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In this thesis we show how a point inclusion problem in a convex 

d polyhedron, determined by a set -b•’ n points in R , can be solved 

in B(d1ogF ) expected time, where-F 
d, n d, n 

is the number of facets 

of P .  We also show'%ow this result can be used to get fast 
> .  

on-line convex hull algorithm and how the "divide and conquer" 

technique, already used to compute convex hulls of two and three 

dimensional data sets, can be extended to higher dimensions. 

The on-line algorithm uses the "beneath beyond" technique and 
t 

can be applied to a general data set to solve either the Facet 

Problem (without tpaintaining some description of all the faces 

of a, convex hull) or the Facial Lattice Problem. The "divide and 

conquer" technique solves the Facet Problem for simplicia1 data 
* 
J 

sets. 

i i i  



DEDICATION 

To my husband,  P a u l  

and  our  c h i l d r e n  P a u l  j r .  and Monica 



ACKNOWLEDGEMENTS 

I wish to express =my sincere' appreciation to  my thesis 

supervisor Dr. Binay Bhattacharya for suggesting the topic and 
- 

for his constant encouragement, unfailing interest and patience 

shown to me during my research. 

Thank you, Binay. 



TABLE OF .CONTENTS 

Approval ................................................... i i  
Abstract .................................................... i i i  
Dedication .....,........................................... iv 
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . , : . . . . , . o v  

List of Tables .............................................. vii -7 
List of ~igures 

I. 

1.2 computational complexity and Lower Bound ............ 6 
1.3 Solving the Facet Problem and the Facial Lattice 

/ Problem in Higher Dimensions .......................... 7 
11. The Point Inclusion Problem in a Convex Polyhedron ..,.. 19 

2.1 The Voronoi Diagram ................................ 19 . 

2.2 The d - D  Tree Data Structure ........................ 21 

2.3 Transformation,of a Closed Convex Polyhedron into a 
-Voronoi PolyhecYron ................................... 27 

111. The on-line Convex Hull Algorithm ...................... 30 
3.1 ImplementationF Details and Computeion Complexity 30 

3.1.1 The Algorithm ..................................... 33 
4 

* 3.1.2 The Facial Lattlce Problem ....................... 35 
3.1.3 The Facet Problem ................................ 47 

. '* , IV. The Divide ar,d Conquer Algorithm ....................... 60 

2.1 Implementation Details and Co utational Complexity 60 P 4.1.1 The Algorithm .................................... 70 
4.1.2 Data Structures .................................. 72 



4.1.3 Computational Complexity ......................... 74 

V ,  Experimental Results .. G................................ 78 
- ,  VI. Conclusion ............................................... 83 

, 
6.1 Open Questiofs ..................................... 85 

* 
Bibliography ..............'.................................. 87 - 

' 7  

Index . . . . . .-. . . . . . . . . . . . . . . . . . . :. . . . ;. . . . . . . . . . . d.. . . . . . . . . 92 

vii 



LIST OF TABLES 4 * 
Table Page 

1 Perfdrmance of the on-line convex hull algorithmon a ................................... cervicaL cell data 80 
b 

2 Performance of the on-1in.e convex hull algorithmon a P ...................... uniformly distributed data set 81, 
3 - 

3 Performance of the on-line convex hull algorithmon a 
normally distributed data set ........................ 82, 

b: 



J 

LIST OF FIGURES 

tL Figure Page 

I 2 2 

1 . 1 ~  Convex hull of a set of points in R .................... 2 
\ 1 

3 
1 ? 2 -  Updating convex hull with a new point in R ............ 12 

B 

...... 1.3 Representation of a facet as a union of simplices 1 4  

2 ................ 2.1  Voron'oi diagram of a set of pints in R 21  

2 .2  Subregion and a cell in R' as represented by a 3t 

..................... non-terminal node of a d-D tree 2 5  

2.3 Polygon P transformed into a Voronoi polygon ........... 2 9  

3 .1  Three types of,facets with respect to point p. ......... 37 
3 .2  Two y e l l o w  facets of a convex hull polytope before. and 

after update ........................................ 5 2  

3 
4.1 "~erging" of two polytopes in R ...................... 64 

V 

4 . 2  " W r a ~  around" port ion connecting polytopes P. and P. 
extended to form polygon P w  and an& it4 
transforillation into a Voronoi- polygon ............... 64 



The'convex hull of a finite set S of n points, S being a 
+I-- +& of a d-dimensional Euclidean space pd -fbr 2 2, .is one 

* 

P 
;ubs;t 

of the 

basic and important geometrical constructs. Stated in a very 
1 .2 ..A 

simple way, it can be defined as the smallest convex set 

containing a given set of points [~ig. 1;1]. 

-P 

The convex hull plays a central role in the field of 

computationah geometry. A number of geometrical problems can be 
4 

solved by transforming the original problem to the convex hull 

problem. There are many areas other than computational geometry 
i 

where this geometric construct finds practical applications: 

image processing and pattern recognition, computer graphics,*> 
r; .d' 

' engineering, operationsL-"research, design authat ion, just to 

A name few. In pattern recognition for example, questio s such as 
4 

separability or existence of linear decision rules can be easily 

answered through the comput at ian of convex hulls 

%-b [~osenfeld(l969), ~uda-Hart(l9731, ~oussaint(l978), 

~kl-~oussain,t ( 1978-1 ) 1. The following !references discuss some 
I 

interesting problems where the determination of a convex hull is 

needed: ~reemgn-shapira ( l975), ~ilbert-Pollak(l366!, 



2 Fig. 1 . 1 :  Convex hull of'a set of points in R . 

1 . 1  The Convex Hull Problem 
7- 

h 

i 

Various terms and definitions are going 

will be used in this and subsequent sections. 

them can be found in Grunbaum(l967). 

A set S G  called a f f  ine i f  for each 

be presented 

The 

pair of 

which 

reference 

points x ,  



from S, the line through x and y is contained in S. The affine 

hull of S, denoted as aff(S), is the intersection of all affine 

sets containing S. A set S is affinely independent i f  no point 

of S is contained in the affine hull of the remaining points of 

S. Otherwise the set is called affinely dependent. 

A set S is of dimension k, k 5 d l  i f  S contains ( A + / )  affinely 

independent points and every subset of S with ( . A + ? )  pcints is 

affinely dependent. 

A hyperplane in Rd, denoted as H~-', is an af fine hull of d 

affinely independent points. In a mathematical way a h,yperplane 

can be defined as follows: 

Definition 1.1 . 
A hyperplane H d:l is the set of points x = ( x l l  . . . , l d )  

from Rd which satisfy the equation of the form 

where c is a real number and F ' =  (nl, . . .  ,nd) i ( 0 ,  . . .  

In this definition a (d+/)-dimensional vector 7i = (nI, . . .  , n d ,  
-c) defines a unique hyperplane and is called a determining 

vector of that hyperplane. A normal to H d - l  is a vector parallel 
\ 

to 77. Every hyperplane defines two closed half-spaces whose 

intersection is the hyperplane itself %nd whose union is ihe 
d space R . A support,ing hyperplane of a set S is a hyperplane 

that intersects S and S is contained in one of t h e  two closed 



half-spaces defined by the hyperplane. 

A. set S is convex i f  for each pair of points x ,  y from S, all 

pcints in the straight line segment between x and y also belong 

tc S. k convex hull of a set S ,  denoted as CH(S), is the 

intersection of al-1 convex sets containing S. A convex hull of a 

u finite d-dimensional set of points is called a d-polytope. A 

finite set determines a unique bounded convex polytope. 

The objective of a convex hull algorithm is the description of a 

convex hull polytope. A polytope can be described by means of 

its boundry which consists of faces. A face of a polytope P is 
, 

4 

the intersection of P with its supporting hyperplane. A k-face 

of P is a k-dimensional face of P; A (d-])-dimensional face of a 

polytope is called a facet, a (d-2)-dimensional face is called 

a n  edge, a (d-3)-dimensional face is a ridge and a 0-dimensional 

face is a vertex. Polytope P itself is considered a d-face af P 
B 

and the empty set is a (-])-face of P. For every face f of P, f 

is the convex hull of all the vertices of P that are contained 

in / and f is also the intTisection of all the facets of P that 

contain f. 

Some types of polytopes deserve special attention. A d-simplex - 
(3' briefly, a simplexj is a convex hull of ( d + l )  affinely 

::dependent points. I: is the simplest type of a d-polytope. In 

twc and three dimensions they are triangles and tetrahedrons 

respectively. A simplicia1 polytope is a polytope each of whose 



facets are simplices' (i.e. (d-/)-dimensional faces containing 

exactly d vertices). A d-polytope whose'every vertex is incident 

with exactly d edges is called a s imple  polytope. 

Faces of a polytope can be graphically,represented by a f a c i a l  

graph.  I t  is an acyclic directed graph with one source and one 

sink. The nodes of this graph are in one-to-one correspondence 

with the faces of the polytope and there is an arc from 

k-dimensional face f to (k-1)-dimensional face g i f  g is 

contained in f. In this case g is called a subface of / which we 

denote as ( g  s u b  f ) ,  and f is called a superface  of g deno ted  as 

(f supe r  g). The Facial graph of a polytope P will be deno ted  as 

fgCP). The size of the facial graph of P is the number of arcs 

plus the number of nodes in fg(P). 

/There are three fundamental versions of the convex hull problem: 

The Facet  Problem 

d Given a set S of n points in R , enumerate all facets of 

CH(S), where each facet is represented by the set of 

vertices contained in this facet. 

The Vertex P oblem 
,f d 

Given a set S of n points in R , identify those points 

of S that are vertices of CH(S). -- - -~ - 

- - - - - - - - - - - - - - - - - -  
'Plural of simplex. 



The Facial Lattice Problem 

d Given a set S of n points in R , produce the complete 
i 

facial lattice of CH!S), i.e. all the faces along with 

their inclusion relationship. 

The Facet Problem and the Facial Lattice Problem are 

asymptotically at least as hard as the Vertex Problem since the 

output of the former becomes a valid solution to the Vertex 

Problem. For the same reason the Facial Lattice Problem is 

asymptotically at least as hard as the Facet Problem. 

Because many practical applications of the convex hull construct 

require facet enumeratGon, we have focussed on solving the Facet 

Problem and the Facial Lattice Problem only. 

1.2 Computational Complexity and Lower Bound 

For an arbitrary finite set of n points in the plane, computing 
- 

the convex hull is known to have Q(n1ogn) lower bound 

[~ao(l981)] which is restricted to the quadratic decision tree 

model. Several algorithms achieve this lower bound. Since any 

2 set of points in R car. be trivially embedded in R~ for d > 2, a 

lower bound result obtained for d = 2 remains a valid lower 

bound for d > 2 as well [Preparata-Shamos(l985)l. 



When establishing a bound to the running time\of a cohex hull 

algorithm, it is notionly the input size that plays an important 

role, but also the size of the output produced. This is due to 

the fact that for a d-polytope with n vertices in R~ the number 

of facets can be as high as O( (d/2] ! n Id'*]) [McMullen(l970)] and 

as low as ~ ( n f  [Barnette(l973)], which for d > 3 becomes a 

significant range. I t  is therefore desirable to-include the size . 
of the output as an additional measure to the time complexity 

function. The following section provides a limited overview of 

the convex hull algorithms known to us for data set-s in 

dimensions higher than two. 



1.3 Solving - the Facet Problem -- and the Facial Lattice Problem in - 
Higher Dimensions 

In this se-ction we will be talking about on-line and off-line 

convex hull algorithms. An algorithm which requires all of the - 
data points to be present before any processing begins is called 

off-line. In many geometric applications, particularly those 
I 

that run in real-time, this condition cannot be met. The 

computation must be done as the points are being received. In 

general, an algorithm that cannot look ahead at its input is 

referred to as an on-line. 

Finding the convex hull of a finite set o f  points in R* was one 

of the first problems explored in the field of computational 

geometry. A variety Q • ’  algorithms have been proposed and . l 

analyzed for the planar convex hull problem [Graham(1972), 

 irkp pat rick-Seidel(l986)I. Graham's( 1972) algorithm was 

historically the first publication to show that the planar 

convex hull can be computed in Otnlogn) time in the worst case, - 
1 

which was later proved by ~ao(1981) to be the optimal time. 

For a set of points in R 3  Preparata and Hong(1977) presented an 
a 

algorithm which is based on what is known as the "divide and 

? 



conquerw principle. The strategy employed is that the problem is 

first subdivided into subproblems of the same kind (divide), the 

subproblems are then recursively solved (conquer), and finally, 

the resulting convex hulls are combined to form a global 

solution (merge). The merge step is a crucial component of this 
1 

method. Any algorithm that is based on the "divide and conquer" 

principle is efficient only i f  the solutions to the subproblems 

can be combined quickly. Let PI and P 2  be two non-intersecting 

convex hulls. To merge PI and P 2  means to determine the convex 

hull CH(P1, P2) of P1 and P 2 .  This is accomplished by 

constructing a "cylindrical wrapw which supports P, and P 2  and 

by removing from both PI, and P2 the respective portions which 

become internal to the resulting polytope. Preparata and 

~ong(1977) believed that the construction of this wrap is 

entirely guided by a circular sequence of vertices and edges 
d 

.which are successively acquired by the advancing steps of the 

wrapping process. As was later noticed by ~delsbruner(1987) this 

may not always be true - "a single vertex of a recursively 

constructed convex polytope can be encountered more than once 

when it is merged with another disjoint convex polytope". For a 

set of n points in R~ the worst case computational complexity of 

this algorithm is O(n1ogn) which is optimal by Yao's(1981) 

results. This approach to solving the convex hull problem has 

not yet been extended to dimensions higher than three. 

The first general algorithm offering a method for solving the 

Facet Problem in any dimension d 2 2 was described by Chand and 



~apur(1970).' Their idea is based on the observation that exactly 

two facets of a convex polytope intersect along one edge. The 

algorithm uses the so called "gift wrappingn principle where the 
L 

polytope is generated by systematically oomputing the facets 

from the edges of the desired convex polytope. The computational 

complexity of this algorithm was analyzed by Bhattacharya(l982) 

who showed that in the worst case the time to compute the convex 

hull of n points in R~ is bounded above by 

O w ' d t  + d 3 ~  logn) , where F dl n d, n 
is the number of facets of 

the computed polytope. A major drawback of this algorithm is 

that it computes correctly simplicia1 polytopes only. When more 

than d points lie in a convex hull facet, the determination of 

the edges associated with this facet is equivalent to 

determining the convex hull of the points contained in the 

facet. This may be considered as a convex hull problem in 

(d-/)-dimensional space and Chand and Kapur's algorithm can be 

applied again to solve it. ~owe'ver, due to the recursive nature 

of this approach the implementation is difficult. ~wart(19853 

later applied the "gift wrapping" principle to produce a 

structured representation of the convex hull, the facial 

lattice. When applied to this problem it has the worst case time 

complexity O(dnL 
dtn 

+ d'~~, nlognl for simplicia1 polytopes or 

for non-simp1 ic ial ones, where L 
dtn 

the size of the facial lattice produced. 

For a long time the "gift wrapping" method was the only known 

general technique to compute the convex hull of a finite point 



-. 
set in d-dimensional space. A n'ew technique, dubbed by Preparata 

\ and Shamos(1985) as the "beneath beyond" method was proposed 
-\ 

independently by Kallay(1981), Seidel(l981) and Jozwik(1983) and 

was later also adopted by Rey and Ward(1985) in their convek 

hull algorithm. In a non-mathematical way it can be described as 

follows. - 

Given, a convex hull P of some point set and a new point p .  

Imagine point p sending out an intense light. I f  p is external 

to the current convex hull then all facets of P that receive 

light from this point are discarded, leaving the convex hull as' 

an open shell with some "exposed edges" (i.e. the edges 

surrounding the opening of the shell). Every "exposecledge" 

together with the point p determines a new facet [ ~ i g .  1.21. I f  

p is ndk external to the current convex hull, then p is already 

contained in P and need not be considered any furt-her - p 

becomes a "throw away" poiAt. The approach of this technique is 

incremental, meaning that the points are considered one at a 

time and the convex hull is updated every time a point, lying 

outside the convex hull computed so far, is encountered. This 

technique exhibits, in addition, the on-line property desirable 

by many applications. 

Seidel's(l981) algorithm produces a facial- lattice of the convex 

hull and the approach employed here is analogous to the "beneath 

beyond", only in the dual space. To achieve the best possible 

running time a point, when it is considered, has to lie outside 

.of the current convex hull. To guarantee this condition, the 



Current convex hull and a 
new point p. 

Convex hull as an open shell. 
with "exposed edgesn. 

Updated convex hull to include 
P 

3 

3 Fig. 1.2: Updating convex hull with a new point in R . 

first step of Seidel's algorithm pre-sorts the initial point set 

into a lexicographical order. This means that the entire point 



set has to be known in advance and the incremental approach used 

here for computing the convex hull loses its on-line property. 

Also, as a result, of ,. pre-sorting, every new point causes an 

update of the convex hull, which may be seen as a disadvantage 

of this approach (i.e. no "throw away" points). For a fixed 

dimension d, the worst case computational complexity of Seidel's 

algorithm is O(n1ogn + n [(d+')'2J) where, for even d, 

O( n [(d+1)'21) is assymptotically equivalent to the largest 

possible output size. Seidel(l981) also argued that the 

algorithm is in the worst case optimal for even d. As was 1 

shown by Swart(1985) this is true only if  the complexity of - . .. 
proble210measured -. _ in terms of the input size n alone. I f  che 

-. 

complexity is measure&-in terms of the actual output size, the 
. 

algorithm can be far from opt imar>-h&lay-( 1984) later shoved . -.. 
1. . 

that the complexity of any incremental c6nvex h;>-clgprithm for 
---1 

n points in R~ is Q ( n  [(d+1)'2J) for a fixed d. This result makes ..\ 1 

~eidel's(1981) algorithm worst case optimal (in terms of the 

input size) for odd d as well. 

Rey and ~ard's(1985) algorithm solves the Facet Problem of a 

convex hull. This algorithm can be applied to compute 
-- - -- 

non-simplicia1 facets but s u c h = m e t s  Bra described as unions of 
P 

several simplices [Fig. 1.31. This solution to the problem of 

degeneracies is theoretically incorrect. In Rey and Ward's 

implementation, to establish that a new point is either interior 

to Pi or that this new point is external to P,, the entire list 

of facets of Pi has to be searched. Keeping in mind that the 



Facet (a,b,d) may be represented 
as a union of simplices (a,b,f), 
(b,c,e), (cld,e), (a,f,e) and ,. 
(bye,f). 

Non-simplicia1 facet (a,b,c,d,e) 
may be represented as a union of 
simplices (a,b,c), (arcre) and 
(c,d,e). 

Fig. 1.3: Representation of e facet as a union of simplices. 

number of facets, F d f i ,  of a d-polytope with i vertices can be 

as high as O( [d/2] ! i ) this "point inclusion" test, :A. in a 

convex polyhedron is of B(Fdti) complexity in the worst case and 

also on average, which is considered to be a major drawbao of 

this implementation. For a fixed d, the worst case computational 
Ioiz-- 

complexity of the algorithm is O(n [d'2J'1). This worst cashe is 

the same as the worst case of chand and Kapur's(1970) method. 



Preparata and Shamos(1985) present an imp1,ementation of an 

on-line version of the "beneath be-yond" technique, for higher 

dimensions. Their implementation has the same drawback as Rey 

and ward1s(1985), namely the 8(Fdri) "point inclusion" test. The 

algorithm solves the Facial Lattice Problem for a fixed 

dimension in the worst case time O(n This time applies 

to degenerate, cases as well. 

~defsbruner ( 1987) gives yet another description of the 

implementation of the "beneath beyond" technique for higher 

dimensions. This implementation is similar to SeidelLs(1981) but 

no transformation to dual space is involved. The algorithm 

produces a facial laftice of a convex hull and can handle 

degeneracies. As in Seidel's implementation the entire point set 

is pre-sorted as a result of which every new point c a q e s  an 

update of the convex hull. The worst case computational 

complexity can be measured in terms of the input size only and 

it is the same as the worst case of Seidel'sl'1981) algorithm. 

According to Kallay1s(1984) result, this implementation of an 

incremental technique is optimal. 

The latest algorithm for computing the convex hull 02 a finite 

set of points in higher dimensions has again been proposed by 

Seidel( 1986.). It introduces a new technique, a st-raight line 

d shelling of a polytope. For a set S of n points in R , the first 
* 

step of the algorithm involves solving a linear program in (d-1) 

variables and ( n + l )  constraints for every point of S, Due to 

this step there may be objections to the practicality of this 

A 



approach which even Seidel considers to be well founded. The 
< 

algorithm either enumerates all the facets of a convex hull, 

assuming that the convex hull is simplicial, or 5t constructs a 

facial lattice a•’ a convex hull . i n  the worst case time 

complexity of ~ ( n . ~  + F logn) or 0(n2 + L logn) respectively, 
d, n dl n 

for a fixed d. I f  the complexity, of the problem is measured only 
r 

in terms of the input size n, then this algorithm has the worst 

case time 0([d/2J!n[d'2Jlogn) which is the best worst case bound 

known for any technique for odd d > 3. 

3 

Although the objective may be, in many instanCes, the 

computation of just the facets of a convex hull, the problem of 

aegenerate data sets has been solved by maintaining a facial 

graph of all the faces. One open problem still remains: the 

existence of an algorithm that would solve the Facet Problem for 

a general data set, without maintaining some description of all 

the faces, in time polynomial in n ,  d and F . Swart(1983) 
dl n 

elaborates on this problem and conjectures that it may be 

possible to do so in time O((Fdln )2dd+410gn), which is 

exponential in d .  

One of the desirable properties of a convex hull algorithm is . 

the on-line property. An on-line convex hull algorithm has to 

deal with'the "point inclusion" problem. The existing on-line 

higher dimensional algorithms [~reparata-~harnos(l985)~ 

~ey-~ard(l985)] solve this problem in 9(Fdfi) time on average 

and in the worst case, vh$re Fd is the number of facets of a 
I 

d convex hull determined by a set,of i points in R . Seidel(l981) 



and ~delsbruner(1987') use an incremental on-line technique in 
\\._ 

their a l g o ~ t h m ,  but to avoid the time consuming "point 

inclusion" test, they pre-sort the entire point set and the 

- - 
resulting algorithms are off-line. In this thesis we show how 

the "point inclusion" problem can be solved in @(dlogF ) 
d, 1 

expected time. We also show how this result can be used to get a 

fast on-line convex hull algorithm and how the off-line "divide 
< 

and conquer" technique, already used to compute convex hulls of 

two and three dimensional data sets, can be extended to higher 

dimensions. 

The on-line algorithm',we are proposing use% the "beneath beyond" 

technique and can be applied to a non-simplicia1 data set. I t  

car' be implemented to solve either the Facet Problpm in the 
0 

4 F worst case time O(d nFd-l,n d-2,n)l or the Facial Lattice 

Problem in O(dnFd-, , logFd, n) expected time, or O(dnl'd, nlogkd, ,,I 

time in the worst case. This expected time is the best expected 

time of an on-line higher dimensional convex hull algorithm 

known to us. Our on-line algorithm is also the only one known to 

us that solves the Facet Problem for a n~n-simplicia1 data set 

without maintaining some description of all the faces of a 

convex hull. The off-line algorithm, based on the "divide and 
' 

conquer" technique, solves the Facet Problem for a simplicia1 

data set and its computational complexity is O ( d n F  1 in the 
d ,  n 

worst case. 

I n  the following chapter we show how the npo6nt inclusion" 
s 

problem in a closed convex polyhedron P I  determined by a set of 



d 
n points in R , can- be solved in B(d1ogF ) expected time, 

d ,  n 

where F is the number of facets of P. Chapter I 1 1  describes 
d ,  n 

and analyzes the computational complexity of the on-li-ne convex 

null algorithm for each one of the two problems (i.e. Facial 

Lattice Problem and Facet Problem). The convex hull algorithm 

based on the "divide and conquer" principle is presented and 

analyzed in Chapter IV. In Chapter V we disc 

experimental results and in the last chapter we su 

work submitted in this thesis and point to some Ld elevant 
F 

questions open to further research. 



CHAPTER I I 

THE POINT INCLUSION PROBLEM IN A CONVEX POLYHEDRON . 

The point inclusion problem in a convex polyhedron can. be stated 

as follows: 

d Given a closed convex polyhedron P in R , determine i f  

an arbitrary point p lies inside of P. 

The solution to this problem, which we propose in this chapter, 

is based- on the properties of an important geometric construct, 

the -Voronoi diagram [~oronoi(l908)]. We construct the Voronoi 

diagram as a first step of a transformation, where the point 

inclusion problem is transformed to a nearest ne.ighbour problem, 

and we use a d-dimensional tree data structure [~entley(1975), 
'1 .  

~ r i e d m a n - ~ e n t l e y - ~ i n k e l ( 1 9 7 7 ) I  to search for the nearest 

neighbour. 

2.1 The Voronoi Diaqram -- 

One of the earliest definitions of what we now call the Voronoi 

diagram can be found in Dirichlet(l850). More than half a 

century later, mathematician G. Voronoi(l908) was the first to 

study this diagram in details. Some other names such as 



~irichlet(l850) tessellations, ~hiessen(l911) polygons and 

Wigner-Seitz(t933) cells have been used in the literature, all 

referring to the same diagram. In the remainder of this section 

we derive the definition of this geometric construct. 

Once more, let S be a set of n distinct points p,, ..., pn in 
d R . For any two points p i ,  p with i # j ,  the locus of points 

J 

equidistant to pi and p is the perpendicular bisector B(pi ,pi) 
J 

of the line segment joining pi and p.. B(pi,pj) determines two 
J 

closed half -spaces H(pi .pi ) and H(p. ,pi ) the in'tersection of 
J 

which is B(pi ,pi ) .  The locus of points that lie as close or 

closer to pi than to p .  is the closed half-space x(P~,~,) that 
J 

1 contains pi . I • ’  pi t pi, H(pi ,pj) and H(P. ,pi ) are uniquely 
J 

determined by B(pi,p,). The locus of points at least as close to 

pi as to, any other point of S is then the intersection of the 

We denote this region by Vi and it is not hard to see that Vi is 

a convex region. In dimensions higher than two Vi is called the 

Voronoi polyhedron associated with pi and pi is the generating 

point of Vi. Each point of S is enclosed in a unique Voronoi 

polyhedron. For every pi from S t  let Vi be the Voronoi 

polyhedron associated with pi. The n regions V,,...,Vn partition 

R~ into a set of convex polyhedra and are referred to as the 

Voronoi diagram of S [Fig. 2.11. 

'The word "close" in this context means the Euclidean distance 
between two points. 



2 Fig. 2 . 1 :  Voronoi diagram of a set of points in K . 

2 . 2  The d - D  Tree Data Structure -- 

The d - D  tree is a generalization of a simple binary tree, 

[Friedman-~entley-Finke1(1977)]. In our implementation the 

d - D  tree is built over s set of points. Every node of the tree 

represents a subset of the points in the set and a partitioning 

of that subset. The root of the tree represents the entire set. 

Each non-terminal node has two son nodes. ~hes'e son nodes 



represent the two subsets defined by the partitioning in the 

parent node. The terminal node, often called a bucket, 

represents either a single point from the set or a small subset 

of points. 

I n  d-dimensions, a point is represented by its d real valued 

coordinates. Any one of the d-dimensions can b? used as a 

discriminator for partitioning the subset represented by a 

particular non-terminal node. In Friedman-Bentley-Finkel(1977) 

bo* the discriminator and partition value for each non-terminal 

node, as well as the bucket.size for terminal nodes, are chosen 
3 - 

tv-obtain the best expected cost of searching for nearest 

neighbour(s). This yields what is called the optimized d-D tree. 

The prescription for optimizing is to choose ati every 

non-terminal node the dimension with the largest spread in 

coordinate values as the discriminator and to choose the median 

of the coordinate values of the discriminator as the partition. 

A t  the level of terminal nodes, the bucket size should be made 

as small as possible. The effect of the optimized d-D tree 

partitioning is a division of the coordinate space into 

approximately hypercubical subregions,. each containing very 

nearly the same number of points. To minimize the upper bound on 

the number of points examined by each search, the buckets should 

each contain one point only [ ~ r i e d m a n - ~ e n t l e ~ - ~ i n k e 1 ( 1 9 7 7 ) ] *  

The geometric boundaries of the subregion of every non-terminal 

node are determined by the partitions defined at the nodes above 

it in the tree. The volume of these subregions is smaller for 



subsets defined by nodes deeper in the tree. The geometric 

boundary of the root node is defined as plus and minus infinity 

on every dimension. When search is performed, i f  the node under 

investigation is terminal, all the points in the-bucket are 

searched for the nearest neighbour, and the point found to be 

the closest is maintained. I f  the node under investigation is 

not terminal, the recursive procedure is called for the node 

representing the subset on the sams'side of the partition as the 
* 

query point. When control returns, a test is made to determine 

i f  it is necessary to consider the points on the side of the 

partition opposite to the query point. I t  is necessary to 

consider that subset only i f  the geometric boundaries delimiting 

this subregion intersect the ball centered at the query point 

with the radius equal to the distance to the closest point 

encountered so far. This is referred to as the "bounds overlap 

ball" test. If this test fails, none of the points on the 

opposite side of the partition can be the closest neighbour to 

the query point. I f  the bounds do overlap the ball then the 

points of that subtree must be considered and the procedure is 

cailed recursively for the node representing that subset. A 

"ball within boundsn test is made before returning to determine 

i f  it is necessary-to continue the search. This test determines 

whether the ball is entirely within the geometric boundaries of 

the subregion represented by the node. I f  so, the current 

: nearest neighbour is correct for the entire set and the search 

can be terminated. This recursive search procedure is described 

in detail in ~ r i e d m a n - ~ e n t l e y - ~ i n k e l ( 1 9 7 7 ) .  



The computation time required to organize the d-D tree data 

structure over a set of n points in R~ is proportional to dnlogn 

and the'expected computation time to perform each search is 

proportional to logn. This expected search time is independent 

of the probability distribution of the points in R~ and for 

large data* sets, the expected number of point examinations 

required by the search (i.e. the number of terminal nodes 

searched) is shown to be independent of the value of n 

[~riedman-~entley-Finkel(1977)j. 

I n  our implementation of the d-D tree, a bucket contains one 

point only and every non-terminal node represents not only a 

subregion of the coord-inate space but also a cell within this 

subregion. A cell is determined by a set of points contained in 

the subregion and its geometric boundaries tightly enclose this 

set of points [ ~ i g .  2.2]..When "bounds overlap ball" test is 

performed, i t  is the geometric boundaries delimiting the cell 

that are considered rather than the boundaries of the subregion 

that contain the cell. .During the search, if a node under 

investigation is not terminal, the recursive procedure is called 

for the node representing the subset on the same side of the 

partition as the query point only if the "bounds overlap ball" 

test is true. In many instances, the boundaries of a subregion 

may overlap the ball, but the boundaries of a cell contained in 

i t  may not. As we show in Chapter V this change greatly improves 

the average number of nodes considered when search is performed. 

The expected computation time to perform each search is, in our 



subregion 

cell 

Fig. 2.2: Subregion and a cell in R' as represented by a 
non-terminal node of a d-D tree. 

implementation of the d-D tree, proportional dlogh. 

W .  1 Dynamic -- d-D Tree 

To implement our on-line convex hull algorithm, we must be able 

maintain the tree data structure dynamically. our best 

knowledge this has not been done yet and we are proposing the 



following way of updating the tree. 

To insert a new point into- the d-D tree structure, the tree is 

traversed from the root node down to the terminal node, along 

the path determined by the nodes representing the subset on the 

same side of the partition as the new point. When a terminal 

node is reached, this node is changed to non-terminal and the 

point which the terminal node represented plus 'the new point 

become the sons of the newly created non-terminal node. In this 

non-terminal node the dimension with the largest spread in 

coordinate values is chosen to be the discriminator and the 

lesser value of the (two) coordinate values of the discriminator 

determines the partition. 

To delete a point from the d-D tree, let N o d e  be the terminal 

node - representing this point. The following procedure details 

the deletion of N o d e .  

Eelete N o d e  

Let N o d e P a r e n t  be the parent of N o d e  and let O r h e r S o n  be the 

son of N o d e P a r e n t  such that Ot  h e r S o n  # N o d e .  

N o d e p a r  e n f  = 01 h e r S o n  

Delete N o d e  

Delete Ot  h e r S o n  

This guarantees that every non-terminal node has two sons and 

therefore there is no unnecessary partitioning (i.e. one side of 

a partition being empty). 



When a d-D tree is updated, the geometric boundaries of the 

cells associated with the non-terminal nodes along the path from 

the terminal node back to the root node may have to be adjusted 

to reflect this update. The volume of a cell can therefore 

"grow" after an insertion or it may "shrink" as a result of a 

deletion, but the region containing this cell remains unchanged. 

The amount of time it takes'to update a d-D tree i-s proportional 

to dH, where H is the height of the tree. For a binary search 

tree, when points are inserted and deleted at random, the height 

of the tree is found to be proportional to logn, where n is the 

number of terminal nodes in the tree [Wirth(1976)$-. As our test 

results (presented in Chapter V )  show, this is observed to be 

true for a d-D tree data structure as well. Therefore, we assume 

that an update of a d-D tree with n terminal nodes is expected 

to take 8(dlogn) operations. w,, 
t 

1% /' 

1' 

2.3 Transformation of a Closed Convex Polyhedron into a Voronoi - - - - -  

Polyhedron 

Let P be a closed convex polyhedron determined by a set of n 

d points in R and let x be an arbitrary point interior to P. We 

assume that P is represented by the set of its facets. For every 

facet f i  of P we generate point q such that a / f ( f i  ) becomes a 



perpendicular bisector of a line segment joining x  and qi. Thus 

aff(k) partitions R~ into two closed half-spaces: H ( x , ~ ~ )  
- 

containing x and X(qi . x )  containing qi. P can then be expressed 
i 

as the intersection of all ~ ( x . 9 ~ )  for i = 1 ,  . . . .  Fd,.nl where 

Fd,n is the number of facets of P. We have thus transformed P 

into a ~oronoi polyhedron enclosing its generating point x  [Fig. 

2.31. For a given point p we can now use the nearest neighbour 

information using the set {ql, .... 
q~ . x )  to answer the 
dl n 

point inclusion problem in a closed convex polyhedron P. TO' 

determine i f  a new point p lies inside of P we store the 

generated set of q-points Q = i q 1 ,  .... q~ ) in a d-D tree 
d,n 

data structure and we search the tree to determine if a point 

from Q is closer to p than x is. In other words we are 

determining i f  there exists a point in Q that lies inside the 

hypersphere centered at p with the radius equal to the euclidean 

distance between the points p and x .  'AS soon as we find such a 

point we know that p is outside of P and the search can be 

terminated. I f  no such point exists, it means that x is the 

point closest to p and p is therefore contained in P. 

The expected time to solve the point inclusion problem in a 

d convex polyhedron P I  determined by a set of n points in R . is 
proportional to dlogFdlnl where F 

d,n 
is the number of facets of 

P. Since F d I n  is no higher than O([d/2]!n Ldi2] ) , the point 

inclusion problem can be solved in the expected O (  d210g [d/2] ! n) 
s .l 

time. 



Fig. 2.3: Polygon P transformed into a Voronoi Polygon. 



CHAPTER 1 1 1  

THE ON-LINE CONVEX HULL ALGORITHM 

In this chapter we present an on-line convex hull algorithm that 

can solve bo'th the Facet problem and the Facial Lattice Problem 

for a data set of any dimension d 2 2 9  The algorithm is based on 

the "beneath beyond" technique, the global strategy of which has 

been described in Chapter I. 

Details and Computational Complexity 

d Given set S of n points, S G R , let St  be a subset of S of 

(d+l) af f inely independent points pi = (pi ], . . . , pid) for 

1 = 1 ,  . d l .  The first step of the algorithm determines S '  

and computes the initial convex hull, the d-s.implex 

Since every facet is contained in a unique supporting 

hyperplane, we are using the determining vector of that 

hyperplane to represent a facet. Every set of d distinct points 

of S '  determines a facet of Pd+] for which the determining 

vector of its supporting hyperplane needs to be computed. The 

following section describes how this can be accomplished. 



Let (w.1.o.g.) fd+] be the facet of Pd+] determined by vertices 

p I l  ..., pd and 7i = (nI, ..., "d' - c )  be the determining vector 

of the supporting hyperplane H d- I of fd+]. Then by Definition 

1 . 1 ,  for every point pi, i = I ,  . . . , d 

When c = 0, hyperplane H d-l passes through the origin of e 

coordinate system. By transforming the origin to an arbitrary 

point x interior to Pd+] we eliminate this possibility'. This 

transformation also increases the numerical stability of the 

algorithm. According to Solomon(1985) "it is best to carry out 

all geometric computations as near to the origin as possible". 

We can then divide [3.1] by c to obtain 

*. 

where h i =  n./c. The determining vector Tt=(hl, ..:, hd, - 1 )  can 
I 

now be uniquely computed by solving the linear system of 

equations 

. 
for i = I, . d l  where ( p  [ ) , . . , . ,  p i d )  are the transformed 

coordinates of a p i n t  p i .  
1 

Let Pi-] be the convex hull polytope computed so far. When a new 

------------------ 
'To determine x one can, for example, chpute the centroid of 
S '  . 



point p l  is considered the algorithm performs the "beneath 

beyond" test to determine the position of p l  with respect to the 

facets of the current convex polytope Pi-!. To be able to 

perform this test the determining vector T of the supporting 

hyperplane of every facet f of Pi-l is computed in such a way, 

that for every point p from PI ( p , X )  5 0. Geometrically this 

means that the normals to the supporting hyperplanes of all 

facets of Pi-l point outside of Pi-l. This is an important 

requirement for the following definition of the "beneath beyond" 

test. 

Definition 3.1 

A point p lies beneath (beyond) a facet f of a polytope 

P if and only if 4 0 ( ( p , X  > o), where X is the 

determining vector of a hyperplane of a facet 

f 

~ o r i t o ~ e  P, needs to be updated to include point p i  only if p i  

lies beyond some facet(s1 of Pi-l. To determine i f  an update is 

necessary, we solve the point inclusion problem in a convex 

polyhedron Pi-l for point pi and we apply the solution described 

in the previous chapter to solve this problem. 

Let x be a point interior to P i - l ,  Fd,i -1 the number of facets 

o f  PI-] and let Q = l q l ,  ..., 1 be the set of generated 
4 

"d,i-1 
q-points such that for every facet f of Pi-l, I < j - 

J < Fd,i-l' 
aff(f,) is the perpendicular bisector of the line segment 

joining x and q .  I f  x is at least as close to pi as any point 
J 



from Q, then no update of Pi-! is necessary. However, i f  for 

some J ,  1 5  J 5 F 9 .  is closer to p i  than r is, then facet d l -  J 

J is such that pi lies beyond it. 3 

3.1.1 The Alqorit.hm 

d Input: Set S of n points, S G R , and dimension d. 

Output: Description of Pn= CH(S). 

Step 1 :  {compute d-simplex). 

1 .  Determine S'L S of any (d+l) affinely independent 

points and set S " =  S - Sf. 

Let (w.1.0.g.) Sf= ip,, ..., Pd+ 1 and 

S"= * * * I  pnl 

2. Determine point x that is interior to the d-simplex 

defined by Sf. 

3. Translate the points of Sf and S" such that the 

origin is at x .  

4. Compute P d+l where Pd+]= CH(S1). 

Let if,, ..., fd+,l be the set of facets of Pd+/. 
i'. 

i 

5. For i = I to (d+l) do 

a .  Compute the determining vector of a / f ( f l  1 .  

b. Compute point q i  such that becomes a 

perpendicular bisector of the line segment 

joining q l  and x .  . 



6. Construct d-D tree over the set { q l ,  ..., q d + l ] .  > 
Step 2: {process points of S"]. 

Let F d r i - l  be the number of facets of P i - ,  

1 .  For i = ( d + 2 )  to n  do 

a. Search d - D  tree for a point that is closer to" p i  

than x is. 

I f  x is the closest point to p i  then 

p i =  P i - ] .  

Else - 

Let q . ,  I I j - 
J < F d , i - l r  

be the point that is 

closer to p i  than x and let f .  be the facet 
J 

corresponding to q .  
J 

( i  ;e. off ( f . )  is the perpendicular bisector 
J 

of the line segment joining x and 9 . 1 .  
J 

U p d o t  e  P i  t o i nc' l  u d e  p i .  

Step 3: {Clean Up]. 

For every vertex p  of P n  do 

Undo the translation performed in Step 1 .  

The details of procedures C o m p u t e  P d + l  in Step 1 and U p d a t e  P i - ]  

t o  i n c l u d e  p i  in Step 2 depend on the particular version of a 

convex hull problem the algorithm is solving and we will 

therefore describe them separately. 



3.1.2 The Facial Lattice Problem 

L. 
We are using facial graph to represent faces of a convex hull 

polytope. The initial facial graph contains one node only which 

eis3p corresponds to the empty set. The facial graph of a d-simplex 

consists of 2(d+1' nodes, and it can be constructed by 

introducing one point of S'  at a time. I t  takes exactly ( d + l )  

iterations before the polytope reaches full dimension d. We 

fiist obtain 0-face, then I-face, and so on. The construction 

mechanism of the facial graph of a d-simplex is based on the 

following theorem and lemma: 

Theorem 3.1 [Grunbam(1967)] 

Let P be a convex polytope in R~ of dimension k c d ,  and 

let p be a point that is not contained in af/(P). Define 

P 1 =  CH(P U Then each face of P' is one of the 

following types: 

1 .  a face f o f b  is also a face of P' or 

2. i f  f is a face of P then f'= CH(f U is a face 

of P' . 

Polytope P', as defined in Theorem 3.1, is usually called a 

pyramid with base P and apex p. 

Lemma 3 . ;  [Gr"nbaum(l967)] 
/ 

Let P and P' be defined as in Theorem 3.1. For faces f 

and g of PI define f'= CHtf U fp)) and g'= CH(g u 



Then 

I .  (f s u b  g )  in P' i f  and only if (f s u b  g) in PI 

2. (f s u b  g ' )  i f  and only if f=g, and 

3. (f' s u b  g') if and only i f  (f s u b  g). 

The following is an outline of the procedure Compute P d + ~  in 

S t e p  1 .  

Let Po = 0. 

For i = 1 to (d+l) do 

C o n s i r u c r  fg(Pi) where Pi= CH(Pi-] u iPi 1 )  

[see "Pyramidal Update", Edelsbruner(1987)]. 

To construct /g(CH(P U {pi 1 ) )  from f after Pi-1 r -1 

reaches dimension dl Edelsbruner(i987) introduces a coloring 

scheme which he uses to classify facets according to their 

relative position to point pi .  For f, a facet of Pi-], this 

classification is defined as follows: 

/ is red i f  pi lies beyond f, 

f is b l u e  i f  p, lies beneath f, and 

f is v e ~ ~ o w  i f  pi belongs to aff(f) [Fig. 3.11. 

No color is ever assigned to the one only d-face of Pi-! which 

is polytope Pi -, itself. I f  j is a k-face of Pi-,, with 

k < (d-l), then f is assigned a color which is determined by the 

mixture of colors assigned to all facets which contain f in 
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F i g .  3 . 1 :  Three  t y p e s  of f a c e t s  w i th  r e s p e c t  t o  p o i n t  p .  

t h e i r  b o u n d a r i e s :  

- f  i s  o r a n g e  i f  i t  be longs  t o  t h e  boundary of r e d  and 

y e 1  1 ow f a c e t s ,  

f i s  g r e e n  i f  i t  be longs  t o  t h e  boundary of y e l l o w  and  

b l u e  f a c e t s ,  

f i s  p u r p l e  i f  i t  be longs  t o  t h e  boundary of r e d  and 

b l u e  f a c e t s ,  and 

f  i s  b r o w n  i f  i t  be longs  t o  t h e  boundary of r e d ,  y e l l o w  

and b l u e  f a c e t s .  

A d d i t i o n a l  c o l o r  g roups  a r e  d e f i n e d  a s  f o l l o w s :  

f has  a  b l u e  c o m p o n e n t  i f  i t  i s  b l u e ,  g r e e n ,  p u r p l e  or 

b r o w n ,  



f  has a red component if it is red, orange, purple or 

brown, and 

f  has a ye1 1 ow component if it is yellow, orange, green 

or brown. 

With this color scheme we can define the update mechanism. 

Theorem 3.2 

I f  P is a d-polytope and p a point in R ~ ,  let 

P'= CH(P U { P I ) .  Then each face of P' is one of the 

following types: 

1 .  a face f  of P  is also a face of P' i f  and only if f 

has a b l u e  component 

2. i f  f  is a face of P  then f'= CH(f U is a face 

of P' i f  and only if  either 

a. f  has a blue and a red component, or 

b. f  is ye1 low. 

Proof: [~delsbruner(l987) 1 

Theorem 3.2 defines the faces of P' in terms of the faces of P, 

that is, the nodes of f g ( P ' )  in terms of the nodes of fg(P). To 
- - completely define fg(P') we also need to define its arcs. 

Lemma 3.2 

Let P and P' be defined as in Theorem 3.2 and let f  and 

g be two faces of P. Define f'= CH(f U and 

g t = C H ( g U  Ipj) i f  f  and g have a red a n d a  blue 



and g are y e l l  o w .  Then 
8 

I ,  (f s u b  g )  in P' if and only i f  (f s u b  g )  in P and f 

and g have a b l  u e  c o m p o n e n t  

2 .  (f s u b  g ' )  if and only i f  f = g 

* 
3. (f s u b  g ) i f  and only i f  (f s u b  g )  a n d f  has a b l u ~  

c o m p o n e n t  

4. (f' sub g ' )  i f  and only i f  (f s u b  g )  

* 
5. (f' s u b  g ) i f  and only i f  (f s u b  I )  and ( I  s u b  ,g) 

for some subface 1 of g, and 
* 

6 .  (f* s u b  g ) i f  and only i f  (f r u b  g ) .  
,, 

Moreover, the only d-face of P' (i.e. polytope P' 

itself) is a superface of all facets of P'. 

Proof: [Edelsbruner(l987)] 

Lemma 3 . 3  

Let (f s u b  1 )  and ( 1  s u b  g )  be three faces of a polytope 

P with f b r o w n  and g  y e l l o w .  Face I  is uniquely 

determined by faces f and g and the requirement that 1 

has to be o r a n b e .  

Proof: [~delsbruner(l987)] 

From the above information we can see that only r e d  and y e l l o w  

facets are important for an update, and we are now going to 

describe how to identify them. One r e d  facet is determined by 

searching the d-D tree. Having discovered one r e d  facet, we can 



. 
identify all the other red and y e l l o w  facets (if 'any) by 

performing depth first search of a facial graph. The search 

examines nodes that correspond to the facets of a polytope and 

advances through the arcs corresponding to its edges 

backtracking every time a blue facet is reached. Due to the 

following theorem, we know that this graph is well defined. 

Theorem 3.3 

Every edge of a convex polytope lies in two and exactly 

two facets of this polytope. 

Proof:  hand-~apur(l970)I 

we are now ready to specify the update procedure in Step 2 of 

the algorithm. 

& 

Update P i - ,  t o  include pi 

1 .  ~etermine all red and y e i i o w  facets with respect to p i  

using facet f. as the first red facet. 
J 

2 .  For every r e d  facet do 

Delete its corresponding q-point from d - D  tree. 

3 .  Consrruct fg(Pi) where P =  CH(Pi-l U { p i ] )  
1 

[see "Non-Pyramidal Update", Edelsbruner(l987)l. 

Let Fd-l,l-l be the set of all facets that contain p i  in 

their boundary. 

4 .  For every facet f from F d - ] ,  - l  do 

a .  Compute the determining vector of aff(f). 

b. Compute point q such that aff(f) becomes a 

perpendicular bisector of the line segment joining x 



and q. 

c. Update d - D  tree to contain point q. 

- 

Data Structures 

A node in the facial graph stores the following information: 

S u p e r F a c e  - points to a list of super faces, 

S u b F a c e  - points to a list of subfaces, 

C o l o r  - stores colo; of a face represented by this node, 

N o d e C o p y  - points to a copy of this node 

(also used to mark and unmark facets)., 

In addition, every node representing a facet stores the 

determini-ng vector of the supporting hyperplane of the facet 

and a pointer to the terminal node in the d-D tree 'yhich 

corresponds to point q  associated with this facet. {very 

node representing a vertex stores the transformed 

coordinates of the vertex. In the initial one node of a 

facial graph (representing the empty set) all pointers are 

initialized to nil and color to y n s p e c r f i e d .  
4 

A node in the d-D tree stores the following: 

Terminal Node 

q P o i n t  - an array, coordinates of point q ,  

P a r e n t  - points to the parent node, 



F a c e f  - points to the node in the facial graph which " 

corresponds to the facet associated with point q .  

 on-Terminal Node 

P a r e n t  - points to the parent node, . 

D i s c r  - coordinate chosen as the discriminator, 
d 

D i s c r V a l u e  - value of the discriminator, 

L o w C e l l B o u n d  - an array, for every coordinate the low bound 

of a cell, L 

H i g h C e l l B o u n d  - an array, for every coordinate the high 

bound of a cell, 
J .  

L e f r S o n  - points to the left son node, 

R i g h t S o n  - points to the right son node. 

Computational Complexity 

Before we analyze the computational complexity of the algorithm, 

we enlist the following results which will be used in the 

analysis. 

Lemma 3 . 4  

d  Let P  be a polytope with n  vertices in R , and let p be 

a verte'x of P .  The number of faces of P which contain p 

in their boundary plus the number of incidences among 

them is C I ( F ~ - , , ~ ) .  



Proof: [Edelsbruner(l987)] 
t 
\ - 
i 

Lemma 3 . 5  
/ 

/'-" 

Every k-face of a d-polytope P, k 5 d, is the 

intersection of at least (d-k) facets of P. 

Proof: [~runbaum(l967)] 

we are now going to analyze the computational complexity of the L)o 

algorithm for its expected time and its worst case performance 

in terms of length of the input. 

3 Step 1:  Set S' can be determined in O(nd ) time in the wors t  

case. 

Computation-.of point x requires O(d) operations and the 

required translation can.be applied to all points of S' 
I 

and S" in O(dn) time. 
,' , 

Facial graph of P Q +  1 is obtained by induction and it can 

be constructed in O(dFd,d+l ) time. 

Polytope. Pd+ has exactly (d+l) facets. Given a facet of 

Pd+], the determining vector of its supporting 

3 hyperplane can be computed in O(d ) operations and point 

q corresponding to this facet can be computed in O l d )  
$2 

time. 

Finally, the construcion of a d-D tree over a set of 
'z. 

(d+I) points can be done in O(d1ogd) time. 

3 Rsnning Time: O(nd ) in the worst case. 
(i >- 



Step 2: We will analyze this step for one update only.   hat is 
h 

we will determine the time needed to update the existing 
B 

convex hull' 'i-I with point 

As we have already mentioned, one r e d  facet of Pi-i is 

obtained by searching the d-D tree. The number of 

terminal nodes in the tree is equal to the number of 

facets of Pl-i which is bounded above by F d t i _ ] .  The 

.-expected time to search the tree is therefore 

The determination of all the other r e d  and yellow facets 

is propo'rtional to the number of r e d  and y e l l o w  facets. 

The worst case occurs when no 1 ow facets exist 

[~eidel(l981)], since it is always possible to perturb 

pi slightly such that all yell ow facets become r e d  and 

colors of other facets remain urxhanged. As shown, by 

Seidel(l981) this perturbation does not decrease the 

number of faces or face-subface relations in Pi. As a 

consequence, we can analyze our algorithm for simplicia1 

polytopes only.and the time bound we develop will apply 

to general cases as well. 

The computation of fg(Pi) is proportional to D ( P i )  and 

) where D(pl ) is the number of faces and incidences 

that are deleted from fg(Pi ) -I when 

f d p , )  = fg(P,-] U (pi).) is computed and N ( P ~  : is the 

number of new faces and incidences that appear in fg(P.) 
1 

*\ 



- after the update is completed. I t  is clear that each 

face and each incidence,between two faces can be deleted 

at most once, and it is also clear that every face that 

is going to be deleted had to be created first. 

Therefore D(pd+2 ) + ...+ D(p,) 5 ( d  + 0 + N ( p d + ?  ) + 

. . .+  N(pn) and it is sufficient to establish upper bound 

on N(P[) only. From Lemma 3.4 the upper bound on N ( p , )  

To compute the point q for every new facet takes 

-_ @(dFd-l r i  - 1  ) operations and to store the new q-pbints in 

the d - D  tree structure (containing q-points of all the 

remaining facets of P i  takes @(dFd - / , ,  - k ~ g k . ~  ,,-, 1 

expected time. Also the determining vector has to be 

3 .  computed for each new facet which requires U(d k d - l , r  ) ' 

operations. 

time. 

Step 3: To reverse the translation performed in Step 1 takes at 

most O(nd) computations. 

Running Time: ~ ( n d )  in the worst case. 

From this analysis we can see that Step 2 is ttie dominating step 

4 5 



o f  our a lgor i thm.  The a lgor i thm computes t h e  convex h u l l  of a  

s e t  of n p o i n t s  i n  R~ i n  O(dnFd-, ,n l o g F d I n )  expected  t ime.  Th i s  

time i s  b e t t e r  than t h e  O(nF 1 expected t ime of t h e  o t h e r  
dl  fl 7 

o n - l i n e  h igher  dimensional  convex h u l l  a l g o r i t h m s  known t o  us 

[~reparata-Shames( l 9 8 5 ) ,  Rey-Ward( 1985) 1. 
,A- 

L The v a l i d i t y  of t h e  expected time of our a lgor i thm depends on 

t h e  he ight  of t h e  d-D t r e e  throughout t h e  computat ion.  I t  i s  

hard t o  know, in  g e n e r a l ,  how t h e  t r e e  w i l l  "grow". We can only 

p r e d i c t ,  t h a t  i f  t h e  t r e e  i s  updated randomly, t h e  average  pa th  

l e n g t h  grows l o g a r i t h m i c a l l y  w i t h  t h e  number of nodes i n  t h e  

t r e e ,  even s o ,  in  t h e  worst c a s e ,  t h e  pa th  l e n g t h  grows 

l i n e a r l y .  To maintain t h e  t r e e  ba lanced,  we can r e c o n s t r u c t  t h e  

t r e e  every time a  new polytope i s  computed. I f  Fd , i  i s  t h e  

number of fa/cets of Pi f o r  ( d + 2 )  5 r 5 n ,  then F d I i  i s  a l s o  t h e  

number of p o i n t s  t h a t  have t o  be s t o r e d  in  t h e  d-D t r e e  a f t e r  Pi 

i s  computed. To recons tuc t  t h e  t r e e  t h e r e f o r e  t a k e s  

B(dFd,  logF ) o p e r a t i o n s .  
d l  1 

Under t h e s e  c i rcumstances  

B ( d F d I i l o g F  dominates t h e  computat ional  complexi ty of our 
d l  1 

a l g o r i t h m .  

T h e  worst c a s e  performance can be determined by e s t a b l i s h i n g  an 

upper bound on the  running time of t h e  s e a r c h  and t h e  update of 

the  d-D t r e e ,  s i n c e  t h e s e  a r e  the  only two proceaures  i n  t h e  

a n a l y s i s  of t h e  a lgor i thm where we have given expected t imes .  In 

the  worst c a s e  t h e  sea rch  can examine every node in  t h e  t r e e  f o r  

which B ( d F d I i  ) i s  the  upper bound on t h e  number of o p e r a t i o n s .  

As f o r  the  update ,  t h e  worst case  occurs  when t h e  t r e e  i s  



reconstructed which, as we have already mentioned, takes 

B(dFdIilogFdli operations. To conclude, the algorithm computes 

the facial lattice of the convex hull of a set of n points in H d 

in 8(d(Fd,d+l l"gFd,d+]+ ***+Fd,n-I logFd , n- I ) )  = O(dnF~dfnlOgF'df,,) 

time in the worst case. 

3.1.3 The Facet Problem 

To solve the Facet Problem for a non-simplicia1 data set without 

maintaining some information about all the faces of a convex 

hull polytope, we propose the following data structures: 

A FacetList which contains information about individual 

facets and a VertexList containing vertices of a convex h u l l  

polytope. 

For every facet f in the F a c e t L ~ ~ r  there is a 

FacetNeighbors(f) list - a list of facets that share a 

common edge with f; and a FacetVerrlces(f) list - a list of 

vertices that are contained in f. Similarly, for every 

vertex v in the Verr exLlsr we maintain a V e r r  exkacrr: ( v )  

list - a list of facets containing v in their boundary. 

A s  in the previous implementation, a facet is represented by t h e  

determining vector of its supporting hyperplane and a vertex by 

i ~ s  d real valued coordinates. 



The computation of Pd+] is quite simple. Every point in S' is a 
yl 

vertex of the initial d-simplex. I t  takes exactly (d+d) 

iterations to compute all the facets of Pd+], each iteration 

computing one of the facets. In a d-simplex, a facet shares an 

edge with the remaining d facets, and a vertex is contained in a 

boundary of exactly d facets. 

Cornput r Pd+ , 
1 .  Set Facet Li sr = 0, Vert exLis! = 0. 

2. For i = I to (d+l) do 

Add pi to Vert exLi sl . 
Verr e x F a c e ~  s (pi ) = 0. 

3. For I = I to (d+l) do a 

a. Compute facet fi determined by the set of points 

p , ,  . . .  rPd+l 1 - ipil). 

b. Add fi to FacetList. 

FacerVert i ces(fi ) = 0. 

~ a c e l  ~ e i  g h b o r s  (fi ) = 0. 

4. For 1 = 1 to (d+l) do 

For j = I to (d+l) do 

I f  1 # J then do 

Add 1, to FacetNeighbors( f. 1 .  
I 

Add f to Verr exFacet s ( p .  ) .  
I J 

.,Z 
Add p .  to FacetVert ices(fi). 

J 

Next comes the update mechanism of a d-polytope Pi-, Again 

here, as in the previous implementation, we have to determine 



all r e d  and y e l l o w  facets with respect to some new point p , .  

Having discovered one r e d  facet by searching the d-D tree, we 

use this facet to determine all the other r e d  and y e l l o w  facets .- 

by a process called P e e l i n g .  During ,this process we look at 

every facet that shares an edge with a r e d  facet and perform the 

"beneath beyond" test to determine its color. When a r r d  facet 

is discovered, we perform the "beneath beyond" test on its 

neighbouring facets and so on, marking every facet that has been 

tested. As one can see, the P e e l i n g  process is proportional to 

the number of r e d  and y e l l o w  facets obtained. 

Knowing all r e d  facets, it is not difficult to determine the 

"exposed edges" and to compute new facets. Let f' and f" be two 

neighbouring facets such that f' is b l u e  and f" is r e d ,  and let 

E be the set of vertices common to / '  and f". Then E determines 

what we call an "exposed edge", and every vertex contained in E 

is an "exposed vertex". Let f be' the new facet defined by -' . 

i E  U ( p i  1 ) .  Then F a c e t V e r r i c e s ( f )  = { E  U ( p i ] ]  and for every 

vertex v from E we can add f to V e r t e x F a c e [ s ( v ) .  We also know 
B 

that f' and f share an edge and we can therefore add / to 

F a c e t  Nei g h b o r s  ( f '  and set F a c e t  N e l  g h b o r s  ( f )  = i f '  1 .  One crucial 

step of the algorithm still remains to be resolved. I t  is the 

determination of the neighbouring facets to / (other than f ' )  

and the new neighbouring facets to all y e l l o w  facets. 

-- 

Let f be a facet, either new or y e l i o w ,  for which its 

neighbouring facets are to be determined, and let t y e l l o n  be the 

set of y e l l o w  facets with respect to p i  and F n e w  the set of new 



facets of Pi computed so far. The brute force method would be to 

look at every facet in Fnew and Fyel 1 ow and determine the number 

of affinely independent vertices, VCount , shared by this facet 

with fl. I f  for any of the facets checked the VCount is (d-1) 

then f shares an edge with this facet. However, we can do better 

than this by considering only those facets from Fnew and Fyel l ow 

that contain a vertex from FacetVertices(/) in their boundary. 

This is done by moving all yellow facets to the end of the 

FerrexFacets lists and by mainraining a count, FCount, of all 

yellow/new facets in each list (i.e. new facets are added to the 

end of the list as well). 

Special care has to be taken when VCounr is computed between two 

yellow facets. This is because two yellow facets may: a) already 

be neighbours in Pi-l, b) b*ecome neighbours only in Pi , or C) be 
* 

neighbours in neither Pi-l nor P.2 [Fig. 3 . 2 1 .  Only in case'b) 
1 

the neighbourhood information of the yellow facets needs to be 

updated. I f  we determine the VCounr in Pi then the numbers 

obtained in a) and b) would be the same (i.e. (d-1)). In order 

to clearly recognize cases a) and b) we determiqe the number of 

afiinely independent vertices between yellow facets in Pi-l, 

obtaining (d-1) or ( d - 2 )  in a) or b), respectively. 

In the last step of this implementation of the Update Pi-l to 

I n c l  ude p l  procedure we use Lemma 3.5 to remove vertices of P1 

which are no longer vertices in Pi. 

2 ~ o t e  that for two new facets or a new and a yellow facet only 
cases a )  or c )  can occur. 
' A d - -  



Y e l l o w  facets (heavy lined) sharing an edge 
a )  before and after update, b) after &date 
only, and c )  neither before nor after update. 

Fig. 3.2: Two y e l l o w  facets of a convex hull polytope before and 
after update. 



U p d a t  e P 1  -, t o  ncl u d e  p i  
4 

Let F r  and F y e i  1 o w  be the sets of r e d  and y e l l o w  facets of 

- 1  
with respect to p i  obtained by the P e e l i n g  process (as 

already described). 

I .  {Determine neighbouring facets among y e l l o w  facets) 

For every f from F y e l l  ow do 

Let f y e l  / o w  be the set of  y e l l o w  facets (other than 

f such that each one contains at least one vertex 

of f in its boundary. 

For every f' do from f y e l  i o w  

I f  the number of affinely independent v'ertices 
, 

common to f' and f is ( d - 2 )  then do 

Add f to F a c e t  Nel g h b o r s  (f' ) .  

Add f' to ~ a c e t  Nel g h b o r s  ( f ) .  

2. Add p, to V e r t e x L l s r .  

C'ert e x f a c e t  s  ( p i  ) = 0. 

3. {Compute new facets) 

For every f' from F r e d  do 

For $very f" from F a c e t N e l g h b o r s ( f l )  do . 
I f  f" is b l u e  then do 

Compute new facet f determined by 

{ E  U { p , ) ] ,  where E is the set of vertices 

common to f' and f n .  

Add f to F a c e r L i s t .  

F a c e t N e i g h b o r s ( f )  = i f w ] .  

Add f to F a c e t  N e i g h b o r s  ( f " ) .  

For every v from E do 



Add f t o  k'ert e x F a c e t  s ( v ) .  

Add v t o  F a c e t Y e r t r c e s ( f ) .  

D e t  e r m i  ne nei g h b o u r l  ng f a c e t  s t o (. 
4 .  ( ~ d d  p i  t o  t h e  boundary of every  new f a c e t ]  

1 Le t  F n e w  be t h e  s e t  o f  new f a c e t s  computed in  t h e  

p r e v i o u s  s t e p .  

For e v e r y  / from Fnew do 

Add f t o  V e r t  e x F a c e t  s ( p l  ) .  

Add p i  t o  F a c e t V e r t  i c e s  ( f ). 

5 .  { ~ d d  p i  t o  t h e  boundary of eve ry  yell o w  f a c e t  1 

For e v e r y  f from F y e l  ow do 

Add f t o  V e r t  e x F a c e t  s ( p i  ) .  

Add p i  t o  F a c e r  V e r t  i c e s  (f). 

6. R e m o v e  r e d  f a c e r s  f r o m  P I .  

D e t  e r m i  ne n e l  g h b o u r i  n g  f a c e t  s r o f 

L e t  n e w / y e /  o w  be t h e  s e t  of ye1 l o w  and a l r e a d y  computed 

new f a c e t s  such t h a t  each  one c o n t a i n s  a t  l e a s t  one v e r t e x  

of E i n  i t s  boundary.  

I f  t h e  number of a f f i n e l y  independent  v e r t i c e s  common t o  

f and f' is ( d - 2 )  t hen  do  

Add f t o  F a c e t  Nel g h b o r s  (f' 1 .  

Add f '  t o  F a c e t  N e l  g h b o r s  (1). 



R e m o v e  r e d  f a c e 1  s f r o m  Pi 

For every f' from F r e d  do 

For every f" from F a c e t N e i g h b o r s ( f l )  do 

Remove f' from F a c e t N e i g h b o r s ( f W ) .  

Remove f" from F a c e t N e i g h b o r s ( f l ) .  

For every v from ~ a c e t v e r t ~  c e s ( f l )  do 

Remove f' from V e r t e x F a c e f s ( v ) .  

Let F C o u n t  be the number O> in 

V e r t  e x F a c e t  s  ( v ) .  

I f  F C o u n t  = 0 then do 

Remove v from V e r t e x L i s t .  

Else  

I f  F C o u n t  c d then do 

For every f in V e r t  e x F a c e t  s  ( v  i do 

Remove v from ~ a c e t ~ e r t l c e s ( f ) .  

Remove f from V e r t  e x F a c e t  s  ( v ) .  

Remove v from V e r t e x L i s l .  

Data Structures 

I ' e r r ~ x  L I J I  

l.ertex - ar, array, ~ransformed coordinates of a vertex, 

FCoorct - counter, ilsed to count the number of new or y e l l o w  

. . facets containing zn:s vertex in their boundary, 



Flag - used to mark and unmark this record, 

FirstVF, LasrYF - pointers to the first and the last record, 

respectively, of IrertexFacet list associated with this 
i 

vertex, 

PrevVertex, Nextvertex - pointers to the previous and the 
-\ 

next record, respectively, in Vert e x L i  st . 

FacetL~ st 

Facer - an array, facet normal representing a facet, 

Node - points to a terminal node in the d-D tree that stores 

point q associated with this facet, 

VCount - counter, used to count the number of vertices 

common to this facet and a facet for which the 

FacetNieghbors information is being established, 

Flag - used to mark and unmark this record, 

Fr rstV, LastV - pointers to the first and the last record, 

respectively, in Verrl c e s  list, 

FlrsiFV, LastFV - p~inters to the first and the last record, 

respectively, in, Facet Vert I c e ~  list, 
h 

I 

FrrstFfl, LastFY - pointers to the first and the last record, 

respectively, in FacetNer ghbori list, 

FI rsrh', L a s r h  - pointers tc the first and the last record, 

respectively, in .Veer g h b o r s  iist, 

PrevFacet, .VexrFacet - pclnters to the previous and the next 

record, respectively, in Facer Ll st . 



Verrex - points to the vertex record in VertexLisr 

associated with this VertexFacets list, 

F'acrl - points to the facet record in FacetList that 

contains vertex associated with this VertexFacets list in 

its boundary, 
<> 

PrevFV, NextFV - pointers to the previous and the next 

record, respectively, in Facetvertices list, 

PrevVF, NexrVF - pointers to the previous and the next 

record, respectively, in VertexFacets list. 

Facer Nel ghb o r s  

Facer - points to the facet record in FacetList associated 

with this Facet Ner ghbors list, 

!Ve l  ghbor - points to the facet record in FacetList that is a 

neighbour to the facet associated with this FacetNeighbors 

list, 

Prevh', NexrN - pointers to the previous and the next record, 

respectively, in N e r  g h b o r s  list, 

PrevFfl, Next FAN - pointers to the previous and the next 

record, respectively, in Face~Nerghbors list. 

f i 3 c e i b ' p r l  i c e s  

the same as CfertexFacets. 



Same as F a c e t  Ner  g h b o r s  . 
w 

 hi; list is for the purpose of efficiency of the algorithm * "  

only). 

V e r  t i c e s  

V e r r  e x  - points to a vertex record in l ' e r ' t  e x ~ i  s t ,  

N e x t V  - points to the next record in V e r r i  c e s .  

(This list is used to store pointers to the vertices that 

are contained in a facet associated with this list and 

another facet for which the F a c e r  Nei g h b o r s  information is 

being established). 

A node in a d-D tree stores the same information as in the 

previous implementation except for the F a c e t  field in the 

terminal node which points to a facet record in the F a c e r  L i s t  

associated with point q represented by this node. 

Computational Complexity 

The perfo~mance of the algorithm will .be analyzed for its worst 

case in terms of length of the input. For the same reason as 

given in the analysis of the algorithm for the previous 

implementation, the worst case occurs when no y e l l o w  facets 

exist and we will therefore analyze the algorithm for simplicia1 

polytopes only. 



Step 1 :  I t  is easy to. see that the computational complexity of . - 
Compur e Pd+l 

4 is O(d ) and the overall complexity of this 
I 

./ 

step remains unchanged in comparison to the previous 

implementation. , 

3 Running Time: O(nd ) in the worst case. ~ 2 .  

Step 2: Only procedure Updat e P i - l  t o  i n c l u d e  p i  needs to be 

analyzed here, since no change has been made to the 

other procedures within this step. We will establish an 

upper bound on the number of operations needed to update 

Pf-l* 

For every "exposed edge" in P. 1-1 there is a new facet in 

Pi. From Lemma 3.4 we know that the number of new facets 

is bounded above by F d l i  The q-points and the 

determining vectors of all new facets can be computed in 

3 
@(dFd-l,i - 1  and B(d F d - l , i - l  ) operations res2ectively. 

The d-D tree can be constructed in B(dFd,ilogFd,i) time, 

where F  
d ,  1 

is the number of facets of Pi. For all new 

facets computed, the V e r r  exFacet s and the Facet Vert i c e s  

lists can be updated in B(dFd-l,i-l ) time. 

To update the FacetNeighbors information we do the 
. 

following operations: for every new facet we 1.  look at 

its "exposed vertices" and 2. for every "exposed vertex" 

we in turn look at every new facet that contains this 

vertex in its boundary, and 3. we test the v2rilces that 



are common to these two facets to determine i f  they are 

affinely independent. I t  can be shown that the set of 

"exposed edges" and "exposed vertices" is isomorphic to 

a (d-1) polytope [Siede1(1986)], and this establishes 

Fd-2,i as the upper bound on the number of new facets 

(or "exposed edges") intersecting at a given "exposed 

vertex". In the worst case then the number of operations 

.?erformed to update the Facer N e i  g h b o r s  information is 

4 F B(d Fd-l,i-l d-2rI-l)* 

Running Time: 

4 F F' B(d (Fd-l,d+l d-Zrd+lt ' * * t F d - l l n - l  d-2.n-I 1 )  = 

4 F 4 
o(d nFd-l,n-l d-2.n-1 ) I O(d nFd-l,nfd-l,n ) in 'the worst 

case. 

Step 3: Running Time: O(dn) in the worst case. 

The analysis shows that our on-line algorithin computes the 

facets of the convex hull of a set of n points in X~ in 

4 F o(d nFd-l,n d-2,n ) ~ i m e  in the worst case. This algorithm is the 

only one known to us that .solves the Facet Problem for a 

non-simplicia1 data set without maintaining some representation 

of all the faces of a convex hull. Our worst case time is better 

than the worst case time conjectured for this problem by 

Swart(1983) (i.e. O((Fd )2dd'410gn)). 
I n  



CHAPTER IV 

THE DIVIDE AND CONQUER ALGORITHM 

I n  this chapter we present an off-line convex hull algorithm 

solving the Facet Problem for higher dimensional, simplicia1 

data sets. The algorithm is off-line because it requires that 

all the data points be present before any processing begins. The 

technique is based on the well known "divide and conquer" 

principle. I n  the following section we describe the details of 

the algorithm and establish its computational complexity. 

4.1 Implementation Details and Computational Complexity 

When describing the algorithm we will refer to the Voronoi 

diagram and a d-D tree data structure which we have introduced 

in Chapter 1 1 .  We will 'therefore assume reader's familiarity 

with the meaning of the terms. 
- 

T h e  basic data structures used in the imp1 mentation of this a 
algorithm are the same as specified for t e implementation of 

our on-line soluti9n to the Facet Problem de cribed in chapter 

I I I  (i.e. F a c e r L ~ s t ,  P ' e r t  e x L 1 s t  and the lists of pointers that 

relate the two). 



The "divide and conquer" principle, in general, involves 

partitioning the original problem into several subproblems 

(divide), recursively solving each subproblem (conquer), and 

combining the solutions to the subproblems to obtain the 

solution of the original problem (merge). In our particular case 

this means that we partition the given set S of n points in R d 

into two subsets Sl and S2 of approximately the same size, 

separately and recursively compute the convex hulls of both 

subsets, and then "mergew the convex into a single 

i 
polytope P = CH(Pl U P , )  where PI= CH(SI) and P , =  CH(S,). 

For efficiency reasons, we pre-sort the points of S with respect 

to the value of the first coordinate and partition S into S, and 

S 2  such that for any p ( q )  of Sl (S2), xI(p)<c (xI(q)>r) for 

some c ,  where xl(p) is the first coordinate of p. We call SI and 

S, the left and the right subsets of S .  Thus, Sl and S, are - 
separable by the hyperplane x l  = c. 

The merge step is the most important step of the algorithm. I t  

is this step that actually computes the facets of a convex hull. 

Every invocation of the ( M e r g e  procedure is going to be 

represented by a node in a binary tree. The inputs to the M e r g e  

procedure are two non-intersecting polytopes and the output is 

e convex hull of their union. Let S l ,  S be two subsets 
1 

(separable by a vertical hyperplane) of some set S such that' 
11 

Sl and S are left and right subsets of S respectively, and 
J 1 

let P[ = CH(SL) and P = C H ( S  1 .  I f  the M e r g e  procedure is 
J 1 

invoked with P I  and P as its input, then we create a node in a 
1 



binary tree representing P  = C H ( P i U  P . )  with its L e f r S o n  
' J  J 

pointer pointing to a node associdted with P i  and its ~ i ~ h r ~ o n  

pointer pointing to a node associated with P.. To compute 
J 

polytope P  we first delete those facets of P i  and P .  that are 
11 .- J 

not going to be facets of P . . ,  thus leaving the two polytopes as 
11 

"open shells", and then we compute the "wrap around" portion W . .  
1 J 

that connects the "open shells" [ ~ i g .  4.11. P . .  is therefore 
I J  

composed of W .  and the remaining portions of Pi and P . .  
11 J 

Let k w  be the set of facets of W and let x be some point that 
' 1  

is interior to P  . Every j from F w  determines a hyperplane 
1.t 

f  that partitions R~ into two closed half-spaces 

intersection of which is aff(f). Let H i f , x )  be the closed 

half-space that contains x .  Then the intersection of all 

f x  for f l  from F w I  is a convex polyhedron which we denote 

P w '  I i for every f I  we compute point q ,  such that a f f  ( f i  ) 

becomes a perpendicular bisector of the line segment joining x 

and q l ,  we transform P w  into a Voronoi polyhedron with point x 

being its generating point [Fig. 4.21. Let Qw be the set of 

q-points computed for the facets of F k , .  For reasons that will 

become clear later, we will construct a d-D tree storing the 

points of Qn, and associate this tree with the node in a binary -~ 
tree representing P. . 

11  

Because of the aon-degenerate assumption on S, a vertex from P i  

can lie either beneath or beyond a supporting hyperplane of a 

facet of P and the same is true for a vertex from P .  in 
i J 

relatiop to a supporting hyperplane of a facet of P I .  Therefore, 



Two non-intersecting 
polytopes. 

Polytopes as "open 
shells". 

r 

A f t e r  the "merge". 

3 
Fig. 4.1: "Merging" of two  polytopes in H . 



Fig. 4.2: "Wrap around" portion connecting polytopes P i  and P . 
extended to form polygon P w  and its transformation into a J 

Voronoi polygon. 

according to Definition 3.1 we can only have r e d  or b l u e  facets 

(i.e. no y e l l o w ) .  The process of determining r e d  facets is 

similar to the one we have descxibed in Chapter I 1  for the 

on-line algorithm. However, here we are determining r e d  facets 



of one polytope with respect to all the vertices of some other 

polytope. We accomplish this by considering one vertex at a 

time, discovering one r e d  facet with respect to this vertex 

first, and then applying the P e e l i n g  process (as described in 

Chapter 111) to determine all the other r e d  facets (if any). I n  

the following section we will show how to discover the first r e d  

0 

facet. 

Assume p = . . ., p d )  is a vertex of and P I  is t h e  

polytope whose first r e d  facet with respect to y is t,o bc 

determined. Further assume that x l  = c is the hyperplane t . h a t  

separates S i  and S .  We start by searching the J - I )  t ~ - e c .  
I 

associated with the node in the binary tree representing PI. I f  

the search is successful, we have determined our first r e d  facet 

(i.e. it is the facet corresponding to the point q discovered by 

the search). When the q-points stored in d-D tree were computed, 

the origin of the the coordinate system was transformed to some 

point x interior to the polyhedron P = C H ( P l  U P . For every 
J . 

d-D tree, the coordinates of its corresponding point A are 

stored in the node of the binary tree that the d - D  tree i s  

associated with. I t  is necessary to transform the coordinates of 

p such that the origin is at x ,  before searching the d-D tree. 

I f  the search is not successful, we will search the d - D  trees 

associated with the nodes of the binary tree along the path 

determined by the R I  g h r S o n  pointer of every node visited, 

terminating the search as soon as a r e d  facet is discovered'. In 

------------------  
'In a reverse situation when p is a vertex of PI and P is the 
polytope whose r e d  facets with respct to p are to be J 



the following we will explain why i t  is possible to search along 

one path only. 

Let P and P k l  be two polytopes that are to be merged. Then 
' J  

they are separable by a hyperplane x l  = c  for some c .  Let P . .  
1 J 

( P k / )  be the left (right) polytope with respect to the 

separating. hyperplane. To determine one red facet of P.. with 
11 

respect to some vertex p of P k l  we traverse down the binary tree 

starting at the node representing P . .  and searching the d-D tree 
1 J  

associated with every node visited. A d-D tree stores .q-points 

of some "wrap around". Let W . .  be the "wrap around" connecting 
1 J 

polytopes P I  and P . Then again there .exists a separating 
J .. 

hyperplane x l  = c ' d -  that separates Pi and P.. This hyperplane 
J  

defines two closed half-spaces H r  and H containing Pi and P 
J  J  

respectively. Let P. be the right polytope with respect to the 
J  

separating hyperplane. Some of the facets of Pi and P were 
J  

deleted when W was computed, leaving S i  and S. as the sets of 
11 J  

the facets of P I  and P , respectively, of their remaining ."open 
J 

shells". Define P to be the polytope obtained as the 
H' 

intersection of all a f f t f )  for / ,  a facet of W . . .  Let p be 
' I  

inside P w  (i.e. i f  p is not inside P w  then at least one facet of 

P  must be red). Since p is inside of P w  and it is also in H .  np J  
(i.e. c' c c ) ,  it must be in ( P w  n H 1 .  But for every point x  

J 

from ( P w  n H ) x is beneath all the facets of S I  and therefore p 
1 

is beneath all the facets of S I  as well. The q-points for the 

'(cont'd) determined, we will search the d-D trees associated 
with the nodes of the binary tree along the path determined by 
the Left S o n  ,pointers. 



facets in S l  are stored in the d-D tree associated with the node 

pointed to by L e f t S o n  pointer of its parent node (i.e. the node 

associated with P. . and therefore the path determined by the 
1 1  

L e f t S o n  pointer need not be traversed. 

As f a p s  are deleted, the corresponding q-points are deleted 

from the d-D trees as well. Therefore a d - D  tree may not contain 

all the q-points it contained when it was originally created. 

Let W be the "wrap around" from which some facets have been 

deleted. The d-D tree corresponding to W is associated with a 

node in the binary tree representing some polytope P. The new 

facets that replaced the facets deleted from*r"i' must have been 

computedafter the facets of W were, and therefore their 

corresponding q-points must be stored in the d-D tree associated , 

with some nodes of the binary tree at a level higher than the 

node representing P. Since our search always starts at the 

highest level of the binary tree, we must have tested p against 

those relevant facets already and p must have been found beneath 

each one of them. 

To compute new facets (i.e. facets of the "wrap around" 

connecting two "open shells") we can apply the "gift wrapping" 

technique  hand-~apur(1970)l. This technique is based on 

Theorem 3.3. The principle involved here is to compute the 

facets of a convex hull from the known edges. We s t a r t  with an 

initial convex hull facet. Assuming that the facet is simplicia1 

it determines d (d-2)-dimensional edges. The initial facet is 

then rotated about each edge to obtain new facets. T h i s  process 



is repeated for every new facet and the edges determined by'\the 

facet. In the following paragraph we show how the initial 

can be obtained. 

7' 

Each one of the two "open shells" determines a set of "exposed 

edges" and a set of "exposed vertices" (i.e. the vertices 

contained in the exposed edges). Let V i  and V .  be the sets of 
J 

"exposed vertices" of Pi and P respectively. For every "exposed,' 
J 

edge" one of the two facets that contain this edge is known Bnd 
9 

the other facet needs to be computed. Let e be an exposed edge 

of P, and f the known facet that contains e. The initial facet 

can be computed by seeking among all the hyperplanes determined - 

by the edge e and a point from V, the one such that all other 
J 

vertices of V .  are beneath this hyperplane. b 
J 

k 
To compute the facets of the "wrap aroundw efficiently, we 

3 

introduce a new representation for vertices, facets and edges. 

For every vertex we generate a unique vertex number, a positive 

integer. A simplicia1 facet can then be represented by a vector 

of length d that contains the generated vertex numbers of the d 

vertices that define the facet, in ascending order; Similarly, 

to represent an edge we use a vertex of length ( d - I )  containing 

the vertex numbers of the vertices that determine the edge, also 

in ascending order. 

As the new facets are computed, they are stored in a queue which 

we. call F o c e t Q u e u e .  In this queue a facet is represented by its 
- 9  . 

vector. I f  (w.l.o.g.1 i p , ,  . . . ,  p d )  is the set 3 vertices that 



determine a new facet and (n,, .... nd) its corresponding 

vector, then every n l  for 1 5 i 5 d can be used as a label for 

an edge ok this facet. An edge will 'have a label n i  i • ’  it is 

determined by the set of vertices { p , ,  . . . . pd) - { p i  * 
Therefore, a vector represents not only a facet but also 

the labels of 

The new edges are stored in a height balanced AVL tree 

[~ho-~opcroft-~llrnan(1974)l. At the time of inserting an edge as 

a node into the tree, we 'also store a pointer pointing to the 

facet that contains this edge, stored in F a c e r Q u e u e .  Two edges 

e  and e with vectors ( I  ... , r d )  
1 1 and j ,  . . . #  J &  

respectively, are compared lexicographically by the following 

rule: 

Let k be the smallest subscript for which 1 # j k .  

I f  i k  < j k  then e l  is "smaller" than r . 
/ 

Else e l  is "larger" that e . 
J 

I t  is possible that an edge of a newly computed facet is a l r e a d y  

present in the tree. This means, that the edge is now associated 

with two facets an3 therefore need not be considered any 

further. This can be indicated by changing the edge label in the 

vectors of both facets in F a c e t Q u e u e  to its negative value. When 

3 f a c e t  from t h e  F o c e t Q u e u e  is considered, new facets are 

computed only f ~ r  those edges for which the facet label is 

psitive. For a given edge e we consider only the two sets of 

"exposed vertices" as possible candidates for the vertex that 

will determine t h e  new facet containing e. These sets are only 



subsets of the entire set of vertices of the resulting polytope, 

which contributes to the efficiency of the algorithm. 

Every one of the two 'polytopes being merged has its own 

b a c e r ~ L l s t  and V e r t e x L r s t .  We append one to the 2nd of the other 

thus 9taining only one F a c e t L r s t  and only one V e r t e x L i s t .  AS 

new facets are being computed, they are added to the end of 

Facer L1 3 r . The update of the F a c e t  V e r t  r c e s ,  V e r f  e x F a c e t  s  and 

E a c e f N e r g h b o r s  lists is, as we have shown for the Facet Problem 

implementation of the on-line algorithm, proportional- to the 

number of new facets mmputed. 

Chand and Kapur presented a very clever way of 'computing the new 

facets from the known edges  hand-~apur(l970)I. We will not 

describe the details of their technique here, but refer the 

reader to their publication. 

4.1.1 The Algorithm 

d Input: Set S of n points, S S R , and dimension d. 

Output: Description of the facets of P = CH(S). 

Step 1 :  {Sort] 

Sort point of S with respect to the value of the first 

coordinate. 

Let S = i p , ,  . .. , p , )  be the sorted set. 



Step 2: 

If n I d then do 

Construct the convex hull of S  by using any trivial 

.algorithm and stop. 

Else 

Do Step 3. 

Step 3: 

1 .  {Divide] 

Set k  = \ n / 2 ]  and divide S into 

S I  = ( p l ,  ... , p k l  and 

- S 2  - i p k + l ,  * - * t  p n l 0  

2. IConquerI 

Compute P I  = C H ( S I )  and P 2  = C H ( S , )  recursively. 
L 

3. {~erge) 

M e r g e  the two convex hulls to form P = C H ( P ,  U P , ) .  
L 

Theonly non-trivial part of this algorithm is the M r r g r  

procedure in Step 3 which combines two convex hulls. Following 

is an outline of the steps of this procedure. ---" 

.hie r g e 

1 .  Determine facets that need to be deleted. 

a. Deternine one facet that needs to be deleted from one 

polytope for every vertex of the other polytope and vice 

versa . 



b. Use Peel r n g  process to determine all the other facets 

that need to be deleted. 

2. Compute new facets. 

3. Store new 'facets in a d-D tree. 

4.1.2 Data - Structures 

A node in a d-D tree stores the same information as specified in 

Chapter I 1 1  for the Facet Problem solving implementation of the 

on-line algorithm. 

/ 
, z- 

Vert exLi st 

Vertex - an. array, original coordinates of a vertex, 

VerrexNo - a positive integer generated to represent a 

vertex, %- 

Flag - used to mark and unmark this record,' 

FirstVF, LastVF - pointers to the first and the last record, 

respectively, of VertexFacet list associated with this 
4 

vertex, 

J f l  PrevVerl ex, NextC'ert ex  - pointers to the previous and the 
/ 

next record, respectively, in Vert exLi st.. 

F a c e t  Li s.t 

F a c e i  - an array, facet normal representing a facet, 



Poi nt X - an array, coordinates of point x. to which the 

origin of the coordinate system was transformed when a facet 

represented by this record was computed, 

Node - points to a terminal node in the d-D tree which 

stores point q associated with this facet, 

Flag - used to mark and unmark this record,. 

Fl rstFV, LastFV - pointers to the first and the last record, 

respectively, in Facet Nel ghbors list, 

F l  rstN, LastN - pointers to the first and the last record, 

respectively, in Nel ghbors list, --. a 
\ 

PrevFacet , N e k  acet - pointers to the previous and the next 

record, respectivel~y, in Facer Li s r . 

Vert exFacer s ,  'Facet Nei ghbors.,, FacetVert I c es and N e r  ghbors lists 

store the same information as specified in Chapter 111 for the 
- 3 

Facet Problem solving implerngdtation of the on-line algorithm. 

A node in the binary tree stores the following: 
'r 

TreeNode - points to the root node ocf a d-D tree asssociated 
P . .  8' > 

with this n o F ,  

PointX -T$ array, coordinates of point x to which the 

origin of the coordinate system was transformed when the 

facets of the "wrap around" represented by this node were 

computed, 

LefrSon, RightSon - pointers to the left and the right son 

nodes, respectively, in this tree. ri A 



F a c r t Q u r u e  

F V e r t l c r ~  - an array, contains d vertex numbers of the 

vertices that are contained in this facet, in ascending 

order, 
\ 

b ' a c e t  - poin~s to the facet record in F a c e t L i s z  associated a 
# 

with this facet. C 

A node in the AVL tree stores the following: 

L V e r r i c e s  - a search key, an array containing ( d - 1 )  vertex 

numbers of the vertices that are contained in this edge, in 

ascending order, 

F Q u e u e  - points to the facet in F a c e t Q u e u e  that contains 

this edge, 

S m a l l S o n  - pointer, points to the son node with "smaller" 

-, value of search key than the value of search key in this 

node, L a r g e S o n  - pointer, points to the son node with 

"larger" value of search key than the value of search key in 

this node. 

4.1.3 Computational Complexity 

Step 1:  

The amount of time needed to pre-sort the points of S is 



Step 2: 

I f  n I d the construction of P = CH(S) can be done in 

O(dFdtn) operations. 

Step 3: 

a, Let T(n,d) denotes the time needed by the algorithm to 

compute P = CH(S). Then assuming that n is a power of 

two we have the following recurrence relation: 

T ( I ,  d) = constant 

T(n,d) = 2T(n/2,d) + M ( - , d l  

-/-re M(n,d) denotes the time it takes to compute the 

convex ~$ull of the union of two polytopes with n/: 

vertices each. 

The solution to this recurrence relation i s  obtained by 

establishing an upper bound on M(n,d). To merge two 

polytopes we do the following: 

1 .  For every vertex of one polytope determine a facet 

(if it exists) of the other polytope such that the 

vertex lies beyond it, and vice versa. 

The height of the-binary tree is [logn]. 

Let F ,  be the number of facets of a "wrap aroundw 
rn 

connecting two d-polytopes P I  and P 2  of O ( n )  

vertices each. Then the height of the d-D tree is 

[10gF,,~] and the tree can be searched in 



G)(dlogF, ) experted time or O(dF, ) time in the& 
rn I n 

worst case. 

Running Time: 

O(dnF, ) in the worst case or , n 
O(dnlognlogF, ) expected time. , n 

2. Determine all the other f.acets that need to be 

deleted. 

The determination of facets that need to be deleted 

is proportional to the number of of facets found 

which can be O(F ) in the worst case. These facets 
d, n 

have to be deleted from the FacetList which takes 

O(dFdrn) operations, and also from the d-D tree. 

which can be done in O(dF logF, ) operations. 
dfn I n 

Running Time: O(dFdInlogF, ) in the worst case. 
f n 

3. Compute new facets. 

To compute new facets using the "divide and conquer" 

technique takes O(dnF, ) operations in the worst 
I n 

case. 

Running Time: O(dnF, ) in the worst case. 
f n 

4. Store new facets. 

New facets have to be stored in the d-D tree which 

takes 8(dF, logF, ) operations and also in 
t n rn 

Facet Li st which takes O(dF, ) time. 
I n 

Running Time: 8(dF, logF, ) expected time and in 
, n .. n 

the worst case. 



The upper bound on F * , n  i s  equal  t o  t h e  upper bound on t h e  

number o f  f a c e t s  computed t o  o b t a i n  P = C H ( P ,  U P , ) .  Since P, - 
and P2 a r e  s e p a r a b l e  by some hyperplane H ,  F, i s  a l s o  equal  t o  , n 

t h e  upper bound on t h e  number of  edges of a  f a c e t  t h a t  i s  

ob ta ined  when P i s  c u t  by H .  S ince  in the  worst case  O ( F  ) 
d , -n 

f a c e t s  of P can be c u t  by H I  F ,  = F 
d l  n 

. Therefore ,  our 
t n  

o f f - l i n e  a lgor i thm computes t h e  f a c e t s  of a convex h u l l  of n 

p o i n t s  in  R~ in  O ( d n F  ) time in the  worst c a s e .  
d l  n 



CHAPTER' V 

EXPERlMENTAL RESULTS 

The on-line Facet Problem solving convex hull algorithm, 

presented in Chapter 1 1 1 ,  has been implemented using the Pascal 

language. We have tested the performance of the algorithn on 

randomly generated data sets with normal and uniform 

distribution and on "real life" data set. The convex hulls were 

computed for two, three, four and five dimensional data sets. 

The .results obtained are presented in tables 1 ,  2 and 3. 
. 

The "real life" data set consists of 2,998 records of cervical 

cell data, each cell represented by a six-dimensional feature 

vector. Because of a very large number of facets computed for a 

high dimensional data set of this size, we considered only up to 

five features. We have observed that a large number of points, 

when tested against the convex hull, are found to be in its 

interior. These are what we call "throw away" points because 

. , t h e y  require no further processing. The larger the number of the 

"throw away" points, the more efficient our algorithm is. 

The number of facets of the resulting polytope in comparison to 

the total number of facets computed seems to be quite small. 

Even so, we have a very large number of points that do not cause 

computation of new facets (i.e. the "throw away" points). This 

would suggest that our algorithm is more efficient on average 

than Seidel's(l981) and Edelsbruner's(l987), where, because of 
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pre-sorting, new facets are computed for every point of the data 

set 

From the test results, we can see, that the d-D tree remains 

reasonably balanced throughout the computation. The maximum 

height of the tree does not increase significantly, although 

there was a considerable amount of updating bping don*. 

The test results show that as an incremental technique for 

computing convex hulls, our algorithm is efficient. I t  performed 

well on a "real lifen data set as well as on a randomly 

generated one. 



Table 1 :  Performance o f  the on-line convex hull algorithm on a 

cervical cell data set --- 

Dimension 2  3 4  5 

File size 2 , 9 9 8  2 ,998  2 , 9 9 8  2 , 9 9 8  

No. of vertices 15 48 109  250  

No. of facets 15 92 546  4 , 1 8 2  

Total no. o f  facets 

computed 

No. of "throw away" 

points 2 , 9 2 4  2 ,801  2 , 6 1 6  2 , 4 1 5  
Y 
L.2- 

Average no. of terminal 

nodes searched 6  8 42 207  

Average no. of termina& 

nodes in the tree 

Maximum height of 

the tree 



Table 2: Performance of the on-line convex hull algorithm on a 

uniformly distributed data set -- 

Dimension 2 3 - .  4 5 

~ i l e  sizq 

No. of vertices 

No. of facets 

Total no. of facets 

computed 

No. of "throw away" 

points 

Average no. of terminal 

nodes searched 

Average no. of terminal 

nodes in the tree 

Maximum neight of 

the tree 



Table 3: Performance of the on-line convex hull algorithm on a 

normally distributed -- data set 

Dimension 

File size 

No. of vertices 

No. of facets 

Total no. of facets 

computed 

No. of "throw awayn 

points 

Average no. of terminal 

nodes searched 

Average no. of terminal 

nodes in the tree 

Maximum height of 

the tree 



CHAPTER VI 

CONCLUSION 

One of the problems an on-line convex hull algorithm has to 

solve is the point inclusion problem in a convex polyhedron. The 

existing on-line convex hull algorithms [Preparata-Shamos(i985), 

~ey-ward(1985)l do not solve this ,problem efficiently. For a 

polyhedron P determined by a set of n goints in R~ their 

solution takes t3(FdIn) time on average and in the worst case ,  / 

.where F is the number of facets of P. Seidel(l981) and 
d t n  

Edelsbruner(i987) also use an on-line technique in their convex 

hull algorithms, but avoid the time consuming "point inclusion" 

test b y -  pre-sorting the . entire point set and the resulting 

algorithms are off-line. We have proposed a method which solves 

the point inclusion problem in 0(dlogFdpn) expected time. I n  

short, we transform the point inclusion problem to the nearest 

neighbour problem and we use a d-dimensional tree structure, 

called the d-D tree, to'search for the nearest neighbour. 

When searchin,g for the nearest neighbour, the search space is 

partitioned into regions. We have shown how the number of nodes 

examined by the search can be reduced by creating "cells" within 

the regions. A cell of a particular region tightly encloses the 

set of domain points contained 'in the region. We have also 

proposed a way of dynamically updating the d-D tree in time 

proportional to dH where H is the height of the tree. 



We have used the above results in the design of two convex hull 

algorithms for higher dimensional data sets. The first algorithm \\ .. 
is an on-line algorithm which can be applied to a non-simplicia1 

data set. I t  can be used to solve either the Facial Lattice 

Problem or the Facet Problem. The Facet Problem is solved 

without maintaining information about all the faces of a convex 

hull polytope and this is the only algorithm known to us to do 

so. For a set of n points in R~ the algorithm solves the Facet 

4 F Problem in O ( d  nFd-, , d-2, ) time in the worst case. The Facial 

Lattice Problem can be solved in O(dnFd-,,n log,F ) expected d,n 
time or O(dnFdPnlogF ) time in the worst case. This expected 

d ,  n 

time is the best expected time known to us for an on-line higher 

dimensional convex hull algorithm. 

We have implemented the on-line algorithm for the Facet Problem 

in Pascal language. Our test results show, that when the convex 

hull is ccmputed for either a randomly generated data set or a 
L5 

"real worldw data set, there are a large number of points which, 

when tested against the current convex hull polytope, are found 

to be in its interior. This finding contributes to the 

efficiency of our algorithm since we are only spending expected 

8(dlogFd,, ) time to process these points, where FdPi is the 

.number of facets of the current d-polytope determined by the 

first i points. 

The "divide and conquer" principle has been used by Preparata 

and Hong(1977) in the design of a convex hull algorithm for two 

and three dimensional data sets. The technique used by them to 



deternine facets that need to be deleted when two polytopes are 

merged cannot be extended to higher dimensions. We have solved 
(4 

this problem by transforming it to a nearest z2ighbour problem. 

To compute new facets we are using the "gift wrapping" 

principle. In our implementation the number of vertices that 
-~ -,=' 

need to be considered when new facets are computed is only a 

subset of the number of vertices of the.resulting polytope. The  

worst case performance of this algorithm is O ( d n P  1 .  
d , n  

6.1 Open Questions 

d The nearest neighbour problem for a domain of n points in R in 

a dynamic environment is solved in O(d1ogn) expected time. The 

q-points that we generate for the facets of a convex polyhedron 

( w i t h  respect to some point x interior to -the polyhedron) form a 

special geometric structure. Whether this structure can he 

exploited successfully to develop -an algorithm that would solve 

the nearest neighbour problem in O(d1ogn) time in the worst ease 

is an open question. 

-. 

Our on-line algorithm, presented-in Chapter 111, maintains the 

d-D tree data structure dynamically. Generally, it is hard to 

predict how the tree will "grow". We conjecture, that i f  the 

tree is updated randomly, the expected height of the tree grows 



logarithmically with the number of terminal bodes i n  the tree. 

Whether it is possible t b  update the tree sb that it will remain 
balanced, od to balance the tree without recreating it is an 

open question. 

In order for the "divide and conquer" technique t o -  be extended 
7 

to higher dimensions, the following two problems have to be 

solved efficiently:' 

1 .  The determination of the facets that need to be deleted 

during the merge step. 

2 .  The computation of +!he new facets during the merge step. 

In this thesis we have solved-efre first problem efficiently. To 
'1 

compute new facets, we use the "gift wrapping" technique.   his 

technique computes a facet in ~ ( n )  time. Whether there is a 

technique that would compute a facet in O(1ogn) time, is an open 

quest ion. 
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