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Abstract 
it 

Multicast communication allows a Sender to send a message to a group of Receivers and, 

depending upon the intent of the message either none, some, or all of the receivers &ll 

respond. Multicast communication in a distributed system connected by a Local Area Net- 
a 

work can reduce the amount of network traffic compared to that required for a sequence of 

one-to-one transactions; moreover, it can reduce the number of context switches in the 

Sender required by an equivalent sequence of one-to-one message exchanges, and it can 

also provide a greater functionality than one-to-one communication. 

Instead of requiring the Sender to know each receiver to which it wishes to send a mes- 

sage, the Sender directs a message to a named group of Receivers. The membership of the 

named group is maintained by the system in a decentralized distributzd data structure, main- 

tained by each host's kernel in the network. This allows receivers to be smed by function 

without requiring the Sender to know the specif~c members of the group. Contrary to comput- 

er folk-lore, we found that the overfiead of providing reliable multi&t over a single Local 

Area Network was very small, mainly due to the fact that ow reliable protocol operates at 

the kernel level rather than the user level. 

This h i s  describes several fonns of reliable multicast communication expressed as 

simple message-passing communication primitives, and illustrates the effectiveness of our 

protocol through an example of a distributed application. Performance analyses and actual 

perfkmmce data of the protocol art presented. 
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1. Introduction 

Distributed computer systems consisting of several workstations connected over a a 

Local Area Network (LAN) provide many advantages over centralised systems, includ- 

ing cost/perfoImance benefits and enhanced reliability through replication of resources. In 

distributed systems, coknunicatien mechanisms become a majar design issue. 
CI 

These communication issues range from low level services such as packet exchanges, to 
- 

high -level ones thatxpmvide atomicity and ordered delivery of messages. In general, 

because of data buffering and asynchronous communication between protocol layers, 
i 

th* higher levdl mechanisms are considerably more costly than the basic low-level 

mechanisd by the kernels themselves[Clark85]. 

The standard methd of communication between processes in a message based oper- 

ating system is one-to-one communication in which a Sender sends a message to a spc- 

cific Receiver which usually responds with a reply message. One such request-response 

message t ran~act io~ between a Sender and Receiver process is illustrated below: 

Time 

Sender Receiver 

Request b 

Blocked 

Blocked . - 

- -- - -- - 

Figure 1. A Request-Resparrse Message Transaction 

An extension, called multicast wmmunicrztion allows a Sender to a ~ g c  to 

a group of Receivers and, depending ~ p o n  the intent of thc message either rrrwrc, some, or 

all of the Receivers will rcspod Multicast communicatim is an elegant a d  useful corn- 



- 
munication mechanism for distributed systems; it is claimed that multicast is a fundarnen- 

tal operation of distributed applications [Chefiton87]. Our experience confirms this view. 
I 

We are particularly interested in providing an efficient multicast implementation which 

offers reliable delivery and reply where the sender is assured that the message has been 

delivered to all or k of the receivers or replies from all or k of the receivers have anived. 

There are many applications that can use reliable multicast communication. One such 

appgcation 'occurs in the implementation of replicated files or databases where reliable 

multicast is needed to modify all the copies of data [Schlichting85]. For example, consid- 

er the update of a small distributed database, copies of which are maintained on each - 
host in order to ensure robustness in case of host failure. In order to perform an update, a 

I 

process first queries the database managers (DBMS) on each host to obtain a lock on 

the item to be updated. Each DBM will reply indicating whether or not they agree to the 
! 

lock. Clearly this" query must be performed reliably in order to ensure that all the 

database managers consent to the lock. Once it is confirmed that each DBM does con- 
-- 

sent then a notification containing the update is sent to each DBM. This notification must . < 

also be reliable to make certain that each DBM receives the update. 

Many linguistic constructs for concmnt  programming such as the co..oc in S y n c b  
i 

-.. - ,-- ----a zing Resources [Andrcws82], [Andrews88] could be implemented using a reliable 
-. 

multicast mechanism. Furthermore, many parallel computation algorithms which require 
-4 

synchronization or exchange of partial results, such as distributed chess, and a myriad of 

distributed algorithms like selection of the k-th smallest element of a file-distributed 

among sites of a communication network(S antor0831 require reliable multicast 

Cheriton and Zwaenqcd [Cheriton85] have presented a model for multicast commu- 

nication in thc V-kwel  [Chcritoa84]. They propose that processes may pin groups to 

which wmbers &y multicast a single message. 'Ibeir model, however, only provides a 

kernel-level unreliable "best efforts" delivery for multicast messages. Hence, reliability 
f 



must be provided at a higher level to enable distributed applications such as those 

described above to exploit reliable multicast communication. Thus, if a Broadcasting pro- 

cess wishes to receive every reply from a group of processes, the Sender must explicitly 

maintain a list of group members, or have access to such a list from a group coordinator, 

an inherently expensive mechanism. 

The weak level of reliability provided in the V-kernel can be used by itself in sorm 

applications. For example, if a process wants to locafe a particular server, e.g. print serv- 

er, it may multic&t a message to the group of servers and the particular type of server(s) 

will respond to the query giving their name, current load, etc. The Sender then may either 

choos the first replier or wait and choose the lightest loaded server. Ilowever, the latter i? cas  is difficult to implement at the user level as the Sender does not know the number ~f 5 i 

memtkrs in the group. There are'also applications that only use the multicast for notifica- 

ti011 like name publishing or distributed computation applications. In the case of name 

putJishing applications, each server registers itself with the local name server which in 

turn .multicasts that information to the other name servers; this mechanism is used in the 

V system. This multicast is not essential but it provides m t i o n a l  information to hclp 

the name se.rvers in locating servers. 

Many applications requiring efficient reliable multicast have to contend with the com- 

plications and hefficiencies of implementing xliability at the application level, and thus 

have not been implemented on distributed computer systems excepi for research purpos- 

es. The designers of the V system argue that such higher degrees of reliability would be 
_- -- - 

too costly to implement and would heavily tax the performance of the applications that do 

not use such features. 

Ln this thesis, the design, implementation and analysis of the perfmmamx of an 
\ 

extremely efficient kernel level reliable 

d 7 % ~  xliable multicast is based on 

multicast in the V distributai 

the dcsign in [Atkins86] with 
F*. 

systcm is present- 

major extensions. 



This p r o w l  does not add significant overhead to the performance of normal one-to-one 

(1: 1 )  wmmunication, and which does not add to the wst  of so called I-reliable multicast, 

where at least one Receiver is guaranteed to reply. To achieve this, our protocol for reli- 

able multicast is implemented efficiently inside the distributed kernel. The protocol 

assumes that the kernels are connected over a single LAN, so that each machine on the 

LAN running that kernel receives every broadcast packet for which reliable dehver-y is 

specified. Our protocol also assumes that a group of Receiver processes can be accessed 

by a single group - id, and that the knowledge of group membership is distributed in that 

each local host on the LAN "knows" only the group members on its local host. In absence 

of gfobal group membership information by the Sender, we require that every host on the 

network acknowledge every reliable multicast message. This actualIy adds very little 

overhead in terms of delay because the ackrowledgrnents from kernels with no members 

amve before the genuine replies to the multicast messages, and the kernels with mem- 

bers piggyback the acknowledgments on replies. Also, these achowledgments are dealt 

with very quickly by the Sender's kernel. Kernel level reliability avoids extra messages 

between user and kernel level whch are required for implementing reliability at the user 
P 

level. Performance data assure us that the processor and network costs are insigndicant 

compared with the a l m a  tive of providing reliability at a higher level mavaratnam88]. 

Furthemore, we have developed an integrated approach to the protocol design so 

that the application dictates the level of reliability required. Through tailoring the reliabili- 

ty to the needs of the application, those appliations which can tolerate unreliable data- 

gram broadcasts can still exploit this efficient feature with scarcely any overhead, 

munication primitives which allow the Sender to specify the degree of rclk.bility required 

f a  multicast messages. Chapter 4 presents the detailed design and the implantntation 

of reliable multicast communication. Chapter 5 presents the performance d t s .  Chapter 



6 describes a dmibu ted  application which uhlises the reliable kernel-level multicast, 

and compares it with the alternatives of user-level reliability, and the concluding remarks 
P 

are gwen in Chapter 7. 



2. Related Work 

Usefulness of reliable group communication has  prompted substantial amount of 

research. Bcfore we look at some of proposed designs and implementations of reliable 

group communication, we need to define some common tenns: 

Atomicity - An operation is atomic if either it is performed in its entirety or is not per- 

formed at all. 

Network partitions - A network partition occurs when groups of processors can not 

communicate with each other because of communication link or site failures. 

Ordered delivery - Deliveries are ordered when they amve in the same order in which 

they were sent or when they are delivered in the same order at all receivers. 

The approach presented in this thesis is quite different from the method in [Chang84] 

where the responsibility of reliability is with d Receivers; Receivm take tums in act- 

ing as a broadcast co-ordinator to provide resiliency in case of site failures. The co-orrdi- 

nator is responsible for sending the acknowledgments to the Sender and it also has to 

service lost message 4 t s  from the other Receivers. Moreover, extensive actions are 

taken in case of site failure when a reformation phase is initiated to elect a new co-ordi- 

nator. Our protocol needs no such recovery procedure. 

Othu systems such as LOCUS walker831 provide full reliability for updates of repli- 

cated files to the extent that the opekiting system contains a great deal of code dealing 

with and attempting to m v u  from node and network failures. 

Communication reliability plays an important role in distributed applications such as 

dismbuced data basts. Two such systtms, A System for Distributed Databases (SDD- 

1 )  f H ~ O ) ~ o t h n i t 7 7 ]  and A Distriitcd D;Ptabase Manager @DM)' fWdter823, 

depend on a reliable network suvice providing guaranteed delivery, atomicity, and a net- 

work cmk. Also, a site &taring mechanism, similar in fuaction to the I-Am-Here 

w e r ,  is used to maintain the global site status. However, their s 

6 



; ISIS pirman85] provides reliable communication mechanisms with atomicity and 

ordered delivery features at the kernel level. These extra features tax the system- perfor- 

mance Pirman871; our reliable protocol is much more efficient. 

B 

There are several multicast communication mechanisms in UNIX-like environments. 0 

[Ahamad851 presents one such implementation which is integrated with the UNIX sock- 

ets and provides group membership management in case of network partitions and site 

failures. However, his system is based on an unreliable datagram service, and offers no 

reliable delivery or reply mechanism. COCANET [Rowe82] is another of the enhanced 

UNIX systems which uses multicast. However, it uses virtual circuits to obtain reliability. 

INCAS (INCremental Architecture for distributed Systems) mu1 ticomputer project 

[Nhemer87] provides process groups, like V, and multicast communication. Similar to 

our design, in INCAS the Sender process defrnes the success conditions for multicast 

operations. Their d e f ~ t i o n  of success is the number of Acknowledgments (ACKS) 

expected by the Sender which is equivalent to the K-REPLY multicast operation. The 

functionality of the ALL-REPLY, ALL-DELTVER, and K-DELIVER' is not provided in 

INCAS. Also, the Sender has to know how many Receivers there arc in the system. 

mvindron87] discusses the usefulness of variants of ALL-REPLY and K-REPLY 

group communication mechanisms in distributed systems. Also, a taxonomy of reliable 

broadcast protocols is given in INarayavan851 including a quasi reliable broadcast mtch- 

anism. This protocol uses a periodic mechanism to distribute group m c m h h i p  informa- 

tion. 

Garcia-Molina has initiated several rcliabk multicast schemes at Rinceton Universi- 



ty. In [Garcia88a] a reliable broadcast protocol is describal which is built upon an unreli- 

able multicast mechanism, However, the algorithm is designed to execute on a wide-area 

network, and it contains fault-tolerant features concerning network partitioning which are 

not necessary in our LAN implementation. No performance data are given, but the algu 

rithm's performance will certainly not be competitive with ours as our performance data 

show only a few percent overhead compared with the basic unreliable multicast of the V 

sysLem. In [Garcia88b] an ordered reliable broadcast protocol is described. The actual 

performance data are not presented, but clearly there will be an extensive overhead for 

managing the message propagations. 

In CNavaratnarn881 a reliable group communication mechanism is described, which is 

based on the V system, and which is designed for failure atomicity and for ordered relia- 

bility. It is implemented entirely above the V-kernel, at the user level, and so the perfor- 

mance data axr an order of magnitude more costly than ours, as user-level inter-process 

communication takes around 2 msecs, which their scheme requires. The data given in that 

paper refers to the unenhanced V-kernel with pre-delay (See Performance chapter), so 

although the percentage penalty for their reliable group broadcast appears small. (around 

+ 20%), on ourno-delay kernel, the percentage overhead is several hundred 



Design Issues 

Reliability Semantics 

From experience gained in programming applications which use multicast inter-pro- 

cess communication, we found that it is the Sender process which has the knowledge of 

how reliably the multicast message must be received, and the knowledge of how to deal 

with reported failures. For example, in a database application the Sender of a message 

may not require replies from a l l  members; replies from a majority of the members may suf- 

fice. We therefore take the approach that the Sender process must specify the reliability 

of the multicast message. For efficiency, if the Sender wishes to employ a reliable multi- - 
cast, the reliability should be provided by the kernel. Furthermore, Senders which do not 

require high degree of reliability should not be penalized at run-time with the extra over- 

head of the reliable communication mechanisms. To meet these requirements, our design 

specifies that the reliability of the multicast message must be specified in the Send mes- 

sage by the Sender. 

The word reliability has been used quite often- in the computing literature, often with 

different defmitions. The definition of reliability used in this thesis is that a communica- 

tion mechanism is k-reliable, where 0 <= k <= number of group memkrs, when the ini- 

tiator of the corrrrnunication primitive is assured that the desired action (e.g. message 

delivery) has been done by at least k members. There are distributed operating systems 

like LOCUSWalLcr831 which provide full reliability, w h m  k is all the rncmbns of the 

group. LOCUS uses this reliability to keep its replicated files up-to-date. On the other 

ha* the V-kernel supports a 1-reliable multicast featurc[Cheriton85]. This means that 

the system guarantees that at least one proctss rtctivts ad-replies to a message. V 

system docs this by retransmitting the Send packet when no reply is received after a 

Wt If there is no reply afta several rctransmisgion then Send =turns with failure. 

Tfris provides a simple and efficient implementation for multicast comrmtnication. 



The designers of V state that higher degrees of reliability would either require the 

Receiver to keep track of messages and rapest missed messages (which does not work 
' 

well in the case of lost request messages), or require the Sender to have access to the 

list of members of the group which is against one of the V design philosophy of minimiza- 

tion of global information [C heriton851. 
- 

However, we have designed an efficient mechanism to achieve higher degrees of relia- 

bility without depending on the two above mentioned methods. Our multicast provides 

Sender-initiated, non-atomic, non-ordered reliable multicast. This is doneeby providing 
a 

ALL-REPLY, K-REPLY, ALL-DELIVER, and K-DELIVER options for the Sender. 

For K-REPLY multicast, the Sender is blocked until K replies arrive from the group mem- 

k r s ,  where as for ALL-REPLY the Sender is blocked for the replies to arrive from all the 

group members. All the group ,members is the set of processes that are alive on the reach- 

able operating hosts at the time of transmission of the message. K-DELIVER and 

ALL-DELIVER are counterparts of the above mentioned primitives with the success con- 

dition changed to the delivery of the message to the group members. - For - example, an 

ALL-DELIVER Send succeeds when the message is delivered to all the group members. 

In this scheme, if a Sender requests an ALL-REPLY or ALLDELIVER reliability 

and the multicast message cannot reach a node on the network, the operating system will 

report FAILURE to the Sender, bur will make no automatic attempt to recover from the 

site failure. We assume that the- processors are fail-stop processors in that a fail-stop 

processor never performs an erroneous st* .transformation due to a hardware or operat- 

ing system failure; instead, it simply halts and all its volatile information is los?. We 

therefore assume that when a host is not reachable, it & not up; this is a reasonable 

2 - I f r b e f i i b d p r o o t s s r r i s ~ w i r h r - ~ w h i c h p i n s a ~ r t s a W v a i n t b e  
middle of r retiable transaceiaa, although tbc poctssor is aow nachabk, dabk Scad to titat group 
~ S Z i l l ~  

0 



assumption for reliable local area networks. Also, the problem of network partitions is not 

addressed here since it is not a major issue in a LAN environment. using broadcast medi- 

ums where- no groups are split on opposite sides of a gateway. The issue of group multi- 

cast for LAPu's with gateway is an active research area[Deering88]. 

The design goals for our rel-ale multicast communication are consistent with those of 

the V-kernel namely efficiency, simplicity, and minimization of global information. In the 

V-kernel the one to one and one to group communication mechanisms are handled by the 

same code; our added features did not alter this design to provide simplicity, and avoid 

duplication. In general, efficiency of the implementation was favored over space saving, 

although minor efficiency was sacrificed in favor of simplicity. Adhering to the V philoso- 

phy, the amount of global information is kept to a minimum; it is limited to the list of alive 

processors maintained by the I-Am-Here server which will be discussed later. 

3.2. Reliable Multicast Communication Primitives 

The V-kernel is a distributed message-based operating system with the hosts com- 
# 

municating over a local area network. Process groups and group management routines 

have already been implement& in the V csystem[Cheriton85], so we used that as a basis 

and focussed our attention on providing an efficient reliable multicast protocol in the kcr-. 

a nel. Associated with each process is a globally unique process identifier (PID), Each pro- 

cess may communicate with any other prwcss on any host by directing a message to the 

Receiver's PID. After the message is sent, the Sender is blocked until the Receiver 

receives the message and responds with a reply. Multicast communication in the V sys- 

tem is perfarmed by g the group identifier of a group or processes to which a mts- 

sage is to be deliv perating system then uses its membership information about 

the group to deliver the message to each member. Membership of a group is dynamic in 

that processes may join or leave a group at any timt. Full details on the V systtm group 

management mtines art available in [Chuitsn853. 



We modeled the user level wmmunication primitives as much as possible to those of 

the V system, so only the Send primitive is affected by the addition of reliability. We now 

describe the reliable Send primitive. The other relevant group communication primitives 

are given for completeness. 

Send(mwage, id) 

The fixed length message is sent to a single process if the id is a process id or to 

a group of processes if the i i  specifies a group,. in which case multicast is used. The 

multicast Send blocks for zero or one replies depending on the syscode and code fields 

' defined in the message. The new features are specified in the same way. The user 

specifies the type of Send by setting appropriate fields in the message. The syscode 

field may -be set to K-REPLY, K-DELIVER, ALL-REPLY, - or ALL-DELIVER. For 

K-REPLY or K-DELIVER the code field must contain an integer specifying the val- 

3 ue of K, where K >= 1 . For the new reliable multicast Send, h e  Send blocks until 

either conditions specified by the syscode field are satisfied or conditions are found 

I' 
unsatisfiable, in which case failure is returned 

I The format of a user level message is shown in Figure 2. 

--- - 

CODE 

UNSPECIFIED 

DELNERY 
SEGMENT PTR 

I SEGMENT SIZE I 
Figure 2. V User Levd Message Format 

3 - For K4, rtliable arnm-tioa is h a p p q r h  and thc standard V-kernel datapm can be 
Ustd 



The s y s d e  field types for the new features of group communication arc defined 

below: 

K-REPLY . - 

' Send blocks until K replies are received from the group members specified by 

id, in which case SUCCESS is returned, and the Sender's message is overwritten 

by the contents of the first reply. Otherwise FAILURE is returned because K 

replies are not possible, i.e. either the maximum number of timeouts and retrans- 

missions have been done or the number of members is less than K. In either case, 

Send sets the code field in the message to the number of replies received. 

K-DELIVER 

Send blocks until the message is delivered to K group members specified by 

the id, after which a SUCCESS is returned. Otherwise FAILURE is returned 

because delivery to K members is not possible, i.e. either the maximum number of 

timeouts and retransmissions have been done or the number of members is less 

than K. In either case, Send sets the cod2 field in the message to the number of 

members to which the message was delivered. Note that the Sender is unblocked 

after the status is returned from the kernel. Thus unlike standard 'J group cornmu- 

nication the Send does not block for a reply message. 

ALL-REPLY 

Send blocks until replies from al l  the alive group mtmbers in the group speci- 

fied by id are received, after which SUCCESS is returned, a d  the Sendtr's mts- 

'sage is overwritten by the first reply. A FAILURE is rtturntd if q t i m  of all 

the replies is not possible, i.e. the mxhum number of t b o u t s  and mransmis- 

sions have been done OT message &livery to a member failed. In either case, 

Send sets the c d e  field in the message to number of replies reanncd. 

ALLDELIVER 



Send blocks until the message is delivered to all the alive group members speci- 

fied by id, in which case a SUCCESS is returned. Otherwise FAILURE is returned 

because delivery to all the members is not possible, i.e. the maximum number of 

timeouts and retransmissions have been done or message delivery failed for a 

member. In either case, Send sets the code field in the message to the number of 

members to which the message was delivered. 

GetReply(message, time - Iimit) 

GetReply is used by the Sender to retrieve subsequent replies in the reply queue 

of the Sender. If there is a reply, it is copied to the message and the PID of the replier 

is returned. Otherwise, it blocks until a reply comes in or the timwut specifid in 

time - limit expires. In case of a timeout, FAILURE is returned. 

ReceiveSpecific(m&age, id) 

Receive or Receivespecific block until a message is received from any Sender 

or a message is received fiom the swc id which may specify a process or a group 

of processes. When a message is received, the PID of the Sender is returned and 

the received message is copied to the message. If no xhessages arrive, Receive 

blocks forever, whereas ReceiveSpccific may return virith a FAILURE after timing 

out. The timeout occurs only if the process with id process id does not exist in the 

system. 

Reply(message, id) 

Reply sends a reply message to the process specified by id. . 

?hc complete list of communicatioa primitives in the V system and their descriptions 

may be found in (Cheriton8q. 



One of the 

ALL-RECEIVE 

ALL-RECEIVE 

major contributions to the design in [Atkins86] was in investigating 

mu1 ticast and choosing ALLDELIVER mu1 ticast over ALL-RECEIVE. 

multicast returns success if all the Receivers have received the mes- 

sage and the message is available to the user level. Choosing of ALL-DELIVER was 

due to the way that messages are handled inside the V-kernel. When a Receiver invokes 

the Receive system call, it is blocked and the control is passed to the kernel: When an 

awaited for message arrives, it is copied to the Receiver's message buffer inside its pro- 

cess centrol block (PCB). If another valid message addressed to this Receiver arrives 

before the Receiver is readied for execution (as can easily occur with multiple Senders), 

the previous message in the Receiver's process block i overwritten by the new one. 

Currently when this happens on a specific 1:1 message .$ . first Sender will eventually 

timeout and retransmit. The present group implementation on the published V system 

allows message overruns and the message is lost. 

The ALL-RECEIVE succeks implies that the sent message is available to the 

Receiver. This semantic is very difficult to implement in the current V-kernel implementa- 

tion where messages can be overwritten in the FCBs. One solution is to use a flag in the 

PCB of the Receiver. However, this would introduce non ~ular /s t ructurcd code since 

the flag will have to be set after a message delivery in the kernel and reset in the user . I 

library level where the message is copied from the PCB to the user message data smc- 

ture. In lieu of the above, the &DELIVER semantic was chosen, which succeeds if 

the message is delivered to the Receiver (implying that the message m a y  be overwritten 

before the Receiver has read it). 

Some of the other major additions to the original design were in the area of providing 

variable degrees of reliabdhy. These arc provided by the K-REPLY and K-DELIVER 

multicasts [Chcriton85]~vbdron87]. These plus the extended user level fuclctidnality 

of IArnHere server which will be discussed in the following sections, provide powerful 

tools in implementing higher level communication services. 



\ 

4. Detailed Design and Implementation 

V system provides two types of groups, local or aobal. Only local processes may join 

a local group whereas both local and remote processes, i.e. processes running on other 

kernels, may join a global group. The original V system only provides 0 or 1 reliable 

4 broadcast, i.e. best efforts only ._This chapter describes our detailed design of kernel lev- 
I' 

el reliable multicast for &t%'local and global group communication. It also pres&ts the 

design of the I-Am-Here server which has both kernel and user level applications. , 
The reliable multicast and the I-Am-Here server was implemented inside the Ver- 

sion 6 V system. The V-kernel has three major logical components: the kernel server, 
n 

device server, and the inter-process communication. The global reliable multicast was 
, - 

implemented in the inter-process communication section which is entirely written in the 

C programming language. Our reliable multicast uses some of the V kernel's IPC facili- 

ties such as duplicate elimination and message retransmission. V system's inter-pro- 

cess communication mechanism eliminates duplicates and out of sequence messages by 

using message and transaction sequence numbers, and it also retransmits messages 

after each timeout. It has four timeouts of 2 seconds each. The ILArn-Here server imple- 

mentation affected V system's timer interrupt, ethernet device module, and the kernel 

server, which is a pseudo process. The reliable local group multicast, though completely 

designed, has not been implemented due to the recent trend in V system evolution 
-4 

' : 
toward global groups only. . .i 

4.1. Reliable Local Gmup Communication 

In implementing the reliable multicast, tbc intra-kemel protocol executed at the 

Sender and Receiver's kernel was modified5. These changes, however, did not affect the 



eractions between 1 Sender and 4 Receivers who are 

rnernbt-7 ofla l oc i  group for standard group communication are shown below: 

Sender 

kernel 

Figure 3. Logical inter-process interactions for local groups 

The Sender does a. Send, thus invoking a kernel request. The kernel recognizes the 

request as a Send to a local group. It creates an Alien precess for each Receiver in the 

group to act as a go between and as a message buffer. Then the message is delivered to 
- 

each Receiver and the Sender blocks until a reply is send to it. As each Receiver replies 

the Alien is either destroyed if it is the first replier. Otherwise, it is reused to queue the 

reply in the reply queue of the Sender, and the message is delivered to the Sender. For 

the sake of simplicity the interactions ktween Receivers and the kernel are not shown. 

Note that the Figure 3 represents what logically happens. 

4.1.1. DELIVER reliability 

The Reliable In tra- kernel protocol for K-DELIVER and ALL-DELIVER of . local 



group communication is shown below: 

SENDER '9 KERNEL RECEIVER 
Send(msg, grpid); - For each Receiver Receive(msg ) 

P 
E - - 
E 

blocked [ 

allocate an Alien - - - - - -2- blocked deliver msg to Receiver - - - - 
end \ 7 un blwked 
If success cond. are met 

success 

unblocked return failure 

Figure 4. - Reliable Intra-kernel protocol of K - DELIVER and ALL - DELIVER 

In the modified group communication mechanisms, the Send succeeds if the mes- 

sage is delivered to K Receivers for K-DELIVER or to all the Receivers for 

ALL-DELIVER. Note that the -Sender is unblocked after the status is returned from 

'd the kernel, thus unlike standard V group communication the Send does not block for a 

reply message. The success condition of the Send is s t o d  in  the Sender's process 

descriptor block. 

There are no retransmissions since the Receivers and the ~endkr  are local6. The 

ALL_DELIVER only fails when an Alien can not be allocated: the maximum number of 

P 7 Aliens in the system is predefined, and because of the asynchronou aracteristic of 

K-DELIVER and ALL-DELrVER. the number of fi-ee Aliens diminishes quite rapidly. 

4 . 1 2  REPLY reliability 



I 
The Reliable 1na-a-&me1 Protocol for K-REPLY and ALL-REPLY is shown below: 

SENDER KERNEL RECEIVER 
Send(msg, grpid); - For each Receiver id = Receive(msg); 

- - - - - allocate an Alien - - - - - deliver msg to Receiver - blocked 
- - - - f 
- 

blocked g end 
- - - if irnm. failure condition unblocked 
- - - - - return failure 

if maximum # of timeouts 
return failure - 

If success cotid. are met Reply(msg, id); 
success 

4 return failure 

Figure 5. Reliable Intra-kernel Protocol of K - REPLY and ALL - REPLY 

The immediate failure condition is satisfied when the Send type is K-REPLY and 
b 

the message is delivered to less than K Receivers or when the Send type is 

ALL-REPLY and a delivery fails. If K or all Receivers do not reply, after maximum 

number of timeouts, failure status is returned to the Sender. As the Receivers reply 

to the sent message, the kernel checks for having K replies for a Send type of 

K-REPLY or having received the last reply for ALL_REPLY Send. If a success mn- 

dition is met, then success is returned to the Sender. Note that timeouts may also 

happen after replies start to be received by the kernel . 

4.2. I - Am - Here Server 

Unlike reliable local group communication where all the information nee& for deter- 

mining success or failure of reliable communication is available locally, the knowledge of 

the Sender's kernel is not complete in the case of reliable global group communication. In 

order to provide the i n f o d o n  needed to determine the success of a Send, & b e  form 

of global information is needpi  Om obvious method would require the Sender to acquire 

the process ids of all the p u p  members. So that in case of ALL-REPLY, it m$d deter- 



i 
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mine the success of a Send, or in the case of K-REPLY, it could know that K replies are 

possible or not. Since V provides dynamic groups, which processes may join or leave at 

any time, the provision and maintenance of such information will be difficult. 

However, the knowledge of alive hosts/kernels is easier to obtain and maintain, and it 

is sufficient for this reliable multicast implementation8. This information is provided by 

using an 1-Am-G(IAH) server which maintains the list of reachablelalive hosts. Every 

host on the net ork has an I-Am-Here server which executes the following algorithm: .' 
boots up, it broadcasts an I-Am-Here message to all the hosts in the 

thereafter it broadcasts the message once every second. The 

I-Am-Here server, upon receiving the first I-Am-Here message from a host, marks 

the Sender host up in its information base and in turn sends its own I-Am-Here mes- 

sage after a random delay (0-10 milliseconds) to help the Sender host in compiling its 

Alive Kernel Table (AKT). The data base in each kernel is composed of two parts: an 

Alive Kernel Table with a row for each alive host on the network, and an Alive Kernel 

Bit Vector (AKV) with a bit entry, up-bit, for each host. These data structures are 

shown in Figure 6: 

Alive Kernel Table Alive Kernel Bit Vector 

Figure 6. I - Am - Here Server Data Structures 

Host - id 

1 

There is a o m  to one amqmndence between the position of a host in the table 

Timer 

A 

................. Sequence-no Bits 



and th=. bits in the vector, e.g. the status of the host in the fourth table entry is stored 

in the fourth bit of the AKV up - bit field. The table has two entries for each host: the 

hast - id entry and a timer entry. In this implementation, the host - id contains the Eth- 

ernet address of hosts. Every time an I-Am-Here message arrives from a host, its 

bit position in the A ~ v  up - bit is set to TRUE and its timer is set to 2 which is decre- 

merited once every second. If the timer becomes 0, then the host is assumed to be 

down; its timer is set to -1, its bit position in the AKV up - bit is set to FALSE and 

its space in the AKT is freed up. This timer mechanism facilitates marking a host 

down only if no I-Am-Here messages arrive from that host in 3 seconds. This 3 sec- 

ond grace period may be increased with ease. 
a 

The sequence - no variable associated with the Alive Kernel Bit Vector is incre- 

merited every time there is status change, i.e. a host comes up or goes down. In the 

current implementation, the bit vector is 32 bits wide, so it can accommodate up to a 

32 host network environment; the number of bits may be increased quite easily. 

The global view of the I-Am-Here server quickly stabilizes with the multiple broad- > 

casts of a given host when it comes up, the periodic broadcast, and the very low error \ 

rate of Ethernet Local Area Networks. The delayed discovery of false or genuine host 

failures is tolerated by the communication protocol's timeouts. 
T 

It is worthwhile to note that then is some' randomness in the broadcasting of 

I-Am-Here messages due to the following factors: 

The clocks of all the hosts are not synchronimi, i.e. interrupts don't all happen at the 

same time 9. 

In V, the I-Am-Here message is only broadcast immediately if the timer interrupt 



did not interrupt the kernel, otherwise it is delayed. So the exact time of the broadcast 

is affected by the current system activity. 

This randomness plus the assumption that the number of hosts on the LAN, not count- 

ing gatewayed hosts, is not extremely large avoids collisions and excessive loading of the 

LAN. 

The I-Am-Here server also provides the following user level services: 

getting a copy of the alive kernel vector (AKV) - This is done by sending a message to 

the local kernel with syscocie field set to GET-IAH-BIT-VECTOR command constant. 

0 The local kernel replies vnth a message containing the bit vector and the sequence - no 

of the vector. 

getting the host numbs, given the bit position and sequence number - This is done by 

sending a message to the local kernel with syscode field set to GET-IAH-HOST-NO 

command constant, and two of the other fields set to the host position nirmber (e.g. 4 

for the fourth host) and the sequence number, previously obtained by a 

GET-IAH-BIT-VEmOR command, in the message. If the user's sequence number 

matches the kernel's, the I d  kernel replies with a message containing the host-id 

( i t .  ethernet address) of the host in the reply message. Otherwise FAILURE is 

return& 

resetting the k m l  bit vector - This is done by sending a message to the local kernel 

with syscode field set to RESETJAHIPtHBIT-VECTOR command constant. The local 

kernel replies to this message after nsctiing the vector. 

These services m p l e d  with the new reliable communication primitives could be used 

in building higher levels of reliability, ammicity, ordered delivery, etc. with ease. 

4 3 .  Reliable Global G m p  Communiatiou 

Members in a global group may reside at local or remote hosts. The logical inter-pm 



cess interactions between 1 Sender and 2 Receivers who are members of a global group 

are shown below: 

7 Sender 2 Receiver P 

kernel kernel s2- 
Ethernet 

Figure 7. Logical Inter-Process Interactions For Global groups 

The Sender blocks, and the message is serviced locally and is also broadcast on the 
- 

network1*. The kernels with Receivers create an Alien process for each p u p  member 

and deliver the message to their local Receiver(s). Replies from remote Receivers are 

also sent via the network and picked up by the Sender's kernel. 

It is necessary for each host, whether it has group mcmtms or not, to acknowledge 

the ALL-REPLY or ALL-DELIVER group Sends. This acknowledgment is also used for 

early detection of K-REPLY or K - D E L W ' s  failures, though it is not strictly rtquirtd 

F a  Reply reliable Sends (ie. ALL-REPLY and K-REPLY), tht host achwltdgnrmts 

aimally add very little overha!, became the acknowledgments from kernels with no 



members arrive before the genuine replies to the multicast Tessages and are dealt with 

quickly, and the kernels with members piggyback the acknowledgments on reply mes- 

sage. For Deliver reliable Send, there are no replies from the Receivers and the kernel 

acknowledgments are efficiently processed by the Sender's kernel. The performance fig- 

ures (in the Performance chapter) show !hat the extra host acknowledgments add 

insignificant. overhead to processor or network costs, as network interrupts are fielded 

efficiently in the kernel. 

In this implementation, one unique multicast address is set aside for all the reliable 

communication, whereas specific multicast addresses are used for standard V group 

Sends. One multicast address for reliable communication is used mainly because of ease 

of implementation of the inter-kernel protccol. Use of more than one multicast address for 

reliable communication is d~scussed in the Future work section. 

4.3.1. DELIVER reliability 

The reliable Inter-Kernel protocol of K-DELIVER and ALL_DELNER wmmuni- 

cation primitives is shown in Figure 8. 

The Sender blocks. The Sender's kernel first takes a copy of the alive kernel's 

vcttor and stores it in the Sender's proctss control block. The Sender's process con- 

trol block has an q e c t e d  kernel ack vector and a num - receivers entry for the num- 

her of Receivers, initially set to zero. The Sender's kernel m t e s  an Alien for each 

Id Receiver (if any), i n m n t s  nwn - receivers, and delivers the message. It also 

sets the bit for the local kernel in the ex@ kernel ack vtctor. 

An immdiatt failure can occur on the Sender's kernel if the free Alien resource 

p o l  is exhausted, and thc message is of type ALL-DELNER. In this case, the ker- 

nel a i m 6  the Send and returns failure to the Sender. Otkm&c, the message is 

broadcast over the net. On the Receiver's kernel, an hmd im failure h a p  when 

the kernel runs out of h e  Mens and tfic message is of type ALL-DELNER This 



causes a negative acknowledgment (NACK) message to be sent to the Sender's ker- 

nel. 

If a NACK message arrives at the Sender's kernel and the messagcs is of type 

ALL-DELIVER, then failure is returned to the Sender. 

Remote kernels with no Receivers immediately send an ACK message with 0 as 

the number of deliveries made. Otherwise, the remote kernel delivers the message to 

the Receivers and sends an ACK message with number of deliveries made. Both the 

ACK and the NACK message contain the number of deliveries made. 

If immediate sucdess conhtions hold., i.e. the local host is the only alive host and 

delivery succeeded to all the local Receivers and the message is of type 

ALL-DELIVER or if the number of deliveries done locally >= k, then success is 

returned to the Sender. Otherwise, as kernel acknowledgments plus number of deliv- 

eries messages come in from other hosts, their respective bit in expected k m e l  ack 

vector is set and number of deliveries is added to Sender's num - receivers field; the 

Send succeeds if expected kernel ack vector is identical to the Sender's copy of hive 
J 

kernel vector and the message is ALL-DELIVER, or if nwn - receivers >= K for 
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else 
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Figure 8 - Rdiabk Inter-kernel p r d d  of K - DELIVER and ALL-DELIVER 
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If immediate success conditions hold, i.e. the local host is the only alive host and 

delivery succeeded to all the locd Receivers and the message is of type 

ALL-DELIVER or if the number of deliveries done locally >= k, then success is 

returned to the Sender. Otherwise, as kernel acknowledgments plus 'number of deliv- 

eries messages come in from other hosts, their respective bit in expected kernel ack 

vector is set and number of deliveries is added to Sender's n m  - receivers field. The 

Send succeeds if expected kebnel ack vector is identical to the Sender's copy of alive 

kernel vector and the message is ALL-DELIVER, or if num - receivers >= K for 

K-DELIVER messages. 

If timeout occurs and success conditions have not been met at the Sender's ker- 

nel, the message is retransmitted by the kernel. The Receiver's kernel recognizes 

retransmitted messages and re-sends the kernel ACK messages. After the maxi- 

mum number of timeouts and retransmissions, the Send is aborted and failure is 

returned to the Sender. Note that because both the ACK and the NACK messages 

contain the number of group members on the host, it is possible for a K-REPLY to 

succeed even if NACK messages are received from some of the remote kernels. 

43.2. REPLY reliability 

The algorithm of K-REPLY and &REPLY for global group Sends arc shown 

in 5igure 9: 
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Figure 9. Reliable Inter-kernel Protocol of K - REPLY and ALL-REPLY 
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The Sender blocks. The Sender's kernel takes a copy of the AKV and stores it in 

the Sender's PCB. The Sender process's control block's expected kernel ack vector, 

n w n  - receivers and n u .  - replies - received fields are initially set to 0. The Sender's 

kernel creates an Alien for each local Receiver (if any), updates num - receivers, and 

delivers h e  message. The immediate failure conditions are similar to the Deliver nli- 

7 ability algorithm and are caused by lack of resources to either deliver the message to 

the Receiver or reply to the Sender. If immediate failure does not occur, at the 
- 

Sender's kernel, the message is broadcast over the net. 

As replies are received, the Sender's kernel increments num - replies - received 

field in Sender's PCB. 1f 'i-date success conditions hold, i.e. the local host is the 

only alive host and replies arrived from every local Receiver and the message is of 

type ALLREPLY (or if the number of replies received locally >= K for K-REPLY), 

then success is returned to the Sender. Otherwise, the Sender's send operation waits 

for remote kernel messages. If a NACK message arrives at the Sender's kernel and 

the message is of type ALLJEPLY, failure is returned to the Sender. A NACK 

message is sent by remote Receiver's kernel if the sent message can not be deliv- 

ered due to lack of Alien processes, which causes an immediate failwc. Qtherwise, 

the remote kernel sends the replies from the Receivers, piggybacking an ACK and the 

local number of Receivers on the last reply. As the kernel acknowledgments arrive at 

the Sender's kernel from other hosts, the respective bit in the expected kernel dck 

vector is set and number of replies is added to num - repiies - received. 
2.. 

+- 

For ALLREPLY multicast, the Send s u c a d s  if the expected kernel ack ve "9: 
ii identical to the Sender's copy of alive kernel vector and nwn - receivers is equal to 

num - replies-received. K-REPLY succeeds if nrun - replies-received >= K. Note that 

because both the ACK and the NACK messages contain the number of group m m -  

bm on the host, h is possible for a K-REPLY to sucaad even if NACK messages 

are received from some of the remote kernels. 



If timeout occurs and success conditions have 

nel, the message is retransmitted by the kernel. 

retransmitted messages and .re-sends the replies 

the Sender's kernel discards duplicate replies by 

not been met at 

The Receiver's 

previously sent 

using sequence 

the Sender's ker- 

kernel recognizes 

fiom that keinel; 

numbers. If there 

are some Receivers that have received the message but have not replied yet, a spe- 

cial message called Breath-of-life is sent to the Sender's kernel. This message 

resets the timeout time in the Sender's kernel lengthening the transaction time limit 

beyond 4 tirneouts of 2 seconds each. After the maximum number of timeouts and 

retransmissions, the Send is aborted and failure is returned to the Sender. 

Two outstanding worthwhile issues regarding this reliable multicasts design are . 
its interactions with view of the system (i.e. the alive hosts) and scalability. Change 

of the view of the system is handled correctly- by these reliable multicast protocols in 

that the Send does not succeed if the requested operation failed. If a site fails in the 

middle of a send transaction before sending the ACK messa h to the Sender's ker- 

nel, the transaction will fail. Also the ACKdNACKs that may arrive from sites that 

recover/come up in the middle of a Send transaction will not contribute to the success 

or failure of the transaction since the Sender's kernel uses the view before the start of 

the transaction for determining s u m .  The only other possi6ility for reporting fake 

success to the Sender is when a site fails after the transaction has started and recov: 

ers before the end of the transaction (before the last retransmission). This is very 

unlikely since the failure and recovery have to happen in three retransmission 

times(i.e. 6 seconds in the V kernel). Also, this condition may not be viewed as a 

false success but true success. 

Scalability ooincs into the picture because of the I-Am-Here server's periodic 

messages and the ACK 0 messages horn hosts with no Receivers. These messages 

are about 100 bytes long and with a'l0Mbit Ethcmet, their transmission &esvbout 

1 millisecond. The V kernel, like many other kernels, handles Ethernet intempts 



using interrupt service routines. The intemp: service routines receive these mes- 

sages and invoke appropriate functions which extract the needed information fmm the 

messages and then discard the messages. The handling of each of these messages 

takes about 0.1 msec on Sun 3 with a 50 host network. Because of the qua1 trans- 

mission and kernel pmessing times for each of the I-Am-Here and ACK 0 mes- 

sages, the kernel percentage loading for handling ACK 0 and I-Am-Here messages 

is equivalent to Ethernet percentage loading by ACK 0 and I-Am-Here messages. 

With a 55% Ethernet loading, where ACK 0 messages from 50 hosts consume 50% 
.a 

and I-Am-Here messages consume 5% of the Ethernet bandwidth, the Ethernet will 

handle 100 multicast messages per second. This will also result in 55% loading of the 

kernel, thus indicating the upper limits of scalibility of our protocol. 



5. Performance 
-- - . d 

The timing measurements of communication models for global group communication 

are given i n  this section. First the experimental environment, both hardware and soft- 

ware, is presented, followed by the specification of test models used in timing measure- 

ments. Then, the performance of the test models is discussed. 

5.1. Experiment Environment 

Sun 3/50 workstations were used for the performance analysis of reliable communica- 

tion primitives.-These workstations use a 32 bit Motorola 68020 processor running at 16 

MHz. Each workstation contains 4 megabytes of main memory with no secondary stor- 

age. In this diskless environment, a micro Vax I1 was used as a file server performing all 

the disk VO. 

The machines were connected via a 10 Megabidsecond Ethernet[Shoch80]. The 

experiments were done using up to 8 Sun 3/50 workstations. The hardware environment 

is shown in Figure 10. 

Figure 10. Hardware environment 

The Sun 3/50 workstations ran the Version 6 V system, and the micro Vax II ran 4.2 

BSD UNlX Tht softPyclrt role of the micro' Vax I1 will not be discussed further, as the 

micro Vax I1 was only used as hie SQYU and henct did not effect the timing results. 



5.2. Test Models 

The test model used in obtaining the performance figures consists of a Sender and one 

or more Receiver processes. The following three types of communication mechanisms are 

used in the test models: 

Standard One To One (1:l) - The Sender uses specific Send to send messages to 

the Receiver(s). If there are-multiple Receivers, the Sender sends the message to 

each one in a sequential manner. 

Standard One To Global Group (Standard 1:rnany) - The sender and Receivers 

belong to the same global group and the Sender uses V system's 1-reliable multicast 

to send messages to the Receivers. 

Reliable One To Global Group (~e l iab le  1:rnany) - Similar' to Standard 1:many 

except that one of the ALL-REPLY, K-REPLY, ALL-DELIVER, and K-DELIVER 

reliable primitives is used. 

The Sender and Receiver(s) first establish contact with each other, and then execute 
* 

a tight loop which is bracketed with timing measkment  mechanisms. In the loop, the 

Sender sends messages to the Receiverts) and waits for appropriate number of replies or 

deliveries in a loop of 10,000 iterations. In all the Reply reliable and standwd V 1:many 

mdels ,  the Sender awaits and retrieves ALL or K replies, using the GetReply primitive. 

Note that the Sender and the Receiver(s) each execute on a separate host. 

In the V system, each,message is 32 bytes long, but it may have a 1 kilobyte data 

segment associated with it [Cheriton85]. For simplification of test models, our mcs- 

sages do not have data segments associated with them 

The following terminology is used when discussing pxfonnance: 

, '  

Early Standard V-kernel - Version V.6 kemel +fore any enhancements. 



Standard V-kernel - Version V.6 kernel with no delay1 l on replies to group Sends. 

Early Enhanced V-kernel - Version V.6 kernel with our reliable group communication 

enhancements. This corresponds to an enhanced version of the Early Standard V-ker- 

nel. 

Enhanced V-Kernel - Version V.6 kernel with our reliable group communication 

enhancements, and with no delay on replies to Group Sends. This corresponds to an 

enhanced version of s tand&d V-kernel. 

The timing results obtained in the rest of this chapter were obtained while the net- 

work was in normal usage. In order to get valid results, the tests were done at different 

times and the minimum 'was chosen. Moreover, they were executed at the user level with 

no attempt to optimize their performance by adjusting priorities, etc. 

c 
11 - The mcaning of the tern no &lay is explained later in this chapter. 



5.3. Timing Results 

First, we determine the overhead of the enhanced communication mechanisms in the 

V-kernel by comparing the performance of 1:l and standard 1:many Sends in standard V- 

kernel and in the enhanced V-kernel. The results are tabulated in Table 1. All the times 

given are msecs per message sent. 

Table 1 - Comparison of standard V-kernel and enhanced V-kernel 

(rnsecslrnessa ge) 

I I Early Std. I Std. V-keme 

We used 

mance of 1 :1 

Comments 
( 1-reliable ) ( 1-reliable ) 

L i e  host 

0.684 0.684 

(timeipc) 

(timeipc) I I 

Early Enh. 

V- kernel 

Enhanced 

V-kemel 

the standard V system program t imipc for measurement of the perfor- 

specific Send for local communication on the same host (row 1 of the table) 

and remote communication &tween two hosts (row 2 of the table). Timeipc is a special 

program which executes in a tight loop sending or receiving messages. These differences 



tzetween standard V and our enhanced V are insigmfkant. They are caused by the extra 

codc in the kernel for handling the reliable multicast. The gap between 1.913 and 2.331 

msecs per 1:l message may be greatly reduced by streamlining the kemel code in han- 

dling the standard V communication primitives. 

The results for all the group communication described hereafter were obtained by exe- 

cuting Sender and Rcceiver Drograms, each on a different host. The Sender sends a mes- 

sage to the Receiverfs) and waits for appropriate number of replies or deliveries in a loop 

of 10000 iterations. In case of waiting for replies, the Sender retrieves all the replies 

using the GetReply primitive. Each Receiver blocks on a message reception and replies 

to all the messages. Unlike timeipc program, these programs were executed at the user 

level with no attempt to optimize their performance by adjusting priorities, etc. 

The Sender is given the number of Receivers in the standard kernel test, and it exe- 

cutes GetReply to obtain all the replies in both cases. Note however, that it is conceiv- 

able that as the standard kernel only makes "best-efforts" delivery attempts, the stan- 

dard kernel could fail to receive replies from its group members, incurring a heavy timeout 

cost on GetReply. This did not occur in our test runs, thus indicating that the LAN is 

very reliable. 

Row 3 of Table 1 shows that the performance of the early versions of the group com- 

munication are not optimized, since the replies to a global group Send are delayed by a 

random amount of time. This delay, which can be as long as 30 milliseconds per reply, 

reduces the number of system buffer overruns at the Sender's host [Cheriton8S]. This 

overmn problem exists mainly in Sun-2 hosts which have minimal system buffering capa- 

bilities in the Ethernet interface. Sun 3150's are much faster and the number of allocated 

. . system buffers in the Ethernet interface is large. Therefore, the 30 mllllstconds delay is 

not needed, so we removed the delay h m  both the early standard kernel and the d y  

enhand kernel. This shows vast performance improvement which makes multicast cost 



effective when the number of Receivers is more than 1, which is usually the case in p u p  

communication. The cost overhead remained insignificant, so we only continued further 

measurements on the no-delay kernels. 



5.4. Performance of ALL - REPLY and K - REPLY Communication Mechanisms 

The performance data for 1-reliable, ALL-REPLY and K-REPLY reliable 1:many 

Send communication mechanism is presented in Table 2. The data are plotted in Figure 

1 1. All the times given are in msecs per message sent. 

Table 2 - Performance of ALL-REPLY and K - REPLY Sends 

(msecs/message) 

TIME 

8 
Number of Recei-.YZS 

Number 
of 

Receivers 

1 

2 

3 

8 

Figure 11. Performame of ALL - - REPLY and K - REPLY Sends 

Comments 

2 hosts 

3 hosts 

4 hosts 

9 hosts 

Enhanced V-kernel 

(K-REPLY) 

2.980 

3,954 

4.739 

8.99 1 

. 

( 1-reliable ) 

2.418 

3.18 

3.84 

6.993 

( ALL-REPLY) 

2.707 

3.926 

4.634 

8.878 



The performance data in Table 2 and Figure 11 was obtained by executing each of thc 

Sender and Receiver processes on a different host. Tests done with a mixture of hosts 

with and without Receivers resulted in the same performance times. Therefore the over- 

head of ACKs f?om hosts with no Receivers is negligible. 

The performance of the enhanced ALL-REPLY group Send is about 20% slower than 

the 1:reliable group Send, mainly because the Sender is blocked until all the replies have 

arrived; only then can the Sender. read the replies with GetReply. In the I-reliable case, 

the Sender is unblocked as soon as one reply arrives, thus allowing concurrency in rend- 

ing replies and accepting more replies. Another reason for the slower speed of the 

ALL-REPLY reliable Send is the extra code in the kernel to deal with this case. This 

still makes ALL-REPLY attractive since the ALL-REPLY group communication mech- 

anism does not need to know the numkr of Receivers in the group and i t  has a suitable 

semantic interface for applications that require reliability. 

The percentage timing difference between the 1-reliable 1:many ai-~d ALL-REPLY 

1:many Sends remains constant as  the number of Receivers increase, therefore 

ALL-REPLY should perform quite well even with large number of Receivers: it scales up 

well. 

The ALL-REPLY mechanism was also tested when not all the alive hosts had 

Receivers on them; no additional overfiead was observed. This is due to the concurrency 

of the &el; the hosts with no Refxivers reply before the Receivers on other hosts reply 

to the message and the Sender's kernel handles these early replies very efficiently. 

The standard 1 : 1 mechanism takes about 2 msecs for a message exchange between 

two machines. Therefore if all the replies arc needed reliably, it pays to use the 

ALLREPLY group co~l~lunication over the sequence of 1: 1 Sends, if thm is m e  than 

one R h v e r  in the groq. 

K - E . K Y  1:many communication mechanism's performance is similar to 

39 



ALL-REPLY'S performance since K was set to the total number of ~ e c e i v e k i n  the sys- 
.-% 

tern. The difference is insignificant; it is mainly caused by placement of tests for 

ALL-REPLY success condition tests before the tests for the success conditions of 

K-REPLY in the kernel. Therefore, the above discussion about the performance of . 

ALL-REPLY mechanism also applies to K-REPLY. Of course, K-REPLY would perform 

better than ALL-REPLY in applications that require K replies where k < total. number of 

Rkeivers; f ~ r  example, an application that wanlSto find the K available servers would be 

faster using the K-REPLY Send than using ALL-REPLY Send. 



5.5. Performance of ALL - DELIVER and K - DELIVER Communication Mechanisms. 

The performance of ALL-DELIVER and K-DELIVER reliable 1:many Send commu- 

nication mechanism is presented in Table 3 and plotted in Figure 12. Note, that in 

DELIVER reliable 1:many models, the Sender does not replies, instead it blocks 

for a status to be returned from the Sender's kernel. Also, the do not reply to 
, .-. 

4% 
messages. Most asynchronous operations have a tendency to resources 1 i. 

if done in a tight loop; the ALL-DELIVER and K-DELIVER are not%ympt From this 

rule. A tight loop of 10000 iterations would quickly use up the free pool+ o;\A(teens and 

system buffers on the Receiver's kernels, and overrun problems similar to t h h e s  
\ 

described in the Design Issues chapter would occur. Therefore, the number of iterations 

was lowered to 100, and the experiment was repeated several times. The alternative to 

this would involve the introduction of a fixed delay (e.g. half a second), before each Send 

in the Sender's 10000 iteration loop. The overhead of 10000 half a second delay opera- 

tions would later be deducted to obtain the time required for the tight loop of 10000 

DELIVER reliable Sends. This method would increase the length of timing test (10000 

half a seconds = 1.5 hours), and increase the effect of bursty network traffic on the 

results. 

Unlike the ALLREPLY case, there is no real counter part to ALL-DELIVER com- 

munication mechanism in the standard V-kernel; V, however, supports a user level dau- 

gram communication mechanism that does not require the Receiver to reply. But, this 

datagram mechanism often fails to deliver the message if the Receiver is not waiting for a 

message, and it does not return any delivery status. 



The performance data of the reliable DELIVER 1:many and the 1:many datagram 

communication is shown ir, Figure 12. All the times given are in msecs per message. 

Table 3 - Performance of ALL - DELrVER and K-DELIVER Sends 

TIME 

Number 
of 

Receivers 

Enhanced V-kernel 

1 I 
. 

Cornmen ts 

1 2 3 

Number of Receivers 

Figure l2. Performance of ALL - DELIVER and K-DELIVER Sends 

Although, the datagram ran faster than the D E W  reliable communication rnecha- 



2 
nisms, :the DELIVER reliable communication mechanism is superior. In the timing tests, 

the datagram Receivers lost about 50% of the Sender messages, due to kernel level aver- 

writes whereas the DELIVER reliable only lost about 8% of the messages (The discus- 

sion of why messages are lost was given earlier in Reliability Semantics section). 

The ALL-DELIVER communication mechanism is quite fast when compared with the 

standard and ALL-REPLY communication .mechanisms. This becomes apparent when 

the performance2slope's of DELIVER reliable Send is compared with the standard and 

REPLY reliable Sends; there is a very small increase in performance time as the number 

of Receivers increase. Although, the ALL-DELIVER and K-DELIVER communication 

mechanisms are faster than their REPLY reliable counterparts, they do not provide the 

same functionality and are intended for different tasks like for notification or publishing 

purposes which are common in distributed applications. 



6. Effect of Reliable Communication Primitives on Distributed Algorithms 

To investigate the effect of reliable multicast communication primitives on algorithm 
' 

, 

design, we describe a typical distributed task, and compare three algorithms for modeling 

the task. The distributed task involves N transactions between a Sender process and R 

identical Receiver processes. The objective of the task is for the Sender to send N mes- 

sages reliably to all the alive Receivers. The description of the task is intentionally kept 

general to note the occurrence of it in many distributed algorithms. - 
The, following assumptions are made in the design and the analysis of the algorithms: 

' the Sender and the Receivers run as processes of an operating system on separate 

processors connected via a broadcast medium such as Ethernet. 

processes may be addressed as a group in a group Send. 

the operating system retransmits the sent missage T times or until operation's suc- 

cess conditions are met. 
f 

the following communication primitives are available: 

U n i ~ e n d ( ~ g ,  Receiver - id) - The m g  is sent to the process with the Receiver-id 

d process id. The issuer is blocked until a reply message is returned in the buffer 

m g  from the Receiver process. The replier's process id (PD) is returned as sta- 

tus. 

OneReply - multisend(msg, group - id) - The m g  is sent to processes which belong 

to the group named group-id. The issuer is blxked uriG m e  reply message is 
4 

remind in tht buffer msg from a Receiver process. The replier's PID is returned 

as status The other replies may be obmined by using the GetReply primitive 

(see below). 
- 



. AllAliveReply - multisend(msg, group - id) - Similar to OneReply - mullisend e 

that the issuer is blocked until all the replies are received from 

Receivers. The first reply is returned in the buffermsg along with the status of the 

operation. The replies are handled similarly to OneReply - multisend. 

GetReply(msg, t idour) - A reply to a previous Send is returned in the buffer m g  . 

GetReply will wait up to the timeout value for the reply. The replier's PID is 

returned as status. 

Receive(msg) - blocks the issuer until a message is received. The message is 

returned in the buffer msg along with the Sender's PID which is returned us sta- 
tus. 

The three algorithms we compare are based on the following communications proto- 

cols: 

Using a series of reliable 1:.1 communication primitives (Unisend) - the Unisend 

Algorithm - 
1 

Using reliability implemented at the user level, based on unreliable multicast 

(OneReply - multisend) - the Unreliable Multicast Algorithm. ! 

Using our new kernel-level reliable multicast (AIIAliveReply - multisend) - the Reli- 

able Kernel Algorithm 

The distributed algorithms are analysed in 2 different environments namely static and 

dynamic. Ln the static e n v i r o m n t  the number of Receivers remains constant whercas in 

the dynamic the number of Receivers is in flux. For both environments, the algorithms 

using Unisend, OneReply-multisend, and U1AliveRcply-multicast will be pmentcd 

along with their analysis. Furthermure, the actual performance of the thret algorithms 

under V system wil l  be discuss& 



6.1. Static Environment 

In this environ , the number of Receivers remains constant during the t&smis- 

sion of the N mes 

6.1.1. Unisend Algorithm 

The algorithm, in pseudocode form, for the Sender and Receiver is shown in Figure 

13. 

One Sender process is required to serially send the same message to each of the R 

Receiver processes. Each Receiver acts on the message and replies (sends application 

level acknowledgments) to the Sender. First, the Sender has to know the PIDs of the 

Receivers. Therefore the Receivers must register their PID with the sender12. The 

Sender then executes a 1: 1 Send message to each Receiver in turn. 

One of the main disadvantages of this algorithm is that the sender needs to know the 

number of Receivers. This is a limiting requirement in dismbuted systems. The other 

negative point is the difficulty of synchronizing the Sender with the Receivers for the ini- 

tialization phase plus the danger of Sender's lockups if one of Receiver's messages does 

not reach the Sender process. The lockup problem may be solved by using Receive ser- 

vice call with timeouts in combination with a more fault tolerant (and consequently more 

complitatd) initialization phase. Note that lockup will not occur in the main transaction 

loop since Send senice call returns with timeout status if no reply is received after T 

retransmissions by the operating system. 



Receiver's algorithm 

I* Initialization phase: regster PID with the ~erider */ 

Unisend(mg, Sendergid); 

/* end of initialization phase */ 

/* receive messages and perform the requested operation */ 

For j=l to N /* N = the number of messages */ 

Sendergid = Receive(msg); 

Reply(msg, Sendergid); I* allows Sender to continue */ 

< act on message > 

End /* j loop */ 

Sender's algorithm 

/* htialization phase: collect the PIDs of the Receiver processes */ 

For i=l to R I* R = the number of Receivers */ 

Receivergrd[i] = Receive(mrg); zf 

Reply(mg, Receivergid[i]); 

End /* i loop */ 

I* end of initialization phase */ 

/* send data to all the Receivers */ 

For j=l to N ( the number of messages) 

For i=l to R 

repliergid = Unisend(mg, Receiver_@i]); 

if < Unisend failed > 

< perform mvery/cleanup actions > 

< errm exit > 

End P i loop */ 

End /* j lmp  */ 

Figure W. Unisend Algorithm for Static Environment 



In the best case, when there are no lost messages, the Unisend algorithm's network 

message complexity is 2*R + 2*N*R where R is the number of Receivers and N is the 

number of messages the Sender sends to each Receiver. In the initialization phase, for 

each message the Receiver sends there is a reply from the Sender hence 2*R messages 

are sent in the system. In the main loop, there is a reply message for each message that 

the Sender sends which adds up to 2*N*R. 

Network message complexity increases considerably, when messages are lost - a 

common murrence in most hstributed systems. The worst cast for Unisend occurs when 

each message has to be retransmitted T times by the operating system, where T is the 

maximum number of retransmissions, before it is received by either side. This increases 

the total number of network messages to 2*R*T + 2*N*R*T. 

Another type of message complexity is the number of service calls which initiate user 

level messages (e.g. Unisend, Reply, etc). It is interesting to note that the best and the 

worst case for the Unisend algorithm is 2*R + 2*N*R This is due to the absence of user 

level retries in this algorithm. 



6.1.2. Unreliable Multiast Algorithm 

These performance measurements improve when we use a multicast Send since the 

number of network message decreases and the parallelism between the Sender and the 

Receiver increases. The algorithm for the Receiver and Sender processes using OneRc- 

piy-multisend is shown in Figure 14 and 15: 

Receiver's algorithm 

/* Initialization phase: register PID with the Sender */ 

Unisend(mrg, ~ e h e r ~ i d ) ;  

/* join the process group */ 

JoinGroup(mygid, group-id); 

/* eod of initialization phase */ 

/* receive messages and perform the requested operation */ 

For j=l to N /* N - the number of messages */ B 

Sendergid = Receive(msg); /* allows Sender to continue irnrnehately */ 
Reply(mg, Senciergid); 

< act on message > 

End Pj loop */ 

Figure 14. Unreliable Multicast Algorithm for Static Environment 



Sender's algorithm 

/* Initialization phase: collect the PIDs of the Receivers processes */ 

For i=l to R /* R= the number of Receivers */ 

Receivergid[i] = Receive(msg); 

Reply(mg, Receivergiai 1); 
End /* i loop */ 

I* end of initialization phase */ 

/* send data to all the Receivers */ 

I 'For j=l to N /* N = the number of messages *I 

success = FALSE; 

For i=l to L /* L = maximum number of user level retransmissions */ 

repliergid = OneReply - multisend(msg, group - id); 

If < OneRepl y-mu1 tisend failed > 

< perform recovery actions > 

< error exit > - 
< Mark reply received from the replier-pid > 

While there are outstanding replies( R-3 of them ) and no timeout 

Repliergid = GetReply(mg, timeout); 

< Mark reply received from the replier-pid > 

End P while loop */ 

If < all Receivers replied > 

success = TRUE; 

End P i Imp */ 

If < OneReply-multisend failed > 
perform recovery actions 

End P j loop */ 

Figure l.5. Unreliable MuIticast Algorithm 

This algorithm's initialization phase also suffers from the need for the Sender to know 

the number of Receivers, and from Sender and Receiver synchrwization problems like the 



Unisend algorithm. Both Unisend and OneReply-multisend's Sender accumulate the list 

of Receivers' PIDs. Unisend algorithm needs the PIDs for directing its Sends to each of 

the Receivers and Unreliable multicast algorithm needs the list for checking off replies 

and determining the success of the Send operation. Note that the number of ~eceivers  is 

sufficient for the Unreliable multicast algorithm in the static environment. The core of 

Unreliable-multicast algorithm on the Sender's part is more complicated than Unisend 

because of the two extra loops, one for retransmitting the message L times or until smc- 

cess conditions are met and the other for collecting and checking off the replies. Since the 

operating system stops retrying as soon as first reply anives for OneReply-multiscnd, 

the retransmission loop is needed to ensure each Receiver having L (usually L == T) 

chances to receive the message. 

This increased complexity at the user level, however, doesn't increase the number of 

needed network messages. The best case performance of this algorithm is when there is 

no operating system or user level retries: 2*R + N(l + R) n ' /' The initialization phase, contributes the 2*R number of messages. N(l+R) comes 

from N transactions; each transaction has one Send and R replies. However, the situa- 

tion deteriorates when there are retries. The worst case occurs when each message is 

retransmitted T times by the operating system before a reply comes back. Each reply is 

in turn sent T times by the Receiver's operating system before it arrives at the Sender's 

system. These operating 'system retransmissions increase (l+R) to T(l+R). The situa- 

tion is worsened when user level OneReply-multisend has to be repeated L times. Thc 

worst case network message complexity of OneReply-multisend algorithm becomes: 

This is worse then the worst case performance of the Unisend Algorithm by a factor of 

L. The worst case complexity is exacerbated with the need for the user level retransmis- 

sion loop of L iterahons. ?hls loop guarantees that the Receivers- have at least K chances 



of receiving the sent message. However, in this algorithm's worst case performance, the 

receivers may receive the message T*L times which puts this particular algorithm in a 

disadvantageous position. This disparity is mainly due to the semantics of the OneRe- 

ply - mu1 tisend communication primitive. 



6.13. Reliable Kernel Algorithm 

In contrast to the Unisend and Unreliable-multicast algorithms, The Reliable Kernel 

algorithm is very simple to code at the user level because the user has specified that all 

the updateslmessages must be reliably received and replied to by the Receivers for the 

Send operation to succeed. The algorithm for the Sender and Receiver using AllAliveRe- 

ply-multisend is given below: 

Receiver's algorithm 

/* Initialization phase: join the process group */ 

~oinGroup(my>id, group - id); 

/* end of initialization phase */ 

/* receive messages and perform the requested operation */ 

For j=l to N I* N = the number of messages */ 

Sendergid = Receive(msg); 

Reply(msg, Sendergid); 

< act on the message > 

End /* j loop */ 

Sender's algorithm 

I* send data to all the Receivers */ e 

For j=l to N /* N = the number of messages */ 

repliergid = AllAliveReply - multisend(msg, group - id); 

if < AllAliveRepl y-mu1 tisend failed > 
c perform recovery actions > 

c error exit > 

End /* j loop */ 

Figure 16. Rdhbk Kernel Algorithm 
3 



The algorithm is clearly simpler than the two previous ones both for the Receiver and 

the Sender. The Receiver's initialization phase has been reduced to just a JoinGroup 

operation which registers the Receiver's PID as a member of the group. The Sender's 

initialization phase has totally disappeared since the Reliable kernel Algorithm's Sender 

does not need the Receivers' list to determine success of the Send. It also doesn't need 

to go through the Reply messages/acknowledgments to check off the repliers and check 

for success conditions. Since AlIAliveReply-multisend returns success only after the 

Receivers have replied, the user level retransmission is not needed; the operating sys- 

tem will retry the Send T times until all the replies are in, thus giving all  the repliers the 

same (T) opportunity to respond. The elimination of this loop significantly decreases the 

number of generated network messages. All above advantages contribute to the best 

case performance of this model: N(l+R+H) where H is the number of hosts without 

receivers that generate extra ACK messages. 

a 
Note that the initialization phase cost is 0. The worst case occ& when the operat- 

ing system has to retransmit the message the maximum number of times and the repli- 

ers' systems have to retransmit the reply the same number of times to get them in to the 

Sender's system which accounts for the worst case network message complexity of: 

N*T(l+R). 

It is noteworthy that the number of messages generated by the Sender in the worst 

case is not dependent on the number of Receivers. It is always N*T, unlike the Unreli- 

ablt~multicast's N*T*R Because of this characteristic, the maximum number of replies 

each Receiver may generate for each message is T hence N V R  replies for N messages. 

This is drastically lower than N*rL*R m e s q p  that may be generated by the Unreli-- 

Reliable kernel Algorithm also outperforms the Unisend model in that the Sender 

may only send T messages per wnsaction instead of F R  messages, thus cutting the 



number of network messages generated by the main loop by (N-l)T*R. 

The network message complexity of the three models in static environment is sum- 

marized below: 

Figure 17. Network Message Corn plexi ty Analysis Summary 

This performance analysis doesn't even begin to measure all the advantages of Reli- 

able kernel Algorithm such as the effects of parallelism achieved by using this reliable 

multicast c~mmunication primitive. 

1 

Worst Case 

2*R*T + 2*N*R*T 

2*R*T + NSL*T(l+R) 

N*T(l+R+H) 

Best Case 

Unisend 

Unreliable Multicast 

Reliable Kernel 

2*R + 2*N*R 

2*R + N(l+R) 

N(l +X+H) 
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6.1.4. Performance Results 

These algorithms were implemented in the Enhanced V system and the actual 

elapsed time (in seconds) for the transaction loop of 10,000 messages was measured. 

The graph and "table below demonstrate the results for the best case performance of 1 

Sender-and up to 8 Receivers. 

Table 4 - Time(in rrtsecs) for each transaction using three algorithm 

Unisend .-........ 
Unreliable Mu1 ticas t --- 

4 Number of Receivers 

Figure 18 Tirne(im nssr) for each e h & m  using three algorithms 



The group communication primitives outperform the Unisend model for 2 or more 

Receivers because of the lower number of messages required and the increased paral- 

lelism. In fact, the time required for Reliable kernel algorithm to send 10,000.messages to 

3 Receivers is only 60% of the time for Unisend algorithm. 

Moreover, the gap between the best case performance of the Reliable kernel and 

Unreliable-multicast algorithm is only about 5%. This performance data agree with the 

preceding analysis for the best case network message complexity. 

Given the actual performance of the best case for the three algorithms, it is clear to 

see that with message loss the measurements would separate the performance of 

UliveReply-multisend communication primitive from the other primitives; hence, given 

the ease of programming and increased functionality of the Reliable Kernel algorithm, this 

is to be preferred at all times. 

6.2. Dynamic Environment 

Static environments are not always the norm in real distributed systems where the 

number of Receivers may be in flux during transactions. Static environment analysis is 
1 

nevertheless useful in providing a form of lower boundary for the corn exity of.algo- pa 
rithms. In dynamic environments, the algorithms are generally more complicatid to deal 

with varying number of Receivers. This increased intricacy arises from the need to mog-  

nize new Receivers in the group which should get the message and to detect e x p a  

Receivers which the Sender should aot expect replies f?om$?hese tasks may be done in 

various ways. We will show one way of doing them for the distributed task discussed in 

the static environment section to highlight the added complexity. 

62.1. Unisend Algorithm -. 
% 

The Sender's initialimion phase, w h a  the process ids of Receivers arc coUected, 

needs to be done -continually even during the main transaction loop to accommodatt joiia- 



I 

Member Manager. The  em& Manager will loop awaiting messages from Receivers. 

Depending on the type 'of the message, the Receiver's process id will be added $& 
4 

removed from the Member list. Assuming that the operating system allows shared mem- 

ory between processes, tk Meruber List will be used by the Sender process which will 

now contain' only the main transaction loop. Of course, some mechanism is needed to 

coordinate operations on this common data structure (e.g. semaphore, etc). The process 

interactions are shown in ~ i ~ u &  19. 

lSt I Member k\ 
.A lll!l~ 2- ADD to 11 L 

Data operation QUE.3lle 

Figure 19. P~ocesr Interactions for Unisend Algorithm in Dynamic Environment 



The algorithm for the Member Manager, Receiver, and Sender is given in  Figure 20. 

Member Manager's Algorithm 

I* senice requests !?om Receivers */ 

Forever i* or some terminacon criteria */ 

membzrgid = Receive(msg); 

If c valid request > /3 JOIN and LEAVE requests */ 

< Wait for permission to operate on the member list > 

If JOIN request 

< Add new member to member list > 

Else 

< Remove memkr  from the list > 

Else 

< take appropriate actior.( log an e m r  message ) > 

Reply(msg, rnembergui) 

END /* FOREVER loop */ 

Receiver's algorithm 

/* htialization phase: register PID with the Sender */ 

Unisend(mg, member - managerg@; 

/+ End of initialization phase */ 
- 

/* receive messages and perform the request& operation */ 

For j=l to N /* N = the number of messages */ 

Sendergid = R~dve(msg) ;  

Reply(mg, Senderpd); P allows Sender to continue immediately */ 

c act on message > 

End /* j loop */ 

P Termination phase: register PID with the Sender *; 
Unisend(mg, rne~ber - m g e r p d ) ;  

P End of Tenninahon p b 4  */ 

Figure 20. Unisend Algorithm for Dynamic Environment 



Sender's algorithm 

/* send d a ~  to all rhe Receivers */ 

For j= 1 to N P N = the number of messages */ 

< Allow Member Manager to operate on member list if needed > 

For i= l  to R 

repliergrd = Unisend(msg, Receivergid[i]); 

if < Unisend failed > 

< Remove Receiver PID from the member list1' > 

End /* i loop */ 

End I* j loop */ 

Figure 21. Unisend Algorithm for Dynamic Environment(cont.) 

The algorithm's increased inmcacy ic apparent. This increase is due to adchtional 

LEAVE messages from the R w m e r s ,  the added Member Manager p m e s s  for servicing 

requests, and the mrdination 01' the interactions between the Sender and Member Man- 

ager processes. 

6 . 2 2 .  Unreliable Multicast Algorithm 

Simdar to the Unistnd &el, a M e m k  Manager mechanism is needed for construct- 
'* 

Ing,&clist of Receivers from which replies should be collected+ This is again done by a 

Member Manager process. The overall pnxxss interactioas shown in Figure 19. The 

Unreliable Multicaq algorithms for the Mtmber Manager and Receivers are the same as 

the L'niwnd Algorithm with m e  M w e n a ;  the Receiver joins the global gm~p using the 

13 - NOIG, the SUdtl alSO has to b l  with Rccdvtrs wbu ieavc ungractfully, became d a  fault, 
whut sending LEAVE r e q u s s  to tbc M e m k  Marraga pnxxss. 



standard V JoinGroup service call in its initialiration phase after registering its PID 

with the Member Manager process. Tine Sender's algorithm, however, is different and is 

gwen below: 

Sender's algorithm 

/* send data to all the Receivers */ 

For j=l to N /* N = the number of messages */ 

< Allow M e m k r  Manager to operate on member list i f  needed > - 

success = FALSE; 

For i=l to L I* L = maximum number of user level retransmissions*/ 

replierqid = OneReply multisend(msg, group id); - - 

If < OneReply-multisend failed > 
< perform recovery actions > 

< error exit > 

< Mark reply received kom the replier-pid > 

While < there are outstanding replies( R-1 of them ) > 

Repliergid = GetReply(mg, timeout); 

< Mark reply received from the replier-pid > 

End < while loop > 

If < all Receivers replid > 

success = TRUE; 

Else 

< Remove non replying Receivers from the member list > 

< Perform the necded rtcovery actions > 

End I* i loop */ 

End I* j loop */ 

Figure 22. Unreliable Multicast Algorithm for Dynamic Environment 

The Unreliable multicast algorithm performs the same additional functions as the 

6 1 



Unisend Algorithm in the Dynamic environment. 

6.23. Reliable Kernel Algorithm 

Because of AllAliveReply-multisend's semantic and characteristic, the Reliable Ker- 

nel algorithm for the dynamic environment is the same as the static environment's algo- 

rithm. This demonstrates another strength of kernel level reliable multicqt communica- 

tion primitives in specific AllAliveReply-multisend. 

2 Since AIlAliveReply-multisend at the kernel level uses knowledge of the alive hosts 

coupled with the inter-kernel protocol in providing reliable multicast, the user level algo- 

rithm need not handle the complicated task of maintaining the list of alive Receivers in 

the system. This task is done by the Sender kemel's knowledge of the alive host and 

each kernel's knowledge of local membership lists. Therefore the worst/best case net- 

work message complexity remains constant in both static and dynamic environments for 

!he Reliable Kernel algorithm. 

The preceding algorithms and analysis show the superiority of using kernel level reli- 

able mu1 ticas t comrnunica tion primitives for distributed tasks, requiring rehability, over 

the user level implemented reliable multicasts. The key features of kernel level reliable 

mu1 ticast communication (e. g . AIlAliveRepl y-mu1 tisend) are the efficiency in number of 

generated messages both at user and system le\r 1, tter performance over user level v 
implemented reliability, and ease of use at the user level. 



7. Conclusion and Future Work 

Reliable multicast communication has the advantages of ease-of-programming over 

unreliable broadcast for applications where reliability is important. It also has greater cffi- 

ciency resulting from only having to transmit the Send message once. However, there is 

a small overhead which does not occur in one-to-one communication or unreliable multi- 

cast. When no errors occur this overhead occurs from requiring those hosts with no 

Receivers to acknowledge the Send packet. When an error does occur, and a Send mes- 

sage, or the response to a Send message, is lost then the packet is rebroadcast. There is 

an increased likelihood of an error occurring since the message must be picked up and 

acknowledged by more hosts. Despite these facts, for two or more Receivers, reliable 

mu:ucast communication is faster than a series of 1: 1 communications. 

Analysis of the number of messages exchanged also shows the effectiveness of multi- 

cast. For example, consider a network with M hosts, and a group with N members, 

excludmg the Sender. On a sequence of one-to-one reliable Sends, 2*N messages are 

exchanged. On our reliable multicast communication scheme 1 + (M-1) messages are 

exchanged. Therefore, if N > Mn our scheme for reliable multicast is more efficient in 

terms of the number of messages exchanged. This is the case for many applications such 

as highly parallel computations in a PROLOG or a DATA-FLOW environment; and for 

communication between the group of kernel processes (which has M members, one for 

each host). 

There are many possible applications for an interprocess communication primitive 

which can send a message and receive replies f3om more than one process. This thesis 

has extended the work of Cheritnn and Zwacnepoel to provide reliable multicast cocnmu- 

nication in the V-kernel. The reliable protocol has been describtd, along with a &tailed 

discussion of its implementation and performance. 

We found that our reliable multicast out-performed a series of reliable 1:1 Sends for 
;s 



two or more Receivers and added no overhead to the performance of standard V inter- 

process communication primitives. 

The I-Am-Here server. also provides user-level services such as getting a copy of 

the alive kernel vector and obtaining the host id given the bit position. These services, 

plus the new ALL-REPLY and K-REPLY communication primitives, provide powerful 

tools to implement higher level communication services. 

The reliable multicast scheme has been implemerited in the V-kernel, as part of a pro- 

ject exploring the use of multicast in distributed programming. 

7.1. Possible Improvements and Future Work 

The V system's Send user interface was moddied to accommodate reliable mu&ast 

communication. In the current interface, SUCCESS or FAILURE is returned to the Sender 

of the Reply reliable Send primitive, hence the first replier's PID is not accessible to the 

Sender. This interface should be modified so that the Reply reliable Send returns the PID 

of the first replier and puts the return status in the reply message itself (see Appendix A 

for the detailed description of the new interface). 

Another possible improvement is in the area of overhead reduction. The kernel code 

could be smamlined such that d ~ e  standard'v multicast users incur a lower performance 

overhead. Such optimizations should also be done for data structure accesses, such as 

alive host table searches, that are done in providing reliable multicast mrnrnunica.tion. 

The need for getting ACKS from hosts with no Receivers should be investigated and 

eliminated. This would increase scalability of thse protocols. One possible way of 

accomplishing this is the use of multiple multicast addresses, one per group. This may be 

done by modrfylng the I-Am-Here server to send the active group ids in the local kernel 

in each 1-Am-Here message. The knowledge of group ids and hosts may be used in 

determining the list of hosts which should send ACK messages. 

An interesting research project could involve the performance measurement of the 



re1 able primitives for messages that have 1K or more of data. The insights gained from 1 
d s e  measurements could increase the appeal of the reliable multicasts for distributed 

applications that need to reliably exchange large amounts of data such as dismbuted file 

systems. Lastly, the effect of these reliable multicast primitives should be studied in dif- 

ferent distributed applications. This will be valuable in refining the reliable multicast prim- 

itives' interface and protwol. 



Appendix A - Improved User Interface for Reliable Communication Primitives 

The Reply reliable multicast Send's interface should be improved to provide the PID 

of the first replier to the Sender, The following describes this new interface for the reliable 

Send primitive: 

Send(message, id) 

The fixed length message is sent to a single process if the id is a process id or to 

a group of processes if the id specifies -a group, in which case multicast is used. The 

multicast Send blocks for zero or one replies depending on the syscouk and code fields 

defined in the message. The user specifies the type of Send by setting appropriate 

fields in the message. The syscode field may be set to K-REPLY, K-DELIVER, 

ALL-REPLY, or ALL-DELIVER. For K-REPLY or K-DELIWR the code field 

must contain an integer specifying the value of K, where K >=I. For the new reliable 

multicast Send, the Send blocks until either conditions specified by the syscode field 

are satisfied or conditions are found unsatisfiable. 

The syscode field types for the new features of group communication are defined 

below: 

K-REPLY 

Send blocks until K replies are rxeived from the group members specdied by 

id, in which case the process id (PID) of the first replier is returned, and the 

Sender's message is overwritten by the contents of the first reply. After the maxi- 

mum number of timeouts and retransmissions have been done, if no replies were 

received then FAILURE is returned. Otherwise, the PID of the first replier is 

returned, and the Sender's message is overwrimn by the contents of the first 

reply. In either case, Send sets the code field in the message to the number of 

replies received Note that the issuer should check the code field to determine suc- 

cess of the K-REPLY send when a PID is returned 



-REPLY 

Send blocks until rcplies from all the ali n p u p  members in the group speci- 

fied by id are received, after which the PID of the first replier is returned, the 

syscode field is set to SUCCESS, and the Sender's message is overwritten by the 

fmt reply. After the maximum number of timwuts and retransmissions have k e n  

done, if no replies were received then FAILURE is returned. Otherwise, (replies 

did not come in from all the dive group members) the PID of the first replier is 

returned, the syscode filed is set to FAILURE, and the Sender's message is over- 

written by the contents of the first reply. In either case, Send sets the code field in 

the message to the number of replies received. Note that the issuer should check 

the syscode field to determine success of the ALL-REPLY send when a PIL) is 

returned. 
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