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Abstract 

stcdy shows rhaf ha shng  can tx m c i f m v c  msf59d for a main memory environment. However, 

no single algorithm is h e  overail bcsr or&. A certain ~uattgy only fits be% inro a qxcific siruadon. 
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Introduction 
9 t 

1.1. Distributed Systems and LANs '' - 

The terns parallel and dknibwed canpufing system appear frequently in the litermm. Thc 

major difference between the two lies in the degree of coupling and the level of interactions among 

&ehcomponent processors. By a parallel computing system. we man.a system in which all 

pmassors are tighdy em&& a d  sfraTlfraTlng is rhmugh shared main memory. A distributed system. . 

on the &I hand, is one in which all pmjessors are loosely coupled, each with its own local 

'memory, and sharing among prcgessun is thmugh a c c d n  &mmunication medium. 

~ismbuteb systems, in particular, distributed darabav systems, are becoming more ;uld more 

importam in recent yean. A disaibutrd database is a collection of data which belong logically to 

the same system but an geqykp&dly spread over the sites-of a mmputer network [CEP 841. 

There are two important aspar: distribution and logical correlation. Distribution means lhat the 

data are physically distributed. Queries usually involve data from different geographical sites and 

dara transmission rfirottgb a cormmtniqtion mcdmm is necessary. It distingtlisks a distributed 

system horn a cen&nli&i one. Logic& mcomlation means that rhe data are logically interrelated. 

which distinguishes a distributed s y m  from a cclkction of several local systems. l h  user docs. 

not even have to know w k r e  a sct of d m  is locami, 
c?' 

JXtribuud cornpi- systEms can k categorized by the degrcc 31 defenualization. At one - 

exmm is thc remote mmplvr network, also called long haul network, whers imcr~ ir& 

s y r ~ m r  rmy bc vidcly upararcd. ul$ dirtaaa between two systems gra te r  lhan 10 Lm, and datl 

sysrem, with disrarre bctarcn two processors (mually mpch) less than . I  h md dau transfer rate 
, 

usually greater than 10 Mbps (XEB 761. Tear the m'ddle of these two extremes is tllr ro-callcd 



local area network systtrsilL+4N). In swh a syrttm, we hihe the dvatrrages of a network system 

tigh~ly coupkd sysetns. Locd nrtuorks arc becoming more and more poplar because of the 

f .2. .Main Memory Systems 

36 j In such a systrm. a h g e  m u n :  of p n m q  memory i5 avatfabtt and a large pnion o t  or 
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Chapter 2 

Query Processing for'Centralized MMDBs 

, -.n:rp for tk actlvme.5 for m o t x y  jxqme 

!z:n:rr,:zz - r m x ~ ~ r y  drsk traffic i'aflasicns of 3-mci art of [hi$ ktrd In a mam memory 

2,1, Index Structures for M3IDBs 



- /- 
working storage of an appti&on is now entirely in main memory and'refe~nces to it will not 

'c, 

cause any disk fiO- [KNL 731 d m w s  various techniques of calculating hash values. Searching a 

lush tabie is fast which is a g m d  &mac?eristic for cqttal-join operations. _But it does p r i y  with 

range queries whch ask for a i;ct of items w i h n  certain range. 

Le f t  OiId Right Child 

Figure 2-2: The St ruca  of a B-uee 5& 

C I & ( E Z C ~ ~ .  AM-ma IX btmq ntr in k urn h each nodc has ai most two childm. 

% & ~ h  ir f a t  k a u s c  i t  requlrer k s  numbs of &;ara amparisom. Hme'i-er, i t  has p r  storage 

L C : ~  man mema3 c m ~ m m e n r ,  urz cmna assume h t  h e  mourn of mmry awlable is 

;a:trn~:d E f i a c n r  US of pnmarq. sxangz u shU o w  of thc major i m s .  B-sees are well-known 

*& to tcmcvt an itrm 1s wgmficanrly reduced I t  also has btmr storage usage. However, 1 1  



A new nee smtcntre, called a T-ac  which has advantages of h t h  AYL-mts and R-mcs, i-s 

introduced in EEH 851. The basic smacnvc of a T-tree node is shown in Figure 2-3. T-tncs an 

binary mxs, with each mde mntaiaing n data f iIds,  one conml field and two pointer fields to its 

left and right children, S i n e  multiple data items art allowed in each node, and each d e  can have 

,a maximum of nvo children T - w  retain the inninsic binary search natun of AVL-tms and the 

storage efficiency of B-trees. Binary search is used for inna-node searching. 

Left CfuM Right Child 

Figure 23: Suucmrc of a T-tree Node 

Insertion and deletion oprations for a T-tree are very similar to those for an AVL-tree. Intra- 

node searching or data movement i s  involved, and rebalancing has to be dom,whcn necessary. .The 

rebalancing technique is &e s a m e  as for A V L - m s ,  except that data  items - 
uansferred from one node to adther. However, most updates are expected to 

movements within one node, rebalancing is much Iess often needed than 

Algorithmic details can be found in jLEH 851. 

may have to. 8g 

involve only data 

in an AVL-tree.  

fLEH 853 has done experimenrs on T-tree, B-uee, array, extendible hashing and linear hash 

smtcrures. The results indicared h a t  T-trees provide a good ovt?raft pkrformancc for  mixes  o f  

searches, imqts and deletes. 

2.2. Query Processing Strategies 

When queries are-presented k~ the darabaze systems, it is the task of a .query optimizer to 

decompose a query into pimirive relarionaf opera~ons such as projections, 
f 

Each operarion involves one or two dations. We will 'concentrate only o n  

Cowptualiy, there are two general methods: nested Iwping and merging.  For a pure nested 

Imp method, o~ of the relarions is operated as k outer and Lhe other as inner relat~on. For every 
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tuple of ihc cuter relation, rht emire inner Alatiw has to be rannd to vuch for matching tuples. 

776s is a gdruic strategy which is too expensive lo b; employed. Vviovr indrx r r m a u ~ a  --be 

for main memory envimnmca Hash ra@e a& T-~IIX are two of them- Instead of scanning the 
/ 

tnr in  inner relation, tfic i h x  for tk i m r  relation can bsprobed in search for matching tuples. 

4 
Merpng is the ocher geasnl snwgy used for joining operations. Merging requires the ability to . 

access tuples In a relation in a c c m n  lo 'cal order, which can be a c k v e d  by either an grder P 
p m r v i n g  ~rsdc'x or a s o d  m y  index. B a h  ek ions  are scanned following r,l-re order provided. 

The strategy is lincar in rime compkxity, btcaust each relation has only to be uavened once. Tree 

i d b e  Imrantre, various algonchms have k e n  proposed, which art essenually denveb from 

convtnnonal p i n  rmzrrsing dgonthm for disk-b& systems. fndex suuctures suitable for main 

memory operatibns are used. Processing strategies are aim tuned to fir into the main memory 

cnvlronmcnt. Five algorithms are p ~ m n t t d  and tested in L E H  861: simple nested loop, hash mdex 

nested loop, tree index nested Imp, son-merge and nee merge: The simple nested Imp algonthrn 

is shown too costly to bc pracucal, a d  i r  is impimenred only for cornpanson purpose. Hash index 

nested Imp and tree index nrted l;dp ye two varianrs, of the simple rrivd Imp  jom algorithm 

w~rf i  a hash index and a tree I&X, nsjxctively, on tfee join column of one of tht rtladrsns. The 

son merge and the me merge are tuo vanam of tht son-merge joln algorithm of {BLA 771: For 

he son merge algorithm, an array i d e x  for each nIation is set up and subsequently sorted by 

q u i c b n .  Then p i n  is rformed w i t h  this index. For the nee merge, a T - m e  index is created on ' 

% 
the p i n  cqlumn for both reladons and tke merge join is ptrfomed subsequently. However, the tree 

merge is a praaical m e w  ody i f  the indices M y  exist, Since the tree index setup cos t  is very --___ 
high 



relation & ro be in s o d  order, he son merge$~ d;e choice. Olhcnriu, rhe hash join rnerhod 

would be the best one. One benefit h r n  merging algorithms is lhat lhcy produce ordered msults.' 



Chapter 3 

Distributed MMDBs 

L 
3.1. Why Distributed .MMDBs? 

A dismbuted MMDB can be consided as a database system dismbuted over a Imsely coupled 

' multi-machine system, with each individual machne having enough primary memory to store its 

cornpitre local database. Tht data transfer rate of such a system should be reasonably fast. 

Bur why disti-ibated M,MDBs on a i d  area network? In a long haul dismbuted system where 

communication erp&s rnll~tiol lre a mapr p ~ d n  of the total'prmssing cost, it docs not make 

too much sense to have a main memory system which does wc aim at reducing data exchange cost. 

On k! other hand, in a ceondtlized ?&iDB, &re is obviously a limit to which 'additional memory 

ceases to improve i t s  perfomaxe, i.e. when the memov space is large enough that vigually no 

disk I!O is incurred due to_local processing. Then, focal processing, instead of disk U0, is a major 
B 

facror of LhC total expense. 

he ~nvoduction of parallel computations. Some of the advantages incIude ( I )  reliability and 

av&biliry arc increased because of data dupiicarion; (2) database erpansioks are easier through 

h e  addition of new sites m tfie neta.ork. The s y e m  r e s p  time may also be reduced. 

One of he problems wltft natn memory systems {either cenualized or disrributed) is that rhe 

d d l i r y  of pnmq saorage r n a h  mash m V e q  more difficult and w t f y .  P E W  841 and [SAL 

'36) hiwe s a d i d  new m v t q  ~edmques for c t b i z e d  *MMDBs. But lide b bcen done for 

dtmbuted' ones. We also nttd ncw aac;urrency conno1 schemes since tramadom tend to be 
6 h n  hat locking small items may not be tolerable. However, this t h i s  d m  mt address these 

pmbkms. Ont of thc man issues of clm41yted sjiterns (main memory or  disk-based systems) is 

9 



I 

the overall pformanct  which is partly d9tennincd by rfie communication overkad that acl.sunts 

for a signifim portion of entire computation expenses. This research deals with the issue of 
b 

perform= of dismbuted hfMDBs. 

. 
3.2. The Models 

We consider two kinds of modtb.  System models are abstractions of major features of actunl 

systems, which should be specific emugh to reflect and s u ~ a r i z e  basic features of a class df 
acmd systems and which should be general enough to ignore unimpnant Qetails of actual systems 

e 

and make theoretical analysis p s i b l e .  Cost m&ls are basic formulas of how pmassing * 
expenses should be &dared. Ttaey should include all dominant factors under a specific system 

model and eliminate negligible components. 
Z 

In our system model for the disuibuted computing study, two homogcncous machines (or sites) 

are interconnected by a local area network. They run the same system software and communicate 

with each orher through message passing. They are called the mult.site, denoted by S,,, and thc 

remote site, demted by S,, mpecbvefy. 

There is one relation at each site. Join operation is to be performed between the two relations. 

One of the relations, usually at & remote site, has to be transferred to h e  other site in a way 

depending on the specific technique used Each prwessor is assumed to have enough l w l  primary 

memory to hold &e entire two relations. For ease of discussion, we assume that the two relations 

of the same size M integers. Since the two machines are autonomous, they may execute the 
r 

same operation on their own data set independently. We call this kind of executions parallel 
' 

operations. The cost of some simultaneous parallel operations is determined by the expenses of the /- 
must cosrly individual opera tion. 

Our cosr model consists of three cornpwnts: preprocessing, communication, and local join. 

Prepmxssing refers to the 1 4  handing prior to tftc focal join of the relations. Local joining is 

h e  actual join of tfie two previously handled ~Jations.  Preprocessing usually includes operatior6 

such as index setup, array index sorting, relation partition, and so on, which may not be necxssary . 
but which will speed up dr subvqucrn lo& join opration. A more coWy prcpoc@ng phase 

f 



mid result subsequently in a cheaper l d  joining phase; and both of them belong to the local 

between tk two cost cornpaems for different techniques. It is also because it is difficult to 

measure hm in a unique unir %y are tneasurcd in terms of % number of data comparisons or 

data movements during the o p h o n ,  which will be &fined later when we pursue the cost analysis. 
6 

The communication cost is usually proportional w tfme size of a relation to k transferred It is 

measured in terms of the number of paralle1,packet transmissions or the size of data segment 

transmitted, depending on th technrque used. - 

3.3. Conventional ," Algorithms 

Queries c& in a high-kvel, p d u r a l  or non-procedural language are submitted to the 

database system which is di&bwd over a mmmunications w o r k .  The database management 

system then translates the queries a relational calculus form. It is rfae task of the query 

opmizei  to decompose tfht relational calculus form into primitive operations such as selections. 

projections and joins 'which may involve operations on"ft1ations at different sites. For ease of - 

9 discussion and analysis, we assume, without lose of generality, that a join operation involves only 

two relations residing at two different sites of the nerwork. 

Distributed join algorithms are distingurshed by whether they employ the traditional join or 

semijoin operator, how the pair of sites involved cooprate during the join procprsing a n d e c h  of 
w 

the local processing me is used. GY 
To perform a join, one of the relations has to be shipped to the other site (called the result site). ' 

Tht scmijoin operation can be used to 1 of data to be transferred. Only the join 

mlumn values of o m  relation and rhe second need to be transferred &tween 

the 

811 

two sites. i t  played seal role in ihc query m s s i n g  algorithm of SDDl  [BERN 

where the intersite data transfkr is expensive. This is specially ~ B Z  for a long haul netwo& 

system However, in a local area m k - o v q r  ,which data transfer axt is much, lower, it relies on - 
the specific join prootssing mmgy used to decide whether the semijoin operation is beneficid, as 

it  recpSns multipk scam of a relatio~ &ring in increased Iocai p r w q i n g  cost. 
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Many centralizad join eval@on algorithm can be employed for local pnxxssing in tach 

machine. Sort-merge and nestbd loop are the m a t  common ones. We may use indcx strucnrres 

such as B-trees or hash tables to speed up the operation. 
1 

The nvo sites involved can work in either a sequential or a pipelined fashion. For the squential 

{sometimes called batching) approach, the receiving site will not-kgin working until all the 

required data have arrived. In the pipelined approach, processing will begin as soon as the first I 
tuple has arrived. While the sequential strategy is easy to implement, the pipelined m e t w  allows 

the sites to work in garallel, and h - i d  site does n o t h u d  to store incoming data in s 
/ 

temporary relation. However, batching of tuples for uansmission may be more economical than a ,  - - 
series of uansmissiomaf single tuples. TIE following table shows rhc pelformamr of V-system in 

file transfer between two disuess Sun-3's. 

, 0SK 1K 2K 4K 8K 16K 
bytes bytes bytes bytes bytes bytes 

4ms 6ms 9ms 1 lms 16ms Z m s  

Table 3-1: V-System IPC Timing Data 

While much work has been done on' distributed q u e j  processing in a disk-based 

e n v i m t  [CAR 851, linle has k e n  done b investigate strategies for distributed main memory 

database system. Here, we &e going to present several algorithms for distributed MMDBs which 
I 

a&xferived from the'convenrional algorithms. 3 

As in disk-based systems, we have several choices of algorithms for evaluation: ( I )  join vs. 

semijoin; (2) sequential vs. pipeline; and (3) son-merge vs. nested loop. We already have results 

on the performance difference bemeen a sequenrid and a pipelined algorithm for conventional 

systems [CAR 851, which will, we expea, not change too muoh for a main memory environment. 
< 

Therefore, we are only interested in sequential algorithms. Notice, however, that al&ugh [CAR 

851 has shown the piplined memods are bcaer.in their test enviro-nt, [LANT 85~"gave thc 

oppire  results because pipelined mehods may inmduce high communication overhad. There is 

an added difficulty in pipelined -sing over tht V system since tht inkqmccss communication 

p r o d  is a blocking one. It is a plausible m a r c h  topic to investigate pipelined techniques vs. 

hatching ones. Meanwhile, tfL ?xx&hg approach is ;aanrPA in this W. 



Furthtmrt, we always m f e r  key fields since in the main memory environment, the key - 

extracting, operation is cheap a d  we a& not intending to compare join with Semijqin operation. - 

Thc stmijoin vs. join is not an issue here. The result relations are always sent to the result site at . 

- , l . , l  

m s e  algorithmh we are going to investigate in'this &tion 'are categorized by the local 

prpbessing techniques used. Specifically, t h y  are distinguished by wh&er they employ the nested 

loop'or merging m e w  for tfme join ogeratiop and whether they use a hash-based or order- 

preserving indcx structure to speed up tfre local cdculation. 

Based on the above discussion, we have the following three algorithms. 
K> 

Algorithm 1. Simple Son-merge Join , 

' f i s  algorith;n is a modified version of the general sort-merge algorithm. An array index 

on the join column is created for each relation at two different sites. The indices are sorted 

in parallel and then the relation on the remote site (and its index) is transferred to the result 

site where subsequent merging is performed. 

Algorithm 2. Nested Loop Join with Hashing Indim I 

A hasbing index on the join column is created for the relation at the result site. The relation 

at the remote site is then transmined to the result site and joining is performed using nested 
- loop strategy. 

Algorithm 3. Tree Merge Join I 

Both sites set up, in parallel, a T-tree index for their re1ation.s if they do not exist. Then, the 

trees arc traversed, also in parallel, t.s get sorted array indices for h e  relations. The relation 

at tfrt remote site (and its array kdex) is m f e 4  to the resuIt site where subsequent 

merging is performed. .I 

- 

Anotficr possible processing strategy would be a nested loop join m e M  With T-tree indices. 

Two relations ari to be joincd in a rested loop fashion., For each key in the outer r e l a t i o w e  
I 

T-ute index for tk inner relation is pmbed for matching keys. The method perfo.ms bette: than 

the simple son-merge algorithm in a cenaalized environment. However, it is not as good as it 

should be in a distributed situation. The simple son-m&ge method now performs better in the 
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* 
distributed environment because the sorting phase can be done in parallel. On 'he other hand, 

probing tk aee i d e x  for each key value is nat cheap. We have implemented the strategy and the 

result chows that the tree merge method (Algorithm 3) is five times faster than the nested loop join 

method for relati'@s of size greater than 8K integers, if the tree setup is not included. 

- 

3.4. Cost Analysis 

We are going to pursue cost analysis for the conventional algorithms given in the previous section 

based on the cost mixiel. For ea& algorithm, the cost equation consists of three parts; 

preprocessing for local joining; data transfer, and local joining. Due to .the diverse nature of . 
different $repmcessing techniques, different measurement units have to be used. Therefore, we can 

not compare different cost components on the basis of the cost analysis. The data transfer is 

measured by the total time used for data transmission. It is proportional to the amount of da@ 

transmitted. Since the physical communicatien medium is not sharable, simultaneous 
! 

transmissions may cause collisions. However, as noted in [PAGP 851, actual data transfer time on 
A - 

the communication medium is only,; small fraction of the total message passing time, 90% of 
I 

which is spent on preprodessing and postpmssing by the transmitting and receiving processors. 

As a result, if two messages are initiated at approximately the same time. tke two transmission 

processes may just overlap so that they appear to be going on in parallel. This phenomenon is 

called communication parallelism &UK 871. We refer to a data-exchange process as a-parallel 

transmission if communication parallelism can be fully exploited. In othe; words, the cost (in 
b 

the time scale) of a parallel data aansmission is proportional to the amount of data transmitted by . 
the initiating &chi=, without being affected by other simultaneous messages. We measure the - 
data transfer cost in terms of parallel data transmissions. For example, assume we have two 

transmission processes T1 and T2, and their communication costs, when rhey are pursued 

individually, are C1 and CI, &pecdvely, with C1 > C2. Then, if TI and T2 are initiated one after 

the other, the total communication cost d l  be the sum of C1 and C2. If TI and T2 are initiated at 

tfie same time, the cost for the parallel transmissions will be measured by the more expensive one, 

which is C1 in this case. 
1 

For Algorithm 1 (Simple Sort-merge Join), the arrays of keys for both relations are sorted in 



paralk.l at different sites, using any of t f i e  poplar internal somng algorithm. The relation at the 

nmort site is then transferred over to the result site. A merge join of the two is subsequently 

pcrformcd there. The number of comparisons is the usual unit to measure the sorting cost. Hence, 

the preprccesing cost of Xgoritfrm 1 is 0 ( W o g  (4). The data transfer cost is M, since the 
* 

relation is of size .Mintegtrs. The number of data comparisons is used to determine the merge join 

expense. Since both relations are of size M, it is ZcM, where c is the average number of matching 

tuples. In our experhem, c is approximateiy 1. 

il 

For Algorithm 2 (Nested Loop Join with Hashing Indices), a hash table index is created for the 

relation at the result site. Thr: relation at the remote site is 'then shipped over to the result site and 

the local joining is performed ar the result site. During the hash table setup proeedcre, keys have to 

be added one by one. For each insertion, a hash value have to be cdalated and the keys have to be 

insertdinto the appropriate m e  entry. It takes a constant time to insert the key. We use the 

n t r w o f  keys to be inserd to measure the index setup expense. H e m ,  the preprocessing cost 

of Algorithm 2 is M. The communicahon expense is obviously M. Moreover, we use the number 
i* 

of key comparisons to measure the locat msted loop hash join operations. The local join cost will 

then be dU, where c' is the average length'of d-e chain list associated with each bucket in the hash 

table. 3n our experiments, c' is approximately 4. 

1 1 

For Algorithm 3 (Tree Merge Join), a tree index, if it does not exist, is set up for each relation in 

the machines. However, net index is b h  most likely one to exist for a relation. Then, the tree P 

I 

indicts are naversed to product sorted array indices. Later phases are the same as for the simple 

son-mtrge'algorithrn. For the tree setup procedure, the.Tetations have to be seamed and d-e keys 
. . 

are inserttd into the index tret one a h  h e  other. For rhe i~ tuple to 'k inserted, a search for the 

inscrnng node has to be done and i n n - m d e  dara movement may be necessary. We use the total 

*arch cost to measure h e  tree sewp expense. The search cost can be measured by the number of 

I T .  uce mdcr wardud. For rhe iLh key to be addcd,fi rearch costs log (3, where S u si2e of a 



M 
H e m ,  tfbe above asymptotic estimation will be estimated to be 0 (Mlog (-)). 

c s  

The traversing of the indices is Iiwar since each node is only reached three rimes and scanned 

only o m .  We use the number of keys to measure the uetmtversal operanon. Hcncc, the cost of 
1 

mversal is M The &u uansfcr cost hen is &Ad, h e  same as prtvlous algorithms. ?hc last 

merging phase is the sarne as tfre one for the simple son-merge. Table 3 - 2  summarizes the 

analytikal results obtained in &is section. Table 3-3 gtves @e list of units used. 

Scsted Loop Join with Hashng Index: 
1 

Hash Index Setup 
?f i 

8' 

Tree 3fzrge Join: 

Tree Index Tret Cbmmunicauun h a !  ;Verge 
Sztuu 

- - -  

Tabk 3-2: Summar)- ofCosr Analysis 

kird WE will evaiuav tfir a l g ~ n ~ x m  h u g h  cxpnmsn ts  and study LIX best vadcctff k r w t t n  



Cost Components Measurement Units 

wmng number of comparisons 
merge joln n u m k r  of comparisons 
hash table setup s t z e  of dw relation 
1 4  hash join aum- of comparisons 
tree ~ n d c x  otatp number of tree nodes searcM 
tree vavenal size of tfrt relation 
~ ~ r n r n ~ c a t l o n  site of the relation 

., k 
w 

Table 3-3: Measurement Units 



Chapter 4 . 

Experimental Validation I 

4.1. Test Environment 

The distributed experimental environment consists of five Sun-3 workstations connected by a 

1OMbit &met local network. Each workstation is equipped with a powerful MC68020 

microprocessor and an MC6888 1 floating-point coprocessor. It is a homogeneous environment, n 

with all workstations k i n g  dis!dess and possessing four mega-bytes of main memory (RAM). 
- They also run the same operating system. The underlying Ethernet provides a fast communication 

Running on these workstations is the operating system, the V-system, developed at Stanford 

University. 4-system is categorized as a distributed operating system by [TAN 851 in the sense 

that i t  provides the users with high transparency of the underlying system activities. 

Tlx greatest advantage of using the V-system is its efficient and cheap interprocess . -  

communication' facilities. Among many fearurn, the system only transmits shon and fixed-size 

messages which is easy to implement and has less p m s s i n g  overhead. To transfer large amount 

of data, h e  sender has only to specify a segment of memory in its address space where the data are 

stored. The access is passed along w i h  a fixed-size message to the receiver and the receiver can 

hen copy tfie wiple segment from the sender's address space over to its own address space 

dlrertly. No inrermediate buffering is necessary. 

The V-system employs a blockng send operation, which means the process initiating the 

operation is blocked undl a reply or acknowledgemem is received The design is  chosen according 

to h e  nature of m o u  applications: a precess typically suspends exearion to wait for a reply 

immediately after sending a message ICHER 84J. Providing one kernel prim~i~kr.  for both sending 



thc -sage a& receiving vin repG results in ksa overhead with a message transaction axxi makes 

the inferface pmxdurc easy to use. 

Our experiments were all done during weekend nights w@n the network traffic was low and , 
nobody else was using any of the machines. 'Two machines q e  used for the algorithms studied in 

I . ,  

tfit previous chapter. 

4.2. Test Parameters 

For each algorithm implemented, the two machines involvpd generate two relations of rhe same 

size in their primary memory respectively. The entire operation does not involve any disk U 0  at 

all. Our relations consist of only key values which are integers in our experiments. The keys were 

randomly generated and were uniformly distributed over'a, certain range such that the number of 

tuples (i.e keys in our case) in the resulting relarion was about the same as the size of the relations 
< 

themselves. Duplicate keys were allowed. 

Timing is measured by the GetTime system call provided by the V-system, which gives the 

instantaneous time since January 1, 1970 GMT. Because we had a dedicated system, - the 

measurements arc accurate. In fact, we ran our programs many times at different times and the 

results only showed about I %  difference. We designed the algorithms to consist of several steps, 

tach representing a l o g i d  phast of processing. The elapsed time for each phase was recorded. 

7% total cost, the rcspons time in our research, of algorithm is defined to be the sum of the 

time used during each step. 
- I  

As was stated earlier, the V-system employs blocking Communication interfaces, which means 

the data-exchange process is the priod from the initiation df the okration till the arrival of an 

aclcnowledgtmcnt from the rtctiver. Tbc implication is that some local pmce&ing such as copying 

, . dau from one location to another is also included in the communication overhead. 
, 



4.3. Analysis of Experiments 

43.1. Test Results 

0 1 2 4 
- 

8 16 32 &i 
(K integers) 

Figure 4-1: Performance Comparison 

A p n d i x  A. 1 summarizes the experimental resulrr obtained for Algorilhrns 1 ,  2 & 3. They are 

measured by the total elapsed time of a transaction in milliseconds. Figure 4-1 shows the 

performance of the algorithms, where the sizes are the number of keys for one of the two relations. 

43.2. Preprocessing vs Local Join Operation 
d 

For Algorithm 1, the pepnresring execution is the local sorting operation. The two machines 

son their relations in parallel and the timing is measured on the result machine. From the 

experimemal & y e  can see thar the c a t  of. local roning gmws fast (more than linearly) as the 

size of the relations increases. It is the m a t  expensive comjmnent of tk total cost. LDcat join 

opradon refen to the merging of the two relations. Just as theoretical complexity amlysis 

indicates, tk merging cost is linear with respect to the site of the relations. 



For Algorithm 2, p r c p t o q p q  means the hash table setup for one of & relatiom. The data 

y wh regard to the size. The same is trite for the IocaI nested Imp  join show tiw axit grows l i d i  C 
opration. But unlike A l g & h  I ,  *re prepmessing cost is in most cases 3 times greater than 

the merging cost, tht tabk setup is Im expensive rhan the I d  join o p e d o n .  There is clearly a 

uadcoff between prepr-ing and local join components. A l h u g h  h i s  tradeoff varies from one 

. p m s s i n g  strategy to armher, a mphsticated preprocessing method produces a simple local join 

operation, at least in this case. H e m ,  a w t l y  join operation may be eliminated by introducing a 

preprocessing phase. Thc tree merge algorithm is ao exception because of the assumption that the 

tree indices already exist 

43.3. LAxlal Processing vs Communication 
11 

We refer local pmzssing to be the sum of prepr&ssing and (parallel) local join operations, 
* , 

$ which is largely & t e r n i d  by the sopiustication of the processing strategies and the power of the 

i & parriciparion processors. Tne data exchange p m s s ,  on the other hand, depends largely on the 

sophistication of the system comniunicarion facilities and the nature of the. underlying 

communication medium. Yet, it is aha parrly determined by the power of the processors since, as 

we know, some local precessing is also included which will be affected by the hardware 

technologies. 

As we can see from h e  results, the data exchange only constitutes a small portion of the total 

cost, whereas 1 0 4  proassing constitutes the majority of the totat cost Table 4-1 shows the 

comparisons for Algoridms 1 & 2. 

The results imply that we can employ more sophsticated strategies to improve the performance 

albough the csmmunication overfiead may be increased. The communication medium is no longer 

he most critical r e m  and the strategies used for long haul network is w longer the k s t  in a>- 

local a m  environment. The improvement a u l d  prove to be substantial. 



~ l ~ o r i h m  2: 
Sizes 
L O d  Proc 

Table 4-1: Local Processing vs Communication 

13.4. - Merging and Nested Loop Strategies 

In the previous chapter, we have discussed h e  heoretical analysis of the algorithms. However. 

we can only tell, from thc r.hmreticai complexity, that one is asymptotically better or worse than 

anorher. Since the different complexities are expressed in terms of difftrent operations and one 

opmtion be cheaper or more exknsive than anather, we can nor predict whether one 

algorithm is absolutely better than th other, 

f h r  ernpiric. data show that --merge is the best provided both indices are available for the two 

I d a h 0 ~ .  Tree traversal is surprisingly h p  becaw one data movement is much Iess cosdy Lhan 

one dara comparison o r  one aritfrmetic dcuiation. If h e  two relations are already in sorted order, 

the sirnpk son-merge proves to be the best. Otkrwise, nested loop wilt be the best. Each 

algorithm fits best to a particular sihlahon. 

One advantage of Ling merging methods is that they prbduce boned results, which meets the 

requirement of some applications. They are also suitable for non-equi-joins. The hashing nested 

loop join could be made fast if the hash functions are properly chosen and tuned. 



Figure 4- t shows ttpt ptsfca-mme of $L alguriths. As we can see, the results are consistent in 

the sense ti-& tk cous i a ~ c a s t  in proportion to the growth of the relation size. All local 

prowsing c o ~ t  components are houbld when the size of the relations is doubled. One exception 

is the local sorting cost wmpmnt (Algorithm I). It grows slightly faster than linearly, which 

agrees with the cost analysis. 

Tfr communication cxptnsc grows linearly, as we can predict from tlte complexity. Since the 

data exchange p m s  involves only the two synchronized machines, the chamx of getting 

contentions is very small. ?herefore, the cosr will grow in proportional to the change of the sizes. 

For Algorithms 2 and 3, ir is safe ro predict thar rfie total cost will conunue to grow Iinearly for 

relation sizcs greater than MK, as long as r)pe main memory is still large enough to hold the entire 

working storage. Tht total mt of Algorithm 1 will grow slightly faster than linearly. 

d ,  
43.6. Further Improvements 

In all h e  algorithms, only two machines are involved One of the rdations, usually in the 

remote machine, has to be sent over to tfbe other machine and local join is subsequently performed 

the=. However, as we can see, h e  remote machine is virtually sitting idle after the transmission of 

is relation. Therefore, possibfe performance improvement can be achieve3 by allowing more 
& 5 

c parallel processing. 

For h e  simple sort-merge a l g o r i h ,  immediately after the local sorting phase, the two relations 

can be pamrioned into two parts such h a t  the first part of one relation only needs to be joined with 

the first pan of $a other relation. This can be easily done since tb two relations are sorted at the 

moment. Thtn,  the firsz part of he relation at the remote site can be musferred to the result site 

and the second part of tfic relation at the m u l t  site be transferred to the remote site. Merging can 

hen be done in parallel at h h  sites. At tfie fast phase, the result ubtained at the remote site is 

m k n r c f  to ttrc nsdr siu. Figure 4-2 shows tfae entire procedure. Tbe strategy is based on the. 

fact that communidon  overhad is relativeiy low so that local processing/data exchange tradeoff 

can be beneficial. Similar modifica~on can be done to the tree merge algorithm. 



u 
Phase 3: Data Exchange 

site ':El m 
Phase 4: Parallel Merge 

Site 1: -1 

Site 2: R21 lid 

Site 2: 

Figure 4-2: Example of the New Strategy 

wsted loop method, h e  relations cannot bc panitioned easily in h e  same way 

sorted. However, rhey can be simply partitioned into two equal parts. Then, the 

relation at the resdt machine is sent to the remote site; and a copy of the whole 

relahon at the remote site is shipped to the result site. Next, a hash index is set up, m parallel, for 

the two parts of the original relarion at rhe result site. Subwquent nested loop join is prforrned 

ktween the two parts and the relation from the remote site. The result obtained a{ the remote site 

is h e n  transferred to the result site. ~ i r f i  the strategy, the hash index setup cost is cut in half, at the 

cost of increasing data exchange overkad. 

However, we are still not satisfied with the strateges developed. Kotice that machines in a Iwal 

nerwork may not wo*-24 hours a day. 7 l e  probability chat additional machines are situng idle or 

have light workload ar a moment is high. We would like to devclqpmorr general strategies, which 

kafk to tfie study of tfae follopiing chapters. 



Chapter 5 

DMMDB Query Processing with, Load Sharing 
L 

5.1, Motivations, 

In the conventionaf approach,  th? amount of data transfer is minimized, or at least, extra mfic 

is not enuxraged. A join operation involves only the twc/p'rocesson-(or sites) ar which the 

original two relations arc stored. One relarion is nansferred from its site to dx other in one 

transmistion stage and join operation b e e n  the two is lwally performed there. 
J 

With rfic &vclopmnt of distributed systems and communication technologies, more and more 

computers can be cormcad to a network with fast data transfer rate and good overall system 

pe~formanct- The fact is that tfic probability thar at least one processor is sitting idle while tasks 

an waiting at 0 t h  sim in a distributed system (a "wait while idle" state) is remarkably high over 

a wide range of network sira and pmaPsor utiliradons fLU 851. Hence, umh a high performance 
1 

distributed system over a high-sped local area r~twork,  such as V-system ( [CHER 841 and 

[BERG 86]), we may distribute over h aetwork the workload incurred b y . p i n  operations to 

achieve high pdkf i sm & the d t  of t)lc prrxxssingfmrnrnunication tradeoff. 
\ 

Communication cost can be mdcd for local mrnputational expense. E t J K  871 has done 

thtorrtical analysis and practical expcrimem on disfributed sorting algorithms. For d-e sorting 

algorithms, it has k e n  h w n  that local pmcesing cost is dominant while the total mmmunication 

mu is only a small bction of the tad expense. &sing time should be minimized even with 

the incrrased t x p & w  of communication. . 

for  join dgorirhms, the situation is similar in that i t  is also data intensive. W processing cost 

tends to be a major factor. It is, herefon, very likely to be bexficial to distribute tasks over the 

nerworlc. Transkmng part of sygern had fnxn a congested area t~ a lightly loaded area wilI 



physical communication medium. Tht rest is spent on the prc-pnxxssing and post-processing in 

tire transmitting id receiving sites fPAGP 851. A main memory system can make the 

prepmxsising and post-processing faster. However, as we will see, local processing cost is still 

dominant even in a main memory system. While the performance of a centralized MMDB ceases 

to be improved with even more memory if the memory size is already big enough, distributing 
> 

workload tends to be an effectin way of improving performance. We call the approach a load 

shxin@ih& the sew hiit more machines are involved to handle the original two-machine task. 
, . 

However, our approach is not the duplication of the traditional load sharing strategies. While the 

traditional load sharing snatcgis distribute tasb amongst processors over a network to achieve a 

system-wide performance improvement in throughput, our approach further decomposes,a task into 

subtasks which run in parallel in other mxhipes' and hence improves performance of a particular 

task. Data associated with he subtasks may also be transmitted. 
\ 

5.2. The Revised Models 

Suppose there are N processors interconnected by a high performance network. Each of the 

processors is assumed to have reasonably large primary memory for query processing. A join 

operation is going to be perf& between two &liihns residing at two different processors (or 

sites), which are called S,, and S, respectively. The result site S,, is where the final result is to 

be collected. 

The first stage of the new approaches is, unlike conventional ones, to preprocess the original 

relations for subsequent load disrribution. The two relations are partitioned, according to a certain 

set of criteria, inso a number of subrelations which are then vansferred to other sites through the 

communication medium. The next stage is the parallel processing of the subrriations at eacb sitc to 

case rfie later join operations, whtch usually includes such operations as index setup, array index 

sorting, etc. Subsequently, rile subrelariorrs are joined together. Thk result of each of rhtK join 

operations is finany 

H e m ,  basically, of four phases: ( 1 )  preprocesving of original 



rciarions aad distribution of the subrelations; (2) prep-ssing of the subrelations at individual 

sites for s u m u e n t  join operations; (3) join operations between pairs of subrelations at each 

processor; (4) final result colleaion. We call the algorithms based on the appmach load sharing 

algorithms. 

Our cost model for a load sharing algorithm also consists of four parts, analogous to the four 

basic processing phases. Thc fmt component is the cost of preprocessing for load distribution 

which accounts for the expense of tocal prowssing prior to workload distribution. Since the load 

disvibution is m t  intrinsic to rhe preprocessing and different measurement scale is used, it is . 

counted as part of data exchange. The second component is the cost of preprocessing for local 

joining which accounts for tfre expense of local processing priorto pair-wise join operations. The ' 

third component is the total parallel data transfer cost which includes the costs for load'distribution, 

data-exchange before and during pair-wise joins, if any, and final result collection. The last 

component is the cost for total parallel I d  join operations. 

The third component depnds on the amount of data to be transferred. The other three 

components are measured in terms of the number of data movements and comparisons. The sum of 

the four gives the response time of the entire join procedure. 

5.3. Load Sharing Algorithms 

We have argued in the previous section that the load distribution strategy is very likely to Lf 
significantly improve performance for a main meinor- system, as well as for a disk-based system. 

We have developed three load sharing algorithms for distributed join pmssing.  They are the load 

sharing version of the algorithms studied in Chapter 3. C 
Suppose the two original relations are resident at two sites called S,, and Sm, respectively. We 

have also some even number of additional sites which are divided into two disjoint groups with Sm 

and S,, being the group leaders respectively. Nute that in the simpfe sort merge algorithm, sorting 

is thc most costly operation. To apply our load distribution strategy, the original relations should ' 

be partitioned and distributed so that the son@ _task can be shared. S ,  and S ,  then partition ' 

h i r  relations into a number of subrelations of a ~ ~ l y  equal size, and distribute them within -, - 



their own group b o u g h  tfhe communication network. Each suWarion -in me p p  is 

subsequently joined in parallel with every subrelation in the other group. The results are kept at 

sites led by S,,. Finally, S, collects mula from its group members. . A formal description of the 

proadure is given in Algorithm 4. ktailed pseudozode of -the algorithm can be found in 

Appendix B. Since the algorithm is derived from the simple sort-merge method, we call it a load- 

sharing sort-merge algorithm. 

Algorithm 4. Load Sharing Sort Merge 

1. Suppose there are n sites on a local network with light loading, where n is an even 
n 

number, and the sites are divided into two groups. The first consist& 5 sites with 

n 
S,, being the leader. The semnd group & consists of 5 sites, with S, being the 

leader. The two relations are at S,, and S,, respectively. S,,, is the result site. 
2. Paitition Phase 

n 
Sites S,, and S, partition their, relations into 2 equal subrelations in parallel. Then. 

n n n 
site S ,  sends --1 of its - subrelations to its group members, and S, sends 5 -1 of 2 2 

* 

4. Pair-Wise Merge Phmk 
Every member of one group perform pair-wire merging with a member from the 
other group, and the results w stored in the members of S,,,'s group. 

n 
This process repeats 5 times, until every member of one group has performed 
merging with every member of the other group. 

5. Result Collection Phase 
S,, collects results from its group members. 

In the above algorithm, the workload is distributed and pair-wise mergings are performed in 

parallel. Therefore, the overall p e r f o m  may Ix improved. However, as we have noticed, each 
C 

subrelation in one group has to be joined with every subrelation of the other group sin& we do not 
YG -i 

employ, dur& the partitioning, any b w l e d g e  about which tuple should bc joined with w w  
m- 

other tuple(s). Tk data exchange mt may increase fast as the number of pmcessors involved 

increases. One du t iun  will be to divide the original relations into disjoint sets of tuples such that 

tuples in one set of a relation have to be joined with tuples of a corresponding set of the orher 

relafioa In this sense, the sets of o m  relation have a one-to-one matching relationship with the sets 



of tfic othcr relation. W t  have developed a parritioning technique using hashing functions. A hash 

pamtioncd this way by the sam hash function, then to evaluate the join of the two, it suffices to 
Y 

join thc corresponding prrions n ~ ~ v e t y ,  since i t  is ody pssible for two ttlples From & two 

corresponding portions to have the same key vdue. 

Since each subnlation does mt have to be joined with every orher, we can send the two 

corresponding subrelations to tfic s a n e  site in the load disuibution phase to eliminate the later &ta 

& exchange overhead. From our pzvious experiments, total cost of I d  sorting and subsequent 

merging is higher than t f ie  ms of seaing up a hash index and pursuing subsequent joining. 
- -  - 

Therefore, nested lmp join wirh h a h  index is ernplgyed for local p-ssing, and we call the 

algorithm tfrz load sharing nested loop algorithm. 

The drawback of the partition m e w  is t iut it requires one additional scan of the relations and 

the calculation of a hash value for each tuple. This may be cosdy compared with data transfer 

- ' 

A formal and mike precise description of the procedure is given in Algorithm 5 .  
, 

Algorithm 5. Load Sharing Hash f oin 

1. Suppose there are n sires on a local network with light loading, where n is an even 
n 

number, and the sites an divided i m  two groups. The first consists of 5 sites with 

n 
S,, k i n g  the leader. The record group also consists of 5 sites, with S, being the 

leader. The two relations are at S, and S, respectively.-s,, is the result site. 
2. Panition Phase 

A hash function is chosen to partition the two original relations into n subsets each 
3. &@ Dismwtion Phase 

n 
a. sit and S,, each transfer --I subrelations to its group members. 

2 
n 

b. S,, and S,, each nansfer 2-1 subrelations to the memben of the other 

%rrtuP. 
c. S,, and S, exchange ore subrelation. 

Ar the end of tfie phase, each site has the two corresponding subrelations, bne from 
S,, and dx o b r  from S,. 



wit compontnr by making ust of c x m  rnachim available, Naruraliy, the question arises as to 

whether h y  are the optimal afgorirhms. Consider d.I& pair-wix merging phase of Atgorithrn 4,  
a 

where simple sortmerge is empfrryxf as in Algorithm I .  %re are two sitcs involved, ane fmm 

S,,,'s group and 6ne from 5,'s group for each pair-wise merging operation. Afrtr rransfcmng its 

subrelation over to tke ocher sirc,. tfx one belonging to S,,'s group will SIC idle until  ttre next 

oprarion begins. Further reduction in lmd processing is still possible. 

Consider the partition phase of Algorithm 5, where a hash function is chosen and tfic relauons arc 

scanned and partitioned into n pans while orher machines are siuing idle. There i s  the psssibitiry 
, 

of funher  refineinedr by lemng other sites share the panirion task. O u r  aim is  to achieve optimal 

soiurions in term of communicatiorzlocat poctssing r rahf fs .  We cxptc t  tfie pmss ing  cost will 

be reduced by half, except for the communication overhead, if the processor resource is doubled. 

We have developed the following rwo modified algorithms. For Algorithm 4a, afrer rht parallel 

soning phaw, each subrelation is f m k r  @tioned into n subcompnents. In rhc following 

component exchange phase, h e  i~ processor collects the ih components of all subrelatlons. The 

e r - w i s e  merge is then performed within each individual site. For Algontbm 5a, the reIarions arc 

equally divided and distributed among the processors. The subrelations are then W t i m d  by a 

c h w n  hash funcaon into n mmverfapping pans which are sukquemty trammineb to the 

corresponding sites The partition task of Algorithm 5 is shared by other rnachmes. 



Algorithm 41. Load Shanng Son .Merge (modified version) 

- .. 
rn 

1. Suppose &re art n sites on a I d  rework  with light loading, where n is an even 
n 

~ m b c r ,  and rhc siats an dlvZrled ~ n t a  two groups. The first consists of 5 sites, with 
h n 

S,, k ing  rfit kadci. Trr sccond group also consists of 2 sites, with S, being h e  

lcadtr~ Thc nwo relaooniarr at S, an$ S, respemvely. S ,  1s the result site. 
Pam non Phase 

n 
Snt and S,, pamuon  IF nlanons rnro - equal subrelations In parallel Then, they 2 

n n 
4cnd 2 -1 of the - nianons ro t k t r  group members, respecuvely. 2 
Iiz9Sid-m 
Each w e  sorta i t s  subnlauon uslng rnumal Qu~ckSort. 
#wt Finding Ruse , 
S,, finds th n-1 jxvix d u e s  w k h  dm& its subrelabon into n fdrnmt equal) parts, 
and them send them to dl other stus.  Ths: other sites, upon recmvmg the pivot 
~ a E u e s ~ f l l R b C T & d e & e i r ~ t r # e n p % b y  then-i v d w  
Component ]Exchanp;t Ruse 
A11 slrcs send, m rum, n-1 of h e i r  wbrthons to the correspombg sires, In such a 
way IM the c o m p n d m g  wbrefamns w-111 be sent to the same s j t z  , - 

1 All rubrrlafiom from S,'r grwp members 40 be rnergcd togelher. . 
b. All subreianom fmm S,,'r p u p  members are to k merged together. 
c. The merge p in  is then p r f o m d  beween h e  two resulung relations. 

7 Rtsutt Cotitmon Fkse 
S, receives nsulrs from dl &r sites. 

Algorithm 53. Load Sharing Hash Join !mdificd -icrsion) 

i- f u p p  ztrrt arr n s i r s  on a focal network ~7th fighf loarJlng, nkrr n IS an even 
* n 

number, a& thc s m s  us d ~ * ~ d e d  mro rao groups. The f i r s t  concisri of 5 sites. with 



All sites combine subsets from its own group members into one relation. and combine 
ohers into another reladoe ). 

5 .  Index Setup Phase 
Each site sets up, in parallel, a hash index fbr oneof its two relatio I, . '\ 6. he.? Joininn Phase 

, 

All sites perform ttbe join bperation on the two relations residing on th&. 
7. Result Collection Phase 

SnL receives results from all other sites. 

Appendix C give L w o  examples of how Algorithms 4a and 5a work. 

h 

The prebious algorithm aa developed from the conventional sort-merge and hash indexed nested 

imp  strategies. Another load sharing algorithm can also be derived from the tree merge algorithm. 
- 

Recall that the treermerge Z g 6 i i t  g ies  t h e b i s T ~ 8 0 r r 6 ~  i f e  r tr indiee &sexist for bt h 

relations. Tree traversal is cheap compared with other cost components. Since the array index 

obtafned from the tree searching is sorted, it is easy to partition it into a number of almost equal 

parts: The key value at che kginning of each part is called a pivot value. Similar to the panition 

smregy for Algorithm 5, if we partition the two relations by the same pivot values, then only the 

tuples from two corresponding subrelations need to be joined together, and all the subrelations are 

also in s o d  order. Disuiburion of the subrelations will allow other machiries to share the 
- 

merging cost. According to some of our experiments, tree traversal and relation panition costs are 

so low tha; i t  is not worth the effort to further distribute the task at the cost of increased 

communication overhead. 

/ 
'Ihe'following shows a f o m d  descriprion of the algorithm. 

Algorithm 6. h a d  !%ring Tree Merge. 

1. Suppose there are n sites on a local network with light loading, where n is an even 
n 

number, and the sires are divided into two gmups. The first consists of 5 sites, with 

n 
S,, k i n g  the leader. Th second group also consists of 5 sites, with S, being ht 

leader. The two nlarions are ar S, and S, respectively. -s,, is the result site. 
Assume here m T-uee mdiczs for both relations. 

2. Traversal Phase 
S,, and S, traverse the me indices to get the soned'array indices. 

3. Parti tim Phase 

a. S,, pamaons its relation in to  n almost equal subrelations. 



b. S,, sends the partitioning key .values to S,. 
c. S,, partitions its reIation into n subreIations according to the pivot values. 

4. Data Transmission Phase 

n 
a. S,, and S,, rend 5 - 1 subrelations to their own group members. 

n 
b. S,, and Sm send another 5- 1 subrelations to members of the other group. 
c. S,, and S, exchange a subrelation. 

At the end of this phase, aH sites contains two corresponding subrelations to be 
joined. 

5. Merging Phase 
All sites perform merging of heir subrelations. 

6. Result Collection Phase 
_ w - f r o m a l L u & h e L -  - - - - -- 

Appendix B gives the pseudo code for the algorithms. 

5.4. Cost Analysis 

As before, costs are measured by the time complexity of each processing phase, based on our 

revised cost model. Recall that the-cost equation for each.algorithm consists of four parts:* 

prepmssing for load dismbution, preprocessing for pair-wise joining, communication cost, and 

local joining expenses. Pardel processing is the processings of many tasks that are initiated 

(atmost) simultaneously by the p m s s o r s  over a oetwork. Maximum parallelism is achieved when 

the time needed to process the simultaneous tasks is approximately the same as the time needed to 

p-aa thc longest one. The (parallel) cost of some simul&us tasks is the cost,@ pnress the 

longest task. If several tasks art processed sequentially, the total cost will be the sum of each 

individual cost component The four c a t  components above are all parallel cost measurements. 

Assume there are N sites available in the network. The original two relations are both of size M, 

i.e.1 consisrs of M keys each. As for the algorithms discussed in Chapter 3, different quantity units 

m used for different prepnwsing tshniques employed. For the hash-bawd partition, since a 

hash value has to bt calculated for each key, the number of keys, i:e., the size of the relations, 

serves as thc measurement unit. Equal pamtion divides a relationbto a number of equal parts. 

The number of pam is used to be the: quanrity unit. The pivot finding process is measured by the 

. number of data comparisons, which, as we will see later, is negligible. The remaining components 



are counted by the same units as in Chapter 3. Later in this section, we will wt expL~citly show the 

quantity units. 

N 
For Algorithm 4 (Load Sharing Son Merge), the N processon are divided into two groups of 5 

processon, led by the result site, S,,, and the remote site, S,,, respectively. The task of 
. N  

preprocessing for load distribution is to partition simultaneously the two relations into 5 equal 

N o  
subrelations at sites S,, and S,. The cost for it is then 5, which is negligible. Each ..i!x:!::;.-: 

2M 
will be of size .s algorithm is derivedXrom the simple sort-merge method. The sorting task 

iSdismbvtedat- DQ--~ 
2 2M 

now the cost of internal soning of a subrelation, that is, O ( T o g  (T)). 
4 

N d L  

In this algorithm., each site is involved in 2 pir-wi~ejoinin~s.  E'acli time, one sorted relalion has 

to be transferred to the other site, and local joining is then performed. The cost of transmission is - 
2M 4cM 

proportional to the size of the subrelation, that is, 7 As before, the cost of merging is 7 
Recall that c is the average number of matching tuples for a given tuple, which is 1 in our 

experiments. Therefore, the total cost of local joining is 2M, and the total cost of data exchange 

during pair-wise joinings is M. 

N 2M 2M 
The data exchange time for load distribution is (2- 1 ) ~  - M - 7 ,  and the data collection time 

. ~ 

N 2M 2M 
is (5 - 1 - M- 7 because ihe result site collects final data. from the sites one by one. The N - 

4M 
total dara exchange cost is, then, 3M- 7 

In the revised version of Algorithm 4, merging task is further distributed, The pivot finding 

overhead is counted as part of the preprocessing cost. As before, the! cost of @e panition of 
N N - 
. - . . 

relations into - equal part is 1, which is negligible. The pivot finding cost is obviously 2 1 

2M 
Mog ( 7 1 ,  since rhe subrelations are already wried and binary searching can be used. Before the 

2M 
part exchange phase, the size of each subrelation is approximately . During the part exchange 

!$ 
phase, each site takes turn to uansrnit its subrelations to the correswndina sites. The - 

2M 2M 
communication cost of each turn will be (N-1 p. Heng, the total cost of this phase is 2M- 7 

d' ! 



For the merging phase, all subrelations are sorted. Each site contains two sets of subrelations, one 

subrelations from S,,'s group and tftose from S,'s group are first merged together respectively. 
N N  

Sincc there arc 1 subreladons from each group, log [;i] steps are needed to merge subrelations 

from each group. For the first step, each subrelation is merged with one other subrelation to form a' 
relation of double site. In tk subsequent steps, pair-wise mergings between resulting relations 

2M 
from the last step are performed, Since the relations are originally of size - the cost of first 

M 
I?' 

merge step, as well i s  subkquent steps, is Therefore, the merge of subrelations from each 
-- -- - - - 

M N  M 
gmup costs  log [TI. After merging, each site contains two sorted relations of size J. The 

2M 
subsequent merge join then costs Hence, the total expense of the merging phase is -. 
M N M 
- Oog [TI + 1 ). The total number of tuples (keys) for each set of subrelatiom is approximately N 

M 
Therefore, the result relation size will be cx  N, where c is the average matching tuples for each 

M 
tuple and is about 1 in our experiments. Therefore, the result collection expense is M- Plus the 

2M 5M 
, data didbution cost in phase 2, which is M- 7, the total communication expense is 4M- 7 

Note that the pivot distribution overhead is negligible. Table 5-1 gives the summary of cost 

analysis of Algorithm 4 and its mdified version. Notice that Algorithm 4a gives globally sorted 

results, whereas Algorithm 4 dces not. 

Algorithm 5 is slightly different. The data exchange cost is r e d u d  due to the sophisticated 

preprocessing W q u e .  But the preprocessing cost is increased accordingly because of the 

additional scanning of the relations. Sinoe the s i z  of the relations is M keys, the hash-based 

partition of tk partition phase costs M according to our convention, Nested loop algorithm with 

hash indices is used for the local joining. As in the case of Algorithm 2, the parallel cost of 
M 

preprocessing for local joining operarions, i.e. im3ex set up, is i; and the parallel local joining cost 

M 
is 6 x R a a l l  c'-4, which is thc average length of list aJsociared with each table entry. The 

time to disuibutc subrelations to the two groups and to exchange data between the result site and 
N M M  M 

the remote site is 2 ( - - 1 ) ~  + % = k The time for the result site to coUect result data is $&I). 
2 . . 

M 
The toul cost of data exchange is then 2M- 

- 



Load Sharing Sort Merge Algorithm: 

Preprocessing I Preprocessing I1 Communication Parallel 
(Partition) Parallel Sort LcIcal Merge 

(negligible) 

Load Sharing Sortmerge Algorithm: modified version 

Preprocessing I Prepmss ing  I1 Communication Parallel 
Partition and Parallel Sort Local Merge 
Pivot Finding 

(negligible) 

-- - 

\ Table 5-1: Cost Analysis of Algorithms 4 & 4a 

In the revised version of Algorithm 5, the partition task is further distributed to achieve more 
N 

parallelism. The preprocessing cost now includes the partition of the original relations into - equal 
2 

parts (phase 2) and the funher W t i o n  of the subrelations into N nonoverlapping sets (phase 3). 
N 

The cost of the first component is 5, which is negligible. The cost fonu la  for the second 

2M 
component is proportional to the subrelation sizes, which is 7 Now, the size of each subset of a 

2M 
subrelation is approximately -. 

t? 
2M 

Toe data e x d w g e  phare is the same as that for Algorithm 4a. Hence, i t  costs 2M-N. At the 

end of this phase, after all sites combine the subsets properly, we have two relations at each site, 
, M M 

being approximately of size - respcdvely. It fdllows that the index setup cost is x, and the local N' 
4M 

a join cost is - M 
N '  As for Algorithm 5, the result collection overhead is SN-1). On the other hand, J 

2M 5M 
rhe task dismbution cost in phare 2 is M-- rhe wal communication ovnhcad is then 4M- N '  
Table 5-2 sl-iows the cost analysis for Algorithm 5 and Algorithm 5a 



b a d  Sharing Hash Join Algorithm: 

Preprocessing I Preprr>cessing I1 Communication Parallel 
Partition Hash Iadex Setup Local J o h  

r 

b a d  Sharing Hash Join Algorithm: mdified version .- 

Prepmssing I Preprocessing I1 Communication Parallel 
Partition Hash Index Setup Local Join 

- - - --- /s -- 

Table 5-2: Cost Analy~is of Algorithms 5 & 5a 

The analysis for the load sharing =-merge is straightforward. The tree setup and tree traversal 

costs are the same as Algorithm 3. However, the m e  setup cost is not included as pan of 

preprocessing expense due to the earlier assumption that the tree indices are most likely to exist. 

Therefort, the prepnxxssirig includes only tree traversal and relation partition. The tree traversal 
2M 

complexity is M, as for Algorithm 3, and the relation @tion is Mog (T), as f a  Algorithm 4a. 

The cost of phase 4, the data transmission phase, is MI the same as for Algorithm 5. At the end of 
I 

the phase 4, each site will contain one,subrelation from SrSt and one from Sm. They are of both 
M 2M 

approximately size - N Thcrtforc, the merge join will be 7, as for the simple sort merge 

M 
algorithm. And the result mlleaion mst is the same as for Algorithm 5, which is M- Table - 
5-3 summarizes the analytical results for Algorithm 6. 



Algorithm 6 h a d  Sharing Tree Merge. 

Preprocessing 

2M 
M+ Mog (2 

Communication ' - Parallel 
Local Merge 

- Tabie 5 3 :  Cost Analysis of Algorithm 6 



Chapter 6 

Experimental Validation II 

6.1. Test Results4 

We have implemented the load sharing algcrihns and actually rested on our experiment 

environment. However, because of the limitation on the number of machines available, we have 

run tfrc programs on d y  four mdnes(Sun-3's). The results can be well predicted for a 

reasonable number of machines. Appendix A gives the collection of results obtained from our 

experiments. Figure 6- 1 shows the performance comparison among them. Note the tree setup cost 

is not included for the tree merge algorithm. 

0 1 2 4 8 16 32 64 
(K integers) 

figme 6-1: Comparison of load i d n g  Algorithms 



6.2. Load Distribution 

Load dismbution for increased performance is the central idea behind the load sharing 

algorithms. 7Tie costly p w s i n g  asks in f.he conventional algorithms are decomposed and 

distributed over the network to reduoe the total processing cost by making use of additional 

machines. 

For load sharing son merge algorithms, the local son and merging components of the simple son / 

merge algorithm are dismbuted and processed in parallel. Hence, the (parallel) cost is much less 

than'before, which is consistent with our theoretical anaiysis although minor deviatio-n may exist. 

For load sharing hashing methods, S?E index setup and local join jobs are decomposed and 

prcassed in parallel. However, some preprocessing &on is introduced in order for the hashing 

methcd to be efficient. The prepmssing task is funher distributed in the modified algorithm 

(Algorithm 5a) b& on the same idea Similarly to the load sharing uee merge algorithm, the 

merging task is shared among multiple processors by partitioning the sorted relations into a numbe; 

of subrelations and distributing them. 

All the processing time reductions are achieved at the expenses of high; data volume for . 

transmission. However, our experiments show that ttme communication is relatively cheap and data 

exchange cost can be further re&& by well p k i ~ e d  data transmissions to increase 

communication parallelism. The experimental resuits have confirmed thrtt load sharing stratcgics 

can effectively reduce the total processing cost. Table 6-1 gives the comparison of total response 

time, in milliseconds, of t .k  algorithms when the relation size is 32K (for a total of 64K) :ntegers. 

It also sfmows tfbe percentage of improvement of the load sharing algorithms over their respective 

-4s we can see, load sharing strategies can effectively reduce the total cost of join tasks. W t  have 

mentioned that our load sharing approach towards relational joining operation is more like pardlld 

processing pmzdue in the sew that the primary concern is to speedup the application execution 

by making use of additional machims. The distributed system is used to improve performance in 

the way a parallel system b s .  Ln a parallel system, we can often expect such ftaiurcs as d i m  

1; 



Algorithms 
1 
2 
3 
4a 
5 a 
6 

Response Time 
4608 
3197 
1464 
2670 
178 1 
928 

- 
Improvement 

Table 6-1: Comparison of Algorithms 

sharing of memory and fast bus interconnections. However, there are two important features in our 

test environment: (1) the multiple-machine system is connected by a fast local network and is 

supported by a sophisticated communication software system; (2) it is a main memory system. 
@ * 

They imply that the data exchange is cheap and the large amount of data can be processed locally . . 
without incurring costly disk operations. Our distributed environment is more favorable to data 

intensive apphcatiolts and our appro& wilt d y  be advantageous for a small number of -_ 

machines. 

Tht results of this research and of LUK 871 suggest that parallel processing strategies may be 

a employed for a distributed enviromnent to increase performance. 

6.3. Four Machines vs Eight Machines 

h e  to the equipment limitation, we have tested the load sharing algorithms with only four 

machines. However, since the empirical data are very consistent, we can predict, without much 

deviation, plausible results for a similar environment with mbre, specially eight, machines. 

For the algorithms described in Chapter 3, both processors. are synchronous and no other 

slmdtaneow transmissions arc likely to wcur. & more machines are involved, simultaneous 

messages arc very likely to k initiated. Specially in our load sharing algorithms, transmissions 

among grwp xmmbcrs happtn mrmcunently. Therefore, the concept of communication parallelism 

1s pamdarly important. We say he marirmurt communication parallelism is achieved when the 

urn nttded to transmit a message in the presence of simultaneous messages is equal to tbe time to . 

vansmr tfit sem message alone. Tht m & h u n  communication parWm'transmissim is the . 
snation when the timing for smulenm& messages is equal to that for serial transmission of 



them. Recall that in our theoretical'cost analysis, the maximum communicatip parallelism is 

assumed. It implies th;it the time required to transmit messages initiated at the same time is 'qqual 

to the time needed to transmit the longest one. However, in actual data transmission, contentions 

are likely to occur. The amount of network contention, which is difficult to predict theoretically, 

deterdlines the degree of communication parallelism that can be achieved. 

Let us  consider Algorithm 5a (the modified load sharing hash join) with the assumption that there 

are eight machines available and the relation size is of 64K integem. The plausible results can be, 

derived for'the experimental data in the four rnkhine case (they can be found in Appendix A.3). 

For the distribution phase, the cost of partition of the relations into equal pans is still negligible. In 

the partition phase, the mlatioo at each ma~hine will be half the size of the one in the four machine 

situation. Therefore, the presumable preprocessing cost will be approximately the same as that for 

the four machine case with the.refation size of 32K integers, which is 404 ms. After the component 

exchange phase, each site will have two relations of approximately 8K integers. Hence, the hash 

index setup cost Should be 319 ms. Similarly, the local join expense will be 485 ms, the same as 

that in tM four machine situation when the relation size is of 32K integers. 

't 

The component most difficult to analyze is the data exchange expense. As we know from the 

previous chapter, the total communication process consists of three parts: load distribution, 

component exchange and result collection, and only the load distribution employs paiallel 
L- 

transmission. As before, the sum of component exchange and result collection expenses is 
M 

3 x ( M - ~ ) .  To calculate the communication upper bound, the minimum communication 

4M 
parallelism is assumed. Hence, the load distribution cost will be 2M- N, which is doubled the 

7M 
expenw if maximum communication parallel is achieved. .Therefore, the u p p r  bound is 5M- T, 

, . 
33 M  

# 

5M 27M 
which is 8 if N = 8, whereas the lower bound is 4 M -  which is g if N - 8. The lower 

bund for rhe load 
2M 

M -  which is N' 

distribution expense ( h n  maximum communication parallelism is assumed) is 
3 M  - if N = 8. Simx we kmw the time needed to transmit 64K integers is 402 4  

ms(from Algorithm I), the lower bound for the total data exchange cost will be 1356 ms; and ch 

upper bound will be 1658 ms. It is 1492 rns if 10% contention rate is allowed. Therefare, the total 

cost for the algorithm is then 2700 ms, achieving 21.8% improvement over the four machine 

siruatioa 



7M 
Sirmiariy. we can gn the upper bou& for AlgorithmJa4a and 6 .  They are 5 ~ -  and 

3M 33M 2 f M  
3M-- which arc g N '  and8 m-vely when N - 8. T ' le  estim;ttsd results ca.8 then be 

dcnved, it'oticc tfrar rfre merging cost of Algorithm 4a wilI not be cut in h d f  when the nuniter of 

machines if doubted. Thte  6-2 h w s  he  d a ~  obtained. 

6.4. Optimal Number of Machines 
%- 

Because of the facility limiwion, we can only predicr the optimal n u m k r  of machines based on 

our previous rheoreticd and empirical srudy. The cost component most difficult to analyze is the 

communication ovc&ad, since i t  is haid to pti : ln  &e degree of communication parallelism h a t  

can bt achieved. However, as rfit number of machines increases and more conrenrions m r ,  we 

can cllmlnarc tht parallel trammissions and employ strial trammissions for dl data transfer 

process. The behaviors of serial bansmissions are quite predietabk and the uppcr bound 

complexity gives tfie precise wtimadon. 

U'ih rhls assumption in communicadon, we p r m d  to study the optimal number of machines for 

2M 
*tic= Tpmpm the prepmessing cow component, is I ;  T,hp, the cost for hash iodrx setup, is 

2M -. 4M 
' L m  the mmurticewn a& Tp,, thc cxpcnw of fad joining, is Since 

7M 
minimum mmmunicarion parallelljm is airumed, T,,, is 5M-F as in rhe lasr section. Since 



our experimental data are consistent with tfre cast analysis, the axff ic i tn t s  al ,  and a4 can be 

&mined by rhem As w e  can set, the performance data arc already stable, we can take rht data 

obtained when &e relation size is of 32K integers ro calculate the coefficient values. Since the 
4 

timing for preprocessing compoent  is 4-04 mr, a l  is equal to  - 0.025. Similarly, a, 

= 0.019 and a4 = 0.015. To evduare a3, the time complexity upper bound has to be calculated: We 

know from Algorithm 1 thax rfK r i m e  needed to transmit 32K integers is 192 ms. The upper bound 

timing when S = 4 is then 624 ms. Hence, a3 wit! be 0.006 and we have the following formula: 

.As *e can see, Tma is decreasing as N, the number of machines available, is increas~ng. 'The 

. trend is shown in Fi@re 6-2, Tfrzrefore, here is no theoretically optimal number of machines for 

rhz load sharing algrithm5, Ha~ewr, as &e number increases. the pcmntage of act-urtt 

psrfomance improvemenr, in m m s  of timing, is decreasing. I t  also shows the pc r fonance  

improvements as a resuit of doubIing rhe number of machines. This is k a u s c  the lrxal p lpccs ing  

trjsr can rn longer be rdu& gready cut rhz total p r w s s i n g  e x p m e  while the data exchangc 

c o s ~  are iikrly to increase. Ikrefore,  we claim h a t  16 to 20 machnes would k optimal in this 

ca3e if ~5 t ' e f f ec t  factor is c~nsidcred. 



6.5, Trend of Algorithm Performance 

63.1. Irnprortnwnt of  the 3eiwotk Performance 

~ L L S  ?,Cy percentage of commuucasan c x p c n i e  or;: o f  rhe total cost uhen relaaon s ~ z e  is of 32K 



i 65.2, Improvement of Processor Capcity 
-- 

T k  improvement in the pmxsmr  capaciry has nvo impacts. First, i t  directly reduces the local 

I p m s s i n g  cost. Second, it speeds up dab exchange as well. As we have discussed, in a data 

nansmission process, a large ammm of rime is spent on the local processing of tbc transmitting and 

receiving machnes. Tl?e communication mst also includes the local processing expenses, which 

will be reduced by more powerful prwess.ors. 

Sun-2 workstmom use MC68010 prooessors which are less powerful than MC68020 processors. 

We dsu ran some of our programs on Sun-2's in a similar environment. Table 6-5 gives the 
3 

performance difference of Algorithm 1 in the two situations. It shows that several times of 

improvemenr has been achcvzd. \ 
Sun-2's: 
Sirz Local Sort Comm Local Join Total Cost 
32K 9990 350 .5340 15680 

Sun-3's: 
Slze Local Sort Comrn Jbcal- Join Total Coat 
3 X  3388 192 1028 4408 

Table 6-5: Performance Dfference with Sun-2's and Sun-3's 

65.3. Reiation Cardinality and Join Setectivity 

Our experimenral data are consisttnr for all algoritfuns in h sense h a t  if  &e size of the retations . . 
insreass, all tfie cost cornpownrs also i a c r e ~  in propomon. We can reasonablely predict that in 

he jlmlar tnbironrnenr, if the site of the relations k a m e s  greater than 64K integers, the total 

cost. s well as each cost cornponenr, will change accordingly, in a linear f a h o n ,  as long as the 

end= dambase is s ~ l l  memory residenr. 

f f  s e  hace a h @ r  join selecnlirp- be resu!hng ~lbrelauon of each processing phase wdl be 

: q c r  and kmx dx absolux exchange cost wll be increased. Nouct, however, that 4n he 

Siaanon. the corr of rerpng w o  so& relanons ~ 1 1  be ~ncreased because each key m w  b more 

rnaxf;;ng ones: and $R cost of p l m s  two hash trdexed relahons will also be lncreased because L+,Z* m. oil average, more k ] r s  as.swiatzd with each table enu-y. Therefore, dx! communication 



cost is comparatively low even in this sitmion, and.load sharing strategies are still expected to 

have good performance. 

6.6. Multi-backend Database Systems: An Application 

For the load sharing strategies we have discused previously, the multi-backend database systems 

can be an applicable environment. A prototype hardware organization is shown in Figure 6-3. A 

controller and a number of general-purpose backend machines are connected by an Ethernet-like 

broadcasting bus, with the controller k i n g  in turn attached to a host computer. All backend 

machines run the same system software and the entire database is distributed among the storage of 

individual machines. When a query regarding the daqbase is received, the host passes it to the 

controller which broadcasts it to all the backend machines where the query is executed, in parallel, I 

with the local database portion. As soon as a backend processor finishes the current query, it can 

st& with the next one WHKOS 831. The overall system performance is increased and more 

concurrency is allowed. 

Disk Drive 

Diik Drive To Host 

Computer 

Broadcast Bus 

Figure 6-3: Multi-backed System Architecture 
i 

Our load dtsuiburion smtegi-es can weU fit the environment for the following two &asom. First, 

our cxperimcnr envimnmtnt is very similar to the backend architecture. Second, since the entire 

b a c k e d  system activities an supen.ised by the controller, the process procedures c b  lx finely 

tuned such that maximum communicarion paralleIism is likely to k achieved. 



In a multi-backed database system, tuples a n  grouped into clusters. Therefore, the execution 

time of a query varies from machine to machine. Some machines may finish earlier and they have 

different woridoad throughout the processing period. Load sharing strategies are likely to be 

beneficial. As we have argued previously, irtcrrasing communication parallelism can also 

effectively reduce the data exchanging overhead. The overall system performance can be greatly 

increased if the load sharing strategies are applied and processing procedures are well planed. 
\ 



Chapter 7 

Conclusion 

General query processing strategies for distributed main memory database systems have been 

investigated in this study. A 

An analytic system m&l and a cost model have been built for a local area network environment. 

The study shows that .both local processing expense and communication overhead should be 

considered as  major cost components. However, communication expense is cheap compared even 

with local main memory processing cost and it will become cheaper with improvements of 

processor speed, network bandwidth, and system software. 

Two sets of algorithms are designed and analyzed based on the analytical models. Simple sort 

merge, hashing nested lobp and tree merge are algorithms derived from those for conventional 

(disk-based) distribkd systems. 

There is no single algorithm that is the best in all aspects. Each algorithm can be the best for a 
4 

specific environment. If both relations are already in sorted order, or one of the indices is missing 

and the result relation is required to be in sorted order, the sort merge strategy is the beit. T-tree 

traversal is found to be a cheap operation, and the tree merge algarithm is the best of the three if 

both tree indices on the join column(s) exist. Hash join is preferred otherwise. Hashingzan be 

effective in a main memory environment. 

fisr: load distribution amp has been developed. It differs from the convqponal "load sharing" 

concept (although we call our algorithms load sharing ones) in that the otherwise "indivisible" tasks 

an decomjmcd a d  distributed to increase system performance by means of reducing application 

response time. The fact that mmmunication overkad in a local area network is low makes the 

strategy feasible. Threg algorithms, called load sharing son-merge, load sharing hash join and load 



sharing tree merge, are desigred and analyzed. They a= the load sharing versions of the previous 

set of algorithms. The algorithms are implemented in our experimental environment. Both our 

cost analysis and empirical data show that the load dismbution strategy can effectively reduce the 

total processing cost. As an example, load sharing son-merge improves simple son-merge by 
I 

42.0% with four machines. Local processingldata transmission tradeoff is exploited. Although the 

load dismbution concept is developed in the main memory environment, the results can be applied 

equally well to disk-based systems. 

The experimental data are consistent with our cost analysis. For this reason, We can predict that 

the trend will be kept for larger relations as long as they can fit well into the main memory. The 

behaviors of the load sharing algorithms in the case of eight macknes are discussed. They are 

expetted to have better performance since all the costly local processing components are further 

distributed or shared. It is expected that 16 is the optimal number of machines for the load sharing 

algorithms, as further increase will result only in marginal performance improvement (< 10%). 

Our study shows that in a similar distributed environment, parallel processing suategies may be 

employed to improve system performance. The strategies may work well in the distributed 

environment for data intensive applications. 
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Appendix A 

Experimental Results 

A.1. Algorithms 1,2 & 3 

Algorithm 1 
Simple Son-Merge: 

Size Local 
Son 
8 2 
172 
365 
768 
1614 
3388 
7068 

Comm 
Cost 
11 
16 
25 
52 
98 
192 
402 

Merging Total 
Cost 
124 
252 
5'1 9 
1088 
2225 
4608 
9518 

Algorithm 2 
Nested Loop with Hashing Index: 

'7 

Size Table 
setup 
3 8 
74 
150 
293 
577 
1147 
2304 

Comm 
Cost 
10 
2 1 
3 1 
59 
w 
199 
394 

Local 
Join 
56 
113 
23 1 
462 
924 
1851 
3699 

Total 
Cost 
104 
208 
412 
8 14 
1600 
3197 
6397 



Algorithm 3 
T-tree Merging Algorithm. 

Size Tree 
Traversal 
7 

, 17 
29 
63 
120 
246 
490 

Cornm Merging Total 
Cost 
504 
1044 
2124 
4344 
8879 
18079 
36879 

Pure 
Join 
58 
10 1 
192 
378 
732 
1464 
2917 

A.2. Algorithms 4 & 4a 

AIgorithm 4 
Load Sharing Sort Merge 

Size P r e k  
Cost 
0 
1 
1 
1 
2 
0' 
0 

Local 
Son 
3 9 
83 
17 1 
356 
76 1 
1605 
3364 

Comm Merging Toral 
Cost 
101 
188 
363 
730 
1456 
297 2 
6090 

Algorithm 4a 
Load Sharing Son Merge: mdified version 

Size PrePnx: 
Cost 
16 
14 
15 
12 
12 
12 
12 

LWal 
Son 
43 
84 
174 
359 
765  
1606 
3372 

Comm Merging Total 
Cost 
158 
234 
380 
689 
1336 
2670 
543 1 



A.3. Algorithms 5 & 5a 

Algorithm 5 
Load Sharing Hash Join - 

Size Preproc 
Cost 
22 
48 
9 1 
182 
376 
765 
1538 

Hash Indcx 
Setup 
13 
23 
45 
8 2 
1 60 
3 I6 
636 

Local 
Join 
16 
.31 
63 
119 
242 
484 
950 

Total 
Cost 
100 
160 
289 
519 
1003 
1967 
390 1 

Algorithm 5a 
Load Sharing Hash Join: modified version 

Size Prcproc 
Cost 
14 
30 
55 
102 
205 
404 
802 

Hash Indcx Comm 
Setup 
10 7 9 
19 103 
3 9 138 
79 192 
160 316 * 

3 19 573 
639 1060 

Local 
Join 
16 
32 
60 
117 
245 
485 
952 

T o u l  
Cost 
119 
184 
29 2 
490 
926 
178 1 
3453 



55 . 
t ,- 

w 
A.4. Algorithm 6 

Algorithm 6 
Load Sharing Tree-Merge 

Size T-uee 
Setup 
458 
939 
1934 
3977 
8176 
16670 
34008 

Tree 
Traversal 
7 
15 
3 5 
6 2 
120 
242 
486 

Comm Local 
Mcrgc 
12 
18 
36 
7 5 
150 
282 
5 60 

Total 
Cost 
5 24 
1036 
2095 
4244 
8658 
17538 
35848 

Pun: 
Join 
62 
97 
161 
267 
482 
928 
1840 



Appendix B 

Pseudo-Code for the Join Algorithms 

Algorithm 1. Simple Sort-Merge 

Suppose there are two relations R I  and R2 at sites S1 and S2 kspectively. 

Site S1: 

1. Create an array index for R1; 
2. Sort the index using internal QuickSprt; 
3. Receive R2 (and its index) f?om S2; 
4. Merge R1 and R2 to produce the result relation. 

Site S,: 

1. Create an array index for R2; 
2. Sort the index using internal QuickSon; 
3. Send R2 (and the index) to S 



i' 
Algorithm 2. Nested Loop Join with Hash Index 

- 

Suppose there are two ~ lat ions  R1 and R2 at sites SI and S2 rrspctively. 

Site S1: 

1. Create a ha index for RI; 
2. Receive &mm S2; 
3. Local joining using nested loop method. 

Site S2: 

1 .  Send R2 to S1. 



Algorithm 3. Tne Merge Join 

Suppopoxthere are two  relation^ R1 and F$ at sites S1 and S2 respectively. 
c 

Site S1: 

1. Create a T-uce i&x for RI ; 
2. Traverse the index to get a sorted array index for R,;  
3. Receive &(the array index) from S2; 
4. Merge tfie two relations. 

Site S2: 

1. Create a T-tree irdex for R2; 
2. Traverse the index to get a soned array index for R1; 
3. Send R 2 ( h  array index) to S I .  



Algorithm 4.a. h a d  Sharing Son .Merge. - 
( • ’adiftad vefSiORf 

1. Suppose there are n sites on a local network uith lighi loading: 

where n is an even numter, and IfK sites are so numbered that h e  onginal rrlattom 
are ar sites S1 and S!+i. 5, n rhe result site, 

2. f artition Phase 
L 

n 3  
Sims Si and 2+, panition dmr  relauons inio - equal subrelatlom i n  parAlel T h e n .  

2 2 

. . . . 
. rends 5 1  of its 2 subrelhons ro sites S?+2. . , Sn respectively 

9 - 

a. S1 finds the n-1 meac iduer which divide io subrelation into n i a lmu \ t  equal j 
P*. 

b SI znds the n-1 mean ydues to each of S,. . . S, .  
c. S2, ..., S ,  divide their subrelations into n pans by the n-  I p i i a  raiges. 

5.  Exchange Phase 
Fo r i -  1 t o n d o  
i 
L 

Si wnds n-1 of its subrelariom to h e  other sites, retaining the i-th subrelatlnn for 
itxlf.  ' 

3 
6. -Merainp; Phase 

For each of the sires S ... , S, ,  do 
I 
AU subrelations reacived from S ; ,  .... S_" (including the one rerained for irvlf) are ti, 

A 

Z 
be merged together. 
An subrelations rcceiued from S:+, , .... S, iincluding the one retained for itself) are 

I 

to ke merged together. 
-Merge join is perfowed &tween the nco resulting relations 
I * 

7 .  Result Collection Phase 
Sites S2,  ... S, ttansfer resulting relations to the result site S1. 



u k r c  n s an even nurnbcr, and rhe sites are so numbered that th onginal relations, 

R, ard Rb, arc at S;  d S! n s p t c ~ v c l y  5 :  IS tSze result site. s 

2 Dl5tnbuhon Phase 
2' 

n n 
b S ,  rends 2-1 of rhe iubreiadom to sites SZ, ..., s!, and sends 5-1 of 

2 2 ' 

a.Chcmseahasf!fi~n~tion. . 
b. All sites pa.~%tion using the same hash function, their subrelations into n 

subwrs. 
1 Comwnent Exchange 

Fort - f rondo 
I 

5, wnds irr subsets to tk corresponding sires, i . e  the j' subset is to be sent to site S,. 
? 

n n 
.+I1 sires conibine the - subsetj from sites S,, ..., S_" into one relation, and the - 

2 2 2 
51 bsets from sires 9 

3f 1 ' "" 
S, Into another relauon. 

L 

5 .  Index S e m ~  Phase 
Each site sets up, in parallel, a hash index for one of its two relations. 

6. Local Join PhaK 
AU sites perform rfr join operanon on the m o  relations residing on them. 
Rtsult Coilcction Phase 
Sltts S,, ... . S, send nsutr relarions back to S ; .  



A l g o r i t b  6. Load Sharing Tree Merge. 

1 .  Suppse there are n sites with light load~ng over a local network: 

where a is an even number, and the sites a& so numbered that the original wlgtions. 

R, a d  Rb, are at St  and S! n5spectively. SI  is the result site. 
9*1 
L 

Assume there are T-me irdices for b t h  relations. 
2 .  T z  Travenal F'hase 

S1 and @+, m v e m  the tree indices to get the sorted a m y  indices. 
2 

, ' 3. partition Phase 

a. S1 partitions its relation inloin almost equal subrelations 
\ 

b. S1 sends the pamtioning key values to s:+, . 
2 

c. s?+, partitiom i t s  relation inlo n rubrelations according 
2 

4. Transmission Phase 

to the povot value3 

n n 
a S1 sends 2-1 wbrelations to S1 ,.... S? and s!+~ s e n d s  --I rubrrlat~on\ to 

2 2 2 

n 
s ~ l  * . - - l S n .  

n 
b. Si sends another - 1 subreiations to s?+,. ..., S and s?+, send* another 2- 2 n 

2 
. n n - 1 subrelations to St S-. 2- 2 

c. SI and S1 exchange a subrelation. ,+ 1 
L 

At the end of this @me, all sites contains two correspondmg subrelattom ro btt 
joined. 

5. %leizing Phase 
Ail sites perform m r g n g  of k i r  subrelat~om 

6. Result Collection Phase 
S1 receives results from all other sites. 



Appendix C 

Examples for the Load Sharing Algorithms 

C.1. An Example for Load Sharing Sort Merge (Algorithm 4a) 

The data file in each site is shown as follows: 

S,: 3, 4, 17, 10, 1-4, 19, 20, 9, 2, 9, 13, 15, 7, 1625 ,  30 

Note that the data file is not initially sorted as shown. There are two additional machines 

available. They are S1 and S2 respectively. 

1. Partition: sites S, and S, partition their dau files into 2 equal parts. S,, sends part2 to S1 
ar.d S,, sends its part2 to S2. \ 

, S?,: p a ~ = { l ,  5, 10, 12,22, 18,28,36} 
S i :  part-{2,7, 11, 12,4, 24, 29, 35) 
S,,: pan-(3, 4, 17, 10, 14, 19, 20, 9)  
S,: part-{2,9, 13, 15,7, 16,25,3U] 

2. Lucai Sorting Phase: all sites sort their own parts in parallel. : 

S,,: part={l, 5, 10, 12, 18, 22, 28, 361 
S i ;  pan-{2,4,7, 11, 12, 24, 29, 35) 
S-: pan-(3,4 9, 10, 14, 17, 19, 201 
53: pan-{2,7,9, 13, 15, 16,25,M) 

3 ~ h t  Finding Phor: S, furrhcr partitions its pan into 4 p a m  and rends the three pivot values 
t o S ~ , S , i U d ~ w h i c h ~ h e h p a m t ~ l r h s i r d n r a w n i n t o 4 p a r t s a c c o ~ n g t o ~ p i v o r v a l u e s .  . 
Thc pvot values are 10, 18, and 28. 
S,: panI-(l, 51, pan24 10, f 21, pad-(18,221, partk(28, '36) 
S1: pan1={2,4,7), part2=ill, 121, pad-(241, pm4={29,35} 
Sm: p t l - ( 3 , 4 , 9 ) ,  part2-(10, 14, 171, pad-(19,201, part&(} 
S: p l = ( 2 , 7 , 9 ) ,  parr2-( 13, 15, 161, part3={251, part4=(X)) 

- 
4. ~;r t  Exchange Ph.se: S, receives all partl's, S i  receives all parQis, S,, adpart3's and S 2  all 

paR4's. 
S,;: group1 comins { 1,5)  and {Z, 4,7);  group2 contains {3,4,9} and (2,7,9)  



43 - -- -- 

S1: group1 mnsisn of {lo, 121 sod (11 ,  12); p u p 2  conrains (10. 14, 17) Md 113. IS. lbf 
Sm: p u p 1  consists of (18,221 and (24); group2 consists of {19,20) and ( 2 5 )  
%: group1 contains (28,361 and (29,351; group2 contains (30) 

5 .  Parailel Merge: all sites merge their gmupl pans togelher and group2 pans together. 
S,,: {1,2,4,5,7},  {2 ,3 ,4 ,7 ,9 ,91  
S,:  {lo, 1 1 ,  12, 121, (10, 13, 14, 15, 16, 17) t 

S,,: {18,22,24}, {19,20,25) 
$: { 28,29,35,36}, (30) t 

Then, all sites perform merge join on the two resulting relations. 
S,: result relation is (2,4,7}.  
S1: result relation is (10). 
S&: result relation is (1. 
S2: result refation is {I. 

6. Result Collection: S , ,  S,. S2 rend the joining result to S,,,. 
6 



a C.2. An Example for Load-Sharing Hash Join (Algorithm 5a) 

The data subfiles are rht same as in the case of the previous algorithm. 

1. Distribution: S,, and S, partition their data files into two equal parts. 
S,,:pml-(l,5, 10, 12, 18,22,28,36},part2-(2,4,7, 11, 12,24,29,353 
S,,: panl-(3,4,9, 10, 14, 17, 19,201, pad-{2,7,9, 13, 15, 16,2530) 
S,,, sends part2 to SI and Sm sends its part2 to S2. After the distribution, each site consists of 
the following: 
S,,,: {1,5, 10, 12, 18,22,28,36) 
S,: {2,4,7, 11, 12,%,29,35) 
S,: {3,4,9, 10, 14, 17, 19,201 
S,: {2,7, 9, 13, 15, 16, 25, 30) 

2. Partition: each site panitions its data set into 4 parts by a hash function (assuming h(key) = 

key14 '. 
S,,,: part 1-{ l,5}, part2-{lo, 18, 221, part3={), part4={12,28;36}. 
S1: panI-(291, part.2-121, pm3-{7, 11,353, pan4={4, 12,241. 
S,,,: pan1 -{9, 171, part.2-(10, 141, part3-(3, 191, part4={4, 20). 
%: panl-(9, \3,25}, paJt2={2,30), pan3-(7,151, part4={16}. 

3. Subrelation Redistribution: part1 of each site is transferred to S,,; part2's are sent to S , ;  
part3's are sent to S,, and p a ~ 4 ' s  are transmined to S2. The parts from SEt and S1 are combined 
~nto  one set and the parts fron S, and S2 to another. 
S,,: { l ,S,  291, (9, 17, 9, 13,251 
S1: {lo,  18, 22,2), {lo, 14, 2, 30) 
S,: (7, 11, 35j, (3, 19,7, 15) 
h: {12,28,36,4, 12,241, (4,20, 16) 

4, Hash Index Setup: All sites set up a hash index for one of their two sets of data. 
5 h a 1  Hash Join: all sites do the nested loop join between their sets of data. 
6. Result Transmission: Si,  S,, % send the joining reesult to S,,,. 
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