
ENHANCED MANIPULATIVE CAPABILITIES FOR A SYN'I'AX-BASED

EDITOR

Leland R. Dykes

B.A., University of California at Riverside, 1964

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School of

Computing Science

0 Leland R. Dykes 1988

SIMON FRASER UNIVERSITY

September, 1988

All rights reserved. This work may not be
ieproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Leland R. Dykes

Degree: Master of Science

Title of thesis: Enhanced Manipulative Capabilities for a Syntax-based Editor

Examining Committee:

Chairman: Dr. Binay Bhattacharya

Dr. Robert D. Cameron
Senior S u p e ~ s o r

Dr. Anthony H. Dixon
External Examiner

Date Approved: September 15, 1988

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Unlvers l ty the r i g h t t o lend

my thesis, proJect o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty L i brary, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l ib rary o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of I t s users. I fu r the r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r pub l i ca t ion o f t h i s work f o r financial gain sha l l not be allowed

wi thout my w r i t t en permission.

T i t i e o f Thes i s/Project/Extended Essay

Author:

(s ignature]

Leland R . Dykes

15 September 1988

(date)

ABSTRACT

Various tsols have been developed to help meet present day demands for more

and better software. One such tool is the syntax-based program editor (SBE). SBE

implementations feature program generation and utilize the editor's knowledge of

target language syntax to facilitate the inspection and selection of program

components. Typically, only minimal means for the manipulation of selected

components are provided.

Such an editor was constructed to explore the possibility. of enhancing the

capabilities of the SBE with a more powerful manipulative facility. Though

somewhat limited in its overall functionality, the editor has proven successful as a

medium for the development of such a facility, and as a platform for its

demonstration. Manipulation commands have been collected, implemented, and

organized into a number of families which, it is claimed, correspond to some of the

kinds of operations which programmers perform on their programs (and those of

others). A feature of this facility is the partial integration bf the code production

process into the manipulative process.

During the latter stages of its development, the editor has been used for the

correction and enhancement of its own source code. In this context the new command

families have shown promise when evaluated in terms of both objective and subjective

criteria.

DEDICATION

For A.M. and M.S.D.

I
ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Rob Cameron, for inspiration and guidance,

and my other examiners, Dr. Lou Hafer and Dr. Tony Dixon, for their criticism and

suggestions.

TAB- OF CONTENTS

. .
Approval .. n
ABSTRACT ... iii

DEDICATION .. iv

... ACKNOWLEDGEMENTS v

List of Figures .. viii

... I . INTRODUCTION 1

... 11 . SYNTAX-BASED EDITORS: AN OVERVIEW 3

Characteristics of Syntactic Editors ... 3

Research Directions .. 4

My Approach ... 6

III . INTRODUCTION TO THE IMPLEMENTATION .. 7
Aims of the Implementation .. 7

Preliminary Design Decisions .. 8

... Infrastructure 10

The Editing Facility .. 11
Manipulations 13

IV . THE EDITING FACILITY ... 16
.. Interface 16

Code EntryIGeneration ... 27

.. Inspection/Selection 34

V . THE MANIPULATNE FACILITY ... 40
Toward a Comprehensive Command Set ... 40
Basic Commands ... 45

The EMBED Family ... 47

The ENGULFIE JECT Family ... 65
.. The SWAPlROTATE Family 77

Commands of a Transformational Nature ... 80

.. .

THE MANIPULATIVE FACILITY IN ACTION ... 89

... Example . Rotation and Transformation 89

Example . Embedding and Engulfing ... 107
.. Example . Eject with Associated Node 121

.. IN CONCLUSION 133

... An Assessment 133

... Suggestions for future work 138

Appendix . Summary of Commands ... 140

.. Manipulations 140

... Supporting Commands 142

.. REFERENCES 145

vii

LIST OF FIGURES

Page

4.1 Appearance of the screen ... 17

5.la EMBED applied to a statement . first alternative ... 52

5.lb EMBED applied to a statement . second alternative 53

5.lc EMBED applied to a statement . third alternative .. 54

5.ld EMBED applied to a statement . fourth alternative 55

5.2a EMBED applied to an expression . first alternative 56

5.1b EMBED applied to an expression -second (arithmetic) alternative 57

5 . 2 ~ EMBED applied to an expression . third (arithmetic) alternative 58

5.2d EMBED applied to an expression . fourth (arithmetic) alternative 59

5.2e EMBED applied to an expression . fifth (arithmetic) alternative 60

5.3 ENGULF-NEXT applied to the body of a repeat loop 67

5.4 EJECT-BACKWARD applied to the body of a repeat loop 71

6 . l a A node class is entered in the command window ... 93

6.lb The editor is called for production of a new node ... 94

6.lc The textual representation of the new node is entered 95

6.1d Parsing yields a node. which goes on the node stack 96

6.le The screen cursor is returned to the working area .. 97

6 . If The syntactic cursor selects the case clause list ... 98

6.1g The list as a whole is rotated ... 99

6.lh The list is rotated again ... 100

6.li Yet another rotation leaves the elements correctly positioned 101

6 . l j The case statement is replaced by its "inline coding." 102

6 . lk The cursor is moved to the if s first component (predicate) 103

6.11 The cursor is moved laterally to the consequent statement 104

6.lm The cursor is moved again to the desired alternate 105

6.1n The previously created procedure replaces the alternate 106

6.2a EMBED is applied to the procedure call .. 108

.. The desired embedding is located 109

.. The edit& is called to actualize the placeholder 110

Text is entered ... 111
... The placeholder is replaced 112

The next placeholder is selected .. 113
The editor is called to fill this placeholder ... 114
A line of text is entered .. 115
Another line is entered .. 116
The component is actualized .. 117
The syntactic cursor is moved to the alternate statement 118
The next statement is engulfed .. 119
Another statement is engulfed ... 120

.. The Membe rL i st I n element is split off 123

The screen cursor is moved to a function call .. 124
The function call is embedded in a function call .. 125
The onboard editor is called .. 126
The function name is typed .. 127
The placeholder is replaced by the function name .. 128
Syntactic cursor is moved to outermost call t o P a r e n t 129
The node is stacked ... 130
Screen cursor is moved to the other erroneous node 131
The previously selected node replaces the erroneous one 132

CHAPTER I

INTRODUCTION

Traditionally - if it is meaningful to speak of tradition with regard to so

youthful a discipline as computing science - hardware costs have dominated those of

software. Today just the opposite is the case. The 4:l ratio of hardware costs to

software costs that was typical in the 1950's has in all likelihood been reversed

[Toy841. Technology has produced a new kind of computer: small, p o w e m and,

perhaps most important, affordable. The person operating such a computer is

increasingly less likely to be a computer professional [SGWBl]. More importantly, the

accelerated rate at which computers are assuming control of high-risk processes in

transportation, the energy and aerospace industries, medicine and so-called defense

systems [Lev86], suggests that there is a growing demand for software not only in

increasing quantity but of increasingly high quality as well.

Among the approaches tha t have arisen to deal with tlus problem is the

consideration of tools and environments dedicated to what Warren Teitelrnan has

called automated programmering, i.e.,

"... developing systems which automate (or at least greatly facilitate) those
tasks that a programmer performs other than writing programs: e.g.,
repairing syntactic errors . . ., generating test cases, making tentative
changes, retesting, undoing changes, reconfrguring, massive edits, et al,
plus repairing and recovering from mistakes made during the above."

The aim is to free the programmer from the uninspiring drudgery at which machines

excel.

"When the system ... is cooperative and helpful with respect to these
activities, the programmer can devote more time and energy to the task of
programming itself, i.e. to conceptualizing, designing and implementing.
Consequently he can be more ambitious and productive."[Tei84]

- It is to be hoped as well that there will be a reduction in mechanical errors and that

as a consequence, more reliable programs will result.

Programs are not simply text; they are highly structured entities. A program

development tool which -is "knowledgeable" about a given programming language's

formal structure, a syntax-based editor [I], would seem to have the potential to be an

important component of such an automated programmering environment, even to

serve as its "backbone" perhaps.

Indeed, a substantial amount of research and developmental effort has been

devoted to such editors. In Chapter I1 I give a brief survey of such work and identify

a neglected area of research which I have termed the manipulative facility. An

implementation was undertaken to investigate the possibility of developing such a

facility. In Chapter III the aims of the implementation are stated more definitely and

major issues introduced. Chapter N is devoted to a description of the basic editor,

which serves as an environment for the more innovative facility. Chapter V describes

the manipulative facility itself, and in Chapter VI it is seen in action. Finally, in

Chapter VII I look at the s i m c a n c e of the project and point out some possibilities

for future work.

El] In this thesis I use the following terms interchangably: syntactic editor, syntax

- editor, syntax-directed editor, syntax-based editor and SBE. As noted in the text,
their referent is the subject of Chapter 11 of the thesis. "Syntax editing" and
"syntactic editing" simply refer to the knowledgeable use of such an editor.
"Structure editor" and "structural editing1' are somewhat more general terms. I hope
that when they appear in the paper, their meanings will be evident from their
context.

SYNTAX-BASED EDITORS: AN OVERVIEW

Characteristics - of Syntactic Editors

Some text editors support structure-based editing to a degree. The extensible

display editor EMACS [Stat341 can be programmed to understand some of the syntax

of the language being edited and to provide operations particular to it such as

automatic indentation. The text-based editor Z [Woo81], using indentation

conventions, provides a number of structural editing features, including selection of

syntactic entities, zoom-in and zoom-out. Brun et a1 [BBS85] have developed a

token-based editor which supports automatic formatting. However, the syntax-based

editor proper is characterized by the maintenance of some internal representation of

the program's structure, typically a parse tree (attributed in the case of systems

which maintain contextual correctness), plus some means of generating and acting

upon that internal representation.

During the latter years of the 19707s, several such editors were developed.

MENTOR [DHK841 is a general system for the manipulation of structural material.

A programming environment for Pascal, including a structure editor, has been

implemented under MENTOR. The programming system Pathcal [wilt341 features

incremental execution and is distinguished by the use of Pascal, extended by the

adhtion of the data type "Code," and its consequent extensibility. Yet another editor

is SED [All831, which manipulates the tree structure by means of tree matching and

substitution in a manner at least superficially analogous to the string matching

facilities supported by the more advanced line editors. The above three editors share

two common characteristics: textual input of programs (with parsing to generate the

- internal representation) and a user interface analogous to those of conventional

(non-visual) line editors.

In contradistinction tn this their contemporary, the Cornell Program Synthesizer

CTeR811, features program generation by means of the expansion of program

templates (supplemented by textual entry). Editing is performed visually, using a

pretty-printed textual representation, a cursor whose motion increments are

syntactically meaningful, and a small set of editing commands (Clip, Insert and Delete

in the CPS terminology). The syntax editor provided by the SUPPORT programming

environment [Ze184] is quite similar, but has "browsing" facilities which are more

sophisticated, i.e., holophrasting (the suppression of textual detail), zoom and multiple

windows. These, then, are what I would describe as the basic characteristics. of the

fully developed syntax-based editor: template-based generation of syntactically, and

sometimes semantically, correct programs, generally represented internally by a parse

tree, full-screen editing with various syntax-directed aids to the inspection and

selection of program parts, and a primitive set of manipulation commands.

Research Directions

Various editors have been implemented with some or all of the above features,

including a t least one commercial effort [$an871 designed for use on personal

computers. Research involving these syntax-based editors has gone in a number of

identifiable directions.

Integration issues

Typically, syntax-based editors do not stand alone. Rather, they are associated

with, or integrated into, software development environments. A number of

researchers have concerned themselves with what Leon Stucki has referred to as
. .

"CADICAM for software" [Stu841 - that is, the creation of integrated software

engineering environments with supporting methodologies and providing improved

management/technical project analysis and control capabihties.

Editor generators

Editor generators are programs designed to automate the implementation of

editors for particular target languages. Encouraged by their results with the

"hand-made" Cornell Program Synthesizer, Reps and Teitelbaurn developed the

Synthesizer Generator mT841. Under their. methodology, the editor designer prepares

an attribute-grammar specification for the target language, from which the Generator

creates a full-screen, syntax-directed editor. Another such effort is the PSG System

[Bas861 which generates an environment consisting of a language-based editor, an

interpreter and a fragment library system from a n entirely non-procedural

specification of a language's syntax, context conditions and dynamic semantics.

Browsing

Some researchers have concentrated on the user interface and methods of

inspection and selection. For example, Schneiderman et a1 [SSS86] have implemented

what they call embedded selection to access detailed information about a given symbol,

and an hierarchical browser, which suppresses detail providing a top-down view. The

PECAN system [bit341 provides (simultaneously, if desired) many views of a given

program, e.g., the syntax-directed editor view, a Nassi-Schneiderman view, a symbol

table view, a data type view, etc.. The declared aim of the PECAN project is support

for graphical programming.

Syntactic editing style

I t is evident that the work mentioned immediately above is concerned with the

evolution of what might be termed a "syntactic editing style." With a possibly similar

motivation, Alberga et al [ABL84] have incorporated into their editorlenvironment a

self-monitoring facility to determine which commands are being used and which are

not, and to detect associations between various commands (e.g., frequently used

- sequences).

Constraint enforcementllanguage extension

The syntax based editor can be used to enforce programming policies or

constraints - on visibility for example - not supported by a given target language.

This approach is exemplified by Yggdrasil [Cap851 an otherwise typical syntax-based

editor which imposes upon the abstract syntax tree its own language independent

concepts of naming and scope.

More powerfLl manipulations

As noted above, great attention has been paid to the inspection and selection of

syntactic entities. However, when it comes to manipulations of selected entities,

editors generally offer little beyond the ClipIImert facility of CPS. Some attention has

been given to the matter. Though not a fully fledged syntax editor, as defined above,

the MENTOR-based Pascal environment does offer some simple transformations.

Similarly, Atkinson et a1 [AMNBlI have extended the editing commands in their

system with a QualifylUnqualify command. In neither case, however, has there been

a systematic effort to develop the notion further. This would appear to be a neglected

research area.

My Approach -

Of the three dimensions of syntactic editing - code generation,

inspection/selection, and local manipulations - the third seems to have been the least

explored. Consequently, it has become the focus of my research effort. The editor

supporting this effort is in the tradition of those described in the first section of the

chapter, though not so powerful, outside the realm of manipulations, as many of

these. Certainly, a long range aim of t h s research has been to encourage the

emergence of a structure-oriented editing style. These topics will be dealt with at

- length in subsequent chapters.

INTRODUCTION TO T m IMPLEMENTATION

Aims of the Implementation ---
The implementation consists of a syntax-based editor with certain features

emphasized. In previous chapters I hinted at the motivations behind the

implementation. They are listed more m y here.

1. I have pointed out the lack of attention given to the manipulative

capabilities of SBE's. The principle aim of my research has been to

address this lack by looking a t the development of such capabilities.

2. Underlying this aim is the more general desire to contribute to the

evolution of a "structure-based editing style" by providing an

environment which supports such a style.

3. In the section on infrastructure, below, I describe the system and

methodology underlying the editor. Any non-trivial implementation

serves to exercise this systern/methodology, demonstrating its

capabilities and, perhaps, revealing some of its shortcomings.

4. Finally, it is always to be hoped that a research project will

encourage serendipity, that the effort of the implementation will ,

facilitate the emergence of happy accidents providing insights into

matters peripheral to the main goals of the work.

It seemed reasonable to hope, as well, that one of those "happy accidents" might

consist of the implementation's serving as a prototype component for software

development environments.

Motivated by the above considerations, I have undertaken the construction of an

editor. In the remainder of the chapter I discuss some decisions which had to be

- made before implementation could begin, the system underlying the editor, the

various fwlctional components of the editor, and the issues associated with each of

those components.

Preliminary Design Decisions

The hypothetical user

When developing any tool, it is essential to identify a target user and the use

to which the tool will be put. Certainly an editor aimed at naive users and designed

to help them to learn good programming practices will look different from one aimed

at experienced programmers involved in the production of useful software. I have

chosen as my hypothetical target the latter case.

This choice has a number of consequences. For one, imposition of a coding

methodology upon the user is not desirable. The programmer should be free to work

with any syntactically meaningful fragment of code, developing in a top-down,

bottom-up or inside-out fashion and combining fragments at will. For another,

emphasis shifts away from program generation to maintenance and enhancement of

programs, since these account for as much as 80 percent of real-world software costs

[Toy841. This necessitates flexibility in the mode of entry of code into, and output of

code by, the system. Moreover, any such alteration threatens to introduce new errors

into the code [I]. A manipulative capacity whch helps to reduce textual entry - and

the mechanical errors which attend it - is, therefore, desirable.

Concepts and terminology

In keeping with the stated goal of flexibility it was decided that the editor

should accept for editing not just complete programs, but any syntagrn, i.e., any

syntactically meaningful program fragment. I t follows from the editor's syntax-based

nature that the elements of interest within the syntagm being edited will themselves

be syntagms. The internal representation of a program or program fragment is a

tree, the abstract syntax tree, and the elements of interest correspond to its nodes.

[I] Adams [Ada841 estimates that for each fix installed the probability of introducing
a new error is some 15 percent.

Consequently, it seems natural to think of, and refer to, these elements by the term

node.

If actions are to be performed on or using nodes, there must be some means to

designate the targets of these actions. What is necessary is a conceptual entity which

moves about the parse tree in a manner analogous to that of the cursor on a

terminal's screen. I have chosen to call the entity the syntactic cursor. At any given

time the node designated by the syntactic cursor is the current node, and as such will

serve, typically, as the operand for manipulations performed by the editor. An

operation might conceivably require one or more nodes in addition to the current

node. A stack seems a reasonable abstraction for keeping track of such nodes, so

provision was made for a node stack onto which references in the parse tree might be

pushed.

The issue of correctness

A fundamental tenet of syntax-based editing is that syntactic correctness, at

least in the context-independent sense, is maintained. As well, semantic or

contextual correctness is also generally maintained, or at least checked. This presents

problems if one desires, as I do, to retain the capability- to deal with arbitrary (but

syntactically meaningful) program fragments. Bahlke and Snelting [Bas861 have

implemented an ingenious solution which considers nodes in the internal tree to have

associated with them relationships of attributes. Provision for such a capability

entails considerable overhead and may introduce problems. Encumbering the parse

tree with contextual (or other) information may hinder or even preclude

implementation of some editing operations [ABL84,AMN81]. Since the issue is

peripheral to the primary aims of the research, my approach has been to restrict

myself to syntactic correctness of the context-independent sort. In the case of editing
- operkions which require context-dependent knowledge, the responsibility for assuring

that the necessary context is present is placed upon the user. If helshe fails to do so,

the operations simply fail, albeit &acefully and with appropriate messages.

Underlying a syntax-based editor is some internal representation of the target

program. For my implementation this internal representation and the means to deal

with it have been provided by Multi MPS [Cam86], a package of subroutines tha t

have been generated in accordance with the methodology known as GRAMPS [CaI841,

the GRAMmar-based MetaProgramming Scheme. Under GRAMPS, if one wishes to

develop a metaprograrnming system, i.e., a system which facilitates the writing of

programs which take other programs as their data objects, one begins by codifying the

grammar of the language in which the data-programs are written (the target

language), in an augmented BNF form. One then constructs, based on that grammar,

a package of subroutines in the language in which metaprograrns are to be written

(the host language). These routines include parsers and unparsers and the

recognizers, selectors, constructors and basic editing routines necessary to manipulate

the parse tree. In effect, a GRAMPS-based system like MPS enables the programmer

to deal with the program's parse tree as an abstract data type. MPS has been

particularly suitable for my implementation in that it has facilitated the extension

and experimentation which were used to develop more powerful manipulation

capabilities for the editor.

At the time of my project's inception, MPS was supported only on the Michigan

Terminal System (MTS), running on the university's IBM 3081 GX mainframe.

Consequently, my e&tor runs on this system as well. MTS provides a package of

routines which facilitate, or at least enable, the implementation of full-screen

applications utilizing the various CRT terminals on the campus-wide system. This

package was used to construct the editor's interface. This environment imposed some

limitations upon the implementation, particularly the development of the interface.

Since these limitations, described in Chapter IVY had no immediate impact upon the

primary research area (the manipulative facility), they were deemed to be acceptable.

The target language for my implementation is Pascal [JeW85], a language with

wide acceptance in academia and a degree of acceptance in industry. In accordance

with the GRAMPS methodology underlying Multi MPS, the language-independent core

of the editor can be applied to other target languages as their grammars are defined

and the corresponding sets of routines constructed. So far this has only been done for

Modula2.

The host language is Pascal as well. Having the same language as host and

target in an experimental implementation of a software tool can be advantageous.

One is assured of a supply of test code, the implementation itself, and as the power of

the tool @;rows, "bootstrapping" becomes a possibility.

The - Editing Facility

A syntax-based editor has a number of identifiable features. In each of the

three sub-sections below I identlfy such a feature and briefly sketch its associated

issues. Since it is the raison d'etre of the implementation, the fourth feature,

provision for more powerful local manipulations, has been allocated its own section.

Interface

As pointed out above, the syntax-based editor actually works upon the internal

representation of a target syntagm, but some external representation must be

provided to the user. Though various tree-like or graphical representations might be

devised, it has been my experience that programmers are generally not enthusiastic

about such representations. Consequently, the conservative approach of representing

programs as pretty-printed text has been used. That is, code is displayed with

conventions of indentation and capitalization enforced. The fuB-screen, visually

oriented approach is now the norm in text editing, and has served as the model for

my editor's interface. Issues that have had to be dealt with include the effective use

of the screen, the use of prompts and messages, the input of commands, and cursor

motion (see Inspection/selection, below).

Program entr ylgeneration

A standard component of many existing syntax-based editors is the program

generation facility. Precisely because this issue has been extensively dealt with and

because of the orientation toward the editing of existing code noted above, I have not

devoted great attention to the matter of code generation except as it relates to the

editors manipulative capabilities. What has been provided for is input and output of

syntagms to files, storage and retrieval of syntagms in their internal form, and the

integration of text editing capabilities into the editor.

Inspectionlselection

Possession of syntactic knowledge gives an editor the potential to go far beyond

textual scrolling as a means of "traveling" through code. This potential has not gone

untapped. As noted in Chapter 11, various researchers have looked at various means

including a zoom facility, holophrasting, the hierarchical browser and pattern or

structure matchmg. These are well-researched topics, and I have not concentrated on

them. I have found that if the editor was to be a t all useful, something beyond the

minimal capabilities was required. Consequently, a suite of 'search operations has

been proposed (and some of them implemented).

In addition to examining code, it is also necessary to select fragments for

manipulation. The conceptual basis for this capability was described in the previous

section. In concrete terms, the problem has been to determine what the

implementation of the so called syntactic cursor would look like: how it would be set

and moved, how it would be represented internally and externally. Means had also to

be found of dealing in a natural and unobtrusive way with problems of selection and

ambiguity arising from the dichotomy of the internal (tree-based) and the external

(text-based) representations.

Manipulations

Higher level manipulations - the problem

As I have pointed out, one neglected area of SBE research, and the focus of my

efforts, is that of the manipulative or transformational facility. Using the capacity

provided by MPS to construct routines to perform arbitrary transformations, guided

by intuition, and borrowing from the realm of transformational programming [Pas831

one could certainly provide extensive functionality in the form of a voluminous library

of manipulations. The problem then has been to identify, implement and organize a

more manageable set of operations which capture, at least to some extent, the

pragmatics of program alteration and enhancement.

I t is arguable tha t no built-in higher level manipulations should be provided,

that one should simply provide the capacity for extensibility, so tha t the user could

add manipulations when, and as, needed. Certainly some form of extensibility is

desirable and is supported in my implementation. I believe, however, that it is not

sufficient to do so for the following reasons.

Users should not be forced to "re-invent the wheel." If useful and

usable operations can be provided, why not do so?

Even when powerful routines on which to base them are available,

writing the code for non-trivial transformations can be a non-trivial

task. Lacking examples of the potential of this approach, the user

may be hesitant to take on such a task.

In light of point #2, above, it would seem appropriate to provide the

user with such examples. This re-introduces the subject of

investigations into the notion of a "structure-based editing style."

It would be nice to formulate a model of software modification on which to base

this facility, but our current knowledge of how programmers actually work is

inadequate for this. Research using a "top down", cognitive approach to the problem

ISch761 has suggested that programmers do indeed recode syntactic forms into

internal structures that represent the semantic structure of a program, but

conclusions as to the nature of that recoding and of the internal structure are

tentative at best [Sch80,So1861. The "bottom up," analytic approach [GMH85] has

given a n indication of where changes occur but has shed little light on the nature of

the changes.

Approach of the current work

Given this lack of a theoretical underpinning, it has been necessary to rely

upon experimentation to develop the manipulation facility. To this end, means were

developed whereby commands could be added to the editor at load time. Consideration

and implementation of commands has been guided by a number of principles. These

may be grouped into two general strategies: reduction of the number of commands

and organization of the resulting set of commands.

One way of reducing the number of commands is to select a set of formal,

low-level transformations [Ars 79 ,BUD 77,Lov771. However, performance of even

modestly complex transformations can involve using many such low level commands

organized in ways tha t are complicated and difficult to comprehend [Dar84].

Moreover, this approach is characterized by an insistence- upon the strict preservation

of correctness, with execution of transformations dependent upon various enabling

conditions. This is too limiting for a general purpose program editor.

A second approach, that of the current work, is what might be called the

intuitive overloading of commands. In addition to a formal syntactic structure,

programs have an mforrnal structure to them, awareness of which can be used to

motivate the overloading of commands. For example, programs contain various lunds

of lists, and a single command could be applicable to various kinds of list. Moreover,

the same command might be applied, with some intuitively meaningful effect, to

"list-like" objects such as the else-if clauses of an if statement, e.g., the exchange of

the two clauses of

IF eO THEN SO ELSE IF el THEN st

to yield

IF el THEN s l ELSE IF eO THEN SO.

Similarly, many diverse objects exhibit "nesting" - record declarations, &.else

statements, looping constructs, etc. - and conceivably commands could be extended to

cover all. Cameron [Cam871 has used this approach with some success. The problem

then has been to detect such structure in programs and to determine what actions

are intuitively similar for the differing cases.

Some specialization of commands is necessary if the program is to have

sufficient power and usability. It has been found [Bro77] that applications with

relatively large numbers of distinct commands can still be effective if the commands

can be clustered into smaller sets corresponding to conceptual work units. An

attempt has been made to discover such furctional clusters. The results of this

attempt are discussed in Chapter IV.

The interface is important in this regard as well. Within the limits set by the

system on which the editor is implemented, the interface must support and enhance

the organization of operations so far as possible. A related issue is that of the

integration of commands. The manipulation facdity will be effective to the degree

that sequences of commands can be composed.

C W T E R rV

THE EDITING FACILITY

The manipulative facility does not exist in a vacuum. As background, it is

worthwhile examining the environment in which it was developed and into which it

has been integrated. Therefore, this chapter is devoted to what I have chosen to call

the editing facility, i.e., the interface, the code production facilities, and the means

utilized for the inspection and selection of programs and their fragments. The typical

approach to each of the various components or aspects of the implemention is to

consider some of the issues associated with that particular component/aspect, to

describe the approach actually taken (generally with some rationale), and finally to

suggest any improvements which seem desirable.

Interface

Screen Appearance

The appearance presented by my editor (Figure 4.1) is not altogether different

from what one would expect of one of the more advanced line-based text editors. The

screen is divided into four horizontal areas or windows. Top-most, and occupying the

better part of the screen, is the main or editing window. Conceptually, this is a

window into the text resulting from the unparsing (i;e., prettyprinting) of the node

currently being edited. The user can, by means of function keys, scroll the window up

and down in the (virtual) unparse in a manner familiar to users of conventional text

editors. Using t h s capability, togeth r with other capabilities described in the t
ensuing sections, the user performs the actual editing operations. Note tha t only the

syntax-based operations provided by the editor may be used. Textual entry is not

permitted in this window.

Immediately below t h s main window is a smaller auxihary window. This

window has two distinEt functions. First, it is used for the read-only display of nodes.

The editor provides a stack on which to save references to selected nodes. The top

OptStmt : GetEncloser := Parant(Enc1osea);
MemberList, StmtListIn :
Getmcloser := Parant(Parent(Enc1osee));

Member Lis t In :
GetEncloser :=
Parant(Parent(Parent(Enc1osee)))

END
END;

BEGIN
Success := false;
IF NOT (StatamentQ(Ejectem OR .

StatamentListQ(E jectee) THEN
WriteMassage('App1ies only to statements*)

ELSE
BEGIN
Sttn := ~ituation(~ jectee);
IF Sttn IN [~umaystmt, ~pt~tmt] THEN
WriteMessage('Not applicable')

ELSE
BEGIN
EnclosingStmt :=
GetEncloser(Enclosee, Sttn);

IF EnclosingStmt = NIL THEN

Figure 4.1: Appearance of the .screen [I]

node on the stack is displayed here, either on comm nd or when it is changed by a 9
push or pop operation. In earlier versions of my editor, this window was used for the

display and selection of optional nodes. An inline representation of such nodes has

been implemented rendering the window's use in this context redundant. A simple

"display-current-node" feature, designed to help identify the current node, has

(11 Illustrations for the thesis have been produced by routines whxh dump the screen
contents, inserting text processor commands where necessary, e.g., the commands
which draw the outer box representing the boundaries of the screen and those which
draw the character-sized box which represents the screen's cursor.

Y r
replaced the earlier feature. Implementation of highlighting of the current node

would, in turn, render this feature obsolete. The auxiliary window is also used by my

editor's on-board text editor. In this context it functions as a conventional, if

somewhat small-screened, visual editor.

These windows, and the two others to be described below are resident and static,

i.e., they are always present on the screen and their dimensions do not change. On

terminals with deep screens (40 lines or more) this is quite satisfactory. The main

window is deep enough for the display of a significant portion of code, while the user

is spared the potentially distracting screen alterations that would be required if the

auxiliary window were transient or dynamic in nature. Moreover, the implementor

has been spared the effort of constructing the more complicat;?d system. On terminals

with the conventional 24 line screen, the main window is small enough that it is

sometimes annoying. I t would, therefore, seem desirable to provide the user with the

capability to toggle (using a function key) between a resident mode, i.e., the

functionality of the current implementation, and a transient mode, in which the

auxiliary window only comes into being when necessary, with the main window

expanding and contracting in depth as appropriate.

Below the auxiliary window are two more windows. They are very small, each

occupying a single line of the screen. The upper of the two, displays the prefix

MESSAGE: [21 and the other the prefur, or prompt, COMMAND?. The message window

is used by the editor to communicate information to the user. The messages are of

various types: syntactic information, e.g., the class of the current node,

announcements about the internal state of the editor, e.g., Stack now empty, and

error messages, which are generally formatted in such a way as to help the user

utilize the features of the editor, e.g.,

Usage: PARSE <filename> <nodeclass> [<nodename>].

[2] Text which one would expect to see on the screen - static labels or prompts,
dynamic prompts or messages, user-entered commands or parameters, or Pascal code -
is set in thi s typeface (which looks LIKE THI S in uppercase).

The field adjacent to the COMMAND? prompt is the one part of the screen where the

entry of characters from the keyboard has been enabled (disregarding, for now,

textual editing mode). This area is used for the entry of commands and their

parameters and other textual material required from time to time. The user simply

positions the screen's cursor, types the required text and hits <RETURN > , or some

other relevant key, to cause the data in the command window to be read. Once

entered, the text is persistent and may be repeatedly reread by striking the

appropriate key.

Interac&n issues

In the paragraphs above I have described what the editor looks like and

discussed, briefly, how it "talks" to the user. In subsequent sections I will relate how

code is generated and inspected and how operands are selected and manipulated.

Here I wish to deal in greater depth with the issue of input of instructions to the

editor. That is, how the user talks to the editor.

There are a number of criteria to use when assessing a potential mode of

command input. It will be seen that in some cases these criteria conflict with one

another, and that trade-offs must be considered. The cri&ria are:

1. Economy - All else being equal, it is desirable to minimize the number

of keystrokes required for any operation. Programmers are paid to

think, not type.

2. Mnemonic value - Any method used should minimize the amount of

memorization required of the user and should be as helpful as

possible with respect to that memorization which is unavoidable.

3. Naturalness - This is, admittedly, a subjective criterion. I do believe

that some procedures can be seen to be manifestly awkward, and as

such they should be avoided.

4. Familiarity - This is closely associated with the criterion immediately

above (and vice versa). That with which we are familiar tends to

seem most natural. It would seem to be advantageous to stick to the

familiar where possible (in the interface) and to save the experience

of unfamiliarity for where it is inherent in the problem (editing

programs as structured entities rather than mere text).

5. Open-endedness - Imposition of arbitrary limits on the number of

commands supported is certainly undesirable.

6. System support - This last criterion while theoretically the least

important is, fiom the practical point of view, most important. What

we build is, to a great extent, constrained by the availability of tools

and components with which to build it. For example, an interface

which would be attractive and effective if implemented on a

workstation with support for windowing, menus and the "mouse,"

may well be messy and unwieldly when implemented on a less

sophisticated system (assuming that it could be implemented at all).

Let us consider, in light of the above, the relative merits of three input methods:

typed commands, function keys and menus.

Typed commands

The use of typed commands as the sole means of input would seem to defeat

the purpose of adopting the visually oriented approach. However, this method does

have some advantages. To begin with, communication with the computer by means of

command lines is certainly familiar, at least to anyone who has used either of the

major systems at this institution, UNIX [31 and MTS. Moreover, it is a most natural

form of entry for certain types of commands, i.e. those which do not require selection

of a n operand from the screen but do require one or more arguments from the user.

Unlike (unlabelled) function keys, but not menus, typed commands may have

mnemonic value. And t h s is an open-ended method. Subject to the constraints

discussed below, you may have as may such commands as you like.

[31 UNIX is a trademark of AT&T.

On the other hand, the entry of character strings is most uneconomical in terms

of keystrokes. The number of strokes can be reduced through the use of abbreviation,

but only at the expense of mnemonic value. Although their spellings help the user to

remember the mappings between string and action, the user still has the burden of

remembering the entire set of commands (strings). Finally, this is not, in many

instances, the most natural mode of entry. The typical visual editing operation has

the form:

-select an operand with the cursor

-invoke some operation.

In this case a n awkward procedure would be imposed upon the user. Since the MTS

screen support routines permit input only through application-assigned fields in the

screen, the user would be required to move the cursor to such a field, or,

alternatively, the editor would have to be exited briefly to allow input.

Function keys

Perhaps the most obvious advantage of entry by function key is economy. A

minimal number of keystrokes is required in this mode. Of equal importance is its

naturalness and familiarity. The place-c~rsor/stsike-key pattern is straightforward (at

least for single argument commands) and anyone who has used a visual text editor is

familiar with it. Finally, it is easily implemented under MTS. The screen support

abstraction provided by that system encourages one to structure a n interactive

program as an await-function-key/interpret-key/process-instction loop.

Chief among the drawbacks of this method is the need for extensive

memorization. The user simply has to remember the arbitrary mappings between a

number of keys and their associated actions. This problem can be alleviated by

sticking labels identifying the keys to the keyboard. This solution should be quite

effective, provided each key is permanently associated with a single action.

Unfortunately, this will not always be the case. Another disadvantage of function key

entry is that there is a limited number of such keys available, typically two or three

dozen. Since an editor of the sophistication and power of the sort we are concerned

with here needs more keys than that, it is necessary to introduce modes of operation

or some other method of increasing the number of operations callable by key. In a.

later section I will discuss this issue in some depth.

Menus

Finally, we come to the last alternative under consideration, selection from

menus. This method certainly has the advantage of trendiness. For the growing body

of users accustomed to working on microcomputers or workstations which support the

mouselmenu paradigm, this is most familiar. There are a number of advantages

which account for the popularity of menus. Chief among these is that their use

involves selection from an explicit set of alternatives rather than memorization of

those alternatives. And they provide mnemonic aids to help the user associate

alternatives with actions. Though this method is not completely open ended, fairly

large numbers of commands can be handled effectively by means of (for example)

hierarchical menus. Finally, it can be a most natural method. I envision a hybrid,

"two-handed" implementation where one hand uses function keys to select operands

with the screen cursor (or syntactic cursor) while the other uses the mouse in select

operations.

Unfortunately, realization of the full potential of this approach requires a high

level of system support, starting with bit-mapped graphics and extending to

windowing and menu generation facilities, and includmg provision for a

supplementary input device (e.g., the mouse). There are also drawbacks which are

intrinsic to the method. Pushed to extremes, the mouselmenu model can itself become

awkward and slow. As well, it suffers from the same problems as the function key

mode when textual input is involved. For reasons mentioned elsewhere, the current

implementation does not run on microcomputer or workstation, but on a mainframe

through conventional non-graphics terminals. For this reason, and because there are

the advantages to the other methods mentioned above, I have chosen, for now, to

forgo the use of menu selection.

Approach of the implementation

I have pointed out that for some commands, typed entry seems most

appropriate, and in my implementation I have used this method for such commands.

The commands involved are those which do not require selection of an operand from

the screen, but do have one or more other arguments. Primarily they control the

input and output of syntagms, and the storage and retrieval of nodes by the editor.

For example

PRINT <filename> [<nodename>]

causes a pretty printed representation of the node stored under the name nodename

to be written to the file called filename. The nodename argument is optional; if it

is omitted the node currently being edited is pretty-printed.

This applies to a minority of the editor's functions, however. Due to its economy

and naturalness, I have opted to utilize function key entry for most operations. The

result then is an hybrid system with most operations performed by means of function

keys, but with typed command lines used where it was deemed appropriate to do so.

Among the disadvantages of function key entry mentioned above is the limited

number of keys available. The manner in which the implementation addresses this

problem is discussed immediately below.

Function hey organization

If one is attempting to extend the capabilities of an SBE through the

implementation of operations beyond 'the most basic ones, and if one desires to use

function keys for the invocation of those operations, one must deal with the fact that

there are not enough function keys to permit a one-to-one mapping of keys to

operations. In interactive applications commands frequently cluster conceptually and

temporally to yield natural modes of operation, each with its own operative key map.

Where my editor is concerned, operational modes have not been easy to define.
' -

Although operations certainly may be grouped into categories ("travel," selection,

23

- 1

basic editing, etc.), sequences of operations generally seem to cross category

boundaries. Moreover, my experience, and that of others [4], points to the mode of

operation as a source of errors. More exactly, errors tend to be made at temporal

boundaries, the commonest error being to forget to change modes, proceeding instead

to forge ahead, typing the key which would have been applicable had mode (and key

map) been properly changed.

I have used the above mentioned categories as the basis for a n approach to

keying in commands which is hierarchical and at the same time "mode free." Under

this approach, a subset of the available function keys is used (I prefer the keypad;

other users might prefer a different locality), and each command is a two key

sequence: The first keystroke selects a category; the second selects a n operation within

tha t category.

This scheme has the following strong points:

1. Convenience - A given command will always require the same

sequence of keystrokes. The user's fingers are not required to

remember whether or not the system is in a particular mode.

2. Keyboard localization - Having a small nuinber of physical keys

involved b i t s the area of the keyboard which must be

3. Mnemonic value - Memorization and recall tasks are facilitated by the

"chunking" of data items. At each level of the hierarchy the user

only has a small set of keys to chose from.

4. Economy - The use of multiple keystrokes would seem to be

uneconomical. However, by restricting the set of physical keys used,

escape sequences and double-keying can be eliminated, so that the

increase in the average number of keystrokes is small.

5. Open-endedness - I have outlined a simple two-tiered arrangement.

[4] Hammond et a1 [HLC801 have found the shiftlunshift mode to be implicated in one
out of six errors made in an interactive environment.

Multi-leveled hierarchies are also possible.

An observation is in order here concerning my claim of a modeless system. In

fact some sets of operations (e.g. textual editing) seem naturally to constitute a mode

of operation, and they have been implemented as such. In subsequent chapters I

consider these modes further, addressing the problem of transitions between modes.

Hybrid commands

As I have pointed out above, it seems most natural to invoke some operations

by means of function key and others by means of typed command lines of this f ~ r m :

COMMAND <arg1> <arg2>
In practice, there are commands which do not f i t nicely into either of these categories.

I will cite an example. I have implemented a command which might be called

MODIFY - CURRENT - NODE, which permits the user to textually edit any selected

node. The procedure is simple and, I believe, quite natural. The user selects a node

with the cursor and enters text-editing mode by striking the appropriate function

keys. Upon return from text-edxting mode, the original node is replaced in its context

by the textually modified version. A related command, let us call it

CREATE - NEW - NODE, allows the user to textually enter completely new syntagms

from the keyboard. The on-board text edxtor is used here as well, but the resulting

node is pushed onto the node stack to be disposed of by the user as helshe sees fit.

This does not require selection of a node, but it does require input of the applicable

node class (i.e., the sort of structure it is: procedure declaration, statement, etc.). In

this sense it is a candidate for implementation as a typed command. On the other

hand CREATE - NEW - NODE is clearly related to MODIFY - CURRENT - NODE. In

order that related operations may be grouped together into categories, as described

. above, I have implemented this command (and others as well) as a hybrid operation

with textual entry and function key invocation.

Given the existence of such hybrid commands it is worthwhile to look more

closely at their sequencing. Under what might be termed the "conversational model'"

of interactive computing, a n operation might be performed as follows:

USER: Select node and strike appropriate keys.

EDITOR: Prompt user for necessary textual data.

USER: Enter text and strike function key (typically <RETURN>).

EDITOR: Perform the specified operation and display results or provide an

error message if something is amiss.

This sequence has the advantage that the user need not remember all of the details

of the command's requirements; the editor spells them out. However, I suspect that

experienced users of the editor would be impatient with this dialogue. They would

know what the command requires, and would prefer the following simpler sequence:

USER: Enter text; select node and strike appropriate function keys.

(Note: The command expects to find the textual arguments in

the command window.)

EDITOR: Perform operation and display results or produce a n error message.

Note that if the error message produced looks like a -prompt, which it will if no

textual arguments are provided, then the process, as seen by an inexperienced user,

is most sunilar to tha t of the conversational model, i.e.,

USER: Select node and strike function keys.

EDITOR: Produce error message (i.e., prompt the user).

USER: Enter text and strike function keys again.

EDITOR: Perform operation and display results.

Since this approach assists users when they are new to the editor, while allowing

them to take shortcuts as they become more experienced, I have chosen it for the

implementation.

Note that currently the implementation imposes the somewhat awkward

sequence:

- enter text in command window,

- move cursor to main window and select node,

- strike operative key.

By providing a command which updates the current node (if necessary), then causes

the cursor to jump to the command window, I could give the user the option of using

the above sequence or the following one:

- select node and jump to command window,

- enter text and strike operative key.

Code EntrvJGeneration

The editor works by associating a node with the main, or editing, window,

displaying all or part of the node's pretty-printed representation in that window, and

providing the user a set of tools with which to edit the node. In keeping with the

design goal of flexibility, this node may have been created in any of several ways:

1. Parsing a source file,

2. hstoration of a checkpoint file (see below),

3. Ectry of text h r r , the keyboard, or

4. Generation by the expansion of templates (at least potentially).

1 shall now consider each of these methods for bringing syntagms into the system,

together with some methods for outputting then.

Input from files

1 have stated in previous chapters that it is most desirable that a n editor be

capable of processing pre-existing code. To deal with such code the editor supports a

command PARSE which takes as arguments a file name and a node class. PARSE

causes the contents of the named file, which must be a syntagm of the given class, to

be parsed and the resulting node associated with the editing window. Alternatively, a

third, optional, argument allows the resulting node to be stored under a name

determined by the user (see below). Since syntagms which have been edited must be

written back to files, a PRINT command is supported as well. PRINT unparses the

main node, or, optionally, a named node, to a file. Since nodes may be named and

stored, there must exist commands to provide access to the stored nodes. Supported

are a command to FETCH a copy of a named node into the editing window, a STACK

command which puts a copy of a named node onto the node stack, and a STORE

command which causes a copy of the top node on the node stack to be stored under a

user-specified name.

PARSE and PRINT read and write conventional Pascal code. The underlying

MPS system also supports the checkpointing of a node, i.e., writing the node to a file

using a representation which is similar to that used internally. Such a checkpoint

Ne occupies no more disk space than the corresponding code and may be restored at a

computational cost which is lower than tha t of parsing the original Pascal code. I

have included in my implementation - support for commands CHECKPOINT and

RESTORE. These commands have not received much use to date, but I believe that in

an integrated software development environment, the checkpoint file would be the

natural form for storage for programs and would, as well, be the natural means of

communication between tools.

Textual entry of code

If i t is to be a usable tool, a syntactic editor must be, in reality, a hybrid

editor, i.e., it must have some capacity for textual editing. One could support the

generation of lexemes by some sort of template expansion, but it is clear that this

would in practice be hopelessly awkward. At some level the user must resort to

textual entry. The question is: At what level? Various implementors have had

various answers: the identifier level, the statement level, the phrase level (whatever

that is). My solution, motivated by the principle of flexibility, is to allow textual

entry at any level. The choice is the user's. If the editor has been properly designed

and is being used to best advantage, one would expect that such entry would

generally be at a low level (e.g., identifier). Still the user has a choice, e.g., a simple

expression or statement may be typed in, while a more complicated one may be

generated by expansion (when tha t facility is available).

To handle such textual entry, the editor has a somewhat rudimentary visually

oriented text editor built in. To call this editor the user selects the node to be

modified and strikes the appropriate function key. This causes a representation of the

selected node to appear in the small auxiliary window. There the user may edit it

textually using operations supported by typical visual editors, i.e., textual scrolling

and the insertion and deletion of characters and lines. Upon completion, the text is

parsed and the resulting node replaces the original in its context. Any syntagm may

be edited thus. I t can also be seen tha t only syntagms may be created in this

fashion. Code fragments which are syntactically incorrect or incomplete will not

parse. Striking a different function key allows the user to create code from scratch

using the little editor. In this case it is necessary for the user to supply the class of

the node to be created, since there is no context to determine it. Under the current

implementation it is required that the spellings of the class names correspond to

those of the constants of the type NodeClass of the underlying MPS system (e.g.,

IfStatement, SubprogramDeclList, etc.). In a production implementation i t would, of

course, be desirable to have a more flexible set of conventions. Upon return from the

editor, the resulting node is pushed onto the editor's stack.

I t would seem to be more natural for this text editing to take place in situ, that

is with the command causing a sort of dynamic window to open at the cursor,

somehow displacing the older text as characters are entered, but only being parsed

when the entry is complete. That this mode of entry is not supported is largely a

function of the difficulty of its implementation. However, I have found some

advantages to the current scheme in practice:

1. The transition to the auxiliary window is not so annoying as I had

anticipated its being. The screen alterations necessitated by insertion

in place might actually prove to be more distracting (and slower).

2. The original, unaltered text is always available for inspection, which

is sometimes desirable.

3. I t emphasizes the distinction between the structural and the textual

modes of editing.

4. Because it is clear tha t this is a distinct mode of operation, errors

arising from the transition between modes are less likely.

Both textual entry from the keyboard and input from files require code to be

parsed. How does the editor deal with a failure to parse? Currently, this is handled

by the underlying MPS routines, which respond to a problem in parsing by offering

the user the choice of calling the MTS visual editor to permit correction of the

problem, or of terminating the execution of the program (in this case, the editor

itself). This is less than satisfactory. It would be preferable, at least in the case of

keyboard entry, to use the on-board editor for corrections. In any case, it would

certainly be preferable to be able to abort the parsing process without shutting down

the editor. Desirable though they may be, these improvements are not critical to the

key issues under study, and they have not been implemented.

Code generation

A standard component of many syntax-based editors is the program generation

facility. Since this feature is well developed in other implementations, it has not been

implemented here. Some of the manipulative routines which I have developed do

involve integration of the code generation process into the editing process. I discuss

these routines, and some issues which relate to code generation generally, in Chapter

V. Template-based code production seems to fit in well with the approach of my

research and is a candidate for future implementation. Here I describe the basic

facility as I envision it.

To create a template the user strikes the appropriate function key, or perhaps

types the command CREATE if command line entry is decided upon, causing the
. -

requested template to be associated with, and to appear in, the main window. Since,

in accordance with the principle of maximum flexibility, the template may be of any

type, the user must spec* a node class as well. What I call a template would look

very much like the productions in the grammar for the target language. For example,

a procedure declaration template would look something like this:

PROCEDURE <<~ame:Identifier>> (<<Parameters:ParameterList>>)

Placeholders are expanded in their turn by placing the cursor on them and striking

the EXPAND key. For example, selecting and expanding the block placeholder above

would yield following:

PROCEDURE <<Name:Identifier>> (<<Parameters:ParameterList>>)

LABEL <<Labels:IntegerList>> ;

CONST <<ConstantDefs:ConstantDeflist>>

TYPE <<TypeDefs:TypeDefList>>

VAR <<VariableDecls:VariableDecPList>>

~<SubprogramDecls:SubprogramDec1List>>

BEGIN

<<Statements:StatementList>>

END ;

This process continues until the user chooses to actuate a node using the text editor,

or he/she reaches the lexeme level (identifier, number, etc.) and must use textual

entry or replacement by an existing structure of the required type. In most cases a

variety of expansions may be possible. For example, both placeholders in the

template

WHILE <<Condition:Expression>> DO

<<Body:Statement>>

represent alternation domains and can legitimately be replaced by any bf a number of

expansions. Jus t how the user is to select from the various alternatives is an

interesting problem and is dealt with in Chapter V.

All of the above conforms to the standard model of program generation. I would

like to provide the user with additional flexibility by enabling him/her to insert

templates into existing code and to replace elements of existing code with templates,

those templates then to be expanded as described above. Perhaps it would be

appropriate to implement special versions of the basic INSERT and =PLACE

commands which would do that. I am also interested in expanding the local

manipulation facilities of the program with commands which involve code generation.

My experiments along these lines are described in Chapter V.

There are some issues having to do with the implementation of a code

generation facility. One is the question of how placeholders are to be represented,

both internally and externally. The external representation is not a terribly

interesting problem. Certainly the placeholders should be distinct in appearence from

key-words and actualized code (though not outlandish), and any text they contain

should help the user to understand just what they represent. The conventions.1 have

used in the examples above seem to be not unreasonable: Questions still remain. For

example, how should optional nodes be dealt with? Should they be displayed

explicitly, as above? Should they be distinguished by square brackets as is done when

defining the grammar? Or should they be omitted, as they are in actual code, only to

become visible when specifically selected (see Inspection/Selection, below)?

Questions about the internal representation are more basic. A feature of the

GRAMPS approach is that however the external textual representation is handled,

the underlying syntagm is correct and, in the context independent sense, meaningful.

Once templates and placeholders are introduced, this is no longer the case. A

template, by its very nature, is an incomplete syntagm. MPS does have a Nodeclass,

Meta, which is, so far as the construction of nodes is concerned, compatible with all

other NodeClasses, and, as such, is a prime candidate for use in the implementation

of templates. However, Meta is not at present fully supported, and its use would, at

the very least, subject my implementation to constraints that I do not wish to accept.

Most of my experiments with code generation simply use identifiers for placeholders.
\

For example:

IF DUMMYExpr THEN

DUMMYStatement.

Here the prefix DUMMY- is used to designate a placeholder, and the gimmick of using

a parameterless procedure call for the statement placeholder is used. This approach

has permitted me to experiment with extensions to the manipulative facility but

suffers from some drawbacks:

1. The placeholders are not so distinct, visually, as they should be.

2. Since an identifier representation is used, there is always the

possibility of conflict with existing identifiers.

3. Certain productions cannot be represented, because they have

components which cannot themselves be represented using identifiers,

e.g.

< Labelledstatement > :: =

< Labelhteger > ":" < Statement:UnlabelledStatement > .

Another issue is that of the proper way to deal with code containing

incompletely expanded templates. Obviously the editor must be able to deal with this

case, but do we allow such code to be written back to files? The answer is "yes."

Once again we do not wish to needlessly inhibit the user, who might have perfectly

good reasons for writing out code in tha t state. Nodes to be written shouM be

checked for unexpanded placeholders before output, and-a warning issued if any are

found, but the user should have the power to over-ride this warning.

Current node, syntactic cursor and node stack

If operations are to be performed on 'programs (or program fragments), there

must be some means of selecting structures as operands. Central to the editor is the

concept of the current node, that is the node of interest in the parse tree being edited

in the main window. Typically commands operate upon the current node. (Some

commands require additional operands; they will be dealt with later in this section.)

To keep track of the current node, the editor maintains what I call the syntactic

cursor. The syntactic cursor may be set, tagging some node as the current node, in

three ways:

1. The user designates a current node by placing the screen cursor on

its textual representation.

2. The user moves the (syntactic) cursor through the parse tree by

means of the editor's syntactic cursor movement commands.

3. In the course of their execution, editor commands set the syntactic

cursor.

The screen cursor is provided by the MTS system (as part of the screen support

abstraction). I t appears as an underscore or as a reversal of a character's

foregroundhackground. Control is by means of function keys which are reserved by

the system for this purpose. Whenever a command is invoked the e&tor checks to see

whether the user has moved the screen cursor. If helshe has, the most deeply nested

node whose textual representation now contains the screen cursor becomes the

current node.

Direct movement of the syntactic cursor is by means of function keys defined by

the editor. The user may move the syntactic cursor up, making the current node's

parent the new current node, or it may be moved down, by convention making the

current node's leftmost child the new current node. The syntactic cursor may also be

moved left or right across the current node's level in the parse tree, making its left or -

its right neighbor current node.

Commands themselves move the syntactic cursor in a variety of ways. An

important issue in the design of the editor's commands has been that of cursor

placement after execution.

As mentioned above, commands sometimes have more than one operand. For

this, and other reasons (discussed in subsequent chapters), it is desirable to be able to

tag one or more nodes in the parse tree in addition to the current node. I t is also

desirable to have some intermediary between the node in the editing window and such

editor components as the on-board text editor and the node store. For this purpose,

the editor maintains a stack of nodes. The user may manipulate the node stack by

means of function key commands: SELECT pushes the current node onto the node

stack; TOP displays, in pretty-printed form, the top node on the stack; POP discards

the top node. An example of a command which uses the node stack is the primitive

REPLACE, which causes the current node to be replaced in its context by the top

node on the node stack.

Selection problems

There are two major problems that any selection method must overcome. The

first is that of ambiguities in selection. A given string of characters representing a

node does not necessarily represent a unique node. Consider, for example, the

statement

CallSomeProc.

This is a parameterless procedure call. The applicable production in the MPS Pascal

grammar is:

< Procedurecall > :: =

< ProcedureName:Identifier > ["("Arguments:ExpressionList")"3.

How does one know whether the screen cursor, if positioned somewhere in the text,

selects the identifier or the procedure call? According to the algorithm stated above,

the most deeply nested node (the Identifier) is selected. How then does one select the

ProcedureCall? Early on I toyed with the idea of somehow using

screen cursor within the text to determine what node should be

unsatisfactory on a number of grounds:

the position of the
%

selected. This was

Even if it were possible to come up with some conventions which

unambiguously identify every node (which seems unlikely), the scheme

would likely be so complicated and counter-intuitive that no one

would be able to use it.

Since this is a syntax-based editor, I wished to avoid having it carry

around non-syntactic baggage.

Various of my colleagues seemed to find this notion of a bipartite

cursor (node/position) sloppy andfor confusing.

Fortunately the solution is, for selection, straightforward. One simply places the

screen cursor on the textual representation of the node one wishes to select, then, if

necessary, moves it up to the required level. When it comes to distinguishing the

current node in the display, the solution is not quite so tidy. Currently the editor

places the screen cursor on the first character of the node's representation and

announces the node's type in the message window. The user may also display the

current node in the auxiiiary window. In practice, this system works quite well.

Highlighting the node somehow would probably be better yet, but due to difficulties of

a practical nature, this feature has not been implemented. Note that even

highlighting is not always ~ ~ c i e n t to unambiguously designate a particular node.

The example above is a case in point.

At this point it is probably worth asking why, since this is a syntax-based

editor, the text-editor-like use of the screen cursor is retained at all. Indeed, some

implementors seem to have cbspensed with it entirely, relying solely upon cursors

which move in syntactically significant increments. My experience has been that the

screen cursor is simply too handy to give up. The syntactic cursor is necessary for

"fine tuning" selection, as seen above, and its use is certainly appropriate in
. -

conjunction with various editing operations (as will be demonstrated in subsequent

chapters), but very often

and most natural way to

simply moving the cursor across the screen is the quickest .

get from one node to another.
%

The other problem is that of optional nodes. The parameterless procedure call

CallSomePr oc, above, will again serve as an example. Internally the unactudlized

Arguments component is represented by a special empty node. Externally, there is no

counterpart. How do we select that invisible node if we wish to insert some

arguments? The solution, once more, involves the syntactic cursor. When the

syntactic cursor is moved to an empty optional node in the parse tree, a special

placeholder representation of the node is displayed (with the screen cursor on it). For

example, if the syntactic cursor were on the procedure name, and we were to move it

to the right, the following would be displayed:

CallSomeProc <cArguments:ExpressionList>>.

The empty, optional node is now the current node and as such may be edited

textually or replaced by an expression list node.

Another problem, which I have dealt with only partially, is that of sublists.

Programs are composed of a number of list structures: variable declaration lists,

statement lists, etc.. These list's sublists are, from the pint of view of a programmer

editing code, most certainly s i w i c a n t entities. For example, while examining the

body of a subroutine or program, the programmer might determine that some

sequence of statements ought to be executed only if some condition holds, i.e., that

the sequence should be replaced by an if statement whose consequent (i.e., the "if

branch") is the original sequence (suitably embedded in a compound statement). The

problem is that due to the way the EBNF grammar underlying W S handles

repetitions, sublists, including tail sublists, are not nodes. It follows that a sublist

cannot be the current node, and therefore, cannot be directly selected as the operand

of any of the various editing commands. I have implemented two sublist-handling

commands. Both treat the current node and the top node of the node stack as the

ends of a sublist. One deletes the sublist; the other stores an element-by-element copy

\

of it on the node stack for further use. In association with the hierarchical keying

scheme, described in an earlier section, I have considered a modifier key which could

cause the operative command to take as operand not simply the current node but the

sublist specified as described above.

A "find" facility

A program editor must provide the user with the means to inspect the textual

representation of programs and program fragments. From the realm of text editing

my editor has borrowed the notion of scrolling. Employing function keys, the user

may slide the screen's windows up and down in the unparse of the nodes associated

with them. I have found that some additional capabilities are necessary if the editor

is to be a t all useful. Moreover, I have found that the features that I have identified

- inspection, selection, manipulation, etc. - are not altogether orthogonal. For

example, if some manipulative operations are to be used to full advantage, they must

be supported by higher level navigation routines.

The resulting commands seem to cluster into a find facility. Currently

implemented are the DEFINING-OCCURRENCE command, which moves the syntactic

cursor to the defining occurrence of a selected identifier, and the FIND - IDENTIFIER

command. This latter command takes a character string argument and searches the

node being edited for its occurrence as an identifier. Invoking FIND - IDENTIFIER

actually has three effects:

1. The node being edited is traversed in search of the first occurrence of

that identifier.

2. If such an occurrence is found, the enclosing code is displayed.

3. The editor goes into "find mode." In this mode the user can continue

the traversal to the next occurrence, terminate the search fixing the

present occurrence as the current node, or abort the search, restoring

the editor to its previous state.

An optional argument allows the user to restrict the search to the current node. It

might be useful as well to be able to restrict the search to everything but the current
\

node. Similarly, an option that limits the search to a given scope (not necessarily the

current node) might be useful. Another desirable command is one that, given the

defining occurrence of an identifier, seeks out all occurrences of the identifier over

which that definition holds sway.

C W T E R V

THE MANIPULATIVE FACILITY

The heart of the implementation, and the focus of my research, is the

manipulative facility, my attempt to capture in a manageable set of commands some

of the pragmatics of program repair, alteration, and enhancement. Development of

this facility has proceeded along two tracks, experimentation and organization. The

chapter's first section reflects this, opening with a brief discussion of the editor's

extensibility feature and its role in the development of a command set, and

continuing with some musings on the nature of the editing activity. The remaining

sections (the bulk of the chapter) describe in detail the various families of commands

which comprise the editor's manipulative facility.

Toward - a Comprehensive Command - Set

The extensibility feature

To aid in the development of an extended set of manipulative commands, a

convenient method for the testing of experimental operations was required. For the

following reasons it was decided to develop a standardized methodology and interface

for this purpose:

1. Such a methodology/interface would provide the user with the means

to customize the editor (to a certain extent).

2. It would enable anyone workxng on program transformations,

particularly those of a local sort, to utilize the editor as a testing

facility.

3. It would facilitate the incorporation into the editor of transformations

developed elsewhere.

What resulted was a method by whch the user may redefine, at load time, any 111 of

[I] In theory any command may be redefined. In actuality, some editor commands
have not been implemented in accordance with the conventions to be described, and
hence are not redefinable.

the standard two-key command sequences.

Under this scheme, the editor maps the two-key sequences of

function-key-commands onto parameterless procedures whose names have the form

Cmddd, where 1 < = d < = 9, and the , sequence dd corresponds to the values

associated internally with the keys struck. If one wishes to define (or redefine) a

command sequence, one writes a n MPS Pascal procedure which performs the desired

operation and names it in accordance with this formula. Since the procedure can

have no parameters, a package of subroutines serves as the interface with the editor.

The routines provided include the function CurrentNode, which returns the editor's

current node, RepssitionCursor, which resets current node, adjusting windowing if

necessary, and ShowUnparse which displays the result. A procedure WriteMessage

may be used to print text, such as a n error message, in the screen's message window.

ShowSelectedNode displays a given node in the auxiliary window. Routines are also

provided to perform the typical manipulations on the editor's node stack: empty,

push, pop and top [21. This set of routines is not complete in the sense of enabling

the reimplementation of all commands supported by the editor, but it is sufficient for

the performance of local transformations and typical editing operations.

The file containing the new command (or commands) is compiled, and, when the

editor is to be invoked, the user concatenates the name of the resulting object module

to the list of separately compiled files and libraries. When searching for a named

routine, MTS uses the first one encoutered with that name, hence the new command

definition overrides any in the editor's own library.

In the quest to extend the editor, I myself have made use of the facility for

extension to implement and experiment with many commands. As well, an early

version of the editor was used as a test-bed for local program transformations. Some

of those transformations have contributed materially to the development of the

[2] Top is actually implemented as the more general NthPreviousNode (where
NthPreviousNode(1) is equivalent to "top").

editor's manipulative facility.

Criteria for the inclusion of commands

A large, amorphous body of commands, however interesting their operations

may be individually, does not constitute a manipulative facility. Consequently, these

experimental commands have been culled and organized, and extensions to, and

generalizations from, them have been proposed to produce a working set of

manipulations for the editor. Criteria for inclusion in the set are:

1. The command should correspond to some higher level program editing

notion. (See the remainder of this section for a n examination of this

subject.)

2. The command should be applicable to many different node types (all

is too much to ask) in an intuitively meaningful way, i.e. the precise

effect of a given command may vary greatly depending upon node

type and context, but that effect will be easily predictable on the

basis of the English language description of the editing

notion/command.

3. The command should represent an improvement. over the performance

of the operation by means of more basic commands, either textual or

syntax-based. This evaluation should not be based strictly upon a

comparison of keystrokes. Other criteria, such as "naturalness" and

error resistance are of equal (or greater) importance.

Development of the command set has also been influenced by an attempt to balance

two desirable, but opposing, qualities: economy and redundancy. On the one hand, it

is necessary to prevent an explosion in the number of editing commands to keep the

key-mapping manageable and to ease the user's learning and memorization tasks. On

. the other hand, insistence that the functionalities of commands be absolutely disjoint

is not desirable. Some operations occur frequently enough and are

enough that they deserve support, even thoughthey can be performed by

series of other, simpler operations. Moveover, a measure of redundancy

complicated

means of a

is desirable

for its own sakeIBro771. Different individuals prefer to do things in different ways.

Editing activities, characterized

The idea of high level editing notions is central to what P have been trying to

do. I t is also distressingly vague. What I have been looking for are descriptions of

the sorts of things one might wish to do to code without getting bogged down in

concern for characters or lines - something (very) roughly analogous to the high level

control structures of high level prograrnrning languages. To identify such operations

it might be instructive to start by considering motivations for the editing of

programs, and then to turn our attention to the means by which the programmer

satisfies those motivations.

Let us consider then, the very basic question: What does a programmer do with

an editor? Programmer aims seem to fall into four categories: to alter the

functionality of the program or subprogram, to improve the readability (or more

precisely, the understandability) of the code, to alter the degree of abstraction, and to

improve the efficiency of its execution. During the initial development of a program,

changes to functionality may include the correction of errors in syntax (not a problem

in the SBE r e a h) and static semantics, where functionality is initially null,

corrections of errors in logic, and correction of errors arising from faulty or

misinterpreted specifications. Later in the life cycle changes and extensions may be

necessary due to alterations in specifications over time. Beyond assuring adherence to

conventions of indentation, capitalization and naming, changes aimed at the

improvement of readabilitylunderstandability include reordering of statements and

declarations, association of comments with particular structures, and even

substitution of equivalent, but more lucid, logic. Although identification of

abstractions is properly a part of the early stages of software development, it is

sometimes desirable to introduce an element of abstraction after the fact, or to reveal

detail (for the promotion of efficiency, for example). Efficiency promoting alterations

are, of course,- those aimed at facilitating the execution of the program in less time

and/or space while preserving its functionality. Such alterations may occur

throughout the life cycle.

When looked at from a structural (rather than a strictly textual) point of view,

the means used to achieve these ends fall into the following categories:

1. Basic alterations - Structures may be inserted or deleted. Existing

structures may be replaced by other, syntactically equivalent

structures.

2. Alterations to nesting - A level of nesting may be interposed between

structures, or levels may be removed.

3. Alterations to sequencing - Textual sequencing, tha t is the ordering

of structures at a given level of nesting, may be changed.

4. Transformations - Transformations of a semantics-preserving nature

may be effected by a combination of operations from the above

categories, but some are sufficiently general, and yet sufficiently

intuitive in nature, that they deserve consideration on their own.

These operational categories provide a framework for the organization of the

editor's manipulative commands into a number of conceptual families. The editor

must, like any editor, perform the basic alterations to code, hence there is a family of

basic commands. Alterations to levels of nesting may be of either of two types: those

which introduce an entirely new level (the EMBED family), and those which involve

transfers between existing levels (the ENGULFEJECT family). Alterations to

sequencing may be of a rotational nature or involve the exchange of objects, leading

me to dub the fourth command family ROTATEISWAP. Finally, there is a family of

mathematics-based, largely semantics-preserving transformations corresponding to the

last category listed above.

Basic Commands -
The first set of operations to be considered consists of those basic text-editing

analogues, support for which would be expected from any editor: insertion, deletion

and replacement. The motivation for the existence of these commands is self evident.

I suspect tha t the ability to insert, delete and replace structures is one SBE feature

about which few programmers would have reservations. The functionality and

implementation of these commands are straightforward, but there are issues

associated with each which I will describe immediately below. In addition to the most

basic forms of these operatious, there are extensions which would enhance the

usability of the editor. These will be described as well.

Insertion acts upon the various sequences or lists (I will be using the terms

interchangably) of structures of which code is composed: statement lists, expression

lists, declaration lists, etc. The node stack's top node, which must be of a sort

compatible with the target list, is the one to be inserted. If the node to be inserted is

unattached, tha t very node becomes a component of the target list. If i t is attached,

then a copy is inserted, so that circular lists are not a problem. Note that the node

to be inserted may itself be a list, so long as i t is of a type compatible with the target

list. In this case it is "spliced" into the target list.

An issue whch. needed to be resolved before the basic command could be

implemented was that of the way in which the location of its insertion was to be

designated. In a preceeding chapter I discussed my decision to implement commands

in terms of the current node (and the node stack) without reference to additional

spatial information provided by the visual cursor. Given this decision, it was

necessary tha t the current node designate some list element and that the new node be

inserted before or after that node. Unfortunately, if the "before" convention were

used, it would be impossible to insert a n element at the extreme tail end of a list (in

a single operation). Conversely, the "after" convention would preclude insertion a t

the head of such a list. In the end both INSERT-BEFORE and INSERT-AFTER were

implemented.

In the previous chapter I suggested that integration of the code generation

process into the editing process might be desirable. The insertion facility would seem

to provide a n appropriate medium for this integration. In addition to the

above-mentioned commands which insert the editor's top node, there could be versions

of INSERT-BEFORE and INSERT-AFTER which would insert an expandable template

(once such templates were available). It can be seen that although the context

constrains the type of template which may be so inserted, in many cases more than

one sort will be appropriate. In the section below on the ENCLOSE facility I will

discuss in more detail the means by which the user may choose between such

alternatives.

The DELETE command causes the current node to be deleted from its context.

I t acts upon optional nodes (e.g., the "else clause" of a n if... else statement) and upon

list elements. I t also applies to constituents of "list-like" structures where something

syntactically sound may be considered to remain after the deletion. For example, if

DELETE is applied to the element b in

a OR b OR c

the result is

a OR c.

Sequences of elements may be deleted as well by placing the element a t either end of

the sequence on the stack, then selecting the other end with the carsor and invoking

the DELETE-SUBLIST command.

Under the current implementation, if one wishes to move a- node from one

context to another, it is necessary to first stack the node then to delete it. This

sequence of operations is common enough, and has a distinct enough identity, that an

operation combining the two, SELECT-DESTRUCTIVE, is in order. To extract a

sublist one currently must place the element a t one end on the stack with SELECT,

then move the cursor to the other end and invoke SELECT-SUBLIST, which causes

the top node on the stack to be replaced by a copy of the delimited subsequence. I t is

then necessary to select that node, return the cursor to the other end of the sublist

and key in DELETE-STJBLIST. This is a time conswnipg and error-prone series of

operations. In a practical editing environment, support for

SELECT-SUBLIST-DESTRUCTIVE would be not only justifiable but necessary.

The basic REPLACE command causes the current node to be replaced in its

context by the top node, subject to compatibility checks. As in the case of the

INSERT- operations, a copy is made if the top node is attached. If the current node

is unattached, in which case it must be the node which has been associated with the

editing window, the top node is simply substituted for the current node, i.e., it

becomes the node under consideration, and its predecessor is lost, unless a reference

to it has been saved on the node stack. REPLACE may be applied to an empty

editing window, causing it to be initialized to the top node value.

Closely related to the basic REPLACE command is the MODIFY command (see

Chapter IV, Code EntryIGeneration) which summons the on-board text editor and

upon return substitutes the textually edited version of the current node for the

original. As well, an as yet unimplemented REPLACE-WITH-TEMPLATE command

could serve, along with the INSERT-TEMPLATE operations proposed above, to

integrate code generation into the editing process.

The EMBED Family -

Frequently, the aim of a set of editing operations is to add a layer of

complexity to the logic embodied in some existing code. The progra'mmer is called

upon to deal with editing problems which helshe might, for example, express as

follows:

I now want this code to be executed only when condition c holds.

In addition to these conditions, the Continue flag must be tested as well.

No wonder I'm getting an error! I should be passing the node's class to

that routine, not the node itself.

Glass [GlaBlI has found that circumstances of this sort, involving missing or

incomplete logic, account for a large percentage of persistent software errors. I t has

been my experience that such patterns of alteration are important throughout the

development of a given piece of software.

Here, then, is a candidate for implementation as a command, one that effects

the interposition of a semantic layer by adding a layer of syntactic nesting. I have

chosen to call the concep~t/command EMBED, since its action consists of the

replacement of .a node by the node itself suitably embedded in another node. There

are three major issues associated with the implementation of EMBED:

1. Applicability - To what nodes, and under what circumstances, should

the command be applicable?

2. Alternatives - In most circumstances more than one embedding may

be legitimate. How is the user to select from among those

alternatives?

3. Placeholders - In many cases the embedding node will have

additional, unactualized components. How are these to be represented

and dealt with?

In the preceding chapter, I hscussed the issue of placeholder representation at some

length, and it will not be dealt with further here. In the following two subsections I

will look at the other issues, applicability and alternatives. Since my implementation

of EMBED introduces a new mode of operation, I will then consider the problem of

the transition between modes. Finally, the commandhotion complementary to

EMBED will be described.

The application of EMBED

I have implemented EMBED on a case-by-case basis to good effect. Any

statement may serve as the target for the command and the full range of alterations

i;o control flow may be effected by means of EMBED. I t is also applicable to

expressions (and to some expression lists), though the set of resulting expressions is

not exhaustive. The boolean operations of negation, conjunction and disjunction are

provided for, as are a range of arithmetic operations. There are certainly possibilities

for this concept's extension. For example, it should be possible to generate

expressions which contain set and arithmetic operators. Structured data objects are

important in Pascal, and the EMBED concept is applicable to their extension and

alteration.

While I was attempting to systematically enumerate the appropriate

applications of EMBED, it occured to me that, due to the hierarchcal nature of code,

the EMBED concept was essentially universally applicable. Therefore, I propose that

the command be applied in a mechanical fashion. Under this scheme, any node could

serve as the target for EMBED and the set of possible node classes for the

replacement node wodd be the inkrsecticn of the set of _the target mode's possi'wle

parent types with the set of its initial parent's possible child types. I t should be

noted that:

1. The target node may have no parent, i.e., it may be the unattached

"main node" in the editing window.

2. The intersection may be empty, i.e., the grammar does not permit

another layer of nesting to be "squeezed in."

The former case admits a sort of code generation by "bottom up" expansion, as the

target node may be embedded in any of its possible parent types. The latter case

. should simply lead to an I nappr opr i a t e opera t ion message.

Two exceptions or, more appropriately, extensions to the intersection rule

proposed above are the cases of bracketing and "enlisting." When the existing version . -

of EMBED is applied to an expression, brackets are supplied as necessary, e.g.,

a OR b --> (a OR b) AND DUMMYFactor

Similarly, when it is applied to a member of an expression list (e.g. the arguments to

a procedure call), the target node is automatically enclosed in an expression List to

enable production of the function call alternative. In general, target nodes should be

preprocessed to permit these operations. If there is a disadvantage to the mechanical

implementation, it is that it is tightly bound to the strict, grammar-based approach

and, hence, may occasionally exclude what some users might regard as intuitively

meaningful operations. The inflexibility of this approach also arbitrarily restrains the

placement of the cursor after the operation has been performed. However, always

placing the cursor on the first placeholder node (if there is one) corresponds, with

very few exceptions, to what I have done in the existing case-by-case treatment.

Presentation of alternatives

Clearly, under many circumstances there are a number of responses to EMBED

which are syntactically correct and semantically sound. For example, any statement

may be enclosed by another statement of any of eight types: if statement (as the

consequent, "then" clause, or as the alternate, "else" clause), repeat loop, whle loop,

for-to-loop, etc. The problem of how the user is to choose between these various

alternatives is a n important one. I will look at three approaches to it:

1. Character string entry,

2. Menu selection, and

3. Exhaustive display of alternatives.

Note that although the following discussion is couched in terms of the EMBED

command, it also has application to commands which insert or expand generative

templates.

Character string entry, i.e., the typing of the name of the desired node type into

the screen's command area prior to invocation of EMBED, has pros and cons similar

to those previously cited for typed commands. To its credit this is a flexible,

open-ended method. Its disadvantages include the awkward jump to the command

window, the time-consuming and error-prone nature of character entry per se, and the

necessity for memorizing the spellings of node class names and their association with

familiar structures. Once again, abbreviation may alleviate the second problem at

the expense of exacerbating the third. Provision for alternate spellings and the

acceptance of unambiguous prefixes, may alleviate, but not eliminate, the third

drawback.

Menus effectively address the issue of memorization of possibilities by

substituting selecti~n for specification, but the problem of identifying the correct

choice remains. I t may be difficult to find labels which are evocative and

unambiguous under all circumstances. As well there seems to be some awkwardness

inherent in the necessity of simultaneously selecting a node and a menu item. I have

pointed out previously that a really effective implementation of the mouse/menu

model requires a fair amount of system support.

The final approach, exhaustive presentation, does not have a analogue among

the command entry methods discussed in Chapter N. What I mean by "exhaustive

presentation" is that the user actually gets to examine each alternative in context.

When he/she strikes the appropriate sequence of keys, the editor displays, in context,

a possible embedding of the current node and simultaneously goes into "embed mode."

The user may then either select that possibility or may, by tapping a function key,

leaf back and forth through the various alternatives till the desired one is found and

selected (causing exit from that mode). Figures 5.la, 5.1b9 5.lc and 5.ld 131 show, in

sequence, four of the alternatives resulting from an application of EMBED to a

statement. Figures 5.2a, 5.2bY 5.2c, 5.2d and 5.2e show some possible embeddings of

[3] The figures in this chapter, and the succeeding one, show before-and-after screen
dumps. In each, the panel on the left shows the screen before some editing operation
is perfomed. The panel on the right shows the screen immediately after the
operation. When the o~erat ion is one of the SBE-speclfic commands, the screen dump
routines display the name of the command beneath the lower right-hand corner of the
"before" screen.

P
R
O
C
E
D
U
R
E
 C
M
D

(

I
C
o
m
n
S
t
r

:
 C
h
a
r
2
5
5
T
y
p
e
;

I
C
o
m
L
e
n

:
 i
nt
eg
er
);

F
O
R
T
R
A
N
 ;

F
U
N
C
T
I
O
N
 M
a
i
n
N
o
d
e

t
N
o
d
e

("
Re
tu
rn
s

t
h
e
n
 S
e
n
i
o
r
N
o
d
e
 o
f

t
h
e
n
 M
a
i
n
w
i
n
d
o
w
*
)

3

VA
R C
u
r
r
W
i
n
d

:
 W
i
n
d
o
w
P
o
i
n
t
e
r
;

B
E
G
I
N

C
u
r
r
W
i
n
d

:=
~i
nd

Wi
nd

ow
Re

c(
Ac

ti
ve

Wi
nd

ow
s,

'M
ai
nw
in
d'
);

M
a
i
n
N
o
d
e
 @

=
Cu
rr
Wi
nd
@.
Se
ni
or
No
de

E
N
D
 ;

P
R
O
C
E
D
U
R
E
 I
n
i
t
T
y
p
e
d
C
o
m
n
a
n
d
T
a
b
l
e
 (

VA
R
T
C
T

:
 C
o
m
n
a
n
d
T
a
b
l
e
T
y
p
e
)

("
Ea
ch

el
em
en
t

of

t
h
e
 t
a
b
l
e
 o
f

c
o
m
m
a
n
d
s
 t
~
 b
e

t
y

--
--

--
--

--
--

--
--

--
 Ma

i
n
 W
i
n
d
o
w

am

.-
--

--
--

--
--

--
--

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w

--

--
--

--
--

--
--

--

ME
SS
AG
E:

C
o
n
m
e
n
c
e
 l
o
g
g
i
n
g
 o
n
 -
S
C
R
E
E
N
D
U
M
P
S

C
W
M
A
N
D
?
 p
a
r
s
e
 -
c
o
r
n

s
u
b
p
r
o
g
r
a
m
d
e
c
l
l
i
s
t

E
M
B
E
D

F
ig

ur
e

5.
 la

:
E
M
B
E
D
 a

pp
lie

d
to

a

st
at

em
en

t
-

fi
rs

t
al

te
rn

at
iv

e.

P
R
O
C
E
D
U
R
E
 C
M
D

(

C
o
m
S
t
r

:
 C
h
a
r
2
5
5
T
y
p
e
;

C
o
m
L
e
n

:
 i
nt
eg
er
);

F
O
R
T
R
A
N
 ;

F
U
N
C
T
I
O
N
 M
a
i
n
W
o
d
e

:
 N
o
d
e

(
*
R
e
t
u
r
n
s
 t
h
e
n
 S
e
n
i
o
r
N
o
d
e
 o
f

t
h
e
n
 b
i
n
w
i
n
d
o
w
*
)

;

VA
R C
u
r
r
W
i
n
d

:
 W
i
n
d
o
w
P
o
i
n
t
e
r
;

BE
GI
N

C
u
r
r
W
i
n
d

:=

~
i
n
d
W
i
n
d
o
w
~
e
c
(
~
c
t
i
v
e
W
i
n
d
o
w
s
,

'M
ai
nw
in
d'
);

IF
 m

E
k
p
r
e
s
s
i
o
n
 T
H
E
N

M
a
i
n
N
o
d
e

:=
Cu
rr
Wi
nd
@,
Se
ni
or
No
de

EN
D;

.-
--

--
--

--
--

--
--

 Au
x
i
l
i
a
r
y
 W
i
n
d
o
w

-
ME
SS
AG
E:

I
f
s
t
a
t
e
m
e
n
t

C
O
M
M
A
N
D
?
 p
a
r
s
e

-c
or
n
s
u
b
p
r
o
g
r
a
m
d
e
c
l
l
i
s
t

.
'

P
R
Q
C
E
D
U
R
E
 C
M
D

(

Co
mn
St
r

t
Ch
ar
25
5T
yp
e;

C
o
r
n
L
e
n

t
in
te
ge
r)
;

FO
RT
RA
N
;

F
U
N
C
T
I
O
N
 M
a
i
n
N
o
d
e

t
N
o
d
e

(*
Re
tu
rn
s
t
h
e
n
 S
e
n
i
o
r
N
o
d
e
 o
f

t
h
e
n
 M
ai
nw
in
do
w*
)

8

V
A
R

C
u
r
r
W
i
n
d

t
Wi
nd
ow
Po
in
te
r;

BE
GI
N

Cu
rr
Wi
nd

:=

Fi
nd
Wi
nd
ow
Re
c(
Ac
ti
ve
Wi
nd
ow
s,

'M
ai
nw
in
d'
);

IF
 ~

~
~
x
p
r
e
s
s
i
o
n

T
H
E
N

M
a
i
n
N
o
d
e

:=

Cu
rr
Wi
nd
@.
Se
ni
or
No
de

E
N
D
 ;

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

If

 S
ta
te
me
nt

CQ
MM
AN
D?
 p
a
r
s
e
 -
co
rm

su
bp
ro
gr
am
de
cl
li
st

N
E
X
T

F
ig

ur
e

5
.l

b
:

E
M

B
E

D
 a

pp
lie

d
to

PR
QC
ED
UR
E
C
M
D

(

Co
ma
St
r

t
Ch
ar
25
5T
yp
e;

C
o
m
a
L
e
n

t
in
te
ge
r)
;

FO
RT
RA
N
;

FU
NC
TI
ON
 M
a
i
n
N
o
d
e

t
N
o
d
e

(*
Re
tu
rn
s
t
h
e
n
 S
e
n
i
o
r
N
o
d
e
 o
f

t
h
e
n
 M
ai
nw
in
do
w*
)

;

V
A
R

Cu
rr
Wi
nd

:
 W
in
do
wP
oi
nt
er
;

BE
GI
N

C
u
r
r
W
i
n
d

:m

~
i
n
d
~
i
n
d
o
w
R
e
c
(
A
c
t
i
v
e
W
i
n
d
o
w
s
,
 *M
ai
nW
in
de
);

IF
 m

~
x
p
r
e
s
s
i
o
n

T
H
E
N
 D
U
W
Y
S
t
a
t
e
m
e
n
t

E
L
S
E
 M
a
i
n
N
o
d
e

%
=

 Cu
rr
Wi
nd
@.
Se
ni
or
No
de

E
N
D
 ;

a
st

at
em

en
t

-
se

co
nd

al

te
rn

at
iv

e.

P
R
o
C
E
D
U
R
E
 C
U
D

(

Co
nm
St
r

t
Ch
ar
25
5T
yp
e;

C
o
r
n
L
e
n

t
in
te
ge
r)
;

FO
RT
RA
N
;

FU
NC
TI
ON
 M
ai
nN
od
e

t
No
de

(*
Re
tu
rn
s
t
h
e
n
 S
e
n
i
o
r
N
o
d
e
 o
f

t
h
e
n
 M
ai
nw
in
do
w*
)

;

V
A

R

Cu
rr
Wi
nd

t
Wi
nd
ow
Po
in
te
r;

BE
GI
N

Cu
rr
Wi
nd

:=
Fi
nd
Wi
nd
ow
Re
c(
Ac
ti
ve
Wi
nd
ow
s,

'M
ai
nW
in
d'
);

.
IF
 m

~
x
p
r
e
s
s
i
o
n

TH
EN
 D
UM
MY
St
at
em
en
t

EL
SE
 M
ai
nN
od
e

t=
 C
ur
rW
in
d@
.S
en
io
rN
od
e

EN
D;

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E8
 I
fs
ta
te
me
nt

C-D
?

p
a
r
s
e
 -
co
rn

su
bp
ro
gr
an
de
cl
li
st

N
E
X
T

F
ig

ur
e
5.
 lc

:
E

M
B

E
D

 a
.p

pl
ie

d
to

a
st

at
em

en
t

-
th

ir
d

al
te

rn
at

iv
e.

PR
OC
ED
UR
E
C
M
D

(

Co
ma
St
r

t
Ch
ar
25
5T
yp
e;

Co
ma
Le
n

t
in
te
ge
r)
;

.
FO
RT
RA
N;

FU
NC
TI
ON
 M
ai
nN
od
e

t
No
de

(*
Re
tu
rn
s
t
h
e
n
 S
en
io
rN
od
e
of

th
an
 M
ai
nW
in
do
w*
)

VA
R

Cu
rr
Wi
nd

t
Wi
nd
ow
Po
in
te
r;

BE
GI
N

Cu
rr
Wi
nd

t=

Fi
nd
Wi
nd
ow
Re
c(
Ac
ti
ve
Wi
nd
ow
s,

'M
ai
nW
in
d'
);

WH
IL
E
m
~
x
p
r
e
s
s
i
o
n
 DO

Ma
in
No
de

:=
Cu
rr
Wi
nd
@.
Sa
ni
or
No
de

EN
D)

PR
OC
ED
UR
E
In
it
Ty
pe
dC
om
aa
nd
Ta
bl
e

(
VA

R
 T
C
T

t
Co
am
an
dT
ab
le
Ty
pe
)

.-
--

--
--

--
--

--
--

--

-i
n

Wi
nd
ow
 --

--

.-
--

--
--

--
--

--
--

A
u
x
i
l
i
a
r
y
 W
in
do
w

--
--

--
--

--
--

--
--

ME
SS
AG
E

t
Wh
i
le
lo
op

C
O

W
A

N
D

?
 p
a
r
s
e
 -
co
rn

su
bp
ro
gr
am
de
cl
li
st

NE
XT

F
ig

ur
e

5.
 ld

:
E

M
B

E
D

 a
pp

lie
d

to

P
R
O
C
E
D
U
R
E
 C
M
D

(

Co
nr
aS
tr

t
Ch
ar
25
5T
yp
e;

C
o
r
n
L
e
n

t
in
te
ge
r)
:

FO
RT
RA
N
;

FU
NC
TI
ON
 M
a
i
n
N
o
d
e

t
No
de

(*
Re
tu
rn
s
t
h
e
n
 S
e
n
i
o
r
N
o
d
e
 o
f!
 t
he
n
Ma
in
wi
nd
ow
*)

:

V
A
R

Cu
rr
Wi
nd

t
Wi
nd
ow
Po
in
te
r;

BE
GI
N

Cu
rr
Wi
nd

t=

~
i
n
d
~
i
n
d
o
w
~
e
c

(A
c
t
 iv
ew
in
do
ws
 ,

' M
ai
nw
in
d
')

 ;

W
H
I
W

D
M
M
Y
E
X
~
~

es
si
on
 D
O

Ma
in
No
de

t-

Cu
rr
Wi
nd
@.
Se
ni
or
No
de

EN
D
;

-

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

-
M
E
S
S
A
G
E
 t
Wh
il
el
oo
p

CO
E1
MA
WD
O
p
a
r
s
e
 -

c
o

rn
 s
ub
pr
og
ra
nd
ec
ll
is
t

PR
OC
ED
UR
E
C
M
D

(

C
o
m
S
t
r

t
Ch
ar
25
5T
yp
a;

Co
am
Le
n

t
in
te
ge
r)
:

F
O
R
T
R
A
N
 ;

FU
NC
TI
ON
 M
ai
nN
od
e

t
No
de

(*
Re
tu
rn
s
th
en
 S
en
io
rN
od
e
of

t
h
e
n
 M
ai
nw
in
do
w*
)

;

V
A

R

Cu
rr
Wi
nd

t
Wi
nd
ow
Po
in
te
r;

BE
GI
N

Cu
rr
Wi
nd

t=

Fi
nd
Wi
nd
ow
Re
c(
Ac
ti
ve
Wi
nd
ow
s,

'M
ai
nw
in
d'
);

R
E
P
E
A
T

Ma
in
No
de

8-

Cu
rr
Wi
nd
@.
Se
ni
or
No
de

UN
TI
L
m
~
x
p
r
e
s
s
i
o
n

EN
DO

PR
OC
ED
UR
E
In
it
Ty
pe
dC
om
ma
nd
Ta
bl
e

('

_-
--

--
--

--
--

--
--

--
 wi

n
 W
in
do
w

-

__
--

--
--

--
--

--
--

Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
ES
 R
ep
ea
tL
oo
p

C
W
W
W
D
?
 p
a
r
s
e
 -

c
m

 s
ub
pr
og
ra
md
ec
ll
is
t

a
st

at
em

en
t

-
fo

ur
th

 a
lt

er
n

at
iv

e.

Ne
wC

ur
so

r
t=

En
gu
lf
er
;

IF
 O
pt

Re
pA

ct
iv

at
ed
 T
HE
N

De
ac

ti
va

te
Op

tR
ep

EN
D;

Co
mp

St
mt

t

BE
GI

N
Ne

wC
ur

so
r

'8
-
Bo
dy
Of
(E
ng
u1
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lP
ee
)

EN
D;

St
mt
Li
st
In
,

St
mt

ti
st

t

BE
GI
N

Ne
wC

ur
so

r
t=

 E
ng
ul
fe
r;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

E
N
D
 ;

Me
mb
er
Li
st
,

Me
mb

er
Li

st
In

t
BE
GI
N

IF
 W
hi

ch

=
Nx
t

TH
EN

BE
GI

N
In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

~o
si

ti
on

(E
ng
u1
f e
r
)
b

Wh
ic
h,

En
gu
lf
 e
e)
 ;

Ne
WC

ur
so

r
t=

Nt
hE
le
me
nt
(

Pa
re
nt
(E
ng
ul
fe
r)
,

.--

-i
n

Wi
nd

ow

-

I-----------

Au
xi

li
ar

y
Wi

nd
ow
 -

.----
-

ME
SS
AG
E:

C
o
m
e
n
c
e
 l
og

gi
ng

 o
n
 -
SC
RE
EN
DU
MP
S

CO
EP
IA
ND
?
p
a
r
s
e

sp

li
tx

mp
l
pr

oc
ed
ur
ed
ec
l

EM
BE
D

F
ig

ur
e

5.
2a

:
E

M
B

E
D

 a
pp

lie
d

to

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

IF
 O
pt
Re
pA
ct
iv
at
ed
 T
H
E
N

De
ac
ti
va
te
Op
tR
ep

E
N
D

Co
ln
pS
tm
t

t
BE
GI
N

Ne
wC
ur
so
r

t=

Bo
dy
Of
(E
ng
u1
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D
;

St
mt
Li
st
In
,

St
mt
li
st

t
BE
GI
N

Ne
wC
ur
 s
or

t =
 E
ng
ul
f
er
 ;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D
;

Me
mb
er
Li
st
,

Me
mb
er
Li
st
In

t
BE
GI
N

IF
 W
hi
ch
 =

 N
xt

TH
EN

BE
GI
N

In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

~
E
'
u
n
c
t
i
o
n
~
a
l
l
(

Po
si
ti
on
(E
ng
u1
fe
r)

4

Wh
ic
h)
,

En
gu
lf
ee
);

Ne
wC
ur
so
r

t=

Nt
hE
le
me
nt
 (

.-
--

--
--

--
--

--
--

--

.--
--

--
--

--
--

--
-

ME
SS
AG
E8
 F
un
ct
io

nc
al
l

CO
MM
AN
D?
 p
a
r
s
e

sp
li
tx
np
l
pr
oc
ed
ur
ed
ec
l

an
 e

xp
re

ss
io

n
-

fi
rs

t
al

te
rn

at
iv

e.

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

IF
 O
pt

Re
pA

ct
iv

at
ed
 T
HE
N

De
ac

ti
va

te
Op

tR
ep

EN
D;

Co
mp

St
mt

:

BE
GI
N

Ne
wC

ur
so

r
:=

Bo
dy
Of
(E
ng
u1
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
fe
e)

1
EN

D
;

I
St
mt
Li
st
In
,

St
mt
Li
st

:

BE
GI
N

Ne
wC

ur
so

r
:=

En
gu
lf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

E
N
D

Me
mb
er
Li
st
,

Me
mb

er
Li
st
In

:

BE
GI

N
IF

 W
hi

ch

=
Nx
t

TH
EN

BE
GI
N

In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

m
~

u
n

c
t

io
nc
al
l (

Po
si
ti
on
(E
ng
u1
fe
r)

+
Wh
ic
h)
,

En
gu
lf
ee
);

Ne
wC

ur
so

r
:=

Nt
hE
le
me
nt
(

.-
--

--
--

--
--

--
--

--

Ma
in

 W
in

do
w

--
--

--
--

--
--

--
.-

--
--

.--

-

Au
xi

li
ar

y
Wi

nd
ow
 -

--
--

--
--

--
--

--
-

ME
SS
AG
E:

Fu

nc
ti

on
ca

ll

CO
EP
IA
ND
?
pa

rs
e

sp
li

tx
mp

l
pr

oc
ed
ur
ed
ec
l

PR
EV
IO
US

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

IF
 O
p
t
~
e
p
A
c
t
i
v
a
t
e
d
 TH
EN

De
ac
ti
va
te
Op
tR
ep

EN
D;

Co
mp
St
mt

:

BE
GI
N

Ne
wC
ur
so
r

:=
Bo
dy
Of
(E
ng
u1
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

E
n
g
u
l
f
e
d

EN
D;

St
mt
Li
st
In
,

St
mt
Li
st

:

BE
GI
N

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D;

Me
mb
er
Li
st
,

Me
mb
er
Li
st
In

t
BE
GI
N

IF
 W
hi
ch
 =

 N
xt

TH
EN

BE
GI
N

In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

-(
&s
it
io
n(
~n
gu
lf
er
)

+
Wh
ic
h)
,

En
gu
lf
ee
);

Ne
wc
ur
so
r

:=
Nt
hE
le
me
nt
(

Pa
re
nt
(E
ng
ul
fe
r)
,

.-
--

--
--

--
--

--
--

--

w
i
n
 W
in
do
w

-

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

--

--
--

--
--

--
--

--

ME
SS
AG
E:

Si
gn
ed
Te
rm

CO
lr
lM
AN
D?
 p
ar
se

sp
li
tx
mp
l
pr
oc
ed
ur
ed
ec
l

F
ig

ur
e
5.
2b
:
E
M
B
E
D
 a

pp
lie

d
to

an

 e
xp

re
ss

io
n

- s
ec

on
d

(a
ri

th
m

et
ic

)
al

te
rn

at
iv

e.

Ne
wC
ur
so
r

8-

En
gu
lf
er
;

IF
 O
pt
Re
pA
ct
iv
at
ed
 T
H
E
N

D
e
a
c
t
i
v
a
t
e
O
p
t
R
e
p

EN
D;

Co
mp
St
mt

:

BE
GI
N

Ne
wC
ur
so
r
::

Bo
dy
Of
 (
En
gu
lf
 er
)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D;

St
mt
Li
st
In
,

St
mt
Li
st

:

BE
GI
N

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

E
N
D
 ;

Me
mb
er
Li
st
,

Me
mb
er
Li
st
I-
n
:

BE
GI
N

IF
 W
hi
ch

=

 N
xt

T
H
E
N

BE
GI
N

In
se
rt
(

Pa
re
nt
(E
ng
ul
fe
r)
,

-(
bs
it
io
n(
En
gu
lf
er
)

+
Wh
ic
h)
,

En
gu
lf
 e
el
 ;

Ne
wc
ur
so
r

:=

Nt
hE
le
me
nt
(

Pa
re
nt
(E
ng
ul
fe
r)
,

.--
--

--
--

--
--

--
--

-
-i
n

Wi
nd
ow

-
-
-
-
-
-
-
-
-
-
-
-
'-
-
-
-
-
-

.-
--

--
--

-_
__

__
__

.
Au
xi
li
ar
y
Wi
nd
ow

--

--
--

--
--

--
--

--

ME
SS
AG
E:

S
i
g
n
e
d
T
e
r
m

C-D
?

p
a
r
s
e

s
p
l
i
t
x
m
p
l
 p
ro
ce
du
re
de
cl

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

.
IF
 O
pt
Re
pA
ct
iv
at
ed
 T
H
E
N

De
ac
ti
va
te
Op
tR
ep

E
N
D
 ;

Co
mp
St
mt

:

BE
GI
N

Ne
wC
ur
so
r

8
6

 B
od
yO
f(
En
gu
1f
er
);

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D;

St
mt
Li
st
In
,

St
mt
Li
st

:

BE
GI
N

Ne
wC
ur
so
r

:=
En
gu
Pf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D;

Me
mb
er
Li
st
,

M
e
m
b
e
r
L
i
s
t
l
n

t
BE
GI
N

IF
 W
hi
ch

=
Nx
t

T
H
E
N

BE
GI
N

In
se
rt
 (

Pa
re
nt
 (
En
gu
lf
 er
),

Po
si
ti
on
(E
ng
u1
fe
r)

+
 W
h
i
c
h

+

m
~

e
r

m
,

En
gu
lf
ee
);

Ne
wC
ur
so
r

t=

Nt
hE
le
me
nt
(

.-
--

--
--

--
--

--
--

--

.--

-

A
u
x
i
l
i
a
r
y
 W
in
do
w

--
--

--
--

--
--

--
--

ME
SS
AG
E:

Ad
di
ti
ve
Ex
pr

C
O
M
M
A
N
D
?
 p
a
r
s
e

sp
li
tx
mp
l
pr
oc
ed
ur
ed
ec
l

PR
EV
IO
US

F
ig

ur
e

5
.2

~
: E

M
B

E
D

ap

pl
ie

d
to

an

 e
xp

re
ss

io
n

-
th

ir
d

(a
ri

th
m

et
ic

)
al

te
rn

at
iv

e.

Ne
wC

ur
so

r
t=

En
gu
lf
er
:

IF
 O
pt

Re
pA

ct
iv

at
ed
 T
HE
N

De
ac

ti
va

te
Op

tR
ep

EN
D;

C
o
n
p
S
 tm
t

t
BE

GI
N

Ne
wC

ur
so

r
t=

 B
od
yO
f(
En
gu
1f
er
);

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

EN
D;

St
mt
Li
st
In
,

St
nt

Li
st

r

BE
GI

N
Ne

wC
ur

so
r

t=

En
gu
lf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

E
N
D
 :

Me
mb
er
Li
st
,

Me
mb

er
Li

st
In

:

BE
GI
N

IF
 W
hi

ch

=
Nx
t

TH
EN

BE
GI

N
In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

Po
si
ti
on
(E
ng
u1
fe
r)

+
Wh
ic
h

+
@
W
Y
~
e
r
m
,

En
gu
lf
ee
);

Ne
wC
ur
so
r

:=
Nt
hE
le
me
nt
(

.--
--

--
--

--
--

--
--

-
Ma

in
 W
in

do
w

--
--
--
--
--
--
-A
e-
--
-

.--
--

--
--

--
--

--
-

Au
xi

li
ar

y
Wi
nd
ow

--.

--

ME
SS
AG
E:

Ad

di
ti

ve
Ex

pr

CO
MM

AN
D?
 p
a
r
s
e
 s
pl
it
xr
np
l
pr

oc
ed
ur
ed
ec
l

PR
EV
IO
US

Ne
wC
ur
so
r

:=
En
gu
lf
er
;

IF
 O
pt
Re
pA
ct
iv
at
ed
 T
HE
N

De
ac
ti
va
te
Op
tR
ep

EN
D;

Co
mp
St
mt

:

BE
GI
N

Ne
wC
ur
so
r

:
I

Bo
dy
Of
(E
ng
ul
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ae
)

EN
D;

St
mt
Li
st
In
,

St
mt
Li
st

t
BE
GI
N

Ne
wC
ur
so
r

:a

En
gu
lf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

En
gu
lf
ee
)

E
N
D
 8

Me
mb
er
li
st
,

Me
mb
er
Li
st
In

:

BE
GI
N

IF
 W
hi
ch

Nx
t

TH
EN

BE
GI
N

In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

Po
si
ti
on
(E
ng
u1
fe
r)

+
Wh
ic
h

-
-T
er
m,

En
gu
lf
ee
);

Ne
wC
ur
so
r

t=

Nt
hE
le
me
nt
(

.-
--

--
--

--
--

--
--

--

Ma
in
 W
in
do
w

-

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y

Wi
nd
ow

-
ME
SS
AG
E:

Ad
di
ti
ve
Ex
pr

CO
MM
AN
D?
 p
a
r
s
e
 s
pl
it
rt
lq
pl
 p
ro
ce
du
re
de
cl

F
ig

ur
e

5.
M

:
E

M
B

E
D

 a
pp

lie
d

to

a
n

 e
xp

re
ss

io
n

- f
ou

rt
h

(a
ri

th
m

et
ic

)
al

te
rn

at
iv

e.

N
e
w
C
u
r
s
o
r

t
m

E
n
g
u
l
f
e
r
;

I
F
 O
p
t
R
e
p
A
c
t
i
v
a
t
e
d
 T
H
E
N

D
e
a
c
t
i
v
a
t
e
O
p
t
R
e
p

EN
D;

Co
ay
pS
tl
nt

t
B
E
G
I
N

N
e
w
C
u
r
s
o
r

t=

Bo
dy
Of
(E
ng
u1
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

E
n
g
u
l
f
e
e
)

E
N
D
 ;

S
t
m
t
L
i
s
t
I
n
,

S
t
m
t
L
i
s
t

t
B
E
G
I
N

N
e
w
C
u
r
 s
or

:=
E
n
g
u
l
f
 e
r
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

E
n
g
u
l
f
e
e
l

E
N
D
 ;

M
e
m
b
e
r
t
i
s
t
,

M
e
m
b
e
r
L
i
s
t
I
n

t
B
E
G
I
N

IF
 W
h
i
c
h
-
=
 N
xt

T
H
E
N

B
E
G
I
N

In
se
rt
 (

Pa
re
nt
(E
ng
ul
fe
r)
,

Po
si
ti
on
(E
ng
u1
fe
r)

+
W
h
i
c
h

-

B
M
M
Y
T
e
r
m
,

En
gu
lf
ee
);

N
e
w
C
u
r
s
o
r

:=

Nt
hE
le
me
nt
(

.-
--

--
--

--
--

--
--

--
 M
a
i
n

W
i
n
d
o
w
 -

--
--

--
--

--
--

--
.-

--
-

.--

-

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w

-
ME
SS
AG
E:

A
d
d
i
t
i
v
e
E
x
p
r

C
O
M
M
A
N
D
?
 p
a
r
s
e

s
p
l
i
t
x
m
p
l
 p
r
o
c
e
d
u
r
e
d
e
c
l

PR
EW
 I
O
U
S

N
e
w
C
u
r
s
o
r

t
r

 E
ng
ul
fa
r;

I
F
 O
p
t
R
e
p
A
c
t
i
v
a
t
e
d
 T
H
E
N

D
e
a
c
t
i
v
a
t
e
O
p
t
R
e
p

EN
D;

C
o
m
p
S
t
m
t

t
B
E
G
I
N

N
e
w
C
u
r
s
o
r

t=

Bo
dy
Of
(E
ng
u1
fe
r)
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

E
n
g
u
l
f
a
e
)

EN
D;

S
t
m
t
L
i
s
t
I
n
,

S
t
m
t
L
i
s
t

t
B
E
G
I
N

N
e
w
C
u
r
s
o
r

t=

En
gu
lf
er
;

In
se
rt
(N
ew
Cu
rs
or
,

-W
hi
ch
,

E
n
g
u
l
f
e
d

E
N
D
 ;

Me
mb
er
Li
st
,

M
e
m
b
a
r
L
i
s
t
I
n

t
B
E
G
I
N

I
F
 W
h
i
c
h

=
Nx
t
TH
EN

B
E
G
I
N

In
se
rt
 (

Pa
re
nt
(E
ng
ul
fa
r)
,

(P
os
it
io
n(
En
gu
1f
ar
)

+
 W
h
i
c
h
)

*

-F
ac
to
r,

E
n
g
u
l
f
 e
el
 ;

N
e
w
C
u
r
s
o
r

I=

Nt
hE
le
me
nt
(

.--
--

w
e-

--
--

--
--

--

M
a
i
n
 W
i
n
d
o
w

--

--
--

--
--

--
--

--
--

.

.--
--

--
--

--
--

--
-

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w

-
ME
SS
AG
E:

M
u
l
t
i
p
l
y
i
n
g
E
x
p
r

C
C
M
M
W
D
?
 p
a
r
s
e

s
p
l
i
t
x
m
p
l
 p
r
o
c
e
d
u
r
e
d
e
c
l

F
ig

ur
e

5.
2e

:
E
M
B
E
D
 a

pp
lie

d
to

a

n
 ex

p
re

ss
io

n
 -

 f
if

th
 (

ar
it

h
m

et
ic

)
al

te
rn

at
iv

e.

an expression. Note that under the current implementation the alternatives are,

conceptually, arranged in a circular list. The designations NEXT and PREVIOUS

that accompany the figures describe the direction in which the user is searching that

circular List.

An advantage of this method is its "what you see is what you get" nature. The

user is neither required to memorize character strings nor to choose from (possibly

obscure) descriptions. This, moreover, is a method which is suited to both neophyte

and experienced user. The former may deliberately examine all alternations until the

desired one is found. The latter, knowing the position of the desired node type in the

list of alternatives, rapidly taps the correct number of keystrokes. An apparent

disadvantage is its slowness and awkwardness. In practice this has not been a

problem. I have in fact selected this method for the implementation of EMBED, and

it has proven to be reasonably fast and feels most natural. I t would be desirable if,

at the level of person-machine interaction, the efficiency of this alternative

presentation/selection process could be assured. To that end I propose the following

implementation.

Although there may be a number of alternatives appropriate to a given

operation, there are, generally, a couple of "most popular" choices. If these can be

presented first, then this selection method can be rapid indeed. One way of

accomplishing this is by means of extensive analysis of code and hand adjustment of

the program. Another possibility which I have considered is that of a self-adjusting

implementation. Between executions of the editor a table of selections would be

maintained (in files) for each operand pair. Each entry in the table would be a list of

the applicable alternatives. Associated with each alternative would be a usage field.

When EMBED was invoked the alternatives appropriate to the context would be

' presented in the order in which they appear on the list. Whenever one was selected,

its usage field would be incremented and it would be moved ahead of all alternatives

in the list with a usage value less than its own. In time popular selections would

percolate to the top of the 'list and unpopular ones to the bottom. The

unpredictability inherent in this approach would probably be somewhat disconcerting

to the user. To counteract this it might be best to have this feature under user

control, so that once the system had stabilized, the user could turn off the

self-adjustment.

The method I have described is tha t of serial presentation. Another possibility is

to combine, in a sense, exhaustive presentation and menu selection by displaying all

of the alternatives simultaneously. This list of alternative embeddings would appear

either in the main window or in its own specially generated window. Since the list in

many cases would not f i t in a single window, the user would either scroll through it

or rotate it in a manner somewhat analogous to the use of a "cardex." The screen

cursor would be used to select the desired version. I have rejected this approach for

the following reasons:

I t is disruptive to screen integrity i.e., it causes extensive alterations

to the screen being edited, and, consequently, may adversely affect the

continuity of the editing process.

The user does not get to see the alternatives actually embedded it^

context, at least not so clearly as in the serial method.

I t is unnecessary, since it was originally proposed as a means of

graphically differentiating the "select mode" from the regular

syntactic editing mode, a n issue with which there are other ways of

dealing (see next subsection).

The transition between modes

In the previous chapter I introduced the problem of transitions between modes

of operation, in particular the problems encountered when returning to the basic

' structural editing mode from a specialized one, and I put forward the desire to avoid

this problem as a motivation for the development of the editor's scheme for the keying

in of commands. Subsequently, I have described several such modes: text editing

mode, ENCLOSE mode, EXPAND mode, and a family of search operations. I will now

address the issue.

Where the text editor is concerned, no difficulties have been encountered in

practice. I believe this to be a consequence of the processes' being sufficiently distinct

from one another. Though the structural editing and textual editing processes share

function keys, they do not share an entry format. Moreover, textual editing and entry

take place in a separate window. Finally, and perhaps most important, text based

operations and operations in the syntactic or structural realm are conceptually

distinct. As a consequence, it seems most natural to return to that latter realm

before invoking the characteristic SBE operations.

This does not appear to be the case for the other modes of operation mentioned

above. In each case the mode is characterized by a small set of single-key commands:

NEXT instance, PREVIOUS instance (in some cases), ABORT the process restoring

the original state, and CHOOSE the current instance. The first two operations are

natural and convenient, the third is necessary and has presented no problems, but

the last interferes with the flow of the editing process, its necessity leading to errors.

(To be more precise, it leads to erroneous keying. Since i t is difficult to accidentally

return to the main editor the integrity of the target node is generally not

compromised.) Though the act of toggling or flipping through possibilities is

intuitively appropriate to the situation, these modes are not sufficiently distinct to

motivate an explicit selection and return operation. Since the two-stroke scheme for

command entry requires only a small set of keys, I have been able to use a set of keys

for the modes we are discussing which is disjoint from that set, but the operations

are seen to take place within the main editing window, and conceptually they are

most definitely of a structurally oriented nature.

One could conceivably alleviate the problem by mahng the operations appear to

be distinct (by allocating special windows for them, for example). I submit tha t tlus

approach would introduce undesirable elements of artificiality and complexity. I

- --
I
I
I

propose, instead, to eliminate the necessity for explicit selection. Under this scheme,

each succeeding instance or state would become the current one, with the option of

restoration of the original always available. This would enable the user to invoke

operations by immediately keying in the approproate two-key sequence. In such an

implementation the main control loop would be executed each time a function key

was read from the keyboard and, in the case of mode-specific keys, interpretation

would be dependent upon the value of some CurrentMode variable. The search

operations, which are currently implemented as traversals rather than loops, would

be particularly affected by such a reimplementation.

Such a restructuring of ;the text-editing mode, as it is currently implemented,

seems neither necessary nor desirable. However, if the in situ text editing suggested

in the previous chapter were to be implemented, the distinction between that mode

and the main structural editing mode might be lost, in which case the approach of

the previous paragraphs could be generalized to include the text editor.

STRIP, the complement to EMBED

Just as it is sometimes desirable to add a level of nesting in the code, so is it

sometimes desirable to strip away a level. All of the examples cited a t the beginning

of the section have their counterparts:

I now wish this code to be executed unconditionally.

Testing of the Continue flag is now superfluous.

No wonder I'm getting an error. I should be passing the node itself to this

routine, not its class!

I have looked at routines to unqualify if statements and, more interestingly, if. ..else

statements. I have also experimented with an assortment of commands which, in a

sense, partially unqualify various statement types, e.g., reducing the number of

iterations by converting a looping construct into an if statement, or reducing the

degree of abstraction by converting a case statement into a series of nested if. ..else

statements. These operations, though sometimes interesting in their own right, have

not provided the desired symmetry with EMBED. Some have been incorporated into

other commands yet to be discussed; some have simply been dismissed as dead-ends.

To complement EMBED what has been provided is a mechanical STRIP which,

subject to compatibility constraints, substitutes the target node itself for tha t target

node's parent. Though not terribly interesting conceptually, STRIP is a useful

function, providing not only the implementation of the notion "un-nest," but

providing as well the capacity to undo erroneous EMBED'S with a single two-key

sequence.

The ENGULFIEJECT Familv

There are other operations where the notion of nesting is important, i.e., those

which involve transfers of structiu-es between levels of nesting already existing in the

code. They come into play in response to programmer discoveries of the following sort:

No wonder it's producing garbage. .This statement belongs within the

preceding looplif statement1

Here one sta.tement is in effect "engulfed" by another. It might also be desirable to

perform the complementary operation, i.e., to "eject" one statement from another.

These complementary notions do not apply to statements alone. For example, given

the declaration of a number of variables with type in common,

VAR a, b, c : SomeType;,

it might be desirable to split out or eject a particular variable thus

VAR a , c : SomeType ;

b : SomeType ; ,

so that it was textually distinct and could be commented separately. Note tha t in

this case the ejected item takes its associated type with it.

pp - --

I have named the commands embodying these notions ENGULF and EJECT [41.

I t is evident that one may ENGULF either the next item in the textual sequence or

the previous one. Similarly, one may wish to EJECT an item either forward or

backward. In combination with the capability to swap items (see next section), a

single directionality would be sufficient, but, as was the case for the basic command

INSERT, it seemed advisable to provide the full set of operations (ENGULF-NEXT,

ENGULF-PREVIOUS, EJECT-BACKWARD, E JECT-FORWARD) S smooth,

unencumbered editing were to be achieved. Unlike EMBEDISTRIP, ENGULF/EJECT

is not a notion or .command which may be applied universally in a mechanical

fashion. Questions of how it is to be applied, and to what sorts of nodes, have had to

be answered on a case-by-case basis. I will now illustrate the facility with a detailed

description of its application in the realm of statements, where it is fully operational.

Topics to be discussed include operand selection, the operation appropriate to various

combinations of operand and context, and the placing of the cursor subsequent to the

operation. I wil l then identlfy other circumstances in which ENGULFIEJECT is

applicable. Areas where the concept is tantalizing but not really feasible will also be

pointed out.

The paradigmatic operation

As a starting point let us consider the application of ENGULF-NEXT to the

body of some enclosing statement (Figure 5.3). By body I mean the statements to be

executed within a repeat, while or for loop, or the consequent or alternate statements

of an if statement. Here both implementation and discussion are complicated by the

peculiarities of Pascal syntax, which dictates that with one exception the body may

be either a simple statement or a compound statement, in whch latter case the

[4] The family of ENGULFEJECT operations contains two general sets of operations
corresponding to the two lunds of circumstance described above: where the
"engulfees" and "ejectees" have some other node associated with them, and where
they do not. I have given considerable thought to the idea of assigning hfferent
names and different key-stroke sequences to the operations of each of these types. To
keep down the number of keying sequences, and because the operations do have
something in common, 1 have not done so.

R
E
P
E
A
T

IF
 ~
i
e
l
d
S
e
c
t
i
o
n
Q
(
s
e
c
t
i
o
n
)
 T
HE
N

BE
GI
N

R
E
P
E
A
T

m
e
l
d

:=
~
t
h
~
l
e
m
e
n
t
(
F
i
e
l
d
N
a
m
e
s
O
f
(
s
e
c
t
i
o
n
)
,
 1
)

;

ne
xt
Fi
el
d
:-
 Ne
xt
(f
ie
1d
);

~
r
o
c
e
s
s
~
d
(
f
i
e
l
d
)

UN
TI
L
N
O
T
 C
on
ti
nu
e
OR

(f
ie
ld
 - NI

L)
;

fi
el
d

:=
ne
xt
Fi
el
d

EN
D
;

se
ct
io
n

t=
 N
ex
t(
se
ct
io
n)

UN
TI
L
N
O
T
 C
o
n
t
i
n
u
e
 O
R

(s
ec
ti
on
 =

 N
IL
);

va
ri
an
tp
ar
t

t=
 V
ar
ia
nt
Pa
rt
Of
(F
ie
1d
Li
st
);

IF
 C
o
n
t
i
n
u
e
 A
ND
 N
O
T
 E
mp
ty
Q(
va
ri
an
tp
ar
t)

TH
EN

BE
GI
N

ta
gf
ie
ld

:=
Se
le
ct
io
nF
ia
ld
Of
(v
ar
ia
nt
pa
rt
);

IF
 N
O
T

Em
pt
yQ
(t
ag
fi
e1
d)

TH
EN

Pr
oc
es
sI
d(
 t
ag
f
ie
ld
)
;

va
ri
an
t

t=

Nt
hE
le
me
nt
 (

Va
ri
an
tC
la
us
es
Of
(v
ar
ia
nt
pa
rt
),

1)
;

W
H
I
L
E
 C
on
ti
nu
a
AN
D

(v
ar
ia
nt
 +

 N
IL
)

D
O

BE
GI
N

.-
--

--
--

--
--

--
--

--
 H
ai
n
Wi
nd
ow
 -
-
-
-
-
-
-
-
-
-
-
-
L
-
-
-
-
-
-

.--

-

Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E:

St
at
em
en
tL
is
t

CO
MM
AN
D?
 f
in
d
Sc
an
Fi
el
dI
ds

EN
GU
LF
 N
EX
T

RE
PE
AT

IF
 F
ie
ld
Se
ct
io
nQ
(s
ec
ti
on
)

TH
EN

BE
GI
N

RE
PE
AT

B
e
l
d

:=
Nt
hE
le
me
nt
(F
ie
ld
Na
me
sO
f(
se
ct
io
n)
,

1)

;

ne
xt
Fi
el
d

:=
Ne
xt
(f
ia
1d
);

Pr
oc
es
sI
d(
fi
e1
d)
;

fi
el
d

8=

ne
xt
fi
el
d

UN
TI
L
NO
T
Co
nt
in
ue
 O
R

(f
ie
ld
 =

 N
IL
)

EN
D;

se
ct
io
n

:=
Ne
xt
(s
ec
ti
on
)

UN
TI
L
N
O
T
 C
on
ti
nu
e
OR

(s
ec
ti
on
 =

 N
IL
);

va
ri
an
tp
ar
t

:=
Va
ri
an
tP
ar
tO
f(
Fi
e1
dL
is
t)
;

IF
 C
on
ti
nu
e
AN
D
NO
T
ER
lp
ty
Q(
va
ri
an
tp
ar
t)

TH
EN

BE
GI
N

ta
gf
ie
ld

:=
Se
le
ct
io
nF
ia
ld
Of
(v
ar
ia
nt
pa
rt
);

IF
 N
OT
 E
mp
ty
Q(
ta
gf
ie
1d
)

TH
EN

Pr
oc
es
sI
d(
ta
gf
ie
1d
);

va
ri
an
t

8=

Nt
hE
le
me
nt
 (

Va
ri
an
tC
la
us
es
Of
(v
ar
ia
nt
pa
rt
),

1)
;

WH
IL
E
Co
nt
in
ue
 A
ND

(v
ar
ia
nt
 o
 N
IL
)
D
O

BE
GI
N

 Au

xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E8
 F
ol
lo
wi
ng
 n
od
e
"e
ng
ul
fe
d"

C-D?

fi
nd
 S
ca
nF
ie
ld
Id
s

F
ig

ur
e

5.
3:

 E
N

G
U

L
F

-N
E

X
T

ap
pl

ie
d

to

th
e

bo
dy

 o
f

a
re

pe
at

 l
oo

p.

-

,

structure of interest is the statement list constituting the body of that statement.

The situation is complicated further by the case of the repeat statement (the afore

mentioned exception) where the body is always a statement list. To select a

non-compound statement or a repeat loop's statement list, the user must place the

cursor upon the desired node itself. In the case of a compound statement, either the

statement itself or its statement list may be selected.

For ENGULF-NEXT to be meaningful the enclosing statement (for loop, if

statement, etc.) must be a member of a statement list, and there must be a t least one

statement following the enclosing statement in that sequence. This statement is

removed from that list and appended t o the body list to which ENGULF-NEXT has

been applied. If the selected statement was a non-compound one, then it is

automatically included in a statement list embedded in a compound statement to

enable the above operation.

An important consideration in the determination of the proper placement of the

cursor after an operation is regard for the operation likely to come next. In the case

of ENGULF, the succeeding command is likely to be another ENGULF. With this in

mind the cursor is placed upon the body list. (Once ENGUfiF has been executed there

is guaranteed to be such a list.) Note that the sequencing of a sublist incorporated

through repeated application of ENGULF-NEXT is maintained.

It may be desirable to bring the succeeding statement into the body list a t a

position other than the very tail end. To do this the user places the cursor upon an

individual element of the body list before invoking ENGULF-NEXT. The engulfed

statement then is inserted into the body list at the position immediately following the

selected element. Since it is desirable that repeated applications of ENGULF-NEXT

maintain bhe ordering of the engulfed statements, the cursor is placed upon the newly

engulfed element.

There are two important special cases of the application of ENGULF where the

operand node is actually replaced by the engulfed node. The first is that of eur empty

optional node, specifically the alternate of an if statement, and the second is that of a

placeholder node, specifically the consequent of an EMBED-created if statement (or,

potentially, an unexpanded template). This invocation of ENGULF in tandem with

EMBED has, in practice, proven to be very useful.

Complementary to ENGULF-NEXT is EJECT-FORWARD. If the body as a

whole is selected, then the last statement in the body list is removed and becomes the

element immediately following the enclosing statement in the enclosing statement's

parent list. If the enclosing statement is not a list element, then a statement list

parent (and, if necessary, a compound statement grandparent) is created for it. The

cursor is placed on the body list. When EJECT is applied to a singleton body list or a

non-compound statement, the statement is ejected and the null statement is

substituted within the enclosing statement. If an individual element is chosen, then

that element is ejected. In order to preserve the ordering of statements ejected by

repeated invocations of EJECT-FORWARD, the cursor is placed on the element which

previously preceeded the selected (and ejected) element. This also means that

ENGULF-NEXT serves to undo EJECT-FORWARD and vice versa. There is an

obvious exception, i.e., when the element ejected is the first on the body list. In this

case the implementor must either abandon the principle of maintenance of ordering

and the desirable inverse property and place the cursor on some available node (e.g.,

the element which followed the selected one) or introduce a spurious null statement

into the code. Since, under the circumstances just described, there is no next

statement in the sequence, and since maintenance of the strict inverse relationship

has proven to be difficult or impossible on other grounds, I have chosen the former

action. Admittedly, this decision is at odds with the policy stated above for ejection of

lone statements. I claim tha t leaving the null statement upon ejection of a singleton

statement is generally what the user will have had in mind, whereas introduction of
. -

a null statement simply to give the cursor a place on which to rest interferes unduly

with the integrity of the code.

For ENGULF-PREVIOUS and EJECT-BACKWARD the operand selection process

is identical to that described above. The actions are symmetrical to those tha t have

been cited. ENGULF-PREVIOUS causes the statement preceding the enclosing

statement to be moved to the head of the body list when the list as a whole is

selected, and to the position immediately preceding tha t of the selected node if an

individual element is selected (with the cursor moving to the newly engulfed node).

EJECT-BACKWARD (Figure 5.4) causes the first element of the body list, or the

element selected, to be moved to the position immediately preceding the enclosing

statement. Once again, the cursor is positioned so as to preserve sequencing over

repeated invocations.

I t can be seen that ENGULFfEJECT is not comprehensive in its functionality.

One cannot engulf the statement following the enclosing statement onto the head of

the body list. Nor can one engulf the preceding statement onto the very tail end of

the body list. That is, these operations cannot be performed by means of a single

command. They are easily performed using ENGULF in conjunction with other

commands introduced later in the chapter. There are also opportunities for

application of ENGULFEJECT in the realm of the statement which I have not

covered here, notably the case of enclosure in a case statement or a with statement.

Since the intention of this subsection is to illustrate the EMBEDIEJECT operation in

its most straightforward guise, I will withhold discussion of these anomalous cases

until the next subsection.

Further applications of ENGULFIEJECT

The applications of ENGULF to be discussed here all share a very general

. schema exemplified by the case of nesting statements. The selected node is always a

list, or element of such a list, which is embedded (perhaps multiply embedded) in

another node, which is itself an element of a list whose other elements have some

relation to the selected node. Perhaps they are of the same type as the selected node;

perhaps they have nodes of the same type embedded within them. The method of

selection of engulfer and engulfee together with the rules for positioning nodes and

cursor are essentially those described. Therefore, I will omit these details in the

ensuing discussion except where there is something distinctive associated with a

particular application.

This is probably the appropriate place to address the remaining cases of

application of ENGULF/EJECT to statements. They are the case statement and the

with statement. Where the case statement is concerned, I am now referring to the

statement (or body list) which is a part of each case clause of the case statement.

Application to the list of expressions in each such clause will be dealt with shortly.

The issue of statements interior to a case statement was not resolved in the preceding

subsection because of the complication of added levels of nesting, because I am not

absolutely convinced of its usefulness, and finally, because there is implied in the case

statement a series of nested "else ifs." In the final analysis, the clauses of the case

statement are all at the same level, and when this application of the command is

implemented, they should be treated in a manner completely analagous to that used

for the other statements. Ejected statements should gc ta the level of the enclosing

statement; engulfees should be drawn from that level.

The with statement of Pascal is something of an anomaly in that, rather than

affecting the logic of control, it serves to introduce a new scope. This introduces a

new question: Does one ENGULF and EJECT on a strictly textual basis, or is it

more appropriate to consider the semantics of the situation when d e a h g with the

variables involved. Certainly the operations discussed so far have been of a semantics

altering sort. But are the alterations tha t would result from simply moving variables

in and out of a with statement of a desirable nature. Other operations exist to

"qualifytt and "unqualify" the field identifiers of record component variables. I submit

that in the case of the with statement it is better t o preserve semantics. For

example, application of ENGULF-NEXT to the body of the with in

WITH ~amedNode DO
BEGIN
NameField := NodesName;
~odeField : = SomeNode
END ;

NamedNode.Next := PtrToNextRec

should yield

WITH NamedNode DO
BEG1 N
~ameField := NodesName;
NodeField := SomeNode;
Next : = PtrToNextRec
END,

and a subsequent invocation of EJECT-FORWARD would restore the original version

exactly. Of course performance of these operations requires access to the definitions

of the record types, and they would not be performed by the editor if the user had not

ensured that the necessary environment was in place.

There are other situations quite similar to t ha t of nested statements. One such

case, where ENGULFIEJECT would be useful, particularly in conjunction with

EMBED, involves the arguments of a function call which is itself one of the

arguments of a function or procedure call. For example,

becomes

when ENGULF-NEXT is applied to L i st 1 (or the argument list of whizh i t was the

sole member). Another situation very similar to tha t of nested statements is that of

nested record definitions. For example, given

RECORD
Name : StringType;
PersonalDa ta : RECORD

Weight : INTEGER;
Sex : CHAR;
SIN : StringType
END

END;,

application of EJECT-BACKWARD to the last field section in the nested record would

yield

RECORD
Name : StringType;
SIN : StringType;
Per sonalData : RECORD

Weight : INTEGER;
Sex : CHAR
END

END ; .

I will now turn my attention to that class of applications of ENGULFEJECT so

distinct that I have considered giving it its own name and key-sequences. The target

objects in this case are lists (and their individual elements) which have associated

with them another node, and where the resulting construction may be a member of a

list of constructions of the same type. Specifically, I am referring to the variable

names of a variable declaration, the case constants of a case statement's case clauses

or the variant clauses in the variant part of a record, the field names of a record's

field section, and the parameter names of a parameter section (of either the variable

or value sort) of a subroutine declaration. Unlike the other applications described in

this subsection, which are in the proposal stage, application of ENGULFEJECT to

these lists with associated nodes is fully implemented. The rules for selection of

operands, placement of cursor, etc., are the same as those cited for the statement

realm. The &stinctive aspect of this case is that 'the element which is moved retains

its logical association with the companion node.

Perhaps this is best illustrated by the example of EJECT. When

. EJECT-FORWARD is applied to the list of variable names a , b , c , d in

VAR a, b, c , d : SomeType;
the result is

VAR a, b, c : SomeType;
d : SomeType; .

If EJECT-BACKWARD is then applied to the element b, the situation becomes

VAR b : SomeType;
a, c : SomeType;
d : SomeType ; .

There is some conceptual similarity between this instance and that of the with

statement, where the associations between record variables and their fields are

maintained.

If the appropriate neighbor of the enclosing node has a singleton list, and if the

associated nodes are the same (i.e., they are structurally equal), then ENGULF may

be applied. For example, the operation shown above could be undone. Or, to cite a n

example from the field name realm

RECORD
Name : StringType;
SIN : StringType;
PersonalData : RECORD

Weight : INTEGER;
Sex : CHAR
END

END ;

becomes

RECORD
Name, SIN : StringType;
PersonalData :. RECORD

Weight : INTEGER;
Sex : CHAR
END

END ;

upon application of ENGULF-NEXT to the field identifier Name (or its parent list). I

have considered less constrained implementations of ENGULF in which, if the

structure immehately adjacent to the enclosing node were not appropriate (e.g., the

associated node did not match), a search would be made forward (or backward) for a

match. I have also looked a t allowing ENGULF to "steal" an element from a

non-singleton list. I have decided against these versions of the command. Although

the attempt to assure that ENGULF and EJECT are, in every case, inverses of one

another has been abandoned, it was deemed desirable to maintain their

complementary nature so far as possible.

Application of ENGULFIEJECT within case statements and record variants is

completely analogous to that described above. So is its application to parameter

sections. In the latter case there is a n interesting "wrinkle." One would like to be

able to use ENGULF for operations such as:

PROCEDURE Proc (VAR Par 1 : INTEGER; Par2 : INTEGER) ; -- >

PROCEDURE Pr oc (VAR Par 1 , Par 2 : INTEGER) ; .
But if the value or variable nature of the parameter section is ignored, ambiguities

are unavoidable. Consider, application of EJECT to the parameters in the result

version above. Should the result be

PROCEDURE Pr oc (VAR Par 1 : INTEGER; Par 2 : INTEGER) ;

or

PROCEDURE Proc (VAR Par 1 : INTEGER; VAR Par 2 : INTEGER) ; ?

In order to maintain consistency with the other applications of ENGULFEJECT, I

have decided that the variable case and the value case should be treated as distinct.

(This also corresponds to their treatment the formal MqS Pascal grammar.)

The last instance of ENGULFIEJECT to be considered is its application to the

index types of an array type. For example, in the case of

ARRAY [O..Maxl, O..Max2] OF SomeType;,

selecting the index list and invoking EJECT-FORWARD would yield

ARFlAY[O..MaxI 1 OF ARRAy[o..~ax2] OF SomeType;.

Although this case does not match precisely any of the schemata discussed above, it

should be clear that there are analogies to the whole set of ENGULFIEJECT

operations that have been introduced.

I have been tempted to try to increase the power of ENGULFIEJECT by

extending its application to still more structures/circumstances. For example, the

notion seems applicable to various expressions. Unfortunately analogies must be

,

stretched to accomplish this, and the intuitive appropriateness of these operations is

lost. An informal "poll" of five programmers has yielded three or four "appropriate"

results for the application of EJECT to the bracketed (sub-) expression in

NOT (a AND b).

Another puzzling case is that of the output statements WRTTE and WRITELN. Here

the target list is associated not with a node but with a token and, in the semantic

sense, with a n action. Perhaps the operation

WRITELN(a, b, c) -->

WRITELN(a, b);
WRI TELN (c

should be supported. Under Pascal semantics, the first parameter of a standard

output statement may, or may not, designate a file, and the changes to the program's

functionality would differ markedly depending upon which were the case. In order to

avoid such unsavory alterations to semantics, ENGULFtEJECT should here be

implemented, if at all, as a context dependent operation with the first argument

carrying over with the ejected one if, and only if, it denotes a file, and ENGULF

being applicable only when the output of both statements is to a common file.

The SWAP/ROTATE Family -

The two editing notions that have been considered so far are oriented toward

the issue of nesting and the concomitant semantics, though they may in fact involve

a textual reordering of elements. I will now look a t operations where the reordering,

per se, of sequences of elements is the intent. Typically these reorderings will be of

elements at the same level of nesting, members of the same list in fact, though there

is a major exception which has been placed in this family by virtue of other

similarities. Programs are pieced together of various lists or sequences, as well as

"list-like" structures. There are a number of reasons why the programmer might

wish to

increase

manipulate the ordering of these sequences. In some cases the goal is to

the readability or clarity of the code, e.g. reordering of various declarations

or the case clauses of a case statement (in this latter case, the motivation may be the

improvement of efficiency as well). In other cases the operations may be intended to

effect changes to functionality, e.g., reordering of statements or of actual parameters.

A common example of an operation of the latter sort is that of moving a

statement (frequently one implementing the incrementing of a counter variable) in

the body of a looping construct from the bottom of the loop to the top. This example

will serve to illustrate the first member of this family of commands. Since, as the

last element moves to the head of the list, the bulk of the list moves down, or

forward, a n appropriate name for the command is ROTATE-FORWARD. When

applied to a list element, this command causes the ROTATE-FORWARD operation to

be performed on the tail sublist whose first element is the selected element. When

applied to a list, ROTATE-BACKWARD moves all elements backward, except the first

one, which goes to the last position on the list. Applied to a list element, it performs

the ROTATE-BACKWARD operation on the sublist whose last element is the selected

one. Both rotational commands leave the cursor positioned in such a way as to

facilitate repeated applications. When the list as a whole is the operand, the cursor

remains on that list. When an element has been selecbd, the cursor remains at the

position originally selected.

Using the two directional modes one can rotate the "front" portion of a list

backward or rotate the latter portion of a list forward. One would like, in ad&tion,

to be able to perform arbitrary rotations upon sublists, i.e., to rotate them in either

direction and to rotate sublists not necessarily bounded by a terminus of the list as a

whole. I propose to deal with this in a manner similar to that employed for the

primitives SELECT-SUBLIST and DELETE-SUBLIST. ROTATE-SUBLIST (or

ROTATE-TOP) would act upon the sublist bounded by the current node and the top

node on the stack, which must have the same parent list as the currrent node. The

top node would be moved to the location of the current node and the remainder of the

sublist would move toward the location formerly occupied by the top node. To

r

facilitate repeated rotations the cursor would remain at the same list position and

the top node on the node stack would be replaced by a reference to the node now in

the position formerly occupied by the old top node.

The other major way to effect alterations in sequencing is by means of a n

exchange or "swap." I will introduce this family, or subfamily, of operations by

describing its most general form, the arbitrary swap, SWAP-TOP. This command

causes the current node and the top node to be exchanged in their respective

contexts. The cursor is left at its original contextual location, and now rests on the

former top node. The top node on the node stack is replaced by a reference to the

former current node. Thus the user may readily gain access to that location which

has been significant to the operation but may be remote from the current node

location. Helshe may also undo the operation by means of another invocation of

SWAP-TOP. Note that this command is less rigidly constrained than the ROTATE

operation or the other SWAP operations to be described below. Current node and top

node need not have a common parent list; only node type compatability is required.

Any exchange of nodes can be accomplished by means of SWAP-TOP; however, a

particular class is common enough (in my experience it is the most common sort of

swap) to warrant a separate command. This is the exchange of adjacent list

elements. One such command, SWAP-NEXT, is sufficient, but, once again, for the

sake of convenience and cursor-positioning .considerations, support for

SWAP-PREVIOUS is justified. By having the cursor stay with the selected element

when it is swapped, a bubble-up (or bubble-down) procedure is enabled. Though it is

at odds with the SWAP-TOP implementation, this cursor placement strategy
- .

facilitates the rotation of small sublists in a fashion which may be more convenient

than rotation by means of ROTATE-TOP.

It is not immediately obvious how the SWAP notion might be applied to a list,

or whether it is applicable a t all. Perhaps it would be not altogether

counter-intuitive to have the command produce a complete reversal of the ordering of

the elements of the target list.

Commands -- of a Transformational Nature

The last family of operations to be considered is the one whose members

probably best deserve the appellation "high level." These are operations borrowed

from the realm of transformational programming. Under the transformational

programming model successive, correctness preserving, potentionally automatable

transformations are applied to a formal specification, producing, eventually,

executable code. Another, looser, formulation of the model has the programmer

writing good, modular code, then applying such transformations as necessary to yield

code (in the same language) which is capable of more efficient execution.

Certainly, candidates for inclusion as editing commands are to be found here.

Transformational programming of the looser kind is an identifiable aim of the editing

process. The commands are likely to be powerful, in that a single key sequence may

replace an arbitrary amount of textual (or basic syntax-based) editing. And they take

advantage of the underlying grammar-based methodology, under which their

implementation is relatively straightforward (though by no means trivial).

However, not all such transformations are appropriate to a general purpose

program editor. Typically, the circumstances under which thay may be applied are

highly restricted, and in many cases only likely to arise as a result of previous

transformations. Their potential outcomes are limited as well, aimed, as they are,

almost exclusively at optimization. Nor are they generally easy to understand or

compose.

The problem, once again, has been to identify categories of operation which are

sufficiently intuitive and general in application. The conceptual backbone for this

family has been provided by three transformational routines due to Cameron [Cam871

whch implement simplification of expressions, constant propagation, and i n - h e

coding of procedure calls. The first two are conceptually and functionally related and

seem to constitute one subfamily, SIMPLJFY/PROPAGATE. The third se=ves a s

paradigm for another subfamily which I shall call INLINE/ENCAPSULATE [51.

The RVLJNEIENCAPSULA TE subfamily

INLINE takes its name from the operation of encoding the statements of a

subroutine call in line, but I wish to extend the notion to other cases where some

program element is replaced by code which is equivalent in functionality, but is

expressed at a lower level or, somehow, more explicitly. Though many such

operations are, like the procedure call example, aimed at a n increase in efficiency, I

have not restricted my attention to such cases. In the following sections I will discuss

various flavours of the INLINE notion. First, the procedure call case will be briefly

examined. Next, I will introduce two other operations, which I have implemented,

tha t are quite dissimilar to the procedure call operation but seem to belong in this

family nonetheless. Proposed extensions of different sorts will be presented as well.

Finally, the matter of a complement to INLINE will be dealt with.

Replacement of a procedure call by the statements of its body to eliminate

procedure call overhead is a standard optimization technique. Its incorporation into

the editor is appropriate, since i t is an operation which should be applied locally in

those situations where analysis (or profiling) has shown it to be beneficial. Though

straightforward enough when facihtated by the h P S package, its implementation is

not trivial, in tha t arguments must be substituted for the corresponding formal

parameters, declarations must be created for the subroutine's local declarations, and

renaming must take place if there are clashes with any existing ident*ers.

Extension of the operation to function calls is complicated by the necessity for the

introduction of intermediate variables, and the effects of such an extension are

complicated by the possibility of side effects in the target code.

--------------_---
151 Other terms which have been used for similar notion pairs are unfoldlfold and
devolutionlevolution.

A transformation which is not of the optimizing kind is the "in-line coding" of a

with statement. By introducing a new scope (or scopes) the with statement may make

comprehension of code diffkult. Simple withs are generally not a problem, but when

withs are nested, and there are multiple instances of fieldJvariable names the

situation is somewhat more complicated. For example, given the declarations

VAR fl, f2, f3, f4, f5, f6 : t;
r l : RECORD

fl, f2, f3: t
END ;

r2 : RECORD
f2, f3, f4 :t
END ;

r3 : RECORD
f3, f4, f5 : t
END;,

what is one to make of the statement

WITH r3, rl, r2 DO
BEGIN
f 1 := f2;
f2 := f3;
f3 := f4;
f4 := is;
f5 := f6
END?

Recognizing th .at WITH r3, r l , r2 DO . . . is shorthand for

WITH r3 DO
WITH rl DO

WITH r2 DO .,

the programmer must, for each variable in the with's body, search the record

definitions from the inside out for a matching field. This can be a daunting task,

particularly if the declarations are two hundred, or so, lines away. INLINE

automatically yields

where, at least, the references are explicit. Such an expansion may also enable the

writing of additional code which would otherwise be impossible due to duplication of

names, e.g.

f3 {the variable] := r2.f3.

As implemented, the command acts upon the with's body as a whole, as shown here.

I t might be preferrable to be able to perform partial in-line codings by selecting a

record variable from the with's record variable list (or selecting the body as a whole

by selecting the list as a whole). Note that with statements included in the body

statements are not affected by INLINEL

Another implemented application which may not increase clarity but does

facilitate alterations to the code is transformation of a case statement into a series of

nested if... elses, e.g.

CASE e OF
a : sl;
b, c : s2;
d,e,f : s3
END

becomes

I F e IN [a] THEN
s 1

ELSE
IF e IN [b, c] THEN

s2
ELSE

IF e IN [d , e, • ’ 1
THEN

s 3 9

where, for example, predicates could be modified to further qual& selected

statements. This transformation definitely has the flavour of the INLINE family.

Note, however, that it is not strictly semantics preserving, in that a failure to match

e leads to a run time error in the case version, but not in the nested if. ..else version.

A more conventional INLm operation is loop "unrolling." This optimiEation

technique, aimed a t reduction of the number of tests in critical passages of code, has

not been implemented but could be without generating ambiguities in selection. If

and final expressions are constants, a for loop may be unrolled both the initial

completely, i.e.,

FOR i := m to n DO
S

becomes

where s represents s with j substituted for all instances of i contained within it.
j

Repeat and while loops may be partially wol led , Leo,

REPEAT
sl

UNTIL e

becomes

sl;
WHILE NOT e DO

s 1,

and

WHILE e DO
S

becomes

IF e THEN
REPEAT

s
UNTIL NOT e

The gains are not immediately apparent, but if the value of e is known, then tests

(and, sometimes, their associated statements) can be eliminated, an operation

facilitated by commands described in the next subsection, and the operations may be

(repeatedly) applied ts the loops.

I speculate that it might be meaningful to expand the INLINE concept beyond

the realm of the statement. Specifically it could be used to substitute a type

definition for a type name. For example, given

TYPE RA = ARRAY in. .Max] OF SomeType ;

and

VAR Foo : RA;,

application to RA (in the variable declaration) would yield

VAR Foo : ARRAY in. .Max] OF SomeType; .

Once more the rationale for this operation is the facilitation of further alterations.

The commands I have introduced in this chapter have typically had

complementary operations associated with them, as does INLINE. I have chosen to

refer to this notion as ENCAPSULATE. Here we leave the realm of implementation

and enter that of speculation. These operations have not actually been implemented.

Nonetheless, it is worthwhile to consider briefly such a facility, its potential, and the

problems associated with it.

Encapsulation, the hiding of the sort of detail that is exposed by INLINE,

should really be a part of the early stages of software production, but programmers

may find themselves engaged in this activity a t any time in the life cycle, and editor

assistance would be helpful. It seems unlikely that the situation would arise where

constraints would be satisfied such that nested if. ..elses could be transformed into an

equivalent case statement, but gathering statements containing component variables

Le., varaiables of the form < Record:Variable > ". " < Fie1d:Identifier >) into a with

statement may occur in Pascal programming. And i t certainly sometimes happens

that sequences of statements coded in-line turn out to be required in some other

context, in which case it would be desirable to have the automated capacity to

replace the sequence with a procedure call and construct a procedure declaration.

If encapsulation routines are to be incorporated into the editor, the problem of

the many-to-one nature of the operation must be addressed. Whereas the appropriate

INLINE t rmfomat ion may be wambiguously determined for any given node, the

same is not true for ENCAPSULA'I792. When it is applied to a sequence of statements,

for example, is the intent to transform them into a with statement, or to encapsulate

them in a procedure call? Moreover, even when the transformation desired is known,

there are other choices to be made. If there are a number of potential record

variables represented, which is to be the operative one in the with statement, and if

more than one is to be used, in what order are they to occur? If a procedure call is

required, which variables are to appear as arguments? The method of exhaustive

display does not seem to be applicable here. The two-tiered nature of the process

complicates the situation. Moreover, since these operations require a great deal of

contextual analysis, they are slower than mere template substitution, conceivably

slow enough to make the method unworkable. ENCAPSULATE is, perhaps, a

candidate for implementation as a hybrid cormnand. Before entering the command

sequence, the user would be required to enter pertinent data-in the command window.

Perhaps a fragment of a with statement (e.g., WITH r l , r2, r3) could be used to

specie the desire for the with and to identify its record variables. An actual

procedure call could specify that alternative.

In the procedure call case, there are other interesting questions. Since Pascal

supports the use of both value parameters and variable parameters, it must be

determined which parameters are to be of which sort. It is also necessary to

determine which variables are to be declared locally within the new procedure,

Assuming that the code is initially correct (and complete), these decisions can be

made based on analysis of the code. But such analysis could prove so time consuming

as to interfere with the interactive editing process. There are also some instances

where the programmer will desire to exercise hisher judgement. For example, a

read-only variable might automatically be declared as a value parameter, but if it

were very large, a competent programmer would declare it as a variable parameter

(SO tha t it could be passed by reference). Another question relates to the disposition

of the resulting procedure declaration. Should it be inserted into the code

automatically, or, to localize the effects of the command, should it not be placed on

the node stack to be dealt with by the user as helshe sees fit?

I t is not clear that the problems with parameterization can be solve in a fashion

which is tidy enough for an editing command. However, a somewhat simpler

operation which "factors out" subconstructs, replacing them with automatically

generated identifiers, is practical. For example, given the statement

a : = b + c * d ,

application of this FACTOR concept do c * d would yield

Extended to statements, this notion could provide, at least, for their encapsulation in

parameterless procedure calls.

The enumeration of possible applications above is not meant to be exhaustive.

(ENCAPSULATEFACTOR could, for example, be applied to types, where it would

probably be as important as INLINE, if not more so.) I t is meant rather to suggest

the possibilities of the notion, on one hand, and on the other, to point out some

implementation issues and potential sources of awkwardness. .

The SIMPLIFYIPROPAGATE subfamily

The last borrowed operations to be considered are SIMPLIFY and PROPAGATE.

SIMPLIFY acts upon expressions, both arithmetic and boolean (and, potentially, set

expressions), transforming them into their simplified forms in accordance with

established rules, e.g.,

1 + 2 --> 3,

x * 0 --> 0,

p AND TRUE --> p.

I t may also be applied to conditional statements, e.g.,

I F T R U E T H E N p -> p.

PROPAGATE is applied to variables to which a constant value has been assigned (or,

potentially, to constant definitions), causing that value to be substituted for the next

occurrence of the variable in the sequence of statements. Sequences of the two

operations are readily composed, e.g., SIMPLIFY the right hand side of an

assignment, PROPAGATE that value into a subsequent expression, SIMPLIFY that

expression, etc.

These commands become important when used with one another and with other

transformations. One generally does not produce expressions such as 5 + 6 in the

course of writing a program, but they do frequently arise as the result of a previous

transformational operation. For example, in-line coding of a subroutine with a literal

argument will introduce literals into the code where they previously were not present.

This may well result in expressions of precisely the type which SIMPLIFY and

PROPAGATE are designed to handle. The two commands may then be used to tidy

lap the c ~ d e and to remove lmecessary tests of conditions,

CHAPTER VI

THE MANIPULATIVE FACILITY IN ACTION

In the previous chapter I described in detail the families of commands which

make up what I have called the manipulative facility. The question remains: How

effective are the new commands in a practical editing situation? Some insights into

this matter have been gained through application of the editor to the editor during

the latter stages of its development. This included corrections of errors and omissions

in large scale additions (which were, for the sake of convenience, composed on the

text editor), alterations and enhancements to existing code, and the repair of bugs,

old and new.

Based upon these experiences, I have constructed a few examples of the editor in

action. Each example demonstrates a solution to a particular editing (and

programming) problem. It is hoped that each will be long enough to impart some of

the flavour of the editing process. The commentary accompanying each example

describes the process, and, where appropriate, makes comparisons with alternate

methods based upon more elementary editing operations. The examples have been

contrived to demonstrate selected operations from each of the command families. No

attempt has been made to demonstrate the full range of applicability of the

commands. What is presented instead is a sampling of some of the kinds of

operations that I have, so far, encountered in practice. Each example is intended to

spotlight one or more of the new manipulative commands. but it is also important to

note how these commands interact with each other and with the more. basic ones.

Example - - Rotation and Transformation -

In the ongoing editing of the editor, I have not found myself using what might

be called the traditional operations of the transformational family. I suspect that this

is a function of the particular stage in the e&torYs development where the editor has

been used. These operations have proven useful elsewhere, and the editor is

I

manifestly a convenient platform for their execution. I have found some use for the

extensions I have made to the INLINE notion. The following example demonstrates

how INLINE may be used to facilitate further alterations.

The SWAP/ROTATE family is largely "sugar." Its operations may be simulated

using the basic SELECT and INSERT (or REPLACE) commands together with some

cursor motion. Nevertheless, I have found these commands, particularly

SWAP-NEXT, to be useful and satisfjmg. The example shows how ROTATE may be

helpful as well.

The problem is to replace case-by-case processing, implemented by the case

statement shown in the left screen of Figure 6.la, by a generic procedure call

St r i p 1 , while retaining special processing for the 1 f S ta t emen t case. In other

words, the case statement is to be replaced by code of the following sort:

IF NodeType(O1dNode) = IfStatement THEN

(Existing code for the IfStatement case)

ELSE

Stripl(Old~ode, SelectedNode, Marker, problem).

The first step in the process is the production of the new code, i.e., the

procedure call. In Figure 6.la (right screen) the screen cursor is moved to the

command line and the node type is specified there, so that the text editor may be

invoked (Figure 6.lb). The necessary text is typed in (figure 6 .1~) and the resulting

node placed on the editor's node stack (Figure 6.ld). The cursor is then returned to

the main editing window (Figure 6.le), where it selects the first item of the case

statement's case clause list.

The strategy now calls for replacement of the case statement by a n if statement

with a series of nested else-ifs. First, however, the I f S t a t emen t case must be

brought to the head of the case clause list, so that its body statement will form the

consequent (then branch) of the if statement. There are various ways of finding and

moving that clause, which is located somewhere in the large case clause list. I choose

what seems a straightforward expedient, simply rotating the case clause list as a

whole until the desired element appears at its head. To accomplish this, the syntactic

cursor is moved up (Figure 6.lf) to select the sequence of case clauses as a whole, and

the ROTATE command is invoked repeatedly (Figures 6.lg, 6.lh, 6.li). Since the

current syntactic cursor position (on the CaseClauseList) is sufficient to select the

case statement for the INLINE command, that command is keyed in as soon as the

I f S t a t emen t clause is properly positioned (Figure 6. lj).

What remains is replacement of the resulting if statement's alternate (the else

branch) with the procedure call which is waiting on the'node stack. Navigating the

complex of nested ifs and elses by eye would be Micul t , so the syntactic cursor is

move'd down a level in the internal tree (Figure 6.lk), then laterally across that level

from the outer if statement's predicate to its consequent (Figure 6.'11), and from the

consequent to the desired alternate (Figure 6.lm). Finally the basic command

REPLACE causes that node, which comprises a large fragment of code of

undetermined length, to be replaced by the previously prepared procedure call.

Though this process requires a number of steps, it is straightforward and

effective. I t is clear tha t a simple concatenation of basic, syntax-based commands

cannot be substituted. The changes could, of course, be effected textually:

4. Note h e number of first line of the case statement.

5. Find the string, "IfStatement."

6. Delete intervening range of lines.

7. Type "IF NodeType(O1dNode) = IfStatement THEN."

8. Find the end of the case clause (by scrolling downward) and note its

line number.

9. Find the end of the case statement (by further scrolling).

10. Delete this range of lines.

11. Delete the semicolon which is about to become superfluous (and

erroneous).

12. Type "ELSE Strip l(OldNode, SelectedNode, Maker, Problem);."

Note that the above scenario is simplistic in that no attention is paid to such details

as proper indentation. Moreover, it takes advantage of formatting resulting from the

abnormally narrow screen (i.e., 1 f S t a t emen t : would normally be located on the

same line as the first part of the body statement and would therefore have to be

deleted one character at a time). This example and the comparison of the different

editing approaches leads to some observations:

1. The textual version certainly requires many more key strokes.

2. I t is error-prone. (Consider, for example, how easy it would be to

forget to delete the semicolon preceding the new ELSE.)

3. I t requires attention to a great deal of arbitrary detail, whereas the

SBE version operates at the level of syntact entities possessing

semantic sigmficance.

4. The main component operations of'the SBE version emerge naturally

from a statement of the problem, whereas there is no such

relationshp discernable for the textual operations.

Pr
ob
le
m

:=

fa
ls
e;

Se
le
ct
ed
No
de
 :

=
Cu
rr
en
tN
od
e;

Ol
dN
od
e

:=

~a
re
nt
(S
e1
ec
te
dN
od
e)
;

~
S

E

No
de
Ty
pe
(O
1d
No
de
)

OF

Ca
se
St
at
em
en
t
:

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,
 M
ar
ke
r)
;

EN
D;

Wi
th
St
at
em
en
t
:

BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
ew
No
de
 0
 N
IL

TH
EN

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,
 M
ar
ke
r)

EL
SE
 P
ro
bl
em

:=

tr
ue

EN
D;

La
be
ll
ed
st
at
em
en
t
:

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
La
be
ll
ed
(0
ld
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,
 M
ar
ke
r)

EN
D
;

Re
pe
at
Lo
op

:

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
Re
pe
at
(0
ld
No
de
);

Ne
wL
en
gt
h

:=
Le
ng
th
(N
ew
No
de
);

 mi
n
 W
in
do
w

--
--

--
--

--
--

--
--

--
-

c
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Au
xi
li
ar
y
wi
nd
ow

-
ME
SS
AG
E:

Co
mm
en
ce
 l
og
gi
ng
 o
n
 -
SC
RE
EN
DU
MP
S

C
O
M
M
A
N
D
?
 p
ar
se
 s
tr
ip
xm
pl
 s
ta
te
me
nt
li
st

Pr
ob
le
m

t=

fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :

=
Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

t=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

Ca
se
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D
;

Wi
th
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
ew
No
de
 0
 N
IL

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
ro
bl
em

t-

t
r
u
e

EN
D
;

La
be
ll
ed
st
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
La
be
ll
ed
(0
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D
;

R
e
p
e
a
t
L
o
o
p

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Re
pe
at
 (
Ol
dN
od
e)
 ;

Ne
wL
en
gt
h

t=
 L
en
gt
h(
Ne
wN
od
e)
;

.
.-

--
--

--
--

--
--

--
--

-i
n

Wi
nd
ow

-

.-
--

--
--

--
--

--
--

Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

C
o
m
e
n
c
e
 l
og
gi
ng
 o
n
 -
SC
RE
EN
DU
MP
S .

.

C
O
M
M
A
N
D
?
 p
ro
ce
du
re
ca
ll
 0

6
.l

a
: A

 n
od

e
cl

as
s

is
 .e

nt
er

ed
 in

 t
he

 c
om

m
an

d
w

in
do

w
.

Pr
ob
le
m

t=

fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :
=

Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

to

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

OF

Ca
se
st
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

Wi
th
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

:=

Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
ew
No
de
 0
 N
IL

TH
EN

In
st
al
lI
t(
Ol
dN
od
e,

We
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
ro
bl
em

t=

t
r
u
e

EN
D;

La
be
ll
ed
st
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
ta
be
ll
ed
(0
ld
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D
;

Re
pe
at
Lo
op

t
BE
GI
N

Ne
wN
od
e

t =
 P
ro
cR
ep
ea
t
(O
ld
No
de
)
;

Ne
wl
en
gt
h

:=

te
ng
th
(N
ew
No
de
)
;

,

 -i

n
Wi
nd
ow

-

- A

ux
il
ia
ry
 W
in
do
w

-

ME
SS
AG
E:

C
o
m
e
n
c
e
 l
og
gi
ng
 o
n
 -
SC
RE
EN
DU
MP
S

C
O
M
M
A
N
D
?
 p
ro
ce
du
re
ca
ll
 0

Pr
ob
le
m

t=

fa
ls
e;

Se
le
ct
ed
No
de

:=

Cu
rr
en
tN
od
e;

Ol
dN
od
e

t=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
0l
dN
od
e)

OF

Ca
se
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D
;

Wi
th
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

:=
Pr
oc
Wi
th
(0
1d
No
de
);

IF
 N
ew
No
de
 <

>
NI
L
TH
EN

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EL
SE
 P
ro
bl
em

:=
t
r
u
e

EN
D
;

La
be
ll
ed
st
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t
o

Pr
oc
La
be
ll
ed
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D
;

Re
pe
at
Lo
op

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Re
pe
at
(O
1d
No
de
);

Ne
wt
en
gt
h

to
 L
en
gt
h(
Ne
wN
od
e)
 ;

__
__

__
--

--
--

--
--

--

Ma
in
 W
in
do
w

-

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

Ed
it
in
g
Pr
oc
ed
ur
eC
al
l

C
O
M
M
A
N
D
?
 p
ro
ce
du
re
ca
ll

pr
od

uc
ti

on
 o

f
a
 n

ew
 n

od
e.

ED
IT
 N
EW

6.
lb

:
T

he
 e

di
to

r
is

 c
al

le
d

fo
r

Pr
ob
le
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :

=
Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

Ca
se
st
at
em
en
t
:

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
Ca
se
(0
ld
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

Wi
th
st
at
em
en
t
:

BE
GI
N

N
e
w
N
o
d
e

!=

Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
e
w
N
o
d
e
 0
 N
IL

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
ro
bl
em

:=
t
r
u
e

E
N
D
 ;

La
be
ll
ed
st
at
em
en
t
:

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
La
be
ll
ed
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D;

Re
pe
at
Lo
op

t
BE
GI
N

N
e
w
N
o
d
e

t=

Pr
oc
Re
pe
at
(O
1d
No
de
);

Ne
wL
en
gt
h

:=
Le
ng
th
(N
ew
No
de
);

,-
--

--
--

--
--

--
--

--

Ma
in
 W
i
n
d
o
w
 --

--

C1 ,-
--

--
--

--
--

--
--

Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
--

--
--

--
--

--

ME
SS
AG
E:

Ed
it
in
g
Pr
oc
ed
ur
eC
al
l

C
W
W
i
N
D
?
 p
ro
ce
du
re
ca
ll

P
r
o
b
l
e
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e

:=

Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 H
od
eT
yp
e(
O1
dN
od
e)

O
F

Ca
se
St
at
 e
me
nt

:

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oe
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

Wi
th
St
at
em
en
t
:

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
e
w
N
o
d
e
 o
 N
IL

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
ro
bl
em

:=
t
r
u
e

E
N
D

La
be
ll
ed
st
at
em
en
t
:

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
La
be
ll
ed
(0
Pd
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
N
D
 ;

R
e
p
e
a
t
L
o
o
p

:

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
Re
pe
at
(O
1d
No
de
)t

Ne
wL
en
gt
h

1-

Le
ng
th
(N
ew
No
de
);

--
--

--
--

--
--

--
--

--

~
t
r
i
p
l
(
~
l
d
~
o
d
e
,
~
e
l
e
c
t
e
d
~
o
d
e
,
M
a
r
k
e
r
,
~
r
o
b
l
e
m
~
~

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

Ed
it
in
g
P
r
o
c
e
d
u
r
e
C
a
l
l

C
O
M
M
A
N
D
?
 p
r
o
c
e
d
u
r
e
c
a
l
l

6
.1

~
: T

he
 t

ex
tu

al
 r

ep
re

se
nt

at
io

n
of

 t
he

 n
ew

 n
od

e
is

 e
nt

er
ed

.

. -

Pr
ob
le
m

t=

fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 t
=
Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

t=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

Ca
se
st
at
em
en
t

a
BE
GI
N

N
e
w
N
o
d
e

t=

Pr
oc
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D
;

Wi
th
St
at
em
en
t

t
BE
GI
N

N
e
w
N
o
d
e

t =
 P
ro
cW
i t
h(
0l
dN
od
e)
 ;

IF
 N
e
w
N
o
d
e
 <

>
NI
L
TH
EN

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
ro
bl
em

8-

t
r
u
e

E
N
D
 ;

La
be
ll
ed
st
at
em
en
t
:

BE
GI
N

N
e
w
N
o
d
e

:=
 P
ro
cL
ab
el
le
d(
O1
dN
od
e)
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D;

R
e
p
e
a
t
L
o
o
p

t

BE
GI
N

N
e
w
N
o
d
e

:=

Pr
oc
Re
pe
at
(O
1d
No
de
);

Ne
wL
en
gt
h

$
0

 L
en
gt
h(
Ne
wN
od
e)
;

,--

-.-

Ma
in
 W
i
n
d
o
w
 --

--

St
ri
pl
(O
ld
No
de
,

Se
le
ct
ed
No
de
,
Ma
rk
er
,

Pr
ob
le
m)

I-----------

Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

Ne
w
t
o
p
 o
f

st
ac
k

C
O
M
M
A
N
D
?
 p
ro
ce
du
re
ca
ll

Pr
ob
le
m

t=

fa
ls
e;

Se
le
ct
ed
No
de

t=

Cu
rr
en
tN
od
a;

O
l
d
N
o
d
e

t=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

B
s
e
~
t
a
t
e
m
e
n
t
 t

BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Ca
sa
(0
1d
NO
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

Wi
th
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
e
w
N
o
d
e
 0
 N
IL

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
ro
bl
em

:=
t
r
u
e

E
N
D
 ;

La
be
ll
ed
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

t=

Pr
oc
La
be
ll
ed
(0
1d
No
de
):

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
N
D
 ;

Re
pe
at
Lo
op

t
BE
GI
N

Ne
wN
od
e

:=J
Pr
oc
Re
pe
at
(O
1d
No
de
);

Ne
wL
en
gt
h

:=
 L
en
gt
h(
Ne
wN
od
e)
;

-
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-i
n

W
i
n
d
o
w
 -

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
a

-
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

Ca
se
Cl
au
se
Li
st

C(
mM
AN
D?
 p
ro
ce
du
re
ca
ll

C
U
R
S
O
R
 U
P

6.
 lf

:
T

he
 s

yn
ta

ct
ic

 c
ur

so
r

se
le

ct
s

th
e

ca
se

 c
la

us
e

li
st

.

P
r
o
b
l
e
m

t=

fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e

t=
 C
u
r
r
e
n
t
N
a
d
e
;

O
l
d
N
o
d
e

t=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

b
s
e
~
t
a
t
e
m
e
n
t
 t

B
E
G
I
N

N
e
w
N
o
d
e

t =
 P
ro
cC
as
e(
0l
dN
od
e)
 ;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

W
i
t
h
S
t
a
t
e
m
e
n
t

t
B
E
G
I
N

N
e
w
N
o
d
e

t=

Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
e
w
N
o
d
e
 0
 N
IL

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

M
a
r
k
e
r
)

E
L
S
E
 P
r
o
b
l
e
m

a=

t
r
u
e

EN
D;

L
a
b
e
l
l
e
d
s
t
a
t
e
m
e
n
t

t

B
E
G
I
N

N
e
w
N
o
d
e

8=

P
r
o
c
L
a
b
e
l
l
e
d
(
O
1
d
N
o
d
e
)
~

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

M
a
r
k
e
r
)

EN
D;

R
e
p
e
a
t
L
o
o
p

t
B
E
G
I
N

N
e
w
N
o
d
e

t=

Pr
oc
Re
pe
at
(O
1d
No
de
);

N
e
w
L
e
n
g
t
h

t=

Le
ng
th
(N
ew
No
de
);

,
.-

__
--

--
--

--
--

--
--

 Ma
i
n
 W
i
n
d
o
w

--

--
--

--
--

--
--

--
--

-

.-
--

--
--

--
--

--
--

 Au
x
i
l
i
a
r
y
 W
i
n
d
o
w

-
ME
SS
AG
E:

C
a
s
e
C
l
a
u
s
e
L
i
s
t

C
O
M
M
A
N
D
?
 p
r
o
c
e
d
u
r
e
c
a
l
l

P
r
o
b
l
e
m

t=
 f
al
se
;

S
e
l
e
c
t
e
d
N
o
d
e

:=

C
u
r
r
e
n
t
N
o
d
e
;

O
l
d
N
o
d
e

a=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

~
F
A
U
L
T
S
Y
~
B
O
L

:

B
E
G
I
N

P
r
o
b
l
e
m

t=

tr
ue
;

Wr
it
eM
es
sa
ge
('
Do
es

no
t
a
p
p
l
y

so
me
ho
w'
)

E
N
D
 ;

C
a
s
e
s
t
a
t
e
m
e
n
t

t
B
E
G
I
N

N
e
w
N
o
d
e

:=
 P
ro
cC
as
e(
0l
dN
od
e)
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

W
i
t
h
S
t
a
t
e
m
e
n
t

t
B
E
G
I
N

N
e
w
N
o
d
e

:=
Pr
oc
Wi
th
(O
1d
No
de
);

I
F
 N
e
w
N
o
d
e
 e
 N
I
L

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

M
a
r
k
e
r
)

E
L
S
E
 P
r
o
b
l
e
m

:=

t
r
u
e

EN
D;

L
a
b
e
l
l
e
d
s
t
a
t
e
m
e
n
t

t
B
E
G
I
N

N
e
w
N
o
d
e

t=

Pr
oc
La
be
ll
ed
(0
1d
No
da
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

M
a
r
k
e
r
)

I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w

--

--
--

--
--

--
--

--

ME
SS
AG
E:

C
a
s
e
C
l
a
u
s
e
L
i
s
t

C
O
M
M
M
D
?
 p
ro
ce
du
re
cc
rl
l

R
O
T
A
T
E

6
.l

g
:

T
he

 l
is

t
as
 a

 w
ho

le
 i

s
ro

ta
te

d.

Pr
ob
le
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :

=
Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

:=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

OF

 F
AU

LT
S

SY
MB

OL
 :

BE
GI
N

Pr
ob
le
m

:=
tr
ue
;

Wr
it
eM
es
sa
ge
('
Do
es

no
t
ap
pl
y
so
me
ho
w'
)

EN
D;

Ca
se
st
at
em
en
t
:

BE
GI
N

Ne
wN
od
e

t=

Pr
oc
Ca
se
(0
ld
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

Wi
th
St
at
em
en
t

t
BE
GI
N

Ne
wN
od
e

:=
Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
e
w
N
o
d
e
 <

>
NI
L
TH
EN

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EL
SE

Pr
ob
le
m

:m
t
r
u
e

EN
D;

La
be
ll
ed
st
at
em
en
t

t
BE
GI
N

N
e
w
N
o
d
e

t=

Pr
oc
La
be
ll
ed
(0
ld
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

,
--

--
--

--
--

--
--

--
--

 Ma
i
n
 W
i
n
d
o
w
 -

--
--

--
--

--
--

--
--

--

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

Ca
se
Cl
au
se
Li
st

C
O
M
M
A
N
D
?
 p
ro
ce
du
re
ca
ll

R
O
T
A
T
E

Pr
ob
le
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :=

Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

b
o
u
n
d
s
t
a
t
e
m
e
n
t

:

BE
GI
N

IF

Le
ng
th
(S
e1
ec
te
dN
od
e)

=
1
 T
HE
N

Ne
wN
od
e

:=
He
ad
Of
(S
e1
ec
te
dN
od
e)

EL
SE
 N
ew
No
de

:=
Se
le
ct
ed
No
de
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D

;
DE
FA
UL
TS
YM
BO
L

t
BE
GI
N

Pr
ob
le
m

t=

tr
ue
;

Wr
it
eM
es
sa
ge
('
Do
es

no
t
a
p
p
l
y
 s
om
eh
ow
')

EN
D
;

Ca
se
st
at
an
en
t

t
BE
GI
N

Ne
wM
od
e

t=
 P
ro
cC
as
e(
O1
dN
od
e)
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D
;

Wi
th
St
at
em
en
t

1
BE
GI
N

Ne
wN
od
e

:=
Pr
oc
Wi
th
(O
1d
No
de
);

IF
 N
ew
No
de
 o
 N
IL

TH
EN

.-
--

--
--

--
--

--
--

--

Ma
in
 W
in
do
w

-

.-
--

--
--

--
--

--
--

Au
xi
li
ar
y
Wi
nd
ow

--

--
--

--
--

--
--

--

ME
SS
AG
E:

Ca
se
Cl
au
se
Li
st

CO
MM
AN
D?
 p
ro
ce
du
re
ca
ll

6.
lh

:
T

he
 l

is
t

is
 r

ot
at

ed
 a

ga
in

.

P
r
o
b
l
e
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :

=
C
u
r
r
e
n
t
N
o
d
e
;

O
l
d
N
o
d
e

:=

Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

b
m
p
o
u
n
d
~

ta
t
em
en
t
:

B
E
G
I
N

I
F
 L
en
gt
h(
Se
1e
ct
ed
No
de
)

=
1
 T
H
E
N

N
e
w
N
o
d
e

:=

He
ad
Of
(S
e1
ec
te
dN
od
e)

E
L
S
E
 N
e
w
N
o
d
e

:=
S
e
l
e
c
t
e
d
N
o
d
e
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

M
a
r
k
e
r
)

EN
D;

D
E
F
A
U
L
T
S
Y
M
B
O
L

:

B
E
G
I
N

P
r
o
b
l
e
m

:=
tr
ue
;

Wr
it
eM
es
sa
ge
('
Do
es

no
t

a
p
p
l
y

so
me
ho
w'
)

O
a
Z
a
t
 em
en
t
:

B
E
G
I
N

N
e
w
N
o
d
e

:=
Pr
oc
Ca
se
(O
1d
No
de
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

EN
D;

W
i
t
h
s
t
a
t
e
m
e
n
t

:

B
E
G
I
N

N
e
w
N
o
d
e

:=
Pr
oc
Wi
th
(O
1d
No
de
);

I
F
 N
e
w
N
o
d
e
 o
 N
IL

T
H
E
N

--
--

--
--

--
--

--
--

--
 Ma
i
n
 W
i
n
d
o
w
 -

--
--

--
--

--
--

-.
--

--
-

.
-
-
-
-
-
-
-
-
-
a
m
-
-
-
-

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w

--

--
--

--
--

--
--

--

ME
SS
AG
E:

C
a
s
e
C
l
a
u
s
e
L
i
s
t

C
O
M
M
A
N
D
?
 p
r
o
c
e
d
u
r
e
c
a
l
l

R
O
T
A
T
E
'

P
r
o
b
l
e
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e

:*

C
u
r
r
e
n
t
N
o
d
e
;

O
l
d
N
o
d
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

C
A
S
E
 N
od
eT
yp
e(
O1
dN
od
e)

O
F

m
~
t
a
t
e
m
e
n
t
,
 :

I
F
 S
e
l
e
c
t
e
d
N
o
d
e
 =

 C
on
se
qu
en
tO
f(
01
dN
od
e)

T
H
E
N

IF
 E
mp
ty
Q(
Al
te
rn
at
eO
f(
O1
dN
od
e)
)

T
H
E
N

B
E
G
I
N

N
e
w
N
o
d
e

:=
Pr
oc
It
(O
ld
No
de
,

Si
mp
le
If
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

M
a
r
k
e
r
)

E
N
D

E
L
S
E

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
If
(O
ld
No
de
,

I
f
E
l
s
e
C
o
n
s
e
q
)

i In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF
 L
is
tE
le
me
nt
Q(
Ma
rk
er
)

T
H
E
N

M
a
r
k
e
r

:=
Co
ns
eq
ue
nt
Of
(N
ex
t(
Ma
rk
er
))

E
L
S
E
 M
a
r
k
e
r

:=
Co
ns
eq
ue
nt
of
(

Nt
hE
le
me
nt
(B
od
yO
f(
Ma
rk
er
),

2
))

E
N
D

E
L
S
E

BE
GI
N

N
e
w
N
o
d
e

:=
Pr
oc
If
(O
1d
No
de
.

If
El
se
Al
te
rn
);

--
--

--
--

--
--

--
--

--
 bi

n
 W
i
n
d
o
w

--

--
--

--
--

--
--

--
--

-

.-
--

--
--

--
--

--
--

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w

--

--
--

--
--

--
--

--

ME
SS
AG
E:

C
a
s
e
C
l
a
u
s
e
L
i
s
t

C
O
W
A
N
D
?
 p
r
o
c
e
d
u
r
e
c
a
l
l

6
.l

i:
 Y

et
 a

no
th

er
 r

ot
at

io
n

le
av

es
 t

he
 e

le
m

en
ts

 c
or

re
ct

ly
 p

os
it

io
ne

d.

Pr
ob
le
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 I
=
Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

@
 N
od
eT
yp
e(
O1
dN
od
e)

=
If
 S
ta
te
me
nt
 T
HE
N

IF

S
e
l
e
c
t
e
d
N
o
d
e
 =

 C
on
se
qu
en
tO
f(
01
dN
od
e)

TH
EN

IF
 E
mp
ty
Q(
Al
te
rn
at
eO
f(
01
dN
od
e)
)

TH
EN

BE
GI
N

Ne
wN
od
e

t=

Pr
oc
If
(O
ld
No
de
,

Si
mp
le
If
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
N
D

EL
SE

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
If
(O
ld
No
de
,

If
El
se
Co
ns
eq
);

In
st
al
lI
t
(O
ld
No
de
,
Ne
wN
od
e,

Ma
rk
er
)
;

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

Ma
rk
er

:=

Co
ns
eq
ue
nt
Of
(N
ex
t(
Ma
rk
er
))

EL
SE
 M
ar
ke
r

:P

Co
ns
eq
ue
nt
of
(

Nt
hE
le
me
nt
(B
od
yO
f(
Ma
rk
er
),

2)
)

EN
D

EL
SE

BE
GI
N

Ne
wN
od
e

:=
Pr
oc
If
(O
ld
No
de
,

ff
E1
se
Al
te
rn
)b

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

--
--

--
--

--
--

--
--

--
 Ma
in
 W
in
do
w

--.

--

- A

ux
il
ia
ry
 W
in
do
w

--.
me-
--

ME
SS
AG
E:

If
 S
ta
te
me
nt

C
O

?

pr
oc
ed
ur
ec
al
l

CU
RS
OR
 D

O
W

N

Pr
ob
le
m
:l

fa
ls
e;

Se
le
ct
ed
No
de
 t
=
Cu
rr
en
tN
od
e;

Ol
dN
od
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

IF
 &
d
e
T
y
p
e
(
O
l
d
~
o
d
e
)
 =

 I
fs
ta
te
me
nt
 T
HE
N

IF

Se
le
ct
ed
No
de
 =

 C
on
se
qu
en
tO
f(
01
dN
od
e)

TH
EN

IF

Em
pt
yQ
(A
lt
er
na
te
Of
(0
ld
No
de
))

TH
EN

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
lf
(O
ld
No
de
,

Si
mp
le
If
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D

EL
SE

BE
GI
N

Ne
wN
od
e

:=
Pr
oc
If
(O
ld
No
de
,

If
El
se
Co
ns
eq
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

Ma
rk
er

t=
 C
on
se
qu
en
tO
f(
Ne
xt
(M
ar
ke
r)
)

EL
SE
 M
ar
ke
r

:=

Co
ns
eq
ue
nt
of
(

Nt
hE
le
me
nt
(B
od
yO
f(
Ma
rk
er
),

2)
)

EN
D

EL
SE

BE
GI
N

Ne
wN
od
e

:=
Pr
oc
If
(O
ld
No
de
,

If
El
se
Al
te
rn
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

--
--

--
--

--
--

--
--

--
 Ma

in
 W
in
do
w

-

- A

ux
il
ia
ry
 W
in
do
w

-

ME
SS
AG
E:

Re
la
ti
on

CO
EP
MA
ND
?
pr
oc
ed
ur
ec
al
l

6.
1k
:

T
he

 c
ur

so
r

is
 m

ov
ed

 t
o

th
e

if
s

fi
rs

t
co

m
po

ne
nt

 (
pr

ed
ic

at
e)

.

Pr
ob
le
m

:=
fa
ls
e;

S
e
l
e
c
t
e
d
N
o
d
e
 :

=
Cu
rr
en
tN
od
e;

O
l
d
N
o
d
e

:=
Pa
re
nt
(S
e1
ec
te
dN
od
e)
;

IF
 e
)o
de
Ty
pe
(O
ld
~o
de
)
=
If
St
at
em
en
t
TH
EN

IF

S
e
l
e
c
t
e
d
N
o
d
e
 =

 C
on
se
qu
en
tO
f(
O1
dN
od
e)

TH
EN

IF
 E
mp
ty
Q(
Al
te
rn
at
eO
f(
O1
dN
od
e)
)

TH
EN

BE
GI
N

N
e
w
N
o
d
e

t=

Pr
oc
If
(O
ld
No
de
,

Si
mp
le
ff
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D

EL
SE

BE
GI
N

.
N
e
w
N
o
d
e
 :=

Pr
oc
If
(O
ld
No
de
,

If
El
se
Co
ns
eq
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

Ma
rk
er

:=
Co
ns
eq
ue
nt
Of
(N
ex
t(
Ma
rk
er
))

E
L
S
E
 M
ar
ke
r

t=

Co
ns
eq
ue
nt
of
(

Nt
hE
le
me
nt
(B
od
yO
f(
Ma
rk
er
),

2)
)

EN
D

E
L
S
E

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
If
(O
ld
No
de
,

1f
El
se
Al
te
rn
)g

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

L
i
s
N
l
e
m
e
n
t
Q
(
M
a
r
k
e
r
)

TH
EN

.
-
-
-
-
-
-
-
-
-
-
-
&
I
-
-
-
-

b
i
n
 W
in
do
w
-
-
-
-
-
-
-
-
-
-
-
-
-
i
-
-
-
-
-

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

--

--
--

--
--

--
--

--

ME
SS
AG
E:

Re
la
ti
on

C
O
M
M
A
N
D
?
 p
ro
ce
du
re
ca
ll

CU
RS
OR
 R
I
G
H
T

Pr
ob
le
m

:=
fa
ls
e;

Se
le
ct
ed
No
de

t=
 C
ur
re
nt
No
de
;

O
l
d
N
o
d
e

1
3

 P
ar
en
t(
Se
1e
ct
ed
No
de
);

IF
 N
od
eT
yp
e(
O1
dN
od
e)

=
 I
fs
ta
te
me
nt
 T

H
EN

@

'
S
e
l
e
c
t
e
d
N
o
d
e
 =

 C
on
se
qu
en
to
f
(O
ld
No
de
)
TH
EN

IF
 E
mp
ty
Q(
Al
te
rn
at
eO
f(
O1
dN
od
e)
)

TH
EN

BE
GI
N

Ne
wN
od
e

:=
Pr
oc
If
(O
ld
No
de
,

Si
mp
le
If
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

EN
D

EL
SE

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
If
(O
ld
No
de
,

If
El
se
Co
ns
eq
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

Ma
rk
er

:=
Co
ns
eq
ue
nt
Of
(N
ex
t(
Ma
rk
er
))

EL
SE
 M
ar
ke
r

:=

Co
ns
eq
ue
nt
of
 (

Nt
hE
le
me
nt
(B
od
yO
f(
Ma
rk
er
),

2)
)

EN
D

EL
SE

BE
GI
N

Ne
wN
od
e

:=

Pr
oc
If
(O
ld
No
de
,

If
El
sa
Al
te
rn
);

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

IF

Li
st
El
em
en
tQ
(M
ar
ke
r)

TH
EN

.--

b
i
n
 W
i
n
d
o
w

.--

-

Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

If
St
at
em
en
t

CO
II
II
MA
ND
?
pr
oc
ed
ur
ec
al
l

6.
11

:
T

he
 c

ur
so

r
is

 m
ov

ed
 l

at
er

al
ly

 t
o

th
e

co
ns

eq
ue

nt
 s

ta
te

m
en

t.

-

-
-

E
L
S
E

No
de
Ty
pe
(0
ld
No
de
)

=
C
o
m
p
o
u
n
d
S
t
a
t
e
m
e
n
t

T
H
E
N

BE
GI
N

IF
 L
e
n
g
t
h
(
S
e
1
e
c
t
e
d
N
o
d
e

=
1
 T
HE
N

N
e
w
N
o
d
e

:=
He
ad
Of
(S
e1
ec
te
dN
od
e)

E
L
S
E
 N
e
w
N
o
d
e

:=

S
e
l
e
c
t
e
d
N
o
d
e
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
N
D

E
L
S
E

IF
 N
od
eT
yp
e(
O1
dN
od
e)

=
D
E
F
A
U
L
T
S
Y
M
B
O
L
 T
H
E
N

B
E
G
I
N

P
r
o
b
l
e
m

:=
tr
ue
;

Wr
it
eM
es
sa
ge
('
Do
es

no
t
a
p
p
l
y

so
me
ho
w'
)

E
N
D

E
L
S
E

IF
 N
od
eT
yp
e(
0l
dN
od
e)

=
c
a
s
e
s
t
a
t
e
k
t
 T
H
E
N

B
E
G
I
N

N
e
w
N
o
d
e

t=
 P
ro
cC
as
e(
0l
dN
od
e)
;

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
);

E
N
D

E
L
S
E

IF
 N
od
eT
yp
e(
O1
dN
od
e)

=
Wi
th
st
at
em
en
t

T
H
E
N

B
E
G
I
N

N
e
w
N
o
d
e

:=

Pr
oc
Wi
th
(0
ld
No
de
);

IF
 N
e
w
N
o
d
e
 o
 N
IL

T
H
E
N

In
st
al
lI
t(
Ol
dN
od
e,

Ne
wN
od
e,

Ma
rk
er
)

E
L
S
E
 P
r
o
b
l
e
m

:=
t
r
u
e

E
N
D

,
.-
m

e
-
-
-
-
-
-
-
-
-
-
-
-
m

-

M
a
i
n
 W
in
do
w

-

.-
--

--
--

--
--

--
--

 Au
x
i
l
i
a
r
y
 W
i
n
d
o
w

-
'M
ES
SA
GE
:
If
 S
t
a
t
e
m
e
n
t

C
O
M
M
A
N
D
?
 p
r
o
c
e
d
u
r
e
c
a
l
l

R
E
P
L
A
C
E

E
L
S
E
 W
r
i
p
l
(

Ol
dN
od
e,

Se
le
ct
ed
No
de
,
Ma
rk
er
,

Pr
ob
le
m)
;

IF
 N
O
T
 P
r
o
b
l
e
m
 T
H
E
N

BE
GI
N

Cl
ea
rW
in
do
w(
'A
ux
1W
in
d'
);

Re
po
si
ti
oq
Cu
rs
or
(M
ar
ke
r)
;

S
h
o
w
U
n
p
a
r
s
a

E
N
D

- A

u
x
i
l
i
a
r
y
 W
i
n
d
o
w
 --

--
ME
SS
AG
E:

P
r
o
c
e
d
u
r
e
c
a
l
l

CO
EI
MA
ND
?
p
r
o
c
e
d
u
r
e
c
a
l
l

6.
 ln

:
T

he
 p

re
vi

ou
sl

y
cr

ea
te

d
pr

oc
ed

ur
e

re
pl

ac
es

 t
he

 a
lt

er
na

te
.

Example - and Engulfing -
In EMBED I believe that I have captured an important editing notion. Of the

new commands, it is the one which I have found myself calling upon most often.

Application frequently involves the introduction of branching into the code, as in this

example. As well, EMBED is often used in tandem with ENGULF.

Figure 6.2a (left screen) shows the site of the intended alterations. Before the

statement designated by the screen cursor is executed, a flag (BadKeyFlag) must be

tested. If this flag has value true, then some error handling is performed, otherwise a

sequence of statements, consisting of that cursor-designated statement plus the two

succeeding stateients, is executed.

Since tha t first statement is to be executed only under certain conditions,

EMBED is applied to it (Figure 6.2a). To correspond with the aim delineated above,

embedding in the alternate of the if statement is chosen (Figure 6.2b). The next step

of the operation is actualization of the statement's predicate. Though the desired

identifier could have been selected and stacked previously and now inserted into the

placeholder, I have, for the sake of .generality, chasm to provide BadKeyFlag

textually (Figure 6 . 2 ~ ~ 6.2d, 6.2e). Similarly, to provide the error handling

statements, the cursor is moved to the conseq~ent placeholder (Figure 6.20, MODIFY

is invoked once more (Figure 6.2g), and the new text is entered without any

particular regard for formatting (Figures 6.2h, 6.2i), leading to actualization of the

placeholder (Figure 6.2j).

I t will be recalled that not just Reposit ioncursor (IdNode 1, but the

succeeding two statements as well, are to be executed if BadKeyFlag evaluates to

false. To bring about this result, the syntactic cursor is moved to the alternate

statement (Figure 6.2k), and two applicatiom of ENGULF-NEXT are keyed in

(Figures 6.21, 6.2m).

VA
R

 Ev
Re
c

t
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

T
H
E
N

BE
GI
N

~
p
o
s
i
t
i
o
n
~
u
r
s
o
r
(
1
d
N
o
d
e
)
;

No
In
st
an
ce
En
co
un
te
re
d

t-

fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
or
ap
t)
;

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y

<>
 N
ex
t

T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 R
es
to
re
)
A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 S
el
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 t
=
fa
ls
e;

Ab
or
te
d

t=
 E
vR
ec
.S
en
di
ng
Ke
y

-

 Mai

n
W
i
n
d
o
w

--

--
--

--
--

--
--

--
--

-

,--
--

--
--

--
--

--
-

Au
xi
li
ar
y
W
i
n
d
o
w
 -

--
--

--
--

--
--

--
-

ME
SS
AG
E:

C
o
a
n
e
n
c
e
 l
og
gi
ng
 o
n
 -
SC
RE
EN
DU
MP
S

C
(
M
W
N
D
?
 r
i
n
d
 F
i
n
d
I
d
e
n
t
i
f
i
e
r
s

,

VA
R

 Ev
Re
c

t
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
 (
Id
No
de
)
,
St
ri
ng
Re
p)

T
H
E
N

'
BE
GI
N

IF
 -
Ex
pr
es
si
on

T
H
E
N

Re
po
si
ti
on
Cu
rs
or
(1
dN
od
e)
;

No
In
st
an
ce
En
co
un
te
re
d

t-

ta
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
on
op
t)
;

Sh
ow
Un
pa
r
se
;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y

Ne
xt

T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 R
es
to
re
)
A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y
o
 S
el
ec
t)

T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

t-

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 t

-
fa
ls
e;

.--
--

--
--

--
--

--
--

-
Ma
in
 W
i
n
d
o
w
 --

--

.--

-

Au
xi
li
ar
y

Wi
nd
ow

--

--
--

--
--

--
--

--

ME
SS
AG
E:

If
 S
ta
te
me
nt

CC
NW
LN
D?
 f
in
d
F
i
n
d
I
d
e
n
t
i
f
i
e
r
s

6.
2a

:
E
M
B
E
D
 i

s
ap

pl
ie

d
to

 t
he

 p
ro

ce
du

re
 c

al
l.

V
A
R

E
v
R
e
c

:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

.
T
H
E
N

BE
GI
N

IF
 m

~
x
p
r
e
s
s
i
o
n
 T
H
E
N

Re
po
si
ti
on
Cu
rs
or
(1
dN
od
e)
;

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
)
 ;

Sh
ow
Un
pa
rs
e;

Up
da
 t
 eS
cr
 ee
n;

Ge
tR
re
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y

o
 N
ex
t

T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y

o
 R
es
to
re
)
A
N
D

(E
vR
ec
,S
en
di
ng
Ke
y

<>
 S

el
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

:=
tr
ue
;

Pr
oc
Id
en
t
s
(
Id
No
de
)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 :

=
fa
ls
e;

--
--

--
--

--
--

--
--

--
 mi

n
 W
i
n
d
o
w
 -

--
--

--
--

--
--

--
--

--

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

If
 S
ta
te
me
nt

C
O
M
M
A
N
D
?
 f
i
n
d
 F
i
n
d
I
d
e
n
t
i
f
i
e
r
s

V
A
R

Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

C
o
~
r
~
e
I
d
e
n
t
i
f
i
e
r
(
1
d
N
o
d
e
)
~

St
ri
ng
Re
p)

T
H
E
N

BE
GI
N

IF
 ~

~
x
p
r
e
s
s
i
o
n

T
H
E
N
 D
U
M
M
S
t
a
t
e
m
e
n
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t

T
H
E
N

IF
 (
Ev
Re
c.
Se
nd
in
gK
ey

a
 R
es
to
re
)

A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y
0
 S
al
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

:=
tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 :

=
fa
ls
e;

.--
--

--
--

--
--

--
--

-
w
i
n
 W
i
n
d
o
w
 -

--
--

--
--

--
--

--
--

--

.--

-

Au
xi
li
ar
y
W
i
n
d
o
w
 -

--
--

--
--

--
--

--
-

ME
SS
AG
E:

If
st
at
em
en
t

CO
MM
AN
D?
 f
in
d
Fi
nd
Id
en
ti
fi
er
s

N
E
X
T

6.
2b
:

T
he

 d
es

ir
ed

 e
m

be
dd

in
g

is
 l

oc
at

ed
.

V
A
R

Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF

Sa
me
st
ri
ng
s(

Co
er
ce
Id
en
ti
f
ie
r
(
Id
No
de
) ,
 St

ri
ng
Re
p)

T
H
E
N

BE
GI
N

IF
 W
M
M
Y
~
x
p
r
e
s
s
i
o
n
 TH
EN
 D
U
W
W
S
t
a
t
e
m
e
n
t

EL
SE
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

~
ri

te
M

es
sa

g
e(

U
sa

g
eP

ro
q

t)
;

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t

TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y
o
 R
es
to
re
)
AN
D

(E
vR
ec
 ,
 Se
nd
in
gK
ey
 <

>
Se
le
ct
)

TH
EN

BE
GI
N

Ba
dK
ey
Fl
ag

:=
tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se
 :

=
fa
ls
e;

 -in

Wi
nd
ow

-
-
-
-
-
-
-
-
a
m

-
-
-
-
-
-
-
-
-

- A

ux
il
ia
ry
 W
in
do
w

-

ME
SS
AG
E:

If
st
at
em
en
t

CO
BW
AN
D?
 f
in
d
Pi
nd
Id
en
ti
fi
er
s

V
A
R

Ev
Re
c

2
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

TH
EN

BE
GI
N

IF
 D
UM
MY
Ex
pr
es
si
on
 T
HE
N
D
W
M
Y
S
t
a
t
a
m
e
n
t

EL
SE
 ~
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

~r
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

~e
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
o
 N
bx
t
TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y
a
 R
es
to
re
)

A
N

D

(E
vR
ec
.S
en
di
ng
Ke
y
0
 S
el
ec
t)
 T
HE
N

BE
GI
N

Ba
dK
ey
Fl
ag

:a

tr
ue
;

Pr
oc
Id
en
ts
(1
dW
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se
 :=

fa
ls
e;

--
--

--
--

--
--

--
--

--
 -i
n

Wi
nd
ow

-

0

- A

ux
il
ia
ry
 W
in
do
w

-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-

ME
SS
AG
E:

Ed
it
in
g
Ex
pr
es
si
on

.
.

CO
BW
AN
D?
 f
in
d
Fi
nd
Id
en
ti
fi
er
s

MO
DI
FY
 C
UR
RE
NT

6
.2

~
: T

he
 e

di
to

r
is

 c
al

le
d

to
 a

ct
ua

liz
e

th
e

pl
ac

eh
ol

de
r.

VA
R Ev

Re
c

t
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
f
ie
r
(
Id
No
de
)
,
St
ri
ng
Re
p)

TH
EN

BE
GI
N

IF
 D
UM
MY
Ex
pr
es
si
on
 T
HE
N
DU
EP
nS
ta
te
me
nt

E
L
S
E
 ~
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t
TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y

o
 R
es
to
re
)
A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 S
el
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

:=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se
 t
=
fa
ls
e;

- A

ux
il
ia
ry
 W
in
do
w

--
--

--
--

--
,--

--
--

ME
SS
AG
E:

Ed
it
in
g
Ex
pr
es
si
on

CO
MM
AN
D?
 f
in
d
Fi
nd
fd
en
ti
fi
er
s

VA
R Ev

Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
ar
(I
dN
od
e)
,

St
ri
ng
Re
p)

TH
EN

'

BE
GI
N

IF
 D

~
E
x
p
r
e
s
s
i
o
n
 TH
EN
 D
UW
XS
ta
ta
ao
en
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
Id
No
de
);

No
In
st
an
ce
En
co
un
te
ra
d

:=

fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t
TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y
0
 R
es
to
re
)
AN
D

(E
vR
ec
.S
en
di
ng
Ke
y
o
 S
el
ec
t)
 T

HE
M

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se
 t

m

fa
ls
e;

.-
--

--
--

--
--

--
--

--

Ma
in
 W
in
do
w

--
--

--
--

--
--

--
--

--
.

~
a
d
K
e
y
~
l
a
g
0

I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Au
xi
li
ar
y
Wi
nd
ow

--

--
--

--
--

--
--

-.

ME
SS
AG
E:

Ed
it
in
g
Ex
pr
es
si
on

C
O
M
M
M
D
?
 f
i
n
d
 F
in
dI
de
nt
if
ie
rs

6.
2d

: .
T

ex
t i

s
en

te
re

d.

V
A

R
 Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

T
H
E
N

BE
GI
N

IF
 D
U
M
M
Y
E
x
p
r
e
s
s
i
o
n
 T
H
E
N
 D
U
M
W
S
t
a
t
e
m
e
n
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

t=

fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 R
rR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t

T
H
E
N

.

IF

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 R
es
to
re
)
A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 S
el
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

:=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 t

=

fa
ls
e;

.-
--

--
--

--
--

--
--

--

b
i
n
 W
in
do
w

--
--

--
--

--
--

--
--

--
-

~
a
d
~
e
y
~
l
a
g
f
l

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

Ed
it
in
g
En
pr
es
si
on

C
O
M
M
A
N
D
?
 f
i
n
d
 F
i
n
d
I
d
e
n
t
i
f
i
e
r
s

V
A

R
 Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
t i
er
 (
Id
No
de
)
,
St
ri
ng
Re
p)

T
H
E
N

'
BE
GI
N

IF
 b

d
~
e
y
~
l
a
g

T
H
E
N
 D
U
W
Y
S
t
a
t
e
m
e
n
t

EL
SE
 R
ep
os
it
io
nC
ur
ro
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

W
ri

te
M

es
sa

ge
(U

sa
ge

P
ro

ri
tp

t)
;

Sh
ow
Un
pa
rs
e;

Up
da
te
sc
re
en
8

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t
T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y
0
 R
es
to
re
)
AN
D

(E
vR
ec
.l
en
di
ng
Ke
y
0
 S
el
ec
t)
 T
HE
N

BE
GI
N

Ba
dK
ey
Fl
ag

tm

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 t

=

fa
ls
e;

--
--

--
--

--
--

--
--

--
 bi

n
 W
i
n
d
o
w

--

--
--

--
--

--
--

--
--

-

.-
--

--
--

--
--

--
--

Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

Id
en
ti
fi
er

.
.

C
C
M
M
A
N
D
?
 f
i
n
d
 F
i
n
d
f
d
e
n
t
i
f
i
e
r
s

E
D
I
T
 C
O
M
P
L
E
T
E

6.
2e

:
T

he
 p

la
ce

ho
ld

er
 i

s
re

pl
ac

ed
.

-
 -

V
A

R
 Ev
Re
c

t
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

T
H
E
N

BE
GI
N

IF
 b

d
~
e
y
~
l
a
g

TH
EN
 D
I
M
W
S
t
a
t
e
m
e
n
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

t=

fa
ls
e;

W
ri

te
M

es
sa

ge
(U

sa
ge

P
ro

n
tp

t)
;

Sh
ow
Un
pa
rs
e;

Up
da
t
eS
cr
ee
n;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
a1
Fu
dg
eF
ac
to
r)
p

IF
 E
vR
ec
.S
en
di
ng
Ke
y

<>
 N
ex
t

TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y
o
 R
es
to
re
)
AN
D

(E
vR
ec
.S
en
di
ng
Ke
y
0
 S
el
ec
t)
 T
HE
N

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se
 I
=
fa
ls
e;

.-
--

--
--

--
--

--
--

--

Ma
in
 W
in
do
w

-

.-
--

--
--

--
--

--
--

Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E:

Id
en
ti
fi
er

C
U
I
W
W
D
?
 f
in
d
Fi
nd
Id
en
ti
fi
er
s

CU
RS
OR
 R
I
G
H
T

VA
R Ev
Re
c

t
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

TH
EN

,
BE
GI
N

IF
 B
ad
Ke
yF
la
g
TH
EN
 -
st
at
em
en
t

EL
SE
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

t=

fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
)
;

Sh
ow
Un
pa
rs
a;

Up
da
te
sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t
TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y
0
 R
es
to
re
)
AN
D

(E
vR
ec
.S
en
di
ng
Ke
y
0
 S
el
ec
t)
 T
HE
N

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(
Id
No
de
)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se
 t
=
fa
ls
e;

 mi
n
 W
in
do
w

-

I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E:

Pr
oc
ed
ur
ec
al
l

C
O
M
M
N
D
?
 f
in
d
~
i
n
d
f
d
e
n
t
i
f

ie
rs

6.
2f

:
T

he
 n

ex
t

pl
ac

eh
ol

de
r

is
 s

el
ec

te
d.

V
A

R
 Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF

Sa
me
st
ri
ng
s(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Ra
p)

TH
EN

BE
GI
N

IF
 B
ad
Ke
yF
la
g
TH
EN
 -
st
at
em
en
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt

;

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
$

IF

Ev
Re
c.
Se
nd
in
gK
ey

0
 N
ex
t

TH
EN

IF

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 R
es
to
re
)
AN
D

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 S
el
ec
t)
 T
HE
N

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se

:=
fa
ls
e;

.--
--

--
--

--
--

--
--

-
Ma
in
 W
in
do
w

--
--

--
--

--
--

--
--

--
-

.--

-

Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

Pr
oc
ed
ur
eC
al
l

C
O
M
M
A
N
D
?
 f
in
d
Fi
nd
Id
en
ti
fi
er
r

V
A
R

Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF

Sa
me
st
ri
ng
s(

Co
er
ce
fd
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

TH
EN

BE
GI
N

IF
 B
ad
Ke
yF
la
g
TH
EN
 D
U
W
W
S
t
a
t
e
m
e
n
t

EL
SE
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
)

 ;

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
0
 N
ex
t
TH
EN

IF

(E
vR
ec
.S
en
di
ng
#e
y
0
 R
es
to
re
)

A
N

D

(E
vR
ec
.S
en
di
ng
Ke
y
0
 S
el
ec
t)
 T
HE
N

BE
GI
N

Ba
dK
ey
Fl
ag

8-

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

EN
D

EL
SE

BE
GI
N

Co
nt
in
ue
Tr
av
er
se

:-
 f
al
se
;

.-
--

--
--

--
--

--
--

--

Ma
in
 W
in
do
w

-
0

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E:

Ed
it
in
g
St
at
em
en
t

C
O
W
A
N
D
?
 f
in
d
Fi
nd
Id
en
ti
fi
er
r

MO
D
I
 FY
 C
U
R
R
E
N
T

6.
2g

:
T

he
 e

di
to

r
is

 c
al

le
d

to
 f

il
l-

th
is

 p
la

ce
ho

ld
er

.

VA
R Ev

Re
c

t
Ev
en
tR
ec
Ty
pe
;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

~
o
e
r
c
e
~
d
e
n
t
i
f
i
e
r
(
I
d
N
o
d
e
)
,
 S
t
r
i
n
g
R
e
p
)

T
H
E
N

BE
GI
N

IF
 B
ad
Ke
yF
la
g
T
H
E
N
 D
UM
MY
St
at
em
en
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
fa
ls
e;

~
r
i
t
e
M
e
s
s
a
g
e
(
U
s
a
g
e
P
r
o
m
p
t
)
;

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y

Q

Ne
xt

T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 R
es
to
re
)

A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 S

el
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 :

=
fa
ls
e;

.-
--

--
--

--
--

--
--

--

Ma
in
 W
i
n
d
o
w
 --

--
--

--
--

--
--

--
--

-
be
gi
n
~
r
i
t
e
M
e
s
s
a
g
e
(
B
a
d
~
e
y
M
e
s
s
a
g
e
)
;

0

*

I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Au
xi
li
ar
y
W
i
n
d
o
w
 -

--
--

--
--

--
--

--
-

ME
SS
AG
E:

CO
t@
lA
ND
?
fi
nd
 F
in
dI
de
nt
if
ie
rs

VA
R

 Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
e~
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

T
H
E
N

\

BE
GI
N

IF
 B
ad
Ke
yF
la
g
TH
EN
 D
UM
MY
St
at
em
en
t

E
L
S
E
 R
ep
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

t=

fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
on
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y
e
 N
ex
t
T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 R
es
to
re
)
AN
D

(E
vR
ec
.S
en
di
ng
Ke
y
0
 S
el
ec
t)
 T
H
E
N

BE
GI
N

Ba
dK
ey
Fl
ag

t=

tr
ue
;

Pr
oc
Id
en
ts
(1
dN
od
e)

E
N
D

E
L
S
E

BE
GI
N

C
o
n
t
i
n
u
e
T
r
a
v
e
r
s
e
 :=

fa
ls
e;

.-
--

--
--

--
--

--
--

--
 -in

W
i
n
d
o
w

--

--
--

--
--

--
--

--
--

-
b
e
g
i
n
 W
ri
te
Me
ss
ag
e(
Ba
dK
ey
t4
es
sa
ge
);

Ba
dK
ey
Fl
ag

:=
f
a
l
s
e
 e
n
d
0

.-
--

--
--

--
--

--
--

Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
M
e
S
S
A
G
E
 :

C
O
M
M
A
N
D
?
 f
in
d
Pi
nd
Id
en
ti
f
i
e
r
s

6.
2i

:
A

no
th

er
 l

in
e

is
 e

nt
er

ed
.

EN
GU
LF
 N
E
X
T

I

V
A

R
 Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

T
H
E
N

BE
GI
N

IF
 B
ad
Ke
yF
la
g
T
H
E
N

BE
GI
N

Wr
it
eM
es
sa
ge
(B
ad
Ke
yt
4e
ss
ag
e)
 ;

Ba
dK
ey
Fl
ag

:=

f
a
l
s
e

E
N
D

E
L
S
E

BE
GI
N

bp
os
it
io
nC
ur
so
r(
1d
No
de
);

No
In
st
an
ce
En
co
un
te
re
d

:=
f
a
l
s
e

EN
D;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
om
pt
);

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
al
Fu
dg
eF
ac
to
r)
;

IF
 E
vR
ec
.S
en
di
ng
Ke
y

<>
 N
ex
t

T
H
E
N

IF

(E
vR
ec
.S
en
di
ng
Ke
y
0
 R
es
to
re
)
A
N
D

(E
vR
ec
.S
en
di
ng
Ke
y

<>
 S

el
ec
t)
 '
TH
EN

.-
--

--
--

--
--

--
--

--
 Ma
in
 W
i
n
d
o
w
 --

--
--

--
--

--
--

--
--

-

.--

-

Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

F
o
l
l
o
w
i
n
g
 n
o
d
e
 "
en
gu
lf
ed
"

C
O
M
M
A
N
D
?
 f
in
d
Fi
nd
Id
en
ti
fi
er
s

V
A

R
 Ev
Re
c
:
 E
ve
nt
Re
cT
yp
e;

BE
GI
N

IF
 S
am
es
tr
in
gs
(

Co
er
ce
Id
en
ti
fi
er
(I
dN
od
e)
,

St
ri
ng
Re
p)

T
H
E
N

*
BE
GI
N

IF
 B
ad
Ke
yF
la
g
T
H
E
N

BE
GI
N

Wr
it
eM
es
sa
ge
(B
ad
Ka
y?
4e
ss
ag
e)
;

Ba
dK
ey
Fl
ag

:=
f
a
l
s
e

E
N
D

E
L
S
E

BE
GI
N

b
p
o
s
i
t
i
o
n
~
u
r
s
o
r
(
1
d
~
o
d
e
)
;

No
In
st
an
ce
En
co
un
te
re
d

am

fa
ls
e;

Wr
it
eM
es
sa
ge
(U
sa
ge
Pr
oa
rp
t)

EN
D;

Sh
ow
Un
pa
rs
e;

Up
da
te
Sc
re
en
;

Ge
tE
ve
nt
(E
vR
ec
,

Te
rm
in
a1
Fu
dg
eF
ac
to
r)
t

IF
 E
vR
ec
.S
en
di
ng
Ke
y

-3

Ne
xt

T
H
E
N

IF

(
~
v
~
e
c
.
~
e
n
d
i
n
g
~
e
y

-3

Re
st
or
e)
 A
N
D

(
E
v
R
e
~
~
S
e
n
d
i
n
g
K
e
y

o
 S
el
ec
t)
 T
H
E
N

--
--

--
--

--
--

--
--

--
 Ma

i
n
 W
i
n
d
o
w
 --

--

.-
--

--
--

--
--

--
--

A
u
x
i
l
i
a
r
y
 W
i
n
d
o
w
 --

--
ME
SS
AG
E:

Fo
ll
ow
in
g
n
o
d
e

"e
ng
ul
fe
d"

C
O
M
M
A
N
D
?
 f
in
d
F
i
n
d
I
d
e
n
t
i
f
i
e
r
s

6
.
2
m
:
 A

no
th

er
 s

ta
te

m
en

t
is

 e
ng

ul
fe

d.

This is a particularly effective method for engulfing short sublists. Only one

selection must be made, it is easy to determine precisely what is being engulfed, and

the process is efficient and error resistant in that the same key sequence is repeatedly

struck. For longer lists i t might be preferable to select and move the sublist as a

whole, since the ENGULF approach is linear in the number of elements, whereas

sublist selection takes, as a first approximation, constant time. A precise

determination of the sublist length where the two methods require equivalent effort is

not possible, since the act of locating the remote terminus of the sublist and moving

the cursor to it is not independent of sublist length. Under some circumstances, it

may be advantageous to engulf even fairly large sublists.
i

Example - Eject with Associated Node - - -

ENGULFEJECT is a command family with a particularly wide range of

applicability. Here it is seen to set up the desired alteration. Note also the incidental

use of EMBED.

This example involves alterations to a case statement as well, but, whereas in

the previous instance the case statement was, in a sense, simplified, here the case

becomes a little more complex. The problem is that the case of MemberLi st I n

(designated by the screen cursor in Figure 6.3a, left screen) requires processing which -

is different from, though related to, that of its list-mates. Recall that EJECT, when

applied to such a list with an associated node' (or a member of such a list), causes a

list member to be split out in combination with the associated node. This is precisely

what is required here. Figure 6.3a shows the application of EJECT-FORWARD to

MemberListIn.

The alternate procedure for carrying out this operation would be essentially the

same whether a text editor or primitive SBE commands were used: Duplicate the

entire case clause; delete the extraneous cases labels. The EJECT approach certainly

saves a few keystrokes. More important, perhaps, the command nicely captures the

essence of the desired change to the program's structure and semantics: Treat this

instance as a separate case.

Having split out the special case it is now possible to continue the example.

The reason that different handling is required in the MemberListIn case is that

there is an added level of nesting around RefNode (I am now referring to the

internal structure of the target program). The nested calls to Parent in both the

predicate of the if statement and its alternate statement must be embedded in an

additional call to Parent. To accomplish this, the screen cursor is used to select the

outermost function call (Figure 6.3b) and EMBED is applied (Figure 6.3~). Since the

first choice prdented by EMBED is the desired one, it is possible to proceed

immediately to textual entry of the function name (Figures 6.3d, 6.3e, 6.30. In this

particular example it would have been possible to have taken advantage of the fact

that the instances of the required function call are already present, and to implement

the correction with a single SELECT followed by EPLACE. In the course of an

actual editing session I would have done so, but for demonstration purposes the more

generally applicable invocation of the EMBED command seemed preferable. Though

in terms of keystrokes its use is essentially a break-even proposition when compared

to simple textual editing, EMBED does offer some advantages. On the practical side

parentheses are taken care of, and formatting is automatic. On the conceptual side,

the command captures at least the structural essence of the operation: Embed one

function call in another.

The example is completed in an opportunistic fashon: The syntactic cursor is

used to select the outermost call to Parent (Figure 6.3g, 6.3h), the screen cursor is

moved to the outermost call to Parent in the alternate (Figure 6.3i), and that node

is replaced by the correct one (Figure 6.3j).

t-' h
3

W

I

Me
mb
er
li
st
,

St
mt
Li
st
In
,

g
e
m
b
e
r
~
i
s
t
~
n

t
BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
))

T
H
E
N
 N
ew
Re
f

:=
NI
L

E
L
S
E
 N
ew
Re
f

t=

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

E
N
D

EN
D;

IF
 N
ew
Re
f

=
NI
L
T
H
E
N
 U
n
c
l
e

:=

NI
L

E
L
S
E

IF
 N
o
r
P
 =

 N
xt

T
H
E
N
 U
n
c
l
e

t=

Ne
xt
(

Ne
wR
ef
)

E
L
S
E
 U
n
c
l
e

t=

Pr
ev
io
us
(N
ew
Re
f)

E
N
D
 ;

BE
GI
N

S
u
c
c
e
s
s

:=

fa
ls
e;

IF
 N
O
T

(S
ta
te
me
nt
Q(
En
gu
1f
er
)

OR

St
at
em
en
tL
is
tQ
(E
ng
u1
fe
r)

OR

(R
np
ty
Q(
En
gu
1f
er
)

A
N
D

((
Co
nt
ex
tD
om
ai
n(
En
gu
If
ar
)

-
St
at
em
en
t)
 O
R

(C
on
te
xt
Do
ma
in
(E
ng
u1
fe
r)

3

St
at
em
en
tL
is
t)
))
)

TH
EN

IF
 L
eg
it
No
nS
tm
t(
En
gu
1f
er
)

T
H
E
N

.-
--

--
--

--
--

--
--

--

M
a
i
n
 W
i
n
d
o
w
 -

-
-
-
-
-
-
-
-
-
-
-
-
m
e
-
-
-
-

.--
--

--
--

--
--

--
-

Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

C
o
m
a
e
n
c
e
 l
og
gi
ng
 o
n
 -
SC
RE
EN
DU
MP
S

C
O
M
M
A
N
D
?
 f
i
n
d
 M
em
ba
rL
is
t
In

Me
mb
er
li
st
,

B
m
t
~
i
s
t
f
n
 t

BE
GI
N

IF
 N
O
T
 L
is
tE
la
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
))

T
H
E
N
 N
ew
Re
f

t-

N
I
L

E
L
S
E
 N
ew
Re
f

t=

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

EN
D;

%

~
e
m
b
e
r
h
i
s
t
~
n

t
BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
))

T
H
E
N
 N
ew
Re
f

8-

NI
L

E
L
S
E
 N
ew
Re
f

t-

Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
)

E
N
D

E
N
D
 ;

IF
 N
ew
Re
f

=
NI
L
T
H
E
N
 U
n
c
l
e

t-

NI
L

E
L
S
E
 I
F
No
rP
 - Nx

t
T
H
E
N
 U
n
c
l
e

t=
 N
ex
t(

Ne
wR
ef
)

E
L
S
E
 U
n
c
l
e

t=

Pr
ev
io
us
(N
ew
Re
t)

EN
D;

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y
W
i
n
d
o
w
 --

--
ME
SS
AG
E:

N
o
d
e
 E
je
ct
ed

"f
or
wa
rd
"

.
.

CO
MM
AN
D?
 f
i
n
d
 M
e
m
b
e
r
L
i
s
t
I
n

E
J
E
C
T
 F
O
R
W
A
R
D

6.
3a
:

T
he

 M
e
m
b
e
r
L
i
 s

t I
 n

 e
le

m
en

t
is

 s
p

li
t

of
f.

Me
mb
er
Li
st
,

S
t
m
t
L
i
s
t
I
n
 t

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
ad
e)
))

TH
EN

Ne
wR
ef

:=
NI
L

EL
SE
 N
ew
Re
f

:=
Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

EN
D
;

M
e
m
b
e
r
L
i
s
t
I
n

t
BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

~
a
r
e
n
t
D
a
r
e
n
t
(
~
e
f
~
o
d
e
)
)
)

TH
EN

Ne
wR
ef

:=
NI
L

EL
SE
 N
ew
Re
f

:=
Pa
re
nt
(P
ar
en
t(
Re
fN
Od
8)
)

EN
D

EN
D:

IF
 N
ew
Re
f

=
NI
L
TH
EN
 U
n
c
l
e

:=
NI
L

EL
SE

IF
 N
or
P

=
Nx
t
TH
EN
 U
n
c
l
e

:=
Ne
xt
(

Ne
wR
ef
)

EL
SE
 U
n
c
l
e

:=
Pr
ev
io
us
(N
ew
Re
f)

EN
D
:

BE
GI
N

S
u
c
c
e
s
s

:=

fa
ls
e;

IF
 N
O
T

(S
ta
te
me
nt
Q(
En
gu
1f
er
)
OR

St
at
em
en
tL
is
tQ
(E
ng
u1
fe
r)

OR

.--

Ma
in

Wi
nd
ow

-

.--
--

--
--

--
--

--
-

Au
xi
li
ar
y
W
i
n
d
o
w
 -

--
--

--
--

--
--

--
-

ME
SS
AG
E:

No
de

Ej
ec
te
d
"f
or
wa
rd
"

C
O
M
M
A
N
D
?
 f
in
d
Me
mb
er
Li
st
In

Me
mb
er
li
st
,

St
mt
Li
st
In

t
BE
GI
N

IF
 N
OT

Li
st
El
em
en
tQ
(

Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
))

TH
EN
 N
ew
Re
f

:=
NI
L

E
L
S
E
q
e
w
R
e
f

:=
Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
)

EN
D
;

Me
mb
er
Li
st
In

t
BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

m
~
u
n
c
t
i

on
ca
ll
 (

Pa
ra
nt
(P
ar
en
t(
Re
fN
0d
e)
))
)

TH
EN
 N
ew
Re
f

:=
NI
L

EL
SE
 N
ew
Re
f

:=
Pa
re
nt
(P
ar
an
t(
Re
fN
ad
e)
)

EN
D

EN
D
;

IF
 N
ew
Re
f

=
 N
IL

TH
EN
 U
n
c
l
e

:=
NI
L

EL
SE

IF
 N
or
P

=
Nx
t
T
H
E
N
 U
nc
le

I=

Ne
xt
(

Ne
wR
ef
)

EL
SE
 U
nc
le

:=

Pr
ev
io
us
(N
ew
Re
f)

EN
D
;

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

Bu
nc
ti
on
Ca
ll

CO
MM
AN
D?
 f
in
d
Me
mb
er
Li
st
In

6
.3

~
: Th
e

fu
nc

ti
on

 c
al

l
is

 e
m

be
dd

ed
 i

n
 a

 f
un

ct
io

n
ca

ll.

Me
mb
er
Li
st
,

St
mt
Li
st
In

:

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
))

T
H
E
N
 N
ew
Re
f

:=
NI
L

E
L
S
E
 N
ew
Re
f

:=
~a
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

EN
D;

Me
mb
er
Li
st
 I
n

t
BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

m
F
u
n
c
 t i
on
ca
ll
 (

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
))
)

TH
EN
 N
ew
Re
f

t=

NI
L

E
L
S
E
 N
ew
Re
f

:=
Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
)

E
N
D

E
N
D
 ;

I
F
 N
ew
Re
f

=
NI
L
T
H
E
N
 U
nc
le

:=
NI
L

E
L
S
E
 I
F
Ne
rP

=
Nx
t

TH
EN
 U
nc
le

t=
 N
ex
t(

Ne
wR
ef
)

E
L
S
E
 U
nc
le

t=

Pr
ev
io
us
(N
ew
Re
f)

EN
D;

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow

-
ME
SS
AG
E:

Fu
nc
ti
on
ca
ll

CO
MM
AN
D?
 f
in
d
Me
mb
er
 L
is
 t
 In

Me
mb
er
Li
st
,

St
mt
Li
st
 I
n

t
BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
))

T
H
E
N
 N
ew
Re
f

:=
NI
L

E
L
S
E
 N
ew
Re
f

t=

Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
)

EN
D;

Me
mb
er
Li
st
In

t

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

D
U
M
F
u
n
c
t
i
o
n
C
a
l
l
(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
))
)

TH
EN
 N
ew
Re
f

:=
NI
L

EL
SE
 N
ew
Re
f

t=

Pa
re
nt
(P
ar
en
t(
Re
fN
Od
8)
)

EN
D

EN
D
;

IF
 N
ew
Re
f

=
NI
L
TH
EN
 U
n
c
l
e

t=
 N
IL

E
L
S
E
 I
F
No
rP
 =

 N
xt

TH
EN
 U
nc
le

:=
Ne
xt
(

Ne
wR
ef
)

E
L
S
E
 U
nc
le

t=

Pr
ev
io
us
(N
ew
Re
f)

E
N
D
 ;

.-
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
ow
 --

--
ME
SS
AG
E:

Ed
it
in
g

Id
en
ti
fi
er

CO
MM
AN
D?
 f
in
d
Me
mb
er
 L
is
 t
 I
n

MO
DI
FY
 C
U
R
R
E
N
T

6.
3d

:
T

he
 o

nb
oa

rd
 e

di
to

r
is

 c
al

le
d.

Me
nb
er
Li
st
,

St
mt
Li
st
In
 t

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e1
))

TH
EN
 N
ew
Re
f

:=
NI
L

EL
SE
 N
ew
Re
f

t=

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

EN
D;

Me
mb
er
Li
st
In

:

BE
GI
N

IF
 N
OT
 L
is
tE
le
me
nt
Q(

DU
MM
YF
un
ct
io
nC
al
l(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e

TH
EN
 N
ew
Re
f

t=

NI
L

EL
SE
 N
ew
Re
f

:=

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

EN
D

EN
D;

+
IF
 N
ew
Re
f

=
NI
L
TH
EN
 U
nc
le

t=
 N
IL

EL
SE
 I
F
No
rP
 =

 N
xt

TH
EN
 U
nc
le

t=

Ne
xt
(

Ne
wR
ef
)

EL
SE
 U
nc
le

:
I

Pr
ev
io
us
(N
ew
Re
f)

EN
D
;

BE
GI
N

Su
cc
es
s

t=

fa
ls
e;

IF
 N
O
T

(S
ta
te
me
nt
Q(
En
gu
1f
er
)

OR

,-
--

--
--

--
--

--
--

--

Ma
in
 W
in
do
w

--
--

--
--

--
--

--
--

--
-

0

,-
--

--
--

--
--

--
--

Au
xi
li
ar
y
Wi
nd
ow
 -

--
--

--
--

--
--

--
-

ME
SS
AG
E:

Ed
it
in
g
Id
en
ti
fi
er

CO
MM
AN
D?
 f
in
d
Me
mb
er
Li
st
In

Me
mb
er
ti
st
,

St
mt
Li
st
In

t

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
od
.)
))

TH
EN
 N
ew
Re
f

t=

NI
L

EL
SE
 N
ew
Re
f

:=
~a
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

EN
D;

Me
mb
er
Li
st
In

t

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

~
U
W
Y
F
u
n
c
t
i
o
n
C
a
l
l
(

~a
re
nt
(P
ar
en
t(
Re
fN
ad
e)
)l

TH
EN
 N
ew
Re
f

1-

NI
L

EL
SE
 N
ew
Re
f

t
o

Pa
re
nt
(P
ar
en
t(
Ra
fN
od
0)
)

EN
D

EN
D
;

IF
 N
ew
Re
f

=
NI
L
TH
EN
 U
nc
le

:=
NI
L

EL
SE

IF
 N
or
P

Nx
t

TH
EN
 U
nc
le

2-
N

=t
(

Ne
wR
ef
)

E
L
S
E
 U
nc
le

t=

Pr
ev
io
us
(N
ew
Re
f)

EN
D;

--
--

--
--

--
--

--
--

 Au
xi
li
ar
y
Wi
nd
-

-

ME
SS
AG
E:

Ed
it
in
g

Id
en
ti
fi
er

C
C
W
M
N
D
?
 f
in
d
Me
mb
er
Li
st
In

6.
3e

:
T

he
 f

un
ct

io
n

na
m

e
is

 t
yp

ed
.

.

IF-

. .
m i u

f l U l C
H r n l al

Me
mb
er
Li
st
,

S
t
m
t
L
i
s
t
I
n
 :

BE
GI
N

I
F
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
0d
e)
))

T
H
E
N
 N
ew
Re
f

:=
I
NI
L

E
L
S
E
 N
ew
Re
f

:=

Pa
re
nt
(P
ar
en
t(
Re
fN
od
e)
)

E
N
D
 ;

M
e
m
b
e
r
L
i
s
t
I
n

t
BE
GI
N

IF
 N
O
T
 l
is
tE
le
me
nt
Q(

Pa
re
nt
 (

Pa
re
nt
(P
ar
en
t
(R
ef
No
de
))
))

T
H
E
N
 N
ew
Re
f

:=
NI
L

E
L
S
E
 N
ew
Re
f

t=

~
a
r
e
n
t
~
a
r
e
n
t
(
~
e
f
N
d
a
)
)

E
N
D

EN
D;

IF
 N
ew
Re
f

=
N
I
L
 T
H
E
N
 U
n
c
l
e

t=
 N
I
L

E
L
S
E

IF
 N
o
r
P
 =

 N
xt

T
H
E
N
 U
n
c
l
e

:=
Ne
xt
(

Ne
wR
ef
)

E
L
S
E
 U
n
c
l
e

:=
Pr
ev
io
us
(N
ew
Re
f)

EN
D;

BE
GI
N

S
u
c
c
e
s
s

t=

fa
ls
e;

IF
 N
O
T

(S
ta
te
me
nt
Q(
En
gu
1f
er
)

O
R

.-
--

--
--

--
--

--
--

--
 M

ai
n
Wi
nd
ow

---.

Pa
re
nt
(P
ar
en
t(
Pa
re
nt
(R
ef
N0
de
))
)

.--

-

Au
xi
li
ar
y
W
i
n
d
o
w

--

--
--

--
--

--
--

--

ME
SS
AG
E:

N
e
w
 t
op
:

Fu
nc
ti
on
Ca
ll

C
O
M
M
W
D
?
 f
i
n
d
 M
e
m
b
e
r
L
i
s
t
I
n

Me
mb
er
li
st
,

St
mt
Li
 s
tI
n
:

BE
GI
N

IF
 N
O
T
 L
io
tE
le
me
nt
Q(

Pa
re
nt
(P
ar
en
t(
Re
fN
os
la
))
)

T
H
E
N
 N
ew
Re
f

:=
N
I
L

E
L
S
E
 N
ew
Re
f

:=
Pa
re
nt
(P
ar
an
t(
Re
fN
od
e)
)

E
N
D
 ;

I

Me
mb
er
Li
st
In

:

BE
GI
N

IF
 N
O
T
 L
is
tE
le
me
nt
Q(

Pa
re
nt
 (

Pa
re
nt
(P
ar
en
t
(R
ef
 No
de
)
)

)
T
H
E
N
 N
ew
Re
f

:=
NI
L

E
L
S
E
 N
ew
Re
f

:=
b
r
e
n
t
(
~
a
r
e
n
t
(
P
a
r
e
n
t
 (
Re
fN
od
e)
))

E
N
D

E
N
D
 ;

IF
 N
ew
Re
f

NI
L
T
H
E
N
 U
n
c
l
e

:*
 N

IL

E
L
S
E
 I
F
No
rP
 =

 N
xt

T
H
E
N
 U
n
c
l
e

:=
Ne
xt
(

Ne
wR
ef
)

E
L
S
E
 U
n
c
l
e

:=
Pr
ev
io
us
(N
ew
Re
f)

E
N
D
 ;

.-
--

--
--

--
--

--
--

Au
xi
li
ar
y
W
i
n
d
o
w

-
ME
SS
AG
E:

Fu
nc
ti
on
Ca
ll

C(
Nt
4A
ND
?
f
i
n
d
 M
em
be
rL
is
t
In

R
E
P
L
A
C
E

6.
3j
:

T
he

 p
re

vi
ou

sl
y

se
le

ct
ed

 n
od

e
re

pl
ac

es
 t

he
 e

rr
on

eo
us

 o
ne

.

CHAPTER VII

IN CONCLUSION

An Assessment -
I t is now time to assess the project, to see how far it has gone toward reaching

the main goals set out in Chapter IXI. How good is the editor? How useful are the

manipulative commands? Has a step been taken toward a more effective editing style

or technique?

The editor, qua editor, is a somewhat unevenly developed tool. The functionality
4

of what I have called the editing facility seems quite rudimentary when compared to

that of some other implementations, particularly in the realms of code production and

syntax-directed aids to inspection and selection (browsing, holophrasting, etc.). What

is provided is the basic capacity to edit programs (and program fragments) with a

structural or syntax-based approach. Since the real motivation for its construction

was the desire to create a milieu in which to develop and examine what I have called

the manipulative facility, a job for which it has proven adequate, the editor itself

may be considered a qualified success.

I have to an extent already addressed the issue of the effectiveness of the

manipulative facility. In addition to description, Chapter V set out some of the

rationale for the commands of the facility. In the discussion accompanying the

examples of Chapter VI, I pointed out some of the strong points of the facility. Here I

will recapitulate the more relevant of those arguments.

All else being equal, i t is desirable to reduce the number of keystrokes required

for the performance of a given operation. Typing takes time and effort and invites

error. Not surprisingly, the use of the comrnands under discussion typically results in

keystrokes saved. Those commands whch are implementable in terms of the basic

syntax-based operations offer keystroke savings which are large in percentage terms,

though generally small in numeric terms. Some operations (EMBED and the

transformational family) cannot be performed using just the basic commands. They

can be performed textually. Here the savings may be minimal for simple embedding

followed by textual entry, but for more complex operations involving multiple

commands, the savings become significant. The transformation commands tend to

save a great deal of retyping.

A part of the savings in keystrokes is attributable to what might be termed the

recycling of code. Often, in the course of textually editing a program, one would like

to extract a significant fragment of code, which may be textually embedded in other

code or whose limits are not readily ascertainable, and insert it elsewhere. In general,

SBE's provide this capability. The new commands frequently enhance this capability

by providing a framework for the insertion of such fragments (EMBED) and by

providing more convenient methods for accomplishing such operations

(ROTATEJSWAP, ENGULF/EJECT). The example cited previously of the application

of INLINE to a case statement demonstrates how operations of the transformational

family may assist in the reuse of existing code. In fact the transformational

commands may in general be thought of as recycling code, in that they consume the

old code before regurgitating it in the transformed state.

Some textual entry will always be necessary. Here the contribution of the

commands is rationalization of the operation. Details, including keyword production,

bracketing, punctuation and formatting, are handled by the system. Templates are

provided so tha t the purpose of the textual entry is a t all times clear. The amount of

textual entry is minimized, and it takes place at particular places for particular

reasons wbch are related to the programming problem at hand.

The higher level commands do seem to have succeeded, to a degree, in bringing

into correspondence the statement of problems of program alteration and their

soiution. They address such perceived pkoblems as:

This variable declaration deserves special attention.

This statement should be executed repeatedly until some condition arises,

The logic of this predicate is incomplete.

This expression may be simplified.

And they generally do so in a direct and reasonable manner, e.g., "This statement

[place cursor] should be executed if EMBED in the if statement], and only if, this

condition [type in predicate] holds." I submit that in program editing, as in the

programming process generally, it is advantageous to stay close to the problem of
2

interest, avoiding entanglement in detail wherever possible.

All of the foregoing contribute to that elusive state or attribute: programmer

satisfaction. Even skillful typists do not enjoy wasting keystrokes and should welcome

any reasonable means to avoid doing so, whether it be the enhanced capability to

reuse existing fragments of code, or the partial automation of code production.

Moreover, as professional problem solvers, programmers would also be expected to

welcome any editing aid which kelps to keep their concentration focused upon their

real job.

Given that the commands are effective when applied, how widely applicable are

those commands? Unfortunately, I do not have an empirically based answer to this

question. I can only speculate from the basis of my own experience. In the course of

"bootstrapping" the editor, I have certainly had occasion to use the hgher level

commands of the facility. I cannot claim tha t they have come close to supplanting

the lower level operations. I t seems tha t everyday editing will always involve a great

deal of textual entry, and that the simple syntax-based commands will be sufficient

for the performance of many operations, but, as I have pointed out in Chapter VI, it

is often the new commands which enable the effective use of the simpler ones.

,

I have personally found the facility useful, but I am one programmer, working

in a single applications domain, and dealing with a program in a particular stage of

its development. Will others, working in different domains under different sets of

circumstances, find this to be so? There are reasons to believe that this will be the

case.

To begin with, the operations have been selected and organized in accordance

with a not-unreasonable classification of the types of program manipulation activities.

Programmers do manifestly seek to effect changes in their code by altering the

sequencing of elements and by manipulating the nesting of program structures. These

operations in wmbination with more basic operations are often aimed a t bringing

about identifiable transformations. The command families which implement these

operations have been developed with the explicit intent of achieving a degree of

general applicability.

A second encouraging factor is the extensive functionality of the facility.

Though few in number, the individual commands have been designed to be applicable

to a variety of node types in varying contexts. The sequencing operations of the

ROTATEISWAP family may be applied to sequences or lists of all types, and the

notion has been extended to list-like objects as well. Commands of the

ENGULFIEJECT family work on all nested statements and statement lists, plus a

variety of nested non-statement lists. Particularly notable is the extension to lists

with associated nodes (variable declarations and their ilk). EMBED may be applied to

any statement or expression, providing a full set of embeddings in the former case

and an extensive set of embeddings (both logical and arithmetic) in the latter.

Universal application has been proposed for EMBEDISTRIP. Finally, the

transformational family has been extended beyond what might be termed the classical

tra'nsformations with proposals for application of INLINE to statements other than

procedure calls and to data structure definitions. All of this increases the likelihood

that a workmg set of operations will be found to suit a particular programming style,

applications domain, and life-cycle situation.

Finally, a measure of functional redundancy has been built into the system.

There is o h n more than one way to perform a task. The editing samples previously

presented suggest examples. An item may be moved to the head of a list by multiple

rotations of the entire list, by finding the item and then either rotating it to the head

or swapping it with the head item, or, quite possibly, by other means. Sublists may

fi-epuently be handled either by means of the basic sublist commands or by repeated

invocations of ENGULF. One typically has a range of options for filling

EMBED-created placeholders: insertion of a previousl~ selected (or created) node,

textual entry,nengulfing, and (potentially) template expansion. This flexibility admits

variations in personal style and programming context.

Is there a possibility that this will lead to new and better ways of altering

programs, in a manner analogous to the way in which the advanced

inspection/selection capabilities of other SBE's have led away from arbitrarily linear

ways of examining programs? I have found that in particular circumstances problems

can be solved in ways which are not only. more efficient, but, in a sense, more

meaningful as well. Code is manipulated on the basis of its structural organization,

and, in some cases, in ways which relate quite directly to the accompanying

semantics. The generalization of this orientation is, I suspect, inhibited by the

necessity for low level text entry. Although this cannot be eliminated, it could,

perhaps, be rationalized by implementation of a template expansion facility, together

with some advanced inspection/selection features borrowed from other syntax-based

implementations.

Suggestions for future work ---
A successful approach to the development of interactive tools has been the

iterative one [Bro77, Woo8lI. A prototype is implemented. A body of users is invited

to make use of it. Based upon the experiences of those users, a new version is

implemented, and the process is repeated until there is a nice fit between user

requirements and the functionality of the tool. I have created a facility for

syntax-based editing environments which is interesting, potentially useful, and

possibly influential. The next step in its development would seem to be exposure over

a n extended period of h e to a variety of users, preferably working at a variety of

programming tasks. I t would be relatively easy to build into the editor means for

monitoring the use of its features to determine which commands were being used and

which were not and under what circumstances. I t might even be possible to discover

frequently used sequences of operations which would constitute candidates for

inclusion in the next generation of commands. Consultation with users would help to

determine why certain operations were being used and others not, and would, of

course, reveal operations which should have been available but were not. Given the

editor's capacity for extension, users who were familiar with the underlying A4.B

system, or willing to become familiar, could contribute directly to the enhancement of

the editor's capabilities.

Unfortunately, the current implementation is probably not attractive enough to

generate widespread u5e. Above and beyond the enhancements and extensions already

suggested, some major implementation efforts are in order:

1. A more acceptable environment - The MTS system is no longer being
. .

heavily used by computing science researchers as a programming

environment. Reimplementation of the editor on the departmental

research system (for example) would be beneficial.

2. A more sophisticated interface - In a modern workstation environment

it should be possible to construct a more helpful and attractive

interface.

3. More SBE features - Implementation of some of the well-researched

syntax-based features of other editors (browsing and code generation,

for example) would make the editor as a whole more powerful. I

suspect that they would enhance the usefulness of the manipulative

facility as well.

I have claimed that the new manipulative facility has the potential to make program

editing easier and more enjoyable. Embedding the facility in such a supportive

environment would test that claim and, perhaps, expand the potential.

Manipulations

Basic Operations

APPENDIX - SUMMlARY OF COMMANDS

INSERT-BEFORE

Insert top node at the position imme diately preceding tha t of the current node.

INSERT-AFTER

Insert top node at the position immediately following that of the current node.

REPLACE 2

Replace the current node in its context with the top node.

DELETE

Delete the current node.

DELETE-SUBLIST

Delete the sequence of elements bounded by the current node and the top node.

MODIFY

Call the on-board text editor for the modification of the current node.

Alterations to Sequencing

ROTATE-FORWARD

Rotate list elements forward. (Last element becomes the first.)

ROTATE-BACKWARD

Rotate list elements backward. (First element becomes the last.)

SWAP- WITH-TOP

Exchange the current node and the top node.

SWAP-NEXT

Exchange the current node and its immediate successor.

SWAP-PREVIOUS

Exchange the current node and its immediate predecessor.

Alterations to nesting

EMBED

Replace the current node in its context with a template in which the current node

has been embedded as a component. NEXT key is used to view alternative

embeddings. 4

STRIP

Strip away a level of nesting from the current node.

ENGULF-NEXT

Move the enclosing structure's sequential successor into the enclosed structure.

ENGULF-PREVIOUS

Move the enclosing structure's sequential predecessor into the enclosed structure.

EJECT-FORWARD

Move element of the enclosed structure to position immediately following the enclosing

. structure.

EJECT-BACKWARD

Move element of the enclosed structure to position immediately preceding the

enclosing structure.

Transformations

INLINE

Replace node with a more explicit, semantics-preserving encoding.

SIMPLIFY

Replace expression or statement with a transformation which embodies a logical or

arithmetic simplification.

PROPAGATE

Given an assignment, replace the next occurrence of the variable on the left hand

side with a n instance of the expression on the right hand side.
A

Supporting Commands

Traveling

SCROLL-UP

Move window up in textual representation.

Move window down in textual representation.

CURSOR-UP

Move syntactic cursor up one level.

CURSOR-DOWN

Move syntactic cursor down one level. (Place on left-most node.)

CURSOR-RIGHT

Move syntactic cursor one element to the right.

CURSOR-LEFT

Move syntactic cursor one ,element to the left.

MOVE-TO-TOP

Move syntactic cursor to the top node on the node stack. .

DEFINING-OCCURRENCE

Move syntactic cursor to the defuring occurrence of the current (identifier) node.

Selection and Utilities

SELECT

Push a reference to current node onto the node stack.

SELECT-SUBLIST
4

Replace top node with a copy of the sublist bounded by the current node and the top

node.

SHOW-TOP

Display the node stack's top.

POP

Pop the node stack.

SHOW -STRUCTURE

Display structure of the current node.

EDIT-NE W

Call the on-board text editor for the entry of a new node. (Node class must be

provided.)

Typed Commands

PARSE < file > < nodetype > [< name > I

Parse contents of file, a syntagm of class nodetype, and display in main window, or,

optionally, store under name.

PRINT < file> [<name>]

Prettyprint node in main window (or node stored under name) to file.

CHECKPOINT <file > [<name >I

Checkpoint node in main window (or node stored under name) to file.

RESTORE <file > [<name > I

Read previously checkpointed file into main window (or store under name).

FETCH <name >

Display copy of node stored under name in main window.

2
STACK <name >

Push copy of node stored under name onto stack.

STORE <name>

Store copy of top node under name.

MT

'Escape to operating system. (Restart is possible.)

$ < MTS-command >

Escape to operating system, execute MTS-command and return.

REFERENCES

[ABLE341 Mberga, C.N., Brown, A.L., Leeman, G.B., Jr., Mikelsons, M. and Wegman,
M.N., "A program developement tool," IBM Jour. of Res. and Develop., 28,
1 (Jan., 1984), 60-73.

[Ada841 Adams, Edward N., "Optimizing preventive service of software products,'"
LBM Jour. of Res. and Develop., 28, 1 (Jan., 1984),' 2-14.

[All831 Allison, Lloyd, "Syntax directed program editing," Softuare - Prac. and
Exper., 13, (1983), 453-465.

[AMN8 11 Atkinson, L.V., McGregor, J. J. and North, S.D., "Context sensitive editing
as an approach to incremental compilation," Computer Journal, 25, 3
(1981), 222-229.

[Ars79] Arsaj, Jacques J., "Syntactic source to source transforms and program
mampulation," Commun. ACM, 22, 1 (Jan., 1979), 43-54.

[Bas861 Bahlke, Rolf and Snelting, Gregor, "The PSG System: From formal
language defkitions to interactive programming environments," ACM
Trans. Program. Lang. Syst., 8, 4 (Oct., 1986), 547-576.

EBBS851 Brun, G., Businger, A. and Schoenberger, R., "The token-oriented approach
to program editing," SIGPLAN Not., 20, 2 (Feb. 1985), 17-20.

[BSS84] Barstow, David R., Shrobe, Howard E. and Sandewall, Eric, Eds.,
Interactive Programming Environments, McGraw-Hill Inc., 1 984.

[BazD77! BurstaM, R.M., a d Barhgton, John, "A transformation system for
developing recursive programs," J. ACM, 24, 1 (Jan., 1977), 44-67.

[Bro77] Brooks, Frederich P., Jr., "The computer 'scientisty as toolsmith - studies in
interactive computer graphcs," in Information Processing 77, Bruce
Gilchrist, Ed., North-Holland Publishing Company (1977), 625-634.

[CaI841 Cameron, Robert D. and Ito, M. Robert, "Grammar-based definition of
metaprogramming systems," ACM Trans. Program. Lang. Syst. , 6, 1
(Jan., 1984), 20-54.

[Cam861 Cameron, Robert D., MPS Reference Manual (draft), 1986

[Cam871 Cameron, Robert D, Personal communication, 1987

[Cap851 Caphger , Michael, "Structured editor support for modularity and data
abstraction," SIGPLAN Not., 20, 7 (July, 1985), 140-147.

[Dart341 Darlington, John, "Program transformation in the ALICE project," in
Program Transformation and Programming Environments, P. Pepper, Ed.,
Springer-Verlag, 1984, 34'7-353.

Donzeau-Gouge, VBronique, Huet, G r a r d , Kahn, Gilles, Lang, Bernard,
"Programming environments based on structured editors: The MENTOR
experience" in [BSS84], 128-140.

Glass, Robert, L., "Persistent software errors," LEEE Trans. on Software
Engineering, SE-7, 2 (Mar., 1 98l), 162-168.

Gustafson, David A., Melton, Austin and Hsieh, Chyuan Samuel, "An
analysis of software changes during maintenance and enhancement,"
Conference on Software Maintenance , IEEE Computer Soc. Press, 1985,
92-95.

Hamrnond, N., Long, J., Clark, I., Barnard, P. and Morton, J.,
"Documenting human-computer mismatch in interactive systems,"
Proceedings of the Ninth International Symposium on Human Factors in
Telecommunications, 1980, 17-24.

Jensen, $Cathleen, and Wirth, Niklaus, Pascal User Manual and Report, 3e,
Springer-Verlag, 1985.

Levenson, Nancy G., "Software safety: Why, what and how," ACM Comput.
Sum., 18, 2 (June, 1986), 125-163.

Loveman,. David B., "Program improvement by. source-to-source
transformation," J. ACM, 24, 1 (Jan., 1977), 121-145.

Partsch, H. and Steinbruggen, R., "Program transformation systems," ACM
Comput. Sum., 15, 3 (Sept., 1983), 199-136.

Reiss, Steven P., "PECAN: Program developement systems that support
multiple views," Proceedings - International. Conference of Software
Engineering, March, 1984 , IEEE Computer Soc. Press, 324-333.

Reps, Thomas and Teitelbaum, Tim, "The synthesizer generator," SIGPLAN
Not., 19, 5 (May, 1984), 42-48.

Sand, Paul A., "Three Modula-2 programming systems," Byte, 12, 1 (Jan.,
1987), 333-336.

Schneiderrnan, Ben, "Exploratory exper&ents in programmer behavior,"
Internat'l Jour. of Computer and Info. Sci., 5, 2 (1976), 123-143.

Schneiderman, Ben, Software Psychology - Human Factors in Computer and
Information Systems, Winthrop Publishers, Inc., 1980, 46-54.

Spier, Michael J., Gutz, Steve and Wasserman, Anthony I., "The
ergonomics of software engineering - description of the problem space," in
Software Engineering Environments, H. Hiinke, Ed., North-Holland
Publishmg Company, 198 1, 223-234.

Soloway, Elliot, "Learning to program = learning to construct mechanisms
and explanations," Commun. ACM, 29, 9 (Sept., 1986), 850-859.

Schneiderrnan, Ben, Shafer, Philip, 'Simon, Roland and Weldon, Linda,
"Display strategies for program browsing: Concepts and experiments,"
IEEE Software, 3, 3 (May, 1986), 7-14.

Stallman, Richard, "EMACS: The extensible, customizable, self-documenting
display editor," in CBSS841, 300-324.

Stucki, Leon G., "What about CADICAM for software? The ARGUS
concept," in Sofhoare Valdutiore, H.L. Hausen, Ed., Elsevier Science
Publishers B. V. (North-Holland), 1984, 311-320.

Teitelman, Warren, "Automated programmering: The programmer's
assistant," in EBSS841, 232-239.

Teitelbaum, Tim and Reps, Thomas, "The Cornell Program Synthesizer: A
syntax-directed programming environment," Commun. ACM, 24, 9
(Sept.,1981), 563-573.

Toy, %.N., "Hardwarelsoftware tradeoffs" in Handbook of Software
Engineering, Charles V.Vick and C.V. Ramamoorthy, Eds., VanNostrand
Reinhold Company Inc., 1984, 149- 183.

Wilander, Jerker, "An interactive programming system for Pascal," in
[BSS84], 117-127.

Wood, Steven R., "2 - the 95% program editor," SIGPLAiV Not., 16, 6
(June, 1981), 1-7.

Zelkowitz, Manin V., "A small contribution to editing with a syntax
directed editor," SIGPLAN Not., 19, 5 (May, 1984), 1-6.

