

Query ~ r o c e s s i n ~ For
Distributed Slain Memov Data base Sptems

DSc, Zhongshan University, 1383

4 * I
.%-< ~ g h =x,"t tC This & ~ S I S may not k
+4-2 :l= 5c?& a iPr P3,Tl by p h w q y

or o ~ k r ixx~i, u:xm; ~k p ~ r n , l ~ s : ~ n of the aut5or

~c;mission has been granted L'autoriaation a kt& accurdbe
to the National Library of la ~ibliothhqus nationale
&anad& to sicrefffa this d o Canada dc airrafilrar
t h e s i ~ , and to l e n d or r e 1 1 cette thbsc et de prater ou
copies of the film. de wendre des exesplaires du

i k f i l m .

.%e author \fcopyright owner)
h a s r e s e r v e d o t h e r
publication r i g h t s , a n d
nei t h e r the t h e s i s n o r
e x t e n s i v e eqtracte froa 1%
aay be printdd or otherwise
reproduced without . h i s i h e r

twri tten permistdon.

L'auteur Itftulaira du droit
U'auteur) st r h s a r v t , l e s
autres droits de,publicatfon:
nf la t h & s e nf dc longs
e x t r a i t s d e celle-ci ne
doivent atre iapriees ou
autrement reprbduit8 sans s o n
antorisation kcrite.

Approval

T i : u s Qzerji PFM+sF~.~I~ For 0~m:buied !+fain Memory Dab& Systtrns

Dr. Tiko Karnedr

Dr. Jiawei %
/

F ~ r d r n a I Examlntr

Date Approved ,

' o r multiple copying o f :h is mrk 4or sc3olarly pur3asas may bs gran4a3

By ma or ?he b3.n 04 s&e s t d J i i 3 5 . It 1 s underS'mC +ha+ copy ;og , -
of pub1 !cation of t%rs m f k for f:rbrciaJ gain > h a t : ?cT a:t,rad

Abstract

stcdy shows rhaf ha shng can tx m c i f m v c msf59d for a main memory environment. However,

no single algorithm is h e overail bcsr or&. A certain ~uattgy only fits be% inro a qxcific siruadon.

Table of Contents

List of Tables

'Table 3-1: V - ~ y & m IPC Timing D w e
Tab% 12: S u m of Cost-Analysis

Units
ing vs CommuIticarion

. ,Tabk5-1: €cat Aaafysisof Mgorithm 4 E4a
Tab4 5-2: Cost Analysis of AIgwridxm 5 & 5a
Tabk 5-3: Cost Analysis of Aigoritb-pl6
Tabk 6-1: Comparison of Mgorirfrms
TaMe 6-2: Eight Miwhim bdts
Tabk 6-3: TreM of Algorithm 5a
TaMe$-4:-.Pe-&zfnpr&-
Tabk 6-5: Performance Difference with Sun-2's and Sud-3's ' ,

List of Figures
- 'c

L. -\

i

Flgure 2-1: The Sauchlre of an AVL-aee So&
Figure 22: The Smrcttlrrt of aB-trtt Node
FSgure 2-3: The Stnachln of a T-tree Node . -0

Flgure 41: P e r f o m Comparison
Flgurt 4-2: Example of th New Strategy

- FKgure 6-1: Compan'sou of IIrrad W n g AlgorithsRs
Figure 62: Trend of the Elapsed Time
figure 6-3: Multi-backed System Architecture

+

\ -- - Cliapter 1
, ' .

Introduction
9 t

1.1. Distributed Systems and LANs '' -

The terns parallel and dknibwed canpufing system appear frequently in the litermm. Thc

major difference between the two lies in the degree of coupling and the level of interactions among

&ehcomponent processors. By a parallel computing system. we man.a system in which all

pmassors are tighdy em&& a d sfraTlfraTlng is rhmugh shared main memory. A distributed system. .

on the &I hand, is one in which all pmjessors are loosely coupled, each with its own local

'memory, and sharing among prcgessun is thmugh a c c d n &mmunication medium.

~ismbuteb systems, in particular, distributed darabav systems, are becoming more ;uld more

importam in recent yean. A disaibutrd database is a collection of data which belong logically to

the same system but an geqykp&dly spread over the sites-of a mmputer network [CEP 841.

There are two important aspar: distribution and logical correlation. Distribution means lhat the

data are physically distributed. Queries usually involve data from different geographical sites and

dara transmission rfirottgb a cormmtniqtion mcdmm is necessary. It distingtlisks a distributed

system horn a cen&nli&i one. Logic& mcomlation means that rhe data are logically interrelated.

which distinguishes a distributed s y m from a cclkction of several local systems. l h user docs.

not even have to know w k r e a sct of d m is locami,
c?'

JXtribuud cornpi- systEms can k categorized by the degrcc 31 defenualization. At one -

exmm is thc remote mmplvr network, also called long haul network, whers imcr~ ir&

s y r ~ m r rmy bc vidcly upararcd. ul$ dirtaaa between two systems gra te r lhan 10 Lm, and datl

sysrem, with disrarre bctarcn two processors (mually mpch) less than . I h md dau transfer rate
,

usually greater than 10 Mbps (XEB 761. Tear the m'ddle of these two extremes is tllr ro-callcd

local area network systtrsilL+4N). In swh a syrttm, we hihe the dvatrrages of a network system

tigh~ly coupkd sysetns. Locd nrtuorks arc becoming more and more poplar because of the

f .2. .Main Memory Systems

36 j In such a systrm. a h g e m u n : of p n m q memory i5 avatfabtt and a large pnion o t or

1 A. Thesis Qrganizatittn

Chapter 2

Query Processing for'Centralized MMDBs

, -.n:rp for tk actlvme.5 for m o t x y jxqme

!z:n:rr,:zz - r m x ~ ~ r y drsk traffic i'aflasicns of 3-mci art of [hi$ ktrd In a mam memory

2,1, Index Structures for M3IDBs

- /-
working storage of an appti&on is now entirely in main memory and'refe~nces to it will not

'c,

cause any disk fiO- [KNL 731 d m w s various techniques of calculating hash values. Searching a

lush tabie is fast which is a g m d &mac?eristic for cqttal-join operations. _But it does p r i y with

range queries whch ask for a i;ct of items w i h n certain range.

Le f t OiId Right Child

Figure 2-2: The St ruca of a B-uee 5&

C I & (E Z C ~ ~ . AM-ma IX btmq ntr in k urn h each nodc has ai most two childm.

% & ~ h ir f a t k a u s c i t requlrer k s numbs of &;ara amparisom. Hme'i-er, i t has p r storage

L C : ~ man mema3 c m ~ m m e n r , urz cmna assume h t h e mourn of mmry awlable is

;a:trn~:d E f i a c n r US of pnmarq. sxangz u shU o w of thc major i m s . B-sees are well-known

*& to tcmcvt an itrm 1s wgmficanrly reduced I t also has btmr storage usage. However, 1 1

A new nee smtcntre, called a T-ac which has advantages of h t h AYL-mts and R-mcs, i-s

introduced in EEH 851. The basic smacnvc of a T-tree node is shown in Figure 2-3. T-tncs an

binary mxs, with each mde mntaiaing n data f iIds, one conml field and two pointer fields to its

left and right children, S i n e multiple data items art allowed in each node, and each d e can have

,a maximum of nvo children T - w retain the inninsic binary search natun of AVL-tms and the

storage efficiency of B-trees. Binary search is used for inna-node searching.

Left CfuM Right Child

Figure 23: Suucmrc of a T-tree Node

Insertion and deletion oprations for a T-tree are very similar to those for an AVL-tree. Intra-

node searching or data movement i s involved, and rebalancing has to be dom,whcn necessary. .The

rebalancing technique is &e s a m e as for A V L - m s , except that data items -
uansferred from one node to adther. However, most updates are expected to

movements within one node, rebalancing is much Iess often needed than

Algorithmic details can be found in jLEH 851.

may have to. 8g

involve only data

in an AVL-tree.

fLEH 853 has done experimenrs on T-tree, B-uee, array, extendible hashing and linear hash

smtcrures. The results indicared h a t T-trees provide a good ovt?raft pkrformancc for mixes o f

searches, imqts and deletes.

2.2. Query Processing Strategies

When queries are-presented k~ the darabaze systems, it is the task of a .query optimizer to

decompose a query into pimirive relarionaf opera~ons such as projections,
f

Each operarion involves one or two dations. We will 'concentrate only o n

Cowptualiy, there are two general methods: nested Iwping and merging. For a pure nested

Imp method, o~ of the relarions is operated as k outer and Lhe other as inner relat~on. For every

- - - -

eY

tuple of ihc cuter relation, rht emire inner Alatiw has to be rannd to vuch for matching tuples.

776s is a gdruic strategy which is too expensive lo b; employed. Vviovr indrx r r m a u ~ a --be

for main memory envimnmca Hash ra@e a& T-~IIX are two of them- Instead of scanning the
/

tnr in inner relation, tfic i h x for tk i m r relation can bsprobed in search for matching tuples.

4
Merpng is the ocher geasnl snwgy used for joining operations. Merging requires the ability to .

access tuples In a relation in a c c m n lo 'cal order, which can be a c k v e d by either an grder P
p m r v i n g ~rsdc'x or a s o d m y index. B a h ek ions are scanned following r,l-re order provided.

The strategy is lincar in rime compkxity, btcaust each relation has only to be uavened once. Tree

i d b e Imrantre, various algonchms have k e n proposed, which art essenually denveb from

convtnnonal p i n rmzrrsing dgonthm for disk-b& systems. fndex suuctures suitable for main

memory operatibns are used. Processing strategies are aim tuned to fir into the main memory

cnvlronmcnt. Five algorithms are p ~ m n t t d and tested in L E H 861: simple nested loop, hash mdex

nested loop, tree index nested Imp, son-merge and nee merge: The simple nested Imp algonthrn

is shown too costly to bc pracucal, a d i r is impimenred only for cornpanson purpose. Hash index

nested Imp and tree index nrted l;dp ye two varianrs, of the simple rrivd Imp jom algorithm

w~rf i a hash index and a tree I&X, nsjxctively, on tfee join column of one of tht rtladrsns. The

son merge and the me merge are tuo vanam of tht son-merge joln algorithm of {BLA 771: For

he son merge algorithm, an array i d e x for each nIation is set up and subsequently sorted by

q u i c b n . Then p i n is rformed w i t h this index. For the nee merge, a T - m e index is created on '

%
the p i n cqlumn for both reladons and tke merge join is ptrfomed subsequently. However, the tree

merge is a praaical m e w ody i f the indices M y exist, Since the tree index setup cos t is very --___
high

relation & ro be in s o d order, he son merge$~ d;e choice. Olhcnriu, rhe hash join rnerhod

would be the best one. One benefit h r n merging algorithms is lhat lhcy produce ordered msults.'

Chapter 3

Distributed MMDBs

L
3.1. Why Distributed .MMDBs?

A dismbuted MMDB can be consided as a database system dismbuted over a Imsely coupled

' multi-machine system, with each individual machne having enough primary memory to store its

cornpitre local database. Tht data transfer rate of such a system should be reasonably fast.

Bur why disti-ibated M,MDBs on a i d area network? In a long haul dismbuted system where

communication erp&s rnll~tiol lre a mapr p ~ d n of the total'prmssing cost, it docs not make

too much sense to have a main memory system which does wc aim at reducing data exchange cost.

On k! other hand, in a ceondtlized ?&iDB, &re is obviously a limit to which 'additional memory

ceases to improve i t s perfomaxe, i.e. when the memov space is large enough that vigually no

disk I!O is incurred due to_local processing. Then, focal processing, instead of disk U0, is a major
B

facror of LhC total expense.

he ~nvoduction of parallel computations. Some of the advantages incIude (I) reliability and

av&biliry arc increased because of data dupiicarion; (2) database erpansioks are easier through

h e addition of new sites m tfie neta.ork. The s y e m r e s p time may also be reduced.

One of he problems wltft natn memory systems {either cenualized or disrributed) is that rhe

d d l i r y of pnmq saorage r n a h mash m V e q more difficult and w t f y . P E W 841 and [SAL

'36) hiwe s a d i d new m v t q ~edmques for c t b i z e d *MMDBs. But lide b bcen done for

dtmbuted' ones. We also nttd ncw aac;urrency conno1 schemes since tramadom tend to be
6 h n hat locking small items may not be tolerable. However, this t h i s d m mt address these

pmbkms. Ont of thc man issues of clm41yted sjiterns (main memory or disk-based systems) is

9

I

the overall pformanct which is partly d9tennincd by rfie communication overkad that acl.sunts

for a signifim portion of entire computation expenses. This research deals with the issue of
b

perform= of dismbuted hfMDBs.

.
3.2. The Models

We consider two kinds of modtb. System models are abstractions of major features of actunl

systems, which should be specific emugh to reflect and s u ~ a r i z e basic features of a class df
acmd systems and which should be general enough to ignore unimpnant Qetails of actual systems

e

and make theoretical analysis p s i b l e . Cost m&ls are basic formulas of how pmassing *
expenses should be &dared. Ttaey should include all dominant factors under a specific system

model and eliminate negligible components.
Z

In our system model for the disuibuted computing study, two homogcncous machines (or sites)

are interconnected by a local area network. They run the same system software and communicate

with each orher through message passing. They are called the mult.site, denoted by S,,, and thc

remote site, demted by S,, mpecbvefy.

There is one relation at each site. Join operation is to be performed between the two relations.

One of the relations, usually at & remote site, has to be transferred to h e other site in a way

depending on the specific technique used Each prwessor is assumed to have enough l w l primary

memory to hold &e entire two relations. For ease of discussion, we assume that the two relations

of the same size M integers. Since the two machines are autonomous, they may execute the
r

same operation on their own data set independently. We call this kind of executions parallel
'

operations. The cost of some simultaneous parallel operations is determined by the expenses of the /-
must cosrly individual opera tion.

Our cosr model consists of three cornpwnts: preprocessing, communication, and local join.

Prepmxssing refers to the 1 4 handing prior to tftc focal join of the relations. Local joining is

h e actual join of tfie two previously handled ~Jations. Preprocessing usually includes operatior6

such as index setup, array index sorting, relation partition, and so on, which may not be necxssary .
but which will speed up dr subvqucrn lo& join opration. A more coWy prcpoc@ng phase

f

mid result subsequently in a cheaper l d joining phase; and both of them belong to the local

between tk two cost cornpaems for different techniques. It is also because it is difficult to

measure hm in a unique unir %y are tneasurcd in terms of % number of data comparisons or

data movements during the o p h o n , which will be &fined later when we pursue the cost analysis.
6

The communication cost is usually proportional w tfme size of a relation to k transferred It is

measured in terms of the number of paralle1,packet transmissions or the size of data segment

transmitted, depending on th technrque used. -

3.3. Conventional ," Algorithms

Queries c& in a high-kvel, p d u r a l or non-procedural language are submitted to the

database system which is di&bwd over a mmmunications w o r k . The database management

system then translates the queries a relational calculus form. It is rfae task of the query

opmizei to decompose tfht relational calculus form into primitive operations such as selections.

projections and joins 'which may involve operations on"ft1ations at different sites. For ease of -

9 discussion and analysis, we assume, without lose of generality, that a join operation involves only

two relations residing at two different sites of the nerwork.

Distributed join algorithms are distingurshed by whether they employ the traditional join or

semijoin operator, how the pair of sites involved cooprate during the join procprsing a n d e c h of
w

the local processing me is used. GY
To perform a join, one of the relations has to be shipped to the other site (called the result site). '

Tht scmijoin operation can be used to 1 of data to be transferred. Only the join

mlumn values of o m relation and rhe second need to be transferred &tween

the

811

two sites. i t played seal role in ihc query m s s i n g algorithm of SDDl [BERN

where the intersite data transfkr is expensive. This is specially ~ B Z for a long haul netwo&

system However, in a local area m k - o v q r ,which data transfer axt is much, lower, it relies on -
the specific join prootssing mmgy used to decide whether the semijoin operation is beneficid, as

it recpSns multipk scam of a relatio~ &ring in increased Iocai p r w q i n g cost.

/

--,

13
- --

A .
d

Many centralizad join eval@on algorithm can be employed for local pnxxssing in tach

machine. Sort-merge and nestbd loop are the m a t common ones. We may use indcx strucnrres

such as B-trees or hash tables to speed up the operation.
1

The nvo sites involved can work in either a sequential or a pipelined fashion. For the squential

{sometimes called batching) approach, the receiving site will not-kgin working until all the

required data have arrived. In the pipelined approach, processing will begin as soon as the first I
tuple has arrived. While the sequential strategy is easy to implement, the pipelined m e t w allows

the sites to work in garallel, and h - i d site does n o t h u d to store incoming data in s
/

temporary relation. However, batching of tuples for uansmission may be more economical than a , - -
series of uansmissiomaf single tuples. TIE following table shows rhc pelformamr of V-system in

file transfer between two disuess Sun-3's.

, 0SK 1K 2K 4K 8K 16K
bytes bytes bytes bytes bytes bytes

4ms 6ms 9ms 1 lms 16ms Z m s

Table 3-1: V-System IPC Timing Data

While much work has been done on' distributed q u e j processing in a disk-based

e n v i m t [CAR 851, linle has k e n done b investigate strategies for distributed main memory

database system. Here, we &e going to present several algorithms for distributed MMDBs which
I

a&xferived from the'convenrional algorithms. 3

As in disk-based systems, we have several choices of algorithms for evaluation: (I) join vs.

semijoin; (2) sequential vs. pipeline; and (3) son-merge vs. nested loop. We already have results

on the performance difference bemeen a sequenrid and a pipelined algorithm for conventional

systems [CAR 851, which will, we expea, not change too muoh for a main memory environment.
<

Therefore, we are only interested in sequential algorithms. Notice, however, that al&ugh [CAR

851 has shown the piplined memods are bcaer.in their test enviro-nt, [LANT 85~"gave thc

oppire results because pipelined mehods may inmduce high communication overhad. There is

an added difficulty in pipelined -sing over tht V system since tht inkqmccss communication

p r o d is a blocking one. It is a plausible m a r c h topic to investigate pipelined techniques vs.

hatching ones. Meanwhile, tfL ?xx&hg approach is ;aanrPA in this W.

Furthtmrt, we always m f e r key fields since in the main memory environment, the key -

extracting, operation is cheap a d we a& not intending to compare join with Semijqin operation. -

Thc stmijoin vs. join is not an issue here. The result relations are always sent to the result site at .

- , l . , l

m s e algorithmh we are going to investigate in'this &tion 'are categorized by the local

prpbessing techniques used. Specifically, t h y are distinguished by wh&er they employ the nested

loop'or merging m e w for tfme join ogeratiop and whether they use a hash-based or order-

preserving indcx structure to speed up tfre local cdculation.

Based on the above discussion, we have the following three algorithms.
K>

Algorithm 1. Simple Son-merge Join ,

' f i s algorith;n is a modified version of the general sort-merge algorithm. An array index

on the join column is created for each relation at two different sites. The indices are sorted

in parallel and then the relation on the remote site (and its index) is transferred to the result

site where subsequent merging is performed.

Algorithm 2. Nested Loop Join with Hashing Indim I

A hasbing index on the join column is created for the relation at the result site. The relation

at the remote site is then transmined to the result site and joining is performed using nested
- loop strategy.

Algorithm 3. Tree Merge Join I

Both sites set up, in parallel, a T-tree index for their re1ation.s if they do not exist. Then, the

trees arc traversed, also in parallel, t.s get sorted array indices for h e relations. The relation

at tfrt remote site (and its array kdex) is m f e 4 to the resuIt site where subsequent

merging is performed. .I

-

Anotficr possible processing strategy would be a nested loop join m e M With T-tree indices.

Two relations ari to be joincd in a rested loop fashion., For each key in the outer r e l a t i o w e
I

T-ute index for tk inner relation is pmbed for matching keys. The method perfo.ms bette: than

the simple son-merge algorithm in a cenaalized environment. However, it is not as good as it

should be in a distributed situation. The simple son-m&ge method now performs better in the

IS
- d

*
distributed environment because the sorting phase can be done in parallel. On 'he other hand,

probing tk aee i d e x for each key value is nat cheap. We have implemented the strategy and the

result chows that the tree merge method (Algorithm 3) is five times faster than the nested loop join

method for relati'@s of size greater than 8K integers, if the tree setup is not included.

-

3.4. Cost Analysis

We are going to pursue cost analysis for the conventional algorithms given in the previous section

based on the cost mixiel. For ea& algorithm, the cost equation consists of three parts;

preprocessing for local joining; data transfer, and local joining. Due to .the diverse nature of .
different $repmcessing techniques, different measurement units have to be used. Therefore, we can

not compare different cost components on the basis of the cost analysis. The data transfer is

measured by the total time used for data transmission. It is proportional to the amount of da@

transmitted. Since the physical communicatien medium is not sharable, simultaneous
!

transmissions may cause collisions. However, as noted in [PAGP 851, actual data transfer time on
A -

the communication medium is only,; small fraction of the total message passing time, 90% of
I

which is spent on preprodessing and postpmssing by the transmitting and receiving processors.

As a result, if two messages are initiated at approximately the same time. tke two transmission

processes may just overlap so that they appear to be going on in parallel. This phenomenon is

called communication parallelism &UK 871. We refer to a data-exchange process as a-parallel

transmission if communication parallelism can be fully exploited. In othe; words, the cost (in
b

the time scale) of a parallel data aansmission is proportional to the amount of data transmitted by .
the initiating &chi=, without being affected by other simultaneous messages. We measure the -
data transfer cost in terms of parallel data transmissions. For example, assume we have two

transmission processes T1 and T2, and their communication costs, when rhey are pursued

individually, are C1 and CI, &pecdvely, with C1 > C2. Then, if TI and T2 are initiated one after

the other, the total communication cost d l be the sum of C1 and C2. If TI and T2 are initiated at

tfie same time, the cost for the parallel transmissions will be measured by the more expensive one,

which is C1 in this case.
1

For Algorithm 1 (Simple Sort-merge Join), the arrays of keys for both relations are sorted in

paralk.l at different sites, using any of t f i e poplar internal somng algorithm. The relation at the

nmort site is then transferred over to the result site. A merge join of the two is subsequently

pcrformcd there. The number of comparisons is the usual unit to measure the sorting cost. Hence,

the preprccesing cost of Xgoritfrm 1 is 0 (W o g (4). The data transfer cost is M, since the
*

relation is of size .Mintegtrs. The number of data comparisons is used to determine the merge join

expense. Since both relations are of size M, it is ZcM, where c is the average number of matching

tuples. In our experhem, c is approximateiy 1.

il

For Algorithm 2 (Nested Loop Join with Hashing Indices), a hash table index is created for the

relation at the result site. Thr: relation at the remote site is 'then shipped over to the result site and

the local joining is performed ar the result site. During the hash table setup proeedcre, keys have to

be added one by one. For each insertion, a hash value have to be cdalated and the keys have to be

insertdinto the appropriate m e entry. It takes a constant time to insert the key. We use the

n t r w o f keys to be inserd to measure the index setup expense. H e m , the preprocessing cost

of Algorithm 2 is M. The communicahon expense is obviously M. Moreover, we use the number
i*

of key comparisons to measure the locat msted loop hash join operations. The local join cost will

then be dU, where c' is the average length'of d-e chain list associated with each bucket in the hash

table. 3n our experiments, c' is approximately 4.

1 1

For Algorithm 3 (Tree Merge Join), a tree index, if it does not exist, is set up for each relation in

the machines. However, net index is b h most likely one to exist for a relation. Then, the tree P

I

indicts are naversed to product sorted array indices. Later phases are the same as for the simple

son-mtrge'algorithrn. For the tree setup procedure, the.Tetations have to be seamed and d-e keys
. .

are inserttd into the index tret one a h h e other. For rhe i~ tuple to 'k inserted, a search for the

inscrnng node has to be done and i n n - m d e dara movement may be necessary. We use the total

*arch cost to measure h e tree sewp expense. The search cost can be measured by the number of

I T . uce mdcr wardud. For rhe iLh key to be addcd,fi rearch costs log (3, where S u si2e of a

M
H e m , tfbe above asymptotic estimation will be estimated to be 0 (Mlog (-)).

c s

The traversing of the indices is Iiwar since each node is only reached three rimes and scanned

only o m . We use the number of keys to measure the uetmtversal operanon. Hcncc, the cost of
1

mversal is M The &u uansfcr cost hen is &Ad, h e same as prtvlous algorithms. ?hc last

merging phase is the sarne as tfre one for the simple son-merge. Table 3 - 2 summarizes the

analytikal results obtained in &is section. Table 3-3 gtves @e list of units used.

Scsted Loop Join with Hashng Index:
1

Hash Index Setup
?f i

8'

Tree 3fzrge Join:

Tree Index Tret Cbmmunicauun h a ! ;Verge
Sztuu

- - -

Tabk 3-2: Summar)- ofCosr Analysis

kird WE will evaiuav tfir a l g ~ n ~ x m h u g h cxpnmsn ts and study LIX best vadcctff k r w t t n

Cost Components Measurement Units

wmng number of comparisons
merge joln n u m k r of comparisons
hash table setup s t z e of dw relation
1 4 hash join aum- of comparisons
tree ~ n d c x otatp number of tree nodes searcM
tree vavenal size of tfrt relation
~ ~ r n r n ~ c a t l o n site of the relation

., k
w

Table 3-3: Measurement Units

Chapter 4 .

Experimental Validation I

4.1. Test Environment

The distributed experimental environment consists of five Sun-3 workstations connected by a

1OMbit &met local network. Each workstation is equipped with a powerful MC68020

microprocessor and an MC6888 1 floating-point coprocessor. It is a homogeneous environment, n

with all workstations k i n g dis!dess and possessing four mega-bytes of main memory (RAM).
- They also run the same operating system. The underlying Ethernet provides a fast communication

Running on these workstations is the operating system, the V-system, developed at Stanford

University. 4-system is categorized as a distributed operating system by [TAN 851 in the sense

that i t provides the users with high transparency of the underlying system activities.

Tlx greatest advantage of using the V-system is its efficient and cheap interprocess . -

communication' facilities. Among many fearurn, the system only transmits shon and fixed-size

messages which is easy to implement and has less p m s s i n g overhead. To transfer large amount

of data, h e sender has only to specify a segment of memory in its address space where the data are

stored. The access is passed along w i h a fixed-size message to the receiver and the receiver can

hen copy tfie wiple segment from the sender's address space over to its own address space

dlrertly. No inrermediate buffering is necessary.

The V-system employs a blockng send operation, which means the process initiating the

operation is blocked undl a reply or acknowledgemem is received The design is chosen according

to h e nature of m o u applications: a precess typically suspends exearion to wait for a reply

immediately after sending a message ICHER 84J. Providing one kernel prim~i~kr. for both sending

thc -sage a& receiving vin repG results in ksa overhead with a message transaction axxi makes

the inferface pmxdurc easy to use.

Our experiments were all done during weekend nights w@n the network traffic was low and ,
nobody else was using any of the machines. 'Two machines q e used for the algorithms studied in

I . ,

tfit previous chapter.

4.2. Test Parameters

For each algorithm implemented, the two machines involvpd generate two relations of rhe same

size in their primary memory respectively. The entire operation does not involve any disk U 0 at

all. Our relations consist of only key values which are integers in our experiments. The keys were

randomly generated and were uniformly distributed over'a, certain range such that the number of

tuples (i.e keys in our case) in the resulting relarion was about the same as the size of the relations
<

themselves. Duplicate keys were allowed.

Timing is measured by the GetTime system call provided by the V-system, which gives the

instantaneous time since January 1, 1970 GMT. Because we had a dedicated system, - the

measurements arc accurate. In fact, we ran our programs many times at different times and the

results only showed about I % difference. We designed the algorithms to consist of several steps,

tach representing a l o g i d phast of processing. The elapsed time for each phase was recorded.

7% total cost, the rcspons time in our research, of algorithm is defined to be the sum of the

time used during each step.
- I

As was stated earlier, the V-system employs blocking Communication interfaces, which means

the data-exchange process is the priod from the initiation df the okration till the arrival of an

aclcnowledgtmcnt from the rtctiver. Tbc implication is that some local pmce&ing such as copying

, . dau from one location to another is also included in the communication overhead.
,

4.3. Analysis of Experiments

43.1. Test Results

0 1 2 4
-

8 16 32 &i
(K integers)

Figure 4-1: Performance Comparison

A p n d i x A. 1 summarizes the experimental resulrr obtained for Algorilhrns 1 , 2 & 3. They are

measured by the total elapsed time of a transaction in milliseconds. Figure 4-1 shows the

performance of the algorithms, where the sizes are the number of keys for one of the two relations.

43.2. Preprocessing vs Local Join Operation
d

For Algorithm 1, the pepnresring execution is the local sorting operation. The two machines

son their relations in parallel and the timing is measured on the result machine. From the

experimemal & y e can see thar the c a t of. local roning gmws fast (more than linearly) as the

size of the relations increases. It is the m a t expensive comjmnent of tk total cost. LDcat join

opradon refen to the merging of the two relations. Just as theoretical complexity amlysis

indicates, tk merging cost is linear with respect to the site of the relations.

For Algorithm 2, p r c p t o q p q means the hash table setup for one of & relatiom. The data

y wh regard to the size. The same is trite for the IocaI nested Imp join show tiw axit grows l i d i C
opration. But unlike A l g & h I , *re prepmessing cost is in most cases 3 times greater than

the merging cost, tht tabk setup is Im expensive rhan the I d join o p e d o n . There is clearly a

uadcoff between prepr-ing and local join components. A l h u g h h i s tradeoff varies from one

. p m s s i n g strategy to armher, a mphsticated preprocessing method produces a simple local join

operation, at least in this case. H e m , a w t l y join operation may be eliminated by introducing a

preprocessing phase. Thc tree merge algorithm is ao exception because of the assumption that the

tree indices already exist

43.3. LAxlal Processing vs Communication
11

We refer local pmzssing to be the sum of prepr&ssing and (parallel) local join operations,
* ,

$ which is largely & t e r n i d by the sopiustication of the processing strategies and the power of the

i & parriciparion processors. Tne data exchange p m s s , on the other hand, depends largely on the

sophistication of the system comniunicarion facilities and the nature of the. underlying

communication medium. Yet, it is aha parrly determined by the power of the processors since, as

we know, some local precessing is also included which will be affected by the hardware

technologies.

As we can see from h e results, the data exchange only constitutes a small portion of the total

cost, whereas 1 0 4 proassing constitutes the majority of the totat cost Table 4-1 shows the

comparisons for Algoridms 1 & 2.

The results imply that we can employ more sophsticated strategies to improve the performance

albough the csmmunication overfiead may be increased. The communication medium is no longer

he most critical r e m and the strategies used for long haul network is w longer the k s t in a>-

local a m environment. The improvement a u l d prove to be substantial.

~ l ~ o r i h m 2:
Sizes
L O d Proc

Table 4-1: Local Processing vs Communication

13.4. - Merging and Nested Loop Strategies

In the previous chapter, we have discussed h e heoretical analysis of the algorithms. However.

we can only tell, from thc r.hmreticai complexity, that one is asymptotically better or worse than

anorher. Since the different complexities are expressed in terms of difftrent operations and one

opmtion be cheaper or more exknsive than anather, we can nor predict whether one

algorithm is absolutely better than th other,

f h r ernpiric. data show that --merge is the best provided both indices are available for the two

I d a h 0 ~ . Tree traversal is surprisingly h p becaw one data movement is much Iess cosdy Lhan

one dara comparison o r one aritfrmetic dcuiation. If h e two relations are already in sorted order,

the sirnpk son-merge proves to be the best. Otkrwise, nested loop wilt be the best. Each

algorithm fits best to a particular sihlahon.

One advantage of Ling merging methods is that they prbduce boned results, which meets the

requirement of some applications. They are also suitable for non-equi-joins. The hashing nested

loop join could be made fast if the hash functions are properly chosen and tuned.

Figure 4- t shows ttpt ptsfca-mme of $L alguriths. As we can see, the results are consistent in

the sense ti-& tk cous i a ~ c a s t in proportion to the growth of the relation size. All local

prowsing c o ~ t components are houbld when the size of the relations is doubled. One exception

is the local sorting cost wmpmnt (Algorithm I). It grows slightly faster than linearly, which

agrees with the cost analysis.

Tfr communication cxptnsc grows linearly, as we can predict from tlte complexity. Since the

data exchange p m s involves only the two synchronized machines, the chamx of getting

contentions is very small. ?herefore, the cosr will grow in proportional to the change of the sizes.

For Algorithms 2 and 3, ir is safe ro predict thar rfie total cost will conunue to grow Iinearly for

relation sizcs greater than MK, as long as r)pe main memory is still large enough to hold the entire

working storage. Tht total mt of Algorithm 1 will grow slightly faster than linearly.

d ,
43.6. Further Improvements

In all h e algorithms, only two machines are involved One of the rdations, usually in the

remote machine, has to be sent over to tfbe other machine and local join is subsequently performed

the=. However, as we can see, h e remote machine is virtually sitting idle after the transmission of

is relation. Therefore, possibfe performance improvement can be achieve3 by allowing more
& 5

c parallel processing.

For h e simple sort-merge a l g o r i h , immediately after the local sorting phase, the two relations

can be pamrioned into two parts such h a t the first part of one relation only needs to be joined with

the first pan of $a other relation. This can be easily done since tb two relations are sorted at the

moment. Thtn, the firsz part of he relation at the remote site can be musferred to the result site

and the second part of tfic relation at the m u l t site be transferred to the remote site. Merging can

hen be done in parallel at h h sites. At tfie fast phase, the result ubtained at the remote site is

m k n r c f to ttrc nsdr siu. Figure 4-2 shows tfae entire procedure. Tbe strategy is based on the.

fact that communidon overhad is relativeiy low so that local processing/data exchange tradeoff

can be beneficial. Similar modifica~on can be done to the tree merge algorithm.

u
Phase 3: Data Exchange

site ':El m
Phase 4: Parallel Merge

Site 1: -1

Site 2: R21 lid

Site 2:

Figure 4-2: Example of the New Strategy

wsted loop method, h e relations cannot bc panitioned easily in h e same way

sorted. However, rhey can be simply partitioned into two equal parts. Then, the

relation at the resdt machine is sent to the remote site; and a copy of the whole

relahon at the remote site is shipped to the result site. Next, a hash index is set up, m parallel, for

the two parts of the original relarion at rhe result site. Subwquent nested loop join is prforrned

ktween the two parts and the relation from the remote site. The result obtained a{ the remote site

is h e n transferred to the result site. ~ i r f i the strategy, the hash index setup cost is cut in half, at the

cost of increasing data exchange overkad.

However, we are still not satisfied with the strateges developed. Kotice that machines in a Iwal

nerwork may not wo*-24 hours a day. 7 l e probability chat additional machines are situng idle or

have light workload ar a moment is high. We would like to devclqpmorr general strategies, which

kafk to tfie study of tfae follopiing chapters.

Chapter 5

DMMDB Query Processing with, Load Sharing
L

5.1, Motivations,

In the conventionaf approach, th? amount of data transfer is minimized, or at least, extra mfic

is not enuxraged. A join operation involves only the twc/p'rocesson-(or sites) ar which the

original two relations arc stored. One relarion is nansferred from its site to dx other in one

transmistion stage and join operation b e e n the two is lwally performed there.
J

With rfic &vclopmnt of distributed systems and communication technologies, more and more

computers can be cormcad to a network with fast data transfer rate and good overall system

pe~formanct- The fact is that tfic probability thar at least one processor is sitting idle while tasks

an waiting at 0 t h sim in a distributed system (a "wait while idle" state) is remarkably high over

a wide range of network sira and pmaPsor utiliradons fLU 851. Hence, umh a high performance
1

distributed system over a high-sped local area r~twork, such as V-system ([CHER 841 and

[BERG 86]), we may distribute over h aetwork the workload incurred b y . p i n operations to

achieve high pdkf i sm & the d t of t)lc prrxxssingfmrnrnunication tradeoff.
\

Communication cost can be mdcd for local mrnputational expense. E t J K 871 has done

thtorrtical analysis and practical expcrimem on disfributed sorting algorithms. For d-e sorting

algorithms, it has k e n h w n that local pmcesing cost is dominant while the total mmmunication

mu is only a small bction of the tad expense. &sing time should be minimized even with

the incrrased t x p & w of communication. .

for join dgorirhms, the situation is similar in that i t is also data intensive. W processing cost

tends to be a major factor. It is, herefon, very likely to be bexficial to distribute tasks over the

nerworlc. Transkmng part of sygern had fnxn a congested area t~ a lightly loaded area wilI

physical communication medium. Tht rest is spent on the prc-pnxxssing and post-processing in

tire transmitting id receiving sites fPAGP 851. A main memory system can make the

prepmxsising and post-processing faster. However, as we will see, local processing cost is still

dominant even in a main memory system. While the performance of a centralized MMDB ceases

to be improved with even more memory if the memory size is already big enough, distributing
>

workload tends to be an effectin way of improving performance. We call the approach a load

shxin@ih& the sew hiit more machines are involved to handle the original two-machine task.
, .

However, our approach is not the duplication of the traditional load sharing strategies. While the

traditional load sharing snatcgis distribute tasb amongst processors over a network to achieve a

system-wide performance improvement in throughput, our approach further decomposes,a task into

subtasks which run in parallel in other mxhipes' and hence improves performance of a particular

task. Data associated with he subtasks may also be transmitted.
\

5.2. The Revised Models

Suppose there are N processors interconnected by a high performance network. Each of the

processors is assumed to have reasonably large primary memory for query processing. A join

operation is going to be perf& between two &liihns residing at two different processors (or

sites), which are called S,, and S, respectively. The result site S,, is where the final result is to

be collected.

The first stage of the new approaches is, unlike conventional ones, to preprocess the original

relations for subsequent load disrribution. The two relations are partitioned, according to a certain

set of criteria, inso a number of subrelations which are then vansferred to other sites through the

communication medium. The next stage is the parallel processing of the subrriations at eacb sitc to

case rfie later join operations, whtch usually includes such operations as index setup, array index

sorting, etc. Subsequently, rile subrelariorrs are joined together. Thk result of each of rhtK join

operations is finany

H e m , basically, of four phases: (1) preprocesving of original

rciarions aad distribution of the subrelations; (2) prep-ssing of the subrelations at individual

sites for s u m u e n t join operations; (3) join operations between pairs of subrelations at each

processor; (4) final result colleaion. We call the algorithms based on the appmach load sharing

algorithms.

Our cost model for a load sharing algorithm also consists of four parts, analogous to the four

basic processing phases. Thc fmt component is the cost of preprocessing for load distribution

which accounts for the expense of tocal prowssing prior to workload distribution. Since the load

disvibution is m t intrinsic to rhe preprocessing and different measurement scale is used, it is .

counted as part of data exchange. The second component is the cost of preprocessing for local

joining which accounts for tfre expense of local processing priorto pair-wise join operations. The '

third component is the total parallel data transfer cost which includes the costs for load'distribution,

data-exchange before and during pair-wise joins, if any, and final result collection. The last

component is the cost for total parallel I d join operations.

The third component depnds on the amount of data to be transferred. The other three

components are measured in terms of the number of data movements and comparisons. The sum of

the four gives the response time of the entire join procedure.

5.3. Load Sharing Algorithms

We have argued in the previous section that the load distribution strategy is very likely to Lf
significantly improve performance for a main meinor- system, as well as for a disk-based system.

We have developed three load sharing algorithms for distributed join pmssing. They are the load

sharing version of the algorithms studied in Chapter 3. C
Suppose the two original relations are resident at two sites called S,, and Sm, respectively. We

have also some even number of additional sites which are divided into two disjoint groups with Sm

and S,, being the group leaders respectively. Nute that in the simpfe sort merge algorithm, sorting

is thc most costly operation. To apply our load distribution strategy, the original relations should '

be partitioned and distributed so that the son@ _task can be shared. S , and S , then partition '

h i r relations into a number of subrelations of a ~ ~ l y equal size, and distribute them within -, -

their own group b o u g h tfhe communication network. Each suWarion -in me p p is

subsequently joined in parallel with every subrelation in the other group. The results are kept at

sites led by S,,. Finally, S, collects mula from its group members. . A formal description of the

proadure is given in Algorithm 4. ktailed pseudozode of -the algorithm can be found in

Appendix B. Since the algorithm is derived from the simple sort-merge method, we call it a load-

sharing sort-merge algorithm.

Algorithm 4. Load Sharing Sort Merge

1. Suppose there are n sites on a local network with light loading, where n is an even
n

number, and the sites are divided into two groups. The first consist& 5 sites with

n
S,, being the leader. The semnd group & consists of 5 sites, with S, being the

leader. The two relations are at S,, and S,, respectively. S,,, is the result site.
2. Paitition Phase

n
Sites S,, and S, partition their, relations into 2 equal subrelations in parallel. Then.

n n n
site S , sends --1 of its - subrelations to its group members, and S, sends 5 -1 of 2 2

*

4. Pair-Wise Merge Phmk
Every member of one group perform pair-wire merging with a member from the
other group, and the results w stored in the members of S,,,'s group.

n
This process repeats 5 times, until every member of one group has performed
merging with every member of the other group.

5. Result Collection Phase
S,, collects results from its group members.

In the above algorithm, the workload is distributed and pair-wise mergings are performed in

parallel. Therefore, the overall p e r f o m may Ix improved. However, as we have noticed, each
C

subrelation in one group has to be joined with every subrelation of the other group sin& we do not
YG -i

employ, dur& the partitioning, any b w l e d g e about which tuple should bc joined with w w
m-

other tuple(s). Tk data exchange mt may increase fast as the number of pmcessors involved

increases. One du t iun will be to divide the original relations into disjoint sets of tuples such that

tuples in one set of a relation have to be joined with tuples of a corresponding set of the orher

relafioa In this sense, the sets of o m relation have a one-to-one matching relationship with the sets

of tfic othcr relation. W t have developed a parritioning technique using hashing functions. A hash

pamtioncd this way by the sam hash function, then to evaluate the join of the two, it suffices to
Y

join thc corresponding prrions n ~ ~ v e t y , since i t is ody pssible for two ttlples From & two

corresponding portions to have the same key vdue.

Since each subnlation does mt have to be joined with every orher, we can send the two

corresponding subrelations to tfic s a n e site in the load disuibution phase to eliminate the later &ta

& exchange overhead. From our pzvious experiments, total cost of I d sorting and subsequent

merging is higher than t f ie ms of seaing up a hash index and pursuing subsequent joining.
- - -

Therefore, nested lmp join wirh h a h index is ernplgyed for local p-ssing, and we call the

algorithm tfrz load sharing nested loop algorithm.

The drawback of the partition m e w is t iut it requires one additional scan of the relations and

the calculation of a hash value for each tuple. This may be cosdy compared with data transfer

- '

A formal and mike precise description of the procedure is given in Algorithm 5 .
,

Algorithm 5. Load Sharing Hash f oin

1. Suppose there are n sires on a local network with light loading, where n is an even
n

number, and the sites an divided i m two groups. The first consists of 5 sites with

n
S,, k i n g the leader. The record group also consists of 5 sites, with S, being the

leader. The two relations are at S, and S, respectively.-s,, is the result site.
2. Panition Phase

A hash function is chosen to partition the two original relations into n subsets each
3. &@ Dismwtion Phase

n
a. sit and S,, each transfer --I subrelations to its group members.

2
n

b. S,, and S,, each nansfer 2-1 subrelations to the memben of the other

%rrtuP.
c. S,, and S, exchange ore subrelation.

Ar the end of tfie phase, each site has the two corresponding subrelations, bne from
S,, and dx o b r from S,.

wit compontnr by making ust of c x m rnachim available, Naruraliy, the question arises as to

whether h y are the optimal afgorirhms. Consider d.I& pair-wix merging phase of Atgorithrn 4,
a

where simple sortmerge is empfrryxf as in Algorithm I . %re are two sitcs involved, ane fmm

S,,,'s group and 6ne from 5,'s group for each pair-wise merging operation. Afrtr rransfcmng its

subrelation over to tke ocher sirc,. tfx one belonging to S,,'s group will SIC idle until ttre next

oprarion begins. Further reduction in lmd processing is still possible.

Consider the partition phase of Algorithm 5, where a hash function is chosen and tfic relauons arc

scanned and partitioned into n pans while orher machines are siuing idle. There i s the psssibitiry
,

of funher refineinedr by lemng other sites share the panirion task. O u r aim is to achieve optimal

soiurions in term of communicatiorzlocat poctssing r rahf fs . We cxptc t tfie pmss ing cost will

be reduced by half, except for the communication overhead, if the processor resource is doubled.

We have developed the following rwo modified algorithms. For Algorithm 4a, afrer rht parallel

soning phaw, each subrelation is f m k r @tioned into n subcompnents. In rhc following

component exchange phase, h e i~ processor collects the ih components of all subrelatlons. The

e r - w i s e merge is then performed within each individual site. For Algontbm 5a, the reIarions arc

equally divided and distributed among the processors. The subrelations are then W t i m d by a

c h w n hash funcaon into n mmverfapping pans which are sukquemty trammineb to the

corresponding sites The partition task of Algorithm 5 is shared by other rnachmes.

Algorithm 41. Load Shanng Son .Merge (modified version)

- ..
rn

1. Suppose &re art n sites on a I d rework with light loading, where n is an even
n

~ m b c r , and rhc siats an dlvZrled ~ n t a two groups. The first consists of 5 sites, with
h n

S,, k ing rfit kadci. Trr sccond group also consists of 2 sites, with S, being h e

lcadtr~ Thc nwo relaooniarr at S, an$ S, respemvely. S , 1s the result site.
Pam non Phase

n
Snt and S,, pamuon IF nlanons rnro - equal subrelations In parallel Then, they 2

n n
4cnd 2 -1 of the - nianons ro t k t r group members, respecuvely. 2
Iiz9Sid-m
Each w e sorta i t s subnlauon uslng rnumal Qu~ckSort.
#wt Finding Ruse ,
S,, finds th n-1 jxvix d u e s w k h dm& its subrelabon into n fdrnmt equal) parts,
and them send them to dl other stus. Ths: other sites, upon recmvmg the pivot
~ a E u e s ~ f l l R b C T & d e & e i r ~ t r # e n p % b y then-i v d w
Component]Exchanp;t Ruse
A11 slrcs send, m rum, n-1 of h e i r wbrthons to the correspombg sires, In such a
way IM the c o m p n d m g wbrefamns w-111 be sent to the same s j t z , -

1 All rubrrlafiom from S,'r grwp members 40 be rnergcd togelher. .
b. All subreianom fmm S,,'r p u p members are to k merged together.
c. The merge p in is then p r f o m d beween h e two resulung relations.

7 Rtsutt Cotitmon Fkse
S, receives nsulrs from dl &r sites.

Algorithm 53. Load Sharing Hash Join !mdificd -icrsion)

i- f u p p ztrrt arr n s i r s on a focal network ~7th fighf loarJlng, nkrr n IS an even
* n

number, a& thc s m s us d ~ * ~ d e d mro rao groups. The f i r s t concisri of 5 sites. with

All sites combine subsets from its own group members into one relation. and combine
ohers into another reladoe).

5 . Index Setup Phase
Each site sets up, in parallel, a hash index fbr oneof its two relatio I, . '\ 6. he.? Joininn Phase

,

All sites perform ttbe join bperation on the two relations residing on th&.
7. Result Collection Phase

SnL receives results from all other sites.

Appendix C give L w o examples of how Algorithms 4a and 5a work.

h

The prebious algorithm aa developed from the conventional sort-merge and hash indexed nested

imp strategies. Another load sharing algorithm can also be derived from the tree merge algorithm.
-

Recall that the treermerge Z g 6 i i t g ies t h e b i s T ~ 8 0 r r 6 ~ i f e r tr indiee &sexist for bt h

relations. Tree traversal is cheap compared with other cost components. Since the array index

obtafned from the tree searching is sorted, it is easy to partition it into a number of almost equal

parts: The key value at che kginning of each part is called a pivot value. Similar to the panition

smregy for Algorithm 5, if we partition the two relations by the same pivot values, then only the

tuples from two corresponding subrelations need to be joined together, and all the subrelations are

also in s o d order. Disuiburion of the subrelations will allow other machiries to share the
-

merging cost. According to some of our experiments, tree traversal and relation panition costs are

so low tha; i t is not worth the effort to further distribute the task at the cost of increased

communication overhead.

/
'Ihe'following shows a f o m d descriprion of the algorithm.

Algorithm 6. h a d !%ring Tree Merge.

1. Suppose there are n sites on a local network with light loading, where n is an even
n

number, and the sires are divided into two gmups. The first consists of 5 sites, with

n
S,, k i n g the leader. Th second group also consists of 5 sites, with S, being ht

leader. The two nlarions are ar S, and S, respectively. -s,, is the result site.
Assume here m T-uee mdiczs for both relations.

2. Traversal Phase
S,, and S, traverse the me indices to get the soned'array indices.

3. Parti tim Phase

a. S,, pamaons its relation in to n almost equal subrelations.

b. S,, sends the partitioning key .values to S,.
c. S,, partitions its reIation into n subreIations according to the pivot values.

4. Data Transmission Phase

n
a. S,, and S,, rend 5 - 1 subrelations to their own group members.

n
b. S,, and Sm send another 5- 1 subrelations to members of the other group.
c. S,, and S, exchange a subrelation.

At the end of this phase, aH sites contains two corresponding subrelations to be
joined.

5. Merging Phase
All sites perform merging of heir subrelations.

6. Result Collection Phase
_ w - f r o m a l L u & h e L - - - - - --

Appendix B gives the pseudo code for the algorithms.

5.4. Cost Analysis

As before, costs are measured by the time complexity of each processing phase, based on our

revised cost model. Recall that the-cost equation for each.algorithm consists of four parts:*

prepmssing for load dismbution, preprocessing for pair-wise joining, communication cost, and

local joining expenses. Pardel processing is the processings of many tasks that are initiated

(atmost) simultaneously by the p m s s o r s over a oetwork. Maximum parallelism is achieved when

the time needed to process the simultaneous tasks is approximately the same as the time needed to

p-aa thc longest one. The (parallel) cost of some simul&us tasks is the cost,@ pnress the

longest task. If several tasks art processed sequentially, the total cost will be the sum of each

individual cost component The four c a t components above are all parallel cost measurements.

Assume there are N sites available in the network. The original two relations are both of size M,

i.e.1 consisrs of M keys each. As for the algorithms discussed in Chapter 3, different quantity units

m used for different prepnwsing tshniques employed. For the hash-bawd partition, since a

hash value has to bt calculated for each key, the number of keys, i:e., the size of the relations,

serves as thc measurement unit. Equal pamtion divides a relationbto a number of equal parts.

The number of pam is used to be the: quanrity unit. The pivot finding process is measured by the

. number of data comparisons, which, as we will see later, is negligible. The remaining components

are counted by the same units as in Chapter 3. Later in this section, we will wt expL~citly show the

quantity units.

N
For Algorithm 4 (Load Sharing Son Merge), the N processon are divided into two groups of 5

processon, led by the result site, S,,, and the remote site, S,,, respectively. The task of
. N

preprocessing for load distribution is to partition simultaneously the two relations into 5 equal

N o
subrelations at sites S,, and S,. The cost for it is then 5, which is negligible. Each ..i!x:!::;.-:

2M
will be of size .s algorithm is derivedXrom the simple sort-merge method. The sorting task

iSdismbvtedat- DQ--~
2 2M

now the cost of internal soning of a subrelation, that is, O (T o g (T)).
4

N d L

In this algorithm., each site is involved in 2 pir-wi~ejoinin~s. E'acli time, one sorted relalion has

to be transferred to the other site, and local joining is then performed. The cost of transmission is -
2M 4cM

proportional to the size of the subrelation, that is, 7 As before, the cost of merging is 7
Recall that c is the average number of matching tuples for a given tuple, which is 1 in our

experiments. Therefore, the total cost of local joining is 2M, and the total cost of data exchange

during pair-wise joinings is M.

N 2M 2M
The data exchange time for load distribution is (2- 1) ~ - M - 7 , and the data collection time

. ~

N 2M 2M
is (5 - 1 - M- 7 because ihe result site collects final data. from the sites one by one. The N -

4M
total dara exchange cost is, then, 3M- 7

In the revised version of Algorithm 4, merging task is further distributed, The pivot finding

overhead is counted as part of the preprocessing cost. As before, the! cost of @e panition of
N N -
. - . .

relations into - equal part is 1, which is negligible. The pivot finding cost is obviously 2 1

2M
Mog (7 1 , since rhe subrelations are already wried and binary searching can be used. Before the

2M
part exchange phase, the size of each subrelation is approximately . During the part exchange

!$
phase, each site takes turn to uansrnit its subrelations to the correswndina sites. The -

2M 2M
communication cost of each turn will be (N-1 p. Heng, the total cost of this phase is 2M- 7

d' !

For the merging phase, all subrelations are sorted. Each site contains two sets of subrelations, one

subrelations from S,,'s group and tftose from S,'s group are first merged together respectively.
N N

Sincc there arc 1 subreladons from each group, log [;i] steps are needed to merge subrelations

from each group. For the first step, each subrelation is merged with one other subrelation to form a'
relation of double site. In tk subsequent steps, pair-wise mergings between resulting relations

2M
from the last step are performed, Since the relations are originally of size - the cost of first

M
I?'

merge step, as well i s subkquent steps, is Therefore, the merge of subrelations from each
-- -- - - -

M N M
gmup costs log [TI. After merging, each site contains two sorted relations of size J. The

2M
subsequent merge join then costs Hence, the total expense of the merging phase is -.
M N M
- Oog [TI + 1). The total number of tuples (keys) for each set of subrelatiom is approximately N

M
Therefore, the result relation size will be cx N, where c is the average matching tuples for each

M
tuple and is about 1 in our experiments. Therefore, the result collection expense is M- Plus the

2M 5M
, data didbution cost in phase 2, which is M- 7, the total communication expense is 4M- 7

Note that the pivot distribution overhead is negligible. Table 5-1 gives the summary of cost

analysis of Algorithm 4 and its mdified version. Notice that Algorithm 4a gives globally sorted

results, whereas Algorithm 4 dces not.

Algorithm 5 is slightly different. The data exchange cost is r e d u d due to the sophisticated

preprocessing W q u e . But the preprocessing cost is increased accordingly because of the

additional scanning of the relations. Sinoe the s i z of the relations is M keys, the hash-based

partition of tk partition phase costs M according to our convention, Nested loop algorithm with

hash indices is used for the local joining. As in the case of Algorithm 2, the parallel cost of
M

preprocessing for local joining operarions, i.e. im3ex set up, is i; and the parallel local joining cost

M
is 6 x R a a l l c'-4, which is thc average length of list aJsociared with each table entry. The

time to disuibutc subrelations to the two groups and to exchange data between the result site and
N M M M

the remote site is 2 (- - 1) ~ + % = k The time for the result site to coUect result data is $&I).
2 . .

M
The toul cost of data exchange is then 2M-

-

Load Sharing Sort Merge Algorithm:

Preprocessing I Preprocessing I1 Communication Parallel
(Partition) Parallel Sort LcIcal Merge

(negligible)

Load Sharing Sortmerge Algorithm: modified version

Preprocessing I Prepmss ing I1 Communication Parallel
Partition and Parallel Sort Local Merge
Pivot Finding

(negligible)

-- -

\ Table 5-1: Cost Analysis of Algorithms 4 & 4a

In the revised version of Algorithm 5, the partition task is further distributed to achieve more
N

parallelism. The preprocessing cost now includes the partition of the original relations into - equal
2

parts (phase 2) and the funher W t i o n of the subrelations into N nonoverlapping sets (phase 3).
N

The cost of the first component is 5, which is negligible. The cost fonu la for the second

2M
component is proportional to the subrelation sizes, which is 7 Now, the size of each subset of a

2M
subrelation is approximately -.

t?
2M

Toe data e x d w g e phare is the same as that for Algorithm 4a. Hence, i t costs 2M-N. At the

end of this phase, after all sites combine the subsets properly, we have two relations at each site,
, M M

being approximately of size - respcdvely. It fdllows that the index setup cost is x, and the local N'
4M

a join cost is - M
N ' As for Algorithm 5, the result collection overhead is SN-1). On the other hand, J

2M 5M
rhe task dismbution cost in phare 2 is M-- rhe wal communication ovnhcad is then 4M- N '
Table 5-2 sl-iows the cost analysis for Algorithm 5 and Algorithm 5a

b a d Sharing Hash Join Algorithm:

Preprocessing I Preprr>cessing I1 Communication Parallel
Partition Hash Iadex Setup Local J o h

r

b a d Sharing Hash Join Algorithm: mdified version .-

Prepmssing I Preprocessing I1 Communication Parallel
Partition Hash Index Setup Local Join

- - - --- /s --

Table 5-2: Cost Analy~is of Algorithms 5 & 5a

The analysis for the load sharing =-merge is straightforward. The tree setup and tree traversal

costs are the same as Algorithm 3. However, the m e setup cost is not included as pan of

preprocessing expense due to the earlier assumption that the tree indices are most likely to exist.

Therefort, the prepnxxssirig includes only tree traversal and relation partition. The tree traversal
2M

complexity is M, as for Algorithm 3, and the relation @tion is Mog (T), as f a Algorithm 4a.

The cost of phase 4, the data transmission phase, is MI the same as for Algorithm 5. At the end of
I

the phase 4, each site will contain one,subrelation from SrSt and one from Sm. They are of both
M 2M

approximately size - N Thcrtforc, the merge join will be 7, as for the simple sort merge

M
algorithm. And the result mlleaion mst is the same as for Algorithm 5, which is M- Table -
5-3 summarizes the analytical results for Algorithm 6.

Algorithm 6 h a d Sharing Tree Merge.

Preprocessing

2M
M+ Mog (2

Communication ' - Parallel
Local Merge

- Tabie 5 3 : Cost Analysis of Algorithm 6

Chapter 6

Experimental Validation II

6.1. Test Results4

We have implemented the load sharing algcrihns and actually rested on our experiment

environment. However, because of the limitation on the number of machines available, we have

run tfrc programs on d y four mdnes(Sun-3's). The results can be well predicted for a

reasonable number of machines. Appendix A gives the collection of results obtained from our

experiments. Figure 6- 1 shows the performance comparison among them. Note the tree setup cost

is not included for the tree merge algorithm.

0 1 2 4 8 16 32 64
(K integers)

figme 6-1: Comparison of load i d n g Algorithms

6.2. Load Distribution

Load dismbution for increased performance is the central idea behind the load sharing

algorithms. 7Tie costly p w s i n g asks in f.he conventional algorithms are decomposed and

distributed over the network to reduoe the total processing cost by making use of additional

machines.

For load sharing son merge algorithms, the local son and merging components of the simple son /

merge algorithm are dismbuted and processed in parallel. Hence, the (parallel) cost is much less

than'before, which is consistent with our theoretical anaiysis although minor deviatio-n may exist.

For load sharing hashing methods, S?E index setup and local join jobs are decomposed and

prcassed in parallel. However, some preprocessing &on is introduced in order for the hashing

methcd to be efficient. The prepmssing task is funher distributed in the modified algorithm

(Algorithm 5a) b& on the same idea Similarly to the load sharing uee merge algorithm, the

merging task is shared among multiple processors by partitioning the sorted relations into a numbe;

of subrelations and distributing them.

All the processing time reductions are achieved at the expenses of high; data volume for .

transmission. However, our experiments show that ttme communication is relatively cheap and data

exchange cost can be further re&& by well p k i ~ e d data transmissions to increase

communication parallelism. The experimental resuits have confirmed thrtt load sharing stratcgics

can effectively reduce the total processing cost. Table 6-1 gives the comparison of total response

time, in milliseconds, of t .k algorithms when the relation size is 32K (for a total of 64K) :ntegers.

It also sfmows tfbe percentage of improvement of the load sharing algorithms over their respective

-4s we can see, load sharing strategies can effectively reduce the total cost of join tasks. W t have

mentioned that our load sharing approach towards relational joining operation is more like pardlld

processing pmzdue in the sew that the primary concern is to speedup the application execution

by making use of additional machims. The distributed system is used to improve performance in

the way a parallel system b s . Ln a parallel system, we can often expect such ftaiurcs as d i m

1;

Algorithms
1
2
3
4a
5 a
6

Response Time
4608
3197
1464
2670
178 1
928

-
Improvement

Table 6-1: Comparison of Algorithms

sharing of memory and fast bus interconnections. However, there are two important features in our

test environment: (1) the multiple-machine system is connected by a fast local network and is

supported by a sophisticated communication software system; (2) it is a main memory system.
@ *

They imply that the data exchange is cheap and the large amount of data can be processed locally . .
without incurring costly disk operations. Our distributed environment is more favorable to data

intensive apphcatiolts and our appro& wilt d y be advantageous for a small number of -_

machines.

Tht results of this research and of LUK 871 suggest that parallel processing strategies may be

a employed for a distributed enviromnent to increase performance.

6.3. Four Machines vs Eight Machines

h e to the equipment limitation, we have tested the load sharing algorithms with only four

machines. However, since the empirical data are very consistent, we can predict, without much

deviation, plausible results for a similar environment with mbre, specially eight, machines.

For the algorithms described in Chapter 3, both processors. are synchronous and no other

slmdtaneow transmissions arc likely to wcur. & more machines are involved, simultaneous

messages arc very likely to k initiated. Specially in our load sharing algorithms, transmissions

among grwp xmmbcrs happtn mrmcunently. Therefore, the concept of communication parallelism

1s pamdarly important. We say he marirmurt communication parallelism is achieved when the

urn nttded to transmit a message in the presence of simultaneous messages is equal to tbe time to .

vansmr tfit sem message alone. Tht m & h u n communication parWm'transmissim is the .
snation when the timing for smulenm& messages is equal to that for serial transmission of

them. Recall that in our theoretical'cost analysis, the maximum communicatip parallelism is

assumed. It implies th;it the time required to transmit messages initiated at the same time is 'qqual

to the time needed to transmit the longest one. However, in actual data transmission, contentions

are likely to occur. The amount of network contention, which is difficult to predict theoretically,

deterdlines the degree of communication parallelism that can be achieved.

Let us consider Algorithm 5a (the modified load sharing hash join) with the assumption that there

are eight machines available and the relation size is of 64K integem. The plausible results can be,

derived for'the experimental data in the four rnkhine case (they can be found in Appendix A.3).

For the distribution phase, the cost of partition of the relations into equal pans is still negligible. In

the partition phase, the mlatioo at each ma~hine will be half the size of the one in the four machine

situation. Therefore, the presumable preprocessing cost will be approximately the same as that for

the four machine case with the.refation size of 32K integers, which is 404 ms. After the component

exchange phase, each site will have two relations of approximately 8K integers. Hence, the hash

index setup cost Should be 319 ms. Similarly, the local join expense will be 485 ms, the same as

that in tM four machine situation when the relation size is of 32K integers.

't

The component most difficult to analyze is the data exchange expense. As we know from the

previous chapter, the total communication process consists of three parts: load distribution,

component exchange and result collection, and only the load distribution employs paiallel
L-

transmission. As before, the sum of component exchange and result collection expenses is
M

3 x (M - ~) . To calculate the communication upper bound, the minimum communication

4M
parallelism is assumed. Hence, the load distribution cost will be 2M- N, which is doubled the

7M
expenw if maximum communication parallel is achieved. .Therefore, the u p p r bound is 5M- T,

, .
33 M

5M 27M
which is 8 if N = 8, whereas the lower bound is 4 M - which is g if N - 8. The lower

bund for rhe load
2M

M - which is N'

distribution expense (h n maximum communication parallelism is assumed) is
3 M - if N = 8. Simx we kmw the time needed to transmit 64K integers is 402 4

ms(from Algorithm I), the lower bound for the total data exchange cost will be 1356 ms; and ch

upper bound will be 1658 ms. It is 1492 rns if 10% contention rate is allowed. Therefare, the total

cost for the algorithm is then 2700 ms, achieving 21.8% improvement over the four machine

siruatioa

7M
Sirmiariy. we can gn the upper bou& for AlgorithmJa4a and 6 . They are 5 ~ - and

3M 33M 2 f M
3M-- which arc g N ' and8 m-vely when N - 8. T ' le estim;ttsd results ca.8 then be

dcnved, it'oticc tfrar rfre merging cost of Algorithm 4a wilI not be cut in h d f when the nuniter of

machines if doubted. Thte 6-2 h w s he d a ~ obtained.

6.4. Optimal Number of Machines
%-

Because of the facility limiwion, we can only predicr the optimal n u m k r of machines based on

our previous rheoreticd and empirical srudy. The cost component most difficult to analyze is the

communication ovc&ad, since i t is haid to pti : ln &e degree of communication parallelism h a t

can bt achieved. However, as rfit number of machines increases and more conrenrions m r , we

can cllmlnarc tht parallel trammissions and employ strial trammissions for dl data transfer

process. The behaviors of serial bansmissions are quite predietabk and the uppcr bound

complexity gives tfie precise wtimadon.

U'ih rhls assumption in communicadon, we p r m d to study the optimal number of machines for

2M
*tic= Tpmpm the prepmessing cow component, is I ; T,hp, the cost for hash iodrx setup, is

2M -. 4M
' L m the mmurticewn a& Tp,, thc cxpcnw of fad joining, is Since

7M
minimum mmmunicarion parallelljm is airumed, T,,, is 5M-F as in rhe lasr section. Since

our experimental data are consistent with tfre cast analysis, the axff ic i tn t s al , and a4 can be

&mined by rhem As w e can set, the performance data arc already stable, we can take rht data

obtained when &e relation size is of 32K integers ro calculate the coefficient values. Since the
4

timing for preprocessing compoent is 4-04 mr, a l is equal to - 0.025. Similarly, a,

= 0.019 and a4 = 0.015. To evduare a3, the time complexity upper bound has to be calculated: We

know from Algorithm 1 thax rfK r i m e needed to transmit 32K integers is 192 ms. The upper bound

timing when S = 4 is then 624 ms. Hence, a3 wit! be 0.006 and we have the following formula:

.As *e can see, Tma is decreasing as N, the number of machines available, is increas~ng. 'The

. trend is shown in Fi@re 6-2, Tfrzrefore, here is no theoretically optimal number of machines for

rhz load sharing algrithm5, Ha~ewr, as &e number increases. the pcmntage of act-urtt

psrfomance improvemenr, in m m s of timing, is decreasing. I t also shows the pc r fonance

improvements as a resuit of doubIing rhe number of machines. This is k a u s c the lrxal p lpccs ing

trjsr can rn longer be rdu& gready cut rhz total p r w s s i n g e x p m e while the data exchangc

c o s ~ are iikrly to increase. Ikrefore, we claim h a t 16 to 20 machnes would k optimal in this

ca3e if ~5 t ' e f f ec t factor is c~nsidcred.

6.5, Trend of Algorithm Performance

63.1. Irnprortnwnt of the 3eiwotk Performance

~ L L S ?,Cy percentage of commuucasan c x p c n i e or;: o f rhe total cost uhen relaaon s ~ z e is of 32K

i 65.2, Improvement of Processor Capcity
--

T k improvement in the pmxsmr capaciry has nvo impacts. First, i t directly reduces the local

I p m s s i n g cost. Second, it speeds up dab exchange as well. As we have discussed, in a data

nansmission process, a large ammm of rime is spent on the local processing of tbc transmitting and

receiving machnes. Tl?e communication mst also includes the local processing expenses, which

will be reduced by more powerful prwess.ors.

Sun-2 workstmom use MC68010 prooessors which are less powerful than MC68020 processors.

We dsu ran some of our programs on Sun-2's in a similar environment. Table 6-5 gives the
3

performance difference of Algorithm 1 in the two situations. It shows that several times of

improvemenr has been achcvzd. \
Sun-2's:
Sirz Local Sort Comm Local Join Total Cost
32K 9990 350 .5340 15680

Sun-3's:
Slze Local Sort Comrn Jbcal- Join Total Coat
3 X 3388 192 1028 4408

Table 6-5: Performance Dfference with Sun-2's and Sun-3's

65.3. Reiation Cardinality and Join Setectivity

Our experimenral data are consisttnr for all algoritfuns in h sense h a t if &e size of the retations . .
insreass, all tfie cost cornpownrs also i a c r e ~ in propomon. We can reasonablely predict that in

he jlmlar tnbironrnenr, if the site of the relations k a m e s greater than 64K integers, the total

cost. s well as each cost cornponenr, will change accordingly, in a linear f a h o n , as long as the

end= dambase is s ~ l l memory residenr.

f f s e hace a h @ r join selecnlirp- be resu!hng ~lbrelauon of each processing phase wdl be

: q c r and kmx dx absolux exchange cost wll be increased. Nouct, however, that 4n he

Siaanon. the corr of rerpng w o so& relanons ~ 1 1 be ~ncreased because each key m w b more

rnaxf;;ng ones: and $R cost of p l m s two hash trdexed relahons will also be lncreased because L+,Z* m. oil average, more k] r s as.swiatzd with each table enu-y. Therefore, dx! communication

cost is comparatively low even in this sitmion, and.load sharing strategies are still expected to

have good performance.

6.6. Multi-backend Database Systems: An Application

For the load sharing strategies we have discused previously, the multi-backend database systems

can be an applicable environment. A prototype hardware organization is shown in Figure 6-3. A

controller and a number of general-purpose backend machines are connected by an Ethernet-like

broadcasting bus, with the controller k i n g in turn attached to a host computer. All backend

machines run the same system software and the entire database is distributed among the storage of

individual machines. When a query regarding the daqbase is received, the host passes it to the

controller which broadcasts it to all the backend machines where the query is executed, in parallel, I

with the local database portion. As soon as a backend processor finishes the current query, it can

st& with the next one WHKOS 831. The overall system performance is increased and more

concurrency is allowed.

Disk Drive

Diik Drive To Host

Computer

Broadcast Bus

Figure 6-3: Multi-backed System Architecture
i

Our load dtsuiburion smtegi-es can weU fit the environment for the following two &asom. First,

our cxperimcnr envimnmtnt is very similar to the backend architecture. Second, since the entire

b a c k e d system activities an supen.ised by the controller, the process procedures c b lx finely

tuned such that maximum communicarion paralleIism is likely to k achieved.

In a multi-backed database system, tuples a n grouped into clusters. Therefore, the execution

time of a query varies from machine to machine. Some machines may finish earlier and they have

different woridoad throughout the processing period. Load sharing strategies are likely to be

beneficial. As we have argued previously, irtcrrasing communication parallelism can also

effectively reduce the data exchanging overhead. The overall system performance can be greatly

increased if the load sharing strategies are applied and processing procedures are well planed.
\

Chapter 7

Conclusion

General query processing strategies for distributed main memory database systems have been

investigated in this study. A

An analytic system m&l and a cost model have been built for a local area network environment.

The study shows that .both local processing expense and communication overhead should be

considered as major cost components. However, communication expense is cheap compared even

with local main memory processing cost and it will become cheaper with improvements of

processor speed, network bandwidth, and system software.

Two sets of algorithms are designed and analyzed based on the analytical models. Simple sort

merge, hashing nested lobp and tree merge are algorithms derived from those for conventional

(disk-based) distribkd systems.

There is no single algorithm that is the best in all aspects. Each algorithm can be the best for a
4

specific environment. If both relations are already in sorted order, or one of the indices is missing

and the result relation is required to be in sorted order, the sort merge strategy is the beit. T-tree

traversal is found to be a cheap operation, and the tree merge algarithm is the best of the three if

both tree indices on the join column(s) exist. Hash join is preferred otherwise. Hashingzan be

effective in a main memory environment.

fisr: load distribution amp has been developed. It differs from the convqponal "load sharing"

concept (although we call our algorithms load sharing ones) in that the otherwise "indivisible" tasks

an decomjmcd a d distributed to increase system performance by means of reducing application

response time. The fact that mmmunication overkad in a local area network is low makes the

strategy feasible. Threg algorithms, called load sharing son-merge, load sharing hash join and load

sharing tree merge, are desigred and analyzed. They a= the load sharing versions of the previous

set of algorithms. The algorithms are implemented in our experimental environment. Both our

cost analysis and empirical data show that the load dismbution strategy can effectively reduce the

total processing cost. As an example, load sharing son-merge improves simple son-merge by
I

42.0% with four machines. Local processingldata transmission tradeoff is exploited. Although the

load dismbution concept is developed in the main memory environment, the results can be applied

equally well to disk-based systems.

The experimental data are consistent with our cost analysis. For this reason, We can predict that

the trend will be kept for larger relations as long as they can fit well into the main memory. The

behaviors of the load sharing algorithms in the case of eight macknes are discussed. They are

expetted to have better performance since all the costly local processing components are further

distributed or shared. It is expected that 16 is the optimal number of machines for the load sharing

algorithms, as further increase will result only in marginal performance improvement (< 10%).

Our study shows that in a similar distributed environment, parallel processing suategies may be

employed to improve system performance. The strategies may work well in the distributed

environment for data intensive applications.

F

Appendix A

Experimental Results

A.1. Algorithms 1,2 & 3

Algorithm 1
Simple Son-Merge:

Size Local
Son
8 2
172
365
768
1614
3388
7068

Comm
Cost
11
16
25
52
98
192
402

Merging Total
Cost
124
252
5'1 9
1088
2225
4608
9518

Algorithm 2
Nested Loop with Hashing Index:

'7

Size Table
setup
3 8
74
150
293
577
1147
2304

Comm
Cost
10
2 1
3 1
59
w
199
394

Local
Join
56
113
23 1
462
924
1851
3699

Total
Cost
104
208
412
8 14
1600
3197
6397

Algorithm 3
T-tree Merging Algorithm.

Size Tree
Traversal
7

, 17
29
63
120
246
490

Cornm Merging Total
Cost
504
1044
2124
4344
8879
18079
36879

Pure
Join
58
10 1
192
378
732
1464
2917

A.2. Algorithms 4 & 4a

AIgorithm 4
Load Sharing Sort Merge

Size P r e k
Cost
0
1
1
1
2
0'
0

Local
Son
3 9
83
17 1
356
76 1
1605
3364

Comm Merging Toral
Cost
101
188
363
730
1456
297 2
6090

Algorithm 4a
Load Sharing Son Merge: mdified version

Size PrePnx:
Cost
16
14
15
12
12
12
12

LWal
Son
43
84
174
359
765
1606
3372

Comm Merging Total
Cost
158
234
380
689
1336
2670
543 1

A.3. Algorithms 5 & 5a

Algorithm 5
Load Sharing Hash Join -

Size Preproc
Cost
22
48
9 1
182
376
765
1538

Hash Indcx
Setup
13
23
45
8 2
1 60
3 I6
636

Local
Join
16
.31
63
119
242
484
950

Total
Cost
100
160
289
519
1003
1967
390 1

Algorithm 5a
Load Sharing Hash Join: modified version

Size Prcproc
Cost
14
30
55
102
205
404
802

Hash Indcx Comm
Setup
10 7 9
19 103
3 9 138
79 192
160 316 *

3 19 573
639 1060

Local
Join
16
32
60
117
245
485
952

T o u l
Cost
119
184
29 2
490
926
178 1
3453

55 .
t ,-

w
A.4. Algorithm 6

Algorithm 6
Load Sharing Tree-Merge

Size T-uee
Setup
458
939
1934
3977
8176
16670
34008

Tree
Traversal
7
15
3 5
6 2
120
242
486

Comm Local
Mcrgc
12
18
36
7 5
150
282
5 60

Total
Cost
5 24
1036
2095
4244
8658
17538
35848

Pun:
Join
62
97
161
267
482
928
1840

Appendix B

Pseudo-Code for the Join Algorithms

Algorithm 1. Simple Sort-Merge

Suppose there are two relations R I and R2 at sites S1 and S2 kspectively.

Site S1:

1. Create an array index for R1;
2. Sort the index using internal QuickSprt;
3. Receive R2 (and its index) f?om S2;
4. Merge R1 and R2 to produce the result relation.

Site S,:

1. Create an array index for R2;
2. Sort the index using internal QuickSon;
3. Send R2 (and the index) to S

i'
Algorithm 2. Nested Loop Join with Hash Index

-

Suppose there are two ~ lat ions R1 and R2 at sites SI and S2 rrspctively.

Site S1:

1. Create a ha index for RI;
2. Receive &mm S2;
3. Local joining using nested loop method.

Site S2:

1 . Send R2 to S1.

Algorithm 3. Tne Merge Join

Suppopoxthere are two relation^ R1 and F$ at sites S1 and S2 respectively.
c

Site S1:

1. Create a T-uce i&x for RI ;
2. Traverse the index to get a sorted array index for R,;
3. Receive &(the array index) from S2;
4. Merge tfie two relations.

Site S2:

1. Create a T-tree irdex for R2;
2. Traverse the index to get a soned array index for R1;
3. Send R 2 (h array index) to S I .

Algorithm 4.a. h a d Sharing Son .Merge. -
(• ’adiftad vefSiORf

1. Suppose there are n sites on a local network uith lighi loading:

where n is an even numter, and IfK sites are so numbered that h e onginal rrlattom
are ar sites S1 and S!+i. 5, n rhe result site,

2. f artition Phase
L

n 3
Sims Si and 2+, panition dmr relauons inio - equal subrelatlom i n parAlel T h e n .

2 2

. . . .
. rends 5 1 of its 2 subrelhons ro sites S?+2. . , Sn respectively

9 -

a. S1 finds the n-1 meac iduer which divide io subrelation into n i a lmu \ t equal j
P*.

b SI znds the n-1 mean ydues to each of S,. . . S, .
c. S2, ..., S , divide their subrelations into n pans by the n- I p i i a raiges.

5. Exchange Phase
Fo r i - 1 t o n d o
i
L

Si wnds n-1 of its subrelariom to h e other sites, retaining the i-th subrelatlnn for
itxlf. '

3
6. -Merainp; Phase

For each of the sires S ... , S, , do
I
AU subrelations reacived from S ; , S_" (including the one rerained for irvlf) are ti,

A

Z
be merged together.
An subrelations rcceiued from S:+, , S, iincluding the one retained for itself) are

I

to ke merged together.
-Merge join is perfowed &tween the nco resulting relations
I *

7 . Result Collection Phase
Sites S2, ... S, ttansfer resulting relations to the result site S1.

u k r c n s an even nurnbcr, and rhe sites are so numbered that th onginal relations,

R, ard Rb, arc at S; d S! n s p t c ~ v c l y 5 : IS tSze result site. s

2 Dl5tnbuhon Phase
2'

n n
b S , rends 2-1 of rhe iubreiadom to sites SZ, ..., s!, and sends 5-1 of

2 2 '

a.Chcmseahasf!fi~n~tion. .
b. All sites pa.~%tion using the same hash function, their subrelations into n

subwrs.
1 Comwnent Exchange

Fort - f rondo
I

5, wnds irr subsets to tk corresponding sires, i . e the j' subset is to be sent to site S,.
?

n n
.+I1 sires conibine the - subsetj from sites S,, ..., S_" into one relation, and the -

2 2 2
51 bsets from sires 9

3f 1 ' ""
S, Into another relauon.

L

5 . Index S e m ~ Phase
Each site sets up, in parallel, a hash index for one of its two relations.

6. Local Join PhaK
AU sites perform rfr join operanon on the m o relations residing on them.
Rtsult Coilcction Phase
Sltts S,, S, send nsutr relarions back to S ; .

A l g o r i t b 6. Load Sharing Tree Merge.

1 . Suppse there are n sites with light load~ng over a local network:

where a is an even number, and the sites a& so numbered that the original wlgtions.

R, a d Rb, are at St and S! n5spectively. SI is the result site.
9*1
L

Assume there are T-me irdices for b t h relations.
2 . T z Travenal F'hase

S1 and @+, m v e m the tree indices to get the sorted a m y indices.
2

, ' 3. partition Phase

a. S1 partitions its relation inloin almost equal subrelations
\

b. S1 sends the pamtioning key values to s:+, .
2

c. s?+, partitiom i t s relation inlo n rubrelations according
2

4. Transmission Phase

to the povot value3

n n
a S1 sends 2-1 wbrelations to S1 ,.... S? and s!+~ s e n d s --I rubrrlat~on\ to

2 2 2

n
s ~ l * . - - l S n .

n
b. Si sends another - 1 subreiations to s?+,. ..., S and s?+, send* another 2- 2 n

2
. n n - 1 subrelations to St S-. 2- 2

c. SI and S1 exchange a subrelation. ,+ 1
L

At the end of this @me, all sites contains two correspondmg subrelattom ro btt
joined.

5. %leizing Phase
Ail sites perform m r g n g of k i r subrelat~om

6. Result Collection Phase
S1 receives results from all other sites.

Appendix C

Examples for the Load Sharing Algorithms

C.1. An Example for Load Sharing Sort Merge (Algorithm 4a)

The data file in each site is shown as follows:

S,: 3, 4, 17, 10, 1-4, 19, 20, 9, 2, 9, 13, 15, 7, 1625 , 30

Note that the data file is not initially sorted as shown. There are two additional machines

available. They are S1 and S2 respectively.

1. Partition: sites S, and S, partition their dau files into 2 equal parts. S,, sends part2 to S1
ar.d S,, sends its part2 to S2. \

, S?,: p a ~ = { l , 5, 10, 12,22, 18,28,36}
S i : part-{2,7, 11, 12,4, 24, 29, 35)
S,,: pan-(3, 4, 17, 10, 14, 19, 20, 9)
S,: part-{2,9, 13, 15,7, 16,25,3U]

2. Lucai Sorting Phase: all sites sort their own parts in parallel. :

S,,: part={l, 5, 10, 12, 18, 22, 28, 361
S i ; pan-{2,4,7, 11, 12, 24, 29, 35)
S-: pan-(3,4 9, 10, 14, 17, 19, 201
53: pan-{2,7,9, 13, 15, 16,25,M)

3 ~ h t Finding Phor: S, furrhcr partitions its pan into 4 p a m and rends the three pivot values
t o S ~ , S , i U d ~ w h i c h ~ h e h p a m t ~ l r h s i r d n r a w n i n t o 4 p a r t s a c c o ~ n g t o ~ p i v o r v a l u e s . .
Thc pvot values are 10, 18, and 28.
S,: panI-(l, 51, pan24 10, f 21, pad-(18,221, partk(28, '36)
S1: pan1={2,4,7), part2=ill, 121, pad-(241, pm4={29,35}
Sm: p t l - (3 , 4 , 9) , part2-(10, 14, 171, pad-(19,201, part&(}
S: p l = (2 , 7 , 9) , parr2-(13, 15, 161, part3={251, part4=(X))

-
4. ~;r t Exchange Ph.se: S, receives all partl's, S i receives all parQis, S,, adpart3's and S 2 all

paR4's.
S,;: group1 comins { 1,5) and {Z, 4,7); group2 contains {3,4,9} and (2,7,9)

43 - -- --

S1: group1 mnsisn of {lo, 121 sod (11 , 12); p u p 2 conrains (10. 14, 17) Md 113. IS. lbf
Sm: p u p 1 consists of (18,221 and (24); group2 consists of {19,20) and (2 5)
%: group1 contains (28,361 and (29,351; group2 contains (30)

5 . Parailel Merge: all sites merge their gmupl pans togelher and group2 pans together.
S,,: {1,2,4,5,7}, {2 ,3 ,4 ,7 ,9 ,91
S,: {lo, 1 1 , 12, 121, (10, 13, 14, 15, 16, 17) t

S,,: {18,22,24}, {19,20,25)
$: { 28,29,35,36}, (30) t

Then, all sites perform merge join on the two resulting relations.
S,: result relation is (2,4,7}.
S1: result relation is (10).
S&: result relation is (1.
S2: result refation is {I.

6. Result Collection: S , , S,. S2 rend the joining result to S,,,.
6

a C.2. An Example for Load-Sharing Hash Join (Algorithm 5a)

The data subfiles are rht same as in the case of the previous algorithm.

1. Distribution: S,, and S, partition their data files into two equal parts.
S,,:pml-(l,5, 10, 12, 18,22,28,36},part2-(2,4,7, 11, 12,24,29,353
S,,: panl-(3,4,9, 10, 14, 17, 19,201, pad-{2,7,9, 13, 15, 16,2530)
S,,, sends part2 to SI and Sm sends its part2 to S2. After the distribution, each site consists of
the following:
S,,,: {1,5, 10, 12, 18,22,28,36)
S,: {2,4,7, 11, 12,%,29,35)
S,: {3,4,9, 10, 14, 17, 19,201
S,: {2,7, 9, 13, 15, 16, 25, 30)

2. Partition: each site panitions its data set into 4 parts by a hash function (assuming h(key) =

key14 '.
S,,,: part 1-{ l,5}, part2-{lo, 18, 221, part3={), part4={12,28;36}.
S1: panI-(291, part.2-121, pm3-{7, 11,353, pan4={4, 12,241.
S,,,: pan1 -{9, 171, part.2-(10, 141, part3-(3, 191, part4={4, 20).
%: panl-(9, \3,25}, paJt2={2,30), pan3-(7,151, part4={16}.

3. Subrelation Redistribution: part1 of each site is transferred to S,,; part2's are sent to S , ;
part3's are sent to S,, and p a ~ 4 ' s are transmined to S2. The parts from SEt and S1 are combined
~nto one set and the parts fron S, and S2 to another.
S,,: { l ,S, 291, (9, 17, 9, 13,251
S1: {lo, 18, 22,2), {lo, 14, 2, 30)
S,: (7, 11, 35j, (3, 19,7, 15)
h: {12,28,36,4, 12,241, (4,20, 16)

4, Hash Index Setup: All sites set up a hash index for one of their two sets of data.
5 h a 1 Hash Join: all sites do the nested loop join between their sets of data.
6. Result Transmission: Si, S,, % send the joining reesult to S,,,.

. ,
,i

[AHU 741

[BERG 861

[BEILV 811

[BIT 861

[BLA 771

[CAR 851

[CEP 841

[CHER 84]

[COM 791

[DEW 841

[ELH 841

References

Aho,A., HopcroftJ. & UllmanJ.
The Design and Analysis pf Computer Algorithms.
Addison-Wesley , 1974.

Berglund,E.J.
An introduction to the ~ ~ S ~ s t e m .
IEEE MACRO , August, 1986.

Bernstain,P., et al.
Query Processing in a System for Distributed Databases(SDD- 1).
ACMTODS 6(4), December, I98 1.

Bimn,D.
The Effect of Large Main Memory on Database Systems
In Proceedings of SIGMOD, ACM. , 1986.

Blasgen,M., & Eswaran,K.P.
Storage and Access in Relauonal Databases.
IBM Sysr. J 16(4), 1977.

Carey,M.J. & Lu,H.

d.
Some Experimental Resultr on Distributed Join Algorlrhms In u Local Network.
Technical Eteplt 587, Comp Sc Dept, U. of Wisconsin-Madison, March, 1985

Ceri, S. and Pelagam, G.
Distributed Darabrrres . Principles and Systems
McGraw-Hill, 1984.

Cheriton,D.
The V Kernal: A Software Base for Distnbuted Systems.
IEEE Sofrware , April, 1984.

Comer, D.
The Ubiquitous B-Tree, .
Comp&ng Surveys 1 1(2), June, 1979.

D e w i ~ D . , Katz,R., Olken,F., Shapiro,L., Sto lebrakem., & W d , D .
Impkmntation Techniques for Main Memory Database Systems
In Proceedings dSiGMOD, ACM. , New Yo&, 1984.

ElhardK. & Bayer,R.
A Data& C a d for High Performance and Fast Restart in Database Systems.
ACMTODS 9(4), December, 1984.

fHHKOS 831

[KNU 68 j

[KNLj 731

[LANT 851

1 LEH 851

[LEH 861

(LU 851

[LUK 871

[PAGP 851

(PARK&

[SAL 861

[SHAP 861

, . * ,-

He, Xin-Gui, et aL + *
The Implementation of a Multi-backend Database Systems: Part 2.
In Advanred Daraba;re Machine Architeemre. Prentice-Hall, New Jersey, 1983.

Knuth,D.
The Art of Computer Programming: Fundamental Algorithms.
Addison-Wesley , 1968.

Knurh,D.
The A n of Computer Programrping: Sorting and Searching.
Addison-Wesley , 1973.

Lantz,K.A., Nowicki,W.I. & Theimer,M.M.
An Empirical Study of Dismhted Application Performance.
IEEE Trans on Software Engineering SE-11(10), October, 1985.

Lehrnan,T.J. & Carey,M.f.
A Srudy o f l h Structuresfor Main Memory Databare Management Sys tem.
Technical Report 605, Comp Sc Dept, U. of Wisconsin-Madison, July, 1985.

LehmwT.3. & Carey,M.J.
Query Prcxessing in Main Memory Database Management Systems.
In Proceedings ofSIGMOD, ACM. , 1986.

Lu,H.
Distributed Query Processing with Load Balancing in Locaf Area Nerwork.
Technical R e p n 624, Comp Sc Dept, U. of Wisconsin-Madison, December,

1985.

Luk,W.S. & Ling,F.
An Andy tifimpirical Study oT Dismbuted Sorting.
Manuscr@t wrdcr preparan'on , 1987.

Metcalfe. RM. & Boggs, D.R.
Ethernet: Distributed Packet Switching for Local Computer Networks.
Communications ~ A C M 19(7), July, 1976.

Page Jr.,T. W. & Popek, G.J.
Distributed Data Management in Local Area Networks.
In P r m 3rd ACM Symp. on Pr im. of Database Sys tem. ACM-SIGACT-
SIGMOD, March, 1985.

W A .
Marsivc Manory M e m Massive Performance.
Technical Rcpon 036-86, Dept of CS, Princeton Univ, May, 1986.

Salem,K. & Garcia-Mo1inaJ-i.
Crarh Recovery Mechanismr for Main Storage Database Systems.
Technical Report 034-86, Dept of CS, Princeton Univ., April, 1986.

shapi%;t.Q ,

Join l'mxsmg in Damhsc Systems with Large Main Memory.
1(3):239-264, Sep, 1986. AC*oDJY

ITAN 851 Tanenbwn,A. & Rerlesse&.V.
Distributed Operating Systems.
Cwnpufing Surveys 17(4), December, 1985.

