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Abstract 

Since the advent of three dimensional computer animation, motion control for articulated bodies 

such as humans has been a central problem. Two recent trends are most promising. One goes toward 

high-level, goal-directed control, reducing the amount of detail necessary to define a motion; the second 

trend is to apply dynamic analysis to the motion control process, leading to more realism in movements. 

In this thesis, a hybrid approach between goal-directed and dynamic control to animate bipedal 

locomotion is presented. Internal knowledge about the locomotion cycle determines the forces and torques 

that drive the dynamic model of the legs to produce a natural animation. The KLAW Keyframe-Less 

Animation of Walking) system can generate a variety of human walks with very little effort, depending on a - 
few specifications, such as desired velocity or step length. 

JSLAW should be a useful tool for computer animators. Also, since the motion of the legs is based 

on dynamic simulation, results from KLAW could be helpful in the design and control of walking robots, or 

in the analysis of human movements in biomechanics and sports. 

iii 



To an amazing person 

"But the creative principle resides in mathematics. In a certain sense, 
therefore, I hold it true that pure thought can grasp reality, as the 

ancients dreamed." 
Albert Einstein 
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Introduction 

Chapter 1 

Introduction 

Three-dimensional computer animationlb can be described as the specification and display of 

moving objects. Generally, this process is decomposed into object modeling, motion specification and image 

rendering. Although all three phases contribute to making a computer animated film sequence, the second 

one deserves to be considered the essence of animation, for without it, the problem reduces to just generating 

still images. Whereas the animator specifies his idea of a motion, the computer has to translate it into the 

actual positions and orientations for each time step. This aspect of an animation is termed motion control. 

1.1. History of Motion Control 
n 

In the early days, when the objects to be moved were just indepsndent, rigid bodiesA like boxes or 

abstract symbols, motion control was straightforward and the paths of "flying logos" could be fairly readily 

expressed by simple concatenations of matrix transformations. Quite often, though, special rendering effects 

were more spectacular than the movements of these objects in a scene. 

As the complexity of the objects and their potential movements has increased, motion control has 

grown to become a principal issue. The animation of articulated bodiesA such as humans and animals has 

been especially challenging. A body is represented by a hierarchical structure of rotational joints where each 

joint has up to three degrees of freedomA [Calvert 88, Zeltzer 82aI. The human body, for example, possesses 

over 200 degrees of freedom @OF) and is capable of such complex movements, that ongoing research is still 

trying to measure, analyze and represent it. In computer animation, this is often referred to as the DOF 

problem [Zeltzer 851, which indicates the non-trivial task of coordinating and controlling the limbs of an 

articulated body to achieve a desired motion out of the vast range of possibilities. 

In practice, a motion control system should offer some easy, natural means of specifying a motion 

and then should generate a realistic animation. Most current animation systems show some kind of a 

'Throughout this paper, superscripts of capitalized letters are indices to the corresponding Appendix. 
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trade-off between these two demands for example, in Wtional keyframing [Sturman 86a], the quality of a 

motion is usually directly proportional to the number of key positions that are specified. Although the 

computer calculates the in-between frames, the animator is still left to work out a lot of noncreative, tedious 

detail (i.e. all the joint rotations) at each key frame. In particular if the desired movements are complicated, 

the animator, rather than the system, does motion control. 

In an effort to alleviate the excessive amount of specification for character animation, a tendency 

towards higher level motion control [Csuri 81, Drewery 86, Zeltzer 83, Zeltzer 851 has emerged. By 

incorporating knowledge, standard actions or tasks like grasping or jumping are automated and visible to the 

user only as parameterized modules. The global coordination of a motion is now done by the computer. To 

achieve a realistic execution of a primitive movement (swinging of an arm, jumping of the body as a whole), 

dynamicsA can be applied to the motion control process [Armstrong 85, Calvert 82, Girard 85, Isaacs 

87, Wilhelms 851. By simulating the real world, objects move as they should move, according to the laws of 

physics. The major drawback with dynamic analysis for computer animation has been that one has to specify 

a motion in terms of forces and torques which is neither intuitive nor easy. 

The compromise which must be resolved is between the need to use dynamics for realistic ifR 
movements, whereas for a convenient, userfriendly specification, a high-level, task-oriented approach is 1 I 1 
necessary. The fundamental goal of this research is to merge ideas from both techniques in order to come to 111 
terms with one of the mechanically most intricate actions that an articulated body is capable of performing, 

legged locomotion. 

1.2. Proposed Work 

This thesis introduces a control method for locomotion of legged figures, with particular emphasis 

on humans. The title Goal-Directed, Dynamic Animation of Bipedal Locomotion really indicates the 

interdisciplinary character of the problem: the application is computer animation, thus the main goal is to 

calculate a body reference position, orientation and all the joint angles over time. 

The term goal-directed is borrowed from Artificial Intelligence or Robotics. In this context, it stands 

for a high-level control, where the system, rather than the user is an expert on each of the various gaitsA of 

locomotion. The system is told what to do and not how to do it. Goal-directed, as used here, does not address 

issues like changing directions, path planning or collision detection [lozano 791. Algorithms for these 

problems could be implemented on top of our control. 
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Dynamics of legged systems originated in Biomechanics and Robotics, and, as mentioned above, 

recently found applications in computer animation. Although in all three cases dynamics denotes the 

simulationA of the real world, where forces and torques govern the motion of masses, there are subtle 

differences in the rationale behind their usage. In Biomechanics Winter 791, dynamic models of the legs are 

studied to obtain information about the exact muscular forces that are applied during the various phases of a 

locomotion cycle. In Robotics [Raibert 86a1, dynamics is inherent in actual machines that walk or hop. To 

solve problems such as balance and the control of external forces, the mechanics of bipedal robots and their 

underlying dynamic models have to be kept simple with the effect that resulting locomotions look rather stiff 

and not human at all. But natural, realistic movements are exactly the salient ambition in computer animation 

of articulated bodies. 

The approach taken here is to think of dynamics as a sort of low-level control to produce the generic 

locomotion pattern, which is visually upgraded by some kinematic "cosmetics". The dynamics are regulated 

by higher levels of control, in that the proper forces and torques to generate a desired locomotion are 

calculated as a result of a stepwise decomposition of a task (e.g. walk at speed v ~ ) .  

The system, which is named KLAW &eyframe-ms Animation of MJdking), has been implemented 

according to these principles. KLAW generates human walks that meet certain walking parameters like 

desired forward velocity, step length or stride width, which are conveniently specified by the user. A walking 

sequence includes starting from a resting position, acceleration, rhythmic phase, deceleration and coming to a 

full stop. 

It should be understood, that although the system in its current state of development is only able to 

produce bipedal walks, this approach can easily be applied to other gaitsA as well as to figures with more 

than two legs. 

1.3. Motivation 

Before the era of computer animation, Disney animators had already recognized the importance of 

realistic reproduction of motion and their great success was based on the long hours they devoted to studying 

and observing the movements of humans and animals [Zeltzer 851. The human eye seems to be very sensitive 

to "errors" and gets disturbed by irregularities in standard actions that it perceives every day. 

The natural animation of legged locomotion has always been a problem because in mechanical 
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terms, it is extremely difficult to capture [Miller 751 even though it appears to be an easy skill of regular and 

periodic nature. Quite frequently, the issue is avoided by just showing the upper body of a figure during 

walking or running. Existing attempts to really animate gaits look rather crude and angular, and the animator 

is overtaxed by the burden of necessary specification. Often, the motion of the foot lacks detail, and the 

timing for the different phases like stance or swing is incorrect; in fact, in most cases, the whole figure 

appears to be weightless or tends to move like a puppet pulled by strings. 

The best results for the animation of human locomotion are currently obtained through recording or 

rotoscoping techniques such as television, multiple exposure or optoelectric methods [Winter 791. To remove 

the inherent noise from the raw data, smoothing and filtering have to be applied, which makes these 

approaches expensive and time consuming. Also, they are quite inflexible, since to obtain desirable variations 

of a locomotion sequence, the whole procedure has to be repeated each time. 

The above difficulties became the major incentive for developing a control system that effortlessly 

and fairly naturally animates the locomotion of legged figures. In addition, a completely different aspect 

influenced the design and structure of KLAW. Motivated by research on how real living beings control 

walking [Peatson 763, our approach tries to incorporate results from Neurophysiology: walking appears to be 

an automated activity governed by the subconsciousness. The only mindful action we take is to have an idea 

on how fast we want to walk at any time or, what type of wallc (or gait) we prefer. This is exactly the input to 

KLAW. The muscular torques required to move the legs in order to produce a desired wallc are generated 

completely internally (one never thinks in terms of forces or torques). The actual motions of the legs are 

executed by the autonomous motor programs [Csuri 81, Zeltzer 82b1, each of which controls a certain group 

of muscles and joints (synergies). In KLAW, rules or internal knowledge about locomotion shape the motor 

programs, which will in turn determine the proper forces and torques; the synergies are essentially the 

low-level systems of differential equations which take those forces and torques to produce a motion. Section 

3.2 describes this analogy in more detail. 

In the first part of the next chapter, a discussion of how current animation systems tackle the general 

problem of motion control is given. This is followed by a summary of the most significant results on legged 

locomotion from the areas of Robotics and Biomechanics. The basic approach taken here is outlined in 

chapter 3 and the main concepts are illustrated. In chapter 4,s and 6, the control algorithms are described 

step by step and implementation issues of KLAW are addressed. Chapter 7 continues with the presentation 

and evaluation of results gathered from various test runs with IUAW. A comparison with walking data 

obtained from film is carried out. Finally, chapter 8 concludes with a final evaluation of our approach and 

suggestions for future work 
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Chapter 2 

Overview 

2.1. Motion Control in Animation Systems 

An animation system has to supply the user with tools to generate sequences of motion. Motion 

control is the specification of the frame to frame changes in an animation that create the illusion of an 

action [Sturman 86bl. A computer animation system must be able to generate and record the changes in 

motion of an object which the user requires. We agree with Wilhelms [Wilhelms 861, that this process is still 

in its infancy and that it is difficult to design for 3-D motion because there is a wide range of possible 

movements plus an immense amount of information that has to be specified. 

In designing an animation system there is a trade-off between avoiding constraints on the 

imagination of the animator (i.e. giving him complete control over the motion) and avoiding the need for him 

or her to define all the details of motion. None of the control techniques below should be considered as 1 
optimal, for they depend largely on the application and users for whom they are intended. In entertainment, 

communication comes before realism: traditional animation skills become important [vanBaerle 861; the 

characters should often look funny, elastic motion is exaggerated, major actions are preceded by anticipating 

movements and scene composition is a central issue, etc. For animation in science, the major goal is the 

simulation of what really happens; movements should look the same as they do in real life. 

As vanBaerle [vanBaerle 861 pointed out, from the viewpoint of the animator, all current animation 

systems have drawbacks that limit the animation process in one way or another. To get the desired motion is 

also timeconsurning; for instance, it took 14 months to produce the 13 minute film Dream Flight [Magnenat 

831. 

An extensive bibliography on current systems is given in a paper by Magnenat-Thalmann [Magnenat 

851. Attempts have also been made to classify the different approaches to motion control [Wilhelms 

86, Zeltzer 85, Forest 861. Depending on the amount of specification needed to define motions or, 

conversely, the amount of knowledge the system has about generic types of movements, they can be placed 
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on a scale from low-level to high-level control. Alternatively, one could partition the techniques according to 

whether they are purely kinematicA or use dynamic analysis (dynamicsA). 

In the following, two classes of control mechanisms are distinguished: interactive (visually-driven) 

and scripted (language-driven or algorithmic). Interactive motion conml means that the description of a 

movement causes immediate realtime feedback on the screen. Thus the animator is able to obtain a quick idea 

of a motion, possibly modify it and proceed with the specification process. 

Keyframing is the oldest such method and is still used by most of today's commercially available 

systems. In the original 2-D animation systems [Catmull 781, key-positions for a motion sequence (usually 5 

frames apart depending on the complexity of the movements) were defined by the user and the computer 

interpolated the in-between frames using, for example, linear, quadratic or cubic splines. With the advent of 

3-D, this method was adopted into systems like Body [Ridsdale 861 or BBOB [Sturman 864. Now the model, 

motion spe~~cat ion  and interpolation are expressed in 3-D. In order to move a character or parts of it, 

control devices like joysticks are used, which permit the interactive change of the transfornation matrices at 

the joints. Since a higher control is not present in these systems, unrealistic and impossible movements can 

result. 

Another interactive technique, parameterized-keyframed animation, minimizes the above problems 

through a slightly higher level of control. Objects, as well as movements are parameterized. The 

representation of an object contains information on how it may move, thus its DOF and limits of the motion 

are defied implicitly. In EM [Hanrahan 851, parameters determine and possibly constrain rotations by 

imposing bounds on them. The animator has an interactive control over the parameters; by changing their 

values (i.e. joint angles), he can specify a motion, or better, a new key frame. The in-between frames are 

generated by interpolating the transformation parameten. 

Keyframe animation generally has the disadvantage of providing only a very low-level of control. 

For instance, to make a figure bend, the torso is rotated forward, but at the same time, both legs may rotate 

back off the floor and have to be adjusted manually. There is also no implicit knowledge of balance, other 

objects in the environment, and the like. But on the other hand, the animator possesses total control which is 

invaluable for expressing complicated movements. 

A third interactive motion control technique is applied in Virya [Wilhelms 863. Control functions 

specify the motion for each DOF (when operated in pure kinematics mode). Since one control function is 
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stored for each DOF, changes in motion can be easily made by manipulating individual functions. The major 

drawback with control functions is the difficulty imagining or visualizing the resulting motion in the 

animated world. 

In scripted animation, the motion is described as a formal script by the user and interpreted by the 

computer in a batch-type manner to produce the animation. Systems like ASAS Reynolds 821 or 

MZRA [Magnenat 831 offer high-level languages to express motion. These allow coordination and 

interactions of objects. ASAS is based on LISP and includes graphical objects and operators. MZRA, which is 

an extension of PASCAL, supports 3-D vector arithmetic, graphic statements, standard functions and 

procedures as well as viewing and image transformations. MZRA further permits the definition of 

parameterized, 3-D graphical abstract data types for static objects (figures) or animated figures (animated 

basic type, actor type). Graphical variables of animated data types can be animated by specifying start and 

end values, a lifetime and a function that defmes how values vary with time. The idea of data types which 

incorporate animation is fundamental also to ASAS, where a graphical entity represents an actor with a given 

role to play. The ideal characteristics of a language to specify human movement have been discussed by 

Calvert [Calvert 881. 

Zeltzer [Zeltzer 851 has described this method of using scripts as animator-level animdtion, meaning 

that the animator programs the motion. For human-like characters, the algorithmic formulation of complex 

movements tends to be fraught with problems. 

If motion control is achieved at a very high level [Zeltzer 83, Drewery 86, Csuri 811, animation 

commands are expressed in more general terms much like natural language (e.g. "walk to the door"). This is, 

what Zeltzer [Zeltzer 851 denotes as task-level (or goal-directed) animation to emphasize that the animator 

only states general tasks like "walking" or "grasping", which the system then transforms internally using an 

intelligent hierarchical procedure to generate the low-level primitives needed to draw the frames. The system 

is told what to do and not how to do it. If the motion to be expressed is very regular or periodic like walking, 

this method can be readily applied and relieves the animator by filling in the details using default values. 

Zeltzer designed SA(Ske1eton Animation System), where the internal hierarchical procedure to 

obtain the movement instructions from the task specification is implemented in 3 layers [Zeltzer 82bl: at the 

top-level, a task manager isolates the motion verbs , like "walkn, from the task and assigns it to a 

corresponding skill s, which is internally represented as an intelligent data structure, a frameA. Attached to it 

are slots that point to other skills which, under certain conditions, might have to be executed first before s can 
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be satisfied. This inherits the idea of potentiation and depotentiation [Zeltzer 831, whereupon one skill may 

enable or disable other behavioral units and the extent to which this is done reflects the richness and 

flexibility of behavior. As an example, the skill for walking might have a slot for "stand up", which is 

potentiated each time a walk is requested. If the figure is already standing, it starts to walk, if it is sitting on 

the &round, then the stand-up skill becomes active first, and in turn might activate, or at least potentiate other 

skills. At the middle level, the skills now get executed by corresponding motor programs, which invoke a set 

of local motor programs (LMPs) on the lowest level. For walking, the LMPs could be left swing, right 

swing, left stance, right stance. All motor programs are implemented as finite state machines with the input 

alphabet consisting of feedback signals (events) from the movement process. For example, the FSM for the 

left swing phase in walking would go into its final state if the event "heel-strike" is signaled. The control is 

then returned to the FSM of the walkcontroller. This approach supports adaptive motion Geltzer 851 

yielding an intelligent system incorporating information about the environment, collision detection and 

obstacle avoidance &ozano 791. 

There are other motion control techniques that do not quite fit into the proposed classification 

scheme. Badler's [Badler 791 research initially focused on notation systems like Labanotation, whose prime 

goal is the recording of movement. He proposed a computerized version of Labanotation and designed an 

architecture [Badler 801 consisting of one processor for each joint of the body. These joint-processors execute 

parallel programs which contain descriptions of motion expressed in Labanotation-primitives (directions, 

rotations, facing, shape and contact). A progression-processor is responsible for the center of gravity and is a 

monitor for scheduling. The monitor further maintains the body data base, supervises possible contact events 

and passes the joint positions to the graphics output. Although the architecture is quite notable, this approach 

is most useful to experts in Labanotation who can describe a dance sequence in this complicated notation. 

In recent years, Badler et al. have been developing TEMPUS, a system to animate human figures. In 

order to obtain different key positions of a figure, the user is no longer required to define all the joint angles. 

Instead, positioning is done by specifying multiple constraints, or goals, and the system calculates the joint 

angles by applying an inverse kinematicsA method to meet these constraints [Badler 871. A goal has two 

parts: the desired location of a limb, and a weight which indicates the relative importance of the constraint or 

the degree to which the constraint should be enforced. For example, the user may define the locations for the 

left (GI) and right (G2) hand as two constraints, the former with a weight of 40, the latter with a weight of 

10. If both goals are attainable, i.e. both hands can reach their desired locations, the system calculates the 

angles for the joints between the two hands, ignoring the weights. If the specified locations are too far apart 

to be reached by the hands, the goals are approximated the following way: since the weight of the left hand is 
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4 times bigger than the one of the right hand, the distance between the left hand and GI will be 4 times 

shorter than the distance between the right hand and G2. Besides this kinematic algorithm, which supports 

keyframing, it has been an ongoing process to embed ideas from other techniques like dynamics (see below) 

or task-oriented control into TEMPUS. As Badler notes [Badler 881, no single technique is generally superior 

for articulated motion conml. 

There are other approaches that use combinations of motion control methods. Forest Forest 861 

applies a parameterized-keyframed concept which relies on ideas from algorithmic animation. A keyframe- 

based subactor, which is a variable of type subactor and defined similarly to an actor in MIRA, is dependent 

on some parameters, whose values change from keyframe to keyframe. Usually, interpolation is applied to 

get parameter-values for in-between frames, but if a law (algorithm) is specified for the behavior of a 

parameter, interpolation is ignored and the values yielded by the law are used. This is particularly useful 

because, for instance, the laws of dynamics (see below) could be implemented to calculate the values of 

certain joint-angles when needed, thus resulting in a more realistic motion. 

Another animation system, Twixt [Gomez 851, is also logically situated somewhere between a 

keyframe and a scripted system. It is based on event-driven animation, which is more of a concept than a 

particular technique for motion control, because it considers all the different aspects of making animation: 

control values (of possibly different types) for position, rotation, scaling, color, transparency etc., together 

with the time when they are used, define events. Control values are the input to associated display functions, 

which output new values contributing to the picture. A track is a time-sorted list of events describing the 

activity of a particular display function F. Events are stored only if an input value for F changes, then 

interpolation is applied between different values. Tracks are treated as abstract objects which can be linked 

together and transformed. For example, one could transform the track for the position of object A into object 

B's position track (this is possible since both are of the same type) and multiply it by -1. The resulting 

animation would show B exactly mirroring A. Due to this manipulation on the track-level, Twixt is not only a 

keyframe system, but inherits some higher algorithmic control. In terms of user-friendliness, the definition of 

display functions seems rather abstract. Much of this approach is incorporated into commercially available 

systems, such as those of Vertigo and Wavefront. 

All of the above mentioned motion control techniques are built on a kinematic model of the objects. 

Motion is generated solely by the determination of positions over time neglecting the forces and torques that 

actually cause the motion. Thus movements often produce a somewhat unrealistic appearance [Girard 83.  A 

dynamic analysis describes a system with the underlying physical laws of motion. Dynamics has appeal as an 
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alternative method for motion control, since the behavior (movement) of an object is totally defined by its 

equations of motionA. The main advantage over kinematic systems is that the motion is bound to look natural 

since bodies move under the influence of forces and torques (such as muscle torques) or gravity in a way that 

depends on the actual physical characteristics such as mass, friction etc. An object responds naturally to 

collisions like heel-strike in wallring. Also, a motion which is caused in one part of an articulated body will 

automatically affect other body parts. 

Wilhelms [Wilhelms 851 and Armstrong [Armstrong 851 used this approach for the simulation of the 

human body. The former developed Deva, where the equations of motion are formulated (using the Gibbs 

formula) for a 15 segment human model. Armstrong derives the equations of motion by Newtonian 

formulation, and specifies 6 equations (actually three pairs) for torques and forces at each link and for the 

relation between accelerations at the parent and son nodes. 

A major problem with dynamics of this complexity is that there are no analytical solutions and as a 

result of the many DOF, the system of nonlinear differential equations becomes rather large. Although some 

effective recursive numerical methods [Armstrong 851 exist, the cost of computation is high and numerical . 
instabilities can occur. f 

Probably the biggest disadvantage is that the forces and torques must be specified as input to initiate 1.  
and guide a motion. Whereas with kinematics, movements are defined by positions in space and the 

animator has to make adjustments until the motion between these positions looks right, with dynamics, 

motions look perfectly real, but the animator has to experiment until he gets the one he desires. 

This somewhat limits the usability and practicality of pure dynamics for the purpose of animation. 

Attempts have been made to get around the force-torque specification problem, or in general, to simplify a 

full-blown dynamic simulation in one way or another, by applying some mixture of dynamics kinematics 

concurrently. 

In Virya [Wilhelms 861, as already mentioned above, control functions define the movements of 

either translational or rotational joints over time, when operated in kinematic mode. Virya also supports a 

dynamic mode where these control functions represent forces for sliding DOF or torques for revolute DOF. In 

this mode, one is faced with exactly the above difficulty of having to non-intuitively specify motion in terms 

of forces and torques. Virya therefore offers a hybrid k-d mode, in which the control functions describe 

translations or rotations of a joint as in kinematic mode. These descriptions are then taken to estimate the 
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forces or torques for the corresponding DOF that will reproduce the specified motion when input to the 

underlying equations of motion for that joint. However, the application of the hybrid k-d mode is rather 

restricted: since the calculated forces and torques are only an approximation obtained by a stripped-down 

inverse dynamicsA procedm, the dynamically generated motion will not be exactly the same as its kinematic 

description in the control functions. In addition, the motion for a joint has to be defined at each time step first 

(as a control function), which is basically all that is needed in computer animation, so the subsequent 

dynamic simulation is of little immediate contribution. Nevertheless, it is fair to say that acquiring knowledge 

about forces and torques is helpful in shaping the control functions in dynamic mode. Also, applying 

dynamics might still be useful if the motion of certain joints is known and the remaining DOF obey the laws 

of physics. 

Another approach, based on dynamics enriched with some kinematic aspects, is shown in 

DYNAMO Faacs 871. At each time step during a dynamic simulation, behavior functions describing the 

desired forces or motion of an object are executed first. Their output is then used to solve the dynamic 

equations. For example, the behavior function for damping of a joint accepts as input the angular velocities at 

each time step and calculates the decelerating torque. Kinematic constraints can be specified in terms of 

accelerations for some DOF for every time step, and this reduces the number of equations much like the 

control functions in Virya during hybrid k-d mode. DYNAMO also supports inverse dynamics in case the 

motion for a DOF is known, but not the forces. Through the use of behavior functions the system is able to 

give elementary movements like a swing or a kick a realistic appearance. 

i 
A step in the opposite direction has been undertaken by Girard and Maciejewski [Girard 851. They 

designed PODA, a system to animate legged figures, which is implemented using kinematic techniques 

extended by a few very basic dynamic ideas. The dynamics became necessary to ameliorate the typical visual 

kinematic side-effects when animating locomotion, such as bodies looking as if they were suspended from 

strings dragging their feet behind them. The dynamics in PODA define the motion of a body as a whole. The 

vertical and horizontal control are treated separately. In the vertical case, the animator has to supply the 

system with an upward force for each leg, which will cause an acceleration depending on which current 

phase the leg is in. The trajectory followed by the body is just the sum of all the individual leg accelerations. 

The horizontal path of the figure is specified by the animator as a cubic spline. The summation of all the 

horizontal leg forces that are input to the system will yield an acceleration, which determines the position of 

the body on the spline. The legs are moved kinematically. The animator is able to design different gaits for 

figures with variable number of legs by assigning values to parameters like duty factorA, relative phaseA, the 

duration that the leg is on the ground and in the air during each cycle, etc. A step is specified by the trajectory 
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of the feet through key positions. The coordination of the legs is done by the system. To make sure that a foot 

stays on the ground during a support phase, the inverse kinematics problem has to be solved, which is done 

by generating the Jacobian and calculating its pseudoinverse. 

Although results h m  PODA are quite impressive, we believe that a system for animating legged 

locomotion should not only coordinate the legs but also execute the quite intricate movements of the legs 

autonomously without the user having to specify positional data over time. The simulation of the legs is an 

appealing thought, since the control is shifted to the underlying physics. But this brings along another 

problem as mentioned above. Since we want the system to behave in a certain way, it becomes 

non-conservativeA and knowledge about external forces and torques is required to produce a desired motion. 

As long as one can not conveniently determine the inputs to a dynamic system, dynamics remains just a toy 

in computer animation. The fundamental difficulty k not to derive the equations of motion, it is to control 

them. One way in which dynamics can succeed is to make it more application-oriented, i.e. to have different 

dynamic models for different, specific motions rather than smving for a universal model of a whole figure 

with its many DOF. At the same time, knowledge about these specific movements could "guide" the 

dynamics. 

In this thesis, the control of legged locomotion is investigated. A higher level control is suggested, 

where informkion and rules about the locomotion cycle lead to the determination of the forces and torques 

required to move the legs. The dynamic model is tailored for simulating a gait Studies on legged locomotion, 

which are presented in the next section, have inspired this approach. 

In summarizing the motion control techniques described above it should be noted that none can be 

called best or worst per se, although there is a tendency away from keyframing towards higher levels of 

control. It is questionable, however, whether there will be a system that provides a high level, task- 

oriented control for all of the types of movements which complex articulated figures such as humans are 

capable of performing. That is why keyframing will almost certainly survive as a means to specify 

complicated, individual and detailed motions that can only be "hand-coded". 
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2.2. The Control of Legged Locomotion 

The scientific analysis of legged locomotion began in 1872 with Eadweard Muybridge. By 

electronically triggering a series of cameras along a horsetrack in California, he was able to prove that there 

are phases during the trotting of a horse, where all 4 feet are off the ground. Subsequently, Muybridge 

extended his studies of gaits and postures to other mammals including humans. His extensive photographic 

documents are published in several volumes Wuybridge 701. 

Since then, research on different areas of science has contributed to a better understanding of legged 

systems. A lot of investigation has been done on human walking Dagg 77, Inman 811, and at least 

conceptually and kinematically, it is well understood. Most research is of an analytical nature and little has 

been done to actually assemble or synthesize a whole waking sequence. In the following, some results from 

Neuro-Science, Zoology, Biomechanics and Robotics are briefly discussed keeping in mind our main goal, 

the animation of bipedal locomotion. 

In Neuro-Science, the control of walking, running, etc. are investigated. Early in this century, C.S. 

Sherrington and T.G. Brown defined 2 concepts that describe animal locomotion pearson 761. They 

observed - independently from each other - a basic rhythm (pattern), which is generated entirely within the 

spinal cord, thus somewhat subconsciously, and reflex actions, that reinforce this rhythm. The reflexes, 

caused by sensory signals during one step, elicit the next part of the cycle. Although most of the research was 

done on cats and cockroaches, it is widely accepted that these concepts are applicable to humans as well. A 

mathematical model of a possible structure and operation of the spinal pattern generators was developed at 

SFU by Patla Patla 851. 

Locomotion in Zoology involves studies of the gaits of animals. Alexander [Alexander 841 classifies 

gaits and identifies some of their important features. The 2 major gaits for bipeds are walk, where at least 

one foot is on the ground at all times, and run, which contains phases during a strideA when both feet are in 

the air. Alexander also examines the effects of body-size on motion and he shows that mammals (including 
u2 humans) of different height move dynamically similarly, if their Froud numbers - are equal (here u is the 
8h 

speed of travel, g is the acceleration of free fall, h is the leg-length). Two systems behave dynamically 

similarly, if the motion of one can be made identical to the motion of the other by multiplying all forces, time 

intervals and linear dimensions by a constant (e.g. 2 pendulums of different length move dynamically 

similarly). A practical result from this hypothesis is that animals of different sizes use the same gait when 

traveling with equal Froud numbers. 
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The conservation of energy in mammalian walking is another important principle. Mammals 

naturally choose a cadence as to more or less minimize energy cost at any walking speed (see below). 

Alexander derives formulas for the horizontal and vertical forces exerted in human walking and running on 

the basis of this principle. Research on humans Fman 811 has indicated that any variation in the individual, 

natural walking patterns resulting from alterations of step length and step frequency at a given speed, 

increase the required energy per unit distance traversed. The total energy expenditure for a person during 

walking is shown to be directly proportional to the square of the forward velocity. Energy per unit distance 

walked per unit body weight is also investigated [Inman 811; an adult human seems to be walking most 

"efficiently" at a speed close to 80 mlmin in the sense that energy cost per meter traveled per kilogram of 

body weight is minimal at this speed. In this context, it should be mentioned that in terms of total energy 

expenditure, running is comparable to a bouncing ball, whereas walking resembles more a rolling egg. In 

fact, energy in walking is almost at a constant level, since kinetic and potential energy rise and fall in 

opposite phases. 

The Biomechanics of locomotion can be defined Winter 791 as the measurement, description, 

analysis and assessment of locomotion. The measurements involve recording the movements (by filming or 

other means), recording of the electrical signals of muscular activities (electromyography), and the use of 

force plates to get ground reaction forces. The description and analysis of locomotion require a dynamic 

model of the body-system, defined as a set of equations of motion for each DOF. The equations can be 

solved in 2 ways: the forces of the system may be given and the resulting motion is determined (t5nvard 

dynamics problem), or the motion may be specified with the objective of finding the forces to produce this 

motion (inverse dynamics problem). Since measuring forces is usually hught with inaccuracy, the inverse 

problem is solved fmt, The calculated forces can be used to test the model by solving the direct problem 

yielding kinematic data, which can be compared to the original motion. 

Under certain circumstances, when the body forms one or more closed loops with itself or an 

external system, the initial inverse dynamics problem becomes difficult to solve. This is known as the closed 

loop problem [Vaughan 8211. The most common example of this problem is the double support phase of the 

walk cycle: in a simplified model in 2-D, where we assume 2 stiff legs jointed at the hip, they form a triangle 

(closed loop) with the ground; only one angle is needed to totally specify the system, thus only one equation 

of motion results, which permits calculation of the magnitude of one force. However, individual ground 

reaction forces and a hip-torque may arise that make the system underdetermined. Vaughan [Vaughan 82a] 

classified common closed loop problems for the human body according to the degree of 

over-(under)determinism and the number of extremities which cause closed loops. He [Vaughan 82b] also 
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derived a general solution for this problem Waughan 82b], formulated as an optimization problem. 

Horizontal and vertical reaction forces were predicted reasonably well, although their points of application 

could not be determined exactly. (A similar type of problem occurs in inverse kinematics, when redundant 

DOF are present there is usually an idimite number of solutions for the angles of the proximal joints given 

the position of the distal ends.) 

Solving the equations of motion for human systems is not the only difficulty. It is also difficult to 

choose a reliable model, which inherits all the characteristic factors of locomotion. It seems, even though 

bipedal walking and running are well observed and documented processes, that the abstraction and the 

formulation of proper equations of motion is troublesome. McMahon WcMahon 841 defmed a ballistic 

walking model. He observed that human locomotion has quite a lot in common with the motion of a 

pendulum. Electromyographic measurements show muscular forces (torques) during the double support 

phase but very little muscle-activity in the swing phase. Therefore, the swing leg behaves much like a 

conservative jointed pendulum. By trial and error, McMahon determined the initial angular velocities of 

thigh and shank for various step-lengths. In the simple case, the model only simulates a compass gait (see 

section 5.3), but according to the author it can be extended to include additional gait-determinants. Since the 

model ignores the stance leg, which implies that the simulation is just done for about half a stride, a general 

statement about the validity of the approach for a total walking sequence must await further investigation. 

Beckett and Chung Peckett 681 also investigated the behavior of the swing leg of a walking stepA. 

The motion of the hip follows a sine curve and is assumed to have constant velocity. Restraints are imposed 

on the movements of the swing leg according to 3 phases: in phase I, the toe is fixed to the ground and the 

foot rotates around it (this happens before the actual toe-off). In phase 11 (after toe-off), the ankle joint is 

locked and the toe moves along a predefined curve (which seems to be a very heavy restriction). Phase 111 is 

entered when the thigh reaches maximum flexion; then only the knee-joint is active until the leg is straight. A 

positive hip torque of constant magnitude is applied during the first 10% of a step, i.e. during phase I, to 

accelerate the leg and a negative hip torque is applied for the last 12% of the step to decelerate the motion of 

the thigh. The authors note that the torque at the knee plays a minor role during the swing phase in level 

walking. The knee is extended mainly through the negative hip torque at the end of the swing. Also, 

. difficulties of obtaining smooth transitions between phase changes are reported, especially from phase I1 to 

III. 

At this point, our main objective should be recalled: we are trying to find ideas from the above areas 

to implement bipedal locomotion for the purpose of computer animation. The last 2 examples, although 
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giving concrete formulations, address, as indicated, only part of a total locomotion cycle with only one leg 

involved and no upper body present. Hence the control problem of coordinating the different phases like 

stance and swing is avoided. Moreover, all simulation was done in 2-D. When extending the problem to 3-D, 

besides having to cope with more DOF, there is one particular issue that becomes non-trivial: balance. 

In Robotics, where actual legged machines have been built, the problem of preventing the robot from 

falling over has been solved in different ways. Raibert presents an overview of legged robots and their 

justification m b e r t  86b]. Early walking machines all relied on four ar more legs. The problem of 

maintaining balance becomes a static one; if at all times during locomotion the center of gravity (cg) falls 

within the convex hull spanned by the supporting legs, the figure can not fall over. For instance, in the 

quadrupedal case, if 3 feet are always on the ground, and the cg lies inside the "triangle", the figure is 

statically balanced (this is actually how 4-legged animals keep balance at normal walking speed). Bipedal 

(or even one-legged) machines have to be balanced dynamically or actively by "controlled tipping" (this is 

how most higher animals balance). Tipping is permitted for short periods of time but eventually it is 

compensated by a tipping in the opposite direction. Only a few machines have been constructed that are able 

to solve this task. 

Miura and Shimoyama Wiura 841 developed a series of dynamically balanced, bipedal robots 

(BIPER-1,2,3,4,5). All are statically unstable, i.e. they have to move in order to not fall over. BIPER-3 has 

stiff legs and treats the stance leg as an inverted pendulum. A walking sequence is expressed as a series of 

inverted pendulum motions. The placement of the swing leg on the ground to compensate the tipping is 

determined by the tipping direction of the inverted pendulum. The movements of the legs are controlled by 

three motors, which allow each leg to swing sideways (pitch axis) or forward (roll axis). To lift a stiff leg off 

the ground, it is first moved along the pitch axis, and then the roll axis to compensate the tipping. The stiff 

leg movements look quite unnatural, but dynamic balance is guaranteed. 

At SFU, Dr. Tad McGeer WcGeer 881 has taken a conceptually different approach in the design of a 

walking machine. He studied passive walking, where the natural dynamic characteristics of the model 

generate the walking cycle without requiring active controlling forces. Whereas in most other approaches the 

.control is the major issue, McGeer's goal is to develop a basic unpowered machine that walks. Initially, this 

research was inspired by a bipedal toy which walks down shallow inclines by rocking from side to side to 

prevent the swing leg from stubbing its toe. No external control is necessary since the energy lost on impact 

(heel-strike) is compensated by the slope of the surface. In McGeer's robot, lateral rocking is precluded by 

the purely planar motion of two paired outer legs and one center leg. In order to clear the ground during 
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swing, the leg(s) must be shortened and subsequendy lengthened during the stance phase. Thus, small 

retraction and extension forces are introduced which make the system not totally passive. However, these 

minor forces along the leg axis enable the robot to achieve a stable locomotion cycle on level terrain. The 

author claims that once passive walking is fully understood, it should be straightforward to add power to the 

machine. 

Raibert Wbert Ma, Raibert Mb] has concentrated his research on running rather than walking, and 

developed a one-legged hopping machine. (Hopping represents a special kind of running where all feet leave 

the ground at the same time. For systems with one leg, hopping is identical to running.) 

This approach possesses 2 significant advantages over the previous bipedal walking method. First of 

all, the coordination of different legs becomes redundant since there is only one leg. Secondly, as Raibert 

argues, the control of the system turns out to be much easier, mainly because during the flight-phase (which 

does not occur in walking), the angular momentum is conserved. As a result, for instance, the foot can be 

positioned at a certain angle in the air, which influences the adjustment of body attitude and forward velocity 

during the stance interval. On the other hand, in the two-legged walking case, since at least one foot is always 

on the ground, generating a torque on the swing leg directly affects the stance leg and balance, which makes 

control difficult. Raibert decomposes the task into a vertical control to regulate hopping height and 

frequency, and a horizontal control for adjusting body attitude (balance) and forward velocity. The latter two 

variables in need of control are closely coupled and regulated by the following two control actions: foot 

placement and hip control. Foot placement, which is adjusted during flight, directly influences balance in that 

placing the foot forward of its neutral position (which is the center of the distance that the body travels during 

the support phase) will cause a backward tipping of the body, whereas placing it behind its neutral position 

will cause a forward tipping. Hip motion during stance phase, generated by a torque at the hip, influences the 

angular momentum and therefore is used to control forward velocity. For example, if no forward acceleration 

should occur, the angular momentum has to be kept constant (the horizontal components of all forces are 

zero), which means that the foot sweeps back at the same rate as the ground. The control actions have 

multiple effects on the system. That is why an alternative control algorithm works equally well: foot 

placement can be assigned to control forward velocity. Placing the foot forward (behind) its neutral position 

.will decelerate (accelerate) the machine. If the foot is positioned directly on the neutral point, constant 

velocity is maintained. The hip torque applied during the support phase now controls the body attitude. 

These ideas are readily extensible to 3-D [Raibert Mb]. 

Although Raibert's control system is as ingenious as it is simple and has solved many problems in 
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the robotics world, its application to computer animation is limited, mainly because the objectives of the two 

applications are so different. Animators are not satisfied with "just" being able to control velocity -they want 

variations of waks and runs even for the same velocity with different step length and step frequency 

combinations, or a diversity in pelvic movement patterns. Moreover, the motion of Raibert's hopping 

machine does not look human or animal-like at all, since it is simplified to a minimal number of DOF. But 

this is exactly why Raibert succeeded in controlling it, and why he was able to make the machine move in 

any desired way. 

The underlying dynamic model of the hopping machine is just a two-segmented pendulum, one 

segment for the upper body and a telescope segment for the leg. We adopted this model to simulate the stance 

phase. The results from the dynamic simulation provide the motion patterns, which are then visually 

improved at each time step by kinematic algorithms (e.g. a human foot is attached and the changing length of 

the telescope leg simulates knee flexion), which in turn affect the dynamics. The model of the swing leg is a 

double pendulum similar to Beckea's and Chung's [Beckea 681. The exact realization is explained in chapter 

6. Before discussing this, in the next chapter, the control algorithm is presented as a whole and the main 

concepts and formalisms are clarified. 
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3.1. The Problem 

The coordination and control of articulated motion is a complex procedure. Movements are entirely 

expressed by rotations around the joints of a body. However, each joint is an integral part of a multilink 

structure, or kinematic chain [Korein 821, which leads to a potentially large number of degrees of freedom 

and makes almost any kind of motion of an articulated figure difficult to capture. A particular challenge has 

been to animate legged locomotion, since rotational movements in the lower extremities must be coordinated 

in such a way as to achieve the desired overall translation of the body. 

In a one-level control system, like keyframing [Sturman %a], it is left to the animator to explicitly 

specify the proper joint rotations over the duration of a movement That is, the animator has to determine 

which degrees of freedom are involved and how much they contribute to producing a desired motion. Thus, 

the specification process can become rather lengthy and intractable. Furthermore, the resulting animation of 

an articulated body is, quite often, only an approximation of the motion that the animator had in mind These 

drawbacks arise because articulated motion is subject to anatomical, physical and environmental constraints 

that make a structural control necessary. If the system only supports one level, the animator has to estimate 

the impact of the constraints while constructing basic movement patterns. 

A better way is to adapt the control system to the structured nature of articulated motion, that is, to 

subdivide it into several hierarchical layers as illustrated in figure 3-1. At the top level, the interaction of a 

figure with its environment is coordinated. This aspect of motion control, termed motion planning, involves 

. algorithms for finding paths and avoiding obstacles. Since motion planning on its own is a major research 

area in animation, vision, and robotics, it is not included in this work The interested reader is referred to 

papers by LomePerez Lozano 791 and to Ridsdale's PhD thesis [Ridsdale 871. The remaining three levels 

affect movements internal to a figure and are generically known as joint-coordination or motor 

control [Zeltzer 82bl. They address the coordination between the segments of a body, the coordination within 

a single segment, and at the bottom level, the actual rotations at each joint. If all of these issues are 
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Figure 3-1: Layers of coordination in articulated motion. 

incorporated into an animation system, one arrives at a high-level, goal-directed control. Zeltzer [Zeltzer 

82b], as discussed in section 2.1, has been working on such an approach. The key idea is that the system 

"knows" about certain classes of motion and provides the animator with a set of movement commands or 

parameters which completely control the figure. For instance, the parameters for an action like walking could 

be forward velocity, step length, and direction of the walk. The animator no longer has to specify joint angles 

over time because the system, once initiated, is able to autonomously execute a desired motion. This type of 

control, as well as the way that knowledge about figure motion is integrated into the control process, parallels 

results from Neurophysiology on how living organisms manage to control complex articulated movements. 

We therefore take a closer look at a simple biological control system from which we derive a scheme for 

animating legged locomotion. 

3.2. The Basic Approach 

Biological movement systems are inherently goal-directed [Zelaer 831. They are able to constantly 

master complex sequences of articulated movements, seemingly effortless and partially governed by the 

subconscious. It appears that information about the situation or stage which an organism is in, and 

knowledge of the impending action reduce the number of degrees of freedom to only allow a specific motion 

to take place. For instance, if a cat sees a mouse, the angle of tilting and the turning of the head and neck tune 



Theory 

the spinal motor centers so that the brain only has to fire the command "jump" to make the cat jump in the 

right direction to catch the mouse [Greene 721. The key notion is that higher vertebrates maintain a 

distributed set of hierarchical motor programs, with the effect that the whole system with many degrees of 

freedom gets decomposed into many subsystems, each with only a few degrees of fkdom [Csuri 811. An 

alternative view suggested by Greene [Greene 721 assumes that subsystems with many degrees of freedom 

are guided by higher level control systems which possess only a few degrees of freedom. 

A simple motor control system is presented in figure 3-2 (a). The brain takes on a central role. 

During the learning period of a motion, it defines synergies, which are groups of cooperatively acting 

muscles (and joints) capable of performing a particular class of movements. At the same time, the brain also 

trains or determines the motor programs that control the synergies to execute a specific action. It is possible 

that different motor programs act upon the same synergy. For example, the synergy of the hip, knee and 

ankle joint, comprised mainly of the hamstrings, quadriceps and aiceps muscle groups, is used by the motor 

program for kicking a ball as well as for walking. The motor control programs are organized hierarchically 

(and actually implemented as layers of local motor programs to indicate their increasingly local effect) by 

stepwise refinement of the control and reduction of the number of degrees of freedom for an action. Because 

of their interconnection, the (local) motor programs can be combined in various ways to suit the respective 

circumstances. This accounts for the immense flexibility in behavior and makes it unnecessary to store 

explicit movement descriptions. 

Once a skill is acquired it becomes part of the "muscle memory". The lower level nervous system is 

able to autonomously carry out the motion issuing the proper motor programs. Movements now proceed 

without the total attention of the brain, which is only active to initialize and assign global motion parameters. 

The brain, therefore, behaves much like the pilot of an airplane, with the motor programs representing the 

autopilot. As a pilot, it supervises what happens by receiving constant feedback from all parties. If required, 

the brain may also intermpt the current process, modify synergies, reshuffle motor programs or just switch to 

another preprogrammed motion (this is indicated by the dashed line in figure 3-2 (a) ). Because of the 

interrupt capability all biological systems are extremely adaptive to their environment. In figure 3-1, which 

explains the different layers of coordination, adaptive motion would be handled at the top level along with 

. motion planning. The levels of internal joint coordination are absorbed by the motor programs. 

This natural control concept is adapted to animate bipedal, legged locomotion using the approach in 

figure 3-2 (b). The animator assumes the position of the brain. His task is to initialize the desired motion. 

Since no information is kept on other objects in the scene, feedback at this level, and therefore adaptive 
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a) Motor Control Hierarchy b) Animation of Legged Locomotion 

Figure 3-2: Model of articulated motion control. 

motion, is limited: the animator can just modify some parameters like forward velocity or step frequency; he 

should also be able to change the gait of a figure over the duration of an animation. (Note: this last point has 

not yet been implemented in KLAW, which controls bipedal walking.) 

The final responsibility of the brain, namely to facilitate learning, is not included in the duties of the 

animator. The system already contains knowledge about locomotion, which is exactly the salient benefit of a 

- goal-directed approach. This knowledge is incorporated at various levels: depending on the animator's 

- specification, the control system selects a proper gait that is then decomposed by the (local) motor programs 

into its underlying components. Every gait is made up of the different states from a locomotion cycle. These 

states, in turn, are broken up into the phases which the individual legs happen to be in. Thus, a gradual 

reduction in the number of degrees of freedom, along with a decrease in the levels of coordination, is 
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achieved by the control system which parallels that of its natural, biological counterpart. In KLAW, the 

phases get further subdivided (STANCE1 to STANCE4 and SWING1 to SWING3) to restrict the range of 

possible movements for the dynamics and to adapt the motor system to special cases in locomotion (see 

chapter 6). At the bottom level, knowledge is represented by the dynamic equations of motion. Like the 

synergies, these equations are tailored to perform a specific application, and therefore, in a sense, are kept at 

a minimal number which proves to be advantageous when solving them (see section 4.5). 

It is worthwhile to notice that the hierarchical illustration of figure 3-2 explains the decomposition of 

a task or skiU quite well, but does not reveal all aspects of the control mechanism for locomotion. All gaits, 

once a constant forward progression has developed, are characterized by cyclic or rhythmic activities of the 

legs. Studies in Neurophysiology have led to the hypothesis of spinal pattern generators in vertebrates that 

are responsible for stimulating the proper muscles to drive the legs through their cycles [Pearson 76, Path 

851. There also seems to be some means of peripheral feedback, whereby sensory signals can influence the 

output of the pattern generator such that, for example, an obstacle on the ground could trigger the swinging 

leg to be lifted higher than usual in order to clear the obstacle. 

For computer animation, it has been suggested [Zeltzer 82bl that the pattern generators, which are 

represented by the local motor programs for the various phases of the legs, like left stance or right swing, 

could be modeled by finite state machines. A similar approach was taken here. In KLAW, the successive 

execution of the states for double support and single support maintains the cyclic locomotion pattern. A 

transition between states occurs when the time for the current state has been exceeded. Within a state, the 

different phases are executed concurrently: during double support, both legs are in their stance phases; in 

single support, one leg is on the ground while the other one swings forward. The bookkeeping of what leg is 

in which phase is done at the state level, and therefore, in a sense, by the finite state machine: one just 

imagines that there really are two states for double support, one where the right leg is fmt (leading), and one 

in which the right leg is the trailing leg. The single support state is split up as well, with the left leg in the 

swing phase and the right one in its stance, and vice versa (see also figure 5-1). This method appears to be 

flexible, and it is believed that it can be easily extended to control figures with more than two legs. Each 

additional leg could be accounted for at the phase level and the program for the correct sequencing would be 

. provided by the finite state machine. The dynamic equations would stay the same, since all legs go through 

the same phases, just shifted in time. Also, by the same token, different gaits are merely a timing problem, as 

indicated in figure 3-2 (b) for walking and running. In both gaits, the left and right legs occupy stance and 

swing phases represented by the same sets of equations of motion. It is the relative timing, and the degree to 

which the phases of the two legs overlap, that determines a gait. As the time for double support (stance 
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phases overlap) decreases in walking and eventually vanishes due to an increase in step frequency, the gait 

changes to running. If the stance phases of the two legs move further apart, the time when both legs are in the 

air becomes larger (the swing phases overlap). Thus, although in walking there is a double support state, 

whereas running has a flight state, the individual legs still follow the stance-swing-stance cycle (see also 

section 5.1). 

The principle of sensory feedback, as introduced above, has been applied to the control structure in 

two places: at the state level and the phase level. A locomotion step is defmed as one double support plus one 

single support state. Before each step, the deviations between the current and the desired status of the system 

determine the new configuration for the impending step. This might require a change in step length, step 

frequency, or the rate of acceleration or deceleration of the figure. Of course, this type of feedback becomes 

effective only when a change from the rhythmic pattern is expected, in particular at the beginning, during 

start from rest, and the end of a locomotion sequence, when coming to a halt. Feedback at the phase level is 

provided during the swing phase. If the figure was about to stub its toe or heel while trying to meet a desired 

specification, the leg is raised just enough to clear the ground. This is explained in more detail in chapter 6. 

3.3. The Refined Approach 

In the previous section, a rough outline of the hierarchically organized algorithm to animate the 

locomotion of legged figures was presented. The underlying idea is unique in that an attempt has been made 

to tie together a high-level, goal-directed control and dynamic analysis. The approach is different in principle 

from a pure dynamic method [Armstrong 85, Wilhelms 851, where the user is forced to specify movements 

nonintuitively in terms of forces and torques. It also goes beyond a straight goal-directed system like 

SA [Zeltzer 82b], in which, indeed, a task like walking gets decomposed step by step, but at the lowest level, 

the output, that is the actual joint angles over time, are obtained from clinical data and interpolation 

techniques. This is a bottleneck that makes it impossible to easily produce variations of a walk. The 

interpolations, in a sense, have here been replaced by the dynamic equations. The dynamics create some sort 

of an implicit control by autonomously performing elementary movements. The rationale behind the 

approach as indicated in figure 3-2 is really twofold. There has been an effort to imitate, to some extent, how 

. living vertebrates control locomotion (hierarchical structure), and to simulate how the motion actually gets 

executed (dynamics). 

Figure 3-3 gives a more detailed picture of the control algorithm. It should be regarded as a further 

iteration of figure 3-2, now showing the information that has to be given or that has to be calculated at each 
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level. At the top, the animator specifies certain parameters. Besides simulation time, body height, and body 

mass, there are three fundamental locomotion parameters that largely determine the patterns of motion and 

gait the desired forward velocity (vk), step length (slks), and step frequency (gds). Their relationship is 

expressed by the following simple equation: 

V& = slk ' g* (3.1) 

A major concern in constructing a goal -k ted  system has been the degree to which a task should 

be parameterized. The animator should have access to a simple, yet flexible set of movement commands that 

can generate a variety of instances of a task. In KLAW, therefore, in addition to the locomotion parameters, 

the user may specify up to 28 locomotion atm'butes which individualize the basic locomotion pattern. Among 

these attributes are a stride width factor (lateral distance between the feet), the amount of toe clearance during 

swing and the maximum rotation of the pelvis. A complete list and explanation is given in appendix E. 

After the specification of the parameters, the system does all the necessary computations and outputs 

the body angles as a function of time; these can then be taken to drive an animation of a legged figure. The 

essence of the algorithm lies in its two levels of abstractions. Bearing the hierarchical structure in mind, these 

two abstraction processes could also be viewed as a topdown, stepwise application of high-level concepts 

and a bottom-up, physical construction of the necessary elements for legged locomotion; they are joined in 

the middle by the gait-state-phase reduction mechanism already discussed above. 

The conceptual level contains a few gait-specific rules or laws. They are utilized to transform the 

locomotion parameters into some gait-phase constraints which are fed to the low-level control to "guide" the 

dynamic simulation. In more concrete terms, the high-level control box performs the following tasks: first, 

since at least one of vh, $IdcS and sfk have to be specified by the animator, the system completes (if not 

all three parameters are input) and checks the locomotion parameters by the principle of the normalization 

formula and equation (3.1). At the same time, depending on slks and .rfds, the gait (walking or running) is 

determined. Subsequently, the application of the symmetry of steps concept and the evaluation of state-phase 

timing functions yield the times and final angles for the stance and swing phases (see chapter 5). This 

infoytion is passed to the low-level control, where it forms the consaaints for a special kind of boundary 

value problem [Burden 851, which is evaluated with an approach somewhat like a shooting method. That is, 

the equations of motion for the lower body are solved by interpolating the forces and torques until the 

constraints are satisfied. For example, the simulation of the swing leg is repeated by varying the joint-torques 

until it swings forward in the exact time required and heel-strike occurs with the desired hip and knee angles 

(see chapter 4). 
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Figure 3-3: Schematic diagram of the control system for legged locomotion. 

Although the implementation is quite complex, using eEcient interpolation techniques, a solution is 

usually found in a few iterations. A principal objective is to keep the dynamics simple, otherwise this internal 

calculation of the forces and torques becomes infeasible. Since in legged locomotion, the activities in the legs 

play the dominant role and most of the motion is directed forward in the sagittal plane, a basic two- 

. dimensional, dynamic model of the lower body (the upper body is represented by just a single segment) has 

been proven to be quite sufficient. Consequently, as long as there is at least one foot on the ground, the 

number of degrees of freedom amounts to five, and during the flight phase in running, the model is 

characterized by seven degrees of fieedom (see appendix C. 1). 
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The dynamic simulation produces the generic locomotion pattern which is visually upgraded by 

kinematic measures. The rotation of the foot is added to the dynamic legs, a thigh and shank are 

superimposed onto the telescope stance leg, and gait determinants like pelvic rotation or list get injected into 

the one-hip dynamic model. It is important to notice that, even though a considerable amount of kinematic 

"cosmeticsn are applied, the dynamics are the very heart of the control for they guarantee the natural looking 

rotational movements of the legs plus smooth transitions between the phases and states. In a way, the 

equations of motion guide the lower body kinematics, but because both are executed simultaneously, the 

kinematic computations might, in turn, affect the dynamics. For instance, the simulation of the swing leg, 

where the foot is assumed to be locked, has to take into account the updated position of the heel resulting 

from the kinematic foot rotation in order to detect heel-strike properly at each time step. Similarly, the 

kinematic pelvic rotation can actually lower the hip during the swing phase, which might "force" the dynamic 

leg to increase its hip torque to avoid stubbing its toe. 

Once the angles are calculated for the joints of the lower body, the motion of the upper body is 

determined. This is done with the assumption that the upper body follows or depends on the lower body 

movements. The arms, for example, swing forward with the opposite legs. Thus, the angles of the arms, as 

well as the rotations in the shoulder and spine which compensate for the motion of the pelvis, are expressed 

as simple (at the moment linear) hctions of the corresponding angles in the lower body. With this approach, 

a total of 56 angles for 37 joints of the body plus a position vector in space are computed for each time step 

(24 of these joints model the vertebrae in the spine; a complete list is given in appendix B.2). 

One crucial aspect of the algorithm illustrated in figure 3-3 has not been mentioned in the above 

discussion: the whole top-bottom control StnmKe is applied relative to a locomotion step. The constraints on 

the motion calculated by the high-level control are updated before each step. In this way, the system achieves 

autonomy in that it is able to adapt to changes in the locomotion parameters on a step to step basis. In other 

words, the granularity of the system is one step. (At the end of the previous section, this mechanism was 

indicated when discussing feedback at the state level). 

In the.following chapters, the elements in figure 3-3 are addressed in more detail. The next chapter 

introduces techniques related to dynamic analysis, in particular how the equations of motion are derived and 

solved. The concepts of legged locomotion like symmetry of steps, and the mechanics such as the 

determinants of gait are explained in chapter 5. Chapter 6, then, brings all these aspects together again while 

discussing implementational issues. 
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Chapter 4 

Low Level Control Principles 

4.1. Multilink Structure 

For the analysis and composition of human movements, the body sections that generate a motion are 

usually modeled as a series of interconnected, rigid segments of constant length. Rotational joints represent 

the points of articulation between the segments. 

homogeneous transformation matrix in 2-D as 

I cos Oi sin Oi 

Ai = -sin Bi cos Oi O O 1 
The orientation of each segment i is described by a 

The joint variables Oi can be expressed in two ways: as absolute limb segment angles or as relative lI 
joint angles (figure 4-1). The former define the orientation of a segment independent from the other 

segments. This approach is used for the simulation of the stance phase (see appendix C.l) in order to specify 

the upper body angle with respect to the hip (which is the center of the whole body) rather than relative to the 

origin of the dynamic model, which is set to be the stance foot. 

More commonly, however, the orientation of a segment within a multilink structure is specified 

relative to its parent in terms of joint angles. Each segment has its own local coordinate system 

(transformation matrix) with the property that changing any joint angle does not require a change in all the 

successive joint angles further down the chain. The absolute orientation of a segment i is calculated by 

n;* A,. 

To simulate articulated motion (as opposed to just animating it), the mass, center of mass, and the 

distribution of mass around the center of mass for each segment also have to be known. The masses are 

assumed to be constant and the segments to be symmetrical. The latter implies that the principal axes of 
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inertia are identical to the anatomical axes of rotation, and therefore the products of inertia are zero. Thus, the 

distribution of mass is solely defmed by the moments of inertiaA which are calculated as described in 

appendix B.1. It is submitted, that this simplification (i.e. to assume symmetry in segments) is justified for 

dynamic analysis in computer animation, since it has no significant effect on the motion. 

a) joint angles b) limb segment angles 

Figure 4-1: Examples of multilink structures. 

Assume Oi to be joint angles. The position vector pi to the center of mass of segment i, as illustrated 

in figure 4-1 (a) is defined by 

pi = UCl - 

and pi = 
li = 
P = 
Ucl = 

i i-1 j (gAj) I o , , o ~ ~ ,  where 'i-1 = P - ' [nAk) [O,$,O]T) 

the proximal distance to the center of mass of segment i 
length of segment i 
the position vector connecting the body to the inertial (world) coordinate system 
the position vector to the distal end of segment i-1 . 

If the system is expressed by limb segment angles, pi is calculated as follows: 

Pi = - A 0 ,  r ,  1 and viql = P - [z 
The pi, including their derivatives, make up the translational motion of the centers of mass and are 

used in the process of deriving the equations by the variational principle. 
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4.2. Lagrange's Equations 

The dynamic behavior of a physical system (in this case, of an articulated body) is defined by its 

equations of motion. In classical mechanics there are two fundamentally different approaches to derive these 

equations: vectorial mechanics and analytical, sometimes also referred to as variational mechanics. The 

former is a direct application of Newton's laws, which requires the individual components of a system to be 

analyzed in terms of vector quantities like force and momentum. The forces of constraint, such as joint 

forces, have to be explicitly calculated. I 

The analytical approach, on the other hand, provides a more general study of motion which is of 

higher mathematical abstraction. A system is considered as a whole by means of two scalar quantities: the 

kinetic energy and the work function. Constraints due to the structure of the system are determined 

implicitly, i.e. they are automatically included in the equations. The entire set of equations of motion is 

developed h m  a unified principle, where the calculus of variations is employed to fmd the stationary value 

of a certain action integral. Equation (4.3) below basically represents the solution or necessary condition for 

this integral to have a stationary value. Details about the theory of analytical mechanics are provided in 

[Wells 671 or Weirwitch 701. This mathematical approach is entirely independent of any particular 

reference system, and therefore it is possible to adapt the coordinates to the specific structure of a model. 

The analytical principle has been formulated in various ways, most importantly by D'Alembert, 

Hamilton and Lagrange. Although they are all equivalent, in that they were derived from Newton's laws and 

the concept of virtual work [Wells 671, it was decided to use Lagrange's formulation because it seems to be 

most sophisticated, convenient and simplest to apply as a system gets more complex. 

The Lagrange equations for a system with n degrees of freedom can be written as 

, where r = 1 , 2  ,..., n and 

L = Lagrangian = T-V 
T = Kinetic Energy 
V = Potential Energy 
q, = Generalized Coordinate 
F = GeneralizedForce . 
4, 

By determining the kinetic and potential energies for a particular mechanical system and 

differentiating the Lagrangian according to equation (4.3), an ordinary, second order, nonlinear set of 
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differential equations is obtained that completely determines the motion of the system. There are exactly as 

many equations of motion as degrees of freedom. This coincides with the number of generalized coordinates 

q,. , which are defined as the minimum number of independent coordinates required to describe a system. The 

q, can be angles, lengths, areas, etc., and there may exist more than one valid set of generalized coordinates 

for a given system. For the dynamic analysis of multilink chains, the joint variables ei are commonly chosen 

to be the generalized coordinates. Of course, in the simulation of the stance phase the length of the telescope 

leg changes and has to be accounted for by an additional generalized coordinate a ,  as seen below. 

The meaning of the generalized forces is directly dependent on the choice for the generalized 

coordinates. If q, is a length, then F represents a force; if q, is an angle, F stands for a torque. In general, 
qr qr 

a generalized force is a quantity such that the term F - 64, (64, is an infinitesimal virtual displacement in q, 
qr 

consistent with the system constraints) is the work done by the applied forces, while all other generalized 

coordinates are kept constant, i.e. only q, varies. It is important to realize that the generalized forces only 

contain contributions of the applied forces, whereas forces implicit to the model (expressions like m2 h, 
m2 a 8: in the example below) are taken care of by the left side of equation (4.3); forces of constraint are not 

part of F either and, if necessary as in the case of nonholonomic constraints below, they have to be 
qr 

included explicitly. 

As an example, the stance phase model is explained here briefly. A full illustration and derivation of 

the equations of motion is provided in appendix C.l (the swing phase model is set out in C.2). The 

generalized coordinates are q,. = ( 0 ,  el, O2 ) . They are minimal, independent and sufficient to totally 

describe the system. The position vectors pi of the centers of mass are expressed as functions of the 

generalized coordinates pi = pi ( ql, q2, . . . , q, ) according to equations (4.1) and (4.2), rather than being 

generalized coordinates themselves, which would violate the minimum criterion. For instance, the cartesian 

coordinates x2, y2 of pZ are calculated as follows, 

5 = 3 ( 0 , 0 ~ , 0 ~ )  = ~ + o s i n 0 ~ + r ~ s i n 0 ~  

y2 = ~ ~ ( 0 , 0 ~ , 0 ~ )  = y + ~ c o s 0 ~ + r ~ c o s 0 ~ ,  wherex,yareconstants. 

The Lagrangian for the stance phase is given by 
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With this, differentiation of equation (4.3) yields a system of three equations of motion, where the 

generalized force F, is a force along the leg axis, F and F represent torques about the foot and the hip 9 92 
for the upper body, respectively: 

It should be noted that the Lagrangian approach, as stated above, is only applicable to holonomic 

systems. This requires that the coordinates qr are independent, which is assumed by the definition of 

generalized coordinates. If constraints are present, they must be expressible in a simple algebraic form 

Xi =xi (ql, q2,. . ., q,) ,  so that superfluous coordinates can be eliminated directly (see also degrees of 

constrain@). Holonomic constraints reduce the degrees of freedom and consequently the number and 

complexity of the equations of motion as well. For completeness, although there is no relevance to this 

application, it is mentioned that the problem of nonholonomic constraints (as long as they are of the type 

r=l ar.6qr = 0, where ar are fmctions of the coordinates qr), which can not be integrated, may be solved 

by the method of Lagrange multipliers IJvleirovitch 701. The forces of constraint are now explicitly specified 

in equation (4.3) by adding the term hc.acr to the right side for each constraint c .  

It should be understood that the Lagrange equations or any of the other approaches, including the 

direct application of Newton's laws, are merely a means to construct an eventually equivalent set of 

equations of motion for a given system. The problem of solving the equations is addressed in the following 

section. 
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4.3. Integrating the Equations of Motion 

The equations of motion can be solved in two ways. The method of Inverse dynamics calculates the 

forces given that the motion of a system is specified If qr, 4 and are known over the duration of the 

motion, this amounts to the algebraic evaluation of a discrete set of equations for each time step, where the 

solution at time t has no effect on the equations at time t + At. 

Forward dynamic analysis is the determination of the motion of a system given the forces; they 

involve integrating a coupled system of second order, nonlinear differential equations. The solution process 

is continuous, in that the output from one time is the input to the equations at the next time step. In this thesis, 

forward dynamics were applied to calculate the joint angles over time. Interpolation techniques were 

employed, as discussed in a subsequent section, to approximate the force and torque profiles, that produce a 

desired locomotion cycle, but are unknown a priori. This approach should not be confused with inverse 

dynamics. It resembles more a boundary value problem since only the initial and final values for certain 

variables, as well as some timing constraints, are provided rather than predefming the complete motion (see 

section 4.5). 

Because there are no analytical solutions, the equations of motion are integrated numerically. For 

this purpose, the equations are written in matrix form 

~ i i  = ~ ( q , q )  , 

where A = inertia matrix (n x n matrix for n degrees of freedom) 
q = solutionvector 
B = vector of transient terms (including the generalized forces) . 

For example, the three equations of the stance phase as formulated in the previous section have the 

following matrix form: 
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Note that due to the structure of the system, A is symmetric. Initially, the following simple 

combination of an explicit and implicit Euler method was used to integrate the equations: 

q ( t + A t )  = q ( t )  + A t q ( t )  

q ( t + ~ t )  = q ( t )  + ~ t q ( t + ~ t )  . 

I 

After careful analysis of the resulting motion, it became obvious that the method was only I 

reasonably stable if the initial conditions ( q, q, q ) were kept close to zero and no external forces were 

applied, i.e. the system was conservative. This was not acceptable since a major aspect of the locomotion 

algorithm requires the presence of controlling forces to achieve a variety of movements. The instability of 

Euler's method was somewhat expected because of the several springs and dampers in the system which 

cause the problem to be stiff Purden 83. No formal analysis of the eigenvalues was done to check whether 

they lie within the stability region of the numerical method, which is to verifj. that the errors were introduced 

by the integration process and not due to an inaccurate dynamic model. Since the system is nonlinear, the 

eigenvalues are not constant and would have to be numerically calculated. 

For simulating the motion of a multilink system, an A-stable method [Burden 851 such as 

LIMEX [Zugck 841 or LSODI lHindmarsh 801 is preferred, that has a large stability region covering the 

entire left half of the complex plane. The LSODI integration package was eventually chosen, which produced 

reliable results for this thesis. LSODI solves the initial value problem for an ordinary system of first order 

differential equations. It was therefore necessary to transform the second order equations A q  = B ( q, ) 

into a first order representation A' u = B'( u ) , where the solution vector u is of the form [Burden 8 3  
- 

'2i-1 - 4i - u~~ - u S l  = q  for i = 1 , 2  ,..., n .  

This transformation essentially doubles the number of equations (see appendix C for stance and 

swing phase). Frequently, standard integration techniques require the specification of the Jacobian matrix J 
a bti 

(with jik = - ; i, k = 1,2, . . . ,2n ) of the transient terns. LSODI has to be supplied with the full Jacobian 
8% 

matrix defined by 
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and the vectors is an internally generated approximation to u . 

4.4. External Constraints 

The motion of an articulated body (in general, any physical body) is a result of its interaction with 

the environment and therefore subject to external constraints. For legged locomotion, the principal constraint 

is imposed by the ground. It enables the body to transform its rotational movements around the joints of the 

lower extremities into an overall manslation in space. There have been different approaches in human motion 

simulation as to how the constraints should be mathematically formulated and included into the model. 

Wilhelms [Wilhelms 851 makes use of springs and dampers to confine the motion of body segments. 

Consequently, an stiff system is induced that might lead to integration e m .  This is especially 

the case for simulating ground contact, where large spring and damping constants are required to keep the 

foot, which wries the whole body weight, on the ground Although this method is not employed here to ? 
express external constraints, springs and dampers are introduced at two places to maintain internally desired h 
states: they control the torque values F to balance the upper body, and F at the end of the swing phase to 

'32 O3 

keep the desired hip angle fixed until heel strike( see chapter 6). 

A more appealing approach to the application of external constraints is to analytically constrain the 

motion of the model by reducing it to a subspace of smaller dimension. The ground constraint during the 

stance phase was represented this way. Since the foot of the dynamic stance model does not move (the added 

kinematic foot does as explained in section 5.4), only three degrees of freedom ( a ,  el, e2 ) are necessary to 

describe the system. If, on the other hand, the constraint was relaxed, as during the flight phase in running, 

the changing position of the foot would have to be accounted for by two additional degrees of freedom (in 

total, x,y, a ,  el, O2 ).' In general, this approach involves the derivation of two sets of equations for the 

system, one for which the constraint is active and one for which it is inactive. Unlike the spring and damper 

method, constraints here do not complicate the actual integration process because the extra amount of work is 

done beforehand when deriving the equations. 

Legged locomotion can be characterized as a cyclic activity where each leg follows a strict 

alternation of stance and swing phases ( see section 5.1). In terms of ground constraints, this means that they 
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have to be "turned" on or off with every phase change; using the above technique, this is identical to 

switching between equations of motion. In order to produce smooth transitions, i.e. a continuity in 

movements across phases, the equations of a new phase have to be initialized properly. In particular at heel 

strike, which occurs between the swing and the stance phase, some extra measures have to be taken to 

correctly capture the abrupt change in the motion of the leg. The problem can be expressed as a mechanical 

collision between the leg and the ground. For this purpose, the simplifying assumption is ma& that the 

support is transferred instantaneously at impact from the hind to the front leg, even though in bipedal walking 

the body weight is really shifted between the legs over the duration of the double support phase (in running, 

this assumption would not be necessary since the body is airborne before heel strike). It is also assumed that 

the spring in the leg of the stance model (see figure C-1) is massless, so that for an instant after ground 

contact, there is no reaction force (or velocity) along the leg axis and therefore the linear momentum P, is 

conserved during the collision. Since the angular momenta of the foot L and the hip L of the stance leg 
At h* 

are conserved as well, we can write 

where - means before, + after impact. From these equations (for details see appendix C.3) the thaw -dl.- ,. .: 
velocities after impact c?, 8;. 8; can be calculated and input initial conditions (together with o, el, O2 ) 

into the subsequent stance phase. 

The formulations of the linear and angular momenta above imply that the physical models before 

and after heel strike are described by the same coordinates; but this is not the case, since the swing leg was 

defined earlier as a double pendulum in terms of O3 and 04, and not by o and O1 (see appendix C). 

However, as will be discussed in detail in chapter 6, the knee of the swing leg is extended and "locked" 

shortly before heel strike. Therefore, the model of the swing leg is transformed into a single pendulum of 

fmed length I and hip angle 034 (which can be substituted into the above linear and angular momenta 

equations for o and el ,  respectively). The extension of the knee between the double and single pendulum 

. subphases is a collision that, analogous to above, determines the value of $4 (only one equation is needed, 

see appendix C.3) based on the conservation of angular momentum at the hip of the swing leg 
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The simulation of constrained motion and the application of the laws of collision, as approached in 

this section, are good examples of areas in computer animation where dynamics are clearly better than pure 

kinematic techniques. 

4.5. Interpolation of the Generalized Forces 

So far, the equations of motion have been presented as an initial value problem of the fcnm 

A' u = B'( u ) for every phase, given the initial condition u ( to ) = a. However, this method can not be used 

to produce a realistic locomotion cycle, not to mention a variety of locomotion sequences. Although it is 

possible to apply different initial conditions as well as force and torque values, no mechanism is provided to 

enforce a desired motion. The problem is therefore redefined for each stance and swing phase: 

A'U = Bf(u,F ), subjectto u ( to )=a ,  u($)=P and t O < t l t e  . 
4, 

(4.4) 

Two new constraints are introduced specifying the values of the generalized coordinates at the end of 

a phase (final conditions) and the duration of a phase. These constraints are determined for each instance of a 

phase by the higher level control principles as explained in subsequent sections. The generalized forces F 
qr 

are now expressed as independent variables of equation (4.4). If the general solution to the problem is written 

as 

u = f( t ,F , C ) ,  
qr 

which is a classical root-finding problem where the roots F are approximated by interpolation techniques. 
4. 

In practical &ms, the objective is to find the proper forces or torques such that, given the initial 

conditions u( to ) , the system reaches the final conditions u( te ) in exactly time re . A s  an example, the stance 

phase is considered here: the initial conditions come from the preceding swing phase and the collision laws 

'(as already discussed). The final conditions are the hip angle ds and the length of the leg a,, at time - 
tsee. The equations of motion are now integrated over the duration tslonce in a loop by modifying the hip 

torque Fg and the leg axis force Fw until the final conditions are met. 
1 
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The interpolation of F is performed in two stages. First, the Bisection method computes a 
qr 

reasonable approximation which is then refined by the Secant method. This technique was employed because 

the Secant method converges fast, but needs a good first approximation (see Burden 851). The upper and 

lower bounds for F to start the Bisection method are determined by the following simple algorithm, which 
qr 

ensures that there is a root between the bounds and that they are no more than i n c  apart; it is shown for the 

stance phase, where F represents the hip torque: 

F = F ini t ;  - 
upper = lower = false; 
while ( !upper l l !lower ) 

integrate equations from t = to t o  t = tatma; 

if ( 8, (tstma ) < 8,-dJtattuur 1 )  
lower = true; 
F-lower = F; 
F = F + inc; 

else 
upper = true; 
F-upper = F; 
F = F - inc; 

endif 
endwhile 

A solution to F using the above interpolation technique is usually obtained within a few iterations 
qr 

(between 6 and 10). Once the rhythmic phase of a locomotion sequence is reached, i.e. the forward velocity 

of the body as a whole is fairly constant, the algorithm converges even faster since the F profiles from one 
qr 

step (stance + swing) are carried over to initialize the next (F - init above). It should be noted, though, that 

some of the F are actually represented by functions of time and other parameters, that is, they are not 
qr 

applied uniformly over the duration of a phase. This aspect is dealt with in chapter 6. (Aside: from a 

neurophysiological viewpoint, the process of forwarding the leg torques F from one step to the next could 
qr 

be considered to represent the muscle memory of the lower level nervous motor program for walking as 

described in section 3.2. ) 
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Chapter 5 

High Level Control Concepts 

In the last few sections, the study of legged locomotion focused on a simple dynamic model, whose 

internal structure was specifically designed to naturally support bipedal walking. The equations of motion, 

therefore, can be regarded as the functional synergies of the motion control hierarchy in figure 3-2, that are 

capable of executing a definite range of locomotion patterns under the control of specialized motor programs. 

Each motor program "knows" about a particular action. To this extent, the discussion of the locomotion cycle 

in the subsequent sections and the conclusions drawn essentially symbolize the motor program for bipedal 

locomotion. 

Another analogy might be opportune: if one were to view walking as a programming language, 

virtually compiled by the control algorithm devised in this thesis, the dynamics in the preceding sections 

could represent the syntux of the motion, whereas the walking semantics would be inherent to the conceptual 

understanding or knowledge of the locomotion cycle. In the following, then, a "meaning" is given to the 

dynamics by bringing the two aspects together. In particular, it is shown how the conditions for each phase 

can be derived to solve the problem as formulated in equation (4.4), i.e. how to guide the dynamic model. 

Also, knowledge of the leg kinematics is utilized to visually upgrade the basic locomotion pattern which is 

generated by the dynamics. 

5.1. Locomotion Cycle Characteristics 

Generally, a sequence of animal locomotion can be subdivided into three stages: a short developing 

period characterized by an increase in speed, followed by a dominant rhythmic period where the forward 

velocity is kept fairly constant, and a brief &cay period to decelerate the body. Almost all research on 

locomotion concentrates on the rhythmic phase of a gait on level surface; very little is known about how the 

basic pattern of each individual subject changes under the influence of acceleration, deceleration, or by going 

up and down inclines. Since rhythmic locomotion is just a series of recurring movements with the natural 

period of one stride (locomotion cycle) for every gait and any number of legs, it is sufficient to just direct 

investigations, as well as present kinetic and kinematic results, relative to one cycle. 
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The human walking cycle has been thoroughly studied. A good reference is a book by Inman [Inman 

811, which includes a lot of experimental data from various authors. For bipedal walking or running, a 

locomotion cycle consists of two steps. As long as a symmetric gait (see gaitA) is assumed, where the left and 

right leg perform the same movements, just out of phase, the principal unit of locomotion can be reduced to 

one step. There are two independent parameters (expressed in terms of the step unit) to define a specific 

instance of a gait step length (sl ) and step frequency (sf). Together with their product sl - sf which is the 

speed of the locomotion (v), they form the three locomotion parameters as introduced in section 3.3. 

Walking is possible at a wide variety of combinations of sl and sf. However, a person, when asked to walk at 

a particular velocity, is most likely to naturally "choose" the parameters which minimize energy expenditure. 

This observation is expressed in the experimentally derived equation Fman 811, called nomlizing fonnula, 

which shows a linear relationship between sl and 4 ,  where sl and body-height are measured in m, sf in 

steps1 min : 

sl = 0.004 e sf2 = v V 

sf- body-height 
, because of sl = - . (5.1) 

0.004 - body-height sf 

The body-height normalizes the equation. It indirectly represents the length of the legs, which, of course, 

have an effect on the preferable step length. As stated in [Inman 811, equation (5.1) is based on data almost 

exclusively obtained from male subjects; women tend to walk with a shorter step length and greater step 

frequency at a given speed. Also, the normalizing formula applies only up to a certain step frequency sfwm 
of about 132stepslmin (which corresponds to sl-=0.528.body-height), if the speed is increased after 

that, the step length is kept constant. Another obvious condition to maintain a walking cycle is that neither of 

the locomotion parameters is allowed to exceed a maximum value (sl-=0.6-body-height, 

sfIMX = 182 stepslmin , vmar = slnorm- @- ), otherwise running would result. Although the limits on the 

locomotion parameters as specified are quite constant for different subjects, they can be changed by the user 

for experimental purposes as part of the locomotion attributesE. 

Given equation (5.1) and the above constraints, an algorithm (for details see appendix D) is now 

designed to supplement the remaining locomotion parameters, if at least one is specified. For instance, if a 

velocity is defined, a "natural" step length and step frequency are calculated; in the case where a step length 

and step frequency are specified (assuming these as well asithe resulting velocity are within the anatomical 

limits), a more angular motion might result. 

Once the locomotion parameters are complete, the step frequency is used, as shown below, to derive 

the state-phase-timings, whereas the step length is applied to the symmetry of steps concept (section 5.2) in 
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order to compute the final conditions for each phase of the current step. Hence, the two, up to now still 

undetermined ingredients to the central problem stated in equation (4.4) are deduced. 

HSR T a  HSL 

I 
d% 1 step 5 0 %  

a) walking cycle 
HSL = heel strike left 
TCR = toe off right 
HSR = heel strike right 
TOL = toe off left 

HSL TOL HSR m HSL 

I I 
. d% 1 step 5 0 %  1 0 0 %  

b) running cycle 

states 

phases 

Figure 5-1: Locomotion cycles for bipedal walking and running. 
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As already mentioned, a walking cycle consists of two steps. From figure 5-1 (a), it can be seen that 

each step contains one double support state (ds ) where both feet are on the ground, and one single support 

state (ss ) where one foot is off the ground. Formally, assuming t to denote a duration, this can be written as 

In terms of the individual legs, which go through the same stance-swing-stance cycle, just shifted in time, the 

following holds: 

- 
%eP - tstance - tds (5.2) 

- 
tstep - + tds ' 

Experimental data gathered by different authors (see [Inman 811) suggest a linear relationship in 

walking between the step frequency (sf) and the double support state as a percentage of a cycle. After 

interpolating the results from the different experiments, the time for the double support (t, ) amounts to 

t, = (-0.16-sf + 29.08) tcyCIe 1100 . (5.3) 

Since sf is known as one of the locomotion parameters, and because of 

- 2 
'cycle = 2. 'step - - sf ' 

tds can be determined, and consequently the values for tsa, and twhg are obtained from equation (5.2). 

The above calculations form the basis of the state-phasetiming concept. Although not directly 

relevant, a few remarks on walking vs. running (see figure 5-1) pertain to reveal similarities between the two 

gaits: equation (5.3) expresses the fact that with increasing step frequency, or speed in general, the time for 

double support decreases in walking. At the phase level, this means that with bigger sf the amount of overlap 

between the stance phases of the legs is diminishing. When sf reaches about 182stepslmin (sf-mux), the 

double support state disappears. At this point, walking is equal to running. If the step frequency increases 

further, tds in equation (5.3) becomes negative, which signifies the flight state, where both legs are off the 

ground; in other words, the swing phases start to overlap. Abstractly speaking, the two diagrams of figure 

5-1 are quite similar. In going from walking to running, the right vertical bar indicating the end of double 

support is just "slid" to the left, and as soon as TOL comes before HSR (i.e. the left leg enters the swing 

phase before the right leg terminates its swing phase), the gait changes to running. Thus, if there exists a 

relationship between the step frequency and $,igh, running could be implemented by the same technique. Of 

course, running is not just possible when the sf exceeds sf-mux, but generally, can also take place for the 
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same locomotion parameters as walking. In figure 5-1, both diagrams are based on the same time for a step, 

that is the same step frequency, and reasonably so, equal step length. To cover all of these possibilities for 

"artificial" running, additional information would be required such as the relationship between the maximum 

vertical distance between the foot and the ground during flight and $ig,,, . 

5.2. Symmetry of Steps 

If one were to have stiff legs (no knee joints) and no feet, the only way to move forward would be by 

means of a compass gait as shown in figure 5-2. For planar motion, the leg would drop below the ground 

during its swing phase. An interesting fact about this simplest form of bipedal locomotion is step symmetry. 

At heel strike, provided that both legs are of the same length, the angles of the legs measured from the 

vertical are identical, that is el = 8.3 at times tl , t2 and t., , and only depend on the step length sl. Most 

importantly, this still holds m e  when the body is accelerating or decelerating, which is indicated in figure 

5-2 by the increased step length at time t3 (i.e. the body accelerated from t2 to t3 ). 

LL = left leg 
RL = right leg 

Figure 5-2: Symmetry of compass gait for different step lengths. 

It should be noted that the concept of step symmetry introduced here is different from elsewhere in 

the literature Daibert 86a], where symmetry is defined for the stance phase relative to the center of mass 

(which is located at the hip in the model). In this case, symmetry is only maintained if the step length does 
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not change, which means there is constant speed. Thus, as shown in figure 5-2, the angle e3 of the left leg at 

the beginning of the stance phase at time t2 is not equal to the angle el at the end of the stance phase at time 

t3; whereas $ at time tl would be the same as at time t2 for the stance phase of the right leg. 

The symmetry of step principle is now adapted to the model in figure 5-3 to determine o ,  and e3 
at the end of a step (heel strike). Although the actual step configuration at heel strike is is not symmetric any 

more because of the introduction of a kinematic foot for the swing leg, the basic idea can still be applied. We 

just imagine the symmetric step situation when the foot is flat on the ground some time after impact 

(illustrated by the dashed line) and calculate "back in time". For this purpose, the step length sl is measured 

between anklel and ankle2. The effect of the foot at heel strike is really that the absolute value of O3 is 

smaller than it would be in the absence of a foot (it also holds that O3 < el ). In addition, the foot raises the 

position of the hip at impact, which has to be compensated by lengthening the telescope stance leg beyond its 

initial length, i.e. o > ll . Details about controlling the changing length of the stance leg are given in chapter 

4. The origin for the simulation of the stance leg stays fured at anklel, which is at a distance lg above the 

ground. It is important to realize that the kinematic foot of the stance leg can be ignored at this point. Since it 

is superimposed on the motion of the dynamic leg after the simulation of the stance phase, it does not affect 

the calculations here, unlike the foot of the swing leg. The stance foot is explained as part of the separate 

concept of virtual leg in a subsequent section. 

/ c.:: 
For the following calculations, it is assumed that the ground is at zero height and O5 at impact is 

specified as one of the locomotion attributesE. In the actual implementation, a value for e4 (knee angle of 

the swing leg) at heel strike may also be selected to prevent the knee from fully extending. This aspect is - 
2 2 disregarded below for simplification (i.e. O4 = 0 and l 3  = 1 ) Given 1 ,  1 and lg , ll = dl8 + lg and 

'8 
cos (a8) = are determined. The application of the cosine law yields 

11 

Since 

addel = (xu, y,) = (x*, + IS, lg ) , where xnh, is xnh from previous step, and 

it follows that 
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FiHre 5-3: Dynamic model at heel strike: the swing leg is extended, a foot has been added 
kinematically; is assumed to be negative, all other angles are positive. 

One great advantage of step symmetry, as well as of the state-phase-timing concept from the 

previous section, is that all computations are done relative to one step which is the impending step in a 
/ 

locomotion sequence. Changes in. the locomotion parameters sf and sf can therefore be accounted for with 

the "granularity" of one step. This allows for acceleration and deceleration of the motion, and even the 

extreme cases of starting from rest and coming to a full stop are possible (with minor adaptations of the 

underlying dynamics as shown in chapter 6). On the last step, for instance, sf is set zero (no "ground is 
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gained" since the hind leg only pulls even with the front leg), which, in the above calculations, results in the 

desired final conditions el = e3 = 0 and o = ll . 

However, one danger exists in treating each step separately: extreme changes in the locomotion 

parameters could cause large variations in the times and final conditions for successive steps, which, in turn, 

would produce torque and force profiles in the dynamic model that exceed the natural, anatomical limits of a 

human body. To avoid the problem, three locomotion attributes have been defined, vacc , vdcc and sfaccdec, to 

restrict the amount of (constant) acceleration, deceleration or change in step frequency from one step to the 

next (the latter became necessary, since even for fairly constant velocity, an increase in sf can result in 

skyrocketing torque values). Further experimentation with the system is required to determine boundary 

values for these attributes that are "reasonable" for bipedal walking. 

So far, all the necessary information to control the dynamic simulation of the leg phases has been 

derived. The next step is to concentrate on the details of the motion by adding kinematic, human-like features 

to it. Although the dynamics of the walking model are self-sufficient, including lower body kinematics can, 

in certain cases, have a direct effect on the dynamics. This was m e  above, where the addition of a foot to the 

dynamic swing leg changed the calculations of the final conditions for a step. Kinematics can also affect the 

dynamics during the actual simulation. A good example is the animation of the pelvis, which basically 

"splits" the dynamic hip into two, with the o r i g d  hip remaining "on" the stance leg, while the motion of the 

hip for the swing leg is expressed as a function of the former. Due to pelvic list (to be discussed in the 

following section), the knee during the dynamic simulation of the swing phase now has to be flexed more to 

avoid ground contact. Therefore, the dynamics and lower body kinematics must be executed concurrently. 

A last note is directed to running. Extending the step symmetry concept to this gait would involve 

the distance traveled during flight being subtracted from the step length sl before calculating the final 

conditions for a step. 

5.3. Determinants of Gait 

The net result of a locomotion seqyence may be considered as a translational displacement in space. 
- However, the motion, when analyzed in more detail, exhibits subtle deviations from the line of progression 

due to the rotational movements of the pelvis and the legs. During a locomotion cycle, the body rises and 

falls slightly, weaves from side to side, as well as speeding up and slowing down a bit, even if the overall 

forward velocity is constant. The displacement of the center of mass of the body, which represents the motion 
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of the body as a whole, is illustrated in figure 5 4  for one stride. The vertical displacement (A) prescribes a 

sinusoidal curve with a maximum at mid stance and a minimum at heel strike. This component of the motion 

is generated directly by the simulation of the telescope stance leg (see chapter 7 and appendix F). The curve 

(B) caused by the lateral motion of the center of mass is also sinusoidal at half the frequency of the vertical 

displacement. The lateral movements arise because the upper body is shifted over the respective weight- 

bearing stance leg. 

Figure 5-4: Exaggerated movements of the center of mass during one stride; 
different line spacing indicates a change in velocity (lines closer 

together mean deceleration, larger line spacing acceleration). 

There is a direct correlation between the motion of the center of mass and energy expenditure in 

walking. Figure 5-5 shows the kinetic (translational and rotational), potential and total energy for half a 

stride. Employing the concept that the weight of the upper body is a passive element, which is carried on the 

active lower limbs [Inman 811, the enerp levels of the HAT (head, arms and trunk) are displayed, rather than 

the energy profrles for the whole body. The potential energy curve is essentially identical with the vertical 

displacement of the center of mass (see figure 54). whereas the kinetic energy changes with the forward 

velocity of the center of mass. A maximum in potential energy, which coincides with a minimum in kinetic 

energy, occurs at about the middle of the single support period, while the potential energy reaches a 

minimum at the middle of the double support period, i.e. just after heel strike. At the same time, the kinetic 
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energy has a maximum value. The shapes of the two energy curves resen 

48 

rite well those of a 

conservative physical pendulum (see figure 5-6). However, unlike in the case of a swinging pendulum, the 

energy exchange is not complete. Even if the difference in magnitude between the kinetic and potential 

energies is neglected, the total energy shows substantial fluctuations. Walking therefore is a nonconsemative 

activity, where the losses in energy have to be "topped off" with the work produced by the muscles. 

. walking cycle (%) 

total energy 

kinetic energy 

potential energy 

Figure 5-5: Approximations of kinetic, potential and total energy of the HAT for one 
walking step at average walking speed (adapted from [Inman 8 11). The total 

energy is computed with the minimum potential energy level assumed at 
zero. The ordinate values in parentheses are for the potential energy. 

time 

Figure 5-6: Exchange of kinetic and potential energy of a pendulum (neglecting 
friction). The total energy is constant, thus the system is conservative. 
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From the above, it is concluded that smaller deviations of the center of mass from the line of 

progression generate smaller fluctuations in the energy levels and consequently, the less energy is expended. 

During human walking, the absolute location of the center of mass stays within the region of the pelvis 

Fman 811. This is mainly achieved through the combined efforts of the &terminunts of gait. 

Inman IJmnan 811 distinguishes between six determinants: 

+ pelvic rotation (transverse plane) 

+ pelvic list (coronal plane) 

+ pelvic tilt (sagittal plane) 

+ lateral displacement of body 

+ knee flexion of stance leg 

+ plantar flexion of stance leg ankle 

Compared with the compass gait (already introduced in figure 5-2 as the simplest form of bipedal 

locomotion), where the pathway of the center of mass is through a series of arcs, one for each step, each of 

the above determinants smooths this path in one way or another to produce the sinusoidal curve of figure 54. 

Whereas the movements of the pelvis just flatten the arcs, the combination of knee and ankle motion 

alleviates the sudden changes in vertical displacement at heel seike, i.e. they remove the "tips" of the arcs by 

transforming them into a smooth curve. From this point of view, the determinants of gait contribute directly' 

to minimize energy expenditure. For the purpose of animating human walking, the determinants greatly 

improve the realistic looks of the motion. 

In the following, the determinants of gait are described in more detail. All determinants have been 

incorporated into the walking algorithm except pelvic tilt, which was neglected because it did not appear to 

have a perceptible visual effect in walking. Furthermore, the forward and backward tipping of the pelvis 

mainly affects the upper body, which is balanced independently anyway (see section 5.5). For the 

implementation, a kinematic pelvis and foot had to be added to the dynamic stance model. It is submitted that 

all the determinants can be expressed as linear functions, although experimental results [Inman 811 suggest a 

better approximation by higher order polynomials. This step is justified since the displacements generated by 

each determinant are relatively'small (a few centimeters for the maximum values), so that the simplicity of a 

linear approximation outweighs the little qualitative improvement of a more complicated function. Various 

effects of the determinants on the motion are illustrated in appendix F. 
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Pelvic rotation about the vertical axis is a minimum at mid-stance and a maximum at heel strike. The 

rotation causes a larger step length and consequently, a greater radius for the vertical arcs of the center of 

mass. Since the step length, as defmed by the locomotion parameter sl , includes the maximal displacement 

(from pelvic rotation) at heel strike, the actual step length used in the calculations of the step symmetry, 

denoted sl-act for now, needs to be adjusted for each step: 

sl sl-act = sl - sin (pelvicrOt ) . lo , where pelvic, = p e l ~ i c ~ ~ - ~  .- 
sl-rmUL 

and lo denotes the width of the pelvis (see appendix B.l); p e l v i ~ ~ , - ~  is specified as one of the 

locomotion attributesE. For each step, the rotation of the pelvis is now linearly incremented until pelvicrot is 

reached at heel strike. This causes the hip of the hind leg (h, ) which is at a maximum behind the hip of the 

front leg ($ ) at heel strike, to move forward faster than $ (by the increments) during the double support 

and swing periods to eventually reach a maximum position in front of at the end of a step (see figure F-5). 

Pelvic list is the rotation about the x-axis in figure 5-4 which makes the hip of the swing leg drop 

lower than the hip of the stance leg. As an effect, the center of mass does not need to be elevated so much 

and therefore the change in potential energy is reduced A maximum angle occurs, i.e. the swing hip is 

lowest, just after toe-off, and thereafter the hip of the swing leg rises until it arrives at the same level as the 

hip of the stance leg at heel strike. This last characteristic of pelvic list, that is to equal the height of the hips 

at impact, is essential for the validity of step symmetry (which is based on a one hip model as shown in 

figure 5-3). A natural pelvic list is implemented as follows: after the simulation of the stance phase, the 

minimum height of the hip is computed, which comes shortly after heel strike (i.e. at the very beginning of 

the stance phase), and taken as the value for the swing hip at the end of the double support period (toe-off). 

The difference between this minimum hip value and the vertical position of the stance hip at toe-off yields 

the maximum angle for pelvic list for that step. As above, linear interpolation is employed to fill in all the 

remaining angles. A pelvic list factorE may be selected by the user to exaggerate or reduce pelvic list (see 

figure F-7). 

The lateral displacement along the z-axis in figure 5-4 represents a shift of the weight of the body 

from stance leg to stance leg during a locomotion period (see also figure F-6). Moving the center of mass 

closer to the weight-bearing leg results in less effort being required to balance the upper body. The lateral 

displacement from the line of progression is a maximum at mid-stance and zero at the time of heel-strike 

(again, a necessary condition for step symmetry). There are two variables which influence the magnitude of 

lateral displacement, a stride width (sw ) measuring the lateral distance between the feet (in m ), and the step 
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frequency (sf). A bigger stride width causes the body to rock more from side to side, and with increasing 

step frequency (usually synonymous with a greater speed), the lateral displacement decreases. The following 

relationship has been established for the maximum lateral displacement (It-ma) for a step •’?om various 

experimental results [Inman 811: 

It-ma = -0.00017241-sf + i . s w  + 0.0013448 . 

A stride width factor is specified as a percentage of the pelvic width (lo) in the list of locomotion 

attributesE, from which sw is then determined. 

The knee flexion of the stance leg together with the plantar an&le flexion of the stance foot, fulfill 

several functions. They serve as a major shock absorber at impact and smooth the transition of the stance leg 

from the double support period to the swing phase. In particular, the foot also retains the center of mass in a 

more elevated position at heel strike compared with a basic compass gait as was shown in figure 5-3. The 

implementation of these determinants is more ambitious and treated separately in the next section, since they 

involve the concept of a virtual leg. 

5.4. Virtual Leg 

The simulation of the stance phase based on the dynamic model of figure C-1 (a) generates the 

motion of an inverted, length-changing pendulum for one "step" under the given constraints for time and 

fmal conditions (it should be noted that the upper body is ignored in this discussion). What is desired, though, 

is the realistic motion of a human leg during the stance phase, which inherits the leg determinants described 

in the previous section. For this reason, a human leg may be superimposed onto the dynamic pendulum at 

each time increment as shown in figure 5-7. Unfortunately, the number of possible configurations is infinite, 

i.e. a unique solution does not exist for the orientation of the segments from the hip (H) to the tip of the toe 

(T). This is a typical inverse kinematics problem, where the proximal (H) and distal endpoints are given 

and the task is to find the angles of the kinematic chain spanned between these endpoints. At least two of the 

four angles (e3, . . . , e6 ) must be known to fully specify a particular configuration. In order to predetermine 

some of the angles so that the remaining ones can be determined unequivocally, additional information is 
/ 

required. In the present case, the information is supplied according to some general rules about the stance 

phase, which is therefore subdivided into a normal, heel-off and meta-off period. These periods are strictly 

successive in time and all three occur for any stance phase. 

The normal period is illustrated in figure 5-8 (a). It characterizes the early state during stance, 
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Figure 5-7: Superposition of a leg over the dynamic stance leg model. The size of the 
rnid-foot (Il2 ) and toe (Il3 ) are exaggerated; the location of the hip (H ) 

comes from the dynamic simulation, for which anklel is assumed to be fixed 
at (xu,  y,) . The tip of the toe (T ) maintains ground contact during the whole 

stance phase at position (xu + l5 + 16, 0) ; 112 and 113 are simply defined 

as 41; + 1: and 41; + (19 - G ) ~ ,  respectively (see appendix B. 1). 

where, after heel strike at time to the foot is rotated about the heel to come down onto the ground, and 

subsequently stays flat on the ground (e.g. at tl ) until some time after the leg passes through the vertical (that 

is, the center of mass moves in front of the body). To determine the leg angles, the algorithm makes use of 

the fact that the position of the ankle is always known, since the foot is assumed to rotate with constant 

increments on the circular arc A' -+A with radius ll (see also figure 5-3), and the ankle remains fixed at A 

once the foot is fm on the ground. Furthermore, this kinematic ankle is always located at the bottom end of 

the dynamic leg model (i.e. anklel = A  ; this is not self-evident, as it is not the case in the meta-off period 

below). The knowledge of the location of the ankle splits the kinematic chain into two halves. In the upper 

half, O3 and 04, as shown at time t2, are readily obtained by trigonometric calculations, given that is 

known from the dynamic simulation. Because 86 stays zero during the whole period, e5 can then be 

determined. The ending condition for the normal period, which marks the beginning of the heel coming off 

the ground, is twofold: most fkquently, the period is terminated as soon as condition (el ) : coo 5 3 becomes 
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m e  ( cl gets obvious below in the discussion of the heel-off period). This is the case at t2 and is identical to 

saying that the ankle slightly dorsiflexes, if O5 =I is assumed neutral, due to the supexposition of the shank. 

There is an anatomical limit for the ankle dorsiflexion in walking (around 15 O ), individual deviations may be 

accounted for by adjusting the stifmess of the dynamic leg spring (which is a quite delicate task). 

The normal period is also brought to an end if (c2) : w 2 (5 + 14) is satisfied, in which case it 

becomes impossible to superimpose a thigh and shank with the foot flat on the ground. Condition c2 can 

come true in the presence of a stiff spring in the dynamic leg or for short step lengths. The latter is explained 

by the fact that the smaller the step length, the higher the hip at heel strike and consequently the more the 

dynamic leg must be lengthened (see also figure 5-3). In human walking, the leg actually never fully extends, 

i.e. O4 is not quite zem at time t2. A locomotion amibuteE has therefore been introduced to specify a 

minimum desired value for O4 at the end of the normal period; of course, the right side of c2 above is 

modified correspondingly. 

During the heel-off period, the kinematic ankle travels on an arc with radius 112 around the 

metatarsophangeal joints (M , from here on denoted as the meta joint) while the toe remains on the ground, 

as shown in figure 5-8 (b). The position of the ankle on the arc is computed by intersecting the arc with the 

current dynamic leg, illustrated at time t3 and t4 where the intersections are B and C, respectively. Since 0, 

increases steadily with time, i.e. the dynamic leg is turning clockwise around A,  the angle wl is strictly 

decreasing (indicated by the arrows) and thus the distance between the heel and the ground is getting bigger 

and bigger, as desired. Unlike the situation in the normal period, the kinematic ankle is not fixed any more, 

but "travels up" the dynamic leg; with the position of the ankle known, the leg angles can be determined in 

the same way (of course, the meta angle O6 is now not zero any more). 

Usually, the heel-off period is activated in the configuration shown at t2 , where condition cl holds. 

This ensures that the dynamic leg intersects with the arc at subsequent time increments. However, if the 

normal period is terminated by c2, there might not exist such intersections. Moreover, during the heel-off 

period, the distance between the intersection point on the arc and the hip (for example B + H at time t3 ) can 

exceed (I3 + 14) due'to a rapidly lengthening dynamic leg (problem pl ). In both cases, the portion of the 

. dynamic leg assigned to superimpose a thigh and a shank must be shortened, which means that the heel must 

come further off the ground. To find the new position of the ankle, the arc is intersected with a virtual circle 

centered at the hip H with radius (4  + 14) (actually a slightly shorter length to satisfy the locomotion 

attribute above for a minimum value of 04). The effect is that the angle does not lie on the dynamic leg any 
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a) normal period; foot is flat on ground 

b) heel-off period; mid-foot c) meta-off period; 
rotates around M with radius foot rotates around T with radius 114 

Figure 5-8: Virtual leg concept for stance leg; the proportions of the foot 
(lI2 and 113 ) are exaggerated. 
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longer. Another problem (p2 ) might arise, if one of the just described exceptions applies, but eventually the 

regular algorithm can be employed again, that is the intersection of the arc with the dynamic leg yields a 

valid position for the ankle: there is a possibility for a sudden increase in ol (decrease in the meta angle O6 ), 

which should constantly be decreasing. For this purpose, another locomotion attributeE was defmed to 

guarantee a continuous minimum decrease in ol and therefore a smooth motion. 

The end of the heel-off period is reached at time t4 when ol approaches a certain limit (around 

65" ). This signals the beginning of the meta-of period, during which ol stays constant until the end of the 

stance phase (toe-off). Consequently, the foot rotates around the tip of the toe (T) with radius Z l 4  (where 
2 2 1 = 112 + 1 - 21 12 113 cos o1 , with o1 taken at time t4 ) as shown in figure 5-8 (c). The new arc R traced 

by the ankle is bigger and extends higher off the ground than the previous arc R'. The leg angles are 

calculated as in the previous heel-off phase (note 86 is fad) ,  by intersecting the dynamic leg with R ;  

unfortunately, the same problems as in the heel-off period (pl and p2 above) might occur. In addition, after 

the implementation it was realized that the meta-off period was only activated for fairly large step lengths 

(2 80cm for 1.8m body); for walks at slow speed with a shorter step length the meta joint (M ) never came 

off the ground even though in real human walking it does. The algorithm was therefore abandoned in favor of 

a different approach. From studies of human walking [Inman 811, two helpful observations were made. First, 

it was discovered that the meta-off period closely correlates with the double support period. This makes sense 

since during double support the weight of the body is shifted from the hind over to the front leg, which A 'k 
allows the relieved hind leg to rotate about the tip of the toe to "prepare" itself for the subsequent swing 

phase. Therefore, the event of the double support phase (whose time is known as discussed in section 5.1) is 
I 
I 

taken rather than an explicit bound on ol to initiate the meta-off period, in fact, ol now changes during 

meta-off and reaches a limit shortly before toe-off. 

The second observation was that from the beginning of the double support phase, the knee of the 

hind leg flexes increasingly up to about 10 % of the cycle time into the swing phase. This flexion is quite 

indewndent of the walking speed and amounts to about 63" [Inman 811. The increase in the knee and meta 

joint angles coincides with a rapid plantar flexion of the ankle. Using this information, the new meta-off 

algorithm linearly increments the knee and ankle angles to their values at the end of the double support 

. phase; the former is known from above (by assuming a linear increase in the knee angle, the amount that the 

knee flexes during the first 10 % of the swing phase is subtracted from 63 O ) and the latter is specified as a 

locomotion attributeE (in the actual implementation, the above percentage as well as the maximal knee 

flexion may also be modified by locomotion attributesE). Hence, the leg determinants of the knee and ankle 
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are directly enforced. With these two angles known, the hip and meta angles are determined by simple 

trigonometric calculations. 

It is important to notice that the meta-off period only applies to the hind leg during double support. 

At the same time, the front leg is in its normal period. The heel-off period of the stance leg takes place while 

the other leg is in an advanced stage of the swing phase. Another significant aspect concerns the 

implementation of the meta-off period: the motion of the inverted, springy pendulum is simulated for one 

walking step at a time, which does not comprise a whole stance phase but only the duration of one double 

support and one swing state (see figure 5-1). As soon as the swing leg signals heel strike, a new step is 

simulated for that leg. As a consequence, only the stance phase of the front leg is really modeled by the 

dynamics during double support, whereas the motion of the hind leg is totally expressed by the kinematic 

computations of the meta-off algorithm. This implies, that the position of the hip (H ) for the hind leg during 

meta-off actually comes from the front leg, which takes on the "leading" role. In a sense, therefore, figure 

5-8 (c) is drawn inaccurately; the dynamic leg at time t4 and tS should rather be a virtual line to the hip of the 

other leg, whose current orientation would be somewhere between to and tl as shown in part (a) of the 

figure. 

The virtual leg concept introduced above animates knee flexion and plantar ankle flexion for the 

stance leg to complete the list of determinants of gait (section 5.3) that occur during a human walking cycle. 

Coincidentally, the term "virtual leg" is used elsewhere with a different meaning. Sutherland [Sutherland 

841 studied the locomotion of machines with more than two legs. In order to simplify the control and 

coordination of the legs, he defined the idea of virtual legs as follows: when two (or more) legs act in unison, 

they can be functionally expressed as one virtual leg which is located halfway in between them. The virtual 

leg exerts the same forces and torques on the body as the original pair of legs. For instance, in a Clegged 

pacing gait, the two left legs act in unison as do the two right legs. It follows that the pace is functionally 

identical to walking on two virtual legs, each of which located halfway between the hind and the front leg on 

either side; 2-legged hopping, where the left and right leg perform the same motion in parallel, reduces to a 

one-legged hop. Sutherland's virtual leg principle somewhat supports the claim made in an earlier section 

(3.2), that the algorithm for bipedal walking devised in this thesis is extensible to control other gaits as well 

. as an increased number of legs. This is to say that once the motion of one leg is totally known in terms of 

stance and swing, additional legs can be readily added and coordinated to generate different gaits. 
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5-5. Upper Body Angles 

The major focus of this research is directed towards the motion of the lower limbs during walking. 

The upper body can be thought of as a passive part, which is carried along by the lower body. However, 

certain movements of the upper body, like the swinging of the arms or the more subtle forward and backward 

tipping of the trunk, play an important part in contributing to an overall human appeal of the locomotion. 

In the dynamic model, the upper body is represented by a single segment (see figure C-1), which has 

to be actively balanced -as discussed in section 2.2- in order to maintain an erect posture over the duration of 

a walking sequence. Similar to Raibert's approach [Raibert 8W, this is done by application of a hip torque of 

the form 

where 4 and v2 are spring and damping constants, respectively (their default values are listed in 

appendix C.4). The torque is computed at each time increment with the current values for e2 and e2 . The 

desired upper body angle with respect to the vertical, O2 d, , is usually zero, but can be modified as one of - 
the locomotion attributesE; for instance, to produce the effect of a person leaning more forward during 

walking. Of course, 4 and v2 may also be varied if larger or smaller deviations from the upright position are 

desired. 

As was the case for the legs, the dynamics generate a natural pattern over the duration of the 

locomotion (as far as the timing goes), but it is only generic (as far as the quality of the motion goes); namely 

the forward and backward tipping of the upper body in the sagittal plane. Kinematic calculations are 

therefore added based on the experimental data from Inman's book [Inman 811. Since the upper body 

"follows" the motion of the lower body, each kinematic component can be directly formulated as a function 

of some determinant of gait. For this purpose, two types of upper body movements are distinguished: 

compensatory actions of the head and trunk to account for the pelvic motion, and the arm swing which is 

synchronized with the movements of the legs. 

The rotational motion of the pelvis in the transverse plane is compensated by a shoulder rotation. 

These rotations are out of phase with each other, e.g. while the pelvis rotates forward on the side of the 

swinging leg, the shoulder rotates back. The magnitude of the shoulder rotation amounts to about 60 % of 

that of the pelvis, but can be altered by a locomotion attributeE. The total shoulder rotation is achieved by a 

stepwise rotation along the vertebral column, which is distributed over the five lumbar and twelve thoracic 

vertebrae in such a way that the seventh vertebra from the top (T7 ) exhibits a minimum rotation. Below T7 
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the joints rotate towards the orientation of the pelvis, whereas those above T, rotate towards the shoulder. 

The head is largely unaffected by these rotations and usually faces in the walking direction. The seven 

cervical joints are adjusted to account for this (i.e. each cervical vertebra is rotated with 117 th of the 

current shoulder rotation). Pelvic list is compensated by the vertebrae of the lumbar region to maintain an 

upright position of the upper body in the coronal plane. 

The rotations of the arms are derived from the motion of the legs. Each arm swings forward with the 

opposite leg and moves back during the stance phase for that leg. Hence, there is a direct relationship 

between the angle for the arm swing at each time step and the hip angle of the opposite leg. The magnitude 

for the arm movements might diverge from the maximum hip angle by quite a perceivable amount, since it is 

not strictly dependent on the step length only, but to a certain degree, rather a matter of individual style. A 

locomotion attributg is provided to express the arm swing as a percentage of the hip angle. In practice, a 

smoother motion of the arms was obtained by making the arm angle dependent on the dynamic hip angle el 
on the back swing and not the kinematic hip angle O3 , because the former is continuously decreasing, while 

on the contrary, e3 increases during stance due to the flexion of the knee (i.e. the thigh might not move back 

continually). It has also been observed that the elbow flexes a small amount near the end of the forward 

swinging period of the arm. More exactly, the flexion of the elbow sets in as soon as the arm angle, and 

likewise the hip angle of the opposite leg, has reached a maximum (which actually happens some time before 

heel strike, at the end of the SWING1 phase, as shown in the next chapter) and continues until heel strike. An A,>. 
- 

upper and lower bound for the elbow flexion are specified by locomotion attributesE. 

A final remark on the upper body kinematics is that they do not complicate the control algorithm for 

the legs and, unlike the kinematics of the lower body, they can be applied to each step after the dynamic 

simulation of the legs. 
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Chapter 6 

Low Level Control Details 

The simulations of the stance and swing leg for a step are subject to constraints for timing and final 

orientation as expressed in equation (5.2) and (5.4); also the models themselves are constrained by the way 

the equations of motions are formulated (e.g. the stance leg turns around a fur4  point on the ground). More 

than that, however, the dynamics need to be guided to produce desired motions during a phase by applying 

rules about walking directly at this low level. For instance, regardless of the stiffness of the leg spring, the 

hip of the stance leg model must never be allowed to drop below its value at heel strike if some kind of a 

sinusoidal motion pattern is to be maintained (illustrated in figure 5-4); similarly, the swinging leg does not 

just swing forward to reach the final hip angle at impact, but the motion has to be timed appropriately 

throughout the swing to make it look real. For this ptlrpose, additional restrictions are imposed in two ways: 

each phase is divided into a number of subphases, where the equations of motion are "fine-tuned" to further 

suit bipedal walking, and the trajectories of the applied forces and torques are expressed as specific functions 

of time. Both aspects are explained in section 6.1 and 6.2 for the stance and the swing phases, respectively. 

Bearing in mind that the walking algorithm exhibits a step oriented structure (i.e. the basic units of 

simulation are a double support state and a single support state), the following order of execution now 

becomes transparent (the figures in brackets denote section numbers): 

for step i do (6.0) 

initialize step; P normalization formula [5.1]; state-phase timings [5.1]; 
symmetry of step [5.2] */ 

stance phase dynamics ; P integration 14.31; interpolation [4.5]; STANCE1,2,3,4 16.11 */ 

lower body kinematics; P determinants of gait [5.3]; virtual leg [5.4] */ 

swing pha9e dynamics; /* [4.3]; [4.5]; SWING1,2,3 [6.2] */ 

upper body kinematics; P arm swing, pelvic movement compensation [5.5] * /  
increment i ; 
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?he separation of the leg dynamics for the stance and swing phases in the above sequence greatly 

simpUies the control as well as the numerical integration process. The rationale is that the stance leg model 

constitutes the major propulsive element in bipedal locomotion. It supports the body and influences the swing 

leg by its hip motion. As shown in appendix C.2, the degrees of freedom for the swing leg are therefore 

reduced to just O3 and 04. On the other hand, the swing leg has no effect on the stance leg and the upper 

body. Of course, this is not completely true in real human walking, but it can be justified by the fact that the 

mass of the leg is small compared to the total mass of the body (approx. 16 % [Winter 791). Hence, the swing 

leg does not change the inertia of the body significantly unless the motion during swing happens very 

suddenly, which is hardly the case for a moderate walk 

It should be noted that because the stance phase of a leg is only simulated for one step at a time 

(although the duration of a complete stance phase is tStCP + td, , as seen in figure 5-I), the dominating role of 

the stance leg is taken up by the other leg at heel strike, i.e. as soon as the stance phase for that leg 

commences. One last important observation about algorithm (6.0) concerns the leg kinematics: the 

determinants of gait, which are applied after the simulation of the stance phase, only express the movements 

of the pelvis and the stance leg. For the dynamic swing leg, which is modeled as a double pendulum, the 

motion of the foot is added kinematically (for the dynamics, the foot is represented as a point mass at the end 

of the shank). This must take place during the dynamic simulation of the swing since the thigh and shank 

have to be moved in such a way as to avoid ground contact by the foot. 

In order to maintain a locomotion cycle, the muscles of the lower limbs must develop flexion and 

extension moments at the hip, knee and ankle (neglecting minor moments around the metatarsophangeal 

joints). In terms of the energy level in walking (recall figure 5-5) these torques make up for the dissipation in 

energy, particularly at heel strike and around mid-stance, where a decrease in velocity causes a drop in 

kinetic energy that is not fully compensated for by an increase in potential energy. The two peaks in energy 

losses over the period of one step indicate that muscle activity is not distributed uniformly with time; in fact, 

some joint moments produced by the leg muscles become infinitely small for certain phases during a 

locomotion cycle. This has, for instance, led to the theory of ballistic walking WcMahon 841 (refer to section 

2.1), which is based on the assumption of zero torques acting during the swing. Whereas a completely 

. conservative swing phase seems an appropriate simplification for the rhythmic period of a locomotion 

sequence, it was not considered for the walking algorithm here because it would have been difficult to meet 

the step symmetry constraints by only adjusting the initial conditions (i.e. the angular velocities). Besides, in 

the case of a non-optimal walk, e.g. a walk with an unnaturally small or large step length at a given velocity, 

as well as for acceleration or deceleration in locomotion, the muscles of the swing leg are quite active. 
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Therefore, controlled moments at the hip and the knee are applied for the entire swing phase, as described in 

section 6.2. Nevertheless, the idea of partial application of joint moments has been employed during the 

stance phase, this is discussed in more detail in the following. 

6.1. Stance Phase 

Experiments on human subjects utilizing electmmyography and force plates [Inman 81, Winter 

791 have shown that a significant torque at the hip of the stance leg occurs only just after heel strike and lasts 

for about 20 % of the cycle time. Also, the torque during this time interval is such that it rapidly reaches a 

maximum value and decays quickly towards the end. The two observations have been adapted to the dynamic 

stance model (for the equations of motion, see appendix C.l) to determine the duration of the leg torque F 
01 ' 

as well as its shape, which is assumed to be constant over the whole duration. The magnitude of F to move '4 
the stance leg from its initial position to the final leg angle at the end of a step (el is supplied by the 

symmetry of step concept [5.2]) is calculated by the interpolation procedure explained in section 4.5. Since 

F is turned off at 0.4 . (i.e. after 20 % of a cycle) the motion appears to be conservative thereafter until '4 
the end of a step; of course, the system is not truly conservative because a torque F to balance the upper 

92 
body of the model (see section 5.5) and an active force along the leg axis F, are applied throughout the 

simulation of the stance phase. 

Whereas Fe represents the hip torque, F, basically models the moments produced at the knee and 
1 

ankle during the stance phase of a real human locomotion cycle; for the early period of the stance, F, 

simulates the flexion of the knee while in the latter part it essentially symbolizes the push-off effect generated 

by the plantar flexion of the ankle. Therefore, the values for F, directly influence the leg determinants 

(virtual leg). As a matter of fact, the leg axis force F, plays a key role in the proper and realistic functioning 

of tRe stance phase by controlling the length o of the of the dynamic leg. Generally, F, must be chosen such 

that the hip of the stance model, which roughly corresponds to the center of mass, prescribes a vertical 

sinusoidal curve typical in walking (see figure 5-4). In practical terms, this means that the hip may never drop 

too low nor raise too high, i.e. the length of the leg can only vary within certain boundary values. 

Furthermore, the leg length o has to reach the desired value at the end of a step to satisfy the constraint 

imposed by step symmetry. 

In order to implement all of these demands, the stance phase is divided into four subphases 

(STANCEl, STANCE2, STANCE3, STANCE4) according to the calculations of F, and modifications of 

the dynamic equations. STANCE1, STANCE3 and STANCE4 are compulsory, in that they have to occur in 
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every stance phase, while STANCE2 may or may not be executed. All subphases are activated by certain 

events signaling violations in the above constraints. Once a constraint violation is detected at a time step, the 

exact time for a phase change is computed by interpolating back between the current time and the previous 

time step; for instance, a phase change between STANCE1 and STANCE2 (as explained below) takes place 

when o 2 lI is detected. The exact time to start STANCE2 is the time between the current and previous time 

step, where o = ll . 

The STANCE1 phase is initiated at heel strike and represents the normal mode of the stance phase 

simulation. The magnitude of the leg axis force F, at each time step is calculated from a linear spring and 

damper model: 

Fa = k,(ll + pal - 0 )  - v,& . (6.1) 

where k, and v, are spring and damping constants, respectively (their default values, as well as the values 

for all  the subsequent constants, are listed n appendix C.4); ll is the original, unloaded length of the leg, o is 

the c m t  leg length and h the velocity along the leg axis. The purpose of the position actuator pal 

(initially zero) is to ensure that the stance hip maintains a minimum height, which is the desired height (yh ) 

at the end of the step (yh is defined in the calculations for step symmetry, see page 44). If the hip falls below 

yh during the stance phase, possibly because the spring constant k, is chosen too small, pal is incremented 

and the simulation is restarted for that wallring step. This procedure might have to be repeated several times 1- ,,.. 

- until yh is satisfied. The increase in pal corresponds to an artificial, short-term stiffening of the leg spring. 

A growing pal might, however, lead to another problem, which may also be caused by a large value 

for k, or a small damping constant: the actual length of the dynamic leg w could exceed l l  before the leg 

passes through the vertical; eventually, of course, o has to extend to the desired length at the end of the step 

(i.e. o > ll ), but if this happens too quickly, in particular before the leg angle el becomes positive, a quite 

unnatural motion results. The reason is that according to the kinematic virtual leg concept (see section 5.4) 

the heel-off period begins as soon as o > ll ; in real human walking, however, the heel never comes off the 

ground before the leg has passed through the vertical, i.e. el 2 0 (this last statement is based on our own 

observations, but supported by experimental data IJnman 811). Therefore, the event o > ll while el < 0 

terminates the SWING1 phase and marks the beginning of STANCE2, during which the leg spring is locked 

. to freeze the length of the dynamic leg at lI until el 2 0 . Consequently, the leg just moves like an inverted 

pendulum, which requires a modification in the equations of motion. For the matrix representation in 

appendix C. 1, 

bfl = bn2 = 0 ,  a i 2  = 1 and = a'6,2 = 0 .  
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Once the leg has passed through the vertical. (el 2 0 ), the STANCEl phase is resumed. A smooth 

transition from STANCE2 to STANCEl is achieved by initializing the STANCEl phase with the value w 
from the time before the spring was locked. In practice, the SWING2 phase occurs mostly for short step 

lengths (note it is not compulsory), because due to a smaller impulse at heel strike the springy leg does not 

contract much, but rather extends quite quickly. 

The leg axis force F, in STANCEl might not be strong enough to lengthen the dynamic leg to the 

desired value at the end of the step (subsequently denoted by ad,). For this purpose, another subphase 

(STANCE3) is introduced in which F, is continuously increased. The magnitude of F, at each time step 

amounts to 

F, = k,(odu + pa3 - a )  - v,o , (6.2) 

where k, , v,, w and w have the same meaning as in equation (6.1). To maintain a continuous motion when 

changing from STANCEl to STANCE3, the new position actuatorpa3 is initialized as follows: 

Pa3 = ll + pal - a&,$ ' 

pa3 is then incremented by fipQ3& at each time step throughout the STANCE3 phase. The event to activate 

STANCE3 has been chosen to coincide with the end of the SWINGl phase (see below); this is a somewhat 

arbitrary choice, but it represents a good compromise between extending the leg too early, and increasing o 

too late and in a rapid fashion. Furthermore, the lengthening of the dynamic leg beyond ll basically simulates 

the heel coming off the ground in walking, which begins usually at about the end of SWINGl for the other 

leg. 

Once the dynamic leg arrives at its desired length, i.e. o 2 odes , the leg spring is locked again and 

in a new phase, STANCE4, the motion of the leg is simulated by a simple inverted pendulum until the end of 

the current step. In a sense, therefore, STANCE3 and STANCE4 are similar to STANCEl and STANCE2, 

respectively. Unlike in the case of STANCE2, however, the STANCE4 phase is compulsory for a successful 

completion of the stance, that is, the stance leg model always has to be in the STANCE4 phase at the end of a 

step to satisfy the symmetry of step concept (i.e. ohs). If STANCE4 is not reached, the simulation of the 

stance phase is repeated by increasing p+-i, to raise the magnitude of F, during STANCE3. 

The dynamics of the stance phase combined with the leg kinematics produce a natural looking 

animation of a human stance leg during walking. This justifies the simplicity of the dynamic model, where a 

linear spring and damping construct simulate the shock-absorbing and push-off characteristics of the knee 

and ankle. 
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6.2. Swing Phase 

As with the stance phase, the original swing phase is broken up into subphases in order to obtain a 

natural movement of the leg. Three subphases are distinguished (SWING1, SWING2, SWING3) -they are 

illustrated in figure 6-1. It should be noted that a similar method of subdividing the swing phase of a human 

locomotion cycle is described in a paper by Beckett and Chang [Beckett 681 (see also section 2.2). Whereas 

Beckett and Chung studied an "ideal" swing phase isolated from a walking cycle, the objective in this thesis 

is to assemble a complete locomotion sequence. This made a significantly different approach necessary for 

the subdivision as well as the calculation of the joint moment profiles. However, the principal idea of the 

SWINGl subphase as discussed below could be adapted from Beckett and Chang's second phase (phase 11). 

During SWINGl (from to to tl ) the ankle is restrained to move along the polynomial curve P until 

the toe is exactly under the knee. At the same time, the hip angle reaches a maximum (subsequently denoted 

as €I3-&), which is the desired value for heel strike as calculated by the symmetry of step concept. The 

SWING2 subphase lasts from tl to t2 and is characterized by a rapid extension of the knee joint while the hip 

angle stays fairly constant. After the knee is fully extended at time t2 , a small moment at the hip forces the 

heel onto the ground during SWING3. Whereas in the stance phase the subphases are triggered by events, the 

duration of each swing subphase is known a priori. Based on experimental data [Inman 81, Winter 791, the 

end for SWINGl occurs at about 50 % of the time for the swing, which means that after half the swing time, 

the thigh of the swing leg has reached its desired orientation for heel strike. The end of SWING2, marked by 
W' 

- 
the straightening of the leg, takes place about 85 % into the swing, and the end of SWING3 coincides with 

the end for the swing phase. Because the time for the swing twkg for the current step is known from the 

state-phase timing concept, the durations for the subphases can be readily determined. The parameters for 

the end of SWINGl and SWING2 are both specified as locomotion attributesE to provide a means to slightly 

adjust the timings for different walking styles. In the following, the implementation of the subphases is 

covered in more detail. It is important to realize that in distinction from the stance phase, for which the whole 

phase is formulated as a root finding problem (section 4.5), each of the swing subphases is solved separately. 

62.1. SWINGl 

In the SWINGl phase, the hip torque F is interpolated such that the hip angle 83 reaches the 
'33 

desired value 83 d, at time tl . The magnitude of F at each time step t is &fmed by an exponential - 
function which closely models the rapid decrease in the hip moment during the beginning of the swing phase 

(this is based on experimental measurements by Inman Fman 811): 
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Figure 6-1: Illustration of swing phase (upper body is ignored); the proportions of the kinematic 
foot are exaggerated. The same legend applies to the leg angles and segments as 

in figure 5-7. The SWINGl phase goes fiom to (time of toe-off) to tl , 
SWING2 from tl to t2 and SWING3 fiom t2 to t3 (time of heel strike). 

B represents the initiaI maximal value of F and is determined by the interpolation process; A is set to be a 
(33 

fmction of the step length (sl ) and the duration of SWINGl (tl ): 

A = sl- /(& - sl -0.5 . t1 ) , where sl- is the maximal possible step length. 

The calculation of A is justified as follows: the h e  exponential function has an inflexion point p 
1 B 1 at (-+, ;E ); the more p moves to the left (i.e. the smaller ), the faster is the decrease in the resulting 

A 2 A 3  

hip torque. As one might enpen, F should decay sooner for shorter step lengths, that is, if sll < s12 then 
O3 
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. On the other hand, the inflexion point should never occur too late to maintain a rapid decmse 

in F relative to the time tl for SWING1. After experimentation with the system, it was found that the most 
83 

natural motion resulted if the limit put on p was half the time for the SWINGl phase (i.e. 

During a human locomotion cycle, the extension moment at the hip of the swing leg starts in the 

double support phase and produces a continuous motion at toe-off. Equation (6.3) implies, however, that the 

hip torque sets in suddenly with a maximum value at the beginning of the SWINGl phase., there is no hip 

torque during the double support for the impending swing leg since its motion is completely expressed by the 

kinematics of the virtual leg concept To assume a smooth msition at toe-off, the equations of motion for 

the SWING1 phase have to be initialized properly with the leg angles and angular velocities at the hip from 

the end of the meta-off period. The velocities are calculated simply from 

e'j(t0)-e3(t0-At) 
e3 = , where At is the time increment. 

At 

While the hip torque drives the thigh to its desired orientation at the end of the SWING1 phase, the 

ankle moves along the 4th order polynomial curve 

where x and y are the coordinates of the ankle; the evaluation of the coefficients Ai is delayed for a moment, 

in order to fiiish the discussion of the joint torques for SWING1. One method to constrain the ankle to the 

curve P during SWING1 involves the application of a knee torque F . Since a moment produced at the 
94 

knee affects the hip angle as well, this approach could be difficult to implement. Instead, a simpler method is 

employed, which totally eliminates the need for controlling a knee torque: the knee joint is locked for the 

dynamics. At each time step in the simulation, the knee angle is updated kinematically such that the 

constraint on the ankle motion is satisfied (i.e. the ankle lies on P). This updated position of the ankle, that is 

the new value for e4 is used for the dynamic simulation at the next time step. To account for the locking of 

the knee, the equations of motion (see appendix C.2) are modified as follows, assuming the matrix 

representation: 

b; = ,!$ = 0 , d4,4 = 1 and a'2,4 = = 0 . 
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The knee angle e4 at each time step is calculated from the three equations shown below; the hip 

angle €I3 comes from the dynamics of the swing leg and the position of the hip (xh,yh ) is known from the 

stance phase simulation. The three unknowns are e4, x and y ; the latter two define the ankle position: 

f , ( ~ , y , 9 ~ )  = xh - l,sin9, - 14sin(93+94) - x = 0 

f2(x,yse4) = yh - I3cosg3 - I4co~(g3+e4)  - y = 0 

f3(sy,9,) = A0x4 + A,X? + + A3x + A4 - y = 0 . 

The values of x and y from f, and f2,  respectively, are now substituted into f3, which is solved for 04. 

Unfortunately, there is no analytical solution. Therefore, numerical interpolation techniques are applied. The 

Bisection method is used to compute a good first approximation, which is subsequently refhed by the 

Newton Raphson method [Burden 851. Initial lower and upper bounds on O4 (which correspond to an ankle 

position ( x g )  above and below the polynomial P)  are obtained by an algorithm similar to (4.5). The 

Newton-Raphson method converges fast, usually within 3 or 4 iterations; it can be used in this case because 

the first derivative of f3 with respect to O4 exists: 

f; = (4A0X? + 3 ~ ~ 2  + A2x + ~ ) - ( - ~ ) ~ o s ( 9 ~ + 9 ~ )  - 14~in(83+94) . 

So far, the calculation of the hip and knee angle has been discussed. The two remaining leg angles of 

the ankle and meta joint am determined by linear interpolation between the values at lopoff (time to ) and 

the end of SWINGl (tl ). Whereas the former are known from the end of the kinematic meta-off phase, the 

latter are specified as locomotion attributesE (swingl-ankle , swingl-me t a). However, the toe might 

stub the ground in the event of a flat shape of the polynomial P (if a- is small, see figure 6-1). This is 

prevented by a constant checking for ground contact during SWING1 and if need be, the ankle is dorsiflexed 

temporarily just enough for toe-clearance. 
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The derivation of the P as defined in equation (6.5) is now described. In order to compute the 

coefficients A. - A4 -which is done by a Gaussian elimination algorithm- five conditions for the motion of 

the ankle are required. The following conditions, which are illustrated in figure 61 ,  establish a desirable 

shape for P : 

1. y(0) = a o  

2. y(C) = a- 

3. y'(C) = 0 

The horizontal position of the ankle at toe-off is assumed to be zero; a. is computed at the end of the 

previous meta-off period. At a distance C, the ankle reaches a maximum height a- during swing. Based 

on observations by Beckett and Chang [Beckett 681 and Inman [Inman 811, C amounts to about 30 % of the 

value for D (see below). A locomotion attributeE was defined to allow for adjustments. An upper bound on 

is set to be l5 + 16, which is the length of the toe plus the mid-foot. The actual maximum height for the 

current step in a locomotion sequence is expressed as a function of the minimum length omi, of the dynamic 

stance leg for that step (this corresponds to a maximum knee flexion). This is justified by the fact that the 

faster a person walks, the bigger the knee flexion during stance, which causes a lower ankle path of the swing 

leg. Therefore, 

- @min a- - - (I5 + 16) , where ll is the length of the extended leg. 
'1 

At the end of the SWING1 phase (at tl ) the ankle arrives at a distance D and assumes the minimal vertical 

value a- . By Ohis time, the hip angle has reached e3 d, for heel strike and the toe is exactly under the - 
knee. Since the position of the hip is determined by the stance leg and the ankle and meta angles are known 

as well (swingl-ankle, swingl-meta), the values for amin and D can be readily obtained by 

trigonometric calculations (note that both are functions of the step length, because they depend on e3 des ). - 
Nevertheless, particularly at short step lengths, there is a possibility that the computed value for ah turns 

out to be too small so that the toe would go through the ground at tl or at least the toe-clear constraint 

(specified by a locomotion attribute) might be violated. In either case, the hip angle is increased just enough 

(€I3 clear) to satisfy the toe-clear constraint. This is the reason why the extension of the hip can get - 
bigger at tl than at heel strike, which can also be observed in real human walking at short step lengths. Of 

course, for the calculation of D , e3 - rather than $ dcs is used. Conditions (3) and (5) above ensure the - 
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maximum and minimum criteria of P by setting the fust derivatives to zero at C and D . The resulting curve 

will take on different shapes depending on the characteristics of the current walking step. 

There is one more significant aspect about the SWING1 phase. If the initial estimate of the hip 

torque B in equation (6.3) is very large, it might happen that the hip extends so much during SWINGl that 

the ankle can not be "placedn on the polynomial P, no matter what knee angle O4 is chosen; in this case, a 

recovery mechanism aborts the simulation of the current SWING1 phase, lowers the vdue of B and restarts 

the interpolation ptocess. 

During the SWING2 phase from tl to t2 (see figure 6-1) the thigh remains at a fairly constant 

position, whereas the shank swings rapidly forward The dynamic simulation is based on the equations of 

motion as formulated in appendix C.2 (which implies that the knee is not locked any longer). To move the 

shank forward, a torque at the knee, FB , is calculated by interpolation (as introduced in section 4.5) in such a 
4 

way that the knee extends exactly at time t2 (a final knee angle bigger than zero may actually be selected by 

a locomotion attribute, which was discussed in section 5.2); F thereby assumes the same exponential 
'34 

profile as Fe during SWINGl defined in equation (6.3). This produces a quick decay for the knee torque, 
3 

and results in an acceleration of the shank at the beginning of SWING2 and a gentle extension of the knee at 

the end In order to sustain a continuity in the motion of the shank across the phase change at t l  , the 

SWING2 phase is initialized with the value of the angular velocity F. at the end of SWINGl, which is 
@4 

calculated from an equation similar to equation (6.4) (note that it is not determined by the dynamics since the 

knee was locked during S WINGI). 

Simultaneous with the knee moment, a hip torque F is applied throughout SWING2 to hold the '4 
thigh in its desired position. The magnitude of this torque at each time step is defined as 

F = 5 ( 9321ear - '3  - '3 '3  3 

'33 

where 4 represents a spring, v3 a damping constant; O3 and 83 are the current hip angle and angular velocity 

at the hip of the swing leg. 03'3_clem is initially set to 83 & .  . However, the foot might intersect with the - 
ground while the knee is extending. This could result from k3 and v3 being chosen too small, or by an 

accentuated pelvic list (see section 5.3) and a short step length. To recover from this situation, a new 

increased hip angle is defined such that the foot is lifted just above the ground at the time step where the 

undesired impact occurred and the simulation of the SWING2 phase is then repeated with O3 ,!,,, - set to the 
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new hip angle. Even with the new value for 03-CIcor which produces a larger F and therefore a greater 
63 

extension of the hip, it is possible for the foot to strike the ground again at a later time in the same SWING2 

phase. Thus, the recovery measure might be applied several times. As the shank swings forward the foot 

reaches its lowest point in the rotation around the knee when the ankle passes through the vertical. 

Consequently, if O3 > e3 dcs , the algorithm attempts to reduce the hip angle to its desired value. The - - 
recovery and reduction measures are necessary to successfully generate SWING2 phases for different 

locomotion parameten and attributes. They also guarantee a low position of the foot during the latter part of 

the swing, which naturally occurs in a real human walk. Because of the feedback mechanism (i.e. the check 

for impact), this approach might very well be modified to account for clearance of small obstacles along the 

locomotion path. 

As in the SWING1 phase, the angles for the ankle and meta joint during the SWING2 and 

subsequently the SWING3 phase are determined by linear interpolation between the initial angles 

(swingl-ankle, swingl-meta) at time tl and the fmal angles at heel strike at t3 . Whereas the meta 

angle at t3 is assumed to be zero, the ankle angle is specified by a locomotion attribute as described in section 

The SWING3 phase takes up the short period (by default 15 % of twiw ) at the end of the swing 
4 .- 

which is characterized by very little rotational movement at the joints of the swing leg (see figure 6-1, t2 to 

t3) .  Since the leg is extended and the knee is locked, the equations of motion are modified as in the 

SWING1 phase; the dynamic model of the swing leg is now defmed as a single pendulum. To account for the 

impulse as a result of the knee extension at the end of SWING2, the equations are initialized according to the 

calculations in appendix C.3.2. 

A constant torque is applied to the hip during SWING3 to bring about heel strike at exactly the time 

for the end of the swing. This is achieved by the interpolation process described in section 4.5. Usually, the 

hip torque takes on values to solely hold the leg in its position (and therefore its magnitude is similar to F 
03 

near the end of the SWING2, neglecting the rather minor compensation for the hee extension impulse), 

while forward motion of the hip directed by the stance leg is mainly responsible for bringing the heel down 

onto the ground. At heel strike, the orientation of the swing leg plus the impact conditions (see appendix C 

3.1) are used to initialize the stance leg model for the subsequent stance phase. 
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62.4. starting and Stopping 

The subphases for the stance and swing described above apply not only during the rhythmic period 

of a locomotion sequence, but also during accelerated and decelerated motion. If the locomotion parameters 

change at any time during a walk, the different timing constraints and final conditions for the subphases 

become active as soon as the current step is completed. However, for the first and last step the swing 

subphases need to be adjusted to account for a different motion pattern of the leg. 

M e n  starting a walk from rest with both feet parallel on the ground, the SWING1 phase can not be 

executed as discussed in section 6.2.1. Instead, the following algorithm is employed, which is based on the 

same principle as the original SWING1 phase (i.e. the knee is locked for the dynamic simulation and the knee 

angle is updated kinematically while a hip torque produces a forward swing of the thigh to its desired 

orientation e3 d, ): rather than prescribing the motion of the ankle by a polynomial, the tip of the toe is lifted - 
up vertically. If the hip angle has not reached e3 d, by the time when the knee is directly over the toe (this - 
happens automatically by increasing the hip angle and moving the toe straight up), the toe holds its position 

directly under the knee until the end of SWING1. The SWING2 phase can then proceed as usual. 

On the last step, the SWINGl phase is applied normally except that the desired angle for the hip 

03-dLp is not zero as one might expect, but calculated such that the knee of the swing leg at the end of 

SWINGl is exactly at the same horizontal position as the toe of the stance leg (of course, the toe of the swing 

leg is directly under the knee at this moment). In place of the SWING2 and SWING3 phases, the foot is now 

just lowered straight down until it is flat on the ground parallel to the stance foot at the end of the swing. This 

is implemented as sort of a SWING 1 phase by locking the knee for the dynamics and applying a hip torque to 

arrive at a 7ao hip angle at twin* . Because the lowering of the foot takes place much more quickly than the 

usual STANCE2 and STANCE3 phases, the duration is reduced to half the normal time; at the same time the 

duration for the SWINGl phase is increased to satisfy tming . 

It is noted that the algorithms for the fmt and last step of a locomotion sequence have been chosen 

somewhat arbitrarily. Since no experimental kinematic data could be found in the literature on how human 

beings start and stop a walk, the steps taken above are solely justified by our own observations. Also, a 

compromise was made between generating a realistic appearance and controlling the dynamics. 
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Figure 7-1: Display of a walking figure. 

The KLAW &eyfrarne&ess Animation of walking) system has been implement& to animate 

bipedal walking. It consists of two C-program modules, walk and walkdsp. Thc former does all the 

calculations discussed in the previous sections, whereas the latter was written for displaying the results (i.e. a 

walking figure such as that shown in figure 7-1) on an IRIS 2400 workstation. Appendix B.2 shows the 

. interface between the two programs. The computation of all the body angles is time-consuming: for instance, 

it took 31 see of CPU time on a SUN3-50 computer with floating point processor (Motorola MC68881) to 

comptite the animated walk illustrated in figure 7-1 (5.57 see = 168 frames ). In practice, the SWING2 

phase has been most expensive because of its recovery and reduction measures (see section 6.2.2); although 

the duration of SWING2 is only about 35 % of the time for the swing, the simulation usually takes more time 

than for the SWING1 and SWING3 phases combined. 

72 
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Some of the results of the walking algorithm are now discussed in more detail. The convention is 

used that positive angles mean a flexion and negative angles denote an extension of a joint; for the ankle and 

meta joint, a positive angle is a plantarflexion, whereas a negative value is a dorsiflexion. Except for figure 

7-10, the ordinate values for all diagrams start at heel-strike (i.e. the motion of the left leg in figure 5-1 is 

presented). All the joint rotations are assumed to be in the sagittal plane, that is, along the line of progression. 

walking cyde (%) walking cycle (%) 

Figure 7-2: Comparison of hip angles during a locomotion cycle. Left angles as calculated 
by KLAW, right angles obtained from a walking human subject Winter 793. 

Figures 7-2,7-3 and 7-4 show the hip, knee and ankle angles as calculated by the walking algorithm 

compared to real walking data collected by Winter [winter 791 for one rhythmic walking cycle (denoted as 

W for further reference). The locomotion parameters for the "film" walk are approximately v = 5 h l h ,  

sl= 0.79 m and sf= 107 stepslmin based on a body height of 1.8 m. Specifying a desired velocity of 

v = 5 kmlh , the walking algorithm calculated (see appendix D) a "natural" step length sl = 0.77 m and a step 

frequency sf= 107.5 stepslmin , which are very close to the real walk. Illustrations of both walks are given 

in appendix F (figure F- 1 and F-2). 

Since filtering and smoothing techniques were applied to the real walking data [Winter 791, these 

angles produce more continuous curves. A peak occurs in the calculated KLAW hip angle (maximum 

flexion) at around 40 9% into the cycle. At the same time the knee angle is a minimum, which means that the 
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Figure 7-3: Comparison of knee angles during a locomotion cycle. LA: angles as calculated 
by KLAW; right angles obtained from a walking human subject [Winm 791. 

walking cyde (%) 
walking cyde (%) 

Figure 7-4: Comparison of ankle angles during a locomotion cycle. Left: angles as calculated 
by KLAW, right angles obtained from a walking human subject [Winter 791. 



Results 75 

leg is fully lengthened. The peaks signal that the leg extends too fast, which is caused by a quickly increasing 

leg axis force Fa, that reaches a maximum at 40 % of the cycle time (see figure 7-7). Possibly an earlier 

activation of the STANCE3 phase (set to start at the end of the SWING1 phase as defmed in section 6.1, in 

this case about 35 % of the cycle), or a smaller value for e-i, could alleviate the problem. The relatively 

flat shape of the KLAW knee angle curve during stance from about 10-30 % of the cycle is produced by a 

stiff dynamic leg spring. A lower spring constant k, can help to more closely match the knee angle of the 

real walk The magnitude of the KLAW ankle plantarflexion at the end of the double support phase, i.e. at 

tocoff (60 % of the cycle), is significantly larger than for the "film" ankle. This is not unnatural, as 

experimental data Fman 811 show similarly large values (between 20 and 30 ) at comparable walking 

speeds. It should be noted that the deviations of the KLAW angles from the "film" angles are quite minor 

and hardly visible in an animation of a human figure. Furthermore, the measurements of articulated motion 

are not free of noise, and it is difficult to obtain simultaneous data of motion in all three reference planes 

(sagittal, coronal and transverse). The walking algorithm, on the other hand, includes motions such as pelvis 

rotation, pelvic list and lateral displacement of the body, which are only indirectly represented in figure 7-2, 

7-3 and 7-4 (see also figure 7-12). 

walking cyde (%) 

Figure 7-5: Dynamic hip angle for walking cycle W. 

Figure 7-5 shows the very regular behavior of the dynamic hip angle el over the duration of two 

rhythmic walking steps: the angle increases from -25 " at heel strike to 25 " at the heel strike of the other leg. 
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Towards the end of a step (40-50 % of the cycle), the curve bends upwards slightly, which represents an 

increase in the angular velocity. This corresponds to an acceleration of the center of mass as discussed in 

section 5.3. 

- . - I . , . , - , - ,  
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walking cyde (%) 

Figure 7-6: Upper body angle O2 (sagittal plane) for walking cycle W; 
a positive value corresponds to a forward tipping of the body. 

In figure 7-6, the upper body angle €I2 is displayed as calculated by the dynamics. Shortly after heel 

strike (at 0 % and 50 %) of the walking cycle, the upper body tilts forward as a result of the impulse. 

However, the net change in the upper body angle is very small. 

Figure 7-7 shows the leg axis force Fa and the leg torque F, during stance. The dynamic stance 
1 

phase for a leg ends with each step, since the other leg takes over at heel strike. Therefore the force and 

torque pattern repeat with each step (this holds also for the swing phase torques illustrated in figure 7-8). F, 
1 

follows a regular pattern; as described in section 6.1, it acts as a step input torque for about 20 % of the cycle 

time during a walking step. The value for Fa never drops down to zero, which means that the SWING2 

phase was not activated (i.e. the leg was never locked) and STANCE4 had to occur just at heel saike of the 

other leg. Shortly after heel strike, Fa increases to account for the impulse, which is achieved by an internal 

increment in the position actuator pal . The end of the SWING1 phase is reached at about 35 % of the cycle, 

which causes another temporary increase in Fa when STANCE3 sets in to lengthen the dynamic leg to its 

desired value a,, at heel strike. 
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Figure 7-7: Leg force F, and torque F during stance for walking cycle W. 
01 

Figure 7-8 illustrates the torques at the swing leg. A knee torque F develops only during SWING2 / \- 
04 

from 35 % until about 48 % of the cycle for the first step; it sets in with a maximum (negative extension) 

magnitude and decreases according to the exponential function in equation (6.3). F follows the same 
03 

pattern during SWlNG1, from about 12 % (after double support with the beginning of the swing phase) until 

35 % of the cycle time. In the SWING2 phase, the magnitude of F is determined by a spring and damping 4 
construct, which causes irregularities in the profile particularly at the phase change from SWING1 to 

SWING2 (see at about 80 % of the cycle time, where F actually becomes positive, which indicates a 
03 

flexion moment). The irregular behavior of F is caused by the sudden extension torque at the knee, which 
O3 

has to be compensated in order to keep the hip angle constant. 

Figure 7-9 displays the motion of one leg for a complete walk (including starting and stopping). The 

. sinusoidal path of the hip (i.e. the vertical displacement of the center of mass) is more pronounced for the 

faster walk during the rhythmic period, which is in accord with observations by Inman m a n  811 on real 

human walks. The diagrams of figure 7-10 show the leg angles at each frame for the same walking sequence 

(for the same leg). It can be seen that the maximum flexions of the hip, ankle and meta joints (ankle and meta 

joint plantarflex) at toe-off are bigger during the second cycle, where the full velocity of 5 kmlh is reached, 
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Figure 7-8: Hip torque F and knee torque F during swing for walking cycle W. 
O3 '4 

than in the first and third cycle, which are characterized by acceleration and deceleration, respectively. Only 

the maximum knee angle stays fairly constant in all three cycles. This is in conformity with studies on real 

human walking nnman 811 (see also the discussion of the meta-off phase, section 5.4). (It is noted, that the 

walking sequence of figure 7-9, bottom, and 7-10 is also printed on the right margin of this write-up in 

reverse order.) 

A comparison of hip and knee angles for 3 walks with different step length and step frequencies, but 

the same speed, is given in figure 7-11 over the duration of one rhythmic walking cycle. Photographic 

Images of the same walks are presented in appendix F (see figure F-2, F-3 and F-4). An analysis is left to the 

reader. 

Figure 7-12 illustrates the effect of pelvic list in the coronal plane on the leg angles in the sagittal 

. plane. Between 40 % and 70 % of the walking cycle, the hip joint of the walk with an accentuated pelvic list 

(3-3) does not flex as much as the hip joint during a normal walk (3-1). In other words, the bigger the pelvic 

list, the more the thigh of the hind leg extends forward towards the end of the double support phase. Of 

course, at heel strike, both the hip and the knee angles must be the same because the walks are based on the 

same locomotion parameters. The knee flexion of (3-3) is increased from about 55 % to 75 % of the cycle 

compared to (3-1) to account for the lower hip position. 
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Figure 7-9: Motion of leg for two complete walking sequences at different speeds (only one leg is 
displayed). Both walks cover about the same distance from the start to the end. 
Top: 2 kmlh ,204 frames, 4 walking cycles (2nd and 3rd cycles are rhythmic). 

Bottom: 5 kmlh , 108 frames, 3 walking cycles (2nd cycle is rhythmic). 
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Figure 7-10: Hip, knee, ankle and meta angles for a complete waking sequence (including starting and 
stopping) of 108 frames, which corresponds to the walk of figure 7-9, bottom. 
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Figure 7-11: Hip and knee angles for 3 walks with the same speed, v = 5 kmlh, but different step lengths 
( ~ 1 ~ - ~  = 0.5 m , slw = 0.77 m and s15-, = 1.05 m )  and different step frequencies 

(g5-l = 166.7 stepslmin , .fw. = 107.5 stepslmin and sfs2 = 79.4 stepslmin). The number 
of frames for each wallung cycle w are: wS1 = 23, wg4 = 34 and = 46. 

Walk 5-0 is a "natural" walk. 
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walking cycle (%) 

walking cyde (%) 

Figure 7-12: Hip and knee angles of 2 walks with the same locomotion parameters ( v  = 3 kmlh , sf = 0.6 m 
and@=83.3steps/min),butadifferentvalueforthepelvic-list factorlocom~tion 

attribute: pe lv ic- l i s t - factor  = 1 ,  pe lv ic- l i s t - factor  = 3 .  
A rhythmic wallung cycle is assumed. 
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Chapter 8 

Conclusions 

The principal objective of this thesis was to design a control algorithm for the animation of bipedal 

locomotion. The KLAW sy&m which has been implemented can generate a large variety of walking 

sequences and the two sub-goals of developing a high-level control scheme and producing realistic motions 

have been successfully translated into action. A natural animation of a walking human figure is obtained by a 

hierarchical decomposition of a task specified by a few waking parameters. The decomposition is achieved 

by combining several motion control techniques in an elegant way, eliminating a lot of the disadvantages that 

occur in the separate application of,any one of these techniques (as described in chapter 2). 

It has been shown that a simple dynamic model is sufficient to simulate a generic locomotion 

pattern. The effects of gravity, ground collisions and active muscle moments during a human walking cycle 

are adequately accounted for by the sys.tem. The simplicity of the dynamic model makes it possible to 

determine the governing forces and torques based on internal knowledge and rules about locomotion. This 1: 
eliminates a major problem attached to applying traditional forward dynamics to computer animation: rather 

than having to specify the cause of a motion in terms of forces and torques, the user can select a number of 

more obvious motion parameters such as velocity and step length. From a hierarchical viewpoint, the 

equations of motion provide the low-level, natural execution of the leg movements. They symbolize the 

functional synergies that are controlled by the motor program for wallring as discussed in section 3.2. The 

motor programs embody the rules about a locbmotion cycle, which are incorporated at several levels in the 

motion control hierarchy. High-level concepts such as step-symmetry and state-phase timings define the 

boundary conditions for a specific walking configuration. Rules at the middle level govern the coordination 

of the legs; this involves the proper sequencing of the leg-phases. At the bottom level, knowledge about 

walking leads to a subdivision of the original phases and the calculation of the force and torque profiles. 

Kinematic rules about the motion of the foot, leg, pelvis and upper body are integrated into the dynamic 

simulation. 

Goal-directed and dynamic approaches to motion control have been tied together in this thesis. 

Although the implementation was done specifically for bipedal walking, we believe that the basic ideas can 



be extended and applied to other forms of articulated motion as well. In practical terms, the dynamics could 

be regarded as an interpolation method berween the key frames defined by some high level concepts (in this 

case, step symmetry and state-phase timings). Therefore, the ultimate goal is to built an entire animation 

system for articulated figures, where different classes of motions (locomotion, grasping, standing up, turning, 

etc.) are implemented as tasks which the animator can activate by a few motion parameters (see also figure 

3-2 (b)). The usefulness of such a system would greatly depend on the choice of parameters assigned to each 

task. 

The KLAW system developed in this thesis can be integrated into current animation systems to 

produce sequences of walking. For instance, in a keyframing system such as the V-2000 system of Vertigo, 

an initial and final key position of a figure could be specified and the KLAW system would then generate a 

walk in-between. Some of the extensions mentioned below (e.g. the possibility of changing directions) 

would be necessary to make this symbiosis more practical. 

& 

A direct extension of the algorithm would be the inclusion of other bipedal gaits and locomotion 

with more than two legs. Suggestions are given in sections 3.2,5.1 and 5.2. Whereas running, for example, 

would require a modification of the dynamic model to account for the flight phase during which both legs are 

off the ground, additional legs are merely a coordination problem at the "state" level. The algorithm was 

designed for legged locomotion on level ground. However, we think that walking up and down inclines and ! 
stairs could be implemented in a straightforward manner based on the same principles. For instance, walking 

up stairs would involve the definition of a new local motor program (see figure 3-2) for the swing phase, 

whereby the feedback mechanism for foot clearance (discussed in section 6.2.2) could be adapted to move 

the leg from step to step; for walking downhill, a greater knee flexion during stance would have to be 

accounted for in the local motor program for the stance leg by reducing the stiffness of the dynamic leg 

The usability of the algorithm could be improved by a better user interface, where the locomotion 

parameters (i.e. velocity, step lengthand step frequency) and possibly the locomotion attributesE would be 

specified and modified interactively as functions of time. In the current version of KLAW, it is only possible 

to generate walks with an acceleration period at the beginning and a deceleration at the end of the locomotion 

sequence. By adding functions for the direction of locomotion, KLAW could be interfaced with path- 

planning algorithms. A change in direction could be implemented by adding "kinematic" degrees of freedom 

(as in the case of the legdeterminants) to enable the legs to swing slightly sideways. 



Is is also desirable to make the algorithm more efficient in order to come close to real-time 

A significant speed-up could be expected if a faster integration method was used (the 

LSODI [Hindmarsh 801 FORTRAN routine does a lot of extra, time consuming checking). Also, it would be 

worthwhile to examine the numerous trigonometric expressions used in calculating the kinematic gait- 

&terminants for a more efficient fonnulation. 
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Appendix A 

Terminology 

The following is an alphabetically ordered list of frequently used terms from Computer Animation, 

Physics and Artificial Intelligence. They are explained or defined in the way in which they are used in the 

context of this thesis. 

Animtion 
This literally means 'to bring to life'; it is the process of representing changes of movements over 

time. Generally, the motion is generated through the rapid display of successive images, fast enough (24 

frames/sec for film, 30 frames/sec for video), that the human eye interprets them as continuous motion. 

Originally, animation was restricted to 2-D (Walt Disney, Warner Brothers) or 2%D (pictures are drawn on 

parallel planes, that can be moved against each other). 

When computer technology was ready to be applied to animation, it first served mainly as an 

assisting tool. The computer supported color drawings, the calculation of in-betweens and film-recording. 

Today, 3-D computer animation is common practice and is an entirely different medium. Often 

termed modeled animation, it supplies the animator with a whole new set of tools for the modeling- 

animating-rendering procesS. 3-D models, color, shading, movement of camera (viewpoint) and other 

techniques greatly enhance realism. 

. Articulated Body 
The body is made up of segments or links (usually rigid) connected by joints. The motion of the 

segments relative to each other is somewhat restricted. The human body is expressed as such an articulated 

body. It can be represented as a aee structure (transformation tree) where the segments (joints) are taken as 

nodes connected by joints (segments). Each node has its own coordinate system (transformation matrix). 



Nodes located more deeply in the tree will be transformed by matrices from ancestor nodes, when the tree is 

mversed, e.g. a wrist-node gets transformed by the elbow-node above it, if the lower arm is moved. 

Each joint has one to three rotational DOF (up to two degrees of constraints). Joints with 1 DOF are 

called hinges (e.g. elbow), with 2 DOF they are called universal joints (e.g. finger) and with 3 DOF, joints 

are referred to as ball joints (e.g. shoulder). The total number of DOF of the body is the sum of the DOF at 

each joint plus the 6 DOF of an initial joint (position and orientation of the body as a whole) which 

"connects" the body to the world. 

Center of Mass 
Traditionally, the center of mass of a system is defined as the sum of the products of all its particle 

masses and the distance from the origin divided by the total mass of the system. With articulated bodies, the 
& 

calculation of the center of mass is simplified, since the mass of each segment can be expressed as a function 

fi. of the total mass M (e.g. thighbody= 0.1, total arrn/body= 0.05). The center of mass x therefore is: 

In locomotion of articulated bodies the center of mass constantly changes, so it has to be recalculated 

for each time-step. It plays an important role in balancing the body. 

Conservative System 
In this context, a physical system (e.g. a double pendulum) is conservative, if no external forces and 

torques are acting on it except gravity. An exact definition is given below. 

If the work done by a force in moving an object from one position to another only depends on these 

two positions but not on the path followed, the force is said to be conservative and the system is referred to as 

. a conservative system. For example, if a block is raised from the ground to a height h,  the work done on the 

block by the gravitational force is mgh. Since there is no work by gravity in the horizontal direction, the 

work done on the block to lift it to height h remains the same, whether it is moved up vertically in a straight 

line, zig-zag or along any arbitrary path. Hence, gravity is a conservative force and, if air resistance is 



the system is conservative. But if the block is pushed horizontally on a table from A to B, the work 

on the block is done against a fictional force, which is always directed opposite to the motion. Now the 

amount of work depends on the path taken between A and 8 ,  in that the longer the path is, the more work has 

to be done. In this case, the system is non-conservative and friction represents a non-conservative force. 

Degrees of Constraint 
A single particle in space has 3 DOF. If its motion is restricted to a line 01 = ax + b ,  z = O), one 

coordinate is sufficient. The particle is said to have 2 degrees of constraint and therefore only 1 DOF. 

Degrees of Freedom (DOF) 
'DOF are the number of independent parameters (not including time) required to completely specify 

the position of every part of the system. For example, a single particle has 3 DOF in space, a segment or 

rigid body has 6 DOF (3 translational coordinates for position and 3 rotational ones for orientation), a double 

pendulum with moving reference point free to move in space has 9 DOF (3 translational coordinates for 

position and 6 rotational ones for orientation). 

Differential Equations of Motion 
Dynamic analysis of a system involves expressing its behavior over time. For example, if we have a 

particle of mass m fastened to a spring with force constant k, and the displacement of the particle is x ,  then 

the behavior of this system is formulated as 

m x + k % = O ,  

which is derived from Newton's 2nd law of motion, F= ma by letting F= -kx (Hooke's law) and a = x, the 

2nd derivative of the displacement over time. 

The above equation is called the differential equation of motion for the system, which can be set up 

in various ways (Lagrange, Newton, D'Alembert, Hamilton ) [Wells 671. Except in the Hamiltonian fom, 

they are all of 2nd order. 

In this simple case, only one coordinate (displacement in x-direction) is considered. Usually, in 
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particular when dealing with articulated bodies, the number of DOF is large, thus resulting in many equations 

of motion, since there is one equation for each DOF. Because the equations are non-linear, complex and 

coupled most of the time, a solution (to the direct dynamics problemA) can only be found by numerical 

methods. 

Duty Factor 
The duty factor of a foot is the fraction of the duration of the stride for which this foot is on the 

ground. 

Dynamics 
This is the study of changes in motion due to forces and torques. In Biomechanics Winter 791, this 

discipline is often called kinetics. Considering the human body, internal forces (caused by muscular activity, 

ligaments, frictions in musdes and joints) as well as external forces (ground reaction forces, collisions with 

active and passive bodies) have an influence on movement. Classical dynamics is based on Newton's 3 laws 

of motion. Equations of motion can be solved in 2 directions: 

direct (forward) dynamics problem 
given the forces and torques, solve for the accelerations, i.e. determine the resulting 
motion of the system. In Computer Animation, dynamics is usually applied in this form. 

inverse dynamics problem 
given the motion of a system (i.e. the accelerations), solve for the forces and torques that 
produce these accelerations. In Biomechanics, one often has to resort to this approach, 
since the measurements of forces and torques (which have to be known for direct 
dynamics to be applied) are mostly inaccurate and difficult, if not impossible, to measure. 
On the other hand, positional data (i.e. accelerations) can be readily gathered. Thus, via 
inv- dynamics, the forces and torques can be calculated. 

\ 

Frames 
A frame-based representation scheme specifies a knowledge bas&, which is a collection of frames 

logically connected and organized in some (mostly) hierarchical manner. A frame winsky 751 is a data 

structure for representing stereotypical situations, such as being in a certain kind of living room or going to a 

child's birthday party. The salient idea behind this is to group pieces of knowledge into microworlds, which 

may be useful for understanding a particular concept. Each frame has terminals or slots for attaching pointers 



to substructures. Different frames can share slots, e.g. the frames for a table and a chair might share the slot 

for a leg, if both have legs of the same geometrical nature. Terminals of a frame are usually stored with 

"weakly" bound default assignments, which can be updated or replaced for a particular instance. 

Gait 
Different styles of locomotion depend on speed and on the structure of the animal. Gaits can be 

classified as walks and r m .  Walks have duty factorsA 2 0.5 (for a certain time during a stride all feet are on 

the ground), whereas runs have duty factors < 0.5 (there is a time during a stride when all feet are off the 

ground). A gait is called symmetric, if the left and right feet of each pair have equal duty factors and relative 

phasesA differing by 0.5 . Thus human walking is a symmetric gait. Also amble, trot and pace are symmetric; 

gallop, hopping or canter are asymmetric [Alexander 841. 

Kinematics 
This is the analysis or description of movements of bodies or parts of bodies in time and space 

independent of the forces, that cause these movements [Wilhelms 85, Dagg 771. It involves the calculation of 

linear and angular displacements, velocities and accelerations. The kinematics of articulated bodiesA results LL 
in the following two related problems: 

direct Cfonvard) kinematics problem 
find the position of a distal segment of the body given the joint angles of the proximal 
segments, e.g. find the position of the foot given the angles of the hip, knee and ankle. 

inverse kinematics problem 
find all the joint-angles of the proximal segments required to produce a particular 
absolute position of a distal segment, e.g. given the position of the foot, find the joint- 
angles at the ankle, knee, hip, which will place the foot at that position. Inverse 
kinematics finds applications in robotics, where, for instance, the robot hand has to be 
placed at a certain known position in order to grasp something; or in locomotion to place 
and hold a foot at a position on the ground, while the body is passing over it. With 
articulated bodies the inverse kinematics problem can be very difficult to solve [Girard 
851. 



Knowledge Base 
The central issue in knowledge representation is to fmd proper internal representations for expert 

knowledge along with associated knowledge handling facilities to create intelligent systems. 

The different notations for representing knowledge are referred to as representation schemes. By 

making use of such a representation scheme, a knowledge base can be specified, which is basically a model 

of the world containing various facts. There are different classes of representation schemes: logical, network, 

procedural, frame-based, etc. Flylopoulos 831. A procedural representation scheme, for instance, can 

specify a production system. The knowledge base would consist of a number of production rules and a 

database. The production rules are of a "if pattern then action" type. If the pattern matches some fact in the 

database, the action is executed. 

~ o m e n t  of Inertia 
See Radius of Gyration. 

Particle 
An imaginary bit of matter (visually a dot), so small, that it is totally determined in space by 3 

coordinates. 

Radius of Gyration (y) 
L 

The distance from any given axis of rotation, at which the mass of a rigid body could be 

concentrated without changing the moment of inertia, I ,  about that axis of rotation. For the application here, 

the moment of inertia about the center of mass, Io, is important. In this case, y is such that 2 equal point 

masses (located at a distance y at either side of the center of mass) have the same moment of inertia as the 

original distributed mass: 
2 - m 2  m 2  Io=my --y +Ty 

2  

It should be noted that the moment of inertia about any other axis of rotation (usually the proximal or 

distal end of a segment), which is parallel to the axis of Io, can be determined by applying the Parallel Axis 

Theorem Winter 791: 



where x is the distance between the center of rotation and the center of mass. 

Relative Phase 
The setting down of a foot with respect to the setting down of an arbitrary chosen reference foot, 

expressed as a firaction of the duration of the stride. The reference foot is assigned relative phase 0 and the 

others have relative phases in the range 0- 1. Alexander [Alexander 841 presents various examples. 

Rigid Body 
Defined by a number of points, that must move together as a whole; they may not move relative to 

each other. 

Simulation Ib 
In this context, simulation is defined as the process of studying the behavior of a physical system 4 

under various conditions using a computer model. A model is an internal representation of a system where 

mathematical equations define its components and their interactions IJAiller 751. The graphics is completely 

decoupled from the model. In simulation as opposed to animation, a system is described by governing 

dynamical equations, whereas animation is fkquently associated with kinematics. Here, simulation is treated 

as a particular animation technique, where motion control is determined by dynamic equations of motion. 

Step 
During each stride for bipedals, there are 2 steps, one left and one right. A step is the movement of a 

single leg from the time it is lifted off the ground until its next lift-off. A step is divided into stance and swing 

phases. 
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Stride 
Complete cycle of leg movements, e.g. from the setting down of a particular foot to the next setting 

down of the same foot. 
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Appendix B 

Body Data 

B.1. Anthropometric Data 

The anhpometric data shown below are used for dynamic analysis and lower body kinematics, 

respectively. It is claimed in this context that in determining the dynamics of the stance leg and the shank of 

the swing leg, the segment weights, centers of mass and radii of gyrationA (moments of inertia) include the 

physical properties of the foot. Data for the lengths of segments were drawn fiom various anatomy books, all 

other measurements are bornwed fiom a book by Winter [Winter 793. 

for segment i , 
1 i = segment length I body height 
mi = segment weight I body mass 
r i = center of mass 1 segment length 
y i = radius of gyration A I segment length 

upper body 1 m r y 2 2 2  2 

pelvis thigh l3 m3 

I b shank li 

foot 1 5 1 6  171*19 

Figure B-1: Indices for anthropometric values of lower body segments. 
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i Body Data 

Table B-1 lists the relative anthropometric data for each of the segments illustrated in figure B-1. It 

should be noted, that except for rl , which is measured from the distal end, the centers of mass are given from 

the proximal end of a segment. The radii of gyration are specified with respect to the center of mass: 

I upper body 1 2 1 0.47 1 0.678 1 0.5 1 0.496 1 

pelvis 

leg 1 thiz 13 10.23669 1 o:L 10.:3 10.:3 1 
4 0.24556 0.061 0.606 0.416 

mid foot 5 0.0858 

I toe 1610.04734( - I - I - I 

0 

1 

Table B-1: Anthropometric values of lower body segments (the * indicates 
a vertical distance rather than a segment length). 

The absolute anthropometric data, including the moments of inertia Zi, are calculated once the values 

for body height and body mass are specified. As an example, if the total body height is to be 1.8m and the 

body mass 75 kg, the following values result for the thigh: 

0.10059 

1 + 1 

- 
9 + m, 0.553 0.326 
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B.2. Human Walking Figure Data 

The following data structure is updated by the KLAW system for each frame (&c ) m animate a 

human walking figure using a left-handed coordinate system. Rotations about the x, y, z axes are denoted by 

the suffix -a, -ry, -rz , respectively. 

type&f atruct 
{ 

float 
int 
int 
int 
int 
float 
float 
float 
float 
float 
f loat 
float 
float 
f loat 
float 
float 
float 
float 

float 
float 
float 
float 
float 

float 
float 
float 
f loat 
float 
float 
f lort 
float 
float 

f loat 
float 
float 
float 
float 
float 
float 
float 
float 
f loat 
float 
f loat 

walk-data 

time; 
state; 
cyal.; 
rightghaae; 
leftghamo; 
body-tx; 
body-ty; 
body-t z; 
pelvia-ry; 
polvia-rx; 
right-hip-rz; 
right-knee-rz; 
right-ankle-rz; 
right-mrta-rz; 
le ft-hip-rz; 
left-knee-rz; 
loft-ankle-rz; 
loft-mota-rz; 

/* currant ti- */ 
/* atde (ainglo or double support) */ 
/* cycle (&velop, rhythmic, decay) */ 
/* 1.g phaso (STANCE1,2,3,4; SWINC1,2,3 */ 

/* roferoncm poaition of the body */ 
/* (loortad halfway botween hipa) */ 

/* pdvic rotation 
/* pelvic list 
/* 8, 
/* o4 
/* es 
/* 8, 

/* diatribution of uppor body angle 8, */ " 
lumbarl-rz ; 
lumbar2-rz ; 
lumbar3-rz ; 
lumbar4-rz ; 
lumbar5-rz ; 

/* distribution of compensation for */ 
/* pelvisrx */ 

right-hip-rx; 
right-ankle-rx; 
loft-hip-=; 
left-ankle-rx; 
lumbarl-rx; 
lumb8r2-rx; 
lhar3-rx; 
lumbar4-rx; 
lumbar5 -rx; 

/* diatribution of comp.n~ation for */ 
/* pelvia-ry */ 

right-hip-ry ; 
left-hip--; 
lumbarl-ry ; 
lumbar2-ry; 
lumbar3-ry ; 
lumbar4-ry; 
lumbar5-ry; 
thoraxl-ry ; 
thorax2-ry; 
thorax3-ry; 
thorax4-ry; 
thorax5-ry; 
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float 
float 
float 
f loat 
float 
f loat 
float 
float 
float 
float 
f loat 
float 
float 
float 
f loat 
f loat 

f loat 
float 
float 
f loat 

) WALKDATA; 

thor-6-ry; 
thorax7-ry; 
thoru8-ry; 
thoru9-ry; 
thorul0-ry; 
thorurll-ry; 
thor.xl2-q; 
cmrviaall-ry ; 
cervical2-sy; 
crrvical3-ry; 
crrvical4-ry; 
cervicals-ry; 
cervical 6-ry ; 
cervical7-sy; 
righttahoulder-sy; 
lmft-ahoulderight-ry; 

/* arm 
right-shoulder-rz; 
left-ahoulderight-r~; 
right-elbow-rz; 
left-elbow-rz; 
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Derivation of Equations of Motion 

a) stance leg model with upper body b) swing leg model 
(inverted double pendulum with springy leg) (double pendulum) 

. 
Figure C-1: Dynamic models for simulating different phases in legged locomotion; O3 is 

assumed to be negative in the given configuration, all other angles are positive. 

The equations of motion for the stance and swing phase are derived below using the Lagrange 

method. The vectors pi (i = 1, . . . ,4) extend from the inertial frame to the centers of mass of each segment i 

. as described in section 3.4.1. The values of the anthropometric data are given in appendix B. The actual 

length of the springy stance leg is denoted by o; initially oo = I * .  The Ii are the moments of inertia around 

the center of mass as calculated in appendix B. 
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Derivation of Equations of Motion 

C.1. Stance Phase 

The Lagrange equation for the stance phase can be written (see section 3.4.2) as 

The kinetic energy of the system (see figure C-1 (a)) is expressed by 

1 . 2  1 . 2  1 2  1 . 2  
= - m  pl + Tm2p2 + -I 6 + T1202 . Tst 2 1 2 1  1 

where the squares of the translational velocities of the centers of mass 6: and b: are calculated as follows: 

Since the foot remains fixed on the ground during stance, i.e. x = j; = ; = = 0, this reduces to 

Similarly, 

p2 = [ X  + msinB1 + r2sine2, y + 0 c o s 8 ~  + r2cose21T 

Therefore, the kinetic energy becomes 

1 1 2 2 '2  1 2 .2 Tst = - m  d, + 1(11 + mlrl + %o )e l  + -(I + m2r2)$ 
2 2 2 2 

+ m2r292(081'ms(e2-01) - hsin(e2-e l ) )  . 

The potential energy of the system amounts to . 

Ust = mlg(y + r lcosel)  + %g(y  + ocosel + r2cose2) .  

Substitution of Tst and Ust into equation (C.l) and differentiation with respect to o ,  and O2 leads to 3 

equations of motion, which totally describe the system. Step by step, 
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Derivation of Equations of Motion 

After rewriting the equations in matrix form A & = B ( qst , qS>, they are transformed to a set of first 

order equations (see section 3.4.3) of the form 

A'ust = B' ( u s t )  , where 



Derivation of Equaticrns of Motion 

C.2. Swing Phase 

The Lagrange equation for the swing phase can be written as 

From figure C-1 (b) we derive (note that e3 is defmed to be negative for consistency) 

p3 = [x, - r3sine3, yh - r 3 ~ s e 3 l T  and 

p4 = [xh - 13sine3 - r4sin(03+04)7 yh - l 3 w s q  - r4~os (03+04) ]T  . 

Substituting 

-2  -2  2 -2  i: = xh + yh + r3e3 - 2r303(4cos03 - jhsine3) and 

6: = 4 + $ + r:e: + r:(e3+e4)2 - 2i34(i, ,cose3 - jhsine3) 

- 2 r 4 ( e 3 + 8 4 ) ( ~ h ~ ~ ~ ( ~ 3 + 8 4 )  - &sin(e3+e4))  

+ 2 l3 r4 e3 ( e3 + e4 ) COS e4 

into 

1 1 1 T, = i m 3 $  + ? m 4 i ;  + -I 2 3  e2 3 + i~4(e3+e4)2  

yields 

1 -2  -2  1 2 2 -2  
T, = T(m3 + m 4 ) ( ~ h  + yh) + Z(13 + m3r3 + m413)e3 

1 2 + -i(14 + m4r4)(63+04)2 - (m3r3 + m413)93(&~os03 - jhsinB3) 

- m 4 r 4 ( e 3 + e 4 ) ( ~ h ~ ~ ~ ( e 3 + e 4 )  - jhsin(e3+e4))  

+ m4 l3 r4 e3 ( e3 + e4 ) cos e4 

for the kinetic energy. The potential energy for the swing phase is 

Usw = m 3 g ( ~ h  - r 3 c ~ ~ e 3 )  + m4g(yh - 4cose3 - r4c0s(e3+e4)) 

The two equations of motion can now be derived by differentiating the Lagrangian analogous to the stance 

phase. This results in 
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It should be noted that the translational motion of the hip of the swing leg does not impose additional 

degrees of freedom to the system, since this motion is determined by the stance phase model as follows: 

xh = x + Cosinel yh = y + WcoseI 

Xh = Osin O1 + o 8, cos yh = OCOS el - o el sin el 
ih = tisin0, + 2 6 4  C O S B ~  yh = ti cos 0, - 2 i 6,  sin el 

+ 0(Zj~cos0~ - 9;sine1) - 0(Zj,sin0~ + 8 ~ c o s e 1 )  

.. .. . . 
wherex=y=x=y=O . 
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After transformation to a set of k t  order equations, the matrix formulation 

A'L = B'(uw) 

is expressed by 

= r 03943,04;441T 

-m3gr3 sin 03-m4g (I3 sin O3 +r4 sin (€I3 + €I4)) 

94 

- 2  -m413 r4e3 sin 04-m4gr4sin($ +04) 
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C.3. Collisions 

C.3.1. Heel Strike 

At impact (heel strike), the following calculations are done based on the conservation of linear and 

angular momenta ( - means before, + after impact). For the angular momentum at the hip of the stance leg 

With 

r',= [r2sine2, r2cose21T and 

p2 = [ i  + &sine1 + a81cos81 + r2qcose2 ,  

y + b ~ s e ,  - ~ 0 8 ~ s i n e ~  - r2$sine21T 

and using the fact, that b = 0 before heel strike, i.e. there is no velocity along the leg axis in the air, and 
. . 
x = y = 0 after heel strike, since the (dynamic) foot does not move on the ground, we have 

The angular momentum at the foot before and after impact is expressed by 

+ L; = L; where 
Lf = 1~8,  - r l x m l ~ l  + 1~8, - p x m 2 p 2  . 

For simplification, this can be written as 

With p2 as defined above and 
\ 

T PI = [ r l  sine1, rl cos 0, 1 , 

pl = [ i  + r181cos01, y - r181sinel]T , 

3 = [as ine l  + r2sine2, acosel  + r2cose,] T 

and again, w- = 0,  x+ = = 0,  this yields 
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A third condition comes from the conservation of linear momentum along the leg axis, 

For this purpose, the reaction force R is considered 

. - 
RAt = m2(p; - h) , ~ith~~asdefinedabove. 

Since for the instant at impact, there is no contribution of the force in the direction of the leg, it follows that 

(RXAt)sin9, + (RYAt)cosel = 0 . 

With cj'- = 0 and x+ = j;f = 0, this yields 

J --... 

It should be noted that i- and y- of the foot before impact as used above are determined as follows 

from the swing leg: 

where is the length of the swing leg after extension. The three equations (C.3), (C.4) and (C.5) can now 

be solved for cj", 0:, 8; . \ 

C.3.2. Locking of the Knee 

The value for the hip angle, 634, after the extension of the swing leg is calculated from the 

conservation of angular momentum at the hip: 

which can be expressed as 
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1~8, + P 3 x m 3 p 3  + ~ ~ ( i ) ) + e ~ )  + d x m 4 p 4  = ~~~e~~ + 9 3 4 ~ m 3 4 p 3 4  , (C-6) 

where 

m3 '3 + (5 +',I "1, 

'34 = * 
'"3+rn4 

m3,= 9 + m 4 =  ml and 134=11 . 

Assuming e3 and 6, to be defined as in appendix C.2 and 

t = [-13she3 - r 4 s i n ( e 3 + e 4 ) ,  -13cose3 - r 4 a w ( e 3 + e 4 ) l T  , 

T 
p3, = [$ - r3, B,, cos e3, yh + r3, e3, sin e3 ] , 

equation (C.6) becomes 

2 = ( 13, + m3, r3, ) $, + m3, r3, (x: cos e3 - j i  sin e3 ) , 

from which e3, can readily be determined. 
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C.4. Spring and Damping Constants 

The following are the default values assigned to the various sping and damping consrants (ki, vi ) 

and position actuators described in chapter 6 (a body weight of 75 kg and the anthropornetdc &ta'in 

appendix B are assumed). 
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Appendix D 

Locomotion Parameters 

The algorithm below calculates the non-specified walking parameters and/or verifies the specified 

ones. The three walking parameters are velocity (v), step length (sl) and step frequency (sf). If a walking 

parameter is zero below, it means that it is not specified. 

if ( v >= v-Inax ! ! s1 >r 61-Inax ! ! sf >= sf-Inax ) 
/* reject, since walking is not poasible 
return; 

if ( v != 0 ) /* velocity is specified */ 
{ 

if ( 81 != 0 LL sf != 0 ) 
/* velocity, step length and step frequency are specified */ 
{ 

if ( sf * 61 != v ) 

{ 
/* reject, since walking is not possible 
return; 

1 1  
else 
( 

if ( s1 != 0 LL sf - 0 ) 
/* velocity and step length are specified 

sf = V / s1; 
1 
else 
{ 

if ( 81 - 0 LL sf != 0 ) 
/* velocity and step frequency are specified 
{ 

s1 = v / sf; 
1 
else 
{ 

if ( s l = = = O L L s f = = O )  
/* only velocity is specified * / 
{ 

sf = sqrt( v / ( body-height * 0.004 ) 1; 
if ( sf > sf-norm ) 
l 

sf = v / 61-norm; 
61 = 81-norm; 

1 
else 
( 

s1 = v / sf; 
) ) l l ) l  

... continued on next page 
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e l se  /* volocity is not 8pecifi.d 
I 

i f  ( 61 != 0 LL s f  != 0 ) 
/* stop longth m d  s tep  f r~quuray  aro both given 

/* roject,  sin- walking is  not possible 
return; 

1 1  
e l se  
f 

i f  ( s f  - 0 LL s1 != 0 ) 
/* only s tep  length is given 
f 

i f  ( 61 <= 81-norm ) 
f 

sf  = 61 / 
1 
olse  
f 

i f  ( s1 > 

s f  = 
sf  *= 
s f  += 

1 1  1 .  
e l se  
f 

sl-norm LL 61 < el-max ) 

f 
81 

1 1 1  
else 
f 

' /* nothing 
return; 

1 1  
v = sl * s f ;  

1 1  

i f  ( s f  != 0 LL 61 0 ) 
/* only step frequency is 
f 

i f  ( s f  <= sf-norm ) 

f 
61 = 0.004 s f  * 

1 
e l se  
f 

i f  ( sf  > sf-norm 

given 

body-height ; 

LC sf  < sf-Inax ) 

is specified, thus ... 



Appendix E 
Locomotion Attributes 

The following is a brief explanation of the 28 locomotion attributes that can be modZed to endow 

the motion with an individual style, i.e. to produce different instances of a walk for the same locomotion 

parameters (step length and step frequency). The numbem in parentheses denote the default value settings, 

the numbers in square brackets are page indices to where the attribute was first used in the text. Most of the 

attributes should be altered with care, since they directly influence the dynamic simulation. For instance, if 

pelvis - list - factor is increased from 1 (normal pelvic list) to 10 (10 times exaggerated pelvic list), 

the dynamics are likely to collapse since the hip on one side drops so low that toe clearance can not be 

achieved any more during the swing phase; however, a value of 3 would be fine, generating a quite accented 

pelvic list. On the other hand, some attributes, like arm-rot-f actor, can be chosen more freely since 

their impact is purely kinematic. Some experimentation with the system is required to get a feel as to how a 

particular change influences the outcome of the locomotion. All attributes are specif~ed as real numbers; 

angles are shown in degrees. 

a-rot-factor (0.8) [58] 

scaling factor for the arm swing relative to the hip angle of the opposite leg. 

duration-kneeflex (0.1) [55] 

percentage of cycle time, for which the knee flexion of the swing leg still increases after 
double support. This variable is used together with max-knee below to calculate 
the value of the knee angle for the hind leg at the end of double support. 

elbow-rot-max (35) [58] 

maximum elbow flexion; this angle for the elbow is reached at heel strike of the opposite leg. 

elbow-rot-min (0) [58] 

minimum elbow flexion in degrees; this angle for the elbow is maintained throughout most of 
the forward arm swing until the end of the SWING1 subphase. Then the elbow flexes up to 
the final value elbow-rot-max. When the arm swings back, elbow - rot - min is 
reached at the same time that the arm back swing is completed. 
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percent of cycle time for SWING1 subphase. 

end-swing2 (0.85) [64] 

percent of cycle time for SWING2 subphase. 

max-knee (65) [55] 

maximum knee flexion during swing, which occurs at duration-kneef lex-tnrl. afkr the 
beginning of the swing. 

meta-incSS (2) [55] 

minimum increment in meta angle for each time step during the stance heel-off period. 

pelvic-list-factor (1) [50] 

scaling factor for pelvic list in the coronal plane relative to the naturally chosen pelvic list; a value 
of 0 means no pelvic list, a value of 1 produces a natural motion, values greater than 1 exaggerate pelvic list. 

pelvic-rot-max (13) [50] 

maximum rotation of the pelvis in the transverse plane; reached at heel strike. 

p e r c e n t  (0.3) [68] 

percentage of the distance rraveled by the ankle during SWING1, at which the y-value of the 
ankle reaches a maximum (0.3 means 30 %). 

sf-accdec (40) 1461 

maximum change in step frequency firom one step to the next (stepslmin ). 

s f-max (180) [40] 

maximum step frequency for walking (stepslmin ). 

sf-norm (132) [40] 

maximum value of step frequency, for which normalization formula still holds (stepslmin ). 

shoulder-rot-factor (0.6) [57] 

scaling factor for shoulder rotation relative to pelvic rotation; of course, the rotation of the shoulder 
is exactly out of phase with the pelvic rotation. 

maximum step length for walking (relative to body height). 
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maximum value of step length (expressed relative to body height), for which the normalization 
formula still holds. 

st ancel234-knee (0) [53] 

minimum knee angle during stance phase. 

stance 6-ankle (-65) [55] 

desired ankle angle O5 at toe-off, which marks the end of the meta-off period. 

stride-width-factor (0.9) [51] 

scaling factor for stride width relative to the length of the pelvis lo ; a value of 1 means 
that the feet are positioned directly under the hips. 

swingl-ankle (-105) [67] 

desired angle of ankle e5 at the end of the SWING1 subphase. 

swingl-meta (0) [671 

desired angle of metatarsophangeal joints O6 at the end of the SWING1 subphase. 

theta2-des (0) [57] 

desired upper body angle O2 . 
theta4-des (0) [44] 

desired knee angle e4 at the end of the swing phase. 

t het a5-des (-90) [#I 

desired ankle angle e5 at the end of the swing phase; a value of -90 means no plantar- or dorsiflexion. 

toe-clear (0.009) [68] 

mimimum vertical distance between the toe and the ground at the end of the SWING1 subphase (in m ). 

v-acc (2) 1461 

maximum change in velocity-increase from one step to the next (km l h ). 

v-dec (4) [461 

maximum change in velocity-decrease from one step' to the next (kmlh ). 

It is submitted that in KLAW, global parameters like body-height, body-mass, simulation 

time, and dynamic parameters such as spring and damping constants can be set or modified as well, but are 

not strictly considered as locomotion attributes. 
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Appendix F 
Photographic Images 
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In the following, v&&aspects of the walking algorithm are illustra~,,-Be pictures were tatre4 . I  _ , ,  
id : ' 

from the screen of an IRIS 2400 workstation. All Ihc walks wcrc produced a ~ s u m i n ' ~ ' " a ~  height of 1.8 m.) ' 

andabody mass of 75 kg a+?"- , :C 

Figure F-1: Legs shok is walk are based 
on real human subjects and were collected by Winter [Winter 791 utilizing film recording 

techniques. The foot goes slightly through the ground due to the fact that the exact 
anatomical data of the subjects were not specified and had to be approximated; the 
walking speed is v = 5 kmlh, the step length sl = 0.79 m and the step frequency 

of sf= 107 stepslmin; no data was supplied for the upper body angles. 
k! ,;, . 



Figure F-2: Illustration of a walking sequence at heel-strike (frame 103), generated by the walking 
algorithm. Once the rhythmic phase is entered (after one step), the leg patterns come 

very close to a real walk (compare to figure F-1). The locomotion parameters are 
v = 5 kmlh , sl = 0.77 m and sf= 107.5 stepslmin ; only v was specified, 

sl and sf were chosen by the system (see algorithm in appendix D). 
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Figure F-3: Illustration of a waking sequence at heel-strike (frame 121), generated by the walking 
algorithm. The locomotion parameters are v = 5 krnlh , sl = 1.05 m and sf= 79.4 stepslmin ; 

v and sl were specified, sf was chosen by the systcm. Although the walking speed 
is the same as for the walk in figure F-2, the leg patterns show significant 

differences; sl approaches a maximum value (dm  = 1.08 m ). 



Figure F-4: Illustration of a walking sequence at heel-strike (frame 108), generated by the walking 
algorithm. The locomotion parameters are v = 5 kmlh , sl = 0.50 m and sf= 166.7 stepslmin ; 

v and sl were specified, s f  was chosen by the system. Although the walking speed is 
the same as for thc walk in figure F-2 and F-3, the leg patterns show significant 

differences. sf approaches a maximum valuc (sf- = 182 stepslmin ). 
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Figure F-5: Illustration of pelvic rotation in the transverse plane (a top view is assumed) for 
the walk shown in figure F-2. Top: heel-strike of left leg at frame 86. Middle: 

mid-stance of left leg at frame 93. Bottom: heel-strike of right leg at frame 103. 
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Figure F-6: Illustration of lateral displacement of the body for the walk shown in figure F-2. The 
body is shifted over the right leg (see arrow) at mid-stance for the right leg (frame 113). 

- ncxt pagc - 
Top: at hml-strikc (framc 120), the body is ccntcrcd bclwccn Lhe Icgs. 

Bottom: at mid-stance for the left leg (frame 130), the body is shifted over the left leg. 
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Figure P-7: Illustration of pelvic list in the coronal plane. Top: natural pelvic list at 
toe-off ( m e  106) for the walk shown in figure F-2. Bottom: accentuated 

pelvic list at toe-off (frame 126) for the walk shown in figure F-3. 
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