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Abstract :

lssues on centralized ﬁ'lhin memory database sysiems are becoming popular in the recent
i:z:mi_ur:. However, little has been done bﬂ the 133ues regarding distnbuied main memory database
systems { DMMDB&}. This thesss studies generaily relational join mzzgi;:—s for DMMDB:, Tl‘;e
amounical data obtained are used as the bases for performance evaluation.

- .
We have constructed ar analyucal svstem model and a cost model for a local area network

snvironment to evaluate dismibuted join operations, and designed and implemented a number of
algonthms over an Ethernet nerwork of diskless Sun-3 workstations running the V-syaem. Our
study shows that hashing can be an effeciive method for a main memory environment. However,

no single algonithm is the overall best one. A certain strategy only fits best into a specific syuation.

The major contribution of this research 1s the development of the lofd sharing strategies for
distributed join o;'xran‘ons. Our eipcn’menu‘ show that costy local processing tasks of thc‘joir'l
operations such as soning and merging can be spread over other otherwise 1dle machines to reduce

the mial processing cos: a™ the expense of increased communication ove

communicatonlocal  processing  madeoffs should be fully explowzd w ificrease system’

performance. [t alsp indicates tha: 1 a simular distnbuted environment, paralleNprocessing

sirarzgids may be empleyed for performance enhancement.

- £



To my wife, Weit Bat

i




Acknowledgement

I.am mbst grateful o my supervisor Dr. Wo-Shun Luk for his ‘thougtful guidance, invaluable
subpon and chcouragzmem througthout this research. Many thanks to Dr Tiko Kameda for his
teaching and suggestions which improve the work considerably, 1 am also graeful 1o Dr. Jiawei
Han for hus careful reading -of the thesis and his valuable comments. 1 would like to thank Dr.

Binay Bhattacharya for serving as the Chairman of my thesis examination comminee.

é

My discussions with fellow smxdemis Franky Ling and Garnik Haftevani were very heipfui in
setting up the experimental snvironment. Many thanks to Dr. Joe Peters, Dr. Pavol Hell, Dr.
Veromca Dahl, Dr. Lou Hafer and Dr. Binay Bhattacharya for permitting me to use their Sun-3

workstations which are necessary for the experiments.



Table of Contents ‘

Approval ‘ o
Abstract |
Acknowledgement
~ Table of Contents
List of Tables
List of Figures
1. Introduction
1.1. Dastributed Systems and LANs :
1.2. Main Memory Syaiems d
1.3. Thesis Contributions
1.4 Thesis Organization
2. Query Procesging for Centralized MMDBs
2.1. Index Structures for MMDBs
2.2. Query Processing Strategies
- 3. Distributed MMDBs
31 Why Distribuied MMDB3? : N
31.2. The Models :
3.3. Conventional Algockhms :
3.4. Cost Analysis ) “\
-4. Experimental Validation I
4.1. Test Environment '
4.2, Test Parameters
4.3, Analysis of Expeniments
4.3.1. Test Resulns
4.3.2. Preprocessing vs Local Join Operanon
4.3.3. Local Processing vs Communication %

)

4.3.4. Merging and Nested Loop Strategies : '

4.3.5. Trend of Algorithm Performance
4.3.6. Further Improvemens
5. DMMDB Query Processing with Load S‘h.armg

5.1. Motivations

5.2. The Revised Modeis

5.3. Load Sharing Algorithms

5.4. Cost Analysis ,

6. Experimental Validation IT

8.1, Test Resuls «

5.2. Load Distribution

6.3, Four Machines v3 Eighe Machizes

e

Vit

¥itl

~ A Y s e b e e

P
o

— — -
ot D

&

— —
oA

tad b P e
e Y D

~3
—

[N S NI
£ e b2

SE8 B RRTRRR



-
v

/mpumz} Number of Machines
6.5. Tread of Algorsithm Performance ’
6.5.1. Improvemetyit of the Network Pc:forﬂ:mcc
6.5.2. Improvement of Processor Capacity
6.5.3. Relation Cardinality and Join Selectivity
6.6. Muiti-backend Database Sysiems: A Application
7. Conclusion
Appendix A. Experimental Resulls
Al Algorithms 1,2 &3
A.2. Algorithms 4 & 4a
» A BQAlgon':hms 5&5a
A4 Algonthm 6
Append:x B. Pseudo-Code for the Join Argomhm
Appendix C. Examples for the Load Sharing Algorithms

C.1. An Example for Load Shanng Sort Merge (Algonithm 4a)

C.2. An Exampie for Load-Sharing Hash Join (Algorithm 52a)
Rc!erences

47
47
48

50

52
53
54
55
56
62

62

65



Table 3-1:
Table 3-2:
Table 3-3:
Table 4-1:
- Table5-1:
Table 5-2:
Table 5-3:
Table 6-1:
Table 6-2:
Table 6-3:

Table 6-4: ..

Table 6-5:

L

-
\1
]

V-Sy%:m IPC Timing Data-
Summary of Cost-Analysis

Loeal Proccssing v
Local ing vs Communication

Cost Analysis of Algorithms 4 & 4a
Cost Analysis of Algorithms 5 & Sa
Cost Analysis of Algorithm 6
Comparison of Algorithms

Eight Machine Results

Trend of Algorithm Sa

Performance with Improved Nerwork

Performance Difference with Sun-2's and Sunt- 3 s’ |

vii

List of Tables

\

13

17

18

23

37

8
39
42

46
46
47



Figure 2-1:
Figure 2-2:
Figure 2-3;
Figure 4-1:
Figure 4-2:
Figure 6-1:
~ Figure 6-2:
Figure 6-3:

List of Figures

The Structure of an AVL-tree Node

The Structure of a B-tree Node

The Structure of a T-tree Node
Performance Comparison

Example of the New Strategy
Comparison of Load Sharing Algorithms
Trend of the Elapsed Time
Multi-backend System Architecture

-

~
Ry

8

-t

~I O On

21

45
48



o

o

" - CHhapter1  _ =/
~ Introduction
g

1.1. Distributed Systems and LANs r

The terms parallei and distributed campu:mg systems appear- frequemly in thc literature. The-

ma;or difference between the two lies in the degme of coupling and the level of interactions among

the component pmwm. By a parallel oomputmg system, we mean.a system in which all
processors are tightly coupled and sharing is through shared main memory. A distributed system,
on the other hand, is one in which all pm&esSors -are loosely coupled, each with its own local

-

memory, and sharing among processors is through a certain communication medium.

Distributed systems, in paniwlar,rdistﬁbutcd database systems, are becoming more and more
important in rgcént years. A distributed database is a collection bf data which belong logically to
thé same system but are geogﬁplﬁ;:aﬂy spread over the sites-of a computer network [CEP 84i.
There are two important aspects: distribution and logical correlation. Distribution means that the
~ data are physically distributed. Queries usually involve data from different ge;‘graphical sites and
data transmlsswn thfough a oommumcanon medium is- necessary It dfstingﬁislri “a distributed

system from a centrahud one. Logngal comz!auon means that the data are logically mlemlamd

which distinguishes a chsmbuted system from a col}ccuon of several local systems. The user does .

not even have to know where asetof data is locawd
~

Distributed computrqg systems can be categorized by the degr:e of decentralization. At one |

exmeme is the remote computer nc{work also called long haul network, wherc interconnecicd
sysiems may be widely separated, with distance between two systems greater than 10 km, and data
transfer rate usually less than .1 Mbps. At the other extreme is the tightly coupled multiprbcessor

system, with distance between two processors (usually mych) less than .1 km and data transfer rate

usually greater than 10 Mbps (MEB 76]. Near the middle of these two chrémcs is the so-called
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local area network systentTLAN). In such a system, we have the advantages of a m:twork‘syswm
for resource sharing, with 3 much more efficient communication medium. We also have the
advantages of a multi-processor system for parallel computations, without the cost of building
tightly coupled systems. Laocal networks are becoming more and more popular because of the
decrease in cost and the increase in the computer hardware and local network pérformance.

1.2. Main Memory ’Systems

With the current trend of semiconductor technology, massive memory computing systems, having
a main memory size of a gigabyle or more, will be economically feasible in the near future [LEH
%6] In such a system, a huge amount of pnman memory is available and a large poruon of, or
gven the whole applicabon working storage will be able 1o fit 1nie ir. _This will fundamentally
change the conventional programming lechniques. {BIT 86] and [PARK 86} have studied us
'impacts on the current methodologies. Database applications, which tend to be 1'O bound, will

, xmmcdmély benefit from the large amount of main memory.

-

The impi:célions are twb!’oid The huge pnmary siorage can be used 13 hold a large portion of for
¢even the entre) database such that the disk I'O bottleneck could be eliminated. 'T‘hc mMemory space
can also be traded for computation ume 1o achieve desired speedup. In a relational database
sysl2m, sionng 10 memory several index structures of different types for 3 relation can facilitate
mult-dimensicnal rcme;za!.s 4 o

Tre avalability of inexpensive, large pnmary memory is bringing new design issues 10 database
- managzment systems. [t leads us to reexamine the components of wadidonal database managers.

Any componrent whose operations are aimed a: disk-based data should first be modified w reflect

the new eavironment gThere ars basically two situations to the use of massive storage. N

-

One 13 that the memory can be wsed o provaide a large buffer pool where frequentls accessed data
can be kept in order 0 reduce the amoust of [0 mafic Performance 15 enhanced, but minumizing
the amount of disk accessing 5 3n! the pomary goa! for the algonthm design [DEW 84], {SHAP
36} and {ELH 347 ar= based o6 us assumpaon. Iz (s situation, accuracy in estimation of space
feQuirement i3 crical. When we perform query z.}x;c'zm zanon, we have to estimate exactly the size

of 3 temporary relavon. Largs 2rmors may reszit oo subsmansal performance degradation
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The other one is when the main memory is large enough to holé the enuire database system. New
schemes for physical data orgamzavion, querk processing, concurrency control and recovery are
needed. The emphasis will be the efficient use of CPL‘,"- and memory resources rather than the
economy of dis;k-acc:ssing and disk storage. Disk accesses are necessary only for actuvities for
crash recovery purposes. [LEH 25}, {LEH 86} and {SAL 86} are-based on thus assumption in their
research. In Sur opinion, the actual memory size 15-NOL 1mponant, but there must be sufficient

#torage so that disk VO is not necessary throughout the processing.

1.3. Thesis Contributions

Thus thesis studies general query procgssing sirategies for distnbuted man memon database
sysizms {(DMMDBs). The dazadbase 13 spread over geographically separated sies of a local
nerwark, and each site has suffoiemly lirge ameoust of pamary memory & store oW SN Tocal
portion of &2 2rabase system

Currenily, much work has bees done on sues rzzarding centralized main memany database
AY
systemts, However, DMMDB 133ues, whach are becoming more impor@nt as diskliess workstalons
_ . ;
are more and more popular, are neglecied

r *

We have developed two sets of aigonthms for the win operations between twe reistions (ne

5
v
o
=
i)
v
-

4 -
contains these denved from algonthms Yor convenoonal “disk-based) distnbured daah
SR

The processing i3 confined 1o The two siizs with the relations. Three agonthms, cailed simple

sor-merge, nested loop hash jOin and ree merge, ark dosizned and analy 224

Tre (oad dismbunion conce X 15 proposed 11 Sioser o a parallel processing prisedure 18 thal
the otherwise 'indivisibie’ asks are decompesed and shared among the processons over @ local
rerwork. The meonvanos is based on the facr that the posssbility that some machines are siting 1die
wtile others ary busy 8 remarkadbly migh, and he facr tha! communicaiion overtead in g ool arta
serwot s faurdy low with regard 2ven o locul prai#siing N2 Mam meTON envirunment  The

i3 1
v

underlying wiea 13 that pardliz! processing syuzries Wan he emploved 1 3 disinbuted environment

)

for pertoTTmics Fmhancament



Based on the load disnbunon wrazegy, the other set of algonihms contains the extended versions
of the fint set. They are the load shanng sor-merge, load sharing hash join and load sharing tree

merge algonthma. .

All the algonthms are implemented 10 our expenmental t2st environment and their performance 1s |
analyzed. The performance wend 13 pfed:cmd s well Afsystem mode! and a cost model are

2

deveioped as the bases of our thenrencal and empincal studies.

k3 - — - - - - 4 \A— £ - .
Out resubs confirm thar incrrasing communicazon parallelism can be an-effective way of
ncreasing sysiem performance, which 3 specialiy true f load distnbution straia gy 1s emploved.

H

1.4. Thesis Organization

Thre thesis is orgamzed a3 foliows Chaprer 2 gives a survey of the query processing strategies for
ceawraiized man memory dazabase syiems recenely developed in the literansre. In Chaper 3, three

joun processing algonthms basedd on the convenuonal stralegies for disk-based svstems are

fevsloped Chaper 4 analyzes the smpincal dama for the previous algonthms and provides
»:v/‘.dem:z ta favor of load dusinbusion suracegies Load shanng algonthms which emplov the load
4isAdUHON RRAERICS AFe sublequently designed and analyzed theoreucaity 1 Chaprer §. Chapt:f
5 analyzes the expernimentai daza for e load shanng algonthms and studies the impacts of

.

SOMMLmianoa paralishsm, paraliel processing and lead disinbution wiraiegies A conclusion of

thud ey 13 grven oo Chapesr -
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~ Chapter2 -
Query Processing for Centralized MMDBs

a

g

The basic a.ssurr;ptjon for a centratized MMDB 1s that the pan of the database that is going 1o be

referenced i3 completely memory resident. No disk LO 15 involved dunng a transaction execution

C2xcept for the activities for recovery purpose.

Y
.

Thre essental consideraticns are therefore: how 1o make efficient use of pnmary memory and
how o minimize the number of CPU cycles. Thus is especially true when we study query

processing tachniques. Two aspects need to be considered:  duta structures and processing

-algonthms.  In a conveanonal dar.abascf)sysicm. data structures arc chosen and designed to

!

mimmize recessary disk waffic.  Vananons of B-trees are of this kind.  In a main memory
2nvironment, however, other data structures may more efficiently use the storage space and have
Dete?’ reinigval performance. The processing algonthms should also be reconsidered and new

mezthods should be developed o fit into the new environment,

Tres chaprer will summanze what has been done on this issue,

2.1. Index Structures for MMDBs

Trerz are basically two kinds of index structures: hash-based and order-preserving indices.
varans of hashing methods belong o the first category. Chained buckzt'hasl';ing ;nd hinear
are 2xampies of this kind. The hash functon and the key value iL;cif determine the
weanon a daza it2m s o be siorzd. The sirucrures which pr:sc;\'c a certain logical order of the data
selong © the the second category. Arrays and B.-tees are examples of this type. In these dalza
3eTuCTLTes, 3 total order on dala items is retained in the sense that, given a data 1tem, there 1s an easy
22V 0 Know whers the "nexz’ iem s "Adjacent” iems are likely to be clustered.

-

»
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requirement, hashing is expecied to have good pcrformancc in main memory systems since the
workmg storage of an application is now entirely in main memory and’ references to it will not
cause any disk LO. [KNU ?3} shows various techniques of calculating hash values. Searching a
hash table is fast which is a good characteristic for equal-join operations. .But it does poorly with

range queries which ask for a set of items within certain range.

As representatives of order-preserving data structures, AVL-trees and B-trees are two well-known

data structures, of which a good inmoduction can be found in {COM 79] and [AHU 74},

respectively.

Left Child 7~ \\ Right Child

Figure 2-1: The Structure of an AVL-tree Node

(oo [ [oma] — Jomaly
7 7 \

Child0 Chid I - Chid n
Figure 2-2: The Structure of a B-tree Node

The stuctures of an AVL-tree node and a2 B-tree n\o-dc are shown in Figure 2-1 and 2-2,
respdcuvely. AVYLi-trees are binary trees in the sense that each node has at most two children.
Search is fast because it requires less number of data comparisons. However, it has poor storage
usage since each node contains only one data im:yn and the data to pointer ratio is 1 to 2. Even in
the main MEMOry £nvironmen:, we cannot assume that the amount of memory axmlabie is
snhmiad. Efficient use of pnmm siorage is stll one of the major issues. B-trees are v.ell known'

t2rmal dau’ﬂ?crures, Since each node contains multiple data items, the rumber of levels
searched to retrieve an item i3 sigrificantly reduced. It also has better storage usage. However, it
has to detzrmine where w0 go from among mulupie data links of each node along a search paLh_

'LEH 35] has studied the expenmental aspects of B-trees and A‘v’L -rees.
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A mew tree structure, called a T-tree which has advantages of bdm AYL-trees and B-trees, is
. introduced in [LEH 85]. The basic structure of a T-tree node is shown in Figure 2-3. T-trees a:t
binary trees, with each node containing n data fields, one control field and two pointer fields to its
left and right children. Since multiple data iterns are allowed in each node, and each node can have
. a maximum of two children, T-trees retain the intrinsic binary search narure of AVL-trees and the
storage efficiency of B-trees. Binary search is used for ir;ua-node seamhjng. \

o

B | Control |Data| Datal ... {Datal

Left Child l\ Right Child

Figure 2-3: The Structure of a T-tree Node

Insertion and deletion operations for a T-tree are very similar to those for an AVli.-tree. Intra-
nodé searching or data movement is involved, and rebalancing has to be done when necessary. . The
rebalancing technique is the same as for AVL-trees, except that data items may have to- ke
transferred from one node to andther. However, mosti‘updates are expected to invo‘lvé only data
movements within one node, rebalancing is much less often needed than in an AVL-tree.

Algorithmic details can be found in {LEH 85].
. - ‘ ,

{LEH 85] has done experiments on T-tree, B-tree, array, extendible hashing and linear hash
strucrures. The results indicated that T-trees provide a good ovérall pérformance for mixes of

searches, insens and deletes.

2.2. Query Processing Strategies

When queries are presented to the database systems, it is the task of a query optimizer to
decompose a query into primitive relational operations such as projections, selections and joins.
Each operation involves one or two relations. We will toncentrate only on joi‘:\pcrations on two

reladons.

Conceptually, there are two general methods: nested looping and merging. For a pure nested

loop method, one of the relations is operated as the outer and the other as inner relation. For every
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o
upie of the outer relation, the entire inner n:la,non hzs to be scanned to search for matchmg tuples

This is a quadratic strategy wh:ch is too expcnswe o be employed Various mdex structures can be

used 1o speed up the operation. In the previous section, we have discussed mmcval structures good

for main memory environment. Hash table and T-tree are two of them- Instead of scanning the
-~

entire inner nlaﬁom the index for the inner relation can be probed in search for matching tuples.

Merging is the other general strategy used for joining operations. Merging requires the ability to
access tuples in'a rcia_ti:on in 3 cenain logical ordé:r, which can be achieved by either an gfdcr
preserving index or a sorted array index. Both relations are scanned following the order provided.
The strategy is linear in time complexity, because each relation has only to be traversed onbc. Tree

structures are the commonly used order-preserving indices.

!n&he.iitcrarum, various algorithms have been proposed, which are essentially derived from
conventional join rrocessing algorithms fm; disk-based systems. Index structures suitable for main
mcmo.ry operations are used. Processing strategies are also tuned to fit into the main memory
environment. Five algorithms are presented and tested in [LEH 86]: simple nested loop, hash index
nested loop, tree index nested loop, sori-mc;'gc and tree merge. The simple nestedsioop algorithm
is shown too costly to be practical, and it is implem.enwd only for comparison purpose. Hash index
nested loop and tree index nested lBop are two vanants, of the simple nested loop join algorithm
with a hash index and a tree index, mspebﬁycly, on the joiﬁ column of one of the relatiens. The
sort merge and the tree merge are two variants of the sort-merge join algorithm of [BLA 77} For
the sort merge algorithm, an array index for each relation is set up and subsequently sorted by
quicksort. Then join is performed with this index. For the tree merge, a T-tree index is created on
the join column for both reiaﬁpns and the merge join 1s performed subsequently. However, the tree
merge is a practical method only if the indices already exist, $ince the tree inde;c setup cost is very
high.

The experimental results show that if a proper pair of tree indices on the join column(s) for both
relations exists, the tree merge join method performs the best [LEH 86]. This finding is dbviousiy
predicied on the assumption thar the relations are not already soried according to the join

column(s). However, in situations where one of the two relations is missing an index and the result -
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relation needs to be in sorte_d order, the sort mergeSis the choice. Otherwise, the hash join method
would be the best one. One benefit from merging algorithms is that they produce ordered results,”
whereas the hashing methods give randomly collected ones. .
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Distributed MMDBs -

3.1. Why Distributed MMDBs?

A distributed MMDB can be considered as a database system distributed over a loosely coupled
multi-machine system, with each individual machine having enough primary memory to store its

complete local database. The data transfer rate of such a system should be reasonably‘fast'.

But why distributed MMDBs on a local area network? In a long haul distributed'system where
communication expensi:s constitute 2 major port:ioh of the total ‘prooessing cost, it does not make
too much sense to have a main memory system which does not aim at reducing data exchange cost.
On the other hand, in a ceptralized MMDB, there is obviously a limit to which additional mei'nory
c2asas to_improve its péffonnance, i.e. when the memory space is large enough that vigually ’no
disk I/O is incurred due to»gocal processing. Then, local processing, instead of disk I/O, is a major’

factor of the total expense.

By having ;hc database distributed over a local network, the performance could be enhanced withe) ‘
the introduction of parallel computatons. Some of the advantages include (1) reliability” and
avajfability are increased because of data duplication; {2) database expansiogs are easier through
the addition of new sites to the network. The system response time may also be reduced.

One of the pmblems with main memory systems (either centralized or distributed) is that the
volatility of primary storage makes crash recovery more difficult and costly. [DEW 84] and [SAL
241 have studied new recovery echniques for centralized MMDBs. But linle has been done for
diszribﬁi:d’ ones. We also nesd new concurrency control schemes since transactions tend to be
short that locking small items may not be tolerable. However, this thesis does not address these
problems. Ome of the main issues of distribyted systems (main memory or disk-based systems) is

3
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the overall performance which is partly determined by the communication overhead that accounts
for a signiﬁcam portion of entire computation expenses. This research deals with the issue of
performance of distributed MMDBs. ' '

3.2, The Models L '

We consider two kinds of models. System models arerabstmctions of major features of actual
systems, which should be specific enough to reflect and summarize basic features of a class of -
actnal system"s and which should be general enough to ignore unimponant details of actual systems’

and make theoretical analysis possible. Cost models are basic formulas of how processing
expenses should be calculated. They should include all dominant factors under a specific sy‘_stem' ‘

,%

In our system model for the diSm'buted computing study, two homogeneous machines (or sites)

model and eliminate negligible components.

A

are interconnected by a local area network. They run the same system software and communicate
and the

st

with each other through message passing. They. are called the result site, denoted by S

remote site, denoted by S, respectively.

There is one relation at each site. Join operatién is to be performéd between the two relations.
One of the relations, usually at the remote Sité, has to be transferred to the other site in a way
depending on the specific technique used. Each proce.ss.or is assumed to have enough local primary'
memory to hold the entire two relations. For ease of discussion, we assume that the two relali6ns
are of the same size M integers. Since the two machines are autonomous, théy may execute the

/;ame éperation on their own data set independently. .We call this kind of executions parallel
operations. The cost of some simultaneous parallel operations is determine}d by the expenses of the

9

most costly individual operation.

Our cost model consists of three components: preprocessing, communication, and local join.
Preprocessing refers to the local handling ;'m'or to the local join of the relations. Local joining is
the actual join of the two previously handled relations. Preproccssing‘usually includes operations
such as index setup, array index so‘rﬁng, relat\ion partition, and so dn,; which may not be necessary

but which will speed up the subsequent local join operation. A more costly preprocgssing phase
. ) '/j ‘

/
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could result subsequently in a cheaper local joining phase; and both of them belong to the local
betwccn the two Cost components for dlffemnt wchmques It is also because it is difficult to
measure t}tm in a unique unit. They are measured in terms of the number of data comparisons or
data movements dunng the operanon, which will be defined later when we pursue the cost analysns
- The commumcanon cost is usually proportional to the size of a relation to be transferred. It is
measured in terms of the number of parallel. packet transmissions or the size of data segment

transmitted, depending on the technique used. - ' -

3.3. Conventional Algorithms

‘Queries codcdii.n a high-level, pmcedural or‘non-procedural language are submitted to the
database sysu:m which is distributed over a commumcauons network. The database management
system -then translates the queries into a relational calculus form. It is the task of the query
optimizer to decompose the relational calculus form into primitive operations such as selections,
projections and joins°which may involve operatidns_ voxﬁ"élations at different sites. >P‘-‘or ease. of
discussion and analysis, we assume, without lose of generality, that a join operation involves 6nly

two relations residing at two different sites of the network.

Distributed join algorithms are distinguished by whether they employ the traditional join or
semijoin operator, how the pair of sites involved cooperate during the join processing and wch of

the local pméessing %§is used.

To perform a join, one of the relations has to be shipped to the other site (called the result site).
The semijoin operation can be used to 1Mt the amount of data to be transferred. Only the join
column values of one relation and the matching ¥ples of the second need to be transferred between
the two sites. It played a@xlal role in the query processmg algonthm of SDD-1 [BERN
" 81] where the intersite data transfer is expenswe This is specially true for a long haul network
.system. However, in a local area nctworbovgr ,wh:_ch data transfer cost is much lower, it relies on

the specific join processing strategy used to dec}de whether the semijoin operation is beneficial, as

it requires multiple scans of a relation, resulting in increased local prm»ging cost.
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Many cemrahzed join evalyation algorithms can be cmployed for local pmecssmg in each '
machine. Son-merge and nested loop are the most common ones We may use index structures -
such as B-trees or hash tables to speed up the operation. '

4

L .
The two sites involved can work in either a gequehtial or a pipelined fashion.  For the sequential
(sometim%v called batching) ﬁiapmach, the receiving site will not-begin woiking until all the
reqm'r’ed’ data have arrived. In the pipelined approach, proceSsing will begin as soon as the first
tuple has amved While the sequential strategy is easy to implemenf, the pipelined method allows
“the sites to work in parallel, and the receivid® site does not need to store incoming data in a
temporary relation. However, batchmg of tuples for transmission may be more economical than a .
series of transrmssxo\\of single tuples. The following table shows the performance of V-qystcm in
file transfer between two diskless Sun-3’s. ,
0.5K 1K 2K 4K 8K 16K

bytes bytes bytes - bytes bytes bytes
4ms . 6ms 9ms 11ms 16ms - 25ms

Table 3-1: V-System IPC Timing Data

¥

While muchﬁ work has been done on’ distributed query' processing in a disk-based
environment [CAR 85], litle has been done to investigate strategies for distributed main memory
database systems. Here, we are going to present several algomhms for distributed MMDBs which
are denved from the conventional algonthms

5

As in disk-based systems, we have several choices of algorithms for evaluation: (1) join vs.
semijoin; {2) sequential vs, pip_eljne; and (3) sort-merge vs. nested loop. We already have' results
on the performance differerﬁcc between a sequential and a pipelined algorithm for conventional
systems [CAR 85], which will, we expect, not change 100 muoh for a main memory cnv:ronmcnt
Therefore, we are only interested in sequental algorithms. Nonce however, that altﬂpugh [CAR
85] has shown the pipelined methods are better.in their test envxronmcnt, [LANT 85} gave thc
9ppos1m results because pipelined methods may introduce high communication overhead. E There is
an added difficulty in pipelined processing over the V system since the int:rf&mcess commiinication
protocal is a blocking one. It is a plausible research topic to investigate pipelined techniques vs.
batching ones. Meanwhile, the batching approach is adapted in this thesis.
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Furthermore, we,alway& transfer key fields since in the main memory en?ironmént, the key

extractxng operation is cheap and we are not mtendmg to compare Jom with semijoin operanon

The semijoin vs. Jom is not an issue here. The result relations are always sent to the result site at
\ /rﬁ - .
the last stage if necessary. : , o -
/ - _

B |

Those algorithms we are going to investigate im“this section ‘are categorized by the local
prgéé‘s'sing techniques used. Specifically, they are distinguished by whether they employ the nested
loop'br mergiﬁg method for the join operation and whether they use a hash-based or order-

preserving index structure to speed up the local calculation.

Based on the above discussion, we have the following three algorithms.

LN

Algorithm 1. Sitple Sort-merge Join

‘This algoﬁﬂxfn is a modified version of the general sort-merge algori't.hm., An arréy index
on the join column is created for each relation at two different sites. The indices are sorted

" in parallel and then the relation on the remote site (and its index) is transferred to the result
site where subsequent merging is performed. B ‘
Algorithm 2. Nested Loop Join with Hashing Indices )

A hashing index on the join column is created for the relation at the result site. The re}ation
at the remote site is then transmitted to the result site and joining is performed using nested
loop strategy. ’

~Algorithm 3. Tree Merge Join o .

Both sites set up, in parallel, a T-tree index for their relations if they do not exist. Then, the
trees are traversed, also in parallel, to get sorted array indices for the relations. The relation
at the remote site (and its array irdex) is uﬁnsfeneq to the result site where subsequent
mergmg is performed. o

Another possible processing strategy would be a nested loop join metiod With T-tree mdlces
Two relations are to be joined in a nested loop fashion. For each key in the outer relation; the
T-tree index for the inner relétion‘is'probed for matching ke);s. The nigthod perfo:ms better, than
the simple sort-merge algorithm in a centralized environment. However, it is not as good as it
should be in a distributed situation. The simple sort-merge method nov: performs better in the
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distributed enﬁmnment because the sortiﬁg phase can be done in,ﬂparalle,l., On thg gmm,
probing the tree index for each key value is not cheap. We have implemented the strategy and the
~ result shows that the tree merge method (Algorithm 3) is five times faster than the nested loop join
method‘fo'r relait'(ojﬁs of sizetgreater than 8K integers, if the tree setup is not included.

3.4. Cost Analysis

We are gomg to pursue cost analysis for the conventional algonthms givenin the prevnous section
based on the cost model. For each algonthm the cost equation consists of three parts;
preprocessing for local joining; data transfer; and local joining. Due to.the diverse nature of
different preprocessing techniques, different measurement units have to be used. Therefore, we can
not compare different cost components on the basis of the cost analysis. The data transfer is
meésured by the total time used for data transrﬁission. It is proportional to the amount of data
transmitted‘ Since the physical communicatien .m\edium is not sharable, simultaneous
transmissions may cause collisions. However, as noted in [PA’GP 85] actual data transfer time on_
the communication medium is only a small fracnon of the total message passing time, 90% of
which is spent on preprocessing and postprocessing by the transmitting and r_ecewmg Processors.
As a result, if two méssages are initiated at approximately the same time, the two transmission
processes may just overlap so that they appear to be going on in parallel. This phenomenon is
called communication parallelism [LUK 87]. We refer to 'a data-exchange ﬁrbcess as a ’parallel
data transmission if communication parallelism can be fully exploited. In other words, dje cost (in
the time scale) of a parallel data transmission is proportional to the amount of data transmitted by
the initiaﬁné rhachiﬁe, without being affected. by other simultaneous messages. We measure the
- data transfer cost in terms of parallel data transmissions. For example, assume we have two
transmission processes Ty and T,, and their communication costs, when they are pursued
individually, are C; and C,, réspectively, with C; > C2 Then, if T, and T2 are initiated one after
the other, the total communication cost will be the sum of C, and C,. If T and T, are initiated at
the same time, the cost for the paralle} transmissions will be measured by the more expensive ohe,
which is C in this case. | |

For Algorithm 1 (Simple Sort-merge Join), the arrays of keys for both relations are sorted in
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e
paralfcl at different sites, using any of the popular internal sorting algorithms. The relatibn at the "
remote site is then transferred over to the result site. A merge join of the two is subsequently
performed tﬁem. The number of comparisons is the usual unit to measure the sorting cost. Hence,
the preprocessing cost of ’A}gorid')m 1 is O {Mxlog (M)). The data traxgsfer cost is M, since the
relation is of size Mintegers. The number of data comparisons is used to determine the merge join
expense. Since both reian’ons are of size M, it is 2cM, where c is the average number of matching

-

tuples. In our experiments, ¢ is approximately 1.

For Algorithm 2 (Nested Loop Join with Hashing I:xdices), a hash table index is created for the
relation at the result site. The relation at the remote site is then shipped o;/er to the result site and
the local joining is performed ar the result site. During the hash table setup brmdure, keys have to
be added one by one. For each insertion, a hash value have to be calculated and the keys have to be -
inserted-into the appropriate tabje entry. It takés a constant time to insert the key. We use the
num‘ch)f keys to be inserted to measure the index setup expense. Hence, the preprocessing cost
of Algorithm 2 is M. The communication expense is obviously M. Moreover, we use the number
of key comparisons to measxjre the local nested loop hash join operations. The local join cost will
then be ¢'M, where ¢’ is the average length of the chain list associated with éach bucket in the hash

| table. Inour experiments, ¢’ is approximately 4. | '
/ . F :

For Algorithm 3 (Tree Merge Join), a tree index, if it does not exist, is set up for each relation in

‘the machines. However tree mdex is theh most hkely one to exist for a relation. Then, the tree
indices are traversed to producc sorted array indices. Later phases are the same as for the simple
sort-merge algorithm. For the tree setup procedure, t.hg&e!anons have to be scanned and the keys
are inserted into the index tree one after the other. For;lwe it tuple to b2 mserted a search for the
inserting node has to be done and intra-node- data movement may be necessary. We use the total
search cost to measure the tree setup expense. The search cost can be measured by the number of

, .
tree nodes searched. For the i key 1o be added, /& search costs log (75), wﬂeg S is the size of a
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n
b= N2xn ().
M

Hence, the above asymptotic estimation will be estimated to be O (Mlog (e—é))'

The traversing of the indices is linear since each node is only reached three times and scanned
only once. We use the number of keys to measure the tmf’txavcrsa} operation. Hence, the cost of
raversal is M. The data transfer cost here is alsoM, the same as previous algo}ilhms. The last
merging phase is the same as the one for the simple sort-merge. Table 3-2 summarizes the
analytical results obtained in this section. Table 3-3 gives the list of units used.

Simple Sort-merge Algonthm:
Local Sornt ‘ Communication Local Merge )
O (Mog (M) M M

-
—

L

Nested Loop Join with Hashing Index:

N .
Hash Index Setup Communication Local Join
M M 4M
‘gv
- Tree Merge Join:
Tree Index Tree ‘ - Communication Local Merge
Setup Traversal )
O (Mog (:é)} M . M oM

Table 3-2: Summary of Cost Analysis

All the algonithms have Lhc same commumication overhead, which is necessary for the distnibuted
join. ’I"nerefpre, the performance difference of these algonthms lies on the various preprocessing ~’
and local join technigques used  However since differemt units are used for different cost
COMponents, we Can. oa%ylwmpmz Teiadve performance between cost components of the same
kind. We will evaluate the algonthms through expenments and study the best tradeoff between
preprocessing sirategies and local oin methods. >
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Cost Components o Measurement Units
sorting ‘number of comparisons
merge join number of comparisons
hash table setup size of the relation
o local hash join number of comparisons .

tree index seup number of tree nodes searched
tree traversal ’ size of the relation
communication ) _ size of the rélation

. m

7o

Table 3-3: Measurement Units

I



Chapter 4

EXperimental Validation I

4.1, Test Environment

-

The distributed experimental environment consists of five Sun-3 workstations. connected by a
10Mbit Ethernet local network. Each workstation is equipped with a powerful MC68020
microprocessor and an MC68881 Jﬂoating-point coﬁrocessor. It is a homogeneous environment,
with all workstations being diskless and possessing four mega-bytes of main memory (RAM).
They also run the same operating system. The underlying Ethernet provides a fast communication

edium.

Running on these workstations is the operating systemn, the V-system, developed at Stanford
University. V-systein is categorized as a distributed operating system by [TAN 85] in the sense

that it provides the users with high transparency of the underlying system activities.

The greatest advantage of using the V-system is its efficient and chea;; interprocess -

communication facilities. Among many features, the system only transmits shont and fixed-size

messages which is easy to implement and has less processing overhead. To transfer large amount
of data, the sender has only to specify a segment of memory in its address space where the data are
stored. The access is passed along with a fixed-size message to the receiver and the receiver can
then copy the whole segment from the sender’s address space over to its own address space

direcdy. No intermediate buffering is necessary.

The V-system employs a blocking send operation, which means the process initiating the
operation is blocked until a reply or acknowledgement is received. The dssign is chosen according
to the nature of most applications: a process typically suspends execution to wait for a reply

immediately after sending a message [CHER 84]. Providing one kernel primitive for both sending

19



the rfwssagc and receiving the replu); results> in less overhead w:t.h a message transaction and makes -

the interface procedure easy to use.

Our cxi;.rimcms were all done during weekend nights when the network traffic was low and
nobody else was using any of the machines.  Two machines are used for the algorithms studied in
the previous chapter. . ,

4.2. Test Parameters

-7

For each algorithm implemented, the two machines involved generate two relations of the same

size in their primary memory respectively. The entire operation does not involve any disk I/O at -

all. Our relations consist of only key values'which are integers in our experiments. The keys were
randomly generated and were uniformly distributed over‘é}cénajn range such that the number of
tuples (i.e keys in our case) in the resulting relation was abqut the same as the size of the relations
themselves. Dupiicate keys were allowed. ' ’ K

1

Timing is measured by the GetTime system call provided by the V-system, which gives the

instantaneous time since January 1, 1970 GMT. Because we had a dedicated system, the

measurements are accurate. In fact, we ran our programs many times at different times and the
results only showed about 1% diffefeme. We desi'gded the algorithms to consist of several steps,
each rcpréscnt:ing a logical phase of processing. The elapsed time for each phase was recorded.
The total cost, the response time in our research, of an algorithm is defined té be the sum of the

time used during each step.

As was stated earlier, the V-system employs blocking communication interfaces, which means

the data-exchange process is the period from the initiation of the or;eration tll the amival of an

acknowledgement from the receiver. The implication is that some local processing such as copying

. data from one location to another is also included in the communication overhead.
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4.3. Analysis .of Experiments
4.3.1. Test Results
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Figure 4-1: Performance Comparison
Appendix A.l summarizes the experimental results obtained for Algorithms I, 2 & 3. They are
measured by the total elapsed time of a transaction in milliseconds. Figure 4-1 shows the

performance of the algorithms, where the sizes are the number of keys for one of the two relations.

e

4.3.2. Preprocessing vs Local Join Operation

For Algorithm 1, the preprocessing execution is the local sorting operation. The two machines .
sort their relations in parallel and the timing is measured on the result machine. From the
experimental ‘dag,ﬂye can see that the cost of local sorting grows fast (more than linearly) as the
size of the relations increases. It is the most expensive component of the total cost. Local join
operation refers to the merging of the two relations. Just as theoretical complexity analysis

indicates, the merging cost is linear with respect to the size of the relations.

»
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For Algorithm 2, preprocgssing means the hash table setup for one of the relations. The data
show the cost grows lim@?)\:gz/h regard to the size. The same is true for the local nested loop join
operation. But unlike Alg&ithm 1, where preprocessing cost is in most cases 3 times greater than
the merging cost, rzhc table setup is less expensive than the local join operation. There is clearly a
u'adcoff between preprocessing and local join components. Although this tradeoff varies fmm one

'proccssmg strategy to another, a sophisticated preprocessing method produces a simple Iocal join

fopcration, at least in this case. Hence, a costly join operation may be eliminated by introducing a

prcproceésing phase. The tree merge aléon’thm is an exception because of the assumption that the

tree indices already exist.

4.3.3. Local Processing vs Communication

We refer local proécssing to be the sum of preproéessing and (parallel) local join operations,
which is largely determined by the sophistication of the processing strategies and the power of the
participation p;ocessors. The data exchange process, on the other hand, depends largely on the
sophistication of the system communication facilides and the nature of the. underlying
communication medium. Yet, it is also panly determined by the power of the processors since, as
we know, some local processing is also included which will be affected by the hardware
technologies. -

As we can see from the results, the data exchange only constitutes a small portion of the total
cost, whereas local processing constitutes the majority of the total cost. Table 4-1 shows the
comparnsons for Algorithms 1 & 2.

The results imply that we can employ more sophisticated strategies to improve the peyfbgmancc
although the communication overhead may be increased. The communication medium is no longer
the most critical resource and the strategies used for long haul network is no longer the best in a~

local area environment. The improvement could prove to be substantial.
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Algorithm 1: o ,
Sizes 4K . 8K 16K 32K 64K
Local Proc 494 1036 2127 4416 9116
95.1% 95.2% . 95.6% 95.83% 95.8%
Comm 25 52 98 192 402
49% 4.8% 4.4% 4.2% 4.2%
Algorithm 2: .
Sizes 4K 8K 16K 32K 64K
Local Proc 381 755 1501 2998 6003
92.5% 92.8%. 93.8% 93.3% * 938%
Comm 31 55 99 199 354
7.5% 7.2% 6.2% 6.2% 6.2% ., T

Table 4-1: Local Processing vs Communication

4.3.4, Merging and Nested Loop Strategies

In the previous chapter, we have discussed the theoretical analysis of the algorithms. However,
we can only tell, from the theoretical complexity, that one is asyrhpton'cally better or worse Lh;'m
another. - Since the different complexig’es are expressed inlx.erms of diffcrgm operations and one
operation can be cheaper or more exﬁen.sive than another, we can not predict. Qhether one

algorithm is absolutely betier than the other,

Our empirical data show that tree-merge is the best provided both indices are available for the two
relations. Tree traversal is surprisingly cheap because one data movement is muéh less costly than
one data comparison or one arithmetic calculation. If the two relations are already in sorted ordcf,
the simple sort-merge proves to be the best. Otherwise, nested loop will be the best. Each

algorithm fits best to a particular situation.

One advantage of using merging methods is that they pr\;duce sorted results, which meets the
requirement of some applications. They are also suitable for non-equi-joins. The hashing nested

loop join could be made fast if the hash functions are properly chosen and tuned.



435 Trend of Algorithm?erformnrce

Figure 4-1 shows the performance of the algorithms. As we can see, the results are consistent in
the sense that the costs increase in proportion to the growth of the relation size. All local
processing cost components are doubled when the size of the relations is doubled. One exception
is the local sorting cost component (Algorithm i). It grows slightly faster than linearly, which
agrees with the cost analysis. N

The communication expense grows linearly, as we can predict from the complexity. Since the
data exchange process involves only the two synchronized machines, the chance of getting
contentions is very small. Therefore, the cost will grow in proportional to the change of the sizes.

For Algorithms 2 and 3, it is safe o predict that the total cost will contnue to gmw linearly for
relation sizes greater than 64K, as ldng as the main memory is still large enough to hold the enure

working storage. The total cost of Algorithm 1 will grow slightly faster than linearly.

43.6. Further Improvements

In all three algorithms, only two machines are involved. 6ne of the relations, usually in the
remote machine, has to be sent over to the other machine and local join is subsequently performed
there. However, as we can see, the remote machine is virtually sitting idle after the transmission of
its relaton. Therefore, poﬁblc performance improvement can be achieved by allowing more

. paralle! processing.

For the simple sort-merge algorithm, immediately after the local sorting phase, the two relations
can be paru'ﬁoned into two parts such that the first part of one relation only needs to be joined with
the first part of the other relation. ’Dus can be easily done since the two relations are sorted at the
moment. Then, the first part of the relation at the remote site can be transferred to the resuit site
and the second part of the relation at the result site be transferred to the remote site. Merging can
then be done in paralle! at both sites. At the last phase, the result obtained at the remote site is
transferred to the result sits. Figure 4-2 shows thie entire procedure. The strategy is based on the .
fact that communication overhead is relatively low so that local processiné/data exchﬁnge tradeoff

can be beneficial. Similar modification can be done to the tree merge algorithm.
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Figure 4-2: Example of the New Strategy

For the hashing nested loop method, the relations cannot be parnitioned easily in the same way
since théy are ngt sorted. However, they can be simply partitioned into two equal parts. Then, the
second half of the relation at the result machine is sent to the remote site; and a copy of the whole
relation at the remote site is shipped to the result site. Next, a hash index is set up, in parallel, for
the two parts of the original relation at the result site. Subsequent nested loop join is performed
between the two parts and the relation from the remote site. The result obtained at the remote site
is then transferred to the result site. With the strategy, the hash index setup cost is cut in half, at the

cost of increasing data exchange overhead.

However, we are still not satisfied with the strategies developed. Notice that machines in a local
network may not work 24 hours a day. The probability that additional machines are sinjng'idlc or
have light workload at a moment is high. We would like 1o develqp more general strategies, which

teads 1o the study of the following chapters.



k | ChapterS
DMMDB Query Processing with Load Sharing

5.1. Motivations-

In the conventional approaches, the amount of data transfer is minimized, or at least, extra traffic
is not encouraged. A join operation involves only the mg&ocessors‘(or sites) at which the
original two relatdons are swrei One relation is transferred from its site to the other in one

transmission stage and join operation between the two is locally performed there.

With the development of distributed systems and communication technologies, more and more

computers can be connected to a network with fast data transfer rate and good overall systerri_

 peiformance. The fact is that the probability that at least one processor is sitting idle while tasks
are waiting at other sites in a distributed system (a "wait while idle" state) is remarkably high over

- a wide range of network sizes and Mr utilizations fLU 85]. Hence, with a high performance
distributed system over a high-speed local area network, such as V-system ( [CHER 84] and
[BERG 86]), we may distribute over the network the workload incurred by. join operations to
achieve high parai}eljsm a8 the result of the processing/communication tradeoff. |

Communication cost can be traded for local computational cxpense'. [LUK .87] has done
theoretical analysis and practical experiments on disfributed sorting algorithms., For the sorting
algorithms, it has been shown that local processing cost is dominant while rthe total communication
cost is only a small fraction of the total expense. Processing time should be minimized even with

the increased expense of communication.

«)

For join algorithms, the situation is similar in that it is also data intensive. Local processing cost

tends to be a major factor. It is, therefore, very likely to be beneficial to distribute tasks over the
network. Transferring pant of system load from a congested area to a lightly loaded area will
reduce the queuing time of tasks and speed up the local processing.

26
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As we know, during the data transmission process, only less than 10% of the time is spent on real
physical‘commdnication medium. The rest is spent on the pre-processing and post-processing in \
the transmitting and receiving sites [PAGP: 85]. A main memory system can make the
breproces’sing and post-processing faster. However, as We will see, local processing cost is still
dominant even in a main memory system. While the performance of a cenualiicd MMDB ceases i
to be improved with even more memory if the memory size is already big enough, distributi.ng-
workload tends to be an effective way of improving performance. We call the ;pproach a load
sharing Osiyn ‘the sense that more machines are involved to handle the original two-machi.nc task.
However, our ap;ﬁroach is not the duplication of the traditional load sharing strategies. While the
traditional load sharing strategies distribute tasks amongst processors aver a network to achieve a
system-wide performance improvement in throughput, our approach further decomposes a task into
subtasks which run in parallel in other machines and hence improves performance of a particular

~

task. Data associated with the subtasks may also be transmitted.

5.2. The Revised Models

Suppose there are N processors interconnected by a high performance network. Each of the
processors is assumed to have reasonably large primary memory 'for query processing. A join
operation is going to be performed between tworeia*hons resi&fng at two different processors (or“
sites), which are called S, and S, respectively. The result site S, is where the final result is to
be collected. '

The first stage of the new approaches is, ﬁnlikc conventional ones, to preproccssl the original
relations for subsequent load distribution. The two relations are partitioned, according to a certain
set of criteria, into a number of subrelations which are then transferred to other sites through the
wmmuﬂc#ﬁon medium. The next stage is the parallel processing of the subrelations at cacﬁ site to
case the later join operations, which usually includes such operations as index setup, array index
sorting, etc. Subsequently, the subrelatons are joined together. The result of each of these join
operatons is finally transferred to the result site. * =

Hence, basically, the whole procedure consists of four phases: (1) preprocessing of original



28

relations and distribution of the subrelatibns; (2) preprocessing of the subrelations at individual
sites for subsequent join operations; (3) join operations between pairs of subrelations at each
processor; (4) final result collection. We call the algorithms based on the approach load sharing

7

algorithms.

Our cost model for a load sharing algorithm also consists- of four parts, analogous to the four
b;d.sic processing phases. The first component is the cost of preprocessing for load distribution
which accounts for the expense of focal processing prior to worﬂoad distribution. Since the load
distribution is not intrinsic to the preprocessing and differenf measurement scale is used, it is

counted as part of data exchange. The ;econd component is the cost of preprocessing for local

joining which accounts for the expense of local processing prior to pair-wise join operations. The °

third component is the total parallel data transfer cost which includes the costs for load distribution,
data-exchange ‘b;.fore and during pair-wise joins, if any, and ﬁnal result collection. The last

component is the cost for total parallel local join operations.

The third componeni depends on the amount of data to be transferred. The other three
components are measured in terms of the number of data movements and comparisons. The sum of

the four gives the response time of the entire join procedure.

5.3. Load Sharing Algorithms

We have argued in the previous section that the load distribution strategy is very likely to
significantly improve performance for a main memory system, as well as for a disk-based system.
We have developed three load sharing algorithms for distributed joiﬁ processing. They are the load
sharing version of the algorithms smdired in Chapter 3. 1

Suppose the two original relations are resident at two sites called S, and S, respectively. We
have also some even number of additional sites which are divided into two disjoint groups with Siqt

and S, being the group leaders respectively. Note that in the simpYe sort merge algorithm, sorting

is the most costly operation. To apply our load distribution strategy, the original relations should

be pariitioned and distributed so that the sorting task can be shared. S and S_, then partition
their relations into a number of subrelations of approximately equal size, and distribute them within



their own group through the communication network. Each subrelation .in one group is
‘subsequently joined in parallel with every subrelation in the other gmlip. The results are kept at
sites led by S, Finally, S,y collects results from its group members. _A formal desa'iption of the
procedure is given in Algorithm 4. Detailed pseudo-code of the algorithm can be found in
Appendix B. Since the algorithm is derived from the simple sort-merge method. we call it a load-

- sharing sort-merge algorithm.
* Algorithm 4. Load Sharing Sort Merge ‘ - el )

1. Suppose there are n sites on a local network with llght loading, where n 1s an even

number and the sites are divided into two gmups The first: consm" > sites with

Spet bemg'the leader. The second group also consists of E sites, with S being the -

leader. The two relations are at S, and S, respectively. S, is the result site.
2. Partition Phase

n .

Sites S, and S, partition their. relations into > equal subrelations in parallel. Then,
n n

site Sy, sends 5 —1 of its 7 subrelations to its group members, and S, sends 5 > —1 of

n
its 5 subrelations to j§§ group members.

3. Parallel Sorting :
All sites sort theisubrelations in parallel
4. Pair-Wise Merge Phasé o
‘Every member of one group pérform pair-wire merging with a member from the
other group, and the results are stored in the members of S_,’s group.
n ' : _
This process repeats > times, until every member of one group has performed
merging with every member of the other group.
5. Result Collection Phase )
- Sy, collects results from its group members.

In the above algorithm, the workload is distributed and pair-wise mergings are pérformed in
parallel. Therefore, the overall performance may be improved. However; as we have r;qticec_i, each
 subrelation in one group has to be joined with every subrelation of the other group sinc“i‘:l we do not
employ, durmg the partitioning, any knowledge about which tuple should be joined with 3@#’-
other tuple(s). The data exchange cost may increase fast as the number of processors involved
increases. One solution will be to divide the original relations into disjoint sets of tuples such that
tuples in one set of a relation have to be joined with tuples of a éon'esponding set of the other

relation. In this sense, the sets of one relation have a one-to-one matching relationship with the sets
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of the other relation. We have developed a pam'tibr,xirjg icchnique using hashing functions. A hash - |
functioﬂ is chosen and a relation 1:9 partitioned mto several non-overlapping portions in such a way
that two tuples in the same porton should have the same hash value. If two relatons are
partitioned this way by the same hash function, then to evaluate the join of the two, it suffices to
join the corresponding pom'ons respectively, since it is only possible for two tuples from the two

corresponding portions to have the same key value.

Since each subrelation does not have to be joined with every other, we can send the two
;:orrcsponding subrelations to the same site in the load distributon phase to eliminate the later data
exchange overhead. From our previous expéﬁments,} total cost of local sorting and subsequent
merging is higher than the cost of setting up a hash index and pursuing subsequent joining.
Therefore, nested loop join with hash index is erx?plgyEd for local processing, and we call thé
- algorithm the load sharing nested loop algorithm.

The drawback of the partition method is that it requires one additional scan of the relations and
the calculation of a hash value for each tuple. This may be costly compared with data transfer

expense.

A formal and more precise descﬁptioh of the procedure is given in Algorithm 5.
Algorithm 5. Load Sharing Hash Join

1. Suppose there are n sites on a local network with light loading, where n is an even - A

n
number, and the sites are divided into two groups. The first consists ofE sites with

n .
Sy, being the leader. The second group also consists ofE sites, with S, being the
leader. The two relations are at S, and S, respectively. S is the result site.
2. Partition Phase , ,
A hash function is chosen to partition the two original relations into n subsets each.
3. Load Distribution Phase ’

- 1 n '
a. S, and S each transfer 5—1 subrelations to its group members.

n .
b. S, and S each transfer 5—1 subrelations to the members of the other -
group. - :
c. Sy, and S, exchange one subrelation.

At the end of the phase, each site has the two corresponding subrelations, one from
Sy, and the other from S



4. Index Setup Phase

Eaeh site creates a hash index for one of its subrelations.
5. Nested Loop Join Phase

Each site performs the joining of the two subrelations.
6. Result Collection Phase

S, receives results from all other sites.

Uniike usual load baiandng algorithms which decompose a user query into a sequence of non-
intzrrelated subqueries and dynamically distnbuie the subqueries over the network, our algonthms
are concerned with the distmbunon of "indivisible” subquenes. It will centainly be beneficial if the

relations are large.

We have developed two lcad sharing algorithms. Each of them aims at reducing an expensive
cost com;ﬂoncm by making use of extra machines available. Naturally, the question arises as to
whether they are the optimal algorithms. .Considcr the pair-wise merging phase of Algonthm 4,
where simple sort-merge is empioysd as in Algorithm If\ There are two sitgs involved, one from
S.t's group and one from S__,"s group for each pair-wise merging operation. After transferring its
subrelation over to the other site, the one belonging to S__’s group will sit idle until the next

operation begins. Further reduction in locdl processing is still possible.

Consider the partition phase of Algorithm §, where a hash function is chosen and the relations are
scanned and partitioned into n pans while other machines are sitting idle. 'I'hcré is the possibility
of further refinement by letting other sites share the pantition task. Our aim is to achieve optimal
solutions in terms of communication/local processing tradeoffs. We expect the processing cost will

be reduced by half, except for the communication overhead, if the processor resource is doubled.

We have developed the following two modified algorithms. For Algorithm 4a, after the parallel

sorting phase, each subrelation‘is further partitioned into n subcomponents. In the following
component exchange phase, the i’ processor collects the it components of all subrelations. The
pair-wise mierge is then performed within each individual site. For Algorithm 5Sa, the relations are
equally divided and distributed among the processors. The subrelations are then pantitioned by a
chosen hash function into n nonoverapping paris which are subsequently transmiued to the
corresponding sites. The partition task of Algorithm 5 is shared by other machines.

[3

-
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Algorithm da. Load Sharing Sort Merge (modified version)

1. Suppose there are n sites on 2 Iocal network with light loadmg, where n is an even
number, and the sites are divided into two groups. The first consists of2 sites, with -

S, being the leader. ’I‘hc sccond group also consists of: sites, with S_ being the

lcadcr The two relanons areat S, and S respectively. Sm is the result site.

2, Partition Phase
' n
Sy and S, partition their relations inw > equal subrelations in parallel. Then, they |

n n
send > -1 of the > relanons to their group members, respectively.
3. Local Sonting Phase

Each site sorts its subrelation using internal quckSorL

4. Pyvot Finding Phase
Sy finds the n-1 pivot values wh&ch divide its subrelaton into n {almost equal) pans
and them send them to all other sites. The other sites, upon receiving the pivot
values, further divide their subrelations into n pans by the n-1 values.

5. Component Exchanee Phase
All sites send, in turns, n-1 of their subrelations to the corresponding sites, in such a
way that the corresponding subrelations will be sent to the same site. . -

6. Merging Phase
All sites perform the merging operation on their subrelauons 11 paratlet.

a. All subrelations from S,,'s group members arefto be merged together.
b. All'subrelations from S_,'s group members are to be merged together.
¢. The merge join 1s then performed between the two resulung relatons.

7. Result Collection Phase
Sy, receives results from all other sites. : .

Algorithm 5a. Load Shanng Hash Join {modified version)

I Suppose there are n sites on a local network with light loading, wheres n is an even
. o - n
number, and the sites are divided into two groups. The first consists of’2 sites, with

n .

S being the leader. The second group also consists ofa sites, with S_, being the

icader. The two relantons are at S, and S, respectvely. Smﬂs the result site.
2. Distnbynion Phase

n 2

S4: and S, partgon their refanons 1nio > equal subrelatons in parailel, and send
them 1o their respective group members.
Parbon Phase
Choose a hash runction

All sites partition, using the same hash funcuon, their subrelatons into n subsets.

4 Compoaent Exchange Phase
Each site in turn, ore si a2 4 tme, sends 115 subsets to the comesponding sites.

d
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All sites combine subsets from its own group members into one relation, and combine
others into another relation. , .
5. Index Setup Phase L |
Each site sets up, in parallel, a hash index for one-of its two relatio
6. Local Joining Phase
All sites perform the join ‘Operauon on the two relations residing on them. _
7. Result Collection Phase , :
S, receives results s from all other sites.

Appendix C gi»g'rwo examples of how Algorithms 4a and 5a work.

The previous algorithms are developed from the conventional sort-merge and hash indexed nested

loop strategies. Another load sharing algorithm can also be derived from the tree merge algorithm.

Recall that the tree-merge algorithm gives the best performance if the T-tree ree indices exist for both
relations. Tree traversal is cheap compared with other cost components. Since the array index
obtained from the tree searching is sorted, it is easy to partition it into a number of almost equal
parts. The key value at the beginning of each part is called a pivot value. Similar to the partition
strategy for Algorithm 5, if we partition the two relations by the same pivot values, then only the
tuples from two corresponding subrelations need to be joined together, and all the subrelations are
also in sorted order. Distribution of the subrelations will allow other machines to share the
merging cost. According to some of our experiments, tree traversal and relation partition costs are
so low Lh;;t it is not worth the effort to further distribute the task at the cost of increased

communication overhead.

The following shows a formal description of the algorithm.
Algorithm 6. Load Sharing Tree Merge.

1. Suppose there are n sites on a local network with light loading, where n is an even
n
number, and the sites are divided into two groups. The first consists OfE sites, with

n -
S, being the leader. The second group also consists ofé‘ sites, with S_, being the
leader. The two relarions are at S, and S, respectively. S g is the result site.
Assume there are T-tree indices for both relations.

. Tree Traversal Phase
Ss:and S, traverse the tree indices to get the sorwd array mdlces

3, Pamnon Phasa

a. S, partitions its relaton into n almost equal subrelations.

rst

t
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b. S,,, sends the partitioning key values to S
c. S, partitions its relation into n subrelations according to the pivot values.
4, Data Transmission Phase T

: : n
a. S, and S send ' 1 subrelations to their own group members.

LY

n ' : . .
- b.S,and S send anotherg— 1 subrelations to members of the other group.

c. S,y and S, exchange a subrelation.
At the end of this phase, all sites contains two corresponding subrelations to be
joined. ‘
5. Merging Phase ’
All sites perform merging of their subrelations.
6. Result Collection Phase - , :
S, receives results from all othersites. - —— - — .

Appendix B gives the pseudo code for the algorithms.

5.4. Cost Analysis

As before, costs are measured by the time complexity of each processing phase, based on our
revised cost model. Recall that the cost equation for eachalgorithm consists of four parts:'
preprocessing for load distribution, prt;,processing fér péir-wise joining, comrnuniéation cost, and
local joining expenses. Parallel processiné is the processings of many tasks that are initiated
(almost) simultaneously by the processors over a network. Maximum parallelism is achieved whén
the time needed to process the simulta‘lmous tasks is approximately the same as the time needed to
process the longest one. The (parallel) cost of some simultaneous tasks is the cost to process the
longest task. If several tasks are processed sequentially, the total cost will be‘ the sum of each

individual cost component. The four cost components above are all parallel cost measurements.

~ Assume there are N sites available in the network. The original two relai:ions are both of size-M,
1.e., consists of M keys each. As for the algorithms discussed in Chapter 3, different quantity units
are used for different preprocessing tc:chn‘iques employed. For the hash-based partition, since a
hash value has to be calculated for each key, the number of keys, i.e., the size of the relations,
serves as the measurement unit. Equal partition divides a relation ¥nto a number of equal parts.
The number of parts is used to be the quantity unit. The pivot finding process is measured by the

. number of data comparisons, which, as we will see later, is negligible. The remaining components
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are counted by the same units as in Chapter 3. Later in this section, we will not explicitly show the

quantity units.

, ‘ N
For Algorithm 4 (Load Sharing Sort Merge), the N pmcessors are divided into two groups of >

processors, led by the result site, S, and the remote site, S, respectively. The task of
‘N
preprocessing. for load distribution is to partition simultaneously the two relations into 5 equal
N
subrelations at sites S, ., and S, The cost for it is then > ‘which is neghglble Ed\,u suoi!Teo g

: 2M
-will be of size N This algorithm is derived.from the simple sort-merge method. The sorting task

is dlsmbumdauhc:cost QMMMWMWMW COMpOnEnt 3

now the cost of internal sorting of a subrelation, that is, O (—log (‘—)) ‘

(

In this algorithm, each site is involved in'-z- bair--\i}is'e" joinings. Edch time, ohé sorted relition has
to be transferred to the other site, and local joining is then performed. The cost of transmission is
proportional to the size of the subrelation, that is, 213/1 As before, the cost of merging is i%M

~ Recall that ¢ is the average number of matching tuples for a given tuple, which is 1 in our
experiments. Therefore, the total cost of local joining is 2M, and the total cost of data exchange

during pair-wise joinings is M.

N 2M .
The data exchange time for load distribution is ( - 1)—“ - M- N and the data collection time

2M
is (E- 1)‘7‘/‘ = M-_N' because the result site collects final data_from the sites one by one. The

4
total data exchange cost is, then, 3M— N

In the revised version of Algorithm 4, merging task is further distributed. The pivot finding
overhead is counted as part of the preprocessing cost. As before, the cost of the partition of
N N N ‘ -

relations into ‘2‘ eq\ial part is > which is negligible. The pivot finding cost is obviously
2M
Mog (—') since the subrelauons are already sorted and binary searcl'ung can be used. Before the

2M
part exchange phase, the size of each subrelation is approximately "’; During the part exchange

phase, each site takes turn to transmit its subrelations to the corresponding sites. The

M
communication cost of each turn will be (N-1 );2‘ Hence, the total cost of this phase is 2M——N‘.
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For the merging phase, all subrelations are sorted. Each site contains two sets of subrelaﬁons, one

consisting of those from Sr;s group and the other consisting of those from S.n’s group. The

- subrelations from S,,’s group and those from S_’s group are first merged together respectively.

N N .
Since there are Y subrelations from each group, log [‘2'] steps are needed to merge subrelations
from each group. For the first step, each subrelation is merged with one other subrelation to form x
relation of double size. In the subsequent steps, pair-wise mergings between hl;esulting relations

from the last step are performed. Since the relations are originally of size —NE’ the cost of first

. merge step, as well as subsequent steps, is N Therefore, the merge of subrelations from each

M N )
RTOUp COSts Wlog ['2"]. After merging, each site contains two sorted relations of size N The

2M. ,
subsequent merge join then costs N Hence, the total expense of the merging phase is

M N : ) , M
N (log [EI + 1). The total number of tuples (keys) for each set of subrelations is approximately N

M .
Therefore, the result relation size will be CXpp where c is the average matching tuples for each

tuple and is about 1 in our experiments. Therefore, the result collection expense is M— N Plus the

2M SM
data distribution cost in phase 2, which is M- -I_V—’ the total communication expense is 4M— W

Note that the pivot distribution overhead is .negligible. Table 5-1 gives the summary of cost
analysis of Algorithm 4 and its modified version. Notice that Algon‘thxﬁ 4a gives globally sorted

results, whereas Algorithm 4 does not.

Algorithm 5§ is,vslightly different. The data exchange cost is reduced'due to the sophisticated
preprocessing technique. But the preprocessing cost is increased accordingly Became of the
additional scanning of the relations. Since the sirje of the relations is M keys, the hash-based
partition of the partition phase costs M according to our convention. Nested loop algorithm with
hash indices is used for the local joining. As in the case ?&Algorithm 2, the parallel cost of

preprocessing for local joining operations, i.e. index set up, is N and the parallel local joining cost

M .
is ¢ XN Recall ¢'=4, which is the average length of list associated with each table entry. The

time to distribute subrelations to the two groups and to exchange data between the result site and

., N M M . M
the remote site is 2(‘2‘-1)'ﬁ+2ﬁ ~ M. The time for the result site to collect result data is N(N—”'
M .
The total cost of data exchange is then 2M— 7

N

™
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Load Sharing Sort Merge Algorithm:

Preprocessing I Preprocessing 11 Communication Parallel
(Partition) Parallel Sort Local Merge
N 2M  2M 4M

2 - OfRle(Ry M- M
(negligible)

Load Sharing Sort-merge Algorithm: modified version

Preprocessing [ Preprocessing 11 Communication Parallel
Partition and Parallel Sort , Local Merge
Pivot Finding
M 2M 2M 5M 2M N
Niog (77) O {(=ylog (7)) “M-— N (og[51+1)
(negligible)
N Table 5-1: Cost Analysis of Algorithms 4 & 4a

In the revised version of Algorithm 5, the partition task is further distributed to achieve more
parallelism. The preprocessing cost now includes the partition of the original relations into > equal
parts (phase 2) and the further partition of the subrelations into N nonoverlapping sets (phase 3).

N

The cost of the first component is > which is negligible. The cost formula for the second

2M
component is proportional to the subrelation sizes, which is N Now, the size of each subset of a

2M
subrelation is approximately ';2‘

2M
The data exchange phase is the same as that for Algorithm 4a. Hence, it costs 2M~ N At the

end of this phase, after all sites combine the subsets properly, we have two relations at each site,

: M . M
being approximately of size N, respectively. It follows that the index setup cost is N and the local

aM M
join cost is N As for Algorithm 5, the result collection overhead is K,(N-1 ). On the other hand,

2M ' M
the task distribution cost in phase 2 is M—W, the total communication overhead is then 4M— N
Table 5-2 shows the cost analysis for Algorithm 5 and Algorithm Sa.



Load Sharing Hash Join Algorithm:

Prcprocessing I Preprocessing I1 Communication Parallel

Partition ' Hash Jndex Setup , Local Join

M N 2M- N : N

Load Sharing Hash Join Algorithm: modified version

Preprocessing I Preprocessihg 11 . Communication Parallel

Partition o Hash Index Setup Local Join

oM M 5M 4M- -
N N “M-N N

Table §5-2: Cost Analysis of Algorithms 5 & Sa

The analysis for the load sharing tree-merge is straightforward. The tree setup and tree traversal
costs are the same as Algorithm 3. However, the tree setup cost is not included as part of
prcprocessingr expense due to the earlier assumption that the tree indices are most likely to exist.
Therefore, the preprocessing includes only tree traversal and relation partition. The tree traversal

2M
complexity is M, as for Algorithm 3, and the relation partition is Mog (W), as for Algorithm 4a.

The cost of phase 4, the data transmission phase, is M, the same as for Algon'thin 5. At the end of

]
the phase 4, each site will contain one,subrelation from S, and one from S_ ;. They are of both
2M
approximately size N Therefore, the merge join will be N s for the simple sort merge

M
algorithm. And the result collection cost is the same as for Algorithm 5, which is M— N Table
5-3 summarizes the analytical results for Algorithm 6.



39

Algorithm 6 Load Sharing Tree Merge.

Preprocessing Communication

oM | )
M+ Nog (W) eM-

Parallel
Local Merge

2M

N

Tabie 5-3: Cost Analysis of Algorithm 6



Chapter 6

Exberimental Validation II

6.1. Test Results.

_ We have implemented the load sharing algerithms and actually tested on our experiment |
environment. However, because of the limitation on the number of machines available, we have
run the programs on only four machines(Sun-3's). The results can be well predicted for a
reasonable number of machines. Appendix A gives the collection of results obtained from our
experiments, Figure 6-1 shows the performance comparison among them. Note the tree setup cost
is not included for the tree merge algorithm. |

(ms) ' -»
10000 ' -

9000
8000
7000 }

6000 }

b
5000 load sharing sort merge -

modified version

N 4000 }
| 3000
2001 R AR b e
1000 {
- lcudAduringtmemcrge
; | 0 1 2 4 8 16 32 64
(K integers)

Figure 6-1: Comparison of Load Sharing Algorithms
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6.2. Load Distribution

Load distribution for increased performance is the central idea behind the load sharing
algorithms. The costly processing tasks in Lhe conventional algorithms are decomposed and
distributed over the network to reduce the total processing cost by making‘use of additional
machines.

For load sharing sort merge algorithms, the local sort and merging components of the simple son ‘
merge algorithm are distributed and processed in parallel. Hence, the (parallel) cost is much less

than before, which is consistent with our theoretical analysis although minor deviation may exist.

For load sharing hashing methods, the index setup and local join jobs are decomposed and
processed in parallel. However, some prcpf{)cﬁsing effon( is introduced in order for ihe hashing
method to-be efficient. The preprocessing task is further distributed in the modified algorithm
{Algorithm Sa) based onlthre same idea. Similarly to the load sharing tree merge algorithm, the
merging task is shared among multiple processors by partitioning the sorted relations into a number‘

of subrelations and distributing them. A

All the processing time reductions are achieved at the expenses of highef data volume for - -
transmission. However, our experiments show that the communication is relatively cheap and data
exchange cost can be further reduogd by well planned data transmissions to increase
communication parallelism. The experimcntél results have confirmed that load sharing strategies
can effectively reduce the tbtal processing cost. Table 6-1 gives the comparison of total response
time, in milliseconds, of the’ algorithins whermr the relation size is 32K (for a total of 64K)Yntcgers.
It also shows the percentage of improvement of the load sharing algonithms over their respective

counterparts.

As we can see, load sharing strategies can effectively reduce the total cost of join tasks. We have .
mentioned that our load sharing approach towards reladonal joining operation is more like parallel
processing procedure in the sense that the primary concern is to speedup the application execution
by making use of additional machines. The distributed system is used to improve performance in

the way a parallel system does. In a parallel system, we can often expect such features as direct
4
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Algorithms ) : Response Time Improvement

1 . 4608
2 3197
3 . 1464
4a 2670 42.0%
5a 1781 44.3%
6 928 36.6%

Table 6-1: Comparison of Algorithms
sharing of memory and fast bus interconnections. However, there are two importani features in our
test environment: (1) the multiple-machine system is connected by a fast local network and is
supported by a sophisticated commuhiéation software system; (2) it is a main memory system.
They imply that the data exchange is cheap ’and the large amount of data can be processed locally .-
without incurring costly disk operati’ons. Our distributed environment is more favorable to data-
intensive applications and our approach will certainly be advantageous for a small number of

machines.

The results of this research and of [LUK 87} suggest-that parallel processing strategies may be

employed for a distributed environment to increase performance.

6.3. Four Machines vs Eight Machines )

Due to the equipment limitation, we have tested the load sharing algorithms with only four
machines. However, since the empirical data are very consistent, we can predict, without much

deviation, plausible results for a similar environment with mdre, specially eight, machines.

For the algorithms described in Chapter ’3, both processors- are synchronous and no other
simultaneous transmissions are likely to occur. és more machines are involved, simultaneous
messages are very likely 1o be initiated. Specially in our load sharing algorithms, transmissions
among group members happen concurrently. Therefore, the concept of communication parallelism
is particularly important. We say the maximuwn communication parallelism is achieved when the
ume needed to transmit a message in the presence of simultaneous messages is equal to the time to
transmit the same message alor;e. The minimum communication parallelism*transmission is -the

situation when the timing for simultaneous messages is equal to that for serial transmission of
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them. Recall that in our theoretical’ cost analysis, the maximum communiéatign parallelism is
assumed. It implies that the time required to transmit messages initiated at the same time is equal
to tiw time needed to transmit the longest one. Howéver in actual data ransmission, contentions ‘
are likely to occur. The amount of network contention, which is dlfﬁcult to predict xhconeucally,

deterthines the degree of communication -parallelism that can be achxeved

A

Let us consider Algorithm 5a (the modified Ioad sharing hash join) with the assumption that there
are eight machines available and the relation size is of 64K integers. The plausible results can be ,
derived for the expelriment‘alAdata in the four ma::hjne case (they can be found in Appendix A.3).
For the distribution phase, the cost of partition of the relations into equal pansvis still negligible. In
the partition phase, the rélation at each machine wivll be half the size of the one in the four machine -
situation. Therefore, the presumable preprocessing cost will be approximately the same as that for
the four machine case with the relation size of 32K integers, which is 404 ms. After the ccﬁnponem ,
exchange phase, each site will héve two mlaﬁom of approximately 8K integers. Hence, the hash
index setup cost Should be 319 ms. Similarly, the local join expense will be 485 ms, the same as
that in thé four machine situation when the relation size is of 32K integers. | ‘ |

The component most difficult to analyze is the data exchange exp;hse. As we know from the
previous chapter, the tptal communication process consists of three parts: load distribution,
component exchange and result collection, and only the load distribution emplc_z&; parallel

transmission. As before, the sum of component exchange and result collection expenses is

M
3x{M- ‘N). To calculate the communication upper bound, the minimum communication
4M
parallelism is assumed. Hence, the load distribution cost will be 2M——7 N which is doubled the

7
expense if maximum communication parallel is achieved. . Therefore, the upper bound is SM— N

33M ! sM 27M
which is —5— ’y if N = 8, whereas the lower bound is 4M- N,whlch is % 8

boung Af;)r the load distribution expense (when maximum commumcanon parallelxsm is assumed) is
3M

M-— N which is =~ a if N = 8. Since we know the time needed to transmit 64K integers is 402 -

ms{from Algorithm 1), the lower bound for the total data exchange cost will be 1356 ms; and the

upper bound will be 1658 ms. It is 1492 ms if 10% contention rate is allowed. Therefére, the total

if N = 8, The lower-

cost for the algorithm is then 2700 ms, achieving 21.8% improvement over the four machine

situation.
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Similarly, we can get the upper bounds for Algorithms-4a and 6. They are 5M— N and

SM 3IM 21M

M - N Whl-Ch are 8 = and B respectively when N =8. The esnma,xed results can then be

derived. Notice that the merging cost of Algorithm 4a will not be cut in half when the number of
machines is doubled. Table 6-2 shows the data obtained. 1
Algorithm da Algorithm 5a Algorithm 6

Upper bound 1658 1658 . 1055
Lower bound - 1356 1356 754
Total Cost with 3831 . 2700 - 1611
1% contention '

Actual Cost 5431 . 4520 ' 1840
{4 machines)

improvement 29% » 21.8% 125%

 Table 6-2: Eight Machine Results

6.4 Optimal Number of Machines

Ed

Because of the facility limitation, we can only predict the optimal number of machines based on
our previous theoretical and emmncal studv. The cost component most difficult to analyze is the
communication overhead since it is hard to presiict the degree of communicaton parallelism that
can be achieved. However, as the number of machines increases and more contentions occur, we
can eliminate the parallel transmissions and employ senal transmissions for all data transfer
process. The behaviors of serial transmissions are quite predictable and the upper bound

complexity gives the precise estimation.

With this assumption in communication, we proceed to study the optimal number of machines for
the load sharing algorithms. Let us consider Algori{hm 5a. As we know from Chapter 5, the total

etapsed time can be expressed as follows:

Total = 31 T preproc* 2" Tsetup ™ 3% Tcomm™* 8= Tjoirr
oM .
where Tpmpm. the preprocessing cost component, is =57 N Rmp, the cost for hash index setup, is
2M 4M
YE T omm 15 the communication overhead and 'f;om, the expense of local joining, is N Since

minimum communicaton parallelism is assumed, T, is SM— N in-the last section. Since
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our experimental data are consistent with the cost analysis, the coefficients a,, a, and a; can be

determined by them. As we can see, the performance data are already stable, we can take the data

obtained when the relation size is of 32K integers to calculate the coefficient values. Since the.

timing for preprocessing compodent is 404 ms, a, is equal to 404><2x—3—27‘é'g = 0.025. Sifnilarly, as
=0.019 and a4 = 0.015. To evaluate as, the time complexity upper bound has to be calculated. We
know from Algorithm 1 that the time needed to Lrﬂnsfnit 32K integérs is 192 ms. The upper bound
timing when N = 4 is then 624 ms. Hence, a, will be 0.006 and we have the following form@la:

¥

T

M
1ot =0-108 7+ 0.03M

N
 As we can see, T, is decreasing as N, the number of machines available, is increasing. The
. trend 1s shown in Figure 6-2. Therefore, there is no theoretically optimal number of machines for
the load sharing algorithms. However, as the number increases, the percentage of acrual
performance improvement, in terms of timing, is decreasing. It also shows the performance
kimprovements as a result of doubling the number of machines. This is because the local processing
cost can no longer be reduced§e greatly cut the total processing expense while the data exchange
costs are likely to increase. Therefore, we claim that 16 to 20 machines would be optimal in this

case 1f cost'effact factor 1s considered,

Tize
200 f _
O P K
- - - it Number ! Muhines
4 %8 16 3T B4
Figure 6-2: Trend of the Elapsed Time -

Y have done a simuar analysis Tor Algonthm 4a and Algonthm 6 Notice, howeser, Jbe tree
raversal cost of Algonthm 6 will not De affected greatly by the number of machines available. The
1ol ocal processing expense will not be curn half of the number of machines is doubled  We

2nmare that 15 16 machines wold be opumal 1n this situation.
k
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Machines Local Communication  Total Improvement
Processing N Cost

4 1208 573 : 1781

g 604 792 1396 22%

16 102 876 ? 1178 15.6%

32 151 918 . 1069 9%

64 755 939 1011.5 4%

Table6-3: Trend of Algorithm Sa

The optimal number varies from the processing strategles used and the size of the relasons

involved. ’ : .
‘ t

6.5, Trend of Algorithm Performance

6.5.1. Improvement of the Network Performance

We consider two kinds of metwork ﬁnpmvemcm. . One 15 the strasghtforward hardware
improvement such as faster wansmission media.  The other 1s the software implementaton
improvement such as new protocals with less transmission overhead. Both wall improve the overall
performance at the same ratz. However, they will not affect the cost of local processing. Table 6-4
shows the percentage of communicanon sxpense out of the total cost when relanon size is of 32K
inizgers, and the corréspcndmg algonthmic performands increment if the network performance is

incrzased by 100%.

Algonthms Local Communicanicn  Percentage improvement
Processing

: 4416 132 42%{\ 2 1%

N 25998 i 6.2% 3%

3 1264 00 137% 685%

44 2103 53 21.2% 10.6%

LK 12038 573 32.2% 161%

n 24 S0 43.5% < 21.75%

Table 6-4: Performance with Improved Network

As we can see, the improvemenss ate not substannal, due to the small percentage of the data
sxchangs expense.  Howewer, 1t favors the load shanng swategies which encourage local

SITCESSNZ COMMuTaton madec ™
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» 65.2. Improvement of Processor Capacity

——

The improvement in the processor capacity has two impacts. First, it directly reduces the local
processing cost. Second, it speeds up data exchange as well. As we have discussed, in a data
transmission process, a large amount of fime is spent on the local processing of the transmitting and
receiving machines. The communication cost also includes the local processing expenses, which

will be reduced by more powerful ProCessors.

Sun-2 workstations use MC68010 processors which are less powerful than MC68020 processors.
We also ran some of our programs on Sun-2’s in a sirnilar environment. Table 6-5 gives the

¥
performance difference of Aigorithm | in the two situations. It shows that several times of

\mprovement has been.achjeved. \

Sun-2’s: . ’

Size Local Sort Comm Local Join Total Cost’
32K 9990 350 5340 15680
Sun-3's:

Size Local Sont Comm - Local-Join Total Cost

32K 3388 152 1028 4608

Table 6-5: Performance Difference with Sun-2"s and Sun-3's

6.3.3. Relation Cardinality and Join Selectivity

Our experimental data are consistent for all alAgorithms in the sense that if the size of the relations
increases, all the cost components also increase in proportion. We can reasonablely predict that in
the sirmular environment, if the size of the relations becomes greater than 64K integers, the total
cost. as well as each cost component, will change accordingly, in a linear fashion, as long as the

snure database is still memory resident.

[¥ we have a higher join selecovity. the resulting subrelatiqn of each processing phase will be
iarger and hence the absolute exchange cost will be increased. Notice, however, that 1n the
simanon, the cost of merging two soned relarions will be increased because each key now has more
matching ones: and the cost of joining two hash indexed relations will also be increased because

there are. on average, more keys associated with each table entry. Therefore, the communication
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cost is comparatively low even in this situation, and load sharing strategies are still expected to

have good performance.

6.6. Multi-backend Database Systems: An Application

For the load sharing strategies we have discused previously, the multi-backend database systems
can be an applicable environment. A prototype hardware organization is shown in Figure 6-3. A
controller and a number of general-purpose backend machineé are connected by an Ethernet-like
broadcasting bus, with the controller being in turn attached to a host computer. All backend
machines run the same system software and the entire database is distributed among the storage of
individual machines. When a query regarding the database is received, the host passes it to the
controller which broadcasts it to all the backend machines where the query is‘executed, in parallel,
with the local database portion. As soon as a baékend processor finishes the current query, it can -
su‘m’ with the next one [HHKOS 83]. The overall system performance is increased and more

concurrency is allowed.
‘@ . Disk Drive
(B ) . .

To Host |l @ ' ! Disk Drive

Computer

L Gxckend)—{ |  Disk Drive

Bmgdcast Bus

Figure 6-3: Multi-backend System Architecture )

Our load distribution strategies can well fit the environment for the following two reasons. First,
our experiment environment is very similar to the backend architecture. Second, since the entire
backend system actvities are supervised by the controller, the process procedures cdn be finely

tuned such that maximum communication parallelism is likely to be achieved.
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In a multi-backend database system, tuples are grouped into clusters. Therefore, the execution
time of a query varies from machine to machine. Some machines may finish earlier and they have
different workload throughout the processing period. Load sharing strategies are likely to ‘be
beneficial. As we have argued previously, increasing communication parallelism can also
effectively reduce the data exchanging overhead. The qverall system pcrformancé cah be greatly

increased if the load sharing strategies are applied and processing procedures are well planed.



Chapter 7

Conclusion

General query processing strategiés for distributed main memory database systems have been

investigated in this study. -

An analytic system model and a cos.t model have been Vbuilt for a local area network environment.
The study shows that both local processing expense and communication overhead should be
considered as major cost components. However, communication expense is cheap compared even
with local main memory processing cost and it will become cheaper with impr_gvements of

processor speed, network bandwidth, and system software.

Two sets of algorithms are designed and analyzed based on the analytical models. Simple sort
merge, hashing nested loop and tree merge are algorithms derived from those for conventional

(disk-based) distributed systems.

There is no singleﬁalgoritl‘un that is the best in all aspects. Each algorithm can be the best for a
specific environment. If both relations are already in sorted order, or one of the indices is missing
- and the result relation is required to be in sorted order, the sort merge strategy is the best. T-tree t
traversal is found to be a cheap op.eration, and the tree merge algarithm is the best of the three if
both tree indices on the join column(s) exist. Hash join is preferred otherM'se. ‘Hashingan be

effective in a main memory environment.

The load distribution concept has been developed. It differs from the convegtional "load sharing"
concept (although we call our algorithms load sharing ones) in that the otherwise "indivisible" tasks
are decomposed and distributed to increase system performance by means of reducing application
response time. The fact that communication overhead in a local area network is low makes the
strategy feasible. Three algorithms, called load sharing sort-merge, load sharing hash join and load

50
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sharing tree merge, are designed and analyzed. They are the load sharing versions of the previous
set of algorithms. The algorithms are i_mplementéd in our experimental environment. Both our
cost analysis and empirical data show that the load distribution strategy can effectively reduce the
total processing cost. As an example, load sharing sort-merge improves simple sort-merge by
42.0% with four machines. Local processing/data transmission tradeoff is exploited. Although the,
load distribution concept is developed in the main memory environment, the results can be applied

’ equally well to disk-based systems.

The experimental data are consistent with our cost analysis. For this reasoh, we can pred'ict that
“the trend' will be kept for larger relations as long as they can fit well in_to the main memory. The
behaviors of the load sharing algorithms in the case of eight machines are discussed. They are
expected to have better performance since all the costly local processing components are further
distributed or shared. It is expected that 16 is the bmimal number of machines for the load sharing

algorithms, as further increase will result only in marginal performance improvement (<10%).

Our study shows that in a similar distributed environment, parallel processing strategies may be
employed to improve system performance. The strategies may work well in the distributed

environment for data intensive applications.
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Appendix A

Experimental Results

A.l. Algorithms 1,2 & 3

Algorithm 1
Simple Sort-Merge:

Size Local Comm Merging ' Total
Sort Cost Cost
1K 82 11 31 . 124
, ' ' 172 16 64 252
4K 365 _ 25 129 519
8K 768 52 268 1088
16K 1614 , 98 513 2225
32K 3388 192 1028 4608
64K 7068 402 2048 9518
Algorithm 2 ™
Nested Loop with Hashing Index: .
Size Table Comm Local Total
Setup Cost Join Cost
1K 38 10 56 104
2K 74 21 , 113 208
4K 150 31 231 412
8K 293 59 462 814
16K 577 99 924 ) 1600
32K 1147 199 1851 3197

64K 2304 394 3699 6397
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- 4K

Algorithm 3
T-tree Merging Algorithm.
Size T-tree Tree Comm Merging Total - Pure
Setup Traversal : Cost Join
1K 446 7 15 36 504 58
2K 943 17 19 65 1044 101
© 4K 1932 29 33 130 2124 192
- 8K 3966 63 61 254 4344 378
16K 8147 - 120 101 511 8879 732.
32K 16615 246 200 1018 18079 1464
64K 33962 490 392 2035 36879 2917
A.2. Algorithms 4 & 4a
Algorithm 4
Load Sharing Sort Merge
Size PreProc Local Comm Merging Total
Cost Sort Cost
1K 0 39 34 28 101
2K 1 83 48 56 188
4K 1 171 78 113 363
8K 1 356 144 229 730
16K 2 761 250 443 1456
32K 0 1605 477 890 2972
64K 0 3364 942 1784 6090
. Algorithm 4a
Load Sharing Sort Merge: modified version
Size PreProc Local Comm Merging Total
Cost Sort Cost *.
1K 16 43 82 17 158
2K 14 84 104 32 234
15 174 132 59 380
8K 12 359 197 120 689
16K 12 765 316 243 1336
32K 12 1606 567 485 2670
64K 12 3372 1086 961 5431




A.3. Algorithms 5 & 5a

Algorithm 5
Load Sharing Hash Join
Size Preproc Hash Index Comm Local Total
Cost Setup Join Cost
1K 22 ‘ 13 -49 16 100
2K : 48 23 58 31 160
4K 91 45 90 63 289
8K 182 82 136 119 519
16K 376 160 225 242 1003
32K 765 316 402 484 1967
64K 1538 636 777 950 3901
Algorithm Sa
Load Sharing Hash Join: modified version
Size Preproc Hash Index Comm Local Total
Cost Setup o Join Cost
1K 14 10 79 16 119
2K 30 19 103 32 184
4K 55 39 138 60 292
8K 102 79 192 117 490
16K 205 160 316 245 926
32K 404 319 573 485 1781
64K : 802 639 952 3453

1060
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L] ' b“
A.4. Algorithm 6 :
Algorithm 6
Load Sharing Tree-Merge
Size T-tree Tree Comm Local Total Purc

Setup Traversal ’ Merge Cost Join
1K 458 7 47 12 524 62
2K 939 15 64 18 1036 97
4K 1934 35 90 36 2095 161
8K 3977 62 130 75 4244 267
16K 8176 120 212 150 8658 482
32K 16670 242 404 - 282 17598 928
64K 34008 486 794 560 35848 1840

-~



| AppendixB
Pseudo-Code for the Join Algorithms

Algorithm 1. Simple Sort-Merge

~ Suppose there are two relations R, and R; at sites S; and S, respectively.

Site S, A
1. Create an array index for R,;
2. Sort the index using internal QuickSort;
3. Receive R, (and its index) from S,;
4. Merge R, and R, to produce the result relation.

Site Sz:

1. Create an array index for R,;
2. Sort the index using internal QuickSort;
3. Send R, (and the index) to S,. '
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1

S
Algorithm 2. Nested Loop Join with Hash Index

Suppose there are two relations Ry and R, at sites S; and S, respectively.

1. Create aRh§h index for Ry;
2. Receive B, from S,;
3. Local joining using nested loop method.

Site SZ:
1. Send Ry to0 Sl.



Algorithm 3. Tree Merge Join

‘Suppose there are two relations R, and Ry at sites S, and S, respectively.

"~ Site S;:
1. Create a T-tree index for Ry;
2. Traverse the index to get a sorted array index for Ry;

3. Receive R,(the array index) from Sz,
4, Mcrgc the two relations.

1. Create a T-tree index for Ry;
2. Traverse the index to get a sorted array mdex for Rl,

3. Send Ry(the array index) to S,.




- Algorithm 4a. Load Sharing Sort Merge.

1.

n

. Partiion Phase

{modified version}
Suppose there are n sites on a local network with light loading:
S Sa s Sy

where n is an even number, and the sites are so numbered that the oniginal refations

are at sites S; and Sﬂ+} S, 1s the result site.
i

n: .
Sites Sy and SQ +1 partition their relations inio 5 5 equal subrelations in parallel. Then,

site S, sends > -1 ofthe 5 > subre)au‘ons 10 sites S, ..., ST respectively: and site S 1
i 2 2"

n
sends —1 of its 7 subrelations to sites S7_,, ..., S_ respectively.
2 2 2+2 n

. Local Sorting Phase
" Each site sorts its subrelation using internal Quick Sort.
. Pivot Finding Phase

a. S| finds the n-1 mear ralues which divide its subrelation into n (almost equal)
) parts.

b. S, sends the n-1 mean valuesto eachof S5, .., S

c. Sy, ..., 8, divide their subrelations into n parts by the n-1 pivot valyes.

. Part Exchange Phase

Fori=1tondo

{

S; sends n-1 of its subrelations to the other sites, retaining the i-th subrelation for
itself.

}

. Merging Phase

Foreachof the sites S, ..., 5, do
{ s -

All subrelations received from S, ..., 87 (including the one retained for itself) are to

be merged together.
ATl subrelations received from S

—, 1+ - Sp (including the one retained for itself) are
2 ,
1o be merged together.
Merge join is performed between the two resulting relations.
} L3
. Result Collection Phase

Sites S,, ..., S, transfer resulting relations to the result site S,.



Algonthm Sa. Load Shanng Hash Jomn

tD

wn

(modeified version)

. Supposé there are i1 sites with light loading over a local network:
, -

S‘ ,,,,, Sn
where n is an even number, and the sites are so numbered that the original relations,

'R, and Ry, are at §; and 57 4 respectively. 5, is the result site.
2" /
- Distnbution Phase

n
a 3, and s, 1 paruton, respeciively, the two original relaoons into > equal
27 :

sized subrelanons.

n A
b. S, sends 5—1 of the subrelations to sites S,, ..., S and Sﬂ_q sends 5—1 of
! > 5
the subrelations to sites Sf.'*z, S

2 | .
Parution Phase
a. Choose a hash functon. '
b. All sites parution. using the same hash function, their subrelations into n
subsets. . >
Component Exchange Phase
Fori=lwondo

<

S, sends 1ts subsets to the corresponding sites, i.e. the ;¥ subset is to be sent to site Sj.

ht
’
i

. n ;
All sites combine the '2' subsets from sites S., ..., S7 into one relation, and the 5

. ) 2 :
srbsats from sites SQ__V .., 8, into another relaton.

2

-Index Setup Phase

Each site sets up, in parallel, a hash index for one of its two relations.

. Local Join Phase

All sites perform the join operation on the two relations residing on them.

- Result Collection Phase

Sites §,, ..., S send result relations back to S..

n.
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Algorithm 6. Load Sharing Tree Me_rgé. ;

1. Suppose there are n sites with light loading over a local network:
S1 ""’Sn '
where n is an even number, and the sites are so numbered that the original relgtions, v

R,and R, are at S, and S” 1 respectively. S, is the result site.
2

+ ,
Assume there are T-tree indices for both relations. f‘/
2. Tree Traversal Phase - ‘ ) S
S, and S.n_+1 traverse the tree indices to get the sorted array indices.
2

3. Partition Phase
a. S, partitions its relation into\n almost equal subrelations.

b. S, sends the partitioning key values to S.’_7+1.
2

c. S.’z+1 partitions its relation into n subrelations according to the povot values.

4. Data Transmission Phase

n - n
a. S, sends =—1 subrelations to S,,...,87 and S, sends =—1 subrelations to
1 2 1 5 2+1 2

n
S, Sy

' n
b. §, sends another 5-1 subrelations to SQ_H,..,,SD and SQ_” sends another

2 2
N
51 subrelations 0 Sy.....,.S7.
2
c. S, and SQH exchange a subrelation.
2

At the end of this phase, all sites contains two corresponding subrelations to be

joined. X
5. Merging Phase

All sites perform merging of their subrelations.
5. Result Collecton Phase
S, receives results from all other sites.




- Appendix C |
~ Examples for the Load Sharing Algorithms

C.1. An Example for Load Sharing Sort Merge (Algorithm 4a)

The data file in each site is shown as follows:
S, 1,510, 12,22, 18, 28, 36, 2,7, 11, 12, 4,24, 29, 35
Sep: 3,4, 17,10, 14,19, 20,9, 2,9, 13, 15,7, 16, 25, 30

Note that the data file is nét inigally sorted as shown. There are two additional machines

available. They are S and S, respectively.

1.

[ @S]

Partition: sites S, and S, partition their data files into 2 equal pans. S_, sends part2 to S,
and S_, sends its pant2 to S,. ‘

S, pant={1,5, 10, 12, 22, 18, 28, 36}

S;: pant={2,7, 11, 12, 4, 24, 29, 35}

S.mi Pan={3, 4,17, 10, 14, 19, 20, 9}

S,: part={2,9,13,15,7, 16, 25, 30}

. Local Sorting Phase: all sites sort their own parts in parallel. :

S, pant={1,5, 10, 12, 18, 22, 28, 36}
S, part={2,4,7, 11, 12, 24, 29, 35}
S, part={3,4,9, 10, 14, 17, 19, 20}
S,: part={2,7,9, 13, 15, 16, 25, 30}

. Pivot Finding Phase: S further partitions its part into 4 parts and sends the three pivot values

to Sy, Sy, and S, which then partiton their data sets into 4 parts according to the pivot values.
"The pivot values are 10, 18§, and 28.

S,y parti={1, 5}, part2={10, 12}, part3={18, 22}, partd={28, 36}

S;:panl={2,4,7}, pant2={11, 12}, part3={24}, partd={29, 35}

Sim partl={3, 4, 9}, part2={10, 14, 17}, pant3={19, 20}, part4={}

S, panl={2,7, 9}, pant2={13, 15, 16}, part3={25}, part4={30}

. Part Exchange Phase: S receives all partl’s, S, receives all pant2’s, Smt aﬁ;ﬁ:parﬁ’s and 52 all

partd’s,
Si: 8roupl contains {1, 5} and {2, 4, 7}; group2 contains {3, 4, 9} and {2, 7, 93
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S,: group! consists of {10, 12} and {11, 12}; group2 contains {10, 14, 17} 3nd {13, 15, 16}
S, i groupl consists of {18, 22} and {24}; group2 consists of {19, 20} and {25}
S,: group! contains {28, 36} and {29, 35}; group2 contains {30}
5. Parallel Merge: all sites merge their group! parts together and group2 parts together
Sr:{1,2,4,5,7},{2,3,4,7,9,9}
S,: {10, 11, 12, 12}, {10, 13, 14,15, 16, 17} '
S {18, 22, 24}, {19, 20, 25}
S,: {28, 29, 35,36}, {30} '
Then, all sites perform merge join on the two resulting relations.
S,: result relation is {2, 4,7}.
S1 result relation is {10},
Sy Tesult relation is {}.
S,: result relation is {}.

6. Result Collection: S|, S__, S, send the joining resultto S, ' o

bl
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C.2. An Example for Load-Sharing Hash Join (Algorithm 5a)

1.

O Lh

The data subfiles are the same as in the case of the previous algorithm.

Distribution: S, and S_ partition their data files into two equal parts.
S,y partl={1,5, 10, 12, 18, 22, 28, 36}, part2={2,4, 7, 11, 12, 24, 29, 35}
S, Pantl={3,4,9,10, 14, 17, 19, 20}, pant2={2, 7, 9, 13, 15, 16, 25, 30}
S,y sends part2 to S; and S, sends its parti2 10 S,. After the distribution, each site consists of
the following: . ‘ \
S, {1,5,10,12, 18, 22, 28, 36}
S,:1{2,4,7, 11, 12, 24, 29, 35}
St {3, 4,9, 10, 14, 17, 19, 20}
S,:{2,7,9, 13, 15, 16, 25, 30}
. Partition: each site partitions its data set into 4 parts by a hash function (assuming h(key) =
key/4)
S“): partl={1, 5}, part2={10, 18, 22}, part3={}, part4= {12 28, 36}.
S,: part1={29}, part2={2}, part3={7, 11, 35}, pant4={4, 12, 24}.
S;mt: Partl={9, 17}, par2={ 10, 14}, part3={3, 19}, pand={4, 20}.
S,: pant1={9, 13, 25}, part2={2, 30}, part3={7, 15}, partd={16}.
. Subrelation Re-distribution: part]l of each site is transferred to Sy; part2’s are sent to S;;
part3’s are sent to S_; and pantd’s are transmitted to S,. The parts from S and S, are combined
into one set and the parts froim S, and S, to another.
S {1,5,29}, {9, 17,9, 13, 25}
51? {10, 18, 22, 2}, {10, 14, 2, 30}
Sime {7, 11, 35}, {3, 19,7, 15}
$,: {12, 28, 36,4, 12, 24}, {4, 20, 16}

. Hash Index Setup: All sites set up a hash index for one of their two sets of data.
. Local Hash Join: all sites do the nested loop join between their sets of data.
. Result Transmission: S,, S, S, send the joining reesult to S,
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