Al TSR Weanad

que nationale

C;fna&ian Theses Service Service des théses canadiennes -

Ottawa, Cénada
K1A ON4

NOTICE

The quality of this microform is heavily dependent upa\t%e
quality of the_original thesis submitted for microfilming.

_Every effort has been made to ensure the highest quality of
reproduction possible.

ot pages are missing, contact the university which granted
the degree. '

~ Some pages rhay have indistinct print especially if the

original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy. -

Reproduction in full ot in par of this microform is governed

by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and

subsequent amendments.

NL-330 (r. 868/04) ¢

AVIS

La ?uamé de cette microfdrme dépend grandement de la
- qua

ité de la thése soumise au microfiimage. Nous avons
tout fait pour agsurer une qualité supérieure de reproduc-
tion. ’
Sl man%ue des pages. veuillez dommuniquer avec
l'universite qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser 4
deésirer, surtout si les pages originales ont été dactylogra-
phiées 2 l'aide d'Un ruban usé ou si l'université nous a fait
parvenir une photocopie de qualité infériure.

.La reproduction, méme partielle, de cette microforme est

soumise 3 la Loi canadienne sur e droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

| anadﬁ'

" COMPUTING. CONVEX HULLS IN HIGHER DIMENSIONS
by

Helena Klimo
B.A.(Pure Math), University of Calgary, 1971

Extended Studies Diploma, Simon Fraser University, 1983

THESIS SUBMITTED IN PARTIAL FULFIﬁLMENT OF
THE REQUIREMENTS FOR THE’DEGRE‘.E OF
| MASTER OF SCIENCE
in the Schpol

of

Computing Science
’ R
© Helena Klimo 1988
SIMON FRASER UNIVERSITY
De;emher 1988
All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
. or other means, without permission of the author.

Permission has been granted
to the National Library of
Canada to microfilm this
‘thesis and to lend or sell
-copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise

reproduced without his/her-

written permission.

.

L'autorisation a &té accdordée
4 la Bibliothéque meutionale
du Canada de microfilmer
cette thése et de préter, ou
de vendre des exemplaires du
filmo ‘

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication:;

ni 1la thése ni de 1longs
extraits de celle-ci 'ne .
doivent @&tre imprimés ou

autrement reproduits sans son
autorisation écrite.

ISBN 0-315-48787-9

APPROVAL

Names Heleng K1imo
Degree: Master of Science

Title of thesis: COMPUTING CONVEX HULLS/IN HIGHER DIMENSIONS

Examining Committee:

Chairman: Dr. J. Peters

1L ./

Dr. Binay z. Bhattacharya
Senior Supervisor

Dr. ‘Pavol Hell /

Dr. Anthony H. Dixon
External Examiner

Date Approved: December 12, 1988

11

PARTIAL COPYRIGHT LICENSE

) "| hereby grant to Simon FraserlUnlverslty the right to lend

, my thesis, project or extended essay (the title of which is shown>5;%ow)‘
to users of the Simon Fraser University Library, and to make partial or
éing!e copies only fgrisuch users or in respoﬁsg to a réauésf from the
library of any other university, or ther_educp}lonal lnsfifutlon,-on
its own -behalf or for one of Its users, | fq#?her agree that permission
for multiple copying of this work. for scholaély purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financial gain shall not be allowed

without my written permission.

TTitle of Thesis/Pfdjep?/ExTended Essay

Cqmputing Convex Hulls in Higher Dimensions

Author:

(signature)

Helena Klimo

(name)

December 14, 1988

(dafe)

S *?STRACT

In this thesis we show how a point inclusion problem in a convex

d

polyhedron, determined by a set of n points in R%, can be solved

in e(dlogfF) expected time, whereaFd , 18 the number of facets

14

d,n o
of P. We also show ‘how this result can be used to get _fast

on-line convex hull algorithm and how the "divide and conquer"
technique, already used to compute convex hulls of two and three

dimensional data sets, can be extended to higher dimensions.

The on-line algorithm uses the "beneath beyond" technique and

can be applied to a general data set to solve either the Facet

-Problem (without maintaining some description of all the faces

of a convex hull) or the Facial Lattice Problem. The "divide igd

conquer" technique solves the Facet Problem for simplicial data

=

-

sets.

iii

DEDICATION

To my husband, Paul

and our children Paul jr. and Monica

iv

ACKNOWLEDGEMENTS

M

I wish to express :my sincere appreciation to -my thesis

supervisor Dr. Binay Bhattacharya for suggesting the topic and

for his constant encouragement, unfailing interest and patience

shown to me during my research.

Thank you, Binay.

TABLE OF CONTENTS

Approvali0vnn ceed et ereestseeanes S B
'Abst;act I R Y ceveas;....... iii
Dedication R R et ter it e e ;... iv
Acknéwledéements et e et e i e ettt et R Y
rList of Tables e, Ceeeeseesissanans
List of Figures et iersec e Cee e ae e TN
I. Introduétion ettt et ‘
1.1 The Convex Hull Problemciiivinresrnencesanas B
1.2 Computational Complexity and Lower Bound 6

1.3 Solving the Facet Problem and the Faeial Lattice

Problem in Higher Dimensions Y
.II. The Point Inclusion Problem in a Conveg Poiyhedron ...;. 19
2.1 The Voronoi Diagram ...: e 19 .
2.2 The d-D Tree Data Structureeeececeeecnnssansss 21
2.2.1 Dynamic d-D Treeveeeeeaas eedeeeeiee i esaaas 25
2.3 Transformationjof«a Closed Convex Polyhedron into a
-~ Voronoi Polyhedron R e ee e e e e e e ereeaes 27
I11. The On-line Convex Hull Algorithm e, . 30

3.1 Implementation Details and Computq;ion;:>Complexity 30

3.1.1 The Algorithm P A 33

" 3.1.2 The Facial Lattice Problemovn... e eieiiii.. 35
3.1.3 The Facet ProblemMo.oveeevnnennnns e, 47

IV. The Divide and Conguer Algorithm;,:u.......... 60

4.1 Implementation Details and Coz?utational Complexity 60
4.1.1 The Algorithm ;.......... Ceeseeesanans . 70

4,1.2 Data StruUCtUCreS s vsuvecovveaa Gt e e e e eosn s eeen s oo 72

vi

VI.

4.1.3 Computational Complexity ...;...;.............,..f

Experimental Results ,;;,.J}};.....

ConClUSiOn o_cqoo..cvo’ooi»ooooo'ooo'cooooq-o;v‘n'tloon

vii

74
78

83
.. 85

87
92

LIST OF TABLES . <

Table - - : ”L[z - Page

»
2
<« At

T Perfoérmance of the on-line convex hull algorithmon © a
cervical cell data .viveverriierenseeeennnesasnssassas 80

2 Performance of ‘the on-line convex hull algorithmon a

uniformly distributed data set0vuvuuvl. BIL

vy

3 Performance of the on-line convex hull algorithmon a ‘
normally distributed data setc0000bol. 82

L

3

vifi

Figur?f’ x } 'Page
1rL' Convex hull of a sét of points in R? R R R R R cees 2
1%?% Updating convex hull with a new po}ht in R’ PR 12
1.3 Representation of a facet as a union of simplices...... . 14
2.1 Voréﬁoi diagram of‘é set of peints in RS eeeees f 21
2,2 Subregion and a «cell in :Rz as; represented by ; B

non-terminal node of a d-D treeiieeeeecsnconcnne 25
2.3 Polygon P transformed ingo a Voronoi polfgon 29
3.1 Three types of facets with<respect to point p. vees 37
3.2 Two yellow facets of a convex hull polytope before and

after update0... ceessaeesaan e N 52
4.1 "Merging" of two polytopes in R3 R 64
4.2 fWrag around” portion connecting polytopes P,and P,

R

LIST OF FIGURES

extended to form polygon P, and and ith
transformatioq into a Voronoi- polygon ...eeieesasesss 64

iX

P ot

Py

5.

CHAPTER I
. 5
INTRODUCTION

. k] N : h
£ ',/

The convex hull of a finite set § of n points, § be1ng a subset

of a d-dimensional Euclidean space unfor d 2 2, .is one of the

Y

basic and important geometrical constfucts. Stated 1in a Qery

e

simple way, 1t can be defined as the smallest convex set

=

containing a given set of points [Fig. 1:1].

g

The convex hull plays a central role in<?the field of
computatlonak;geometry A number of geometrical problems can be
solved by transformlng the orlglnal problem to the convex hull

problem. There are many areas other than computational -geometry

- ‘ <
where this geometric construct finds practical applications:

image processing and pattern recognition, - computer graphics,*
3 : e

engineering, operations”?}esearch, design autéﬁation, just to

name few. In pattern recognition for example, questio‘g:such as

separability or existence of linear decigion rules can be easily

answered through the computation of convex hulls

[Rosenfeld(1969), Duda-Hart(1973), Toussaint(1978),

Akl-Toussaidt(1978—1)]. The following !references discuss some
interesting:problems where the determination of a convex hull is
needed: Freemgn—Shapira(1975), ' Gilbert-Pollak(198¢),

Sklansky(1972). CTTTl

Fig. 1.1: Convex hull of a set of points 1in R?.

1.1 The Convex Hull Problem

R

/ N - .
Various terms and definitions are going to be presented which

\

will be used in this and subsequent sections. The reference to

them can be found in Grunbaum(1967).

A set § < Rd, is called affine if for each pair of points x, y

from S, the line through x and y is contained in S. The affine
hull of S, denoted as aff($), 1s the intersection of all affine
sets containing S. A éet S 1is affinely independent if no point
of § is contained in the affine hull of the remaining points of

S. Otherwise the set 1s called affinely dependent.

A set S is of dimension k, k < d, if S contains (k+/) affinely
independent points and every subset of § with (4+2) pcints s

affinely dependent.

A hyperplane in Rd, denoted as Hd_l, is an affine hull of d

affinely independent points. In a mathematical way a hyperplane.

can be defined as follows:

Definition 1.1 -

A hyperplane Hdil is the set of points x = (xl, cee ,xd)

from R? which satisfy the eguation of the form

(x,Rn) = X, n, + ... % Xyng ~ ¢ = 0,"‘

where ¢ is a real number and 7 = ("1’ e '"d) z (0,

,0) .
In this- definition a (d4d+/)-dimensional vector % = (n/, g
-¢) defines a unique hyperplane and 1is called a determining

d-1
N\
to 7. Every hyperplane defines two <closed half-spaces whose

vector of that hyperplane. A normal to H is a vector parallel
intersection 1s the hyperplane 1tself Xhﬂﬂ whose union 1s the
space RY. & supporting hyperplane of a set S 1s a hyperplane

that 1intersects S and S is contained in one of the two cloused

half-spaces defined by the hyperplane.

L set S is convex if for eacﬁ pair of points x, y from §, all
points in the straight line segment between x and y also belong
to S. & convex hull of a set S, denoted as CH(S), 1is the
intersection of all convex sets containing S. A convex hull of a
finite d-dimensional set of points 1is ‘called %7 d-polytope. A

finite set determines a unique bounded convex polytope.

The objective of a convex hull algorithm is the description of a
convex hull polytope. A polytope can be described by means of
1ts boundry which consists of faces. A face of a polytope P is
the intersection of P with its supporting hyperplane. A k-face
of P 1ls a k-dimensional face of P. A (d-1)-dimensional face of a
polytope 1s called a facet, a (d-2)-dimensional face is called
an edge, a (d-3)-dimensional face is a ridge and a 0-dimensional
face 1s a vertex. Polytope P itself is considered a d-face of P
and the empty set is a (-/)-face of P. Fog everf face f of P, f
is the convex hull of all the vertices of P that are contained
in f and f 1s also the inté?section of all the facets of P that

contaln /.

Some types of polytopes deserve special attention. A d-simplex
lor briefly, a simplex) 1is a convex hull of (d+/) affinely
independent points. It Iis the simplest type of a d-polytope. 1In

twc and three dimensions they are triangles and tetrahedrons

respectively. A simplicial polytope is a polytope each of whose

J

facets are simplices' (i.e. (d-/)-dimensional faces containing
exactly d vertices). A d-polytope whose every vertex is incident

with exactly d edges is called a simple polytope.

Faces of a polytope can be graphiéally;represénted by a faéial
graph. It 1is an acyclic directed graph with one source and one
sink. The nodes of this graph are in one-to-one correspondence
with the faces of the polytope and there 1is an arc from
k~dimensional face f to (k-/)-dimensional face g 1if g 1is
contained in f. In this case g is called a subface of f which we
denote as (g sub f), and f is called a superface of g deﬁoted as
(f super g). The Facial graph of a polytope P will be denoted as
fgtP). The =size of the facial graph of P is the number of arcs

plus the number of nodes in fg(P).

_“There are three fundamental versions of the convex hull problem:

The Facet Problem
Given a set S of n points 1in Rd, enumerate all facets of
CH(S), where each facet is represented by the set of

vertices contained in this facet.

The Vertex/ﬁ;oblem

Given a set S of n points 1n Rd, identify those points

of S that are vertices of CHI(S). o

'Plural of simplex.

) 3

o

The Facial Lattice Problem
Given a set S of n points in Rd, produce the complete
" facial lattice of CH!S), i.e. all the faces) along with
their inclusion relationship.
The Facet Problem and the Facial Lattice Problem are
asymptotically at least as hard as the Vertex Problem since the
6utput of the former becomes a wvalid solution to the Vertex

Problem. For the same reason the Facial Lattice Problem is

asymptotically at least as hard as the Facet Problem.

Because many practical applications of the convex hull construct
require facet enumeration, we have focussed on solving the Facet

Problem and the Facial Lattice Problem only.

1.2 Computational Complexity and Lower Bound /5

- /

For an arbitrary finite set of »n points in the plane, computing
the convex hull 1is known to have Q(nlogn) lower bound
[Yao(1981)] which 1is restricted to the quadratic decision tree

model., Several algorithms achieve this lower bound. Since any

set of points 1in R’ cai. be trivially embedded in Rd

for d > 2, a
lower bound result obtained for d = 2 remains a valid lower

bound for 4 > 2 as well [Preparata-Shamos(1985)].

When establishing a bound to the running time™of a convex hull
algorithm, it is not’ only the input size that plays an important
role, but also the size of the output produced. This is due to

the fact that for a d-polytope with n vertices in‘Rd

the number
of facets can be as high as O([d/zj!nld/zj) [McMullen(1970)] and
as low as Q(n) [Barnette(1973)], which for d > 3 becomes a
"significant range. It 1s therefore desirable to-include the size
of the output as an additional measure to the time complexity
function. The following section provides a limited overview of

the convex hull algorithms known to wus for data sets in

dimensions higher than two.

1.3 Solving the Facet Problem and the Facial Lattice Problem in

Higher Dimensions

In this section we will be talking about on-line and off-line
convex hull algorithms. An algorithm which requires all of the
‘.data points to be presenf before any processing begins is called
off-line. In many geometric applicatiéns, particularlyithose
that run in real-time, this condiéion cannot be met. The
compﬁtation must be done as the points are being received. In

general, an algorithm that cannot look ahead at 1its 1input 1is

referred to as an on-line.

Finding the convex hull of a finite set of points in R? was one
of the first problems explored in the field of computational
geometry. A variety of algorithms have been proposed and

analyzed for the planar convex hull problem [Graham(1972),

Jarvis(1973), Preparata-Hong(1977), Bentley-Shamos(1978),
Akl-Toussaint(1978-1), Akl-Toussaint(1978-2),
Kirkpatrick-Seidel(1986)]. Graham's(1972) algorithm was

historically the first publication to show that the planar
convex hull can be computed in O(nlogn) time in the worst case,

which was later proved by Yao(1981) to be the optimal time.

3

For a set of points in R” Preparata and Hong(1977) presented an
]

algorithm which is based on what 1s known as the "divide and

\';,

conqguer"” principle. The strategy employed is that the problem is
first subdivided into subproblems of the same kind (divide); the
subproblems are then recursively solved (conquer), and finally,
the resulting convex hulls are combined to form a global
solution (merge). The merge step is a crucial compbnent of this
method. Any algorithm that is based on the "divide and conguer"
principle is efficient only if the solutions to the subproblems
can be combined quickly. Let P, and P, be two non:intersecting
convex hulls. To merge P1 and P2 means to determine the convex
hull CH(PJ,Pz) of P, and "P,. This is accomplished by

constructing a "cylindrical wrap" which supports P, and P, and
by removing from both P]’ and Pz the respective portions which
become internal to the resulting pglytope. Preparata and
Hong(1977) believed that the construction of this wrap is
entirely guided by a circular seqﬁence of wvertices and edges
‘which are successivelyﬁ acquired by the advancing steps of the
wrapping process. As was later noticed by E@elsbruner(1987) this
may not always be true - "a single vertex of a recursively
constructed convex polytope can be encountered more than once
when it is merged with another disjoint convex polytope". For a
set of n points in R3.the_worst case computational complexity of
this algorithm 1is Of{(nlogn) which 1is optimal by Yao's(1981)

results. This approach to solving the convex hull problem has

not yet been extended to dimensions higher than three.

The first general algorithm offering a method for solving the

Facet Problem in any dimension 4 2 2 was described by Chand and

Kapur(1970). Their idea is based on the observation that exactly
two facets of a convex polytope intersect along one edge. The
algorithm uses the so called "gift wrapping” érinciple where the
polytope is generated by bsystematically computing the facets
f;ém the edges of the desired convex polytope. The computational
complexity of this algorithm was analyzed by Bhattacharya(1982)
who showed that in thé wofst case the time to compute the convex
d

hull of n points in R is bounded above by

otdnF + d3Fd nlogn), where F, = 1is the number of facets of

d,n
the computed polytope. A major drawback of this algorithm 1is
that it computes correctly simplicial polytopes only. When more
than 4 points lie in a convex hull facet, the detefmination of
the edges associated with this facet is equivaient to
detéémining the convex hull of the points contained in the
facet. This may be considered as a convex hull problem in
(d-1)-dimensional space and Chand and Kapur's algorithm can be
applied again to solve it. However, due to the recursive nature
of this:approach the implementation is difficult. Swart(1985)
later applied the "gift wrapping" principle eto produce a
structured representation of the convex hull, the facial
lattice. When ébplied to this problem it has the worst case time
5

complexity O(dnLd'n + d Ld’nlogn) for simplicial polytopes or

,
O(d‘nLd,n + d4Ld,nzlogn) for non-simplicial ones, where Ly, is

’

the size of the facial lattice produced.
L 4

For a long time the "gift wrapping” method was the only'known

general technique to compute the convex hull of a finite point

10

<

T
-~ S——
set in d-dimensional space. A new technique, dubbed by Preparata

and Shamos(1985) as the "beneafﬁ\bgyondf method was proposed
independently by Kallay(1981), Seidel (1981) and Jozwik(1983) and
was later also adopted by Rey and Ward(1985) in their convex

hull algorithm. In a non-mathematical way it can be described as

follows.

Given, a convex hull P of some point set and a new point p.
Imagine point p¢sending out an intenseAlight. If p is external
to the current convex hull then all facets of P that receive
light from this point are discarded, leaving the convex hull as
an open shell with some "exposed edges" (i.e. the -edges
surrounding the opening of the shell). Every "exposed_edge"
together with the point p determines—é new facet [Fig. 1.2]. If
p 1is ngi external to the current convex hull, then p is already
contained in P and need not be conéidered any further - p
becomes a "throw away" point. The approach of thié technique 1is
iﬁcremental,‘heaning that the points are considered one at a
time and the convex hull is updated every time a point, lying
outside the convex hull computed so far, 1is encountered. This
technigue exhibits, in addition, the on-line property desirable

by many applications.

Seidel's(1981) algorithm produces a facial lattice of the coﬁvex
hull and the approach employed here is analogous to the "beneath
beyond”, only in the dual space. To achieve the best possible
running time a point, when it is considered, has to lie outside

.of the <current convex hull. To guarantee this condition, the

Current convex hull and a
new point p.

p [}
Convex hull as an open shell-
with "exposed edges”.
p
Updated convex hull to include
D
; ¢ -

Fig. 1.2: Updating convex hull with a new point 1in R3.

first step of Seidel's algorithm pre-sorts the initial point set

into a lexicographical order. This means that the entire point

12

set has to be known in advance and the incremental approach‘used
here for computing the convex hull loses its on-line property;
Also, as a result of - pre-sorting, every new point causes'an
update of ;he convex hull, which may be seen as a disadvantage
of this approach (i.e. no "throw away" points). For a fixed
dimension d, the wBYst case computational complexity of Seidel's

[(d+1)/2],

algorithm is O(nlogn + n
O(n[(d+1)/2j)

where, for even d,
is assymptotically equivalent to the largest
possible output size. Seidel(1981) also argued that- the
algorithm is in the worst case optimal for even d. As was lat r

shown by Swart(1985) this is true only if the complexity of the

probléﬁxis»mggﬁured in terms of the input size n alone. If che

complexity' is meégﬁfedxignterms of the actual output size, the

algorithm can be far from optihgTT\\Ka;lgyj1984) later showed

—

that the complexity of any incremental cénvexlﬁﬁii\alggzithm for
d ;s q(plld+1)/2],

for a fixed d. This result ﬁéfg§\\\\\\\

n points in R
Seidel's(1981) algorithm worst case optimal (in terms of the

input size) for odd d as well,.

Rey and Ward's(1985) algorithm solves the Facet Problem of a
convex hull. This algorithm can be applied to compute
non-simplicial fééézgﬂgilméhéﬁ‘fztétS'Efe-described as unions of
several simplices [Fig. 1.3]. This solution tb‘fthe problem of
degeneracies 1S theoreticélly incorrect, In Rey and Ward's
implementation, to establish that a new point is either interior
to P, or that this new point is external to P, the entire list

of facets of P, has to be searched. Keeping 1in mind that the

13

Facet (a,b,d) may be represented
as a union of simplices (a,b,f),
(b,c,e), (c,d,e), (a,f,e) and
(bie,f).

Non-simplicial facet (a,b,c,d,e)
may be represented as a union of
simplices (a,b,c), (a,c,e) and
(c,d,e).

a

Fig. 1.3: Representation of a2 facet as a union of simplices.

;- of a d-polytope with i vertices can be
1 .

number of facets, Fd
4/2]) tnis "point inclusion" test, in a

as high as O([d/zj!il
convex polyhedron is of G(Fd’[) complexity in the worst case and
also on average, which is considered to be a major drawbagk of
this implementation., For a fixed d, thé worst case computational
complexity of the algorithm is O(nld/2J+1). This worst c?éé is

the same as the worst case of Chand and Kapur's(1970) method.

14

Preparata and Shamos(1985) present an implementation of an
on-line version of the "beneath beyond" techéique\ for higher
dimensions. Their implementation has the same drawback as Rey
and Ward's(1985), namely the G(Fd,i) "point inclusion" test. The
algorithm solves the Facial Lattice Problem for a fixed

la/2)+1,

dimension in the worst case time O(n . This time applies

to degenerate cases as well.

Edeisbruner(1987) gives yet another description of the
implementation of the "beneath beyond" technique for higher
dimensions. This implementation is similar to Seidel‘'s(1981) but
no transformation to dual space 1is 1involved. The algorithm
produces a facial lattice of a convex ‘hull and can ‘handle
degeneracies. As in Seidel's implementation the entire point set
is pre-sorted as a result of which ebery new point cé’;es an

update of the convex hull. The worst case computational

complexity can be measured in terms of the input size only and

it is the same as the worst case of Seidel"s(1981) algorithm,
According to Kallay's(1984) result, this implementation of an

incremental technique is optimal.

‘The latest algorithm for computing the convex hull of a finite

set of points 1in higher dimensions has again been proposed by

Seidel(1986). It introduces a new technique, a straight line

shelling of a polytope. For a set § of n points in Rd, the first

o .
step of the algorithm involves solving a linear program in (d-1/)
variables and (n+!) constraints for every point of S. Due to

this step there may be objections to the practicality of this

-

15

approach which even Seidel,considers to be well founded. The
algorithm either enumerates all the facets of a convex hull,
agsuming that the convex hull is simplicial, or it constructs a
facial lattice of a convex hull "in the worst case time
complexity of O(n‘2 + Fd’nlogn) or 0(n’ + Ld’nlogn) respectively,
for a fixed 4. If the complexity of the problem is measured only
in terms of the input size n, then this algorit%m has the worst
case time O([d/ZJ!n[d/zjlogn) which is the best worst case bound

known for any technique for odd 4 > 3.

Although the objective may be, in many ins%anées, the
computation of just the facets of a convex hull, the problem of
degenerate data sets has been solved by maintaining a facial
graph of all the faceé. One open problem still remains: the
existence of an algorithm that would solve the Facet Problem for
a general data set, without maipfaining some éescribtion of all
the faces, 1in —time polynomiél in n, 4 and Fd,n' Swart(1983)
elaborates'on this problem and conjectures that it may be
possible to do so in time O((Fd,n)zdd+4logn), which is

exponential in 4.

One of the desirable properties of a convex hull algorithm is
the on-line property. An on-line convex hull algorithm has to
dgal with’/;he "point inclusion™ problem. The existing on-line
higher dimensional algorithms [Preparata-Shamos(1985),
Rey-Ward(1985)] solve this problem in e(Fd’i) time on average
and in the worst case, wh&re Fd,i 1s the number of facets of a
convex hull determined by a set,of i points in re. Seidel(1981)

16

N

‘their algorithm, but to avoid the time consuming "point

and Edelsbruner(1987) wuse an incremental on-line technique in

inclusion” test, they pre-sort the entire point set and the
resulting algorithms are off-ii%e. In this thesis we show how
the "point inélusion" problem can be solved in e(dlong'l)
expected time. We also show how this result can be used to get a
fast on-line convex hull algorithm and how the off-line "divide
and conquer"” technique, already used to compute convex hulls of

two and three dimensional data sets, can be extended to higher

dimensions.

The on-line algorithm we are proposing uses the "beneath beyond"
technigue and can be applied to a non-simplicial data set. It

can be implemented to solve either the Facet Problem in the

a-1,n"d-2,n
,) expected time, or O(dnfd'nlogﬁd’)

n

worst case time O(d4nF), or the Facial Lattice

Problem in O(dnF logF

d-1,n d, ‘
time in the worst case. This expected time is the best expected
time of an on-line higher dimensional convex hull algorithm
known to us. Our on-line algorithm is alsoc the only one known to
us that solves the Facet Problem for a non-simplicial data set
without maintaining some description of all the faces of a
convex hull. The off-line algorithm, based on the "divide and
cqnquer" technigue, so0lves the Facet Problem for a simplicial
data set and 1its computational complexity 1s O(dnfd ,) 1n the

r

WOorst case.

;
In the following chapter we show how the "point inclusion”
5

problem 1n a closed convex polyhedron P, determined by a set of

n points in Rd,’can_be solved 1in e(dlogfd’n) expected time,
where Fd”7 i1s the number of facets of P. Chapter III describes -
and analyzes the computational complexity of the on-line convex
null algorithm for each one of the two problems (i.e. Facial

Lattice Problem and Facet Problem). The <convex hull algorithm

based on the "divide and conguer" principle is presented and

Ome

analyzed 1in Chapter IV. In Chapter V we discus

experimental results and 1in the last chapter we sunfnarize the

work submitted 1n this thesis and point to some

guestions open to further research.
A

CHAPTER 11

THE POINT INCLUSION PROBLEM IN A CONVEX POLYHEDRON

The point inclusion problem in a convex polyhedron can be stated
as follows:
Given a closed convex polyhedron P in Rd, determine 1f

an arbitrary point p lies inside of P.

The solution to this problem, thch we propose in this chapter,

1s based on the properties of an important geometric construct,

the +Voronoi diagrah [Voronoi(1908)]. We construct the Voronoi

diagram as a first step of a transformation, where the point

inclusion problem is transformed to a nearest neighbour problem,

and we use a d-dimensional tree data structure [Bentley(1975),
V.

Friedman-Bentley-Finkel(1977)] to search for the nearest

neighbour.

2.1 The Voronoi Diagram

One of the earliest definitions of what we now call the Voronol
diagram can be found in Dirichlet(1850). More than half a
century later, mathematician G. Voronoi(1908) was the first to

study this diagram 1in details. Some other names such as

Dirichlet(1850) tessellations, Thiessen(1911) polygons and
Wigner-Seitz(1933) cells have been used in the literature, all
referring to the same diagram. In the remainder of this section

we derive the definition of this geometric construct.

Once more, let S be a set of n distinct points Pyr «eer P, in
R?. For any two points Piv P with i # j, the locus of points
equidistant to P and P, is the perpendicular bisector B(pi,pj)
of the line segment joining P; and P B(pi’pj) determines two
closed half-spaces H(p[,pj) and H(pj,p[) the intersection of
which is B(pi,pj). The locus of points that lie as close or
closer to p, than to P, is the closed half-space H(p[,pj) that
contains p,'. If p, *# P H(p[,pj) and H(pj,p[) are uniquely
determined by B(pi,pj). The locus of points at least as close to
p; as to. any other point of § is then the intersection of the
(n-1) closed half-spaces H(pi,pj) for j = 1, ..., ﬁ and o
We denote this region by V, and it is not hard to see that v, is
a convex region. In dimensions higher than two v, 1s called the
Voronoi polyhedron associated with p; and p; is the generating
point of V[. Each point of S is enclosed in a uniqgue Voronoi
polyhedron. For every P, from §, let Vi be the Voronoi

polyhedron associated with p; - The n regions Vyreoo,V, partition

d

R into a set of convex polyhedra and are referred to as the

Voronoi diagram of S [Fig. 2.1].

'"The word "close" in this context means the Euclidean distance
between two points.

20

2

Fig. 2.1: Voronoi diagram of a set of points in R

2.2 The d-D Tree Data Structure

The d4-D tree is a generalization of a simple binary VéreeA
[Friedman-Bentley-Finkel(1977)]. In our implementation the
d-D tree 1s built over a set of points. Everylnode of the tree
represents a subset of the points in the set and a partitioning
of that subsét. The root of the tree represents the entire set,

Each non-terminal node has two son nodes. These son nodes

21

represent the two subsets defined by the partitioning in the
parent node. The terminal node, often called a bucket,

represents either a single point from the set or a small subset

of points.

In d-dimensions, a poiﬁt ls represented by its d real valued
coordinates. Any one of the d-dimensions can be used as a
discriminator for partitioning the subset represented by a
particular non-terminal node. In Friedman-Bentley-Finkel(1977)
both the discriminator and partitién value for each non-terminal
node, as well as the bucket.size for terminal nodes, are chosen
to-—obtain the Dbest expécted cost of searching for nearest
neighbour(s). This yields what is called the optimized d-D tree.
The prescription for optimizing is to choose at':every
non-terminal node the dimension with the largest spreaﬁ in
coordinate wvalues as the discriminator and to choose the median
of the coordinate values of the discriminator ag the partition.
At the level of terminal nodes, the bucket size should be made
as small as possible. The effect of ¢the optimized d4d-D tree
partitioning "is a division of the <coordinate space 1into
approximately hypercubical subregions,- each containing very
nearly the same number of points. To minimize the upper bound on
the number of points eiamined by each search, the buckets should

each contain one point only [Friedman-Bentley-Finkel(1977)].

The geometric boundaries of the subregion of every non-terminal
node are determined by the partitions defined at the nodes above

1t 1n the tree. The volume of these subregions 1is smaller for

22

subsets defined by nodes deeper 1in the tree. The geometric
boundary of the root node is defined as plus and minus infinity
on every dimension.then se;rch is performed, if the node under
invéstigation 1s terminal, all the ©points in the bucket are
searched for the nearest neighbour, and the point found to be
the closest 1is maintained. If the node under lnvestigation is
not terminal, the recursive procedure is called for the node
representing th? subset on the same side of the partition as the
guery point. When control returns, a test is made to determine
if it 1s necessary to consider the points on the side of the
partition opposite to the quéry point. It 1s necessary to
consider that subset only if tﬁé geometric boundaries delimiting
this subregion intersect the ball centered at the query point
with the radius egual to the distance to the closest point
encountered so far. This is referred to as the "bounds overlap
ball" test. If this test fails, none of the'poihts on the
opposite side of the partition cah be the closest neighbour to
the query point. If the bounds do overlap the ball then the
points of that subtree must be considered and the procedure 1s
called recursively for the node representing that subset. A
"ball within bounds" test is made before returning to determine
if it is necessary.to continue the search. This test determines
whether the ball is entirely within the geometric boundaries of
the subregion represented by the node. If so, the current
nearest neighbour is correct for the entire set and the search
car be terminated. This recursive search procedure is described

in detail in Friedman-Bentley-Finkel(1877).

23

The computation time required to organize the d-D tree data

4 is proportional to dnlogn

structure over a set of n points in R
and the ‘expected computation time to perform each search 1is
proportional to logn. This expected search time is independent

d and for

of the probability distribution of the points in R
large data’ sets, the -expected number of point examinations
required by the search (i.e. the number of terminal nodes
searched) 1is shown to be independent of the value of n

[Friedman-Bentley-Finkel(1977)].

In our 1implementation of the d-D tree, a bucket éontains one
point only and every non-terminal node represents not only a
subregion of the <coordinate space but also a cell within this
subregion. A cell 1is deterﬁined by a set of points contained in
the subregion and 1ts geometric boundaries tightly enclose this
set of points [Fig. 2.2]. When "bounds overlap ball" teét is
performed, 1t 1is the geometric boundaries delimiting the cell
that are considered rather than the boundaries of the subregion
that <contain the «cell. "During the‘ search, 1f a node under
lnvestigation is not terminal, the recursive procedure is called
for the node representing the subset on the same side of the -
partition as the guery point only if the "bounds overlap ball"
test 1s true. In many instances, the boundaries of a subregion
may overlap the ball, but the boundaries of a cell contained 1in
i1t may not. As we show in Chapter V this change greatly improves

the average number of nodes considered when search is performed.

The expected computation time to perform each search is, in our

24

subregion

cell

Fig. 2.2: Subregion and a cell in R? as represented by a
non-terminal node of a d-D tree,

implementation of the d-D tree, proportional td dloghn.

2-2.1 Dynamic d-D Tree

To implement our on-line convex hull algorithm, we must be able
to maintain the d-D tree data structure dynamically. To our best

knowledge this has not been done yet and we are proposing the

25

following way of updating the tree.

To insert a new point intq?the d-D tree structure, the tfee is
traversed from the root node down to the terminal node, along
the path determined by the nodes representiAg the subset on the
same side of the partition as the new point. When a terminal
node 1is reached, this node is changed to non-terminal and the
point which the terminal node represented plus ~the new point
become the sons of the newly created non-terminal node. In this
non-terminal node the dimension with the largest spread 1in
coordinate values 1is chosen to be the discriminator and the

lesser value of the (two) coordinate values of the discriminator

determines the partition,

To delete a point from the d-D tree, let Node be the terminal
node - representing this point. The following procedure details
the deletion of Node.

Delete Node

Let NodeParent be the parent of Node and let Ot herSon be the
son of NodeParent such that Ot herSon # Node.

NodeParent = Ot herSon |

Delete Node

Delete Ot herSon

This guarantees that every non-terminal node has two sons and
therefore there is no unnecessary partitioning (i.e. one side of

a partition being empty).

26

When a d4-D tree 1is wupdated, the geometric boundaries of the
cells associated with the non-terminal nodes along the path from
the terminal node back to the root node may have to be adjusted
to reflect this update. The volume of a cell can therefore
"grow" after an insertion or it may "shrink"™ as a result of a

deletion, but the region containing this cell remains unchanged.

The amount of time it takes' to update a 4-D tree is proportional
to dH, where H is the height of the tree. For a binary search
tree, when points are inserted and deleted at random, the height
of the tree 1s found to be proportional to logn, where n is the
number of terminal nodes- in the tree [Wirth(1976)}. As our test
results (presented in Chapter V) show, this is observed to be
true for a d-D tree data structure as well. Therefore, we assume
that an update of a d-D tree with n terminal nodes 1is expected

to take ©(dlogn) operations. \

A ‘ /

2.3 Transformation of a Closed Convex Polyhedron into a Voronoi

Polyhedron

Let P be a closed convex polyhedron determined by a set of n

polnts in Rd

and let x be an arbitrary point interior to P. We
assume that P 1s represented by the set of its facets. For every

facet f, of P we generate point ¢, such that aff(/) becomes a

27

perpendicular bisector of a line segment joining x and q; - Thus -

d into two closed half-spaces: H(x,qi)

aff(&+) partitions R
containing x and H(g,,x) containing g,. P can then be expressed

as the intersection of all H(x,qi) for i =1, ..., F where

¢
d, n’

F is the number of facets of P. We have thus transformed P

d,n
into a Voronoi polyhedron enclosing its generating point x [Fig.
2.3]. For a given point p we can now use the nearest neighbour

information using the set {ql, ceer g , x} to answer the

F

point inclusion problem in a closeddégnvex polyhedron P. To
determine if a nevaoint p lies inside of P we store the
generated set of g¢-points Q = {ql, ceoy qu n} in a d-D tree
data structure and we search the tree to determ{ne if a point
from Q@ 1is <closer to p than «x is; In ‘other words we are
determining if there exists a point in Q that lies 1inside the
hypersphere centered at p with the radius equal to the euclidean
distance between the points p -and x. As soon as we find such a
point we know that p 1is outside of P and the search can be

terminated. If no such point exists, it means that x 1is the

point closest to p and p is therefore contained in P.

The expected time to solve the point inclusion problem 1in a
convex polyhedron P, determined by a set of n points in Rd, is
proportional to dlong’n, where Fd,n is the number of facets of
P. Since Fd,n is no higher than 0([d/2j!nld/2j), the point
inclusion problem can be solved in the expected O(dzlog[d/ZJ!")

time.

28

Fig. 2.3: Polygon P transformed into a Voronoi Polygon.

29

CHAPTER 111

THE ON-LINE CONVEX HULL ALGORITHM

In this chapter we present an on-line convex hull algorithm that’
can solve both the Facet Problem gnd the Facial Lattice Problem
for a data set of any dimension d 2 256 The algorithm is based on
the "beneath beyond" technique, the global strategy of which has

been described in Chapter I.

3.1 Implementation Details and Computational Complexity

Given set § of »n points, § & Rd, let §' be a subset of § of

(d+1) affinely indépendent points p;= (pil’ ceey pid) for
i =1, ..., d+1. The first step of the algorithm determines S’
and computes the initial convex hull, the d-simplex

P, = CH(S").

Since every facet 1s contained 1in a unigque supporting
hyperplane, we are using the determining vector of that
hyperplane to represent a facet. Every set of 4 distinct points
of §' determines a facet of Pd+1 for which the determining
vector of its supporting hyperplane needs to be computed. The

following section describes how this can be accomplished.

30

Let (w.l.o0.g.) fd+1 be the facet of Pd+1 determined by vertices

Pyr +++r Pyand & = ("1’ veer Mg -c) be the determining vector

of the supporting hyperplane yé=1 of fd+1’ Then by Definition
t.1, for every point pir =1, .., d

MpPp T e TRgPig T € = 0. ‘ [3.11
When ¢ = 0, hyperplane w1 passes through the origin of a

coordinate system. By transforming the origin to an arbitrary
point x interior to Pd+1 we eliminate this possibility'. This
transformation also increases the numerical stability of the
algorithm. According to Solomon(1985) "it is best to carry out

all geometric computations as near to the origin as possible".

We can then divide [3.1] by ¢ to obtain

hlp[[+ ces ¥ hdp[d -1 =0
where h,= n,/c. The determining vector F=(h1, cod hy, -1) can
' now be uniquely computed by solving the linear system of

equations

h[pj[+ cen +hdpid -1 =0

for i =1, ..., d, where (pjl,-..., p[d) are the transformed

coordinates of a point p; -

1

Let P[_[be the convex hull polytope computed so far. When a new

'To determine x one can, for example, céhpute the centroid of
S'. '

point P, 1s considered the algorithm performs the "beneath
beyond" test to determine the position of P with respect to the
facets of the curfent convex polytope Pi—]' To be able to
perform this test the determining vector ‘7 of the supporting
hyperplane of every facet f of Pi_ is computed in such a way,
that for every point p from P, _,, (p,h) < 0. Geometrically this
means that the normals to the supporting h?perplanes of all
facets of P, _, point outside of Py This 1s an important

requirement for the following definition of the "beneath beyond”

test.

Definition 3.1
A point p lies beneath (beyond) a facet f of a polytope
P if and only if tp,ﬁ) < 0 ((p," > 0), where % is the
determining vector of a(z:pportihg hyperplane of a chet

/.

Pof?tope Py needs to be updated to include point p; only if P,
lies beyond some facet(s) of P,_,;. To determine if an update is
necessary, we solve the point 1inclusion problem 1in a convex
polyhedron Pi_ for point P; and we apply the solution described

in the previous chapter to solve this problem.

Let x be a point interior to Py Fd P -1 the number of facets

of P _, and let ¢ = {q,, ..., qp } be the set of generated

/)
d,i-1
g-points such that for every facet fj of Pi—]'] < j < Fd Py

aff(fj) is the perpendicular bisector of the 1line segment

joining x and 9 If x is at least as close to p; as any point

7 32

from @, then no wupdate of Pi-I 1s necessary. However, if for
some ;, I < j < Fd i-10 4 1s closer to p[than x 1s, then facet
14

fj 1s such that P, lies beyond it. Q

3.1.1 The Algorithm

Input: Set S of n points, S & R?, and dimension d.

Output: Description of P = CH(S).

Step 1: {Compute d-simplex}.
1. Determine S'c€ § of any (d+1) affinely independent
points and set S§"= § - §'.
Let (w.l.0.9.) S'=Apyr ceer bgey) and
S"= {pd+2, veer Pl
2. Determine point x that is interior to the d-simplex
defined by S'.
3. Translate the points of S' and S" such that the
origin is at x.
4.‘ Compute P, , where Pivy= CH(S').
Let {fl' «++r [4} be the set of facets of Pd+l%
5. For i =/ to (d+/) do |
a. Compute the determining vector of aff(/f).
b. Compute point ¢, such that a/f(fl) becomes a

perpendicular bisector of the line segment

joining q, and x. .

33

6. Construct d4d-D tree over the set {ql’ ce ey qd+1}‘

Step 2: {Process points of S"}.

Let Fd,i-l

1. For i = (d+2) to n do

be the number of facets of P, _

a. Search d-D tree for a point that is closer to P;

than x 1is.

If x is the closest point to p; then

Else

Let ¢,, I £ j <F

J d,i-1'

closer to P; than x and let fj be the

corresponding to g¢

be the point that is

facet

(1.e. aff(fj) is the perpendicular bisector

of the line segment joining x and qj).

Updat e Pi-]

Step 3: {Clean Up}.

to include P

For every vertex p of Pn do

Undo the translation performed in Step 1.

The details of procedures Compute Pd+1

to include P, in Step 2 depend on the particular version of a

convex hull problem the algorithm

therefore describe them separately.

34

in Step 1 and Update Pi—]

is

solving

and

we

will

P

3.1.2 The Facial Lattice Problem

.

We are using facial graph to represent faces of a convex hull

polytope. The initial facial graph contains one node only which
: W

corresponds to the empty set. The facial graph of a d-simplex

consists of 2(d+1)

nodes, and it can be constructed by
introducing one point of S§' at a time. It takes exaétly (d+1)
ite;ations before the polytope reaches full dimension d. We
first obtain 0-face, then I-face, and so on. The construction

mechanism of the facial graph of a d-simplex is based on the

following theorem and lemma:

Theorem 3.1 [Grinbam(1967)]
Let P be a convex polytope in R4 of dimension k& < d, and
let p be a point that is not contained in aff(P). Define
P'= CH(P U {p}). Then each face of P' is one of the
following types:
1. a face f of\P 1s also a face of P' or
2. 1f f 'is a face of P then f'= CH(f U {p}) is a face

of P'.

Polytope P', as defined 1in Theorem 3.1, 1s usually called a

pyramid with base P and apex p.

Lemma 3.1 [Grinbaum(1967)]

Let P and P' be defined as in Theorem 3.1, For faces f

and g of P, define f'= CH(f U {p}) and g'= CH(g U {p}).

35 P

Then
1. (f sub g) in P' if and only if (f sub g) in P,
2. (f sub g') if and only if f=g, and

3. (f' sub g') if and only if (f sub g).

The following is an outline of the procedure Compute L in

Step 1.

Comp&te Pd+1
Let PO = g.
For i - ! to (d+1) do
Construct fg(P;) where P.= CH(P,_, U {p;})
[see "Pyramidal Update", Edelsbruner(1987)].
To construct fg(CH(Pi_] U {p;})) from {g(Pi_I). after P,_,
reaches dimension 4, Edelsbruner(1987) introduces a coloring.
scheme which he wuses to «classify facets according to their
relative position to point p;. For f, a facet of Py this
classification is defined as follows:
f is red if p; lies beyond f,
f is blue if p; lies beneath f, and

f 1s yellow if p, belongs to aff(f) [Fig. 3.1].

No color 1is ever assigned to the one only d-face of Pi-] which

1s polytope P, itself. If f 1is a k-face of P with

! i1

k < (d-1), then f is assigned a color which is determined by the

mixture of colors assigned to all facets which contain f in

36

e /
I/ ,
—_ /
(b,c) and (c,d) are red d_— /
facets, (e,f) and (a,f) are ¢ /
blue and (a,b) and (d,e) are e /
yellow facets with respect /
to p. !
/
/
/b
f
a

Fig. 3.1: Three types of facets with respect to point p.

their boundaries:

/S 1s orange if it belongs to the boundary of red and

yellow facets,

f is green if it belongs to the boundary of ye//ow and

blue facets,

f is purple 1f it belongs to the boundary of red and

blue facets, and

f 1s brown if it belongs to the boundary of red, yellow

and blue facets.

Additional color groups are defined as follows:

/S has a blue component i1f 1t is blue, green, purple or

brown,

37

/S has a red component if it is red, orange, purple or
brown, and
/ has a yellow component if it is yellow, orange, green

or brown.

With this color scheme we can define the update mechanism.

Theorem 3.2

If P is a d-polytope and p a point in Rd, let

P'= CH(P U {p}). Then each face of P' 1is one of the

following types:

1. a face f of P is also a face of P' if and only if f
has a blue component

2. 1if f is a face of P then f'= CH(f U {p}) is a face
of P' if and only if either

a. f has a blue and a red component, or

b. f is yellow.
Proof: [Edelsbruner(1987)]

Theorem 3.2 defines the faces of P' in terms of the faces of P,
that is, the nodes of fg(P') in terms of the nodes of fg(P). To

completely define fg(P') we also need to define its arcs.

Lemma 3,2
Let P and P' be defined as in Theorem 3.2 and let f and
g be two faces of P. Define f'= CH(f U {p}) and

g'= CH(g U {p}) if f and g have a red and a blue

38

component and I = CH(S U {p}) and g*= CH(g Ul{p}) if f

and g are yel/low. Then

1. (f sub g) in P' if and only if (f sub g) in P‘and f
and g have a blue component

2. (f sub g') if and only if f = g

3. (f sub g*) if and only if (f sub g) and f has a bl ue
componen!

4. (f' sub g') if and only if (f sub g)

5. (f' sub g*) if and only if (f sub /) and (! sub)
for some subface / of g, and

6. (/" sub g") if and only if (f sub g).

Moreover, the only d-face of P' (i.e. polytope P'

itself) is a superface of all facets of P'.

Proof: [Edelsbruner(1987)]

Lemma 3.3
Let (f sub /) and (I sub g) be three faces of a polytope
P with f brown and g yellow. Face [1is uniquely
determined by faces f and g and the requirement that !/

has to be orane.

Proof: [Edelsbruner(1987)]

From the above information we can see that only red and yel//low
facets are important for an update, and we are now going to
describe how to identify them. One red facet is determined by

searching the 4-D tree. Having discovered one red facet, we can

39

identify all the other red and yellow facets (if _any) by
performing depth first search of a facial graph. The search
examines nodes that correspond to the facets of a polytope and
advanceé through the arcs corresponding to 1its edges
backtracking every time a bl/ue facet 1s reached. Due to the
following theorem, we know thag this graph is well defined.
Theorem 3.3
Every edge of a convex polytope lies in two and exactly

two facets of this polytope.
Proof: [Chand-Kapur(1970)]

We are now ready to specify the update procedure in Step 2 of

the algorithm.

Update Pi‘—l to include P;

1. Determine all red and yel/low facets with respect to p,
using facet fj as the first red facet.

2. For every red facet do

Delete its corresponding g¢g-point from d-D tree.

3. Construct fg{(P,) where P, = CH(P,_, U {p;})
[see "Non-Pyramidal Update", Edelsbruner(1987)].
Let Fy_, ., be the set of all facets that contain p, in
their boundary.

4, For every facet f from Fd—l,t—l do
a. Compute the determining vector of aff(f).
b. Compute boint g such that aff(f) becomes a

perpendicular bisector of the line segment joining x

40

and g.

c. Update d-D tree to contain point g.

Data Structures

A node in the facial graph stores the following information:
SuperFace - points to a list of super faces,
SubFace - points to a list of subfaces,
Color - stores coloc of a face represented by this node,
NodeCopy - points to a copy of this node

(also used to mark and unmark facets).:

In addition, every node representing a facet stores

determining vector of the supporting hyperplane of the facet

and a pointer to the terminal node in the d-D tree ;%hich

corresponds to point ¢ associated with this facet.

very
node representing a vertex stores the transformed
coordinates of the vertex. In the initial one node of a

facial graph (representing the empty set) all pointers are

initialized to nil and color to ynspecified.

A node in the d-D tree stores the following:
Terminal Node
gPoint - an array, coordinates of point g,

Parent - points to the parent node,

41

Facet - points to the node 1in the facial graph which

corresponds to the facet associated with point g¢.

Non-Terminal Node
Parent - points to the parent node,
Discr - ccordinate chosen as the discriminator,
DiscrValue - value of the discriminator,
LowCel ! Bound - an array, for every coordinate the low bound
of a cell, g
HighCellBound - an array, for every coordinate the high
bound of a cell, 2
LeftSon - points to the left son node,

RightSon - points to the right son node.

Computational Complexity-

Before we analyze the computational complexity of the algorithm,

we enlist the following results which will be used in the

analysis.

Lemma 3.4 -

d, and let p be

Let P be a polytope with n vertices in R
a vertex of P. The number of faces of P which contain p
in . their boundary plus the number of 1incidences among

them is O(Fd-l,n)'

42

Proof: [Edelsbruner(1987)]

Lemma 3.5 e

v

Every k-face of a d-polytope P, &k < d, 1is the

intersection of at least (d-k) face;s of P.

Proof: [Griinbaum(1967)]

We are now going to analyze the computational complexity of the

algorithm for 1its expected time and its worst case performance

in terms of length of the input.

Step 1:

Set S' can be determined in 0(nd’) time in the Qorst
case.

Computation-of point x requires O(d) operations and the
required translation can be applied to all points of §'
and S" in 0O(dn) %ime.

Facial graph of PJ+1 is obtained By induction and it can

be constructed in O(dFd,d+1) time.
Polytope P, , has exactly (d+1) facets. Given a facet of
Pd+1’ the determining vector of its supporting

hyperifane can be computed in O(dj) operations and point
q cor}esponding to this facet can be computed 1in bid)
time?f

Fiqaily,*the construcion of a d-D tree over a -set of
(d+}) points can be done in O(dlogd) time.

Rynning Time: 0(nd®) in the worst case.

43

Step 2: We will analyze this step for one update only. That is
. . }
we will determine the time needed to update the existing

convex hﬁlllPi_l with point pi-

As we have already mentioned, one red facet of Pi—j is
obtained by searching the d-D tree. The number of
terminal nodes in the tree is equal to the number of
facets of P, _ wvhich 1is bounded above by Fd,i—]‘ The
-expected time to search the tree is therefore

©(dlogF).

d,i-1
The determinatiqn of all the other red and yel/!low facets
is proportional to the ngmber of red and yellow facets.
The worst case occurs ;hen no yellow facets exist
[Seidel(1981)], =since it is always possible to perturb
p; slightly such thét all yellow facets become red and
»colors of other facets remain unchanged. As shown by
Seidel(1981) this perturbation does not decrease the .
number of faces or face-subface relations'in Pil As.a—
conseguence, we can ahalyze our algorithmvfor simpliciél

polytopes only.and the time bound we develop will apply

to general cases as well,

The computation of fg(P;) is proportional to D(pi) and
N(p,) where D(p,) is the number of faces and incidences
that . are deleted from fg(Pi—l) when

 fg(P;) = fg(P,_, U {p;}) is computed and N(p,) is the

i

number of new faces and incidences that appear in fg(Pi)

44

Step 3:

after the wupdate 1s completed. It 1s clear that each
face and each incidence, between two faces can be deleted

at most once, and it is also clear that every face that

.1s going to be deleted had to be created first.

Therefore D(p, ,)+ ...+ D(p,) S (d + 1) + N(p,)+
...* N(p,) and it is sufficient to establish upper bound
on N(p[) only. From Lemma 3.4 the upper bound on N(p)

{
Y Fyy,i-1
To compute the point ¢ for every new facet takes
@(dFd_/ [_1) operations and to store the new g-points 1in
the d-D tree structure (containing g-points of all the
remaining facets of Pi—l) takes @(dFd—l,t-F£9gfd,1—1)
expected time. Also the determining vector has to be

computed for each new facet which requires @(ded*I I_IY

operations.

Running Time:

J {
OCd(F) 441098 4u4? Egoy o109y o)) =
O(d"Fd—l,n-IIOQFd,n-l) = O(d"Fd-l nlogﬁd,n) expected

time.

To reverse the translation performed in Step 1 takes at
most O(nd) computations.

Running Time: O(nd) in the worst case.

From this analysis we can see that Step 2 is the dominating step

45

of our algorithm. The algorithm computes the convex hull of a
set of n points in R? in O(d"Fd—I,nldng,n) expected time. This
time is better than the O(an,n) expected time of the other
on-line higher dimensional convex hull algorithms known to us

[Preparata-Shamos(1985), Rey-Ward(1985)].
o~

The wvalidity of the expected time of our algorithm depends on
the heiéht of the d-D tree throughout the computation. It is
hard to know, in general, how the tree will "grow". We can only
predict, that if the tree is updated réndomly, the average path
length grows logarithmically with the number of nodes in the
tree, even so, 1in the worst case, the path length grows
linearly. To maintain the tree”balanced, we can reconstruct the
tree every time a new polytope 1is computed. If Fd,[is the
number of faCets of'P[for (d+2) £ i £ n, then Fd,i is also the
number of points that have to be stored in the d-D tree after P,
1s computed. To reconstuct the tree thérefore takes
e(dFd,[long,[) operations. Under these circumstances

e(dfd , LogF [) dominates the computational complexity of our

algorithm.

The wofst case performance can be determined by establishing an
upper bound on the running time of the search and the update of
the d-D tree, since these are the only two procedures in the
analysis of the algorithm where we have given expected times. In
the worst case the search can examine every node in the tree for
which e(dFd'[_]) 1s the upper bound on the number of operations.

As for the update, the worst case occurs when the tree is

46

reconstructed which, as we have already mentioned, takes
e(dFd ilong i) operations. To conclude, the algorithm computes
the facial lattice of the convex hull of a set of n points in R4

in ©(d4(F logF "'+Fd,n‘IlOng,n‘1)) = O(dnpd'nlogpd'")

d,d+]1 d,d+1°

time in the worst case.

3.1.3 The Facet Problem

To solve the Facet Problem for a non-simplicial data set without
maintaining some information about all the faces of a convex
hull polytope, we propose the following data structures:

A FacetList which contains information about individual
facets and a VertexList containing vertices'of a convex hull
polytope.

For every facet f in the Facet Li st there 15 a
FacetNeighbors(f) list - a 1list of facets that share a
common edge with f; and a FacetVertices(f) list - a list of
vertices that are contained 1in f. Similarly, for every
vertex v 1n the VertexList we maintain a VerrexFacets{v)

list - a list of facets containing v in their boundary.
As 1n the previous implementation, a facet is represented by the

determining vector of its supporting hyperplane and a vertex by

1ts 4 real valued coordinates.

47

The computation ofan+1 is quite simple. Every point in §' is a
vertex of 4the initial d-simplex. 1t takes exactly (d+4)
iterations to compute all the facets of Pd+1’ each iteration
computing one of the facets. In a d-simplex, a facet shares an
edge with the remaining d facets, and a vertex is contained in a

boundary of exactly 4 facets.

Comput e Pd+1
1. Set FacetlList = @&, Vertealist = &.
2. For i = I to (d+1) do
Add p; to VertexList.
VerlexFacelS(p[) = g,
3. For i =1 to (d+1) do .
a. Compute facet f[determined by the set of points
SV I F BV FR R R
b. Add fi to FacetlList,
FacelVertlces(fi) = o.
FacelNeighbors(fi) = 7.
4, For i = 1 to (d+1) do
For ; = I to (d+/) do
If i # j then do
Add f, to FacezNeighbors(fj).
Add f, to VerlexFacels(pj).

Add P to FacelVertices(f[).

Next comes the update mechanism of a d-polytope Pi—/' Again

here, as in the previous implementation, we have to determine

48

al; red and yellow facets with respect to some new point P
Having discovered one red facet by searching the d-D tree, we
use this facet ﬁo determine all the other red and yel!!low facets
by a process called Peeling. During _this process we look at
every facet that shares an edge with a red facet and perform the
"beneath beyond" test to determine its color. When a red facet
1s discovered, we perform the "beneath beyond" test on its
neighbouring facets and so on, marking every facet that has been
tested. As one can see, the Peeling process 1s proportional to

the number of red and yell/ow facets obtained.

Knowing all red facets, 1t is not difficult to determine the
"exposed edges"” and to compute new facets. Let f' and f" be two
neighbouring facets such that f' is b/ue and f" is red, and let
E be the set of vertices common to f' and f". Then E determines
what we call an "exposed edge", and every vertex contained 1in £
is an "exposed vertex". Let f be the new facet defined by
{E U {p[}}. Tken FacetVertices(f) = {E U {pl.}} and for every
vertex v from £ we can add f to VertexFacets(v). We also know
that f' and f share an edge and we can therefore add f to
FacetNeighbors(f') and set FacetNeighbors(f) = {f'}. One crucial

step of the algorithm still remains to be resolved. It is the
determination of the neighbouring facets to f (other than [f')

and the new neighbouring facets to all yellow facets.

Let f be a facet, either new or yellow, for which its

neighbouring facets are to be determined, and let F be the

yell ow

set of yel/l/ow facets with respect to P, and Fnew the set of new

49

facets of P, computed so far. The brute force method would be to

look at every facet in Fn and F and determine the number

ew yell ow
of affinely independent vertices, VCount, shared by this facet
with f. If for any of the facets checked the VCount is (d-1)
then f shares an edge with this facet. However, we can do better
than this by cqn51der1ng only those facets from Fnew and Fyellow
that contain a vertex from FacetVertices(f) in their boundary.
This 1is done by moving all yellow facets to the end of the
VertexFacets lists and by maintaining a count, FCoun:, of all

yell ow/new facets in each list (i.e. new facets are added to the

end of the list as well).

Special care has to be taken when VCount 1is computed between two
yellow facets., This is because two yel/low facets may: a) already
be neighbours in P, 4 b) become neighbours only in P, or c) be
neighbours in neither P,_, nor Pl.2 [Fig. 3.2]. Only in case b)
the néighbourhood information of the ye//ow facets needs to be
updated. If we determine the VCoun: in P, then the numbers
obtained in a) and b) would be the same (i.e. (d-7)). 1In order
to clearly recognize cases a) and b) we détermige the number of
affinely independent vertices between yel/l/ow facets 1in Pi—]’

~obtaining (d-/) or (d-2) in a) or b), respectively.
In the last step of this implementation of the Updatre P,_, 1o

incl ude P, procedure we use Lemma 3.5 to remove vertices of Pi—]

which are no longer vertices in P .

Note that for two new facets or a new and a yel/l/ow facet only
cases a) or c) can occur,

-

R

50

Yellow facets (heavy lined) sharing an edge
a) before and after update, b) after ybdate
only, and c) neither before nor after update.

Fig. 3.2: Two yellow facets of a convex hull polytope before and
after update.

51

Update P, _, to include p,
(=1 i ,
Let F’ed and Fyellow be the sets of red and yel/low facets of
P, with respect to p, obtained by the Peeling process (as

-1
already described).
1. {Determine neighbouring facets among yel//ow facets}

For every f from F do

yell ow

Let f be the set of yel/low facets (other than

yellow
f) such that each one contains at least one vertex
of f in its'boundary.

For every f' from /[do

yellow
1f the number of affinely independent//Vértices
common to f' and f is (d-2) then déﬂx’
Add f to FacetNeighbors(f').
Add f' to FacetNeighbors(f).
2. Add p, toVertexList.
VertexFacets(p,) = @.
3. {Compute new facets}
For every f' from Fred do
For every f" from FacetNeighbors(f') do
If f" is blue then do
Compute new facet / determined by
{E U {p[}}, where £ is the set of vertices
common to f' and f".
Add f to Facetlist.
FacetNeighbors(f) = {f"}.
Add [to FacetNepghbors(f").

For every v from E do

52

Add f to VertexFacets(v),
rAdd v to FacetVertices(f).
Determine neighbouring facets to f.
4. {Add p, to the boundary of every new facet}

Let Fnew be the set of new facets computed in the

previous step.

=

For every f from Fnew do

Add f to VerlexFacels(pl).
Add p; to FacetVertices(f).
5. {Add p, to the boundary of every yel/l/ow facet}

Fpr every f from F do

yell ow
Add f to VerlexFacels(pi).
Add p;, to FacetVertices(f).

6. Remove red facets from Pi'

Determine neighbouring facets to f

Let f be the set of yel//ow and already computed

new/yell ow

new facets such that each one contains at least one vertex
of E in its boundary.

For every f' from f do

new/yellow
If the number of affinely independent vertices common to

f and f' is (d-2) then do
Add f to FacetNetghbors(f').

Add f' to FacetNeighbors(f).

53

Remove red facets from P[
Fon\every f' from Fred do
For every f" from FacetNei ghbors(f') do
Remove f' from FacetNeighbors(f").
Remove f" from FacetNeighbors(f').
For every v from FacetVertices(f') do
Remove f' from VertexFacets(v).
Let FCount be the number of facets in
VertexFacets(v).
Ié FCount = 0 then do
Remove v from VertexList.
Else
1f FCount < 4 then dQ
For every f in VertexFacets(v) do
Remove v from FacetVertices(f).
Remove f frowm VertexFacets(v).

Remove v from VertexList.

Data Structures

Vertex List
Vertex - an array, transformed coordinates of a vertex,

FCount - counter, used to count the number of new or ye//ow

(2 1Y

acets containing this vertex in their boundary,

Flag - used to mark and unmark this record,

FirstVF, LastVF - pointers to the first-and the last record,
respectively, of VertexFacet list associated with this
vertex, (

PrevVertex, NextVertex - pointers to the previous and the

next record, respectively, in VertexList.

Facet List
facet - an array, facet normal representing a facet,‘
Node - points to a terminal node in the 4-D tree that stores
point g¢ associatéd with this facet,
VCount - counter, used to <count the number of vertices
common to this facet and a facet for which the
FacetNieghbors information is beingvestablishea,
Flag - used to mark and unmark this record,
FirstV, LastV - pointers to the first and the 1last record,
respectively, in Vertices list,
FirstFV, LastFV - pointers to the first and the last record,
respectively, inifacetyerllces list,
FirstFN, LastFN - pointers to the first and the last record,
respectively, 1n FacetNeighbors list,
FirstN, LastN - pointers to the first and the last record,
respectively, 1n Neighbors list,
PrevFacet, NextFace! - pcinters to the previous and the next

record, respectively, 1in FacetlList.,

m
(€]

VertexFacetls
Vertex - polints to the vertex record in VertexList
associated with this VertexFacets list,
Facer - points to the facet record 1in Facetlist that

contains vertex associated with this VertrexFacets list in

its boundary,

M

Pt d
R

PrevFV, NextFV - pointers to the previous and the next
record, respectively, in FacetVertices list,
PrevVF, NextVF - pointers to the previous and the next

record, respectively, in VertexFacets list.

FacetNet ghbors

Facet - points to the facet record in FacetList aséociated
with this FaéetNelghbors list,,

Neighbor - points to the facet record in FacetLi&t that is a
neighbour to the facet associated with this FacetNeighbors
list,

PrevN, NextN - pointers to the previous and the next record,
respectively, in Netghbors list,

PrevFN, NextFN - pointers to the previous and the next

record, respectively, in FacetNeighbors list.

FacetVertices

the same as VertexFacers. P

R

Neighgprs
&
%ﬁ%@?SQme as FacetNeighbors.
(Thi$ list is for the purpose of efficiency of the algorithm

only).

Vertices
Vertex - points to a vertex record in VerrexList,
NextV - points to the next record in Vertices.
(This 1list 1is wused to store pointeré to the vertices that
are contained in a facet associated with this 1list and
another facet for which the FacetNeighbors information is

being established).

A node in a d-D tree stores the same infarmation as in the
previous implementation except for the Facer field in the
terminal node which points to a facet record in the FacetL:st

assoclated with point ¢ represented by this node.

Computational Complexity

The performance of the algorithm will .be analyzed for its worst
case 1n terms of length of the input. For the same reason as
given in the analysis of the algorithm for the previous
implementation, the worst case occurs when no yel/ow facets
exist and we will therefore analyze the algorithm for simplicial

polytopes only.

57

Step 1: It is easy to. see that the computational complexity of

Step 2:

Comput e Pd;l is O(d4) and the overall complexity of this

. . ./ o
step remains unchanged in comparison to the previous

implementation. .

Running Time: O(nd3) in the worst case. -

Only procedure Update P,_, 1o include4pi needs to be
analyzed here, since no change has been made to the
other procedures within this stép. We will establish an
upper bound on the number of operations needed to update

Py

For évery "exposed edge" in P[_] there is a new facet in
Pi. From Lemma 3.4 we know that the number of new facets
is bounded above by Fd—],i—l' The g¢-points and the
determining vectors of all new facets can be computed in

) and ©(dF

e(d]) operations respectively.

Fd—l,[-l d-1,i-
The d-D tree can be constructed in G(dFd ;1ogF ;) time,

where Fd ; is the number of facets of Pi= For all new

facets computed, the VertexFacets and the FacetVertices

) time.

lists can be updated in e(dFd_]’[_]

To update the FacetNeighbors 1information we do the
following operations: for every new facet we 1. look at
1ts "exposed vertices" and 2, for every "exposed vertex"

we 1n turn 1look at every new facet that contains this

vertex in 1ts boundary, and 3. we test the vertices that

58 '

are common to these two facets to determine if they are
affinely 1independent. It can be shown that the set of
"exposed edges" and "exposed vertices" is isomorphic to
a (d-1) polytope [Siedel(1986)], and thisrestablishes
Fd—z,i“as the upper bound on the number of new facets
(or "exposed edges") intersecting at a given "exposed
vertex". In the worst case then the number of operations

~___ Derformed to update the FacetNeighbors information 1s

d-1,i-15a-2,i-1"

Running Time:

o(dF

4 - . —_
O Fy y gerFaa avr™ o Fgoy notFaoa n-y)) =
o(a?nF F) = o(d*nF F) in the worst
' d-1,n-1 d-2,n-1 d-1,n d-2,n
case,

Step 3: Runnihg Time: O(dn) in the worst case.

" The analysis shows that our on-line algorithin computes the

facets of the convex hull of a set of »n points in Rd - 1n

O(d4an_1,an_2,n) time in the worst case. This algorithm is the

only one known to us that "solves the Facet Proplem tor a
non-simplicial data set without maintaining some representation
of all the faces of a convex hull., Our worst case time 1s better
than the worst case time <conjectured for this problem by

v 2 ,d+4

Swart (1983) (i.e. 0((F, 1249%%1logn)).

d,n

59

CHAPTER 1V

THE DIVIDE AND CONQUER ALGORITHM

In this chapter we present an off-line convex hull algorithm
solving the Facet Problem for higher dimensional, simplicial
data sets. The algorithm is off-line because it reguires that
all the data points be present before any processing begins. The
technigue is based on the well known "divide and conguer”
principle. In the following section we describe the details of

the algorithm and establish its computational complexity.

4.1 Implementation Details and Computational Complexity

When describing the algorithm we will refer to the Voronoi
diagram and a d-D tree data structure which we have introduced
in Chapter II. We will ‘therefore assume reader's familiarity

with the meaning of the terms.

The basic data structures used in the implementation of this
algorithm are the same as specified for tHe implementation of
our on-line solutisn to the Facet Problem de3cribed 1in Chapter
111 (i.e. Facerlist, VertrexList and the lists of pointers that

relate the twoj,

60

The "divide and conquer" principle, 1in general, involves
partitioning the original problem 1into several subproblems
(divide), recursively solving each subproblem (conquer), and
combining the solutions to the sutproblems to obtain the
solution of the original problem (merge). In our particular case
this means that we partition the given set S of n points 1n Rd
into two subsets S/ and S2 of approximately the same size,
separately and recursively compute the convex hulls of both

subsets, and then "merge" the <convex hull 1nto a singie

polytope P = CH(P, 6 U P,) where P = CH(S

/ 1) and Pz CH(S,).

/

t

For efficiency reasons, we pre-sort the points of § with respect
to the value of the first coordinate and partition § 1nto S, and

S, such that for any p (g) of § (52), x (pl<c (x,(g)>c) for

2 !

some ¢, where xl(p) is the first coordinate of p. We call §, and

1

NP the left and the right subsets of §S. Thus, Sl and §, are

separable by the hyperplane X c.

. The merge step is the most important step of the algorithm. It
is this step that actually computes the facets of a convex hull.
Every invocation of the Merge procedure 1is goling to be
represented by a node in a binary tree. The inputs to the Merge
procedure are two non-intersecting polytopes and the output 1s
trhe convex hull of their wunion. Let Sl, S/ be two subsets
(separable by a vertical hyperplane) of some set Sz/ such that .
S! and S/ are left and right subsets of Sz/ respectively, and

rlet P, = CH(S,) and P/ = CH(S). 1f the Merge procedure 1S

invoked with P, and P/ as its input, then we create a node 1n a

61

binary tree representing P[j = CH(P, U Pj) with 1its LeftSon
pointer pointing to a node associated with P, and its RigthoH
pointer pointing to a node associated with Pj. To compute'
polytope flj we first delete those facets ?f P, and Pj that are
not going to be facets of sz' thus leaving the two polytopes as
?open shells”, and then we compute the "wrap around" portion Wij
that connects the "open shells" [Fig. 4.1]. P is therefore

composed of le and the remaining portions of P, and Pj.

Let F be the set of facets of Wjj and let x be some point that
15 interior to P[j. Every f from F, determines a hyperplane
aff(f) that partitions r? into two <closed half-spaces
intersection of which is aff(f). Let H(S,x) be the closed
half-space that <contains x. Then the intersection of all
H(f ,x,) for f[from FW, is a convex polyhedron which we denote

!
p,. 1i for every f, we compute point g, such that af/(f;)
becomes a perpendicular bisector of the line segment joining «x
and q,, ve transform P, into a Voronoi polyhedron with point «x
being its generating point [Fig. 4.2]. Let Q, be the set of
g-points computed for the facets of F . For reasons that will
become clear later, we will construct a d-D tree storing the

points of Qw and associate this tree with the node in a binary‘

tree representing P[j.

Because of the non-degenerate assumption on §, a vertex from Pj
can lie either beneath or beyond a supporting hyperplane of a
facet of PJ and the same 1s true for a vertex from Pj in

relatiop to a supporting hyperplane of a facet of P[. Therefore,

62

Two non-intersecting
polytopes.

Polytopes as "open
shells".

After the "merge".

Fig. 4.7: "Merging" of two polytopes 1in 8.

63

Fig. 4.2: "Wrap around" portion connecting polytopes P, and P,
extended to form polygon P and its transformation into a
Voronoi polygon.

according to Definition 3.! we can only have red or b/ue facets
(i.e. no yellow). The process of determining red facets is
similar to the one we have described in Chapter 1II for the

on-line algorithm. However, here we are determining red facets

64

of one polytope with respect to all the vertices of some other
polytope. We accomplish this by considering one vertex at a
time, discovering one red facet with respect to this vertex
first, and then applying the Peeling process (as described in
Chapter III) to determine all the other red facets (if any). In
the following section we will show how to discover the first red

LY

facet.

Assume p = (p,, ..., p,) is a vertex of P , and P 1s the
) d J !

polytope whose first red facet with respect to p 1s to be

determined. Further assume that x

;= ¢ is the hyperplane that
separates S[and Sj. We start by searching the d-D tree
associated with the node in the binary tree representing oo It

the search 1s successful, we have determined our first red facet
(i.e. it 1s the facet corresponding to the point ¢ discovered by
the search). When the g-points stored in d-D tree were computed,
the origin of the the coordinate system was transtormed to some
point x interior to the polyhedron Plj = CH(P[U P/)f For every
d-D tree, the coordinates of 1its corresponding poilnt x are
stored in the node of the bilnary tree that the d-D tree is
associated with. It is necessary to transform the coordinates of
p such that the origin 1s at x, before searching the d4-D tree.
If the search is not successful, we will search the d-D trees
associated with the nodes of the binary tree along the path
détermined by the RightSon pointer of every node visited,

terminating the search as soon as a red facet is discovered'. In

'In a reverse situation when p is a vertex of P and P 1s the
polytope whose red facets with respect to p are to be /

65

the following we will explain why it is possible to search along

one path only.

Let sz and Pk! be two polytopes that are to be merged. Then
they are separable by a hyperplane X, =c for some ¢. Let Pij

(P,,) be the left (right) polytope with respect to the

k!
separating hyperplane. To determine one red facet of Pij with
respect to some vertex p of Pk/ we traverse down the binary tree
starting at the node representing Pij and searching the d-D tree
associated with every node visited. A d-D tree stores .g-points
of some "wrap around". Let Wij be the "wrap around” connecting
polyﬁopes P, and Pj. Then again there -exists a separating
hyéerplane X, = c'a;that separates P, and Pj. This hyperplane
defines two closed half-spaces H, and Hj contain}ng P, and Pj
respecéively. Let Pj be the right polytope with respect to the
sepérating hyperplane. Some of thé facets of P, and Pj were
deleted when Wij was computed, leaving S, and Sj as the sets of
the facets of P, and Pj, respectively, of their remaining -"open
shells", Define P, to be the polytope obtained as the
intersection of all aff(f) for f, a facet of Wij. Let p be
inside P (i.e. if p is not inside P, then at least one facet of
P, must be red). Since p is inside of P, and it is also in Hj
(i.e. ¢' < ¢), it must be in (P N Hj). But for every point x

from (Pw n H/) x 1s beneath all the facets of Si and therefore p

15 beneath all the facets of S, as well. The g-points for the

'"(cont'd) determined, we will search the d~-D trees associated
with the nodes of the binary tree along the path determined by
the LeftSon pointers.

66

facets 1n S[are stored in the d-D tree associated with the node
pointed to by LeftSon pointer of its parent node (i.e. the node
associated with Pij) and therefore the path determined by the

LeftSon pointer need not be traversed.

As figg;s are deleted, the corresponding g-points are deleted
from the d-D trees as well. Therefore a d-D tree may not contain
all the g¢g-points it contained when it was.originally created.
Let W be the "wrap around” from which some facets have been
deleted. The d-D tree corresponding to W is associated with a
node in the binary tree représenting some polytope P. The new
facets that replaced the facets deleted from W must have been
computed after the facets of W were, and therefore thelr
corresponding g-points must be stored in the d-D tree associated ,
with some nodes of the binary tree at a level higher than the
node representing P. Since our search always starts at the
highest level of the binary tree, we must have tested p against
those relevant facets already and p must have been found beneath

each one of them.

To compute new facets (1.e. facets of the "wrap around"”
connecting two "open shells") we can apply the "gift wrapping”
technigue [Chand-Kapur(1970)). This technique 1is based on
Theorem 3.3. The principle 1involved here 1is to compute the
facets of a convex hull(from the known edges. We start with an
initial convex hull facet. Assuming that the facet is simplicial
it determines d (d-2)-dimensional edges. The initial facet 1is

then rotated about each edge to obtain new facets. This process

67

°

is repeated for every new facet and the edges determined by\\the
facet. 1In the following paragraph we show how the initial faxft

can be obtained.

C \k/ // ’
Each one of'the two "open shells” determines a set of "exposed
edges" and a set of T"exposed vertices" (i.e. the Qertices
contained 1in thef exposed edges). Let Vi and Vj>be the sets of
"exposed vertices"” of P, and Pj respectively. For every "gxposed’
edge"’ one of the two facets that contain this edge is known and
the other facet needs to be computed. Let e be an egﬁosed edge
of P, and f the known facet that contéins e. The initial facet
can be computed by seeking among all the hyperplanes rdetermined
by the edge ¢ and a point from Vj the one such that all qther
vertices of Vj are beneath this hyperplane. o
‘ | | v

To compute the facets of the "wrap around” efficiently, we
introguce a new representation for vertices, facets and .edges.
For every vertex we generate a unique vertex number, a positive
integer. A simplicial facet can then be represented by a vector
of length 4 that contains the generated veftex numbers of the 4
vertices that define the facet, in ascending order. Similarly,
to rebresent an edge we use a vertex of length (d-/) containing

the vertex numbers of the vertices that determine the edge, also

in ascending order.

As the new facets are computed, they are stored in a queue which
we. call FacerQueue. In this gueue a facet is represented by its

vector. If (w.l.0.g.) {pj, cee pd} is the set Of vertices that

68

determine a new facet and ("1' cees na) its corresponding
vector, then every n,; for I £ i £ d can be used as a label for
an edge of this facet. An edge will have a label n,; if it is
detérmined by the set of vertices {pl, Ceos pd} - {pi}.
Therefore, a faz;} vector represents not only a facet but also

the labels of 1¢¥s edges.

The new edges are stored 1in a height balanced AVL tree
{Aho-Hopcroft-Ullman(1974)]. At the time of inserting an edge as
a‘node into the tree, we also store a pointer pointing to the
facet that contains this edge, stored‘in FacetQueue. Two edges

e and ej with vec;ors (11, e, Id) and (/I,),

! L /d

respectively, are compared lexicographically by the following
rule:
Let k be the smallest subscript for which e *) e

1

1f e < Tk then ¢ 1s "smaller"™ than e/

Else ¢, is "larger” that ej.

It is possible that an edge of a newly computed facet 1s already
present in the tree. This means, that the edge is now associated
with two facets and therefore need not be considered any
further. This can be indicated by changing the edge label in the
vectors of both facets in FacetQueue to its negative value. When

from the FacetQueue 1s considered, new facets are

ct

a face
computed only for those edges for which the facet label 1is
pcsitive, For a given edge'e we consider only the two sets of
"exposed vertices" as possible candidates for the wvertex that

1

will determine the new facet containing e. These sets are only

69

subsets of the entire set of vertices of the resulting polytope,

which contributes to the efficiency of the algorithm.

Every one of the two polytopes being merged has its own
FacetrsList and VertexList. We append one to the 2nd of the other
thus ‘ggtaining only one FacetList and only one VertexlList. A3
new facets are being computed, they are added to the end of
FacetList. The wupdate of the FacetVertices, Verte;Facets and
FacetNeighbors lists is, as we have shown for the Facet Problem
implementation of the on-line algorithm, proportional.- to the

number of new facets computed.

Chand and Kapur presented a very clever way of computing the new
facets from the known edges [Chand-Kapur(1870)]. We will not

describe the details of their technique here, but refer the

reader to their publicattion.

4.1.1' The Algorithm

Input: Set S of n points, § &« Rd, and dimension d.

Output: Description of the facets of P = CH(S).

Step ': {Sort]}

Sort peoint of § with respect to the value of the first

coordinate.

Let § = {pj, ..+, p,} be the sorted set.

70

Step 2:
It n £ d then do
Construct the convex hull of § by using any trivial

-algorithm and stop.

Else
Do Step 3.
Step 3:
1. {Divide}
Set k = |n/2] and divide § into
51 = {pl, R pk} and
52 = {pk+[, “ ey pn}.

2. f{Conguer}
Compute P, = CH(S,) and P, = CH{S,) recursively.
3. {Merge}

Merge the two convex hulls to form P = CH(P,6 U P,).

The only non-trivial part of this algorithm 1s the Merge
procedure in Step 3 which combines two convex hulls. Following

is an outline of the steps of this procedure.

e

Merge
1. Determine facets that need to be deleted.
a. Determine one facet that needs to be deleted from one
polytope for every vertex of the other polytope and vice

versa.

71

b. Use Peeling process to determine all the other facets
that need to be deleted.
2. Compute new facets.

3. Store new facets in a d-D tree. .

4.1.2 Data Structures

N

A node in a d-D tree stores the same information as 'specified in
Chapter~III for the Facet Problém solving implementation of the

on-line algorithm,

VertexlList
Vertex - an array, original coordinates of a vertex,

VertexNo - a positive integer generated to represent a
} - .

¥

:vertex, : , ‘ -
Flag - Used to mark and unmark this record, '
FirstVF, LastF - pointers to the firét and the iast record,
respectively, of VertexFacet 1list associated with this
vertex,

o PrevVertex, NextVertex —fpointers to the previous and the

p
next record, respectively, in VertexList,

" FacetList

Facet - an array, facet normal representing a facet,

72

PointX - an array, coordinates of point x to which the
origin of the coordinate‘system was transformed when a facet
represented by this record was computed,

Node - points to a terminal node 1in the d-D -t;ee which
stores point é associated with this facet,

Flag - used to mark and unmark this record,-

FirstFV, LastFV —‘pointers to the first and the last record,
respectively, in FacetNeighbors list,

FirstN, LastN - pointers to the first and the last record,
~respectivel_\):, in Neighbors list, 3
PrevFacet, ;Q)%acélr— pointers to the previous and the next

record, respectively, 1in FacetList.

VerlexFaceIs, ‘FacetNei ghbors:, FacetVertices and Netghbors lists
store the same information as specified in Chapfer IIT for the

Facet Problem solving impleméntation of the on-line algorithm.

A node in the binary tree stores the following:

TreeNode - points to the root node of a 4-D tree asssociated
. . S

with this node, :

Point X -(\ array, coordinates of point x to which the
origin of the coordinate system was transformed when the
facets of the "wrap around" represented by this node were
computed,

LeftSon, RightSon - pointers to the left and the right son

nodes, respectively, in this tree. _ R

73

FacetQueue

FVertlces - an array, contains d vertex numbers of the
vertiées that are contained 1in this facet, 1in ascending
order, |

Facet - points to the facet record in Facetlist associated\\

r

-

with this facet.

A node in the AVL tree stores the following:

EVertices - a search key, an array containing (d-1) vertex
numbers of the vertices that are contained in this edge, 1in
ascending order,

FQueue - points to the facet in FacetQueue that contains
this edge,

SmallSon - pointer, points to the son node with "smaller"
value of search key than the value of search key in this
node, LargeSon - pointer, points to the son node with
"larger" value of search key than the value of search kéy in

this node.

4.1.3 Computational Complexity

Step 1:

The amount of time needed to pre-sort the points of § is

74

Step 2:

Step 3

~

O(nlogn).

If n < d the construction of P = CH(S) can be done in

O(dFd,n) operations.

Let T(n,d) denotes the time needed by the algorithm to
compute P = CH(S). Then'assuming that n i1s a power of
two wé have the féllowing recurrence relation:

T(/, d) = constant

T(n,d) = 2T(n/2,d) + M(~,d)

z\wmfﬂﬂﬂﬁére M(n,d) denotes the time it takes to compute the

convex ﬁ%ﬁll of the union of two polytopes with n/>

vertices each.

The solution to this recurrence relation is obtained by
establishing an upper bound on M(n,d). To merge two

polytopes we do the following:

1. For every vertex of one polytope determine a facet
(if it exists) of the other polytope such that the
vertex lies beyond it, and vice versa.

The height of the-binary tree is [logn].
Let F, n be the number of facets of a "wrap around”

!

connecting two d-polytopes P, and P, of o(n)
vertices each. Then the height of the d-D tree is

[logF, n] and the tree can be searched in

75

G(dlogF*’n) expested time or O(dF*’n) time in the&
worst case. ’
Running Time:

O(an*,n) in the worst case or

O(dnlognlogF*’n) expected time.

Determine all the other facets that need to be

deleted.

The determination of facets that need to be deleted
1s proportional to the number of of facets found
which can be O(Fd,n) in the worst case. These facets
have to be deleted from the FacetList which takes

O(dF n) operations, and also from the d-D tree.

d,

which can be done in O(dF, 1logF,) operations.

d,
Running Time: O(dFd ,109F,) 1in the worst case.

Compute new facets.

To compute new facets using the "divide and conquer"
technigue takes O(an*,n) operations in the worst
case.

Running Time: O(an*,n) in the worst case.

Store new facets.

New facets have to be stored in the d-D tree which
takes G(dF*’nlogF*'n) operations and also in
FacetList which takes O(dF*’”) time.

Running Time: O(dF, nl09F,) expected time and in

14

the worst case.

76

The wupper bound on F is ~equal to the upper bound on the

*'n

number of facets computed‘to obtain P CH(PI U P,). Since P

1
and P, are separable by some hyperplane #, F, " is also equal to

’

the upper bound on the number of edges of a facet that is

obtained when P is cut by H. Since in the worst case O(Fd n’

x n = Fd,n' Therefore, our

off-line algorithm computes the facets of a convex hull of n
d

facets of P can be cut by H#4, F

points in R” in 0O(dn¥F) time in the worst case.

d,n

77

CHAPTER V

EXPERIMENTAL RESULTS

The on-line Facet Problem solving convex hull algorithm,
presented 1in Chapter III, has been implemented using the Pascal
language. We have tested the performance of the algorithm on
randomly generated data sets with normal and wuniform
distribution and on "real life" data set. The convex hulls were
computed for two, three, four and five dimensional data sets.

The results obtained are presented in tables 1, 2 and 3.

The "real 1life" data set consists of 2,998 records of cervical
cell data, each cell represented by a six-dimensional feature
vector. Because of a very large humber of facets computed for a
high dimensional data set of this size, we considered énly up to
five features. We have observed that a large number of points,
when tested against the convex hull, are found to be 1in its
interior. These are what we call "throw away" points because
. they require no further processing. The larger the number of the

"throw away" points, the more efficient our algorithm is.

- The numbher of facets of the resuiting polytope in comparison to
the total number of facets computed seems to be Quite small.
Even so, we have a very large number of points that do not cause °
computation of new facets (i.e. the "throw away" points). This
would suggest that our algorithm is more efficient on average

than Seidel's(1981) and Edelsbruner's(1987), where, because of

78

pre-sorting, new facets are computed for every point of the data

set

From the test results, we can sée, that the d-D tree remains
reasonably balanced throughout the computation. The maximum
height of the tree does not increase significantly, although

there was a considerable amount of updating being done.

The test results show that as an incremental technique for
computing convex hulls, our algorithm is efficient. It performed
well on a "real 1life" data set as well as on a randomly

generated one.

Table 1: Performance of the on-line convex hull algorithm

on a
cervical cell data set
Dimension 2 3 4 5
File size 2,998 2,998 2,998 2,998
No. of vertices 15 48 109 250
No. of facets 15 92 546 4,182
Total no. of facets
computed 144 1,080 7,365 46,284
No. of "throw away”
points 2,924 2,801 2,616 2,415
Average no. of terminal
nodes searched 6 8 42 207
Average no. of terminai
nodes in the tree 15 79 460 3,429
Maximum height of
the tree 9 14 22 33

80

Table 2: Performance of the on-line convex hull algorithm on a
uniformly distributed data set |
Dimension 2 3 4 5
File size 3,000 3,000 2,000 750
No. of vertices 14 85 230 285
No. of facets 14 161 1,201 5,215
Total no. of facets

computed 141 1,316 9,746 29,779
No. of "throw away”

points 2,928 2,758 1,543 350
Average no. of terminal

nodes searched 3 14 34 85
Average no. of terminal

nodes in the tree 14 130 859 2,948
Maximum neight of

the tree 8 14 22 26

81

Table 3: Performance of the on-line convex hull algorithm on a

normally distributed data set

Dimension 1 2 3 4 5
¥ 4
File size 3,000 3,000 2,000 750
No. of vertices 11 40 105 157
No. of facets 1 76 540 2,442

Total no. of facets

computed 107 720 4,872 19, 366
No. of "throw away" |

points 2,945 2,863 1,730 459
Average no, of terminal

nodes searched 2 5 12 22
Average no., of terminal

nodes in the tree 12 69 428 1,550
Maximum height of

the tree 7 13 | 20 25

82

CHAPTER VI

CONCLUSION

One of the problems an on-line ‘convex hull algorithm has to
solve 1is thé point 1inclusion problem in a convex polyhedron. The
existing on-line convex hull algorithms [Preparata-Shamos(1985),
Rey-Ward(1985)] do not solve ¢this 'problem efficiently. For a

d

polyhedron P determined by a set of = points in R their

solution takes ©O(F) time on average and in the worst case,

d,n
Jwhere Fd,n is the number of facets of P. Seidel(1981) and
Edelsbruner(i987) also use an on-line techrique in their convex
hull algorithms, but avoid the time consuming "point inclusion"
test by - pre-sorting the '~ entire point set and the resulting
algorithms are off-line. We have proposed a method which solves

the point 1inclusion problem 1in ©(dlogF n) expected time. In

d,
short, we transform the point inclusion problem to the nearest
neighbour problem and we wuse a d-dimensional tree structure,

called the d-D tree, to search for the nearest neighbour.

When searching for the nearest neighbour, the search space is
paréitioned into regions. We have shown how the number of nodes
examined by the search can be reduced by creating "cells" within
Ehe regions. A cell of a particular region tightly encloses the
set of domain points contained 'in the region. We have also
proposed a way of dynamically updating the d-D tree in time

proportional to dH where H is the height of the trec.

83

We have used the above results in the design of two convex hull

——

algorithms for higher dimensional data sets. The first algorithm ™,

is an on-line algorithm which can be applied to a non-simplicial
data set. It can be used to solve either the Facial Lattice
Problem or the Facet Problem. The Facet Problem is solved
without maintaining information about all the faces of a convex
hull polytope and this is the only algorithm known to us to do
so. For a set of n points 1in Rd the algorithm solves the Facet
Prcblgm in O(d4an*1’an_2’n) time in the worst case. The Facial
Lattice Problem can be solved in O(and—l,nIOng,n) expected
time or O(and’nlong’n) time in the worst case. This expected

time is the best expected time known to us for an on-line higher

dimensional convex hull algorithm.

We have implemented the on-line algorithm for the Facet Problem
in Pascal language. Our test results show, that when the convex
hull is cemputed for eitheé a randomly generated data set or a
"real world" data set, there are a‘larSe number of points which,
when tested against the current convex hull polytope, are found
to be in its interior. This finding contributes to the
efficiency of our algorithm since we are only spending expected
S(dlong,i) time to process these points, where Fd,i is the

number of facets of the current d-polytope determined by the

first i points.

The "divide and conguer" principle has been used by Preparata
and Hong(1977) in the design of a convex hull algorithm for two

and three dimensional data sets. The technigue used by them to

84

M

determine facets that need to be deleted when two polytopes are

merged cannot be exteﬁded to higher dimensions. We have solved
o

this problem by transforming it to a nearest neighbour problem.

To compute new facets we are wusing the "gift wrapping”

principle. In our implementation the number of vertices that

need to be gg:sidered when new facets are computed is only a

subset of the number of vertices of the. resulting polytope. The

worst case performance of this algorithm is O(and n).

6.1 Open Questions

The nearest neighbour problem for a domain of n points in R? in

a dynamic environment is solved in O(dlogn) expected time. The
g-points that we generate for the facets of a convex polyhedron
(w.th respect to some point x interior to the polyhedron) form a
special geometric structure. Whether this structure can be
exploited successfully to develop -an algorithm that would solve
the nearest neighbour problem in O(dlogn) time in the worst case

1s an open question.

Our on-line algorithm, presented.in Chapter III, maintains the
d-D tree data structure dynamically. Generally, it 1is hard to
predict how the tree will "grow". We conjecture, that if the

tree is updated randomly, the expected height of the tree grows

85

£

L

logarithmically with the number of terminal nodes in the tree.
Whether it is possible {B update the £ree sB that it will remain
balanced, o%rto balance the tree without recreating it 1is an
5pen question.
In order for the "divide and conguer” technique tb:‘be extended
to higher dimensions, the following two problems have toage
solved efficiently:

1. Thé determination of the facets that need to be deleted

»rduring the merge step.

2. The computation of the new facets during the merge step.
In this thesis we have solvedwthexéﬁrst problem efficiently. To
compute new facets, we use the "gift wrapping" technique. This
technique computes a facet in 0O(n) time. Whether there 1is a

technique that would compute a facet in O(logn) time, 1s an open

guestion,

86

BIBLIOGRAPHY

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974)

"The Design and Analysis of Computer Algorithms
Addison-Wesley Publishing Comp., 1974.

Akl, S.G. and Toussaint, G.T. (1978-1)
"Efficient

Convex Hull Algorithms for Pattern Recognition
Applications”
Proc. 4th Int'l Joint Conf. on Pattern Recognition,
Kyoto, Japan, pp. 483-487.

Akl, S.G. and Toussaint, G.T. (1978-2)

"A Fast Convex Hull Algorithm"
Info. Proc. Letters, Vol. 7, No.5,

1978, pp.219-222.

Barnette, D.W. (1973}

~"A - Proof of the

Lower
Polytopes"-

Bound Conjecture for Convex
Pacific Journal of Mathematics 46, 1973, pp. 349-354.

Ben-Or, M. (1983)

"Lower Bounds for Algebraic Computation Trees"
Proc. 15th ACM STOC, 1983, pp. 80-86.

Bentley, J.L. (1975)

"Multidimensional. Blnary Search Trees Used for Associative
Searching”
Comm. of the ACM, Veol. 18,

No. 9, 1975, pp. 509-517.

Bentley,-J.L. and Shamos, M.I. (1978)

'*‘%
"Divide and Conguer for Linear Expected Time
Info. Proc. Letters, Vol. 7, No. 2, Fef. 1978, pp. 87-91.
Bhattacharya, B.K. (1982)

"Application of

Computational Geometry to
Recognition Problem"

Pattern
Simon Fraser University, CS Tech. Rep. 82-3, 1982.
Chand, D.R. and Kapur,‘S.S, (1970)
"An Algorithm for Convex Polytopes —
Journal of the ACM, Vol, 17, No. 1, 1970, pp. 78-86.

87

Dirichlet, G.L. (1850)
"Uber die Reduction der Positiven Quadratischen Formen mit
Drei Umberstimmten Ganzen Zahlen"
Journal fur die Reine Angew. Math., Vol. 40, 1850, pp.
208-227.

Duda, R.D. and Hart, P.E. (1973)
"Pattern Classification and Scene Analysis"
Wiley, New York, 1973, PP. . 166-171,

Edelsbruner, H. (1987)
"Algorithms in Combinatorial Geometry"
Springer-Verlag, 1987.

Freeman, H. and Shapira, R. (1975)
"Determlnlng the Minimum Area Incasing Rectangle for an
Arbitrary Closed Curve"
Comm. ACM, Vol, 18, No. 7, July 1975, pp. 409-413.

Friedman, J.H., Bentley, J.L. and Finkel, R.A. (1877)
"An Algorithm for Finding Best Matches 1in Logarithmic
Expected Time" v ,)
ACM Transactions on Mathematical Software, Vol. 3, No. 3,
Sept. 1977, pp. 208-226.

Gilbert, E.N. and Pollak, H. (1986)
"Steiner Minimal Trees"”
SIM J. Appl. Math., 16, 1986, pp. 1-29.

Graham, R.L. (1972)
"An Efficient Algorlthm foe Determining the Convex Hull of
a Finite Planar Set” //V
Info. Proc. Letters, Vol. 14 1972, pp. 132-133. ‘,f

<

[

Y,

Grinbaum, B. (1967)
"pPure and Applied Mathematics”, Vol. XVI: Convex Polytopes*”
Wiley Interscience Publishers, New York, 1976.

Jarvis, R. A. (1973)
"On the Identification of the Convex Hull of a Finite Set
of Points in the Plane”
Info. Proc. Letters, Vol, 2, 1973, pp. 18-21.

88

Jozw1k A. (1983)
"A Method for Solving the n-dimensional Convex Problem

Pattern Recognition Letters, Vol. 2, 1983, pp. 23-25.

Kallay, M. (1981) ‘
"Convex Hull Algorithms in Higher Dimensions"
Univ. of Oklahoma, Dept. of Mathematics, unpublished

manuscript.
Kallay, M. (1984) r
"Ehe Complexity of Incremental Convex Hull Algorithms in

ﬁ@@f.‘Proc. Letters, Vol. 19, 1984, p.197.

Kirkpatrick, D.G. and Seidel, R. (1986)
"The Ultimate Planar Convex Hull Algorithm ?"
 SIAM Journal on Comput1ng, Vel. 15, No. 1, Feb. 1986,
pp.287-299.

Knuth, D.E. (1976)
"Big Omicron and Big Omega and Big Theta"

SIGACT News 8, No. 2, pp.18-24.

McMullen, P. (1970)
"The Maximum Number of Faces of a Convex Polytope”

Mathematica 17, 1970, pp. 179-184. =

McMullern, P. and Shephard, G.C. (1971)
"Convex Polytopes and the Upper Bound Con]ecture
London Mathematical Society Lecture Notes Series, Vol. 3,
Cambridge University Press, 1971,

Preparata, F.P. and Hong, S.J. (1977)

"Convex Hulls o¢f Finite Sets of Points in Two and Three =

Dimensions”
Comm. of the ACM, Vol. 20, No. 7, 1977, pp. 87-93,

Preparata, F.P. and Shamos, M.I. (1985)
"Computational Geometry"
Springer Verlag (1985)

89

9

Rey, C. and ward, R. (1985)
"An On-line Algorithm for Determining Convex Polytopes"
IEEE Transactions, 1985, pp. 87-91.

-~

Rosenfeld, A. (1969)
"Picture Processing by Computers"
Academic Press, New York, 1969.

Seidel, R. (1981) : ,
"A Convex Hull Algorithm Optimal for Point Sets in Even
Dimensions”
Univ. of British Columbia, CS Tech. Rep. 81-14, 1981,

Seidel, R. (1986)
‘ "Constructing Higher Dimensional Convex Hulls at
- Logarithmic Cost per Face"
. Procegdings of 18th Annual ACM STOCK, New York, 1986.

=

B

vy

Sklansky: J. (1972)
"Measuring Concavity on a Rectangular Mosaic"
IEEE Trans. Comptrs. C-21, Dec. 1972, pp. 1355-1364.

w A

Solomon, B.J. (1985)
"Surface Intersection for Solid Modelling”
University of Cambridge, Ph.D. Thesis, 1985.

Swart, G. (1985) ,
"Finding the Convex Hull Facet by Facet"
Journal of Algorithms 6, 1985, pp. 17-48.

Thiessen, A.H. (1911)
"Precipitation Averages for Large Areas"
Monthly Weather Review, Vel. 39, 1911, pp. 1082-1084.

Toussaint, G.T. {1978)
"The Convex Hull as a Tool in Pattern Recognition”
Proc. AFOSR Workshop in Communication Theory. and
Applications,
Cape Cod, Mass., Sept. 1978.

L

90

Voronoi, G. (1908) . ‘ . .
"Nouvelles Applications des Parameters Continues a la
Theorie des Formes Quadratiques”
Denxieme Memoire, Recherches sur les Paralleloedres
Primitifs,
Journal Reine Angew. Math., Vol. 134, 1908, pp. 198-287.
- ((‘; ‘
Wigner, E. and Seitz, F. (1933)
"On the Constitution of Metallic Sodium"”

Physical Review, Vol. 43, 1933, pp. 804-810.

¥
B b

(1976) Ty

N. 5
“Zlgorithms + Data Structures = Programs"”
Pfentice-Hall Inc., Englewood Cliffs, New Jersey, 1976.

Wirth,

Yao, A.C. (1981)
"A Lower Bound to Finding Convex Hulls"

Journad of the ACM, Vol.”28, 1981, pp. 780-789.

91

INDEX

AN : -
Abstract, vi
Acknowledgements, v
Bibliography, 87
Conclusion, =83
Dedication, iv
Experimental Results, 78
Introduction, 1
The Divide and Conquer Algorithm, 60
The On-line Convex Hull Algorithm, 30 :
The Point Inclusion Problem in a Convex Polyhedron, 19
1.1 The Convex Hull Problem, 2
1.2 Computational Complexity and Lower Bound, 6
1.3 Solving the Facet Problem and the Fac1al Lattice Problem in
Higher Dimensions, 7

.1 The Voronoi Diagram, 19
.2 The d-D Tree Data Structure, 21
.2.1 Dynamic d-D Tree, 25 ’
.3 Transformation of a Closed Convex Polyhedron into a Voronoi -

Polyhedron, 27 -
.1 Implementation Details and Computatlonal Complexity, 30’
.1.1 The Algorithm, 33
1.2 The Facial Lattice Problem, 35
1.3 The Facet Problem, 47
1.1 The Algorithm, 70
o1
o1
1
o 1

I\)NI\)N

2 Data Structures, 72

3 Computational Complexity, 74

Implementation Details and Computational Complexity, 60
Open Questions, 85

O\obobnbobwwww

92 /

