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Abstract 

Kripke structures have been proposed as a semantic basis for modal logics of necessity and 

possibility. They consist of a set of states, informally interpreted as "possible worlds", and a binary 

accessibility relation between states. The primitive notion of a possible world in this context seems 

highly intuitive, since necessity can be interpreted as "truth in all possible worlds", and possibility 

as "truth in some possible world. However, modal logics have also been used to model the 

epistemic notions of knowledge and belief, where an agent at a particular world is said to "know" 

or "believe" a proposition if that proposition is true in all possible worlds compatible with its 

beliefs. In this context, it is not as obvious how to interpret a "possible world". 

Modal structures have recently been introduced as a formally equivalent alternative to Kripke 

structures for modeling particular states of knowledge and belief. Modal structures consist of an 

infinite number of recursively defined levels, where each level contains the possible worlds that 

model an agent's meta-beliefs of a certain depth. For example, beliefs about the world are modeled 

at level 1 of a modal structure, and beliefs about beliefs about the world are modeled at level 2. 

Each modal structure corresponds to a single world of a Kripke structure and contains all the 

worlds that are accessible from that world in its levels. Modal structures are defined for the 

classical propositional epistemic logics S4 and S5. 

Recently, the traditional possible worlds approach has been extended to model "explicit", or 

limited, belief with partial worlds, called situations, in an appropriately modified Kripke structure. 

In this thesis, I demonstrate how modal structures can replace Kripke structures to interpret three 

recent logics of explicit and implicit belief. I also extend modal structures to model a first-order 

predicate logic which includes quantifiers, equality, and standard names. For each logic, I 

demonstrate the equivalence of the extended modal structure and the Kripke structure that 

originally provided the semantics for the logic. I discuss the advantages and disadvantages of using 

modal structures to model logics of knowledge and belief. 
\ 
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Chapter 1 

Introduction 

A major goal of Artificial Intelligence (AI) research is to build computer systems that display 

intelligent behaviour. For example, an intelligent interface to a computer system would be able to 

carry on a conversation with a user, interpreting questions and making replies within the overall 

context of the conversation. An intelligent medical diagnosis system would be able to choose the 

most likely cause or causes of a collection of symptoms, asking for more information, as necessary, 

to help it make its decisions. A necessary prerequisite to designing "intelligent" systems is a good 

understanding of the properties of knowledge and belief, since these underlie any form of 

intelligent reasoning behavior. 

There are many approaches to the study of knowledge and belief; this research uses an approach 

based on modal logic. Modal logics were originally developed for the study of necessity and 

possibility, and were first applied to the study of knowledge and belieflin [Hintikka 621. Modal 

logics of knowledge and belief are called epistemic logics. Epistemic logics are currently being 

studied by researchers in A1 for a variety of purposes. For example, [Levesque 84a] uses modal 

logics as the foundation for knowledge bases which can reason both about their domain and about 

what they "believe" about the domain. [Dwork and Moses 861 uses modal logics to analyze 

communications protocols in a distributed computer network. [Delgrande 871 presents an approach 

to default reasoning using a conditional modal logic. The semantic basis of modal logics is usually 

given in terms of apossible worlds model called a Kripke structure [Kripke 63al. 

Kripke structures were introduced in [Kripke 63al as a semantic model for the modal logics of 

necessity and possibility. A Kripke structure consists of a triple cG, II, R>, where G is a set of 

' ~ n o w l e d ~ e  is defined to be true, justified belief. Thus, if an agent knows a proposition p, p is actually the case. If the 
agent merely believes p, p may or may not actually be true. 



states, R is a binary accessibility relation over those states, and l3 is a consistent assignment of 

truth values to primitive propositions at states. For w,v E G, if wRv, then v is said to be accessible 

from w. Informally, the states are interpreted as possible worlds, or possible states of affairs, and 

the accessibility relation gives those worlds that are considered possible with respect to a given 

world. Kripke structures are often drawn as a labeled directed graph where the nodes represent 

worlds, their labels show the truth assignment at the worlds, and the arcs represent the accessibility 

relation. A proposition p is necessarily true at a given world w (written Lp) if it is true in all 

worlds accessible from w. Proposition p is possibly true (written Mp) if it is true in some world 

accessible from w. For example, if p is a proposition that stands for "2 + 2 = 4", then p is a 

necessary truth because it is true in all possible worlds accessible from our own. The proposition 

that stands for the concept "it is snowing in Saskatoon" is a contingent truth because there are 

possible worlds compatible with our own in which it is snowing in Saskatoon and possible worlds 

in which it is not. The sentence "Today is July 12 and today is September 19" is necessarily false 

because there are no possible worlds in which it is (literally) true. Restrictions can be placed on the 

accessibility relation to model different properties of necessity and possibility, and different 

combinations of restrictions result in modal logics with various properties. 

When Kripke structures are used to model epistemic logics, the accessibility relation gives those 

worlds that are consistent with the knowledge or beliefs of an agent2 who is located at a given "real 

world" w. kvesque  84b] says that these worlds tell us "what the world would be like if what [the 

agent] believes were true". The agent is said to know or believe a statement if that statement is true 

in all worlds accessible from w. If there are several agents at w, there is a different accessibility 

relation for each one. 

Although possible worlds semantics is currently a popular theory in AI, most philosophers 

working in epistemology reject this view. There is in fact considerable philosophical controversy 

over whether or not the notion of a "logic of belief' is even meaningful. [Hadley 871 argues that 

possible worlds semantics for epistemic notions rests upon the foundation of procedural semantics, 

which provides an effective way of relating concepts to objects in the real world. These issues are 

2~ince  the agents of this thesis are considered to be inanimate, they are referred to with the pronoun "it". 



beyond the scope of this thesis. The work described here is relevant to the avenues of research 

being followed by numerous A1 researchers, and does not make any claims regarding the 

philosophical merits of the possible worlds theory. 

Slightly differing interpretations of the accessibility relation for epistemic logics are found in the 

literature. [Fagin, Halpern, and Vardi 841 and [Fagin and Vardi 851, for example, say that the 

accessibility relation R provides the set of worlds "that the agent considers possible". There are 

two main problems with this definition. First, because there are an infinite number of propositions, 

R must assign an infinite number of possible worlds to the agent, and it does not seem reasonable 

that the agent be required to be consciously aware of this infinite number of possible worlds. 

Second, the definition, as given, is incomplete. To see this, suppose that the agent believes that 

grass is green. There is nothing to prevent the agent from imagining a world in which grass is 

purple, and considering such a world to be possible. The agent does not believe that grass is purple 

even though it can imagine such a possible world; it still believes that grass is green.3 To 

overcome this problem, the definition would have to contain the qualification that these are the 

worlds the agent considers possible given what it already believes. 

[Halpern 861 says that R supplies a set of worlds that the agent cmot  distinguish from the one it 

is in, so that if the agent is at world s, the worlds supplied by R are those that agent would consider 

possibly to be the real world. This interpretation does not suffer from the "purple grass" criticism, 

and does not require that the agent actually be conscious of the set of possible worlds, only that if 

confronted with such a world, it would be capable of agreeing that it could indeed be the real 

world, again given what it believes. 

[Fagin, Halpern, and Vardi 861 discusses "knowledge" in the context of a computer 

communications network consisting of a number of connected independent processors. Each 

processor is always in some local state, which is a function of the messages it has received up to 

that time. The network as a whole is in a global state, which is a function of the local states of all 

the individual processors. A processor is said to "know" a fact p about the system if p is true in all 

3 ~ h i s  example is due to Bob Hadley, personal communication. 



possible global states in which the processor is in its current local state. The global states are 

possible worlds, and the accessibility relation for a processor supplies the set of global states in 

which the processor is in its current local state. The agent with the actual knowledge in this 

interpretation is really the system designer who is reasoning about the network in terms of 

knowledge, and it is up to him to determine which global states are compatible with a processor's 

current local state, and what can be said about that processor's "knowledge" as a result. The 

processor itself may contain no data that corresponds to the "fact" that it "knows". This external 

notion of knowledge is used to analyze the transfer of "knowledge" in distributed systems. 

The state of knowledge or belief at a particular world in a Kripke structure depends not only on 

what is actually true at that world, but also on the set of possible worlds associated with an agent at 

that world. In Kripke structures, a world is a primitive notion, and the truth assignment II tells 

only what is true there, not what is believed. Modal structures are introduced in [Fagin, Halpern, 

and Vardi 841 and [Fagin and Vardi 851 as a formally equivalent alternative to Kripke structures for 

modeling particular states of knowledge or belief. In particular, each modal structure models the 

knowledge or beliefs of an agent at a particular state of a Kripke structure, as well as what is 

actually true at the world. 

A modal structure consists of an infinite number of "levels", where level 0 contains the truth 

assignment to primitive propositions at some world w in the Kripke structure. Level 1 contains all 

worlds directly accessible to an agent at that world, level 2 contains all the worlds at level 1 as well 

as the worlds accessible from those worlds, and so on. So for example, the fact that primitive 

proposition p is true is recorded at level 0; the fact that agent A believes that p is true is recorded at 

level 1; and the fact that A believes that A believes that p is true is recorded at level 2. A modal 

structure thus gives the full accessibility information in a Kripke structure from a single world; to 

obtain all the information present in a particular Kripke structure, one requires as many modal 

structures as there are worlds in the Kripke structure. [Fagin and Vardi 851 argues that modal 

structures are better able to represent particular states of knowledge and belief because they 

correspond to beliefs with respect to a specific state (world) in a Kripke structure, and because the 

levels of meta-knowledge are clearly delineated. 



A generally recognized problem with the stan.dard epistemic logics is that they are too strong to 

provide a realistic model of the knowledge and beliefs of a finite, resource-bounded agent. Agents 

whose reasoning powers are modeled by these logics know all of the logical consequences of their 

beliefs and all logical truths. They may also possess a full knowledge of what they do and do not 

believe. Several new epistemic logics have recently been introduced in an attempt to overcome this 

problem. [Levesque 84b] introduced a logic of implicit and explicit belief, where explicit beliefs 

are those that the agent "actively holds", and implicit beliefs are all the logical consequences of the 

explicit beliefs. Variations on this logic have appeared in Lakemeyer 871 and [Delgrande 871. A 

first-order epistemic logic was used recently in [Levesque 8 11 and Levesque 84al to describe what 

a knowledge base could reasonably be expected to know and deduce about the world described by 

its data and about its knowledge. The semantics of all of these extensions to epistemic logics is 

given in terms of appropriately modified Kripke structures. 

In this thesis, I investigate the extensibility of modal structures to these other logics. The aims of 

the investigation are to test the flexibility of modal structures with respect to semantic models that 

differ from the one for which they were originally defined, and to determine whether the claimed 

advantages of the basic modal structures are transferred to their extensions. For each extended 

epistemic logic mentioned above, I define an appropriate extended modal structure and the 

semantic restrictions necessary to fully describe the logic. [Fagin and Vardi 851 provides a general 

proof of the equivalence of modal structures and standard Kripke structures; similarly, I prove the 

equivalence of each extended modal structures described in this thesis to the Kripke-style structure 

that provides the semantics of the logic. By doing this, I demonstrate that modal structures are in 

fact extensible to the non-standard semantic features of these logics. In addition to the main line of 

work presented here, I provide an alternative definition of modal structures which clarifies their 

relationship to Kripke structures and simplifies their presentation. 

The remainder of the thesis is organized as follows. Chapter 2 surveys Kripke and modal 

structures in detail. Section 2.1 describes Kripke structures and some common classical epistemic 

logics, Section 2.2 describes modal structures, and Section 2.3 introduces a new definition of modal 

structures. Chapter 3 describes the four logics of implicit and explicit belief (BL, BLK, BL4, and 

DBL) and the first-order logic (KB) that are represented in modal structures in Chapters 4 and 5, 



respectively. Sections 2.1 and 2.2 and Chapter 3 survey the relevant literature, while Section 2.3 

and Chapters 4 and 5 describe my original contributions to the area. Chapter 6 summarizes the 

results of my investigation and gives suggestions for further research. 



Chapter 2 

Kripke and Modal Structures 

This chapter describes how Kripke structures and modal structures are used to model epistemic 

logics, and discusses the relationship between the two models. Section 2.1 reviews the definition 

of Kripke structures and discusses how they can be restricted to model various properties of 

knowledge and belief, and hence some of the more common classical modal logics. Section 2.2 

describes modal structures as they are described in the literature, and shows how they can be 

restricted to model various properties of knowledge and belief. Modal structures are shown to be 

equivalent to Kripke structures. Section 2.3 gives an alternative definition of modal structures that 

has not appeared previously in the literature. The new definition clarifies the relationship between 

modal structures and Kripke structures. It gives a three-stage transformation of a Kripke structure 

into an equivalent modal structure for a particular state of the Kripke structure, and describes the 

resulting modal structure in terms of a series of trees of successive depths. The new definition of 

modal structures is considerably simpler than the original definition given in the literature, but is 

shown to be equivalent to it. 

2.1. Kripke Structures 

Kripke structures were described in Chapter 1 to be a triple <G,II,R>, where G is a set of states, 

I1 is an assignment of primitive propositions to states, and R is a binary accessibility relation 

between states. When Kripke StruCtureS are used to model logics of knowledge and belief, the 

states are interpreted as possible worlds and the accessibility relation as giving, for an agent at a 

particular world, the worlds which are compatible with agent's beliefs. This section describes how 

. the accessibility relation can be restricted to model various properties of knowledge and belief, and 

how these properties combine to give some of the more common classical logics. 

The language L that is used to describe beliefs consists of an infinite set of primitive propositions, 



represented by lower-case letters, a modal operator B such that Bp is read "the agent believes p", 

the logical symbols - (negation) and A (conjunction), and parentheses. Formulm, denoted by 

lower case Greek letters, are derived from the set of primitive propositions and the logical symbols. 

Operators v (disjunction), 2 (implication), and = (equivalence) are defined in terms of negation 

and conjunction: (p v q) is equivalent to -(-p A -q); (p 3 q) is equivalent to (-p v q); and (p 5 q) 

is equivalent to (p 2 q) A (q a p). The set of formulas in the language is the smallest set containing 

all the propositions, their closure under - and A (also v, 3, and =), and all formulas prefixed by the 

B operator. The depth of a formula is the deepest nesting of modal operators in the formula. For 

example, the sentence B(Ba A B(Ba v P)) has a depth of 3. In systems that model knowledge and 

belief instead of belief, modal operator K may be used in place of B, so that Kp is read "the agent 

knows p". 

A support relation is used to determine the truth of a sentence of L at a world given the truth of 

the primitive propositions at that world. The support relations for logics modeled by Kripke 

structures are shown below. They tell how to determine the truth of any sentence of L at a world w 

in a Kripke structure M from the truth assignment to the primitive propositions at that world. I= 
means "supports the truth of' and I# means "does not support the truth of'. p is a primitive 

proposition, and a and P are formulas of L. 
1. M,w I= p iff p is true at w under truth assignment n. 
2. M,w I= -a iff M,w I+ a 
3. M,w I= a A p iff M,w (= a and M,w (= p. 
4. M,w I= B a  iff M,v I= a for all v such that wRv. 

A sentence a E L is satisfied at a world w in Kripke structure M if M,w I= a, and a is valid in M 

(written "I= a") if a is satisfied at every w E G. 

Different restrictions placed on the accessibility relation enable one to model different properties 

of knowledge or belief.4 Consistency of belief (-B(p A -p)) is obtained in a Kripke structure by 

requiring that the accessibility relation be serial (i.e., for every world w, wRv for some v). Positive 

introspection, wherein an agent knows everything that it knows (Bp ZI BBp), is obtained by 

4 ~ o s t  philosophers working in epistemology do not believe that the properties described here actually model 
knowledge or belief. Most A1 researchers claim that these properties represent "idealized forms of knowledge and 
belief. This thesis takes no stand on these issues. 



requiring that the accessibility relation be transitive (if wRv and vRx, then wRx); negative 

introspection, wherein if an agent does not know something, it knows that it does not know it (-Ba 

3 B-Ba), is obtained by the Euclidean restriction (if wRv and wRx, then vRx). Negative 

introspection can also be modeled by an accessibility relation that is symmetric (if wRv then vRw) 

as well as transitive. The logic weak S5, which is obtained by requiring that the accessibility 

relation be serial, transitive, and Euclidean, gives a kind of belief that is consistent, although not 

necessarily accurate with regard to the "real world". The logic S5 is obtained by requiring that the 

accessibility relation be reflexive instead of serial (i.e., for every world w, wRw), and symmetric 

instead of Euclidean. The possible worlds in a Kripke structure constrained to model S5 are an 

equivalence class, so every world is accessible from every other world. The reflexive requirement 

ensures that the agent's beliefs accurately reflect the "real world" (Ba 3 a). "Ba  I> a" is called the 

knowledge axiom because it distinguishes knowledge from belief. 

An axiomatization of the epistemic logic weak S5, which models belief, taken from [Halpern and 

Moses 851 is now shown, and the variations on it that define S4 and S5 are now described. The 

axiomatization consists of five axioms and two rules of inference. 

(Al) all substitution instances of propositional tautologies are valid 
(A2) -B(false) 
(A3) B a  3 BBa 
(A4) -Ba 3 B-Ba 
(A5) (Ba A B(a  3 P)) 3 BP 

(Rl) from a and ( a  3 P) infer P 
(R2) from a infer B a  

Axiom A1 means that all tautologies that can be formed from the set of primitive propositions are 

valid, or true in all possible worlds. Axiom A2 ensures consistent beliefs. Axiom A3 and axiom 

A4 give positive and negative introspection, respectively; the combination of positive and negative 

introspection is called full introspection. Axiom A5 says that the agent derives all the logical 

consequences of its beliefs. Rule R1 says that all logical consequences of valid formulas are also 

valid, and R2 says that agents believe all valid formulas. 

The logic K corresponds to a Kripke structure which has no restrictions on the accessibility 

relation; it is describe by axioms A1 and A5 as well as the inference rules R1 and R2. The logic S5 

has the same axiomatization as weak S5 except that axiom A2 is replaced by the knowledge axiom, 



Ba 3 a. S4 and weak S4 are the same as S5 and weak S5, respectively, except that axiom A4 is 

not present: agents under S4 can not introspect about their non-beliefs. [Halpern and Moses 851 

contains a good introduction to these epistemic logics, and [Hughes and Cresswell 681 provides a 

thorough treatment of modal logics in general. 

Agents whose knowledge or beliefs at least contain axioms A1 or A5 are called logically 

omniscient because they believe all sentences logically equivalent to their beliefs and all logical 

consequences of their beliefs. It is generally accepted that these axioms are unrealistic models of 

belief for finite agents. They are often instead taken to describe the beliefs of an "idealized" agent, 

or to say what the agent could deduce, give enough resources, and not what it actually believes. 

2.2. Modal Structures 

Modal structures are introduced in [Fagin, Halpern, and Vardi 841 and [Fagin and Vardi 851 as a 

formally equivalent alternative to Kripke structures for modeling epistemic notions of knowledge 

and belief. This section summarizes those papers. It first gives a formal definition of modal 

structures and describes how they can be restricted to model various properties of knowledge and 

belief. Next, a modal structure that models the logic weak S5 is presented. Finally, the 

equivalence between modal structures and Kripke structures is demonstrated, and the advantages 

that Fagin, Halpern and Vardi claim for modal structures over Kripke structures are stated. 

The following definition of modal structures assumes a fixed, finite set of primitive propositions 

P, and a single agent A . ~  

Definition 1: fo: P -+ {true, false} is a oth-order assignment. 

Intuitively, fo assigns truth values to the finite set of primitive propositions at level 0 of the modal 

structure. The tuple <fo> is called a 1-ary world (or simply a world), because it contains a single 

element. Wl is the set of all 1-ary worlds, i.e. the set of all possible truth assignments to P. In 

' ~ o d a l  structures are actually designed for multi-agent logics. Since the extensions described in this paper are all to 
single-agent logics, however, and since the extension to a multi-agent structure is a straightforward one, the single-agent 
version is described here. 



general, a tuple ~f~,.fi , . . . f~-~> is called a k-ary world, because it contains k elements, and Wk is the 

set of all k-ary worlds. 

Definition 2: fk: A 4 ZWk is a klh-order assignment. 

Intuitively, the assignment fk associates with the agent a set of possible k-ary worlds that are 

compatible with its depth-k beliefs. fk(A) is the set of k-ary worlds associated with agent by fk. 

Definition 3: A modal structure is an infinite sequence cfofJ ,...,> if the prefix 
cfo, ... fk-I> is a k-ary world for every k 2 1. 

[Fagin and Vardi 851 describes belief structures, which are simply modal structures constrained 

to model the logic weak S5. Figure 2-1 shows the first three levels of a sample belief structure and 

the Kripke structure that it corresponds to. 

Figure 2-1: A Belief Structure and a Corresponding Kripke Structure 

In Figure 2-1, world wR is the "real world". At level 1, worlds wl ,  w2, and w3 are the worlds 

compatible with the agent's beliefs. Because weak S5 does not require beliefs to correspond to 

"reality", wR is not required to appear at level 1. At level 2, the agent is assigned three sets of 

2-ary worlds that are compatible with its beliefs about its beliefs about the world. 

The definition of the levels of modal structures in terms of sets ensures that each k-ary world at 

each level k is unique. For example, at level 1, no two 1-ary worlds have the same truth 



assignment. This is an important departure from Kripke structures, which allow duplicate worlds. 

As a result of this change, there is only one modal structure that can represent a particular state of 

belief, while there are an infinite number of Kripke structures that can represent it. [Fagin, Halpern, 

and Vardi 841 cites this feature as an advantage of modal structures over Kripke structures for 

representing particular states of belief. 

Figure 2-2 shows a Kripke structure that contains duplicate worlds, and the corresponding modal 

structure. For simplicity, a single proposition p is assumed in both structures, and the label on each 

world indicates the truth values assigned to p at that world. 

Figure 2-2: Modeling Duplicate Worlds in a Modal Structure 

The following sentences ape all true in both the Kripke and the modal structure: 
1. Bp 3 B(Bp v B-p) 

2. Bp A -BBp 

3. Bp A -BB-p. 

Semantic restrictions are placed on the sets of k-ary worlds in the levels of modal structures to 

model properties of knowledge and belief, just as restrictions are placed on the accessibility 

relation in Kripke structures. Because the worlds in modal structures are accessed recursively at 

successive levels, the restrictions on modal structures generally take the form of set inclusion 

relations between worlds at different levels. Several semantic restrictions on modal structures are 

now shown. The first one is applicable to all modal structures. 

TI) Basic Restriction: <go, ...,&-2 > E fk-l(A) iff there is a g k - ~  such that <g~ , . . . , g~ -~ ,g~-~>  E 

fk(A), fork 1 2. 

That is, each (k-1)-ary world forms the prefix of some k-ary world at level k, and each k-ary 



world at level k has as its prefix some (k-1)-ary world from the previous level. Intuitively, each 

level extends the agent's previous beliefs. In Figure 2-1, each world at level 1 is the prefix of some 

2-ary world at level 2, and each 2-ary world at level 2 has as its prefix some 1-ary world from level 

1. 

T2) Full Introspection: if <go, ...,gk-,> E fk(A), then gk-l(A) = fk-,(A), fork 2 2. 

If an agent is fully introspective, the worlds accessible from those at the previous level are exactly 

all the worlds at the previous level. That is, an agent knows exactly what it believes and doesn't 

believe at the previous level. In Figure 2-1, the suffix of each 2-ary world at level 2 contains all the 

worlds at level 1. T2 corresponds to the transitive and Euclidian (or transitive and symmetric) 

restrictions together on Kripke structures, so this restriction should be applied to modal structures 

that model S5 or weak ~ 5 . ~  

T3) Consistency: fk(A) is nonempty for k 2 1. 

This restriction ensures that an agent's beliefs are consistent. Since worlds are consistent, if there 

is some world compatible with the agent's beliefs at every level, then the agent's beliefs must be 

consistent. This is true in Figure 2-1 T3 corresponds to the serial restriction on Kripke structures, 

and is applied to modal structums that model weak S4 or weak S5. 

T4) Knowledge:<fo, ...fk-l> In fk(A), if k 2 1. 

If an agent's beliefs are accurate with respect to the "real world" at level 0, then the k-ary world 

that models that world is included at every level k of the modal structure. This is not the case in 

Figure 2-1, but if it were, world w~ would be present at level 1, and level 2 would include a 2-ary 

world <wR,[wl,w2,w3]>. This restriction corresponds to the reflexive restriction on Kripke 

structures; it is applied to modal structures that model S4 or S5. 

T5) Positive Introspection: if <go, ..., gk-,> E fk(A), then gk-,(A) c fk-,(A), for k 2 2. 

To model positive introspection, the (k-1)-ary worlds in the suffix of the tuples at level k must be 

a subset of the (k-1)-ary worlds at the previous level. This ensures that what is believed at every 

level is also believed at higher levels. If this restriction held in Figure 2-1, the suffixes of the 2-ary 

worlds at level 2 could contain any subset of the worlds at level 1. Restriction T5 is due to [Vardi 

851, and is equivalent to restriction T2 except that the equality in T2 is replaced by the subset 

- - -  

6Restriction T5 on page 13 shows how to represent positive introspection without negative introspection. 



relation in T5. Negative introspection alone would be modeled in the same way except that the 

subset relation would become a superset relation so that all worlds from the previous level would 

be visible at every level, and everything not believed at one level would also not be believed at the 

next level. Restriction T5 is applied to modal structu~s that model S4 and weak S4. 

The support relations for a sentence at a modal structure are now given. [Fagin, Halpern, and 

Vardi 841 proves that the truth of a sentence of depth k is confirmed at level k in a modal 

~tructure.~ p is a primitive proposition, and a and P are formulas of L. 
1. <fO, ... zfk> I= p iff p is true under truth assignment fg. 

2. <fo ,... fk> I= -a iff <fo ,... fk> I# a. 

3. <fo ,... z f p  I= ( a  A P) iff <fo ,... &> I= a and <fO ,... fk> (= P. 
4. <fo ,... zfk> I= B a  iff <go ,..., gk-l> I= a for every <go ,..., gk-~> E fk(A), where a is of 

depth k- 1. 

The truth of all formulas that contain no modal operators is confirmed at level 0 of the modal 

structure, while the truth of formulas with k nested modal operators is confirmed at level k. A 

depth-k sentence a is satisfied at a modal structure f (written "f I= a") if <fo, ...fk > I= a ,  and a is 

valid if it is satisfied at every modal structure. Since each modal structure models a single world in 

a Kripke structure, this definition of validity is the same as the Kripke structure definition, where a 

is valid if it is satisfied at every world. 

Each modal structure corresponds to a single state of a Kripke structure, together with its 

accessibility information. Moreover, each Kripke structure corresponds to a collection of modal 

structums, such that exactly the same set of sentences is satisfied in each. The following theorem 

makes the equivalence explicit. 

 heo or em 4: [Fagin and Vardi 851. To every Kripke structure M and state s i n  M, there 
corresponds a modal structure fMp such that M s  )= a iff fM,s I= a ,  for every formula a. 
Conversely, there is a Kripke structure M such that for every modal structure f there is a 
state Sf in M such that f I= a iff M,sf I= a ,  for every formula a. 

Proof: Suppose that M = <G,ll, R> is a Kripke structure. For every state s in M, we 
construct a modal structure fMp = <so,sl, ... >, where so is the uuth assignment at II(S).~ 

7 ~ h e  symbols I= and I# are used in this thesis to define the support relations for several logics; the symbols have 
distinct definitions for each logic. Because the meaning is clear from the context, however, no confusion arises. 

 he truth assignment at modal structures is restricted to a fixed, finite set of propositions 



Suppose we have constructed <so, ... sk> for each state s in M. Then s ~ + ~ ( A )  = {<to ,... tk> 1 
sRt}, where <to, ... tk> is the (k+l)-ary world constructed for t. We leave it to the reader to 
check that MJ )= a iff fMs )= a. 

To show the converse, let M = <G, n, R>, where G consists of all the modal structures 
<fofl ,..A ng? for f E G is the truth assignment fo, and fiPg iff <go, ...g k> E fk+l(A) for 
every k 2 0. As before, M f I= a iff f I= a. 

A belief structure has an infinite number of levels. After some level, however, an agent has no 

new information to believe that is not implied by a lower level. Hence, the higher levels contain 

only the worlds compatible with the beliefs the agent gains by introspecting about its beliefs (and 

lack of beliefs) at the previous  level^.^ A level which contains no information not implied by the 

previous level is called a no-information extension of the previous level [Fagin, Halpern, and Vardi 

841. This definition is derived from restriction T2, which gives full introspection. 

Definition 5: fk+l(A) is the no-information extension of fdA) if fhl(A) = 

{<go, ...,g k>(gk(A) = fk(A)}. The no-information extension of the (k+l-ary world w = 
<fO,.. .,fk>) is the sequence <fO,...fk,fk+l,...>, where f,(A) is the no-information extension 
of fm-l(A) for m > k. 

[Fagin, Halpern, and Vardi 841 and [Fagin and Vardi 851 claim that the semantic restrictions on 

modal structures correspond to the properties of knowledge and belief in a more intuitive way than 

the restrictions on the accessibility relation in a Kripke structure. For example, they would claim 

that restriction T2, which ensures that beliefs are modeled by the same set of worlds at every level, 

models full introspection more naturally than the transitive and Euclidean restrictions on Kripke 

structures. They also claim that it is easier to model precise states of knowledge in modal 

structures than in Kripke structures, although this claim has not been demonstrated in print. 

Chapters 4 and 5 extend modal structures to model other epistemic logics. In Chapter 6, these 

claims are examined with regard to the new extended modal structures. 

The clear separation of levels in modal structures, and in particular, the ability to determine the 

truth of a sentence of depth k at level k of the modal structure, leads to proofs of soundness and 

completeness, as well as decidability, that are technically much simpler than those used with 

91f there are several agents, the situation is more complex; see [Fagin, Halpem, and Vardi 841 for details. 



Kripke structures [Fagin and Vardi 851. The corresponding proofs for the extended modal 

structures are not investigated in this thesis. Determining validity in modal structures is decidable 

because there is a finite number of worlds at each level. This is due to both the finite number of 

propositions and the prohibition of duplicate worlds. The use of a finite number of propositions is 

discussed in Section 6.1. 

2.3. Modal Structures as Trees 

This section provides an alternate definition of modal structures which clarifies their relationship 

to Kripke structures. In particular, a three-step transformation from Kripke structures to modal 

structures is presented. The result of this process is a simpler definition of modal structures, given 

in terms of trees.1•‹ The correspondence between this new definition and the original definition 

of [Fagin, Halpern, and Vardi 841 and [Fagin and Vardi 851 is then illustrated. Finally, it is 

demonstrated that when modal structures are defined in terms of trees, the basic restriction on 

modal structures (restriction T1 on page 12) is automatically satisfied. The treatment given here is 

not intended to be rigorous, but rather is intended to demonstrate the feasibility of the new 

definition. The new definition is much simpler than the original one, and makes defining the basic 

restriction on modal structures unnecessary. 

A Kripke structure can be transformed into a modal structure for a particular world f by a three- 

stage transformation, as shown in Figure 2-3. In the figure, worlds gl, g2, and g3 are distinct 

worlds with identical truth assignments. In the first step, the Kripke structure is "unraveled" to 

form a Kripke tree. The root of the tree is the world f, and the children off are the worlds gl, g2, 

and g3 which are accessible from f in the Kripke structure. The children of each node gi are all 

those worlds accessible from gi in the Kripke structure, and so on. In the figure, gl, g2, and g3 are 

accessible from f, so f has three children in the Kripke tree. Worlds gl and g3 each have two 

distinct children of their own: g3 andf, and g2 and x, respectively. World g2, on the other hand, 

has two children with identical truth assignments, gl and g3, and one unique child$ 

lqhe possibility of representing modal structures as trees was suggested by Alan Mekler. 
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Figure 2-3: Three-Step Transformation from Kripke Structures to Modal Structures 

In modal structures, duplicate k-ary worlds are not permitted at any level k, so the next step in the 

transformation is to collapse the Kripke tree to remove duplicate worlds. Two worlds with 

identical truth assignments in a Kripke tree are considered to be distinct only if their subtrees are 

not isomorphic. In Figure 2-3, for example, the three children of the root f in the Kripke tree 

cannot be collapsed because their subtrees are all distinct. If their subtrees are ignored, however, 

the three children off can all be collapsed into a single world. 

The second step in the transformation then produces a set of finite collapsed Kripke trees, one of 

each depth k for k 2 0. The collapsed depth-0 tree contains only the root. In Figure 2-3, the 

collapsed depth- 1 tree contains a single child g l  (it could be any of g l ,  g2, or g3). In the collapsed 

depth-2 tree, the root f has two distinct subtrees, the roots of which have identical truth 

assignments. The subtree rooted at g l  is obtained by collapsing the first two subtrees of the 

depth-2 Kripke tree, those rooted at g l  and g2, after first collapsing the duplicate leaves g l  and g3 

of the second subtree. This process continues for trees of every depth. 

The final step in the transformation is to define the levels of the modal structure that model world 



f in  the Kripke structure. Level 0 of the modal structure is simply the truth assignment at worldf, 

restricted to a fixed, finite set of propositions as in the original definition of modal structures. Each 

level k above level 0 simply assigns to the agent the subtrees from the collapsed depth-k Kripke 

tree. Thus, in Figure 2-3, level 0 is worldf. Level 1 assigns the single world g l  to the agent, level 

2 assigns it the two depth-1 subtrees from the collapsed depth-2 Kripke tree, and so on. Worlds g l  

and g3 have the same truth assignment, so are treated as the same world in the modal structure. 

A formal definition for each stage in the transformation is now presented, starting with the Kripke 

structure and ending with the new definition of modal structures. The definition of Kripke 

structures is the same as in Chapter 4, and is repeated here for convenience. 

Definition 6: A Kripke structure is a triple <G,II,R>, where G is a set of states , I3 is a 
truth assignment to the primitive propositions at every state, and R is a binary 
accessibility relation between states. 

Definition 7: The Kripke tree for world f E G, denoted KTREE(f), is a pair <ROOT, 
SUBTREES>, where 

ROOT = f, 

SUBTREES = a lrwltisetl1 containing KTREE ( g )  
for every g such that f ig.  

Note that Kripke trees can contain duplicate subtrees. Let KTREEkCf) denote the depth-k tree for 

statef. Then the term SUBTREESkCf) will be used as shorthand for "the immediate SUBTREES of 

KTREEkCf)". The subtrees are, of course, of depth k-1. The predicate CHIWCf,g) is used to 

denote the fact that g is a child off. By the definition of Kripke trees, CHILDGg) is true exactly 

whenflg is true in the Kripke structure. 

Definition 8: A collapsed depth-k Kripke tree for statef, denoted CKTREEk(f), is a 
pair <ROOT, CSUBTREES>, where 

ROOT = f, 

CSUBTREES = ( 1  if k=O, 

lli.e., a collection of elements that are not necessarily distinct; it is similar to a set, but allows duplicate elements. 



The term CSUBTREESM will be used as shorthand for "the CSUBTREES of CKTREE@". 

The subtrees are of depth k-1. Collapsed Kripke trees are defined in terms of sets, and therefore 

contain no duplicate subtrees. 

Definition 9: A modal structure for world f E G in the Kripke structure is the infinite 
sequence <fofl,. . .>, where 

fo = V) , where I I r  i s  a truth assignment II 
restricted t o  a fixed, f i n i t e  set of 
propositions, 

fk = CSWTREESkV) for k 2 1. 

The correspondence between the new definition of modal structures and the original one given on 

page 11 is now sketched. Figure 2-4 shows the correspondence between a k-ary world 

~ t ~ , t ~ , . . . , t ~ _ ~ >  E fk(A) from the original definition and a subtree of a collapsed depth-k Kripke tree, 

CKTREQ-l(g) E CSUBTREESkV), both at level k of a modal structure. 

The figure shows that a single k-ary world ctO,tl, ..., tkl> is equivalent to a single depth-(k-1) 

subtree of the collapsed depth-k Kripke tree. Intuitively, the assignment to corresponds to the root 

g of the subtree, tl to the children of g, t2 to the immediate depth-1 subtrees of g, and so on. The 

suffix of the k-ary world, thl, corresponds to the depth-(k-2) subtrees of the root g. The 

correspondence is actually slightly more complicated than this; tl actually corresponds to the 

collapsed children of g, t2 actually corresponds to the collapsed depth-1 subtrees of g, and so on. 

Collapsed subtrees provide a concise and intuitive definition of the levels of a modal structure. 

Another advantage of using collapsed subtrees to define modal structures is that Basic Restriction 

T1 on modal structures, given on page 12, is automatically enforced. To show this, it is necessary 

to be able to refer to a shortened collapsed subtree. 

Definition 10: If CKTREQ(g) is a tree of depth k rooted at g, then CKTREQ(g), m 5 
k, is CKTREEk(g) shortened to depth m and collapsed to remove any duplicate 
depth-(m- 1) subtrees of g. 



CKTREE (g) ; <to, t, ,..., t > 
b t  k - ~  

Figure 2-4: Correspondence Between New and Old 
Definitions of Modal Structures 

In Figure 2-3, for example, CKTREE2V) is the depth-2 collapsed Kripke tree for world f. 

CKTREE2fd1 is CKTAWE2Cf) wiL!ont its leaves, and with t!e two children gl and gj coflapsed into 

one. 

Basic Restriction T1 can now be reformulated as follows for a modal structure that models world 

f. 
New TI: 

CKT17EQ-2(g) E CSUBTREESk-lCf) iff there exists a CKTREQ-l(g) such that 
CKTREEk-l(g) E CSUBTREESkV), where CKTREEk-l(gk-2) = CKTREEk-2(g), fork 2 2. 

The restriction now says that a particular subtree rooted at g is present at a level only if it is 

extended at the next level, and if it is the extension of a tree at the previous level. The equality 

condition ensures that a subtree at a level k 2 2 is indeed the extension of a subtree at the previous 

level. This new restriction can be seen to hold in Figure 2-3 for k = 2, if worlds with the same truth 

assignment are considered to be indistinguishable. Intuitively, it holds in modal structures defined 

in terms of trees because the subtrees at each level are all taken from the same Kripke tree. Since 



no information is lost in the collapsing process, the leaves of subtrees of depth-(k+l) are always 

attached to the leaves of subtrees of depth-k. Similarly, the leaves of subtrees of depth k are always 

the roots of subtrees in trees of greater depth. 

In this section, I have presented a new definition for modal structures that uses trees, and have 

illustrated the correspondence between the new definition and the original one. The new definition 

is actually equivalent to the old definition plus the basic restriction on modal structures. This 

suggests that it might be simpler to define the semantics of a logic using the new definition rather 

than the original one, since it would no longer be necessary to define the basic restriction. The new 

definition is also much shorter and more straightforward than the original one, and so may be easier 

to use. The new definition, however, assumes the existence of a Kripke structure to be transformed 

into a modal structure; the original definition does not require an underlying Kripke structure. The 

new definition could perhaps be modified to stand alone, so that it can be used by itself as a 

semantic basis for modal logics. In its current form, it clarifies the relationship between Kripke and 

modal structures, and provides an alternate, more intuitive picture of modal structures. The 

extensions to modal structures described in Chapters 4 and 5 use the original definition of modal 

structures. 



Chapter 3 

Survey of Extended Epistemic Logics 

This section describes the extended epistemic logics that are modeled using modal structures 

instead of Kripke structures in Chapters 4 and 5. Section 3.1 describes the Logic of Implicit and 

Explicit Belief of bvesque 84b], called BL in this thesis. BL is the basis for the logics surveyed 

here in Sections 3.2 and 3.3. Section 3.2 describes BLK and BLA, the extensions to BL 

from [lakerneyer 871, which allow the agent to hold meta-beliefs and do some forms of 

introspection. Section 3.3 describes another version of BL from [Delgrande 871, called DBL in this 

thesis, which overcomes BL's reliance on incoherent situations. Section 3.4 describes a first-order 

logic from [Levesque 811 and [Levesque 84a] based on the classical propositional logic weak S5. 

The semantic bases of all of the logics described in this section are given in terms of appropriately 

modified Kripke structures. In Chapters 4 and 5, I demonstrate how to represent them using modal 

structures instead. 

These logics were chosen for study because their varied and non-standard semantic features make 

them suitable test cases for the extensibility of modal structures. BL is based on situations (or 

partial worlds) as well as worlds, a feature which is retained by all of its successors. BLK and BL4 

are interpreted in terms of two accessibility relations instead of the usual one. DBL assigns a set of 

situations for the interpretation of each proposition, rather than a single set of situations for the 

interpretation of all propositions. In general, the semantic variations introduced by the logics of 

implicit and explicit beliefs have the effect of increasing the number of types of both states and 

accessibility relations in the Kripke structure. Finally, the first-order logic has such features as 

quantification over individual variables, equality, and standard names. In this case, the basic 

stmcture of the Kripke structure is unaltered, but the definition of a world changes. 



3.1. BL: A Logic of Implicit and Explicit Belief 

Levesque 84b] describes a single-agent logic of implicit and explicit belief, where explicit 

beliefs are those "actively held" by the agent, and implicit beliefs are all the logical consequences 

of the explicit beliefs. This distinction between kinds of belief is an attempt to overcome the 

problem of logical omniscience, which arises with the standard epistemic logics. The language of 

BL, LBL, is the same as that of weak S5 described in Section 2.1, with the addition of a new modal 

operator L, where La reads "the agent implicitly believes a". Ba now reads "the agent explicitly 

believes a". No nesting of modal operators is allowed, so the agent possesses no meta-beliefs. 

The semantics of BL is given in terms of situations, or partial, possibly inconsistent worlds, as 

well as worlds. Propositions are assigned true, false, both or neither at situations, and exactly one 

of true or false at worlds. The intuition behind situations is taken loosely from [Barwise and Perry 

831: at any point in time, only certain situations are relevant to the agent's explicit beliefs, and 

these situations need not be consistent with each other or within themselves. The agent believes 

exactly those propositions that are true in all situations associated with the agent. A world is a 

complete and consistent situation, and is used to model the agent's implicit beliefs. 

The semantics of BE is given in terms of a model-structure, called a BL-model in this thesis to 

avoid confusion with modal structures. A BL-model is a 4-tuple <S,B,T,F>, where S is the set of 

all situations, B is the set of situations that are relevant to and compatible with the agent's explicit 

beliefs, and T and F are functions that map primitive propositions to sets of situations in which 

they are respectively true and false. P is a countably infinite set of propositional variables that 

represent primitive propositions. The belief set B replaces the accessibility relation of Kripke- 

structures; since there are no meta-beliefs, only immediately accessible situations are required in 

the model. The agent's implicit beliefs are modeled by the set of worlds W(B), which is 

compatible with the belief set B. Levesque defines the worlds compatible with a situation s as 

follows: 

Definition 1: W(s) = { w E S such that for every p E P, 
1. w is a member of exactly one of T(p) and F(p), 
2. if s is a member of T(p), then so is w. 
3. if s is a member of F(p), then so is w. } 



Every w E W(B) is compatible with some s E B. B a  is true if a is true at every s E B, and L a  is 

true if a is true at every w E W(B). All explicit beliefs in BL are also implicit beliefs by the 

definition of compatibility; if a is true at every s E B, it must be true at every w E W(B), since 

every such w is compatible with some such s. 

The full support relations for a situation in a BL-model are shown below for a situation s in model 

M. 17 means "supports the truth of', and 1- means "supports the falsity of', and means "does 

not support the truth of '. 
1. M,s 19 piff s E T(p). 

M,s I=F p iff s E F(p). 

2. M,s 17 ( a  v p) iff M,s 17 a or M,s 17 P. 
M,s I=F ( a  v $) iff M,s I- a and M,s I=F p. 

3. M,s 17 ( a  A p) iff M,s 17 a and M,s 17 p. 
M,s I=F ( a  A $) iff M,s I=F a or Mas $. 

4. M,s 17 -a iff M,s I=F a. 
M,s I=F -a iff M,s 17 a. 

5. M,s 17 B a  iff for every situation t E B, M,t 17 a. 
M,s 1- B a  iff M,s I+ Ba. 

6. M,s 17 L a  iff for every world w E W(B), M,w 17 a. 
Mas L a  iff M,s 1% La. 

The truth of a sentence a is verified only at worlds in W(B). In particular, a is valid (written 

"[=a") if it is true at all worlds in all BL-models. a is satisfied at a world w E W(S) in a BL-model 

M (written "M,w I= a")  if w 1- a. 

Levesque provides two axiomatizations of explicit belief which are similar to that of the 

relevance logic of entailment of [Anderson and Belnap 751. Implicit beliefs are closed under 

modus ponens and contain all explicit beliefs as well as all tautologies and necessary truths. An 

axiomatization of implicit and explicit belief, taken from Levesque 84b1, is shown below. 
1. La, where a is a tautology. 
2. (Ba 3 La). 
3. L a  A L(a 3 $) 2 L$. 
4 . B ( a ~ p ) = B a ~ B p .  
5 .BavB$1B(av  p). 

From ((Ba v BP) 3 By), infer B(a v p) 3 By. 
6. B--a = Ba. 



Explicit beliefs are not closed under implication, so the agent can explicitly believe p and (p 2 q) 

without having explicitly to believe q. The agent does not have to believe all valid sentences (e.g. 

(p v -p)) or certain logical equivalents to its explicit beliefs. In particular, it can believe p without 

believing (p A (q v -q)), but if it believes (p A q), it must also believe (q A p). The latter two 

sentences are considered to be syntactic variants of the same belief, while the former two are 

considered to be different beliefs. The agent may still hold an infinite number of explicit beliefs, 

however, by axioms 4 through 7. Finally, the agent can explicitly believe an inconsistency, such as 

(p A -p), without thereby having to explicitly believe everything, as it would if the semantics of BL 

were given solely in terms of worlds. If it does explicitly believe (p A -p), however, then it also 

implicitly believes (p A -p), and hence implicitly believes everything. 

BL does not allow meta-beliefs. [Lakemeyer 861 extends BL to allow meta-beliefs in his logics 

BLK and BL4; the results are summarized in Section 3.2. 

[Fagin and Halpern 851 criticizes Levesque's logic on the grounds that its freedom from closure 

under logical inference stems from the presence of incoherent situations, in which a proposition is 

assigned both true and false. In particular, it shows that ((Bp A B(p 3 q)) 2 Bq) is not satisfied 

only if (Bp A B(p 2 q)) 2 B(q v (p A -p)) is satisfied. That is, the agent can only avoid knowing 

all the consequences of its beliefs by believing an inconsistency. This problem is overcome 

in [Delgrande 871, which is summarized in Section 3.3. 

3.2. The Logics BLK and BL4 

3.2.1. BLK 

Lakerneyer 871 extends BL to allow meta-beliefs, so the agent can hold beliefs about its own 

- beliefs as well as about the world. The guiding principles of this extension are that the agent 

should not be logically omniscient with respect to its own beliefs, and should be no more powerful 

when reasoning about its own beliefs than when reasoning about the world. The "straightforward 



extension" of BL-models, which is to replace the belief set B with an accessibility relation in the 

manner of a Kripke structure, causes explicit belief to have the fully introspective and logically 

omniscient properties of weak S5. Since this is incompatible with his guiding principles, 

Lakemeyer uses a more complex semantic model for his logic BLK. 

The language of BLK, LBLK, is the same as LBL except that nested beliefs are allowed, with the 

restriction that no modal operator L may appear in the scope of a B, so the agent cannot hold 

explicit beliefs about its implicit beliefs. This is a syntactic restriction on the language, and does 

not affect the semantic model. A sentence o E LBLX is said to be pure if it contains a leading B or 

L operator. A pure sentence describes the agent's beliefs. 

To accommodate his requirements on the logic, Lakemeyer replaces the belief set B in the BL- 

model with two accessibility relations R and fi:, one each for positive and negative explicit beliefs, 

respectively. Positive explicit beliefs are sentences with a leading B operator, such as Ba, B-Ba, 

or B(Ba v -BP). Negative explicit beliefs are sentences with a leading negated B operator, such as 

-Bay -BBa, or -B(Ba v BP). The intuition is that an agent confirms beliefs by looking in one set 

of situations (those accessible through R), and disconfirms beliefs by looking in another (those 

accessible through E). The two accessibility relations coincide at worlds, which model the agent's 

implicit beliefs. Specifically, 

R1) wRs iff w&, for a world w and a situation s in S. 

This ensures that (Ba A -Ba) is not satisfied at a world. Unlike in BL-models, there is no notion 

of compatibility between worlds and situations; the worlds accessible through R are used to verify 

implicit beliefs. Implicit beliefs are fully introspective, like weak S5, but are not required to be 

consistent. The following restrictions ensure that R and R are transitive and Euclidean at worlds 

(thus forcing full implicit introspection): 

R2) if wRv and vRs, then wRs. (transitive) 

R3) if wRv and wRs, then vRs. (Euclidean) 

A BLK-model is then a 5-tuple <s,T,F,R,E>, where S ,  T, and F are as in BL-models, and R and 
- 
R are the accessibility relations. 

The full support relations for a BLK-model are shown below. Intuitively, B a  is true if a is true in 



all situations accessible through R; B a  is false if a is false in some situation accessible through E. 
L a  is true if a is true in all worlds accessible through R. a ,  of course, can contain modal operators. 

1. M,s 17 p iff s E T(p). 
M,s I=F p iff s E F(p). 

2. M,s 1- -a iff M,s 1- a. 
M,s I=F -a iff M,s I=T a. 

3. M,s I=T a A P iff M,s I=T a and M,s I- P. 
M,s a A p iff M,s 1- a or M,s 1% p. 

4. M,s I=T a v p iff M,s 1- a or M,s I=;r P. 
M,s I=F a v fl iff M,s I=F a and M,s I- p. 

5. M,s 17 B a  iff for all t, if sRt then M,t 17 a. 

M,s 1- B a  iff for some t, sE and M,t I+ a. 

6. M,s 1- L a  iff for all worlds w, if sRw then M,w I=T a. 
M,s 1- L a  iff M,s I+ a. 

As in BL, the truth of sentences of LBLK is verified only at worlds. In particular, a is satisfied at 

a world w E S in BLK-model M (written "M,w I= a") if w I=T a ,  and a is valid (written "I= a") if a 

is satisfied at every world w E S in every BLK-model. 

The proof theory of BLK adds one new axiom and one new inference n~k to these of BL. It is 

shown below. The new axiom (#4) says that the agent has full implicit introspective powers over 

both implicit and explicit beliefs. The new inference rule (#4) essentially says that the agent can 

perform the same explicit relevant implications that it can under BL at any level of meta-belief, as 

long as the nesting of modal operators is the same on both sides of the implication. For example, in 

BL the sentence B(a A P) 3 B a  A BP is valid. In BLK, BBB(a A P) 2 BBBa A BBBP is also 

valid, but B(a A P) 2 BBa A BBP is not. BLK thus retains all the properties of explicit belief that 

BL has, but for beliefs about beliefs as well as for beliefs about the world. 

Axioms: 
1. Axioms for standard propositional logic. 
2.1- L(a  2 p) 3 (La 3 LP). 
3.1- B a 3  La. 
4. 1- o 2 LO, where o is pure. 
5.1- B a  = B*NF, where is a converted into conjunctive normal form (CNF). 
6. I- (Ba A BP) = B(a A p). 



7.1- (Ba v BP) 3 B(a v p). 

Rules of Inference: 
1. if I- a and I- ( a  3 p), then I- p. 
2. if I- a ,  then I- La. 
3. if 1- (Ba v BP) 3 By, then 1- B(a v p) 3 By. 
4. if I- (Ba ABP) 2 By, then 

a. 1- B(Ba A BP) 3 BBy, and 
b. I- -B-(Ba A BP) 3 -B-By. 

Lakemeyer extends BLK to allow explicit positive introspection in the logic B U .  A BL4-model 

is a BLK-model with two additional restrictions on R for all situations s, t, and u E S: 

R4) if sRt and tRu, then sRu. 
R5) if sRt and tRu, then sRu. 

The first condition ensures that R is transitive, while the second is a corresponding restriction for 
- 
R. The other restrictions, R1, R2, and R3, still hold in BL4-models, so implicit belief retains the 

same properties as in BLK. The support relations for BL4 are the same as those for BLK. 

3.3. The Logic DBL 

[Delgrande 871 describes a modification to BL that overcomes one of its most serious 

shortcomings: its reliance on incoherent situations. In particular, although the modified logic, 

called DBL in this thesis, still allows incoherent situations, its lack of explicit logical omniscience 

does not depend on them. The language LDBL is the same as LBLK except that there is no 

restriction on the nesting of modal operators. 

The major change to BL is that the set of situations used to verify the agent's belief in a 

proposition that represents a sentence of LDBL varies with the proposition; the intuition is that a 

distinct set of situations is relevant to each proposition. This means, for example, that distinct sets 

are used to verify the propositions B a  and B-a and the propositions a and (a v P). Thus, an 

. agent's belief in both a and -a is supported not by a set of incoherent situations, but by two 

distinct and incompatible sets of situations. The two sets can be incoherent situations, but do not 

need to be. 



The semantics is given in terms of a model (here called a DBL-model) M = 43, f, T, F>. S, T, 

and F are as in BL, and f is a function that assigns a set of situations for a proposition at a particular 

situation. The situations assigned by f are those that are relevant to the proposition, and not 

necessarily those that support its truth. f then assigns the same set of situations to logically 

equivalent sentences. If llallM is the set of worlds in which a is true and denotes the proposition 

that a expresses in model M, for example, then \](a A P)1lM and 1I(P A a)llM are both interpreted in 

the same set of situations. This implies that sentences that are logically equivalent to a believed 

sentence are also believed. 

Since f is a function from situations as well as from propositions, it can be seen as specifying an 

accessibility relation for each proposition at each situation. For example, if l l~all~ is the 

proposition that represents sentence B a  E LDBL in model M, then f(s,llallM) associates with the 

agent a set of situations that are relevant to and compatible with its beliefs about a at situation s. 

Similarly, f(s,  all^) associates with the agent a set of propositions compatible with and relevant 

to its beliefs about believing a at s. The sentence Ba  is thus interpreted in the set of situations 

assigned to the agent for proposition [[allM. The set of accessible situations is only relevant to the 

interpretation of sentences containing modalities, just as in systems that use an ordinary 

accessibility relation. 

W is the subset of S that consists of worlds. The function f is restricted at worlds such that the set 

of situations it specifies is not dependent on the proposition being interpreted. This ensures that 

there is a single accessibility relation between worlds, and hence that implicit beliefs, which are 

interpreted at worlds, are interpreted in the standard possible worlds framework. The formal 

restriction is 

Dl)  f(w,llallM) = f(w,llPllM) 

The accessibility relation can then be restricted as required to enforce the desired properties of 

implicit belief. In the version of DBL described in [Delgrande 871 there are no such restrictions 

specified, so implicit belief has the properties of the logic K. 

The support relations for DBL are the same as those for BL except for the interpretation of 

sentences of the form Ba. The full support relations are shown below for convenience. As in BL, 



1- means "supports the truth of', 1- means "supports the falsity of', and I+ means "does not 

support the truth of '. p is a primitive proposition and a and P are sentences of LDBL. 
1. M,s 1- p iff s E T(p). 

M,s 1- p iff s E F(p). 

2. M,s 17 ( a  v p) iff M,s I-, a or M,s (7 p. 
M,s I=F ( a  v p) iff M,s I=F a and M,s I=F P. 

3. M,s 1- ( a  A P) iff M,s 1- a and M,s 1- P. 
M,s 1- ( a  A P) iff M,s 1- a or M,s p. 

4. M,s 1- -a iff M,s 1% a. 
M,s I=F -a iff M,s 17 a. 

5. M,s 17 B a  iff for every situation t E f(s,llallM), M,t I- a. 
M,s I-, B a  iff M s  ( f ~  Ba. 

6. M,s 17 L a  iff for every world w E f(s.llalfi, M,t 1- a. 
M,s I=F La iff M,s I+ La. 

A sentence a is satisfied at a world w E W of model M (written "M,w I= a") if M,w 1- a. a is 

valid (written "I= a") if it is satisfied at every world in every DBL-model. 

Beliefs can be constrained to be consistent by restriction D2, below. If D2 is applied, the agent 

can no longer hold inconsistent beliefs represented by sentences of the form B(a A -a). D2 does 

not, however, exclude the possibility of B a  and B-a both hclding at a sitxitiox, since f assigns a 

distinct set of situations for the interpretation of each. 

D2) f(s,llallM) + 0. 

The function f is very general and can be constrained as desired to enforce other properties of the 

model, For example, f can be constrained to enforce the relationship among the sets of situations 

assigned for the interpretation of related sentences, such as B a  and B(a A P), BBa and Ba, and B a  

and La. [Delgrande 871 describes several such constraints. Since their development is still in 

progress, however, they are not described here, and their counterparts are not derived in Section 

4.3, where DBL is represented in a modal structure. 



3.4. KB: A First-Order Knowledge Base 

Levesque 811 and bevesque 84a] describe a first-order language KL that is used as both the 

representation and query language for a knowledge base (KB), and enables the KB to answer 

questions about both its domain and its knowledge.12 The semantics of the language is given in 

terms of a possible worlds model which gives the KB the power of weak S5 but extended to a 

first-order setting. This section describes the language KL and the semantic model which provides 

an interpretation for sentences of KL. In Chapter 5, this language is interpreted instead in a 

modified modal structure. 

The language KL includes 
1. a countably infinite set of predicate symbols of every arity, including the 2-ary 

equality predicate "=". 
2. a countably infinite set of function symbols of every arity. 0-ary function symbols 

behave like constants. 

3. a countably infinite set of individual variables. 

4. a countably infinite set of parameters, which are isomorphic to the entities in the 
domain of the KB. 

5. the logical symbols - (negation), v (disjunction), and 3 (existential quantification). 
The symbols A (conjunction), V (universal quantification), 3 (implication), and = 
(equivalence) are introduced by definition. 

6. the modal operator K. If a is a sentence of KL, then Ka is also, and is read "the KB 
currently knows that a". 

Terms of KL include variables, parameters, and function applications (in which every variable in 

the predicate arguments has been replaced by a term); primitive terms contain only one function 

symbol, and closed terms contain no variables. Sentences of KL include predicate applications 

(including equalities) and negations, disjunctions, conjunctions, implications, equivalences, and 

quantifications involving sentences. Primitive sentences are atomic (i.e., they contain only one 

predicate application) and contain no function symbols. If x is a variable, t is a closed term, and a 

is a term or sentence containing x, then axt is the result of replacing every free occurrence of x in a 

by t. A variable is free if it is not in the scope of any quantifier. A sentence of KL is syntactically 

1 2 ~ h e  KB actually has beliefs about the domain, since its knowledge is not required to be accurate, but it has accurate 
knowledge of its own knowledge. The terms belief and knowledge are used interchangeably in this section. 



pure if every predicate symbol (except equality) and every function symbol appears within the 

scope of a K operator. That is, pure sentences make statements about the KB's knowledge rather 

than about the domain. 

In the semantic model, both terms and sentences are assigned to equivalence classes, the terms to 

parameters, and the sentences to one of true orfalse. Parameters are isomorphic to entities of the 

universal domain, so every term is guaranteed to refer to some domain entity. This assignment of 

parameters enables the KB to know when two terms refer to the same entity, or co-refer. With v as 

this assignment and v[t] the result of applying v to primitive term t, a formal co-reference relation 

is defined as follows [Levesque 84aI. 

Definition 2: The co-reference relation (given v) is the least set of pairs such that 
1. if t is a primitive term, then t and v[t] co-refer. 
2. if tl and t2 co-refer, then so do 6 and Pt2. 

1 

Sentences of KL are either true or false; the truth values of non-primitive sentences are 

determined by the truth values of their component primitive sentences. Let s be the set of all 

primitive sentences that the KB believes to be true. v is the assignment described above. Then 

[s,v] is a world-structure, which models a "possible world. A KB-structure m, called a KB-model 

in this thesis to avoid confusion with the KB-modal-structures in Chapter 5, is any non-empty set 

of world-structures. The intuition is that a KB-model contains the world-structures that are 

compatible with the world knowledge of the KB, or in the terminology of Kripke structures, it 

contains the world-structures that are accessible to the KB. 

Both a KB-model and a world-structure are needed to assign truth values to sentences; the KB- 

model enables the interpretation of pure sentences, and the world-structure enables the 

interpretation of sentences not involving the KB's knowledge. The support relations for world- 

structure [s,v] and KB-model m are shown below. The notation used in [levesque 84a] is 

modified to correspond to that used in the rest of this thesis. tl and t2 are terms, p is a primitive 

- sentence, q is an atomic sentence, i is a parameter, and a and fl are any sentences of KL. I= is read 

"supports the truth of ', and I f  is read "does not support the truth of'. 
1. m,[s,v] I= p for every p E s. 

2. m,[s,v] I= (tl = t2) if tl and t2 co-refer given v. 



3. (m,[s,v] C p",, iff m,[s,v] v]= Ctt) if tl and t2 co-refer given v. 

4. m,[s,v] I= -a if m,[s,vl I# a. 

5. m,[s,v] I= (a v p) if m,[s,v] I= a or m,[s,v] (= p. 
6. m,[s,v] I= %a if m,[s,v] I= di for some parameter i. 

7. m,[s,v] I= Ka if m,[s',v9] I= a for every m,[s',v'] in m. 

A sentence a of KL is satisfied in world-structure [s,v] of KB-model m (written "m,[s,v] I= a") if 

a is true at world-structure [s,v]. A sentence a of KL is valid, (written "I= a") if it is true at every 

[s,vl 

Parts 2 and 3 above show how the use of parameters leads to a simple interpretation of equality of 

terms and of atomic sentences whose free variables are replaced by co-referring terms. In general, 

since every primitive term is assigned a parameter, and variable arguments of predicates and 

functions are substituted by terms or parameters, these parts of the definition allow for the 

interpretation of the equality of any two formulas of KL. 

Part 6 shows how existential quantification can be interpreted using parameters: a sentence a 

containing a free variable x is true for some value of x if it is true when some parameter is 

substituted for x. Universal quantification is interpreted in a similar manner: (Vx)a is true if axi is 

true for all parameters i. This works because of the one-to-one correspondence between 

parameters and the domain entities. 

Part 7 shows how to interpret pure sentences of KL. There are two cases, depending on whether 

a is pure or not in the sentence Ka. If a is not pure, the sentence Ka describes the KB's 

knowledge about the world, and Ka is true simply if a is true at all world-structures [s,v] in m. 

If a is pure, then Ka describes the KB's knowledge of its own knowledge, and Ka is true at [s,v] 

and m if a is true at every [s',v'] E m. For example, let a be KP. Then KKP is true at [s,v] and m 

if KP is true at [s',v'] and m for every [s9,v'] E m. In turn, KP is true at [s',v'] and m if p is true at 

[s",v"] and m for every [s",vV] E m. [s',~'] is an element of m, so is itself one of the world- 

structures [s",v"] which are used in the interpretation of KP. Since every [s',v9] E m is used to 

evaluate the truth of KKP, it follows that every world-structure in m is accessible from every other 



world-structure in m, including itself. Thus, the world-structures in m form an equivalence class, 

and there is an equivalence relation connecting them that is transitive, symmetric, and reflexive. 

The "real world" [s,v] need not be accessible from any world-structure in my although every world- 

structure in m is accessible from [s,v]. [Halpern and Moses 851 shows that such a structure, in 

which a group of worlds in an equivalence class is accessible from another world, is Euclidean, 

transitive, and serial. This combination of restrictions corresponds to the logic weak S5. Thus, 

KB-models correspond to Kripke structures that model (first-order) weak S5. 

Levesque provides an axiomatization, shown below, which is sound and complete with respect to 

the above semantics. There are ten axiom schemata: 

Vxa 3 axt for any term t substitutable for x13, provided that no function symbol of t gets 
placed within the scope of a K in the substitution. 
(i = i) A (i # j) for all distinct parameters i and j. 
K a  where a is any of the previous axioms (A1 to AE). 
(Ka A K(a I, p)) 3 KP. 
VxKa 3 KVxa. 
a = K a  if a is pure. 

and two inference rules: 

(MP) From a and ( a  3 P), infer P. 
(UG) From aFil,..., axin, where the ij's are parameters in a and one not in a ,  infer Vxa. 

Detailed discussions of why these axioms were chosen and why they represent desirable 

properties of a knowledge base are found in [Levesque 811 and [Levesque 84al. A brief summary 

is presented here. Axiom schemas Al,  A2, and A3 are standard axioms for propositional logic. 

Axiom schema AD allows the distribution of the universal quantifier over the component formulas 

of a non-primitive sentence. 

Axiom schema AS, the Axiom of Specialization, says that if a sentence a is true for all values of 

x, then it is true when any term that can be substituted for x is indeed substituted for x. (Recall that 

terms are all assigned to parameters, which represent domain entities.) The proviso is added 

13~he term must not contain any variables that are free in a. This requirement was pointed out by Alan Mekler. 



because the KB may know a sentence to be true for constants and some particular functions whose 

values it knows, without knowing it to be true for other functions whose value it does not know. 

For example, the sentence "V city [K MajorCity(city,BC) v K -MajorCity(city,BC)]" is true in the 

KB if the KB believes that it knows all the major cities of B.C., so that it can determine whether 

any city (say "Victoria") is a major city of B.C. If, however, the function application 

"FavouriteCity(Joe)" is substituted for the variable "city", the KB may not know the answer 

because it may not know which city is Joe's favourite. 

The term "FavouriteCity(Joe)" in this case is called afluid designator, because it can be assigned 

to different parameters at different world-structures, and can therefore represent different entities at 

different worlds. In this example, Joe's favourite city may be one of many cities. The term 

"Victoria" is called a rigid designator, because it is assigned to the same parameter at every world- 

structure, and hence always represents the same entity. The above sentence is true for any rigid 

designator, but may or may not be true for a fluid designator, depending on whether the KB knows 

which parameter is assigned to it. 

Axiom schema AE, the Axiom of Equality, states that every parameter is identical to itself and 

distinct from every other parameter. As discussed above, whether the MI! bows thgt two terms are 

equal depends on whether it knows which parameters they refer to. 

Axiom schema KAX (knowledge of axioms) says that the KB knows all of the axioms discussed 

up to this point, and axiom schema KMP (knowledge of modus ponens) says that the KB's 

knowl'edge is closed under modus ponens. Axiom schema KUG (knowledge of universal 

generalization) says that the KB can generalize its knowledge: if it knows for every value of x that 

a is true, then it knows that a is true for every value of x. These three axiom schemas together 

enforce the Assumption of Competence, which says that the agent is capable of deducing all the 

logical consequences of its beliefs. The Assumption of Competence in essence places an upper 

bound on the agent's knowledge. 

Axiom schema KUG is also equivalent to the Barcan Formula (BF) of classical first-order 

predicate logic. [Kripke 63b] showed that this formula holds only when the domain is the same 



across all possible worlds in the model, which is the case in KB-models. The Barcan Formula 

simplifies the semantics of first-order logics, and is a theorem of the logic FOL + S5. See [Hughes 

and Cresswell 681 for a detailed discussion. 

Axiom schema KCL (knowledge closure) gives the KB full positive and negative introspective 

powers over its own knowledge and allows nested K's to be reduced to one if a is pure. That is, 

KKp(x) may be reduced to Kp(x) because Kp(x) is pure, but K a  = K[3x(p(x) A -Kp(x))] may not be 

reduced because a is not pure. Although the KB's beliefs about its domain may be inaccurate, its 

knowledge of its own beliefs is always complete and accurate. Levesque shows that this 

assumption, called the Assumption of Closure, guarantees the consistency of a KB. If the KB were 

inconsistent, then every sentence would be derivable, and it would thus have to know every 

sentence, including one that said that it did not know some other sentence a. But by the 

Assumption of Closure, the KB would indeed not know a. But this contradicts the assumption that 

the KB knows every sentence, and hence the KB cannot be inconsistent. 

Inference rule MP is standard modus ponens. Inference rule UG (Universal Generalization) says 

that if a is true when x is replaced by a particular set of parameters, then it can be inferred that a is 

true for all values of x. The proviso is needed to handle equality correctly: if a is m e  when x is 

replaced by every parameter in a as well as one not in a, then the truth of a must not depend on 

any particular parameter or on parameters with special properties, such as being in a. For example, 

if a is -(1=2), where 1 and 2 are parameters, then it should not be inferred that Vx-(x=2), since it is 

the case that (2=2). But if parameter 1 is replaced by parameter 2 as required by UG, a will be 

false in one instance, and the generalization will not be made. 

AS and UG together ensure that Vxa is a theorem if and only if for every parameter i, axi is a 

theorem, which is needed for Levesque to show soundness and completeness of the axiomatization 

with respect to the KB-model. 



Chapter 4 

Implicit and Explicit Belief 
in Modal Structures 

This chapter shows how to represent in modal structures the logics of implicit and explicit belief 

described in Sections 3.1-3.3. Section 4.1 shows how the logic BL of [Levesque 84b] can be 

represented in modal structures, and Section 4.2 does the same for BLK and BL4, the extensions to 

BL found in pakerneyer 871. Finally, Section 4.3 shows how to represent DBL, the extension to 

BL described in [Delgrande 871, in modal structures. Each section contains a formalization of the 

appropriate variation of a modal structure, diagrams to illustrate its structure and properties, and 

proofs of correspondence between the new modal structure and the semantic model originally used 

to represent the logic. 

Section 3.1 describes the logic of implicit and explicit belief, BL, from [Levesque 84b] and the 

BL-model which provides its semantics. This subsection describes how the semantics of BL can be 

described in terms of a modified belief structure called a BL-structure. 

BL is different from weak S5 (which is represented in belief structures) in two major ways, and 

the BL-structure reflects these differences as described below. 
1. Agents whose beliefs are governed by BL can hold no meta-beliefs. BL-structures 

are thus restricted to two levels, 0 and 1, since all higher levels represent beliefs about 
beliefs. 

2. The semantics of BL is given in terms of situations as well as worlds, to account for 
both implicit and explicit belief. Belief structures associate with each agent a set of 
worlds compatible with its beliefs at every level; BL-structures associate with each 
agent a set of worlds and a set of situations at level 1 which are compatible with its 
implicit and explicit beliefs, respectively. 

Level 0 of a BL-structure, which describes the "real situation", consists of an assignment of truth 



values (true, false, both or neither) to the finite set of primitive propositions which characterize the 

situation. Level 1 of a BL-structure consists of an assignment of a set of possible situations and a 

set of possible worlds for each agent. A BL-structure can be defined formally as follows. As 

before, we assume a fixed, finite set of primitive propositions P, and a single agent A. 

Definition 1: so: P + 2{wuefh1se} is a oth-order situation truth assignment. wo: P + 
{truefilse) is a oh-order world truth assignment. 

Intuitively, so assigns true, false, both or neither to the propositions in P, while wo assigns either 

true or false to them. fo is the so that represents the "real situation" at level 0 of a BL-structure. 

Definition 2: <so> is a 1-ary situation (abbreviated situation), and <wo> is a 1-ary 
world (abbreviated world). 

A world is a situation. T(p) is the set of all situations at which p is true, and F(p) is the set of all 

situations at which p is false, for all p E P. Every world appears in exactly one of T(p) or F(p), but 

each situation can appear in one, both, or neither. 

Let S1 be the set of all l-ary situations, and W1 be the set of all l-ary worlds. 

Definition 3: si: {A) + 2% is a Ist-order situation assignment. wl: {A} i 2W1 is a 

1 St-order world assignment. 

Intuitively, sl associates with the agent a set of "possible 1-ary situations", those elements of S1 

that are consistent with its beliefs. Intuitively, wl associates with the agent a set of "possible 1-ary 

worlds" that are compatible (see Definition 6) with the situations assigned by sl. Let sl(A) be the 

set of l-ary situations associated with agent A by sl, and let wl(A) be the set of l-ary worlds 

associated with agent A by wl. 

Definition 4: fl = [sl,wl] is a lst-order BL assignment iff wl(A) is compatible with 
q(A). 

Definition 5: A BL-structure is a two-level modal structure <fofl> = <fO,[sl,wl]>. 

Compatibility between worlds and situations is now defined. 



Definition 6: A 1-ary world <wo> is compatible with a 1-ary situation <so> E S1 if and 
only if the following conditions hold: 

I. <wo> is a member of exactly one of T(p) or F(p), for every p E P. 
2. if <so> E T(p) then <wo> E T(p). 
3. if <so> E F(p) then <wo> E F(p). 

The set of worlds wl(A) is compatible with the set of situations sl(A) if every <wo> E wl(A) is 

compatible with some <so> E sl(A). This definition of compatibility between worlds and 

situations is modeled closely after the definition taken from [Levesque 84b], which is shown in 

Section 3.1 on page 23. 

Figure 4-1 shows a sample BL-structure f = <fofl> = <fO, [sl,wl]>. SR is the "real situation". sl, 

s2, and w3 model the agent's explicit beliefs, while wl and w3 are each compatible with some 

situation in sl(A), and model the agent's implicit beliefs. Note that sl(A) can contain worlds. 

Figure 4-1: A BL-Structure 

The support relations for situations in BL-structures are analogous to those defined by Levesque 

for situations in BL-models. Intuitively, a sentence a without modal operators is true at a BL- 

structke f if a is true at foe B a  is true at f if a is true in all situations s E sl(A), and L a  is true if a 

is true at all worlds w E wl(A). The support relations follow. 

1. <fo,Es1,w11> I- P iff<fo> E 'UP). 
<fo~[sl 9w1 I> P iff <fo> F(p)- 



5. <fO,[~l,~ll> I- B a  iff for every <gO,[slYyw1']> E sl(A), <gO,[~ly,~ly]> 1- a. 
<fo,[sl,wl]> I=F B a  iff <so> I+ Ba. 

6. <fo,[sl,wl]> 1- L a  iff for every world < w ~ , [ s ~ ~ , w ~ ~ ] >  E wl(A), <wo,[sl',wl']> 17 a. 
<fO,[~l,~l]> I=F L a  iff <so> 1% La. 

If <fo> E W1 (i.e., <fo> is a world) then a is said to be true at <fo> if <fo> 1- a ,  and said to be 

false otherwise. A sentence a is satisfied (f I= a )  if a is true at world <wo> of level 0 in some 

BL-structure f = <wofl>. a is valid (I= a )  if a is true at world <wo> of level 0 in every BL- 

structure <w0,f1>. 

None of the semantic restrictions on belief structures described in Section 2.2 on page 12 are 

applicable to BL-structures. T1 (the basic restriction on modal structures) and T2 (full 

introspection) are inapplicable because there are no meta-beliefs, and T3 (consistency of beliefs) is 

inapplicable to the situations at level 1 because explicit beliefs need not be consistent. T3 is 

inapplicable to the worlds at level 1 because if the agent explicitly believes a contradiction, then it 

also implicitly believes it. In this case, all the situations in sl(A) would be incoherent, and there 

would thus be no compatible worlds in wl(A). None of the axioms in the proof theory of BL 

require placing semantic restrictions on the BL-structure. 

The equivalence between BL-structures and Levesque's BL-models is now demonstrated. 35- 

structures are equivalent to BL-models in the same way that modal structures are equivalent to 

Kripke structures ( [Fagin, Halpern, and Vardi 841, [Fagin and Vardi 851). That is, while each 

BL-model models a collection of situations, each BL-structure models a single situation. The 

following theorem makes the equivalence explicit. Because satisfiability of sentences in BL is 

determined only at worlds, equivalence of satisfiability in BL-models and BL-structures is proved 

only for worlds. 

Theorem 7: To every BL-model M and world w in M, there corresponds a BL- 
structure fM , such that M,wl= a iff fM,, I= a ,  for every formula a. Conversely, there is 
a BL- model'^ such that for every BL-structure f there is a world wf in M such that f I= a 
iff M,w I= a ,  for every formula a. f 

Proof: To show the first part of the theorem, suppose M = <S,B,T,F> is a BL-model. 
For every s E S, we construct a BL-structure fM,, = <so, fl> = < S ~ , [ S ~ , W , ~ ] ~  with A = {a}, 
where so is the truth assignment at s. When s is a world, <S~,[S~,W,~]> is a world also and 
is written <W~,[S~,W,~]>. sl gives sl(A), which is the belief set B, and wl gives wl(A), 
which is defined to be compatible with sl(A) in the same way that W(B) is compatible 



with B. T and F are the same in both models. I now show that M,w I= a iff fM,, I= a. 
There are three cases. 

a E  P: 
Suppose first that M,w I= a. Then by the definition of I= in BL-models, M,w 1- 
a ,  and by the definition of 1- in BL-models, w E T(a). We need to show that 
<wOfl> I= a, or that <W0> 17 a ,  by the definition of I= in BL-structures. But 
since w = <wofl>, <wo> E T(a), and by the definition of 1- in BL-structures, 
<wofl> 17 (a) as required. 

To show the other direction, suppose that fM,, I= a. Then by the definition of I= 
in BL-structures, <wOfl> I= a, and by the definition of 17 in BL-structures, 
<wofl> 17 a and <wofl> E T(a). We need to show that M,w )= a ,  or that M,w 
17 a, by the definition of 1- in BL-models. Since wo = w in M, w E T(a), so w 
1- a, which gives M,w I= a as required. 

a is a formula not containing a modal operator: 
Suppose a = (P v y), and suppose also that M,w (=(P v y). Then M,w (7 (P v y), 
and w E T(P) or w E T(y) by the definition of I=T for BL-models. But then since 
w = <wo>, <wo> E T(P) or <wo> E T(y). So <wofl> 1- (p v y), by the 
definition of I=T for BL-structures, and fM,, I= (p v y), as required. 

To show the other direction, suppose that fMSw I= (P v y). Then by definition of 
17 for BL-structures, <wofl> I.;r (P v y), and <wofl> 17 a or <wofl> 17 y. 
This means that <wo> E T(P) or <wo> E T(y). Since <wo> = w, w E T(P) or w 
E T(y), and by definition of I=T and I= in BL-models, M,w I= (P v y), as required. 

Similar reasoning establishes the equivalence when a is of of form (P A y) or -P. 
a = BP: 

First suppose that M,w I= a. Then M,w 1- BP. By definition of 17 in BL- 
models, t I=T P for every t E B, and thus t E T(P) for every t E B. B corresponds 
to sl(A) in the BL-structuref, so <to> E T(p) for every <togl> E sl(A). Then by 
definition of (9 in BL-structures, <t,gl> 1- P for every <t,gl> E sl(A), and 
<wofl> 17 BP. Then f 17 BP, as required. 

To show the other direction, suppose thatfMSw ]= P. Then <wofi> 1- BP. By 
definition of 1- in BL-structures, <togl> 1- P for every <tO,gl> E sl(A). This 
means that <to> E T(P) for every <togl> E sl(A). sl(A) in f corresponds to B in 
M, so t E T(P) for every t E B, or t 17 P for every t E B. By definition of I- in 
BL-models, w BP, and hence M,w (= a. 
A similar line of reasoning establishes the claim for a = LP, substituting wl(A) = 

W(B) for sl(A) = B. 
To show part 2 of the theorem, suppose that M = <S,B,T,F> is a BL-model where S = 

{sf I sf = <fofl> for every BL-structure f = <fofl> = <fO,[s1,w1]>}. AS in part 1, B = 

sl(A), and W(B) = wl(A). f I= a iff M,wfI= a by the same reasoning as in part 1. 

Levesque's axiomatization (shown on page 24 in Section 3.1) is sound and complete with respect 



to his BL-model. From Theorem 1 it follows that the axiomatization is also sound and complete 

with respect to BL-structures. 

4.2. BLK-Structures and BL4-Structures 

Section 3.2 describes BLK and BL4, the two extensions to BL described in Lakemeyer 861. 

Section 4.2.1 describes how to represent BLK in an extended BL-structure called a BLK-structure. 

A formalization of a BLK-structure is given, along with three semantic restrictions and a proof of 

its equivalence to the BLK-model of [Lakemeyer 871, The no-information BLK-extension is also 

defined. In Section 4.2.2, a modification to the BLK-structure that enables it to represent BL4, 

which is BLK with explicit positive introspection, is described. The equivalence between 

BU-structures and Lakemeyer's BL4-models is demonstrated, and the no-information 

BLA-extension is described. 

BLK is based on BL, and is similar in that it makes use of situations and worlds to model the 

explicit and implicit beliefs of a single agent. It differs from BL in the following three ways, 

however, and these differences will guide the design of BLK-structures. 
1. An agent is allowed to hold beliefs about its own beliefs as well as about the world, 

with the syntactic restriction on the language that it cannot hold explicit beliefs about 
its implicit beliefs. BLK-structures are therefore not restricted to two levels like 
BL-structures, but have an infinite number of levels like belief structures. 

2. BLK-models contain two accessibility relations, one each for "positive" and 
, "negative" beliefs; the two accessibility relations coincide at the worlds compatible 

with the agent's implicit beliefs. To accommodate this feature, BLK-structures 
assign two sets of situations to the agent at each level. A semantic restriction on the 
BLK-structure enforces the coincidence of the two sets of situations accessible from 
worlds. 

3. The proof theory of BLK contains a new axiom and a new inference rule; the axiom, 
which gives full introspection, is enforced through a semantic restriction similar to 
the one on belief structures, and the inference rule, which allows relevant 
implications at any level, is automatically enforced through the separation of levels in 
the BLK-structure. 

The BLK-structure must take into account these three differences in such a way as to make a 

formula a E LBLK satisfied in a BLK-structure exactly when it is satisfied in the corresponding 
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BLK-model. This is done as follows. Level 0 of a BLK-structure contains an assignment of truth 

values that represents the "real situation", as in BL-structures. Each subsequent level associates 

with the agent two sets of situations, which correspond to the situations accessible to the agent 

through R and R. Level 1 models positive sentences like Bp in the positive set (those situations 

accessible through R), and negative sentences like -Bp in the negative set (those situations 

accessible through E), where p E P. Level 2 models sentences like BBp, B-Bp, and B(p A Bp A 

-Bq) in the positive set, and sentences like -BBp, -B-Bp, and -B(p A Bp A -Bq) in the negative 

set. Level 3 models sentences like BBBp, B-BBp, and B(p A B(p A -Bq)) in the positive set, and 

so on for all levels. 

The formal definition of a BLK-structure is now given. We assume a fixed, finite set of 

propositions P and a single agent A. Since level 0 of a BLK-structure is exactly the same as level 0 

of a BL-structure, Definitions 1, 2, and 3 from Section 4.1 (starting on page 38) are used in the 

definition of BLK-structures. 

Let S1 be the set of all 1-ary situations. 

Definition 8: fl: {A} + 2S1 is a 1 "-order positive situation assignment. jl: {A} + 2% 

is a 1 Storder negative situation assignment. ~ ~ , j ~ ]  is a I St-order BLK-assignment. 

Intuitively, fl associates with the agent a set of 1-ary situations compatible with its explicit positive 

beliefs about the world. Intuitively, associates with the agent a set of situations compatible with 

its explicit negative beliefs about the world. In general, cfO, ~ljl]y...y&ljk-l]> is called a k-ary 

BLK-situation. If cfO> is a world, <fO, ~jl],.. . ,~k-ljk-l]> is also called a k-ary BLK-world. Let Sk 

be the set of all k-ary BLK-situations. Suppose that k-ary BLK-situations have been defined 

recursively for all k > 0. Then the (k+l)-ary BLK-situation for each situation is defined recursively 

as follows. 

Definition 9: fk: {A} + 2% is a ka-orderpositive situation assignment. a: {A} + 2% 
is a kth-order negative situation assignment. 

Intuitively, fk assigns to the agent a set of k-ary BLK-situations which are compatible with its 

positive explicit depth-k beliefs. Intuitively, & assigns to each agent a set of k-ary BLK-situations 



which are compatible with its negative explicit depth-k beliefs. fk(A) is the set of k-ary BLK- 

situations assigned to the agent by fk, andjk(A) is the set of k-ary BLK-situations assigned to the 

agent by jk w ( ~ ~ ( A ) )  is the set of k-ary BLK-situations <go,[gl,~l],..~,[gk-l,~kkl]> E f k ( ~ )  in 

which <go> is a world. The s u . x  of a k-ary BLK-situation <fofo.vljl],...,vk-l&l]> is the 

(k-1)4order BLK-assignment ffk-ljk-l]. 

Definition 10: The infinite sequence <fo, ffljl], v2&], ... > is a BLK-structure if every 

BLK-prefi <fO, [fljl],...,vk-ljkkl]> is a k-ary BLK-situation for every k > 0, and the 
structure satisfies the semantic restrictions S1, S2, and S3 given below. 

Figure 4-2 shows the first three levels of a sample BLK-structure, and the corresponding BLK- 

model. The BLK-structure models world wl of the BLK-model. In the BLK-model, the solid lines 

represent the accessibility relation R and the dashed line represents E. 

Figure 4-2: A BLK-Structure and the Corresponding BLK-Model 

The unshaded regions at level 1 of the BLK-structure (in fl(A)) contain situations compatible with 

positive beliefs about the world (those accessible through R from wl), while the shaded regions (in 

jl(A)) contain situations compatible with negative beliefs about the world (those accessible through 
- 
R from w l )  Level 1 contains two situations and a world in each of fl(A) andf1(A). The suffix of 

each Zary BLK-situation at level 2 contains situations compatible with both positive and negative 

beliefs, to represent beliefs of the form BBa and B-Ba in f2(A), and -BBa and -B-Ba in&(A). 



In each element of f2(A), gl(A) mntains the unshaded elements, while il(A) contains the shaded 

elements, and similarly for j2(A). Each element of fk(A) (and &(A)) at every level is itself the 

prefix of a BLK-structure that models some situation of the BLK-model. 

Three semantic restrictions are needed to enforce the properties of BLK. S1 and S3 are closely 

related to T1 and T2 of the belief structures, described in Section 2.2 on page 12. S2 enforces the 

coincidence of R and fi: at worlds. 

S1 simply says that each (k-1)-ary BLK-situation at level k-1 forms the prefix for at least one 

k-ary BLK-situation at level k, and the prefix of each k-ary BLK-situation at level k is equivalent to 

some (k-1)-ary BLK-situation at level k-1. In Figure 4-2, for example, each of the three elements 

of fl(A) forms the prefix of some 2-ary BLK-situation in f2(A), and the prefix of each 2-ary BLK- 

situation in f2(A) is equal to some element offl(A). The same is true ofJ1(A) andj2(A). 

S2) wRs iff wfEr: If cf0> is a world in the BLK-structure cfo,[fi&], ... > then fk(A) =jk(A) for all k 
1 1. 

Restriction S2 corresponds to the BLK-model restriction wRs iff wEs, which ensures that (Ba A 

B-a) is never true at a world. Since each BLK-structure models a single situation in a BLK- 

model, this must be enforced whenever cfo> is a world. In a BLK-structure, the truth of a positive 

depth-k sentence B a  is determined in some part of the positive set at level k, while the truth of the 

corresponding negative sentence (-Ba) is determined in the corresponding part of the negative set 

at level k. So if <fo> is a world, the positive and negative sets at each level must be the same. 

Restriction S2 is illustrated in Figure 4-2. Notice that it holds not only in the main BLK-structure, 

but also within the 2-ary BLK-world in f2(A) andj2(A). 

S3 enforces the new introspection axiom by stipulating that the positive part of the suffix of each 



positive k-ary BLK-world must contain exactly all the (k-1)-ary BLK-situations in the positive set 

of the previous level. In Figure 4-2, for example, f2(A) contains one 2-ary BLK-world. The 

unshaded parts of its suffix &(A)) contains all the situations in fl(A). Since implicit beliefs are 

confirmed at positive BLK-worlds (see the definition of the support relations below), this ensures 

that the agent implicitly knows about all of its positive beliefs of the previous level. Although only 

the positive part of the suffix (gl(A) in this example) is restricted by S3, the negative part (g,(~) in 

this example) is restricted in exactly the same way by the application of S2 above. Combined with 

the fact t h a t R ( ~ )  = fl(A) (also by S2), this ensures that the agent also implicitly knows about all of 

its non-beliefs of the previous level, and is thus capable of full introspection. 

The new BLK inference rule requires that the agent be able to make relevant implications at any 

level as long as the nesting of operators is the same on both sides of the implication. This is 

automatically enforced in BLK-structures by the strict separation of levels. For example, if BB(a 

A p) is true at level 2 of a BLK structure, then (BBa A BBP) is also true. But the truth of BB(a A 

f3) at level 2 does not imply the truth of (BBBa A BBBP) at level 3 because there is no enforced 

transfer of BLK-situations from level 2 to the suffixes of level 3 in accessible situations, which is 

where explicit beliefs are interpreted. 

The truth of individual sentences is verified in a BLK-structure by recursively restricting the set 

of BLK-situations to be inspected. The full support relations for a (k+l)-ary BLK-situation <fo, 

[fljl],...,[fkjk]> are shown below; for comparison, the support relations for BLK-models are shown 

on page 27. p is a primitive proposition, and a is a sentence of L. 



The truth of a sentence a of depth k is verified at level k of the BLK-structure. Satisfiability and 

validity of sentences are determined only at BLK-structures that model worlds in the BLK-model. 

Specifically, the BLK-structure f = <wo, [fijl] ,... > is said to satirfy sentence a of depth k (written "f 

I= a'') if <~~,lfij~],...,&-~&]> 1- a. a is valid (written "I=a") if it is satisfied in every BLK- 
- 

structure <wo, Ififl], ... >. 

The equivalence between BLK-structures and Lakemeyer's BLK-models is similar to the 

equivalence between BL-structures and Levesque's BL-models: BLK-structures model a single 

situation, while BLK-models model collections of situations. The following theorem makes the 

equivalence explicit. It shows the correspondence between the parts of the two models, and proves 

that a sentence a is satisfied in one if and only if it is satisfied in the other. Since satisfiability in 

both models is determined only at worlds, the theorem shows the correspondence of satisfiability 

only for worlds. 

Theorem 11: To every BLK-model M = <s,T,F,R,R> and world w in M, there 
qx-responds a BLK-structure fM,, such that M,w )= a iff fM,, I= a ,  for every formula a. 
Conversely, there is a BLK-model M such that for every BLK-structure f there is a world 
wf in M such that f )= a iff M,wf )= a for every formula a. 

Proof: TO show the first part of the theorem, suppose M - <s,T,F,R,R> is a BLK- 
model. For every situation s E S in M, we construct a BLK-structure fMc = <fO.[fl'ljl]. - 
bf2], ... >, where fo is the assignment at situation s. Suppose we have constructed a k-ary 

BLK-situation <fo,~lfl]y...y[fk-ljk-l]> for each situation s E S. m e n  f k ( ~ )  = {<go, - - 
~ ~ l ~ l l ~ ~ ~ ~ ~ [ ~ k - l ~ ~ k - l l '  - I S R ~ I ,  and j k ( ~ )  = {<hop [hlj;l~,....[hk-l,'i;kkl~> I sEh}. where - 
<go,[gl,gl], ...,[gk-lygk-l]> is the k-ary BLK-situation constructed for g, and - 
<ho,[hl,hl], ...,[hkkl,zk-l]> is the k-ary BLK-situation constructed for h. As well, 

WG(A)) = {<wo. I ~ ~ Y ~ ~ I , . * . Y [ ~ ~ - ~ ~ ~ ~ ~ ~ ] >  I SRW}, where w is a situation g E s that is a 
world. I now show that M,w I= a iff fM,, I= a. 



, 
a €  P: 

The proof is similar to its counterpart in the proof of Theorem 7 on page 40. 

a is a formula not containing a modal operator: 
The proof is similar to its counterpart in the proof of Theorem 7 on page 40. 

a = By, where a is of depth k+ 1: 
First suppose that M,w I= a. Then M,w By, by definition of I= in BLK- 
models. By definition of 13 in BLK-models, M,t I= Tyfor every t such that wRt. 
But by the construction, the set of all such situations t is equivalent to the set of 
k-ary BLK-situations c g o , ~ g l , ~ l ~  ,..., [gkkl ,gkkl] > E f k ( ~ )  in the BLK-structure 

fM,w. Then ~ f ~ , [ f ~ j ~ ] , . . . , ~ ~ j ~ ] >  19 ~y by the definition of 13 in BLK- 
structures, and by the definition of I= in BLK-structures, fM,, I= a, as required. 

To show the other direction, suppose that fM,, I= a. Then by definition of I=T in - - 
BLK-structures~ fM,, IyBy and <go, [g1,g11 ,..-,[gk-l ~ g ~ - ~ l >  1- y for every - 
ego, lgl ,~l],...y[gk-lygkkl]> E f k ( ~ ) .  B U ~  by the consrmction,fk(A) is equivalent to 
the set of situations t such that wRt in BLK-model M, so M,t 13 y for every t 
such that wRt. But then M,w 13 By by definition of 1- in BLK-models, and 
M,w I= a by the definition of I= in BLK-models, as required. 

a = -By, where a is of depth k+ 1: 
The satisfiability of a sentence -By is verified in BLK-models by looking at the 
situations accessible from w through R, and in BLK-structures by looking at the 
situations in set j k ( ~ )  at level k+l of fM,,. But in BLK-models, w h  iff w& 

(restriction R1 on BLK-models), and in BLK-structures, fk(A) =jk(A) (restriction 
S2 on BLK-structures). R1 and S2 are proved equivalent in Theorem 12. Thus, 
that fM,, I= -By iff fM,, I= -By follows from Theorem 12 and the above proof of 
this theorem for y = By. 

a = Ly, where a is of depth k+ 1. 
First suppose that M,w I= a. Then M,w 17 Ly, by definition of I= in BLK- 
models. By definition of 17 in BLK-models, M,w 1- y for all worlds v such that 
wRv. But the set of such worlds v is equivalent by the construction to the set of 
(k-ary) BLK-worlds ~f~,~~j~],...,[f~~~&-~]> E W(fk(A)) in the BLK-structure 

fMr. <fO~~l~l~~...~~k-lfkkl~> 17 LY, by the definition of 17 in BLK-structures, 
and by the definition of I= in BLK-structures, f I= a ,  as required. 

To show the other direction, suppose that fM,, I= a. Then fM,, I- Ly, by 
definition of I= in BLK-structures, and by definition of 1- in BLK-structures, 

such that wRv, s o  M,v 17 y for every such v by the definition of 19 in BLK- 
models. Then M,w 13 Ly, and M,w )= a by the definition of I= in BLK-models, 
as required. 

To show the converse of the theorem, let M = CS,T,F,R,R> be a BLK-model where S = 

{sf I sf = fo for every BLK-stmcture f = cfo, [fi&] ,... >}. Then sjRg iff 



- 
< ~ o ~ [ ~ l ~ ~ l ~ ~ - ~ ~ ~ [ ~ k - l ~ ~ k - l ~ >  E fk(A), and s '  iff <ho,[hlE1l ,...,[hk-l,~kkl~> E fk(A) for 
every k 2 1, where <go,[gl,~l~ ,...,[gkkl,~kkl]> is the k-ary BLK-situation that corresponds - 
to g, and <hoy[hl,%l], ...,[hkkl,hk-l]> is the k-ary BLK-situation that corresponds to h. 
WVk(A)) is defined as above. f I= a iff M,wf I= a by the same reasoning as in part 1. 

The next two theorems demonstrate that the restrictions on the BLK-structures correspond to the 

restrictions on the BLK-model. In particular, Theorem 12 shows that the two accessibility relations 

coincide at worlds in a BLK-model exactly when restriction S2 holds in the corresponding BLK- 

structures. Theorem 13 shows that a BLK-model is transitive and Euclidean exactly when the 

corresponding BLK-structures satisfy restriction S3. 

Theorem 12: Let M = <s,T,F,R,~ be a BLK-model. A BLK-structure fMBS is 
constructed for every s E S as described in the proof of Theorem 1 1. Then the restriction 
"wRs iff wiir" holds in M iff the restriction 'yk(A) = j k ( ~ )  for all k 2 1" holds in every 
fM,w that models some world w E S in M. 

Proof: First suppose that "wRS iff w%" holds for every world w E S and situation s E 
S in M. Then for every w, the sets of situations accessible through R and are the same. 
Let fM, be the BLK-structure constructed for any w. Then at every level k 2 1, fk(A) is 
the sei of k-ary BLK-situations that correspond to the situations s such that wRs, and 
j , ( ~ )  is the set of k-ary BLK-situations that correspond to the situations s such that w&. 

But then fk(A) =&(A) for all k t 1. 

To show the converse, suppose that fk(A) = f k ( ~ )  in every modal structure fMSw which 

corresponds to some world w E S in M. At every level of each fMPw, fk(A) (fk(A)) 
contains all the k-ary BLK-situations which correspond to the set of situations {s I wRs 
(wRs)}. But since fk(A) =&(A), {S / wRs} = {S 1 WE}, and so WRS iff w&. 

The equality in Restriction S3 can be broken into two subset relations, one direction 

corresponding to the transitive restriction on the worlds in M (which models positive introspection) 

and the other direction to the Euclidean restriction (which models negative introspection). 

Theorem 13 thus consists of two parts. The following two figures may aid in following the proof 

of Theorem 13. 

Figure 4-3 shows a transitive BLK-model and the first three levels of the corresponding BLK- 

structure. It is the same as Figure 4-2 except that the Euclidean property does not hold in the 

BLK-model, and the situations have been renamed to correspond more closely to the proof. The 



transitive property (if wRv and vRs then vRs) holds only if w and v are worlds. In the Figure, w 

and v are worlds, and sl, s2, s3, and s3 are any situations. The solid lines represent the accessibility 

relation R, and the dotted lines represent R. This figure will be helpful in following the first part of 

the proof of Theorem 13. 

go he 90 h ,  R 
---C 
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Figure 4-3: A BLK-Structure with Implicit Positive Introspection 

Figure 4-4 shows a Euclidean BLK-model and the corresponding BLK-structure. It is the same 

as Figure 4-2 except that the transitive property does not hold in the BLK-model, and the situations 

are renamed as in Figure 4-3. The Euclidean property (if wRv and wRs then vRs) holds only if w 

and v are worlds. The accessibility relations are as in Figure 4-3. This Figure will be useful in 

following the second part of the proof of Theorem 13. 

Theorem 13: Let M = <s,T,F,R,& be a BLK-model. A BLK-structure fMSs is 
constructed for every s E S as described in the proof of Theorem 11. Then the following 
two statements are true. 

Positive Introspection: The transitive restriction "if wRv and vRs then wRs" holds in M 
iff the restriction "if <vo,[gl,~l~, ...,[gk-l,ik-l]> E f k ( ~ )  then g k - l ( ~ )  E f k - l ( ~ )  for IC z 2'' 

holds in fM,,, where fM , = <fo,vljl], ... > is the BLK-structure constructed for world w E 

S and gh(," = < v ~ , [ ~ ~ , ~ ~ ] , . . . >  is the BLK-structure constructed for world v E S. 

Negative Introspection: The Euclidean restriction "if wRv and wRs then vRs" holds in 
M iff the restriction "if < v ~ , [ ~ ~ , ~ ~ I ,  ...,[gk-l,ikkl]> E f k ( ~ )  then g g l ( ~ )  a fk- , (~)  for k > 

... 2" holds in f,,, where fM, = <fo,[fijl], > is the BLK-structure constructed for world - 
w E S and gM,, = <vO,[gl,gl], ... > is the BLK-structure constructed for world v E S. 



Figure 4-4: A BLK-Structure with Implicit Negative Introspection 

Proof: Positive Introspection: First suppose that "if wRv and vRs then wRs" holds in 
M for w, v worlds in S and s any situation in S. WCfk(A)) is the set of k-ary BLK-worlds 
in fMw that corresponds to the set of worlds {v I sRv}, for k 2 1. Let gM, be the 
BLK-ktructure constructed for each such v. Then W(fk(A)) contains the k-aj BLK- - - 
world <vo,[gl,gll, ...7[gk-17gk-1]> from each g ~ , , .  gk-l(A) in each such tuple is the set of 
(k-1)-ary BLK-situations that corresponds to the set of situations {s I vRs}, for every k 2 
1. Let h M ,  be the BLK-structure constructed for each such s. Then (A) contains the 

that w b .  So, fk-l (A) also contains the (k- 1)-ary BLK-situation <so7[hl 7~l]7...,[hg2,xkk2~> 
from each h M ,  as well as the (k-1)-ary BLK-worlds in W(fk-l(A)). SO gk-l(A) c fk-1(A) 
for every k 2 2. 

TO prove the converse, suppose that "if < ~ ~ ~ [ g ~ 2 ~ ~ 1 7 m . . 7 [ ~ ~ ~ ~ 7 ~ ~ ~ ~ ] >  E f k ( ~ )  then gk-1(~) 
c fk-l(A) for every k 2 2" holds in fM,,. W(fk(A)) contains the k-ary BLK-worlds 

<vo7[gl 7gl]7...7[gkk17gkk1]> that correspond to the worlds {v I WRV}, for all k > I. Within 

each such tuple, gk-l(A) contains the (k-1)-ary BLK-situations < ~ ~ , [ h ~ j ; ~ ] , , [ h ~ ~ ~ , ' i ; ~ - ~ ] >  
that model the situations {s I vRs}. So we have established that wRv and vRs. But we 
know that gkel(A) c fk-l(A), SO fk-l(A) must also contain all the (k-1)-ary BLK-situations - - 
<so,[hl,hl], ...,[hk-2,hk-2]> that correspond to the situations {s I vRs}. But then it must be 
the case that wRs as well, by the definition of fk-l(A). 

Negative Introspection: First suppose that "if wRv and wRs then vRs" holds in M for 
w, v worlds in S and s any situation in S. fk(A) is the set of k-ary BLK-worlds in fM,, 
that corresponds to the set of worlds {v I wRv} (in W(fk(A))) and the situations {s I wRs}, -- 

for every k 2 1. Let g ~ , ,  = < v ~ . [ ~ ~ , ~ ~ ] , . . . >  be the BLK-structure constructed for each 



such v, and let hM,s = < ~ ~ . [ h ~ ~ ~ l , . . . >  be the BLK-structure constructed for each such s. 
Then for some k 2 2, W a l ( A ) )  contains the (k-1)-ary BLK-world 

<vo,~l,gll, ...9[gk-2,gkk2]> itam each gM,, and fk - l (~ )  contains in addition the (k-l)-iuy 

BLK-situation c ~ ~ , [ h ~ j ; ~ ] ,  ...,[hk-2,Zkk2~> from each hM,, ~t level k, WV~(A)) contains - - 
the k-ary BLK-world <vo,[gl,gl~, ..ey[gk-2,gkk2~7[gkk1ygk-l~> f r ~ m  each g ~ , p ~  and since we 
also know that vRs, gk-l(A) contains the (k-1)-ary BLK-situation - 
< ~ ~ , [ h ~ $ ~ ] ,  ...,[hk-2,hkk2~> from each hMs Since WRV and WRV implies VRV by the 
Euclidean restriction, gkml(A) also contains the (k-1)-ary BLK-world - - 
< ~ o ~ [ ~ l ~ ~ l l ~ ~ ~ ~ ~ [ ~ k - 2 & - 2 1 >  from each g ~ , ~ .  gk-&A) may also contain other (k-1)-ary 
BLK-situations, since additional situations may also be accessible from v. So we have 
that gk-,(A) 2 fk-l(A) for every k 2 2. 

- 
TO prove the converse, suppose that "if < w ~ ~ [ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ [ ~ ~ - ~ Y ~ ~ ~ ~ I >  E f k ( ~ )  then g k - ~ ( ~ )  

3 fk-l(A) for every k 2 2" holds in fM,,. W(fk-l(A)) contains the (k-1)-ary BLK-worlds - 
~ v ~ , ~ ~ ~ , ~ ~ ~ .  ...9[gk-2ygk-2]> that correspond to the worlds {v I WRV}, and fk-1(~)  contains 

in addition the (k-1)-aly BLK-situations < ~ ~ , [ h ~ ~ ~ ] . . . . , [ h ~ ~ ~ , h ~ - ~ ] >  that correspond to the 
situations {s I wRs}. WCfk(A)) contains the corresponding BLK-worlds - - - 
< ~ O ~ [ ~ l ~ ~ l l ~ ~ ~ ~ ~ [ ~ k - 2 , 8 k - 2 1 ~ [ ~ k - l ~ ~ k - 1 1 >  to those in WVk-l(A)) by the basic restriction S1- 
But we know that gkml(A) I fk-l(A), SO gk-l(A) must also contain all the (k-2)-ary BLK- 
situations in fk-l(A). But then vRs (including vRv) for every corresponding situation 
(and world) in M. 

The axiomatization of BEK given on page 27 is both sound and complete with respect to BLK- 

models. From Theorems 11, 12 and 13, it follows that the axiomatization is also sound and 

complete with respect to BLK-structures. 

BLK-structures, like belief structures, are infinite in height. When no more new information is 

known, implicit beliefs continue to accumulate as the agent continues to introspect. These implicit 

beliefs can be propagated upwards through the levels by using a no-information BLK-extension 

similar to the no-information extension of belief structures, described on page 15. 

hhlitively, the no-information BLK-extension L l ,  fk+1] describes the agent's depth-(k+l) 

beliefs, given that it has no new information than that expressed in its depth-k beliefs. The explicit 

and implicit no-information extensions begin at the same level, since explicit beliefs are implicit 

beliefs. The suffixes of positive (k+l)-ary BLK-worlds in the no-information BLK-extension 

contain the entire previous level, to model the fact that the agent's implicit beliefs at that level are a 



result of introspecting about its beliefs at the previous level. The suffixes of positive (k+l)-ary 

BLK-situations contain all possible (k+l)-ary BLK-worlds to model the fact that the agent has no 

positive beliefs about either its beliefs or its non-beliefs at the previous level. The suffixes of all 

negative (k+ 1)-ary BLK-situations and BLK-worlds contain all possible (k+ 1)-ary BLK-worlds to 

model the fact that the agent does not believe anything at that level. The formal definitions follow. 

Definition 15: The no-information BLK-extension of the (k+l)-ary BLK-situation f = 

<fo~[fljl~~...~~kjk~> is fhe sequence <fo~[fl&~,~~.~~kfk~~[fk+lfk+l~~~~-~~ where V m y  jm] is 
the no-information BLK-extension of ~m-l~m-l ]  for m > k. If <fo> is a world, then also 

fm =& form > k (to satisfy S2). 

Figure 4-5 shows a BLK-structure which models the beliefs of an agent who has explicit beliefs 

only about the world (at level 1). [f2& is then the no-information BLK-extension of fijl]. The 

corresponding BLK-model is also shown. The first tuple in fZ(A) and all tuples inj2(A) contain all 

possible 1-ary BLK-worlds in each of gl(A) and il(A) to show that the agent has no beliefs about 

what it does and does not believe about the world. The second tuple in f2(A) models a world, so 

the positive part of its suffix contains all the tuples from fl(A) of level 1 to show that the agent 
- 

holds implicit beliefs about its beliefs about the world. Because it is a world, gl(A) is the same as 

gl(A). 
Theorem 16: For all BLK-situations f, the no-information BLK-extension is a BLK- 

structure. 

Proof: ~t suffices to show that i f f  = <fo, ~ljl],...,[fkfk]> is a (k+l)-ary BLK-situation, 



Figure 4-5: A No-Information BLK-Extension and the Corresponding BLK-Model 

and v ~ + ~ ,  jk+l] is the no-information BLK-extension of &, jk], then cfo, ~ ~ $ 1 ,  .... wkjk], 

satisfies SI, ~ 2 ,  and ~ 3 .  SI and ~3 are satisfied by definition 14, and ~2 by 
definition 15. 

Kakemeyer 871 transforms BLK into BL4, in which the agent's explicit positive beliefs are 

subject to positive in!mspectlon, by making R transitive for situations as well as wor!ds and adding 

the balancing restriction that for all situations s, t, and u, if sEt and tRu, then szu. BL4 can be 

modeled in a BU-structure, which is a BLK-structure with one additional semantic restriction, S4, 

to enforce explicit positive introspection. The formal definitions of a BL4-structure and restriction 

S4 are given below. The support relations for BL4-structures are exactly like those of BLK- 

structures. 

Definition 17: The infinite structure <fO, ~ ~ j ~ ] ,  ... > is a BLI-structure if the prefix <fo, 

[fljl],...,~k-l&l]> is a k-ary BLK-structure for every k and the structure satisfies the 
semantic restrictions S1, S2, S3, and S4. 

- 
~ 4 )  Explicit Positive Introspection: ~f <go9[gl,il],...,[gk-1 ,gkk11> e f k ( ~ )  Qk(~)),  then g k - l ( ~ )  E 

fk-l(A) (ik(~)) for all k 2 2. 

S4 says that at every level k above level 1, the positive part of the suffix of k-ary BL6situations 



in both the positive and negative sets is a subset of the full positive and negative set at the previous 

level, respectively. This is illustrated in Figure 4-6, which shows a BL4-structure and the 

associated BL4-model. In the figure, w and v are worlds, while r, s, t, and u are not. In every tuple 

of f2(A) the set gl(A) is a subset of fl(A), and similarly, every set gl(A) i n a ( ~ )  is a subset of 

j l ( ~ ) .  In the tuples that model worlds w and v, the same is true of g l ( ~ ) .  In the tuples that model 

the situations r and t, g l ( ~ )  is not a subset of the sets in the previous level. 

Figure 4-6: A BL4-Structure and the Corresponding BL4-Model 

Theorem 18 shows that the two new restrictions on BL4-models hold in a BL4-model M = 

< S , T , ~ , R , ~  exactly when restriction S4 holds in the corresponding BL4-structure. The theorem 

is in two parts, one for each of the restrictions on BL4-models. 

Theorem 18: Let M = <s,T,F,R,E> be a BL4-model. A BLK-structure fMSs is 
constructed for every s E S as described in the proof of Theorem 1 1. Then the following 
two statements are true. 

Part 1: The transitive restriction "if sRt and tRu then sRu" holds in M exactly when the 
restriction "if <ro,[gl,~l~$---,[gk.lfgkkl~> E fk(A) then gk-1(A) fk-1(A)" holds in fMs9 - 
where fM = <so,[flfl], ... > is the BL4-structure constructed for situation s E S and g ~ , ~  = 

<to,[gl,gl],...> is the BL4-structure constructed for situation t E S. 



Part 2: The transitive restriction "if sRt and tRu then SKU" holds in M exactly when the - - 
restriction "if <to, [gl,gl17. .. ,[gk-l,gkkll> E jk@) then gk-l(A) E f k - l ( ~ ~  holds in fMr7 

wherefM = <so7~lj l~, . . .> is the BU-structure constructed for situations s s and gM, = 

<to,[g17gl],...> is the BL4-structure constructed for situation t E S. 

Proof: Part 1: First suppose that "if sRt and tRu then sRu" holds in M for s, t and u any 
situation in S. fk(A) in fM,s is the set of k-ary BL4-situations that corresponds to the set 

of situations {t I sRt}, for every k 2 1. g ~ , ,  = <to7[g17~l],...> is the BL4-structure 
constructed for each such t. Then fk(A) contains the k-ary BL6situation - 
<to7[g17~l~ ,...7[gkk1,gkk1~> from each gM,, g k - l ( ~ )  in each such tuple is the set of (k- 1)- 
ary BL4-situations that corresponds to the set of situations {u I tRu}, for every k 2 1. Let 
h M ,  = < ~ ~ , [ h ~ , ~ ~ ] , . . . >  be the BL4-structure constructed for each such s. Then gk-l(A) 

contains the (k- 1)-ary BL~-situations <uo,[hl ,x1],....[hkk2,hkk2]> from each hM,u. ~ u t  we 
also know that sRu. So fk(A) must also contain the k-ary BLK-situation 

- 
TO prove the converse, suppose that "if <to7 1g~,~~1.....[g~-~9~~~~1> E j k ( ~ )  then gk.l(~) 
r fk-l(A)'' holds in fM,s. fk(A) contains the k-ary BL4-situations <to, - 
[gl,gl~,...,[gk-l,~kkl~> that correspond to the situations {t I s ~ t } ,  for all k P 1. Within 

each such tuple, gkVl(~)  contains the (k-1)-ary BL~-situations <uo7 [h17Zl~7...7~hk-2,Xk~2~~ 
that correspond to the situations {u I tRu}. But we know that gk-l(A) G fk-l(A), SO 

fk-l(A) must also contain all the (k- 1)-ary BL4-situations cs, ., [h, A ,&],..., [hk-27i;k-219 

[hk-l,ik-ll>. ~ u t  then it must be the case that s ~ u  as well. 

Part 2: Similar to the proof of Part 1. -- 

BL4-structures correspond to BL4-models in exactly the same way that BLK-structures 

correspond to BLK-models. The theorem that makes this equivalence explicit it given here for 

completeness; the proof is exactly like that of Theorem 11, so is not repeated here. 

Theorem 19: To every BL4-model M = <s,T,F,R,R> and world w in M, there 
corresponds a BL4-structure fM , such that M,w I= a iff fM,, I= a ,  for every formula a. 
Conversely, there is a BL~-model M such that for every BL4-structure fthere is a world 
wf in M such that f I= a iff M,wf I= a for every formula a. 

. Explicit beliefs are extended through a no-information BU-extension which incorporates 

restriction S4. In the BL4-structures, the BL4-situations that model non-worlds at the upper levels 

model the beliefs the agent acquires by introspecting explicitly about its positive beliefs. The 



no-information BL4-extension is the same as the no-information BLK-extension except that 

condition l c  is replaced by lc' and Id and condition 2b is replaced by 2b' and 2c, as shown below. 

lc' gk(A) c fk(A) (to satisfy S4) 

Id if go is not a world, gl(a) = Wk 
2b' gk(A) G ~ ~ ( A )  (to satisfy S4) 

2c if go is not a world, gl(a) = Wk 

Conditions lc' and 2b' allow explicit positive introspection, while Id and 2c fill the suffixes of 

non-worlds in the negative set with all k-ary BLK-situations. 

Figure 4-7 shows a BL4-structure which models the beliefs of an agent who has explicit beliefs 

only about the world (at level 1). v2j2] is the no-information BL4-extension of vljl]. The 

corresponding BL4-model is also shown. 

' Figure 4-7: A No-information BL4-extension and the Corresponding BL4-Model 

Intuitively, the no-information BL4-extension tells what the agent's depth k+l beliefs are, given 

that it has no more information than it had at level k. Consider the Zary BL4-situation in f2(A) that 

models situation s2. In this tuple, gl(A) is a subset of fl(A), so the agent explicitly believes that it 

explicitly believes everything true at sz. g l ( ~ )  contains all worlds because the agent does not know 

what its explicit depth-1 non-beliefs are. The tuple that models world w in f2(A) has fl(A) as gl(A) 

because it models the agent's fully implicit introspective beliefs, as in the no-information BLK- 

extension. In this tuple, g l ( ~ )  is the same as gl(A) because the two accessibility relations coincide 



at worlds. In the 2-ary BU-situation inj2(A), gl(A) contains a subset of &(A) (in this case the 

same set), while il(~) contains all worlds. 

Section 3.3 describes the modification given in [Delgrande 871 to the logic BL given 

in [Levesque 84b] and the DBL-model that provides its semantics. This section describes how the 

semantics of DBL can be represented equivalently in a modal structure called a DBGstructure, 

where each DBL-structure models a single situation in a DBL-model. Only the parts of the logic 

that are described in Section 3.3 are represented here; although the representation is not complete, 

it should be sufficient to demonstrate that DBL can indeed be modeled by modal structures. 

A DBL-model is a 4-tuple M = <S,f,T,F>, where S is the set of all situations and T and F' 

associate primitive propositions with the situations at which they are true and false, respectively, 

just as in BL-structures. The distinguishing feature of DBL-models is the function f. If llallM, the 

set of worlds in which a is true, is taken as the proposition that represents sentence a E LDBL, f 

produces a set of situations for llallM at every situation. The sentence B a  is interpreted in terms of 

the situations assigned by f for proposition 1lallM. The intuition is that a different set of situations is 

relevant to the truth of every proposition. The function f can be thought of as defining an 

accessibility relation for every sentence of LDBL at every situation. 

For a DBL-structure to represent a DBL-model, every level k (k 2 1) of the DBL-structure must 

associate with the agent a set of situations for the interpretation of every depth-k sentence of LDBL. 

For example, at level 1, depth-1 sentences of the form B a  and L a  are interpreted. Since the 

DBL-structure represents some situation s, these sets are interpreted as containing the situations 

accessible from the situation s. Since it is always known which DBL-structure a set is contained in, 

and therefore where the situations are accessible from, it is not necessary to specify the situation 

argument to the function f in DBL-structures. So llallM is now the proposition that represents the 

sentence a, andflA,llallM) returns the situations in which B a  is to be interpreted for agent A. The 

formal definition of a DBL-structure is shown below; the definitions of so, wO, <so>, <wO>, T(p), 

F(p), S, and W are the same as for BLK-structures. 



Definition 20: fi: {A,l[a(lM} -+ 2S1 for every sentence a E LmL, is a lSt-order 
proposition assignment. F1 is the set of all lSt-order proposition assignments at this 
DBL-structure. 

The intuition is that fl associates with the agent a set of situations compatible with and relevant to 

its explicit beliefs about a. L a  is then interpreted at the worlds in the set returned by fl. 

Definition 21: f1(A,llallM) is the set of situations assigned to the agent by fl for 
sentence a. W C ~ ~ ( A , J ~ ~ I I ~ )  is the subset of f1(A,llallM) that contains worlds. 

Definition 22: <fo,F1,...,Fk-l> is called a k-ary DBL-situation for k 2 1. If <fo> is a 
world, C~O,F~,...,F'~-~> is called a k-ary DBL-world. 

Let Sk be the set of all k-ary DBL-situations, and Wk be the set of all k-ary DBL-worlds. 

Suppose that k-ary DBL-situations have been defined recursively for every situation in M. 

Definition 23: fk: {A,llallM} + 2% is a kth-orderproposition assignment. Fk is the set 
of all kth-order proposition assignments at this structure. 

The intuition is that fk assigns to the agent a set of k-ary DBL-situations which are compatible with 

and relevant to its explicit depth-k beliefs about every a. The subset of these k-ary DBL-situations 

which are worlds are compatible with and relevant to the agent's implicit depth-k beliefs about 

every a. 

Definition 24: fk(A,llallM) is the set of k-ary DBL-situations assigned to the agent by fk 

for sentence a. w(f1(A,llallM) is the set of k-ary DBL-worlds assigned to the agent by fk 
for sentence a. 

Definition 25: The infinite sequence <fo, F1, ... > is a DBL-structure iff every 
DBL-prefix <fO, F1 ,. .. ,Fk-l > is a k-ary DBL-situation for every k>O. 

Figure 4-8 shows the first three levels of a DBL-structure which interprets the sentences (1) Bp, 

(2) BBp, and (3) B(q A Bp) for an agent A, where p and q are propositions. The corresponding 

. DBL-model is also shown. The arcs point to the sets of situations that are supplied by function f 

for each sentence at each situation; they are labeled with the numbers given above for ease of 

reading. The DBL-structure reflects only those semantic restrictions which are described in this 



section, so the sets used to interpret sentence Bp are not shown to have any necessary relation to 

those used to interpret BBp or B(q A Bp). 

Figure 4-8: A DBL-Structure and the Corresponding DBL-Model 

As usual, level 0 represents the real situation, where the agent is located. Level 1 shows the sets 

associated with the three sentences of LDBL. The fact that f provides 1-ary situations for depth-2 

sentences BBp and B(q A Bp) at level 1 does not mean that these sentences are interpreted at the 

1-ary situations of level 1; they are interpreted in the 2-ary situations supplied by fi at level 2. The 

suffix of every 2-ary situation at level 2 contains a set of situations for every sentence, even though 

they may not all be used to interpret sentences at s ~ .  They are, of course, used to interpret the 

beliefs of an agent at that situation. 

The support relations for DBL-structures can now be defined; the support relations for DBL- 



models are shown on page 30 for comparison. The first four are analogous to those for BL- 

structures. The truth of sentence a of depth-k is confirmed at level k of the DBL-structure. p is a 

primitive proposition, and a is a sentence of LDBL. 
1. <fO*F1,...Fk> I- p iff <fO> E Vp). 

<fOply . . .Jk> I=F P iff <fO> F(~) .  

2. <fopl  ,... ,Fk> 17 -a iff <fo,F1 ,..., Fk> I=F a. 
<fop1, .  .. pk> -a iff <fo,Fl, ..., Fk> 1- a. 

3. <fOFl, ... Pk> I- a v P iff <fO,F1 ,..., Fk> 1- a or <fop1 ,... ,Fk> 

I? P. 
<fop1 ,... ,Fp 17 a A P iff <fo,F1,.. .,Fk> 17 a or <fop1 ,... ,Fk> 

<gO,G1~...~Gk-l> '3 f k ( ~ y ~ ~ a ~ ~ M ) -  
<fo,F1,. .. ,Fk> I=F B a  iff <fop1 ,... ,Fk> I+ Ba. 

6. <fopl  ,... ,Fk> I';r L a  iff <w0,Gl , ..., Gk-l> I';r a for all 

The.truth of a sentence a of depth k is verified at level k of the DBL-structure; satisfiability and 

validity are determined only at worlds. The sentence a is satisfied at the DBL-structure f = 

<wo,F1, ... > (written 'yf= a") if cwo,F1, ..., Fk> I=T a. The sentence a is valid (written "I= a") if it is 

satisfied in every DBL-structure <wO,F1, ..A 

In Figure 4-8, for example, the truth of B(q A Bp) is verified at level 2 in the set of situations 

returned by f2(A,l)q A 8pllM). B(q A Bp) is true if q is true in both s4 and s5, and if p is true in both 

s13 and ~ 1 5 .  LBp is true if p is true in the situations assigned for Bp in the suffix of the 2-ary 

DBL-world in f 2 ( ~ ~ ~ ~ p l l M ) .  



The restrictions on DBL-structures that were described in Section 3.3 can now be defined. First, 

the basic restriction on all modal structures ensures that each k-ary DBL-situation becomes the 

prefix of a (k+l)-ary DBL-situation at the next level, and that each (k+l)-ary DBL-situation has as 

its prefix a k-ary DBL-situation from the previous level. In Figure 4-8, for example, each situation 

returned for sentence Bp at level 1 is the prefix if a 2-ary DBL-situation for sentence Bp at level 2, 

and the same is true for the other sentences. 

DB1) <goyGl,...,Gk-2> E fkl(A,llallM) iff there exists a Gk-1 S U C ~  that <g0,G1,...,Gk-2,Gk-1> E 

f k ( ~ , ~ ~ a ~ ~ M ) ,  fork 2 2- 

The restriction that makes the value off at worlds independent of the proposition (Dl on page 29) 

is now formulated for DBL-structures. 

DB2) If <fo> is a world in DBL-structure <fo,F1, ... >, then fk(A.llallM) = f1(~,ll~llM) for all k 1 1. 

Restriction DB2 says that at a DBL-structure that models a world, the set of accessible k-ary 

DBL-situations at level k is the same for every proposition. In Figure 4-8, f 1 ( ~ , ~ \ ~ a \ l M )  returns a 

world wl. The 2-ary DBL-world that models wl in f 2 ( ~ , \ \ ~ a l l M )  assigns the same set of situations 

for every sentence. DB2 is the same as the corresponding restriction on DBL-models except for 

notational differences. 

Finally, the restriction that ensures consistmcy of belief Is ferndated as fo!!cws. Again, it is a 

direct translation from the DBL-model restriction D2 shown on page 30. In Figure 4-8, no set of 

situations is empty, so DB3 holds. 

DB3) fk(~,lla)lM) is nonempty for every k 1 1. 

DBL-structures are related to DBL-models in the usual way: each DBL-structure models a single 

situation in DBL-model, and each DBL-model models a collection of DBL-structures. Theorem 26 

makes the equivalence explicit. Since satisfiability in both models is determined only at worlds, 

the theorem shows the correspondence of satisfiability only for worlds. 

Theorem 26: To every DBL-model M = <S,f,T,F> and world w in M, there 
corresponds a DBL-structure fM,, such that M,w I= a iff fM,, I= a, for every formula a. 
Conversely, there is a BLK-model M such that for every DBL-structure f there is a world 
wf in M such that f I= a iff M,wf I= a for every formula a. 

Proof: To show the first part of the theorem, suppose M - <S,f,T,F> is a DBL-model. 
For every situation s E S in M, we construct a DBL-structure fMis = <fo,F1, ... > where fO 
is the assignment at situation s. Suppose we have constructed a k-ary DBL-situation 
<fo,Fl,...~-l> for each situation s E S and k 2 1, where = ~fr-~(A, l la l l~)  I a E 



LDBL}. Then for every sentence a ,  f k ( ~ , ~ ~ a ~ ~ M )  = c < ~ ~ G ~ , . . . ~ G ~ - ~ >  I g E ~ ( ~ , I I ~ I I ~ ) > ,  
where c ~ ~ , G ~ , . . . , G ~ - ~ >  is the (k-1)-ary DBL-situation constructed for g, and f(s,llallM) is 
the set of situations assigned to the agent for the interpretation of a at situation s in the 
DBL-model. I now show that M,w I= a iff fM,, I= a. 

a c  P: 
The proof is similar to its counterpart in the proof of Theorem 7 on page 40. 

a is a formula not containing a modal operator: 
The proof is similar to its counterpart in the proof of Theorem 7 on page 40. 

a = By, where a is of depth k: 
First suppose that M,w I= a. Then M,w 13.1. By, and by definition of 17 in 
DBL-models, M,g (7 y for every g E f ( w , l ~ ~ ~ ) ,  so y is true at every such g. But 
by the construction, the set of all such situations g is equivalent to the set 
fk(A,)ly)lM) of k-ary DBL-situations C ~ ~ , G ~ , . . . , G ~ - ~ >  in DBL-structure 
<fO,F1,...,Fk>. SO y is true at every such <go, G1,...,Gk-l>, and by definition of 
1- in DBL-structures, fM,, )= By, as required. 

To show the other direction, suppose that fM,, I= a. Then fM,, I=TBy, and by 
definition of 17 in DBL-structures, <gO,G1,...,Gk-l> 13.1. y for every 
<gO,~l,...,~k-l> E fk(~,l1ylM). ~ u t  by the construction, f k ( ~ , ~ ~ d l M )  is equivalent 
to the set of situations g such that g E f ( w , ~ ~ y ) ~ ) ,  so y must be true at all such 
situations g as well. But then by the definition of 13.1. in DBL-models, M,w 13.1. 
By, as required. 

a = Ly, where a is of depth k. 
The proof is the same as that for a - By, with ~ ( f ~ ( ~ , l l a l l ~ ) )  replacing 
f,(A,llallM) in the DBL-structure, and looking at worlds instead of dl situations 
in f(s,lla(lM) in the DBL-model, since implicit beliefs are confirmed at accessible 
worlds. 

To show the converse of the theorem, let M = <S,f,T,F> be a DBL-model where S = {sf 

I sf is modeled by <fo,F1, ... >I for every DBL-structure f. Then g E f(spllallM) in the 
DBL-model iff <gO,G1,...,Gk-l> E fk(~,llallM) in the DBL-structure for every k 2 1 and 
sentence a E LDBL, where <gO,G1,...,Gk-l> is the k-ary DBL-situation that corresponds 
to g. f I= a iff M,wf I= a by the same reasoning as in part 1. 

If the agent has no beliefs about a certain sentence then the function f returns the set of all worlds 

for that sentence from level 1 upwards, to show that the agent does not believe it. It is thus obvious 

from level 1 which beliefs the agent does and does not hold. The no-information DBL-extension is 

thus not actually an extension, as in the modal structures studied previously, and is called instead 

the no-belief DBL-function. The formal definition follows. 

Definition 27: fk(~,llallM) is a no-belief DBL-function for sentence a if fk(~,llallM) = 

{<wO,G1 ,...,Gk-l> such that 
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2.  satisfies restrictions DBI, DB2, an, 

Figure 4-9 shows a DBL-structure for an agent that holds no beliefs about Bp, so that BBp is 

interpreted in the set of all k-ary worlds at every level k above level 0. The agent's beliefs about 

other sentences are interpreted as shown in Figure 4-8. 

'33 ' I . .  .. . w l  w l  w2 . .. .. :p 
W l  w2 ... BP 

Figure 4-9: A No-Belief DBL-Function for the sentence BBp 



Chapter 5 

A First-Order Modal Structure 

Section 3.4 describes the first-order language, KL, from bvesque  84a] and the KB-model that 

provides its semantics. This section demonstrates how the semantics of KL can be represented 

equivalently in a modified modal structure called a KB-modal-structure. The KB-model consists of 

a set of world-structures which are compatible with what is believed by the KB. Since the world- 

structures in the KB-model are governed by the same accessibility relations as weak S5, the belief 

structures of [Fagin, Halpern, and Vardi 841 and [Fagin and Vardi 851 described in section 2.2 can 

be used as a starting point for KB-modal structures. 

The difference between KL and the language L used with belief structures is that KL is a first- 

order language complete with predicate and function symbols (including the equality symbol), 

variables, parameters, and quantifiers, while L is a propositional language. Since the assignment of 

truth values to propositions in belief structures is done at level 0, the assignment of truth values to 

primitive terms and primitive sentences in KB-modal-structures is also done at level 0. Level 0 of 

each KB-modal-structure is equivalent to a single KB world-structure [s,v], so level 0 contains an 

assignment v of terms to parameters, and a set of primitive sentences s that are true given v at that 

world-structure. It also contains a domain-mapping function (DMF) d which maps the parameters 

to the domain entities. In each KB-model there is a single, explicit DMF which applies over all 

world-structures, but each KB-modal-structure models only a single world-structure, so the 

mapping must be done in every KB-modal-structure. The universality of the mapping across the 

world-structures in the KB-modal-structures must therefore be enforced. The DMF d is used later 

in this section to formulate a semantic restriction for this purpose on KB-modal-structures. It has 

no effect on the interpretation of sentences of KL, so the co-reference relation given on page 32 

can be retained as is. Level 0 then consists of a triple fO = [s,v,d]. 
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As in belief structures, level 1 of a KB-modal-structure contains the world-structures that are 

compatible with the world-beliefs of the KB; these are exactly all the world-structures in the 

corresponding KB-model. Level k contains the world-structures that are accessible to the KB from 

each of the world-structures at level k-1, to model the KB's depth-k beliefs. 

The formal definition of a KB-modal-structure is now given. Assume countably infinite sets of 

predicate and function symbols of every arity, including the 2-ary equality symbol =. Assume also 

countably infinite sets of individual variables, parameters P, and domain entities D. 

Definition 1: A primitive term is either a variable, a parameter, or a function 
application containing at most one function symbol. A primitive sentence is a predicate 
application that contains no function symbols. 

Let s be a set of primitive sentences that are at a world, of KL that are true at the world, v be a 

function that maps primitive terms to parameters, and d: P + D be a domain-mapping function 

(DMF) that maps each parameter to a unique domain entity. Together, s, v, and each d describe a 

world. 

Definition 2: The triple [s,v,d] is a oth-order world structure, abbreviated 
world-structure. <[s,v,d]> is a I -ary KB-world. 

Let S1 be the set of all l-ary KB-worlds. 

Definition 3: fl: {KB} + 2S1 is a lst-order KB-assignment. fi(KB) is the set of 
oh-order world-structures that are associated with the KB by fl. 

The intuition is that fl associates with the KB a set of l-ary KB-worlds that are compatible with its 

beliefs about its domain. 

Definition 4: <fOfi,..fkkl> is called a k-ary KB-world. 

Let Sk be the set of all k-ary KB-worlds. Suppose that k-ary KB-worlds have been defined 

recursively for all k 2 1. 

Definition 5: fk: {KB} 4 2% is a kfi-order KB-assignment. fk(KB) is the set of k-ary 
KB-worlds assigned to the agent by fk. 



The intuition is that fk assigns to the KB a set of k-ary KB-worlds which are compatible with its 

depth-k beliefs. 

Definition 6: The infinite sequence <fofl, ... > is a KB-modal-structure iff every KB- 
prefix <fOfl,...fk-l> is a k-ary KB-world for every k 2 0, and the structure satisfies the 
semantic restrictions TI ,  T2, and T3 of belief structures, and restriction UD given below. 

All three restrictions on belief structures (see page 12 in Section 2.1) are applicable to KB-modal- 

structures. Since the restrictions refer only to the recursive structure of the levels and not to the 

individual 1-ary worlds that compose the k-ary worlds, they need no modifications. Basic 

restriction T1 ensures that the k-ary world-structures at each level build on the world-structures of 

the previous level. 

Restriction T2 enforces the forward part of the full introspection axiom schema KCL: " a  2 K a  if 

a is pure." T2 ensures that the suffix of all the new k-ary world-structures at a level k contains all 

the world-structures from level k-1. It turns out that this also enforces the reverse part of KCL: 

"Ka 3 a if a is pure". T2 makes it clear that all the world-structures at level 1 are accessible to the 

agent from every world-structure. 

Restriction T3, which enforces consistency of beliefs, is applicable to KB-modal-structures 

because axiom schema KCL also ensures that the KB is consistent. 

The remaining axioms do not need to be enforced through additional semantic restrictions; their 

truth follows from the truth-functional semantics given for terms and sentences and from the 

definition of the KB. 

Semantic restriction UD (Universal Domain), which is new for KB-modal-structures, ensures that 

the DMF d is the same across all world-structures in the KB-modal-structure. Since levels 0 and 

level 1 together contain all the worlds in the corresponding KB-model, it suffices to compare the 

DMF of every world-structure at level 1 with that of level 0. Let <fo>.d represent the domain 

mapping function d of the world-structure <fo> = <[s,v,d]>. 

UD) <go>.d = <fo>.d for all <go> E fi(KB) in KB-modal-structure <fofl, ... >. 

The support relations of the KB-modal-structures bear a very close resemblance to the support 



relations of the KB-model, shown on page 32. In fact, all but the last one, the support relation for 

sentences of the form Ka, are identical. They are shown below. 
1. <[s,v,d], fl ,... fk> (=p for everyp E s. 

2. < [qv,d], fly..&> I= (tl = t2) if tl and t2 co-refer given v. 

3. (<[s,v,d], fl ,... fk> I= eft iff <[s,v,d], fl ,... fk> I= & ) if tl and t2 co-refer given v. 
1 2 

4. <[s,v,d], fl ,... &> I= -a if <[s,v,d], fl ,... fk> I# a. 

5. <[qv,d], fl ,... fk> I=(a V P) if <[s,v,~], fly...&> I= a Or <[s,v,~], f l y  ...fk> I= P. 
6. <[s,v,d], fl ,... fk> I= 3xa  if <[s,v,d], fl ,... fk> I= di for some parameter i. 

As in belief structures, the truth of a sentence of depth k is verified at level k of the KB-modal- 

structure. A depth-k sentence a of KL is satisfied in a KB-modal-structure f = <fOJl, ... > (written "f 

I= a") if <fOfl,...fk-l> I= a. a is valid if it is satisfied in every KB-modal-structure. 

KB-modal-structures are equivalent to Levesque's KB-models in the same way that belief 

structures are equivalent to Kripke structures: each KB-modal-structure models a single world in a 

KB-model, and a KB-model models a collection of KB-modal-structures. The DMF d of the 

KB-model must be equivalent to the DMF in the KB-modal-structure. Theorem 7 makes this 

equivalence explicit. As described in Section 3.4, the accessibility relation on the set of world- 

structures including the "possible" world-structures in m and the "real" world-structure [s,v], is 

Euclidean, transitive, and serial. Thus, the proof of Theorem 7 can treat all the world-structures 

alike, not distinguishing between the real world and the possible worlds. Let M = m u {[s,~]}, and 

call Mthe KB-model-set. The theorem follows. 

Theorem 7: To every KB-model-set M with DMF d, and world-structure w E M, there 
corresponds a KB-modal-structure fmSw such that m,w I= a iff f,,, I= a for every formula 
a. Conversely, there is a KB-model-set M with DMF d such that for every KB-modal- 
structure f with DMF d there is a world-structure wf = [s,v] in M such that f I= a iff m,wf 
I= a for every formula a. 
Proof: Let M = m u {[s,v]} be a KB-model-set with DMF d. For every world- 

structure w = [qv] E M, we construct a KB-model-structure fmSw = <[s,v,d], f l y  ... > = <fo, 
fk, ... >. d is the DMF of M, and s and v are as in the world-structure w. Suppose we have 
constructed <fo, fi,...fk-l> for each world-structure in M. Then &(KB) = {<[s',v',d], 
gl ,..., gk-l> I [s',v9] is accessible to the KB from [s,v], where <[sY,v',d], gl ,..., gk-l> is the 
k-ary KB-world constructed for [s,v]}. Since all the world-structures in m are accessible 
to the KB from every world-structure in M, fk(KB) contains the k-ary KB-worlds 
constructed for every [s9,v'] E m. I now show that m,w I= a iff fm,, I= a. Since all but 



one of the support relations for KB-modal-structures are the same as those for KB- 
models, it is only necessary to show the correspondence for sentences of the form Ka. 

a = KP, where a is of depth k: 

First suppose that m,w I= KP, where w = [gv]. Then by the definition of I= for KB- 
models, P is true on s', v', and m for every world-structure [s',vY] E m. But by 
the construction, the set of all such world-structures [s',v'] is equivalent to the set 
of k-ary KB-worlds c[s',v',d], gl ,...,gk-l> E fk(KB) in the KB-modal-structure 

f , .  So then <[s,v,d], fl, ...fk > I= KP by the definition of I= in KB-modal- 
structures, as required. 

To show the other direction, suppose that f,,, I= KP. Then by definition of I= in 
KB-modal-structures, <[sY,v',d], gl ,..., gk-l> I= P for every <[s',v',d], gl ,..., gk-l> 
E fk(KB). But by the construction, fk(KB) is equivalent to the set of world- 
structures [sY,v'] E m, so k,[s9,v'] I= p for every [s9,v'] E m. But then k,[s,v] I= 
KP by the definition of I= in KB-models, as required. 

To show the converse of the theorem, let M = m u {[qv]) be a KB-model-set with 
DMF d, where wf = [s',v'lf E M if and only if s' and v' are equivalent to s' and v' in 
[s',v',d] of KB-modal-structure f. Then [s',vYlf E m iff <[s',v',d]> E fl(KB). This 
check is sufficient to determine which world-structures are contained in the set m 
because every world-structure in m is accessible to every world-structure in M. Only the 
"real" world-structure [s,v] may not be accessible to any world-structure. If it isn't, then 
it will not be in fi(KB), and will be identified as the "real" world-structure [s,v] in M. If 
it is accessible from every world-structure, and the KB's beliefs are in fact accurate, then 
it will be in m with all the other world-structures, and it will not be apparent which 
world-structure is in fact the "real" one. This does not represent a loss of information, for 
to the KB, any of the world-structures in m could be the "real" one. f I= a iff m,wf I= a 
by the same reasoning as before. 

When no new information is available above a level k in a KB-structure, the KB's beliefs are 

extended according to the no-information-extension of belief structures (described on page 15 in 

Section 2.2), which enforces full introspection at the upper levels. 



Chapter 6 

Conclusions and Suggestions for Further 
Research 

In this thesis, I have demonstrated how the modal structures of [Fagin, Halpern, and Vardi 841 

and [Fagin and Vardi 851 can be extended to model the non-standard epistemic logics BL 

of bvesque 84b], BLK and BL4 of Lakerneyer 871, and DBL of [Delgrande 871, as well as the 

first-order epistemic logic of [Levesque 811 and Wvesque 84aI. Modal structures are defined in 

the literature only for the classical propositional modal logics K, S4, weak S4, S5, and weak S5. 

The semantic basis of these logics has only one kind of state (a world) and a single accessibility 

relation. In this thesis, I have demonstrated that modal structures can be defined for logics whose 

semantic basis requires more than one kind of state (e.g., both worlds and situations) and multiple 

accessibility relations (e.g., R and E). I have also demonstrated that first-order versions of 

propositional modal logics can be defined in terms of modal structures. I have shown that in all of 

these instances, appropriate semantic restrictions can be defined to model the properties of belief 

associated with the logic, I also presented an alternative definition of modal structures which 

defines them in terms of trees and clarifies their relationship to Kripke structures. 

Section 6.1 summarizes the approach taken in each case. It then analyzes the new extended 

modal structures in terms of the advantages that are claimed for modal structures by their creators. 

Section 6.2 suggests directions for extending the work presented here. 



6.1. Analysis of Extended Modal Structures 

In Chapter 4, modal structures are extended to logics of implicit and explicit belief. The 

extension of modal structures to the logic BL required defining them in terms of situations as well 

as worlds. The further extension to BLK and BL4 required in addition modeling two accessibility 

relations instead of a single one. This was done by building two parallel sets of situations at each 

level. Two semantic restrictions on belief structures, the basic restriction and the restriction that 

enforces full introspection, were adapted for the BLK-structure. As well, a new semantic 

restriction was developed to enforce the coincidence of the two sets at worlds. The strict separation 

of levels in BLK-structures automatically enforces the ability of the agent to perform relevant 

implications within a level, so no further restriction was required. The addition of a semantic 

restriction for explicit positive introspection to the BLK-structure transformed it into a BL4- 

structure for Lakemeyer's logic BL4. Examples of BLK- and BL6structures, along with 

corresponding BLK- and BL4-models, their original semantic models, were given to illustrate the 

equivalence between them, and to clarify the effect of the restrictions on the structures. No- 

information BLK- and BL4-extensions were described and illustrated for BLK- and BL4- 

structures. 

The extension of modal structures to DBL-structures involved building many parallel sets of 

k-ary situations at each level, one for each proposition. DBL-models have many accessibility 

relations, since the function f describes a separate accessibility relation for each proposition at 

every situation. The basic restriction on modal structures was adapted for DBL-structures, and two 

new semantic restrictions were defined to enforce consistency of belief and the coincidence of all 

the sets at worlds. The new restrictions in the DBL-structure were identical to those on the DBL- 

model except for notational differences. A no-information DBL-function was defined for DBL- 

structures; it differs from the no-information extensions on the other modal structures in that it 

begins at level 1 for the sentence that the agent has no beliefs about. DBL-structures are defined in 

terms of situations as well as worlds, as in BL-structures. 

The extension of belief structures to model Levesque's first-order logic in Chapter 5 was 

particularly straightforward: level 0 was redefined to accommodate the particular non-modal first- 



order features of the language KL, and a single new semantic restriction was applied to enforce the 

assumption of a universal domain across all worlds. The semantic restrictions on belief structures 

and the no-information extension were transferable from belief structures without modification. 

The ease with which belief structures were adapted for the first-order case suggests that modal 

structures designed for any propositional logic could be adapted similarly to model the logic's 

first-order counterpart. Any new restrictions on the first-order modal structure would presumably 

enforce the consistency of some property across all the worlds in the first-order model, as with the 

new restriction UD on KB-structures, For example, the first-order version of BL, FOBL, given 

in Lakemeyer 861, could be modeled in a modal structure by using the BL-structure of Section 4.1 

as a basis, modifying level 0 as necessary, and defining any restrictions that are needed to enforce 

FOBL's special first-order characteristics. Since parameters are used in FOBL to denote the fixed 

universe of discourse just as in the KB-model, semantic restriction UD could be applied directly to 

the modal structure for FOBL. 

Modal structures do appear to be generally extensible to logics that differ from the standard 

epistemic logics for which they were designed. But are they, as their authors claim, more 

"intuitive" than the Kripke structures they replace? Certainly the ability to look at a particular level 

k of the modal structure to determine the depth-k beliefs of an agent is appealing, compared to the 

necessity of tracing all paths of length k in a Kripke structure to find the appropriate set of worlds. 

But the relationship between the worlds, which is easily seen in a Kripke structure, can be obscured 

in a modal structure by the redundancy at each level. In Figure 2-1, for example, it is clear that in 

the Kripke structure the worlds accessible from wR are in an equivalence class. To draw the same 

conclusion from the corresponding modal structure, it is necessary to verify at every level that the 

suffix of every tuple contains all the worlds from the previous level. 

Level 0 of a modal structure assigns truth values to a fixed, finite number of primitive 

propositions, presumably to model the beliefs of a finite agent. This feature undoubtedly makes it 

easier to represent particular states of belief, since the number of unique possible worlds is now 

finite, and all the possibilities are known from the beginning. This limitation may not always be a 

reasonable one, however, since the number of potential beliefs that an agent might hold is infinite. 

The restriction to a finite set of propositions effectively bars the agent from ever holding those 

beliefs that are not represented in the fixed, finite set of propositions. 



In a first-order quantificational system, the domain consists of an infinite number of individuals, 

which are represented by variables in sentences. If the number of individuals is restricted to a finite 

number, the system can be reduced to a propositional system, in which sentences like V q ( x ) ,  

where x is an individual variable, can be represented as a finite number of propositions that 

represent sentences of the form p(a), p(b), ..., where a and b are individuals in the finite domain. If 

first-order modal structures were restricted to a finite number of individuals, which would be 

analogous to having a finite number of primitive propositions in propositional modal structures, 

they would therefore be incapable of modeling a true first-order system. 

There is no structural reason why modal structures cannot be defined for an infinite number of 

propositions (or individuals) if necessary, and in fact, this was done in Chapter 5 in the definition 

of KB-structures. With an infinite number of propositions or individuals, the number of possible 

worlds at a level is not guaranteed to be finite, so determining validity in modal structures defined 

this way is not decidable. 

[Fagin and Vardi 851 claims that the semantic restrictions on belief structures model the 

properties of knowledge and belief in a more intuitive fashion than the corresponding restrictions 

on Kripke structures, presumably once gets past the intricate notation of modal structures. In belief 

structures this does seem to be the case; the transitive and Euclidean restrictions on an accessibility 

relation, for example, seem less obviously related to full introspection than using the same set of 

accessible worlds at every successive level to verify beliefs. In BLK- and BL4-structures, 

however, which contain situations and worlds as well as sets that correspond to two accessibility 

relations, the intricacy of the semantic restrictions diminishes their clarity. The recursive nature of 

the worlds in modal structures can make it difficult to define semantic restrictions, particularly in 

complicated structures such as BLK-structures. In fact, the restrictions on BLK- and BL4- 

structures were defined by extrapolating from the appropriately restricted Kripke-style model. 

Once defined, the restrictions on modal Struch~res are still not easily understood without the aid of 

a diagram, largely because of the complicated notation. For this reason, it is not clear that modal 

structures are indeed more intuitive models of knowledge and belief than Kripke structures. 

Both modal structures and Kripke structures require a good understanding of the properties of 



knowledge and belief in terms of possible worlds on the part of the user, and neither provides an 

obvious interpretation of these properties. Those who hold philosophical reservations about the 

plausibility of the possible worlds model will not find any of their objections resolved with modal 

structures; since modal structures are defined in terms of possible worlds, they retain all the 

advantages and disadvantages of possible worlds semantics. They appear to be generally 

extensible to other epistemic logics, and can be used in place of Kripke structures wherever their 

particular features are desired. 

6.2. Suggestions for Further Research 

This section suggests directions in which the research presented in this thesis might be extended. 

pagin and Vardi 851 demonstrates that the ability to determine the truth of a depth-k sentence at 

level k of a modal structure leads to simpler proof techniques for soundness, completeness and 

decidability in modal structures than in Kripke structures. This aspect of modal structures was not 

followed up in this thesis, whose aim was simply to investigate the extensibility of modal 

structures. Presumably, however, the advantages would carry over to the extended modal 

structures, because they retain the property that depth-k sentences are verified at level k. This 

could be verified by carrying out the soundness and completeness proofs for the logics described in 

Chapter 3 with respect to the extended modal structures that model them, and comparing the proofs 

with the original ones for their original models. Some of the proofs in [Fagin and Vardi 851 use the 

assumption of a finite number of propositions. It is claimed that the proofs can be adapted to 

handk an infinite number of propositions, but it is not clear exactly what effect this would have on 

the relative simplicity of their proof techniques. 

The logic BLK defines two accessibility relations to model explicit meta-beliefs without logical 

omniscience. It divides the beliefs into two categories, positive beliefs (those with a leading B 

operator, such a Ba), and negative beliefs (those with a leading negated B operator, such as -Ba). 

The BLK-structure contains two parallel sets of k-ary situations at every level k above level 1. The 

logic DBL takes a similar but finer-grained approach, by defining an accessibility relation for every 

distinct proposition represented by a sentence of the language LDBL. The DBL-structure contains 



as many parallel k-ary situations at every level k (k 1 1) as there are propositions. It appears from 

the similarity of the modal structures that DBL is a generalization of BLK. Besides having more 

than one accessibility relation for explicit belief, both models restrict the accessibility relations to 

coincide at worlds, so that implicit beliefs are consistent. The restrictions that enforce this 

coincidence in BLK-structures (S2 on page 45) and DBL-structures (D2 on page 29) are very 

similar. It would be interesting to investigate further the similarities between the two models. 

Since DBL-models are very general, it might be possible to define BLK in terms of suitably 

constrained DBL-model, and then in an equivalent DBL-structure. 

DBL is worth investigating in its own right, since the intuition that different sets of situations are 

relevant to different beliefs seems reasonable. The idea of expressing properties of belief in terms 

of relations among sets of accessible situations is also appealing, and is the same idea used in 

modal structures. The notation of DBL-models is not as intricate as that of modal structures, 

however, so the restrictions may be more easily understood. 

[Fagin and Vardi 851 presents a general proof of equivalence between modal structures and 

Kripke structures. In this thesis, the equivalence between the extended modal structure and the 

Kripke-style model that it replaces is demonstrated for each logic. It should be possible to devise a 

general proof of equivalence between Kripke-style models with more than one type of state and 

more than one accessibility relation, and extended modal structures of the form presented in this 

thesis. 

In Section2.3, an alternate definition of modal structures, which describes them in terms of trees, 

was presented. This definition clarifies the relationship between Kripke structures and modal 

structures, and is much less intricate than the original definition. The definition is given only for 

the original modal structures, however, and not for the extensions described in later chapters. As 

well, no semantic restrictions are defined in terms of the new definition. It would be interesting to 

generalize the new definition to Kripke-style structures with multiple state-types and multiple 

definitions. It would also be interesting to define various semantic restrictions using the new 

definition, and compare them to the original semantic restrictions on modal structures. Finally, the 

semantics of the epistemic logics surveyed in Chapters 2 and 3 could be defined using the new 



definition of modal structures. The new definition may lead to a more understandable semantic 

basis for these logics than the original one. 

[Fagin, Halpern, and Vardi 841 and [Fagin and Vardi 851 claim that modal structures are suitable 

for modeling particular states of knowledge and belief, although to my knowledge, this claim has 

not been supported in the literature. It would be worth testing this claim with the extended modal 

structures of this thesis as well as with the original ones. 

Modal structures could also be extended to other modal logics with different properties than those 

described in this thesis, to further test their extensibility. It would be especially interesting to 

investigate the extensibility of modal structures to a non-epistemic modal logic, such as a temporal 

logic. Since time has quite different properties from knowledge and belief, this exercise might 

uncover some of the inherent limitations of modal structures. When Kripke structures are used to 

represent time, the worlds are interpreted as points in time and the accessibility relation as 

specifying a precedence relation, such that wRv if w temporally precedes v in time. The states 

assign truth values to the propositions at a particular time. Modal operators are defined to have 

meanings such as "proposition p will necessarily be true in the future if it is true in all (future) 

states accessible from the present one." Restrictions on the accessibility relation constrain the 

various properties that time can have; these are in general more complex than the properties of 

belief that are modeled in epistemic logics. For example, the precedence relation is transitive, so 

that if a precedes b and b precedes c, then a precedes c, but it may allow only a single future and a 

single past, or many possible futures, or even many possible pasts. Time may also be dense, so that 

between any two time points there are an infinite number of time points. The time points in a dense 

structure may correspond to the real or rational numbers. It appears that it would not be possible to 

represent dense time in modal structures, because the levels of a modal structure correspond to the 

natural numbers, and it is therefore impossible to insert an infinite number of levels between any 

two levels. 

Modal structures and temporal Kripke structures could also be combined to produce a model of 

an agent's beliefs over time. The idea is to replace every time point in a temporal Kripke structure 

with a modal structure that represents the agent's beliefs at that time. Level 0 of the modal 



structure contains the truth assignment that was originally at the time point. The agent's beliefs can 

then be tracked through time in a suitably constrained temporal model. Advantages of this 

approach are that the semantics of the temporal logic does not have to be altered, and that any 

modal structure can be used without modification. 

[Fagin, Halpern, and Vardi 841 suggests modeling an agent's beliefs in time by assuming a set of 

linear time points represented by integers and assigning a set of worlds to the agent for each time 

point at every level. They also add a semantic restriction that the agent's beliefs increase 

monotonically with time. This model is not as general as the approach described above in terms of 

the varieties of time that can be modeled, and complicates the modal structure, since the restrictions 

on beliefs must be modified to apply to worlds at the same time point at different levels, and at the 

same level at different time points. 
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