‘ | | \ - . R

ENHANCED MANIPULATIVE CAPABILITIES FOR A SYNTAX-BASED
EDITOR

by

Leland R. Dykes

B.A., University of California at Riverside, 1964

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

in the School of

Computing Science

© Leland R. Dykes 1988
SIMON FRASER UNIVERSITY
September, 1988
_All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL
Name: Leland R. Dykes
Degree: Master of Science

Title of thesis: Enhanced Manipulative Capabilities for a Syntax-based Editor

Examining Committee:

Chairman: Dr. Binay Bhattacharya

Dr. Robert D. Cameron
Senior Supervisor

Dy, Loui-I/ Hafer

Dr. Anthony H. Dixon
External Examiner

Date Approved: September 15, 1988

ii

PARTIAL COPYRIGHT L!CENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users ot the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library ot any other university, or other educational institution, on
its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for schoiarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this work for financlal gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay

—Znhanced Mapipulative Capabilities for a Syniax-Based Rditor

Author:
(signature;

Leland R. Dykes

(name)

15 September 1988

(date)

ABSTRACT

Various tools have been developed to help meet present day demands for more
and better software. One such tool is the syntax-based program editor (SBE). SBE
implementations feature program generation and utilize the editor’s knowledge of
target language syntax to facilitate the inspection and selection of program
components. Typically, only minimal means for the manipulation of selected

components are provided.

Such an editor was constructed to explore the possibility of enhancing the
capabilities of the SBE with a more powerful manipulative facility. Though
somewhat limited in its overall functionality, the editor has proven successful as a
medium for the development of such a facility, and as a platform for its
demonstration. Manipulation commands have been collected, implemented, and
organized iﬁto a number of families which, it is claimed, correspond to some of the
kinds of operations which programmers perform on their programs (and those of
others). A feature of this facility is the partial integration of the code production

process into the manipulative process.

During the latter stages of its development, the editor has been used for the
correction and enhancement of its own source code. In this context the new command
families have shown promise when evaluated in terms of both objective and subjective

criteria.

DEDICATION

For AM. and M.S.D.

iv

]

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Rob Cameron, for inspiration and guidance,
and my other examiners, Dr. Lou Hafer and Dr. Tony Dixon, for their criticism and

suggestions.

TABLE OF CONTENTS

ADDTIOVAL <oretereeeeieieeeerescnrnnereensceesssnanntesteee st ssbant e s s esssssssssssssseaneesaneasanssssrannasansaenassrsnss il
ABSTRAGCGTuuvriirrienteeesnrerseesseessasesseesssssscsesssssssassssesssnssssasiessesssssassssensssssssssesssasssnns iii
DEDICATION .oooeveerreeemssesmssesmassesssasesssasessassssssnsssssasssss iv
ACKNOWLEDGEMENTSccooeururvrrennrennnen. ettt e st a bR R as v
LiSt Of FLIQUIES .ecveeuerercereereeercmeennmanensessoseirsteecemeeemmannsssssnesrssssasssessssssessessennsnsssnssssesssans viii
I, INTRODUCTION ...coomeemeemnremsermsermascsecsssesssssserssesssessesssesssssssssssasssnsssssssasssanss 1
. SYNTAX-BASED EDITORS: AN OVERVIEWooocccccesserrsrssssssrssesessssssseeen 3
Characteristics of Syntactic EQILOrSccceeeeirevriierneiiimniierreeccrsmnsciraesimcienienanenses 3
Research DIrectionscoccciveriiiiiiiieiiiniiiiiiiiiiisiicinenee s isesssssssssesssesssssssessasns 4
My ADPPIoach ..cvccimeeieerieninirianiiiiiiiiitireusserriesstestsssssessasanonsenarsssssssssanesssassesesasens 6
M. INTRODUCTION TO THE IMPLEMENTATIONcccoiviiimrinmniinnninaninnnnenn, 7
Aims of the Implementation seeeriteesessisiiseressasssssnssnnersrersttiananarrnsennaans 7
Preliminary Desigh DeCISIONS ...c.coiiieniriemeiiieanicsinnimiscniineniiemsesissenseestasersensresssens 8
INFrastruCturecccoviviviriiiimmnciiieniinn et senrecsssssssssssesseneennnnes e 10
The Editing FACIEY ...oeveerreseeeeersseremeessesesressesesssens eereresren ettt neees 11
Manipulations ...ccccccieciieniiiieeiroccennieenestmaieranessmesecssesersonersrnessesssasssnssseassesssssasenss 18
IV. THE EDITING FACILITYcoceiiiiiiiiiieinneiertiieessircciseeseesessesssssssssneesessssossanas 16
Interfaceceeeeees eeeeeeeeeeetsas e ess et mee et emae oA e 508t AR et r ettt s et anS 16
Code Entry/Generationccccccceeererencecrecniecesesercasasnsesermsssecesessssnsssssssssssossascases 27
Inspection/Selectionc.ccceeieemeerencrennnieneness oo oo eee e 34
V. THE MANIPULATIVE FACILITY ...ciiiiiiiiiiriiinccccieennssaenenes 40
Toward a Comprehensive Command Setcccceeermmieiireiieinriciinsesirmnenrencerensaes 40
Basic Commandsc.cceiereeeriirmiiemicienieeiiieniesinneieeees ettt aenaes 45
The EMBED Family ...cccocoeeriiiriiiiiiiinicnieriesssesssssassssassssasnses 47
The ENGULF/EJECT Familyccccoiiniiiiciiiiiiiicticcntininenns 65
The SWAP/ROTATE Family ...cccooviiciiiicnciieiiiiniiiniieeneesecessnsnennesenecessaossonnns 77
Commands of a Transformational Naturec.ccceeiiiviiiniiiiiinnininiciinnccincininnnenn, 80

vi

VI. THE MANIPULATIVE FACILITY IN ACTIONccoesvrmmmrrmmerennssssnisssssmsenacenns 89

Example - Rotation and Transformation eeeereeererrensesereresertaterarennsssisansaeenes 89
Example . Embedding and Engulfingcocccccmmmmienneeiiniinccenicnnnnenieninnennn. 107
Example - Eject with Associated NOdeccccccoerieriiviecirirnnnieniereneeicinssnennnens 121
VII. IN CONCLUSION ..cccccrrumeescnccesssssseeesessassssesssssssssessesssssassssssssassssssssnsasssssssanass 133
AN ASSESSIMIENT ...eevveereeeaessssesrriemsmnssssississssssenessssnssssensesssssssarasssssssesrarassnssesesass 133
Suggestions for future Workcccceeeeeirommiecneiiecniiiiie et 138
Appendi:i - Summary of Commands .. 140
Manipulations 140
Supporting Commandsc..ccccceeereriomemeciseressiineriesssussissieeeteteisrssisissiensrarsssisan. 142
REFERENUCGEScccooceviretrteeieeeeesseraessessssssssasssteessssssesssossstansasessssssssassnsssssnsssssssssassnns 145
vii

LIST OF FIGURES

Figure , Page
4.1 Appearance of the screen cetereteresetesesssaetesereasa s asae e s e s s s s s s s R e s b et s eatananatans 17
5.1a EMBED applied to a statement - first alternative.ccccccovveciiiirniiiicnneeneceninnn. 52
5.1b EMBED applied to a statement - second alternative.cccccovreiiiireeniiriiniinne 53
5.1c EMBED applied to a statement - third alternative.ccccceeerieernscriccennnns - 54
5.1d EMBED applied to a statement - fourth alternative.cccocciiiiiiiiriciiirnacinnns 55
5.2a EMBED applied to an expression - first alternative.cccccceeeimiiirceniricnienes 56
5.1b EMBED applied to an expression -second (arithmetic) alternative. 57
5.2c EMBED applied to an expression - third (arithmetic) alternative. D8
5.2d EMBED applied to an expression - fourth (arithmetic) alternative. 59
5.2¢ EMBED applied to an expression - fifth (arithmetic) alternative. 60
5.3 ENGULF-NEXT applied to the body of a repeat 100p.ccceereueruecccrrncrenncnoccns 67
5.4 EJECT-BACKWARD applied to the body of a repeat 100p. ...cccceevereviruennanannes 71
6.1a A node class is entered in the command window.ccccccorerenrnieeenrinnnenenneen, 93
6.1b The editor is called for production of a new node.ccccceereeuncvnrecrecennneerensens 94
6.1c The textual representation of the new node is entered.cccccovvmrerureciicnnen 95
6.1d Parsing yields a node, which goes on the node stack.cccccevrreerereeccrnnenn 96
6.1le The screen cursor is returned to the working area.ccccccceviirrirenecncrnnnene 97
6.1f The syntactic cursor selects the case clause List.ccocomvirieuceiinreiicreiorenerennene 98
6.1g The list as a whole is rotated.c.ccceevereeennns teereseeserasesensanrasrerseretsnstesennoasanee 99
6.1h The list 1s rotated AZAIN. ..cceeiiiniieeiriirieiereeerteeenerreertesessnssessssrsessnsnssransasss 100
6.11 Yet another rotation leaves the elements correctly positioned. 101
6.1) The case statement is replaced by its "inline coding."cccccecrirrirircvrirreeenen. 102
6.1k The cursor is moved to the if's first component (predicate).ccceeeernecn. 103
6.11 The cursor is moved laterally to the consequent statement.ccoceeun..... 104
6.1m The cursor is moved again to the desired alternate.ccccccovciiicciiieccccnnnee 105
6.1n The previously created procedure replaces the alternate.c.cccceevererernnenns 106
6.2a EMBED is applied to the procedure call.c.ccciciceiiiiniieiniiniernnciecrensesennnnes 108

viii

6.2b
6.2c
6.2d
6.2e
6.2f
6.2g
6.2h
6.21
6.2
6.2k
6.21
6.2m
6.3a
6.3b
6.3c
6.3d
6.3e
6.3f
6.3g
6.3h
6.3i
6.3j

The desired embedding is 10CAEA. w.e..vreveeeeesressseesssessssssssesssessssssssssssssesssens 109

The editor is called to actualize the Placeholder.ceeceeeeeereeevemssvssmerenes 110
Text is entered. eerrerestameantieetasiiseaertastttestissnnanetTeseesseseesttetnneeresesissessntattesiesaas 111
The placeholder is replaced.ccccirerieicrrieiriemrieiriereeeeeerenenressemnsnseesseasansenes 112
The next placeholder is selected.ccccccecevrrnnncrerreneanncees tteeresessssnsessesesssnnensnans 113
The editor is called to fill this placeholder.ccccccccceeriimcieieniecinneeaneceeceonenens 114
A line of text is entered.ccccccceciiiiiimieniicicinsiiriseninnnrensesisiieneneresniraseessoans 115
Another line is entered.ccccceiviannnee ettt se sttt enaen 116
The component is actualized. 117
The syntactic cursor is moved to the alternate statement.ccccceevrrverreneneee. 118
The next statement is engulfed.cccciiirreiicciciriiiiinircetnerscreeeniereecesennesens 119
Another statement is engulfed.cciieieiiiiiiiiiccrrcrre e reaees 120
The MemberListIn element is split Off. ..cc..cvvuiiveiniiiremiiieeicereeceeeneeerenes 123
The screen cursor is moved to a function call.ccccceiemriieeccciiieerenienrnnennn. 124
The function call is embedded in a function call.ccceeeieiriiiiiiiinirenennnnen.. 125
The onboard editor is called.cccccceerriiiiiieimrinereiiiiiiiiiierreenee s rreeeeeenescnenannnes 126
The function name is tYPed. ...cccceeereiiiiieireemiiretieieeesiireseeerressesesssseeasreseessseees 127
The placeholder is replaced by the function name.cccorrireeiireeriiiiieiivennnes 128
Syntactic cursor is moved to outermost call to Parent. ...cccccecccceereeereennnnees 129
The node is stacked.ccccceiiiiiriiiiiiiiiniiiiiricrcrrescircseseensnanssessseannaerssssnnnnnns 130
Screen cursor is moved to the other erroneous node.ccccccevereeenenveeeeneennns 131
The previously selected node replaces the erroneous one.cceceeeerrreenneennnnns 132

CHAPTER 1
INTRODUCTION

| Traditionally - if it is meaningful to speak of tradition with reéard to so
youthful a discipline aé computing science - hardware costs have dominated those of
software. Today just the opposite is the case. The 4:1 ratio of hardware costs to
software costs that was typical in the 1950’s has in all likelihood been reversed
[Toy84]. Technology has produced a new kind of computer: small, powerful and,
perhaps most important, affordable. The person operating such a computer is
increasingly less likely to be a computer professional [SGW81]. More importantly, the
accelerated rate at which computers are assuming control of high-risk processes in
transportation, the energy and aerospace industries, medicine and so-called defense
systems [Lev86], suggests that there is a growing demand for software not only in

increasing quantity but of increasingly high quality as well.

Among the approaches that have arisen to deal with this problem is the
consideration of tools and environments dedicated to what Warren Teitelman has

called automated programmering, i.e.,

"... developing systems which automate (or at least greatly facilitate) those
tasks that a programmer performs other than writing programs: e.g.,
repairing syntactic errors ..., generating test cases, making tentative
changes, retesting, undoing changes, reconfiguring, massive edits, et al,
plus repairing and recovering from mistakes made during the above."

The aim is to free the programmer from the uninspiring drudgery at which machines

excel.

"When the system ... is cooperative and helpful with respect to these
activities, the programmer can devote more time and energy to the task of
programming itself, i.e. to conceptualizing, designing and implementing.
Consequently he can be more ambitious and productive."[Tei84]

It is to be hoped as well that there will be a reduction in mechanical errors and that

as a consequence, more reliable programs will result.

Programs are not simply text; they are highly structured entities. A program

development tool which is "knowledgeable" about a given programming language’s

formal structure, a syntax-based editor [1], would seem to have the potential to be an
important component of such an automated programmering environment, even to

serve as its "backbone" perhaps.

Indeed, a substantial amount of research and developmental effort has been
devoted to such editors. In Chapter II I give a brief survey of such work and identify
a neglected area of research which I have termed the manipulative facility. An
implementation was undertaken to investigate the possibility of developing such a
facility. In Chapter III the aims of the implementation are stated more definitely and
major issues introduced. Chapter IV is devoted to a description of the basic editor,
which serves as an environment for the more innovative facility. Chapter V describes
the manipulative facility itself, and in Chapter VI it is seen in action. Finally, in
Chapter VII I look at the significance of the project and point out some possibilities

for future work.

[1] In this thesis I use the following terms interchangably: syntactic editor, syntax
editor, syntax-directed editor, syntax-based editor and SBE. As noted in the text,
their referent is the subject of Chapter II of the thesis. "Syntax editing” and
"syntactic editing” simply refer to the knowledgeable use of such an editor.
"Structure editor" and "structural editing" are somewhat more general terms. I hope
that when they appear in the paper, their meanings will be evident from their
context.

CHAPTER 11
SYNTAX-BASED EDITORS: AN OVERVIEW

Characteristics of Syntactic Editors

Some text editors support structure-based editing to a degree. The extensible
display editor EMACS [Sta84] can be progrémmed to understand some of the syntax
of the language being edited and to provide operations particular to it such as
automatic indentation. The text-based editor Z [Woo81], using indentatioﬁ
conventions, provides a number of structural editing features, including selection of
syntactic entities, zoom-in and zoom-out. Brun et al [BBS85] have developed a
token-based editor which supports automatic formatting. However, the syntax-based
editor proper is characterized by the maintenance of some internal representation of
the program’s structure, typically a parse tree (attributed in the case of systems
which maintain contextual correctness), plus some means of generating and acting

upon that internal representation.

During the latter years of the 1970’s, several such editors were developed.
MENTOR [DHKS84] is a general system for the manipulation of structural material.
A programming environment for Pascal, including a structure editor, has been
implemented under MENTOR. The programming system Pathcal [Wil84] features
incremental execution and is distinguished by the use of Pascal, extended by the
addition of the data type "Code," and its consequent extensibility. Yet another editor
is SED [All83], which manipulates the tree structure by means of tree matching and
substitution in a manner at least superficially analogous to the string matching
facilities supported by the more advanced line editors. The above three editors share
two common characteristics: textual input of programs (with parsing to generate the
internal representation) and a user interface analogous to those of conventional

(non-visual) line editors.

In contradistinction to this their contemporary, ‘the Cornell Program Synthesizer
[TeR81], features program generation by means of the expansion of program
templates (supplémented by textual entry). Editing is performed visually, using a
pretty-printed textual representation, a cursor whose motion increments are
syntactically meaningful, and a small set of editing commands (C‘lip, Insert and Delete
in the CPS terminology). The syntax editor provided by the SUPPORT programming
environment [Zel84] is quite similar, but has "browsing" facilities which are more
sophisticated, i.e., holophrasting (the suppression of textual detail), zoom and multiple
windows. These, then, are what I would describe as the basic characteristics of the
fully developed syntax-based editor: template-based generation of syntactically, and
sometimes semantically, correct programs, generally represented internally by a parse
tree, full-screen editing with various syntax-directed aids to the inspection and

selection of program parts, and a primitive set of manipulation commands.

Research Directions

Various editors have been implemented with some or all of the above features,
including at least one commercial effort [San87] designed for use on personal
computers. Research involving these syntax-based editors has gone in a number of

identifiable directions.

Integration issues _ ,

Typically, syntax-based editors do not stand alone. Rather, they are associated
with, or ihtegrated into, software development environments. A number of
researchers have concerned themselves with what Leon Stucki has referred to as
"CAD/CAM for software" [Stu84] - that is, the cfeation of integrated .sof‘tware
engineering environments with supporting methodologies and providing improved

management/technical project analysis and control capabilities.

Editor generators ‘

Editor generators are programs designed to automate the implementation of
editors for partiéular target languages. Encouraged by their results with the
"hand-made" Cornell Program Synthesizer, Reps and Teitelbaum developed the
Synthesizer Generator [ReT84]. Under their. methodology, the editor designer-prepares
an attribute-grammar specification for the target language, from which the Generator
creates a full-screen, syntax-directed editor. Another such effort is the PSG System
[BaS86] which generates an environment consisting of a language-based editor, an
interpreter and a fragment library system from an entirely non-procedural

specification of a language’s syntax, context conditions and dynamic semantics.

Browsing

Some researchers have concentrated on the user interface and methods of
inspection and selection. For example, Schneiderman et al [SSS86] have implemented
what they call embedded selection to access detailed information about a given symbol,
and an hierarchical browser, which suppresses detail providing a top-down view. The
PECAN system [Rei84] provides (simultaneously, if desired) many views of a given
program, e.g., the syntax-directed editor view, a Nassi-Schneiderman view, a symbol
table view, a data type view, etc.. The declared aim of t};e PECAN project is support
for graphical programming.

Syntactic editing style

It is evident that the work mentioned immediately above is concerned with the
evolution of what might be termed a "syntactic editing style." With a possibly similar
motivation, Alberga et al [ABL84] have incorporated into their editor/environment a
self-monitoring facility to determine which commands are being used and which are
not, and to detect associations between various commands (e.g., frequently used

sequences).

Constraint enforcement/language extension

The syntax based editor can be used to enforce programming policies or
constraints - on(visibi]ity for example - not supported by a given target language.
This‘approach is exemplified by Yggdrasil [Cap85] an otherwise typical syntax-based
editor which imposes upon the abstract syntax tree its own language independent

concepts of naming and scope.

More powerful manipulations _

As noted above, great attention has been paid to the inspection and selection of
syntactic entities. However, when it comes to manipulations of selected entities,
editors generally offer little beyond the Clip/Insert facility of CPS. Some attention has
been given to the matter. Though not a fully fledged syntax editor, as defined above,
the MENTOR-based Pascal environment does offer some simple transformations.
Similarly, Atkinson et al [AMN81] have extended the editing commands in their
system with a Qualify/Unqualify command. In neither case, however, has there been
a systematic effort to develop the notion further. This would appear to be a _heglected

research area.

My Approach

Of the three dimensions of syntactic editing - code generation,
inspection/selection, and local manipulations - the third seems to have been the least
explored. Consequently, it has become the focus of my research effort. The editor
supporting this effort is in the tradition of those described in the first section of the
chapter, though not so powerful, outside the realm of manipulations, as many of
these. Certainly, a long range aim of this research has been to encourage the
emergence of a structure-oriented editing style. These topics will be dealt with at

length in subsequent chapters.

CHAPTER III
INTRODUCTION TO THE IMPLEMENTATION

Aims of the Implementation

The implementation consists of a syntax-based editor with certain featu.res
emphasized. In previous chapters 1 hinted at the motivations behind the
implementation. They are listed more fully here.

1. I have pointed out the lack of attention given to the manipulative
capabilities of SBE’s. The principle aim of my research has been to
address this lack by looking at the development of such capabilities.

2. Underlying this aim is the more general desire to contribute to the
evolution of a "structure-based editing style" by providing an
environment which supports such a style.

3. In the section on infrastructure, below, I describe the system and

| methodology underlying the editor. Any non-trivial implementation
serves to exercise this system/methodology, demonstrating its
capabilities and, perhaps, revealing some of its silortcomings.

4. Finally, it is always to be hoped that a research project will
encourage serendipity, that the effort of the implementation will
facilitate the emergence of happy accidents providing insights into
matters peripheral to the main goals of the work.

It seemed reasonable to hope, as well, that one of those "happy accidents" might
consist of the implementation’s serving as a prototype component for software

development environments.

Motivated by the above considerations, I have undertaken the construction of an
editor. In the remainder of the chapter I discuss some decisions which had to be
made before implementation could begin, the system underlying the editor, the

various functional components of the editor, and the issues associated with each of

those components.

Preliminary Design Decisions

The hypothetical user

When developing any tool, it is essential to identify a target user and the use
to which the tool will be put. Certainly an editor aimed at naive users and designed
to help them to learn good programming practiées will look different from one aimed
at experienced programmers involved in the production of useful software. I have

chosen as my hypothetical target the latter case.

This choice has a number of consequences. For one, imposition of a coding
methodology upon the user is not desirable. The programmer should be free to work
with any syntactically meaningful fragment of code, developing in a top-down,
bottom-up or inside-out fashion and combining fragments at will. For another,
emphasis shifts away from program generation to maintenance and enhancement of
programs, since these account for as much as 80 percent of real-world software costs
[Toy84]. This necessitates flexibility in the mode of entry of code into, and output of
code by, the system. Moreover, any such alteration threate;ls to introduce new errors
into the code [1]. A manipulative capacity which helps to reduce textual entry - and

the mechanical errors which attend it - is, therefore, desirable.

Concepts and terminology

In keeping with the stated goal of flexibility it was decided that the editor
should accept for editing not just complete programs, but any syntagm, i.e., any
syntactically meaningful program fragment. It follows from the editor’s syntax-based
nature that the elements of interest within the syntagm being edited will themselves
be syntagms. The internal representation of a program or program fragment is a

tree, the abstract syntax tree, and the elements of interest correspond to its nodes.

[1] Adams [Ada84] estimates that for each fix installed the probability of introducing
a new error is some 15 percent.

f

Consequently, it seems natural to think of, and refer to, these elements by the term

node.

If actions are to be performed on or using nodes, there must be some means to -
designate the targets of these actions. What is necessary is a conceptual entity which
moves about the parse tree in a manner aha.logous to that of the cursor on a
terminal’s screen. I have chosen to call the‘entity the syntactic cursor. At any given
time the node designated by the syntactic cursor is the current node, and as such will
serve, typically, as the operand for manipulations performed by the editor. An
operation might conceivably require one or more nodes in addition to the current
node. A stack seems a reasonable abstraction for keeping track of such nodes, so
provision was made for a node stack onto which references in the parse tree might be

pushed.

The issue of correctness

A fundamental tenet of syntax-based editing is that syntactic correctness, at
least in the context-independent sense, is maintained. As well, semantic or
contextual correctness is also generally maintained, or at least checked. This presents
problems if one desires, as I do, to retain the capability to deal with arbitrary (but
syntactically meaningful) program fragments. Bahlke and Snelting [BaS86] have
implemented an ingenious solution which considers nodes in the internal tree to have
associated with them relationships of attributes. Provision for such a capability
entails considerable overhead and may introduce problems. Encumbering the parse
tree with contextual (or other) information may hinder or even preclude
implementation of some editing operations [ABL84,AMNS81]. Since the issue is
peripheral to the primary aims of the research, my approach has been to restrict
myself to syntactic correctness of the context-independent sort. In the case of editing
opefations which require context-dependent knowledge, the responsibility for assuring
that the necessary context is present is placed upon the user. If he/she fails to do so,

the operations simply fail, albeit gracefully and with appropriate messages.

Infrastructure

Underlying .a syntax-based editor is some internal representation of the target
program. For my implementation this internal representation and the meé.ns to deal
with it have been provided by Multi MPS [Cam86], a package of subroutines that
have been generated in accordance with the methodology known as GRAMPS [Cal84],
the GRAMmar-based MetaProgramming Scheme. Under GRAMPS, if one wishes to
develop a metaprogramming system, i.e., a system which facilitates the writing of
programs which take other programs as their data objects, one begins by codifying the
grammar of the language in which the data-programs are written (the target
language), in an augmented BNF form. One then constructs, based on that grammar,
a package of subroutines in the language in which metaprograms are to be written
(the host language). These routines include parsers and unparsers and the
recognizers, selectors, constructors and basic editing routines necessary to manipulate
the parse tree. In effect, a GRAMPS-based system like MPS enables the programmer
to deal with the program’s parse tree as an abstract data type. MPS has been
particularly suitable for my implementation in that it has facilitated the extension
and experimentation which were used to develop more pdwerful manipulation

capabilities for the editor.

At t};e time of my project’s inception, MPS was supported only on the Michigan
Terminal System (MTS), running on the university’s IBM 3081 GX mainframe.
Consequently, my editor runs on this system as well. MTS provides a package of
routines which facilitate, or at least enable, the implementation of full-screeh
applications utilizing the various CRT terminals on the campus-wide system. This
package was used to construct the editor’s interface. This environment imposed some
limitations upon the implementation, particularly the development of the interface.
Since these limitations, described in Chapter IV, had no immediate impact upon the

primary research area (the manipulative facility), they were deemed to be acceptable.

10

f

The target language for my implementation is Pascal [JeW85], a language with
wide acceptance in academia and a degree of acceptance in industry. In accordance
with the GRAMPS methodology underlying Multi MPS, the language-independent core
of the editor can be applied to other target languages as their grammars are defined
and the corresponding sets of routines constructed. So far this has only been done for

Modula2.

The host language is Pascal as well. Having the same language as host and
target in an experimental implementation of a software tool can be advantageous.
One is assured of a supply of test code, the implementation itself, and as the power of

the tool grows, "bootstrapping” becomes a possibility.

The Editing Facility

A syntax-based editor has a number of identifiable features. In each of the
three sub-sections below 1 identify such a feature and brieﬂy sketch its associated
issues. Since it is the raison d’etre of the implementation, the fourth feature,

provision for more powerful local manipulations, has been allocated its own section.

Interface

As pointed out above, the syntax-based editor actually works upon the internal
representation of a target syntagm, but some external representation must be
provided to the user. Though various tree-like or graphical representations might be
devised, it has been my experience that programmers are generally not enthusiastic
about such representations. Consequently, the conservative approach of representing
programs as pretty-printed text has been used. That is, code is displayed with
conventions of indentation and capitalization enforced. The full-screen, visually
oriented approach is now the norm in text editing, and has served as the model for
my editor’s interface. Issues that have had to be dealt with include the effective use
of the screen, the use of prompts and messages, the input of commands, and cursor

motion (see Inspection/selection, below).

11

Program entry/generation

A standard component of many existing syntax-based editors is the program
generation faci]ity. Precisely because this issue has been extensively dealt with and
because of the orientation toward the editing of existing code noted above, I have not
devoted great attention to the matter of code generation except as it relates to the
editors manipulative capabilities. What has been provided for is input and output of
syntagms to files, storage and retrieval of syntagms in their internal form, and the
integration of text editing capabilities into the éditor.

Inspection/selection .

Possession of syntactic knowledge gives an editor the potential to go far beyond
textual scrolling as a means of "traveling”" through code. This potential has not gone
untapped. As noted in Chapter II, various researchers have looked at various means
including a zoom facility, holophrasting, the hierarchical browser and pattern or
structure matching. These are well-researched topics, and I have not concentrated on
them. I have found that if the editor was to be at all useful, something beyond the

minimal capabilities was required. Consequently, a suite of search operations has

been proposed (and some of them implemented).

In addition to examining code, it is also necessary to select fragments for
manipulation. The conceptual basis for this capability was described in the previous
section. In concrete terms, the problem has ‘beeﬁ to determine what the
implementation of the so called syntactic cursor would look like: how it would be set
and moved, how it would be represented internally and externally. Means had also to
be found of dealing in a natural and unobtrusive way with problems of selection and
ambiguity arising from the dichotomy of the internal (tree-based) and the external

(text-based) representations.

12

Manipulations

Higher level manipulations - the problem

‘As I have pointed out, one neglected area of SBE research, and the focus of my
effdrts, is that of the manipulative or transformational facility. Using the capacity
provided by MPS to construct routines to perform arbitrary transformations, guided
by intuition, and borrowing from the realm of transformational programming [PaS83]
one could certainly provide extensive functionality in the form of a voluminous library
of manipulations. The problem then has been to identify, implement and organize a
more manageable set of operations which capture, at least to some extent, the

pragmatics of program alteration and enhancement.

It is arguable that no built-in higher level manipulations should be provided,
that one should simply provide the capacity for extensibility, so that the user could
add manipulations when, and as, needed. Certainly some form of extensibility is
desirable and is supported in my implementation. I believe, however, thgt it is not
sufficient to do so for the following reasons.

1. Users should not be forced to "re-invent the wheel." If useful and

usable operations can be provided, why not do so?

2. Even when powerful routines on which to base them are available,
writing the code for non-trivial transformations can be a non-trivial
task. Lacking examples of the potential of this approach, the user
may be hesitant to take on such a task.

3. In light of point #2, abové, it would seem appropriate to provide the
user with such examples. This re-introduces the subject of

investigations into the notion of a "structure-based editing style."

It would be nice to formulate a model of software modification on which to base
this - facility, but our current knowledge of how programmers actually work is
inadequate for this. Research using a "top down", cognitive approach to the problem
[Sch76] has suggested that programmers do indeed recode syntactic forms into

13

internal structures that represent the semantic structure of a program, but
conclusions as to the nature of that recoding and of the internal structure are
tentative at besf [Sch80,S0186]. The "bottom up," analytic approach [GMHS85] has
given an indication of where changes occur but has shed little light on the nature of

the changes.

Approach of the current work

Given this lack of a theoretical underpinning, it has been necessary to rely
upon experimentation to develop the manipulation facility. To this end, means were
developed whereby commands could be added to the editor ét load time. Consideration
and implementation of commands has been guided by a number of principles. These
may be grouped into two general strategies: reduction of the number of commands

and organization of the resulting set of commands.

One way of reducing the number of commands is to select a Set of formal,
low-level transformations [Ars79,BuD77,Lov77]. However, performance of even
modestly complex transformations can involve using many such low level commands
organized in Kways that are complicated and difficult to comprehend [Dar84];
Moreover, this approach is characterized by an insistence upon the strict preservation
of correctness, with execution of transformations dependent upon various enabling

conditions. This is too limiting for a general purpose program editor.

A second approach, that of the current work, is what might be called the
intuitive overloading of commands. In addition to a formal syntactic structure,
programs have an informal structure to them, awareness of which can be used to
motivate the overloading of commands. For example, programs contain various kinds
of lists, and a single command could be applicable to various kinds of list. Moreover,
the same command might be applied, with some intuitively meaningful effect, to
"list-like" objects such as the else-if clauses of an if statement, e.g., the exchange of
the two clauses of

IF e0 THEN s0 ELSE IF e! THEN s

14

to yield

IF e1 THEN s1 ELSE IF e0 THEN s0.
Similarly, many ‘ diverse objects exhibit "nesting" - record declarations, if...else
statements, looping constructs, etc. - and conceivably commands could be extended to
cover all. Cameron [Cam87] has used this approach with some success. The problem
then has been to detect such structure in programs and to determine what actions

are intuitively similar for the differing cases.

Some specialization of commands is necessary if the program is to have
sufficient power and usability. It has been found [Bro77] that applications with
relatively large numbers of distinct commands can still be effective if the commands
can be clustered into smaller sets corresponding to conceptual work units. An
attempt has been made to discover such functional clusters. The results of this
attempt are discussed in Chapter IV.

The interface is important in this regard as well. Within the limits set by the
system on which the editor is implemented, the interface must support and enhance
the organization of operations so far as possible. A related issue is that of thé
integration of commands. The manipulation facility will be effective to the degreé

that sequences of commands can be composed.

15 -

CHAPTER IV
THE EDITING FACILITY

The manipulative facility does not exist in a vacuum. As backgrbund, it is
worthwhile examining the environment in which it was developed and into which it
has been integrated. Therefore, this chapter is devoted to what I have chosen to call
the editing facility, i.e., the interface, the éode production facilities, and the means
utilized for the inspection and selection of programs and their fragments. The typical
approach to each of the various components or aspects of the implemention kis to
consider some of the issues associated with that particular component/aspect, to
describe the approach actually taken (generally with some rationale), and finally to

suggest any improvements which seem desirable.

Interface

Screen Appearance

The appearance presented by my editor (Figure 4.1) is not altogether different
from what one would expect of one of the more advanced line-based text editors. Thé
screen is divided into four horizontal areas or windows. Top-most, and occupying the
better part of the screen, is the main or editing window. Conceptually, this is a
window into the text resulting from the unparsing (i:e., prettyprinting) of the node
currently being edited. The user can, by means of function keys, scroll the window up
and down in the (virtual) unparse in a manner familiar to users of conventional text
editors. Using this capability, together with other capabilities described in the
ensuing sections, the user performs the actual editing operations. Note that only the
syntax-based operations provided by the editor may be used. Textual entry is not

permitted in this window.

Immediately below this main window is a smaller auxiliary window. This
window has two distinct functions. First, it is used for the read-only display of nodes.

The editor provides a stack on which to save references to selected nodes. The top

16

OoptStmt : GetEncloser := Parent(Enclosee);
MemberList, StmtListIn :

GetEncloser := Parent(Parent(Enclosee));
MemberListIn :

GetEncloser :=

Parent (Parent (Parent (Enclosee)))
END
END;

BEGIN
Success = false;
IF NOT (StatementQ(Ejectel) OR
StatementListQ(Ejectee)) THEN
WriteMessage('Applies only to statements')
ELSE
BEGIN _
Sttn := Situation(Ejectee);
IF Sttn IN [DummyStmt, OptStmt] THEN
WriteMessage('Not applicable')
ELSE
BEGIN
EnclosingStmt := ,
GetEncloser(Enclosee, Sttn);
IF EnclosingStmt = NIL THEN
WriteMessage('No enclosing statement(s)’

)

Main Window
Ejectee

Auxiliary Window
MESSAGE: New top: Identifier
COMMAND? find GetEncloser

Figure 4.1: Appearance of the ‘screen [1]
node on the stack is displayed here, either on comnﬁ!nd or when it is changed by a
push or pop operation. In earlier versions of my editor, this window was used for the
display and selection of optional nodes. An inline representation of such nodes has
been implemented rendering the window’s use in this context redundant. A simple

"display-current-node" feature, designed to help identify the current node, has

[1] lustrations for the thesis have been produced by routines which dump the screen
contents, inserting text processor commands where necessary, e.g., the commands
which draw the outer box representing the boundaries of the screen and those which
draw the character-sized box which represents the screen’s cursor.

17

replaced the earlier feature. Implementation of highlighting of the current node
would, in turn, render this feature obsolete. The auxiliary window is also used by my
editor’s on-board text editor. In this context it functions as a conventional, if

somewhat small-screened, visual editor.

These windows, and the two others to be ‘described below are resident and static,
i.e., they are always present on the screen and their dimensions do not change. On
terminals with deep screens (40 lines or more) this is quite satisfactory. The main
window is deep enough for the display of a significant portion of code, while the user
is spared the potentially distracting screen alterations that would be required if the
auxiliary window were transient or dynamic in nature. Moreover, the implementor
has been spared the effort of constructing the more complicated system. On terminals
with the conventional 24 line screen, the main window is small enough that it is
sometimes annoying. It would, therefore, seem desirable to provide the user with the
capability to toggle (using a function key) between a resident mode, i.e., the
functionality of the current implementation, and a transient mode, in which the
auxiliary window only comes into being when necessary, with the main window

expanding and contracting in depth as appropriate.

Below the auxiliary window are two more windows. They are very small, each
occupying a single line of the screen. The upper of the two, displays the prefix
MESSAGE: [2] and the other the prefix, or prompt, COMMAND?. The message window
is used by the editor to communicate information to the user. The messages are of
various types: syntactic information, e.g., the class of the current node,
announcements about the internal stgte of the editor, e.g., Stack now empty, and
error messages, which are generally formatted in such a way as to help the user
utilize tﬁe features of the editor, e.g.,

Usage: PARSE <filename> <nodeclass> [<nodename>].

[2] Text which one would expect to see on the screen - static labels or prompts,
dynamic prompts or messages, user-entered commands or parameters, or Pascal code -
is set in this typeface (which looks LIKE THIS in uppercase).

18

\ v

The field adjacent to the COMMAND? prompt is the one part of the screen where the
enfry of charactgrs from the keyboard has been enabled (disregarding, for now,
textual editing mode). This area is used for the entry of commands and their
parameters and other textual material required from time to time. The user simply
positions the screen’s cursor, types the required text and hits <RETURN>, or some
other relevant key, to cause the data in the command window to be read. Once
entered, the text is persistent and may be repeatedly reread by striking the
appropriate key. '

Interaction issues

In the paragraphs above I have described what the editor looks like and
discussed, briefly, how it "talks" to the user. In subsequent sections I will relate how
code is generated and inspected and how operands are selected and manipulated.
Here I wish to deal in greater depth with the issue of input of instructions to the
editor. That is, how the user talks to the editor.

There are a number of criteria to use when assessing a potential mode of
command input. It will be seen that in some cases these criteria conflict with one
another, and that trade-offs must be considered. The criteria are:

1. Economy - All else being equal, it is desirable to minimize the number

of keystrokes required fc;r any operation. Programmers are paid to
think, not type.

2. Mnemonic value - Any method used should minimize the amount of
memorization required of the user and should be as helpful as
possible with respect to that memorization which is unavoidable.

3. Naturalness - This is, admittedly, a subjective criterion. I do believe
that some procedures can be seen to be manifestly awkward, and as
such they should be avoided.

4. Familiarity - This is closely associated with the criterion immediately

above (and vice versa). That with which we are familiar tends to

19

e

r

seem most natural. It would seem to be advantageous to stick to the
familiar where possible (in the interface) and to save the experience
of unfamiliarity for where it is inherent in the problem (editing
programs as structured entities rather than mere text).

5. Open-endedness - Imposition of arbitrary limits on the number of
commands supported is certainly undesirable.

6. System support - This last criterion while theoretically the least
importanf is, from the practical point of view, most important. What
we build is, to a great extent, constrained by the availability of tools
and components with which to build it. For example, an interface
which would be attractive and effective if implemented on a
workstation with support for windowing, menus and the "mouse,"
may well be messy and unwieldly when implemented on a less
sophisticated system (assuming that it could be implemented at all).

Let us consider, in light of the above, the relative merits of three input methods:

typed commands, function keys and menus.

Typed commands)

The use of typed commands as the sole means of input would seem to defeat
the purpose of adopting the visually oriented approach. However, this method does
have some advantages. To begin with, communication with the computer by means of
command lines is certainly familiar, at lgast to anyone who has used either of the
major systems at this institution, UNIX [3] and MTS. Moreover, it is a most natural
form of entry for certain types of commands, i.e. those which do not require selection
of an operand from the screen but do require one or more arguments from the user.
Unlike (unlabelled) function keys, but not menus, typed commands may have

mnemonic value. And this is an open-ended method. Subject to the constraints

discussed below, you may have as may such commands as you like.

[3] UNIX is a trademark of AT&T.

20

On the other hand, the entry of character strings is most uneconomical in terms
of keystrokes. The number of strokes can be reduced through the use of abbreviation,
but only at the expense of mnemonic value. Although their spellings help the user to
remember the mappings between string and action, the user still has the burden of
remembering the entire set of commands (strings). Finally, this is not, in many
instances, the most natural mode of entry. The typical visual editing operation has
the form:

-select an operand with the cursor

-invoke some operation.
In this case an awkward procedure would be imposed upon the user. Since the MTS
screen support routines permit input only through application-assigned fields in the
screen, the user would be required to move the cursor to such a field, or,

alternatively, the editor would have to be exited briefly to allow input.

Function keys

Perhaps the most obvious advantage of entry by function key is économy. A
minimal number of keystrokes is required in this mode. Of equal importance is its
naturalness and familiarity. The place-cursor/strike-key pattern is straightforward (at
least for single argument commands) and anyone who has used a visual text editor is
familiar with it. Finally, it is easily implemented lunder MTS. The screen support
abstraction provided by that system encourages one to structure an interactive

program as an await-function—key/interpret—key/procesé-instruction loop.

Chief among the drawbacks of this method is the need for extensive
memorization. The user simply has to remember the arbitrary mappinygs between a
number of keys and their associated actions. This problem can be alleviated by
sticking labels identifying the keys to the keyboard. This solution should be quite
effective, provided each key is permanently associated with a single action.
Unfortunately, this will not always be the case. Another disadvantage of function key
entry is that there is a limited number of such keys available, typically two or three

21

f

dozen. Since an editor of the sophistication and power of the sort we are concerned
with here needs more keys than that, it is necessary to introduce modes of operation
or some other method of increasing the number of operations callable by key. In a

later section I will discuss this issue in some depth.

Menus

Finally, we come to the last alternative under consideration, selection from
menus. This method certainly has the advantage of trendiness. For the growing body
of users accustomed to working on microconiputers or workstations which support the
mouse/menu paré.digm, this is most familiar. There are a number of advantages
which account for the popularity of menus. Chief among these is that their use
involves selection from an explicit set of alternatives rather than memorization of
those alternatives. And they provide mnemonic aids to help the user associate
alternatives with actions. Though this method is not completely open ended, fairly
large numbers of commands can be handled effectively by means of (for example)
hierarchical menus. Finally, it can be a most natural method. I envision a hybrid,
"two-handed" implementation where one hand uses function keys to select operands
with the screen cursor (or syntactic cursoer) while the other uses the mouse to select

operations.

Unfortunately, realization of the full potential of this approach requires a high
level of system support, starting with bit-mapped graphics and extending to
‘windowing and menu generation facilities, and including provision for a
supplementary input device (e.g., the mouse). There are also drawbacks which are
intrinsic to the method. Pushed to extremes, the mouse/menu model can itself become
awkward and slow. As well, it suffers from the same problems as the function key
mode when textual input is involved. For reasons mentioned elsewhere, the current
implementation does not run on microcomputer or workstation, but on a mainframe
through conventional non-graphics terminals. For this reason, and because there are

the advantages to the other methods mentioned above, I have chosen, for now, to

22

r

forgo the use of menu selection.

Approach of the implementation

I have pointed out that for some commahds, typed entry seems most
appropriate, and in my implementation 1 have used this method for such commands.
The commands involved are those which do nbt require selection of an operand from
the screen, but do have one or more other arguments. Primarily they control the
input and output of syntagms, and the storage and retrieval of nodes by the editor.
For example ‘

PRINT <filename> [<nodename>]

causes a pretty printed representation of the node stored under the name nodename
to be written to the file called f£ilename. The nodename argument is optional; if it
is omitted the node currently being edited is pretty-printed.

This applies to a minority of the editor’s functions, however. Due to its economy
and naturalness, I have opted to utilize function key entry for most operations. The
result then is an hybrid system with most operations performed by means of function
keys, but with typed command lines used where it was deemed appropriate to do so.
Among the disadvantages of function key entry mentioned above is the limited
number of keys available. The manner in which the implementation addresses this

problem is discussed immediately below.

Function key organization

If one is attempting to extend the capabilities of an SBE through the
implementation of operations beyond the most basic ones, and if one desires to use
function keys for the invocation of those operations, one must deal with the fact that
there are not enough function keys to permit a one-to-one mapping of keys to
operations. In interactive applications commands frequently cluster conceptually and
temporally to yield natural modes of oj)eration, each with its own operative key map.
Where my editor is concerned, operational modes have not been easy to define.

Although operations certainly may be grouped into catego;ies ("travel," selection,

23

I3

basic editing, etc.), sequences of operations generally seem to cross categbry
 boundaries. Morgover, my experience, and that of others [4], points to the mode of
operation as a source of errors. More exactly, errors tend to be made at temporal
boundaries, the commonest error being to forget to change modes, proceeding instead
to forge ahead, typing the key which would have been applicable had mode (and key
map) been properly changed.

I have used the above mentioned categories as the basis for an approach to
keying in commands which is hierarchical and at the same time "mode free." Under
this approach, a subset of the available function keys is used (I prefer the keypad;
other users might prefer a different locality), and each command is a two key
sequence: The first keystroke selects a category; the second selects an operation within

that category.

This scheme has the following strong points:

1. Convenience - A given command will always require the ‘. same
sequence of keystrokes. The user’s fingers are not required to
remember whether or not the system is in a particular mode.

2. Keyboard localization - Having a small number of physical keys
involved limits the area of the keyboard which must be
searched/learned.

3. Mnemonic value - Memorization and recall tasks are facilitated.by the
"chunking" of data items. At each level of the hierarchy the user -
only has a small set of keys to chose from.

4. Economy - The use of multiple keystrokes would seem to be
uneconomical. However, by restricting the set of physical keys used,
escape sequences and double-keying can be eliminated, so that the.
increase in the average number of keystrokes is small.

5. Open-endedness - I have outlined a simple two-tiered arrangement.

[4] Hammond et a/ [HLC80] have found the shift/unshift mode to be implicated in one
out of six errors made in an interactive environment.

24

R

Multi-leveled hierarchies are also possible.

An observation is in order here concerning my claim of a modeless system. In
fact some sets of operations (e.g. textual editing) seem naturally to constitute a mode
of operation, and they have been implemented as such. In subsequent chapters I

consider these modes further, addressing the problem of transitions between modes.

Hybrid commands

As I have pointed out above, it seems most natural to invoke some operations
by means of function key and others by means of typed command lines of this form:

COMMAND <arg1> <arg2>

In practice, there are commands which do not fit nicely into either of these categories.
I will cite an example. I have implemented a command which might be called
MODIFY__ CURRENT _NODE, which permits the user to textually edit any selected
node. The procedure is simple and, I believe, quite natural. The user selects a node
with the cursor and enters text-editing mode by striking the appropriéte function
keys. Upon return from text-editing mode, the original node is replaced in its context
by the tfextually modified version. A related command, let us call it
CREATE__NEW__NODE, allows the user to textually enter completely new syntagms
from the keyboard. The on-board text editor is used here as well, but the resulting
node is pushed onto the node stack to be disposed of by the user as he/she sees fit.
This does not require selection of a node, but it does require input of the applicable
node class (i.e., the sort of structure it is: procedure declaration, statement, etc.). In
this sense it is a candidate for implementation as a typed command. On the other
hand CREATE__NEW__NODE is clearly related to MODIFY_ CURRENT _NODE. In
order that related operations may be grouped together into categories, as described
above, I have implemented this command (and others as well) as a hybrid operation

with textual entry and function key invocation.

25

Given the existence of such hybrid commands it is worthwhile to look more
closely at their sequencing. Under what might be termed the "conversational model"

of interactive computing, an operation might be performed as follows:

USER: Select node and strike appropriate keys.

EDITOR: Prompt user for necessary textual data.

USER: Enter text and strike function key (typically <RETURN>).
EDITOR: Perform the specified operation and display results or provide an

error message if something is amiss.

This sequence has the advantage that the user need not remember all of the details
of the command’s requirements; the editor spells them out. However, I suspect that
experienced users of the editor would be impatient with this dialogue. They would

know what the command requires, and would prefer the following simpler sequence:

USER: Enter text; select node and strike appropriate function keys.
(Note: The command expects to find the textual arguments in
the command window.) |

EDITOR: Perform operation and display results or produce an error message.

Note that if the error message produced looks like a prompt, which it will if no
textual arguments are provided, then the process, as seen by an inexperienced user,

1s most similar to that of the conversational model, i.e.,
USER: Select node and strike function keys. . ‘
EDITOR: Produce error message (i.e., prompt the user).
USER: Enter text and strike function ke&s again.
EDITOR: Perform operation and display results.

Since this approach assists users when they are new to the editor, while allowing
them to take shortcuts as they become more experienced, I have chosen it for the

implementation.

Note that currently the implementation imposes the somewhat awkward

sequence:

26

- enter text in command windovx},

- move cursor to main window and select node,

- strike operative key.
By provid’mg a command which updates the current node (if necessary), then causes
the cursor to jump to the command window, I could give the user the option of using
the above sequence or the following one:

- select node and jump to command window,

- enter text and strike operative key.

Code Entry/Generation

The editor works by associating a node with the main, or editing, window,
displaying all or part of the node’s pretty-printed representation in that window, and
providing the user a set of tools with which to edit the node. In keeping with the
design goal of flexibility, this node may have been created in any of several ways:

1. Parsing a source file, l

2. Restoration of a checkpoint file (see below),

3. Entry of text from the keyboard, or

4. Generation by the expansion of templates (at least potentially).
I shall now consider each of these methods for bringing syntagms into the system,
together with some methods for outputting then.

Input from files

I have stated in previous chapters that it is most desirable that an editor be
capable of processing pre-existing code. To deal with such code the editof supports a
command PARSE which takes as arguments a file name and a node class. PARSE
" causes the contents of the named file, which must be a syntagm of the given class, to
be parsed and the resulting node associated with the editing window. Alternatively, a
third, optional, argument allows the resulting node to be stored under a name

determined by the user (see below). Since syntagms which have been edited must be

27

written back to files, a PRINT command is supported as well. PRINT unparses the
main node, or, optionally, a named node, to a file. Since nodes may be named and
stored, there must exist commands to provide access to the stored nodes. Supported
are a command to FETCH a copy of a named node into the editing window, a STACK
command Which puts a copy of a named node onto the node stack, and a STORE
command which causes a copy of the top node on the node stack to be stored under a

user-specified name.

PARSE and PRINT read and write conventional Pascal code. The underlying
MPS system also supports the checkpointing of a node, i.e., writing the node to a file
using a representation which is similar to that used internally. Such a checkpoint
file occupies no more disk space than the corresponding code and may be restored at a
computational cost which is lower than that of parsing the original Pascal code. I
have included in my implementation - support for commands CHECKPOINT and
RESTORE. These commands have not received much use to date, but I believe that in
an integrated software development environment, the checkpoint file would be the
natural form for storage for programs and would, as well, be the natural means of

communication between tools.

Textual entry of code

If it is to be a usable tool, a syntactic editor must be, in reality, a hybrid
editor, i.e., it must have some capacity for textual editing. One could support the
generation of lexemes by some sort of template expansion, but it is clear that this
would in practice be hopelessly awkward. At some level the user must resort to
textual entry. The question is: At what level? Various implementdrs have had
various answers: the identifier level, the statement level, the phrase level (whatever
that is). My solution, motivated by the principle of flexibility, is to allow textual
entry at any level. The choice is the user’s. If the editor has been properly designed
and is being used to best advantage, one would expect that such entry would

generally be at a low level (e.g., identifier). Still the user has a choice, e.g., a simple

28 -

3

expression or statement may be typed in, while a more complicated one may be

generated by expansion (when that facility is available).

‘ To héndle such textual entry, the editor has a somewhat rudimentary visually
oriented text editor built in. To call this editor the user selects the node to be
modified and strikes the appropriate function key. This causes a representation of the
selected node to appear in the small auxiliary window. There the user may edit it
textually using operations supported by typical visual editors, i.e., textual scrolling
and the insertion and deletion of characters and lines. Upon completion, the text is
parsed and the resulting node replaces the original in its context. Any syntagm may
be edited thus. It can also be seen that only syntagms may be created in this
fashion. Code fragments which are syntactically incorrect or incomplete will not
parse. Striking a different function key allows the user to create code from scratch
using the little editor. In this case it is necessary for the user to supply the class of
the node to be created, since there is no context to determine it. Under the current
implementation it is required that the spellings of the class names correspond to
those of the constants of the type NodeClass of the underlying MPS system (e.g.,
IfStatement, SubprogramDeclList, etc.). In a production Vimplementation it would, of
course, be desirable to have a more flexible set of conventions. Upon return from the

editor, the resulting node is pushed onto the editor’s stack.

It would seem to be more natural for this text editing to take place in situ, that
is with the command causing a sort of dynamic window to open at the cursor,
somehow displacing the older text as characters are entered, but only being parsed
when the entry is complete. That this mode of entry is not supported is largely a
function of the difficulty of its implementation. However, I have found some
advantages to the curreht scheme in practice:

1. The transition to the auxiliary window is not so annoying as I had

anticipated its being. The screen alterations necessitated by insertion

in place might actually prove to be more distracting (and slower).

29

2. The original; unaltered text is always available for inspection, which
is sometimes desirable.

3. It emphasizes the distinction between the structural and the textual
modes of editing.

4. Because it is clear that this is a distinct mode of operation, errors

arising from the transition between modes are less likely.

Both textual entry from the keyboard and input from files require code to be
parsed. How does the editor deal with a failure to parse? Currently, this is handled
by the underlying MPS routines, which respond to a problem in parsing by offering
the user the choice of calling the MTS visual editor to permit correction of the
problem, or of terminating the execution of the program (in this case, the editor
itself). This is less than satisfactory. It would be preferable, at least in the case of
keyboard entry, to use the on-board editor for corrections. In any case, it would
certainly be preferable to be able to abort the parsing process without shutting down
the editor. Desirable though they may be, these improvements are not critical to the

key issues under study, and they have not been implemented.

Code generation -

A standard component of many syntax-based editors is the program generation
facility. Since this feature is well developed in other implementations, it has not been
implemented here. Some of the manipulative routines which I have developed do
involve integration of the code generation process into the editing process. I discuss
these routines, and some issues which relate to code generation generally, in Chapter
V. Template-based code production seems to fit in well with the approach of my
research and is a candidate for future implementation. Here I describe the basic

facility as I envision it.

To create a template the user strikes the appropriate function key, or perhaps
types the command CREATE if command line entry is decided upon, causing the

réduested template to be associated with, and to appear in, the main window. Since,

30

r

in accordance with the principle of maximum ﬂexibi]ity, the template may be of any
type, the user must specify a node class as well. What I call a template would look
very much like the productions in the grammar for the target language. For example,

a procedure declaration template would look something like this:

PROCEDURE <<Name:Identifier>> (<<Parameters:ParameterLi st>$)

<<Block:Block>> ;

Placeholders are expanded in their turn by placing the cursor on them and striking
the EXPAND key. For example, selecting and expanding the block placeholder above
would yield following:

PROCEDURE <<Name:Identifier>> (<<Parameters:ParameterList>>)
LABEL <<Labels:IntegerList>> ;
CONST <<ConstantDefs:ConstantDefList>>
TYPE <<TypeDefs:TypeDefList>>
VAR <<VariableDecls:VariableDeclList>>
<<SubprogramDecls:SubprogramDeclList>>
BEGIN
<<Statements:StatementList>>

END ;

This process continues until the user chooses to actuate a node using the text editor,
or he/she reaches the lexeme level (identifier, number, etc.) and must use textual
entry or replacement by an existing structure of the required type. In most cases a
variety of expansions may be possible. For e?:ample, both placeholders in the

template

WHILE <<Condition:Expression>> DO

<<Body:Statement>>

represent alternation domains and can legitimately be replaced by any of a number of

31

expansions. Just how the user is to select from the various alternatives is an

" interesting proBlem and is dealt with in Chapter V.

Al of the above conforms to the standard model of program generatién. | woﬂd
like to provide the user with additional flexibility by enabling him/her to insert
templates into existing code and to replace elements of existing code with templates,
those templates then to be expanded as | described above. Perhaps it would be
appropriate to implement special versions of the basic INSERT and REPLACE
commands which would do that. I am also interested in expanding the local
manipulation facilities of the program with commands which involve code generation.

My experiments along these lines are described in Chapter V.

There are some issues having to do with the implementation of a code
generation facility. One is the question of how placeholders are to be represented,
both internally and externally. The external representation is not a terribly
interesting problem. Certainly the placeholders Should be distinct in appearence from
key-words and actualized code (though not outlandish), and any text they contain
should help the user to understand just what they represent. The conventions I havé
used in the examples above seem to be not unreasonable.” Questions still remain. For
example, how should optional nodes be dealt with? Should they be displayed
explicitly, as above? Should they be disting'uishéd by square brackets as is done when
defining fhe grammar? Or should they be omitted, as they are in actual code, only to

become visible when specifically selected (see Inspection/Selection, below)?

Questions about the internal representation are more basic. A feature of the
GRAMPS approach is that however the external textual representation is handled,
the underlying syntagm is correct and, in the context independent sense, meaningful.
Once templates and placeholders are introduced, this is no longer the case. A
template, by its very nature, is an incomplete syntagm. MPS does have a NodeClass,
Meta, which is, so far as the construction of nodes is concerned, compatible with all

other NodeClasses, and, as such, is a prime candidate for use in the implementation

32

of templates. . However, Meta 1s not at present flﬂly supported, and its use would, at
the very least, subject my implementation to constraints that I do not wish to accept.
Most of my experiments with code generétion \simply use identifiers for placeholders.
For example:
IF DUMMYExpr THEN
DUMMYStatement.
Here the prefix DUMMY- is used to designate a placeholder, and the gimmick of using
a parameterless procedure call for the statement placeholder is used. This approach
has permitted me to experiment with extensions to the manipulative facility but
suffers from some drawbacks:
1. The placeholders are not so distinct, visually, as they should be.
2. Since an identifier representation is used, there is always the
possibility of conflict with existing identifiers.
3. Certain productions cannot be represented, because they have
components which cannot themselves be represented using identifiers,
e.g.
<LabelledStatement> ::=

<Label:Integer> ":" <Statement:UnlabelledStatement>.

Another issue is that of the proper way to deal with code containing
incompletely expanded templates. Obviously the editor must be able to deal with this
case, but do we allow such code to be written back to files? The answer is "yes."
Once again we do not wish to needlessly inhibit the user, who might have perfectly
good reasons for writing out code in that state. Nodes to be written should be
checked for unexpanded placeholders before output, and:a warning issued if any are

_ found, but the user should have the power to over-ride this warning.

33

Inspection/Selection

Current node, syntactic cursor and node stack
If operations are to be performed on programs (or program fragments), there
must be some means of selecting structures as operands. Central to the editor is the
concept of the current node, that is the node of interest in the parse tree being edited
in the main window. Typically commands operate upon the current node. (Some
commands require additional operands; they will be dealt with later in this section.)
To keep track of the current node, the editor maintains what I call the syntactic
cursor. Thé syntactic cursor may be set, tagging some node as the current node, in
three ways:
1. The user designates a current node by placing the screen cursor on
its textual representation.
2. The user moves the (syntactic) cursor through the parse tree by
means of the editor’s syntactic cursor movement commands.
3. In the course of their execution, editor commands set the syntactic

cursor.

The screen cursor is provided by the MTS system (as part of the screen support
abstraction). It appears as an wunderscore or as a reversal of a character’s
foreground/background. Control is by means of function keys which are reserved by
the system for this purpose. Whenever a command is invoked the editor checks to see
whether the user has moved the screen cursor. If he/she has, the most deeply nested
node whose textual representation now contains the screen cursor becomes the

current node.

Direct movement of the syntactic cursor is by means of function keys defined by
the editor. The user may move the syntactic cursor up, making the current node’s
parent the new current node, or it may be moved down, by convention making the
current node’s leftmost child the new current node. The syntactic cursor may also be

moved left or right across the current node’s level in the parse tree, making its left or

34

its right neighbor current node.

Commands -themselves move the syntactic cursor in a variety of ways. An
important issue in the design of the editor’s commands has been that of cursor

placement after execution.

As mentioned above, commands sometimes have more than one operand. For
this, and other reasons (discussed in subsequent chapters), it is desirable to be able to
tag one or more nodes in the parse tree in addition to the current node. It is also
desirable to have some intermediary between the node in the editing window and such
editor components as the on-board text editor and the node store. For this purpose,
the editor maintains a stack of nodes. The user may manipulate the node stack by
means of function key commands: SELECT pushes the current node onto the node
stack; TOP displays, in pretty-printed form, the top node on the stack; POP discards
the top node. An example of a command which uses the node stack is the primitive
REPLACE, which causes the current node to be replaced in its context by the top

node on the node stack.

Selection problems

There are two major problems that any selection ;nethod must overcome. The
first is that of ambiguities in selection. A given string of characters representing a
node does not necessarily represent a unique node. Consider, for example, the
statement

CallSomeProc.

This is a parameterless procedure call. The applicable production in the MPS Pascal
grammar is:

<ProcedureCall> ::=

<ProcedureName:Identifier> ["("Arguments:ExpressionList")"].

How does one know whether the screén cursor, if positioned somewhere in the text,
selects the identifier or the procedure call? According to the algorithm stated above,
the most deeply nested node (the Identifier) is selected. How then does one select the

35

f

ProcedureCall? Early on 1 toyed with the idea of somehow using the position of the
screen cursor within the text to determine what node should be select;d. This was
unsatisfactory on'a number of grounds:
1. Even if it were possible to come up with some conventions which
unambiguously identify every node (which seems unlikely), the scheme
" would likely be so complicated and counter-intuitive thét no one
would be able to use it.
2. Since this is a syntax-based editor, I wished to avoid having it carry
around non-syntactic baggage. '
3. Various of my colleagues seemed to find this notion of a bipartite
cursor (node/position) sloppy and/or confus'mg.
Fortunately the solution is, for selection, straightforward. One simply places the
screen cursor on the textual representation of the node one wishes to select, then, if
necessary, moves it up to the required level. When it comes to distinguishing the
current node in the display, the solution is not quite so tidy. Currently the editor
places the screen cursor on the first character of the node’s representation and
announces the node’s type in the message window. The user may also display thé
current node in the auxiliary window. In practice, this system works quite well.
Highlighting the node somehow would probably be better yet, but due to difficulties of
a practical nature, this feature has not been implemented. Note that even
highlighting is not always sufficient to unambiguously designate a particular node.

The example above is a case in point.

At this point it is probably worth asking why, since this is a syntax-based
editor, the text-editor-like use of the screen cursor is retained at all. Indeed, some
implementors seem to have dispensed with it entirely, relying solely upon cursors
which move in syntactically significant increments. My experience has been that the
screen cursor is simply too handy to give up. The syntactic cursor is necessary for
"fine tuning" selection, as seen above, and its use is certainly appropriate in

conjunction with various editing operations (as will be demonstrated in"subsequent

36

r

chapters), but very often simply moving the cursor across the screen is the quickest .

~

and most natural way to get from one node to another.

‘The other problem is that of optional nodes. The parameterless prdcedure call
CallSomeProc, above, will again serve as an example. Internally the unactualized
Arguments component is represented by a speéial empty node. Externally, there is no
counterpart. How do we select that invisible node if we wish to insert some
arguments? The solution, once more, involves the syntactic cursor. When the
syntactic cursor is moved to an empty optional node in the parse tree, a special
placeholder representation of the node is displayed (with the screen cursor on it). For
example, if the syntactic cursor were on the procedure name, and we were to move it
to the right, the following would be displayed:

CallSomeProc <<Arguments:ExpressionList>>.
The empty, optional node is now the current node and as such may be edited

textually or replaced by an expression list node.

Another problem, which I have dealt with only partially, is that of sublists.
Programs are composed of a number of list structures: variable declaration hsts;
statement lists, etc.. These list’s sublists are, from the point of view of a programmer
editing code, most certainly significant entities. For example, while examining the
body of a subroutine or program, the programmer might determine that some
sequence of statements ought to be executed only if some condition holds, i.e., that
the sequence should be replaced by an if statement whose’consequent (i.e., the "if
branch") is the original sequence (suitably embedded in a compound statement). The
problem is that due to the way the EBNF grammar underlying MPS handles
repetitions, sublists, including tail sublists, are not nodes. It follows that a sublist
cannot be the current node, and therefore, cannot be directly selected as the operand
of any of the various editing commands. 1 have implemented two sublist-handling
commands. Both treat the current node and the top node of the node stack as the

ends of a sublist. One deletes the sublist; the other stores an element-by-element copy

37

A

of it on the node stack for further use. In association with the hierarchical keying
scheme, described in an earlier section, I have considered a modifier key which could
cause the operative command to take as operand not simply the current node but the

sublist specified as described above.

A "find" facility

A program editor must provide the user with the means to inspect the textual
representation of programs and program fragments. From the realm of text editing
my editor has borrowed the notion of scrolling. Employing function keys, the user
may slide the screen’s windows up and down in the unparse of the nodes associated
with them. I have found that some additional capabilities are necessary if the editor
is to be at all useful. Moreover, I have found that the features that I have identified
- inspection, selection, manipulation, etc. - are not altogether orthogonal. For
example, if some manipulative operations are to be used to full advantage, they must

be supported by higher level navigation routines.

The resulting commands seem to cluster into a find facility. Currently
implemented are the DEFINING-OCCURRENCE command, which moves the syntactié
cursor to the defining occurrence of a selected identifier, and the FIND _IDENTIFIER
command. This latter command takes a character string argument and searches the
node being edited for its occurrence as an identifier. Invoking FIND_IDENTIFIER
actually has three effects: |

1. The node being edited is traversed in search of the first occurrence of

that identifier.

2. If such an occurrence is found, the enclosing code is displayed.

3. The editor goes into "find mode." In this mode the user can continue

the traversal to the next occurrence, terminaie the search fixing the
present occurrence as the current node, or abort the search, restoring
the editor to its previous state.

An optional argument allows the user to restrict the search to the current node. It

38

might be useful as well to be able to restrict the search to everything but the current.
node. Similarly, an option that limits the search to a given scope (not necessarily the \
current node) might be useful. Another desirable command is one that, given the
defining occurrence of an identifier, seeks out all occurrences of the identifier over

which that definition holds sway.

39

CHAPTER V
THE MANIPULATIVE FACILITY

The heart of the implementation, and the focus of my reseafch, is the
manipulative facility, my attempt to capture in a manageable set of commands some
of the pragmatics of program repair, alteration, and enhancement. Development of
this facility has proceeded along two tracks, experimentation and organization. The
chapter’s first section reflects this, opening with a brief discussion of the editor’s
extensibility feature and its role in the .development of a command set, and
continuing with some musings on the nature of the editing activity. The remaining
sections (the bulk of the chapter) describe in detail the various families of commands
which comprise the editor’s manipulative facility.

Toward a Comprehensive Command Set

The extensibility feature

To aid in the development of an extended set of manipulative commands, a
convenient method for the testing of experimental operations was required. For thé
following reasons it was decided to develop a standardized fnethodology and interface
for this purpose:

1. Such a methodology/interface would provide the user with the means
to customize the editor (to a certain extent).

2. It would enable anyone working on program transformations,
particularly those of a local sort, to utilize the editor as a testing
facility.

3. It would facilitate the incorporation into the editor of transformations
developed elsewhere.

What resulted was a method by which the user may redefine, at load time, any [1] of

[1] In theory any command may be redefined. In actuality, some editor commands
have not been implemented in accordance with the conventions to be described, and
hence are not redefinable.

40

the standard two-key command sequences.

Under this scheme, the editor maps the two-key sequences of
function-key-commands onto parameterless proceduresv whose names havé the form
Cmddd, where 1 <= d <= 9, and the sequence dd corresponds to the values
associated internally with the keys struck. If one wishes to define (or redefine) a
command sequence, one writes an MPS Paséal procedure which performs the desired
operation and names it in accordance with this formula. Since the procedure can
have no parameters, a package of subroutines serves as the interface with the editor.
The routines provided include the function CurrentNode, which returns the editor’s
current node, RepositionCursor, which resets current node, adjusting windowing if
necessary, and ShowUnparse which displays the result. A procedure WriteMessage
may be used to print text, such as an error message, in the screen’s message window.
ShowSelectedNode displays a given node in the auxiliary window. Routines are also
provided to perform the typical manipulations on the editor’s node stack: empty,
push, pop and top [2]. This set of routines is not complete in the sense of enabling
the reimplementation of all commands supported by the editor, but it is sufficient for

the performance of local transformations and typical editing operations.

The file containing the new command (or commands) is compiled, and, when the
editor is to be invoked, the user concatenates the name of the resulting object module
to the list of separately compiled files and libraries. When searching for a named
routine, MTS uses the first one encoutered with that name, hence the new command

definition overrides any in the editor’s own library.

In the quest to extend the editor, I myself have made use of the facility for
extension to implement and experiment with many commands. As well, an early
version of the editor was used as a test-bed for local program transformations. Some

of those transformations have contributed materially to the development of the

[2] Top is actually implemented as the more general NthPreviousNode (where
NthPreviousNode(1) is equivalent to "top").

41 -

editor’s mam'pulative» facility.

Criteria for the inclusion of commands |

‘A large, ainorphous body of commands, however interesting their operations
may be individually, does not constitute a manipulative facility. Consequently, these
experimental commands have been culled and organized, and extensions to, ‘and
generalizations from, them have been proposed to produce a working set of
manipulations for the editor. Criteria for inclusion in the set are:

1. The command should correspond to some higher level program editing
notion. (See the remainder of this section for an e#amjnation of this
subject.)

2. The command should be applicable to many different node types (all
1s too much to ask) in an intuitively meaningful way, i.e. the precise
effect of a given command may vary greatly depending upon node
type and context, but that effect will be easily predictable on the
basis of the English language description of the e&iting
notion/command.

3. The command should represent an improvement over the performance
of the operation by means of more basic commands, either textual or
syntax-based. This evaluation should not be based strictly upon a
comparison of keystrokes. Other criteria, such as "naturalness" and
error resistance are of equal (or greater) irﬁportance.

Development of the command set has also been influenced by an attempt to balance
two desirable, but opposing, qualities: economy and redundancy. On the one hand, it
is necessary to prevent an explosion in the number of editing commands to keep the
key-mapping manageable and to ease the user’s learning and memorization tasks. On
the other hand, insistence that the functionalities of commands be absolutely disjoint
is not desirable. Some operations oécur frequently enough and are complicated
enough that they deserve support, even though .they can be performed by means of a

series of other, simpler operations. Moveover, a measure of redundancy is desirable

42

. .

for its own sake[Bro77]. Different individuals prefer to do things in different ways.

Editing activities characterized ;

- The idea of high level editing notions is central to what I have beén trying to
do. It is also distressingly vague. What I have been looking for are descriptions of
the sorts of things one might wish to do to code without getting bogged down in
concern for characters or lines - something (very) roughly analogous to the high level
control structures of high level programming languages. To identify such operations
it might be instructive to start by considering motivations for the editing of
programs, and then to turn our attention to the means by which the programmer

satisfies those motivations.

Let us consider then, the very basic question: What does a programmer do with
an editor? Programmer aims seem to fall into four categories: to alter the
functionality of the program or subprogram, to improve the readability (or more
precisely, the understandability) of the code, to alter the degree of abstraction, and to
improve the efficiency of its execution. During the initial development of a program,
changes to functionality may include the correction of errors in syntax (not a problerﬁ
in the SBE realm) and static semantics, where functionality is initially null,
corrections of errors in logic, and correction of errors arising from faulty or
misinterpreted specifications. Later in the life cycle changes and extensions may be
necessary due to alterations in specifications over time. Beyond assuring adherence to
conventions of indentation, capitalization and naming, changes aimed at the
improvement of readability/understandability include reordering of statements and
declarations, association of comments with particular structures, and even
substitution of equivalent, but more lucid, logic. Although identification of
abstractions is properly a part of the early stages of software development, it is
sometimes desirable to introduce an element of abstraction after the fact, or to reveal
detail (for the promotion of efficiency, for example). Efficiency promoting alterations

are, of course, those aimed at facilitating the execution of the program in less time

43

and/or space while preserving its functionality. Such alterations may occur

throughout the life cycle.

- When looked at from a structural (rather than a strictly textual) point of view,
the means used to achieve these ends fall into the following categories:

1. Basic alterations - Structures may be mserted or deleted. Existing
structures may be replaced by other, syntactically equivalent
structures.

2. Alterations to nesting - A level of .nesting may be interposed between
structures, or levels may be removed.

3. Alterations to sequencing - Textual sequencing, that is the ordering
of structures at a given level of nesting, may be changed.

4. Transformations - Transformations of a semantics-preserving nature

' may be effected by a combination of operations from the above
categories, but .some are sufficiently general, and yet sufficiently

intuitive in nature, that they deserve consideration on their own. \

These operational categories provide a framework for the organization of thé
editor's manipulative commands into a number of conceptual families. The editor
must, like any editor, perform the basic alterations to code, hence there is a family of
basic commands. Alterations to levels of nesting may be of either of two types: those
which introduce an entirely new level (the EMBED family), and those which involve
transfers between existing levels (the ENGULF/EJECT family). Alterations to
sequencing may be of a rotational nature or involve the exchange of objects, leading
me to dub the fourth command family ROTATE/SWAP, Final}y, there is a family of
mathematics-based, largely semantics-preserving transformations corresponding to the

" last category listed above.

44

Basic Commands

The first set of operations to be considered consists of those basic text-editing
analogues, support for which would be expected from any editor: insertidn, deletion
and replacement. The motivation for the existence of these commands is self evident.
I suspect that the ability to insert, delete and replace structures is one SBE feature
about which few programmers would have reservations. The functionality and
implementation of these commands are straightforward, but there are issues
associated with each which I will describe immediately below. In addition to the most
basic forms of these operatioms, there are extensions which would enhance the

usabﬂity of the editor. These will be described as well.

Insertion acts upon the various sequences or lists (I will be using the terms
interchangably) of structures of which code is composed: statement lists, expression
lists, declaration lists, etc. The node stack’s top node, which must be of a sort
compatible with the target list, is the one to be inserted. If the node to be inserted is
unattached, that very node becomes a component of the target list. If it is attached,

then a copy is inserted, so that circular lists are not a problem. Note that the node

to be inserted may itself be a list, so long as it is of a type compatible with the target
list. In this case it is "spliced" into the target list.

An issue which' needed to be resolved before the basic command could be
implemented was that of the way in which the locatibn of its insertion was to be
designated. In a preceeding chapter I discussed my decision to implement commands
in terms of the current node (and the node stack) without reference to additional
spatial information provided by the visual cursor. Given this decision, it was
necessary that the current node designate somé list element and that the new node be
inserted before or after that node. Unfortunately, if the "before" convention were
used, it would be impossible to insert an element at the extreme tail end of a list (in
a single operation). Conversely, the "after" convention would preclude insertion at

the head of such a list. In the end both INSERT-BEFORE and INSERT-AFTER were

45

implemented.

In the previous chapter I suggested that integration of the code generation
process into the editing‘ process might be desirable. The insertion facility Would seem
to provide an appropriate medium for this integration. In addition to the
above-mentioned commands which insert the editor’s top node, there could be versions
of INSERT-BEFORE and INSERT-AFTER which would insert an expandable template
(once such templates were available). It can be seen that although the context
constrains the type of template which may be so inserted, in many cases more than
one sort will be appropriate. In the section below on the ENCLOSE facility I will
discuss in more detail the means by which the user may choose between such

alternatives.

The DELETE command causes the current node to be deleted from its context.
It acts upon optional nodes (e.g., the "else clause" of an if...else statement) and upon
list elements. It also applies to constituents of "list-like" structures where something
syntactically sound may be considered to remain after the deletion.‘ For example, if
DELETE is applied to the element b in |
aORDbORC
the result is
a OR c.
Sequences of elements may be deleted as well by placing the element at either end of
the sequence on the stack, then selecting the other end with the cursor and invoking

the DELETE-SUBLIST command.

Under the current implementation, if one wishes to move & node from one
_context to another, it is necessary to first stack the node then to delete it. This
Sequence of operations is common enough, and has a distinct enough identity, that an
operation combining the two, SELECT-DESTRUCTIVE, is in order. To extract a
sublist one currently must place the element at one end on the stack with SELECT,

then move the cursor to the other end and invoke SELECT-SUBLIST, which causes

46

the top node on the stack to be replaced by a copy of the delimited subsequence. It is
then necessary to sglect that node, return the cursor to the other end of the sublist
and key in DELETE-SUBLIST. This is a time consuming and error-prone series of
operatioﬁs. In a practical editing environment, support for

SELECT-SUBLIST-DESTRUCTIVE would be not only justifiable buf necessary.

The basic REPLACE command causes the current node to be replaced in its
context by the top node, subject to compatibility checks. As in the case of the
INSERT- operations, a copy is made if the top node is attached. If the current node
is unattached, in which case it must be the node which has been associated with the
editing window, the top node is simply substituted for the current node, i.e., it
becomes the node under consideration, and its predecessor is lost, unless a reference

to it has been saved on the node stack. REPLACE may be applied to an empty

editing window, causing it to be initialized to the top node value.

Closely related to the basic REPLACE command is the MODIFY command (see
Chapter IV, Code Entry/Generation) which summons the on-board text editor and
upon return substitutes the textually edited version of the current node for thé
original. As well, an as yet unimplemented REPLACE-WITH-TEMPLATE command
could serve, along with the INSERT-TEMPLATE operations proposed above, to

integrate code generation into the editing process.

The EMBED Family

Frequently, the aim of a set of editing operations is to add a layer of
complexity to the logic embodied in some existing code. The programmer is called
upon to deal with editing problems which he/she might, for example, express as

follows:
I now want this code to be executed only when condition ¢ holds.

In addition to these conditions, the Continue flag must be tested as well.

47

No wonder I'm getting an error! I should be passing the node’s class to

that routine, not the node itself.

Glass [Gla81] has found that circumstances of this sort, involving missing or
incomplete logic, account for a large percentage of persistent software errors. It has
been my experience that such patterns of alteration are important throughout the

development of a given piece of software.

Here, then, is a candidate for implementation as a command, one that effects
the interposition of a semantic layer by adding a layer of syntactic nesting. I have
chosen to call the concept/‘command EMBED, since its action consists of the
replacement of a node by the node itself suitably embedded in another node. There
are three major issues associated with the implementation of EMBED:

1. Applicability - To what nodes, and under what circumstances, should

the command be applicable?

2. Alternatives - In most circumstances more than one embedding may

be legitimate. How is the wuser to select from among those
alternatives?)

3. Placeholders - In many cases the embedding node will have

additional, unactualized components. How are these to be represented

and dealt with?
In the preceding chapter, I discussed the issue of plaéeholder representation at some
length, and it will not be dealt with further here. In the following two subsections I
will look at the other issues, applicability and alternatives. Since my implementation
of EMBED introduces a new mode of operation, I will then consider the problem of

the transition between modes. Finally, the command/notion complementary to

_ EMBED will be described.

The application of EMBED

I I have implemented EMBED on a case-by-case basis to good effect. Any
statement may serve as the target for the command and the full range of alterations
to control flow may be effected by means of EMBED. It is also applicable to
expressions (and to some expression lists), though the set of resulting expressions is
not exhaustive. The boolean operations of negation, conjunction and disjunction are
provided for, as are a range of arithmetic operations. There are certainly possibilities
for this concept’s extension. For example, it should be possible to generate
expressions which contain set and arithmetic operators. Structured data objects are
important in Pascal, and the EMBED concept is applicable to their extension and
alteration.

While I was attempting to systematically enumerate the appropriate
applications of EMBED, it occured to me that, due to the hierarchical nature of code,
the EMBED concept was essentially universally applicable. Therefore, I propose that
the command be applied in a mechanical fashion. Under this scheme, any nbde could
serve as the target for EMBED and the set of possible node classes for the
replacement node would be the intersection of t:,he set of the target node’s possible
parent types with the set of its initial parent’s possible child types. It should be
noted that:

1. The target node may have no parent, i.e., it may be the unattached

"main node" in the editing window. |
2. The intersection may be empty, i.e., the grammar does not permit
another layer of nesting to be "squeezed in."
The former case admits a sort of code generation by "bottom up" expansion, as the
.target node may be embedded in any of its possible parent types. The latter case

.should simply lead to an Inappropriate operation message.

Two exceptions or, more appropriately, extensions to the intersection rule

proposed above are the cases of bracketing and "enlisting." When the existing version .-

49

of EMBED is applied to an ei:pression, brackefs are supplied as necessary, e.g.,

/ aORb -=> (aORb) AND DUMMYFactor |
Similarly, when it is applied to a member of an expression list (e.g. the arguments to
a procedure call), the target node is automatically enclosed in an expression list to
enable production of the function call alternative. In general, target nodes should be
preprocessed to permit these operations. If there is a disadvantage to the mechanical
implementation, it is that it is tightly bound to the strict, grammar-based approach
and, hence, may occasionally exclude what some users might regard as intuitively
meaningful operations. The inflexibility of this approach also arbitrarily restrains the
placement of the cursor after the operation has been performed. However, always
placing the cursor on the first placeholder node (if there is one) corresponds, with

very few exceptions, to what I have done in the existing case-by-case treatment.

Presentation of alternatives

Clearly, under many circumstances there are a number of responses to EMBED
which are syntactically correct and semantically sound. For example, any statement
may be enclosed by another statement of any of eight types: if statement (as the
consequent, "then" clause, or as the alternate, "else" clause), repeat loop, while loop,
for-to-loop, etc. The problem of how the user is to choose between these various
alternatives is an important one. I will look at three approaches to it:

1. Character string entry,

2. Menu selection, and

3. Exhaustive display of alternatives.
Note that although the following discussion is couched in terms of the EMBED
command, it also has application to commands which insert or expand generative

templates.

Character string entry, i.e., the typing of the name of the desired node type into
the screen’s command area prior to invocation of EMBED, has pros and cons similar

to those previously cited for typed commands. To its credit this is a flexible,

50

2

open-ended method. Its disadvantages inclﬁde the awkward jump to the command
“window, the time-consuming and error-prone nature of character entry per se, and the
necessity for memorizing the spellings of node class names and their association with
familiar structures. Once again, abbreviation may alleviate the second problem at
the expense of exacerbating the third. Provision for alternate spellings and the
acceptance of unambiguous prefixes, may alleviate, but not eliminate, the third
drawback.

Menus effectively address the issué of memorization of possibilities by
substituting selection for specification, but the problem of identifying the correct
choice remains. It may be difficult to find labels which are evocative and
unambiguous under all circumstances. As well there seems to be some awkwardness
inherent in the necessity of simultaneously selecting a node and a menu item. I have
pointed out previously that a really effective implementation of the mouse/menu

model requires a fair amount of system support.

The final approach, exhaustive presentation, does not have a analogue among
the command entry methods discussed in Chapter IV. Wi;at I mean by "exhaﬁstive'
presentation" is that the user actually gets to examine each alternative in context.
When he/she strikes the appropriate sequence of keys, the editor displays, in context,
a possible embedding of the current node and simultaneously goes into "embed mode."
The user may then either select that possibility or may, by tapping a funétion key,
leaf back and forth through the various alternatives till the desired one is found and
selected (causing exit from that mode). Figures 5.1a, 5.1b, 5.1c and 5.1d [3] show, in
sequence, four of the alternatives resulting from an application of EMBED to a
statement. Figures 5.2a, 5.2b, 5.2c, 5.2d and 5.2e show some possible embeddings of

[3] The figures in this chapter, and the succeeding one, show before-and-after screen
dumps. In each, the panel on the left shows the screen before some editing operation
is perfomed. The panel on the right shows the screen immediately after the
operation. When the operation is one of the SBE-specific commands, the screen dump
routines display the name of the command beneath the lower right-hand corner of the
"before" screen.

51

"dAljBUII)[B JSA1] - JUIWI)B)S B

0} patjdde QIGWF ‘el'g 2y

. 3S¥IIo°pweaboadqns mmod- esied ;ANVHHNOD
’ jusuPlels3I ADVSSIN

IsyrIoepueiboadgns umod- 8sIyed ZANVWNOD
SAWNANIIYDS~ uo BuybB01 SduUBUMO) $FIVSSAH

moputM XaxeypIxny

MOoputM utey
(edAretqeipuenno) ¢ IDL ¥YA
) erqerpuewmodpadALiTul FUNAAD0UA

. - {ana
SPONIOTUSS *HPUTMIIND =! ISPONUTEH
NaHL uotssexdxaxwind 41
${,putmMuTely, ' SMOPUTMOATIOY)D9YMOPUTMPUTS
= puyMIInd
NID3d

{103UuTOgMOpPUTM ¢ PUTMaIN)
VA

(4MOPUTMUTE USY)} JO SPONIOTUSS USY] SUINIBY,)
OPpON : 9poNutelW NOILONN4

{NVuLO4
{(aebojuy : uSTUALOD
{edALsszaeyd : I3sSumO)
) aWd 3WNaIDoUd

moputM Xaxeypyxny -

MOPUTM UTEH -

K3 °q 03 spueumod 3O 9iqe)l 9y} JO JUBWITS Yoed,)
Aosoﬁnmhvcm__-._ou $ LDL ¥YA

) a1qelpueumo)dpadAgITur AUNAIAD0Ud

{and
9PONIOTUSS * PPUTMIIND ={j] SpONUTEH
{(,pUTMUTEH, ‘SMOPUTMPATIOV)O9YMOPUTMPUTI
=! puyMIIn)d
NIDdd

£193UTOgMOPUTM ¢ PUTMaIIN)
UVA

(xMOpUTMUTE U3Y] JO SPONIOTUIS UIY] SUINIBY,)
SPON : OPONUTEW NOILONNJ

{ NVHINOS
{(a9bo3uy ¢ USTUWOD |
fedArsSzaeyd : I3SUMO) _
) aWd IUNAIDoud

52

"9AT)BUIIN @ puo29s - jusuradle)s

e 0} perdde qEEWNE ‘a1’ Iy

IX3aN

IsyrIoopweatoxdqns umwod- esyed ¢ANVHWOD
JuswelR]SII ADVSSAN

asyrroepweadoadqns wmod- osxed ¢ANVHHOD
Juewejelszi 1AOVYSSIN

moputM Axeyryxny

MopuTM Kaeyrixny

MODUTM utel

MOPUTM UTeH
(edAreTqeipuemo) : IDI ¥VA
) eiqerpuennodpadiLITul FUNAID0UA

{aNs
OPONIOTUSS * gPUTMIIND) =i DPONUTEY AST3
jusuPIeISXKNNG NIHI uoyssexdxaxwwnd A1
{(,PUTMUTEH, ‘SMOPUTMIATIOY)D0YMOPUTMPUTA
a3 PUTMIIND
NID3d

{ I9JUTOAMOPUTM ¢ PUTMIIND
yvaA

(sMOpUTMUTEY USY] JO PPONIOFURS UBY] SUINIBY,)
9PON : SPONUTEW NOILONNIA

{NVuIO04
{(aeBojur : USTWNO)
fodALgsszaeyd ¢ 13SUMOD)
) aWD UNAID0Ud

(edizorqerpucunuo) ¢ IDI UVA
) erqerpuewmnodpedALITUI FWNAAD0Ud

{an3
SPONIOTUOS* JPUTMIIN) =3 OPONUTEH
Naul uoyssexdxaxwung A1
{(,puTMuUTel, ‘SMOPUTMIATIOV)O9YMOPUTMPUTI
=$ pUTMIIND
NIDad

1 193UTOMOPUTM ¢ PUTMIIND
HVA

(4MOPUTMUTEH USY] JO SPONIOTUDS UBY] SUINJIY,)
OPON ! SPONUTEN NOILONMNA

{NVEINOd
{(aeBojuy : uUSTINOD
{odArgSzaey) : I3SURNOD
) @D IANAID0Ud

53

A BUIDNB PITY) - JUBWIIE)S B 0) ﬁwzmnm AagNdg d1°¢ auanSty

LXAN

ISTITOepueIfoadqns mmod- 9sIed JANVWHOD
doo1eTTYM $ADVSSIAN

IsTrroepueatoadqns umoo- oszed 2aANVWWOD
JUIURJBISIT $AOVSSAW

MOpuiM Azeyyyxny

MoOputM Axeyrixny

MOpUTM .:._u:

MOpDUTM UTER
(edArerqeipueamio) ¢ LDI ¥VA
) erqerpuewmodpadALITuUl AUNAIDOUd

. : fanz
®PONIOTUSS * QPUTMIIND =3 OPONUTEH
0a uoyssexdxaxiind ATIHM
{(,PUTMUTEH, ‘SMOPUTMBAT)}DV)IOYMOPUTMPUTI
=g PUTMIIND
NI9ag

{I93UTO4MOPUTM ¢ PUTMIIND
YA

(wMODUTMUTEH USY} JO OPONIOFUSS UBY} SUINIDY,)
®pON ! ©PONUTEH NOILONNJ

{ NVUINO4
_u (aebojuyr ¢ uUSIUNOD
fedAisszaey) ¢ IISUANOD
) aWd FUNAIDI0Nd

(edAreqeipueunio) 3 IDL UVA
) erqerpueumio)padAriTur FWNAIDOUd

fand
®PONIOTUSS* JPUTMIIND = SPONUTEW ASTA
JUSURILISAWHNG NIHL uoyssexdxaxuwng 41
{(,PUTMUTER, ‘SMOPUTMPATIDV)IOYMOPUTMPUTI
ud PUIMIIND
NIOZd

{393UTOAMOPUTM ¢ PUTMIIN)
VA

(wMOPUTMUTE) UBY) JO BPONIOTUSS UDY] SUINIVY,)
SPON ¢ OpPONUTEW NOILONNJA

¢{NVHLN04
{(30BOJUT ¢ UITUWOD
fedi156zaeYyD ¢ IISUMOD
) aWd FuNaadoud

54

"9ABUINE (JINOJ - JUSUIDIL)S

e 0y pordde QAGWNE ‘PI'g oandiy

LXAN

_3IsTIToopweaboxdqns wmmod- 9sxed JANVIWNOD
dooyeadey 3IDYSSAW

ISTITo9pweaboadqns wmod- esaed mnzgu
dooTeTTuM $1ADVSSIN

MoputM Axeyyrixny

moputy Aaxeyiyxny

MOPUTM ujey
) e1qerpuemuodpadALITul FUNAID0Ud

fana
- uofssexdxaxuund TTIINN
OPONIOTURS *HPUTMIIND =3 SPONUTEN
, : Ivadau
~ $(,putMutEl, ‘SMOPUTMPATIOV)I9YMOPUTMPUTL
= PUITMIIN)
NI9ad

{393UTOgMOPUTM ¢ PUTMIIND
: UvaA

(»MOPUTMUTEN USY] JO GPONIOTUSS UDY] SUINIOY,)
9PON : OPONUTEW NOILDNNA

NVEINOd
$(aeBojuy 3 ueTuo)
fedirgszaeyd : Ijsumno)d
) @D FWNAAD0Ud

MOPUTM UteN
» (edAzerqelpueunuo) $ LDIL ¥VA
) s1qerpuewno)dpadiLiTul IUNAID0UA

. fana
OPONIOTUSS * JPUTMIIND =3 SPONUTEN
oa uoyssoxdxaxwinG ITIHM
{(,PUTMUTEH, ‘SMOPUTMIATIOV)OOYMOPUTMPUTS
= PpUTMaaIN)
NIDaAd

{I93UTOAMOPUTM ¢ PUTMIIND
gvA

(+MOPUTMUTEH USY] JO OPONIOTUSS USY) SUINIDY,)
SPON : SPONUTEHW NOILONNJ

A CARTE
{(F0Bajuy § uUITUNO)
fedArSSZIRYD § IISUMOD
) aWd FUNAAD0Ud

55

‘ABUIN(E 151y - uorsseidxs ue 01 paydde AdgNd :eg g aandty

adgand
1o0pdanpadoxd (duxlyids osaxed JANVIHNOD 1o9paanpadoad 1duxyyrds esxed ¢ANVHNOD
TTEeDUOFIDUNS ADVSSAN SAHNANIAYDS- U0 BUFBH0T @dUSUMIO) FIVSSIW
mopuyM Axeyryxny Moputy Axeyryxny
MOPUTM UTeH - MOPUTM UTEH
) 3ueuR TAYIN * (z9 3TNBuUA) JuL ICg
=3 JOSINDMON)jusud TAYIN
{(e93TNBUg =g JOSINDMON
‘(yotym + (I93InBuz)uOTI¥SO4 {(9a3nbugz
) 1TEeDUOTIDUNAXMIIK ‘yorym +{](F93TNBUF)UOTITSO]
! (z931Nnbuz)Jus TRy ! (z931nBuz)jus Teqg
‘)3jaesug)3aesug
NID34 NID34
N3HL IXN = Yoyym Jail NIHL IXN = YoTYM a1l
NID3g NID3"
$ uIIsSTIIoqURN ‘3ISTIIOqUON $ UIISTIIOqURN ‘3ISTIIOqURN
fana fana

(e93INBua ‘yYoTyM- ‘I0SaINIMEN)]IISSU]
{xojInBug = I0SINDMON
NIO3d
$ ISTTIMIS ‘uIISTIIMNS
fana
(e93INBum ‘yYoTyM- ‘I0SanDMON)IaesSU]
{(3931nBuz) JOApOog =i I0SINIMON
v NI93d
¢ Jusdwod
fana
doyjdpejeayioeaq
N3H1 pejeafidydeyirdo a1
Jx93InBuz = JOSINDMON

(eojrnbug ‘yYoyuym- ‘I0sanDMON)IaosSu]
{x93InBulg =¢ JOSINDMON
NI93d
$ ISTTIMNMS ‘uIISFIIUIS
{ana
(o93InbBuz ‘YoTyMm- ‘I0SINDMEN)IIOSUL
{(3931NBud) JOAPOd =3 JOSINDIMON
NID3d
: Jmysdwo)
fana
deyjdgejeagjoeaq
N3HL p33jeafjovdeyido 41
{x03Inbuz =: JOSINDMON

‘dANRUI)® (J1}9WIYJLIB) PU0dds - uoissordxs ue 03 porjdde QAIINH :qg'G 9InSiyg

SNOoIA3™d
1oepaanpedoad [dux3yrds osaed JANVHNOD 199paanpadsoad ydux3lyrds asaed ANVHINOD
wISLPAUBIS $AOVSSAN TTEJUOoFIdUNG $ADVSSAN
MOpUTM AaxeyTyxny mopuyM XLaxeyrrxny
MOpuUTM UTEl moputy utey -—
! (z93Tnbuz)juaaeq) JUSUR TAYIN
)JUBUR TAYIN m! JOSINDMON
= I0SINDMON {(o93InBuz
¢ (@9 3Inbuz ‘(yoryM + (I93TNBUZ)UOTITSOd
(UoTYM + (I93TNBuUF)UOTITSOH)-) TTEDUOTIDUNI XHING
! (a9 3TNBuUz) jueIeg ! (19 3TnBuUz)Jud Ieg
)3aesujg)3aesug
RID34 NID3d
NAHL IXN = YdTUM 41 N3HL IXN = YoTYM JI
. - NID3d NID3d
¢ UIISTTIIOqURK ‘3ISTlIoqURH $ UIISTTIOqURH ‘IS TTIqUIN
{ana ‘fana

(e93TnBuz ‘YOoTYM- ‘IOSINDMON)3IIVSUL
{303TNnBug = IOSINDMON
NID3d
¢ ISTTIWIS ‘urisyTIWIS
. {ana
(e03InBuz ‘yYoTymM- ‘I0SaNIMON)3IIBSU]
{(3931TnBud) JOAPOg =¢ I0SINDMBN
v NID3d
¢ Jwysdwod
{ana
deyidoeieatioeeq
N3HL pejeatjovdeyido 41
{a93TnBuUzg =: JOSaNDMON

(e9yTnBua ‘yYoyym- ‘I0SINDMON)3II8SU]
§393TNBuUd =: IOSINIMIN
NID3d
¢ ISTTIWAS ‘urisyTIwls
. fana
(e93Tnbua ‘yYoTym- ‘JosanDMIN)3IaIsSU]
{(a931nbua) JoApod =: IOSaANIMON
NID34
¢ Jwysdwod
fana
dayjdpajeayioeaq
N3HL pe3jeayioydeyido a1
{193InBuld =n: JOSINDMON

57

"dATIBUINE (dUoUWIYjLIe) pary) - uoissardxe ue o) pardde QIGINH :0g'¢ oanSig

SNOIAd¥A
1o9paanpasoad tdux3yrds esaed JANVHINO)D To9paanpasoad tdux3yyrds esaed ;aNVIHOD
adxIOATITPPY $IOVSSAH wxeLpoubys $IOVSSAN
MOPUTM Axerryxny MOPUTM AxerrTxny
MOPUTM ufel : MOPUTM UTel
) JueuR TAYIN ! (z@3TnBuz) jus ey
=3 JOSINDMON)IUBURTAYIN
! (093 Tnbug =: J0SINDMON
‘wxe LXWHNG { (o93TNnbUl
+ YoTuM + (a93zInbulz)uoyiITsod (yoTymM + (I93INBua)UOTITSO])-
‘(193TNBuUF) Jus ey ‘(x93 NnBuz) Juszeq
)3jxesuj)3jxosu;
NID3d NIO3d
N3HL IXN = UYOTyMm 41 NIHL IXN = YOTUYM JI
, NID3d NIDad
§ uUIISYTIOqURN ‘3ISTIIeqURN ! UIISTIIqURKH ‘ISTTIoquel
{anz fana

(e9zInbum ‘YoTyM- ‘I0SINDMBN)JaBSUL
$193IN6Ud =: JOSINDMBN
NI193d
$ ISTTIWIS ‘uUIISTIIUWIS
{anz
(e93TNnBua ‘YoTyM- ‘IJ0SINDIMON)JIOSU]
{(a03TNnBul) JOAPOH =f JIO0SINDMON
NID3d
¢ Juysduwod
{ana
doyjydgejeagjoeaq
N3aHL pejeafjovdeyido a1
{a931nBug =: I0SaNDMON

(P0zInbum ‘YoTyM- ‘I0SINDMON)IISSU]I
fx03InBug =5 I0SINDMON
. NID3d
$ ISTTIWIS ‘UrISTIIMAS
‘ana
(993INBua “YOJyYM- ‘I0SaNDMON)JaeSU]
f(a93Tnbua) JoLpod =: IO0SaANDMON
) NID3d
$ Juysduwo)
{an3
deyidpgejeatjoeeq
N3HL pejeafiodoydeyido 41
{a931NBuUzd = JOSINDMON

58

‘ATIBUISR (d}PWIYILIR) U}Inof - uolssardxa ue 0y pordde QygNA :pg'g oandi

SNOoIAdNd
1o9paanpadoxd [duxlyrds eszed aNVIHOD To9paanpadoxd tduxlyrds eszed ANVHWOD
IdxISATITPPY $ADVSSAH . IdXFGATITPPY $ADVSSAW
mopuiM Azeyrixny moputy Kxeyyixny
MOpUTM utel : MOpUTM uFey
) JUSUR TAYIN)IUSuUR TAYIN
=3 I0SINDMIN =8 JOSINDMON
{ (@9 3TNnbBuz {(9931NnBuz
'waerxsminid 'wxer xung
- Y2TYM + (I93TNBUZ)UOTITSOQ + YO1YM + (I93TNBuz)uUOTI¥SO4
f(a93TnBuzg)jusaeyg # (z03TNBuUz) Jud ey
)339sujg)3aesug
NIDag NID3g
N3HL IXN = YOTYM JI N3HL IXN = YOTYM JI
NID34 NID3d
$ UIISTIIOqURK ‘ISTIIOqURK ! UIISTIINqUeN ‘ISTIIqUON
‘{ana {an3

(993INBuz ‘YoFyM- ‘I0SINIMON)IIOSU]L
{193TNBUl =! JOSIANDMON
. NIDag
$ ISTIIMIS ‘uriIsyFIIWIs
. ‘ana
(99jTnbuz ‘yYoTyM- ‘I0SINDIMON)IIISU]
1 (x9zTnbuz)joipog =a: I0SINDMON
NIDag
¢ Jwysdwo)
{ana
deyidpeieatjoesq
N3HIL pajeatrjovdeyido 41
{193InBUm =: IOSINIMON

(993INBuz “YoyIym~ “‘I0SINDMON)JIOSUI
{x9]TNBUT =3 JOSANDMIN
NID3d
$ ISTTIUIS ‘urIsyTIUAS
fana
(e93TnBuad ‘YoTym- ‘I0SINDMON)JIVSU] '
{(123Tnbuz)JoLpog =: I0SINDMIN
NID3d
¢ Ju3sduwo)
{ana
deyjdpejeagjoreq
N3HI Pa3jeafjovdeyido 41
{x93InBug =; I0SINDMON

59

.oipmnuoﬁa (onewmyjire) Yy - uoissaxdxs ue o0y pordde QUIWH :9%'Q 2anSiyg

SNOoIA3¥d
1o9paanpadoad pdux3lyrds esaed JANVHHOD 1o9paanpecsoad yduxjyrds esaed JANVHIOD
adxaBuATdTITNN IOVSSIAW adx3OATITPPY $13ADVSSAN
MopuyM Aaeyrrxny —= MOpuiM Aaeyryxny
MODUTM UTeH MOPUTM UTEH —————- —————————— -
) JUSuR TAYIN) IuauR TAYIN
= JOSINDMON =3 JOSINDMIN
{(voo3Tnbuz { (e03Inbuz
: 2030 2 xng ‘waexwnng
» (UOTUYM + (I93FTNBUZF)UOTFITSOJ) - YOTYm + (I93INBuz)uoyI¥sod
f(aezInbug)jusaeq f(a93TnBuz)juvaaeg
)3aesul JEELLL ¢
NIS3A4 NIO3d
NaHL IXN = YOTyM JI NIHL IXN = YOTyM 4aI
NID3d NIDa"
¢ UIISTIIOqURKH ‘IST1IoqURN $ uIIsylIeqURl ‘3ISTIISqUON
‘ana tana

(e93TnBuz ‘YoTyM- ‘I0saNIMON)3IaeSUL
{193TNBUT =3 JOSINIMON
. NIO93d
$ ISTIIWIS ‘UIISTIIENIS
{ana
(993zTNBUT ‘YoTYM- ‘IOSINDMBN)IIBSU]
f(a93Inbuld) JoApod =: I0SaNDMON
NID3d
t jJuysdwo)
tana
deyjdgejeatjoeeq
N3HL pejeayjoydeyido JI
{a93TNBud = I0SaANDMON

(evzTnbuz ‘Yoyym- ‘I0SINDMON)JIBSU]
{a03Tnbug =t I0SINJMON
NI93d
$ ISTIIMIS ‘UrIsyIIUWIS
fana
(e93zInBud ‘YoTYM- ‘I0SaANDMBN)IJIeSU]
$ (293 TnBuz) JOAPOd =i A0SINDMBN
NIDAd
: jwisdwo)
{ana
deyydgejeayioesd
NIHL Pejeafjoydeyido 4I
{a03TNBud =3 IOSANDMON

60

an expression. Note that under the current implementation the alternatives are,
conceptually, arranged in a circular list. The designations NEXT and PREVIOUS
that accompany the figures describe the direction in which the user is searching that

circular list.

An advantage of this method is its "what you see is what you get" nature. The
user is neither required to memorize character strings nor to choose from (possibly
obscure) descriptions. This, moreover, is a method which is suited to both neophyte
and experienced user. The former mé.y delibei'ately examine all alternations until the
desired one is found. The latter, knowing the position of the desired node type in the
list of alternatives, rapidly taps the correct number of keystrokes. An apparent
disadvantage is its slowness and awkwardness. In practice this has not been a
problem. I have in fact selected this method for the implementation of EMBED, and
it has proven to be reasonably fast and feels most natural. It would be desirable if,
at the level of person-machine interaction, the efficiency of this alternative
presentation/selection process could be assured. To that end I propose the kfollowing

implementation.

Although there may be a number of alternatives abpropriate to a given
operation, there are, generally, a couple of "most popular" choices. If these can be
presented first, then this selection method can be rapid indeed. One way of
accomplishing this is by means of extensive analysis of code and hand adjustment of
the program. Another possibility which I have considered is that of a self-adjusting
implementation. Between executions of the editor a table of selections would be
maintained (in files) for each operand pair. Each entry in the table would be a list of
the applicable alternatives. Associated with each alternative would be a usage field.
- When EMBED was invoked the alternatives appropriate to the context would be
" presented in the order in which they appear on the list. Whenever one was selected,
its usage field would be incremented and it would be moved ahead of all alternatives

in the list with a usage value less than its own. In time popular selections would

3

percolate to the top of the ‘list and impopular ones to the bottom. The
unpredictability inherent in this approach would probably be somewhat disconcerting
to the user. To counteract this it might be best to have this feature under user
control; so that once the system had stabilized, the user could turn off the

self-adjustment.

The method I have described is that of serial presentation. Another possibility is
to combine, in a sense, exhaustive presentation and menu selection by displaying all
of the alternatives simultaneously. This list of alternative embeddings would appear
either in the main window or in its own specially generated window. Since the list in
many cases would not fit in a single window, the user would either scroll through it
or rotate it in a manner somewhat analogous to the use of a "cardex." The screen
cursor would be used to select the desired version. I have rejected this approach for
the following reasons:

1. It is disruptive to screen integrity i.e., it causes extensive alterations

to the screen being edited, and, conseﬁuently, may adversely affect the
continuity of the editing process.

2. The user does not get to see the alternatives gct;uauy embedded in

context, at least not so clearly as in the serial method.

3. It is unnecessary, sipce it was originally proposed as a means of

graphically differentiating the "select mode" from the regular
syntactic editing mode, an issue with which there are other ways of

dealing (see next subsection).

The transition between modes

In the previous chapter I introduced the problem of transitions between modes
" of operation, in particular the problems encountered when returning to the basic
" structural editing mode from a specialized one, and I put forward the desire to avoid
this problem as a motivation for the development of the editor’s scheme for the keying

in of commands. Subsequently, I have described several such modes: text editing

62

mode, ENCLOSE mode, EXPAND mode, and a family of search operations. I will now

address the issue.

Where the text editor is concernéd, no difficulties have been encduntered in
practice. I believe this to be a cdnsequence of the processes’ being sufﬁcieptly distinct
from one another. Though the structural editing and textual editing processes share
function keys, they do not share an entry format. Moreover, textual editing and entry
take place in a separéte window. Finally, and ’perhaps most important, text based
operations and operations in the syntactic or structural realm are conceptually
distinct. As a consequence, it seems most natural to return to that latter realm

before invoking the characteristic SBE operations.

This does not appear to be the case for the other modes of operation mentioned
above. In each case the mode is characterized by a small set of single-key commands:
NEXT instance, PREVIOUS instance (in some cases), ABORT the process restoring
the original state, and CHOOSE the current instance. The first two operations are
natural and convenient, the third is necessary and has presented no problems, but
the last interferes with the flow of the editing process, its necessity leading to errors.‘
(To be more precise, it leads to erroneous keying. Since it is difficult to accidentally
return to the main editor the integrity of the target node is generally not
compromised.) Though the act of toggling or flipping through possibilities is
intuitively appropriate to the situation, these modes are not sufficiently distinct to
motivate an explicit selection and return operation. Since the two-stroke scheme for
command entry requires only a small set of keys, I have been able to use a set of keys
for the modes we are discussing which is disjoint from that set, but the’ operations
are seen to take place within the main editing window, and conceptually they are

" most definitely of a structurally oriented nature.

One could conceivably alleviate the problem by making the operations appear to
be distinct (by allocating special windows for them, for example). I submit that this

approach would introduce undesirable elements of artificiality and complexity. 1

63

propose, instead, to eliminate the necessity for explicit selection. Under this scheme,

each succeeding instance or state would become the current one, with the option of

restoration of the original always available. This would enable the user to invoke

operations by immediately keying in the approproate two-key sequence. In such an
implementation the main control loop would be executed each time a function key
was read from the keyboard and, in the case of mode-specific keys, interpretation
would be dependent upon the value of some CurrentMode variable. The search
operations, which are currently implemented as traversgls rather than loops, would

be particularly affected by such a reimplementation.

Such a restructuring of the text-editing mode, as it is currently implemented,
seems neither necessary nor desirable. However, if the in situ text editing suggested
in the previous chapter were to be implemented, the distinction between that mode
and the main structural editing mode might be lost, in which case the approach of

the previous paragraphs could be generalized to include the text editor.

STRIP, the complement to EMBED
Just as it is sometimes desirable to add a level of nesting in the code, so is it
sometimes desirable to strip away a level. All of the examples cited at the beginning

of the section have their counterparts:
I now wish this code to be executed unconditionally.
Testing of the Continue flag is now superfluous.

No wonder I'm getting an error. I should be passing the node itself to this

routine, not its class!

I have looked at routines to unqualify if statements and, more interestingly, if...else
" statements. I have also experimented with an assortment of commands which, in a
sense, partially unqualify various statement types, e.g., reducing the number of

iterations by converting a looping construct into an if statement, or reducing the

64

degree of abstraction by converting a case staterﬁent into a series of nested if...else
statements. These operations, though sometimes interesting in their own right, have
not provided the desired symmetry with ‘EMBED. Some have been incorporated into
other commands yet to be discussed; some have simply been dismissed as dead-ends.
To complement EMBED what has been provided is a mechanical STRIP which,
subject to compatibility constraints, substitutes the target node itself for that target
node’s parent. Though not terribly interesting conceptually, STRIP is a useful
function, providing not only the implementation of the notion "un-nest," but
providing as well the capacity to undo erroneous EMBED’s with a single two-key

sequence.

The ENGULF/EJECT Family

There are other operations where the notion of nesting is important, i.e., those
which involve transfers of structures between levels of nesting already existing in the

code. They come into play in response to programmer discoveries of the following sort:

No wonder it's producing garbage. This statement belongs within the
preceding loop/if statement/

Here one statement is in effect "engulfed" by another. It might also be desirable to
perform the complementary operation, i.e., to "eject" one statement from another.
These complementary notions do not apply to stateménts alone. For example, given
the declaration of a number of variables with type in common,

VAR a, b, ¢ : SomeType;,
it might be desirable to split out or eject a particular variable thus

VAR a, ¢ : SomeType;

b: SomeType;,

so that it was textually distinct and could be commented separately. Note that in
this case the ejected item takes its associated type with it.

65

I have named the commands embodying these notions ENGULF and EJECT [4].
It is evident that one may ENGULF either the next item in the textual sequence or
the previous one. Similarly, one may wish to EJECT an item either forward or
backward. In combination with the capability to swap items (see next section), a
single directionality would be sufficient, but, as was the case for the basic command
INSERT, it seemed advisable to provide the full set of operations (ENGULF-NEXT,
ENGULF-PREVIOUS, EJECT-BACKWARD, EJECT-FORWARD) if smooth,
unencumbered editing were to be achieved. Unlike EMBED/STRIP, ENGULF/EJECT
is not a notion or command which may be applied universally in a mechanical
fashion. Questions of how it is to be applied, and to what sorts of nodes, have had to
be answered on a case-by-case basis. I will now illustrate the facility with a detailed
description of its application in the realm of statements, where it is fully operational.
Topics to be discussed include operand selection, the operation appropriate to various
combinations of operand and context, and the placing of the cursor subsequent to the
operation. I will then identify other circumstances in which ENGULF/EJECT is
applicable. Areas whgre the concept is tantalizing but not really feasible will also be
pointed out. |

The paradigmatic operation

As a starting point let us consider the application of ENGULF-NEXT to the
body of some enclosing statement (Figure 5.3). By body I mean the statements to be
executed within a repeat, while or for loop, or the conéequent or alternate statements
of an if statement. Here both implementation and discussion are complicated by the
peculiarities of Pascal syntax, which dictates that with one exception the body may

be either a simple statement or a compound statement, in which latter case the

(4] The family of ENGULF/EJECT operations contains two general sets of operations
" corresponding to the two kinds of circumstance described above: where the
"engulfees” and "ejectees” have some other node associated with them, and where
they do not. I have given considerable thought to the idea of assigning different
names and different key-stroke sequences to the operations of each of these types. To
keep down the number of keying sequences, and because the operations do have
something in common, I have not done so.

66

‘doof jeedar ® jo £poq 8y} 01 peydde [XAN-JTNONH ‘€S oindiyg

LXAN 4'INON3

SPIPT®T4dURDS PUTF ¢ANVHHOD
«P33TIN6UR,, Bpou BUFMOTITOd :ADVSSIAW

mopuiM Axeyryxny

SPIPT®TauedS puty (ANVWWOD
ISTTIIURmRIR]S $ADVYSSIN

noputM Azegryxny

MOPUTM UTEH

NI9ad
0d (TIN <> JueTIeA) ANV ONUTIUC) ATIHM
{(1 ‘(3aedjuegaea)jososnerdijuerae;

) JusuR TAYIN
: " =m¢ Jueraea
{(p1otT36e])PISSeD01q
N3HL (PToF¥36e)})DA3dug ION 41
{ (3zedjuetaea) JOPTOTIUOTIORTSS =2 pPIoFIbe)
\ NI9ag
N3HL (3xedjuegyea)diydud JON QNV OnNUFIUO) 4T
{(ISTIPTIOTd) JOIIRgIueTIRA =¢ }Iedjueyiea
$(IIN = uOF3Ides) ¥O SNUFIUOCD JION TILNN
(UOTII9S)JXON =: UOTIO0S
, fana
(1IN = PT9FJ) O °OnNUTIUOD JON TIINN
PI®TJIX0U =: PIOT)
{(P1oT3)PISS9D01q
$(PT9TJ)IXeON =: pPTOTIIXOU
f
(1T *(uoT31098)JOSPWENPTIOT4) IUSWS TAYIN
=93 ‘ﬁﬂ.ﬂ@
Ivaday
NID3d
N3HL (uoT3o9s)Puotloespietd 4l
Ivaday

MOPUTM UTEH
NID3Y
0d (TIN <> juefiea) GNV ONUFIUOD FTIHM
(1 ‘(3aedjueraea)jososnerdIUETIRA
)IUBRTIAYIN
=§ jJueyaea
{(pP1oT36e)})PISS0D01d
N3HI (PT9736e])BA3dum JON 41
{ (3aedjuetIea)JOpIeT4UOTIDOTES =t PIOTFBe]
NIDad
NaHI (jxedjuetaea)Biiduz JON ANV OnuFIuo) 41
] Auaﬁq—ﬁﬁﬂﬁhv Jolaeqluesiepl =3 uuﬂ&u:ﬂﬁhﬂ\r
{ (1IN = UOF}IO9S) YO ONUFIUOCD ION TILINN
(UOTIOPS8)IXON =i UOTII9S
fana
PI®TdIXOU = PI3TI
{(1IN = PT973) ¥O °NUFIUOD ION TIINN
(P1e¥3)PISSed01q
{(PI9T3)IXON =: PIOTJIIXAU
f]
(1 ‘(uoFId9S8)JOSOWENPIOTd) JUSUP TAYIN
" vaaau
Ivdday
NIDad
N3HL (uo¥3}oes)PuotIdespiatd 4l
Ivdaay

67

!

structure of interest is the statement list constituting the body of that statement.
The situation is complicated further by the case of the repeat statement (the afore
mentioned exception) where the body is always a statement list. To select a
non-compound statement or a repeat loop’s statement list, the user must place the
cursor upon the desired node itself. In the case of a compound statement, either the

statement itself or its statement list may be selected.

For ENGULF-NEXT to be meaningful the enclosing statement (for loop, if
statement, etc.) must be a member of a statement list, and there must be at least one
statement following the enclosing statement in that sequence. This statement is
removed from that list and appended to the body list to which ENGULF-NEXT has
been applied. If the selected statement was a non-compound one, then it is
automatically included in a statement list embedded in a compound statement to

enable the above operation.

An important consideration in the determination of the proper placement of the
cursor after an operation is regard for the operation likely to come next. In the case
of ENGULF, the succeeding command is likely to be another ENGULF. With this m
mind the cursor is placed upon the body list. (Once ENGULF has been executed there
1s guaranteed to be such a list.) Note that the seciuencing of a sublist incorporated
through repeated application of ENGULF-NEXT is maintained.

It may be desirable to bring the succeeding stafement into the body list at a
position other than the very tail end. To do this the user places the cursor upon an
individual element of the body list before invoking ENGULF-NEXT. The engulfed
statement then is inserted into the body list at the position immediately following the
 selected element. Since it is desirable that repeated applications of ENGULF-NEXT
_maintain the ordering of the engulfed statements, the cursor is placed upon the newly

engulfed element.

68

There are two important special cases of the application of ENGULF where the
operand node is actually replaced by the engulfed node. The first is that of an empty
optional node, specifically the alternate of an if statement, and the second is that of a
plaéeholder node, specifically the consequent of an EMBED-created if statement (or,
potentially, an unexpanded template). This invocation of ENGULF in tandem with
EMBED has, in practice, proven to be very useful.

Complementary to ENGULF-NEXT is EJECT-FORWARD. If the body as a
whole is selected, then the last statement in the bod& list is removed and becomes the
element immediately following the enclosing statement in the enclosing statement’s
parent list. If the enclosing statement is not a list element, then a statement list
parent (and, if necessary, a compound statement grandparent) is created for it. The
cursor is placed on the body list. When EJECT is applied to a singleton body list or a
non-compound statement, the statement is ejected and the null statement is
substituted within the enclosing statement. If an individual element is chosen, then
that element is ejected. In order to preserve the ordering of statements ejected by
repeated invocations of EJECT-FORWARD, the cursor is placed on the element which
freviously preceeded the selected (and ejected) element. This also means that
ENGULF-NEXT serves to undo EJECT-FORWARD and vice versa. There is an
obvious exception, i.e., when the element ejected is the first on the body list. In this
case the implementor must either abandon the principle of maintenance of ordering
and the desirable inverse property and place the cursor on some available node (e.g.,
the element which followed the selected one) or introduce a spurious null statement
into the code. Since, under the circumstaﬁces just described, there is no next
statement in the sequence, and since maintenance of the strict inverse relationship
- has proven to be difficult or impossible on other grounds, I have chosen the former
- action. Admittedly, this decision is at odds with the policy stated above for ejection of
lone statements. I claim that leaving the null statement upon ejection of a singleton
statement is generally what the user will have had in mind, whereas introduction of

a null statement simply to give the cursor a place on which to rest interferes unduly

69

r

with the integrity of the code.

For ENGULF-PREVIOUS and EJECT-BACKWARD the operand selection process
is identical to that described above. The actions are symmetrical to thosé that have
been cited. ENGULF-PREVIOUS causes the statement preceding the enclosing
statement to be moved to the head of the body list when the list as a whole is
selected, and to the position immediately preceding that of the selected node if an
individual element is selected (with the cursor moving to the newly engulfed node).
EJECT-BACKWARD (Figure 5.4) causes the first element of the body list, or the
elément selected, to be moved to the position immediately preceding the enclosing
statement. Once again, the cursor is positioned so as to preserve sequencing over

repeated invocations.

It can be seen that ENGULF/EJECT is not comprehensive in its functionality.
One cannot engulf the statement following the enclosing statement onto the head of
the body list. Nor can one engulf the preceding statement onto the very tail end of
the body list. That is, these operations cannot be performed by means of a single
command. They are easily performed using ENGULF in conjunction with othef
commands introduced later in the chapter. There are also opportunities for
application of ENGULF/EJECT in the realm of the statement which I have not
covered here, notably the case of enclosure in a case statement or a with statement.
Since the intention of this subsection is to illustrate the EMBED/EJECT operation in
its most straightforward guise, I will withhold discussion of these anomalous cases

until the next subsection.

Further applications of ENGULF/EJECT

The applications of ENGULF to be discussed here all share a very general
schema exemplified by the case of nesting statements. The selected node is always a
list, or element of such a list, which is embedded (perhaps multiply embedded) in
another node, which is itself an element of a list whose other elements have some

relation to the selected node. Perhaps they are of the same type as the selected node;

70

'dooy jeadax ® jo Apoq ay} 0y pardde QUVMMOVL-LOACLA :¥'G 9andiy

QEYMYDVE 1D3Ar3a

SPIPT®TJUEDS PUtTd (ANVHINOD
~PIBMYOeq, Pajdefe OpPON $IDVSSIH

SPIPT®TdUedS pUTy ZANVWWOD
«PRJINBU9,, 9pou BUTMOTIOL $IDVSSAW

MODPUTM Axegpyxny

mopuyM Kieyyyxny

MOPUTM ufyey

)SPIPI®TJuedS
NIDdq
0d (1IN < juetaea) NV snuyjuod I1IHM
1(1 ‘(3aedjueraea)josesnerdiuetaep
:)IUBUR TAYIN
=2 JURTIRA
(pP1oT13BR])PISSOD0ad
N3HL (P197¥36e])fAydua JON 41
§ (3aedjuetaea) JOPIPTIUOTIOOINS =3 pPIOTIBe]
NIOD3d
N3H1L (3xedjuerrea)Biiduz JON ANV SNUFIU0) JAI
1 (3ISTIPTIOTd) 3013edIUeTae)y =3 jaedjuegaea
(1IN = UOF3IONS) WO SNUTIUOD JON 'TIINN
(UOTID98)INON = UOTIDIS
{ana
('IIN = PT®F¥3) 4O Onuyjuod ION 'TIINN
PI®TJIXOU w3 PIOTJ
¢ (P1913)PISSED0ad
{(PT®T3)IXON =i PIOTIIXS
IVIdan
(1T ‘(uo¥3I098)JOSOWENPT® Td) JUSUR TAYIN
’ =: PI®Y3
NIO3q
NAHL (uoT3o98)PuofiIoesSpIetd JI
LVadIay

~ MOPUTM ufyel
NI9ad
0a (1IN <> JUBRTIRA) ONV ONUTIU0D ATIHM
(1 *(3aedjueyraes)josesnerdjueiae)
)jusuld TAYIN
) a$ juerIea
{(p1o713Be]1)PI8EeD01a
NIHI (PT1o73Be3)BA3dwa ION JI
! (3aedjuetaeAn) JOPTOTIUOTIDNTIS =: pTeFjbe)
NIS3d
N3HI (jxedjueyaea)Bhidua JON GNV ONUTIUOD 4l
£ (ISTIPT9Td) J0IaRdIURTICA =t jJaedjuegaea
(1IN = UOTIDOS) YO ONUTIUCD JON "1IINN
(UOT]ID98)IXON =¢ UOTIOeS
{ana
(1IN = PTI®TJ) YO SNUFIUO0D JON 'TILNN
PI®TJIXoU =: PIOTJ
{(PI973)PISSed0a4
$(PI9TJ)I%ON =: PIOTJIINOU
8
(T *(uo¥309s)JOSOWENPTOTd) JUSuP TIYIN
=t PIoTj
Ivadayd
NISad
N3IHI (UOT3ID98)PUOTIONSPIOT JI
LV3aday

71

f

perhaps they have nodes of the same type embedded within them. The method of
selection of engulfer and engulfee together with the rules for positioning nedes and
cursor are essentially those described. Therefore, I will omit these details in the
ensuing discussion except where there is something distinctive associated with a

particular application.

This is probably the appropriate place to address the remaining cases of
application of ENGULF/EJECT to statements. They are the case statement and the
with statement. Where the case statement is concerned, I am now referring to the
statement (or body list) which is a part of each case clause of the case statement.
Application to the list of expressions in each such clause will be dealt with shortly.
The issue of statements interior to a case statement was not resolved in the preceding
subsection because of the complication of added levels of nesting, because I am not
absolutely convinced of its usefulness, and finally, because there is implied in the case

statement a series of nested "else ifs." In the final analysis, the clauses of the case
statement are all at the same level, and when this application of the cdmmand is
implemented, they should be treated in a manner completely analagous to that used
for the other statements. Ejected statements should gc to the level of the enclosing

statement; engulfees should be drawn from that level.

The with statement of Pascal is something of an anomaly in that, rather than
affecting the logic of control, it serves to introduce a new scope. This introduces a
new question: Does one ENGULF and EJECT on a strictly textual basis, or is it
more appropriate to consi&er the semantics of the situation when dealing with the
variables involved. Certainly the operations discussed so far have been of a semantics
altering sort. But are the alterations that would result from simply moving variables
in and out of a with statement of a desirable nature. Other operations exist to
* "qualify" and "unqualify" the field identifiers of record component variables. I submit
that in the case of the with statement it is better to preserve semantics. For

example, application of ENGULF-NEXT to the body of the with in

72

WITH NamedNode DO

BEGIN

NameField := NodesName;
NodeField := SomeNode
END;

NamedNode .Next := PtrToNextRec
should yield

WITH NamedNode DO
BEGIN :
NameField := NodesName;
NodeField := SomeNode;
Next := PtrToNextRec
END,

and a subsequent invocation of EJECT-FORWARD would restore the original version
exactly. Of course performance of these operations requires access to the definitions
of the record types, and they would not be performed by the editor if the user had not

ensured that the necessary environment was in place.

There are other situations quite similar to that of nested statements. One such
case, where ENGULF/EJECT would be useful, particularly in conjunction with
EMBED, involves the arguments of a function call which is itself one of the
arguments of a function or procedure call. For example, '

NthElement (Append(List1), List2, N)
becomes

NthElement (Append(List1, List2), N)
when ENGULF-NEXT is applied to List1 (or the argument list of which it was the
sole member). Another situation very similar to that of nested statements is that of
nested record definitions. For example, given

RECORD
Name : StringType;
PersonalData : RECORD
Weight : INTEGER;
Sex : CHAR;
SIN : StringType
END

73

END;,
application of EJECT-BACKWARD to the last field section in the nested record would
yield |

RECORD

Name : StringType;

SIN : StringType;

PersonalData : RECORD
Weight : INTEGER;
Sex : CHAR
END

END;.

I will now turn my attention to that class of applications of ENGULF/EJECT so
distinct that I have considered giving it its own name and key-sequences. The target
objects in this case are lists (and their‘ iﬁdividua.l elements) which have associated
with them another node, and where the resulting construction may be a member of a
list of constructions of the same type. Specifically, I am referring to the variable
hames of a variable declaration, the case constants of a case statement’s case clauses
or the variant clauses in the variant part of a record, the field names of a record’s
field section, and the parameter names of a parameter section (of either the variable
or value sort) of a subroutine declaration. Unlike the other applications ciéscribed in
this subsection, which are in the proposal stage, application of ENGULF/EJECT to
these lists with associated nodes is fully implemented. The rules for selection of
operands, placement of cursor, etc., are the same as those cited for the statement
realm. The distinctive aspect of this case is that the element which is moved retains

its logical association with the companion node.

Perhaps this is best illustrated by the example of EJECT. When
EJECT-FORWARD is applied to the list of variable names a, b, ¢, d in
VAR a, b, ¢, d : SomeType;
the result is

VAR a, b, ¢ : SomeType;
d : SomeType;.

- 74

If EJECT-BACKWARD is then applied to the element b, the situation becomes

VAR b : SomeType;
a, ¢ : SomeType;
d : SomeType;.

There is some conceptual similarity between this instance and that of the with
statement, where the associations between record variables and their fields are

maintained.

If the appropriate neighbor of the encl_osixig node has a singleton]ist, and if the
associated nodes are the same (i.e., they are structurally equal), then ENGULF may
be applied. For example, the operation shown above could be undone. Or, to cite an
example from the field name realm

RECORD

Name : StringType;

SIN : StringType;

PersonalData : RECORD
Weight : INTEGER;
Sex : CHAR
END

END:;

becomes

RECORD
Name, SIN : StringType;
PersonalData :. RECORD
Weight : INTEGER;
Sex : CHAR
END
END;

upon application of ENGULF-NEXT to the field identifier Name (or its parent list). I
have considered less constrained implementations of ENGULF in which, if the
structure immediately adjacent to the enclosing node were not appropriate (e.g., the
associated node did not match), a search would be made forward (or backward) for a
match. I have also looked at allowing ENGULF to "steal" an element from a
non-singletori list. I have decided against these versions of the command. Although

the attempt to assure that ENGULF and EJECT are, in every case, inverses of one

75

another has 'been abandoned, it was deemed desirable to maintain their

complementary nature so far as possible.

~ Application of ENGULF/EJECT within case statements and record ’variants is

completely analogous to that described above. So is its application to parameter
sections. In the latter case there is an interesting "wrinkle." One would like to be
able to use ENGULF for operations such as:

PROCEDURE Proc (VAR Pari : INTEGER; Par2 : INTEGER); —->

PROCEDURE Proc (VAR Par1, Par2 : INTEGER) ;.

But if the value or variable nature of the parameter section is ignored, ambiguities
are unavoidable. Consider, application of EJECT to the parameters in the result
version above. Should the result be

PROCEDURE Proc (VAR Par1 : INTEGER; Par2 : INTEGER);
or

PROCEDURE Proc (VAR Par1 : INTEGER; VAR Par2 : INTEGER);?
In order to maintain consistency with the other applications of ENGULF/EJECT, I
have decided that the variable case and the value case should be treated as distinct.

~ (This also corresponds to their treatment in the formal MPS Pascal grammar.)

The last instance of ENGULF/EJECT to be considered is its application to the
index types of an array type. For example, in the case of
ARRAY (0..Max1!, 0..Max2] OF SomeType;,
selecting the index list and invoking EJECT-FORWARD would yield
ARRAY[0..Max1] OF ARRAY[0..Max2] OF SomeType;.
Although this case does not match precisely any of the schemata discussed above, it
should be clear that there are analogies to the whole set of ENGULF/EJECT

~ operations that have been introduced.

I have been tempted to try to increase the power of ENGULF/EJECT by
extending its application to still more structures/circumstances. For example, the

notion seems applicable to various expressions. Unfortunately analogies must be

76

3

stretched to accomplish this, and the intuitive appropriateness of these operations is
lost. An informal "poll" of five programmers has yielded three or four "appropriate"
results for the application of EJECT to the bracketed (sub-) expression in -

NOT (a AND b).
Another puzzling case is that of the output statements WRITE and WRITELN. Here
the target list is associated not with a node but with a token and, in the semantic
~ sense, with an action. Perhaps the operation
WRITELN(a, b, ¢) ->

WRITELN(a, b);
WRITELN(c)

should be supported. Under Pascal semantics, the first parameter of a standard
output statement may, or may not, designate a file, and the changes to the program’s
functionality would differ markedly depending upon which were the case. In order to
avoid such unsavory alterations to semantics, ENGULF/EJECT should here be
implemented, if at all, as a context dependent operation with the first argument
carrying over with the ejected one if, and only if, it denotes a file, and ENGULF
being applicable only when the output of both statements is to a common file.

The SWAP/ROTATE Family

The two editing notions that have been considered so far are oriented toward
the issue of nesting and the concomitant semantics, though they may in fact involve
" a textual reordering of elements. I will now look at operations where the reordering,
per se, of sequences of elements is the intent. Typically these reorderings will be of
elements at the same level of nesting, mefnbers of the same list in fact, though there
. is a major exception which has been placed in this family by virtue of other

similarities. Programs are pieced together of various lists or sequences, as well as
"list-like" structures. There are a number of reasons why the programmer might
wish to manipulate the ordering of these sequences. In some cases the goal is to

increase the readability or clarity of the code, e:g. reordering of various declarations

77

or the case clauses of a case statement (in this latter case, the motivation may be the
improvement of efﬁpiency as well). In other cases the operations may be intended to

effect changes to functionality, e.g., reordering of statements or of actual parameters.

A common example of an operation of the latter sort is that of moving a
statement (frequently one implementing the inérementing of a counter variable) in
the body of a looping construct from the bottom of the loop to the top. This example
will serve to illustrate the first member of this family of commands. Since, as the
last element moves to the head of the list; the bulk of the list moves down, or
forward, an appfopriate name for the command is ROTATE-FORWARD. When
applied to a list element, this command causes the ROTATE-FORWARD operatiop to
be performed on the tail sublist whose first element is the selected element. When
applied to a list, ROTATE-BACKWARD moves all elements backward, except the first
one, which goes to the last position on the list. Applied to a list element, it performs
the ROTATE-BACKWARD operation on the sublist whose last element is the selected
one. Both rotational commands leave the cursor positioned in such a way as to
facilitate repeated applications. When the list as a whole is the operand, the cursor
remains on that list. When an element has been selected, the cursor remains at the

position originally selected.

Using the two dire;:tional modes one can rotate the "front" portion of a list
backward or rotate the latter portion of a list forward. One would like, in addition,
to be able to perform arbitrary rotations upon sublists, i.e., to rotate them in either
direction and to rotate sublists not necessarily bounded by a terminus of the list as a
whole. I propose to deal with this in a manner similar to that employed for the
primitives SELECT-SUBLIST and DELETE-SUBLIST. ROTATE-SUBLIST (or
- ROTATE-TOP) would act upon the sublist bounded by the current node and the top
" node on the stack, which must have the same parent list as the qurrrent node. The
top node would be moved to the location of the current node and the remainder of the

sublist would move toward the location formerly occupied by the top node. To

78

r

facilitate repeated rotations the cursor would remain at the same list position and
the top node on the node stack would be replaced by a reference to the node now in
the position formerly occupied by the old top node.

The other major way to effect alterations in sequencing is by means of an
exchange or "swap." I will introduce this family, or subfamily, of operations by
describing its most genefal form, the arbitrary swap, SWAP-TOP. This command
causes the current node and the top node to be exchanged in their respective
contexts. The cursor is left at its original éontextual location, and now rests on the
former top node. The top node on the node stack is replaced by a reference to the
former current node. Thus the user may readily gain access to that location which
has been significant to the operation but may be remote from the current node
location. He/she may also undo the operation by means of another invocation of
SWAP-TOP. Note that this command is less rigidly constrained than the ROTATE
operation or the other SWAP operations to be described below. Current node and top

node need not have a common parent list; only node type compatability is réquired.

Any exchange of nodes can be accomplished by means of SWAP-TOP; however, a
particular class is common enough (in my experience it is the most common sort of
swap) to warrant a separate command. This is the exchange of adjacent list
elements. One such command, SWAP-NEXT, is sufficient, but, once again, for the
sake of convenience and cursor-positioning considerations, support for
SWAP-PREVIOUS is justified. By having the cursor stay with the selected element
when it is swapped, a bubble-up (or bubble-down) procedure is enabled. Though it is
at odds with the SWAP-TOP ‘implementation, this cursor placement strategy
facilitates the rotation of small. sﬁblists in a fashion which may be more convenient

than rotation by means of ROTATE-TOP.

It is not immediately obvious how the SWAP notion might be applied to a list,
or whether it is applicable at all. Perhaps it would be not altogether

counter-intuitive to have the command produce a complete reversal of the ordering of

79

the elements of the target list.

Commands of a Transformational Nature

The last family of operations to be considered is the one whose members
‘ probably best deserve the appellation "high level." These are operations borrowed
from the realm of transformational programming. Under the transformational
programming model successive, correctness preserving, potentionally automatable
transformations are applied to a formél specification, producing, eventually,
executable code. Another, looser, formulation of the model has the programmer
writing good, modular code, then applying such transformations as necessary to yield

code (in the same language) which is capable of more efficient execution.

Certainly, candidates for inclusion as editing commands are to be found here.
Transformational programming of the looser kind is an identifiable aim of the editing
process. The commands are likely to be powerful, in that a single key sequence may
replace an arbitrary amount of textual (or basic syntax-based) editing. And they take
advantage of the underlying grammar-based methodology, under which theif

implementation is relatively straightforward (though by no means trivial).

However, not all such transformations are appropriate to a general purpose
program editor. Typically, the circumstances under which thay may be applied are
highly restricted, and in many cases only likely to‘ arise as a result of previous
transformations. Their potential outcomes are limited as well, aimed, as they are,
almost exclusively at optimization. Nor are they generally easy to understand or

compose.

The problem, once again, has been to identify categories of operation which are
sufficiently intuitive and general in application. The conceptual backbone for this
family has been provided by three transformational routines due to Cameron [Cam87]

which implement simplification of expressions, constant propagation, and in-line

80

coding of procedure calls. The first two are cbnceptually and functionally related and
seem to constitut.g one subfamily, SIMPLIFY/PROPAGATE. The third serves as
paradigm for another subfamily which I shall call INLINE/ENCAPSULATE [5].

The INLINE/ENCAPSULATE subfamily

INLINE takes its name from the operation of encoding the statements of a
subroutine call in line, but I wish to extend the notion to other cases where some
program element is replaced by code which is equivalent in functionality, but is
expressed at a lower level or, somehow, more explicitly., Though many such
operations are, like the procedure call example, aimed at an increase in efficiency, I
have not restricted my attention to such cases. In the following sections I will discuss
various flavours of the INLINE notion. First, the procedure call case will be briefly
examined. Next, I will introduce two other operations, which I have implemented,
that are quite dissimilar to the procedure call operation but seem to belong in this
family nonetheless. Proposed extensions of different sorts will be presented as well.
Finally, the matter of a complement to INLINE will be dealt with. \

Replacement of a procedure call by the statements of its body to eliminate-
procedure call overhead is a standard optimization technique. Its incorporation into
the editor is appropriate, since it is an operation which should be applied locally in
those situations where analysis (or profiling) has shown it to be beneficial. Though
straightforward enough when facilitated by the MPS package, its implementation is
not trivial, in that arguments must be substituted for the corresponding formal
parameters, declarations must be created for the subroutine’s local declarations, and
renaming must take place if there are clashes with any existing identifiers.
Extension of the operation to function calls is complicated by the necessity for the
~ introduction of intermediate variables, and the effects of such an extension are

" complicated by the poséibi]ity of side effects in the target code.

[5] Other terms which have been used for similar notion pairs are unfold/fold and
devolution/evolution.

81

f

A transformation which is not of the optimizing kind is the "in-line coding" of a -
with statement. By introducing a new scope (or scopes) the with statement may make
comprehension of code difficult. Simple withs are generally not a problem, but when
withs are nested, and there are multiple instances of field/variable names the
situation is somewhat more complicated. For example, given the declarations

VAR f1, £2, £3, £4, £5, £f6 : t;
ri : RECORD
f1, £2, £f3 : ¢t
END;
r2 : RECORD
f2, £3, £4 :t
END;
RECORD
f3, £f4, f5 : ¢t
END;,

r3

what is one to make of the statement

WITH r3, r1, r2 DO

BEGIN

f1 := £2;
f2 := £3;
£3 := £4;
f4 := £5;
f5 := f6
END?

Recognizing that WITH r3, r1, r2 DO ... is shorthand for

WITH r3 DO
WITH r1 DO
WITH r2 DO .

LECIE

the programmer must, for each variable in the with’s body, search the record
definitions from the inside out for a matching field. This can be a daunting task,
particularly if the declarations are two hundred, or so, lines away. INLINE
automatically yields

r1.f1 :=r2.£2;
r2.£f2 :=r2.£3;
r2.f3 :=r2.f4;
r2.f4 :=r3.£5;

82

r3.£5 := £f6,
where, at least, the references are explicit. Such an expansion may also enable the
writing of additional code which would otherwise be impossible due to duplication of
names, e.g.
£3 {the variable} := r2.£3.

As implemented, the command acts upon the with’s body as a whole, as shown here.
It might be preferrable to be able to perform partial in-line codings by selecting a
record variable from the with’s record variable list (or selecting the body as a whole
by selecting the list as a whole). Note that with statements included in the body
statements are not affected by INLINE.

Another implemented application which may not increase clarity but does
facilitate alterations to the code is transformation of a case statement into a series of
nested if...elses, e.g.

CASE e OF
a:si;
b, c :s82;
d,e,f : s3
END

becomes

IF e IN [a] THEN
s1
ELSE
IF e IN [b, c] THEN
s2
ELSE
IF e IN [d, e, f]
THEN
s3,

where, for example, predicates could be modified to further qualify selected
_ statements. This transformation definitely has the flavour of the INLINE family.
Note, however, that it is not strictly semantics preserving, in that a failure to match

e leads to a run time error in the case version, but not in the nested if...else version.

83

A more conventional INLINE operatidn is loop "unrolling." This optimization
technique, aimed at reduction of the number of tests in critical i)assages of code, has
not been implemented but could be without generating ambiguities in selection. If
both the initial and final expressions are constants, a for loop may be unrolled
. completely, i.e.,
FOR1 :=m ton DO

becomes

where 53 represents s with j substituted for all instances of i contained within it.
Repeat and while loops may be partially unrolled, i.e.,

REPEAT
sl
UNTIL e

becomes

sl;
WHILE NOT e DO
sl,

and

WHILE e DO
S

~ becomes

IF e THEN
REPEAT
S
UNTIL NOT e

The gains are not immediately apparent, but if the value of e is known, then tests

84

r

(and, sometimes, their associated stateménts) can be eliminated, an operation
facilitated by commands described in the next subsection, and the operations may be

(repeatedly) applied to the loops.

I speculate that it might be meaningful to expand the INLINE concept beyond
the realm of the statement. Specifically it could be used to substitute a type
definition for a type name. For example, given

TYPE RA = ARRAY [Min..Max] OF SomeType;
and |

VAR Foo : RA:,
application to RA (in the variable declaration) would yield

VAR Foo : ARRAY [Min..Max] OF SomeType;.

Once more the rationale for this operation is the facilitation of further alterations.

The commands I have introduced in this chapter have typically had
complementary operations associated with them, as does INLINE. I have chosen to
refer to this notion as ENCAPSULATE. Here we leave the realm of implementation
and enter that of speculation. These operations have not actually been implemented.'
Nonetheless, it is worthwhile to consider briefly such a faé¢ility, its potential, and the

problems associated with it.

Encapsulation, the hiding of the sort of detail that is exposed by INLINE,
should really be a part of the early stages of software production, but programmers
may find themselves engaged in this activity at any time in the life cycle, and editor
assistance would be helpful. It seems unlikely that the situation would arise where
constraints would be satisfied such that nested if...elses could be transformed into an
equivalent case statement, but gathering statements containing component variables
(i.e., varaiables of the form <Record:Variable>"."<Field:Identifier>) into a with
statement may occur in Pascal prograimming. And it certainly‘ sometimes happens
that sequences of statements coded in-line turn out to be required in some other

context, in which case it would be desirable to have the automated capacity to

85

e e

i

replace the sequence with a procedure call and construct a procedure declaration.

If encapsulation routines are to be ‘incorporated into the editor, the problem of
the many-to-one nature of the operation must be addressed. Whereas the éppropriate
INLINE transformation may be unambiguously' determined for any given node, the
same is not true for ENCAPSULATE. When it is applied to a sequence' of statements,
for example, is the intent to transform them into a with statement, or to encapsulate
them in a procedure call? Moreover, even when the transformation desired is known,
there are other choices to be made. If there are a number of potential record
variables represented, which is to be the operative one in thé with statement, and if
more than one is to be used, in what order are they to occur? If a procedure call is
required, which variables are to appear as arguments? The method of exhaustive
display does not seem to be applicable here. The two-tiered nature of the process
complicates the situation. Moreover, since these operations require a great deal of
contextual analysis, they are slower than mere template substitution, conceivably
slow enough to make the method unworkablee. ENCAPSULATE is, perhaps, a
candidate for implementation as a hybrid command. Before entering the command
sequence, the user would be required to enter pertinent data in the command window.
Perhaps a fragment of a with statement (e.g., WI TH r1 , £2, r3) could be used to
specify the desire for the with and to identify its record variables. An actual
procedure call could specify that alternative.

In the procedure call case, there are other interesting questions. Since Pascal
supports the use of both value parameters and variable parameters, it must be
determined which parameters are to be of which sort. It is also necessary to
determine which variables are to be declared locally within the new procedure.
Assuming that the code is initially correct (and complete), these decisions can be
made based on analysis of the code. But sﬁch analysis could prove so time consuming
as to interfere with the interactive editing process. There are also some instances

where the programmer will desire to exercise his/her judgement. For example, a

86

read-only variable might automatically be declared as a value parameter, but if it
were very large, a competent programmer would declare it as a variable parameter
(so that it could be passed by reference). Another question relates to the-disposition
of the resulting procedure declaration. Should it be inserted into the code
automatically, or, to localize the effects of the command, should it not be placed on
the node stack to be dealt with by the user as he/she sees fit?

It is not clear that the problems with parameterization can be solve in a fashion
which is tidy enough for an editing cofnmand. However, a somewhat simpler
operation which "factors out" subconstructs, replacing them with automatically
generated identifiers, is practical. For example, given the statement

a:=b+c*d,
application of this FACTOR conéept do ¢ * 4 would yield

cTimesd :=c * 4;
a := b+ cTimesd.

Extended to statements, this notion could provide, at least, for their encapsulation in

parameterless procedure calls.

The enumeration of possible applications above is not meant to be exhaustive.
(ENCAPSULATE/FACTOR could, for example, be applied to types, where it would
probably be as important as INLINE, if not more so.) It is meant rather to suggest
the possibilities of the notion, on one hand, and on the other, to point out some

implementation issues and potential sources of awkwardness.

The SIMPLIFY/PROPAGATE subfamily
The last borrowed operations to be considered are SIMPLIFY and PROPAGATE.
SIMPLIFY acts upon expressions, both arithmetic and boolean (and, potentially, set
expressions), transforming them into their simplified forms in accordance with
established rules, e.g., |
1+2 => 3

x*0 -2 0,

pPANDTRUE -> p.
It may also be applied to conditional statements, e.g.,

IF TRUE THENp -> p.
PROPAGATE is applied to variables to which a constant value has been assigned (or,
potentially, to constant definitions), causing that value to be substituted for the next
occurrence of the variable in the sequence of statements. Sequences of the two
operations are readily composed, e.g., SIMPLIFY the right hand side of an
assignment, PROPAGATE that value into a subsequent expression, SIMPLIFY that

expression, etc.

These commands become important when used with one another and with other
transformations. One generally does not produce expressions such as 5 + 6 in the
course of writing a program, but they do frequently arise as the result of a previous
transformational operation. For example, in-line coding of a subroutine with a literal
argument will introduce literals into the code where they previously were not present.
This may well result in expressions of precisely the type which SIMi’LIFY and
PROPAGATE are designed to handle. The two commands may then be used to tidy

up the code and to remove unnecessary tests of conditions,

88

CHA_PTER VI
- THE MANIPULATIVE FACILITY IN ACTION
" In the previous chapter I described in detail the families of commé.nds which
make up what I have called the manipulative facility. The question remains: How
effective are the new commands in a practical editing situation? Some insights into
this matter have been gained through application of the editor fo the editor during
the latter stages of its development. This included corrections of errors and omissions
in large scale additions (which were, for the sake of convenience, composed on the

text editor), alterations and enhancements to existing code, and the repair of bugs,

old and new.

Based upon these experiences, I have constructed a few examples of the editor in
action. Each example demonstrates a solution to a particular editing (and
programming) problem. It is hoped that each will be long enough to impart some of
the flavour of the editing process. The commentary accompanying each example
describes the process, and, where appropriate, makes comparisons with alternate
methods based upon more elementary editing operations; The examples have beeﬁ
contrived to demonstrate selected operations from each of the command families. No
attempt has been made to demonstrate the full range of applicability of the
commands. What is presented instead is a sampling of some of the kinds of
operations that I have, so far, encountered in practice. Each example is intended to
spotlight one or more of the new manipulative commands. but it is also important to

note how these commands interact with each other and with the more. basic ones.

Example - Rotation and Transformation

In the ongoing editing of the editor, I have not found myself using what might
be called the traditional operations of the transformational family. I suspect that this
1s a function of the particular stage in the editor’s development where the editor has

been used. These operations have proven useful elsewhere, and the editor is

89

3

manifestly a convenient platform for their execution. I have found some use for the
extensions I have made to the INLINE notion. The following example demonstrates

how INLINE may be used to facilitate further alterations.

The SWAP/ROTATE family is largely "sugar." Its operations may be simulated
using the basic SELECT and I_NSERT (or REPLACE) commands together with some
cursor motion. Nevertheless, I have found these commands, particularly
SWAP-NEXT, to be useful and satisfying. The example shows how ROTATE may be
helpful as well. |

The problem is to replace case-by-case processing, implemented by the case
statement shown in the left screen of Figure 6.1a, by a generic procedure call
Strip1, while retaining special processing for the IfStatement case. In other
words, the case statement is to be replaced by code of the following sort:

IF NodeType(OldNode) = IfStatement THEN

{Existing code for the IfStatement case}

ELSE
Strip1(0ldNode, SelectedNode, Marker, Problem).

The first step in the process is the production of the new code, i.e., the
procedure call. In Figure 6.1a (right screen) the screen cursor is moved to the
command line and the node type is specified there, so that the text editor may be
invoked (Figure 6.1b). The necessary text is typed in (figure 6.1c) and the resulting
node placed on the editor’s node stack (Figure 6.1d). The cursor is then returned to
the main editing window (Figure 6.1é), where it selects the first item of the case

statement’s case clause list.

90

The strategy now calls for replacement of the case statement by an if statement
with. a series of ’ nested else-ifs. First, however, the IfStatement case mﬁst be
brought to the head of the case clause list, so that its body statement will form the
consequent (then branch) of the if statement. There are various ways of finding and
moving that clause, which is located somewhere in the large case clause list. I choose
what seems a straightforward expedient, simply rotating the case clause list as a
whole until the desired element appears at its head. To accomplish this, the syntactic
cursor is moved up (Figure 6.1f) to select the sequence of case clauses as a whole, and
the ROTATE command is invoked repeatedly (Figures 6.1g, 6.1h, 6.1i). Since the
current éyntactic cursor position (on the CaseClauseList) is sufficient to select the
case statement for the INLINE command, that command is keyed in as soon as the

IfStatement clause is properly positioned (Figure 6.1j).

What remains is replacement of the resulting if statement’s alternate (the else
branch) with the procedure call which is waiting on the node stack. Navigating the
complex of nested ifs and elses by eye would be difficult, so the syntactic cursor is
moved down a level in the internal tree (Figure 6.1k), then laterally across that level
from the outer if statement’s predicate to its consequent (Figure 6.11), and from the
consequent to the desired alternate (Figure 6.1m). Finally the basic command
REPLACE causes that node, which comprises a large fragment of code of
‘undetermined length, to be replaced by the previously prepared procedure call.

Though this process requires a number of steps, it is straightforward and
effective. It is clear that a simple concatenation of basic, syntax-based commands
cannot be substituted. The changes could, of course, be effected textually:

4. Note line number of first line of the case statement.

Find the string, "IfStatement.”

5

6. Delete intervening range of lines.

7 Type "IF NodeType(OldNode) = IfStatement THEN."
8

Find the end of the case clause (by scrolling downward) and note its

91

10.
11.

12.
Note that the above scenario is simplistic in that no attention is paid to such details
as proper indentation. Moreover, it takes advantage of formatting resulting from the
abnormally narrow screen (i.e., IfStatement : would normally be located on the
same line as the first part of the body statement and would therefore have to be

deleted one character at a time). This example and the comparison of the different

line number.

Find the end of the case statement (by further scrolling).

Delete this range of lines.

Delete the semicolon which is about to become superfluous (and
erroneous).

Type "ELSE Strip1(0OldNode, SelectedNode, Maker, Problem);."”

editing approaches leads to some observations:

1.
2.

The textual version certainly requires many more key strokes.

It is error-prone. (Consider, for example, how easy it would be to
forget to delete the semicolon preceding the new ELSE.)

It requires attention to a great dea}l of arbitrary detail, whereas the
SBE version operates at the level of syntact entities possessing
semantic significance.

The main component operations of ‘the SBE version emerge naturally
from a statement of the problem, whereas there is no such

relationship discernable for the textual operations.

92

"MOpPUIM PUBWIUIO) 9Y} Ul Palsjud ST SEB 9pou Y :el'g

o [11eseanpesoad ¢aNVIHNOD
SAUNANITYDS- uo BuybBOT edUSEMO) $IOVSSIAW

Isyriveuelels jduxdyals esaed GANVWWOD
SAWNANIFYIS~ U0 BuThbboT @dUSUMIO) $IADVSSAH

moputM Krejryxny

mopuiM Azejryxny

MOPUTM UTEH

MOPUTM ufey

+ {(opoONMON)YIBUDT m: YJBUIIMON
{ (epoNP10)IE9deYD01d =: OPONMON
NISAq
s doojieadey
. fana
(19)1el. ‘OpONMON ‘SPONPTO)IITTEISUL
{ (SPONPTIO) PRI TI9qE1001d =t OPONMBN
NIO3g
$ jusuP@jelISpPIIIeqe
{ana
oni) = wetqoad 3S13
(19yIe} ‘SPONMON ‘OPONPIO)IITIEISUL
NZHL "IIN <> OPONMON JI
! (SPONPIO)YITMOOId =3 OPONMBN
NIDad
$ JusURILISYITM
{ana
{(I93aeN ‘OpPONMON ‘OPONPTO)3IITTEISUI
{ (9PONPT0)95ED201d =3 9PONMON
NIS3q
¢ jusuRjejljsese)
40 (9poNprO)ediiepoN ASWD
{ (epoNpa1DeTeS)jusIed =t SPONPTIO
{9pONIURIIN) =i SPONDIIDOTOS
feste] =: walqoiag

! (9poNMON)UIbuaTT =: yjbusIMaN
! (9PONPTO0) 1e2doyo0oad =: OPONMON
. NID3d
¢ doomjeedey
{ana
(19} I ‘OpONMON ‘9PONPTO0)3IITT®ISUL
! (9PONPTO) PRTToqeTO01d =: SPONMBN
NID3d
¢ JuduPjelISpeiTeqe]
"~ {ang
anIj} =!: werqoad ASTA
(39 ae ‘OpoNMON ‘OPONPTIO)IITTI®ISUI
NIHL ‘TIN < O9PONM®N 4I
{ (SPONPTO)UITMO0Id =! OPONMON
NID3Id
: JusuR}IeISYITM
{ana
{ (1931 ‘OPONMON '®PONPTO)IITIRISUL
! (9PONPT0)OSEDDO0Id =: OPONMIN
NID3Id
$ juluPIelsase)d
40 (®poNp10)adArepon aASH]
! (9poNpeldeaTas)juaaed =: IPONPIO
{9PONIUDIIND =: DPONPIIIVTIS
fasTe] =: weTqoad

a3

‘apou mau B Jo uorjonpoad 10j pajfed St I0JIpd Y], :q[°9

M3N LIaA

_ 11ec0anpa20ad ANVHWOD
17eD9anpadsoad BUfITPA $3ADVSSAMW

(Jtreseanpesoad ¢ANVHHOD
SANNANIIYOS-~ uo BuybBOT Sd2UBWMOD ADVSSIAW
MOoputM KAaeyryxny

moputm Axeyryxny

hoputM utey

MOPUTM UTEH

{ (9poNMON)YyIBUOT] at YIBUSTMON
{ (9PONPTIO0) 1e9doHD01d =3 OPONMON
NIDa™
s doo7qjesday
{ana
(I9jael ‘OpoNMON ‘OPONPTO)3IIITEISUI
{ (9PONPTO)P3TT9UeTO0Id =i OPONMON
NI9ad
¢ JudmRIeISPITTIqe]
fana
oN1) =3 wPTqoad ASIA
(a9jae ‘opoNMeN ‘®pPONPIO)IITTE®ISUI
NAHL TIN <> 9PONMON il
! (OPONPTO)YITMO0Id =: OPONMON
NISag
$ JUSEPIVISYITM
fana
{(a9yaen ‘opoNMeN ‘SpPONPIO)IITIE®ISUI
{ (SPONPT0)®5€)2013d =¢ OPONMON
NID3E™
¢ juouejljejsese)
d0 (°poNpP10)°dArepoN ASWD
{ (9PONP?309195)juaaed =¢ SPONPTIO
{9poONIU9IIN) =i OPONPIIIITOS
fosTe] =: weIqOad

{ (OPONMON)YIBUDT =t YIBUSTMON
{ (9pONDP10) Je9doyo01d =! OPONMON
: NID3d
¢ dooTqjeadey
fana
(I9yae “OPONMON ‘SPONPTO)3IITIERISUI
{ (OPONPTO)P3TT9(e1001d =3 DPONMON
NID3d™
¢ jJusuPjelISpeTTaqe]
fan3
onI) =: wdfqoagd ISTd
(x9jael ‘opoNmeN ‘OPONPTO)IITT®ISUI
NZHL TIN <> 9PONMON JI
{ (9PONPTIO)YITMO0Id =3 SPONMON
NIS3g
¢ JusuPIeISYITM
{ana
{ (I9)aeN ‘OpPONMON ‘OPONPIO)IITTIEISUI
{ (9PONPT0)®5e)2013d =¢ IPONMIN
NID3d
¢S jusu@jejsese)
40 (9PONP10)edAIepoN ASWD
{ (opONpo3109TeS)jueaed =3 IPONPTIO
{opoNjueIIN) = OPONPIIOOTOS
fesTey =3 WATqOad

94

"PaI9jUa SI IPOU MaUu 9Y) Jo uonejussaides [en)xa) oy, :91°9

1Te%8anpadsoad ¢ ANVHHNOD
1TeD9aINpad0ad Buylypa :IAOVSSIAH

11edseanpadsoxd ¢ANVHIWNOD
TTED9anpad0ad BuTITPA $1IAOVSSAN

MmopuyM KXaxeyryixny

[J(we 19014 * 193 3eH ‘9 PONP2 129 19§ ‘OPONPT0) TdF I35

MOpUTM Kaeyrrxny

MOPUTM UTel
{ (9poNMeN) yIbue] =3 YIBueIMeN
{ (°PONPT0)Ieadoyo0ad =t OPONMON
NID3d
¢ dooieadey
fana
(F03Iel ‘9pPONMSN ‘®PONPTIO)IITTI®ISUIL
{ (SPONPTO) PR TT9qETI01d =t SPONMEN
NI93d
: jusumjejspatieqerq
‘ana
®nI) = wAIqoad IAS1d
(I93)1E ‘OPONMON ‘OPONPTO)IITTEISUL
NIHL 1IN <> OPONMON JI
{ (SPONPTO)YITMOOId =¢ OSPONMBN
NID3d
$ jueweIeISYITM
‘ana
{(a9)1el ‘SpONMON ‘OPONPTIO)IITTEISUL
) { (9PONPTO)P5E€)I01d =¢ OPONMON
NID3d
¢ jusudjejsese)
40 (°PONPTO)®dALepPON ASWD
{ (opoNpe]jdeTes)jueIed =i BPONPTIO
{9poNjURIIN) = SPONDIIIOTOS
{este] =: wlTqOag

MOPDUTM uyey
. { (opONMON)YIBUDT =3 YIBUITMON
{ (oPONPTO) JE9dayD0ad =i OPONMAN
: NIDag
$ dooTieadsy
{aNa
(393)ael ‘OpONMON ‘OPONPTIO)IITT®ISUL
¢ (9PONPTO)POTI9qe 10013 =t OPONMON
NID34
¢ JusuPjeISpPI[TeqeT
{ana
NI} =¢ wRTqoaxd IAS'IA
(39)aey ‘OpoNMeN ‘OpPONPTIO)3IITIEISUI
NIHL 1IN <> SPONMON JI
{ (9PONPTO)YITMOO1d =3 OPONMON
NID34
¢ JueuwdIeISYITM
{ana
{ (x9yael ‘epoNMeN ‘OPONPTIO)IITTIEISUI
{ (OPONPTIO)OSEDD013d =¢! OPONMON
NID34
$ jusuRPjejsese)
40 (°PONPTO)®dALepON ASVD
{ (opoNpeldeTeS)jueIed =3 @PONPIO
uﬂﬁOZHEOuhzu =m? OPONP3}O019S
{este] =: UPTYOagd

95

"JO®}S 9pou 9y} uo 5308 YOIYM ‘apou e Sppoik Juisied P9

41L3ATdW0D 1103

[

[Jtreseanpssoad ¢aANVHWOD
yoeys jo dol MaN 3ADVSSAW

11e2%anpadoad ¢ANVHNWOD
11EJ9INpad0aqd ButITPa 1ADVSSAM

MopuiM Axeypixny

moputy Kzeyyyxny

(WRTqoad ‘I9)Iel ‘SPONPRIIOTeS ‘OPONPTO)TATIIS

[J(we1qoad * x93} 1€l ‘9 PONPI 09 19S ‘9PONPTO) TATIIS

MOpUTM uTel

{ (opoNMON)YIBUOT =3 YJBueMON
{ (9pPONPT0)Ieodoyd01d =$ OPONMON
NID3d
s doojesdey
_ {ana
Ahdu—.ﬂﬂ: -08—-302 -OGOZﬂﬁOvUHﬁﬁﬂun:h
{ (SPONPTO)PRTTOqe1T1201d =i OPONMON
‘ NID3dg
¢ JudawRjejspItIoqe]
{aN3
NI} =¢ weTqoid IASId
(391 ‘OPONMON ‘OPONPTO)3IITTEISUX
N3HL 1IN <> OPONMON 41
{ (9PONPTO)YITMOOId =3 SPONMON
NID3d
¢ jusuRje]SYITM
~ ¢ana
{(x9yae ‘OPONMON ‘SPONPTIO)IITTEISUI
{ (9PONPT0)95€D203d =$ OPONMON
NIDa™
¢ jusm@jelsese)
JO (9PONPT0)edAIepON ASWD
{ (9poNpa312919§)jusieq =3 SPONPTIO
ndﬁOZU-—Ohh:U =l OPONPI}IOTOS§
{esTe3 =: wRTqOiad

MOPpUTM uTel
. { (OPONMON)YIBUOT = YJBuoJMIN
{ (9PONP1O0)Ieedeyd01d =3 SPONMON
: NIDad
3 dooqjieadey
{ana
(ao)yxel ‘9pOoNMON ‘SPONPIO)IITIEISUI
{ (°PONPIO)PR119qETO01d =i SPONMIN
NID3™
$ JuswRjejlspagreqen
fana
ONI) = WP Tqoxd ASTA
(39Tl ‘OPONMON ‘SPONPTIO)3IITTEISUX
NZHL 1IN <> 9PONMON J4I
{ (SPONPTO)YITMO0Id =! OPONMON
NIDAd
$ JuUIURJeJISYITM
fan3a
{(a9)ael ‘OpPONMON ‘9PONPTIO)IITIE®ISUI
{ (9PONPI0)95€D203d =i OPONMON
’ NIDad
¢ jusuPjelsose)
Jd0 (®poNpP10)9di1epoN ASWD
{ (opPONpP@12019S§)judIeqd =: ISPONPIO
{OpPONJUSIIN) =! OPONPOIIO[DS
festel =: wRIqOagd

96

‘gaIe JUD{IOM 3Y) 0} PIUIN)AI ST JOSIND UIIIIS Y[, :9]'9

1Tes9anpasoad ANYWHOD
yoejs 3o doj MeON :IADYSSAH

mopuipm Aaeyryxny

(sd1qoaa ‘aeyarey ‘SpoNpal}deTes ‘epoNPT10)I1dTIIS

[Jitessanpasoad L ANVIHWOD
yoels jo doj MeN 1ADVYSSAW

MOPUTM AxeTiTxXny

MOPUTM uteyl

! (PPONMON)YIBUDT =3 YjBueMaN
1 (epoONPT0)3e0deyo01d = SPONMIN
NIDad
g doo7jeaday
{ana
(393 3el ‘OPONMBN ‘9PONPTO)IITTIRISUIL
{ (9PONPTO)PRTTOqETI01d =3 SPONMIN
NIO3d
t jusumjejspafieqen
{aNa
: onI} =: mwATqolgd 3513
(1931l ‘OpPONMBN ‘®PONPTO)3IITTRISUI
NaHL 1IN <> 9PONMON JI
! (9PONPTO)YITMO0Id =: OPONMBN
NIDad
! Juswelelsyl M
, ‘ana
{(19j3e ‘OpONMON ‘OPONPTO)IITTEISUI
) { (SPONPTO)95€D201d =i OPONMIN
NIDad
[§ jJueuwmjelsOsSE)

40 (9PONPT0)°dALISPON ASVD
{ (OpOND®109T9S§)JuUvIRd =i SPONPTO.

{OPONIUSIIND = BPONPIIIO[OS
festey = wdTqOaad

(woyqoad ‘aeyiel ‘opoNpaldees ‘epoNpPTO0)Td¥IIS

MODUTM UTelH
: ! (OPONMON)YIBURT =3 YibudameN
! (opoNPT0)Ie9doyd03d =i OPONMEN
. NI9ag
¢ dooieadey
{ana
(39yael ‘opoNMBN ‘SPONPTO)IITTEISUI
{ (SPONPTO)PRT19qe1201d =: SPONMIN
NI9ad
¢ juemejelSpITTeqe
‘anz
eni1) =: welqoid Is1a
(19yIel “OPONMBN ‘OpPONPIO)IITT®ISUI
NFHL ‘TIN <> OPONMON JI
¢ (OPONPIO)YITMO01d =: OPONMON
N193d
$ JUBURPILISYITM
{ana
{(39yael ‘opONMON ‘OPONPTO0)IITTIEISUI
{ (oPONP10)®5E€DD01d =i SPONMIN
NI9ad
3 juounRjejsose)
40 (®PONPT0)9dALI9pPON ASVD
! (opONP33100 10§)JueIegd =i OPONPTO
{9pONIURIIN) = SPONPI}ID9[0S
jiestey =t uRIqOlag

97

*}S1[9SNB[D 988D BY) SJ099S 10SIND onoeyuds ayg, :J1°'9

dn Josund

1TEd9anpesoad ANYHNOD
ISTIOSNRIIISE) $ADVSSAH

TTed9anpasoad ANVWWOD
yoe3s jo doj maN :AOVSSIAW

MmopuiM Axeyiixny

MopuiM Axeyiixny

(wRTgoaad ‘I9jael ‘SPONPRIOVTLS ‘SPONPIO0)TdTalsS

MOpUIM Ufel

MOpUTM UTEH

{ (SpoNMeN)YyjBueT =: YJBueIMON
{ (opPONPTO)Ie9doNO01d =: DPONMIN
NIDZd
t doojyeadey
~ fana
(a9)ael ‘OPONMON ‘OPONPTIO)IITTEISUL
{ (SPONPTO)PR1T9qRT1001d =: SPONMON
NI93d
¢ jusuPjeISpafIeqeT]
‘ana
oni) =: weIqold IASTA
(19312 ‘OPONMBN ‘OPONPIO)3IITTEISUI
N3HL TIN <> OPONMON JI
{ (9PONPTO)YITMO0Id =3 OPONMON
NIDa3d
¢ JusweIRISYITM
fanz
¢ (39)aey ‘opPONMON ‘OPONPTIO)IITTEISUI
nAOOOZQ.nOvOmMUUOum al OPONMON
NIDad
¢ JusuRjelSesE]
40 (°poNpT10)edAzepoN ASVD
{ (9poNpe)jo9Tes)juered =i SPONPTIO
{opoNIURIIN) =: OPONPOIIDOTOS
{ostey =3 waIqoad

' ! (epoNMeN)YIBue] =3 YIJBuSTMBN
{ (oPOoNPT0) Jeedeyd01d =! IPONMON
_ : NIDAd
¢ doo1jeodey
. {ana
(29yxey ‘9pPONMON ‘OPONPTO)IITTEISUI
{ (9PONPTO) PRI T9qR'IO01d =i SPONMON
NIDZd
¢ jueuPjejgpatieqeT]
{ana
onl1) = uwdIqoad IASTA
(ae)yaey ‘epoNMBN ‘OPONPTO)IITIE®ISUI
N3HL TIN <> OpPONMON JI
{ (9PONPTO)YITMOOId =¢ OPONMIN
NIDad
¢ JueudILISYITM
fanz
{(9)ae ‘OpONMON ‘OPONPTO)IITTRISUIL
! (9PONPT0)95€)2013d =$ BSPONMON
NIDZd
[} Juewsjejsased
40 (°POoNPT10)2dAIepPON ASVD
{ (epoNpa)DeTe§)judIed =3 SPONPTIO
{opoNIUSIIN) =! OPONPI]IDOTOS§
fostez =t woatqoad

98

"Pe7B30d St 3joym B se 8] sy, 319

ALVIOY

1Te29anpes0ad ¢ ANVIINOD
Isfresner)ese) IAOVSSAN

mopuiM Axepryxny

MOPUTM UTeN

(39)xel ‘OPONMON ‘SpPONPTO)3IITTEISUL

{ (9PONPTO)PRTTOqEID01d =! DPONMIN
NI9a4

$ JusuPjejISpPITIOqeE]
. fana
onxj) =3 weIqoad IS1I3
(I9yIel ‘OPONMON ‘SPONPTO)IITT®ISUI
NIHL TIN <> OPDONMON 41
! (OPONPTO)YITMO01Id =3 OPONMON
NID3d
3 JusuPILISYITM
{ana
{(a0)xel ‘9pONMON ‘SPONPTO)3IITTIEISUL
{ (9PONPTI0)95€DD201d =n$ IPONMON
NIS3g
3 jucuPje3lSese)
‘ana
(.,moysumos KAidde jou s90(Q,)o6eSSOHIITIM
. feniy =3 weATqOoiId
NID3Y
¢ rroalxSIINVa=d
40 (®pPoNPT10)edALepoN 3ASYWD
{ (epoNpe3DeTeS)jueIed =i SPONPIO
{9poNjJuUeIIN) =i OPONPIIOOT0S
{oste] =: uwdIqOolId

11e2%anped0oad ANVHWOD
Isyesneryese) $aA9VSSAN

MOpPUTM AxefTixXny

MOPUTM UTeH

g { (OPONMON)YIbURT =3 YJBUITMON
{ (9PONPT0) 389d94001d =: OPONMBN
' NIO3dg
¢ doo1ieeday
{ana
(x9)Ie ‘OpPONMBN ‘OPONPT0)3IITTIEISUL

{ (9PONPTO) PRI TOqE[I0Id =3 SPONMIN
NIS3d

: juowRjeISpatIeqeT]
‘and
enx} =: uwedTqoxd ISTA
(x9)xel ‘OpONMON ‘OPONPTO)IITTEISUI
NIHI 1IN <> OPONMON JI

{ (9PONPTO)YITMO01d =3 OPONMON
NIDad

$ JUIUPIBISYITM
fana
{(xoIel ‘OpPONMBN ‘9PONPTO)IITTEISUL
{ (9pONPTO0)®5EDD01d =3 BPONMBN
NID3d
¢ jucuejelsese]
40 (°poNpP10)®dAlrepoN 3ASWD
{ (9pONPe300910§)jueIeqd =3 OPONPIO
{9pONIURIIN) =3 OPONDPIIIVeS
{fosTe] =: WOTqOId

99

‘utede pejejor s1 981 9YY, ‘YT'9

dLVLOY

1TE29anpadoad JANRVHHOD
ISTTIeSNeIDesSR) :ADVSSAN

moputM KAaerrixny

11E29anped0oad ¢ANVHHOD
isT'Iesnerdese) (AOVSSAN

MOputM AxeyrrixXny

MOPUTM UTEH

MoputM uten
NIHL TTIR <> OPONMeN JI
{ (9PONPTO)YITMO0Id =: OPONMON
NI93d
$ JuouPIejsyITM
. fana3
{(I9)ael ‘OPONMBN ‘OPONPTO)IITTRISUI
{ (9PONPTIO0)®SEDD01d =3 OPONMON
NI93d
3 jusuPjejssse)
{an3
(,moyswos Kydde jou s30(,)9BeSSOHIITIM
{fenx) =: wayqoad
NI93d
¢ '"TO9WASLINVI3d
{ana
(39)aey ‘OpONMON ‘SPONPIO)IITTRISUL
{OpONPR3}0919S5 =: OPONMIN 3S13
(9PONP2]0919S5) JOPEOH =: OPONMIN
NFHL T = (OpPONpP33}109109S)Yy3jbue A1
, NI93d
¢ Juswejejspunoducfy
40 (9PONPTI0)°dAL9pPoN ASWD
{ (epoNpelD9TeS)juaieg =: 9PONPIO
{opoNIUDIIND =: SPONPIIIOIOS
{esTey =: wayqoad

© (a9)ael ‘OPONMON ‘OPONPTO)IITTRISUI
¢ (9PONPTO)PI1T9qET003d =: 9PONMON
. NI9ad
$ jusumjejspotieqen
{ana
ona} =g UWPTqoxd dS'1d
(39)ael ‘opoNMON ‘SPONPIO)IITIRISUL
N3HL "MIN <> O9pONMON J]
{ (9PONPTO)YITMOO0Id =: SPONMON
NI9ad
¢ JuluPeISYITM
{ana
{(a9)3el ‘opPONMON ‘OPONPTO)IITI®ISUI
{ (9PONPTIO)95€DD033 =t SPONMON
NI93d
$ juswajejsase)
{anN3
(.moyswos KAidde jou seo(Q,)obessona3TIM
feni) =: udIqOxgd
NI93d
H aon:umhaachﬂ@
40 (®PONP10)®dALepPON ASVD
! (9pONpa]D9T9S§)jusieq =: 9PONPIO
{9PpONIURIIND =: BPONDPIIIO [0S

{esTe3 =t WRIqOId

100

"pauoiyisod £[1931109 SJUIWI[D BY) SIABS] UOI)BIOL JIYIOUB 9K 11°9

ALVIOoY

11®29anpadoad ¢ANVHHOD
Isyresnerdese) :ADYSSAW

11ed0anpasoad ANVHNOD
asyresnerdase) (IOVSSIH

MoputM Axeyyiyxny

MoputM Axeyryxny

MOPUTM utey

MOPUTM UTEH

$(UIe)TYOSTIAII ‘OPONPI0)IIJ0Id =: SPONMIN
_ : NI93d
as13

aNa

((T ‘(39)aeR)Joipod) JusuRTIYIN
.) 3J0juanbasuo)

; =$ JoyaeW 3STd
((39)aely) 3%xoN) JoJusnbosuo) =: a9)jaey
N3HL (xoyxey)BIusuPTaISTT JI
{(a9)ael ‘opoNMON ‘OPONPIO)IITIRISUL
']
(besuoDesTazI ‘SPONPIO)JFIJ0Id =: OPONMON
NID3d
as13
aN3

(19)1e ‘epONMON ‘®pPONPTO)IITT®ISUI
{(J1°1duTS ‘OPONPTIO0)IID01d = OPONMON
NID3d
N3ZHL ((°PONPTIO)JOP3jeurelTv)fAidua a1
N3HL (PPONPIO)3JOjuenbesuo) = SPONPIIO[9S Al
: ¢ "jusueiels I

Jd0 (°pPOoNPTO)9dAISpPON ASWD
! (epoNpa3d9Tes)jusIed =: SPONPIO
{OpONIUOIIND) =: OPONP2IOO]®S
foste]l =: weIqoag

N3HL 1IN <> OpPONM®N JI
{ (9PONPTO)UYITMO0Ia =3 OPONMIN
’ NID3d
$ JUIBURJRISYITM
{ana
{ (39 ‘9pPONMBN ‘®PONPIO)IITTI®ISUL
{ (9PONPTI0)®P5eD201d = SPONMON
NID3d
H u:uEmunumomuv
{ana
(. moysuwos Ajdde jou seoq,)obesSOHOITIM
fanx) =: wdTqoag
NID3g
¢ "TOHHASLI'INYA3A
{ana
(xoyae ‘OpoNMAN ‘OPONPTIO)IITIRISUL
{9pONP3}D918S =t OPONMON IS'Id
(SPONDP®3}O919S) JOPEBH =t 9PONMON

N3HL T = (SPONP3]}1D9T9S)YyjbuaT] 41
NIDad

¢ juswejejspunoduc
Jd0 (°poNP10)®dArepoN ASWD
{ (epoNpa3d91e§)jueIed =: SPONPIO
{9pONIURIIND =: OPONPIIDI[OS
{osTe] =: waIqoad

101

o 8utpoo aurpur, s31 £q paoejdal st JusuIsle)S 95ED Yy 19

ANIINI
1Teo9Inpe20ad ANVHWOD 11ed9anpddoad ANVHNWOD
jueuPlelsII :AOVSSAN Isyresnerdese) :AOYSSIAW
MOpUTM AxejrTXny MoputM Axeyryxny
MOPUTM uyel MODUTM uyey
NAHL (39)xel)BIueudTaAISTT AI ¢$(ux93TYOSTIAFI ‘OPONPIO)FIO001d =: SPONMON
{(39)1e ‘9pONMON ‘OPONPTO)IITIERISUI NIDad
$(uxelTYeSTAJI ‘OPONPTO0)JFID0Id =! OPONMBN as14d
. NIDAd and
as1a ((z ‘(a9xey)3oipod)jusus TAYIN
aNd)303usnbesuo)

((z ‘(a9yxen) Joipod)Jjusue TAYIN
) 303usanbasuo)

=3 I9)Iey AS'Td
((39)aeR) 3xoN) Jojuenbasuo) =: aeyaey
NIHL (39)qIel)BIusuPTaISTT 41
{ (39 xE] ‘OPONMON ‘OPONPTO)IITT®ISUL
{(besuoDeSTAJI ‘OPONPT0)IIV0Id =: OPONMON
NISaAd
4as14
aNa
(393)1el ‘opONMON ‘SPONPTO)3IITTEISUI
{(3197duyS ‘9PONPT0)JFID01d =: OPONMON
. NISad
N3aHL ((®PONPT0)30®3eurelTv)DAydua ax
N3AHL (®PONPTO)JOIuenbesuo) = SPONPaIOOTOS al
N3HL jusuPlelSJI = (OpPoNPT0)edArspoN A
{ (9poNp®]100TaS)JuaIegd =i SPONPIO
«ﬂﬂOZu:ﬂhh:U =3 OPONPI3JO0T0S§
{esyel =: weTqOaIq

=3 Jojaey aASTI
((39yaeR)3xoN) Jojuanbasuo) =: a9yaey
N3HL (I9)xel)DIueumTaISTT Al
{(z9)aey ‘OPONMON ‘OPONPTO)IITTE®ISUI
a
(besuoDesTaJI ‘OPONPTO0)IID01d =: SPONMON
NIDad
as1a
: and
(39)yxel ‘OPONMBN ‘OPONPIO)3IITTIeISUI
{(J191duyS ‘OPONPT0)FID01d =: SPONMON
NID3d
N3IHL ((°PONPTO)3JO®3euxaljv)0iidua a1
N3HL (®PONPTO0)303uenbasuo) = SpPoONpPa}O9TaS aI
¢ Juewmielsifi
40 (°PONPT10)®dALepoN ASVD
{ (opoNpa3D9TeS)jueIed =3 9PONPIO
_ {9pPONIURIIN) =3 DPONDPIJIOTS
, foste] =: werqoid

102

-

"(9ye01paad) jJusuodurod 1S1 SJ1 9Y} 0} PIACUI ST I0SIND Y[, Y19

NMOG ¥OSuND

11es0anpes0ad ;ANVYHHO)D
uoyrlerdy IFHYSSAH

1Te%%anpadsoad ANVIHNOD
jusur@lelsyI $ADVSSIAH

MODUTM huwuﬁﬁxzc

MmoputM Aaeyirxny

MOPUTM UTelW

MOpUTM UTEN

N3HL (I9)ael){rusueTaISTT Al
{(a9oaey ‘OpoNmeN ‘9pPONPTO)IITT®ISUI
$§(ure3TYOSTAII ‘OPONPIO)IID0Id =: OPONMON
_ NIDA®
as1d
. . ana
((Z ’(aoyaey)3oipod)jusuPTaYIN
)303uenbesuo)
=$ JojIel IS4
((393aeR) IXIN) JOJUSNDOSUOD =t JOYIEH
N3HL (I9aey)djusue1alIsT1 Al
{(a9)ael ‘OPONMON ‘SPONPTO)IITTERISUI
$ (bosuoDOSTAII ‘OPONPIO)JIID0Id =i OPONMON
NID3g
as13
ana
(a9 el ‘OpONMON ‘OPONPTO)IITTEISUI
{(JITAuUTS ‘SPONPTO0)J1001d =: OPONMBN
. NIS3d
N3HI ((°PONPTO)JOP3euaelTv)dAidwa 41
N3HL (OPONPTO0)3J03juenbossuo) = SpoNpa3deTes JI
NFHL jueweleISII = (OpoNpPTO)edArepol a1
{ (OPONP9]109T0S)JuUeIRgd =¢ OPONPTO
{9pONIURIIN) =! OPONPIIDOTOS
fostel =: weIqOag

, NaHL (a9aey)DjuewedIsyT JI
{ (I9)ael ‘OpONMON ‘OPONPTO)IITTEISUI
{(Uae)TYOSTAJI ‘OPONPI0)FID001d =3 OPONMON
NID3d
as1a
aNa
((z *(aovxey)joipod)jueum TIYIN
)303uenbasuo)
=g J9)aeW IASTA
((a9yael)IxoN) Jojuenbesuo) =: a9jIEl
NIHL (I9)xen)BIusueTIISTT JI
{ (x93l ‘OpONMON ‘OPONPTO)3IITTE®ISUL
1 (bosuo)aSTAJI ‘OPONPTO)IIO0Id =: OPONMIN
NID3G
as1d
and
(3o IRl ‘OPONMBN ‘OPONPTO)IITTEISUI
{(J19TduTS ‘OPONPTO)IID01d =: OPONMON
NID3d
N3HL ((9PONPTO)3JO®3eurelTy)0Ayjdug a1
N3HL (PPONPTO)JOjuanbesuo) = 9pPONPoIIOTIS JI
NIHLI jueumlelISJI = (O9poNprO)ediiepoN i
{ (opoNpo]122TeS)JusIed =: SPONPTO
{9poNIURIIND =! OPONDPOIOOTOS
{osTe] =i wedTqOoagd

103

"juswale)s Jusnbasuod ay) 03 A[[BI91B] PIAOUL ST J0SIND Y[:[[°9

LHOIU uosund

11ed9anpasoad JANVHWOD
Juourd3e]ISII $IADVSSIAW

- 1Tedeanpedoad JANVHWOD
uoFIRTOY :ADVSSAH

MmoputM Xaeyiyxny :

moputpy Xaeyiyxny

MODUTM UTel .

MOPUTM UTEl
N3HI (xe)xey)BIusueTIISTT JI
{ (39 e ‘SpoNMeN ‘SPONPIO)IITTI®ISUI
$(UIBITYOSTIAFI ‘OPONPTO0)3FID013 =3 OPONMAN
NIDad
as13
: aNa
((Z ‘(aoyxey)jolipod)Jusud TaYIN
)3ojuenbesuo)
= aeyIel ISTI
AAuﬂth=vu!0=vu00=¢=vﬂm=00 m$ JOYIel
NAHL (I9y)xel)Diueud3ISTT Al
{(x9yIEl ‘9pPONMON ‘OPONPTIO)IITIRISUI
¢ (besuoDasTaJI ‘OPONPI0)JFID0Id =! OPONMON
NID3d®
as1a
aN3
(3o IEl ‘SPONMON ‘SPONPTIO)IITIRISUI
{(J191duTS ‘OPONPTIO0)IID013d =3 OPONMON
" NIDad
N3HL ((®PONPIO)3O®3jeuxeltv)diyduy ar
N3HL (SPONPIO)3JOjuenbasuo) = epoNpaldefes A
N3HL juswRlelSjI = (OpoNpI0)edAlepoN Al
! (9poNpe3jOeTeS)juaied =: ®PONPIO
{9pONIUSIIND =i OPONPOIOOTOS
feste] =: uPIgOad

N3HL (39)1eH)DIUBuRTAISYT AI
{ (x9)I€ ‘OpONMON ‘PPONPIO)IITIEISUI
{(uaelTYOSTIAJI ‘SPONPI0)JID0Id =: SPONMON
NI93d
4513
aN3
((z *(aoxxen)joipod)jusus TIYIN
) J0juenbasuo)
al JojIeW 3SI3
((39yxel)IxoN) Jojuonbosuo) =i JoyIEH
N3HI (39)xey)DIueuR [IISTT AI
{ (39 xe ‘OpPONMBN ‘®PONPTIO)IITIEISUI
{ (bosuoDesTaJI “OPONPIO)3IIJ0Id =i OPONMON -
NIS3d
as13
aN3
(x9)aey ‘epoNMBN ‘®PONPTO)IITTIE®ISUI
$(3191duyS ‘OpPONPI0)3IID01d =! SPONMON
NID3q
N3ulL ((®PONPIO)3JO®leurelTy)diydug a1
N3HL (°PONPTIO)JOojusnbasuo) = SpoNpaIdeTes JI
NAHL jusue@lelS3iI = (poNpio)edArepdN a1
{ (9pONDPa3109[®S§)juIed =: SPONPIO
{O9pONIUSIIN) m: PPONPOIIN[OS
{esTe] a: werqoid

104

"9)BUI}[8 PaJISop 9Y) 0} ulede PoAOUL ST I0SIND JYJ, ‘WI'Q

IHOIY ¥osun

11299 anpesoad ANVHHOD
jusuPlel}syI :ADVSSAN

1TE20aNnpasoad ANVHHOD
JusuRjelszyI (ADVSSIN

moputy Arefrixny

mopuym Axejryxny

MOPUTM uteH

MOPUTM UTEH

an3d
9Nx) =3 wRIqoad JFST3
(x9yxel ‘OopONMON ‘®PONPTO)3IITIEISUL
NAHL TIN <> O9PONMON JI
{ (9PONPTIO)YITMOOId =$ SPONMON
: . NID3g
N3HI jusu@lejSyltM = (PPoNpPI0)9dALepoN a1 3ASTA
and
{(19)IeH ‘OPONMON ‘9pPONPIO)ILTTEISUL
{ (9PONPIO)95€)201d = SPONMON
NID3g
N3HI jusuelel}sese) = (9poNPT0)edAIepoN JII ASTA
anN3
(., Moyowos A1dde jou seoq,)obessodITIM
{fonx) ot udIqOd
NI93g
N3HL T0GHASLINVIAA = (9PONPTO)9dALepoN A1 ASTA
and
(7931eH ‘OPONMON ‘OPONPTO)3IITTEISUI
{opoNpe31OeT8S =i OPONMON IASTH
(9PONPo310919S) JOPEOH =$ BSPONMON
NFHL T = (9PONP93I29T9S)Yyrbue a1
NID3d
NIHL
juswejejspunoduwio) = (9poNpIO)edArepoN A1 3sTd

; N3HL (I9YIel)DIusuRTIISTT Al
{(a9yael ‘OpPONMON ‘OPONPTIO)IITTE®ISUI
{(uaeTVOSTAII ‘OPONPI0)IID0Id =! OPONMON
NI9ad
asia
aNa
((z ’(a9yaey)jolipoq) Jusud TAYIN
)303uenbasuo)
=i JoyIey aASTA
((39yael)IX9N) Jojuonbosuo) = IoyIel
N3ZHL (I9jaen)DIueuerTaISTT JI
{ (39 ae| ‘9pPONMON ‘O9PONPTO)IITTEISUI
{(b3suo)esSTaII ‘OPONPTIO0) FJIJ013d =: OPONMON
NI93d
as1a
aN3
(a9)aely ‘epoNMBN ‘OpPONPIO)3IITTEISUI’
{(31971dutS ‘OPONPI0)IID01d =! OPONMBN
 NI93g
NaHL ((°PONPTIO)3JO®3euxelTy)fAydua ar
N3HL (9PONP10)30oIuenbesuo) = spoNpeloetes g
NIHL jueuelelS3I = (@poNpP10)edALepoN JI
{ (9poNpe3OeTas)JusIed =2 OPONPTIO
{9poNIUBIIN) =ni DPONPIJIOTES
{esTe] =: uwR[IqOad

105

‘jBwIg)[e 9y) seoejdar sanpaderd pajeard A[snotasxd YL, ‘uUr'9

adV1ddd

1Te29anpasoad ZANVHHOD
11eD9anpad0ad $ADYSSAN
mopuiM Aaeyryxny

1Tes9anpadoad JANVHWHOD
jusuPje3SII IAOVSSAN,

moputM Areyryxny

MOpuTMN uteq

aN3
asaedunmoys
! (293 1eR) 308 INDU0TY Tsodoy
§ (,PUTMIXNY,)MOPUTMILOTD
NID3d
N3HL waTqoad ION JdI
{(uarqoad ‘aeyael ‘OPONPaIDITOS ‘OPONPIO
)1dyay asna

MOpuIM uyey
X and
anij) =: uwdTqoad IAS1a
(39)ae ‘OopONMON ‘OpONPTIO)IITT®ISUL
NFHL TIN <> 9PONMON 4l
¢ (9PONPTIO)YITMO0Id =: OPONMSN
NI93d
NIAHL jusuPle3ISYITM = (OpoNprO)edArepoN JI 3STA
anNa
{(I9)ae ‘opoNMON ‘O9PONPTIO)3IITTI®ISUI
{ (SPONDPI0)95ED201d =% OPONMIN
NID3d
N3IHI, jusuRjelsase) = (OpoNpT0)edALepoN JI 3ASTA
aNd
(. moysuios Ardde jou s90Q,)oBessSaPITIM
foni]y =3 wRIqold
NI9ad
N3HIL TOSWASIINVIAG = (®PONPT0)9dALepoN 4I ASTA
, anN3
(x9)ael ‘opoNMBN ‘OPONPTIO)3IITTEISUI
- f9pONDP23109[O9S = OPONMON IASTH
. AﬂgzguUGﬂomvuOﬂmo—— =$ OPONMON
NIHL T = (OPONP23D919S)YyjbusT il
NIDad
NIHIL
jusumjejlspunodmo) = (9poNpTO)edArepoN 41 ASIA

106

Example - Embedding and Engulfing

In EMBED 1 believe that I have captured an important editing notion. Of the
new commands, it is the one which I have found myself calling upon most 6ften.
Application frequently involves the introduction of branching into the code, as in this
example. As well, EMBED is often used in tandem with ENGULF.

Figure 6.2a (left screen) shows the site of the intended alterations. Before the
statement designated by the screen cursor is executed, a flag (BadKeyFlag) must be
tested. If this flag has value true, then some error handling is performed, otherwise a
sequence of statements, consisting of that cursor-designated statement plus the two

. Ee .
succeeding statements, is executed.

Since that first statement is to be executed only under certain conditions,
EMBED is applied to it (Figure 6.2a). To correspond with the aim delineated above,
embedding in the alternate of the if statement is chosen (Figure 6.2b). The next step
of the operation is actualization of the statement’s predicate. Though \the desired
identifier could have been selected and stacked previously and now inserted into the
placeholder, I have, for the sake of .generality, chosen to provide BadKeyFlag
textually (Figure 6.2c, 6.2d, 6.2e). Similarly, to provide the error handling
statements, the cursor is moved to the consequent placeholder (Figure 6.2f), MODIFY
is invoked once more (Figure 6.2g), and the new text is entered without any
particular regg,rd for formatting (Figures 6.2h, 6.2i)‘, leading to actualization of the
placeholder (Figure 6.2j).

It will be recalled that not just RepositionCursor(IdNodé), but the
succeeding two statements as well, are to be executed if BadKeyFlag evaluates to
false. To bring about this result, the syntactic cursor is moved to the alternate
statement (Figure 6.2k), and two applicatidns of ENGULF-NEXT are keyed in
(Figures 6.21, 6.2m).

- 107

"[[e2 a1npsooid ay3 03 perjdde st aaging eg9

SIOTITIUGPIPUTA PUTJ JANVIHOD
Jueue3eISIT $AOYSSIANW

Iovﬂﬁz KXxeyryxny

MOPUTM uteyn

{951e) =: 9SIVARILONUTIUC)
NID3d
4813
anNa
(9pPONpPI) sjuspId0aa
fanx) =: Beraleypeg
, : NIDad
N3HLI (30918S < Ae)Buypuss‘o93Al)
NV (930359Y <> AayBuypudesg.-oeyail) J4I
N3HL IXON <> XKe)Buypues‘doyAd 4l
{ (3030ej9BpniTeuTmIDL ‘D0YyAT)IJUIAZIOD
{uew xosejepdn
{osxedunmoys
{ (3dmoagoBes)abessoPITIM
{osTE] =: POIVJUNOOUZIOURISUION
{ (opoNpI)a0sanjuor)fsodey
NIH1L uoyssexdxaxinng a1
NID3g
« NaHL
(deybutals ‘(PPONPI)IVFIFIUSPIDDIS0D
)sBuyajseures J1
NID3g

iedLrooyiuear ¢ d93AT
dVA

»

SIVTITIUSPIPUTA PUTF JANVIEWOD
SAHNANIIYDS~ uo SuyBBOT SOUBUIO) :TIYSSINW

MOpuIM Axeyryxny

MOPUTM Uuften

. =m Ko)}Buypuss° ovyad =t p93jaoqy
fosTez =: 9sSIVARILONUTIUOC)D
: - NID3d
4813
aNa
(9poNpI) sjuepId0ad
{onxy =: Berileypeq
NID3d
NIHL (39919 <> XAe)Bufpues°deyAd) v
ANV (93031598 < Ao)BujpudscooyAl) 4l
NIHL IXON <> KeyBuipues-dayazd J4I
{ (z030e396pNiTRUTWID], ‘D9YAZ)JUIAZ]ON
{use xogejepdn
fesxedunmoys
{ (ydwoxgoBesn)oBessoud]TIM
{9sTE] =: POIOIUNOCOUFIOULISUION
¢ (opoNpI) 30s anDuot I Fsodaf
NID3"
N3HL
(deybutils ‘(SpPONPI)IOTFTIUSPIEDI00D
)sbuyxjsowes J1
NID3d

{edL1ooyjuoAg ¢ d9j3AT

qVA

108

'PeYe0o] ST SUIppaquId PaxIsep Ay, :qg°9

LIXaAN

SIOTJFIUGPIPUT PUTF ZANVHHOD
jusuRjelsyI $IDVSSAN

MoputM Axeylyxny

SI9TFTIUGPIPUTI PUT3F (GNVHHOD
jusuejels3zI $IADVSSAN

MOPUTM utel

MOputM K1efyyxny

fes1e] =: 9SI9ARIIINUTIUOC)
NID3d
as1a
aN3
(9PONPI) SJUspId01]
fenxy ug Bejakeypeq
: NID3d
NZHL (30978S <> AeyBufpues°o9uAz)
anNvy AUHOUHUG <> hﬂv—bﬂﬁﬂﬂﬂﬂ.“ﬂﬁav dI
NZHL I%X9N <> KejBurpusseoayal JI
{ (3030eg96pNJTRUTWID], ‘O93AF)JUSAZ]OD
{usoxogojepdn
{esxedunmoys
{ (yduioagobes())ebesSe3TIM
f98TEJ = PaI9UNOCOUTIDUEISUION
¢ (opoNpI) 308 anpuoTIFsodey 3S13
JUOURIRISAWHNG NIHL, =Oﬁmmuuﬁ*uazzz@ dX
NID3d

N3HL
N

(deybutals ‘(OpPONPI)I9T3ITIUSPIDDIN0D
)sbugajsewes JI
NIDad

fedio9yjueag § deyAal
VA

moputm utey
fesTe] =: 9sI9ARILINUTIUOD
NID3d
as1a
aNa
(9PONPI) S3udpro0aa
fonxy =: Berike)ypeq
NID3d
NIHI (39919S <> Keybuypues*oeyajg)
NV (9303594 <> KeyBuypuesg*ooyaz) JI
NIHL IXON <> KXoybujpues ooyaz 41
{ (3030eF06pPNJTRUTWINL ‘O9YAT)JUIAFIID
{usoxogajepdn
{esaedunmoys
{ (3dwoagoBes)obessoIITIM
fesTe3 =: PaI9]JUNOOUFIOIUR]ISUION
{ (opoNPI) 305 anJuotIfsodoy
N3IHI uotssoxdxaxwWng 4I
NID3d
N3HL
(doyButals ‘(9PONPI)I9TJFFIUSPIDIL0)
)sBugtajsewes JI
NIDad

{edi1ooygjueaqd ¢ o9MA7
VA

109

-1opoyeserd ayj azienjor 01 paj(ed St I0HPa Y, :9%°9

LNAYEND XJIAOH

SI9TJTIUSPIPUTA PUTF ZANVHHOO
uorssoxdxzy BurITPa AOVYSSINH

moputM Kaegyyxny

MODUTM UTEH

{9sTe] =i 9SISARITIINUTIUOD)
NI93d
as1d
and
(9PONPI) S3uUapId01a
fanxy =¢ Berjieyped
‘ . NID3g
N3HL (39979§ <> XeyBufpuss°d9uAd)
ANy (9103898 <> XAeySuypues°oayad) JI
NIHL IXON < AoMBuTpuss*23¥Ad JI
f (10300 z9BpPNITRUTWIDL ‘DOYAT)IUIATIH
fusvadgejepdn
: {os xedunmoys
{ (1duoxgebesn)obesSoHRITIM
fesTe] =3 POI9JUNOOUZIOUEISUION
{ (opoNpI) 208anpuUoTIFsoday 3STA
JUBURIRISANHNG NIHI UOFSSoxdxdxWNa JI
N193d9
b N3HL
(deyButals ‘(9PONPI)ISTIFIUIPINIINOD
)sBuyajseuwes i1
NIDad

fodirooyiueand 3 d93Ad
UVA

SI9FITIUSPIPUTS PUTF (ANVHHOD

JUIURILISIT $AOVSSIN
soputy Kxeyyyxny

mMOputM UTEH

. {9s8Te] =¢ 9SIVARILIONUTIUO)
RI193d
as13a
and
(®PONPI)SJUSPID0I]
fani) =3 Bejakeyped
; NI9ad
N3HL (3997195 <> KeyBurpuds*d9yAl)
ANV (33031594 <> KojBujpuds‘aoyad) JiI
NIHL I%ON < KeyBufpues§®d9NAd JI
{1 (10300 IOBPNJITEUTNIIL ‘D9Y¥AF)Jusazlen
fueeaogejepdn
fasxedupmoys
{ (3dwoagebes()IBeSSOHRITIM
fesTel =: PII93UNOCOUFIOURISUION
{ (opoNp1) J0sanpuorIfsodey aSTd
JUSURILISAIING NIHL UOTSSOXAXAXWWNG JI
, NI9ad
N3HL
- (deyBuyals ‘(9PONPI)IPTITIUOPIVIIN0)
.)sbugxysowes JI
NIOad

{edArooyjuaag : oeyad
VA

o
L)
—

"PaIaua ST 1X3, P9

SIOTITIUGPIPUTE PUTI LANVIOD
uoyssoxdxa BuyITpa 1AOVSSAW
mopuyy Axeyryxny

SIOFITIUSPIPUTA PUTF LANVHHOD
uoyssaidxa BuyITPa $ADVSSAH
MOpPUTM AxeyryxXny

[J6etakeypeq

MOPUTM UFTER

{es1e] =3 9SIdARILONUIIUOD
NI9ad
4513
anNd
(SPONPI)S3uspId01d
feni) =i Beriieoypeq
’ NIOD3d
HAHL (3997198 <> AoNBuipues*s9yAd)
aNy (9103894 <> AejBuypuese®a9yald) Jdi
NiHL I¥ON <> AejBujpuas- doyad JI
{ (z030ezebpnireutwIe] ‘204Ad)JUSAI}H
{ueexosejepdf
{esxedupmoys
{ (yduoagebesf)obes SO} TIM
{egTe] =! POIOUNOIUFPOUR]ISUION
¢ (9ponp1) J08INDUOTITsoday ASTA
JueuReISXWNNG NIHL uoTSSexdXIXWWNG JI
NID3q
. * . NIHL
(deyButils ‘(9PONPI)ISFIFIUSPIII0D
)sBugajsewes JI
NID3q

fediroeyjueAz ¢ doyAz
UVA

MODUTM UTEH

fesTe] =: 9sSI0ARIZONUTIUO)
NIDdq -
as13a
aN3
(9pPONPI) SjuepI20ad
foniy =: Berjgieypeq
NID3d
NIHL (399719S <> XoyHUTpueS*IIYAd)
aNy (93031593 <> KoySurpuas§edeyald) JI
NAHL IX9N <> AejBufpueseooyad dI
1 (103100 2096pNJTRUTWIVL ‘O09YAF)JUDAT]S
fussxosejepdn
{osaedunmoys
1 (3duoagoetes())obessSaNIITIM
fesTe] =: pP3I93UNOOUZFIOIULISUION
{ (epoNpP1) 308 aNjuUOTITsoded ASTA
JuUBWPIRISXWHNNA NIHL uofssexdxaxWNnag JI
NIOa3q
N3HL
(doybutils ‘(OPONPI)I9FITIUIPIVIIN0)
)sBugijsewes JI
NID34

19dA1o0gjueAl § 29yAl
VA

111

-paoerdeua st Jappoysaerd ayJ, 979

3L3A71dW0D LIdd

SIOTFTIUSPIPUTE PUTF ZANVHHOD
A9TFTIUOPI :IADUSSIN

moputM Axeyryxny

moputy utey

{asTel =m: 9SIOARILONUTIUOCD
NID3d
as1a
aN3
(°PONPI)SjuepId01q
{enx) =g Bejilkeypey
‘ : NIDad
NAHL (30919S < XAejBujpuds°ooyAd)
any (9x03s9y < Ae)ybuypues doyAa) JI
NIHL IXON < Keybuypues-oeyad JI
(30308 306pPNITRUTAIOL ‘D94AT) JUIATI0H
fueexosejepdn
Jos yedunmoys
{ (3duoxgoBes)oBesSOHIITIM
fesTeJ m: PIIVJUNODUFOOURISUION
{ (epoNpI) 108 anDuotiysodey ISTd
JUeUPIRISXWNNG NIHI Seyjheypef a1
NID3d
\ N3HL

\

(deyBuytals ‘(9PONPI)I9TJIFIUSPILII0D
)sBbugxjsouwes JI
NI93g

$edLroejueana 3 o9yAl
. HYA

SIOTJTIUGPIPUTA PUTF (ANVHWOD

uoyssoxdya BuyIYpa $ADVSSIH
nopuyM Axeyyyxny

[jpetakeypeq

MOpUTM UTel

. {osTe] =i 9SIVARILONUTIUOD
NID3d
asna
aN3
(9PONPI) SjuepId01q
{oniy =: Beralkeyped
NID3d
N3IHL (310919S <> Ko)yBujpues°ooyAl)
ANV (9303150 <> Keyjbuypuas° ooyag) JdI
NIHL IXON <> Koybuypues-doyAa il
{ (3030e06pNITRUTWIADL ‘D0HAT)JUIATIOH
fueexogejepdn
fosaedunmoys
§ (Jduoagobes)aBesSONIITIM
fesTe] =% P3I93UNOOUZOOURISUION
{ (opoNp1) 308 anDuoFIFsodey 3AST3
JUeWeILISAWWNG NIHI uoysseadxaxising 4I
NID3d
NIHL
- (doyButals ! (OPONPI)IOTITIUOPIOOIV0)
)sBuyajseuwes J4I
NIDAd

$adi1oogjuoans ¢ 29¥Al

UvA

112

5

"pajoares st Japroyadeld 1xau ML JT°9

LHOIY ¥0Sund

SI9TJTIUSPIPUTA PUTI SANVHINOD
11eD9INpad0oagd :ADVSSIH

SISTJTIUSPIPUTA PUTI ZANVHHOD
I9TITIUSPI :ADVSSAH

MOPUTM Axeyyyxny

MOPUTM UTeH
festeg =: 9SI9ARIIONUTIUOCD
RID3g
as13
ana
(®PONPI)S3udpId0ad
{oni) =: Beyjkeypeq
NID34
N3IHL (30979§ < Ke)Bujpues deyal)
GNV (9103898 < KejbSuypuescooyam) JI
NIHL IXON < XAejSujpues oeyaz JlI
{ (30j30eeBpPNITRUTWIA], ‘D9¥AR)JUBAZ]OD
fueaaogejepdn
fes xedunmoys
§ (3dmoagobes()oBessayeITIM
fesTe] =: POIPIUNODUIIDIURISUION
{ (opoNpI) 30sanDuoTIFsodey IAS11a
JuewejeySxuNnd NaHL Seyiliejped 41
RID34
NIHL
(deyBuyrals ‘(OPONPI)IPTIFIUSPINIIN0)D
)sSuriisewes JII
RID34

L

fedi1ooyjusag : oeyAl
UVA

MopuIM AXaefirxny

MODUTM UTEH

f9sTe] =: 9SIVARILINUTIUOD
N193d
as13
ana
(°PONPI)S3juepId01d
foni) =¢ Bejaleypeq
NID3d
N3HL (30919§ < XKe)yBurpues-’o9yal)
ANV (9303894 <> Ko)Bujpuese oeyal) Al
N3aHL IXON <> Ae)}Buypues°d9yAl il
{ (10300 3eBpNITRUTWISL, ‘D3WAR)JUOAT]D
fueeaogejepdn
fesaedunpmoys
! (ydwoagoses)obessond] TIM
fesTe] =: PeIIJUNODUIIOULISUION
{ (9poNp1)30sanpuotltsodoy IS13
JURURILISIWNNNG NAHL BSeralieypef 41
NID3d
. NAHL
(deyButals ‘(9PONPI)ISTITIUSPIII0D
)sBujajsewes Al
NIDAg

fodA1o0 ueAT 3 O9YAL
UVA

113

1epioyeoeld STy} [y 03 Pay[ed st J0gipe By, :87°9

ININD XJ4IAON

SI9TJTIUOPIPUTA PUTF ZANVHHOD
jusuRjels SUTITPE 1IAOVYSSIAH

MoputM Axejgrixny

MOpUTM UTeH

fesTe] = ©SI0ARIIONUTIUOD
NID34
asna
aN3
(SPONPI) SjuepId0ad
{ona) = Berikeyped
: . NID3q
N3HL (30919S <> XAo)BUTpues°d3YAZ)
OGNV (930318594 <> AeyBujpues-dayaz) JI
N3HI IXeN <> Ao)Bujpues deyaz 4l
{ (z030eg0BpNJTRUTWIO], ‘D0YAT)JuUsAgIon
fuee adsejepdn
fosaedunmoys
¢ (3dmoagesesn)eBessoITIM
f95T€] =: POIVIUNOOUFOOURISUION
¢ (epoNpI)J08an)uotIFsodey AS1Ta
JuSEPIeISAWMNG NIHI Beriieyped A1
, NIDad
. . NaHL
(deyButals ‘(9PONPI)a9TFTIUSPIOIIV0OD)
)sButajsewes a1
NIO3d

{edA1oeyjueny ¢ deyAz
YA

SIOTJTIUSPIPUTA PUTI ZANVHNOD
- TTe)eaINpadoad $ADVSSAH
mopuiM Aaeyrixny

MODUTM UTeN

fesTe] =: 9sI9ARIIINUTIUOC)
NIDag
as13
anNa
(9PONPI)Ssjuepidoaq
fonxy = Beriloyped
NID3q
NAHL (32919S <> Ke)buppues‘doyAz)
aNV (9101594 <> Ka)yBujppues ooyaz) JI
NIHL IXeN <> Ae)Bujpues°deyaz JI
§ (1030eg9BpPNJTRUTWIS], ‘DOYAZ)IJUSAZID
fuss aogejepdn
fesaedunmoys
{ (3duoagebesn)obessopRITIM
fesTe] =: PaIdJUNOOUFSOURISUION
¢ (epoNpI) 20sanduotFsodey ASTd
jusumlelS HHNG NIHL Beriieypeq J1
NID3d
N3HL
- (doyButals ‘(9PONPI)ISTIFIUSPI®IIL0)
)sButaiseuwes JI
NID3d

{odA1ooyjusAnd § DOMAF
N . VA

114

2

"poIaud ST 9X3) JO 2..5 V 'Yz'9

SIOTJTIUGPIPUTI PUTI ANVHHOD
jusuPjels BUTITPA :ADVSSAW

MOPUTM KJeyTIXny -

[}¢ (eBessopioypeg)abessoa)TIM Ufbaq

MOPUTM UFEH —=—=-—- ————am————
fosTes =: 9SIVARILONUTIUOCD
NID3C
as13
aN3a
(°PONPI)Ss3juspIdoad
foniy =3 Beriioypeq
: v NID3q
N3HL (39919S <> AojButpuds‘oayad)
GNY (93031598 <> Ke)}Bujpues°®o9yAl) JI
N3HL IXeN <> Ae)Bujpuss° d9yad JI
{ (3030e398pNJTRUTNIAD], ‘O0Y¥AT)JUIAT]RDH
fueeaogejepdn
{es aedunmoys
{ (3dwoagobes()oBesSSOHaITIM
fosTe] = PIaIOJUNOCOUIIOULRISUION
{ (opOoNpI) 308 anDUOTIFS0odoy ASTA
JUSWP IRISAWNNG NIHL Befakeypeq 41
NID34
: N N3IHIL
(deybuyils ‘(9PONPI)IOTFTIUIPIVIIB0D
)sbutajsewes JI-
NID34

fedLJo0oyjueal § o9NAd
UVA

SIOTIFTIUSPIPUTI PUTJ ZANVHHOD
jusu@lels BUTITPI :AOVSSAH

moputM Azeryyxny

MODUTM UTel

{osTe] =! 9SIVARILONUTIUO)
NI93g
as1a
aNa
(9PONPI) s3UdpPID0ad
fena) =: Berakeypeq
NID34
N3AHL (29919§ <> Ae)jBuypuss‘d9yal)
ANy (9303594 <> XAo)}Surpuds°ooual) Al
NAHL IXON <> Ae)jButpues°deyAl JI
! (1030€336pPNJTRUTWID], ‘D9YAT)JUSAT 0D
{ueeaogajepdn
fesaedunmoys
§ (3duoagebes()obesSOHIITIM
fosTel = pP9I93UNOOUIOOURISUION
{ (epoNpPI) a0san)puotIysodey 313
JUSUPIeISAWHNG NIHI BeraXeyped A1
NI93d
N3HL
(deybuyals ‘(°pPONPI)I9TITIUIPIODIN0)
)sbugaisowes A1
NI934

3

{adKkgo9ujuead : o9yAl
UVA

115

"PoIIUD ST BUI| JOYIOUY ‘1g°9

SISTJTIUSPIPUTA PUTF ZANVIEIOD

$ADVSSAN

MmopuiM Aaeyryxny

[Joue ®sye3y =: bejaXayped
! (eBessapiaypeg)obessoa]TaM uybeq

SIOTJTIUGPIPUTA PUTI ZANVHWOD
SIAOVUSSIAN

MODUTM UTeH
fosTe] = 9SIVARIIONUTIUOD
NID3d
3s1a
an3
(9PONpPI) S53uUapId014
foniy wi Beyjioyped
: ‘ NID34
N3HL (39979S <> XojBuypuds-d9yAl)
any (9101594 <> AojBuypuasge doyaid) JiI
NIHL IXeN <> Ae)Buypues°deyad JI
{ (30300 g9BpnaTeuTuInl, ‘o0yAd)JUDATI0D
fussaogejepdn
fasxedunmoys
{ (aduoagobesy)asessoyal TIM
{9sTe] =: POIIJUNOOUFOOULISUION
! (spoNp1) 308 1nDUOTITSO0deY ASTA
juewdleISXHHWNG NIHI Berdleyped A1
NID3d
NAHL

.

(deyBuyals ‘(SPONPI)I9FIFIUSPIADIIL0)
)sBugajsewmes A1
NID3Ad

fadA3ooyjusaag ¢ d9yad
HVA

moputy Axeyyyxny

L

! (obessoploypeg)ebessayaltaM urbaq

MODPDUTM UTeH

. festey =: ©BSIVARILOINUTIUOCD
NIO3d
2513
aNa
(®PONPI) S3uapId01q
foniy =: berjloyped
NID3d
NIHL (39919S <> A9)Burpuas*d9yAl)
aNv (®303593 <> AejybButpues-deyad) JI
NIHL IX0N <> XKejBuypues‘deyAad JI
! (30300 g9b6pngreuTwIog, ‘o93Ad)iusazled
{useaaosejepdn
fasaedunmoys
{ (3duoagasesn)ebessoyeITIM
fos1ey =¢! P3I33UNOOUZL8DURISUION
{ (epoNp1) 108 aNDUOTITSOdeY ASTA
JUSUPILISXWNNG NIHL Beyikeyped A1
RIDad
NIHL

- (deybuyalys ‘(9PONPI)ISTIFIUSPILDIV0)

)sbugajsoures A1
NIDad

{9dirooyjueansg ¢ Oo9yAl
VA

5%

116

‘pazienjoe sI aﬂoﬁon&oo ayyr :fz'9

4L31dH0D LIa3

SIOTITIUGPIPUTA PUTJ (ANYHNOD
juauRjeispunoduo) $AOVSSIAN

SIOTJTIUSPIPUTA PUTJ (ANVHWOD
$IAOVSSAH

MOpuIM Aaeyyyxny

MOpuUTM Aaeyryxny

[Joue esye3y =: petakeypeq
1 (oBbessoyioypeg)obessod]1TaM uybaq

MOPUTM UTeH
(°pPoNPI) sjuepId0ad
fenay = Berjieyped
: NID3d
NIFHL (30919S <> AoyBuypues ooyAl)
aN¥ (93031898 < Ae)Buypuss°*ooyAm) Al
N3aHI IXON < Ke)Buypues°deyam il
{1 (30300 398pPNJTRUTHIAR], ‘D9)4AT)JUATIOH
fueeangejepdn
{esaedunmoys
{ (duoageBes()obesSOHI I TIM
f9sTeJ = POISIUNOOUFSOURISUION
¢ (9poNpI) 30sanDuotI¥sodey AST
N3
osTe] =: Beyrilioypeq
{ (ebesseie)peg)obessoNd) TIM
NI193E
N3HI Serjleypeq 4l
NI93d
:] . N3HL
(doybuyals ‘(OPONPI)I9FFFIUSPISIIV0)
)sBugajsewes Al
NID3d

fedirooyjuenm : J0¥AR
uVA

MOPUTM UTEH
fosTe] =i ISIVARILONUTIUOD
NID3d
4513
aN3
(9PONPI)SIuapIDO0ad
fonay = Berikeypeq
NID3q
NaHL (399719S <> Kejybuypuss ooyAl)
aNV (930359Y <> Ae)Buypues deyal) AI
NAHL IXON <> Kojbuypuss-oeyad AI
{ (303oegebpNJTRUTWID], ‘O0uAT)IUSAFIOD
fueeaosejepdn
fasaedunmoys
1 (3duoagobes)obessaNO) TIM
fosTe] =i PIIVJUNOIUFIOURISUION
{ (opoNpPI) 305 anDuotIFsodey 3ISTd
JUGERILISAWHNG NIHL Berileyped Al
NID3g
N3HL

- (deybuyals ‘(SPONPI)JIPTIFIUSPISIIN0D

)sButajsewes JI
NIDag

fodKro9gjueAny § O94Ad
¥VA

117

"JUAUIZIB]S 9JBUII[B Y3} 0] PIAOUI ST I09IND INOBIUAS Y], NZ'9

LHOIY ¥OS¥ND

SIPTJTIUGPIPUTA PUTF (ANVHINOO
11eD9INped0ag :JOVSSAH

MOputM Aaeyirxny

SI9FITIUSPIPUTA PUTF ANVINOD
jusum jejspunodwo) :ADYSSIH

MOPUTM ufTen
(9PONPI)SjuepId0ad
. fona) =: Berakejyped
NID34
N3HL (30919S§ <> KejyBuypues-°deyad)
aNV (91031594 <> Xe)Burpus§*oeyal) JI
N3FHL I¥XeN <> KeyBuypuss-osyaal JI
! (30300 10BpPRATRUTHID], ‘D0HAT) JUSATISH
{ueeaosejepdn
fos aedunmoys
§ (3dumoageBes)ebesSONRITIM
{esTe] =: POIVJUNOOUFIOUB]ISUION
{ (9poNpI) J08aNDUOTIFSOdS) AS1a
: aN3
esje] =3 Berikeoypeg
{ (obessopioyped)oBesSONa I TIM
. NI93d
N3IHL Beyjleypeqg a1
NI93d
) ~ NIHL
(doybuyals ‘(OPONPI)IOTITIUSPILDIB0)
)sbujajsowes JI
NID3d

{edi1ooyjueaa ¢ d9yAl
WyYA

Mmopuim Axeyypyixny

MODUTM UTely

: (°PONpPI) SjuepId0ag
{ena) =3 Berileyped
: NID3d
N3IHL (30918S <> KAeyBuypues-oeyal)
aNV (9303594 <> Ae)yBUTpuds°©d9yAd) JI
NaHL IXON <> KeybBujpue§-deyald JI
{ (30j0ejeBpnjreuTwae], ‘o9yA3)jusazlen
{ues aosejepdn
{esaedunmoys
{ (ydwoagebesn)obessoya] TIM
fesTel =3 PaIajUNOOUFSOULISUION
{ (opoNp]) 308 anDuot)fsodey IASTA
aN3
esTel =: Beraleyped
{ (oBessopkoyped)obessod1TaM
NIDHE
N3HL Berjleyped 41
NID3d
NIHL
(deyBuyals ‘(OPONPI)IOTFFIUSPILDIIL0D
)sBujajsewes JI
NIDad

fodijoeyjueagz : o9yAl
VYA

118

"pojmBus ST JUSWIFB)S IXBU Y[, :[3°9

IX3IN ATNON3

$I97JTIUSPIPUTA PUTJ LANVHHOD
LP23TInBus, epou BUTMOTITOd $IDVSSAN

mopuiM Axeyiyxny

SIOTJTIUSPIPUTI PUTJ (ANVWWOO
- 11ed9anpadoad :ADVSSAH
MoputM Axeyrixny

MOpUTM UTEH

NIHL (309195 <> Xe)}BUTPuUSS°I0yAT)
aNy (9103594 < XAejBSujpues-d9yad) JI
NIHL IX0N < Ae}Bufpues°®d9uAT Al
{(3030eg96pNiTRUTHEID f593A3) Judnglen
fuveaodgejepdn
fasaedunmoys
1 (3dmoagobes()obessoNdITIM
fan3
9STeJ = POIPJUNODOUIFIOURISUION
§ (SPONPI) 20s anDuoFIFsodef
NID3g
asa
aN3
9s1e3 =: Berakaypeqa
1 (ebessoieyped)osessoueITIN
NID3d
NaHlL Betdleypedg AI
NID3g
N N3HL
(deyButals ‘(SPONPI)IOFITIUIPIOIILN0)
)sburajsswes JI
NIDag

fodizooyjuead ¢ d9yAa
VA

. NEHL (399198 <> Ao}HuTpues*d9yad)

MOpulM UFEH

. (®PONPI)S3juapIdoiag
fsna) =: bBerilieyped

NIDad

ANV (93031598 <> Kejbujpuescoeyad) JI
N3IHL I¥9N <> XAe)bujpues°dejyAad 4l
{ (1030eg9bpNITRUTWII]L ‘D93AT)IU3ATIID
fuse aogajepdn
fesaedunmoys
f (3dwoagobesf)obessoe3I 1IN
fesiel =: PoI9IUNOOUZIOURISUION
¢ (9PONPI) 30s anpuotyfsodef] asTI
anN3
esiel =: Berakoyped
4 (oBessolioyped)obessoNd I TIM
NIDad
NaHl Setdleypeqg a1
NID3®
N3IHL
(deuButals ‘(®PONPI)IOTJTIUSPINDIB0D
)sBugajsowes JI
NIDdd

fodAjo0oyjuaad ¢ d0yAa
VA

119

"PajNSus ST JUSWIYBYS JSYIOUY WIF'Q

LX3AN JTNONA

SI9FITIUSPIPUTS PUTI ZANVHHOD
«P3JInbue, apou BUTMOITOd :ADYSSAN

MoputM Axeyryxny.

MOPUTM UTEW

N3HL (32919S <> Ae)bujypues°dayad)
aNv (®3031594 <> Ae)Buypues°deyaz) JI
N3aHL IXON <> Ke)bBuyrpues-deyAd JI
{(3030e306pNITEUTWISL, ‘D9)3AT)JUSATIOD
fusaaogajepdn
{os xedunmoys
fana
(3duwoxgobes()obessoNa}TIM
{ssTR] =3 PIITJUNOOUFIOULISUION
{ (opPONP1I) a0s anduoy 3 ysodapy
NID3d
as13a
aN3a
9sTeJ =: Beraleypeg
{ (oBessapkoypeq)obessaa3TIM
NID3g
N3HlL Berakeypeqg a1
NID3d
~ NaHL
(deyBuyals ‘(9PONPI)I3TFTIUSPILIIB0)D
)sBuyajsowes JI
NID34

{adAgoojusAag ¢ D9§AT
VA

SI9TJTIUGPIPUT PUTI ZANVHWOD
«P23INBuUd,, Bpou BUTMOTTOd :ADVSSIAN
moputM Axegyyxny

MOPpUTM uTel

NIHL. (309108S <> Ke)}Burpuss-’d9yAd)
aNy (9303598 <> A)yBujpues§° dayalz) JI
NIHL IXeN <> KAeyBuypuss-deya3l JI
! (I030e30B6pPNITRUTWID], ‘O00YAT)JUDAT]DD
{uls xogajepdn
fasaedunmoys
{ (3dwoxgobesn)obessad3TIM
fana
9STeJ =: PaIJUNOOUIFIJURISUION
! (9pONPI) 30S anJuo T3 Fsodshj
NID3d
as13
aNd
asTe3 =: Beriloypeq
{ (oBessayloypeqd)oBessSad]} TIM
NID3d
N3Hl berikeypeq a1
NID3d
NAHL
 (deygbuyals ‘(9PONPI)IDFJITIUSPISIIB0)
)sbugxjsowes JI
NID3d

{9di109)gjuaAng ¢ 29)yAT
YA

120

3

This is a particularly effective method for engulfing short sublists. Only one
selection must be made, it is easy to determine precisely what is being engulfed, and
the process is efficient and error resistant in that the same key sequence is repeatedly
stfuck. For longer lists it might be preferable to select and move the sublist as a
whole, since the ENGULF approach is linear in the number of elements, whereas
sublist selection takes, as a first appi'ox.imation, constant time. A precise
determination of the sublist length where the two methods require equivalent effort is
not possible, since the act of locating the remote terminus of the sublist and moving
the cursor to it is not independent of sublist length. Under some circumstances, it
may be advantageous to engulf even fairly large sublists.

2

Example - Eject with Associated Node

ENGULF/EJECT is a command family with a particularly wide range of
applicability. Here it is seen to set up the desired alteration. Note also the incidental
use of EMBED.

This exaniple involves alterations to a case statement as well, but, whereas in
the previous instance the case statement was, in a sex{se, simplified, here the case
becomes a little more complex. The problem is that the case of MemberListIn
(designated by the screen cursor in Figure 6.3a, left screen) requires processing which
is different from, though related to, that of its list-mates. Recall that EJECT, when
applied to such a list with an associated node (or a member of such a list), causes a
list member to be split out in combination with the associated node. This is precisely
what is required here. Figure 6.3a shows the application of EJECT-FORWARD to

MemberListIn.

The alternate procedure for carrying out this operation would be essentially the
same whether a text editor or primitive SBE commands were used: Duplicate the
entire case clause; delete the extraneous cases labels. The EJECT approach certainly

saves a few keystrokes. More important, perhaps, the command nicely captures the

121

essence of the desired change to the program’s structure and semantics: Treat this

instance as a separate case.

Having split out the special case it is now possible to continue thé example.
The reason that different handling is required in the MemberListIn case is that
there is an added level of nesting around RefNode (I am now referring to the
internal structure of the target program). The nested calls to Parent in both the
predicate of the if statement and its altematé statement must be embedded in an
additional call to Parent. To accomplish this, the screen cursor is used to select the
outermost function call (Figure 6.3b) and EMBED is applied (Figure 6.3c). Since the
first choice pregented by EMBED is the desired one, it is possible to proceed
immediately to textual entry of the function name (Figures 6.3d, 6.3e, 6.3f). In this
particular example it would have been possible to have taken advantage of the fact
that the instances of the required function call are already present, and to implement
the correction with a single SELECT followed by REPLACE. In the course of an
actual editing session I w'ould have done so, but for demonstration purposes the more
generally applicable invocation of the EMBED command seemed preferable. Though
in terms of keystrokes its use is essentially a break-even- proposition when compared
to simple textual editing, EMBED does offer some advantages. On the practical side
parentheses are taken care of, and formatting is automatic. On the conceptual side,
the command captures at least the structural essence of the operation: Embed one

function call in another.

The example is completed in an opportunistic fashion: The syntactic cursor is
used to select the outermost call to Parent (Figure 6.3g, 6.3h), the screen cursor is
moved to the outermost call to Parent in the alternate (Figure 6.31), and that node

is replaced by the correct one (Figure 6.3j).

122

‘730 1ds St JuswIe UI3S TTI9qUIN Y[, (Bg'9

QUYMI04 103Ar3a

UIISTTIqUSH PUTF ANYHNOD
wPIEMIO0],, Pa3def3 9pON 13AOVSSIAW

UIJISTIIqUOK PUYTF ANVHHOD
SAMNANIIYIS- U0 BuybHOT dUSUNIO) $ADVYSSAW

mopuyM Axeyiyxny

moputm Axeyirxny

MoputM uyey

¥0 (F93Inbuz)DisTTIiUusuele]s
¥0 (x93Tnbuz)djuswaiels) JON JI
{ostey =: ssed0ns§
NIS3g

. ‘ana
(JoUMBN)8NOTARIG =: BTOUN IS1T3
(IoymeN
)IXON =: 9TOUN NIAHIL IXN = JION JI IAS13
FIN = OTOUN NIFHI TIN = JOUMON 4I
{ana
ana
((ePoNJoYy)jueaed)jusaed =3 JOYMON ISTH
TIN =3 JOUMON NIHL
(((°pPoNJFoY)Juexeq) jusaeqd
)Ojuswe 133151 JON 4I
NIDag
¢ uUrjsylIeqURN
~. {ana
((°PONJoy)jueaeg)Jueaeg =3 JOYMON IAST3
TIN =2 JOYMON NIHL
AAAﬂUOZUﬂﬂvuﬂﬂummvuﬂﬂumm
)03usweTaAISTT ION 4I
NI9ad
¢ UrISTTIWY] ‘IsyIIqUeN

MOPUTM utey
N3HL (393TnBuzl)WISUONITLBRT 41
N3HL
((((IsTT1IUBU@jE]S =
(393 nbul)uyewoqixejuoc))
¥0 (jucuejels
] Auﬂuﬁ=aﬂuv=dueonu%0u=00vv
aNv (a93Tnbuz)fiiduzg)
40 (393T1NnBul)BIsyrIUGWRIE]S
40 (aezInbuz)Djususiels) JON JI
{os1el =i ss9o50n§
NISag

fana
(FUMIN)SNOTARId = 9TOUN IS13
: (JoumeN
)IXON =2 STduUf NIAHI IXN = JIAON JII 3ASTA
TIN =: ®TdUN NIFHIL 1IN = JOUMON JI
{ana
anNa
((epoNJoy)juaaeg)jueaed =3 JOUMON aAS13
TIN =: JOYMON NIHL
(((°PON3J®Y)Juaaeg)jusaeq
)03ueueTAIS¥T JON dI
_ NID3d
¢ UrIsyrIoquRl ‘urisyriwls ‘Isyriequey

123

"[[89 UOTJOUNJ B 0} PSAOUI ST JOSIND USAIS Y], 'qEL°9

ur}sylIequey putl (ANVHHOD
«pIenIoz, peidefa 9pPoN $ADVSSIW
MOputM Axeyryxny

MOPUTM UTey
40 (F93TnBuz)disyIIUcURIE]S
40 (ax93rnBuz)jPiuswelels) ILON 4I
{o9s1e] =: 5S5S900NS§
NID3d

fana
(JOUMIN)SNOTARId =3 OTOUf] AS1IA
(JoumeN
)IXON = ¥TOUN NAHL IXN = JION JI IST3
TIN =¢ 970Ul NIHL 'TIN = JOUMON 4I
{ana
and
((opoNJey)jueaed)jusied n: JOYMON AS13
TIN =3 JOUMSN NIHL
(((opon3z@y) Jueaeg)iuaxeq
)Ojuewa TaISTT ION Al
NIS3d
H ﬁuumﬂdhﬂﬂﬁuz
_ .~ ‘aNa
((opoNjoy)jueIeg)judIed =3 JOUMON IST13
TIN =3 JOUMON NIHL
(((3poN3ay)Juaaeqg) Juexed
)OjusweT3aIST1 ION JI
NIS3Ad
$ UIISTIIWIS ‘ISTIIOqURN

’

UIISTTIqUR PUTI (ANVHWOD
«pIEMIOZ, P3309(3 SPON :IDVSSAW
MOputM Axeyryxny

MODUTM uTel
40 (I931nBud)DIsTIIUGWRIR]S
Y0 (I93Inbua)djuswelels) ION 4l
{asTe] =% S$5900N§
NID3d

v

H (k|
(JouUMON)SNOTARId =3 9Tdun ASTA
(FoumeN
)IXON =2 ©1dufN NIHL IXN = 4ION JI 3S1d
TIN =3 OTOUl NAHL TIN = JOYMON J4I
{ana
. and
((opoNjoy)jueieg)juered =: JOUMaIN ASTd
TIN =: JOYMON NIHL
(((°opoN3oy)Ijue Ieq)jud ey
)03usuRTIISTT JON J4I
NIDAd
H ﬂuuaﬂduﬂnﬁﬂz
0 |
((opoNJoy)JueIRg)JUaIRd =2 JIYMSN AS'TI
TIN =2 JOYMON NIHL
(((opoNjoy)jusaeq)juseq
)O3usueTaAISTT ION 4I
NISad
¢ uriIsy1Iwld ‘IsyrIoqURN

124

[[B9 UOTOUNy B UT poppaquId S [[89 uoyouny 3y, :9¢'9

UIISTlIequeN PUfj ANVHWNOD

TTeDUOTIOUNg $ADVSSAN -

mopuiM Axeyryxny

MOpUTM ufel

40 (FejTnbuz)fjuemwaiels) ION JI

fosyel =: $S920n§
NID3d

: fana
(JOUMON)SNOTADId =¢ OTOUN ASTH
: (FoumeN
)IXON =i OTOUN NFHL IXN = JION JI ASTH
‘ TIN =3 OTdUl NIFHL 1IN = JoymeN JI
{anNa.
. ana
((°pPoNJeYy)jUBIRg)JUB IR =i JOYMON ISTI
1IN =3 JOUMON NIHL
((((opoNgey)jueaeRg)jUueaed .
) TTRDUOTIdUNIXHHNG
)0juewaTaISTT ION 4AI
NI93d
¢ UIISTIIOqURH
. fana
((opoNzoy)juoaeg)jueaed =: JoymeN 3sTd
1IN =3 JOUMON NIHL
(((opONJoYy)Jueaeg)Jueaed
)O0jueue TA3S¥T ION 4l
NIDad
$ UIISTTIMWIS ‘ISTIISqURN

UIISTIIOqURK PUTF ANVHINOD
«PIEMI03, pajde(d OpON :IDVSSIAN

MOpUTM Axeyryxny

MOpPUTM UTEH
40 (F93TnBuld)PIsFTIUcuRIe]§
40 (aejInbuz)Bjuswelels) ION 41
fesye3 =: $5900N§
NIO3d

{ana
(FouMON)SNOTARIG =3 OTOUN ASTI
(JoumenN
)JIXGON =: OTOUN NIAHL IXN = JION JI 3STd
TIN =2 9TOUNl NIHL TIN = JOYMoN JI
{ana
anN3 .
((°poNJoYy)JusIRg)jueIed =3 JOUMON IASTI
TIN =2 JOYMON NIHL
(((epoNgey)jueaeg)jueeq
)O0jueuRTIAISTT ION Al
NI93d
¢ UIISTIIOqURH
fana
((epoNgey)jueaeg)jusied =¢ JoyMeN IAST3
TIN =2 JOUMON NIHL
(((epoNJgeYy)Jueaeg)jueaeq
)0jusuPTIISTT ION JI
NI9ad
¢ UIISTIIWIS ‘ISPrIPqURN

125

‘Pe[[ed ST 10Y1pe pIEOqUO Y, :Pg'Y

LNIWEND XJITA0N

UIIsS§lIsquen PUtjy ¢(ANVWHOD

J97JTIUSPI BUTITPE $AOVSSIW

mopuim Aaeyryxny

0

MODUTM UTEH

30 (xe3TnBuz)djuswaiels) ION JI
{osTeg =3 ss9odong

NID3d

{aNa
(JOUMON)SNOTADIg =$ OTOUN ISTA
‘ : (FoumeN
JAIXON =3 @TOoufl NIHL IXN = JION JAI ASId
JIN =3 OTJUfl NIHL 1IN = JOUMON JI
fana3
ana
((opoNJoy)jueaed)jusieq =: JOymeN IST3
TIN = JOYMON NIHL
((((°PON3Foy)3jueaed)jueaeg
) TTRDUOTIDUNIXNNG
)OjueuPTIIS T ION 4l
. NIDad
¢ UIlIsyIISqURN
~ ‘ana
((SPOoNJoYy)jusIed)jueaegd =i JoymeN IS'13
TIN =: JOYMON NAHL
AAAOBOZHﬂﬁvuﬂdhﬂmvuﬂﬂhﬂm
)O3usueTIIS§1 JON JI
NI93d
¢ UIISTIIWIS ‘IsTlIequEl

UIISTIIquUel pPuTF ZANVHWOD
TTEDUOTIDdUNS :ADVSSAN

mopuiM Laeprixny

MODUTM ufel

, ¥0 (a93Tnbuza)Pjusuweiels) ION 4AI

{osye] =: Ssooon§
NIS3d

{ana
Au¢¢3¢=vn50ﬁ>ﬂhm =3 9TOufl AS'13
Auﬂﬁlﬂz
)IXON =: OTOUN NAHL IXN = JION A1 ISTA
TIN =8 OTOuUfN NAHL ‘1IN = JOUMON il
{ana
anN3
((opoNJoy)jueaeg)jueaeg =3 jJoymeN ISI3
TIN =8 JOUMON NIHL
AAAAOBOZuﬂﬁvuﬂﬂhﬂmvuﬂﬂhﬂm
) TTRDUOTIdUNIXHHNG
)03ueus IS JON 4l
NIDad
¢ ur3IsyIIequRN
{ana
‘AAOBOZuﬂﬁvuﬂﬂhﬂmvuﬂﬂhﬂm = JOYMON as13
TIN =¢ JOYMON NIHL
(((°poNJFoy)jueaeg)jusaeq
)Oj3ueuPTIIST'T JON JI
NID3d
¢ UIjIsS§IIWIS ‘ISFrIqUBK

126

- ‘pedfy st swreu zoﬁuz& 9y, :9¢°'9

UIISTTIOqQUPH PUTF ZANVHHOD
: J9YFTIUOPI BUTITPA $ADYSSIANW

moputs Axeyryxny

[Jaue aea

UIisyiIequely putj ANVHHWOD
I9¥JFIUOPI BUTITPA (ADUSSAW

MmopuiM Xaejyryxny

MOPUTM UTEH

¥0 (IezInBuz)Piusuweleis) JON JI
fesTe] =3 $59000N§
NIDad

. fana
(FOUMON)SNOTA®Id =2 ©TOUN ISTA
‘ : (JoumeN
)IXON = 9TouUn NIHL IXN = JION JAI IASTA
TIN =3 OToun NIHL TIN = JOYMeN 4l
fana
anN3
((opoNjou)jusaej)juared =! JOUMON ASTA
TIN =3 JOYMON NIHL
((((opoNjey)jueaeq)jueaeq
) ITeDUOTIDUNIXNNAG
)OjueueTIAISTT JON 4AI
: NIDad
$ UIISTTIOqUBH
~ ‘an3
((opoNJoy)Julaeg)judaed a3 JOUMON ASTA
TIN =3 JOUMON NaHL
(({opoNjzoy)jueaeg)jueaeg
)0jueueTaISTT ION JI
NISag
$ UIISTTIWIS ‘ISTTIoquUBRH

0
MOPuTM UTEH

4O (aejInBuz)Biusumiels) JON Al
{osTe] a: S5900N§

NID3d

fana
Au¢¢3¢=vu50ﬁ>¢.~m =l OTIUfl ASTA
(JoumeN
)JIXON =! OTdufl NIHL IXN = dION JI ISTA
TIN =3 ®TduUfl NIHL TTIN = JOUMON 4AI
, & {aNa
anN3d
((9PoNJo¥)jusIeg)jusIed =: JOUMON ASTA
TIN =3 JOUMON NAHL
((((®PoNJoy)Iueaed)jusaeg

) TT®DUOTIDUNI XNHNA
)0jueueTAISTT ION 4AI
NIDAd
$ uIjsyIIOqUBH
fan3

((opoNjoy)jusIeg)jusieqd =3 JOYMON ASTA
TIN =! JOYMON NAHL
(((9pONFOU)JudIRg)jUudaeq
)OjueueTAISTT JON JI
NI9ad
! UIISTTIWIS ‘ISFTIOqURK

127

‘asuwreu uoyouny ayj Aq paoerdaz st tepjoysderd sy, :J£'9

J1.3'1dN0D LIa3

UIISTIIqURK PUtJ ANVWWOD
J9FIFIUePI :ADVSSAH
moputm Aaxejrrxny

UIISTIIOqUOH PUTJ ¢ANVWWOD
J9TJTIUSOPI BUTITPA :ADVSSAN
moputM Aaejyrxny

[Jausaea
MOPUTM utel

MOPUTM UTER

¥0 (aejynBuz)Pjueweiels) ION JI

{oste] =: sSseddns
N19ad

{ana
A JOUMON v - =O.m>0 A4 =3 9TOUf) a913
(JoumeN
)IXON =2 O[OUN NIHL IXN = JION JI 3ST3
TIN = 92Ul NIHL 1IN = JOUMON JI
fana
aN3
((epoNJey)jusIeg)jusaed =: JoymeN ISTH
TIN =2 JOYMON NIHL

- ((((9poNj9¥)3jueaeq)jusaeq

)3juexe]d
)0jueuwe 1338 ¥ ION Al
NI93d
¢ uI}SFIIqUBN
- {aNa
Aﬁauozuomvucouaavucauam =3 JOymeN ASTA
TIN = JOUMON NIHL
(((9poN3oY)Jusaeg)justeg
)0jueuRTaISTT ION JI
N193d
$ UIISTTIWIS ‘ISTTIOqURH

¥0 (xe3inBuz)Pjusueiels) JION dI
{fostel =: sSs59030N§
NIS3d

{aNa
(JoumMaN)snotaeag =3 efoun IST3
(JoumeN
JAXON =3 9TOUf] NAHL IXN = JION JI 3S'13
TIN =3 9TdUfl NIHL TIN = JOYMeN dI
fana
aNa
AAouozuomvucouaavucuuam =$ JoymeN 3ST3
_ TIN =8 JOUMON NIHL
((((epoNgey)uaaed)juaxeq
) IT1eDUOT I2UnJXHHAA
)O3usuP T3ISTT ION dI
N153d
¢ uUIISTIIqURR
{ana
((epoNjey)jueaeg)juereq =: JOYMON AST3
TIN =: JOUMON NIHIL
(((epoN3eYy)JusIeg)juadeq
)0jusue 331811 ION dI
NI9ad
$ ur3IsyIIWIS ‘IsyrIequen

128

‘jusaed o} [[B9 JSOWLIINO0 0} vm>c& ST J08an9 INdeIuAg :8¢°9

dn ¥osund

UIISTTIOqQUSH PUtj (ANVHHOD
TTeJUOTIDUNG (ADYSSIAN

UIjsflaequen PUTd (ANVHHOD
A3FIFIUSPI (ADVSSAH

MoputM Axejyyxny

MoputM Kxejyyyxny

MOPUTM utey

¥0 (29jinbuz)diusweiels) ION JI
{oste] =: ssSod0n§

NID3d

{ana
Au0¢30=vn50ﬁ>ﬂum = 9TOuUfl AS13
, (JoumeN
)IXON =: OTOUf} NAHI IXN = JION JII 3513
1IN = 9ToUfl NIHL 1IN = JOUMON 4I
fana
: anNa
((epoNjey)jueaeg)jueaed =3 JoyUMeN AS13
TIN =: JOuUMON NIHIL
((((®poNjoYy)jusaeg)jueaeg
)jueae]
)0juewdT3ISTT ION JI
NI93d
$ UIISTIIOqURN
. {aNa
((opongoy)jusaeg)jusaed =t JOuMON“3STA
TIN = JOYMON NIAHL
(((°pPoNjeYy)jueaeg)jusaeg
)OjusuRTaAIS T ION JI
NI93d
¢ UIISTTIWIS ‘ISTrIaquURN

MOpUTM UTel
¥0 (a9jinBuz)djuewsjels) ION J4I
{osTej =: Ss920N§
NI93d
: ‘ {ana
Auﬂ¢30=vm50ﬁ>ﬂum =3 9TOUfl IAS13 !
(IoumeN
)IXON =: OTOoUfl NIHI IXN = JION JI 3S13
TIN =: OTOUfl NIHI TIN = JOUMON JI
{ana
aNd
((epoNjey)jueaeg)jueaed =: JoumeN IS13
TIN = JOUMON NIHIL
((((®°poNjo¥)3jueged)juaaeq
vucounw
)B3usuPTAISTT ION dI
NI9ad
¢ UIISTIIqUIN
{ana

((opoNjoy)JudIRg)IUudaeg =: JOUMON IS'13

1IN = JOUMON NAHIL
(((9poNjoy)juaaeqd)juaaed
)OjusuPTAISTT ION JI
NIDad
¢ UIISTTIWIS ‘ISFIIqUBH

129

‘payoR)s St apou 9y, Yg'9

LoAT3S

UuIiIsylIIeqURK PuUt3 ZANVHIHOD
ITeDUOoTIdUNg 3do3l MON :ADVYSSANW

moputM Axeyryxny

(((®PON3FoN) JueIRg) Jusaeg)juared

MODUTM UTEN

30 (a9jInBuz)fjueuwejels) ION AI

fosTER] =: $5920N§
NID3Y

{aN3
(JoumMeN)sSnoOTARId =i OTduUn AST3
: . A JOUMON
)IXON =¢ OTOuf NIHIL IXN = JION 4I IAST3
TIN =2 OTdUN NJFHI TIN = JOUMON 4AI
{ana
aNa
((opoNjoN)jueaRg)juaeg =: JOYMON 3S13
TIN = JOHMON NIHL
((((opoN3Zou)3iuvaed)jusaed
vucounw
)OjusuPT3AIS¥1 ION dI
N1I93d
$ UIISTIIOqURN
N fana
((opoNjoy)jueaej)juered =: JOYMON 3ASI13
TIN =3 JOUMON NAHL
(((opoN3ou)jusaeg)jueaeg
)OjueuwP T3S T1 ION Al
NID3g
¢ UIISTIIWIS “ISTIIqURN

UIISTTIOqUBH PUtj ZANVHWOD
TTEDUOTIDUNG IJDVSSIN

MOPUTM AJRFITRNY -~

MOPUTM UTEN

¥0 (x93zInBuz)Ojuoumiels) ION dI

fosTe) =% SSODONS
NIDAg

{ana
(IoUMON)SNOTARIG =3 OTDuUl IS1IA
(JoumaN
)IXON =¢ OToUn NIHIL IXN = JION 4AI AS13
TIN =3 O[2uUn NIAHIL 1IN = JOUMaN JI
{ana
and
((opPOoNJo¥)judreg)juered =: JOuMAN AS'T3
TIN =2 JOUMON NIHL
((((opoN3ey)jueaeg)juaaeq
)juaxegd
)OjueuPT3IISTT ION 4I
NID3d
: urIsyIISqUeN
fand
((9pON3ZOu)jusaeg)jueaeg =3 JOUMON ASTI
TIN =: JOHUMON NIHL
(((°PON3®N)JuaIeg)Juazeg
)Ojueud T3S TT ION JI
NI93g
$ UIISTTIWIS ‘ISTIIqULH

130

‘9pOU STMOJUOLI? JIY)0 Y] 0} PIAOUW ST JOSIND UIRIIG 19

UIISTTIOqURK PUtTy ¢ANVHHWOD
TTedUOTIdUNg :do) MON :ADVSSAW
MOpuTM Kxeyyixny

UIISTIIoqURKN PUTI ZANVHIWOD
TTedUOTIdUNg $do) MAN $AOVSSAW

(((°PoN3oY)JuaIRy)JUdTE]) JUdITed

MoOputM Axeyryxny

(((°PON3®Y) Jud Ieq) Jus Jeq) Jusaed

MOPUTM UuTel

40 (aejTnbuz)BjusuPlels) ION JI

{esTel =¢: 55950NS§
NID3™

{an3
(JoumMeN)SNoTARIgd = @[OoUn ASTI
: . (3oumaN
)IXON =: 9TOUn NIHL IXN = JION JI IASTd
TIN =: 9Touf NIHL 1IN = JOyMeN JI
{ana
ana
((eopoNjoy)juvaeg)iuaxed =: JOYMON ISTI
TIN =3 JOYMON NIHL
((((oPOoN3®Y)Judaeq) jueaeq
vuﬂﬂumm
)Ojuswe TIISTT ION 4dI
NID3d
$ UIISTIIqURN
~ {ana
((opoNjey)jusaeg)jueaeq =: JOUMON IAS13
TIN =! JOUMON NIHL
(((°PONJoY) Judaeq) jusxed
)OjusweT3IS¥T ION dI
NID3d
¢ UIISTTIIWIS ‘ISTlIqUBK

MOpUTM UTEW

80 (x93TnBuz)fjusuiels) ION AI
fosTe3l =¢ ssaodong

NID3d

fan3
Au¢ﬁ30=vm50ﬁ>ﬂhm =3 9TOoun 3IAS13
(JoumeN
)IXON =3 OTOUfl NIAHL IXN = dION JI 3S13
TIN =8 OTOoUN NIHL TTIN = JOUMON Al
: {an3
an3
((°poNJoY)jusIRd)JUdIRg = JOUMON ISTH
TIN =2 JOUMON NIHL
((((°pPoN3oY)jusaed)juaieq
)juaxey
)OjueuRTaISTT ION 4I
NID3d
¢ uIISyIINqUBK
{ana
((SPoNJou)JudIRg)JudIed = JOYMON IASTI
TIN = JOYMON NIHL
(((9poN3ou)JusIeg) jusxeq
)0jueuRTIISTT JION 41
NID3d
¢ UIISTTIIWIS ‘ISTTIOqURN

131

"3U0 SNO’UOLId 3Y) save[das apou pajas[es A[snotaaad ayJ, :fg'g

Jov1a3y

UIISTIIoqUeH PUTJ ZANVWHOD

TTRDUOTIDUNG :ADVSSAN

UIISTTIqURK PUTI ZANVWIWOD
TTedUoTIdUNg :do) MON $IDVYSSAMW

mopuiM Axeyiyxny

moputm Aaeyrrxny

(((9PON3IoY)JueIeq)Jusaed)juaaeq

MOpUTM UTEl
fesyez =: S$53dans

NIDad

{ana -
Au0¢30=vn=OM>¢u& =$ 9YOuUn ASIA
_ (FoumeN
)AXON =3 ®TOuf) NJAHIL IXN = dION J4I IASTd
TIN =: 9TDOUN NAHL ‘1IN = JOUMON JI
{anz
ana
(((®PON3®Y)JusIeq)jueaeq)jus ey
=3 JOYMON ASTA
1IN =3 JOUMON NIAHL
((((®PoN3FoYy) JusaRq) JUseq
)jue xeq
)03uswe13ISTT ION 4I
NI93d
¢ uIISTIIOqURN
. - ‘and
((SpoNJoYy)jueIRg)JUeIRg =2 JOYMON ISTd
TIN =$ JOUMON NIHL
(((°PONJFOU) JUueIRyg) JUd IR
)Ojuewd TAISTT ION 41
NI9ad
$ UIISTTIWIS ‘ISTIIIqURN

MOPUTM UTeN

. 30 (I9zInbuz)Pjuswelels) JION JI

fes1e] =: $£5950n§
NI9adg

¢ana
Auﬂﬁlﬂ=vu=0ﬁ>ﬂhm =3 91oUf} AS73
Auﬂﬁlﬂz
)JIXON =¢ 9TOUQl NIHL IXN = 4ION JI IS13
TIN =3 OTOUl NIHL TTIN = JOYMON iI
{anz
and
((epoN3F®oy)jusaegaueaed =: JoyMaN ISTa
1IN =3 JOUMON NIHL
((((°pPoNjoy)Iuded)]jueaeg
)jueaeq
)OjueuwaTIISTT ION 4I
NI9ad
¢ UIISTIINqUIN
fand

‘((opoN3ey)jueaed)jueleq =i JOYMmeN aSTd

TIN =: JOYMON NIHL
(((epoNzou)Jusaed)Jused
)0jusue1aISTT ION 4I
NI9ad
$ UIISTIIWIS ‘ISTTIINqURK

132

CHAPTER VII
IN CONCLUSION

An Assessment

It is now time to assess the project, to see how far it has gone toward reaching
the main goals set out in Chapter IIl. How good is the editor? How useful are the
manipulative commands? Has a step been vtak_:en toward a more effective editing style
or technique?

The editor, qua editor, is a somewhat unevenly developed tool. The functionality
of what I have lca]led the editing facility seems quite rudimentary when compared to
that of some other implementétiohs, particularly in the realms of code production and
syntax-directed aids to inspection and selection (browsing, holophrasting, etc.). What
is provi-ded is the basic capacity to edit programs (and program fragments) with a
structural or syntax-based approach. Since the real motivation for its construction
was the desire to create a milieu in which to develop and examine what I have called
the manipulative facility, a job for which it has proven adequate, the editor itself

may be considered a qualified success.

I have to an extent already addressed the issue of the effectiveness of the
manipulative facility. In addition to description, Chapter V set out some of the
rationale for the commands of the facility. In the discussion accompanying the
examples of Chapter VI, I pointed out some of the strong points of the facility. Here I

will recapitulate the more relevant of those arguments.

All else being equal, it is desirable to reduce the number of keystrokes required
for the performance of a given operation. Typing takes time and effort and invites
error. Not surprisingly, the use of the commands under discussion typidally results in
keystrokes saved. Those commands which are implementable in terms of the basic

syntax-based operations offer keystroke savihgs which are large in percentage terms,

- 133

though generally small m numeric terms. Some operations (EMBED and the
transformational family) cannot be performed using just the basic commands. They
can be performed textually. Here the savings may be minimal for simple embedding
foﬂowed by textual entry, but for more complex operations involving multiple
commands, the savings become significant. The transformation commands tend to

save a great deal of retyping.

A part of the savings in keystrokes is attributable to what might be termed the
recycling of code. Often, in the course of fextua]ly editing a program, one would like
to extract a significant fragment of code, which may be textually embedded in other
code or whose limits are not readily ascertainable, and insert it elsewhere. In general,
SBE’s provide this capability. The new commands frequently enhance this capability
by providing a framework for the insertion of such fragments (EMBED) and by
providing more convenient methods for accomplishing such operations
(ROTATE/SWAP, ENGULF/EJECT). The example cited previously of the application
of INLINE to a case statement demonstrates how operations of the transformational
family may assist in the reuse of existing code. In fact the transformational
commands may in general be thought of as recycling code, in t';hat they consume the

old code before regurgitating it in the transformed state.

Some textual entry will always be necessary. Here the contribution of the
commands is rationalization of the operation. Details, including keyword production,
bracketing, punctuation and formatting, are handled by the system. Templates are
provided so that the purpose of the textual entry is at all times clear. The amount of
textual entry is minimized, and it takes place at particular places ’for particular

reasons which are related to the programming problem at hand.

The higher level commands do seem to have succeeded, to a degree, in bringing
into correspondence the statement of problems of program alteration and their

solution. They address such perceived problems as:

134

"This variablg declaration deserves special attention.

This statement should be executed repeatedly untﬂ some condition arises.
The logic of this predicate is incomplete.

This expression may be simplified.

And they generally do so in a direct and reasonable manner, e.g., "This statement
[place cursor] should be executed if [EMBED in the if statement], and only if, this
condition [type in predicate] holds." I submit that in program editing, as in the
programming process generally, it is advantageous to stay close to the problem of

A
interest, avoiding entanglement in detail wherever possible.

All of the foregoing contribute to that elusive state or attribute: programmer
satisfaction. Even skillful typists do not enjoy wasting keystrokes and should welcome
any reasonable means to avoid doing so, whether it be the enhanced capability to
reuse existing fragments of code, or the partial automation of code production.
Moreover, as professional problem solvers, programmers would also' be expected to
welcome any editing aid which helps to keep their concentration focused upon their

real job.

Given that the commands are effective when applied, how widely applicable are
those commands? Unfortunately, I do not have an empirically based answer to this
question. I can only speculate from the basis of my own experience. In the course of
"bootstrapping” the editor, I have certainly had occasion to use the higher level
commands of the facility. I cannot claim that they have come close to supplanting
the lower level operations. It seems that everyday editing will always involve a great
deal of textual entry, and that the simple syntax-based commands will be sufficient
for the performance of many operations, but, as I have pointed out in Chapter VI, it

is often the new commands which enable the effective use of the simpler ones.

135

¢

I have personally found the facility useful, but I am one programmer, working
in a single applications domain, and deaiing with a program in a particular stage of
its development. Will others, working in different domains under different sets of
ci.fcumstances, find this to be so? There are reasons to believe that this will be the

case.

To begin with, the operations have been selected and organized in accordance
with a not-unreasonable classification of the types of program manipulation activities.
Programmers do manifestly seek to effecf changes in their code by altering the
sequencing of elements and by manipulating the nesting of program structures. These
operations in cembination with more basic operations are often aimed at bringing
about identifiable transformations. The command families which implement these
operations have been developed with the explicit intent of achieving a degree of

general applicability.

A second encouraging factor is the extensive functionality of the facility.
Though few in number, the individual commands have been designed to be applicable
to a variety of node types in varying contexts. The sequencing operations of the
ROTATE/SWAP family may be applied to sequences or lists of all types, and the
notion has been extended to list-like objeéts as well. Commands of the
ENGULF/EJECT family work on all nested statements and statement lists, plus a
variety of nested non-statement lists. Particularly notable is the extension to lists
with associated nodes (variable declarations and their ilk). EMBED may be applied to
any statement or expression, providing a full set of embeddings in the former case
and an extensivg set of embeddings (both logical and arithmetic) m the latter.
Universal application has been proposed for EMBED/STRIP. Finally, the
transformational family has been extended beyond what might be termed the classical
transformations with proposals for application of INLINE to statements other than
procedure calls and to data structure definitions. All of this increases the likelihood

that a working set of operations will be found to suit a particular programming style,

136

applications domain, and life-cycle situation.

Finally, a measure of functional redundancy has been built into the system.
There is often more than one way to perform a task. The editing samples previously
presented suggest examples. An item may be moved to the head of a ligt by multiple
rotations of the entire list, by finding the item and then either rotating it to the head
or swapping it with the head item, or, quite possibly, by other means. Sublists may
frequently be handled either by means of the basic sublist commands or by repeated
invocations of ENGULF. One typically has a range of options for filling
EMBED-created placeholders: insertion of a previously selected (or created) node,
textual entry,/engulfing, and (potentially) template expansion. This flexibility admits

variations in personal style and programming context.

Is there a possibility that this will lead to new and better ways of altering
programs, in a manner analogous to the way in which the advanced
inspection/selection capabilities of other SBE’s have led away from arbitrarily linear
ways of examining programs? I have found that in particular circumstances problems
can be solvekd in ways which are not only more efficient, but, in a sense, more
meaningful as well. Code is manipulated on the basis of its structural organization,
and, in some cases, in ways which relate vquite directly to the accompanying
semantics. THe generalization of this o_rientation is, I suspect, inhibited by the
necessity for low level text entry. Although this cannot be eliminated, it could,
perhaps, be rationalized by implementation of a template expansion facility, together
with some advanced inspection/selection features borrowed from other syntax-based

implementations.

137

r

Suggestions for future work

A successful approach to the development of interactive tools has been the
iterative one [Bro77, Woo81]. A prototype is implemented. A body of users is invited
to make use of it. Based upon the experiences of those users, a new version is
implemented, and the process is repeated until there is a nice fit between user
requirements and the functionality of the tool. I have created a facility for
syntax-based editing environments which is interesting, potentially useful, and
possibly influential. The next step in its development would seem to be exposure over
an extended period of time to a variety of users, preferably working at a variety of
programming tasks. It would be relatively easy to build into the editor means for
monitoring the use of its features to determine which commands were being used and
which were not and under what circumstances. It might even be possible to discover
frequently used sequences of operations which would constitute candidates for
inclusion in the next generation of commands. Consultation with users would help to
determine why certain operations were being used and others not, and would, of
course, reveal operations which should have been available but were not. Given the
editor’s capacity for extension, users who were familiar with the underlying MPS
system, or willing to become familiar, could eontribute directly to the enhancement of
the editor’s capabilities.

Unfortunately, the current implementation is probably not attractive enough to
generate widespread use. Above and beyond the enhancements and extensions already
suggested, some major implementation efforts are in order:

1. A more acceptable environment - The MTS system is no longer being
heavily used. by computing science resea;chers as a programming
environment. Reimplementation of the editor on the departmental
research system (for example) would be beneficial.

2. A more sophisticated interface - In a modern workstation environment

it should be possible to construct a more helpful and attractive

138

interface.
3. More SBE features - Implementation of some of the well-researched
sjntax-based features of other editors (browsing and code generation,
for example) would make the editor as a whole more powerful. I
suspect thé.t they would enhance the usefulness of the manipulative
facility as well. |
I have claimed that the new manipulative facility has the potential to make program
editing easier and more enjoyable. Embedding the facility in such a supportive

environment would test that claim and, perhaps, expand the potential.

139

3

APPENDIX - SUMMARY OF COMMANDS

Manipulations

Basic Operations
INSERT-BEFORE

Insert top node at the position immediately preceding that of the current node.

INSERT-AFTER

Insert top node at the position immediately following that of the current node.

REPLACE R

Replace the current node in its context with the top node.

DELETE

Delete the current node.

DELETE-SUBLIST

Delete the sequence of elements bounded by the current node and the top node.

MODIFY

Call the on-board text editor for the modification of the current node.

Alterations to Sequencing
ROTATE-FORWARD

Rotate list elements forward. (Last element becomes the first.)

ROTATE-BACKWARD

Rotate list elements backward. (First element becomes the last.)

SWAP-WITH-TOP

Exchange the current node and the top node.

140

SWAP-NEXT

Exchange the current node and its immediate successor.

SWAP-PREVIOUS

Exchange the current node and its immediate predecessor.

Alterations to nesting

EMBED

Replace the current node in its context v&riﬁh a template in which the current node
has been embedded as a component. NEXT key is used to view alternative

embeddings. B

STRIP

Strip away a level of nesting from the current node.

ENGULF-NEXT

Move the enclosing structure’s sequential successor into the enclosed structure.

ENGULF-PREVIOUS

Move the enclosing structure’s sequential predecessor into the enclosed structure.

EJECT-FORWARD
Move element of the enclosed structure to ;;osition immediately following the enclosing

_structure.

EJECT-BACKWARD

Move element of the enclosed structure to position immediately preceding the

enclosing structure.

141

Transformations
INLINE

Replace node with a more explicit, semantics-preserving encoding.

SIMPLIFY
Replace expression or statement with a transformation which embodies a logical or

arithmetic simplification.

PROPAGATE
Given an assignment, replace the next occurrence of the variable on the left hand

side with an instance of the expression on the right hand side.
A

Supporting Commands

Traveling
SCROLL-UP

Move window up in textual representation.

SCROLL-DOWN

Move window down in textual representation.

CURSOR-UP

Move syntactic cursor up one level.

CURSOR-DOWN

Move syntactic cursor down one level. (Place on left-most node.)

CURSOR-RIGHT

Move syntactic cursor one element to the right.

CURSOR-LEFT

Move syntactic cursor one element to the left.

142

MOVE-TO-TOP
Move syntactic cursor to the top node on the node stack.

DEFINING-OCCURRENCE

Move syntactic cursor to the defining occurrence of the current (identifier) node.

Selection and Utilities
SELECT

Push a reference to current node onto the node stack.

SELECT-SUBLIST
3
Replace top node with a copy of the sublist bounded by the current node and the top

node.

SHOW-TOP
Display the node stack’s top.

POP
Pop the node stack.

SHOW-STRUCTURE

Display structure of the current node.

EDIT-NEW
Call the on-board text editor for the entry of a new node. (Node class must be
provided.)

Typed Commands
PARSE <file> <nodetype> [<name>]
Parse contents of file, a syntagm of class nodetype, and display in main window, or,

~ optionally, store under name.

&

143

f

PRINT < file> [<name>]

Prettyprint node in main window (or node stored under name) to file.

CHECKPOINT <file> [<name>]

Checkpoint node in main window (or node stored under name) to file.

RESTORE <file> [<name>]

Read previously checkpointed file into main window (or store under name).

FETCH <name>

Display copy of node stored under name in main window.

A
STACK <name>

Push copy of node stored under name onto stack.

STORE <name>

Store copy of top node under name.

MT
‘Escape to opefating system. (Restart is possible.)

$ <MTS-command>

Escape to operating system, execute MTS-command and return.

144

[ABL84]

[Ada84]

[All83]

[AMNS1]

[Ars79]

[BaS86]

[BBS85]

[BSS84]

[BuD77]

[Bro77]

[Cal84]

[Cam86]
[Cam87]
[Cap85]

[Dar84]

REFERENCES

Alberga, C.N., Brown, A.L., Leeman, G.B., Jr., Mikelsons, M. and Wegman,
M.N., "A program developement tool," IBM Jour of Res. and Develop., 28,
1 (Jan 1984), 60-73.

Adams, Edward N., "Optimizing preventive service of software products,"
IBM Jour. of Res. and Develop., 28, 1 (Jan., 1984), 2-14.

Allison, Lloyd, "Syntax directed program editing," Software - Prac. and
Exper., 13, (1983), 453-465. :

Atkinson, L.V., McGregor, J.J. and North, S.D., "Context sensitive editing
as an approach to incremental compllatmn n’ Computer Journal, 25, 3
(1981), 222-229.

Arsag, Jacques J., "Syntactic source to source transforms and program
manipulation," Commun. ACM, 22, 1 (Jan., 1979), 43-54.

Bahlke, Rolf and Snelting, Gregor, "The PSG System: From formal
language definitions to interactive programming environments," ACM
Trans. Program. Lang. Syst., 8, 4 (Oct., 1986), 547-576.

Brun, G., Businger, A. and Schoenberger, R., "The token-oriented approach
to program editing," SIGPLAN Not., 20, 2 (Feb. 1985), 17-20.

Barstow, David R., Shrobe, Howard E. and Sandewall, Eric, Eds.,
Interactive Programming Environments, McGraw-Hill Inc., 1984.

Burstall, R.M., and Darlington, John, "A transformation system for
developing recursive programs,” J. ACM, 24, 1 (Jan., 1977), 44-67.

Brooks, Frederich P., Jr., "The computer 'scientist’ as toolsmith - studies in
interactive computer graphics," in Information Processing 77, Bruce
Gilchrist, Ed., North-Holland Publishing Company (1977), 625-634.
Cameron, Robert D. and Ito, M. Robert, "Grammar-based definition of
metaprogramming systems," ACM Trans. Program. Lang. Syst. , 6, 1
(Jan., 1984), 20-54.

Cameron, Robert D., MPS Reference Manual (draft), 1986

Cameron, Robert D, Personal communication, 1987

Caplinger, Michael, "Structured editor support for modularity and data
abstraction," SIGPLAN Not., 20, 7 (July, 1985), 140-147.

Darlington, John, "Program transformation in the ALICE project," in

Program Transformation and Programming Enuvironments, P. Pepper, Ed.,
Springer-Verlag, 1984, 347-353.

145

[DHKS84]

[Gla81]

[GMHS85]
[HLC80]

[JeW85]
[Lev86]
[Lov77]
[PaS83]

[Rei84]

[ReT84]
[San87]
[Sch76]
[Sch80]

-[SGW81]

[Sol86]

Donzeau-Gouge, Véronique, Huet, Gérard, Kahn, Gilles, Lang, Bernard,
"Programming environments based on structured editors; The MENTOR
experience" in [BSS84], 128-140.

Glass, Robert, L., "Persistent software errors," IEEE Trans. on Software
Engineering, SE-7, 2 (Mar., 1981), 162-168.

Gustafson, David A., Melton, Austin and Hsieh, Chyuan Samuel, "An
analysis of software changes during maintenance and enhancement,"
Conference on Software Maintenance , IEEE Computer Soc. Press, 1985,
92-95.

Hammond, N., Long, J., Clark, 1., Barnard, P. and Morton, J.,
"Documenting human-computer mismatch in interactive systems,"
Proceedings of the Ninth International Symposium on Human Factors in
Telecommunications, 1980, 17-24.

Jensen, jKathleen, and Wirth, Niklaus, Pascal User Manual and Report, 3e,
Springer-Verlag, 1985.

Levenson, Nancy G., "Software safety: Why, what and how," ACM Comput.
Surv., 18, 2 (June, 1986), 125-163.

Loveman,r David B., "Program improvement by source-to-source
transformation," J. ACM, 24, 1 (Jan., 1977), 121-145.

Partsch, H. and Steinbruggen, R., "Program transformation systems,"” ACM
Comput. Surv., 15, 3 (Sept., 1983), 199-136.

Reiss, Steven P., "PECAN: Program developement ‘ systems that support
multiple views," Proceedings - International Conference of Software
Engineering, March, 1984 , IEEE Computer Soc. Press, 324-333.

Reps, Thomas and Teitelbaum, Tim, "The synthesizer generator," SIGPLAN
Not., 19, 5 (May, 1984), 42-48.

Sand, Paul A., "Three Modula-2 programming systems," Byte, 12, 1 (Jan.,
1987), 333-336.

Schneiderman, Ben, "Exploratory experiments in programmer behavior,"
Internat’l Jour. of Computer and Info. Sci., 5, 2 (1976), 123-143.

Schneiderman, Ben, Software Psychology - Human Factors in Computer and
Information Systems, Winthrop Publishers, Inc., 1980, 46-54.

Spier, Michael J., Gutz, Steve and Wasserman, Anthony I., "The
ergonomics of software engineering - description of the problem space,” in
Software Engineering Environments, H. Hiunke, Ed., North-Holland
Publishing Company, 1981, 223-234.

Soloway, Elliot, "Learning to program = learning to construct mechanisms
and explanations," Commun. ACM, 29, 9 (Sept., 1986), 850-859.

-~ 146

[SSS86]

[Sta84]

[Stus4]

[Tei84]

[TeR81]

[Toy84]

[Wil84]
— [Woo81]

[Zel84]

f

Schneiderman, Ben, Shafer, Phlllp, Slmon Roland and Weldon, Linda,

"Display strateg1es for program browsing: Concepts and experiments,"
IEEE Software, 3, 3 (May, 1986), 7-14.

Stallman, Richard, "EMACS: The extensible, customizable, self-documenting
display editor," in [BSS84], 300-324.

Stucki, Leon G., "What about CAD/CAM for software? The ARGUS
concept," in Software Validation, H.L. Hausen, Ed., Elsevier Science
Publishers B. V. (North-Holland), 1984, 311-320.

Teitelman, Warren, "Automated programmering: The programmer’s
assistant,” in [BSS84], 232-239.

Teitelbaum, Tim and Reps, Thomas, "The Cornell Program Synthesizer: A
syntax-directed programming environment," Commun. ACM, 24, 9
(Sept.,1981), 563-573.

Toy, W .N., "Hardware/software tradeoffs" in Handbook of Software
Engineering, Charles V.Vick and C.V. Ramamoorthy, Eds., VanNostrand
Reinhold Company Inc., 1984, 149-183.

Wilander, Jerker, "An interactive programming system for Pascal," in
[BSS84], 117-127.

Wood, Steven R., "Z - the 95% program editor," SIGPLAN Not., 16, 6
(June, 1981), 1-7. :

Zelkowitz, Marvin V., "A small contribution to editing with a syntax
directed ed.1tor " SIGPLAN Not., 19, 5 (May, 1984), 1-6.

147

