ﬁ

Bibliothéque nationale

. National Libraf
- .*. ‘otacgggda "

Canadian Theses Service =~ Service des théses canadiennes

k)

_ Ottawa, Canada
K1A ON4
. '/' -
NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microtiiming.
Every etfort has been made to ensure the highest quality of
reproduction possible.

It pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in pan of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments. -

NL-239 (1. 88/04) ¢

_-du Canada , E &

AVIS %

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc
tion.

S'it manque des pages, veuillez communiquer avec
l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées & 'aide d'un rubanwsé ou si l'université nous a far
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise & la Loi canadienne sur le droit d'auteur, SRC
1970, ¢c. C-30, et ses amendements subséquents
&

Canadi

Efficient Kernel-level Reliable Multicast Communication

in Distributed Systems

by
Garnik Bobloian Hafte\‘lani

B.Sc., Simon Fraser University, 1984

A THESIS SUBMITTED IN PARTIAL FULFI%LMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
“in the School
of

Computing Science

Garnik Bobloian Haftevani 1988
SIMON FRASER UNIVERSITY
December 1988

All rights reserved. This thesis may not be
‘ reproduced in whole or in part, by photocopy
oroihermm,withoutthcpermhsionoltheauthor.

L

Permission hags been granted
to the National Library of
Canada to microfilm ¢this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
4 la Bibliothéque nationale
du Canada de nmicrofilmer
cette thése et de préter ou
de' vendre des exemplaires Ad4u
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

ISBN 0-315-48745-3

Approval

Name : Garnik Bobloian Haftevani

Degree : Master of Science

Title of Thesis: Efficient Kernel-level Reliable Mg_lticast Communication in Distributed

Systems

Dr. Jia-Wei Han
Assistant Professor
Chairman

Dr. Stella M. Atkins
Assistant Professor
Senior §upervisor

 AWoshun Luk
Associate Professor

Dr. Gerald Neufeld
Assistant Professor
External Examiner ,
University of British Columbia

Dee € BE

" Date Approved

PARTIAL COPYRIGHT LICENSE

i hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below) .
to users of the Simon Fraser University lera?y, and to make partial or'
single(copies only for 'such users or in response to a request from the
library ot any other university, or other educational Institution, on
its own behalt or for one of its users. | further agree that permission
for muitiple copyling of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. ||t is understood that copyling
or publlication of this work for financial galn shall not be allowed

without my written permission.

Titie ot Thesis/Project/Extended Essay

Efficient Kernel-level Reliable Multicast Communication in Distributed

Svstems.

Author:
(signature)

Garnik B. Haftevani

(name)

December 3, 1988

{date)

Abstract

Multicast communication allows a Sender to send a message to a group of Receivers and,
depending upon the intent of the message either none, some, or all of the recciv¢rs will
respond. Multicast communication in a distributed system connected by a Local Area Net-
work can reduce the amount of network traffic compared to that required for a sequence bf
one-to-one transactions; moreover, it can reduce the number of context switches in the
Sender required by an equivalent sequence of one-to-one message exchanges, and it can
also provide a greater functionality than one-to-one communication.

Instead of requiring the Sender to know each receiver to which it wishes to send a mes-
sage, the Sender directs a message to a named group of Receivers. The membership of the
named group is maintained by the system in a decentralized distributed data structure, main-
tained by each host’s kemnel in the network. This allows receivers to be specified by function
without requiring the Sender to know the specific members of the group. Contrary to comput-
er folk-lore, we found that the overhead of providing reliable multicast over a single Local
Area Network was very small, mainly due to the fact that our reliable protocol operates at
the kemel level rather than the user level.

This thesis describes several forms of reliable multicast communication expressed as
simple message-passing communication primitives, and illustrates the effectiveness of our
protocol through an example of a distributed app;lication. Performance analyses and actual

performance data of the protocol are presented.

To my parents

Acknowledgments

I am thankful to Stella Atkins for her critique of my work and for teaching me EVERY-
THING about distributed systems. Discussions with Woshun Luk were also very helpful.

I am grateful to the host of professors at the School of Computing Science for making
available their computing hardware to me. Steve Cummings’ technical support and work on
the micro Vax II is greatly appreciated. Also, Tony Speakman and Tamara Badkerhanian’s

close reading of the thesis and their thoughtful questions and comments improved this the-

sis. 3

This research was supported in part by Mobile Data International.

Table of Contents

>
1N 253 0017 1 LR OO O RUOTTRTRPR 1
ADSITACE ...t crreieeie et ee e te st e e ceteenbeeren e e asseaesaessuee s se s nt e ae et e assontae st e e sadesabe st aast e e aessneaubesans iti
ACKNOWIEAZIMENLS.......otiiiiiiiiiiiiceeeeetreieerrieseensteesstieteeesaaesesneeesasnresesbabas sessssanavaersseessssanersabeans \%
TADIE Of COMEENLSocciiiieciiieiticcecenreeereee e e et s e st re s s et b e s ne st e s saas e e esnaesabaesasasaenssesaneasssesane vi’
LiSt Of FIZUIES .ceoiiiiiiiiii ittt srae s sbas s st reenraes ..vii
LISEOF TADLES oo oeeesees ot sesees et ses sttt viii
1. INOAUCHON. ...c.veeveeerititeeeteee e eterees e s eve e eeeses e se e s esasassesssnssesessssassnsanes e nans 1
2. Related WOrK ...c.ouvveveveereecnieieseeesneneseeesenns eeeeeeeeseasasaeee i b e e s s st et eaeaeana et et et eaeres et sanaes 5
3. Design Issuesccuueereennnel eteeeeeesesssteseereeeesssseetetenensbeaeeesraaaeasessasrnraeaiestesesaenaatetsiearsanaesessnies 8
3.1 Reliability SEMANtiCScccuieereciiiiirieeieieeirnteeceteeasseteneeee s tesatenece bt s ssscesessasesssssss e st soneas 8
3.2 Reliable Multicast Communication PHMItIVESccceiveeiviniiiiinnniniinisnniininsncsnies 10
4. Detailed Design ahd Implementation...........cuieeccirencennnninnsicnncnnntinseesseessecesesesessssssesssessses 16
4.1. Reliable Local Group Communicationcc.c.e... eeeeaeersosessssenneasssssasssnnestssssaseassasnasas 16
4.2 | T_AIMN_HETE SETVETuccueeiceenirnrenrenerssnsassessinsesesssssssosssssssssassssesssssssssssssssestessssevassasases 19
4.3. Reliable Global Group COmMMUNICAIONc.cccceererrrerrcesersserersaissenesessseeostessesssesressessseans 22
5. PEIfOTMNANCEeeiceiienecceteeee st cntecie s setesase e sesetesaesseeeseasesasecsessatossesssbessnsesesesrunsssesnenssne 31
5.1, EXPETiMEnt ENVITONMENt .veoovvvee oo eeeessessesoeesesessessssssssesessssssssesessesssssssneenesssessnee 31
5. 2. TSt MOGEIS......nneeceectetetieectrcreccrete e s sstescacsanssstesacssnnesessesassase sesssssssessssesssssssasonsrssnes 32
5.3. TIMING RESUILS ...ttt issiecn st sessnsesscssenstssa s ssssassassssasassass b sasesssnsnons 34
5.4. Performance of ALL_REPLY and K_REPLY Communication Primitives................... 37
5.5. Performance of ALL_DELIVER and K_DELIVER Communication Primitives.......... 39

IS

6. Effect of Reliable Communication Primitives on Distributed Algorithms............cc.cvvreunne. 42

6.1, StAtIC ENVITONITIENT «...vvecviereeenieerreeeereseessseeeeenessstsacsseeseesessecssesensssssessnsssrssssssnessassssens 44
6.2. Dynamic ENVIrONMENT.....c.c.cconiimmmioiiiiitiieieseteie ettt sttt st sasanesene 55

7. Conclusion and Future %Nork .. 61
7.1 Possible Improvements and Future WOTK . oeeerveeeveeseseensseesessssssesesssmess e sennsssssessee 62
Appendix A. Improved User Interface for Reliable Communication Primitives voeererneseeensensess 03
RETETEICES ...c.vveuiriette ettt it et b e b 65

4

List of Figures s

Figure 1. A Request-Response Message Transaction............ccccevvemnuinrnseiininsssensnsnssesessssenenes 1

Figure 2. V User Level Message Format................‘.......;.;.\ .. 12
Figure 3. Logical inter-process interactions for local group;}:.\.ﬁ..' 17
Figure 4. Reliable Intra-kernel protocol of K_DELIVER and ALI\;_\)DELIVER...: 17
figure 5. Reliable Intra-kernel Protocol of K_REPLY and ALL_REPLY 18
Figure 6. I_Am_Here Servcrl Data StIUCIUIES...ocvieiiiiieeieeicentiretier e ieeererereeetesreesessssssrssseeees 20
Figure 7. Logical Inter-Process Interactions For Global groups...........cccoeeiiiriiinnne. i 23
Figure 8. Reliable Inter-kernel protocol of K_DELIVER and ALL_DELIVER................. 26
Figure 9. Rcliabl;: Inter-kernel Protocol of K_REPLY and ALL_REPLY et 28
Figure 10. Hardware cnvuonment 31

Figure 11. Performance of ALL_REPLY and K_REPLY S€ndsccousvsvessersesesssssmseens 37
Figure 12. Performance of ALL._DELIVER and K_DELIVER Sends..........cccecooevenvrunnnnese. 40
Figure 13. Unisend Algorithm for Static ENVITONMENLtcocovrerrenrinrisnissnsnesessssesnsscanans 45
Figure 14. Unreliable Multicast Algorithm for Static Environment.............cecoceveverrcrnvunnaee 47
Figure 15. Unreliable Multicast AIgOrithmcouecevvinuinicscnsnenninuicsissinneeisiensens resereseanes 48
Figure 16. Reliable Kernel Algorithm............. eeeeeeee st st sees s st es e e e s ersesonssssnns 51
Figure 17. Network Message Complexity Analysis Summary...........cccccevvrvrrnrenrcnninsecseenes 53
Figure 18. Time for each transaction using three algorithmscoeeveeerrmerurercesessnssens 54
Figure 19. Process Interactions for Unisend Algorithm in Dynamic Environment.............. 56
Figure 20. Unisend Algorithm for Dynamic EAVArOnmentveereeecees oo 57
Figure 21. Unisend Algoﬁth:ﬁ for Dynamic Environment(COnL)cceeruecevesecrersersecsensecas 58
Figure 22. Unreliable Multicast Algorithm for Dynamic Environment..............ccocecurncunens 59

List of Tables
. \ - f'f‘a i
Table 1 - Comparison of standard V-kernel and enhanced V-Kermnelccoooeveemeerrreseneens 34
Table 2 - Performance of ALL_REP,LY and K_REPLY Sends......ccccoceniciinmiiincniinnnnnns 37
Table 3 - Performance of ALL_DEHWER and K_DELIVER Sends................ verereanarnnnsans 40
Table 4 - Time for each transaction using three algorithms e RO T
&
ix

1. Introduction

Distributed computer systems consisting of several workstations connected over a
Local Area Network (LAN) provide many advan;ages over cénlralised systems, includ-
ing cost/performance beneﬁis and enhanced reliability through replication of resources. In

"m‘ distributed systems, communicatien mechanisms become a major design issue.
" These commhunication issucs range from low level services such as packet exchanges, to
hjgh’- level ones tha}t’/provide atomicity and ordered delivery of messages. In general,
because of data b;.lf/fcringAand asynchronous communication between protocol layérs,.

the#€ higher lcvd'l mechanisms are considerably more costly than the basic low-level

mechanisms-used by the kernels themselves[Clark85].

The standard method of communication between processes in a message based oper-
ating system is one-to-one communication in which a Sender sends a message to a spe-
cific Receiver which usually responds with a reply message. One such request-response

message transaction between a Sender and Receiver process is illustrated below:

Sender Receiver
Send(message, Receiver_id) id =Reccivc(mcssag§)
Blocked
Request —
Time Blocked o
Reply(message, Sender_id)
Response

Figure 1. A Request-Response Message Transaction

An extension, called multicast communication allows a Sender to send a message to
a group of Receivers and, depending upon the intent of the message cither none, some, or
all of the Receivers will respond. Multicast commiunication is an elegant and useful com-

~—

#

~m—

munication mechanism for distributed systems; it is claimed that multicast is ‘a fundamen-
taJi operation of distributed applications [Cheriton87]. Our experience confirms this view.
We are particularly intercstedr in providing an efficient multicast implementation which
offers reliable delivery and reply where the sender is assured that the message has been

delivered to all or k of the receivers or replies from all or k of the receivers have arrived.

There are many applications that can use reliable multicast communication. One such
apphication occurs in the implementation c;f replicated files or databases where reliable
multicast is ncedcd to modify all the copies of data [Schlichting85]. For example, consid-
er the update of a small distributed database, copies of which are maintained on each
host in order to ensure robustness in case of host failure. In ordez to pcrfofm an update, a
process first queries the database manaéers (DBMs) on each host to obtain a lock on
the item to be updated. Each DBM will reply indicating whether or not they agree to the
lock. Clcaﬂy this} query must be performed reliably in order to ensure that all the
database m/anagcrsbonsent to the lock. Once it is confirmed that each DBM does con-
sent then a podﬁcatioh containing the update is sent to each DBM. This notification must

also be reliable to make certain that each DBM receives the update.

Many linguistic constructs for concurrent programming such as the co..oc in Synchro-

- —— -nizing Resources [Andrews82], [Andrews88] could be implemented using a reliable

multicast mechanism. Furthermore, many parallel computation aléorithms which require
synchronization or exchange of partial results, such as distributed bhcsé, and a myriad of
distributed algorithms like selection of the k-th smallest element of a file distributed

among sites of a communication network[Santoro83] require reliable multicast.

Cheriton and Zwaenepoel [Cheriton85] have presented a model for multicast éommu-‘
nication in the V-kemnel [Cheriton84]. They propose that processes may join groups to
which members may multicast a single message. Their model, however, only provides a

kemnel-level unreliable "best efforts” delivery for multicast messages. Hence, reliability

’

must be provided at a higher level to enable distributed applications such as those
described above to exploit reliable multicast comrﬁunication. Thus, if a Broadcasting pro-
cess wishes to receive every reply from a group of processes, the Sender must explicitly
maintain a list of group members, or have access to such a list from a group coordinator,

an inherently expensive mechanism. .

The weak level of reliability provided in the V-kemel can be used by itself in some
applications. For example, if a process wants to locate a particular server, e.g. print serv-
‘er, it may multicdst a message to the group of servers and the particular type of server(s)
will respond(to the query giving their name, current load, etc. The Sender then may cither
choo/S®the first replier or wait and choose the lightest loaded server. However, the latter
ca sé\is/difﬁcult to implement at the user level as the Sender does not know the number of
menﬂbérs in the group. There are also applications that only use the multicast for notifica-
tion like name publishing or distributed computation applications. In the case of name
publishing applications, each server registers itself with the local name server which in
turn multicasts that information to the other name servers; this mechanism is used in the

V system. This multicast is not essential but it provides additional information to help

the name servers in locating servers.

Many applications requiring efficient reliable multicast have to contend with the com-
plications and inefficiencies of implementing reliability at the application level, and thus
have not been implemented on distributed computer systems excep: for research purpos-
es. The designers of the V system argue that such higher degrees of reliability would be

too costly to implement and would heavily tax the performance of the applications that do

not use such features.

In this thesis, the design, implementaton and analysis of the performance Vof an
extremely efficient kernel level reliable multicast in the V distributed system is present-

ed. This celiable multicast is based on the design in [Atkins86] with major extensions.

- A

St

This protocol does not add significant overhead to the pcrformancc of normal one-to-one
(1:1) communication, and which does not add to the cost of so called I-reliable multicast,
where at least one Receiver is guaranteed to reply. To achieve this, our protocol for reli-
able multicast is implemented efficiently inside the distributed kernel. The protocc;l
assumes that the kernels are connected over a single LAN, so that each machine on the
LAN running that kernel receives every broadcast packet for which reliable delivery is
spccivﬁcd. Our protocol also assumes that a group of Receiver processes can be accessed
by a single group id, and that t‘he knowledge of group membership is distributed in that
each local host on the LAN "knows" only the group members on its local host. In absence
of global group membership information by the Sender, we require that every host on the
network acknowledge every reliable multicast message. This actually adds very little
overhead in terms of delay because the ackrowledgments from kernels with no members
arrive before the genuine replies to the multicast messages, and the kernels with mem-
bers piggyback the acknowledgments on replies. Also, these acknowledgments are dealt
with very quickly by the Sender’s kernel. Kernel level reliability avoids extra messages
between user and kemel level which are reqléurcd for implcmcnting reliability at the user
level. Performance data assure us that the processor and network costs are insignificant

compared with the altemative of providing reliability at a higher level [Navaratnam88].

Furthermore, we have developed an integrated approach to the protocol design so
that the application dictates the level of reliability required. Through tailoring the reliabili-
ty to the needs of the application, those applications which can tolerate unreliable data-

gram broadcasts can still exploit this efficient feature with scarcely any overhead.

This thesis is organized as follows. Chapter 2 relates our kernel protocol to other mula-
cast protocols. Chapter 3 describes high level design issues and the reliable group com-
municaton primitives which allow the Sender to specify the degree of reliability required
for multicast messages. Chapter 4 presents the detailed design and the implementation
of reliable multicast communication. Chapter 5 presents the performance results. Chapter

AN

6 describes a distributed application which utilises the reliable kernel-level multicast,

and compares it with the alternatives of user-level reliability, and the concluding remarks
%
are given in Chapter 7.

2. Related Work
Usefulness of reliable group communication has prompted substantial amount of
research. Before we look at some of proposed designs and implementations of reliable

group communication, we need to define some common terms:
- Atomicity - An operation is atomic if either it is performed in its entirety or is not per-
formed at all.

« Network partitions - A network partition occurs when groups of processors can not

communicate with each other because of communication link or site failures.

e Ordered delivery - Deliveries are ordered when they arrive in the same order in which

they were sent or when they are delivered in the same order at all receivers.

The approach presented in this thesis is quite different from the method in [Chang84]
where the responsibility of reliability is with T}Té Receivers; Receivers take 7tums in act-
ing as a broadcast co-ordinator to provide resiliency in case of site failures. The co-ordi-
nator is responsible for sending the acknowledgments to the Sender and it also has to
service lost message re&sts from the other Receivers. Moreover, extensive actions are |
taken in case of site failure when a reformation phase is initiated to elect a new co-ordi-

nator. Our protbool needs no such recovery procedure.

Other systems such as LOCUS [Walker83] provide full reliability for updates of repli-
cated files to the extent that the operating system contains a great deal of code dealing

with and attempting to recover from node and network failures.

Communication reliability plays an important role in distributed applications such as
distributed data bases. Two such systems, A System for Distributed Databases (SDD-
1) [Hammer80][Rothnie77] and A Distributed Database Manager (DDM) [Walter82],
depend on a reliable network service providing guaranteed delivery, atomicity, and a net-
work ciock. Also, a site monitoring mechanism, similar in function to the I_Am_Here
server, is used to maintain the global site statys. However, their s?cm does not use

6

multicast.
- ISIS [Birman85] provides reliable communication mechanisms with atomicity and
ordered delivery features at the kernel level. These extra features tax the system- perfor-

mance [Birman87]; our reliable protocol is much more efficient.

There are several multicast communication mechanisms in UNIX-like environments.
[Ah"amadSS] presents one such implementation which is integrated with the UNIX sock-
ets and provides group membership management in case of network partitions and site
failures. However, his system is based on an unreliable datagram service, and offers no
~ reliable delivery or reply mechanism. COCANET [Rowe82] is another of the enhanced

UNIX systems which uses multicast. However, it uses virtual circuits to obtain reliability.

INCAS (INCremental Architecture for distributed Systems) multicomputer project
[Nhemer87] provides process groups, like V, and multicast communication. Similar to
our design, in INCAS the Sender process defines the success conditions for multicast
operations. Their definidon of success 1s the number of Acknowledgments (ACKs)

expected by the Sender which is equivalent to the K_REPLY multicast operation. The
functionality of the ALL_REPLY, ALL_DELIVER, and K_DELIVERI‘ is not provided in
INCAS. Also, the Sender has to know how many Receivers there are in the system.

[Ravindron87] discusses the usefulness of variants of ALL_REPLY and K_REPLY
group communication mechanisms in distributed systems. Also, a taxonomy of reliable
broadcast protocols is given in [Narayavan85] including a quasi reliable broadcast mech-
anism. This protocol uses a periodic mechanism to distribute group membership informa-
tion.

Garcia-Molina has initiated several reliable multicast schemes at Princeton Universi-

1 - K REPLY, K_DELIVER, ALL_REPLY, ALL_DELIVER will be described in the Reliability
Semantics section.

oo

ty. In [Garcia88a] a reliable broadcast protocol is described which is built upon an unreli-
able multicast mechanism. However, the algorithm is designed to execute on a wide-area
network, and it contains fault-tolerant features concerning network partitioning which érc
not necessary in our LAN implementation. No performance data are given, but the algo-
rithm’s performance will certainly not be competitive with ours as our performance data
~ show only a few percent overhead compared with the basic unreliable multicast of the V
sysiem. In [Garcia88b] an ordered reliable broadcast protocol is described. The actual
performance data are not presented, but clearly there will be an extensive overhead for
managing the message propagations.

In [Navaratnam88] a reliable group communication mechanism is described, which is
based on the V system, and which is designed for failure atomicity and for ordered rcﬁa-
bility. It is implemented entirely above the V-kernel, at the user level, and so the perfor-
mance data are an order of magnitude more costly than ours, as user-level inter-process
communication takes around 2 msecs, which their scheme requires. The data given in that
paper refers to the unenhanced V-kernel with pre-delay (See Performance chapter), so
although the percentage penalty for their reliable group broadcast appears small (around
20%), on our no-delay kemel, the percentage overhead is several hundred.

3.

Design Issues

3.1. Reliability Semantics

From experience gained in programming applications which use multicast inter-pro-

cess communication, we found that it is the Sender process which has the knowledge of

~ how reliably the multicast message must be received, and the knowledge of how to deal

with reported failures. For example, in a database application the Sender of a message-
may not require replies from all members; replies from a majority of the members may suf-
fice. We therefore take the approach that the Sender process must specify the reliability
of the multicast message. For efficiency, if the Sender wishes to employ a reliable r;lulti- .
cast, the reliability should be provided by the kernel. Furthermore, Senders which do not
require high degree of reliability should not be penalized at run-time with the extra over-
head of the reliable communication mechanisms. To meet these requirements, our design
Mcs that the reliability of the multicast message must be specified in the Send mes-
sage by the Sender. ‘

The word reliability has been used quite often in the computing literature, often with

different definitions. The definition of reliability used in this thesis is that a communica-

tdon mechanism is k-reliable, where 0 <= k <= number of group members, when the ini-

~ tator of the communication primitive is assured that the desired action (c.g. message

delivery) has been done by at least k members. There are distributed operating systems
like LOCUS[Walker83] which provide full reliability, where k is all the members of the
group. LOCUS uses this reliability to keep its replicated files up-to-date. On the other
hand, the V-kemel supports a l-reliable multicast feature[Cheriton85]. This means that
the system guarantees that at least one process receives and replies to a message. V
system does this by retransmitting the Send packet when no reply is received after a
timeout. If there is no reply after several retransmission then Send returns with failure.

This provides a simple and efficient implementation for inulticast communication.

The designers of V state that higher degrees of reliability would either require the
Receiver to keep track of messages and request missed messages (which does not work
well in the case of lost request messages), or require the Sender to have access to the

list of members of the group which is against one of the V design philosophy of minimiza-

tion of global information[Cheriton85].

However, we have designed an efficient mechanism to achieve higher degrees of relia-
bility without depending on the two above mentioned methods. Our multicast provides
Sender-initiated, non-atomic, non-ordered reliable multicast. This is done®*by providing

ALL_REPLY, K_REPLY, ALL_DELIVER, and K_DELIVER options for the Sender.

For K_REPLY multicast, the Sender is blocked un}il K replies arrive from the group mem-
bers, where as for ALL_REPLY the Sender is blocked for the replies to arrive from all the
group members. All the group members is the set of processes that are alive on the reach-
able operating hosts at the time of transmission of the message. K_DELIVER and
ALL_DELIVER are counterparts of the above mentioned primitives with the success con-
dition changed to the delivery of the message to the group members. For cxarﬁﬁlc, an

ALL_DELIVER Send succeeds when the message is delivered to all the group members.

In this scheme, if a Sender requests an ALL_REPLY or ALL_DELIVER reliability
and the multicast message cannot reach a node on the network, the operating system will
report FAILURE to the Sender, but will make no awtomatic attempt to recover from the
site failure. We assume that the processors are fail-stop processors in that a fail-stop
processor never performs an erroneous state transformation due to a hardware or operat-
ing system failure; instead, it simply halts and all its volatile information is lostz. We

therefore assume that when a host is not reachable, it is not up; this is a reasonable

2 - If the failed processor is rebooted with a server process which joins a group as a Receiver in the
middle of a reliable transaction, although the processor is now reachable, reliable Send o that group
will stitl fail

o

10

assumption for reliable local area networks. Also, the problem of network partitions is not
‘addressed here since it is not a major issue in a LAN environment: using broadcast medi-
ums where. no groups are split on opposite sides of a gateway. The issue of group multi-

.cast for LANs with gateway is an active research area[Deering88].

The design goals for our reliable multicast communication are consistent with those of

' the V-kernel namely efficiency, simplicity, and minimization of global information. In the
V-kemel the one to one and one to group communication mechanisms are handled by the
same code; our added features did not alter this design to provide simplicity, and avoid
duplication. In general, efficiency of the implementation was favored over space saving,
although minor efficiency was sacrificed in favor of simplicit‘y. Adhering to the V philoso-
phy, the amount of global information is kept to a minimum; it is limited to the list of alive

processors maintained by the I_Am_Here server which will be discussed later.
3.2. Reliable Multicast Communication Primitives .

~ The V-kernel is a distributed message-based operating system with the hosts com-
munica‘t'mg over a local area network. Process groups and group management routines
- have already been implemented in the V system[Cheriton85], so we used that as a basis
and focussed our attention on providing an efficient reliable multicast protocol in the ker-
nel. Associated with each process is a globally unique process identifier (PID), Eack pro-
cess may communicate with any other process on any host by directing a message to the
Receiver’s PID. After the message is sent, the Sender is blocked until the Receiver
receives the message and responds with a reply. Multicast communication in the V sys-
tem is performed by spedfyi(lg the group identifier of a group or processes to which a mes-
sage is to be delivered. The!operating system then uses its membership information about
the group to deliver the message to each member. Membership of a group is dynamic in
that processes may join or leave a group at any time. Full details on the V system group

management routines are available in [Cheriton85].

11

We modeled the user level communication primitives as much as possible to those of
the V system, so only the Send primitive is affected by the addition of reliability. We now

describe the reliable Send primitive. The other relevant group communication primitives

are given for completeness.

Send(message, id)
The fixed length message is sent to a singlc~ process if the id is a process id or to

a group of processes if the id specifies a group, in which ca;se multicast is used. The
multicast Send blocks for zero or one replies depending on the syscode and code fields

" defined in the message. The new features are specified in the same way. The user
spcciﬁés the type of Send by setting appropriate fields in the message. The syscode
field may be set to K_REPLY, K_DELIVER, ALL_REPLY, or ALL_DELIVER. For

K_REPLY or K_DELIVER the code field must contain an integer specifying the val-

ue of K, where K >= 13. For the new reliable multicast Send, the Send blocks until
either conditions speciﬁcd by the syscode field are satisfied or conditions are found

unsatisfiable, in which case failure is returned.

The format of a user level message is shown in Figure 2.

SYSCODE
FILL
CODE

UNSPECIFIED
DELIVERY
SEGMENT PTR
SEGMENT SIZE

Figure 2. V User Level Message Format

3 - For K=0, reliable communication is inappropriate and the standard V-kernel datagram can be
used.

12

The syscode field types for the new features of group communication are defined

below:
K REPLY

Send blocks until K replies are received from the group members specified by
id, in which case SUCCESS is returned, and the Sender’s message is overwritten
by the contents of the first reply. Otherwise FAILURE is returmed because K
replies are not possible, i.e. either the maximum number of timeouts and retrans-
misﬁons have been done or the number of members is less than K. In either case,

Send sets the code field in the message to the number of replies received.

K_DELIVER

Send blocks until the message is delivered to K group members specified by
the id, after which a SUCCESS is returned. Otherwise FAILURE is returned
because delivery to K members is not possible, i.e. either the maximum number of
timeouts and retransmissions have been done or the number of members is less
than K. In either case, Send sets the code field in the message to the number of
members to which the message was delivered. Note that the Sender is unblocked -
after the status is returned from the kernel. Thus unlike standard V group commu-
nication the Send does not block for a reply message. |

ALL_REPLY

Send blocks until replies from all the alive group mcmbcrs in the group speci-
fied by id are received, after which SUCCESS is returned, and the Sender’s mes-
‘sage is overwritten by the first reply. A FAILURE is returned if reception of all
the replies is not possible, i.¢. the maximum number of timeouts and retransmis-
sions have been done or message delivery to a member failed. In ecither case,
Send sets the code field in the message to number of replies returned.

ALL_DELIVER

Send blocks until the message is delivered to all the alive group members speci-
fied by id, in which case a SUCCESS is returned. Otherwise FAILURE is returned
because delivery to all the members is not possible, i.e. the maximum number of
timeouts and retransmissions have been done or message Acﬁvcry failed for a

member. In either case, Send sets the code field in the message to the number of

members to which the message was delivered.
GetReply(message, time_limit)

‘GetReply is used by the Sender to retrieve subsequent replies in the reply queue
of the Sender. If there is a reply, it is copied to the message and the PID of the replier
is returned. Otherwise, it blocks until a reply comes in or the timeout specified in

time_limit expires. In case of a timeout, FAILURE is returned.
Receive(message)
ReceiveSpecific(message, id)

Receive or ReceiveSpecific block until a message is received from any Sender
or a message is received from the specific id which may specify a process or a group
of processes. When a message is received, the PID of the Sender is returned and
the received message is copied to the message. If no messages arrive, Receive
blocks forever, whereas ReceiveSpecific may return with a FAILURE after timing
out. The timeout occurs only if the process with id process id does not exist in the

system.
Reply(message, id) .

Reply sends a reply message to the process specified by id.

The complete list of communication primitives in the V system and their descriptions

may be found in [Cheriton86].

14

One of the major contributions to the design in [Atkins86] was in investigating
ALL_RECEIVE multicast and choosing AI:L_DELIVER multicast over ALL_RECEIVE.
ALL_RECEIVE multicast returns success if all the Receivers have received the mes-
sage and the mcssage‘ is available to the user level. Choosing of ‘ ALL_DELIVER was
due to the way that messages are handled inside the V-kernel. When a Receiver invokes
" the Receive syétcm call, it is blocked and the control is passed to the kernel. When an
awaited for message arrives, it is copied to the Receiver’s message buffer inside its pro-
cess control block (PCB). If another valid message addressed to this Receiver arrives
before the Receiver i§ readied for execution (as can easily occur with multiple Senders),
the previous message in the Receiver’s process block i ovcrwrittcyn'by‘thc new one.
Currently when this happens on a specific 1:1 messagc,i@.ﬁrst Sender will eventually

timeout and retransmit. The present group implementation on the published V system

allows message overruns and the message is lost.

The ALL_RECEIVE succc[ssf’k implies that the sent message is available to the
Receiver. This semantic is vcry‘ difficult to implement in the current V-kernel implementa-
tion where messages can be overwritten 1n the PCBs. One solution is to use a flag in the
PCB of the Receiver. However, this would introduce non modular/structured code since
the flag will have to Fbe set aftcr a message delivery in the kernel and reset in the user
library level where the message is copied from the PCB to the user message data struc-
ture. In lieu of the above, the ALL_DELIVER semantic was chosén, which succeeds if
the message is delivered to the Receiver (implying that the message may be overwritten

before the Receiver has read it).

Some of the other major additions to thg original design were in the area of providing
variable degrees of reliability. These are provided by the K_REPLY and K_DELIVER
multicasts [Chcriton85][Ravindr§n87]. These plus the extended user level functionality
of I_Am_Here server which will be discussed in the following sections, provide powerful

tools in implementing higher level communication services.

15

N

4. Detailed Design and Implementation

V system provides two types of groups, local or global. Only local processes may join
2 local group whereas both local and remote processes, i.e. processes running on other

kernels, may join a global group. The original V system only provides O or 1 reliable

broadcast, i.e. best efforts only4/.ﬂ This chapter describes our detailed design of kernel lev-
o
el reliable multicast for bdiﬂ local and global group communication. It also presghts the

design of the I_Am_Here server which has both kernel and user level applications. |

The reliable multicast and the I_Am_Herc server was implemented inside the Ver-
sion 6 V system. The V-kemel has three major logical components: the kclgncl server,
device server, and the inter-process communication. The global reliab/lcr multicast was
implcmcntcd in the inter-process communication section which is cnu'r;aly -writtcn in the
C programming language. Our reliable multicasf uses some of the V kernel’s IPC facili-
ties such as duplicate elimination and message retransmission. V system’s inter-pro-
cess communication mechanism eliminates duplicates and out of sequence messages by
using message and transaction sequence numbers, and it also retransmits messages
after each timeout. It has four timeouts of 2 seconds each. The I_Am_Here server imple-
mentation affected V system’s timer interrupt, ethernet device module, and the kernel
server, which is a pseudo process. The reliable local group multicast, though completely

designed, has not been implemented due to the recent trend in V system evolution

N

K

toward global groups only.
4.1. Reliable l:ocal Group Communication

In implementing the reliable multicast, the intra-kemel protocol executed at the

Sender and Receiver's kernel was modified®. These changes, however, did not affect the

4-0mﬁableisausakvddamgrammmmbaﬁonmedmmmmdownamquhemckeximb

reply.
S - In case of local group communication, the Sender’s and Receiver’s kernel are the same.

16

logical inter-process interacp

Y
o
o
e,
<
o
-

> Eeceivcr)

o

Figure 3. Logical inter-process interactions for local groups

The Sender does a_ Send, thus invoking a kernel request. The kemnel recognizes the
request as a Send to a local group. It creates an Alien process for each Receiver in the .
group to act as a go between and as a message buffer. Then the message is delivered to
each Receiver and the Sender blocks until a reply is send to it. As each Receiver replies
the Alien is either destroyed if it is the first replier. Otherwise, it is reused to queue the
reply in the reply queue of the Sender, and the message is delivered to the Sender. For
the sake of simplicity the interactions between Receivers and the kernel are not shown.

Note that the Figure 3 represents what logically happens.
4.1.1. DELIVER reliability

The Reliable Intra-kernel protocol for K_DELIVER and ALL_DELIVER of local

17

group communication is shown below:

SENDER . KERNEL RECEIVER
" Send(msg, grpid); —> For each Receiver Receive(msg)
allocate an Alien

g deliver msg to Receiver %—- blocked
end S
Plocked E If success cond. are met unblocked
Y return success
?— else
unblocked return failure

Figure 4. - Reliable Intra-kernel protocol of K_DELIVER and ALL_DELIVER

In the modified group communication mechanisms, the Send succeeds if the mes-
sage is delivered to K Receivers for K_DELIVER or to all the Receivers for
ALL_DELIVER. Note that the Sender is unblocked after the status is returned from
the kernel, thus unlike standard V group communication the Send does not block for a
reply message. The success condition of the Send is stored in the Scndcr’s process

descriptor block.

There are no retransmissions since the Receivers and the Sender are local6. The

ALL_DELIVER only fails when an Alien can not be allocated; the maximum number of

Aliens in the system is predefined, and because of the asynchrono;g_;‘g;[xaractcristic7 of
K_DELIVER and ALL_DELIVER, the number of free Aliens diminishes quite rapidly.

4.1.2. REPLY reliability

6 - This is also done in the standard V system '
7 - Where the Sender does not block for replies and is free to send messages before the Receiver has
read previous messages.

18

/

The Reliable Intra-k.\ernel Protocol for K_REPLY and ALL_REPLY is shown below:

SENDER KERNEL RECEIVER
Send(msg, grpid); — For each Receiver id = Receive(msg);
allocate an Alien 1=
deliver msg to Receiver ¥ blocked
end - (
blocked if imm:. failure condition : unblocked
return failure

if maximum # of timeouts

return failure _
If success cornd. are met Reply(msg, id);

[LT T T LTI

else
return failure

-«||||m

|

A

Figure 5. Reliable Intra-kernel Protocol of K_REPLY and ALL_REPLY

The immediate failure condition is satisfied when the Send type is K_REPLY and
the message is delivered to less than K Recé:ivers or when the Send type is
ALL_REPLY and a delivery fails. If K or all Receivers do not reply, after maximum
number of timeouts, failure status is returned to the Sender. As the Receivers reply
to the sent message, the kernel checks for having K replies for a Send type of
K_REPLY or having received the last reply for ALL_REPLY Send. If a success con-
dition is met, then success is returned to the Sender. Note that timebut; may also

happen after replies start to be received by the kemel .

4.2. I_Am_Here Server

Unlike reliable local group communication where all the information needed for deter-
mining success or failure of reliable communication is available locally, the knowledge of
the Sender’s kernel is not complete in the case of reliable global group communication. In
order to provide the information needed to determine the success of a Send, some form
bf global information is needed. One obvious method would require the Sender to acquire
the process ids of all the group members. So that in case of ALL_REPLY, it coyld deter-

19

mine the success of a Send, or in the case of K_REPLY, it could know that K replies are

possible or not. Since V provides dynamic groups, which processes may join or leave at

any time, the provision and maintenance of such information will be difficult.
However, the knowledge of alive hosts/kernels is easier to obtain and maintain, and it

is sufficient for this reliable multicast implemcntationg. This information is provided by
using an I_Am_Here (IAH) server which maintains the list of reachable/alive hosts. Every

host on the net»?/ork has an I_Am_Here server which executes the following algorithm:

When akost boots up, it broadcasts an I_Am_Here message to all the hosts in the
V domain and thereafter it broadcasts the message once every second. The ‘
I_Am_Here server, upon receiving the first I_Am_Here message from a host, marks
the Sender host up in its information base and in turn sends its own I_Am_Here mes-
sage after a random delay (0-10 milliseconds) to help the Sender host in compiling its
Alive Kemel Table (AKT). The data base in each kernel is composed of two parts: an
Alive Kemnel Table with a row for each alive host on the network, and an Alive Kemel

Bit Vector (AKV) with a bit entry, up_bit, for each host. These data structures are

shown in Figure 6:

Host_id | Timer

Sequence no|Bits | | |-

Alive Kernel Table Alive Kernel Bit Vector
Figure 6. I_Am_Here Server Data Structures .
<«

There is a one to one correspondence between the position of a host in the table

8 - Recall that the standard V-kernel “knows" all group members on its local machine.

and thz bits in the vector; e.g. the status of the host in the fourth table entry is stored
in the fourth bit of the AKV up_bit field. The table has two entries for each host: the
host_id entry and a timer entry. In this implementation, the host_id contains the Eth-
-ernet address of hosfs. Every time an I_Am_Here message arrives from a host, its
bit position in the AKV up_bit is set to TRUE and its timer is set to 2 which is decre-
mented once every second. If the timer becomes O, then the host is assumed to be
dbwn; its timer is set to -1, its bit position in the AKV up_bit is set to FALSE and
its space in the AKT is freed up. This timer mechanism facilitates marking a host
down only if no I_Am_Here messages arrive from that host in 3 seconds. This 3 sec-

ond grace period may be increased with ease.

The sequence_no variable associated with the Alive Kernel Bit Vector is incre-
mented every time there is status change, i.e. a host comes up or goes down. In the
current implementation, the bit vector is 32 bits wide, so it can accommodate up to a

32 host network environment; the number of bits may be increased quite easily.

The global view of the I_Am_Here server quickly stabilizes with the multiple broad-
casts of a given host when it comes up, the periodic broadcast, and the very low error
rate of Ethernet Local Area Networks. The delayed discovery of false or _gcnuinc host

failures is tolerated by the communication protocol’s timeouts.

L3

It is worthwhile to note that there is some randomness in the broadcasting of

I_Am_Here messages due to the following factors:
« The clocks of all the hosts are not synchronized, i.e. interrupts don’t all happen at the
same time 7,

e In V, the I_Am_Here message is only broadcast immediately if the timer interrupt

9 - The V-kemel timer interrupts once every 10 milliseconds.

21

did not interrupt the kernel, otherwise it is delayed. So the exact time of the broadcast
is affected by the current system activity.

This randomness plus the assumption that the number of hosts on the LAN, not count-

ing gatewayed hosts, is not extremely large avoids collisions and excessive loading of the

LAN.

The I_Am_Here server also provides the followiné user level services:

getting a copy of the alive kernel vector (AKV) - This is done by sending a message to
the local kernel with syscode field set to GET_IAH_BIT_VECTOR command constant.
The local kernel replies w{t;\a message containing the bit vector and the sequence no
of the vector. -

getting the host number, given the bit position and sequence number - This is done by
sending a message to the local kernel with syscode field set to GET_IAH_HOST_NO
command constant, and two of the other fields set to the host position number (e.g. 4
for the fourth host) and the sequence number, previously obtained by a
GET_IAH_BIT_VEC"I‘OR command, in the message. If the usqr’s sequence number
matches the kemel’s, the local kernel replies with a message c.ontaining the host_id
(i.e. ethernet address) of the host in the reply message. Otherwise FAILURE is

returned.

resetting the kernel bit vector - This is done by sending a message to the local kernel
with syscode field set to RESET_IAH_BIT_VECTOR command constant. The local

kemel replies to this message after resetting the vector.

These services coupled with the new reliable communication primitives could be used

in building higher levels of reliability, atomicity, ordered delivery, etc. with ease.

4.3. Reliable Global Group Communication

Members in a global group may reside at local or remote hosts. The logical inter-pro-

22

cess interactions between 1 Sender and 2 Receivers who are members of a global group:

are shown below:

Receiver Receiver

Figure 7. Logical Inter-Process Interactions For Global groups

The Sender blocks, and the message is serviced locally and is also broadcast on the

network !0, The kemnels with Receivers create an Alien process for each group member
and deliver the message to their local Receiver(s). Replies from remote Receivers are

also sent via the network and picked up by the Sender’s kernel.

It is necessary for each host, whether it has group members or not, to acknowledge
the ALLL._REPLY or ALL_DELIVER group Sends. This acknowledgment is also used for
early detection of K_REPLY or K_DELIVER'’s failures, though it is not strictly required.
For Reply reliable Sends (ie. ALL_REPLY and K_REPLY), the host acknowledgments
actually add very little overhead, because the acknowledgments from kemels with no

10 - Unless the operation’s success conditions are met Jocally.

23

members arrive before the genuine replies to the multicast messages and are dealt with
quickly, and the kernels with members piggyback the acknowledgments on reply mes-
sage. For Deliver reliable Send, there are no replies from the Receivers and the kernel
acknowledgments are efficiently processed by the Sender’s kernel. The performance fig-
ures (in the Performance chapter) show that the extra host acknowledgments add
insignificant overhead to processor or network costs, as network interrupts are fielded

efficiently in the kernel.

In this implementation, one unique multicast address is set aside for all the reliable
communication, whereas specific multicast addresses are used for standard V group
Sends. One multicast address for reliable communication is used mainly because of ease
of implementation of the inter-kernel protocol. Use of more than one multicast address for

reliable communication is discussed in the Future work section.

4.3.1. DELIVER reliability

The reliable Inter-Kernel protocol of K_DELIVER and ALL_DELIVER communi-
cation primitives is shown in Figure 8.

The Sender blocks. The Sender’s kernel first takes a copy of the alive kernel’s
vector and stores it in the Sender’s process control block. The Sender’s process con-
trol block has an expected kernel ack vector and a num_receivers entry for the num-
ber of Receivers, initially set to zero. The Sender’s kemel creates an Alien for each
local Receiver (if any), increments nwm_receivers, and delivers the message. It also

sets the bit for the local kernel in the expected kernel ack vector.

An immediate failure can occur on the Sender’s kernel if the free Alien resource
pool is exhausted, and the message is of type ALL_DELIVER. In this case, the ker-
nel aborts the Send and returns failure to the Sender. Otherwise, the message is
broadcast over the net. On the Receiver's kernel, an immediate failure happens when
the kemel runs out of free Aliens and the message is of type ALL_DELIVER. This

24

causes a negative acknowledgment (NACK) message to be sent to the Sender’s ker-

nel.

If a NACK message arrives at the Sender’s kemel and the message 1S of type

ALL_DELIVER, then failure is returned to the Sender.

Remote kernels with no Receivers immediately send an ACK message with O as
the number of deliveries made. Otherwise, the remote kernel delivers the message to
the Receivers and sends an ACK message with number of deliveries made. Both the

ACK and the NACK message contain the number of deliveries made.

If immediate success conditions hold, i.e. the local host is the only alive host and
delivery succeeded to all the local Receivers and the message is of type
ALL_DELIVER or if the number of deliveries done locally >= k, then success is
returned to the Sender. Otherwise, as kernel acknowledgments plus number of deliv-
eries messages come in from other hosts, their respective bit in expected kernel ack .
vector is set and number of deliveries is added to Sender’s nwn_receivers field; the
Send succeeds if expected kernel ack vector 'is identical to the Sender’s copy of alive

kernel vector and the message is ALL_DELIVER, or if num receivers >= K for

K_DELIVER messages.

A LOCAL LOCAL REMOTE REMOTE
SENDER KERNEL RECEIVERS KERNEL RECEIVERS

Send(msg, id); Receive(msg) Receive(msg)
g eceiv
\

If imm. failure
If failure cond. Send Nack

are met
return railure send ACK

While ACKs are }
being received

If success cond.
are met
return Success

£ | If local _ i
'§=' [mcrnbers g blocked g
g For each g §
E Receiver = =
: allocate Alien 7 unblocked S blocked

g deliver msg :
: If imm. failure g
g return failure H
|
g Set local success EE;E'
g If imm. success _g
g return success . g
g broadcast msg If no members g
§ wait for ACKs send ACKO §
§ else ::_5'
g For each timeout { £
g { For each g
If final timeout Receiver .-.'_=§__5

return failure { '-%-—-'

retransmit allocate Alien
1} delivermsg
} unblocked
else
‘ #deliveries
{

unblocked)
Figure 8. - Reliable Inter-kernel protocol of K_DELIVER and ALL_DELIVER

26

If immediate success conditions hold, i.e. the local host is the only alive host and
delivery succeeded to all the local Receivers and the message is of type
ALL_DELIVER or if the number of deliveries done loéally $= k, then success is
returned to the Sender. Otherwise, as kemel acknowledgments plus number of deliv-
eries messages come in from other hosts, their respective bit in expected kernel ackv
vector is set and number of deliveries is added to Sender’s num_receivers field. The
Send succeeds if expected kernel ack vector is identical to the Sender’s copy of alive
kernel vector and the message is ALL_DELIVER, or if nwn _receivers >= K for

K_DELIVER messages.

If ameout occurs and success conditions have not been met at the Sender’s ker-
nel, the message is retransmitted by the kernel. The Receiver’s kernel recognizes
retransmitted messages and re-sends the kemel ACK messages. After the maxi-
mum number of timeouts and retransmissions, the Seénd is aborted and failure is
returned to the Sender. Note that because both the ACK and the NACK messages
contair; the number of group members on the host, it is possible for a K_REPLY to

succeed even if NACK messages are received from some of the remote kernels.
4.3.2. REPLY reliability
The algorithm of K_REPLY and ALL_REPLY for global group Sends are shown
in Figure 9: |
—

LOCAL LOCAL REMOTE REMOTE

SENDER KERNEL RECEIVERS KERNEL RECEIVERS
Send(msg, id); . \] .
£ Receive(msg) Receive(msg)
: If local x
£ members £ £
: (= blocked E
£ For each z g
g Receiver 5 :
g allocate Alien T unblocked g blocked
z deliver msg | £
: blocked) Reply(msg)
£ If imm. failure £
i return failure / g
2) J E
H If Other hosts? / £
g broadcast msg > §
E . If no members g
£ If imm. Success s send ACKO 5
£ return success else £
z wait for Replies { £
g For each H
g For each timeout Receiver ZE:-'E unblocked
s ((7
2 If final imeout allocate Alien
£ return failure delivermsg —> Reply(msg)
retransmit }
} If imm. failure
g Send Nack
E / wait for Replies
If failure cond. If last reply?
return failure send ACK
/ #replies
‘While Replies are <~ else
being received B send reply
{ }
If success cond.
are met

“———— return success

unblocked }
Figure 9. Reliable Inter-kernel Protocol of K_REPLY and ALL_REPLY

28

€O

The Sender blocks. The Sender’s kernel takes a copy of the AKV anci stores it in
the Sender’s PCB. The Sender process’s control block’s expected kernel ack vector,
num_receivers and nwn_feplies_received fields - are initially set to 0. The Sender’s
kernel creates an Alien for each local Receiver (if any), updates num_receivers, and
delivers the message. The immediate failure conditions are similar to the Deliver reli-
ability algorithm and are caused by lack of resources to either deliver the message to .
the Receiver or reply to the Sender. If immediate failure does not occur, at the

-

Sender’s kernel, the message is broadcast over the net.

As replies are received, the Sender’s kernel increments num_replies_received
field in Sender’s PCB. If immediate success conditions hold, i.e. the local host is the
only alive host and replies arrived from every local Receiver and the message is of
“type ALL_REPLY (or if the number of replies received locally >= K for K_REPLY),
then success is returned to the Sender. Otherwise, the Sender’s send operation waits
for remote kernel messages. If a NACK message arrives at the Sender’s kernel and
the message is of type ALL_REPLY, failure is returned to the Sender. A NACK
message is sent by remote Receivcr’s kernel if the sent message can not be deliv-
ered due to lack of Alien processes, which causes an immediate failure. QOtherwise,
the remote kemnel sends the replies from the Receivers, piggybacking an ACK and the
local number of Receivers on the last reply. As the kernel acknowledgments arrive at
the Sendcr’s kernel from other hosts, the respective bit in the expected kernel ack

-

vector is set and number of .rcplics is added to num_replies_received.
For ALL_REPLY multicast, the Send succcc&s if the expected kernel ack vea%(

is identical to the Sender’s copy of alive kernel vector and num_receivers is equal to
num_replies_received. K_REPLY succeeds if num_replies_received >= K. Note that
because both the ACK and the NACK messages contain the number of group mem-
bers on the host, It is possible for a K_REPLY to succeed even if NACK messages

are received from some of the remote kernels.

29

If timeout occurs and success conditions have not been met at the Sender’s ker-
nel, the rﬂessage is retransmitted by the kernel. The Receiver’s kernel recognizes
retransmitted messages and re-sends the replies previously sent from that kernel;
the Sender’s kernel discardé duplicate replies by using sequence numbers. If thgreﬁ
are some Receivers that have received the message but have not replied yet, a spe-
cial message ‘callqd Breath-of-life is sent to the Sender’s kernel. This message
resets the timeout time in the Sender’s kernel lengthening the transaction time limit

beyond 4 timeouts of 2 seconds each. After the maximum number of timeouts and

retransmissions, the Send is aborted and failure is returned to the Sender.

Two outstanding worthwhile issues regarding this reliable multicasts design are
its interactions »\jith view of the system (i.e. the alive hosts) and scalability. Change
of the view of the system is handled correctly-by these reliable multicast protocols in
that the Send does not succeed if the requested operation failed. If a site fails in the
middle of a send transaction before sending the ACK messa}e to the Sender’s ker- |
nel, the transaction will fail. Also the ACKS/NACKs that may arive from sites that
recover/come up in the middle of a Send transaction will not contribute to the success
or failure of the transaction sincé the Sender’s kel;nel uses the view before the start of
the transaction for determining sucocss The only other possibility for reporting false
success to the Sender is when a site fails after the transacﬁon has started and recov-
ers before the end of thé transaction (before the last retransmission). This is very
unlikely s'mccv the failure and recovery have to happen in three retransmission
times(i.e. 6 seconds in the V kernel). Also, this condition may not be viewed as a
. false success but true success.

Scalability comes C{nto the picture because of the I_Am_Here server’s periodic
messages and the ACK 0 messages from hosts with no Receivers. These messages

are about 100 bytes long and with a ‘10Mbit Ethernet, their transmission takes-about
! millisecond. The V kemnel, like many other kernels, handles Ethernet interrupts

30

using interrupt service routines. The interrupt service routines receive these mes-
sages and invoke apﬁropriate functions which extract the needed information from the
messages and then dlscard the messages. The handling of each of thcsc messages
takes about 0.1 msec on Sun 3 with a 50 host network. Because of the equal trans-
mission and kernel processing times for each of the I_Am_Here and ACK 0 mes-
sages, the kernel percentage loading for handling ACK 0 and J_Am_Hecre messages
is cquiv‘alent to Ethernet percentage loading by ACK 0 and I_Am_Here messages.
With a 55% Ethernet loading, where ACK 0 messages from 50 hosts consume 50%
and I_:f\m_Here messages consume 5% of the Ethernet bandwidth, the Ethernet will
handle 100 multicast messages per second. This will also result in 55% loading of the

kernel, thus indicating the upper limits of scalibility of our protocol.

."“L:[
)

31

5. Performance
~ The timing measurements of communi;:atilon models for global group communication
are givcn" in. this section. First the experimental environment, both hardware and soft-
ware, is brcscntcd, followed by the specification of test models used in timing measure-

ments. Then, the performance of the test models is discussed.

5.1. Experiment Environment

Sun 3/50 workstations were used for the performance analysis of reliable communica-
tion primitives." These workstations use a 32 bit Motorbla 68020 processor running at 16
MHz. Each workstation contains 4 megabytes of main memory with no secondary stor-
age. In this disklcés environment, a micro Vax II was used as a file server performing all
the disk I/O.

The machines were conx;cctcd via a 10 Mcgabit/sccond Ethernet[Shoch80]. The

experiments were done using up to 8 Sun 3/50 workstations. The hardware environment

is shown in Figure 10.

—~

San 3/50 Sun 3/50 Sun 3/50 Sun 3/50 Sun 3/50

Ethernet

Sun 3/50 Sun 3/50 Sun 3/50 micro Vax I ‘___@

Figure 10. Hardware environment

The Sun 3/50 workstations ran the Version 6 V system, and the micro Vax II ran 4.2
BSD UNIX. The software role of the micro Vax II will not be discussed further, as the

micro Vax II was only used as file server and hence did not effect the timing results.

32

5.2. Test Models

The test model used in obtaining the performance figures consists of a Sender and one

or more Receiver processes. The following three types of communication mechanisms are

used in the test models:

« Standard One To One (1:1) - The Sender uses specific Send to send messages to
the Receiver(s). If there are ‘multiple Receivers, the Sender sends the message to

each one in a sequential manner.

« Standard One To Global Group (Standard 1l:many) - The Scr;dcr and Receivers
belong to the same global group and the Sender uses V system’s l-reliable multicast

to send messages to the Receivers.

‘'« Reliable One To Global Group (Reliable I:many) - Similar to Standard 1:many
except that one of the ALL_REPLY, K_REPLY, ALL_DELIVER, and K_DELIVER

reliable primitives is used.

The Seﬁdcr and Receiver(s) first establish contact with each other, and then execute
a tight loop which is bracketed with timing measurement mechanisms. In :hc loop, the
Sender sends messages to the Receiver(s) and waits for appropriatc number of replies or
deliveries in a loop of 10,000 iterations. In all the Reply reliable and standard V 1:many
models, the Sender awaits and retrieves ALL or K replies, using the Gctchly primitive.

Note that the Sender and the Receiver(s) each execute on a separate host.

In the V system, each message is 32 bytes long, but it may have a 1 kilobyte data
segment associated with it [Cheriton85). For simplification of test models, our mes-

sages do not have data segments associated with them.
The following terminology is used when discussing performance:

« Early Standard V-kernel - Version V.6 kernel before any enhancements.

33

+* Standard V-kernel ‘-7 Version V.6 kernel with no d‘:lay11 on replies to group Sends.

«* Early Enhanced V-kernel - Version V.6 kernel with our reliable group communication

enhancements. This correSponds to an enhanced version of the Early Standard V-ker-

nel.

«* Enhanced V-Kernel - Version V.6 kernel with our reliable group communication
enhancements, and with no delay on replies to Group Sends. This corresponds to an
enhanced version of Standard V-kernel.

The timing results obtained in the rest of this chapter were obtained while the net-
work was in normal usage. In order to get valid results, the tests were done at different
times and the minimum ‘was chosen. Moreover, they were executed at the user level with

no attempt to optimize their performance by adjusting priorities, etc.

11 - The meaning of the term no delay is explained later in this chapter.

34

5.3. Timing Results
First, we determine the overhead of the enhanced communication mechanisms in the

V-kernel by comparing the performance of 1:1 and standard 1:many Sends in standard V-

kemel and in the enhanced V-kemel. The results aré tabulated in Table 1. All the times

given are msecs per message sent.

Table 1 - Comparison of standard V-kernel and enhanced V-kernel

(msecs/message)
Type of Early Std. | Std. V-kemel| Early Enh. Enhanced
Comments _ .
comm. (1-reliable)| (1-reliable)| V-kernel V-kernel
same host
1:1 0.684 0.684 0.696 0.696
(timeipc)
[| diffhosts 1 g1g 1.919 2331 2331
(timeipc)
P
1:8 9 hosts 6.945 6.993

We used the standard V system program timeipc for measurement of the perfor-
mance of 1:1 specific Send for local communication on the same host (row 1 of the table)
and remote communication between two hosts (row 2 of the table). Timeipc is a special

program which executes in a tight loop sending or receiving messages. These differences

35

between standard V and our enhanced V are insignificant. They are caused by the extra
code in the kernel for handling the reliable multicast. The gap between 1.913 and 2.331
msecs per 1:1 message may be greatly reduced by streamlining the kernel code in han-

dling the standard V communication primitives.

The results t;or all the group communication described hereafter were obtained by exe-
- cuting Sender and Receiver programs, each on a different host. The Sender sends a mes-
sage t‘o the Receiver(s) and waits for appropriate number of replies or deliveries in a loop
of 10000 iterations. In case of waiting for replies, the Sender retrieves all the replies
using the GetReply primitive. Each Receiver blocks on a message reception and replies
to all the messages. Unlike timeipc program, these programs were executed at the user

level with no attempt to optimize their performance by adjusting priorities, etc.

The Sender is given the number of Receivers in the standard kemnel test, and it exe-
cutes GetReply to obtain all the replies in both cases. Note however, that it is conceiv-
able that as the standard kemnel only makes "best-efforts” delivery attempts, the stan-
dard kemnel could fail to receive replies from its group members, incurring a heavy timeout
cost on GetReply. This did not occur in our test runs, thus indicating that the LAN is

very reliable.

Row 3 of Table 1 shows that the performance of the early versions of the group com-
munication are not optimized, since the replies to a global group Send are delayed by a
random amount of time. This delay, which can be as long as 30 milliseconds pcf reply,
reduces the number of system buffer overruns at the Sender’s host [Cheriton85]. This
overrun problem exists mainly in Sun-2 hosts which have minimal system buffering capa-
bilides in the Ethernet interface. Sun 3/50’s are much faster and the number of allocated
system buffers in the Ethernet interface is large. Therefore, the 30 milliseconds delay is
not needed, so we removed the delay from both the early standard kernel and the early
enhanced kemnel. This shov;'s vast performance improvement which makes multicast cost

36

effective when the number of Receivers is more than 1, which is usually the case in group
communication. The cost overhead remained insignificant, so we only continued further

measurements on the no-delay kernels.

37

~

5.4. Performance of ALL_REPLY and K_REPLY Communication Mechanisms

The performance data for 1-reliable, ALL_REPLY and K_REPLY reliable 1:many

Send communication mechanism is presented in Table 2. The data are plotted in Figure

11. All the times given are in msecs per message sent.

Table 2 - Performance of ALL_REPLY and K_REPLY Sends

(msecs/message)
Number Enhanced V-kernel
of Comments
Receivers (1-reliable) | (ALL_REPLY) (K_REPLY)
1 2 hosts 2418 2.707 2.980
2 3 hosts 318 3.926 3,954
3 4 hosts 3.84 4.634 4739
g 9 hosts 6.993 8.878 ' 8.991
TIME
(m_'lsgc) l-reliable ~eeeseenes
9.0 ALL_REPLY »
' K_REPLY e
8.0 .
7.0 === e
6.0 T e
s0y e
4.0 e
3.0 e
2.0 '
1.0
0 >
1 2 3 8
Number of Receivers

Figure 11. Performance of ALL_REPLY and K_REPLY Sends

38

The performance data in Table 2 and Figure 11 was obtained by executing each of the
Sender and Receiver processes on a different host. Tests done with a mixture of hosts
with and without Receivers resulted in the same performance times. Therefore the over-

head of ACKs from hosts with no Receivers is negligible.

The performance of the enhanced ALL_REPLY group Send is about 20% slower than
the l:reliable group Send, mainly because the Sender is blocked until all the replies have
arrived; only tﬁen can the Sender read the replies with GetReply. In the 1-reliable case,
the Sender is unblocked as soon as one reply arrives, thus .allowing concurrency inarcad-
ing replies and accepting more replicé. Another reason for the slower speed of the
ALL_REPLY reliable Send is the extra code in the kernel to deal with this case. This
still makes ALL._REPLY attractive since the ALLL_REPLY group communication mech-
anism does not need to know the number of Receivers in the group and it has a suitable

semantic interface for applications that require reliability.

The percentage timing difference between the 1-reliable 1l:many and ALL_REPLY
l:many Sends remains constant as the number of Receivers increase, ‘thcrcforé
ALL_REPLY should perform quite well even with large number of Receivers; it scales up
well.

The ALL_REPLY mechanism was also tested when not all the alive hosts had
Receivers on them; no additional overhead was obscﬁcd. This is due to the concurrency
of the model; the hosts with no Receivers reply before the Receivers on other hosts reply

to the message and the Sender’s kemnel handles these early replies very efficiently.

The standard 1:1 mechanism takes about 2 msecs for a message exchange between
two machines. Therefore if all the replies are needed reliably, it pays to use the
ALL_REPLY group communication over the sequence of 1:1 Sends, if there is more than

one Receiver in the group.

K_RFPLY 1:many communication mechanism’s performance is similar to

39

ALL_REPLY'’s performance since K was set to the total number of Receivers in the sys-
tem. The diffé;ence is insignificant; it is mainly caused by placement of tests for
ALL_REPLY success condition tests before the tests for the success conditions of
K _REPLY in the kernel. Therefore, the ébove discussion about the performance of
ALL_REPLY mechanism also applies to K_REPLY. Of course, K_REPLY would perform
better lhfln ALL_REPLY in applications that require K replies where k < total number of
Réceivers; for example, an application that wants to find the K available servers would be

faster using the K_REPLY Send than using ALL_REPLY Send.

Y=

5.5. Performance of ALL_DELIVER and K_DELIVER Communication Mechanisms.

The performance of ALL_DELIVER and K_DELIVER reliable 1:many Send commu-
nication mechanism is presented in Table 3 and plotted in Figure 12. Note, that in

DELIVER reliable 1:many models, the Sender does not blosk for replies, instead it blocks

for a status to be returned from the Sender’s kernel. Also, the Receivers do not reply to

’

- messages. Most asynchronous operations have a tendency to exhayst system resources

if done in a tight loop; the ALL_DELIVER and K_DELIVER are not &xempt from this

described in the Design Issues chapter would occur. Therefore, the number of iterations
was lowered to 100, and the experiment was repeated several times. The altem;ltive to
this would involve the introduction of a fixed delay (e.g. half a second), before each Send
in the Sender’s 10000 iteration loop. The overhead of 10000 half a second delay opera-
tions would later be deducted to obtain the time required for the tight loop of 10000
DELIVER reliable Sends. This method would increase the length of timing test (10000
half a seconds = 1.5 hours), and increase the effect of bursty network traffic on the

results.

Unlike the ALL_REPLY case, there 1s no real counter part to ALL_DELIVER com-
munication mechanism in the standard V-kernel; V, however, supports a user level data-
gram communication mechanism that does not require the Receiver to reply. But, this
datagram mechanism often fails to deliver the message if the Receiver is not waiting for a

message, and it does not return any delivery status.

41

The performance data of the reliable DELIVER lzmany-and the l:many datagram

communication is shown in: Figure 12. All the times given are in msecs per message.

Table 3 - Performance of ALL._DELIVER and K_DELIVER Sends

(msecs/message)
Number |- Enhanced V-kernel
of Comments
Receivers (datagram) [(ALL_DELIVER) (K_DELIVER)
1 2 hosts 0.6 2.0 2.1
2 3 hosts 0.65 2.1 2.2
3 4 hosts 0.7 2.2 23
datagrars =~ o~
ALL_DELIVER
TIME K_DELIVER [T
(msec)
5.0
4.5
4.0
3.5
3.0
2.5)
20 e T
1.5
1.0
051 U
0 * >
1 2 3

.

Number of Receivers

Figure 12, Performance of ALL_DELIVER and K_DELIVER Sends

Although, the datagram ran faster than the DELIVER reliable communication mecha-

42

nisms, the DELIVER reliable communication mechanism is superior. In the timing tests,
the datagram Receivers lost about 50% of the Sender messages, due to kemel level over-

writes whereas the DELIVER reliable only lost about 8% of the messages (The discus-

sion of why messages are lost was given earlier in Reliability Semantics section).

The ALL_DELIVER communication mechanism is quite fast when compared with the
* standard and ALL_REPLY communication mechanisms. This becomes apparent when
the performance ‘slope’s of DELIVER reliable Send is compared with the standard and
REPLY reliable Sends; there is a very small increase in performance time as the number
of Receivers iﬁcrcase. Although, the ALL_DELIVER and‘K_DELIVER communication
mechanisms are faster than their REPLY reliable counterparts, they do not provide the
same functionality and are intended for different tasks like for notification or publishing

purposes which are common in distributed applications.

£

43

6.

Effect of Reliable Communication Primitives on Distributed Algorithms

To investigate the effect of reliable multicast communication primitives.on algorithm
design, we descﬁbe a typical distributed task, and\ compare three algorithms for modeling
the task. The distributed task involves N transactions between a Sender process and R
identical Receiver processes. The objective of the task is for the Sender to send N mes-
sages reliably to all the alive Receivers. The description of the task is intentionally kept

general to note the occurrence of it in many distributed algorithms.

The following assumptions are made in the design and the analysis of the algorithms:

« the Sender and the Receivers run as processes of an operating system on separate

processors connected via a broadcast medium such as Ethernet.

» processes may be addressed as a group in a group Send.

~ = the operating system retransmits the sent message T times or untl operation’s suc-

cess conditions are met.
V4

« the following communication primitives are available:

Unisend(msg, Receiver_id) - The msg is sent to the process with the Receiver_id

process id. The issuer is blocked until(a reply message is returned in the buffer
msg from the Receiver process. The replier’s process id (PID) is returned as sta-
tus. '

OneReply_multisend(msg, group_id) - The msg is sent to processes which belong

to the group named group_id. The issuer is blocked uniil one reply message is
returned in the buffer msg from a Receiver process. The replier’s PID is returned
as status. The other replies may be obtained by using the GetReply primitive

(see below).

AllAliveReply_multisend(msg, group_id) - Similar to OneReply _multisend c&%:)%
that the issuer is blocked until all the replies are received from the hlive -
Receivers. The first reply is returned in the buffer msg along with the status of the

operation. The replies are handled similarly to OneReply multisend.
GetReply(msg, timeour) - A reply to a previous Send is returned in the buffer msg .

GetReply will wait up to the timeout value for the reply. The replier's PID is

returned as status.
Receive(msg) - blocks the issuer until a message is received. The message is

returned in the buffer msg along with the Sender’s PID which is retumned as sta-
tus.

The three algorithms we compare are based on the following communications proto-

cols:

s Using a series of reliable 1:1 communication primitives (Unisend) - the Unisend
Algorithm. -

e Using reliability implemented at the user level, based on unreliable multicast

(OneReply_multisend) - the Unreliable Multicast Algorithm.

» Using our new kernel-level reliable multicast (AllAliveReply_multisend) - the Reli-

able Kernel Algorithm.

The distributed algorithms are analysed in 2 different environmnents namely static and
dynamic. In the static environment the number of Receivers remains constant whereas in
the dynamic the number of Receivers is in ﬂhx; For both environments, the algorithu»lsl
using Unisend, OneReply_multisend, and AHAljv’cchly_multicast will be presented
along with thcir analysis. Furthermore, the actual performance of the three algorithms |
under V system will be discussed.

45

6.1.

Static Environment
In this environmegt, the number of Receivers remains constant during the transmis-

sion of the N messages.

6.1.1. Unisend Algorithm
The algorithm, in pseudo-code form, for the Sender and Receiver is shown in Figure

13.
One Sender process is required to serially send the same message to each of the R

Receiver processes. Each Receiver acts on the message and replies (sends application

level acknowledgments) to the Sender. First, the Sender has to know the PIDs of the

Receivers. Therefore the Receivers must register their PID with the Sender!2. The

Sender then executes a 1:1 Send message to each Receiver in turn.

One of the main disadvantages of this algorithm is that the Sender needs to know the
number of Receivers. This is a limiting requirement in distributed systems. The other
negative point is the difficulty of synchronizing the Sender with the Receivers for the ini-
tialization phase plus the danger of Sender’s lockups if one of Receiver’s messages does

not reach the Sender process. The lockup problem may be solved by using Receive ser-

- vice call with timeouts in combination with a more fault tolerant (and consequently more

complicated) initialization phase. Note that lockup will not occur in the main transaction
loop since Send service call returns with timeout status if no reply is received after T

retransmissions by the operating system.

12 - To avoid Send-Send cycles, each Receiver should use an intermediary worker process to Send its PID
10 the Sender. For brevity this additional complexity has been omitted from the algorithm.

Receiver’s algorithm

/* Initialization phase: register PID with the Sender */
Unisend(msg, Sender pid);
/* end of initialization phase */

/* receive messages and perform the requested operation */
For j=1to N /* N = the number of messages */
Sender pid = Receive(msg);
Reply(msg, Sender pid); /* allows Sender to continue */
< act on message >
End /* j loop */ |
Sender’s algorithm

/* Iniualization phase: collect the PIDs of the Receiver processes */
Fori=1to R /* R = the number of Receivers */
Receiver pid[i] = Receive(msg});
Reply(msg, Receiver pidli]);
End /* i loop */
/* end of initialization phase */

/* send data to all the Receivers */
Fbr j=1 to N (the number of messages)
Fori=1to R
replier_pid = Unisend(msg, Receiver _nidli)),
if < Unisend failed >
"< perform recovery/cleanup actions >
< error exit >
End /* i loop */
End /* j loop */ ,
Figure 13. Unisend Algorithm for Static Environment

47

In the best case, when there are no lost messages, the Unisend algorithm’s network
message complexity is 2*R + 2*N*R where R is the number of Receivers and N is the
number of messages the Sender sends to each Receiver. In the initialization phase, for
each message the Receiver sends there is a reply from the Sender hence 2*R messages.
are sent in the system. In the main loop, there is a reply message for each messaéc that
- the Sender sends which adds up to 2*N*R.

Network message complexity increases considerably, when messages are lost - a
common occurrence in most distributed systems. The worst cast for Unisend occurs when
each message has to be retransmitted T times by the operating system, where T is the
maximum number of retransmissions, before it is received by either side. This increases

the total number of network messages to 2*R*T + 2*N*R*T.

Another type of message complexity is the number of service calls which initiate user
level messages (e.g. Unisend, Reply, ctc}. It is interesting to note that the best and the

worst case for the Unisend algorithm is 2*R + 2*N*R. This is due to the absence of user

level retries in this algorithm.

6.1.2. Unreliable Multicast Algorithm

These performance measurements improve when we use a multicast Send since the
number of network message decreases and the parallelism between the Sender and the
Receiver increases. The algorithm for the Receiver and Sender processes using OneRe-

piy_multisend is shown in Figure 14 and 15:

Receiver’s algorithm

/* Initialization phase: register PID with the Sender */
Unisend(msg, Sender _pid);

/* join the process group */
JoinGroup(my pid, group id);
/* ead of initialization phase */

/* receive mcssagcs and perform the requested operation */

For j=1to N /* N - the number of messages */ * :
Sender_pid = Receive(msg); /* allows Sender to continue immediately */
Reply(msg, Sender pid);
< act on message >

End /*j loop */

Figure 14. Unreliable Multicast Algorithm for Static Environment

49

Sender’s algorithm

- /* Initialization phase: collect the PIDs of the Receivers processes */
For i=1 to R /* R= the number of Receivers */
Receiver pid[i] = Receive(msg);
Reply(msg, Receiver pidlil);
End /* i loop */

/* end of initialization phase */

/* send data to all the Receivers */
{'For j=1to N /* N = the number of(messages */
success = FALSE;
Fori=ltoL/*L = maximiim number of user level retransmissions */
replier pid = OneReply_multisend(msg, group_id);
If <OneReply_multisend failed >
< perform recovery actions >
< error exit >
< Mark reply received from the replier_pid >
While there are outstanding replies(R-1 of them) and no timeout
Replier pid = GetReply(msg, timeous);
< Mark reply received from the replier_pid >
End /* while loop */
If < all Receivers replied >
success = TRUE;
End /* i loop */

If < OneReply_multisend failed >
perform recovery actions

End /* j loop */

Figure 15. Unreliable Multicast Algorithm
This algorithm’s initialization phase also suffers from the need for the Sender to know
the number of Receivers, and from Sender and Receiver synchronization problems like the

Unisend algorithm. Both Unisend and OneReply_multisend’s Sender accumulate the list
of Receivers’ PIDs. Unisend algorithm needs the PIDs for directing its Sends to each of
the Receivers and Unreliable multicast algorithm needs the list for checkﬁ'ng off replies
and determining the success of the Send operation. Note that the number of Receivers is
sufficient for the Unreliable multicast algorithm in the static environment. The core of
. Unreliable_multicast algorithm on the Sender’s part is more complicated than Unisend
because of the two extra loops, one for retransmitting the message L times or until suc-
cess conditions are met and the other for collecting and checking off the replies. Since the
operating system stops retrying as soon as first reply arrives for OneReply_multisend,
the retransmission loop is needed to cn-sure each Receiver having L (usually L == T)

chances to receive the message.

This increased complexity at the user level, however, doesn’t increase the number of
needed network messages. The best case performance of this algorithm is when there- is

no operating system or user level retries: 2*R + N(1 + R)

The initialization phase, ‘contributes the 2*R number of messages. N(1+R) comes
from N transactions; each transaction has one Send and R replies. However, the situa-
tion deteriorates when there are retries. The worst case occurs when each message ig
retransmitted T tﬁnes by the operating system before a reply comes back. Each reply is
in turn sent T times by the Receiver’s operating system before it arrives at the Sender’s
system. These operating 'system retransmissions increase (1+R) to T(1+R). The situa-
tion is worsened when user level OneReply_multisend has to be repeated L times. The

worst case network message complexity of OneReply_multisend algorithm becomes:
2*R*T + N*T*L(1+R)

This is worse then the worst case performance of the Unisend Algorithm by a factor of
L. The worst case complexity is exacerbated with the need for the user level retransmis-

sion loop of L iterations. This loop guarantees that the Receivers have at least K chances

51

of receiving the sent message. However, in this algorithm’s worst case performance, the -
receivers may receive the message T*L times which puts this particular algorithm in a
disadvantageous position. This disparity is mainly due to the semantics of the OneRe-

ply_multisend communication primitive.

52

6.1.3. Reliable Kernel Algorithm

In contrast to the Unisend and Unreliable_multicast algorithms, The Reliable Kernel
algorithm is very simple to code at the user level because the user has specified that all
the updates/messages must be reliably received and replied to by the Receivers for the
Send operation to succeed. The algorithm for the Sender and Receiver using AllAliveRe-

ply_multisend is given below:
Receiver’s algorithm

/* Initialization phase: join the process group */
JoinGroup(my pid, group id);
/* end of initialization phase */

/* receive messages and perform the requested operation */
For j=1 to N /* N = the number of messages */

Sender pid = Receive(msg);

Reply(msg, Sender pid);

< act on the message >
End /* j loop */

Sender’s algorithm

/* send data to all the Receivers */ .

For j=1 to N /* N = the number of messages */
replier_pid = AllAliveReply_multisend(msg, group_id),
if < AllAliveReply_multisend failed >

< perform recovery actions >
< error exit >

End /* j loop */

Figure 16. Reliable Kernel Algorithm

53

The algorithm is clearly simpler than the two previous ones both for the Receiver and
’the Sender. The Receiver’s initialization phase has been reduced to just a JoinGroup
operation which registers the Receiver’s PID as a member of the group. The Sender’s
initialization phase has totally disappeared since the Reliable kemél Algorithrp’s Sender
does not need the Receivers’ list to determine success of the Send. It also doesn’t need
" to go through the Reply messages/acknowledgments to check off the repliers and check
for success conditions. Since AllAliveReply_multisend returns success only after the
Receivers have replied, the user level retransmission is not needed; the operating sys-
tem will retry the Send T times until all the replies are in, thus giving all the repliers the
same (T) opportunity to respond. The elimination of this loop significantly dccréases the
number of generated network messages. All above advantages contribute to the best
case performance of this model: N(1+R+H) where H is the number of hosts without

receivers that generate extra ACK messages.

Note that the initialization phase cost is 0. The worst case occufs when the operat-
ing system has to retransmit the message the maximum number of times and the repli-
ers’ systems have to retransmit the reply the same number of times to get them in to the
Sender’s system which accounts for the worst case hctwork message complexity of:
N*T(1+R).

It 1s noteworthy that the number of messages generated by the Sender in the worst
case is not dependent on the number of Receivers. It is always N*T, unlike the Unreli-
able_multicast’s N*T*R. Because of this characteristic, the maximum number of replies
each Receiver may generate for cach message is T hence N*T*R replies for N messages.
This is drastically lower than N*T*L*R messages that may be generated by the Unreli-

able_multicast's Receivers.

Reliable kemel Algorithm also outperforms the Unisend model in that the Sender

may only send T messages per transaction instead of T*R messages, thus cutting the

number of network messages generated by the main loop by (N-1)T*R.

The network message complexity of the three models in static environment is sum-

marized below:

Network Msg
Complexity Best Case Worst Case
Algorithm
. 2*R + 2*N*R 2*R*T + 2*N*R*T
Unisend
Unreliable Multicast 2*R + N(I+R) 2*¥R*T + N*L*T(1+R}
Reliable Kernel N(1+R+H) N*T(1+R+H)

Figure 17. Network Message Complexity Analysis Summary

This performance analysis doesn’t even begin to measure all the advantages of Reli-
able kernel Algorithm such as the effects of parallelism achieved by using this reliable

multicast communication primitive.

55

6.1.4. Performance Results

Thcsc algorithms were implemented in thc Enhanced V system and thc actual
elapsed time (in seconds) for the transaction loop of 10,000 messages was mcasured
The graph and table below demonstrate the results for the best case performance of 1

Sender and up to 8 Receivers.

Table 4 - Time(in msecs) for each transaction using three algorithms

Number of
Receivers 1 2 3 8
Algorithm
Unisend e | 22 4.5 7.0 17.8
Unreliable Multicast - - 2.4 3.3 4.0 79
Reliable Kernel —_ 27 - 3.5 42 7.5

TIME 4 ypisend
(msec)

‘‘‘‘‘‘‘‘‘‘

- Unreliable Multicast w.owweme
Reliable Kernel ——

1
23 L 8 Number of Receivers
Figure 18. Time(in msecs) for each transaction using three algorithms

56

The group communication primitives outperform the Unisend model for 2 or more
Receivers because of the lower number of messages required and the increased paral-
lelism. In fact, the time required for Reliable kernel algorithm to send 10,000 messages to

3 Receivers is only 60% of the time for Unisend algorithm.

Moreover, the gap between the best case performance of the Reliable kermel and
" Unreliable_multicast algorithm is only about 5%. This performance data agree with the

preceding analysis for the best case network message complexity.

Given the actual performance of the best case for tﬁe three algorithms, it is clear to
see that with message loss the measurements would separate the performance of
AllAliveReply_multiscnd communication primitive frdm the other primitives; hence, given
the ease of programming and increased functionality of the Reliable Kemel algorithm, this

-

is to be preferred at all times.
6.2. Dynamic Environment

Static environments are not always the norm in real distributed systems where the
number of Receivers may be in flux during transactions. Static environment analy%is is
nevertheless useful in providing -a form of lower boundary for the complexity of.algo-
rithms. In dynamic environments, the algorithms are generally more wmpﬁCaiéd to deal

~ with varying number of Receivers. This increased intricacy arises from pthc need to recog-
nize new Receivers in the group which should get the message and to detect expired
Receivers which the Sender should pot expect replies fromy These tasks may be done in
various ways. We will show one way of doing them for the distributed task discussed in |

the static environment section to highlight the added complexity.

6.2.1. Unisend Algorithm

~

L)

The Sender’s initialization phase, where the process ids of Receivers are collected,
needs to be done continually even during the main transaction loop to accommodate join-
ing or leaving Receivers. This may be done by a separate process which we will call

57

’

Member Manager. The Member Manager will loop awaiting messages from Receivers.
Depending on the type of the message, the Receiver’s process id will be addedfé?-
removed from the Member list. Aséuming that the Opcrati;lg system aﬂows shared mem-
ory between prdccsscs,fthe Member List will be used by the Sender process which will
now contain bniy the main transaction loop. Of course, some mechanism is needed to

~ coordinate operations on this common data structure (e.g. semaphore, etc). The process

interactions are shown in Figure 19.

2- ADD to list "
"""I'ﬂ
“l"“
i "
i ™
" A 7- Remove request
Member | from list Receiver
List y .
4
3- Read/ “!{ﬂuk Sender 5- RCpliCS N
Modify list

Data operation = ~<lfeiiin-
Scnd ——

‘ Reply —_—

Figure 19. Process Interactibns for Unisend Algorithm in Dynamic Environment

¥

58

The algorithm for the Member Manager, Receiver, and Sender is given in Figure 20.

Member Manager’s Algorithm
/* service requests from Receivers */
Forever /* or some termination criteria */
member_pid = Receive(msg);
If < valid request > /* JOIN and LEAVE requests */
< Wait for permission to operate on the member list >
If JOIN request
< Add new member to member list >
Else
< Remove member from the list >
Else
< take appropriate action(log an error message } >
Reply(msg, member pid)
END /* FOREVER loop */

Receiver’s algorithm

/* Initialization phase: register PID with the Sender */

Unisend(msg, member_manager pid); /

/* End of initialization phase */ B

/* receive messages and perform the requeszza operation */

For j=1 to N /* N = the number of messages */
Sender pid = Receive(msg);
Reply(msg, Sender_pid); /* allows Sender to continue immediately */
< act on message >

End /* j loop */

/* Termination phase: register PID with the Sender */
Unisend(msg, member_manager pid), ‘
/* End of Termination phase */
Figure 20. Unisend Algorithm for Dynamic Environment

59

Sender’s algorithm

/* send data to all the Receivers */
For j=1 to N /* N = the number of messages */
< Allow Member Manager to operate on member list if needed >
Fori=l1to R
replier pid = Unisend(msg, Receiver pid[i]),
if < Unisend failed >

< Remove Receiver PID from the member list13 >
End /* i loop */
End /* j loop */

Figure 21. Unisend Algorithm for Dynamic Environment(cont.)

The algorithm’s increased intricacy is apparent. This increase is due to additional
LEAVE messages from the Recuivers, the added Member Manager process for servicing
requests, and the coordination of the interactions between the Sender and Member Man-

ager processes.
6.2.2. Unreliable Multicast Algorithm

Similar to the Unisend model, a Member Manaécr mechanism is needed for construct-
ingf,tﬁc“list of Receivers from which replies should be coliected. ThlS is again done by a
Member Manager process. The overall process interactions are shown in Figure 19. The
Unreliable Multicast algorithms for the Member Managcr and Rccéivcrs are the same as
the Unisend Algorithm with one difference; the Receiver joins the global group using the

13 - Note, that the Sender also has 1o deal with Receivers who leave ungracefully, because of a fault,
without sending LEAVE requests to the Member Manager process.

standard V JoinGroup service call in its initialization phase after registering its PID
with the Member Manager process. Tne Sender’s algorithm, however, is different and is

given below:

Sender’s algorithm

/* send data to all the Receivers */
For j=1 to N /* N = the number of messages */
< Allow Member Manager to operate on member list if needed >
success = FALSE;
For i=1 to L /* L = maximum number of user level retransmissions*/
replier pid = OneReply_multisend(msg, group id),
If <OneReply_multisend failed >
< perform recovery actions >
< error exit >
< Mark reply received from the replier_pid >
While < there are outstanding replies(R-1 of them) >
Replier pid = GetReply(msg, timeous); |
< Mark reply received from the replier_pid >
End < while loop >

If < all Receivers replied >
success = TRUE;
Else

< Remove non replying Receivers from the member list >
< Perform the needed recovery actions >
End /* i loop */
End /* j loop */

Figure 22. Unreliable Multicast Algorithm for Dynamic Environment
The Unreliable multicast algorithm performs the same additional functions as the

61

Unisend Algorithm in the Dynamic environment.

6.2.3. Reliable Kernel Algorithm

Because of AllAliveReply_multisend’s semantic and characteristic, the Reliable Ker-
ncl‘algorithm for the dynamic environment is the same as thc‘static environment's algo-
rithm. This demonstrates another strength of kernel level reliable multicast communica-
tion primitives in specific AllAliveReply_multisend.

Since AllAliveReply_multisend at the kernel level uses knowledge of the alive hosts
coupled with the inter-kernel protocol in providing reliable multicast, the user level algo-
rithm need not handle the complicated task of maintaining the list of alive Receivers in
the system. This task is done by the Sender kernel’s knowledge of the alive host and
each kemnel’s knowledge of local membership lists. Therefore the worst/best case net-
work message complexity remains constant in both static and dynamic environments for

the Reliable Kernel algorithm.

The preceding algorithms and analysis show the superiority of using kemel level reli-
able multicast communication primitives for distributed tasks, requiring reliability, over
the user level implemented reliable multicasts. The key features of kemnel level reliable
multicast communication (e.g. AllAliveReply_multisend) are the efficiency in number of
generated messages both at user and system lc\'QJIkttcr performance over user level

implemented reliability, and ease of use at the user level.

62

7.

Conclusion and Future Work

Reliable multicast communication has the advantages of ease-of-programming over
unreliable broadcast for applications where reliability is important. It also has greater effi-
ciency resulting from only having to transmit the Scnd message once. However, there is
a small overhead which does not occur in one-to-one communication or unreliable multi-
cast. When no errors occur this -ovcrhead occurs from requiring those hosts with no
Receivers to acknowledge the Send packet. When an error does occur, and a Send mes-
sage, or the response to a Send message, is lost then the packet is rebroadcast. There is
an increased likelihood of an error occurring since the message must be picked up and
acknowiedged by more hosts. Despite these facts, for two or more Receivers, reliable

muiticast communication is faster than a series of 1:1 communications.

Analysis of the number of messages exchanged also shows the effectiveness of multi-
cast. For example, consider a network with M hosts, and a group with N members,
excluding the Sender. On a sequence of one-to-one reliable Sends, 2*N messages are
exchanged. On our reliable multicast communication scheme 1 + (M-1) messages are
exchanged. Therefore, if N > M/2 our scheme for reliable multicast is more efficient in
terms of the number of messages exchanged. This is the case for many applications such
as highly pafallcl computations in a PROLOG or a DATA-FLOW environment; and for
communication between the group of kernel processes (which has M members, one for
each host).

There are many possible applications for an interprocess communication primitive
which can send a message and receive replies from more than one process. This thesis
has extended the work of Cheriton and Zwaenepoel to provide reliable multicast commu-
nication in the V-kernel. The reliable protocol has been described, along with a detailed

discussion of its implementation and performance.

We found that our reliable multicast out-performed a series of reliable 1:1 Sends for

.";9

63

two or more Receivers and added no overhead 10 the performance of standard V inter-
process communication primitives. -

The I_Am_Here server. also provides user-level services such as getting a copy of
the alive kemel vector and obtaining the host id given the bit positioh. These services,
plus the new ALL_REPLY and K_REPLY communication primitives, provide powerful

tools to implement higher level communication services.

The reliable multicast scheme has been implemented in the V-kernel, as part of a pro-

ject exploring the use of multcast in distributed programming.

7.1. Possible Improvements and Future Work

The V system’s Send user interface was modified to accommodate reliable muiticast
communication. In the current interface, SUCCESS or FAILURE is returned to the Sender
of the Reply reliable Send primitive, hence the first replier’s PID is not accessible to the
Sender. This interface should be modified so that the Reply reliable Send returns the PID
of the first replier and puts the return status in the reply message itself (see Appendix A

for the detailed description of the new interface).

Another possible improvement is in the area of overhead reduction. The kemel code
could be streamlined such that the standard V multicast users incur a lower performance
overhead. Such optimizations should also be done for data structure accesses, such as

alive host table searches, that are done in providing reliable multicast communication.

The need for getting ACKS from hosts with no Receivers shouldabe investigated and
climinated. This would increase scalability of these protocols. One possible way of
accomplishing this is the use of multiple multicast addresses, one per group. This may be
done by modifying the I_Am_Here server to send the active group ids in the local kcmél
in each I_Am_Here message. The knowledge of group ids and hosts may be used in
determining the list of hosts which should send ACK messages.

An interesting research project could involve the performance measurement of the

64

relfable primitives for messages that have 1K or more of data. The insights gained from
uhZ;e measurements could increase the appeal of the reliable multicasts for distributed
applications that need to reliably exchange large amounts of data such as distributed file
systems. Lastly, the effect of these reliable multicas}t prinﬁtivcs should be studied in dif-
ferent distributed applications. Tﬁis will be valuable in refining the reliable multicast prim-

" itives’ interface and protocol.

65

Appendix A - Improved User Interface for Reliable Communication Primitives

The Reply reliable multicast Send’s interface should be improved to provide the PID
of the first replier to the Sender. The following describes this new interface for the reliable
Send primitive:

Send(message, id)

The fixed length message is sent to a single process if the id is a process id or to
a group of processes if the id specifies a group, in which case multicast is used. The
multicast Send blocks for zero or one replies depending on the syscode and code fields
defined in the mcsSagc. Tl';c user specifies the type of Send by setting appropriate
fields in the message. The syscode field may be set to K_REPLY, K_DELIVER,
ALL_REPLY, or ALL DELIVER. For K_REPLY or K_DELIVER the code field
must con[aiﬁ an integer specifying the value of K, where K >=1. For the new reliable
multicast Send, the Send blocks until either conditions specified by the syscode field

are satisfied or conditions are found unsatisfiable.

The syscode field types for the new features of group communication are defined
below:
K_REPLY
Send blocks until K replies are received from the group members specified by
id, in which case the process id (PID) of the first replier is returned, and the
Sender’s message is overwritten by the contents of the first reply. After the maxi-
mum number of timeouts and retransmissions have been done, if no replies were
received then FAILURE is returned. Otherwise, the PID of the first replier is
returned, and the Sender’s message is overwritten by ‘thc contents of the first
reply. In ecither case, Send sets the code field in the message to the number of
replies received. Note that the issuer should check the code field to determine suc-

cess of the K_REPLY send when a PID is returned.

ALL _REPLY

Send blocks untl replies from all the aliQ group members in the group speci-
fied by id are received, after which the PID of the first replier is returned, the
syscode field is set to SUCCESS, and the Sender’s message is overwritten by the
first reply. After the maximum number of timeouts and retransmissions have been
done, if no replies were received then FAILURE is returned. Otherwise, (replies
did not come in from all the alive group members) the PID of the first replier is
returned, the syscode filed is set to FAILURE, and the Sender’s message is over-
written by the contents of the first reply. In either case, Sead sets the code field in
the message to the number of replies received. Note that the issuer should check
the syscode field to determine success of the ALL_REPLY send when a PID is

retumed.

67

References

[1}] Ahamad, Mustaque and Bernstein, A.J., "Multicast Communication in UNIX", Proceed-
ings Sth International Conference on Distributed Computing Systems, pp. 80-87, May 1985.

[2] Andrews, G.R., "The Distributed Programming Language SR--Mechanisms, /dcsign and
implementation”, Software P&E, vol. 12(8), pp. 719-754, August 1982.

[3] Andrews, G.R., and et. al., ACM Transactions on Programming Languages and Systems,
vol. 10(1), Jan 1988.

(4] Atkins, M.S. and Cancr,VA.W., “Reliable Multicast Interprocess Communication”, CIPS
Conference, Vancouver, April 1986.

[S] Birman, K., "Replication and Availability in the ISIS system", Proc. of 10th ACM Sympo-
sium on Operating Systems Principles, pp. 79-86, 1985.

[6] Birrhan, K. and Jéscph, T.A., "Reliable Communication in the Presence of Failures”,
ACM Transactions on Computer Systems, vol. 5(1), pp. 47-76, Feb. 1987.

{7] Chang, Jo-Mei and Maxemchuk, N.F., "Reliable Broadcast Protocols", ACM Transac-
tions on Computer Systems, Vol. 2, No. 3, pp 251-273, August 1984,

(8] Cheriton, D.R., "The V kemel: a Software Base for Distributed Systems", IEEE Soft-
ware, vol. 1(2), April 1984.

[9] Cheriton, D.R. and Zwaenpoel, W., "Distributed Process Groups in the V kemel", ACM
Transactions on Computer Systems, vol. 3(2), pp. 77-107, May 1985.

10] Cheriton, D.R., "Problem-orienied Shared Memory: A Decentralized Approach to Dis-
tributed System Design", Proceedings 6th International Conference on Distributed Systems,

May 1986.

[11] Cheriton, D.R., "Report on the Second European SIGOPS Workshop -- Making Dis-
tributed Systems Work", Operating Systems Review, pp. 72-73, Jan. 1987.

(12] Clark, D.D., "The struc'tun'ng of Systems Using Upcalls", Proceedings of 10th ASCM
Symposium on Operating Systems Principles, pp. 171-180, Dec. 1985.

(13] Deering, S.E., "Multicast Routing in Internetworks and Extended LANs", ACM SIG-
COMM Symposium, Aug 88.

(14] Garcia-Molina, H. and Kogan, B., "An Implementation of Reliable Broadcast using an
Unreliable Multicast Facility”, Symposium on reliable Distributed Systems, Oct. 1988.

[15] Garcia-Molina, ‘H. and Spauster, A., "Message Ordering in a Multicast Environment",

68

Technical Report CS-TR-161-88, Princeton Universify.

[16] Hammer, M. and Shipman, D., "Reliability Mechanisms for.SDD-1", ACM Transactions
on Database Systems, vol5(4), 1980.)

[17] Narayanan, Parthasarathy, "Study of Reliable Broadcast Protofols in Fault Tolerant
Distributed Computing Systems”, Ph.D. dissertation, 6th National Polytechnic Institute, -
Toulouse, July 1984 .

[18] Navaratnam, S Chanson, S., and Neufeld, G., "Reliable Group Communication ih Dis-
tributed Systems", 8th International Conference on Distributed Computer Systems, June 88.

[19] Nehmer, J.,, Haban, D., and et. al., "Key Concepts of INCAS Multicomputer Projec'l".
[EEE Transactions on Software Engineering, vol. SE-13(8), pp. 913-923, August 1987.

[20] Ravindron, K., Chanson, S., and Ramakrishnan, K.K., "Application-driven Failure
Semantics of Interprocess Communication in Distributed Programs”, TR 87-3, Dept. of Com-
puter Science, University of British Columbia, Jan. 1987

[21] Rothnie, J.B. and Goodman, N., "An overview of the Preliminary Design of SDD-1: A
System for Distributed Databases", Proc. 2nd Berkeléy Workshop on Distributed Data Man-

agement and Computer Networks, 1977. 4

e
[22] Rowe, L.A. and Birman, K., "A Local thwox‘k\ based on the U Operating System”,
[EEE Transactions on Software Engineering, vol. SE-8(2), pp. 137-146, Maxch 1982.

[23] Santoro, N. and Sidney, J.B., "A Reduction Technique for Selection in Distributed
Files", TR SCSTR-23, School of Computmg Science, Carleton University, Ottawa, Canada
April 1983.

[24] Schlichting, R.D., Andrews, G.R., and Purdin, T.D.M., "Mechanisms to Enhance File
Availability in Distributed Systems”, TR 85-24, Computer Science Dept., University of Ari-
zona, Oct. 1985.

[25] Shoch, J. and Hupp, J., "Measured Performance of an Ethernet Local Network", Commu-
nications of ACM, vol 23(12), Dec. 1980.

[26] Walker, B., Popek, G., English, R., Kline, C., and Thiel, G., “The LOCUS' Distributed
Operating System", Proceedings of the 9th Symposium on Operating Systems Principles,
ACM, Oct. 1983. .

[27] Walter, B., "A Robust and Efficient Protocol for Checking the Availability of Remote
Sites”, Proc. 6th Int. Workshop on Distributed Data Management and Computer Networks,
1982.

