
AN INVESTIGATION OF TYPE-SPECIFIC

OPTIMISTIC, PESSIMISTIC, AND HYBRID

CONCURRENCY CONTROL

YvonneCoady

B.Sc., Gonzaga University, Spokane, 1985

THESIS SUBMllTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Yvonne Coady I988

SIMON FRASER UNIVERSITY

December I988

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Yvonne Coady

Degree: Master of Science

Title of thesis: An investigation of Type-Specific

Optimistic, Pessimistic, and Hybrid

Concurrency Control

Examining Committee:

Chairman: Dr. Joseph Peters

Dr. Stella Atkins
Senior Supervisor

~ r V ~ & S h u n ' f u k
Committee Member

Dr. Tiko Kameda
External Examiner

Date Approved: December 9,1988

i i

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Universl ty the r i g h t t o lend

my thesis, project o r extended essay (the t i t l e of which i s shown below)

t o users of the Simon Fraser Universl ty Llbrary, and t o make p a r t i a l o r

s ing le copies only fo r such users o r i n response t o s request from the

l i b r a r y o f any other universi ty, or other educational i ns t i t u t i on , on

i t s own behalf o r for one of i t s users. I fur ther agree t h a t permission

f o r mul t ip le copying of t h l s work for scholar ly purposes may be granted

by me or the Dean of Graduate Studies. It i s understood t h a t copying

o r publication of t h l s work f o r financial gain shal l not be allowed

without my wr i t ten permission.

T it l e of Thes i s/Project/Extended Essay

An I n v e s t i g a t i o n of Type-Specif ic O p t i m i s t i c , P e s s i m i s t i c , and Hybrid

Concurrency C o n t r o l

Author:

(signature)

Monica Yvonne Coady

(name

December 9; 1988

Abstract

In general-purpose distributed systems, abstract objects may be manipulated by

concurrent actions called "extended transactions". A server provides the

necessary access operations and concurrency control for each object. By

exploiting semantic information, the standard pessimistic servers can be replaced

with efficient optimistic servers, and also with hybrid servers combining features

of both pessimistic and optimistic concurrency control. The finest granularity at

which different synchronization methods can be used is on a per-conflict level.

This thesis describes a novel implementation of a hybrid server for a

user-defined abstract object, a semiqueue. The semiqueue server may be

customized so that every conflicting operation (executed by concurrent extended

transactions) may be treated either pessimistically or optimistically, depending

on the expected level of conflict. Performance studies show that this hybrid

server is more efficient over a range of conflicts than a purely pessimistic or

purely optimistic server when some types of conflicts are expected to be frequent,

and others are expected to be rare. The results generalize to other shared data

structures, showing the practicality and effectiveness of this approach.

iii

Acknowledgements

I would like to extend my gratitude and deep appreciation to Dr. Stella Atkins,

supervisor-extraordinaire, for her endless supply of guidance, wisdom and support.

I am also very grateful to my brother, Michael, whose relentless determination and

enthusiasm will always be my greatest source of inspiration.

Table of Contents

1 Background and Fundamental Concepts ..
1 .I Introduction to Extended Transactions ...
1.2 Pessimistic and Optimistic Concurrency Control

1.2.1 Pessimistic Concurrency Control: Two-Phase Locking
1.2.2 Optimistic Concurrency Control: Validation
1.2.3 Integration of Pessimistic and Optimistic Techniques

1.3 Thesis Overview ...
2 Previous Work on Concurrency Control

for Extended Transactions ...
2.1 Fast Path: A Successful Approach for Database Transactions
2.2 Argus and TABS: Conventional Pessimistic Approaches for

Extended Transactions ..
2.2.1 Argus ..
2.2.2 TABS ..

2.2.2.1 Components of TABS ..
2.3 Serial Dependency Relations: A Tool for Defining

Typespecific Concurrency Control
2.4 Optimistic Techniques: Conflict-based Validation

2.4.1 The Validation Phase ...
2.4.1.1 Backward Oriented Concurrency Control
2.4.1.2 Forward Oriented Concurrency Control

2.5 Hybrid Concurrency Control for Extended Transactions
2.6 Performance Evaluation ..

3 An Example: The Semiqueue Server ...
3.1 The Optimistic Server: Four Proscribed

Dependency Relations
3.1.1 Implementation Outline of the

Optimistic Server ..
3.2 The Pessimistic Server: Seven Proscribed

Dependency Relations
3.2.1 Implementation Outline of the

.. Pessimistic Server
3.2.2 Deadlock ...

3.3 The Hybrid Server: Four Proscribed
Dependency Relations

3.4 The Simulation Model ...
a 4 Implementation Details ..

4.1 The Semiqueue and Intentions Lists ..

4.2 The Operations ...
.. 4.2.1 Optimistic Operations

.. 4.2.1.1 Implementation Tradeoffs
4.2.2 Pessimistic Operations ..

.. 4.2.2.1 Deadlock Detection

.. 4.2.2.2 Wake-Up Messages
.. 4.2.3 Hybrid Operations

Tests and Results ..
5.1 Testing Enq(i)/Ok-- >Deq()/Failed and

....................... Enq(i)/Ok-- >Eval/(#itms) Conflict Types
5.1.1 Results ..

5.2 Testing the Deq()/Ok(i)-- >Deq()/Ok(i) Conflict Type
5.2.1 Results ..

5.3 Testing the DeqO/Ok(i)-- >Eval/(#itms) Conflict Type
5.3.1 Results ..

Evaluation and Extension ...
.. 6.1 Relative Behavior 6.1.1 Pessimistic Behavior 6.1.2 Optimistic Behavior

.. 6.1.3 Hybrid Behavior
... 6.1.4 Summary of Behavior

6.2 Extension: Directories ...
Conclusions and Futher Research ..

... 7.1 Conclusions
7.2 Further Research ..

APPENDIX ... 107
.. REFERENCES 135

List of Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 5.1:

Figure 5.2:
Figure 5.3:
Figure 6.1:

Figure 6.2:

.. A Semiqueue in Argus 19
A Semiqueue in TABS ... 22

................................ The Basic Components of a TABS Node 24
Expected Performance Under
High and Low Levels of Conflict ... 40
Pessimistic Conflict Relations .. 49
Optimistic Conflict Relations ... 51
Hybrid Conflict Relations ... 52
The Shared Semiqueue ... 55

.. Enqueue Intentions List 56
Dequeue Intentions List .. 57
Deq 0-locks in an Optimistic Semiqueue Node 59
Deq/Failed and Eva1 0-locks ... 60
A Linked List of 0-locks in an Optimistic Node 62
Deq/Failed, Eval and Enq P-locks .. 65
A Deq P-lock in a Pessimistic Node 66
Enq(i)/Ok->Deq/FaiIed and
Enq(i)/Ok->Eval/(#items) conflicts 79

... Deq/Ok(i)-> Deq/Ok(i) conflicts 84
Deq/Ok(i)->Eval/(#items) conflicts 87
Fundamental Characteristics of

.................... Pessimistic, Optimistic and Hybrid Techniques 96
.. Directory Dependencies 100

Background and Fundamental Concepts

1.1 Introduction to Extended Transactions

Recently, some innovative research has been devoted to general purpose

methodologies involving an extension of the traditional transaction model1 which

could potentially simplify the construction of general purpose distributed

applications [Schwarz84, Spector83, Spector85, Weih185, Herlihy861. This renovation

of the classical model provides distributed application programmers with a

mechanism for customizing concurrency constraints on shared abstract objects and

ensures an atomic (all-or-nothing) effect of a group of type-specific operations. As

opposed to the traditional model, this extended transaction model applies to data

structures other than records, operations other than simple READS and WRITES, and

applications outside of the conventional database domain. Consequently, extended

transactions have the potential to be a valuable tool for organizing and structuring

computations in general purpose distributed systems.

The purpose of extending the conventional transaction model to applications

outside of the database domain is to simplify the construction of many types of

. A transaction typically consists of several READ operations performed on a set of
records known as the transaction's red set, and/or several WRITE operations
performed on a set of records known as the transaction's write set .

distributed programs. This can be accomplished by lightening the burden on

application programmers through the simplification of synchronization issues.

Further, the extended transaction model can provide a flexible way of maintaining

arbitrary application-dependent consistency constraints without unnecessarily

restricting concurrent processing of application requests.

In order to accommodate the additional requirements of general-purpose

distributed systems, the extended transaction model must include an effective

method of concurrency control for extended transactions operating on abstract data

types. A concurrency control scheme allows operations from simultaneously active

transactions to be interleaved in such a way that each transaction is provided with a

consistent view of the system state, as if it were executing alone. This effect is

formally known as serializability .

Frequently, the serializability requirement is too strong and can significantly

reduce the amount of concurrency a synchronization mechanism has the potential

to provide [Spector83]. For example, a semiqueue [Weih185, Schwarz841 is a species

of queue that allows for more concurrency than a strictly FIFO queue because it does

not guarantee to dequeue items in the order they were enqueued, and as a result, all

previously enqueued objects (that are not already locked) are eligible for dequeuing.

Concurrency constraints for the nonserializable abstract type semiqueue are such

that two Enqueue operations do not conflict, nor do an Enqueue and a Dequeue

that access different items, and likewise, two Dequeue operations that attempt to

remove different items do not conflict.

Exploitation of semantic information associated with the consistency

constraints of type specific operations can also be used to achieve greater concurrency

since well-informed decisions can be made regarding the necessity of transaction

delay or abort. For example, consider the abstract type directmy and a corresponding

operation Insert(entry) [Spector83]. Within the context of simple READ and

WRTTE operations, Insert modifies the directory and therefore is considered to be

equivalent to a WRITE operation. In terms of conventional database

synchronization schemes, WRITE operations on the same data item from two

concurrently active transactions always cause a conflict. Intuitively, however, when

one considers the semantics of insertion, it is apparent that a conflict between

concurrent transactions inserting different entries is nonessential. We return to this

example later (in Section 6), showing how semantic information is used to reduce

the number of conflicting operations to just a few.

1.2 Pessimistic and Optimistic Concurrency Control

Fundamental approaches used by concurrency control schemes can be broadly

categorized as either pessimistic or optimistic methods. In a pessimistic approach,

. conflicts are identified during a transaction's execution and resolved by imposing a

delay on some transactions. Conversely, in an optimistic approach, conflicts are

identified at the end of a transaction's execution and resolved by aborting and

restarting some transactions at a later time. Standard pessimistic and optimistic

concurrency control mechanisms for database management systems have been based

on two-phase locking [Eswaran761 and validation [Kungtll], respectively. The

following sections give a high level description of the methods by which these two

schemes achieve concurrency control.

1.2.1 Pessimistic Concurrency Control: Two-Phase Locking

In order for a locking technique to guarentee serializability, a transaction must

proceed through two phases: a growing phase in which it must request all locks,

and a subsequent shrinking phase wherein it releases locks and cannot issue any

new lock requests [Eswaran761. The rules associated with the allocation and

releasing of locks on individual items are the following:

Rule 1. Seperate transactions cannot simultaneously possess locks which are
in conflict.

Rule 2. When a transaction releases a lock it cannot obtain further locks.

Within a database environment where operations consist solely of READS

- and WRITES, two-phase locking provides concurrency control through the use of

READ-locks and WRITE-locks. These locks conflict in the following manner:

Hence, mutiple readers are allowed, but a readers and writers exclude each other,

and a writer will also exclude other writers.

Although adherence to these rules guarentees serializability, one snag

inherent in two-phase locking is deadlock, which may result whenever transactions

are forced to wait for the release of certain locks (according to Rule 1 above).

Consequently, some effective method of transaction abort must be included with

this technique. In order to facilitate this, it is necessary for a transaction to hold all

locks until the end of its execution, just in case it becomes necessary to undo its

changes [Kung81]. This way, backing up an active transaction which has become part

of a deadlock situation consists of undoing all of the effects of its updates, usually

recorded on a log kept by the system, releasing all of its locks and restarting its

execution.

1.2.2 Optimistic Concurrency Control: Validation

Originally, optimistic techniques for concurrency control in database systems

totally eliminated locking due to the fact that the following undesirable properties

are inherent in such schemes [Kung81]:

- The effective level of concurrency can be severely restricted since
all locks are held until the end of a transaction.

- The overhead imposed by lock maintainence and deadlock detection
can be substantial (e.g., 10% of total execution in System R tHarder831)
and unnecessary in some cases (e.g., READ-only transactions).

Consequently, given a situation where conflicts can be assumed to be rare, a locking

mechanism is not only nonessential, but also expensive.

Within an optimistic approach, the transactions of a database can be

considered to pass through at least two of the following three distinct phases

[Harder83]:

READ VALIDATE WRITE
I I - - - - - - - - I I

BOT EOT

(-- time -->)

The READ phase constitutes the "execution" of the transaction, hence all of the

transaction's READ and/or WRITE operations are performed during this phase. An

intentions list for each transaction is maintained such that operations performed

on behalf of a given transaction are directed to this private buffer. Modifications to

data are all inflicted upon local copies that remain in this buffer, as opposed to

directly modifying the global item. The subsequent VALDATION phase is entered

when a transaction has completed all its operations. This phase ensures that all the

accesses and changes made by a transaction do not result in any loss of consistency

within the database (i.e., it ensures serializability). Consequently, any violation of

consistency involving the validating transaction will be detected as a conflict in this

phase. If a conflict is uncovered during validation, it can be resolved by backing up

the validating transaction and restarting it as new. This is accomplished simply by

throwing out that transaction's intentions list and starting again. Finally, in the

WRlTE phase, all local copies of data in a transaction's intentions list are made

global. Only those transactions that successfully complete validation enter into this

phase, and the combined execution of the VALlDATION and subsequent WRITE

phases of a transaction must proceed in an uninterrupted (i.e., atomic) fashion.

1.2.3 Integration of Pessimistic and Optimistic Techniques

An optimistic approach to concurrency control allows for the unsynchronized

execution of transactions and relies on commit-time validation to detect conflicts

and enforce serializability. As opposed to pessimistic techniques which introduce

delays, within an optimistic scheme conflict resolution is accomplished by

. transaction abort. The element of optimisim in this approach stems from the fact

that this technique is efficient only if validation succeeds with sufficient frequency.

That is, an optimistic approach is only cost-effective if the level of conflict is

sufficiently low. Conversely, a robust pessimistic scheme is less efficient when the

level of conflict is low (due to unnecessary locking overhead), and increasingly

cost-effective when the conflict level is sufficiently high. As a result, optimistic and

pessimistic approaches to concurrency control are appropriate under opposing sets of

conditions, which can be characterized by the probability of conflict among

transactions. This would seem to indicate that a cost-effective synchronization

model should therefore be equipped with not just one technique or the other, but

both [Kung81, Vidyasankar84, Herlihy861. This dual mechanism, or hybrid

approach, could then allow for the selective application of the most appropriate

method of concurrency control on a situation dependent basis.

1.3 Thesis Overview

The work presented here is an exploration of a recently proposed method for

synchronizing extended transactions accessing shared abstract objects through a

server [Herlihy86]. This type-specific method supports a hybrid approach by the

selective use of an optimistic concurrency control technique on a per conflict-type

basis in conjunction with a two phase locking (pessimistic) approach. A purely

optimistic, a purely pessimistic, and a hybrid server are designed according to this

method and implemented for the abstract data type semiqueue. Through the

evaluation of the performance and implementation issues associated with each

server, along with a further example of its application to the directory data type, we

demonstrate the practicality and efficiency of this highly flexible method and

establish the effectiveness of its hybrid support. Fundamental characteristics of

type-specific optimistic, pessimistic and hybrid control are established, along with the

identification of the most appropriate environments for each.

Section 2 gives an overview of previous work using semantic information to

increase concurrency for extended transactions. Section 3 describes an example, the

semiqueue data structure, the operations on the semiqueue, and the conflicts which

arise between extended transactions accessing the object concurrently. Section 4

presents the implementation details of our hybrid semiqueue server, including a

description of its data structures and the operations which use them. Section 5

presents the results of our tests, which subjected each of our servers to varying

degrees of transaction conflict. This is followed in Section 6 by an evaluation of the

respective behavior of each approach. To extend these results to other data

structures, we then analyze the application of this method to a second data structure,

a directory . Section 7 presents our conclusions and discusses possible directions for

further research.

2 Previous Work on Concurrency Control for
Extended Transactions

2.1 Fast Path: A Successful Approach for Database Transactions

A leading commercial database management system currently employed

world-wide is IBM's IMS/VS [Gawlick85,O'Nei186]. The concurrency control

scheme used by this system, known as Fast Path, has the proven ability to sustain

impressive transaction rates within banking environments (180 Debit/Credit

transactions per second reported in 1983 [Gawlick85]). One of the most innovative

and successful features of this system's design (1974) is the incorporation of semantic

information and optimistic techniques into its treatment of frequently accessed fields

or "hot spot" data.

When applied to frequently accessed data such as shared counters, common

locking techniques impose severe bottlenecks that can have a crippling effect on an

entire database system. This result is inherent in the fact that once an item is locked

by a transaction, it must remain locked for the duration of that transaction. Fast

Path attempts to avoid these bottlenecks by abandoning conventional pessimisitic

methods in "hot spot" situations. These situations most commonly involve

summary data such as "Quantity On Hand" or "Total Cash Received", and are

normally kept in main storage. Semantic information associated with these specific

data types reveals that most of the updates involving these fields are of an

increment or decrement nature. Consequently, these operations can be most

effciently made without explicit retrieval and replacement of the records. If, for

example, the desired modification was to replace a quantity of 1000 by 1005, the

database system can simply add 5 to 1000 [Gawlick85]. Operations on summary data

are performed by MODIFY requests, that have the following form:

MODIFY: database
record
attribute
operation (one of +, -, *, /, or :=)
value

Before actually modifying an attribute, however, Fast Path allows the

programmer to issue special VERIFY requests to ensure that an attribute bears some

relation (<, <=, =, >=, >) to a known value. These requests are checked again during

commit processing. In keeping with the characteristic properties of optimistic

techniques, the MODIFY requests are not actually performed until commit time,

after all the VERIFY requests have been reevaluated. A VERIFY request has the

following form:

VERIFY: database
record
attribute
relation (one of <, <=, =, >=. >)
value

Due to the fact that an attribute is not actually updated until the end of a

transaction, the first set of VERIFY requests are not crucial and are intended only to

supply confidence since they cannot guarantee success. They can, however, provide

the application program with a basis for executing an alternative branch of logic in

the event that the verification criterion are not currently met. For example, if

"Quantity On Hand" must remain nonnegative, the application could include:

if VERIFY qoh >= const ->
MODIFY qoh:= qoh - const

else <alternative branch >

The second execution of the VERIFY requests are generated by the system at commit

time and used to determine if a transaction's MODIFY requests should be executed

and subsequently committed. In the case where verification fails, the transaction is

aborted. Otherwise, the attribute is locked and subsequently modified. By

postponing the actual modification of an attribute until the end of a transaction, Fast

Path shortens the duration for which a lock is held on a "hot spot", and

consequently is better able to avoid bottlenecks than common locking techniques.

2.2 Argus and TABS : Conventional Pessimistic Approaches for
Extended Transactions

Argus [Liskov83] and TABS [Spector851 are two existing systems that provide

pessimistic based support for extended transactions on user-defined abstract types.

Both rely on two phase locking and the standard definitions of READ/WRITE lock

conflict. Argus is an integrated programming language/system designed to support

the construction and execution of distributed programs, and the TABS prototype is a

general purpose facility explicitly designed for extended transactions. Within both of

these systems, a distributed program consists of a group of servers (known as

guardians in Argus anddafa servers in TABS) communicating via operation

invocations. Each server encapsulates one or more data objects and the operations

used to manipulate them. These operations provide the sole means by which

servers can access each other's data objects. Arguments are consequently passed by

value in order to guarantee that all direct references to an object are contained

within that object's server; processes within a single server, however, can share

objects directly. Seperate processes are spawned to execute each operation

invocation and each server must provide access control and synchronization for the

data objects it contains.

Although both systems employ this client/server model to support

transactions on shared abstract types, their subsequent user interfaces are very

different, with Argus being the simpler of the two to use [Spector85]. To guarantee

proper synchronization of concurrent transactions, Argus supplies a special MUTEX

object to provide concurrency control and TABS relies on the semantics associated

with coroutines and the application programmer to explicitly lock shared types. The

following sections investigate the treatment of the abstract data type semiqueue

within Argus (section 2.2.1) and TABS (section 2.2.2), then briefly outline the TABS

system and define the focus of our work within such a facility (section 2.2.2.1).

2.2.1 Argus

Argus provides linguistic support for atomic actions (i.e., transactions).

Actions are the prinicipal way of performing computations in Argus -- they start at

one guardian and can spread to others via operations invocations known as handler

calls. Atomicity is accomplished through an atomic data type [Weihl85] construct

which is composed of a set of operations and data objects that are implemented in

such a way that concurrent actions accessing these objects are serializable. Some of

these atomic data types are built-in (e.g., atomic arrays) and others can be

user-defined.

Operations on built-in atomic data types are all classifed in terms of

conventional READS and WRITES and serializability is accomplished by an

augmented two phase locking scheme. As with conventional two phase locking

mechanisms, locks are acquired automatically when an action calls an operation

and are held until that action commits or aborts. In Argus, however, when a write

lock is obtained on a built-in type, a version or copy of the object is made, and the

operations of this action are directed to this copy, as opposed to the global data. This

new version of the object is retained if the action goes on to commit, otherwise it is

forgotten (this is analogous to the use of intentions lists described in section 1.2.2).

As previously mentioned in the Introduction, in some cases users may find

that serializability is too severe a concurrency constraint to inflict upon actions that

access certain shared abstract types. Consequently, Argus also provides support for

extended transactions on nonserializable, user-defined abstract types such as a

semiqueue. If a user had no choice but to rely on the built-in atomic array data type

provided by the Argus system to model a semiqueue, the potential increase in

concurrency could not be exploited. The Enqueue and Dequeue invocations would

consist of a WRITE and a READ-WRITE combination of operations, respectively,

and consequently these operations would be mutually exclusive, even if they were

performed on seperate items. That is, a built-in atomic array type does not provide

support for individually lockable elements.

It is assumed that new, user-defined atomic types like semiqueues can be

defined in terms of Argus' built-in atomic types. Thus, the actual implementation

of a user-defined atomic type consists of a combination of atomic and nonatomic

objects, where nonatomic objects contain information that is unrestrictively

available to concurrently executing transactions, and atomic objects are used to hold

information neccessary for the correct interpretation of this nonatomic data. To

support this use of built-in atomic objects, Argus provides specialized extensions to

their regular operations. These extensions enable operations to determine whether

an action which modifies a nonatomic component of a user-defined atomic object

hascommitted, aborted, or is still active. Depending on which of these three states

an action is in, its modified version can be available, ignored or withheld from

other actions, respectively.

In order to exploit the type-specific properties of abstract objects and allow for

the increase in concurrency that knowledge of these semantics can permit, Argus

exploits the distinction between action concurrency and process concurrency.

Action concurrency refers to actions (which consist of one or more operations) that

are considered to be active simultaneously, whereas process concurrency is used to

depict two or more processes (which represent executing operations) executing on

the same object at the same time. "Coarse-grained" action concurrency is more

crucial than "fine-grained" process concurrency with respect to performance issues.

This can be attributed to the fact that actions have the potential to take a very long

time -- thus there are more serious consequences if they are permitted to exclude

each other than there are if (typically smaller) processes lock each other out. Locks

on built-in atomic objects are used to synchronize actions, whereas process

synchronization is accomplished by means of a mutex data type. A mutex object is

merely a container for another object and it enforces mutual exclusion of the

operations that access the object it contains. For example:

is a mutex object which contains an array of integers. Consequently, all operations

performed on this array will necessarily behave exclusively.

A process can take control of a mutex object using the seize statement. If some

other process has possession of the object, this process waits until that possession is

released. Although this wait should be relatively short, it introduces a further level

where deadlock could potentially arise (in the event that each concurrent process

attempts to seize more than one mutex object). Consequently, a run time check for

this type of deadlock must be performed every time a process is forced to wait for

possession of a mutex object. If several processes are waiting, one is selected fairly.

Once a process has seized a mutex object, it is possible to release possession

temporarily with a pause statement. After a process executes a pause, it waits for a

system determined amount of time and then attempts to regain possession. The

following high-level description of a semiqueue implementation will help to

demonstrate the role built-in atomic types and mutex objects can play in the

representation of user-defined atomic types.

Within a user-defined atomic type, built-in atomic types are used to determine

the state of an action (i.e., commited, aborted, or active) and mutex objects are used

to synchronize user processes (i.e., operations). In the case of a semiqueue of

integers in Argus, one effective implementation strategy is to enqueue the integers

in a nonatomic array enclosed by a mutex object [Weihl85] . This way, concurrent

actions accessing the array, which have the potential to be long, need not always shut

each other out - however, the processes that execute the operations on behalf of

these actions, which will be relatively short, are muttrally exclusive. Hence, any

operation that reads or modifies the array must first seize control of it.

The built-in atomic type, atomic-variant , is associated with each integer in

the mutex array to record the status of the action that inserted or deleted that

element. Atomic-variants can be in one of two states, "present" or "absent", which

are identified by a "tag" that has an associated value. If an element's state is

"present", then the associated value is the enqueued integer. The value of an

element in an "absent" state is ignored. Since concurrency control for the

atomic-variant is governed by Argus' two phase locking technique, any

modifications made by an action to the state of an element in the semiqueue are

strictly local until that action commits. Conflict only occurs when an action attempts

to Dequeue an element which has been either Enqueued by a currently active

action or accessed by a concurrent Dequeue operation. Technically, this semiqueue

can be represented as (Figure 2.1):

mutex[buffer]
where buffer == array[qitein,value]

qitem == atomic-variant[present: int, absent: nil]
value == integer

I Buffer = array [qi tem, value]

1 Buffer [atomic-varl,val]

1 Buffer [atomic-var2,vall

Buffer [atomic_var3,val]

Buffer [atomic-var?,val]

(state Ivalue I
[state Ivalue I

The semiqueue is modeled by an array, "Buffer", of atomic-variants, each
containing <state> and <value> data. This array is contained within a
mutex object, hence operations to access the array are mutually exclusive.

Figure 2.1: A Semiqueue in Argus

Enqueue and Dequeue operations execute in the following manner. An

Enqueue operation first associates a new atomic-variant object with the incoming

value, then seize s the mutex object and adds this new item to the array (it may

have to wait for another operation to release the mutex object). The tag associated

with this value becomes "present" if the action performing that Enqueue operation

later commits, and is permanently set to "absent" if it aborts. A Dequeue operation

seize s the mutex object and then searches for an eligable element, one of which is

selected arbitrarily. This element's tag is then changed to "absent", and its associated

value is returned. In the event that a Dequeue operation is unsuccessful in finding

an available element, a pause statement is executed and the search is resumed at a

later time. If the action calling the Dequeue operation commits, then the tag is set to

"absent" permanently, otherwise, if the calling action aborts, the qitem 's state is

returned to "present". Qiterfi s with a state which has been permanently set to

"absent" by either an aborted Enqueue or a committed Dequeue, are removed from

the array by a garbage collection routine.

It is important to notice that the array-type in the mutex object is not atomic.

Consequently if any changes were inflicted upon the integers of the array by actions

that later aborted, these modifications could not be undone. Thus if a Dequeue

operation were to actually over-write the integer value of an item in the array

(instead of just changing its status), this operation could not be reversed if the

calling action later aborted. Qitems on the other hand, which are the built-in atomic

types associated with each integer of the array, are implemented such that any

changes made by an action to the status of an element can be undone in the event

that the action does not commit (i.e., local modifications can be thrown out).

22.2 TABS

The creators of the TABS prototype a te the following two reasons for choosing

a pessimistic locking scheme to accomplish concurrency control [Spedor85]:

(1) Locking has been proven to be an efficient synchronization
mechanism in many commercial database management systems.

(2) When locking is local to servers, it can be customized to provide
better performance. For example, type-specific locking fSchwarz841 .

Type-specific locking allows for more concurrency than traditional READ/WRTTE

locking by using semantic information associated with abstract types to define

type-specific locking modes and customized compatibility relations. Unfortuately,

however, TABS is currently restricted to traditional READ/WRITE modes.

In TABS, a serniqueue can be implemented as an array of individually lockable

elements, bounded by HEAD and TAIL pointers (Figure 2.2). Since items may be

removed from anywhere within this queue, gaps between these pointers must be

identifiable. In order to accomplish this, all array elements have an associated

boolean value, InLlse , which indicates whether that element actually contains a

value that is currently being stored in the semiqueue. Enqueue and Dequeue set

and clear this bit, respectively. Enqueue adds a new element to the semiqueue by

writing the integer below the TAIL pointer, setting the InUse bit to true, and

reassigning the TAIL pointer to this new element. Dequeue scans the array for the

first eligibile element, returns its value and removes it by clearing the Inuse bit.

Elements that are not considered eligible are either locked or have In Use set to false.

A garbage collection routine eventually removes these elements from the array.

These Enqueue and Dequeue operations are implemented as coroutines in the

semiqueue data server. Each incoming request is treated as a seperate coroutine

invocation, and a coroutine switch is made when an operation is forced to wait for a

lock. The semantics of these coroutines ensure that only one transaction at a time

can update the TAIL pointer, and provide a service that is similar to that of the

mutex object in Argus.

InUse InUse - InU

Value Value Value 0 0 0

HEAD TAIL

Figure 2.2: A Semiqueue in TABS

The amount of concurrency that this implementation allows with respect to

Enqueue and Dequeue operations is identical to that of the Argus implementation,

and can be demonstrated by the following conflict table (where id and id ' represent

distinct items):

As this table suggests, the fact that TABS allows a semiqueue to be implemented as

individually lockable elements permits the uninhibited concurrent execution of all

transactions that access different items in the semiqueue. In the event that a

transaction aborts, its effects are undone by backtracking through a log kept by the

system and restoring the appropriate semiqueue elements to their previous state.

2.2.2.1 Components of TABS

Within the experimental design of a TABS, four basic components provide

support for distributed extended transactions: recovery management to handle

hardware failures, transaction management for implementing commit protocols

and allocating globally unique transaction identifiers, communication managment

to handle access to the network, and name dissemination for locating objects in the

system. A distributed transaction can then access objects at more than one site and

still be an atomic unit of work . The system components of a TABS node can be

illustrated as follows (Figure 2.3):

I (1 Application p G q

lobpal lobjectl I Data Server I I Data Server I
Transaction /

Accent Kernel I

TABS is implemented in Pascal
running on a modified version of
the Accent operating system.
"Applications" initiate transactions
and call data servers to perform
operations on objects.
Data servers are programmed with
aid of system libraries for doing
synchronization, recovery and commit.

TABS system components include:
Recovery Manager for recovery and
log management; Transaction
Manager for handling transactions;
Communication Manager for network
communication and a Name Server
for name dissemination.

Figure 2.3: The Basic Components of a TABS Node

Within the context of a system such as TABS, our work focuses on the

syncrhonization issues that are local to a single data server.

2.3 Serial Dependency Relations:
A Tool for Defining Type-Specific Concurrency Control

Serial dependency relations [Spector83, Schwarz84, Herlihys] provide a means

of incorporating semantic information into the specification of consistency

constraints for type-specific operations. A serial dependency defines the order in

which two concurrently executing transactions operate on a common object. In a

general purpose system, a set of proscribed serial dependencies can be defined for

each shared object type and used to identify type-specific conflicts. This section is

dedicated to an informal examination of the notation and use of dependency

relations to define type-specific consistency constraints. Formal and extensive

treatment for optimistic and pessimistic methods can be found in [Herlihys] and

[Schwarz84], respectively.

Let the equation: D: Ti:X --> T-:Y represent the dependency D, that is
O J

formed when transaction Ti performs operation X , and transaction T i
subsequently performs Y on the same object o. The set of ordered pairs of

transactions {(T-,T.)) for which D: Ti:X --> T-:Y holds, forms a relation, denoted
1 O I

If T. < T-, (that is, if) are one of the ordered pairs in the set that
l D J

denotes the relation " <D ") then this means that Ti precedes T. and T. depends I J

on Ti under the dependency D.

A set of proscribed serial dependencies can be used to define conflicts between

operations that use semantic information in the following way. Consider the

limited semantics of the standard definitions of READ and WRITE operations

within a conventional database. In total, there are four possible dependencies

between a pair of transactions that access a common object [Schwarz84]:

Dl: Ti: READ -->, Tj: READ Ti reads an object subsequently read by T. J
DZ: Ti: READ -->, Tj: WRITE Ti reads an object subsequently modified by Tj
D3: Ti: WRITE -->, Tj: READ Ti modifies an object subsequently read by Tj
D4: Ti: WRITE -->, Tj: WRITE Ti modifies an object subsequently modified by Tj

Of these four, dependencies of type Dl are considered to be insignificant due to the

fact that they do not affect the outcome of transactions, and hence their ordering

does not affect serializibility. That is, given a pair of transactions Ti and Ti that both

read a shared object o , the semantics of the READ operation are such that no

transaction can determine whether Ti < ~ 1 Tj or Tj < ~ 1 Ti. Hence, the set of

proscribed dependency relations for these operations is (D2, D3, D4) (which

correspond to the definition of conflicts among READ/WRITE operations presented

in section 1.2.1).

When proscribed dependencies are used to define conflicts, serializibility can be

redefined as orderability (i.e., the property of being cycle free) with respect to the

- union of the set of proscribed dependency relations. For example, a READ/WIUTE

concurrency control scheme allows for multiple readers by permitting cycles to form

in the C D ~ relation, while preventing cycles in the union of < ~ 2 , < ~ 3 and 9 4 .

Consider the following two serializible schedules of operations [Schwarz84]:

TI: READ(object-1) T2: READ(object-1)
T2: READ(object-1) TI: READ(object-1)
TI: WRITE(object-1) TI: WRITE(object-1)

In the first schedule, TI < ~ 1 T2, and T2 < ~ 2 TI, which forms a cycle in the relation

< ~ 1 u D2, but the relation < ~ 2 u D3 u ~4 cycle free. The second schedule reverses

the first two steps, thus removing the cycle, and still has an identical effect on the

system's state. Consequently, both schedules are orderable with respect to

<D2 u D3 u D4.

In contrast, consider the two schedules:

TI: READ(object-1) T2: WRITE(object-1)
T2: WRITE(object-1) TI: READ(object-1)
TI: WRITE(object-1) TI: WRITE(object-1)

The first can be shown to violate serializibility due to the fact that it is not orderable

with respect to < ~ 2 u D3 u ~ 4 . Here, TI < ~ 2 T2 and T2 < ~ 4 TI, thus it contains a

cycle in < ~ 2 u D4 , which is a subrelation of 9 2 u D3 u D4. The second schedule

reverses the first two steps, removing the cycle, and the resulting schedule is

orderable with respect to the union of the set of proscribed dependencies.

Serial dependency relations are used to define type-specific conflicts in each of

our optimistic, pessimistic and hybrid implementations. As demonstrated in

Section 3, each of these three approaches to concurrency control requires different

dependencies to be included among their proscribed set of relations.

2.4 Optimistic Techniques: Conflict-based Validation

Confict-bused validation [Herlihy86] is the technique that forms the basis of our

optimistic implementation. In keeping with traditional approaches to optimistic

concurrency control, a conflict-bused approach works by defining each abstract data

object as being a composite of two components: a permanent state and a set of

intentions lists. An object's permanent state records the effects of transactions

which have successfully terminated and there is an intentions list, recording

tentative changes, for each active transaction which has accessed the object. When a

transaction commits, changes in its intentions list are applied to the permanent state

of the object. Before a transaction may commit, however, it must be validated.

Given that an event consists of an operation invocation and a response,

conflict-based validation is based on predefined conflicts between pairs of events.

a For example, consider an abstract data type, Account, and its two associated

operations Credit and Debit, which increase and decrease the balance of Account

by a specified amount, respectively. If the amount specified to be debited exceeds the

balance of Account, an Overdraft is signalled and the balance is left unchanged.

The following sequence of events (called a history), demonstrates how an object's

state can be modelled:

Conflicting events for this data type would be the following (where " X indicates a

conflict and events in the columns are executed prior to the corresponding events in

the rows):

Credit/Ok Debit/Ok Debit/Over
Credit/Ok
Debit/Ok X
Debit / Over X

As this table indicates, there are only two types of conflicts among these events.

A successful Debit (Debit /Ok) conflicts with a prior successful debit, and an

Overdraft (Debit/Over) conflicts with a prior credit. These conflicts are defined by

the proscribed serial dependency relations that exist between these events (section

2.3). In other words, the "success" of a Debit operation is dependent upon prior

DebitlOk events. Consequently, a DebitlOk event executed by validating

transaction can invalidate DebitlOk events that were performed by other actively

executing transactions. Likewise, an Overdraft signal will depend on prior

CreditlOk events since a committed addition to the balance could, potentially,

invalidate an overdraft condition.

If concurrent transactions accessing the same shared data object do not contain

any conflicting events, then none of their events are invalidated and hence their

intentions lists will be applied to the permanent state of the object in the order that

they validate (this ordering can be imposed either by assigning unique transaction

numbers or using a system of logical clocks and timestamps).

Employing ments as the units of conflict, in contrast to the mere invocations

which pessimistic schemes typically employ, has a direct effect on concurrency. In

most pessimistic schemes, a lock must be acquired before invoking an operation,

thus conflicts are defined between invocations as opposed to complete events. By

basing validation on events, the additional information from an invocation's

results can be used to validate more interleavings than would be legal in most

pessimistic techniques, and consequently allow for an increased level of

concurrency. For example, within an event based model, a Credit operation is

compatible with a successful Debit operation, but not with an attempted

DebitJOverdraft. Within an invocation based model, there would be no distinction

between a successful and an unsucessful Debit operation. A comparision of the

following two tables demonstrates the dramatic contrast between the number of

conflicts that exist for the Account data type in an event based approach as opposed

to an invocation based model:

EventJEvent:
Credit /Ok Debit /Ok Debit /Over

Credit/Ok
Debit/Ok X
Debit / Over X

Invocation/Invocation:
Credit/Ok Debit /Ok Debit/ Over

CreditIOk X X
Debit/Ok X X X
Debit / Over X X X

Consequently, an event based model can support an enhanced level of concurrency

over invocation based models because it exploits information about the state of an

object in much the same way as Fast Path (section 2.1).

2.4.1 The Validation Phase

Within an optimistic scheme, concurrency control techniques are employed

during a transaction's VALIDATION phase. Validation techniques can be

classified into two categories [Harder83]: bachard and forward oriented

concurrency control (BOCC and FOCC, respectively). Basically, given transaction Tj

that is trying to validate, BOCC checks for conflicts between Tj and transactions that

were concurrently executing with Tj that have previously validated. If there are any

conflicts of this kind, then Tj has been invalidated and must be aborted. With this

same Tj, FOCC would check for conflicts between Tj and transactions that were

concurrently executing with Tj that are still active. If there are any conflicts of this

kind, then several courses of action can be taken, the simplest of which is to abort

transaction Tj. The following explanations of BOCC and FOCC rely on unique

transaction identification numbers, assigned at the end of each transaction's READ

phase, to impose a total ordering. Transactions are assumed to enter the Validation

and possible subsequent WRITE phase one at a time [Harder83].

2.4.1.1 Backward Oriented Concurrency Control

In BOCC, given a transaction Tj that is attempting to validate, all transactions

that were running concurrently with Tj, but have subsequently validated, must be

checked for conflicts. That is, for the transaction Tj with transaction number T(j),

and for all transactions Ti with transaction numbers T(i), such that T(i) < T(j), (i.e.,

each Ti finished its READ phase before Tj) backward validation ensures that Tj did

not access any object that was later overwritten by any Ti. The following diagram

. illustrates Tj's validation scenario:

Tact "

In the situation depicted above, applying BOCC during Tj's validation phase means

that the objects accessed during the read phase of Tj, known as the read set of Tj,

have to be checked against the objects written by T2 and T3, known as the write set

of T2 and T3. If Tj's red set has any objects in common with either of these write

sets, then the only solution is to abort Tj (since T2 and T3 have already been

validated). This implies that in order to facilitate BOCC, all the write sets of a group

of concurrently executing transactions must be kept until the last member of that

group has committed.

2.4.1.2 Forward Oriented Concurrency Control

If the scheduler is attempting to validate Tj using FOCC, instead of comparing

Tj's read set with the write sets of validated transactions as in BOCC, active

transactions are checked for conflicts. In FOCC, the write set of a transaction being

validated is compared with the read sets of all concurrently executing transactions

that not only started their execution subsequent to the beginning of Tj's execution,

but also have not yet completed their READ phase. Consequently, concurrency

control is ultimately tied to transactions that perform WRITE operations, and

READ-only transactions can be validated automatically. For a transaction Tj that is

trying to commit, the following scenario captures a FOCC scheme:

Write
1-

In the above diagram, the write set of the transaction seeking validation, Tj, must be

checked against the read sets of active transactions that began execution subsequent

to the start of Tj, which are Tactl and Tact2. In the event that Tj's write set has an

object in common with one or both of these read sets, one of several conflict

resolution strategies could be applied [Harder83]. The most direct of these is an

"immediate abort" approach, where the transaction that is trying to be validated, Tj,

is aborted when such a conflict is detected.

It is important to note that since FOCC must examine potentially dynamic read

sets of concurrently active transactions, validation can be intricate. A

straightforward approach, however, is to perform validation in a system-wide

critical section [Harder83].

2.5 Hybrid Concurrency Control for Extended Transactions

Type-specific two phase locking (section 2.2.1) and conflict-based validation

(section 2.4) are the respective pessimistic and optimistic components of a recently

introduced hybrid concurrency control method for extended transactions which

forms the basis of our hybrid implementation [Herlihy86]. Within conflict-based

validation, there appears to be no substantial difference with regards to performance

issues between FOCC and BOCC [Herlihy86]. We chose FOCC because its validation

is inherently more optimistic due to the fact that its "immediate abort" strategy

could abort a transaction due to a conflict with a transaction which, in turn, is not

guaranteed to be validated (i.e., there could be more cyclic starts). Within our

simulation, this approach's extreme optimism serves to be an appropriate counter

part to the pessimistic approach for comparison purposes.

A hybrid synchronization mechanism supports the selective application of

optimistic or pessimistic control on a per operation basis for an abstract object in a

distributed system. Within this approach, the appropriate concurrency control

mechanism can be applied according to a probability of occurance that can be

expected for each type of conflict. Conflicts that have a high probability of occuring

can be governed by a pessimistic technique, whereas conflicts that are expected to

occur at a sufficiently low frequency could rely on an optimistic method. The

following is a high level discription of the methodology by which this type of mixed

control could be accomplished.

Serial dependency relations are used to define conflicts between pairs of events.

The optimistic component of this compound approach, forward oriented

conflict-based validation [Herlihy%l, relies on these conflicts to determine which, if

any, transactions should be aborted. In the same way, the pessimistic component of

this approach, type-specific two phase locking [SchwarzM, Herlihya], can employ

these conflicts to determine which transactions should be delayed. For instance, as

previously established (section 2.4), the serial dependency relations for the events

associated with the Account data type define conflicts between the events DebitlOk

and DebitlOk, as well as between CreditlOk and DebitlOverdraft . Within a hybrid

approach, it is possible to make further distinctions about how each of these types of

conflicts is to be controlled. That is, given an Account data object where the balance

is expected to cover all debits, but for which concurrent debits are frequent, the

probability of conflicts between two DebitJOk events can be expected to be high,

while conflicts between CreditlOk and Debitloverdraft events will occur with a

much lower frequency. In this case, a cost-effective hybrid scheme could treat the

first type of conflict pessimistically while the latter could be treated optimisitically.

This situation can be depicted as follows (where "P"= pessimistic conflict and "0=

optimistic conflict replace the generic "X" conflict that was used in section 2.4):

Credit/Ok Debit/Ok Debit/Over
Credit/Ok
Debit /Ok P
Debit / Over 0

When a transaction executes an event that is governed by an optimistic

conflict, it is given an optimistic lock (0-lock) for that event. A transaction can only

be validated if no other transaction holds an optimistic lock for a conflicting event.

That is, given a transaction Ti that is attempting to validate (via FOCC) and holds an

0-lock for the event CreditlOk , and an active transaction, Tj, which holds an

0-lock for the event Debit/Overdrajl, Ti must be aborted. All 0-locks are released

upon transaction termination.

In contrast, P-locks must be requested after a transaction executes an

operation invocation, but before it updates its intentions list. If any other

transaction holds a conflicting P-lock , the lock is refused and the operation must be

retried. That is, given a transaction, Ti, which is attempting to execute the event

DebitlOk , and a transaction, Tj, which already holds a P-lock for the event

DebitlOk , Ti must be delayed and its operation invocation retried. When a P-lock

can be successfully obtained, the intentions list is updated and the event's response

returned to the calling transaction. As with 0-locks, all P-locks are released upon

transaction termination.

2.6 Performance Evaluation

Numerous studies have been dedicated to examining the performance of

concurrency control algorithms for conventional database systems [Thanos83,

Franaszek85, Agrawal87, Pun87, Wolfson871. A common complaint associated with

studies like these is that their results often appear to be contradictory and

inconclusive. As suggested in [Agrawal87], the discrepancies that arise between

different evaluations can be attributed to the fact that every study is based on its own

unique set of performance modelling assumptions. In order to allow for a

comparison between our results and other studies, we first had to establish a

common and acceptable performance metic.

Presently, studies on the performance of concurrency control mechanisms that

exploit semantic knowledge are sparse. One such study [Cordon851 compares the

performance of a concurrency control scheme that utilizes application specfic

semantics to conventional two phase locking. The purpose of this comparison is to

- determine the conditions under which the higher complexity of overhead associated

with the application dependent mechanism pays off. This work brings attention to

the possibility that the cost of a customized mechanism may outweigh its potential

gains in concurrency if its overhead is much higher than that of conventional

methods.

Through the use of a simulated distributed database management system

model, this work has established that the level of conflict was the most dominant

performance factor in the comparison. In an environment such as a large database

where references are widely dispersed and probability of conflict is consequently low,

conventional two phase locking schemes outperform an application dependent

strategy. This is due to the fact that the conventional approach has smaller

overhead. But for environments in which the probability of conflict is expected to be

high, application dependent methods can significantly improve the system's

response time. The reason for this is the increased amount of concurrency schemes

such as these can support.

Similarly, as previously discussed (section 1.2.3), the level of conflict can be

used to determine which of the optimistic or pessimistic techniques is most

cost-effective. As concluded in [Kung81], optimistic methods are superior to

traditional locking methods in environments where transaction conflict is rare, but

inferior where transaction conflict is more frequent.

Relying on the level of conflict as a suitable performance metric and

amalgamating the conclusions of [Cordon851 with [Kung81] results in the following

expectations for the ordering of conventional locking (PESS), locking based on

semantic knowledge (SK), and optimistisic (OPT) methods of concurrency control:

Performance
Best Mediocre Worst

Lmel of Conflict High: SK PESS OPT
Low: OPT PESS SK

Figure 2.4: Expected Performance under High and Low Levels of Conflict

In keeping with these studies, we use the percentage of conflict as our

performance variable within our transaction simulation model. Subsequently, we

examine the relative behaviors of the optimistic, pessimistic and hybrid semiqueue

servers as they are subjected to an increasing percentage of conflict. Since this, to our

knowledge, is the first implementation of the techniques presented in

[Herlihy86], we are specifically interested in establishing some notion of a threshold

percentage of conflict for these methods. In accordance to the results previously

construed from [Cordon851 and [Kung81] (Figure 2.4), there should be some level of

conflict where the performance of locking based on semantic knowledge and

optimistic approaches intersect. Below this threshold percentage, the optimistic

technique outperforms semantic based (type-specific) locking, whereas above the

threshold, type specific locking becomes superior. By close examination of this and

other implementation dependent performance results, we establish some

characteristics that generalize to applications of these techniques to other abstract

data types.

3 An Example: The Semiqueue Server

A semiqueue is one example of a shared abstract object that has been employed

by existing extended transaction facilities (Argus and TABS, section 2.2) to

demonstrate their ability to support an increased level of concurrency over

traditional facilities. As previously established, a queue of this kind allows for more

concurrency than strictly FIFO queues because the ordering of its elements is not

important. The events we defined for our semiqueue include: Enq(item)/OkO,

which simply enqueues an "item" and returns an "ok" response; Deq()/Ok(item),

which returns an "item" from the semiqueue; DeqOIFailedO , which indicates that

the semiqueue is empty; and EualO/Ok(#items), which counts the number of items

in the semiqueue and returns the total . An outline of our optimistic, pessimistic

and hybrid semiqueue servers and their respective use of dependency relations to

identify conflicts is presented in the sections that follow.

3.1 The Optimistic Server: Four Proscribed
Dependency Relations

In the context of Herlihy's optimistic event-based synchronization scheme, the

foilowing serial dependency relations define conflicts for semiqueues (where the

events in the columns are executed prior to the events in the corresponding rows):

As this table indicates, there are four proscribed dependency relations, reflecting the

facts that an Enq(i)/Ok() event will invalidate both a DeqOIFailedO and an

EvalO/Ok(#items) event (XI, X2), and a DeqO/Ok(i) event will invalidate both a

DeqO/Ok(i) (where i represents one unique element) and an Eva1 O/Ok(#items)

event (X3, X4). More formally, the proscribed set of dependencies can be represented

as:

Given a transaction, Ti, that is attempting to validate (according to forward

oriented, conflict-based validation), if there are any conflicts between the events

executed in Ti and other active transactions, Ti will be aborted. For example, if Ti

tries to execute an Enq(i)/OkO event, and another active transaction has executed

' DeqOJFailedO or Eval()/Ok(#items) , then Ti is aborted. Likewise, if Ti tries to

execute a Deq()/Ok(i) event, and another active transaction has executed

DeqOJOkW or Eva1 O/Ok(#items), then Ti cannot be successfully validated (ie is

aborted).

The optimistic server treats all four of the conflict relations mentioned above

optimisticially through the use of optimistic locks (0-locks) and intentions lists.

0-locks are automatically granted each time a transaction executes an event which

could potentially be invalidated (ie those events on the right side of the dependency

equations Dl-D4, eg: EvalO/Ok(#items)). An intentions list serves as a local buffer

to record the tentative changes made to the shared object by an active transaction. A

transaction, Ti, can be validated iff there are no transactions that hold an 0-lock for

an event that conflicts with an event in Ti 's intentions list. If Ti can be

successfully validated, the tentative changes recorded in its intentions list are

applied to the shared semiqueue and its 0-locks are released.

3.1.1 Implementation Outline of the Optimistic Server

0-locks for Deq()/Failed, Eval/Ok(#items), and DeqO/Ok(i) events are

implemented simply as boolean flags associated with the transaction number

(Tnum) of the calling transaction (in the case of Deq()/Ok(i), there is also a flag

associated with the element i). Whenever a transaction executes one of these

events, it is automatically granted the appropriate 0-lock and then updates its

intentions list accordingly. A transaction's intentions list takes the form of two

seperate lists which record the tentative changes made by enqueue and dequeue

operations respectively. The first is a doubly linked list of locally enqueued items

that becomes attached to the semiqueue if the transaction is successfully validated,

and the second is a linked list of pointers to elements in the shared semiqueue that

the active transaction "intends" to dequeue. A more in-depth look at this server's

implementation details is presented in Section 4.

3.2 The Pessimistic Server: Seven Proscribed
Dependency Relations

Once a transaction has executed an event (ie Enq(i)lOk, DeqO/Ok(i),

Deq()/FailedO or Eval/Ok(#items)) at the pessimistic semiqueue server, it requests

a pessimistic lock (P-lock) for that event before updating its intentions list. If any

other transaction holds a conflicting lock, the lock is refused, the event is discarded,

and the transaction must retry the invocation (which may return a different

response). When a P-lock can be granted, the transaction's intentions list is updated

and the response is returned. Once a transaction has successfully obtained all of its

P-locks and has completed execution, its intentions list is applied to the global object

and its P-locks are subsequently released.

- Pessimistic conflicts are defined by a set of proscribed dependencies which,

unlike the optimistic conflict relations, must be symmetric since the commit order

of transactions is unknown at the time conflicts are detected. The following table

depicts the seven pessimistic conflicts that exist between semiqueue events:

The above conflicts consist of the original four proscribed dependency relations

previously defined for an optimistic server (Dl, D2, D3, and D4), along with their

symmetric counter-parts (D5, D6 and D7). Hence, the proscribed set of dependencies

can be denoted as follows:

Dl: Ti:Enq(i)/Ok() ->q Tj:DeqO/FailedO (XI
D2: Ti:Enq(i) /Ok() ->q Tj:Eval() /Ok(#items) (X2)
D3: Ti:DeqO/Ok(i) ->q Tj:Deq()/Ok(i) (=I
D4: Ti:Deq()/Ok(i) ->q Tj:Eval()/Ok(#items) (X4)

D5: Ti:DeqO/FailedO ->q Tj:Enq()/Ok() (X5) (inversion of Dl)
D6: Ti:Eval()/Ok(#items) ->q Tj: Enq(i)/Ok() (X6) (inversion of D2)

D7: Ti:EvalO/Ok(#items) ->q Tj: Deq(i)/Ok() (X7) (inversion of D4)

It is important to note that within the context of a pessimistic server, one of

these conflicts, D3, should be treated differently from all the rest. This kind of

conflict would arise between two transactions attempting to dequeue the same item,

and thus it would be pointless to make one of them wait for the other to finish

executing if the semiqueue has yet another item that is eligible for dequeueing.

Consequently, the state of the semiqueue can be used to determine whether or not

conflicts of this kind necessarily introduce a delay (this is similar to the treatment of

dequeue operations in both Argus and TABS).

3.2.1 Implementation Outline of the Pessimistic Server

As with the optimistic implementation, the pessimistic server uses a doubly

linked list for the shared semiqueue, and a two-part intentions list for each active

transaction: an enqueue list, consisting of a local, doubly linked list of elements to

be enqueued, and a dequeue list consisting of a pointers to shared items the

transaction "intends" to dequeue. These lists are treated in a manner identical to

that of the optimistic server.

As previously established, in situations where a transaction's request for a

P-lock is denied (due to the fact that another transation already holds a P-lock for a

conflicting event), the event must be discarded and the transaction must retry the

invocation. In order to accomodate these delayed/blocked operations, special

wakz-up calls have been included in the protocol associated with the releasing of

P-locks. For example, with an Enq operation, the server checks to ensure that no

. other active transaction holds a P-lock on either a DeqOIFaiIed0 or an

Eval/Ok(#items) event (Dl andD2above). If thereisaconflict, theEnq

invocation will block, waiting to receive a wake-up message. Wake-up messages are

sent out to blocked operation invocations every time a transaction that has

performed an event which conflicts with the blocked operation has released an

appropriate P-lock. This way, when a transaction that executed a DeqOIFailedO

event has released its Deq()/FailedO P-lock, the blocked Enq operation will be

reactivated and retried. If this P-lock happened to be the blocked Enq 's sole

impediment, the operation proceeds, otherwise it will be blocked again and must

wait for the next wake-up message.

When a transaction has successfully obtained all of its neccesary P-locks and

has finished executing, it inflicts the changes recorded in its enqueue and dequeue

intentions list to the global state of the semiqueue. Once these changes have been

accomplished, the committing transaction's P-locks can be released and wake-up

calls issued to any blocked invocations that could benefit by these releases.

3.2.2 Deadlock

Given two transactions, TI and T2, and the following combination of events:

TI: Deq()/Ok(i)
T2: DeqO/Ok(j)
TI: E d - - BLOCKED, waiting for wake-up from T2
T2: E d - - BLOCKED, waiting for wake-up from TI

it becomes evident that some kind of deadlock prevention or resolution mechanism

must be included in this pessimistic server. Currently, a prevention mechanism for

simple deadlock that can arise between two transactions has been implemented.

This mechanism is invoked just before a transaction blocks, and given TI that is

about to block on 7'2, enforces the following rule:

Deadlock Rule: For TI to block on T2, T2 can not already be blocked on a lock
type that TI possesses.

Consequently, in the example above, T2 will not wait for TI since TI is already

blocked and waiting for the release of T2's Deq/Ok(j) Flock. In this situation, T2

would be aborted and have to be restarted.

The question now remains: is this mechanism robust enough to handle

deadlock between more than two transactions? The answer to this depends on the

type of circular waits that can arise between transactions. We show that all circular

waits of length n contain a cycle of length two, so this mechanism is sufficient.

Proof: The following diagram (Figure 3.1) depicts the conflicts that exist

between the four possible semiqueue events: DeqlFailed, Enq(i)/Ok, Eval/#items,

and Deq/Ok(i) (where each arc = a conflict):

Dl D6 D4

Figure 3.1: Pessimistic Conflict Relations

As previously mentioned, in the context of a pessimistic server these conflicts are

necessarily symmetrical due to the fact that the commit order of transactions is

unknown when these conficts are detected.

Consider the structure of a deadlock situation between three transactions, TI,

T2 and T3, which execute the following events:

In order for a circular wait to arise between all three of these transactions, they must

all be blocked in the following manner (where Evi, Evk and Ev, have all been

completed, and Eve, Evl and Ev, are blocked according to the arcs): J

In order for a situation such as this to arise, where a circular wait developes

between three transactions that does not include a cycle of length two, the following

properties must hold:

Ev. does not confict with Evm (since this would create a cycle of length two) J
and therefore Evm is not equal to Evk.

E v ~ does not confict with E v ~ (since this would create a cycle of length two)
and therefore Evm is not equal to Ev~ .

Evn does not confict with Evk (since this would create a cycle of length two)
and therefore Evi is not equal to Evk.

These properties cannot be achieved by the events associated with this particular

implementation of a semiqueue since they require each blocked transaction to

complete execution of one of the four possible events that has not yet been executed

by the other transactions. That is, TI, T2 and T3 must successfully complete

execution of Ev~, Evk and Evm, respectively, before this circular wait can arise and

since none of these events are the same, they must represent three of the four

possible semiqueue events. As demonstrated in Figure 3.1, no combination of more

than two distinct events can be successfully completed by concurrent transactions

without causing a conflict. As a result, all circular waits of length n must contain

cycles of length two, and subsequently the prevention method that disallows cycles

of length two from forming is adequate for our implementation.

3.3 A Hybrid Server: Four Proscribed Dependency Relations

The four proscribed dependency relations for an optimistic serniqueue server

modelled after Herlihy's conflict-based validation technique [Herlihy86] can be

illustrated as follows (Figure 3.2):

Figure 3.2: Optimistic Conflict Relations

A pessimistic semiqueue server, as previously discussed, must also handle the

symmetric counter parts to these conflicts, which results in the addition of relations

D5, D6 and D7 (Figure 3.1).

The hybrid server considered here treats all conflicts optimistically except for

the conflict defined by the dependency relation D3. This configuration was

arbitrarily selected from the z4 (where 4 is the number of conflicts defined by the

proscribed serial dependency relations for the optimistic server) possible hybrid

combinations. This particular type of hybrid server is designed to be appropriate in a

situation where concurrent Deq/Ok(i) events are expected to be frequent, but the

conflicts defined by dependencies Dl, D2 and D4 are expected to be rare. Hence the

hybrid conflicts can be represented as follows (Figure 3.3):

Figure 3.3: Hybrid Conflict Relations

In this hybrid scheme, any conflicts of type D3 are resolved pessimistically (indicated

with the darker arc) by introducing delays, whereas conflicts of type Dl, D2 and D4

are resolved optimistically (indicated with the lighter arcs) by transaction abort.

As with the pessimistic server, the hybrid server includes a mechanism which

can prevent deadlock between two transactions.

3.4 The Simulation Model

Our implementation simulates optimistic, pessimistic and hybrid concurrency

control mechanisms for extended transactions based on the techniques presented in

[Helihy86]. Although our simulation model is simple, we believe that it captures,

on a small scale, the fundamental concurrency considerations addressed by both

Argus and TABS. Within each of these systems a distributed program consists of a

group of servers communicating via operation invocations (section 2.2). Each

server completely encapsulates at least one data object and the operations that

manipulate it, and consequently is responsible for controlling the concurrent access

of transactions operating on its object(s). Both systems adhere to the philosophy

that "fine-grained" operation concurrency is much less important than

"coarse-grained" transaction concurrency and, as a result, the execution of operations

within each server is mutually exclusive.

In keeping with these systems, we also employed a client/server model to

support extended transactions. A full implementation of a formal transaction

system however, was not appropriate at this stage. Instead, we implemented servers

that could potentially operate within the type of environment defined in both Argus

and TABS, and simulate the presence of a formal transaction system by

"spoon-feeding" operation invocations to each server as if they were coming from

active transactions. A more detailed discussion of our simulation is presented in

Section 5.

4 Implementation Details

4.1 The Semiqueue and Intentions Lists

Our implementation is done in Version 1 of the SR programming language

[Andrews87, Andrews881 running under the Sun UNTX 4.2 operating system (release

3.41~. Each of the optimistic, pessimistic and hybrid servers uses a doubly linked list

for the shared semiqueue. Each node in this list contains an integer value (since this

is a semiqueue of integers) and the appropriate optimistic or pessimistic locking

information. Qhead and Qtail mark the beginning and end of the semiqueue,

respectively (Figure 4.1).

Qhead
NODES: p = Previous Link

null

7

v = Value
1 = Lock
n = Next Node Pointer

Figure 4.1: The Shared Semiqueue

p v l

Qtail

/\

, source code for each of the three servers is presented in the appendix.

/\

n P v l n 0 0 0 p v 1 n
null

Within our simulation every active transaction is identifiable by a unique

transaction number, Tnum. For every Tnum, each of the optimistic, pessimistic

and hybrid servers maintains an intentions list. This list has two components: an

enqueue (Enq) list and a dequeue (Deq) list.

The enqueue component consists of a doubly linked list of elements to be

enqueued, and the dequeue component consists of a singly linked list of pointers to

the shared elements of the semiqueue (Figure 4.2 and Figure 4.3). When a

transaction successfully commits, the Enq list is attached to the end of the shared

semiqueue, Qtail is updated, and the appropriate elements associated with the Deq

component of the transaction's intentions list are removed from the semiqueue. In

the event of transaction abort, however, these lists are thrown out.

Enq-head[Tnuml Enq-tail[Tnum]

Figure 4.2: Enq Intentions List

The nodes of the enqueue component of each transaction's intentions list are

identical to those of the shared semiqueue (Figure 4.1). This facilitates the method of

appending the entire Enq intentions list at commit time.

NODES: s e = Shared Element Pointer
n = Next Node

Figure 4.3: Deq Intentions List

4.2 The Operations

4.2.1 Optimistic Operations

Within the forward oriented optimistic server, the Enq (enqueue) operation is

invoked with the calling transaction's Tnum and the integer value to be enqueued.

A new node is created, assigned this value, and added to the end of Tnurn's Enq

intentions list. The response associated with this operation, which is always "OK"

(i.e., the event Enq(i)/Ok), is then returned to the calling transaction. There are no

optimistic locks allocated for an Enq event since (as discussed in section 3.1) this

event can not be invalidated by any other event.

The Deq (dequeue) operation is also invoked with the calling transaction's

Tnum, and either returns a value from the semiqueue (constituting the event

Deq/Ok(value)) or a failed response (DeqIFailed). Given a situation where the

Enq intentions list associated with the calling Tnum is not empty, an item is simply

removed from the head of this list (since Tnum regards these elements as being

enqueued). If, however, this list is empty, the semiqueue is scanned for an eligible

element. Any element that is not already in the Deq intentions list of the calling

transaction is eligible. In order to easily identify which elements are in the Deq

intentions list of a given Tnum, each element in the semiqueue provides Deq

0-locks (associated with DeqlOk(va1ue) events) for all active transactions. These

Olocks are implemented as an array3 (for Tnums from 1 to N, where N is the

maximum number of concurrently active transactions invoking the server) in the

lock portion of the semiqueue nodes (Figure 4.4).

When a transaction is searching for an eligible element, it first checks its own

Deq 0-lock associated with that element (Deq 0-lock[Tnum]). If it is not already

locked, another check is made to see if any other transaction already holds an 0-lock

on this element (flagged by Deq 0-lock[N+l] , which is set when an element is

0-locked by any transaction). This additional check to ensure that the element is

not already in the Deq intentions list of another transaction demonstrates the

optimistic server's use of state based information.

3 Version 1 of SR does not support boolean arrays in records, hence we were forced
to use integer.

Figure 4.4: Deq 0-locks in an Optimistic Semiqueue Node

If there is an eligible element that is not 0-locked by any other transaction, then

that element's Deq 0-lock[Tnum] is set, the element is flagged as having been

0-locked (Deq 0-lock[N+l]), a pointer to the element is added to Tnum's Deq

intentions list, and the value is returned. But, if all eligible elements are 0-locked by

other transactions, the first eligible element among them is selected. This selection

will ultimately produce a conflict (proscribed dependency D3, section 3.1) that will be

resolved during validation. If there are no elements eligible for dequeuing, a

Deq-Failed 0-lock is set for the calling transaction, and a failed response

(constituting a DeqlFailed event) is returned. The server maintains one

Deq-Failed 0-lock for each Tnum (1 to N) in a boolean array (Figure 4.5).

An Eva1 operation is invoked with the Tnum of the calling transaction and

returns the total number of elements in the semiqueue. From the point of view of

the calling transaction, this total includes the elements in that transaction's Enq

intentions list, plus the elements in the shared semiqueue, minus the number of

elements in the transaction's Deq intentions list. The result of this tally is returned

to the calling transaction, and an EvaI/(#items) 0-lock is set for that Tnum. As with

the Deq-Failed 0-locks, the server maintains one Eval 0-lock for each Tnum in a

boolean array (Figure 4.5).

Figure 4.5: Deq/Failed and Eval 0-locks

TheValidation operation is also invoked with the calling transaction's Tnum.

As with other operations, it executes with mutal exclusion and basically proceeds in

the following manner:

Stev One: (According to Proscribed Dependencies Dl and D2 section 3.1)
if Enq Intentions list[Tnum] # 0 ->

for all transaction numbers, i, # Tnum ->
if (Deq-Failed-Olock[i] or Eval-Olock[i]) ->

ABORT(Tnum) and return
fi

af
fi

Stev Two: (According to Proscribed Dependencies D3 and D4 section 3.1)
if Deq Intentions list[Tnum] # 0 ->

for all transaction numbers, i, # Tnum ->
if ((Deq-Olock[i] and Deq-Olock[Tnum] {for any element} or

Eval-OlockIi]) ->
ABORT(Tnum) and return

fi
af

fi

Step Three:
Commit Enq and Deq Intentions lists.
Release all 0-locks held by Tnum.

Due to the fact that our simulation was contrived to test situations where the

number of active transactions was approximately equal to the maximum number of

concurrent transactions supported by the server, steps one and two above check all

Tnums, not just explicitly active transactions (section 2.4.1.2).

The Abort operation called during steps one and two of validation simply

discards the intentions list and 0-locks associated with Tnum. Our simulation

model does not include an automatic transaction restart mechanism.

4.2.1.1 Implementation Tradeoffs

Some of the implementation features of the optimistic server provide less than

optimal performance. For example, instead of relying on boolean arrays to represent

transaction 0-locks, an alternative approach could use linked lists of transaction

identification numbers. In particular, this would greatly simplify the lock portion of

each element in the shared semiqueue (Figure 4.6):

Figure 4.6: A Linked List of Deq 0-locks ih an Optimistic Semiqueue Node

The use of linked lists in this way could potentially enhance the performance of the

Enq operation but at the same time diminish the performance of the Deq

operation. An Enq(i)/Ok event could benefit by virtue of the fact that the new

serniqueue node is much smaller and consequently faster to create. A Deq/Ok(i)

event, however, could be hindered by the list-searching overhead the linked list of

Deq 0-locks would introduce. For example, when attempting to establish the

eligibility of an element for dequeuing, the optimistic server first checks that the

calling transaction does not already have a Deq 0-lock set for that element. This

would require a search of the list of Deq 0-locks associated with the lock portion of

the element in question, and hence add to the overhead of a Deq operation. Low

level performance tradeoffs of this kind were not, for the most part, considered to be

as crucial as higher level tradeoffs.

The most important high level tradeoff we encountered deals with the

optimistic integrity of this server. The fact that the states of Deq 0-locks associated

with transactions other than the calling transaction are taken into account when

selecting an appropriate element for dequeuing does not demonstrate true

optimism. Further, this "cheating" promotes the premature identification of

Deq/Ok(i) -> Deq/Ok(i) conflict types during the READ phase of a transaction (i.e.,

pre-validation) in the situation where all eligible elements are already 0-locked by

transactions other than the calling transaction. Since selecting an element that is

already 0-locked by another transaction will ultimately result in transaction abort of

one or the other 0-lock owners, it would appear to be reasonable to abort the calling

transaction during its READ phase. Although, from a performance standpoint this

would potentially cut back on the amount of wasted work, from an integrity

standpoint it would degenerate the optimistic server to some kind of pessimistic

derivative that relies on abort as opposed to delay for conflict resolution.

Consequently, even though this type of conflict can easily be identified before

validation, we chose not to exploit this information in order to preserve the

optimistic nature of the server and provide a more appropriate counterpart for

comparison purposes to the pessimistic server.

4.2.2 Pessimistic Operations

As with the optimistic server, the pessimistic server also maintains Enq and

Deq intentions lists (Figures 4.2 and 4.3). When a transaction invokes an Enq

operation, the server first checks to ensure that no other active transaction holds a

P-lock on either a DeqlFailed or an Eval/(#items) event (Figure 4.7). If no such

conflict exists, then it assigns the calling transaction a P-lock for an Enq(i)/Ok event,

and adds the element to the local Enq intentions list. I f , on the other hand, there is

a conflict, the Enq invocation will block, waiting to receive a "wake-up" message

(section 4.2.2.2). Wake-up messages are sent out to blocked operation invocations

every time a transaction that has performed an event that conflicts with the blocked

operation has released its P-locks. This way, when a transaction that executed a

DeqlFailed event has released its DeqlFailed P-lock, the blocked Enq operation

will be reactivated and retried. If this Flock happened to be the blocked Enq's sole

impediment, the operation proceeds, otherwise it will be blocked again and must

wait for the next wake-up message.

Figure 4.7: Deq/Failed, Eval and Enq P-locks

As with the optimistic server, a Deq invocation begins with a check of the

calling transaction's local Enq intentions list. I f it is not null, an item is removed

from this local list (the Enq P-lock for this transaction will be released if this was the

only item in the list, and invocations blocked by this type of lock will be sent a

wake-up message at this time). If, however, there are no local items in the Enq

intentions list, the transaction must access the shared semiqueue.

As opposed to the locking information associated with the nodes of the

optimistic semiqueue, nodes of the pessimistic semiqueue only require one Deq

P-lock (Figure 4.8). This reflects the fact that only one transaction can hold a

pessimistic lock on a shared element at any given time. Since elements that have a

Deq Flock associated with the calling Tnum are not available for dequeuing, the

first thing the server does is assess the number of eligible items. Since Deq P-locks

are merely boolean values, one of the most immediate, yet admittedly crude, ways of

accomplishing this was to compare the number of elements in the calling

'transaction's Deq intentions list with the number of elements in the shared

semiqueue. If all eligible elements are Flocked by other transactions, Tnum

becomes blocked (according to the proscribed dependency D3, section 3.2) and waits

for a wake-up call from either a committing transaction that has enqueued new

elements, or an aborting transaction that was attempting to remove shared items.

Figure 4.8: A Deq P-lock in a Pessimistic Semiqueue Node

If, however, there are no eligible elements in the semiqueue, the transaction

needs to obtain a P-lock for a DeqlFailed event, and hence a check is made to ensure

that no other transaction has performed an Enq(i)/Ok event. If no such conflict

exists, the invocation is assigned a P-lock for a DeqlFailed event and returns a failed

result to the caller, otherwise the operation invocation will block, and wait to

receive a wake-up message.

Once this operation has been unblocked, the server rechecks the semiqueue

for eligible elements. If there is one, a Deq/Ok(i) P-lock for this transaction must be

associated with the node, and hence a further check must be made that no other

transaction has performed an Eval/(#items) event.

Again, if there is a conflict, the invocation will be blocked, waiting to be

awoken by a transaction that released an Eval P-lock. When this Deq is unblocked

it must ensure that there still is an eligible item in the the semiqueue. If there is

one, it associates a Deq P-lock with that element, adds a pointer to its Deq intentions

list and returns the value of the element to the caller. Otherwise, it must try to

obtain a P-lock for a Deq/Fail& event, and the whole process starts over again. (In

its current form, this server is unfair to Deq operations since Enq and Eval events

could lock them out indefinitely. This situation could be avoided by assigning a

priority to the waiting Deq operation.)

An Eval operation invocation is handled similarly to the Enq operation.

When a transaction invokes an Eval operation, the server first checks to ensure that

no other active transaction holds a P-lock on either a Deq/Ok(i) or an Enq(i)/Ok

event. If no such conflicts exist, then it assigns the calling transaction a P-lock for an

Eval event, and returns a total to the caller (this total takes into account the calling

transaction's intentions list). However, if there is a conflict, the Eval invocation

will block until it receives a wake-up message.

When a transaction has successfully obtained all of its neccesary P-locks and

has finished executing, it inflicts the changes recorded in its Enq and Deq intentions

list to the global state of the semiqueue by invoking an atomic Global-Update

operation. Once these changes have been accomplished, the committing

transaction's P-locks can be removed and wake-up calls made to any blocked

invocations that could benefit by these releases.

4.2.2.1 Deadlock Detection

As previously discussed (section 3.2.2), the pessimistic server includes a

mechanism (operation Deadlock-Check) which can prevent deadlock between two

transactions. Specifically, this mechanism considers the following five cases:

Case I: ABORT(Ti) if Ti is about to block on an Enq(item)/Ok event and there
exists a Tj such that:

(i) Tj holds a DeqOlFailed P-lock and
(ii) Tj is waiting for the release of a lock-type that Ti holds.

Case 11: ABORT(Ti) if Ti is about to block on a DeqO/Ok(item) event and there
exists a Tj such that:

(i) Tj holds a DeqOIOk P-lock and
(ii) Tj is waiting for the release of a lock-type that Ti holds.

Case Dk ABORT(Ti) if Ti is about to block on a DeqlFailed event and there exists
a Tj such that:

(i) Tj holds an EnqlOk P-lock and
(ii) Tj is waiting for the release of a lock-type that Ti holds.

Case IV: ABORT(Ti) if Ti is about to block on an Eval/(#items) event and there
exists a Tj such that:

(i) Tj holds an EnqlOk or a DeqlOk P-lock and
(ii) Tj is waiting for the release of a lock-type that Ti holds.

Case V: ABORT(Ti) if Ti is about to block on an EnqlOk or a DeqlOk event and
there exists a Tj such that:

(i) Tj holds an Eval/(#itms) P-lock and
(ii) Tj is waiting for the release of a lock-type that Ti holds.

4.2.2.2 Wake-Up Messages

Wake-up messages are issued to all blocked operations whenever a transaction

releases a P-lock that could potentially unblock a waiting operation. Flocks are

released whenever a transaction commits, aborts, or dequeues the last element in its

enqueue intentions list (section 4.2.2).

When a transaction commits (i.e., enters the Global-Update procedure), its

enqueue intentions list is appended to the end of the semiqueue, the shared

elements that are referenced by the dequeue intentions list are removed, and all

P-locks are released. Before the server becomes available to handle new operation

requests, however, wake-up calls are issued to all the appropriate blocked operations

after the committing transaction's P-locks have been released. Given that Tnum is

the transaction number of the committing transaction and N is the maximum

number of active transactions supported by the server, wake-up calls are performed

in the following manner (in accordance to dependencies Dl - D7 described in section

3.2):

if Tnum held an Enq P-lock ->
for all transaction numbers t from 1 to N (other than Tnum) ->

if t is blocked in a Deq/Failed event ->
issue a Wake-up tail to the operation
and wait for a response

fi

if Tnum held a DeqlFailed or Eval P-lock ->
for all transaction numbers t from 1 to N (other than Tnum) ->

if t is blocked in an Enq/Ok event ->
issue a Wake-up call to the operation
and wait for a response

fi
af

fi

if Tnum held an Eval P-lock ->
for all transaction numbers t from 1 to N (other than Tnum) ->

if t is blocked in a Deq/Ok(i) event ->
issue a Wake-up call to the operation
and wait for a response

fi
af

fi

if Tnum held an Enq P-lock or Deq P-lock
(for any shared semiQ item) ->

for all transaction numbers t from 1 to N (other than Tnum) ->
if t is blocked in a Eval/(#items) event ->

issue a Wake-up call to the operation
and wait for a response

fi
if t is blocked in a Deq invocation ->

issue a Wake-up call to the operation
and wait for a response

fi
af

fi

When a blocked operation receives a wake-up call, it first checks to see if it can

.be unblocked. In the case where there has been a release of the appropriate P-lock

type and the operation can proceed, it is performed at this time and control is

returned to the issuer of the wake-up call once its execution is complete. If,

however, it is still blocked by other P-locks, it merely reblocks and control is returned

to the issuer of the wake-up call.

The Abort procedure issues essentially the same wake-up calls as those listed

for for the Global-Update procedure, but it must handle D3 a little differently. A

waiting Deq invocation could potentially be unblocked by a committing transaction

that has either enqueued or dequeued elements. In the case where a committing

transaction has enqueued a new element, i , this element becomes eligible and the

blocked Deq invocation could subsequently perform a Deq/Ok(i) event. Or, in the

case where all shared elements that are not already Deq P-locked by the blocked

transaction are removed by the committing transaction, the blocked invocation

could subsequently perform a DeqlFailed event. When a transaction is being

aborted, however, the release of an Enq P-lock does not coincide with the addition of

eligible elements to the semiqueue. Similarly, the release of Deq P-locks does not

result in the removal of elements. Instead, the release of Deq-Plocks associated with

shared elements of the semiqueue by an aborting transaction makes those elements

eligible for dequeuing once more. Hence, wake-up calls (for D3) are only given

when the aborting transaction's Deq intentions list is thrown out, and not issued

upon release of Enq P-locks.

Special attention must be paid to dequeue operations which access items that

are local to a transaction's enqueue intentions list since they constitute a special case

where an Enq P-lock could be released. When a transaction's dequeue operation

removes the only item that is local to its enqueue intentions list, it is no longer

necessary for that transaction to hold an Enq P-lock. Since the release of this lock

could potentially unblock any Deq/Failed events that have been forced to wait,

wake-up calls (in accordance to Dl) are issued at this time, before the server becomes

available for new operation invocations.

4.2.3 Hybrid Operations

The hybrid server combines the boolean arrays of 0-locks from the optimistic

server (Figure 4.5) with the semiqueue node-types of the pessimistic server (Figure

4.8). As previously established (section 3.3), the four proscribed dependency relations

employed by the hybrid method are treated as follows:

Dl: Ti:Enq(i) /Ok() ->q Tj:Deq() /Failed() (Optimistic)
D2: Ti:Enq(i)/Ok() ->q Tj:Eval()/Ok(#items) (Optimistic)

D3: Ti:DeqO /Ok(i) ->q Tj:Deq()/Ok(i) (Pessimistic)
D4: Ti:Deq(i)/Ok() ->q Tj:Eval()/Ok(#items) (Optimistic)

The implementation of the Enq and Eval operations in this server are identical to

those described for the optimistic server (section 4.2.1), and a Deq operation closely

resembles the pessimistic implementation.

As with the other servers, a Deq operation is invoked with the Tnum of the

calling transaction and begins with a check of that Tnum's local Enq intentions list.

If this list contains at least one element, the Deq operation removes this element

and returns its value (unlike the pessimistic server, there are no locks associated

with this server's optimistic Enq operation), otherwise the shared semiqueue is

accessed. If the semiqueue is either empty or all elements are already Flocked by the

calling transaction (i.e., there are no eligible elements), a failed result is returned

and an 0-lock is allocated for this DeqlFailed event. If, however, all eligible

elements are P-locked by other transactions, the Deq invocation is blocked

(according to proscribed dependency D3 above). As with the pessimistic server,

wake-up calls are issued from any validating transaction that has enqueued at least

one item or any aborting transaction that was attempting to dequeue a shared

element. When awoken, this invocation re-examines the shared queue for eligible

elements, and this process starts again.

Since the hybrid server only treats one type of conflict pessimistically, the

Deadlock-Check operation is much less substantial than that of the pessimistic

server. Instead of considering the five cases outlined in section 4.2.2, only one case

needs to be dealt with:

Case 11: ABORT(Ti) if Ti is about to block on a DeqO/Ok(item) event and there
exists a Tj such that:

(i) Tj holds a DeqOlOk P-lock and
(ii) Tj is waiting for the release of a lock-type that Ti holds.

Due to the fact that the only blocking lock-type is a DeqlOk P-lock, deadlock could

arise only after two active transactions have both successfully dequeued items from

the shared semiqueue, and then they both block on subsequent Deq invocations.

The Abort operation essentially remains the same as in the pessimistic and

optimistic servers; intentions lists are thrown out and all locks are released.

In order to accommodate both the optimistic and pessimistic treatment of

conflicts, the hybrid server includes both theValidation and Global-Update

operations. As within the optimistic server, validation (section 4.2.1) proceeds

through step one and a modified version of step two (which excludes an 0-lock

check for Deq/Ok events since they are handled pessimistically):

Step Two: if Deq Intentions list[Tnum] # 0 ->
for all transaction numbers, i, # Tnum ->

if Eval_Olock[i] ->
ABORT(Tnum) and return

fi
af

fi

The Global-Update operation inflicts the changes recorded in a transaction's Enq

and Deq intentions list onto the global state of the semiqueue, at which point all

locks can be removed and the appropriate wake-up calls can be issued.

5 Tests and Results

In an effort to establish some relative performance characteristics, we subjected

each of the pessimistic, optimistic and hybrid semiqueue servers to four sets of tests.

The purpose of each test set was to determine the servers' behavior under increasing

levels of type-specific conflict. The particular conflict types tested are the four

prosaibed serial dependencies originally defined for the optimistic server (section

3.1), which are also included in the proscribed dependency sets for each of the

pessimistic and hybrid approaches.

In order to evaluate the respective performances of each of the three

approaches fairly, all tests were carefully contrived to accomplish the same amount

of "work" at each server (i.e., within a given level of concurrency, each server must

successfully execute the same number and type of events). Operation requests from

different transactions are simulated by invoking a server with unique transaction

identification numbers used to represent active transactions in the system. Each of

the servers is capable of supporting up to 100 concurrently active transactions at any

given time, with transaction identification numbers ranging from Trans(1) to

Trans(100).

5.1 Testing Enq(i)lOk --> DeqOIFailed and
EnqWOk --> EvaU(#items) Conflict Types

The first conflict type tested among the sewers deals with the proscribed

dependency Dl:

Dl: Ti: Enq(i)/Ok() -->q Tj: Deq()/Failed()

In this set of tests, each server attempts to handle its maximum of 100 concurrently

active transactions, and each transaction must successfully enqueue (that is, perform

Enq(i)/Ok events) 100 elements. Conflict is introduced as a result of the fact that at

the very beginning of the test, one of the transactions, Trans(Tnum), performs a

DeqlFailed event. The percentage of conflict is then determined by the number of

transactions blocked or aborted due to their conflict with the active transaction

Trans(Tnum). This percentage of conflict is controlled by running the tests with

different values of Tnum (where the actual percentage of conflict would be Tnum-

1 in each test4). The pessimistic, optimistic and hybrid tests for this type of conflict

were devised as follows:

Pessimistic Enq(i)/Ok -> DeqIFailed Test:

(i) Trans(Tnum) performs an DeqlFailed event and then performs
Enq(i)/Ok events for 100 elements.

P Our tests results were based on Tnum values of 1,31,61 and 91 to arrange 0%,
30%, 60% and 90% conflict levels, respectively. The results included in this
performance analysis represent the best times obtained from multiple tests run
when the system load was light, but not negligible.

(ii) Trans(1) through Trans(Tnum -1) each attempt to Enq an
element, but all are blocked by Trans(Tnum).

(iii) Trans(Tnum) performs a Global-Update , unblocking Trans(1)
through Trans(Tnum -I), which each then complete their initial
Enq(i)/Ok events after receiving their respective wake-up
messages.

(iv) Trans(1) through Trans(Tnum -1) execute Enq(i)/Ok events for
99 more elements each.

(v) Trans(Tnum +1) through Trans(100) execute Enq(i)/Ok events
for 100 elements each.

(vi) All transactions except Trans(Tnum) perform Global-Update.

Optimistic Enq(i)/Ok --> DeqlFailed Test:

(i) Trans(Tnurn) performs an DeqlFailed event.

(ii) Trans(1) through Trans(100) each perform Enq(i)/Ok events for
100 elements.

(iii) Trans(1) through Trans(Tnum) attempt Validation (in that
order), but only Trans(Tnum) goes on to its Write phase, the rest
are aborted as a result of the conflict with Trans(Tnum).

(iv) Trans(1) through TrandTnum -1) are redone.

(v) All transactions except Trans(Tnum) complete their respective
Validation and Write phases.

Hybrid Enq(i)/Ok -> DeqlFailed Test:

(i) Trans(Tnum) performs an DeqlFailed event.

(ii) Trans(1) through Trans(100) perform Enq(i)/Ok events for
100 elements each.

(iii) Trans(1) through Trans(Tnum) attempt Validation, but only
Trans(Tnum) goes on to execute Global-Update , the rest are

aborted.

(iv) Trans(1) through Trans(Tnum -1) are redone.

(v) All transactions except Trans(Tnum) successfully perform
Validation and subsequently proceed to Global-Update .

Due to the optimistic nature of the hybrid server's handling of this type of conflict,

the hybrid test differs from the optimisitic test only in the inherent fact that

optimisticvalidation includes a Write phase, whereas hybrid Validation relies on a

seperate Global-Update procedure (steps (iii) and (v)).

Identical steps were followed to contrive the second set of tests, which deals

with the proscribed dependency D2:

D2: Ti: Enq(i)/Ok() --zq Tj: Eval/(#items)

In these tests, Eval/(#items) is substituted for DeqlFailed as the event performed

by Trans(Tnum) to introduce conflict. Not surprisingly, (since Trans(Tnum)

executes Eval(#items) on a an empty semiqueue) these test results are

indistinguishable from those produced by the tests of conflict type Dl (Figure 5.1).

5.1.1 Results

The respective performance of the semiqueue servers as they are subjected to

an increasing percentage of Enq(i)/Ok -> DeqlFailed and Enq(i)/Ok -> Eval/(#items)

conflict type is as follows (where performance times are reported to the nearest

second):

Time (in secs) for 100 transactions ta perform 100 Enq(i)/Ok events
and/or one Deq/Failed, Eval/(#items) event.

Server Tvpe: Optimistic Pessimistic Hybrid
Conflict Level: 0% I1 16 5

30% 14 16 7
60% 18 16 10
90% 21 17 12

Which can roughly be depicted as:

Time $
in 28

- Optimistic

- Hybrid

Seconds - Pessimistic

Percentage of
Conflict

Figure 5.1: Enq(i)/Ok -> DeqlFailed and Enq(i)/Ok -> EvaI/(#items) conflicts

These results indicate that when subjected to an increasing level of the type specific

conflict defined by dependencies Dl and D2, the pessimistic server's performance

remains virtually unaffected, the optimistic server's performance steadily

deteriorates and the hybrid server out performs the other servers throughout the set

of tests.

In the pessimistic server's case, the fact that these tests are heavily work

intensive (i.e., 100 concurrent transactions enqueuing 100 elements each) makes fie

additional cost of Wake-up calls that accompany an increasing level of transaction

conflict essentially negligable. That is, since the number and type of events executed

at each level of conflict is the same, its performance is basically unchanging. In

comparison to the other servers, when there are no conflicts among transactions the

pessimistic server is the most expensive. This can be attributed to the fact that the

pessimistic Enq(i)/Ok event requires more locking overhead than it does in the

other servers.

With the optimistic server, the amount of work that must be redone is directly

proportional to the percentage of conflict in each test. That is, at 30%, 60% and 90%

conflict, 30,6O and 90 of the 100 transactions must be redone. Consequently, since

the amount of work steadily increases as the percentage of conflict increases, the

amount of time required to process the work inceases, forcing its performance to

steadily deteriorate. It is interesting to note that the threshold value where the

optimistic and pessimistic servers' performance intersect is at approximately 50% for

these particular types of conflict.

In the environment created by these tests, the performance of the hybrid server

is superior to both the optimistic and pessimistic servers at any given percentage of

conflict. Although the hybrid server treats the conflict types being tested

optimistically (consequently requiring that more work must be done as the

percentage of conflict increases), the affect on performance is not as significant for

the hybrid server as it is for the optimistic server. This is due to the fact that the

Enq(i)/Ok event is less expensive in the hybrid server since the nodes of the hybrid

semiqueue require only one Flock for its pessimistic DeqO/Ok(i) event (section

4.2.3, Figure 4.8), whereas the optimistic semiqueue requires N+1 (where N the

maximum number of concurrent transactions, i.e., 100 in this case) 0-locks in each

node (section 4.2.1, Figure 4.4).

5.2 Testing the DeqO/Ok(i) --> DeqO/Ok(i) Conflict Type

The third set of tests deals with the proscribed dependency D3:

D3: Ti: Deq()/Ok(i) ->q Tj: DeqO/Ok(i).

Within these tests, each server is again attempting to handle its maximum of 100

concurrently executing transactions, of which we determine that 99 transactions

must successfully dequeue (that is, perform DeqO/Ok(i) events) 30 elements each.

In order to simulate this type of conflict, the semiqueue is initially set up with 2970

shared elements. To establish a controlled percentage of conflict similar to the first

two sets of tests, transaction Trans(1) acts as a "dummy" transaction and holds

DeqO/Ok(i) locks on ((Tnum -1)*30) of these elements. During the test, once the

desired level of (Tnum - 1)% conflict has been achieved, Trans(1) is forcefully

aborted (just for testing purposes), making its previously locked elements once again

eligible for dequeueing by other transactions. These tests proceed as follows:

Pessimistic DeqO/Ok(i) --> DeqO/Ok(i) Test:

(Trans(1) performs a Deq/Ok(i) event on (Tnum-l)*30 elements --
this is not included in the timing results of the test.)

(i) Trans(2) through Trans(lO1-Tnum) perform Deq/Ok(i) for
30 elements each.

(ii) Trans(lO2-Tnum) through Trans(100) each attempt to Deq one
element, but all are blocked.

(iii) Trans(1) is manually aborted (for test purposes only), and
blocked transactions complete their initial Deq/Ok(i) events.

(iv) Trans(l02-Tnum) through Trans(100) each perform 29 more
Deq/Ok(i) events.

(v) All transactions except Tnwn(1) perform Global-Update.

(Trans(1) performs a Deq/Ok(i) event on (Tnum-l)*30 elements --
this is not included in the timing results of the test.)

(i) Trans(2) through Trans(100) each perform Deq/Ok(i) events for
30 elements.

(ii) Trans(l02-Tnum) through Trans(100) attempt Validation , but all
abort.

(iii) Trans(1) is manually aborted (for test purposes only).

(iv) Trans(l02-Tnum) through Trans(100) are redone.

(v) All transactions except Trans(1) successfully perform Validation
and their subsequent Write phases.

I"' c

8 3

Due to the pessimistic nature of this type of conflict in the hybrid server, the hybrid

test for this type of conflict is identical to that of the pessimistic server's, except for

the inclusion of Validation (in step (v)):

Hybrid DeqO/Ok(i) --> Deq()/Ok(i) Test:

(Trans(1) performs a Deq/Ok(i) event on (Tnum-l)*30 elements --
this is not included in the timing results of the test.)

(i) Trans(2) through Trans(lO1-Tnum) perform Deq/Ok(i) for
30 elements each.

(ii) Trans(l02-Tnum) through Trans(100) each attempt to Deq one
element, but all are blocked.

(iii) Trans(1) is manually aborted (for test purposes only), and
blocked transactions complete their initial Deq/Ok(i) events.

(iv) Trans(l02-Tnum) through Trans(100) each perform 29 more
Deq/Ok(i) events.

(v) All transactions except Tnum(1) successfully perform Validation
and Global-Update.

5.2.1 Results

Time (in secs) for 99 trans to Deq 30 items each

112 -
-

Server: Opt Pess Hyb
98 -

Conflict: 0% 39 58 58
W o 64 59 59 -
W o 87 59 60 Time 84 -
9090 111 60 60 in -

Seconds 70 , - Optimistic - Hybrid &

Pessimistic

Percentage of
Conflict

Figure 5.2: Deq/Ok(i) -> Deq/Ok(i) conflicts

As with the previous results obtained by testing the type specific conflicts

defined by dependencies Dl and D2, within these tests the pessimistic server's

performance remains essentially unaffected by an increasing percentage of conflict

and the optimistic server's performance deteriorates proportionally. Due to the

pessimistic nature of the hybrid server's handling of this type of conflict, the hybrid

server's performance is virtually equivalent to that of the pessimistic server's. It is

interesting to note that the percentage of conflict representing the threshold between

optimistic and pessimistic performance falls below 30% for this type of conflict.

5.3 Testing the Deq/Ok(i) --> EvaY(#items) Conflict Type

The final set of tests deals with the proscribed serial dependency D4:

With these tests, the semiqueue initially has 3000 items, and each of the 100

transactions must dequeue 30 elements. In addition to performing these events,

Trans(Tnum) also performs an Eval/(#items) event (as in section 5.1.1) on the

initial queue. The tests proceed as follows:

Pessimistic Deq/Ok(i) -> Eval/(#items) test:

(i) Trans(Tnum) performs an Eval/(#items) event and 30 ~eq/Ok(i)
events.

(ii) Trans(1) through Trans(Tnum -1) attempt to Deq one element
each, and all are blocked on Trans(Tnum).

(iii) Trans(Tnum) performs a Global-Update , all blocked transactions
are subsequently woken up and able to complete their initial
Deq/Ok(i) events.

(iv) Trans(1) through Trans(Tnum -1) each perform 29 more
Deq/Ok(i) events.

(v) Trans(Tnum +1) through Trans(100) each perform 30 Deq/Ok(i)
events.

(vi) All transactions except Trans(Tnum) perform a Global-Update.

Optimistic Deq/Ok(i) -> Eval/(#items) test:

(i) Trans(Tnum) performs an Eval/#items event.

(ii) Trans(1) through Trans(100) each perform 30 Deq/Ok(i) events.

(iii) Trans(1) through Trans(Tnum) perform Validation , but only
Trans(Tnum) proceeds to its Write phase, the rest are aborted.

(iv) Trans(1) through Trans(Tnum -1) are redone.

(v) All transactions except Trans(Tnum) perform Validation and go
on to their respective Write phases.

Once again, due to the optimistic nature of this type of conflict in the hybrid server,

the hybrid test is identical to that of the optimistic server except for the fact that

Global-Update is a separate invocation.

5.3.1 Results

The results in Figure 5.3 indicate, when subjected to an increasing level of the

type specific conflict defined by dependency D4, the pessimistic server's performance

is still virtually unaffected and the optimistic server's performance deteriorates.

This time the hybrid server is out performed by the others throughout this set of

tests.

The performance of the pessimistic server under these test conditions is

essentially the same as its performance in the previous set of tests for the

Deq/Ok(i) ->Deq/Ok(i) type of conflict. This indicates that the additional events

performed in these tests for the Deq/Ok(i)-> Eval/(#items) type of conflict (which

are an Eva1/(3000) event along with 30 more Deq/Ok(i) events because all 100

transactions are dequeuing as opposed to 99 in the previous tests) are insignificant in

the pessimistic context. Once again, its performance is unaffected by an increasing

percentage of conflict due to the fact that the same number and type of events are

being processed in each case.

Time (in secs) for 100 trans to Deq 30 elements each
and perform one Eval/(#items) event

Server: Opt Pess Hyb
Conflict: 0% 42 59 59

30% 47 59 70
60% 58 59 87
90% 73 59 107

Time
in

Seconds

- Optirnis tic - Hybrid - Pessimistic

Percentage of
Conflict

Figure 5.3: Deq/Ok(i) --> Eval/(#items) conflicts

A comparison of these performance results with those of the previous set of

tests (Figure 5.2) indicates that the optimistic server is more sensitive than the robust

pessimistic server to the additional performance costs introduced by the EvaZ/(3000)

event and the 100th transaction's execution of 30 Deq/Ok(i) events (which are the

only difference between the tests in Figure 5.2 and Figure 5.3). This is demonstrated

by the discrepancy between the performance of the optimistic server at 0% conflict in

Figure 5.2 and Figure 5.3 (39 secs vs 42 secs), whereas the performance of the

pessimistic server was virtually unaffected (58 secs vs 59 secs). Almost immediately,

however, as the percentage of conflict increases, these initial costs are absorbed by the

gains associated with the elimination of unsuccessful searches for eligible elements.

That is, in the tests for conflicts defined by D3, before a transaction can set its Deq

0-lock on an element that is already 0-locked by another transaction, it must first

search the entire semiqueue for an unlocked element. Since these fruitless searches

do not occur under the test conditions for conflicts defined by D4, the Deq/Ok(i)

events are less expensive and consequently the costs of redoing them are less. This

is demonstrated by the discrepancy between the performance of the optimistic server

at 90% in Figure 5.2 and Figure 5.3 (111 secs vs 73 secs). It is interesting to note that

under these conditions the threshold value where the performance results for the

pessimistic and optimistic servers intersect is at approximately 60%.

In the case of the hybrid server, its performance is equivalent to the pessimistic

server at 0% conflict, then deteriorates as the percentage of conflict increases. This is

due to the fact that the cost of the hybrid Deq/Ok(i) event is largely determined by

the overhead associated with the pessimistic treatment of the conflict type defined

by D3, whereas the handling of the Deq/Ok(i) -> EvaI/(#ifems) conflict type defined

by D4 is optimistic. This means that an increasing number of relatively expensive

Deq/Ok(i) events must be redone as the percentage of conflict increases, which

results in an even more dramatic deterioration of performance than the optimistic

server.

6 Evaluation and Extension

6.1 Relative Behavior

Clearly, the tests performed in our study are representative of only a very small

sample of the type of transaction that could potentially access this shared abstract

object. A "typical" extended transaction defies definition however, due to the fact

that number and type of events executed by each transaction is dependent on the

application from which it is issued. Consequently, instead of attempting to provide

a representative sampling of extended transactions, the intent of these tests is to

establish some of the fundamental characteristics that determine the relative

behavior of the three different concurrency control methods. Identifying these

characteristics can serve to better define the environments in which each approach is

most effective.

6.1.1 Pessimistic Behavior

One of the most fundamental characteristics inherent in any pessimistic

locking method is the fact that it does not allow for any wasted work. As a result,

within the environment of our "work intensive" tests, the pessimitic server's

performance is essentially unaffected by the increasing level of transaction conflict.

Another beneficial aspect of type-specific locking is that deadlock prevention and the

method by which transactions are unblocked can be customized through the

exploitation of semantic information (section 4.2.2.1 and section 4.2.2.2).

Of course, as with any pessimistic locking scheme, the major disadvantage

associated with this method is the fact that the inherent overhead incurred by lock

management and deadlock prevention (or detection) is superfluous when the level

of conflict is sufficiently low. The effect of this locking overhead in our servers can

be demonstrated by comparing the pessimistic and optimistic performance results at

0% conflict (Figure 5.1: 16 vs 11 secs, Figure 5.2: 58 vs 39 secs, and Figure 5.3: 59 vs 42

secs). In an environment where the percentage of conflict is sufficiently low, the

additional overhead associated with lock management in the pessimistic case can be

be partially attributed to the fact that the proscribed dependencies used to define

type-specific conflicts must be symmetrical in a pessimistic scheme, and hence it has

more conflict types than its optimistic counter-part.

Further additional overhead is inherent in our implementation of the

pessimistic technique due to its manditory check for conflicts after the execution of

each event. For example, each time an element is to be enqueued in the pessimistic

approach, a conflict check for DeqlFailed or Eva1 Flocks must be performed before

updating the calling transaction's Enq intentions list. In the optimistic approach

however, this type of conflict check is executed at most once during the validation

phase of a given transaction, regardless of how many Enq(i)/Ok events that

transaction performed.

6.1.2 Optimistic Behavior

The major advantages associated with the optimistic approach directly

correspond to the disadvantages mentioned in the context of the pessimistic

method. That is, there is an absence of the overhead inherent in locking

management and deadlock prevention, there are fewer conflicts to be considered due

to the fact that the proscribed dependency relations are not symmetrical, and conflict

detection can be cheaper when it does not have to be on a per event basis. A further

advantage of this particular optimistic approach is its ability to sustain an impressive

level of performance relative to its pessimistic counter-part up until a substantial

level of transaction conflict has been established. Taking the average threshold

value of the four sets of tests we ran (which represent the only types of conflict

encountered by the optimistic approach), the optimistic server is able to perform

better than or at least as well as the pessimistic server up until the level of conflict

rises above approximately 45%.

One of the major disadvantages inherent in all optimistic approaches is the

fact that under increasing levels of conflict, the problem of wasted work intensifies.

The set of tests associated with the type specific conflict defined by D3: Deq/Ok(i)->

Deq/Ok(i), (Figure 5.2) best demonstrates the dramatic contrast in the amount of

wasted work performed by the pessimistic and optimistic servers. In the pessimistic

version of this test at 90% conflict, once all of the shared elements have been

P-locked the pessimistic server attempts to execute one Deq/Ok(i) event for each of

the 90 different transactions involved in the conflict. Every Deq invocation searches

the semiqueue and then becomes blocked until the dummy transaction, Trans(l), is

aborted. In contrast, the optimistic server executes 30 Deq/Ok(i) events for each of

the 90 different transactions, all of which must be redone. Furthermore, each of

these optimistic Deq operations search the entire semiqueue for an eligible element

before setting an 0-lock on an element that is already locked by another transaction.

The fact that a single element (node) in the semiqueue could potentially be 0-locked

by all the concurrent transactions in the system requires that 0-lock information for

each transaction to be associated with every element of the semiqueue. The fact that

nodes in the hybrid server do not include this extensive 0-lock information (section

6.1.3) and that its performance in the first two sets of tests (Figure 5.1) is notably

superior to the optimistic server indicates that these locks can be burdensome.

6.1.3 Hybrid Behavior

The hybrid server was designed (section 3.3) to be appropriate under conditions

where concurrent Deq/Ok(i) operations are expected to be frequent (hence, conflicts

of type D3 are treated pessimistically) but all other conflict types are expected to be

rare (and therefore are treated optimistically).

In theory, the advantage of the hybrid methodology we used (as presented in

[Herlihy86]) is that it enables the appropriate optimistic or pessimistic concurrency

control method to be applied on a per conflict-type basis according to the associated

probability of the conflict. As demonstrated by the first two sets of tests in our study

(Figure 5.1), this method can exploit the combined individual strengths of both the

optimistic and pessimistic approaches and subsequently outperform both methods

under certain conditions. The strength provided by the optimistic component of the

hybrid server is the low overhead costs associated with its fewer type-specific

conflicts and its minimal needs for pessimistic lock management and deadlock

detection. The strength provided by the hybrid server's pessimistic component is

the fact that the extensive 0-lock information associated with each element of the

semiqueue is simply replaced by one P-lock. Consequently, the hybrid server's

performance is superior to that of the optimistic server in our first two sets of tests

. (Figure 5.1). Equally as encouraging are the results from the third set of tests (Figure

5.2) which demonstrate the hybrid server's ability to handle pessimistic conflict types

at a performance level that is on par with the pessimistic server's performance.

The major disadvantage associated with the hybrid approach is that although

this method can combine the individual strengths of both its optimistic and

pessimistic components, it can also combine their weaknesses. This is most

obviously demonstrated within the context of the fourth set of tests we performed

(Figure 5.3). These tests study D4, the Deq/Ok(i)->Eval/(#itms) conflict type. In the

hybrid server, Deq/Ok(i) events are inherently expensive due to the locking and

deadlock prevention overhead associated with its pessimistically treated conflict

Deq/Ok(i)->Deq/Ok(i). This expense can be considered to be the weakness

contributed to the hybrid approach by its pessimistic component. The weakness of

its optimistic component is its inherent increase in the amount of wasted work

under increasing percentages of conflict. In the hybrid test for D4, the relatively

expensive Deq/Ok(i) events are involved in a conflict that is treated optimistically.

Hence this lavish operation is repeatedly redone and the resulting performance of

the hybrid server becomes lamentable as the percentage of conflict increases. Since

hybrid performance is not just dependent on the level of transaction conflict but also

contingent on the particular type of conflict encountered, this approach is only

appropriate within very narrow and controlled conditions. Involving a hybrid

operation that includes abundant pessimistic overhead in an optimistically treated

conflict type will inevitably lead to atrocious performance relative to pure optimistic

or pessimistic behavior.

6.1.4 Summary of Behavior

The major advantages, disadvantages, and appropriate environment for each

of the pessimistic, optimistic and hybrid approaches studied here can be summarized

in the following way:

PURE

PESSIMISTI(

PURE

OPTIMISTIC

HYBRID

ADVANTAGES

1. No wasted work.
2. Unaffected by conflicts.
3. Customizable deadlock

detection & unblocking.

1. Absence of pessimistic
overhead (lock/deadlock)

2. Fewer type-specific
conflicts.

1. Offers opt/pess choice
according to associated
probability of conflict.

2. Can exploit combined
strengths.

DISADVANTAGES ENVIRONMENT

I
1. High overhead at low % Best suited for

of conflict. situations where
2. Syrnrnetricial conflicts. expected level of
3. Conflict detection check all conflicts > 45%

of both methods when situations where
pessimistic overhead is % of conflict
in an optimistic conflict. varies with each

1. Much wasted work at
higher levels of conflict.

2. Extensive 0-locking
can introduce overhead.

Figure 6.1: Fundamental Characteristics of Pessimistic,
Optimistic and Hybrid Techniques

Best suited for
situations where
expected level of
all conflicts c 45%

6.2 Extension: Directories

The effectiveness of the customizable type-specific method of concurrency

control studied here can be further exemplified by its application to another abstract

object. Consider a directory object which supports the following types of events5:

Insert(str, capa)/Ok() - inserts capability capa into with key string str.
Insert(str, capa)/FailedO -- a failed insert event due to duplicate key string.
Delete(str)/Ok() - deletes capa stored with str .
Delete(str)/Failed() -- a failed delete event due to str not found.
Lookup(str)/Ok(capa) -- searches for a capa with key str.
Lookup(str)/Failed() -- a failed lookup event due to str not found.
Eval()/Ok(#entries) - returns the number of entries in the directory.

The use of semantic information associated with the type-specific directory

operations can greatly increase the amount of concurrency allowed by a

synchronization scheme. For example, if a conventional READ/WRITE locking

scheme was used to control these operations, Insert and Delete could each be

treated as a READ operation followed by a WRITE operation, whereas Lookup and

Eva1 could each be treated as READS. In terms of pessimistic concurrency

restrictions, a successful Lookup("foo") invocation would be blocked trying to

obtain a READ lock if another transaction performed a successful Delete("furnl')

. An event consists of an operation and a response.

event, thus holding a WIUTE lock on the directory. This restriction on concurrency

is unnecessary, and can be alleviated through the use of a type-speafic approach.

The number of proscribed serial dependencies needed to define type-speafic

conflicts can be minimized by dividing the seven possible events associated with the

directory data type into three lock classes [Schwarz84]:

M = for events that "Modify" a particular entry:
Insert(str, capa)/OkO, Delefe(str)/OkO .

E = for events that only "Look" at a particular entry:
Lookup(str)/OkO, Lookup(str)lFailedO,
Insert(str, capa)/Failed 0, Delete(str)/FailedO.

E = for events that cannot be isolated to a particular entry:
EvalO/Ok(#entries).

The resulting set of proscribed dependencies for the purely optimistic and

purely pessimistic approach can then be defined in terms of these lock classes as

follows:

Optimistic Proscribed Dependencies:

D1: Ti: M(str) -->d Tj: M(str) Ti modifies a key subsequently modified by Tj
D2: Ti: M(str) -->d Tj: L (s ~) Ti modifies a key subsequently looked at by Ti
D3: Ti: M(str) -->d Tj: E Ti modifies a key and Tj subsequently "Evals ".

Pessimistic Proscribed Dependencies: -

D1: Ti: M(str) -->d Tj: M(s~Y) (same as above)
D2: Ti: M(str) -->d Tj: L(str) (same as above)

Ti: M(str) -->d T.: E I (same as above)
Ti: L(str) -->d T-: M(str) (making the dependency D2 symmetrical) I
Ti: E ->d Tj: M(str) (making the dependency D3 symmetrical)

As with the semiqueue example, this type-specific treatment of conflicts thus

defines a directory object as a collection of individually lockable elements.

We would expect the relative performance of optimistic and pessimistic

treatment of this directory object to roughly correspond to the behavior exhibited by

our implementation of optimistic and pessimistic semiqueue servers (section 6.1.1

and 6.1.2). That is, a purely optimistic technique can be expected to outperform a

purely pessimistic technique at low levels of transaction conflict due to the inherent

overhead associated with the increased number of pessimistic conflict types and its

increased frequency of conflict checks (section 6.1.1). An exact threshold percentage

of conflict where optimistic techniques begin to be outperformed by pessimistic

techniques would be contingent on implementation dependent factors. Due to the

similar nature of the operations associated with each object however, we would

expect this to also roughly correspond to our semiqueue results.

The configuration of the three conflict types defined by Dl, D2 and D3 for the

optimistic server can be illustrated as follows:

Figure 6.2: Directory Dependencies

Since there are three conflict types, there are z3 possible optimistic/pessimistic

conflict-type combinations (including purely optimistic and purely pessimistic

schemes).

In situations where reliable information is available regarding the expected

frequency of conflict types, a hybrid scheme could provide more effective

concurrency control than either of the purely optimistic or pessimistic techniques.

For example, when the data structure is seldom modified, but frequently looked up,

D2 should be treated pessimistically while Dl and D3 should be treated

optimistically. This combination would lead to more efficient Eva1 and Modify

operations than a purely pessimistic scheme, provided that the level of conflict for

D l and D3 remained low, and yet resolve conflicts of type D2 more effectively than

an purely optimistic scheme. In this example, the hybrid server could be expected to

outperform both the optimistic and pessimistic schemes.

7 Conclusions and Further Research

7.1 Conclusions

Extended transactions have the potential to be a valuable tool for organizing

and structuring computations in general purpose distributed systems IHerlihy86,

Spector83, Spector85, Spector87, Weihl851. The role of optimistic concurrency

control in synchronization schemes that attempt to exploit type-specific properties of

abstract objects within this vast application domain is largely undefined and

unexplored. [Herlihy861 presents new type-specific optimistic techniques for objects

in distributed systems that can be applied selectively in conjunction with pessimistic

techniques on a per conflict-type basis. The results from our implementation of

optimistic, pessimistic and hybrid semiqueue servers based on Herlihy's

synchronization method confirm the conjecture that optimistic concurrency control

may yet have a place in general purpose systems.

It is not unreasonable to assume that some reliable information regarding the

expected frequency of conflict types would be available to the implementor of a

shared abstract object. The customizable method of type-specific concurrency control

studied here presents a means of exploiting this information and devising the most

effective approach to concurrency control based on this knowledge. Our simulation

served to demonstrate how this method can provide an entire spectrum of viable

and effective means of synchronizing extended transactions, ranging from purely

pessimistic to purely optimistic techniques, within independent data servers. We

were also able to determine the most appropriate environment for each of the

optimistic, pessimistic and hybrid implementations.

Our results demonstrate the inherent robustness of typespecific pessimistic

techniques, establish an impressive threshold percentage between the optimistic and

pessimistic techniques, and identify important idiosyncrasies of the hybrid approach.

Unlike the complete transaction systems of TABS and Argus however, our focus

was only on one aspect of a general purpose distributed transaction facility:

concurrency control within a single data server. Although we were able to establish

the worthiness of optimistic methods within independent data servers, the impact

the introduction of these techniques have on a general purpose distributed system as

a whole is as yet undetermined.

The goal of research in this area is to simplify the chore of implementing

correct and efficient synchronization properties for abstract objects used in

distributed applications. A general purpose distributed transaction facility however,

not only has to be simple to use, but it needs to provide efficient and flexible support

for user defined abstract types. Implementors should be able to choose how they

want their abstract objects to be treated. Towards this goal, the distributed

transaction processing system, Camelot [SpedorS'T], (the successor to the TABS

prototype [Spector85]), supports two compatible types of synchronization: standard

pessimistic locking and hybrid atomicity, which has features of both timestamps and

locking. Within single data servers, synchronization implementations can be

tailored to provide pessimistic type-specific locking [Spector87]. We believe that the

inclusion of the optimistic techniques studied here into general purpose systems

such as this would provide users with a more complete spectrum of synchronization

methods and consequently add to the efficiency and flexibility of the system as a

whole .

7.2 Further Research

Possible directions for further research include the implementation of a

protocol for validating distributed transactions, the development of an appropriate

user interface for specifying type-specific consistency constraints, and the exploration

of the ramifications associated with the use of prevalidation transaction abort in the

optimistic approach.

To be compatible with pessimistic methods such as two phase locking which

serialize transactions in commit order, the optimistic method studied here must not

only validate transactions in commit timestamp order but also apply transactions'

. intentions lists in that order. Within our simulation model, the localvalidation

and subsequent WRITE phase of a committing transaction are implemented within

the same procedure, ensuring that only one transaction at a time can validate at a

data server and that intentions lists are automatically applied in the the same order

that transactions validated.

With distributed transactions however, a transaction could potentially require

validation on several distinct sites before being able to procede to its WRITE phase.

Consequently, validation of distributed transactions requires a much more rigorous

protocol than our "automatic" approach. The expanded version of [~ e r l i h ~ 8 6] ~

presents two possible protocols for validating distributed transactions, and addresses

the issue of recoverability for the optimistic method studied here.

Since the purpose of a high performance extended transaction facility is to

reduce the complexity associated with implementing shared abstract objects in

distributed applications, a major priority is to make these facilities easy to use. The

user interfaces of TABS and Camelot consist of system libraries to provide low level

primitives which enable users to tailor their servers and explicitly control the setting

of locks. Argus, on the other hand, hides some of its synchronization facilities in a

language run-time system that mechanically imposes transparent support for

built-in atomic types, and relies on the aid of a mufex object for the implementation

of nontrivial servers. Although Argus is regarded as being easier to use for simple

objects, it is difficult to compare the amount of work required by each approach to

Received through personal correspondence.

implement more complex servers, and a formal performance comparison is not yet

available [Spector85]. It is possible, however, that flexibility and efficiency have been

sacrificed in Argus' higher level approach for the sake of user-friendliness. The

greatest challenge associated with developing an appropriate user interface for

specifying complex type-specific consistency constaints therefore lies with striking a

balance between flexibility, efficiency and user-friendliness.

As previously discussed (section 4.2.1.1), the exploitation of state based

information and pre-validation transaction abort could potentially reduce the

amount of wasted work performed by the optimistic semiqueue server if the

validating transaction must be aborted. Although this approach could be more

accurately classified as a drastic pessimistic method that relies on transaction abort

instead of delay, it could substantially improve our optimistic server's performance.

The potential problem assoicated with this exploitation of optimistic locking

information during the READ phase of a transaction is the overhead introduced by

conflict detection. In its purest form, an optimistic approach offers a cost effective

alternative to pessimistic methods under conditions where the level of conflict is

sufficiently low by virtue of the fact that it contains less locking overhead. Since

conflict detection contributes to locking overhead, allowing it in the READ phase

may cancel out the advantages introduced by the optimistic method. Further

exploration into these performance tradeoffs is required before the application of

this technique could be considered to be generally applicable within type-specific

optimistic methods.

Appendix

op Enq(Tnum:int; i:int) returns Enq-res:int (call1
op Eval(Tnum:int) returns item-count:int (call)
op Deq_rand(Tnum:int) returns rand:int (call)
op Deadlock_Check(blocker:int; Tnum:int)
retumsabortedbol (call)

op Abort(Tnmt) (call)
op Global_Update(Tnum:int) returns g1ob:bool (call)

op Wakeup-EnqO #Wakeup Calls
op Wakeup-Eva10
op Wakeup-DFO
op Wakeup-DOKO
op Wakeup-FOKO

N is the maximum number of concurrently
transactions this server can support

type node = rec(prev-1ink:ptr node
valueint

Deq-Plockint
next_link:ptr node)

Nodes of the semiQ

type Deq-ptr-node = rec(Deq_link: ptr node # Nodes of Deq intnts
nxt: ptr Deq-ptr-node)

var Qhead, Qtail, element: ptr node # Ptrs for accessing the semiQ
var Deq-Failed-Plock[l Nl : boo1 # P-locks for Deq/Failed events
varEval_Mock[l:N]: boo1 # P-locks for Eval/#items events
var Enq-PIock[l N: boo1 # P-locks for Enq/Ok events
var head[lN], tail[l:Nl: ptr node # Ptrs for Enq intentions lists
var Dee_Pointers[lN]: ptr Deqptr-node # Ptrs for Deq intentions lists

var retry-en@ N: boo1 # Flag for blocked Enq op

var retry_eval[l:Nl: bool
var ~try~dfUN1: boo1
var retry-dok[l Nl: bool
var retry-fok[lN]: bool

initial
Qhead = null
Qtail := null
fa i:= 1 to N ->

Deq_Failed_Plock[i] := false
Eval-Plock[i] := false
Enq_Plock[i] := false
head[i] := null
tail[il:= null
Deg_Pointers[i] := null
retry_eval[i] := false
retry_enq[il := false
retry_df[il := false
retry_dok[i] := false
retry_fok[il := false

a f
end

Flag for blocked Eval op
Flag for blocked Deq/Failed
Flag for blocked Deq/Ok
Flag for blocked Deq op

Initialize SemiQ head pointer
Initialize SemiQ tail pointer
For all Tnums initialize:
Deq/Failed P-lock
Eval/(#items) P-lock
Enq(i)/Ok P-lock
Enq intentions head
Enq intentions tail
Deq intentions
Flags for blocked ops

......................................
Abort - called by Deadlock-Check

proc Abort(Tnum)

var local_element: ptr node # Ref to SemiQ and Enq intentions
var Deltemp: ptr Deq-ptr-node # Ref to Deq intentions
var dequed-items: bool
var DF-flag: boo1 # Flags DF Plock
var Enq-flag: boo1 # Flags Enq Mock
var Eval-flag: boo1 # Hags Eva1 Plock

if head[Tnum] != null -> # If Enq intentions is not empty
local-element:= head[Tnum] # Throw it away
do local-element != null ->

head[Tnum] := local-elementA.next-link
free(loca1-element)
local-element:= head[Tnum]

od
fi

dequed_items:= false
if Deq_Pointers[Tnum] != null -> # If Deq intentions is not empty

J2q-temp:= Deq_Pointe~s[Tnuml # Throw it away
do Deatemp != null ->

Deq-tempA.w-linkA.Deq-Plock := 0
Deq_Pointers[Tnum] := Deq_tempA.nxt
free(Deq3emp)
Deq-temp := Deg_Pointers[Tnum]

od
dequed-items:= true # Flag the Deq

fi

retry_dok[Tnum] := false # Re-init blocked flags
retry_df[Tnum]:= false
retry_enq[Tnum] := false
retry_eval[Tnum] := false
retryetryfok[Tnum] := false

DF-flag:= false
if Deq-Failed-Plock[Tnuml ->

Deq-Failed-Plock[Tnum] := false
DF-flag:= true

fi

Enq-flag:= false
if Enq"4P10ck[Tnum] ->

Enq-Plock[Tnuml:= false
Enq-flag:= true

fi

Eval-flag:= false
if Eval_Plock[Tnum] ->

Eval_Plock[Tnum] := false
Eval-flag := true

fi

if DF-flag or Eval-flag ->
fa i:=l to N st i!=Tnum ->

if retry_enq[i] -> Wakeup-EnqO
d v e Enq-awoke0

fi
a f

fi

if Enq-flag ->
fa i:=l to N st i!=Tnum ->

if retry-df[i] -> Wakeup-DFO
receive DF-awoke0

fi
a f

fi
if Ensflag or dequed-items ->

If Tnum has Deq/Failed lock
Release it
Flag DF Plock

If Tnum has Enq P-lock
Release it
Flag Enq Plock

If Tnum had Eval P-lock
Release it
Flag Eval Plock

If DF or Eval Plock released

Wake-up all Mocked enq ops

If Enq Plock released

Wake-up all blocked Deq/Fails

If Enq Plock or shared elmts released

fa i:=l to N st i!=Tnum ->
if retry_eval[il-> Wakeup-Eva10 # Wake-up all blocked Eval ops

receive Eval-awoke0
fi

a f
fi

if dequed-items -> # If Tnwn had Deqed items
fa i:= 1 to N st i!=Tnum ->

if retry-fok[il-> Wakeup-FOKO # Wake-up all blocked Deq ops
nxeive FOK-awoke0

fi
a f

fi

if Eval-flag ->
fa i:= 1 to N st i!= Tnum->

if retry_dok[il-> Wakeup-DOKO # Wake-up all blocked Deq/Oks
receive DOK-awoke0

fi
a f

fi

proc Deadlock-Check(blocker,Tnum) returns aborted

'%locker" is the Tnum of the transaction that holds a
P-lock of the type "Tnum" is about to block on...

aborted:= false
if (retry_dok[blockerl or # If blocker is waiting in a Deq/Ok event

retry-enqlblockerl) and # or blocker is waiting in an Enq/Ok event
Eval-Plocl<lTnum] -> # and Tnum holds an Eva1 P-lock
write("AB0RTING TRANSACTION,Tnum,"on Eval-Plock")
AbortCrnum) # Abort Tnum
aborted:= true

[I retry_df[blockerl and # If blocker is waiting in a Deq/Failed event
EngPlock[Tnum] -> # and Tnum holds a P-lock
write("AB0RTING TRANSACTION,Tnum,"on Enq-Plock")
AbortCrnum) # Abort Tnum
aborted:= true

[I retrytryevallblockerl and # If blocker is waiting in an Eval/#items
(EngPlock[Tn=I or # and Tnum has an Enq P-lock or Deq P-lock

Deq-Pointers[Tnum]!=null) ->
write("AB0RTING TRANSACTION,Tnum,"on Enq or Deq Plock)
AborttTnum) # Abort Tnum
aborted:= true

[I retry-enqtblockerl and # If blocker is waiting in an Enq/Ok event
Deq-Failed-Plock[Tnuml -> # and Tnum has a Deq Failed P-lock
write("AB0RTING TRANSACTION,Tnum,"on Deq Failed Plock")
AborKTnum) # Abort Tnum
aborted:= true

0 retry_fok[blocker] and # If blocker is waiting in a Deq event
Deq-Pointers[Tnum] != null -> # and Tnum has Deqed items
write("AB0RTING TRANSACTION,Tnum,"on Deq FOK)
AborOnum) # Abort Tnum
aborted:= true

fi

end

proc Enq(Tnum,i) returns Enq-res
var local-element: ptr node
var abort: boo1

retry-enq[Tnum]:= false # Initialize waiting flag

fa i:= 1 to N st i!= Tnum ->
if Deq-Failed-Plock[i] or # If any trans. holds a Deq/Failed lock

Eval-Plock[i] -> # or an Eva1 P-lock
retry-enq[Tnum] := true # Set the waiting flag
exit

fi
af

do retry-enq[Tnum] -> # If there is a conflict ...
abort := false
fa i:= 1 to N st i!= Tnum -> # Deadlock chck before blocking

if Deq_Failed_Plock[i] ->
abort:= Deadlock-Check(i,Tnum)
if abort -> exit fi

fi
if Eval-Plock[i] ->

abort:= Deadlock-Check(i,Tnum)
if abort -> exit fi

fi
af

if abort -> Enq-re:= -9999 # Resolve deadlock with abort
lvtum # of calling transaction

fi

Eng~es=& # If no deadlock, WAIT
reply
d v e WakeupEnqO # (for a wake-up call)
retry-enq[Tnum]:= false
fa i:= 1 to N st i!= Tnum -> # Unblocked -> conflict check

if Deq-Failed-Plock[i] or
Eval-Plock[i] ->

n31-y-enq[Tnuml:= true # If conflict, block again
exit

fi
af
send Enq-awoke0

od

Enq-Plock[Tnum]:= true
local-element= new(node)
localalelementA.value:=i
local-element A .Deq_Plock := 0
local-element A .prev-link:= null
local-elementA.next-link= null

When not blocked:
Assign an Enq P-lock
Create a new node
Assign it the value
Init Deq P-lock for node
Init pointers for node

if head[Tnum] = null ->
head[Tnum]:= local-element
tail[Tnum]:= local-element

Add node to Enq intnts list

[I else ->
tail[TnumIA.next-link:= local-element
local-elementA.prev-link:= tail[Tnum]
tail[Tnuml:= local-element

fi
En%-= 1 # Return "ok result

end

proc Eval(Tnum) returns item-count

var local-element: ptr node
var local-deq: ptr Lkqptr-node
var abort: boo1

Ref to SerniQ and Enq intnts
Ref to Deq intentions

retry_eval[Tnum] := false
fa i:= 1 to N st i!=Tnum -> # Check all other transactions

if Deq-Pointers[il != null or # for conflicting locks

Enq-Plock[i] ->
retry-eval[Tnum] := true
exit

fi
af

do retry-eval[Tnum] -> # If a conflict exists
abort := false
fa i:= 1 to N st i!= Tnum -> # Do a Deadlock check

if Deq-Pointers[i]!=null ->
abort:= Deadlock-Check(i,Tnum)
if abort -> exit fi # Abort if necessary

fi
if Enq-Plock[i] ->

abort:= Deadlock-Check(i,Tnum)
if abort -> exit fi

fi
af

if abort ->
item-count= -9999
return

fi

item-count :=a
reply
receive Wakeup-EvalO
retry_eval[Tnum]:= false
fa i:= 1 to N st i!= Tnum ->

if Deq-Pointers[i] != null
or EnqPlock[i] ->

retry-eval[Tnum] := true
exit

fi
af
send Eval-awoke0

od

Eval-Plock[Tnum]:= true
item-count=O
element:= Qhead

do (element != null) ->
item-count++

If aborted, return -9999

Wait for wakeup call

When unblocked, check all trans
for conflicts

If conflicts -> block again

When unblocked, assign Eva1 P-lock

element:= elementA.next-link
od

local-element:= head[Tnuml
do (localocalelement != null) ->

iternterncount++

Count items in semiQ

Add elements from Enq intentions

local-deq := Deq_Pointers[Tnum] # Subtract elements in Deq intnts
do (local-deq != null) ->

item-count-
local-dq := local_deqA.nxt

od

end

proc Deq-rand(Tnum) returns rand

var abort: bool
var start-again : bool
var found-one : bool
var num-dequed : int
var num-queued : int
var local-element: ptr node
var Deq-temp: ptr Deq-ptcnode

It is ok to play in your own back yard.

if head[Tnum] != null -> # If Enq intentions not empty
local_element:= head[Tnum] # Deq an element from there
rand:= locallelementA .value
head[Tnum] := local-elementA.next-link

if head[Tnum] = null -> # If 0 elements now in Enq int.
Enq-Plock[Tnuml:=false # Release P-lock
fa i:=l to N st i!= Tnum ->

if retry-dfIi1-> Wakeup-DFO # Wake-up blocked Deq/Failed
receive DFawokeO

fi
af

fi
free(loca1-element)
retvn

[I else ->
start-again := true
retry-dflTnum] := true

Flag to restart Deq op
Flag to restart -/Failed

do start-again ->

num-dequed:= 0
num-queued= 0
Deq-temp:= Deq_Pointers[Tnum]
do -temp != null -> # Count items in Deq intnts
num-degued++
-temp := Deq-tempA.nxt

od
element := Qhead
do element != null -> # Count items in semiQ
num-queued++

element := elementA.next-link
od

if num-dequed = numumqueued -> # If no eligible items
nAry_df[Tnum] := false
fa i:= 1 to N st i!= Tnum -> # Check for conflicts

if E~Q-Plock[i] -> # If some Enq P-lock exists
retry-MTnuml:= true # Block Deq/Failed event
exit

fi
af
if retry-MTnum] = false -> # If not blocked
rand := -99
Deq-Failed-Plock[Tnuml := true # Deq/Failed P-locked

Ieturn
0 else -> # Otherwise, if blocked

abort := false
fa i:= 1 to N st i!= Tnum -> # Do Deadlock check

if Eng_Plock[i] ->
abort:= Deadlock-Check(i,Tnum)
if abort -> exit fi

fi
If necessary, abort

if abort -> rand:= -9999; return fi
rand :=&

"=ply
nxeive Wakeup-DFO # Wait for Wakeup call
send DF-awoke0

fi

0 else-> # If there are eligible elrnnts:
~etry_dflTnum] := false

fi
od

mtry-foHTnum] := true
do retry-fok[Tnum] ->

found-one := false
element := Qhead

if found-one ->
xvtry-dok[Tnum] := false
fa i:= 1 to N st i!=Tnum ->

if Eval-Plock[i] ->
Fetry-dok[Tnuml:=true
exit

fi
af

If unlocked element
Flag it "found" ...

do element != null and -found-one -> # Search SerniQ
if elernentA.Deq_Plock = 0 ->
foundundone := trbe

0 else ->
element := elementA.next-link

fi
od

If "found" elrnnt

Check for conflict

if rev-dok[Tnuml ->
abort := false
fa i:= 1 to N st i!= Tnum ->

if Eval_Plock[i] ->
abort:= Deadlock-Check(i,Tnum)
if abort -> exit fi

fi
af

if abort -> rand := -9999; return fi
rand:= 466
reply
receive WakeupDOKO
send DOK-awoke0

If conflict exists,

Do Deadlock check

Abort if necessary

Wait for Wakeup call

0 else -> # Otherwise, take item
rand:= elementA .value
elementA.Deq-Plock := 1 # P-lock semiQ node
Deq_temp:= new(Deq_ptr-node) # Add to Deq intnts
%tempA .Dq-link:= element
Deq-tempA.nxt= Deq_Pointers[Tnum]
Deq_Pointers[Tnuml:= Deq-temp
retry-fok[Tnuml := false
Iletum

fi

Oelse-> # If elig i tems P-locked
abort := false
fa i:= 1 to N st i!= Tnum ->

if Deg_Pointers[il!= null -> # Do Deadlock check
abort := Deadlock~Check(i,Tnum)
if abort -> exit fi # Abort if necessary

fi
af

if abort -> rand := -9999; return fi
rand := -666
reply
receive Wakeup-FOKO # Wait for wakeup call
send FOK-awoke0
ifQhead =null-> # If semiQ is empty
retryretrydU'numl := true # Retry Deq/Faild event
retry-foktTnum1 := false

fi
fi

od
od

fi
end

proc Global-Update(Tnum) returns glob
var Deatemp: ptr Dqptr-node
var dequed-items: boo1
var Enq-flagboo1
var DF-flagboo1
var Eval-flag:bool

if head[Tnum] != null -> # If Enq intentions not empty
if Qhead != null -> # Add it to SemiQ

QtailA.next-link := head[Tnum]
head[TnumlA.prev-link := Qtail
Qtail := tail[Tnum]

[I else ->
Qhead := head[Tnuml
Qtail := tail[Tnum]

fi
headfmnuml:= null
tail [Tnum] := null

fi

Re-init Enq intentions ptrs

dequed-items:= false
if Deq-Pointers[Tnum] != null -> # If Deq intentions not empty

dequed-items:= true
Deq-temp := Deq_Pointers[Tnuml
do Deatemp != null -> # Remove referenced elements

if Deq_tempA.Deq_link = Qhead ->
Qhead:= Deq_tempA.Deq-linkA.next-link
if Qhead != null -> QheadA.prev-link:= null fi

[I Deq-tempA.Deq-link = Qtail and Qtail != Qhead ->
Qtail:= Deq-ZempA.Deq-linkA.prev-link
QtailA.next-link= null

U else ->
Deq-tempA .Deq-linkA .prev-link".next-link :=

Deq-tempA.Deq_linkA.next-link
DeqDeqtempA.Deq_linkA.next-link".prev-link :=

Deg.tempA.Deq-linkA.prev-link
fi
free(Deq_tempA.Deq_link)
Deq-Pointers[Tnum] := Deq_tempA.nxt
free(Deq-temp)
Deq-temp := Deq-PointersITnuml

od
fi

Enq-flag := false
if Enq_Plock[Tnum] -> # If Tnum had an Enq P-lock

Enq-Plock[Tnum] := falsr! # Release it
E~Q-flag:= true # Flag Enq Plock

fi

DF-flag:= false
if Deq-Failed-Plock[Tnum] -> # If Tnum had Deq/Failed P-lock

Deq-Failed-Plock[Tnum] := false # Release it
DF-flag:= true # Flag Deq/Failed Flock

fi

Eval-flag:= false
if Eval_Plock[Tnum] -> # If Tnum had Eva1 P-lock

Eval_Plock[Tnum] := false # Release it
Eval-flag:= true # Flag Eva1 P-lock

fi

if Enq-flag ->
fa i:=l to N st i!= Tnum ->

if retry_df[i] -> Wakeup-DF()
receive DFawokeO

fi
af

fi

Issue wakeup calls

if DF-flag or Eval-flag ->
fa i:=l to N st i != Tnum -> # Issue wakeup calls

if retry_enq[i] -> call Wakeup-EnqO
d v e EqawokeO

fi
af

fi

r

if Eval-flag ->
fa i:=l to N st i != Tnum -> # Issue wakeup calls

if retry_dok[il-> Wakeup-DOKO
receive DOK_awokeO

fi
a f

fi

if dequed-items or Enq-flag -> # If Tnum had Deq/Ok(i) P-lock
fa i:= 1 to N st i!=Tnum -> # Issue wakeup calls

if retry-eval[i] -> Wakeup-Eva10
receive Eval-awoke0

fi
if retry-fok[il -> Wakeup-FOKO

nxeive FOK_awokeO
fi

a f
fi

glob := true
end
end

resourre Queue

op Enq(Tnum:int; i:int) returns Enq-res:int (call)
op Eval(Tnum:int) returns item-count:int (call)
op Deg_rand(Tnum:int) returns rand:int (call)
op Va1idateUnum:int) (call)
op AbortCrnUIlljnt) (call)

N is the maximum number of concurrently
active transactions this server can support

type node = rec(prev-1ink:ptr node # Nodes of the semiqueue
valueint

Deq-Olock[l:N+l lint # (treated as boolean)
next-linkptr node)

type Deq-ptnode = rec(Deq-link: ptr node # Nodes of the Deq
nxt ptr Deq-ptr-node) # intentions list

var Qhead, Qtail, element: ptr node # Ptrs for accessing the semiQ
var Deq~Failed~Olock[l:Nl:bool # 0-locks for Deq/Failed events
var Eval-Olock[l:N]:bool # 0-locks for Eval/(#items) events
var head[l:Nl, tail[l:N]: ptr node # Ptrs for Enq intentions lists
var Deq-Pointers[l :N]: ptr Detptr-node # Ptrs for Deq intentions lists

initial
Qhead := null
Qtail:= null
f a k l toN->

Deq-Failed-Olock[i] := false
Eval_Olocl<Ii] := false
head[i] := null
tail[i] := null
Deq_Poinkrs[i] := null

a f
end

Initialize SemiQ head pointer
Initialize SemiQ tail pointer
For all Tnums initialize:
Deq/Failed Olocks
Eval/(#iterns) 0-locks

Enq intentions head
Enq intentions tail

Deq intentions list

proc Enqfrnum,i) returns Enq-res

vai local-e1ement:ptr node

local-element:= new(node) # G a t e a new node
local-elementA.value:=i # Assign it the calling value
fa j:= 1 to N+1->
local~elementA.DeqDeqO1ock[jl := 0 # Initialize node's 0-locks

af
local-elementA .prev-link:= null # Initialize node's pointers
local-elementA .next-link:= null

if head[Tnuml = null ->
head[Tnuml := local-element
tail[Tnum]:= local-element

If Enq intentions is empty
Set Enq intentions head
Set Enq intentions tail

n el*+ # Otherwise,
tail[Tnum]".next-link:= local-element # append to Enq intnts
local-elementA.prev-link:= tail[Tnuml
tail[Tnum]:= local-element

fi

E n e m s 1
end

Respond "ok to calling Tnum

proc Evalfrnum) returns item-count

var local-element: ptr node
var local-deq: ptr Degptr-node

Ref to semiQ and Enq intnts
Ref to Deq intentions list

EvalalOlock[Tnurnl:= true # Set Eva1 0-lock for Tnum
item-count:=O # Initialize item counter

element:= Qhead # Count elements in semiQ
do (element != null) ->
itemterncount++
element:= elernentA.next-link

od

Add elements in Enq intnts

do (local-element != null) ->
itememcount++
local-element:= local~elementA.next~link

oa

local-deq := Deq_Pointers[Tnum]
do (local-deq != null) ->
item-count-
local-deq := local_deqA.nxt

od
end

Subtract Deq intentions list

proc Deq-randCTnum) returns rand
var nurnitemsint # The number of eligible elements
var local-element: ptr node # Ref to semiQ and Enq intentions
var found-one: boo1
var Deq-temp: ptr Deqptr-node # Ref to Deq intentions

if head[Tnuml != null -> # If Enq intntns is not empty
local-element := head [Tnum] # Remove head of Enq intnts
rand:= local~elementA.value
head[Tnum] := local~elementA.next~link
free(1ocal-element)
return

0 else -> # Otherwise,
element := Qhead # Start searching the SemiQ
numumitem:= 0
found-one := false

do (element != null) ->
if elementA.Deq~Olock[Tnum] =O -> # If not in Deq intnts
nun-items++ # add to no. eligible

if elementA.Degplock[N+ll = 0 -> # If not already locked
founddone := true # THIS IS IT
exit

fi
So quit searching

if num_items = 0 -> # If no eligible elements,
rand:= -99 # rand = "failed"
Deq-Failed_Olock[Tnum] := true # Set Deq/Failed Olock

Ietlun # Return mipnse

[I -foundundone -> # If eligible e1.s are locked
element:=Qhead # Take the first one
do elementA.Deq_Olock[Tnuml = 1 ->

element:= elernentA.next-link
od

fi

d= elernentA.value # Assign value to rand
element".DeqDeqO1ock[Tnuml := 1 # Set Tnum's Deq 0-lock
elernent".Deg_Olock[N+l] := 1 # Set 0-locked flag
Deq-temp:= new@eq-ptr-node) # Add to Deq intentions
Deq-tempA.Deq-link:= element
Deg_tempA.nxt:= Deq_Pointers[Tnum]
Deq_Pointers[Tnum]:= Deq-temp

fi
end

proc Abort(Tnum1

var local-element: ptr node
var Deq-temp: ptr Dqptr-node
var olocked: boo1

if head[Tnum] != null ->
local-element:= head[Tnum]
do local-element != null ->

head[Tnuml := local-elementA.next-link
free(1ocal-element)
local-element := head[Tnum]

od
fi

Ref to SemiQ and Enq intnts
Ref to Deq intentions

If Enq intnts is not empty
Throw it away

If Deq intnts is not empty
Throw it away

if Deq_Pointers[Tnum] != null ->
~ec&m~:= Deq_Pointers[Tnum]
do Deq-temp != null ->
Deq_tempA.Deq_linkA.DeqDeqOlock[Tnum]:= 0 # Reset Deq 0-lock
olocked := false
hi:= 1 toN-> # Check 0-locked flag

if Deq-tempA.Deq-linkA.--Olock[i] = 1 ->
docked:= true

fi

af
if -01- -> # Reset flag if nec.

DeqDeqtempA.Deq_linkA.DeqDeqOlock[N+l] := 0
fi
Deq_Pointers[Tnum] := Deq_tempA.nxt
free(Deq-temp)
Deq-temp := Deq_Pointers[Tnuml

od
fi

Deq-Failed-Olock[Tnuml:= false # Re-init 0-locks
Eval~Olock[Tnuml:= false

end

proc Validate(Tnum)

var Enq-Items, Deq-Items: boo1
var Deq-temp: ptr Dqptr-node

Enq-Items := false
Deq-Items := false
if head[Tnum] != null -> # If Enq intnts is not empty

EnxIterns := true
f a k l toNsti!=Tnum-> # Check all other Tnums

if Deq-Failed-Olock[i]=tme or # for Deq/Failed
Evalal01ock[il=true -> # or Eval/(#items) 0-locks

AbortCrnum) # Abort if there's conflict
return

fi
af

fi

if Deq-Pointers[Tnuml != null -> # If Deq intnts is not empty
DeqJtems := true
if -Enq_Items -> # (If not already done -

fa i:= 1 to N st i!=Tnum -> # check Eva1 0-locks and
if Eval-Olock[il->
AbortCrnum) # Abort if there's conflict)
lPhun

fi
af

fi

Deq_ternp:= Deq_Pointers[Tnum]
do Deq-temp != null -> # For each node to be Deqed

fa i:=l to N st i != Tnum -> # Check for Deq conflict
if Deq_tempA.Deq-linkA.Deq-Olock[i] = 1 ->
AbortCrnum) # Abort if necessary
lvtum

fi
af
Deq-temp := Deq-tempA.nxt

od
fi

if Enq-Items = true ->
if Qhead != null ->

QtailA.next-link := head[Tnum]
head[Tnum] ".prev-link := Qtail
Qtail := tail[Tnum]

[I else ->
Qhead := head[Tnuml
Qtail := tail[Tnuml

fi

headEnuml:= null
tail[Tnuml := null

Append Enq intentions

Re-init Enq intentions

if -Items = true -> # Remove refs in Deq intnts
Deq-temp := Deq_Pointers[Tnum]
do Deq-temp != null ->

if Deq-tempA.Deq_link = Qhead ->
Qhead:= Deq_tempA.Deq_linkA.next-link
if Qhead != null -> QheadA.prev-link:= null fi

[I Deq-tempA.Deq-link = Qtail and Qtail != Qhead ->
Qtail:= Deq-tempA.Deq-linkA.prev-link
QtailA.next-link:= null

0 else ->
Deq-tempA.Deq-linkA.prev-link".next-link :=

Deq-tempA.Deq_linkA.next-link
Deq-tempA.Deq_linkA .next-link" .prev-link :=

Deq_tempA.Deq_linkA.prev-link
fi
free(Deq-tempA.Deq-link)
Deq_Pointers[Tnum] := Deg_tempA.nxt
free(Deq_temp)
Deq-temp := Deq_PointerdTnum]

od

Deq-Failed-Olock[Tnum] := false # Reinit 0-locks
Eval~Olock[Tnuml:= false

end
end

op Enq(Tnum:int; i:int) returns Enq-resint (call)
op Eval(Tnumint) returns item-count:int (call)
op Deq_rand(Tnum:int) returns rand:int (call)
op Validate(Tnum:int) returns va1idated:bool (call)
op Deadlock_Check(blocker:int; Tnum:int)
returns ab0rted:bool {call)

op Abort(Tnum.-int) (call)
op Global-Update(Tnum:int) returns g1ob:bool {call)

N is the maximum number of concurrently active
transactions this server can support

type node = rec(prev-lidcptr node
valueint

Deq-Plockint
next-linkptr node)

Nodes of the semiqueue

type Desptr-node = rec(Deq_lirk ptr node # Nodes of Deq intnts
nxt ptr Deqstr-node)

var Qhead, Qtail, element: ptr node # Ptrs for accessing semiQ
var Deq-Failedplock[l:N]: boo1 # 0-lock for Deq/Failed event
var Eval-Olock[l:N]: boo1 # 0-lock for Eval/#items event
var head[l:Nl, tail[l:Nl: ptr node # Ptrs for Enq intentions lists
var Deq-Pointers[l:Nl: ptr Dqptr-node # Ptrs for Deq intnts lists

var retry_fok[l:N]: boo1 # Flag for blocked Deq op

initial
Qhead := null
Qtail := null
fai:=ltoN->

Deq-Failed-Olock[il :=
Eval-Olock[il := false
head[i] := null
tail[i] := null
Deq_Pointer$i] := null

false

Initialize SemiQ head pointer
Initialize SemiQ tail pointer
For all Tnums:
Init Deq/Failed 0-lock
Init Eval/#iterns 0-lock
Init Enq intentions list head
Init Enq intentions list tail
Init Deq intentions list

Init Deq blocked flag

end

#--- ...
Abort - called by Validate and Deadlock-Check

proc AbortCrnum)

var local-element: ptr node
var Dectemp: ptr Dqptr-node
var dequed-items: boo1

Ref to SemiQ and Enq intentions nodes
Ref to Deq intentions

if head[Tnum] != null -> # If Enq intentions list is not empty
local_element:= head[Tnum] # Throw it out
do local-element != null ->

head[Tnum] := local-elementA.next-link
free(loca1-element)
localOcalelement:= head[Tnum]

od
fi

dequed-iterns:=false
if Deq_Pointers[Tnum] != null -> # If Deq intentions list is not empty

Deq_temp:= Deq_Pointers[Tnum]
do Deq-temp != null -> # Throw it out

w-tempA.Deq_linkA.Deq-Plock := 0 # Release P-locks
Deq_Pointers[Tnuml := Deq_tempA.nxt
free(Deq_temp)
Deqtemp := Deq_Pointers[Tnum]

od
dequed-items:=true # Flag Deq attempt

fi

retry_fok[Tnum] := false

if dequed-items -> # If Deq had been attempted
fa i:=l to N st i!=Tnum -> # Wakeup all blocked Deq ops

if retry_fok[i] -> Wakeup-FOKO
receive FOK-awoke0

fi
a f

fi

Eval-Olock[Tnum] := false # Release all 0-locks
Deq~Failed_Olock[Tnuml := false
end

proc Deadlock-CheckCblocker,Tnum) returns aborted

"blocker" is the trans. number of the transaction "Tnum" is
about to block on.

aborted:= false
if retry~fok[blockerl and # If "blocker" is waiting on Deq P-lock

Deq_Pointers[Tnum] != null -> # and Tnum holds one
Abort(Tnum) # then abort
aborted:= true

proc Enq(Tnum,i) returns Enq-res

var local-e1ement:ptr node

local-element:= new(node)
local-element ".value:=i
local~elementA.Deq~Plock := 0
local-element A .prev-link:= null
local-elementA.next-link:= null

if head[TnumJ = null ->
head[TnumJ:= local-element
tail[TnumJ := local-element

Reference to Enq intentions node

Create new Enq intentions node
Assign it a value
Init P-lock
Init pointers

Add node to Enq intentions list

0 else ->
tail[TnumJA.next-link:= local-element
local-elementA.prev-link:= tail[Tnum]
tail[TnumJ:= local-element

fi
Encres:= 1 #Return Enq "Ok

end

#--------------------------------
Eval/(#items) Event
.................................

proc EvalCTnum) retums item-count

var local-element: ptr node # Pointer to SemiQ nodes and Enq nodes
var local-deq: ptr Detptr-node # Pointer to Deq intentions

Eval-Olock[Tnum]:= true # Assign an O-lock for Eval/no. event
itemmcount=O # Init item counter
element= Qhead # Init ptr to SemiQ head

do (element != null) -> # Count number of items in SemiQ
item-coun t++
element:= elementA.next-link

od

local_element:= head[Tnum] # Add number of items in Enq intnts
do (local-element != null) ->

item-count++
local-element:= local~elementA.next~link

od

local-deq := Deq_Pointers[Tnuml
do (local-deq != null) ->

item-count-
local-deq := localpeqA.nxt

od

end

Subtract no. of items in Deq intnts

proc Deq-rand(Tnum1 returns rand

var local-element: ptr node
var Dectemp: ptr Deq-ptr-node
var abort: bool
var start-again: boo1
var found-one: bool
var num-dequed: int
var num-queued: int

It is ok to play in your own back yard.

Ptr to Enq intentions list
Ptr to Deq intentions list
Flag to abort
Flag to restart after block
Flag an element to Deq
Total number in Deq intnts
Total number in SemiQ

if head[Tnurn] != null -> # If Enq intentions not empty
localocalelement:= head[Tnum] # Take an element from there
rand:= local-elementA.value
head[Tnum] := local-elementA.next-link

0 else-> # Otherwise, check SemiQ
start-again:= true

do start-again ->

nun-dequed = 0 # Init Deqed count
num-queued := 0 # Init Enqed count
-temp := Deq_Pointers[Tnum]
do -temp != null ->
nun-dequed++ # Total Dequed
Deq-temp = Deq-tempA.nxt

od
element := Qhead
do element != null ->
num-queued++ # Total in SemiQ

element := elementA.next-link
od
if nun-queued = num-dequed -> # If Tnum has Deqed all

DeqDeqFailed_Olock[Tnum] := true # Olock Deq/Fail
rand := -99
return

fi

lPtry-foUTnum1 := true
do retry-fok[Tnum] -> # If there's an item Tnum hasn't Deqed

founaone := false
element := Qhead
do element != null and -found_one -> # Find an unlocked one

if elementA.Deq-Plock = 0 ->
founddone = true
11 else -> element := elementA.next-link

fi
od

if found-one -> # If there is an unlocked one
rand:= elementA.value # Take it!
elernentA.Deq_Plock := 1
Deq-temp:= new(Deqptr-node)
Deq_tempA.Deq-lik= element
Deg.tempA.nxt:= Deg.Pointers[Tnum]
Deq_Pointers[Tnuml:= Deq-temp
write("Transaction",Tnum,"Dequed item:",rand)
retryretryfok[Tnuml:= false

lehlm

0 else-> # If there isn't one unlocked
abort := false

fa i:= 1 to N st i!=Tnum ->
if Deq-Pointers[i] != null ->

abort := Deadlock-Check(i,Tnum)
if abort -> exit fi

fi
af

if abort -> rand := -9999; return fi
rand:= -666
lleply
receive Wakeup-FOKO
send FOK-awoke0
if Qhead = null ->
retry-fok[Tnum] := false

fi
fi

od
od

fi
end

Do a deadlock check

Wait if necessary

...
Validation
...

proc Validate(Tnum) returns validated

var DeqJernp: ptr Deq-ptr-node # Ref to Deq intentions

validated := true
if head[Tnum] != null -> # If Enq intentions not empty

fa i:=l to N st i!=Tnum -> # Check for conflicts
if Eval-Olock[i]=true or DecFailed-Olock[i]=true ->
AbortVnum) # Abort if conflict exists
validated:= false
rehun

fi
af

fi

if Deq-Pointers[Tnum] != null -> # If Deq intentions not empty
--temp:= Deq_Pointers[Tnuml
do Deq-temp != null ->

fa i:= 1 to N st i!=Tnum -> # Check for conflicts
if Eval-Olock[i] = true ->
AborKTnum) # Abort if there is one
validated := false

xetum
fi

proc Global-Update(Tnum) returns glob
var Deq-temp: ptr Deq-ptr-node
var dequed-items: boo1

if head[Tnuml != null -> # If Enq intentions not empty
if Qhead != null -> # Append Enq intentions->SemiQ

QtailA.next-link := head[Tnum]
head[TnumlA.prev-link := Qtail
Qtail := tail[Tnum]

[I else ->
Qhead := beadjTnum]
Qtad := tail[Tnum]

fi

Re-init Enq intnts ptrs head[Tnum]:= null
tail[Tnum]:= null

fi
dequed_items:= false
if Deq-Pointers[Tnum] != null -> # If Deq intentions not null

deque&items:= true
Deq-temp := Deq_Pointers[Tnuml
do Deq-temp != null -> # Remove items from SerniQ

if Deq-tempA.Deq-link = Qhead ->
Qhead:= Deq-tempA.Deq_linkA.next-link
if Qhead != null -> QheadA.prev-link:= null fi

[I Deq_tempA.Deq-link = Qtail and Qtail != Qhead ->
Qtail:= Deq-tempA.Deq_linkA.prev-link
QtailA.next-link:= null

0 else ->
Deq_tempA.Deq-linkA.prev-link".next-link :=

Deq_tempA.Deq_linkA.nexttlink
Deq-tempA.Deq_linkA.next-link".prev-link :=

Deg_tempA.Deq_linkA.prev-link
fi

if dequed-items -> # If Tnurn Deqed items
fa i:=l to N st i != Tnum -> # Wake up any blocked Deq ops

if retry_fok[il-> call Wakeup-FOKO
receive FOK_awokeO

fi
af

fi

Eval_Olock[Tnuml:= false
Deq-Failed-Olock[Tnum] := false
glob := true

end
end

Release all 0-locks

References

Rakesh Agrawal, Michael Cary and Miron Livny, "Concurrency
Control Performance Modeling: Alternatives and Implications", in
ACM Transactions on Database Systems, 12(4), December 1987.

Gregory R. Andrews and Ronald A. Olsson, "Revised Report on the
SR Programming Language", University of Arizona TR 87-27,1987.

Gregory R. Andrews et al., "An Overview of the SR Language and
Implmentation", in ACM Transactions on Programming Languages
and Systems, IOU), January 1988.

Richardo Cordon and Hector Garcia-Molina, "The Performance of a
Concurrency Control Mechanism that Exploits Semantic
Knowledge", in Proceedings of the Fiffh International Conference
on Distributed Computing Systems, 1985.

K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger, "The Notion of
Consistency and Predicate Locks in a Database System",
Communications ACM ,19(11), November 1976.

P. Franaszek and J.T. Robinson, "Limitations of Concurrency in
Transaction Processing", in ACM Transactions on Database Systems,
10(1), March 1985.

Dieter Gawlick, "Processing Hot Spots in High Performance
Systems", In Proceedings Cornpcon85,1985.

[Harder831

[Herlihy86]

[Kung81]

[Liskov87]

[Lis kov83I

[O'Nei186]

[Pun871

[Schwarz84]

T. Harder,"Observations on Optimistic Concurrency Control
Schemes", in Information Systems, 9, June 1984.

Maurice Herlihy, "Optimistic Concurrency Control for Abstract Data
Types", in Proceedings of the Principles of Distributed Computing
Conference ,1986.

H.T. Kung and J.T. Robinson, "On Optimistic Methods for
Concurrency Control", in ACM Transactions on Database Systems,
6(2), June 1981.

Barbara Liskov et al., "Argus Reference Manual", Massachusetts
Institute of Technology TR-400, November 1987.

Barbara Liskov and Robert Scheifler, "Gaurdians and Actions:
Linguistic Support for Robust, Distributed Programs", in ACM
Transactions on Programming Languages and Systems, 5(3), July
1983.

Patrick O'Neil, "The Escrow Transactional Method", in ACM
Transactions on Database Systems, 11 (4), December 1986.

K.H. Pun and G.G. Belford, "Performance Study of Two Phase
Locking in Single-Site Database Systems", in IEEE Transactions on
Software Engineering ,13(12), December 1987.

Peter M. Schwarz and Alfred Z. Spector, "Synchronizing Shared
Abstract Types", in ACM Transactions on Computer Systems, 2(3),
August 1984.

Alfred Z. Spector and Peter M. Schwarz, "Transactions: A Construct
for Reliable Distributed Computing", in ACM Operating Systems
Review, 17(2), April 1983.

Alfred Z. Spector et al., "Distributed Transactions for Reliable
Systems", in Proceedings of the Principles of Distributed Comput ing
Conference, 1985.

Alfred Z. Spector, "Distributed Processing and the Camelot System",
Carnegie-Mellon University TR-87-100, Jaunuary 1987.

C. Thanos, C. Carlesi and E. Bertino, "Performance Evaluation of
Two-Phase Locking Algorithms in a System for Distributed
Databases", in The Third Symposium on Reliability in Distributed
Systems and Database Systems, October 1983.

[Vidyasankar84] K. Vidyasankar and V. Raghavan, "Highly Flexible Integration of
the Locking and Optimistic Approaches of Concurrency Control",
Memorial University of Newfoundland, TR-8402, March 1984.

[Weih185] William Weihl and Barabra Liskov, "Implementation of Resilient,
Atomic Data Types", in ACM Transactions on Programming
Languages and Systems, 7(2), April 1985.

[Wolfson871 Ouri Wolfson, "The Overhead of Locking (and Commit) Protocols
in Distributed Databases", in ACM Transactions on Database
Systems, 12(3), September 1987.

