
tail [Tnum] := null 

fi 

# Re-init Enq intentions ptrs 

dequed-items:= false 
if Deq-Pointers[Tnum] != null -> # If Deq intentions not empty 

dequed-items:= true 
Deq-temp := Deq_Pointers[Tnuml 
do Deatemp != null -> # Remove referenced elements 

if Deq_tempA.Deq_link = Qhead -> 
Qhead:= Deq_tempA.Deq-linkA.next-link 
if Qhead != null -> QheadA.prev-link:= null fi 



[I Deq-tempA.Deq-link = Qtail and Qtail != Qhead -> 
Qtail:= Deq-ZempA.Deq-linkA.prev-link 
QtailA.next-link= null 

U else -> 
Deq-tempA .Deq-linkA .prev-link".next-link := 

Deq-tempA.Deq_linkA.next-link 
DeqDeqtempA.Deq_linkA.next-link".prev-link := 

Deg.tempA.Deq-linkA.prev-link 
fi 
free(Deq_tempA.Deq_link) 
Deq-Pointers[Tnum] := Deq_tempA.nxt 
free(Deq-temp) 
Deq-temp := Deq-PointersITnuml 

od 
fi 

Enq-flag := false 
if Enq_Plock[Tnum] -> # If Tnum had an Enq P-lock 

Enq-Plock[Tnum] := falsr! # Release it 
E~Q-flag:= true # Flag Enq Plock 

fi 

DF-flag:= false 
if Deq-Failed-Plock[Tnum] -> # If Tnum had Deq/Failed P-lock 

Deq-Failed-Plock[Tnum] := false # Release it 
DF-flag:= true # Flag Deq/Failed Flock 

fi 

Eval-flag:= false 
if Eval_Plock[Tnum] -> # If Tnum had Eva1 P-lock 

Eval_Plock[Tnum] := false # Release it 
Eval-flag:= true # Flag Eva1 P-lock 

fi 

if Enq-flag -> 
fa i:=l to N st i!= Tnum -> 

if retry_df[i] -> Wakeup-DF() 
receive DFawokeO 

fi 
af 

fi 

# Issue wakeup calls 

if DF-flag or Eval-flag -> 
fa i:=l to N st i != Tnum -> # Issue wakeup calls 

if retry_enq[i] -> call Wakeup-EnqO 
d v e  EqawokeO 

fi 
af 

fi 



r 

if Eval-flag -> 
fa i:=l to N st i != Tnum -> # Issue wakeup calls 

if retry_dok[il-> Wakeup-DOKO 
receive DOK_awokeO 

fi 
a f  

fi 

if dequed-items or Enq-flag -> # If Tnum had Deq/Ok(i) P-lock 
fa i:= 1 to N st i!=Tnum -> # Issue wakeup calls 

if retry-eval[i] -> Wakeup-Eva10 
receive Eval-awoke0 

fi 
if retry-fok[il -> Wakeup-FOKO 

nxeive FOK_awokeO 
fi 

a f  
fi 

glob := true 
end 
end 



resourre Queue 

op Enq(Tnum:int; i:int) returns Enq-res:int (call) 
op Eval(Tnum:int) returns item-count:int (call) 
op Deg_rand(Tnum:int) returns rand:int (call) 
op Va1idateUnum:int) (call) 
op AbortCrnUIlljnt) (call) 

# N is the maximum number of concurrently 
# active transactions this server can support 

type node = rec(prev-1ink:ptr node # Nodes of the semiqueue 
valueint 

Deq-Olock[l:N+l lint # (treated as boolean) 
next-linkptr node) 

type Deq-ptnode = rec(Deq-link: ptr node # Nodes of the Deq 
nxt ptr Deq-ptr-node) # intentions list 

var Qhead, Qtail, element: ptr node # Ptrs for accessing the semiQ 
var Deq~Failed~Olock[l:Nl:bool # 0-locks for Deq/Failed events 
var Eval-Olock[l:N]:bool # 0-locks for Eval/(#items) events 
var head[l:Nl, tail[l:N]: ptr node # Ptrs for Enq intentions lists 
var Deq-Pointers[l :N]: ptr Detptr-node # Ptrs for Deq intentions lists 

initial 
Qhead := null 
Qtail:= null 
f a k l  toN-> 

Deq-Failed-Olock[i] := false 
Eval_Olocl<Ii] := false 
head[i] := null 
tail[i] := null 
Deq_Poinkrs[i] := null 

a f 
end 

# Initialize SemiQ head pointer 
# Initialize SemiQ tail pointer 
# For all Tnums initialize: 
# Deq/Failed Olocks 
# Eval/(#iterns) 0-locks 

# Enq intentions head 
# Enq intentions tail 

# Deq intentions list 



proc Enqfrnum,i) returns Enq-res 

vai local-e1ement:ptr node 

local-element:= new(node) # G a t e  a new node 
local-elementA.value:=i # Assign it the calling value 
fa j:= 1 to N+1-> 
local~elementA.DeqDeqO1ock[jl := 0 # Initialize node's 0-locks 

af 
local-elementA .prev-link:= null # Initialize node's pointers 
local-elementA .next-link:= null 

if head[Tnuml = null -> 
head[Tnuml := local-element 
tail[Tnum]:= local-element 

# If Enq intentions is empty 
# Set Enq intentions head 
# Set Enq intentions tail 

n el*+ # Otherwise, 
tail[Tnum]".next-link:= local-element # append to Enq intnts 
local-elementA.prev-link:= tail[Tnuml 
tail[Tnum]:= local-element 

fi 

E n e m s  1 
end 

# Respond "ok to calling Tnum 

proc Evalfrnum) returns item-count 

var local-element: ptr node 
var local-deq: ptr Degptr-node 

# Ref to semiQ and Enq intnts 
# Ref to Deq intentions list 

EvalalOlock[Tnurnl:= true # Set Eva1 0-lock for Tnum 
item-count:=O # Initialize item counter 

element:= Qhead # Count elements in semiQ 
do (element != null) -> 
itemterncount++ 
element:= elernentA.next-link 

od 

# Add elements in Enq intnts 



do (local-element != null) -> 
itememcount++ 
local-element:= local~elementA.next~link 

oa 

local-deq := Deq_Pointers[Tnum] 
do (local-deq != null) -> 
item-count- 
local-deq := local_deqA.nxt 

od 
end 

# Subtract Deq intentions list 

proc Deq-randCTnum) returns rand 
var nurnitemsint # The number of eligible elements 
var local-element: ptr node # Ref to semiQ and Enq intentions 
var found-one: boo1 
var Deq-temp: ptr Deqptr-node # Ref to Deq intentions 

if head[Tnuml != null -> # If Enq intntns is not empty 
local-element := head [Tnum] # Remove head of Enq intnts 
rand:= local~elementA.value 
head[Tnum] := local~elementA.next~link 
free(1ocal-element) 
return 

0 else -> # Otherwise, 
element := Qhead # Start searching the SemiQ 
numumitem:= 0 
found-one := false 

do (element != null) -> 
if elementA.Deq~Olock[Tnum] =O -> # If not in Deq intnts 
nun-items++ # add to no. eligible 

if elementA.Degplock[N+ll = 0 -> # If not already locked 
founddone := true # THIS IS IT 
exit 

fi 
# So quit searching 

if num_items = 0 -> # If no eligible elements, 
rand:= -99 # rand = "failed" 
Deq-Failed_Olock[Tnum] := true # Set Deq/Failed Olock 



Ietlun # Return mipnse 

[I -foundundone -> # If eligible e1.s are locked 
element:=Qhead # Take the first one 
do elementA.Deq_Olock[Tnuml = 1 -> 

element:= elernentA.next-link 
od 

fi 

d= elernentA.value # Assign value to rand 
element".DeqDeqO1ock[Tnuml := 1 # Set Tnum's Deq 0-lock 
elernent".Deg_Olock[N+l] := 1 # Set 0-locked flag 
Deq-temp:= new@eq-ptr-node) # Add to Deq intentions 
Deq-tempA.Deq-link:= element 
Deg_tempA.nxt:= Deq_Pointers[Tnum] 
Deq_Pointers[Tnum]:= Deq-temp 

fi 
end 

proc Abort(Tnum1 

var local-element: ptr node 
var Deq-temp: ptr Dqptr-node 
var olocked: boo1 

if head[Tnum] != null -> 
local-element:= head[Tnum] 
do local-element != null -> 

head[Tnuml := local-elementA.next-link 
free(1ocal-element) 
local-element := head[Tnum] 

od 
fi 

# Ref to SemiQ and Enq intnts 
# Ref to Deq intentions 

# If Enq intnts is not empty 
# Throw it away 

# If Deq intnts is not empty 
# Throw it away 

if Deq_Pointers[Tnum] != null -> 
~ec&m~:=  Deq_Pointers[Tnum] 
do Deq-temp != null -> 
Deq_tempA.Deq_linkA.DeqDeqOlock[Tnum]:= 0 # Reset Deq 0-lock 
olocked := false 
hi:= 1 toN-> # Check 0-locked flag 

if Deq-tempA.Deq-linkA.--Olock[i] = 1 -> 
docked:= true 

fi 



af 
if -01- -> # Reset flag if nec. 

DeqDeqtempA.Deq_linkA.DeqDeqOlock[N+l] := 0 
fi 
Deq_Pointers[Tnum] := Deq_tempA.nxt 
free(Deq-temp) 
Deq-temp := Deq_Pointers[Tnuml 

od 
fi 

Deq-Failed-Olock[Tnuml:= false # Re-init 0-locks 
Eval~Olock[Tnuml:= false 

end 

proc Validate(Tnum) 

var Enq-Items, Deq-Items: boo1 
var Deq-temp: ptr Dqptr-node 

Enq-Items := false 
Deq-Items := false 
if head[Tnum] != null -> # If Enq intnts is not empty 

EnxIterns := true 
f a k l  toNsti!=Tnum-> # Check all other Tnums 

if Deq-Failed-Olock[i]=tme or # for Deq/Failed 
Evalal01ock[il=true -> # or Eval/(#items) 0-locks 

AbortCrnum) # Abort if there's conflict 
return 

fi 
af 

fi 

if Deq-Pointers[Tnuml != null -> # If Deq intnts is not empty 
DeqJtems := true 
if -Enq_Items -> # (If not already done - 

fa i:= 1 to N st i!=Tnum -> # check Eva1 0-locks and 
if Eval-Olock[il-> 
AbortCrnum) # Abort if there's conflict) 
lPhun 

fi 
af 

fi 



Deq_ternp:= Deq_Pointers[Tnum] 
do Deq-temp != null -> # For each node to be Deqed 

fa i:=l to N st i != Tnum -> # Check for Deq conflict 
if Deq_tempA.Deq-linkA.Deq-Olock[i] = 1 -> 
AbortCrnum) # Abort if necessary 
lvtum 

fi 
af 
Deq-temp := Deq-tempA.nxt 

od 
fi 

if Enq-Items = true -> 
if Qhead != null -> 

QtailA.next-link := head[Tnum] 
head[Tnum] ".prev-link := Qtail 
Qtail := tail[Tnum] 

[I else -> 
Qhead := head[Tnuml 
Qtail := tail[Tnuml 

fi 

headEnuml:= null 
tail[Tnuml := null 

# Append Enq intentions 

# Re-init Enq intentions 

if -Items = true -> # Remove refs in Deq intnts 
Deq-temp := Deq_Pointers[Tnum] 
do Deq-temp != null -> 

if Deq-tempA.Deq_link = Qhead -> 
Qhead:= Deq_tempA.Deq_linkA.next-link 
if Qhead != null -> QheadA.prev-link:= null fi 

[I Deq-tempA.Deq-link = Qtail and Qtail != Qhead -> 
Qtail:= Deq-tempA.Deq-linkA.prev-link 
QtailA.next-link:= null 

0 else -> 
Deq-tempA.Deq-linkA.prev-link".next-link := 

Deq-tempA.Deq_linkA.next-link 
Deq-tempA.Deq_linkA .next-link" .prev-link := 

Deq_tempA.Deq_linkA.prev-link 
fi 
free(Deq-tempA.Deq-link) 
Deq_Pointers[Tnum] := Deg_tempA.nxt 
free(Deq_temp) 
Deq-temp := Deq_PointerdTnum] 

od 



Deq-Failed-Olock[Tnum] := false # Reinit 0-locks 
Eval~Olock[Tnuml:= false 

end 
end 



op Enq(Tnum:int; i:int) returns Enq-resint (call) 
op Eval(Tnumint) returns item-count:int (call) 
op Deq_rand(Tnum:int) returns rand:int (call) 
op Validate(Tnum:int) returns va1idated:bool (call) 
op Deadlock_Check(blocker:int; Tnum:int) 
returns ab0rted:bool {call) 

op Abort(Tnum.-int) (call) 
op Global-Update(Tnum:int) returns g1ob:bool {call) 

# N is the maximum number of concurrently active 
# transactions this server can support 

type node = rec(prev-lidcptr node 
valueint 

Deq-Plockint 
next-linkptr node) 

# Nodes of the semiqueue 

type Desptr-node = rec(Deq_lirk ptr node # Nodes of Deq intnts 
nxt ptr Deqstr-node) 

var Qhead, Qtail, element: ptr node # Ptrs for accessing semiQ 
var Deq-Failedplock[l:N]: boo1 # 0-lock for Deq/Failed event 
var Eval-Olock[l:N]: boo1 # 0-lock for Eval/#items event 
var head[l:Nl, tail[l:Nl: ptr node # Ptrs for Enq intentions lists 
var Deq-Pointers[l:Nl: ptr Dqptr-node # Ptrs for Deq intnts lists 

var retry_fok[l:N]: boo1 # Flag for blocked Deq op 

initial 
Qhead := null 
Qtail := null 
fai:=ltoN-> 

Deq-Failed-Olock[il := 
Eval-Olock[il := false 
head[i] := null 
tail[i] := null 
Deq_Pointer$i] := null 

false 

# Initialize SemiQ head pointer 
# Initialize SemiQ tail pointer 
# For all Tnums: 
# Init Deq/Failed 0-lock 
# Init Eval/#iterns 0-lock 
# Init Enq intentions list head 
# Init Enq intentions list tail 
# Init Deq intentions list 



# Init Deq blocked flag 

end 

#----------------------------------------------------- ..................................................... 
# Abort - called by Validate and Deadlock-Check 

proc AbortCrnum) 

var local-element: ptr node 
var Dectemp: ptr Dqptr-node 
var dequed-items: boo1 

# Ref to SemiQ and Enq intentions nodes 
# Ref to Deq intentions 

if head[Tnum] != null -> # If Enq intentions list is not empty 
local_element:= head[Tnum] # Throw it out 
do local-element != null -> 

head[Tnum] := local-elementA.next-link 
free(loca1-element) 
localOcalelement:= head[Tnum] 

od 
fi 

dequed-iterns:=false 
if Deq_Pointers[Tnum] != null -> # If Deq intentions list is not empty 

Deq_temp:= Deq_Pointers[Tnum] 
do Deq-temp != null -> # Throw it out 

w-tempA.Deq_linkA.Deq-Plock := 0 # Release P-locks 
Deq_Pointers[Tnuml := Deq_tempA.nxt 
free(Deq_temp) 
Deqtemp := Deq_Pointers[Tnum] 

od 
dequed-items:=true # Flag Deq attempt 

fi 

retry_fok[Tnum] := false 

if dequed-items -> # If Deq had been attempted 
fa i:=l to N st i!=Tnum -> # Wakeup all blocked Deq ops 

if retry_fok[i] -> Wakeup-FOKO 
receive FOK-awoke0 

fi 
a f 

fi 

Eval-Olock[Tnum] := false # Release all 0-locks 
Deq~Failed_Olock[Tnuml := false 
end 



proc Deadlock-CheckCblocker,Tnum) returns aborted 

# "blocker" is the trans. number of the transaction "Tnum" is 
# about to block on. 

aborted:= false 
if retry~fok[blockerl and # If "blocker" is waiting on Deq P-lock 

Deq_Pointers[Tnum] != null -> # and Tnum holds one 
Abort(Tnum) # then abort 
aborted:= true 

proc Enq(Tnum,i) returns Enq-res 

var local-e1ement:ptr node 

local-element:= new(node) 
local-element ".value:=i 
local~elementA.Deq~Plock := 0 
local-element A .prev-link:= null 
local-elementA.next-link:= null 

if head[TnumJ = null -> 
head[TnumJ:= local-element 
tail[TnumJ := local-element 

# Reference to Enq intentions node 

# Create new Enq intentions node 
# Assign it a value 
# Init P-lock 
# Init pointers 

# Add node to Enq intentions list 

0 else -> 
tail[TnumJA.next-link:= local-element 
local-elementA.prev-link:= tail[Tnum] 
tail[TnumJ:= local-element 

fi 
Encres:= 1 #Return Enq "Ok 

end 

#-------------------------------- ................................ 
# Eval/(#items) Event 
................................. 



proc EvalCTnum) retums item-count 

var local-element: ptr node # Pointer to SemiQ nodes and Enq nodes 
var local-deq: ptr Detptr-node # Pointer to Deq intentions 

Eval-Olock[Tnum]:= true # Assign an O-lock for Eval/no. event 
itemmcount=O # Init item counter 
element= Qhead # Init ptr to SemiQ head 

do (element != null) -> # Count number of items in SemiQ 
item-coun t++ 
element:= elementA.next-link 

od 

local_element:= head[Tnum] # Add number of items in Enq intnts 
do (local-element != null) -> 

item-count++ 
local-element:= local~elementA.next~link 

od 

local-deq := Deq_Pointers[Tnuml 
do (local-deq != null) -> 

item-count- 
local-deq := localpeqA.nxt 

od 

end 

# Subtract no. of items in Deq intnts 

proc Deq-rand(Tnum1 returns rand 

var local-element: ptr node 
var Dectemp: ptr Deq-ptr-node 
var abort: bool 
var start-again: boo1 
var found-one: bool 
var num-dequed: int 
var num-queued: int 

# It is ok to play in your own back yard. 

# Ptr to Enq intentions list 
# Ptr to Deq intentions list 
# Flag to abort 
# Flag to restart after block 
# Flag an element to Deq 
# Total number in Deq intnts 
# Total number in SemiQ 

if head[Tnurn] != null -> # If Enq intentions not empty 
localocalelement:= head[Tnum] # Take an element from there 
rand:= local-elementA.value 
head[Tnum] := local-elementA.next-link 



0 else-> # Otherwise, check SemiQ 
start-again:= true 

do start-again -> 

nun-dequed = 0 # Init Deqed count 
num-queued := 0 # Init Enqed count 
-temp := Deq_Pointers[Tnum] 
do -temp != null -> 
nun-dequed++ # Total Dequed 
Deq-temp = Deq-tempA.nxt 

od 
element := Qhead 
do element != null -> 
num-queued++ # Total in SemiQ 

element := elementA.next-link 
od 
if nun-queued = num-dequed -> # If Tnum has Deqed all 

DeqDeqFailed_Olock[Tnum] := true # Olock Deq/Fail 
rand := -99 
return 

fi 

lPtry-foUTnum1 := true 
do retry-fok[Tnum] -> # If there's an item Tnum hasn't Deqed 

founaone := false 
element := Qhead 
do element != null and -found_one -> # Find an unlocked one 

if elementA.Deq-Plock = 0 -> 
founddone = true 
11 else -> element := elementA.next-link 

fi 
od 

if found-one -> # If there is an unlocked one 
rand:= elementA.value # Take it! 
elernentA.Deq_Plock := 1 
Deq-temp:= new(Deqptr-node) 
Deq_tempA.Deq-lik= element 
Deg.tempA.nxt:= Deg.Pointers[Tnum] 
Deq_Pointers[Tnuml:= Deq-temp 
# write("Transaction",Tnum,"Dequed item:",rand) 
retryretryfok[Tnuml:= false 

lehlm 

0 else-> # If there isn't one unlocked 
abort := false 



fa i:= 1 to N st i!=Tnum -> 
if Deq-Pointers[i] != null -> 

abort := Deadlock-Check(i,Tnum) 
if abort -> exit fi  

fi 
af 

if abort -> rand := -9999; return fi 
rand:= -666 
lleply 
receive Wakeup-FOKO 
send FOK-awoke0 
if Qhead = null -> 
retry-fok[Tnum] := false 

fi 
fi 

od 
od 

fi 
end 

# Do a deadlock check 

# Wait if necessary 

......................................... 
# Validation 
......................................... 

proc Validate(Tnum) returns validated 

var DeqJernp: ptr Deq-ptr-node # Ref to Deq intentions 

validated := true 
if head[Tnum] != null -> # If Enq intentions not empty 

fa i:=l to N st i!=Tnum -> # Check for conflicts 
if Eval-Olock[i]=true or DecFailed-Olock[i]=true -> 
AbortVnum) # Abort if conflict exists 
validated:= false 
rehun 

fi 
af 

fi 

if Deq-Pointers[Tnum] != null -> # If Deq intentions not empty 
--temp:= Deq_Pointers[Tnuml 
do Deq-temp != null -> 

fa i:= 1 to N st i!=Tnum -> # Check for conflicts 
if Eval-Olock[i] = true -> 
AborKTnum) # Abort if there is one 
validated := false 

xetum 
fi 



proc Global-Update(Tnum) returns glob 
var Deq-temp: ptr Deq-ptr-node 
var dequed-items: boo1 

if head[Tnuml != null -> # If Enq intentions not empty 
if Qhead != null -> # Append Enq intentions->SemiQ 

QtailA.next-link := head[Tnum] 
head[TnumlA.prev-link := Qtail 
Qtail := tail[Tnum] 

[I else -> 
Qhead := beadjTnum] 
Qtad := tail[Tnum] 

fi 

# Re-init Enq intnts ptrs head[Tnum]:= null 
tail[Tnum]:= null 

fi 
dequed_items:= false 
if Deq-Pointers[Tnum] != null -> # If Deq intentions not null 

deque&items:= true 
Deq-temp := Deq_Pointers[Tnuml 
do Deq-temp != null -> # Remove items from SerniQ 

if Deq-tempA.Deq-link = Qhead -> 
Qhead:= Deq-tempA.Deq_linkA.next-link 
if Qhead != null -> QheadA.prev-link:= null fi 

[I Deq_tempA.Deq-link = Qtail and Qtail != Qhead -> 
Qtail:= Deq-tempA.Deq_linkA.prev-link 
QtailA.next-link:= null 

0 else -> 
Deq_tempA.Deq-linkA.prev-link".next-link := 

Deq_tempA.Deq_linkA.nexttlink 
Deq-tempA.Deq_linkA.next-link".prev-link := 

Deg_tempA.Deq_linkA.prev-link 
fi 



if dequed-items -> # If Tnurn Deqed items 
fa i:=l to N st i != Tnum -> # Wake up any blocked Deq ops 

if retry_fok[il-> call Wakeup-FOKO 
receive FOK_awokeO 

fi 
af 

fi 

Eval_Olock[Tnuml:= false 
Deq-Failed-Olock[Tnum] := false 
glob := true 

end 
end 

# Release all 0-locks 



References 

Rakesh Agrawal, Michael Cary and Miron Livny, "Concurrency 
Control Performance Modeling: Alternatives and Implications", in 
ACM Transactions on Database Systems, 12(4), December 1987. 

Gregory R. Andrews and Ronald A. Olsson, "Revised Report on the 
SR Programming Language", University of Arizona TR 87-27,1987. 

Gregory R. Andrews et al., "An Overview of the SR Language and 
Implmentation", in ACM Transactions on Programming Languages 
and Systems, IOU), January 1988. 

Richardo Cordon and Hector Garcia-Molina, "The Performance of a 
Concurrency Control Mechanism that Exploits Semantic 
Knowledge", in Proceedings of the Fiffh International Conference 
on Distributed Computing Systems, 1985. 

K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, "The Notion of 
Consistency and Predicate Locks in a Database System", 
Communications ACM ,19(11), November 1976. 

P. Franaszek and J.T. Robinson, "Limitations of Concurrency in 
Transaction Processing", in ACM Transactions on Database Systems, 
10(1), March 1985. 

Dieter Gawlick, "Processing Hot Spots in High Performance 
Systems", In Proceedings Cornpcon85,1985. 



[Harder831 

[Herlihy86] 

[Kung81] 

[Liskov87] 

[Lis kov83I 

[O'Nei186] 

[Pun871 

[Schwarz84] 

T. Harder,"Observations on Optimistic Concurrency Control 
Schemes", in Information Systems, 9, June 1984. 

Maurice Herlihy, "Optimistic Concurrency Control for Abstract Data 
Types", in Proceedings of the Principles of Distributed Computing 
Conference ,1986. 

H.T. Kung and J.T. Robinson, "On Optimistic Methods for 
Concurrency Control", in ACM Transactions on Database Systems, 
6(2), June 1981. 

Barbara Liskov et al., "Argus Reference Manual", Massachusetts 
Institute of Technology TR-400, November 1987. 

Barbara Liskov and Robert Scheifler, "Gaurdians and Actions: 
Linguistic Support for Robust, Distributed Programs", in ACM 
Transactions on Programming Languages and Systems, 5(3), July 
1983. 

Patrick O'Neil, "The Escrow Transactional Method", in ACM 
Transactions on Database Systems, 11 (4), December 1986. 

K.H. Pun and G.G. Belford, "Performance Study of Two Phase 
Locking in Single-Site Database Systems", in IEEE Transactions on 
Software Engineering ,13(12), December 1987. 

Peter M. Schwarz and Alfred Z. Spector, "Synchronizing Shared 
Abstract Types", in ACM Transactions on Computer Systems, 2(3), 
August 1984. 



Alfred Z. Spector and Peter M. Schwarz, "Transactions: A Construct 
for Reliable Distributed Computing", in ACM Operating Systems 
Review, 17(2), April 1983. 

Alfred Z. Spector et al., "Distributed Transactions for Reliable 
Systems", in Proceedings of the Principles of Distributed Comput ing 
Conference, 1985. 

Alfred Z. Spector, "Distributed Processing and the Camelot System", 
Carnegie-Mellon University TR-87-100, Jaunuary 1987. 

C. Thanos, C. Carlesi and E. Bertino, "Performance Evaluation of 
Two-Phase Locking Algorithms in a System for Distributed 
Databases", in The Third Symposium on Reliability in Distributed 
Systems and Database Systems, October 1983. 

[Vidyasankar84] K. Vidyasankar and V. Raghavan, "Highly Flexible Integration of 
the Locking and Optimistic Approaches of Concurrency Control", 
Memorial University of Newfoundland, TR-8402, March 1984. 

[Weih185] William Weihl and Barabra Liskov, "Implementation of Resilient, 
Atomic Data Types", in ACM Transactions on Programming 
Languages and Systems, 7(2), April 1985. 

[Wolfson871 Ouri Wolfson, "The Overhead of Locking (and Commit) Protocols 
in Distributed Databases", in ACM Transactions on Database 
Systems, 12(3), September 1987. 


