
C#nadian Theses Service Sendce des theses CaRadiennes

Ottawa, Canada -
K I A ON4

NOTICE

The quality of this microform is heavi~de~erdent
quatity of the original thesis submitted for

reprodudion possible.
- Every effort has been made to ensurahe highest quality of

If pages are missing, contact the uhniversity which granted
the degree.

, Some pages may have indistinct print especialty if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy. '

Reproduction in full or in part of this microform is verned
by the Canadian Copyright Act. R.S.C. 1970, c. r30, and
subsequent amendments.

La ualit6 de cette m i c r o f h e d6pend grandemen! de la 9 qua it6 de la these soumise au microtilmage. Nous avons
tout fait pour wsurer une qualitd supdrieure de reproduc
tion.

e des pages, veuillez communiquer avec
I'universrt maT' qui a conf6r6 te grade.

La qualib d'impressbn de certaines pages peut larsser A
ddsirer, surtout si les pages originales ont 414 dactylogra-
phibes A I'aide d'un mban use ou si I'universittl nous a fad
parvenir une photocopie de qualit6 infdrieure.

.La reproduction, Mme partielle, de cette microforme est
soumise A la toi canadienne sur le droit d'auteur, SRC
1970, c. C-30, et ses amendements subsdquenls

COMPUTING CONVEX HULLS IN HIGHER DIMENSIONS

Helena Klim,

B.A.(Pure-~ath), University of Calgary, 1971

Extended Studies Diploma, Simon Fraser University, i 9 8 3

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of
L

Computing Science
/

@ Helena Klimo 1988

SIMON FRASER UNIVERSITY

December 1988

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Permission has w e n granted
to the Nationalm Library of
Canada to microfilm this
thesis and to lend or iell
copies of the film.

m e author (copyright owner)
h a s r e s e r v e d o t h e r
publication rights, -and
neither the thesis ndr
extensive extracts from it
may be printed or otherwise
reproducCd without hiu/her
written permisuion.

L8 autoriaation a kt& accfordba
h la ~ibliothhque -tionale
du Canada de microfilmer
cette these et de prater, ou
de vendre des sxempIairea du
film.

L'auteur (titulaire du droit
d'autemr) se r6uerve leu
autres droite de publication;
ni la thbue ni de longa
extraits' de cell-e-ci 'ne
doivent atre imprim6a ou
autrement reproduits aana .on
autoriaation &rite.

ISBN 0-315-48787-9

APPROVAL

-

Name: Helena a Klimo

Degree: Master of Science

Title of thesis: COMPUTING CONVEX H U L L S ~ ~ N HIGHER DIMENSIONS

Examining Committee:

Chairman: Dr. J. Peters

I/ w
'Dr. Binay . Bhattacharya
Senior Sup

Dr. Pavol Hell /

Dr. Anthony H. Dixon
External Examiner

0 .

Date Approved: December 12, 1988

PARTIAL COPYRIGHT LlCENSE

I hereby g ran t t o S l m n Fraser' Un l ve rs l t y the r i g h t t o lend
- . ' .

my thes is , p r o j e c t o r extended essay (+he t l t l e o f wh i i h i s shown &&ow).

t o users o f the S i m n F.raser Un i ve rs i t y L ibrary , and t o make p a r t i a l o r
a .

s i n g l e copies on ly f o r such users o r i n respons? t o a request from the

?-- I i brary o f any o ther un i ve rs i t y , o r o ther educ#t iona l i n s t i t u t Ion, o n
i t s own behalf o r f o r one o f i t s users, I f y t t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s wo rk - f o r scho ld r l y purposes m y be granted

by me o r the Dean of Graduate Studles. I t i s understood t h a t copying

o r publication o f t h i s work t o r f i nanc ia l galn sha l l not be al lowed

wi thout my w r i t t e n permission.

' T i t l e o f Thes i s / ~ r o j e c t / ~ x t e n d e d Essay

Gnnput i n g Convex H u l l s in H i g h e r Dimensions

Author:
/

(s igna tu re)

H e l e n a Klimo

(name

December 14, 1988

In this thesis we show how a point inclusion problem in a convex

d polyhedron, determined by a set -b•’ n points in R , can be solved

in B(d1ogF) expected time, where-F
d, n d, n

is the number of facets

of P . We also show'%ow this result can be used to get fast
> .

on-line convex hull algorithm and how the "divide and conquer"

technique, already used to compute convex hulls of two and three

dimensional data sets, can be extended to higher dimensions.

The on-line algorithm uses the "beneath beyond" technique and
t

can be applied to a general data set to solve either the Facet

Problem (without tpaintaining some description of all the faces

of a, convex hull) or the Facial Lattice Problem. The "divide and

conquer" technique solves the Facet Problem for simplicia1 data
*
J

sets.

i i i

DEDICATION

To my husband, P a u l

and our c h i l d r e n P a u l j r . and Monica

ACKNOWLEDGEMENTS

I wish to express =my sincere' appreciation to my thesis

supervisor Dr. Binay Bhattacharya for suggesting the topic and
-

for his constant encouragement, unfailing interest and patience

shown to me during my research.

Thank you, Binay.

TABLE OF .CONTENTS

Approval ... i i
Abstract .. i i i
Dedication,... iv
Acknowledgements . , , : , . o v

List of Tables .. vii -7
List of ~igures

I.

1.2 computational complexity and Lower Bound 6
1.3 Solving the Facet Problem and the Facial Lattice

/ Problem in Higher Dimensions 7
11. The Point Inclusion Problem in a Convex Polyhedron ..,.. 19

2.1 The Voronoi Diagram 19 .

2.2 The d - D Tree Data Structure 21

2.3 Transformation,of a Closed Convex Polyhedron into a
-Voronoi PolyhecYron 27

111. The on-line Convex Hull Algorithm 30
3.1 ImplementationF Details and Computeion Complexity 30

3.1.1 The Algorithm 33
4

* 3.1.2 The Facial Lattlce Problem 35
3.1.3 The Facet Problem 47

. '* , IV. The Divide ar,d Conquer Algorithm 60

2.1 Implementation Details and Co utational Complexity 60 P 4.1.1 The Algorithm 70
4.1.2 Data Structures 72

4.1.3 Computational Complexity 74

V , Experimental Results .. G................................ 78
- , VI. Conclusion ... 83

,
6.1 Open Questiofs 85

*
Bibliography'.................................. 87 -

' 7

Index-. :. . . . ;. d.. 92

vii

LIST OF TABLES 4 *
Table Page

1 Perfdrmance of the on-line convex hull algorithmon a cervicaL cell data 80
b

2 Performance of the on-1in.e convex hull algorithmon a P uniformly distributed data set 81,
3 -

3 Performance of the on-line convex hull algorithmon a
normally distributed data set 82,

b:

J

LIST OF FIGURES

tL Figure Page

I 2 2

1 . 1 ~ Convex hull of a set of points in R 2
\ 1

3
1 ? 2 - Updating convex hull with a new point in R 12

B

...... 1.3 Representation of a facet as a union of simplices 1 4

2 2.1 Voron'oi diagram of a set of pints in R 21

2 .2 Subregion and a cell in R' as represented by a 3t

..................... non-terminal node of a d-D tree 2 5

2.3 Polygon P transformed into a Voronoi polygon 2 9

3 .1 Three types of,facets with respect to point p. 37
3 .2 Two y e l l o w facets of a convex hull polytope before. and

after update .. 5 2

3
4.1 "~erging" of two polytopes in R 64

V

4 . 2 " W r a ~ around" port ion connecting polytopes P. and P.
extended to form polygon P w and an& it4
transforillation into a Voronoi- polygon 64

The'convex hull of a finite set S of n points, S being a
+I-- +& of a d-dimensional Euclidean space pd -fbr 2 2, .is one

*

P
;ubs;t

of the

basic and important geometrical constructs. Stated in a very
1 .2 ..A

simple way, it can be defined as the smallest convex set

containing a given set of points [~ig. 1;1].

-P

The convex hull plays a central role in the field of

computationah geometry. A number of geometrical problems can be
4

solved by transforming the original problem to the convex hull

problem. There are many areas other than computational geometry
i

where this geometric construct finds practical applications:

image processing and pattern recognition, computer graphics,*>
r; .d'

' engineering, operationsL-"research, design authat ion, just to

A name few. In pattern recognition for example, questio s such as
4

separability or existence of linear decision rules can be easily

answered through the comput at ian of convex hulls

%-b [~osenfeld(l969), ~uda-Hart(l9731, ~oussaint(l978),

~kl-~oussain,t (1978-1) 1. The following !references discuss some
I

interesting problems where the determination of a convex hull is

needed: ~reemgn-shapira (l975), ~ilbert-Pollak(l366!,

2 Fig. 1 . 1 : Convex hull of'a set of points in R .

1 . 1 The Convex Hull Problem
7-

h

i

Various terms and definitions are going

will be used in this and subsequent sections.

them can be found in Grunbaum(l967).

A set S G called a f f ine i f for each

be presented

The

pair of

which

reference

points x ,

from S, the line through x and y is contained in S. The affine

hull of S, denoted as aff(S), is the intersection of all affine

sets containing S. A set S is affinely independent i f no point

of S is contained in the affine hull of the remaining points of

S. Otherwise the set is called affinely dependent.

A set S is of dimension k, k 5 d l i f S contains (A + /) affinely

independent points and every subset of S with (. A + ?) pcints is

affinely dependent.

A hyperplane in Rd, denoted as H~-', is an af fine hull of d

affinely independent points. In a mathematical way a h,yperplane

can be defined as follows:

Definition 1.1 .
A hyperplane H d:l is the set of points x = (x l l . . . , l d)

from Rd which satisfy the equation of the form

where c is a real number and F ' = (nl, . . . ,nd) i (0 , . . .

In this definition a (d+/)-dimensional vector 7i = (nI, . . . , n d ,
-c) defines a unique hyperplane and is called a determining

vector of that hyperplane. A normal to H d - l is a vector parallel
\

to 77. Every hyperplane defines two closed half-spaces whose

intersection is the hyperplane itself %nd whose union is ihe
d space R . A support,ing hyperplane of a set S is a hyperplane

that intersects S and S is contained in one of t h e two closed

half-spaces defined by the hyperplane.

A. set S is convex i f for each pair of points x , y from S, all

pcints in the straight line segment between x and y also belong

tc S. k convex hull of a set S , denoted as CH(S), is the

intersection of al-1 convex sets containing S. A convex hull of a

u finite d-dimensional set of points is called a d-polytope. A

finite set determines a unique bounded convex polytope.

The objective of a convex hull algorithm is the description of a

convex hull polytope. A polytope can be described by means of

its boundry which consists of faces. A face of a polytope P is
,

4

the intersection of P with its supporting hyperplane. A k-face

of P is a k-dimensional face of P; A (d-])-dimensional face of a

polytope is called a facet, a (d-2)-dimensional face is called

a n edge, a (d-3)-dimensional face is a ridge and a 0-dimensional

face is a vertex. Polytope P itself is considered a d-face af P
B

and the empty set is a (-])-face of P. For every face f of P, f

is the convex hull of all the vertices of P that are contained

in / and f is also the intTisection of all the facets of P that

contain f.

Some types of polytopes deserve special attention. A d-simplex -
(3' briefly, a simplexj is a convex hull of (d + l) affinely

::dependent points. I: is the simplest type of a d-polytope. In

twc and three dimensions they are triangles and tetrahedrons

respectively. A simplicia1 polytope is a polytope each of whose

facets are simplices' (i.e. (d-/)-dimensional faces containing

exactly d vertices). A d-polytope whose'every vertex is incident

with exactly d edges is called a s imple polytope.

Faces of a polytope can be graphically,represented by a f a c i a l

graph. I t is an acyclic directed graph with one source and one

sink. The nodes of this graph are in one-to-one correspondence

with the faces of the polytope and there is an arc from

k-dimensional face f to (k-1)-dimensional face g i f g is

contained in f. In this case g is called a subface of / which we

denote as (g s u b f) , and f is called a superface of g deno ted as

(f supe r g). The Facial graph of a polytope P will be deno ted as

fgCP). The size of the facial graph of P is the number of arcs

plus the number of nodes in fg(P).

/There are three fundamental versions of the convex hull problem:

The Facet Problem

d Given a set S of n points in R , enumerate all facets of

CH(S), where each facet is represented by the set of

vertices contained in this facet.

The Vertex P oblem
,f d

Given a set S of n points in R , identify those points

of S that are vertices of CH(S). -- - -~ -

- - - - - - - - - - - - - - - - - -
'Plural of simplex.

The Facial Lattice Problem

d Given a set S of n points in R , produce the complete
i

facial lattice of CH!S), i.e. all the faces along with

their inclusion relationship.

The Facet Problem and the Facial Lattice Problem are

asymptotically at least as hard as the Vertex Problem since the

output of the former becomes a valid solution to the Vertex

Problem. For the same reason the Facial Lattice Problem is

asymptotically at least as hard as the Facet Problem.

Because many practical applications of the convex hull construct

require facet enumeratGon, we have focussed on solving the Facet

Problem and the Facial Lattice Problem only.

1.2 Computational Complexity and Lower Bound

For an arbitrary finite set of n points in the plane, computing
-

the convex hull is known to have Q(n1ogn) lower bound

[~ao(l981)] which is restricted to the quadratic decision tree

model. Several algorithms achieve this lower bound. Since any

2 set of points in R car. be trivially embedded in R~ for d > 2, a

lower bound result obtained for d = 2 remains a valid lower

bound for d > 2 as well [Preparata-Shamos(l985)l.

When establishing a bound to the running time\of a cohex hull

algorithm, it is notionly the input size that plays an important

role, but also the size of the output produced. This is due to

the fact that for a d-polytope with n vertices in R~ the number

of facets can be as high as O((d/2] ! n Id'*]) [McMullen(l970)] and

as low as ~ (n f [Barnette(l973)], which for d > 3 becomes a

significant range. I t is therefore desirable to-include the size .
of the output as an additional measure to the time complexity

function. The following section provides a limited overview of

the convex hull algorithms known to us for data set-s in

dimensions higher than two.

1.3 Solving - the Facet Problem -- and the Facial Lattice Problem in -
Higher Dimensions

In this se-ction we will be talking about on-line and off-line

convex hull algorithms. An algorithm which requires all of the -
data points to be present before any processing begins is called

off-line. In many geometric applications, particularly those
I

that run in real-time, this condition cannot be met. The

computation must be done as the points are being received. In

general, an algorithm that cannot look ahead at its input is

referred to as an on-line.

Finding the convex hull of a finite set o f points in R* was one

of the first problems explored in the field of computational

geometry. A variety Q • ’ algorithms have been proposed and . l

analyzed for the planar convex hull problem [Graham(1972),

 irkp pat rick-Seidel(l986)I. Graham's(1972) algorithm was

historically the first publication to show that the planar

convex hull can be computed in Otnlogn) time in the worst case, -
1

which was later proved by ~ao(1981) to be the optimal time.

For a set of points in R 3 Preparata and Hong(1977) presented an
a

algorithm which is based on what is known as the "divide and

?

conquerw principle. The strategy employed is that the problem is

first subdivided into subproblems of the same kind (divide), the

subproblems are then recursively solved (conquer), and finally,

the resulting convex hulls are combined to form a global

solution (merge). The merge step is a crucial component of this
1

method. Any algorithm that is based on the "divide and conquer"

principle is efficient only i f the solutions to the subproblems

can be combined quickly. Let PI and P 2 be two non-intersecting

convex hulls. To merge PI and P 2 means to determine the convex

hull CH(P1, P2) of P1 and P 2 . This is accomplished by

constructing a "cylindrical wrapw which supports P, and P 2 and

by removing from both PI, and P2 the respective portions which

become internal to the resulting polytope. Preparata and

~ong(1977) believed that the construction of this wrap is

entirely guided by a circular sequence of vertices and edges
d

.which are successively acquired by the advancing steps of the

wrapping process. As was later noticed by ~delsbruner(1987) this

may not always be true - "a single vertex of a recursively

constructed convex polytope can be encountered more than once

when it is merged with another disjoint convex polytope". For a

set of n points in R~ the worst case computational complexity of

this algorithm is O(n1ogn) which is optimal by Yao's(1981)

results. This approach to solving the convex hull problem has

not yet been extended to dimensions higher than three.

The first general algorithm offering a method for solving the

Facet Problem in any dimension d 2 2 was described by Chand and

~apur(1970).' Their idea is based on the observation that exactly

two facets of a convex polytope intersect along one edge. The

algorithm uses the so called "gift wrappingn principle where the
L

polytope is generated by systematically oomputing the facets

from the edges of the desired convex polytope. The computational

complexity of this algorithm was analyzed by Bhattacharya(l982)

who showed that in the worst case the time to compute the convex

hull of n points in R~ is bounded above by

O w ' d t + d 3 ~ logn) , where F dl n d, n
is the number of facets of

the computed polytope. A major drawback of this algorithm is

that it computes correctly simplicia1 polytopes only. When more

than d points lie in a convex hull facet, the determination of

the edges associated with this facet is equivalent to

determining the convex hull of the points contained in the

facet. This may be considered as a convex hull problem in

(d-/)-dimensional space and Chand and Kapur's algorithm can be

applied again to solve it. ~owe'ver, due to the recursive nature

of this approach the implementation is difficult. ~wart(19853

later applied the "gift wrapping" principle to produce a

structured representation of the convex hull, the facial

lattice. When applied to this problem it has the worst case time

complexity O(dnL
dtn

+ d'~~, nlognl for simplicia1 polytopes or

for non-simp1 ic ial ones, where L
dtn

the size of the facial lattice produced.

For a long time the "gift wrapping" method was the only known

general technique to compute the convex hull of a finite point

-.
set in d-dimensional space. A n'ew technique, dubbed by Preparata

\ and Shamos(1985) as the "beneath beyond" method was proposed
-\

independently by Kallay(1981), Seidel(l981) and Jozwik(1983) and

was later also adopted by Rey and Ward(1985) in their convek

hull algorithm. In a non-mathematical way it can be described as

follows. -

Given, a convex hull P of some point set and a new point p .

Imagine point p sending out an intense light. I f p is external

to the current convex hull then all facets of P that receive

light from this point are discarded, leaving the convex hull as'

an open shell with some "exposed edges" (i.e. the edges

surrounding the opening of the shell). Every "exposecledge"

together with the point p determines a new facet [~ i g . 1.21. I f

p is ndk external to the current convex hull, then p is already

contained in P and need not be considered any furt-her - p

becomes a "throw away" poiAt. The approach of this technique is

incremental, meaning that the points are considered one at a

time and the convex hull is updated every time a point, lying

outside the convex hull computed so far, is encountered. This

technique exhibits, in addition, the on-line property desirable

by many applications.

Seidel's(l981) algorithm produces a facial- lattice of the convex

hull and the approach employed here is analogous to the "beneath

beyond", only in the dual space. To achieve the best possible

running time a point, when it is considered, has to lie outside

.of the current convex hull. To guarantee this condition, the

Current convex hull and a
new point p.

Convex hull as an open shell.
with "exposed edgesn.

Updated convex hull to include
P

3

3 Fig. 1.2: Updating convex hull with a new point in R .

first step of Seidel's algorithm pre-sorts the initial point set

into a lexicographical order. This means that the entire point

set has to be known in advance and the incremental approach used

here for computing the convex hull loses its on-line property.

Also, as a result, of ,. pre-sorting, every new point causes an

update of the convex hull, which may be seen as a disadvantage

of this approach (i.e. no "throw away" points). For a fixed

dimension d, the worst case computational complexity of Seidel's

algorithm is O(n1ogn + n [(d+')'2J) where, for even d,

O(n [(d+1)'21) is assymptotically equivalent to the largest

possible output size. Seidel(l981) also argued that the

algorithm is in the worst case optimal for even d. As was 1

shown by Swart(1985) this is true only if the complexity of - . ..
proble210measured -. _ in terms of the input size n alone. I f che

-.

complexity is measure&-in terms of the actual output size, the
.

algorithm can be far from opt imar>-h&lay-(1984) later shoved . -..
1. .

that the complexity of any incremental c6nvex h;>-clgprithm for
---1

n points in R~ is Q (n [(d+1)'2J) for a fixed d. This result makes ..\ 1

~eidel's(1981) algorithm worst case optimal (in terms of the

input size) for odd d as well.

Rey and ~ard's(1985) algorithm solves the Facet Problem of a

convex hull. This algorithm can be applied to compute
-- - --

non-simplicia1 facets but s u c h = m e t s Bra described as unions of
P

several simplices [Fig. 1.31. This solution to the problem of

degeneracies is theoretically incorrect. In Rey and Ward's

implementation, to establish that a new point is either interior

to Pi or that this new point is external to P,, the entire list

of facets of Pi has to be searched. Keeping in mind that the

Facet (a,b,d) may be represented
as a union of simplices (a,b,f),
(b,c,e), (cld,e), (a,f,e) and ,.
(bye,f).

Non-simplicia1 facet (a,b,c,d,e)
may be represented as a union of
simplices (a,b,c), (arcre) and
(c,d,e).

Fig. 1.3: Representation of e facet as a union of simplices.

number of facets, F d f i , of a d-polytope with i vertices can be

as high as O([d/2] ! i) this "point inclusion" test, :A. in a

convex polyhedron is of B(Fdti) complexity in the worst case and

also on average, which is considered to be a major drawbao of

this implementation. For a fixed d, the worst case computational
Ioiz--

complexity of the algorithm is O(n [d'2J'1). This worst cashe is

the same as the worst case of chand and Kapur's(1970) method.

Preparata and Shamos(1985) present an imp1,ementation of an

on-line version of the "beneath be-yond" technique, for higher

dimensions. Their implementation has the same drawback as Rey

and ward1s(1985), namely the 8(Fdri) "point inclusion" test. The

algorithm solves the Facial Lattice Problem for a fixed

dimension in the worst case time O(n This time applies

to degenerate, cases as well.

~defsbruner (1987) gives yet another description of the

implementation of the "beneath beyond" technique for higher

dimensions. This implementation is similar to SeidelLs(1981) but

no transformation to dual space is involved. The algorithm

produces a facial laftice of a convex hull and can handle

degeneracies. As in Seidel's implementation the entire point set

is pre-sorted as a result of which every new point c a q e s an

update of the convex hull. The worst case computational

complexity can be measured in terms of the input size only and

it is the same as the worst case of Seidel'sl'1981) algorithm.

According to Kallay1s(1984) result, this implementation of an

incremental technique is optimal.

The latest algorithm for computing the convex hull 02 a finite

set of points in higher dimensions has again been proposed by

Seidel(1986.). It introduces a new technique, a st-raight line

d shelling of a polytope. For a set S of n points in R , the first
*

step of the algorithm involves solving a linear program in (d-1)

variables and (n + l) constraints for every point of S, Due to

this step there may be objections to the practicality of this

A

approach which even Seidel considers to be well founded. The
<

algorithm either enumerates all the facets of a convex hull,

assuming that the convex hull is simplicial, or 5t constructs a

facial lattice a•’ a convex hull . i n the worst case time

complexity of ~ (n . ~ + F logn) or 0(n2 + L logn) respectively,
d, n dl n

for a fixed d. I f the complexity, of the problem is measured only
r

in terms of the input size n, then this algorithm has the worst

case time 0([d/2J!n[d'2Jlogn) which is the best worst case bound

known for any technique for odd d > 3.

3

Although the objective may be, in many instanCes, the

computation of just the facets of a convex hull, the problem of

aegenerate data sets has been solved by maintaining a facial

graph of all the faces. One open problem still remains: the

existence of an algorithm that would solve the Facet Problem for

a general data set, without maintaining some description of all

the faces, in time polynomial in n , d and F . Swart(1983)
dl n

elaborates on this problem and conjectures that it may be

possible to do so in time O((Fdln)2dd+410gn), which is

exponential in d .

One of the desirable properties of a convex hull algorithm is .

the on-line property. An on-line convex hull algorithm has to

deal with'the "point inclusion" problem. The existing on-line

higher dimensional algorithms [~reparata-~harnos(l985)~

~ey-~ard(l985)] solve this problem in 9(Fdfi) time on average

and in the worst case, vh$re Fd is the number of facets of a
I

d convex hull determined by a set,of i points in R . Seidel(l981)

and ~delsbruner(1987') use an incremental on-line technique in
\\._

their a l g o ~ t h m , but to avoid the time consuming "point

inclusion" test, they pre-sort the entire point set and the

- -
resulting algorithms are off-line. In this thesis we show how

the "point inclusion" problem can be solved in @(dlogF)
d, 1

expected time. We also show how this result can be used to get a

fast on-line convex hull algorithm and how the off-line "divide
<

and conquer" technique, already used to compute convex hulls of

two and three dimensional data sets, can be extended to higher

dimensions.

The on-line algorithm',we are proposing use% the "beneath beyond"

technique and can be applied to a non-simplicia1 data set. I t

car' be implemented to solve either the Facet Problpm in the
0

4 F worst case time O(d nFd-l,n d-2,n)l or the Facial Lattice

Problem in O(dnFd-, , logFd, n) expected time, or O(dnl'd, nlogkd, ,,I

time in the worst case. This expected time is the best expected

time of an on-line higher dimensional convex hull algorithm

known to us. Our on-line algorithm is also the only one known to

us that solves the Facet Problem for a n~n-simplicia1 data set

without maintaining some description of all the faces of a

convex hull. The off-line algorithm, based on the "divide and
'

conquer" technique, solves the Facet Problem for a simplicia1

data set and its computational complexity is O (d n F 1 in the
d , n

worst case.

I n the following chapter we show how the npo6nt inclusion"
s

problem in a closed convex polyhedron P I determined by a set of

d
n points in R , can- be solved in B(d1ogF) expected time,

d , n

where F is the number of facets of P. Chapter I 1 1 describes
d , n

and analyzes the computational complexity of the on-li-ne convex

null algorithm for each one of the two problems (i.e. Facial

Lattice Problem and Facet Problem). The convex hull algorithm

based on the "divide and conquer" principle is presented and

analyzed in Chapter IV. In Chapter V we disc

experimental results and in the last chapter we su

work submitted in this thesis and point to some Ld elevant
F

questions open to further research.

CHAPTER I I

THE POINT INCLUSION PROBLEM IN A CONVEX POLYHEDRON .

The point inclusion problem in a convex polyhedron can. be stated

as follows:

d Given a closed convex polyhedron P in R , determine i f

an arbitrary point p lies inside of P.

The solution to this problem, which we propose in this chapter,

is based- on the properties of an important geometric construct,

the -Voronoi diagram [~oronoi(l908)]. We construct the Voronoi

diagram as a first step of a transformation, where the point

inclusion problem is transformed to a nearest ne.ighbour problem,

and we use a d-dimensional tree data structure [~entley(1975),
'1 .

~ r i e d m a n - ~ e n t l e y - ~ i n k e l (1 9 7 7) I to search for the nearest

neighbour.

2.1 The Voronoi Diaqram --

One of the earliest definitions of what we now call the Voronoi

diagram can be found in Dirichlet(l850). More than half a

century later, mathematician G. Voronoi(l908) was the first to

study this diagram in details. Some other names such as

~irichlet(l850) tessellations, ~hiessen(l911) polygons and

Wigner-Seitz(t933) cells have been used in the literature, all

referring to the same diagram. In the remainder of this section

we derive the definition of this geometric construct.

Once more, let S be a set of n distinct points p,, ..., pn in
d R . For any two points p i , p with i # j , the locus of points

J

equidistant to pi and p is the perpendicular bisector B(pi ,pi)
J

of the line segment joining pi and p.. B(pi,pj) determines two
J

closed half -spaces H(pi .pi) and H(p. ,pi) the in'tersection of
J

which is B(pi ,pi) . The locus of points that lie as close or

closer to pi than to p . is the closed half-space x(P~,~,) that
J

1 contains pi . I • ’ pi t pi, H(pi ,pj) and H(P. ,pi) are uniquely
J

determined by B(pi,p,). The locus of points at least as close to

pi as to, any other point of S is then the intersection of the

We denote this region by Vi and it is not hard to see that Vi is

a convex region. In dimensions higher than two Vi is called the

Voronoi polyhedron associated with pi and pi is the generating

point of Vi. Each point of S is enclosed in a unique Voronoi

polyhedron. For every pi from S t let Vi be the Voronoi

polyhedron associated with pi. The n regions V,,...,Vn partition

R~ into a set of convex polyhedra and are referred to as the

Voronoi diagram of S [Fig. 2.11.

'The word "close" in this context means the Euclidean distance
between two points.

2 Fig. 2 . 1 : Voronoi diagram of a set of points in K .

2 . 2 The d - D Tree Data Structure --

The d - D tree is a generalization of a simple binary tree,

[Friedman-~entley-Finke1(1977)]. In our implementation the

d - D tree is built over s set of points. Every node of the tree

represents a subset of the points in the set and a partitioning

of that subset. The root of the tree represents the entire set.

Each non-terminal node has two son nodes. ~hes'e son nodes

represent the two subsets defined by the partitioning in the

parent node. The terminal node, often called a bucket,

represents either a single point from the set or a small subset

of points.

I n d-dimensions, a point is represented by its d real valued

coordinates. Any one of the d-dimensions can b? used as a

discriminator for partitioning the subset represented by a

particular non-terminal node. In Friedman-Bentley-Finkel(1977)

bo* the discriminator and partition value for each non-terminal

node, as well as the bucket.size for terminal nodes, are chosen
3 -

tv-obtain the best expected cost of searching for nearest

neighbour(s). This yields what is called the optimized d-D tree.

The prescription for optimizing is to choose ati every

non-terminal node the dimension with the largest spread in

coordinate values as the discriminator and to choose the median

of the coordinate values of the discriminator as the partition.

A t the level of terminal nodes, the bucket size should be made

as small as possible. The effect of the optimized d-D tree

partitioning is a division of the coordinate space into

approximately hypercubical subregions,. each containing very

nearly the same number of points. To minimize the upper bound on

the number of points examined by each search, the buckets should

each contain one point only [~ r i e d m a n - ~ e n t l e ~ - ~ i n k e 1 (1 9 7 7)] *

The geometric boundaries of the subregion of every non-terminal

node are determined by the partitions defined at the nodes above

it in the tree. The volume of these subregions is smaller for

subsets defined by nodes deeper in the tree. The geometric

boundary of the root node is defined as plus and minus infinity

on every dimension. When search is performed, i f the node under

investigation is terminal, all the points in the-bucket are

searched for the nearest neighbour, and the point found to be

the closest is maintained. I f the node under investigation is

not terminal, the recursive procedure is called for the node

representing the subset on the sams'side of the partition as the
*

query point. When control returns, a test is made to determine

i f it is necessary to consider the points on the side of the

partition opposite to the query point. I t is necessary to

consider that subset only i f the geometric boundaries delimiting

this subregion intersect the ball centered at the query point

with the radius equal to the distance to the closest point

encountered so far. This is referred to as the "bounds overlap

ball" test. If this test fails, none of the points on the

opposite side of the partition can be the closest neighbour to

the query point. I f the bounds do overlap the ball then the

points of that subtree must be considered and the procedure is

cailed recursively for the node representing that subset. A

"ball within boundsn test is made before returning to determine

i f it is necessary-to continue the search. This test determines

whether the ball is entirely within the geometric boundaries of

the subregion represented by the node. I f so, the current

: nearest neighbour is correct for the entire set and the search

can be terminated. This recursive search procedure is described

in detail in ~ r i e d m a n - ~ e n t l e y - ~ i n k e l (1 9 7 7) .

The computation time required to organize the d-D tree data

structure over a set of n points in R~ is proportional to dnlogn

and the'expected computation time to perform each search is

proportional to logn. This expected search time is independent

of the probability distribution of the points in R~ and for

large data* sets, the expected number of point examinations

required by the search (i.e. the number of terminal nodes

searched) is shown to be independent of the value of n

[~riedman-~entley-Finkel(1977)j.

I n our implementation of the d-D tree, a bucket contains one

point only and every non-terminal node represents not only a

subregion of the coord-inate space but also a cell within this

subregion. A cell is determined by a set of points contained in

the subregion and its geometric boundaries tightly enclose this

set of points [~ i g . 2.2]..When "bounds overlap ball" test is

performed, i t is the geometric boundaries delimiting the cell

that are considered rather than the boundaries of the subregion

that contain the cell. .During the search, if a node under

investigation is not terminal, the recursive procedure is called

for the node representing the subset on the same side of the

partition as the query point only if the "bounds overlap ball"

test is true. In many instances, the boundaries of a subregion

may overlap the ball, but the boundaries of a cell contained in

i t may not. As we show in Chapter V this change greatly improves

the average number of nodes considered when search is performed.

The expected computation time to perform each search is, in our

subregion

cell

Fig. 2.2: Subregion and a cell in R' as represented by a
non-terminal node of a d-D tree.

implementation of the d-D tree, proportional dlogh.

W . 1 Dynamic -- d-D Tree

To implement our on-line convex hull algorithm, we must be able

maintain the tree data structure dynamically. our best

knowledge this has not been done yet and we are proposing the

following way of updating the tree.

To insert a new point into- the d-D tree structure, the tree is

traversed from the root node down to the terminal node, along

the path determined by the nodes representing the subset on the

same side of the partition as the new point. When a terminal

node is reached, this node is changed to non-terminal and the

point which the terminal node represented plus 'the new point

become the sons of the newly created non-terminal node. In this

non-terminal node the dimension with the largest spread in

coordinate values is chosen to be the discriminator and the

lesser value of the (two) coordinate values of the discriminator

determines the partition.

To delete a point from the d-D tree, let N o d e be the terminal

node - representing this point. The following procedure details

the deletion of N o d e .

Eelete N o d e

Let N o d e P a r e n t be the parent of N o d e and let O r h e r S o n be the

son of N o d e P a r e n t such that Ot h e r S o n # N o d e .

N o d e p a r e n f = 01 h e r S o n

Delete N o d e

Delete Ot h e r S o n

This guarantees that every non-terminal node has two sons and

therefore there is no unnecessary partitioning (i.e. one side of

a partition being empty).

When a d-D tree is updated, the geometric boundaries of the

cells associated with the non-terminal nodes along the path from

the terminal node back to the root node may have to be adjusted

to reflect this update. The volume of a cell can therefore

"grow" after an insertion or it may "shrink" as a result of a

deletion, but the region containing this cell remains unchanged.

The amount of time it takes'to update a d-D tree i-s proportional

to dH, where H is the height of the tree. For a binary search

tree, when points are inserted and deleted at random, the height

of the tree is found to be proportional to logn, where n is the

number of terminal nodes in the tree [Wirth(1976)$-. As our test

results (presented in Chapter V) show, this is observed to be

true for a d-D tree data structure as well. Therefore, we assume

that an update of a d-D tree with n terminal nodes is expected

to take 8(dlogn) operations. w,,
t

1% /'

1'

2.3 Transformation of a Closed Convex Polyhedron into a Voronoi - - - - -

Polyhedron

Let P be a closed convex polyhedron determined by a set of n

d points in R and let x be an arbitrary point interior to P. We

assume that P is represented by the set of its facets. For every

facet f i of P we generate point q such that a / f (f i) becomes a

perpendicular bisector of a line segment joining x and qi. Thus

aff(k) partitions R~ into two closed half-spaces: H (x , ~ ~)
-

containing x and X(qi . x) containing qi. P can then be expressed
i

as the intersection of all ~ (x . 9 ~) for i = 1 , Fd,.nl where

Fd,n is the number of facets of P. We have thus transformed P

into a ~oronoi polyhedron enclosing its generating point x [Fig.

2.31. For a given point p we can now use the nearest neighbour

information using the set {ql,
q~ . x) to answer the
dl n

point inclusion problem in a closed convex polyhedron P. TO'

determine i f a new point p lies inside of P we store the

generated set of q-points Q = i q 1 , q~) in a d-D tree
d,n

data structure and we search the tree to determine if a point

from Q is closer to p than x is. In other words we are

determining i f there exists a point in Q that lies inside the

hypersphere centered at p with the radius equal to the euclidean

distance between the points p and x . 'AS soon as we find such a

point we know that p is outside of P and the search can be

terminated. I f no such point exists, it means that x is the

point closest to p and p is therefore contained in P.

The expected time to solve the point inclusion problem in a

d convex polyhedron P I determined by a set of n points in R . is
proportional to dlogFdlnl where F

d,n
is the number of facets of

P. Since F d I n is no higher than O([d/2]!n Ldi2]) , the point

inclusion problem can be solved in the expected O (d210g [d/2] ! n)
s .l

time.

Fig. 2.3: Polygon P transformed into a Voronoi Polygon.

CHAPTER 1 1 1

THE ON-LINE CONVEX HULL ALGORITHM

In this chapter we present an on-line convex hull algorithm that

can solve bo'th the Facet problem and the Facial Lattice Problem

for a data set of any dimension d 2 2 9 The algorithm is based on

the "beneath beyond" technique, the global strategy of which has

been described in Chapter I.

Details and Computational Complexity

d Given set S of n points, S G R , let St be a subset of S of

(d+l) af f inely independent points pi = (pi], . . . , pid) for

1 = 1 , . d l . The first step of the algorithm determines S '

and computes the initial convex hull, the d-s.implex

Since every facet is contained in a unique supporting

hyperplane, we are using the determining vector of that

hyperplane to represent a facet. Every set of d distinct points

of S ' determines a facet of Pd+] for which the determining

vector of its supporting hyperplane needs to be computed. The

following section describes how this can be accomplished.

Let (w.1.o.g.) fd+] be the facet of Pd+] determined by vertices

p I l ..., pd and 7i = (nI, ..., "d' - c) be the determining vector

of the supporting hyperplane H d- I of fd+]. Then by Definition

1 . 1 , for every point pi, i = I , . . . , d

When c = 0, hyperplane H d-l passes through the origin of e

coordinate system. By transforming the origin to an arbitrary

point x interior to Pd+] we eliminate this possibility'. This

transformation also increases the numerical stability of the

algorithm. According to Solomon(1985) "it is best to carry out

all geometric computations as near to the origin as possible".

We can then divide [3.1] by c to obtain

*.

where h i = n./c. The determining vector Tt=(hl, ..:, hd, - 1) can
I

now be uniquely computed by solving the linear system of

equations

.
for i = I, . d l where (p [) , . . , . , p i d) are the transformed

coordinates of a p i n t p i .
1

Let Pi-] be the convex hull polytope computed so far. When a new

'To determine x one can, for example, chpute the centroid of
S ' .

point p l is considered the algorithm performs the "beneath

beyond" test to determine the position of p l with respect to the

facets of the current convex polytope Pi-!. To be able to

perform this test the determining vector T of the supporting

hyperplane of every facet f of Pi-l is computed in such a way,

that for every point p from PI (p , X) 5 0. Geometrically this

means that the normals to the supporting hyperplanes of all

facets of Pi-l point outside of Pi-l. This is an important

requirement for the following definition of the "beneath beyond"

test.

Definition 3.1

A point p lies beneath (beyond) a facet f of a polytope

P if and only if 4 0 ((p , X > o), where X is the

determining vector of a hyperplane of a facet

f

~ o r i t o ~ e P, needs to be updated to include point p i only if p i

lies beyond some facet(s1 of Pi-l. To determine i f an update is

necessary, we solve the point inclusion problem in a convex

polyhedron Pi-l for point pi and we apply the solution described

in the previous chapter to solve this problem.

Let x be a point interior to P i - l , Fd,i -1 the number of facets

o f PI-] and let Q = l q l , ..., 1 be the set of generated
4

"d,i-1
q-points such that for every facet f of Pi-l, I < j -

J < Fd,i-l'
aff(f,) is the perpendicular bisector of the line segment

joining x and q . I f x is at least as close to pi as any point
J

from Q, then no update of Pi-! is necessary. However, i f for

some J , 1 5 J 5 F 9 . is closer to p i than r is, then facet d l - J

J is such that pi lies beyond it. 3

3.1.1 The Alqorit.hm

d Input: Set S of n points, S G R , and dimension d.

Output: Description of Pn= CH(S).

Step 1 : {compute d-simplex).

1 . Determine S'L S of any (d+l) affinely independent

points and set S " = S - Sf.

Let (w.1.0.g.) Sf= ip,, ..., Pd+ 1 and

S"= * * * I pnl

2. Determine point x that is interior to the d-simplex

defined by Sf.

3. Translate the points of Sf and S" such that the

origin is at x .

4. Compute P d+l where Pd+]= CH(S1).

Let if,, ..., fd+,l be the set of facets of Pd+/.
i'.

i

5. For i = I to (d+l) do

a . Compute the determining vector of a / f (f l 1 .

b. Compute point q i such that becomes a

perpendicular bisector of the line segment

joining q l and x . .

6. Construct d-D tree over the set { q l , ..., q d + l] . >
Step 2: {process points of S"].

Let F d r i - l be the number of facets of P i - ,

1 . For i = (d + 2) to n do

a. Search d - D tree for a point that is closer to" p i

than x is.

I f x is the closest point to p i then

p i = P i -] .

Else -

Let q . , I I j -
J < F d , i - l r

be the point that is

closer to p i than x and let f . be the facet
J

corresponding to q .
J

(i ;e. off (f .) is the perpendicular bisector
J

of the line segment joining x and 9 . 1 .
J

U p d o t e P i t o i nc' l u d e p i .

Step 3: {Clean Up].

For every vertex p of P n do

Undo the translation performed in Step 1 .

The details of procedures C o m p u t e P d + l in Step 1 and U p d a t e P i -]

t o i n c l u d e p i in Step 2 depend on the particular version of a

convex hull problem the algorithm is solving and we will

therefore describe them separately.

3.1.2 The Facial Lattice Problem

L.
We are using facial graph to represent faces of a convex hull

polytope. The initial facial graph contains one node only which

eis3p corresponds to the empty set. The facial graph of a d-simplex

consists of 2(d+1' nodes, and it can be constructed by

introducing one point of S' at a time. I t takes exactly (d + l)

iterations before the polytope reaches full dimension d. We

fiist obtain 0-face, then I-face, and so on. The construction

mechanism of the facial graph of a d-simplex is based on the

following theorem and lemma:

Theorem 3.1 [Grunbam(1967)]

Let P be a convex polytope in R~ of dimension k c d , and

let p be a point that is not contained in af/(P). Define

P 1 = CH(P U Then each face of P' is one of the

following types:

1 . a face f o f b is also a face of P' or

2. i f f is a face of P then f'= CH(f U is a face

of P' .

Polytope P', as defined in Theorem 3.1, is usually called a

pyramid with base P and apex p.

Lemma 3 . ; [Gr"nbaum(l967)]
/

Let P and P' be defined as in Theorem 3.1. For faces f

and g of PI define f'= CHtf U fp)) and g'= CH(g u

Then

I . (f s u b g) in P' i f and only if (f s u b g) in PI

2. (f s u b g ') i f and only if f=g, and

3. (f' s u b g') if and only i f (f s u b g).

The following is an outline of the procedure Compute P d + ~ in

S t e p 1 .

Let Po = 0.

For i = 1 to (d+l) do

C o n s i r u c r fg(Pi) where Pi= CH(Pi-] u iPi 1)

[see "Pyramidal Update", Edelsbruner(1987)].

To construct /g(CH(P U {pi 1)) from f after Pi-1 r -1

reaches dimension dl Edelsbruner(i987) introduces a coloring

scheme which he uses to classify facets according to their

relative position to point pi . For f, a facet of Pi-], this

classification is defined as follows:

/ is red i f pi lies beyond f,

f is b l u e i f p, lies beneath f, and

f is v e ~ ~ o w i f pi belongs to aff(f) [Fig. 3.11.

No color is ever assigned to the one only d-face of Pi-! which

is polytope Pi -, itself. I f j is a k-face of Pi-,, with

k < (d-l), then f is assigned a color which is determined by the

mixture of colors assigned to all facets which contain f in

(b , c
f a c e
b l u e
y e 1 1

) and (c , d)
t s , (e , f) an

and (a , b) a
ow f a c e t s wi

a r e
d (
nd
t h

I

P
/

4 / I
.-
/ I

/
/

/
I

/ I
r e d d,, I

a , f) a r e I
(d , e) a r e e I

I
r e s p e c t I

I
I

I
I b

f

F i g . 3 . 1 : Three t y p e s of f a c e t s w i th r e s p e c t t o p o i n t p .

t h e i r b o u n d a r i e s :

- f i s o r a n g e i f i t be longs t o t h e boundary of r e d and

y e 1 1 ow f a c e t s ,

f i s g r e e n i f i t be longs t o t h e boundary of y e l l o w and

b l u e f a c e t s ,

f i s p u r p l e i f i t be longs t o t h e boundary of r e d and

b l u e f a c e t s , and

f i s b r o w n i f i t be longs t o t h e boundary of r e d , y e l l o w

and b l u e f a c e t s .

A d d i t i o n a l c o l o r g roups a r e d e f i n e d a s f o l l o w s :

f has a b l u e c o m p o n e n t i f i t i s b l u e , g r e e n , p u r p l e or

b r o w n ,

f has a red component if it is red, orange, purple or

brown, and

f has a ye1 1 ow component if it is yellow, orange, green

or brown.

With this color scheme we can define the update mechanism.

Theorem 3.2

I f P is a d-polytope and p a point in R ~ , let

P'= CH(P U { P I) . Then each face of P' is one of the

following types:

1 . a face f of P is also a face of P' i f and only if f

has a b l u e component

2. i f f is a face of P then f'= CH(f U is a face

of P' i f and only if either

a. f has a blue and a red component, or

b. f is ye1 low.

Proof: [~delsbruner(l987) 1

Theorem 3.2 defines the faces of P' in terms of the faces of P,

that is, the nodes of f g (P ') in terms of the nodes of fg(P). To
- - completely define fg(P') we also need to define its arcs.

Lemma 3.2

Let P and P' be defined as in Theorem 3.2 and let f and

g be two faces of P. Define f'= CH(f U and

g t = C H (g U Ipj) i f f and g have a red a n d a blue

and g are y e l l o w . Then
8

I , (f s u b g) in P' if and only i f (f s u b g) in P and f

and g have a b l u e c o m p o n e n t

2 . (f s u b g ') if and only i f f = g

*
3. (f s u b g) i f and only i f (f s u b g) a n d f has a b l u ~

c o m p o n e n t

4. (f' sub g ') i f and only i f (f s u b g)

*
5. (f' s u b g) i f and only i f (f s u b I) and (I s u b ,g)

for some subface 1 of g, and
*

6 . (f* s u b g) i f and only i f (f r u b g) .
,,

Moreover, the only d-face of P' (i.e. polytope P'

itself) is a superface of all facets of P'.

Proof: [Edelsbruner(l987)]

Lemma 3 . 3

Let (f s u b 1) and (1 s u b g) be three faces of a polytope

P with f b r o w n and g y e l l o w . Face I is uniquely

determined by faces f and g and the requirement that 1

has to be o r a n b e .

Proof: [~delsbruner(l987)]

From the above information we can see that only r e d and y e l l o w

facets are important for an update, and we are now going to

describe how to identify them. One r e d facet is determined by

searching the d-D tree. Having discovered one r e d facet, we can

.
identify all the other red and y e l l o w facets (if 'any) by

performing depth first search of a facial graph. The search

examines nodes that correspond to the facets of a polytope and

advances through the arcs corresponding to its edges

backtracking every time a blue facet is reached. Due to the

following theorem, we know that this graph is well defined.

Theorem 3.3

Every edge of a convex polytope lies in two and exactly

two facets of this polytope.

Proof: hand-~apur(l970)I

we are now ready to specify the update procedure in Step 2 of

the algorithm.

&

Update P i - , t o include pi

1 . ~etermine all red and y e i i o w facets with respect to p i

using facet f. as the first red facet.
J

2 . For every r e d facet do

Delete its corresponding q-point from d - D tree.

3 . Consrruct fg(Pi) where P = CH(Pi-l U { p i])
1

[see "Non-Pyramidal Update", Edelsbruner(l987)l.

Let Fd-l,l-l be the set of all facets that contain p i in

their boundary.

4 . For every facet f from F d -] , - l do

a . Compute the determining vector of aff(f).

b. Compute point q such that aff(f) becomes a

perpendicular bisector of the line segment joining x

and q.

c. Update d - D tree to contain point q.

-

Data Structures

A node in the facial graph stores the following information:

S u p e r F a c e - points to a list of super faces,

S u b F a c e - points to a list of subfaces,

C o l o r - stores colo; of a face represented by this node,

N o d e C o p y - points to a copy of this node

(also used to mark and unmark facets).,

In addition, every node representing a facet stores the

determini-ng vector of the supporting hyperplane of the facet

and a pointer to the terminal node in the d-D tree 'yhich

corresponds to point q associated with this facet. {very

node representing a vertex stores the transformed

coordinates of the vertex. In the initial one node of a

facial graph (representing the empty set) all pointers are

initialized to nil and color to y n s p e c r f i e d .
4

A node in the d-D tree stores the following:

Terminal Node

q P o i n t - an array, coordinates of point q ,

P a r e n t - points to the parent node,

F a c e f - points to the node in the facial graph which "

corresponds to the facet associated with point q .

 on-Terminal Node

P a r e n t - points to the parent node, .

D i s c r - coordinate chosen as the discriminator,
d

D i s c r V a l u e - value of the discriminator,

L o w C e l l B o u n d - an array, for every coordinate the low bound

of a cell, L

H i g h C e l l B o u n d - an array, for every coordinate the high

bound of a cell,
J .

L e f r S o n - points to the left son node,

R i g h t S o n - points to the right son node.

Computational Complexity

Before we analyze the computational complexity of the algorithm,

we enlist the following results which will be used in the

analysis.

Lemma 3 . 4

d Let P be a polytope with n vertices in R , and let p be

a verte'x of P . The number of faces of P which contain p

in their boundary plus the number of incidences among

them is C I (F ~ - , , ~) .

Proof: [Edelsbruner(l987)]
t
\ -
i

Lemma 3 . 5
/

/'-"

Every k-face of a d-polytope P, k 5 d, is the

intersection of at least (d-k) facets of P.

Proof: [~runbaum(l967)]

we are now going to analyze the computational complexity of the L)o

algorithm for its expected time and its worst case performance

in terms of length of the input.

3 Step 1: Set S' can be determined in O(nd) time in the wors t

case.

Computation-.of point x requires O(d) operations and the

required translation can.be applied to all points of S'
I

and S" in O(dn) time.
,' ,

Facial graph of P Q + 1 is obtained by induction and it can

be constructed in O(dFd,d+l) time.

Polytope. Pd+ has exactly (d+l) facets. Given a facet of

Pd+], the determining vector of its supporting

3 hyperplane can be computed in O(d) operations and point

q corresponding to this facet can be computed in O l d)
$2

time.

Finally, the construcion of a d-D tree over a set of
'z.

(d+I) points can be done in O(d1ogd) time.

3 Rsnning Time: O(nd) in the worst case.
(i >-

Step 2: We will analyze this step for one update only. hat is
h

we will determine the time needed to update the existing
B

convex hull' 'i-I with point

As we have already mentioned, one r e d facet of Pi-i is

obtained by searching the d-D tree. The number of

terminal nodes in the tree is equal to the number of

facets of Pl-i which is bounded above by F d t i _] . The

.-expected time to search the tree is therefore

The determination of all the other r e d and yellow facets

is propo'rtional to the number of r e d and y e l l o w facets.

The worst case occurs when no 1 ow facets exist

[~eidel(l981)], since it is always possible to perturb

pi slightly such that all yell ow facets become r e d and

colors of other facets remain urxhanged. As shown, by

Seidel(l981) this perturbation does not decrease the

number of faces or face-subface relations in Pi. As a

consequence, we can analyze our algorithm for simplicia1

polytopes only.and the time bound we develop will apply

to general cases as well.

The computation of fg(Pi) is proportional to D (P i) and

) where D(pl) is the number of faces and incidences

that are deleted from fg(Pi) -I when

f d p ,) = fg(P,-] U (pi).) is computed and N (P ~ : is the

number of new faces and incidences that appear in fg(P.)
1

*\

- after the update is completed. I t is clear that each

face and each incidence,between two faces can be deleted

at most once, and it is also clear that every face that

is going to be deleted had to be created first.

Therefore D(pd+2) + ...+ D(p,) 5 (d + 0 + N (p d + ?) +

. . .+ N(pn) and it is sufficient to establish upper bound

on N(P[) only. From Lemma 3.4 the upper bound on N (p ,)

To compute the point q for every new facet takes

-_ @(dFd-l r i - 1) operations and to store the new q-pbints in

the d - D tree structure (containing q-points of all the

remaining facets of P i takes @(dFd - / , , - k ~ g k . ~ ,,-, 1

expected time. Also the determining vector has to be

3 . computed for each new facet which requires U(d k d - l , r) '

operations.

time.

Step 3: To reverse the translation performed in Step 1 takes at

most O(nd) computations.

Running Time: ~ (n d) in the worst case.

From this analysis we can see that Step 2 is ttie dominating step

4 5

o f our a lgor i thm. The a lgor i thm computes t h e convex h u l l of a

s e t of n p o i n t s i n R~ i n O(dnFd-, ,n l o g F d I n) expected t ime. Th i s

time i s b e t t e r than t h e O(nF 1 expected t ime of t h e o t h e r
dl fl 7

o n - l i n e h igher dimensional convex h u l l a l g o r i t h m s known t o us

[~reparata-Shames(l 9 8 5) , Rey-Ward(1985) 1.
,A-

L The v a l i d i t y of t h e expected time of our a lgor i thm depends on

t h e he ight of t h e d-D t r e e throughout t h e computat ion. I t i s

hard t o know, in g e n e r a l , how t h e t r e e w i l l "grow". We can only

p r e d i c t , t h a t i f t h e t r e e i s updated randomly, t h e average pa th

l e n g t h grows l o g a r i t h m i c a l l y w i t h t h e number of nodes i n t h e

t r e e , even s o , in t h e worst c a s e , t h e pa th l e n g t h grows

l i n e a r l y . To maintain t h e t r e e ba lanced, we can r e c o n s t r u c t t h e

t r e e every time a new polytope i s computed. I f Fd , i i s t h e

number of fa/cets of Pi f o r (d + 2) 5 r 5 n , then F d I i i s a l s o t h e

number of p o i n t s t h a t have t o be s t o r e d in t h e d-D t r e e a f t e r Pi

i s computed. To recons tuc t t h e t r e e t h e r e f o r e t a k e s

B(dFd, logF) o p e r a t i o n s .
d l 1

Under t h e s e c i rcumstances

B (d F d I i l o g F dominates t h e computat ional complexi ty of our
d l 1

a l g o r i t h m .

T h e worst c a s e performance can be determined by e s t a b l i s h i n g an

upper bound on the running time of t h e s e a r c h and t h e update of

the d-D t r e e , s i n c e t h e s e a r e the only two proceaures i n t h e

a n a l y s i s of t h e a lgor i thm where we have given expected t imes . In

the worst c a s e t h e sea rch can examine every node in t h e t r e e f o r

which B (d F d I i) i s the upper bound on t h e number of o p e r a t i o n s .

As f o r the update , t h e worst case occurs when t h e t r e e i s

reconstructed which, as we have already mentioned, takes

B(dFdIilogFdli operations. To conclude, the algorithm computes

the facial lattice of the convex hull of a set of n points in H d

in 8(d(Fd,d+l l"gFd,d+]+ ***+Fd,n-I logFd , n- I)) = O(dnF~dfnlOgF'df,,)

time in the worst case.

3.1.3 The Facet Problem

To solve the Facet Problem for a non-simplicia1 data set without

maintaining some information about all the faces of a convex

hull polytope, we propose the following data structures:

A FacetList which contains information about individual

facets and a VertexList containing vertices of a convex h u l l

polytope.

For every facet f in the F a c e t L ~ ~ r there is a

FacetNeighbors(f) list - a list of facets that share a

common edge with f; and a FacetVerrlces(f) list - a list of

vertices that are contained in f. Similarly, for every

vertex v in the Verr exLlsr we maintain a V e r r exkacrr: (v)

list - a list of facets containing v in their boundary.

A s in the previous implementation, a facet is represented by t h e

determining vector of its supporting hyperplane and a vertex by

i ~ s d real valued coordinates.

The computation of Pd+] is quite simple. Every point in S' is a
yl

vertex of the initial d-simplex. I t takes exactly (d+d)

iterations to compute all the facets of Pd+], each iteration

computing one of the facets. In a d-simplex, a facet shares an

edge with the remaining d facets, and a vertex is contained in a

boundary of exactly d facets.

Cornput r Pd+ ,
1 . Set Facet Li sr = 0, Vert exLis! = 0.

2. For i = I to (d+l) do

Add pi to Vert exLi sl .
Verr e x F a c e ~ s (pi) = 0.

3. For I = I to (d+l) do a

a. Compute facet fi determined by the set of points

p , , . . . rPd+l 1 - ipil).

b. Add fi to FacetList.

FacerVert i ces(fi) = 0.

~ a c e l ~ e i g h b o r s (fi) = 0.

4. For 1 = 1 to (d+l) do

For j = I to (d+l) do

I f 1 # J then do

Add 1, to FacetNeighbors(f. 1 .
I

Add f to Verr exFacet s (p .) .
I J

.,Z
Add p . to FacetVert ices(fi).

J

Next comes the update mechanism of a d-polytope Pi-, Again

here, as in the previous implementation, we have to determine

all r e d and y e l l o w facets with respect to some new point p , .

Having discovered one r e d facet by searching the d-D tree, we

use this facet to determine all the other r e d and y e l l o w facets .-

by a process called P e e l i n g . During ,this process we look at

every facet that shares an edge with a r e d facet and perform the

"beneath beyond" test to determine its color. When a r r d facet

is discovered, we perform the "beneath beyond" test on its

neighbouring facets and so on, marking every facet that has been

tested. As one can see, the P e e l i n g process is proportional to

the number of r e d and y e l l o w facets obtained.

Knowing all r e d facets, it is not difficult to determine the

"exposed edges" and to compute new facets. Let f' and f" be two

neighbouring facets such that f' is b l u e and f" is r e d , and let

E be the set of vertices common to / ' and f". Then E determines

what we call an "exposed edge", and every vertex contained in E

is an "exposed vertex". Let f be' the new facet defined by -' .

i E U (p i 1) . Then F a c e t V e r r i c e s (f) = { E U (p i]] and for every

vertex v from E we can add f to V e r t e x F a c e [s (v) . We also know
B

that f' and f share an edge and we can therefore add / to

F a c e t Nei g h b o r s (f ' and set F a c e t N e l g h b o r s (f) = i f ' 1 . One crucial

step of the algorithm still remains to be resolved. I t is the

determination of the neighbouring facets to / (other than f ')

and the new neighbouring facets to all y e l l o w facets.

--

Let f be a facet, either new or y e l i o w , for which its

neighbouring facets are to be determined, and let t y e l l o n be the

set of y e l l o w facets with respect to p i and F n e w the set of new

facets of Pi computed so far. The brute force method would be to

look at every facet in Fnew and Fyel 1 ow and determine the number

of affinely independent vertices, VCount , shared by this facet

with fl. I f for any of the facets checked the VCount is (d-1)

then f shares an edge with this facet. However, we can do better

than this by considering only those facets from Fnew and Fyel l ow

that contain a vertex from FacetVertices(/) in their boundary.

This is done by moving all yellow facets to the end of the

FerrexFacets lists and by mainraining a count, FCount, of all

yellow/new facets in each list (i.e. new facets are added to the

end of the list as well).

Special care has to be taken when VCounr is computed between two

yellow facets. This is because two yellow facets may: a) already

be neighbours in Pi-l, b) b*ecome neighbours only in Pi , or C) be
*

neighbours in neither Pi-l nor P.2 [Fig. 3 . 2 1 . Only in case'b)
1

the neighbourhood information of the yellow facets needs to be

updated. I f we determine the VCounr in Pi then the numbers

obtained in a) and b) would be the same (i.e. (d-1)). In order

to clearly recognize cases a) and b) we determiqe the number of

afiinely independent vertices between yellow facets in Pi-l,

obtaining (d-1) or (d - 2) in a) or b), respectively.

In the last step of this implementation of the Update Pi-l to

I n c l ude p l procedure we use Lemma 3.5 to remove vertices of P1

which are no longer vertices in Pi.

2 ~ o t e that for two new facets or a new and a yellow facet only
cases a) or c) can occur.
' A d - -

Y e l l o w facets (heavy lined) sharing an edge
a) before and after update, b) after &date
only, and c) neither before nor after update.

Fig. 3.2: Two y e l l o w facets of a convex hull polytope before and
after update.

U p d a t e P 1 -, t o ncl u d e p i
4

Let F r and F y e i 1 o w be the sets of r e d and y e l l o w facets of

- 1
with respect to p i obtained by the P e e l i n g process (as

already described).

I . {Determine neighbouring facets among y e l l o w facets)

For every f from F y e l l ow do

Let f y e l / o w be the set of y e l l o w facets (other than

f such that each one contains at least one vertex

of f in its boundary.

For every f' do from f y e l i o w

I f the number of affinely independent v'ertices
,

common to f' and f is (d - 2) then do

Add f to F a c e t Nel g h b o r s (f') .

Add f' to ~ a c e t Nel g h b o r s (f) .

2. Add p, to V e r t e x L l s r .

C'ert e x f a c e t s (p i) = 0.

3. {Compute new facets)

For every f' from F r e d do

For $very f" from F a c e t N e l g h b o r s (f l) do .
I f f" is b l u e then do

Compute new facet f determined by

{ E U { p ,)] , where E is the set of vertices

common to f' and f n .

Add f to F a c e r L i s t .

F a c e t N e i g h b o r s (f) = i f w] .

Add f to F a c e t N e i g h b o r s (f ") .

For every v from E do

Add f t o k'ert e x F a c e t s (v) .

Add v t o F a c e t Y e r t r c e s (f) .

D e t e r m i ne nei g h b o u r l ng f a c e t s t o (.
4 . (~ d d p i t o t h e boundary of every new f a c e t]

1 Le t F n e w be t h e s e t o f new f a c e t s computed in t h e

p r e v i o u s s t e p .

For e v e r y / from Fnew do

Add f t o V e r t e x F a c e t s (p l) .

Add p i t o F a c e t V e r t i c e s (f).

5 . { ~ d d p i t o t h e boundary of eve ry yell o w f a c e t 1

For e v e r y f from F y e l ow do

Add f t o V e r t e x F a c e t s (p i) .

Add p i t o F a c e r V e r t i c e s (f).

6. R e m o v e r e d f a c e r s f r o m P I .

D e t e r m i ne n e l g h b o u r i n g f a c e t s r o f

L e t n e w / y e / o w be t h e s e t of ye1 l o w and a l r e a d y computed

new f a c e t s such t h a t each one c o n t a i n s a t l e a s t one v e r t e x

of E i n i t s boundary.

I f t h e number of a f f i n e l y independent v e r t i c e s common t o

f and f' is (d - 2) t hen do

Add f t o F a c e t Nel g h b o r s (f' 1 .

Add f ' t o F a c e t N e l g h b o r s (1).

R e m o v e r e d f a c e 1 s f r o m Pi

For every f' from F r e d do

For every f" from F a c e t N e i g h b o r s (f l) do

Remove f' from F a c e t N e i g h b o r s (f W) .

Remove f" from F a c e t N e i g h b o r s (f l) .

For every v from ~ a c e t v e r t ~ c e s (f l) do

Remove f' from V e r t e x F a c e f s (v) .

Let F C o u n t be the number O> in

V e r t e x F a c e t s (v) .

I f F C o u n t = 0 then do

Remove v from V e r t e x L i s t .

Else

I f F C o u n t c d then do

For every f in V e r t e x F a c e t s (v i do

Remove v from ~ a c e t ~ e r t l c e s (f) .

Remove f from V e r t e x F a c e t s (v) .

Remove v from V e r t e x L i s l .

Data Structures

I ' e r r ~ x L I J I

l.ertex - ar, array, ~ransformed coordinates of a vertex,

FCoorct - counter, ilsed to count the number of new or y e l l o w

. . facets containing zn:s vertex in their boundary,

Flag - used to mark and unmark this record,

FirstVF, LasrYF - pointers to the first and the last record,

respectively, of IrertexFacet list associated with this
i

vertex,

PrevVertex, Nextvertex - pointers to the previous and the
-\

next record, respectively, in Vert e x L i st .

FacetL~ st

Facer - an array, facet normal representing a facet,

Node - points to a terminal node in the d-D tree that stores

point q associated with this facet,

VCount - counter, used to count the number of vertices

common to this facet and a facet for which the

FacetNieghbors information is being established,

Flag - used to mark and unmark this record,

Fr rstV, LastV - pointers to the first and the last record,

respectively, in Verrl c e s list,

FlrsiFV, LastFV - p~inters to the first and the last record,

respectively, in, Facet Vert I c e ~ list,
h

I

FrrstFfl, LastFY - pointers to the first and the last record,

respectively, in FacetNer ghbori list,

FI rsrh', L a s r h - pointers tc the first and the last record,

respectively, in .Veer g h b o r s iist,

PrevFacet, .VexrFacet - pclnters to the previous and the next

record, respectively, in Facer Ll st .

Verrex - points to the vertex record in VertexLisr

associated with this VertexFacets list,

F'acrl - points to the facet record in FacetList that

contains vertex associated with this VertexFacets list in

its boundary,
<>

PrevFV, NextFV - pointers to the previous and the next

record, respectively, in Facetvertices list,

PrevVF, NexrVF - pointers to the previous and the next

record, respectively, in VertexFacets list.

Facer Nel ghb o r s

Facer - points to the facet record in FacetList associated

with this Facet Ner ghbors list,

!Ve l ghbor - points to the facet record in FacetList that is a

neighbour to the facet associated with this FacetNeighbors

list,

Prevh', NexrN - pointers to the previous and the next record,

respectively, in N e r g h b o r s list,

PrevFfl, Next FAN - pointers to the previous and the next

record, respectively, in Face~Nerghbors list.

f i 3 c e i b ' p r l i c e s

the same as CfertexFacets.

Same as F a c e t Ner g h b o r s .
w

 hi; list is for the purpose of efficiency of the algorithm * "

only).

V e r t i c e s

V e r r e x - points to a vertex record in l ' e r ' t e x ~ i s t ,

N e x t V - points to the next record in V e r r i c e s .

(This list is used to store pointers to the vertices that

are contained in a facet associated with this list and

another facet for which the F a c e r Nei g h b o r s information is

being established).

A node in a d-D tree stores the same information as in the

previous implementation except for the F a c e t field in the

terminal node which points to a facet record in the F a c e r L i s t

associated with point q represented by this node.

Computational Complexity

The perfo~mance of the algorithm will .be analyzed for its worst

case in terms of length of the input. For the same reason as

given in the analysis of the algorithm for the previous

implementation, the worst case occurs when no y e l l o w facets

exist and we will therefore analyze the algorithm for simplicia1

polytopes only.

Step 1 : I t is easy to. see that the computational complexity of . -
Compur e Pd+l

4 is O(d) and the overall complexity of this
I

./

step remains unchanged in comparison to the previous

implementation. ,

3 Running Time: O(nd) in the worst case. ~ 2 .

Step 2: Only procedure Updat e P i - l t o i n c l u d e p i needs to be

analyzed here, since no change has been made to the

other procedures within this step. We will establish an

upper bound on the number of operations needed to update

Pf-l*

For every "exposed edge" in P. 1-1 there is a new facet in

Pi. From Lemma 3.4 we know that the number of new facets

is bounded above by F d l i The q-points and the

determining vectors of all new facets can be computed in

3
@(dFd-l,i - 1 and B(d F d - l , i - l) operations res2ectively.

The d-D tree can be constructed in B(dFd,ilogFd,i) time,

where F
d , 1

is the number of facets of Pi. For all new

facets computed, the V e r r exFacet s and the Facet Vert i c e s

lists can be updated in B(dFd-l,i-l) time.

To update the FacetNeighbors information we do the
.

following operations: for every new facet we 1. look at

its "exposed vertices" and 2. for every "exposed vertex"

we in turn look at every new facet that contains this

vertex in its boundary, and 3. we test the v2rilces that

are common to these two facets to determine i f they are

affinely independent. I t can be shown that the set of

"exposed edges" and "exposed vertices" is isomorphic to

a (d-1) polytope [Siede1(1986)], and this establishes

Fd-2,i as the upper bound on the number of new facets

(or "exposed edges") intersecting at a given "exposed

vertex". In the worst case then the number of operations

.?erformed to update the Facer N e i g h b o r s information is

4 F B(d Fd-l,i-l d-2rI-l)*

Running Time:

4 F F' B(d (Fd-l,d+l d-Zrd+lt ' * * t F d - l l n - l d-2.n-I 1) =

4 F 4
o(d nFd-l,n-l d-2.n-1) I O(d nFd-l,nfd-l,n) in 'the worst

case.

Step 3: Running Time: O(dn) in the worst case.

The analysis shows that our on-line algorithin computes the

facets of the convex hull of a set of n points in X~ in

4 F o(d nFd-l,n d-2,n) ~ i m e in the worst case. This algorithm is the

only one known to us that .solves the Facet Problem for a

non-simplicia1 data set without maintaining some representation

of all the faces of a convex hull. Our worst case time is better

than the worst case time conjectured for this problem by

Swart(1983) (i.e. O((Fd)2dd'410gn)).
I n

CHAPTER IV

THE DIVIDE AND CONQUER ALGORITHM

I n this chapter we present an off-line convex hull algorithm

solving the Facet Problem for higher dimensional, simplicia1

data sets. The algorithm is off-line because it requires that

all the data points be present before any processing begins. The

technique is based on the well known "divide and conquer"

principle. I n the following section we describe the details of

the algorithm and establish its computational complexity.

4.1 Implementation Details and Computational Complexity

When describing the algorithm we will refer to the Voronoi

diagram and a d-D tree data structure which we have introduced

in Chapter 1 1 . We will 'therefore assume reader's familiarity

with the meaning of the terms.
-

T h e basic data structures used in the imp1 mentation of this a
algorithm are the same as specified for t e implementation of

our on-line soluti9n to the Facet Problem de cribed in chapter

I I I (i.e. F a c e r L ~ s t , P ' e r t e x L 1 s t and the lists of pointers that

relate the two).

The "divide and conquer" principle, in general, involves

partitioning the original problem into several subproblems

(divide), recursively solving each subproblem (conquer), and

combining the solutions to the subproblems to obtain the

solution of the original problem (merge). In our particular case

this means that we partition the given set S of n points in R d

into two subsets Sl and S2 of approximately the same size,

separately and recursively compute the convex hulls of both

subsets, and then "mergew the convex into a single

i
polytope P = CH(Pl U P ,) where PI= CH(SI) and P , = CH(S,).

For efficiency reasons, we pre-sort the points of S with respect

to the value of the first coordinate and partition S into S, and

S 2 such that for any p (q) of Sl (S2), xI(p)<c (xI(q)>r) for

some c , where xl(p) is the first coordinate of p. We call SI and

S, the left and the right subsets of S . Thus, Sl and S, are -
separable by the hyperplane x l = c.

The merge step is the most important step of the algorithm. I t

is this step that actually computes the facets of a convex hull.

Every invocation of the (M e r g e procedure is going to be

represented by a node in a binary tree. The inputs to the M e r g e

procedure are two non-intersecting polytopes and the output is

e convex hull of their union. Let S l , S be two subsets
1

(separable by a vertical hyperplane) of some set S such that'
11

Sl and S are left and right subsets of S respectively, and
J 1

let P[= CH(SL) and P = C H (S 1 . I f the M e r g e procedure is
J 1

invoked with P I and P as its input, then we create a node in a
1

binary tree representing P = C H (P i U P .) with its L e f r S o n
' J J

pointer pointing to a node associdted with P i and its ~ i ~ h r ~ o n

pointer pointing to a node associated with P.. To compute
J

polytope P we first delete those facets of P i and P . that are
11 .- J

not going to be facets of P . . , thus leaving the two polytopes as
11

"open shells", and then we compute the "wrap around" portion W . .
1 J

that connects the "open shells" [~ i g . 4.11. P . . is therefore
I J

composed of W . and the remaining portions of Pi and P . .
11 J

Let k w be the set of facets of W and let x be some point that
' 1

is interior to P . Every j from F w determines a hyperplane
1.t

f that partitions R~ into two closed half-spaces

intersection of which is aff(f). Let H i f , x) be the closed

half-space that contains x . Then the intersection of all

f x for f l from F w I is a convex polyhedron which we denote

P w ' I i for every f I we compute point q , such that a f f (f i)

becomes a perpendicular bisector of the line segment joining x

and q l , we transform P w into a Voronoi polyhedron with point x

being its generating point [Fig. 4.21. Let Qw be the set of

q-points computed for the facets of F k , . For reasons that will

become clear later, we will construct a d-D tree storing the

points of Qn, and associate this tree with the node in a binary -~
tree representing P. .

11

Because of the aon-degenerate assumption on S, a vertex from P i

can lie either beneath or beyond a supporting hyperplane of a

facet of P and the same is true for a vertex from P . in
i J

relatiop to a supporting hyperplane of a facet of P I . Therefore,

Two non-intersecting
polytopes.

Polytopes as "open
shells".

r

A f t e r the "merge".

3
Fig. 4.1: "Merging" of two polytopes in H .

Fig. 4.2: "Wrap around" portion connecting polytopes P i and P .
extended to form polygon P w and its transformation into a J

Voronoi polygon.

according to Definition 3.1 we can only have r e d or b l u e facets

(i.e. no y e l l o w) . The process of determining r e d facets is

similar to the one we have descxibed in Chapter I 1 for the

on-line algorithm. However, here we are determining r e d facets

of one polytope with respect to all the vertices of some other

polytope. We accomplish this by considering one vertex at a

time, discovering one r e d facet with respect to this vertex

first, and then applying the P e e l i n g process (as described in

Chapter 111) to determine all the other r e d facets (if any). I n

the following section we will show how to discover the first r e d

0

facet.

Assume p = . . ., p d) is a vertex of and P I is t h e

polytope whose first r e d facet with respect to y is t,o bc

determined. Further assume that x l = c is the hyperplane t . h a t

separates S i and S . We start by searching the J - I) t ~ - e c .
I

associated with the node in the binary tree representing PI. I f

the search is successful, we have determined our first r e d facet

(i.e. it is the facet corresponding to the point q discovered by

the search). When the q-points stored in d-D tree were computed,

the origin of the the coordinate system was transformed to some

point x interior to the polyhedron P = C H (P l U P . For every
J .

d-D tree, the coordinates of its corresponding point A are

stored in the node of the binary tree that the d - D tree i s

associated with. I t is necessary to transform the coordinates of

p such that the origin is at x , before searching the d-D tree.

I f the search is not successful, we will search the d - D trees

associated with the nodes of the binary tree along the path

determined by the R I g h r S o n pointer of every node visited,

terminating the search as soon as a r e d facet is discovered'. In

'In a reverse situation when p is a vertex of PI and P is the
polytope whose r e d facets with respct to p are to be J

the following we will explain why i t is possible to search along

one path only.

Let P and P k l be two polytopes that are to be merged. Then
' J

they are separable by a hyperplane x l = c for some c . Let P . .
1 J

(P k /) be the left (right) polytope with respect to the

separating. hyperplane. To determine one red facet of P.. with
11

respect to some vertex p of P k l we traverse down the binary tree

starting at the node representing P . . and searching the d-D tree
1 J

associated with every node visited. A d-D tree stores .q-points

of some "wrap around". Let W . . be the "wrap around" connecting
1 J

polytopes P I and P . Then again there .exists a separating
J ..

hyperplane x l = c ' d - that separates Pi and P.. This hyperplane
J

defines two closed half-spaces H r and H containing Pi and P
J J

respectively. Let P. be the right polytope with respect to the
J

separating hyperplane. Some of the facets of Pi and P were
J

deleted when W was computed, leaving S i and S. as the sets of
11 J

the facets of P I and P , respectively, of their remaining ."open
J

shells". Define P to be the polytope obtained as the
H'

intersection of all a f f t f) for / , a facet of W . . . Let p be
' I

inside P w (i.e. i f p is not inside P w then at least one facet of

P must be red). Since p is inside of P w and it is also in H . np J
(i.e. c' c c) , it must be in (P w n H 1 . But for every point x

J

from (P w n H) x is beneath all the facets of S I and therefore p
1

is beneath all the facets of S I as well. The q-points for the

'(cont'd) determined, we will search the d-D trees associated
with the nodes of the binary tree along the path determined by
the Left S o n ,pointers.

facets in S l are stored in the d-D tree associated with the node

pointed to by L e f t S o n pointer of its parent node (i.e. the node

associated with P. . and therefore the path determined by the
1 1

L e f t S o n pointer need not be traversed.

As f a p s are deleted, the corresponding q-points are deleted

from the d-D trees as well. Therefore a d - D tree may not contain

all the q-points it contained when it was originally created.

Let W be the "wrap around" from which some facets have been

deleted. The d-D tree corresponding to W is associated with a

node in the binary tree representing some polytope P. The new

facets that replaced the facets deleted from*r"i' must have been

computedafter the facets of W were, and therefore their

corresponding q-points must be stored in the d-D tree associated ,

with some nodes of the binary tree at a level higher than the

node representing P. Since our search always starts at the

highest level of the binary tree, we must have tested p against

those relevant facets already and p must have been found beneath

each one of them.

To compute new facets (i.e. facets of the "wrap around"

connecting two "open shells") we can apply the "gift wrapping"

technique hand-~apur(1970)l. This technique is based on

Theorem 3.3. The principle involved here is to compute the

facets of a convex hull from the known edges. We s t a r t with an

initial convex hull facet. Assuming that the facet is simplicia1

it determines d (d-2)-dimensional edges. The initial facet is

then rotated about each edge to obtain new facets. T h i s process

is repeated for every new facet and the edges determined by'\the

facet. In the following paragraph we show how the initial

can be obtained.

7'

Each one of the two "open shells" determines a set of "exposed

edges" and a set of "exposed vertices" (i.e. the vertices

contained in the exposed edges). Let V i and V . be the sets of
J

"exposed vertices" of Pi and P respectively. For every "exposed,'
J

edge" one of the two facets that contain this edge is known Bnd
9

the other facet needs to be computed. Let e be an exposed edge

of P, and f the known facet that contains e. The initial facet

can be computed by seeking among all the hyperplanes determined -

by the edge e and a point from V, the one such that all other
J

vertices of V . are beneath this hyperplane. b
J

k
To compute the facets of the "wrap aroundw efficiently, we

3

introduce a new representation for vertices, facets and edges.

For every vertex we generate a unique vertex number, a positive

integer. A simplicia1 facet can then be represented by a vector

of length d that contains the generated vertex numbers of the d

vertices that define the facet, in ascending order; Similarly,

to represent an edge we use a vertex of length (d - I) containing

the vertex numbers of the vertices that determine the edge, also

in ascending order.

As the new facets are computed, they are stored in a queue which

we. call F o c e t Q u e u e . In this queue a facet is represented by its
- 9 .

vector. I f (w.l.o.g.1 i p , , . . . , p d) is the set 3 vertices that

determine a new facet and (n,, nd) its corresponding

vector, then every n l for 1 5 i 5 d can be used as a label for

an edge ok this facet. An edge will 'have a label n i i • ’ it is

determined by the set of vertices { p , , pd) - { p i *
Therefore, a vector represents not only a facet but also

the labels of

The new edges are stored in a height balanced AVL tree

[~ho-~opcroft-~llrnan(1974)l. At the time of inserting an edge as

a node into the tree, we 'also store a pointer pointing to the

facet that contains this edge, stored in F a c e r Q u e u e . Two edges

e and e with vectors (I ... , r d)
1 1 and j , . . . # J &

respectively, are compared lexicographically by the following

rule:

Let k be the smallest subscript for which 1 # j k .

I f i k < j k then e l is "smaller" than r .
/

Else e l is "larger" that e .
J

I t is possible that an edge of a newly computed facet is a l r e a d y

present in the tree. This means, that the edge is now associated

with two facets an3 therefore need not be considered any

further. This can be indicated by changing the edge label in the

vectors of both facets in F a c e t Q u e u e to its negative value. When

3 f a c e t from t h e F o c e t Q u e u e is considered, new facets are

computed only f ~ r those edges for which the facet label is

psitive. For a given edge e we consider only the two sets of

"exposed vertices" as possible candidates for the vertex that

will determine t h e new facet containing e. These sets are only

subsets of the entire set of vertices of the resulting polytope,

which contributes to the efficiency of the algorithm.

Every one of the two 'polytopes being merged has its own

b a c e r ~ L l s t and V e r t e x L r s t . We append one to the 2nd of the other

thus 9taining only one F a c e t L r s t and only one V e r t e x L i s t . AS

new facets are being computed, they are added to the end of

Facer L1 3 r . The update of the F a c e t V e r t r c e s , V e r f e x F a c e t s and

E a c e f N e r g h b o r s lists is, as we have shown for the Facet Problem

implementation of the on-line algorithm, proportional- to the

number of new facets mmputed.

Chand and Kapur presented a very clever way of 'computing the new

facets from the known edges hand-~apur(l970)I. We will not

describe the details of their technique here, but refer the

reader to their publication.

4.1.1 The Algorithm

d Input: Set S of n points, S S R , and dimension d.

Output: Description of the facets of P = CH(S).

Step 1 : {Sort]

Sort point of S with respect to the value of the first

coordinate.

Let S = i p , , . .. , p ,) be the sorted set.

Step 2:

If n I d then do

Construct the convex hull of S by using any trivial

.algorithm and stop.

Else

Do Step 3.

Step 3:

1 . {Divide]

Set k = \ n / 2] and divide S into

S I = (p l , ... , p k l and

- S 2 - i p k + l , * - * t p n l 0

2. IConquerI

Compute P I = C H (S I) and P 2 = C H (S ,) recursively.
L

3. {~erge)

M e r g e the two convex hulls to form P = C H (P , U P ,) .
L

Theonly non-trivial part of this algorithm is the M r r g r

procedure in Step 3 which combines two convex hulls. Following

is an outline of the steps of this procedure. ---"

.hie r g e

1 . Determine facets that need to be deleted.

a. Deternine one facet that needs to be deleted from one

polytope for every vertex of the other polytope and vice

versa .

b. Use Peel r n g process to determine all the other facets

that need to be deleted.

2. Compute new facets.

3. Store new 'facets in a d-D tree.

4.1.2 Data - Structures

A node in a d-D tree stores the same information as specified in

Chapter I 1 1 for the Facet Problem solving implementation of the

on-line algorithm.

/
, z-

Vert exLi st

Vertex - an. array, original coordinates of a vertex,

VerrexNo - a positive integer generated to represent a

vertex, %-

Flag - used to mark and unmark this record,'

FirstVF, LastVF - pointers to the first and the last record,

respectively, of VertexFacet list associated with this
4

vertex,

J f l PrevVerl ex, NextC'ert ex - pointers to the previous and the
/

next record, respectively, in Vert exLi st..

F a c e t Li s.t

F a c e i - an array, facet normal representing a facet,

Poi nt X - an array, coordinates of point x. to which the

origin of the coordinate system was transformed when a facet

represented by this record was computed,

Node - points to a terminal node in the d-D tree which

stores point q associated with this facet,

Flag - used to mark and unmark this record,.

Fl rstFV, LastFV - pointers to the first and the last record,

respectively, in Facet Nel ghbors list,

F l rstN, LastN - pointers to the first and the last record,

respectively, in Nel ghbors list, --. a
\

PrevFacet , N e k acet - pointers to the previous and the next

record, respectivel~y, in Facer Li s r .

Vert exFacer s , 'Facet Nei ghbors.,, FacetVert I c es and N e r ghbors lists

store the same information as specified in Chapter 111 for the
- 3

Facet Problem solving implerngdtation of the on-line algorithm.

A node in the binary tree stores the following:
'r

TreeNode - points to the root node ocf a d-D tree asssociated
P . . 8' >

with this n o F ,

PointX -T$ array, coordinates of point x to which the

origin of the coordinate system was transformed when the

facets of the "wrap around" represented by this node were

computed,

LefrSon, RightSon - pointers to the left and the right son

nodes, respectively, in this tree. ri A

F a c r t Q u r u e

F V e r t l c r ~ - an array, contains d vertex numbers of the

vertices that are contained in this facet, in ascending

order,
\

b ' a c e t - poin~s to the facet record in F a c e t L i s z associated a

with this facet. C

A node in the AVL tree stores the following:

L V e r r i c e s - a search key, an array containing (d - 1) vertex

numbers of the vertices that are contained in this edge, in

ascending order,

F Q u e u e - points to the facet in F a c e t Q u e u e that contains

this edge,

S m a l l S o n - pointer, points to the son node with "smaller"

-, value of search key than the value of search key in this

node, L a r g e S o n - pointer, points to the son node with

"larger" value of search key than the value of search key in

this node.

4.1.3 Computational Complexity

Step 1:

The amount of time needed to pre-sort the points of S is

Step 2:

I f n I d the construction of P = CH(S) can be done in

O(dFdtn) operations.

Step 3:

a, Let T(n,d) denotes the time needed by the algorithm to

compute P = CH(S). Then assuming that n is a power of

two we have the following recurrence relation:

T (I , d) = constant

T(n,d) = 2T(n/2,d) + M (- , d l

-/-re M(n,d) denotes the time it takes to compute the

convex ~$ull of the union of two polytopes with n/:

vertices each.

The solution to this recurrence relation i s obtained by

establishing an upper bound on M(n,d). To merge two

polytopes we do the following:

1 . For every vertex of one polytope determine a facet

(if it exists) of the other polytope such that the

vertex lies beyond it, and vice versa.

The height of the-binary tree is [logn].

Let F , be the number of facets of a "wrap aroundw
rn

connecting two d-polytopes P I and P 2 of O (n)

vertices each. Then the height of the d-D tree is

[10gF,,~] and the tree can be searched in

G)(dlogF,) experted time or O(dF,) time in the&
rn I n

worst case.

Running Time:

O(dnF,) in the worst case or , n
O(dnlognlogF,) expected time. , n

2. Determine all the other f.acets that need to be

deleted.

The determination of facets that need to be deleted

is proportional to the number of of facets found

which can be O(F) in the worst case. These facets
d, n

have to be deleted from the FacetList which takes

O(dFdrn) operations, and also from the d-D tree.

which can be done in O(dF logF,) operations.
dfn I n

Running Time: O(dFdInlogF,) in the worst case.
f n

3. Compute new facets.

To compute new facets using the "divide and conquer"

technique takes O(dnF,) operations in the worst
I n

case.

Running Time: O(dnF,) in the worst case.
f n

4. Store new facets.

New facets have to be stored in the d-D tree which

takes 8(dF, logF,) operations and also in
t n rn

Facet Li st which takes O(dF,) time.
I n

Running Time: 8(dF, logF,) expected time and in
, n .. n

the worst case.

The upper bound on F * , n i s equal t o t h e upper bound on t h e

number o f f a c e t s computed t o o b t a i n P = C H (P , U P ,) . Since P, -
and P2 a r e s e p a r a b l e by some hyperplane H , F, i s a l s o equal t o , n

t h e upper bound on t h e number of edges of a f a c e t t h a t i s

ob ta ined when P i s c u t by H . S ince in the worst case O (F)
d , -n

f a c e t s of P can be c u t by H I F , = F
d l n

. Therefore , our
t n

o f f - l i n e a lgor i thm computes t h e f a c e t s of a convex h u l l of n

p o i n t s in R~ in O (d n F) time in the worst c a s e .
d l n

CHAPTER' V

EXPERlMENTAL RESULTS

The on-line Facet Problem solving convex hull algorithm,

presented in Chapter 1 1 1 , has been implemented using the Pascal

language. We have tested the performance of the algorithn on

randomly generated data sets with normal and uniform

distribution and on "real life" data set. The convex hulls were

computed for two, three, four and five dimensional data sets.

The .results obtained are presented in tables 1 , 2 and 3.
.

The "real life" data set consists of 2,998 records of cervical

cell data, each cell represented by a six-dimensional feature

vector. Because of a very large number of facets computed for a

high dimensional data set of this size, we considered only up to

five features. We have observed that a large number of points,

when tested against the convex hull, are found to be in its

interior. These are what we call "throw away" points because

. , t h e y require no further processing. The larger the number of the

"throw away" points, the more efficient our algorithm is.

The number of facets of the resulting polytope in comparison to

the total number of facets computed seems to be quite small.

Even so, we have a very large number of points that do not cause

computation of new facets (i.e. the "throw away" points). This

would suggest that our algorithm is more efficient on average

than Seidel's(l981) and Edelsbruner's(l987), where, because of

78

pre-sorting, new facets are computed for every point of the data

set

From the test results, we can see, that the d-D tree remains

reasonably balanced throughout the computation. The maximum

height of the tree does not increase significantly, although

there was a considerable amount of updating bping don*.

The test results show that as an incremental technique for

computing convex hulls, our algorithm is efficient. I t performed

well on a "real lifen data set as well as on a randomly

generated one.

Table 1 : Performance o f the on-line convex hull algorithm on a

cervical cell data set ---

Dimension 2 3 4 5

File size 2 , 9 9 8 2 ,998 2 , 9 9 8 2 , 9 9 8

No. of vertices 15 48 109 250

No. of facets 15 92 546 4 , 1 8 2

Total no. o f facets

computed

No. of "throw away"

points 2 , 9 2 4 2 ,801 2 , 6 1 6 2 , 4 1 5
Y
L.2-

Average no. of terminal

nodes searched 6 8 42 207

Average no. of termina&

nodes in the tree

Maximum height of

the tree

Table 2: Performance of the on-line convex hull algorithm on a

uniformly distributed data set --

Dimension 2 3 - . 4 5

~ i l e sizq

No. of vertices

No. of facets

Total no. of facets

computed

No. of "throw away"

points

Average no. of terminal

nodes searched

Average no. of terminal

nodes in the tree

Maximum neight of

the tree

Table 3: Performance of the on-line convex hull algorithm on a

normally distributed -- data set

Dimension

File size

No. of vertices

No. of facets

Total no. of facets

computed

No. of "throw awayn

points

Average no. of terminal

nodes searched

Average no. of terminal

nodes in the tree

Maximum height of

the tree

CHAPTER VI

CONCLUSION

One of the problems an on-line convex hull algorithm has to

solve is the point inclusion problem in a convex polyhedron. The

existing on-line convex hull algorithms [Preparata-Shamos(i985),

~ey-ward(1985)l do not solve this ,problem efficiently. For a

polyhedron P determined by a set of n goints in R~ their

solution takes t3(FdIn) time on average and in the worst case , /

.where F is the number of facets of P. Seidel(l981) and
d t n

Edelsbruner(i987) also use an on-line technique in their convex

hull algorithms, but avoid the time consuming "point inclusion"

test b y - pre-sorting the . entire point set and the resulting

algorithms are off-line. We have proposed a method which solves

the point inclusion problem in 0(dlogFdpn) expected time. I n

short, we transform the point inclusion problem to the nearest

neighbour problem and we use a d-dimensional tree structure,

called the d-D tree, to'search for the nearest neighbour.

When searchin,g for the nearest neighbour, the search space is

partitioned into regions. We have shown how the number of nodes

examined by the search can be reduced by creating "cells" within

the regions. A cell of a particular region tightly encloses the

set of domain points contained 'in the region. We have also

proposed a way of dynamically updating the d-D tree in time

proportional to dH where H is the height of the tree.

We have used the above results in the design of two convex hull

algorithms for higher dimensional data sets. The first algorithm \\ ..
is an on-line algorithm which can be applied to a non-simplicia1

data set. I t can be used to solve either the Facial Lattice

Problem or the Facet Problem. The Facet Problem is solved

without maintaining information about all the faces of a convex

hull polytope and this is the only algorithm known to us to do

so. For a set of n points in R~ the algorithm solves the Facet

4 F Problem in O (d nFd-, , d-2,) time in the worst case. The Facial

Lattice Problem can be solved in O(dnFd-,,n log,F) expected d,n
time or O(dnFdPnlogF) time in the worst case. This expected

d , n

time is the best expected time known to us for an on-line higher

dimensional convex hull algorithm.

We have implemented the on-line algorithm for the Facet Problem

in Pascal language. Our test results show, that when the convex

hull is ccmputed for either a randomly generated data set or a
L5

"real worldw data set, there are a large number of points which,

when tested against the current convex hull polytope, are found

to be in its interior. This finding contributes to the

efficiency of our algorithm since we are only spending expected

8(dlogFd,,) time to process these points, where FdPi is the

.number of facets of the current d-polytope determined by the

first i points.

The "divide and conquer" principle has been used by Preparata

and Hong(1977) in the design of a convex hull algorithm for two

and three dimensional data sets. The technique used by them to

deternine facets that need to be deleted when two polytopes are

merged cannot be extended to higher dimensions. We have solved
(4

this problem by transforming it to a nearest z2ighbour problem.

To compute new facets we are using the "gift wrapping"

principle. In our implementation the number of vertices that
-~ -,='

need to be considered when new facets are computed is only a

subset of the number of vertices of the.resulting polytope. The

worst case performance of this algorithm is O (d n P 1 .
d , n

6.1 Open Questions

d The nearest neighbour problem for a domain of n points in R in

a dynamic environment is solved in O(d1ogn) expected time. The

q-points that we generate for the facets of a convex polyhedron

(w i t h respect to some point x interior to -the polyhedron) form a

special geometric structure. Whether this structure can he

exploited successfully to develop -an algorithm that would solve

the nearest neighbour problem in O(d1ogn) time in the worst ease

is an open question.

-.

Our on-line algorithm, presented-in Chapter 111, maintains the

d-D tree data structure dynamically. Generally, it is hard to

predict how the tree will "grow". We conjecture, that i f the

tree is updated randomly, the expected height of the tree grows

logarithmically with the number of terminal bodes i n the tree.

Whether it is possible t b update the tree sb that it will remain
balanced, od to balance the tree without recreating it is an

open question.

In order for the "divide and conquer" technique t o - be extended
7

to higher dimensions, the following two problems have to be

solved efficiently:'

1 . The determination of the facets that need to be deleted

during the merge step.

2 . The computation of +!he new facets during the merge step.

In this thesis we have solved-efre first problem efficiently. To
'1

compute new facets, we use the "gift wrapping" technique. his

technique computes a facet in ~ (n) time. Whether there is a

technique that would compute a facet in O(1ogn) time, is an open

quest ion.

BIBLIOGRAPHY -

~ h o , A.V., Hopcroft, J.E. and Ullman, J.D. (1974)
"The Design and Analysis of Computer Algorithms"
Addison-Wesley Publishing Comp., 1974.

kkl, S.G. and ~ o u s b f , LT-- (1978-1)
"Effic,ient Convex Hull Algorithms for. Pattern Recognition
Applications"
Proc. 4th Int'l Joint Conf. on Pattern Recognition,
Kyoto, Japan, pp. 483-487.

Akl, S.G. and Toussaint, G.T. (1978-23
"A Fast Convex Hull Algorithm"
Info. Proc. Letters, Vol. 7, No.5, 1978, pp.219-222.

Barnette, D.W. (19731
, "A Proof of the Lower Bound Conjecture for Convex
Polytopesw-
Pacific Journal of ath he ma tics 46, 1973, pp. 349-354.

Ben-Or, M. (1983)
"Lower ~6unds for Algebraic Computation Trees"
Proc. 15th ACM STOC, 1983, pp. 80-86.

Bentley, J.L. (1975)
"Multidimensional. - Binary Search Trees Used for Associative
Searching"
Comm. of the ACM, Vol. 18, No. 9, 1975, pp. 509-517.

Bentley,oJ.L. and Shamos, M.I. (1978) f.
"Divide and Conquer for Linear.Expected Time"
Info. Proc. Letters, Vol. 7, No. 2, Fef. 1978, pp. 87-91.

Bhattacharya, B.K. (1982)
"Application of Computational . Geometry to Pattern
Recognition ~roblem"
Simon Fraser University, CS Tech. Rep. 82-3, 1982.

Chand, D.R. and Kapur, S.S. (1970)
"An Algorithm for Convex Polytopes" ----'
Journal of the ACM, Vol. 17, No. 1, 1970, pp. 78-86.

I

a

~irichlet, G.L. (1850)
"Uber die Reduct ion der Posit iven ~uadrat ischen Formen mi t
Drei Umberstim~ten Ganzen Zahlen"
Journal fur die Reine Angew. Math., Vol. 40, 1850, pp.
209-227.

Duda, R.D. and Hart, P.E. (1973)
"Pattern Classification and Scene Analysis"
Wiley, New York, 1973, pp., 166-171.

P,'

Edelsbruner, H. (1987)
"Algorithms in Combinatorial Geometry"
Springer-Verlag, 1987.

Freeman, H. and Shapira, R. (1975)
"Determining the Minimum Area Incasing Rectangle for an
Arbitrary clbsed Curve" '

Cornm. ACM, ~0'1. 18, No. 7, July 1975, pp. 409-413.

Friedman, J.H., Bentley, J.L. and ink el, R.A. (1977)
"An Algorithm for Finding Best Matches in Logarithmic
Expected Time"
ACM ~ransactions on Mathematical Software, Vol. 3, No. 3,
Sept. 1977, pp. 209-226.

8'

Gilbert, E.N. and Pollak, H. (1986)
"Steiner ~inimal Treesn
SIM J. Appl. Math., 16, 1986, pp. 1-29.

Graham, R.L. (1972)
"An Efficient Algorithm foe Determining the Convex Hull ofe
a Finite Planar Set" f

J3

Info. Proc. Letters, Vol. 1 4 9 7 2 , pp. 132-133.

Grunbaum, B. (1967)
"Pure and Applied Mathematics", Vol. XVI: Convex Polytopes*
Wiley Interscience Publishers, New York, 1976.

Jarvis, R. A . (1973)
"On the Identification of the Convex Hull of a Finite Set
of Points in the Planen
Info. Proc. Letters, Vol. 2, 1973, pp. 18-21.

Jozwik, A. (1983)
"A Method for Solving the n-dimensional Convex Problem"
Pattern Recognition Letters, Vol. 2, 1983, pp. 23-25.

Kallay, M. (1981)
"Convex Hull Algorithms in Higher dimension^"
Univ, of Oklahoma, Dept. of Mathematics, unpublished
manuscript.

-

 allay, M. (1984)

"$he Complexity of Incremental Convex Hull Algorithms in
R W
Jpf. Proc. Letters, Vol. 19, 1984, p. 197.

Kirkpatrick, D.G. and Seidel, R. (1986)
"The Ultimate Planar Convex Hull Algorithm ? "
SIAM Jour-nal on Computing, Vol. 15, No. 1 , Feb. 1986,
pp.287-299.

Knuth, D.E. (1976)
"Big Omicron and Big Omega and Big Theta"
SIGACT News 8, No. 2, pp.18-24.

McMullen, P. (1970)
"The Maximum Number of Faces of a Convex Polytope"
Mathematica 17, 1970, pp. 179-184. y

McMullefi, P. and Shephard, G.C. (1971)
"Convex Polytopes and the Upper Bound con jeccure"
London at he ma tical Society Lecture Notes Series, Vol. 3,
Cambridge University Press, 1971.

Preparata, F.P. and Hong, S.J. (1977)
"Convex Hulls of Finite Sets of Points in Two and Three;
Dimensionsn
Comm. of the ACM, Vol. 20, No. 7, 1977, pp. 87-93.

Preparata, F.P. and Shamos, M.I. (1985)
"Computational Geometry"
Springer Verlag (1 9 8 5)

a
Rey, C. and Ward, R. (1985)

"An On-line Algorithm for Determining Convex Polytopes"
IEEE Transactions, 1985, pp. 87-91.

i.

Rosenfeld, A . (1969)
"Picture Processing by Computersn
Academic Press, New York, 1969.

Seidel, R. (1981)
"A Convex Hull Algorithm Optimal for Point S e t s in Even

4 2 -. Dimensions"
C 5 Univ. of British Columbia, CS Tech. Rep. 81-14, 1981.

Sqidel, R. (1986)
7

"constructing ~igher Dimensional Convex Hulls at
LogaritBmic Cost per Face"
Proce~dings of 18th Annual ACM STOCK, h York, 1986.

=
1 Cc

, "

~klansKy: J. (1972)
"Measuring Concavity on a Rectangular Mosaic"
IEEE Trans. Comptrs. C-21, Dec. 1972, pp. 1 3 5 5 - 1 3 6 4 .

Solomon, B.J. (1985)
"Surface Intersection for Solid Modelling"
University of Cambridge, Ph.D. Thesis, 1985.

Swart, G. (1985)
"Finding the Convex Hull Facet by Facetn
Journal of Algorithms 6, 1985, pp. 17-48.

~niessen, A.H. (1911)
"precipitation Averages for Large Areasn +.P
Monthly Weather Review, V a l . 39, 1911, pp. 1082-1084.

Toussaint, G.T. 4 1978) '
"The Convex.Hul1 as a Tool in Pattern ~ecognition"
Proc. AFOSR Workshop in Communication Theory. and
Applications,
Cape Cod, Mass., Sept. 1978. w"

$ ' Voronoi, G. (1908)
"Nouvelles Applications des Parameters clontinues a la
Theorie des Formes Qpadratiques"
Denxieme Memoire, Recherches sur les Paralleloedres
Primitifs,
Journal Reine Angew. Math., Vol. 134, 1908, pp. 198-287.

Wigner, E. and Seitz, F. (1933)
"On the Constitution of Metallic Sodiu
Physical Review, Vol. 43, 1933, pp. 80

.i
4 B

Wirth, N. (1976)
"qlgor i thms + Data structures = Programs"
Wentice-Hall Inc., Englewood Cliffs, New Jersey, 1976.

Yao, A.C. (1981)
" A Lower Bound to Finding Convex Hulls" .

Journ&A of the ACM, Vol."28, 1981, pp. 780-789.

INDEX
4 I*

$' 2-
7

Abstract, vi
Acknowledgements, v
Bibliography, 87
Conclusion, 8 3
Dedication, iv
Experimental Results, 78
Introduction, 1
The Divide and Conquer Algorithm, 60
The On-line Convex Hull Algorithm, 30
The Point Inclusion Problem in a Convex Polyhedron, 19
1 . 1 The Convex Hull Problem, 2
1.2 Computational Complexity and Lower Bound, 6
1.3 Solving the Facet Problem and the Facial Lattice Problem in

Higher Dimensions, 7
2.1 The Voronoi Diagram, 19
2.2 The d-D Tree Data Structure, 21
2.2.1 Dynamic d-D Tree, 25
2.3 Transformation of a Closed Convex Polyhedron into a Voronoi

Polyhedron, 27
3.1 Implementation Details and Computational Complexity, 30-'
3.1.1 The Algorithm, 3 3
3.1.2 The Facial Lattice Problem, 35
3.1 .3 The Facet Problem, 47

+

4.1.1 The Algorithm, 7 0
4.1.2 Data Structures, 72
4.1.3 Computational Complexity, 74
4.1 I~plementation Details and Computational Complexi~y, 60
6.1 Open Questions, 85

