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Abstract

Kripke structures have been proposed as a semantic basis for modal logics of necessity and
possibility. They consist of a set of states, informally interpreted as "possible worlds", and a binary
accessibility relation between states. The primitive notion of a possible world in this context seems
highly intuitive, since necessity can be interpreted as "truth in all possible worlds", and possibility
as "truth in some possible world". However, modal logics have also been used to model the
epistemic notions of knowledge and belief, where an agent at a particular world is said to "know"
or "believe" a proposition if that proposition is true in all possible worlds compatible with its

beliefs. In this context, it is not as obvious how to interpret a "possible world".

Modal structures have recently been introduced as a formally equivalent alternative to Kripke
structures for modeling particular states of knowledge and belief. Modal structures consist of an
infinite number of recursively defined levels, where each level contains the possible worlds that
model an agent’s meta-beliefs of a certain depth. For example, beliefs about the world are modeled
at level 1 of a modal structure, and beliefs about beliefs about the world are modeled at level 2.
Each modal structure corresponds to a single world of a Kripke structure and contains all the
worlds that are accessible from that world in its levels. Modal structures are defined for the

classical propositional epistemic logics S4 and S5.

Recently, the traditional possible worlds approach has been extended to model "explicit", or
limited, belief with partial worlds, called situations, in an appropriately modified Kripke structure.
In this thesis, I demonstrate how modal structures can replace Kripke structures to interpret three
recent logics of explicit and implicit belief. I also extend modal structures to model a first-order
predicate logic which includes quantifiers, equality, and standard names. For each logic, I
demonstrate the equivalence of the extended modal structure and the Kripke structure that
originally provided the semantics for the logic. I discuss the advantages and disadvantages of using

modal structures to model logics of knowledge and belief.
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Chapter 1

Introduction

A major goal of Antificial Intelligence (AI) research is to build computer systems that display
intelligent behaviour. For example, an intelligent interface to a computer system would be able to
carry on a conversation with a user, interpreting questions and making replies within the overall
context of the conversation. An intelligent medical diagnosis system would be able to choose the
most likely cause or causes of a collection of symptoms, asking for more information, as necessary,
to help it make its decisions. A necessary prerequisite to designing "intelligent” systems is a good
understanding of the properties of knowledge and belief, since these underlie any form of

intelligent reasoning behavior.

There are many approaches to the study of knowledge and belief; this research uses an approach
based on modal logic. Modal logics were originally developed for the study of necessity and
possibility, and were first applied to the study of knowledge and belieflin [Hintikka 62]. Modal
logics of knowledge and belief are called epistemic logics. Epistemic logics are currently being
studied by researchers in Al for a variety of purposes. For example, [Levesque 84a] uses modal
logics as the foundation for knowledge bases which can reason both about their domain and about
what théy "believe" about the domain. [Dwork and Moses 86] uses modal logics to analyze
communications protocols in a distributed computer network. [Delgrande 87] presents an approach
to default reasoning using a conditional modal logic. The semantic basis of modal logics is usually

given in terms of a possible worlds model called a Kripke structure [Kripke 63a].

Kripke structures were introduced in [Kripke 63a] as a semantic model for the modal logics of

- necessity and possibility. A Kripke structure consists of a triple <G, I1, R>, where G is a set of

IKnowledge is defined to be true, justified belief. Thus, if an agent knows a proposition p, p is actually the case. If the
agent merely believes p, p may or may not actually be true.
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states, R is a binary (accessibility relation over those states, and IT is a consistent assignment of
truth values to primitive propositions at states. For w,v € G, if wRv, then v is said to be accessible
from w. Informally, the states are interpreted as possiblg worlds, or possible states of affairs, and
the accessibility relation gives those worlds that are considered possible with respect to a given
world. - Kripke structures are often drawn as a labeled directed graph where the nodes represent
worlds, their labels show the truth assignment at the worlds, and the arcs represent the accessibility
relation. A proposition p is necessarily true at a given world w (written Lp) if it is true in all
worlds accessible from w. Proposition p is possibly true (written Mp) if it is true in some world
accessible from w. For example, if p is a proposition that stands for "2 + 2 = 4", then p is a
necessary truth because it is true in all possible worlds accessible from our own. The proposition
that stands for the concept "it is snowing in Saskatoon" is a contingent truth because there are
possible worlds compatible with our own in which it is snowing in Saskatoon and possible worlds
in which it is not. The sentence "Today is July 12 and today is September 19" is necessarily false
because there are no possible worlds in which it is (literally) true. Restrictions can be placed on the
accessibility relation to model different properties of necessity and possibility, and different

combinations of restrictions result in modal logics with various properties.

When Kripke structures are used to model epistemic logics, the accessibility relation gives those
worlds that are consistent with the knowledge or beliefs of an agent2 who is located at a given "real
world" w. [Levesque 84b] says that these worlds tell us "what the world would be like if what [the
agent] believes were true”. The agent is said to know or believe a statement if that statement is true
in all worlds accessible from w. If there are several agents at w; there is a different accessibility

relation for each one.

Although possible worlds semantics is currently a popular theory in Al, most philosophers
working in epistemology reject this view. There is in fact considerable philosophical controversy
over whether or not the notion of a "logic of belief" is even meaningful. [Hadley 87] argues that

possible worlds semantics for epistemic notions rests upon the foundation of procedural semantics,

which provides an effective way of relating concepts to objects in the real world. These issues are . -

2Since the agents of this thesis are considered to be inanimate, they are referred to with the pronoun "it".
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beyond the scope of this thesis. The work described here is relevant to the avenues of research
being followed by numerous Al researchers, and does not make any claims regarding the

philosophical merits of the possible worlds theory.

Slightly differing interpretations of the accessibility relation for epistemic logics are found in the
literature. [Fagin, Halpern, and Vardi 84] and [Fagin and Vardi 85], for example, say that the
accessibility relation R provides the set of worlds "that the agent considers possible". There are
two main problems with this definition. First, because there are an infinite number of propositions,
R must assign an infinite number of possible worlds to the agent, and it does not seem reasonable
that the agent be required to be consciously aware of this infinite number of possible worlds.
Second, the definition, as given, is incomplete. To see this, suppose that the agent believes that
grass is green. There is nothing to prevent the agent from imagining a world in which grass is
purple, and considering such a world to be possible. The agent does not believe that grass is purple
even though it can imagine such a possible world; it still believes that grass is green.3 To
overcome this problem, the definition would have to contain the qualification that these are the

worlds the agent considers possible given what it already believes.

[Halpern 86] says that R supplies a set of worlds that the agent cannot distinguish from the one it
is in, so that if the agent is at world s, the worlds supplied by R are those that agent would consider
possibly to be the real world. This interpretation does not suffer from the "purple grass" criticism,
and does not require that the agent actually be conscious of the set of possible worlds, only that if
confronped with such a world, it would be capable of agreeing that it could indeed be the real

world, again given what it believes.

[Fagin, Halpern, and Vardi 86] discusses "knowledge" in the context of a computer
communications network consisting of a number of connected independent processors. Each
processor is always in some local state, which is a function of the messages it has received up to

that time. The network as a whole is in a global state, which is a function of the local states of all

" the individual processors. A processor is said to "know" a fact p about the system if p is true in all

3This example is due to Bob Hadley, personal communication.
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possible global statés in which the processor is in its current local state. The global states are
possible worlds, and the accessibility relation for a processor supplies the set of global states in
which the processor is in its current local state. The agent with the actual knowledge in this
interpretation is really the system designer who is reasoning about the network in terms of
knowledge, and it is up to him to determine which glébal states are compatible with a processor’s
current local state, and what can be said about that processor’s "knowledge" as a result. The
processor itself may contain no data that corresponds to the "fact” that it "knows". This external

notion of knowledge is used to analyze the transfer of "knowledge" in distributed systems.

The state of knowledge or belief at a particular world in a Kripke structure depends not only on
what is actually true at that world, but also on the set of possible worlds associated with an agent at
that world. In Kripke structures, a world is a primitive notion, and the truth assignment IT tells
only what is true there, not what is believed. Modal structures are introduced in [Fagin, Halpern,
and Vardi 84] and [Fagin and Vardi 85] as a formally equivalent alternative to Kn'pke structures for
modeling particular states of knowledge or belief. In particular, each modal structure models the
knowledge or beliefs of an agent at a particular state of a Kripke structure, as well as what is

actually true at the world.

A modal structure consists of an infinite number of "levels", where level 0 contains the truth
assignment to primitive propositions at some world w in the Kripke structure. Level 1 contains all
worlds directly accessible to an agent at that world, level 2 contains all the worlds at level 1 as well
as the 'worlds accessible from those worlds, and so on. So for example, the fact that primitiQe
proposition p is true is recorded at level 0; the fact that agent A believes that p is true is recorded at
level 1; and the fact that A believes that A believes that p is true is recorded at level 2. A modal
structure thus gives the full accessibility information in a Kripke structure from a single world; to
obtain all the information present in a particular Kripke structure, one requires as many modal
structures as there are worlds in the Kripke structure. [Fagin and Vardi 85] argues that modal
structures are better able to represent particular states of knowledge and belief because they
correspond to beliefs with respect to a specific state (world) in a Kripke structure, and because the -

levels of meta-knowledge are clearly delineated.



A generally recoghized problem with the standard epistemic logics is that they are too strong to
provide a realistic model of the knowledge and beliefs of a finite, resource-bounded agent. Agents
whose reasoning powers are modeled by these logics know all of the logical consequences of their
beliefs and all logical truths. They may also possess a full knowledge of what they do and do not
believe. Several new epistemic logics have recently béen introduced in an attempt to overcome this
problem. [Levesque 84b] introduced a logic of implicit and explicit belief, where explicit beliefs
are those that the agent "actively holds", and implicit beliefs are all the logical consequences of the
explicit beliefs. Variations on this logic have appeared in [Lakemeyer 87] and [Delgrande 87]. A
first-order epistemic logic was used recently in [Levesque 81] and [Levesque 84a] to describe what
a knowledge base could reasonably be expected to know and deduce about the world described by
its data and about its knowledge. The semantics of all of these extensions to epistemic logics is

given in terms of appropriately modified Kripke structures.

In this thesis, I investigate the extensibility of modal structures to these other logics. The aims of
the investigation are to test the flexibility of modal structures with respect to semantic models that
differ from the one for which they were originally defined, and to determine whether the claimed
advantages of the basic modal structures are transferred to their extensions. For each extended
epistemic logic mentioned above, 1 define an appropriate extended modal structure and the
semantic restrictions necessary to fully describe the logic. [Fagin and Vardi 85] provides a general
proof of the equivalence of modal structures and standard Kripke structures; similarly, I prove the
equivalence of each extended modal structures described in this thesis to the Kripke-style structure
that provides the semantics of the logic. By doing this, I demonstrate that modal structures are in
fact extensible to the non-standard semantic features of these logics. In addition to the main line of
work presented here, I provide an alternative definition of modal structures which clarifies their

relationship to Kripke structures and simplifies their presentation.

The remainder of the thesis is organized as follows. Chapter 2 surveys Kripke and modal
structures in detail. Section 2.1 describes Kripke structures and some common classical epistemic
logics, Section 2.2 describes modal structures, and Section 2.3 introduces a new definition of modal
structures. Chapter 3 describes the four logics of implicit and explicit belief (BL, BLK, BL4, and
DBL) and the first-order logic (KB) that are represented in modal structures in Chapters 4 and 5,
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respectively. Sections 2.1 and 2.2 and Chapter 3 survey the relevant literature, while Section 2.3
and Chapters 4 and 5 describe my original contributions to the area. Chapter 6 summarizes the

results of my investigation and gives suggestions for further research.



Chapter 2
Kripke and Modal Structures

This chapter describes how Kripke structures and modal structures are used to model epistemic
logics, and discusses the relationship between the two models. Section 2.1 reviews the definition
of Kripke structures and discusses how they can be restricted to model various properties of
knowledge and belief, and hence some of the more common classical modal logics. Section 2.2
describes modal structures as they are described in the literature, and shows how they can be
restricted to model various properties of knowledge and belief. Modal structures are shown to be
equivalent to Kripke structures. Section 2.3 gives an alternative definition of modal structures that
has not appeared previously in the literature. The new definition clarifies the relationship between
modal structures and Kripke structures. It gives a three-stage transformation of a Kripke structure
into an equivalent modal structure for a particular state of the Kripke structure, and describes the
resulting modal structure in terms of a series of trees of successive depths. The new definition of
modal structures is considerably simpler than the original definition given in the literature, but is

shown to be equivalent to it.

2.1. Kripke Structures

Kripke structures were described in Chapter 1 to be a triple <G,II,R>, where G is a set of states,
IT is an assignment of primitive propositions to states, and R is a binary accessibility relation
between states. When Kripke structures are used to model logics of knowledge and belief, the
states are interpreted as possible worlds and the accessibility relation as giving, for an agent at a
particular world, the worlds which are compatible with agent’s beliefs. This section describes how
the accessibility relation can be restricted to quel various properties of knowledge and belief, and

how these properties combine to give some of the more common classical logics.

The language L that is used to describe beliefs consists of an infinite set of primitive propositions,



represented by lowef-case letters, a modal operator B such that Bp is read "the agent believes p",
the logical symbols ~ (negation) and A (conjunction), and parenthéses. Formulas, denoted by
lower case Greek letters, are derived from the set of primitive propositions and the logical symbols.
Operators Vv (disjunction), D (implication), and = (equivalence) are defined in terms of negation
and conjunction: (p Vv q) is equivalent to ~(~p A ~q); (p O q) is equivalent to (~p v q); and (p=q)
is equivalent to (p O q) A (@ © p). The set of formulas in the language is the smallest set containing
all the propositions, their closure under ~ and A (also v, D, and =), and all formulas prefixed by the
B operator. The depth of a formula is the deepest nesting of modal operators in the formula. For
example, the sentence B(Ba A B(Ba v B)) has a depth of 3. In systems that model knowledge and
belief instead of belief, modal operator K may be used in place of B, so that Kp is read "the agent

knows p".

A support relation is used to determine the truth of a sentence of L at a world given the truth of
the primitive propositions at that world. The support relations for logics modeled by Kripke
structures are shown below. They tell how to determine the truth of any sentence of L at a world w
in a Kripke structure M from the truth assignment to the primitive propositions at that world. |=
means "supports the truth of' and |# means "does not support the truth of". p is a primitive

proposition, and o and P are formulas of L.

1. M,w |= p iff p is true at w under truth assignment IL.
2. Mw [=~aiff Mw | o

3.Mwil=oABiff Mw |= o and M,w |=P.

4, M,w |= BaLiff M,v |= o for all v such that wRv.,

A sentence 0. € L is satisfied at a world w in Kripke structure M if M,w |= ¢, and 0. is valid in M

(written "|= o) if at is satisfied at every w € G.

Different restrictions placed on the accessibility relation enable one to model different properties
of knowledge or belief.4 Consistency of belief (~B(p A ~p)) is obtained in a Kripke structure by
requiring that the accessibility relation be serial (i.e., for every world w, wRv for some v). Positive

introspection, wherein an agent knows everything that it knows (Bp © BBp), is obtained by

“Most philosophers working in epistemology do not believe that the properties described here actually model
knowledge or belief. Most Al researchers claim that these properties represent "idealized" forms of knowledge and
belief. This thesis takes no stand on these issues.
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requiring that the ;clccessibility relation be transitive (if wRv and vRx, then wRx); negative
introspection, wherein if an agent does not know something, it knows that it does not know it (~Bo
= B~Ba), is obtained by the Euclidean restriction (if wRv and wRx, then vRx). Negative
introspection can also be modeled by an accessibility relation that is symmetric (if wRv then vaj
as well as transitive. The logic weak S5, which isv obtained by requiring that the accessibility
relation be serial, transitive, and Euclidean, gives a kind of belief that is consistent, although not
necessarily accurate with regard to the "real world". The logic S5 is obtained by requiring that the
accessibility relation be reflexive instead of serial (i.e., for every world w, wRw), and symmetric
instead of Euclidean. The possible worlds in a Kripke structure constrained to model S5 are an
equivalence class, so every world is accessible from every other world. The reflexive requirement
ensures that the agent’s beliefs accurately reflect the "real world" (Bot © o). "Bau > " is called the

knowledge axiom because it distinguishes knowledge from belief.

An axiomatization of the epistemic logic weak S5, which models belief, taken from [Halpern and
Moses 85] is now shown, and the variations on it that define S4 and S5 are now described. The
axiomatization consisis of five axioms and two rules of inference.

(A1) all substitution instances of propositional tautologies are valid
(A2) ~B(false)
(A3) Baa > BBo

(A4) ~Ba. > B~Ba
(AS) (Ba.A B(a D B)) o BB

(R1) from ¢ and (o o B) infer B
(R2) from o infer Bo,

Axiom Al means that all tautologies that can be formed from the set of primitive propositions are
valid, or true in all possible worlds. Axiom A2 ensures consistent beliefs. Axiom A3 and axiom
A4 give positive and negative introspection, respectively; the combination of positive and negative
introspection is called full introspection. Axiom A5 says that the agent derives all the logical
consequences of its beliefs. Rule R1 says that all logical consequences of valid formulas are also

valid, and R2 says that agents believe all valid formulas.

The logic K corresponds to a Kripke structure which has no restrictions on the accessibility
relation; it is describe by axioms A1 and A5 as well as the inference rules R1 and R2. The logic S5

has the same axiomatization as weak S5 except that axiom A2 is replaced by the knowledge axiom,
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Ba > o. S4 and weak S4 are the same as S5 and weak S5, respectively, except that axiom A4 is
not present: agents under S4 can not introspect about their non-beliefs. [Halpern and Moses 85]
contains a good introduction to these epistemic logics, and [Hughes and Cresswell 68] provides a

thorough treatment of modal logics in general.

Agents whose knowledge or beliefs at least contain axioms Al or AS are called logically
omniscient because they believe all sentences logically equivalent to their beliefs and all logical
consequences of their beliefs. It is generally accepted that these axioms are unrealistic models of
belief for finite agents. They are often instead taken to describe the beliefs of an "idealized" agent,

or to say what the agent could deduce, give enough resources, and not what it actually believes.

2.2. Modal Structures

Modal structures are introduced in [Fagin, Halpern, and Vardi 84] and [Fagin and Vardi 85] as a
formally equivalent alternative to Kripke structures for modeling epistemic notions of knowledge
and belief. This section summarizes those papers. It first gives a formal definition of modal
structures and describes how they can be restricted to model various properties of knowledge and
belief. ~ Next, a modal structure that models the logic weak S5 is presented. Finally, the
equivalence between modal structures and Kripke structures is demonstrated, and the advantages

that Fagin, Halpern and Vardi claim for modal structures over Kripke structures are stated.

The following definition of modal structures assumes a fixed, finite set of primitive propositions

P, and a single agent A.5

Definition 1: fj: P — {true, false} is a 0"M-order assignment.

Intuitively, f}) assigns truth values to the finite set of primitive propositions at level 0 of the modal
structure. The tuple <f,> is called a I-ary world (or simply a world), because it contains a single

clement. Wy is the set of all 1-ary worlds, i.e. the set of all possible truth assignments to P. In

SModal structures are actually designed for multi-agent logics. Since the extensions described in this paper are all to
single-agent logics, however, and since the extension to a multi-agent structure is a straightforward one, the single-agent
version is described here.
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general, a tuple <fp,f},...fy;> is called a k-ary world, because it contains k elements, and W, is the

set of all k-ary worlds.
Definition 2: f;: A — 2Wiisa km-order'assignment.

Intuitively, the assignment f, associates with the agent a set of possible k-ary worlds that are

compatible with its depth-k beliefs. f,(A) is the set of k-ary worlds associated with agent by f,.

Definition 3: A modal structure is an infinite sequence <f0f_,, > if the prefix
<fpr-- ;> is a k-ary world forevery k 2 1.

[Fagin and Vardi 85] describes belief structures, which are simply modal structures constrained
to model the logic weak S5. Figure 2-1 shows the first three levels of a sample belief structure and

the Kripke structure that it corresponds to.

f°= wR
w1
f|(A) = wi w2 w3 § ;
f z(A) = wil wi | w2 | w3
w2l wl | w2| w3 \\
Wil wi w2 | W3 w3
90 g,(A) LA

Figure 2-1: A Belief Structure and a Corresponding Kripke Structure
In Figure 2-1, world wpg is the "real world". At level 1, worlds Wy, W, and wy are the worlds
compatible with the agent’s beliefs. Because weak S5 does not require beliefs to correspond to
"reality”, wg is not required to appear at level 1. At level 2, the agent is assigned three sets of

2-ary worlds that are compatible with its beliefs about its beliefs about the world.

The definition of the levels of modal structures in terms of sets ensures that each k-ary world at

each level k is unique. For example, at level 1, no two l-ary worlds have the same truth
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assignment. This is an important departure from Kripke structures, which allow duplicate worlds.
As a result of this change, there is only one modal structure that can represent a particular state of
belief, while there are an infinite number of Kripke structures that can represent it. [Fagin, Halpern,
and Vardi 84] cites this feature as an advantage of modal structures over Kripke structures for

representing particular states of belief.

Figure 2-2 shows a Kripke structure that contains duplicate worlds, and the corresponding modal
structure. For simplicity, a single proposition p is assumed in both structures, and the label on each

world indicates the truth values assigned to p at that world.

A
]

Figure 2-2: Modeling Duplicate Worlds in a Modal Structure

The following sentences are all irue in both the Kripke and the modal structure:
1.Bp> B(Bp v B~p)
2.Bp A ~BBp
3.Bp A ~BB~p.

Semaﬁtic restrictions are placed on the sets of k-ary worlds in the levels of modal structures to
model properties of knowledge and belief, just as restrictions are placed on the accessibility
relation in Kripke structures. Because the worlds in modal structures are accessed recursively at
successive levels, the restrictions on modal structures generally take the form of set inclusion
relations between worlds at different levels. Several semantic restrictions on modal structures are
now shown. The first one is applicable to all modal structures.

T1) Basic Restriction: <g,....gp 2> € fi.1(A) iff there is a 8.1 such that <gg,....8y 2.8, 1> €
fi(A), fork =22,

That is, each (k-1)-ary world forms the prefix of some k-ary world at level k, and each k-ary
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world at level k has as its prefix some (k-1)-ary world from the previous level. Intuitively, each
level extends the agent’s previous beliefs. In Figure 2-1, each world at level 1 is the prefix of some
2-ai'y world at level 2, and each 2-ary world at level 2 has as its prefix some 1-ary world from level
1. |

T2) Full Introspection: if <g,....g,.1> € f((A), then gk_l(A) =fr.1(A), fork 22,

If an agent is fully introspective, the worlds accessible from those at the previous level are exactly
all the worlds at the previous level. That is, an agent knows exactly what it believes and doesn’t
believe at the previous level. In Figure 2-1, the suffix of each 2-ary world at level 2 contains all the
worlds at level 1. T2 corresponds to the transitive and Euclidian (or transitive and symmetric)
restrictions together on Kripke structures, so this restriction should be applied to modal structures
that model S5 or weak 5.5 |
T3) Consistency: f,(A) is nonempty fork 2 1.

This restriction ensures that an agent’s beliefs are consistent. Since worlds are consistent, if there
is some world compatible with the agent’s beliefs at every level, then the agent’s beliefs must be
consistent. This is true in Figure 2-1 T3 corresponds to the serial restriction on Kripke structures,
and is applied to modal structures that model weak S4 or weak S5.

T4) Knowledge:<fy,...fy1> Inf(A),ifk2 1.

If an agent’s beliefs are accurate with respect to the "real world" at level O, then the k-ary world
that models that world is included at every level k of the modal structure. This is not the case in
Figure 2-1, but if it were, world wg would be present at level 1, and level 2 would include a 2-ary
world <wR,[w1;w2,w3]>. This restriction corresponds to the reflexive restricion on Kripke
structures; it is applied to modal structures that model S4 or S5. |
TS) Positive Introspection: if <g, ..., 81> € fi(A), then g, 1(A) < f;_(A), fork 2 2.

To model positive introspection, the (k-1)-ary worlds in the suffix of the tuples at level k must be
a subset of the (k-1)-ary worlds at the previous level. This ensures that what is believed at every
level is also believed at higher levels. If this restriction held in Figure 2-1, the suffixes of the 2-ary
worlds at level 2 could contain any subset of the worlds at level 1. Restriction TS5 is due to [Vardi

85], and is equivalent to restriction T2 except that the equality in T2 is replaced by the subset

SRestriction TS on page 13 shows how to represent positive infrospection without negative introspection.
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relation in TS. Negétive introspection alone would be modeled in the same way except that the
subset relation would become a superset relation so that all worlds from the previous level would
be visible at every level, and everything not believed at one level would also not be believed at the

next level. Restriction TS5 is applied to modal structures that model S4 and weak S4.

The support relations for a sentence at a modal structure are now given. [Fagin, Halpern, and
Vardi 84] proves that the truth of a sentence of depth k is confirmed at level k in a modal

si:ructure.7 p is a primitive proposition, and ¢ and P are formulas of L.
1. <fg--. > |= p iff p is true under truth assignment f;,.

2. <fppedfi> =~ <fi, fy> [# QL
3. <fppdfi> = (@A B iff <fpy... > |= 0 and <fpy,....fp> = B.

4. <fp... fy> |= Baiff <gy,....8 1> |= @ for every <g,....8y.1> € f(A), where o is of
depth k-1.

The truth of all formulas that contain no modal operators is confirmed at level 0 of the modal
structure, while the truth of formulas with k nested modal operators is confirmed at level k. A
depth-k sentence o is satisfied at a modal structure f (written "f |= ") if <f,,.... ;> = 0, and a. is
valid if it is satisfied at every modal structure. Since each modal structure models a single world in
a Kripke structure, this definition of validity is the same as the Kripke structure definition, where o

is valid if it is satisfied at every world.

Each modal structure corresponds to a single state of a Kripke structure, together with its
accessibility information. Moreover, each Kripke structure corresponds to a collection of modal
structures, such that exactly the same set of sentences is satisfied in each. The following theorem

makes the equivalence explicit.

Theorem 4: [Fagin and Vardi 85]. To every Kripke structure M and state S in M, there
corresponds a modal structure fy s such that M,s |= o iff fM,S |= a, for every formula o
Conversely, there is a Kripke structure M such that for every modal structure f there is a
state Syin M such that f |= o iff M,s; |= o, for every formula o.

Proof: Suppose that M = <G,I1, R> is a Kripke structure. For every state s in M, we
construct a modal structure fyg s = <S0,51,-..>, Where s is the truth assignment at II(s).8

"The symbols |= and | are used in this thesis to define the support relations for several logics; the symbols have
distinct definitions for each logic. Because the meaning is clear from the context, however, no confusion arises.

$The truth assignment at modal structures is restricted to a fixed, finite set of propositions
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Suppose we have constructed <sj,...s,> for each state s in M. Then s, _(A) = {<¢,...5> |
sRt}, where <t,...5; > is the (k+1)-ary world constructed for £. We leave it to the reader to
- check that M,s |= o iff f, s = o

To show the converse, let M = <G, I, R>, where G consists of all the modal structures
<fof1s--> II(P) for f € G is the truth assignment f;, and fRg iff <gg,...gx> € fi,1(A) for
every k= 0. As before, Mf|= aiff f|= .

A belief structure has an infinite number of levels. After some level, however, an agent has no
new information to believe that is not implied by a lower level. Hence, the higher levels contain
only the worlds compatible with the beliefs the agent gains by introspecting about its beliefs (and
lack of beliefs) at the previous levels. A level which contains no information not implied by the
previous level is called a no-information extension of the previous level [Fagin, Halpern, and Vardi
84]. This definition is derived from restriction T2, which gives full introspection.

Definition 5: f, ,(A) is the no-information extension of fifA) if fi (A) =
{<ggs--- 8 >g(A) = f(A)}. The no-information extension of the (k+1-ary world w =

<fg,....fy>) is the sequence <fy,...fy . fy . 1,...>, where f (A) is the no-information extension
of f, (A) form >k

[Fagin, Halpern, and Vardi 84] and [Fagin and Vardi 85] claim that the semantic restrictions on
modal structures correspond to the properties of knowledge and belief in a more intuitive way than
the restrictions on the accessibility relation in a Kripke structure. For example, they would claim
that restriction T2, which ensures that beliefs are modeled by the same set of worlds at every level,
models full introspection more naturally than the transitive and Euclidean restrictions on Kripke
structures. They also claim that it is easier to model precisé states of knowledge in modal
structures than in Kripke structures, although this claim has not been demonstrated in print.
Chapters 4 and 5 extend modal structures to model other epistemic logics. In Chapter 6, these

claims are examined with regard to the new extended modal structures.

The clear separation of levels in modal structures, and in particular, the ability to determine the
truth of a sentence of depth k at level k of the modal structure, leads to proofs of soundness and

completeness, as well as decidability, that are technically much simpler than those used with

91f there are several agents, the situation is more complex; see [Fagin, Halpern, and Vardi 84] for details.



16

Kripke structures [Fégin and Vardi 85]. The corresponding proofs for the extended modal
structures are not investigated in this thesis. Determining validity in modal structures is decidable
because there is a finite number of worlds at each level. This is due to both the finite number of
propositions and the prohibition of duplicate worlds. The use of a finite number of propositions is

discussed in Section 6.1.

2.3. Modal Structures as Trees

This section provides an alternate definition of modal structures which clarifies their relationship
to Kripke structures. In particular, a three-step transformation from Kripke structures to modal
structures is presented. The result of this process is a simpler definition of modal structures, given
in terms of trees.10 The correspondence between this new definition and the original definition
of [Fagin, Halpem, and Vardi 84] and [Fagin and Vardi 85] is then illustrated. Finally, it is
demonstrated that when modal structures are defined in terms of trees, the basic restriction on
modal structures (restriction T1 on page 12) is automatically satisfied. The treatment given here is
not intended to be rigorous, but rather is intended to demonstrate the feasibility of the new
definition. The new definition is much simpler than the original one, and makes defining the basic

restriction on modal structures unnecessary.

A Kripke structure can be transformed into a modal structure for a particular world f by a three-
stage transformation, as shown in Figure 2-3. In the figure, worlds g,, g,, and g5 are distinct
worlds with identical truth assignments. In the first step, the Kripke structure is "unraveled" to
form a Kripke tree. The root of the tree is the world f, and the children of f are the worlds g, g5,
and g, which are accessible from f in the Kripke structure. The children of each node g; are all
those worlds accessible from g; in the Kripke structure, and so on. In the figure, g;, g5, and g4 are
accessible from f, so f has three children in the Kripke tree. Worlds g, and g5 each have two
distinct children of their own: g, and f, and g, and x, respectively. World g,, on the other hand,

has two children with identical truth assignments, g; and g,, and one unique child f.

10The possibility of representing modal structures as trees was suggested by Alan Mekler.
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Figure 2-3: Three-Step Transformation from Kripke Structures to Modal Structures

In modal structures, duplicate k-ary worlds are not pérmitted at any level k, so the next step in the
transformation is to collapse the Kripke tree to remove duplicate worlds. Two worlds with
identical truth assignments in a Kripke tree are considered to be distinct only if their subtrees are
not isomorphic. In Figure 2-3, for example, the three children of the root f in the Kripke tree
cannot be collapsed because their subtrees are all distinct. If their subtrees are ignored, however,

the three children of fcan all be collapsed into a single world.

The second step in the transformation then produces a set of finite collapsed Kripke trees, one of
each depth k for k > 0. The collapsed depth-O tree contains only the root. In Figure 2-3, the
collapsed depth-1 tree contains a single child g/ (it could be any of gl, g2, or g3). In the collapsed
depth-2 tree, the root f has two distinct subtrees, the roots of which have identical truth
assignments. The subtree rooted at gl is obtained by collapsing the first two subtrees of the
depth-2 Kripke tree, those rooted at g/ and g2, after first collapsing the duplicate leaves g/ and g3

of the second subtree. This process continues for trees of every depth.

The final step in the transformation is to define the levels of the modal structure that model world
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fin the Kripke structﬁre. Level 0 of the modal structure is simply the truth assignment at world f,
restricted to a fixed, finite set of propositions as in the original definition of modal structures. Each
levél k above level O simply assigns to the agent the subtrees from the collapsed depth-k Kripke
tree. Thus, in Figure 2-3, level 0 is world f. Level 1 assigns the single world g/ to the agent, level
2 assigns it the two depth-1 subtrees from the collapsed depth-2 Kripke tree, and so on. Worlds g/

and g3 have the same truth assignment, so are treated as the same world in the modal structure.

A formal definition for each stage in the transformation is now presented, starting with the Kripke
structure and ending with the new definition of modal structures. The definition of Kripke
structures is the same as in Chapter 4, and is repeated here for convenience.

Definition 6: A Kripke structure is a triple <G,ILLR>, where G is a set of states , ITis a

truth assignment to the primitive propositions at every state, and R is a binary
accessibility relation between states.

Definition 7: The Kripke tree for world f € G, denoted KTREE(f), is a pair <ROOT,
SUBTREES>, where

ROOT = f,

SUBTREES = a multiset!! contalning KTREE(g)
for every g such that fRg.

Note that Kripke trees can contain duplicate subtrees. Let KTREE,(f) denote the depth-k tree for
state f. Then the term SUBTREES, () will be used as shorthand for "the immediate SUBTREES of
KTREE,(f)". The subtrees are, of course, of depth k-1. The ‘predicate CHILD(f,g) is used to
denote the fact that g is a child of £. By the definition of Kripke trees, CHILD(f,g) is true exactly
when fRg is true in the Kripke structure.

Definition 8: A collapsed depth-k Kripke tree for state f, denoted CKTREE, (), is a
pair <ROOT, CSUBTREES>, where

ROOT = f,

CSUBTREES = {} if k=0,

11 ¢, a collection of elements that are not necessarily distinct; it is similar to a set, but allows duplicate elements.
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{CKTREE, ,(g) | CHILD(fg)} if k > 1.

The term CSUBTREES,(f) will be used as shorthand for "the CSUBTREES of CKTREE,(f)".
The subtrees are of depth k-1. Collapsed Kripke trees are defined in terms of sets, and therefore

contain no duplicate subtrees.

Definition 9: A modal structure for world f € G in the Kripke structure is the infinite
sequence <fg.f1,...>, where

fo = I’ (f), where JI' is a truth assignment II
restricted to a fixed, finite set of
propositions,

f, = CSUBTREES, (/) for k = 1.

The correspondence between the new definition of modal structures and the original one given on
page 11 is now sketched. Figure 2-4 shows the correspondence between a k-ary world
<tgt]seenti.1> € f(A) from the original definition and a subtree of a collapsed depth-k Kripke tree,
CKTREE, ,(g) € CSUBTREES,(/), both at level k of a modal structure.

The figure shows that a single k-ary world <#y,t;,...,t, 1> is equivalent toa single depth-(k-1)
subtree of the collapsed depth-k Kripke tree. Intuitively, the assignment ¢, corresponds to the root
g of the subtree, ¢, to the children of g, ¢, to the immediate depth-1 subtrees of g, and so on. The
suffix of the k-ary world, ¢, ;, corresponds to the depth—(k-Z) subtrees of the root g. The
oonesbondence is actually slightly more complicated than this; ¢; actually corresponds to the

collapsed children of g, ¢, actually corresponds to the collapsed depth-1 subtrees of g, and so on.

Collapsed subtrees provide a concise and intuitive definition of the levels of a modal structure.
Another advantage of using collapsed subtrees to define modal structures is that Basic Restriction
T1 on modal structures, given on page 12, is automatically enforced. To show this, it is necessary

to be able to refer to a shortened collapsed subtree,

Definition 10: If CKTREE,(g) is a tree of depth k rooted at g, then CKTREE,(g), m <
k, is CKTREE,(g) shortened to depth m and collapsed to remove any duplicate
depth-(m-1) subtrees of g.
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Figure 2-4: Correspondence Between New and Old
Definitions of Modal Structures
In Figure 2-3, for example, CKTREE,(f) is the depth-2 collapsed Kripke tree for world f.
CKTREE,(f), is CKTREE,(f) without its leaves, and with the two children g, and g collapsed into

one.

Basic Restriction T1 can now be reformulated as follows for a modal structure that models world

f

New T1:
CKTREE, 5(¢) € CSUBTREES, ((f) iff there exists a CKTREE, (g) such that

CKTREE, ;(g) € CSUBTREES,(f), where CKTREE,_(g}.,) = CKTREE, ,(g), fork > 2.
The restriction now says that a particular subtree rooted at g is present at a level only if it is
extended at the next level, and if it is the extension of a tree at the previous level. The equality
condition ensures that a subtree at a level k 2 2 is indeed the extension of a subtree at the previous
. level. This new restriction can be seen to hold in Figure 2-3 for k = 2, if worlds with the same truth
assignment are considered to be indistinguishabie. Intuitively, it holds in modal structures defined

in terms of trees because the subtrees at each level are all taken from the same Kripke tree. Since
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no information is lost in the collapsing process, the leaves of subtrees of depth-(k+1) are always
attached to the leaves of subtrees of depth-k. Similarly, the leaves of subtrees of depth k are always

the roots of subtrees in trees of greater depth.

In this section, I have presented a new definition for modal structures that uses trees, and have
illustrated the correspondence between the new definition and the original one. The new definition
is actually equivalent to the old definition plus the basic restriction on modal structures. This
suggests that it might be simpler to define the semantics of a logic using the new definition rather
than the original one, since it would no longer be necessary to define the basic restriction. The new
definition is also much shorter and more straightforward than the original one, and so may be easier
to use. The new definition, however, assumes the existence of a Kripke structure to be transformed
into a modal structure; the original definition does not require an underlying Kripke structure. The
new definition could perhaps be modified to stand alone, so that it can be used by itself as a
semantic basis for modal logics. In its current form, it clarifies the relationship between Kripke and
modal structures, and provides an alternate, more intuitive picture of modal structures. The
extensions to modal structures described in Chapters 4 and 5 use the original definition of modal

structures.



Chapter 3
Survey of Extended Epistemic Logics

This section describes the extended epistemic logics that are modeled using modal structures
instead of Kripke structures in Chapters 4 and 5. Section 3.1 describes the Logic of Implicit and
Explicit Belief of [Levesque 84b], called BL in this thesis. BL is the basis for the logics surveyed
here in Sections 3.2 and 3.3. Section 3.2 describes BLK and BILA4, the extensions to BL
from [Lakemeyer 87], which allow the agent to hold meta-beliefs and do some forms of
introspection. Section 3.3 describes another version of BL from [Delgrande 87], called DBL in this
thesis, which overcomes BL’s reliance on incoherent situations. Section 3.4 describes a first-order
logic from [Levesque 81] and [Levesque 84a] based on the classical propositional logic weak SS5.
The semantic bases of all of the logics described in this section are given in terms of appropriately
modified Kripke structures. In Chapters 4 and 5, I demonstrate how to represent them using modal

structures instead.

These logics were chosen for study because their varied and non-standard semantic features make
them suitable test cases for the extensibility of modal structures. BL is based on situations (or
partial worlds) as well as worlds, a feature which is retained by all of its successors. BLK and BL4
are intérpreted in terms of two accessibility relations instead of the usual one. DBL assigns a set of
situations for the interpretation of each proposition, rather than a single set of situations for the
interpretation of all propositions. In general, the semantic variations introduced by the logics of
implicit and explicit beliefs have the effect of increasing the number of types of both states and
accessibility relations in the Kripke structure. Finally, the first-order logic has such features as
quantification over individual variables, equality, and standard names. In this case, the basic

structure of the Kripke structure is unaltered, but the definition of a world changes.

22
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3.1. BL: A Logic of Implicit and Explicit Belief

[Levesque 84b] describes a single-agent logic of implicit and explicit belief, where explicit
beliefs are those "actively held" by the agent, and implicit beliefs are all the logical consequences
of the explicit beliefs. This distinction between kinds of belief is an attempt to overcome the
problem of logical omniscience, which arises with the standard epistemic logics. The language of
BL, Ly , is the same as that of weak S5 described in Section 2.1, with the addition of a new modal
operator L, where Lo reads "the agent implicitly believes o'. Ba now reads "the agent explicitly

believes o". No nesting of modal operators is allowed, so the agent possesses no meta-beliefs.

The semantics of BL is given in terms of situations, or partial, possibly inconsistent worlds, as
well as worlds. Propositions are assigned true, false, both or neither at situations, and exactly one
of true or false at worlds. The intuition behind situations is taken loosely from [Barwise and Perry
83]: at any point in time, only certain situations are relevant to the agent’s explicit beliefs, and
these situations need not be consistent with each other or within themselves. The agent believes
exactly those propositions that are true in all situations associated with the agent. A world is a

complete and consistent situation, and is used to model the agent’s implicit beliefs.

The semantics of BL is given in terms of a model-structure, called a BL-model in this thesis to
avoid confusion with modal structures. A BL-model is a 4-tuple <S,B,T,F>, where S is the set of
all situations, B is the set of situations that are relevant to and compatible with the agent’s explicit
beliefs, and T and F are functions that map primitive propositions to sets of situations in which
they are respectively true and false. P is a countably infinite set of propositional variables that
represent primitive propositions. The belief set B replaces the accessibility relation of Kripke-
structures; since there are no meta-beliefs, only immediately accessible situations are required in
the model. The agent’s implicit beliefs are modeled by the set of worlds W(B), which is
compatible with the belief set B. Levesque defines the worlds compatible with a situation s as

follows:

Definition 1: W(s) = { w € S such that forevery p € P,
1. w is a member of exactly one of T(p) and F(p),
2. if s is a member of T(p), then so is w.
3. if s is a member of F(p), then so is w. }
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Every w € W(B) is compatible with some s € B. Bo is true if o is true at every s € B, and Lo is
true if o is true at every w € W(B). All explicit beliefs in BL are also implicit beliefs by the
definition of compatibility; if o is true at every s € B, it must be true at every w € W(B), since

every such w is compatible with some such s.

The full support relations for a situation in a BL-model are shown below for a situation s in model
M. |=r means "supports the truth of", and |= means "supports the falsity of", and | means "does

not support the truth of".

1. M,s =y piff s € T(p).
M,s |=¢ piff s € F(p).

2.M,s |=p (o v B) iff M,s [= & or M,s |=1 B.
M,s |=g (o0 v B) iff M,s |=p ac and M,s |= B.

3. M,s |= (0 A B) iff M,s |=p 0. and M,s |=1 B.
M,s |=g (o0 A B) iff M,s |=p 0t or M,s |=¢ B.

4. M,s |=p ~ouiff M,s |=¢ o
M,s |=p ~ouiff M,s |=p .

5. M,s |=p Ba. iff for every situation ¢ € B, M,¢ |= o
M,s [=g Bau iff M,s [ Bo.

6. M,s |=p Lo iff for every world w ¢ W(B), M,w |=y ..
M,s = Laiff M,s |1 Lot

The truth of a sentence o is verified only at worlds in W(B). In particular, o is valid (written
"l=0") if it is true at all worlds in all BL-models. o is satisfied at a world w € W(S) in a BL-model

M (written "M,w |= a") if w |=p ..

Levesque provides two axiomatizations of explicit belief which are similar to that of the
relevance logic of entailment of [Anderson and Belnap 75]. Implicit beliefs are closed under
modus ponens and contain all explicit beliefs as well as all tautologies and necessary truths. An

axiomatization of implicit and explicit belief, taken from [Levesque 84b], is shown below.

1. La, where . is a tautology.
2.(Ba o Lay).
3.LaAaL(a>B)oLB.
4.B(a A B) =Ba A Bf.
5.Ba.v Bf o B(a v f3).
From ((Ba v BB) o BY), infer B(a v B) o BY.
6. B~~a = Bo.
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From (B> B), infer B~B S B~a.
7.B(oABVvY))DB{(aaB)vy).

Explicit beliefs are not closed under implication, so the agent can explicitly believe p and (p D q)
without having explicitly to believe q. The agent does not have to believe all valid sentences (e.g.
(p Vv ~p)) or certain logical equivalents to its explicit beliefs. In particular, it can believe p without
believing (p A (q Vv ~q)), but if it believes (p A q), it must also believe (q A p). The latter two
sentences are considered to be syntactic variants of the same belief, while the former two are
considered to be different beliefs. The agent may still hold an infinite number of explicit beliefs,
however, by axioms 4 through 7. Finally, the agent can explicitly believe an inconsistency, such as
(p A ~p), without thereby having to explicitly believe everything, as it would if the semantics of BL
were given solely in terms of worlds. If it does explicitly believe (p A ~p), however, then it also

implicitly believes (p A ~p), and hence implicitly believes everything.

BL does not allow meta-beliefs. [Lakemeyer 86] extends BL to allow meta-beliefs in his logics

BLK and BL4; the results are summarized in Section 3.2.

{Fagin and Halpern 85] criticizes Levesque’s logic on the grounds that its freedom from closure
under logical inference stems from the presence of incoherent situations, in which a proposition is
assigned both true and false. In particular, it shows that (Bp A B(p D q)) D Bq) is not satisfied
only if (Bp A B(p 2 q)) D B(q Vv (p A ~p)) is satisfied. That is, the agent can only avoid knowing
all the consequences of its beliefs by believing an inconsistency. This problem is overcome

in [Delgrande 87], which is summarized in Section 3.3.

3.2. The Logics BLK and BL4

3.2.1.BLK

[Lakemeyer 87] extends BL to allow meta-beliefs, so the agent can hold beliefs about its own
beliefs as well as about the world. The guiding principles of this extension are that the agent
should not be logically omniscient with respect to its own beliefs, and should be no more powerful

when reasoning about its own beliefs than when reasoning about the world. The "straightforward



26

extension" of BL-mbdels, which is to replace the belief set B with an accessibility relation in the
manner of a Kripke structure, causes explicit belief to have the fully introspective and logically
omniscient properties of weak S5. Since this is incompatible with his guiding principles,

Lakemeyer uses a more complex semantic model for his logic BLK.

The language of BLK, Ly k, is the same as L, except that nested beliefs are allowed, with the
restriction that no modal operator L may appear in the scope of a B, so the agent cannot hold
explicit beliefs about its implicit beliefs. This is a syntactic restriction on the language, and does
not affect the semantic model. A sentence G € Ly i is said to be pure if it contains a leading B or

L operator. A pure sentence describes the agent’s beliefs.

To accommodate his requirements on the logic, Lakemeyer replaces the belief set B in the BL-
model with two accessibility relations R and R, one each for positive and negative explicit beliefs,
respectively. Positive explicit beliefs are sentences with a leading B operator, such as Ba, B~Ba,
or B(Ba v ~Bf). Negative explicit beliefs are sentences with a leading negated B operator, such as
~Ba, ~BBa, or ~B(Ba. v BB). The intuition is that an agent confirms beliefs by looking in one set
of situations (those accessible through R), and disconfirms beliefs by looking in another (those
accessible through E). The two accessibility relations coincide at worlds, which model the agent’s
implicit beliefs. Specifically,

R1) wRsiff w-ﬁs, for a world w and a situation s in S.

This ensures that (Bow A ~Ba) is not satisfied at a world. Unlike in BL-models, there is no notion
of compatibility between worlds and situations; the worlds accessible through R are used to verify
implicit beliefs. Implicit beliefs are fully introspective, like weak S5, but are not required to be
consistent. The following restrictions ensure that R and R are transitive and Euclidean at worlds
(thus forcing full implicit introspection):

R2) if wRv and vRs, then wRs. (transitive)
R3) if wRv and wRs, then vRs. (Euclidean)

A BLK-model is then a 5-tuple <S,T,F,R,§>, where S, T, and F are as in BL-models, and R and

R are the accessibility relations.

The full support relations for a BLK-model are shown below. Intuitively, Bo is true if o is true in
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all situations accessible through R; Ba is false if o is false in some situation accessible through R.

Lo is true if o is true in all worlds accessible through R. o, of course, can contain modal operators.
L. M,s |=p piff s € T(p).
M,s |=p piff s € F(p).

2. M,s |=1 ~0.iff M,s |=p Q..
M,s |=p ~ouiff M,s [=p Q..

3. M,s |=p L A B iff M,s |=p ctand M,s |=p B.
M,s =g 00 A B iff M,s [= & or M,s |=¢ B.

4.M,s |=p o v B iff M,s |=p &t or M,s |=1 B.
M,s =g o v B iff M,s [=g oc and M,s |=¢ B.

5. M,s |=p Bauiff for all ¢, if sR¢ then M,z l=r o
M,s = Ba iff for some 7, sR¢ and M,¢ 1 .

6. M,s |=p Lo iff for all worlds w, if sRw then Myw |=r o..
M,s |=g Loviff M,s [#p o

As in BL, the truth of sentences of Ly g is verified only at worlds. In particular, o is satisfied at
a world w € S in BLK-model M (written "M,w |= o) if w [=p @, and o is valid (written "[= ") if @

is satisfied at every world w € S in every BLK-model.

The proof theory of BLK adds one new axiom and one new inference rule to those of BL. It is
shown below. The new axiom (#4) says that the agent has full implicit introspective powers over
both implicit and explicit beliefs. The new inference rule (#4) essentially says that the agent can
perform the same explicit relevant implications that it can under BL at any level of meta-belief, as
long as the nesting of modal operators is the same on both sides of the implication. For example, in
BL the sentence B(a A B) D Ba A B is valid. In BLK, BBB(a. A B) > BBBa A BBBJ is also
valid, but B(a A B) > BBa A BBJ is not. BLK thus retains all the properties of explicit belief that

BL has, but for beliefs about beliefs as well as for beliefs about the world.

Axioms:
1. Axioms for standard propositional logic.
2. -L(x> B) o La>Lp).
3.|-Ba> La.
4. |- 6 o Lo, where o is pure.
5. |- Ba.= Booyp, where 0lyp is @ converted into conjunctive normal form (CNF).

6. |- (Ba. A BB) =B(a A B).
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7.1- (Bo.v Bf) o> B(a v B).

Rules of Inference:

1.if |- o and |- (¢ > B), then |- B.
2.if |- o, then |- Lo
3.if |- (B v B) o By, then |- B(at v B) o By.
4.if |- (Bo. A Bf3) o By, then
a. |- B(Ba A Bf) o BBy, and
b. |- ~B~(Ba. A BB) > ~B~BY.

3.2.2. BL4

Lakemeyer extends BLK to allow explicit positive introspection in the logic BL4. A BL4-model
is a BLK-model with two additional restrictions on R for all situations s, t, and u € S:

R4) if sR¢ and tRu, then sRu.
R5) if sRt and Ry, then sRu.

The first condition ensures that R is transitive, while the second is a corresponding restriction for
R. The other restrictions, R1, R2, and R3, still hold in BL4-models, so implicit belief retains the

same properties as in BLK. The support relations for BL4 are the same as those for BLK.

3.3. The Logic DBL

[Delgrande 87] describes a modification to BL that overcomes one of its most serious
shortcomings: its reliance on incoherent situations. In particular, although the modified logic,
called DBL in this thesis, still allows incoherent situations, its lack of explicit logical omniscience
does not depend on them. The language Lppg; is the same as Lp; g except that there is no

restriction on the nesting of modal operators.

The major change to BL is that the set of situations used to verify the agent’s belief in a
proposition that represents a sentence of Lpp; varies with the proposition; the intuition is that a
distinct set of situations is relevant to each proposition. This means, for example, that distinct sets
are used to verify the propositions Ba. and B~ow and the propositions o and (o v B). Thus, an
agent’s belief in both o and ~o is supported not by a set of incoherent situations, but by two
distinct and incompatible sets of situations. The two sets can be incoherent situations, but do not

need to be.
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The semantics is given in terms of a model (here called a DBL-model) M = <S, f, T, F>. §, T,
and F are as in BL, and f is a function that assigns a set of situations for a proposition at a particular
situation. The situations assigned by f are those that are relevant to the proposition, and not
necessarily those that support its truth. f then assigns the same set of situations to logically
equivalent sentences. If llaIIM is the set of worlds in‘ which a is true and denotes the proposition
that o expresses in model M, for example, then Jj(o A B)IM and ||(B A o) are both interpreted in
the same set of situations. This implies that sentences that are logically equivalent to a believed

sentence are also believed.

Since f is a function from situations as well as from propositions, it can be seen as specifying an
accessibility relation for each proposition at each situation. For example, if |[BojM is the
proposition that represents sentence Ba € Lpp; in model M, then f(s,lloy™M) associates with the
agent a set of situations that are relevant to and compatible with its beliefs about o at situation s.
Similarly, f(s, |[B alfM) associates with the agent a set of propositions compatible with and relevant
to its beliefs about believing o at s. The sentence Bo is thus interpreted in the set of situations
assigned to the agent for proposition [[o/M. The set of accessible situations is only relevant to the
interpretation of sentences containing modalities, just as in systems that use an ordinary

accessibility relation.

W is the subset of S that consists of worlds. The function f is restricted at worlds such that the set
of situations it specifies is not dependent on the proposition being interpreted. This ensures that
there is a single accessibility relation between worlds, and hence that implicit beliefs, which are
interpreted at worlds, are interpreted in the standard possible worlds framework. The formal
restriction is
D1) fow,[loM) = £(w,|BIM)

The accessibility relation can then be restricted as required to enforce the desired properties of
implicit belief. In the version of DBL described in [Delgrande 87] there are no such restrictions

specified, so implicit belief has the properties of the logic K.

The support relations for DBL are the same as those for BL except for the interpretation of

sentences of the form Bo. The full support relations are shown below for convenience. As in BL,
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l=r means "supports the truth of", |=p means "Supporcs the falsity of", and |# means “does not

support the truth of". p is a primitive proposition and ¢ and f3 are sentences of Lpyp; .
~ L.M,si=ppiffse T(p).
M,s |=p p iff s € F(p).

2. M,s l=p (o v B) iff M,s |=p ot or M,s [=1 B.
M,s =g (o0 v B) iff M,s |=p ot and M,s |= B.

3. M,s l=p (@t A B) iff M,s |=p &t and M,s |=.B.
M,s =g (o0 A B) iff M,s =g acor M,s [=¢ B.

4. M,s [=r ~ou iff M,s =g o
M,s |=F ~o. iff M,s [=p o

5. M,s |=p Baiff for every situation ¢ € f(s,[loM), M,¢ |=p at.
M,s |= Baiff M,s [# Bt

6. M,s |=p Lot iff for every world w e f(s,[lofM), M,z |= 0.
M,s |=p Loviff M,s [#y Lo

A sentence o is satisfied at a world w € W of model M (written "M,w [= o") if M,w [=p o. o is

valid (written "[= ") if it is satisfied at every world in every DBL-model.

Beliefs can be constrained to be consistent by restriction D2, below. If D2 is applied, the agent
can no longer hold inconsistent beliefs represented by sentences of the form B(a A ~a). D2 does
not, however, exclude the possibility of Ba and B~ both helding at a situation, since f assigns a
distinct set of situations for the interpretation of each.

D2) f(s,)joiM) = D.

The function f is very general and can be constrained as desired to enforce other properties of the
model. For example, f can be constrained to enforce the relationship among the sets of situations
assigned for the interpretation of related sentences, such as Ba and B(a A B), BBa and Ba, and Ba
and Lo. [Delgrande 87] describes several such constraints. Since their development is still in
progress, however, they are not described here, and their counterparts are not derived in Section

4.3, where DBL is represented in a modal structure.
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3.4. KB: A First-Order Knowledge Base

[Levesque 81] and [Levesque 84a] describe a first-order language KL that is used as both the
representation and query language for a knowledge base (KB), and enables the KB to answer
questions about both its domain and its knowledge.!2 The semantics of the language is given in
terms of a possible worlds model which gives the KB the power of weak S5 but extended to a
first-order setting. This section describes the language KL and the semantic model which provides
an interpretation for sentences of KL. In Chapter 5, this language is interpreted instead in a

modified modal structure.

The language KL includes
1. a countably infinite set of predicate symbols of every arity, including the 2-ary

equality predicate "=".

2. a countably infinite set of function symbols of every arity. 0-ary function symbols
behave like constants.

3. a countably infinite set of individual variables.

4. a countably infinite set of parameters, which are isomorphic to the entities in the
domain of the KB,

5. the logical symbols ~ (negation), v (disjunction), and 3 (existential quantification).
The symbols A (conjunction), V (universal quantification), > (implication), and =
(equivalence) are introduced by definition.

6. the modal operator K. If o is a sentence of KL, then Ko is also, and is read "the KB
currently knows that o".

Terms of KL include variables, parameters, and function applications (in which every variable in
the predicate arguments has been replaced by a term); primitivé terms contain only one function
symbol, and closed terms contain no variables. Sentences of KL include predicate applications
(including equalities) and negations, disjunctions, conjunctions, implications, equivalences, and
quantifications involving sentences. Primitive sentences are atomic (i.e., they contain only one
predicate application) and contain no function symbols. If x is a variable, ¢ is a closed term, and o
is a term or sentence containing x, then &%, is the result of replacing every free occurrence of x in &

by ¢. A variable is free if it is not in the scope of any quantifier. A sentence of KL is syntactically

12The KB actually has beliefs about the domain, since its knowledge is not required to be accurate, but it has accurate
knowledge of its own knowledge. The terms belief and knowledge are used interchangeably in this section.
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pure if every predicate symbol (except equality) and every function symbol appears within the
scope of a K operator. That is, pure sentences make statements about the KB’s knowledge rather

than about the domain.

In the semantic model, both terms and sentences are assigned to equivalence classes, the terms to
parameters, and the sentences to one of true or false. Parameters are isomorphic to entities of the
universal domain, so every term is guaranteed to refer to some domain entity. This assignment of
parameters enables the KB to know when two terms refer to the same entity, or co-refer. With v as
this assignment and v[¢] the result of applying v to primitive term ¢, a formal co-reference relation

is defined as follows [Levesque 84a].

Definition 2: The co-reference relation (given v) is the least set of pairs such that

1. if # is a primitive term, then ¢ and v[¢] co-refer.
2.if #; and ¢, co-refer, then so do t"t1 and t",z.

Sentences of KL are either true or failse; the truth values of non-primitive sentences are
determined by the truth values of their component primitive sentences. Let s be the set of all
primitive sentences that the KB believes to be true. v is the assignment described above. Then
[s,v] is a world-structure, which models a "possible world". A KB-structure m, called a KB-model
in this thesis to avoid confusion with the KB-modal-structures in Chapter 5, i\s any non-empty set
of world-structures. The intuition is that a KB-model contains the world-structures that are
compatible with the world knowledge of the KB, or in the terminology of Kripke structures, it

contains the world-structures that are accessible to the KB.

Both a KB-model and a world-structure are needed to assign truth values to sentences; the KB-
mode]l enables the interpretation of pure sentehces, and the world-structure enables the
interpretation of sentences not involving the KB’s knowledge. The support relations for world-
structure [s,v] and KB-model m are shown below. The notation used in[Levesque 84a] is
modified to correspond to that used in the rest of this thesis. ¢ and ¢, are terms, p is a primitive
sentence, q is an atomic sentence,  is a parameter, and o and [ are any sentences of KL. |=is read

"supports the truth of", and |+ is read "does not support the truth of".
1. m,[s,v] =p foreverype s.

2. m,[s,v] |=(t; = ¢,) if t; and ¢, co-refer given v.
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3. (m,[s,v] |= q"t1 iff m,[s,v] |= q",z) if ¢, and ¢, co-refer given v.
4. m,[s,v] |= ~o. if m,[s,v] | Ct.

5. m,[s,v] |= (o v B) if m,[s,v] |= o or m,[s,v] |=.

6. m,[s,v] |= 3xc if m,[s,v] |= ocx,- for some parametér i

7. m,[s,v] =Ko if m,[s’,v’] |= & for every m,[s’,i"] inm,

A sentence o of KL is satisfied in world-structure [s,v] of KB-model m (written "m,[s,v] |= o") if

o is true at world-structure [s,v]. A sentence o of KL is valid, (written "|= ") if it is true at every

[s,v].

Parts 2 and 3 above show how the use of parameters leads to a simple interpretation of equality of
terms and of atomic sentences whose free variables are replaced by co-referring terms. In general,
since every primitive term is assigned a parameter, and variable arguments of predicates and
functions are substituted by terms or parameters, these parts of the definition allow for the

interpretation of the equality of any two formulas of KL.

Part 6 shows how existential quantification can be interpreted using parameters: a sentence ¢
containing a free variable x is true for some value of x if it is true when some parameter is
substituted for x. Universal quantification is interpreted in a similar manner: (Vx)o.is true if o; is
true for all parameters i. This works because of the one-to-one correspondence between

parameters and the domain entities.

Part 7 shows how to interpret pure sentences of KL. There are two cases, depending on whether
« is pure or not in the sentence Ka. If o is not pure, the sentence Ko describes the KB’s

knowledge about the world, and Ka is true simply if « is true at all world-structures [s,v] in m.

If o is pure, then Ka describes the KB’s knowledge of its own knowledge, and Ko is true at [s,v]
and m if o is true at every [s’,v’] € m. For example, let a be KB. Then KK} is true at [s,v] and m
if KB is true at [s’,v’] and m for every [s’,v’] € m. In turn, KB is true at [s’,v’] and m if P is true at
[s’’,v’’] and m for every [s’”,v’’] € m. [s’,v’] is an element of m, so is itself one of the world-
structures [s’’,v’’] which are used in the interpretation of KB. Since every [s’,v’] € m is used to

evaluate the truth of KK, it follows that every world-structure in m is accessible from every other



34

world-structure in lﬁ, including itself. Thus, the world-structures in m form an equivalence class,
and there is an equivalence relation connecting them that is transitive, symmetric, and reflexive.
The "real world" [s,v] need not be accessible from any world-structure in m, although every world-
structure in m is accessible from [s,v]. [Halpern and Moses 85] shows that such a structure, in
which a group of worlds in an equivalence class is accessible from another world, is Euclidean,
transitive, and serial. This combination of restrictions corresponds to the logic weak S5. Thus,

KB-models correspond to Kripke structures that model (first-order) weak S5.

Levesque provides an axiomatization, shown below, which is sound and complete with respect to
the above semantics. There are ten axiom schemata: '

(A1) a>(Bow).

(A2) (@S> (B>Y)> (@)D (@D

(A3) (-B>~a)>((~B>0)>P).

(AD) Vx(a> B)> (Vxa > Vaf).

(AS)  Vxo D o, for any term ¢ substitutable for x13, provided that no function symbol of ¢ gets

placed within the scope of a K in the substitution.
(AE) (i=1i) A (i #)) for all distinct parameters / and j.
(KAX) Ko where ais any of the previous axioms (Al to AE).
(KMP) (Ko A K(a > B)) oK.
(KUG) VaKa o KVxa.
(KCL) a=Koif ais pure.

and two inference rules:

(MP) From o and (o D ), infer .
(UG) From a"il,...,a"i , where the ij’s are parameters in o and one not in ¢, infer Vxor.
n

Detailed discussions of why these axioms were chosen and why they represent desirable
properties of a knowledge base are found in [Levesque 81] and [Levesque 84a]. A brief summary
is presented here. Axiom schemas Al, A2, and A3 are standard axioms for propositional logic.
Axiom schema AD allows the distribution of the universal quantifier over the component formulas

of a non-primitive sentence.

Axiom schema AS, the Axiom of Specialization, says that if a sentence o is true for all values of
~ x, then it is true when any term that can be substituted for x is indeed substituted for x. (Recall that

terms are all assigned to parameters, which represent domain entities.) The proviso is added

13The term must not contain any variables that are free in o. This requirement was pointed out by Alan Mekler.
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because the KB ma)'/ know a sentence to be true for constants and some particular functions whose
values it knows, without knowing it to be true for other functions whose value it does not know.
Fdr example, the sentence "V city [K MajorCity(city,BC) v K ~MajorCity(city,BC)]" is true in the
KB if the KB believes that it knows all the major cities of B.C., so that it can determine whether
any city (say "Victoria") is a major city of B.C. If, however, the function application
“FavouriteCity(Joe)" is substituted for the variable "city”, the KB may not know the answer

because it may not know which city is Joe’s favourite.

The term "FavouriteCity(Joe)" in this case is called a fluid designator, because it can be assigned
to different parameters at different world-structures, and can therefore represent different entities at
different worlds. In this example, Joe’s favourite city may be one of many cities. The term
"Victoria" is called a rigid designator, because it is assigned to the same parameter at every world-
structure, and hence always represents the same entity. The above sentence is true for any rigid
designator, but may or may not be true for a fluid designator, depending on whether the KB knows

which parameter is assigned to it.

Axiom schema AE, the Axiom of Equality, states that every parameter is identical to itself and
distinct from every other parameter. As discussed above, whether the KB knows that two terms are

equal depends on whether it knows which parameters they refer to.

Axiom schema KAX (knowledge of axioms) says that the KB knows all of the axioms discussed
up to this point, and axiom schema KMP (knowledge of modus ponens) says that the KB’s
knowfedge is closed under modus ponens. Axiom schema KUG (knowledge of universal
generalization) says that the KB can generalize its knowledge: if it knows for every value of x that
o is true, then it knows that o is true for every value of x. These three axiom schemas together
enforce the Assumption of Competence, which says that the agent is capable of deducing all the
logical consequences of its beliefs. The Assumption of Competence in essence places an upper

bound on the agent’s knowledge.

Axiom schema KUG is also equivalent to the Barcan Formula (BF) of classical first-order

predicate logic. [Kripke 63b] showed that this formula holds only when the domain is the same
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across all possible worlds in the model, which is the case in KB-models. The Barcan Formula
simplifies the semantics of first-order logics, and is a theorem of the logic FOL + S5. See [Hughes

and Cresswell 68] for a detailed discussion.

Axiom schema KCL (knowledge closure) gives the KB full positive and negative introspective
powers over its own knowledge and allows nested K’s to be reduced to one if o is pure. That is,
KKp(x) may be reduced to Kp(x) because Kp(x) is pure, but Ko = K[dx(p(x) A ~Kp(x))] may not be
reduced because « is not pure. Although the KB’s beliefs about ifs domain may be inaccurate, its
knowledge of its own beliefs is always complete and accurate. Levesque shows that this
assumption, called the Assumption of Closure, guarantees the consistency of a KB. If the KB were
inconsistent, then every sentence would be derivable, and it would thus have to know every
sentence, including one that said that it did not know some other sentence . But by the
Assumption of Closure, the KB would indeed not know .. But this contradicts the assumption that

the KB knows every sentence, and hence the KB cannot be inconsistent.

Inference rule MP is standard modus ponens. Inference rule UG (Universal Generalization) says
that if o is true when x is replaced by a particular set of parameters, then it can be inferred that o is
true for all values of x. The proviso is needed to handle equality correctly: if o is true when x is
replaced by every parameter in o as well as one not in @, then the truth of o inust not depend on
any particular parameter or on parameters with special properties, such as being in o. For example,
if ais ~(1=2), where 1 and 2 are parameters, then it should not be inferred that Vx~(x=2), since it is
the case that (2=2). But if parameter 1 is replaced by parameter 2 as required by UG, o will be

false in one instance, and the generalization will not be made.

AS and UG together ensure that Vxot is a theorem if and only if for every parameter i, o*; is a
theorem, which is needed for Levesque to show soundness and completeness of the axiomatization

with respect to the KB-model.



Chapter 4

Implicit and Explicit Belief
in Modal Structures

This chapter shows how to represent in modal structures the logics of implicit and explicit belief
described in Sections 3.1-3.3. Section 4.1 shows how the logic BL of [Levesque 84b] can be
represented in modal structures, and Section 4.2 does the same for BLK and BL4, the extensions to
BL found in [Lakemeyer 87]. Finally, Section 4.3 shows how to represent DBL, the extension to
BL described in [Delgrande 87], in modal structures. Each section contains a formalization of the
appropriate variation of a modal structure, diagrams to illustrate its structure and properties, and
proofs of correspondence between the new modal structure and the semantic model originally used

to represent the logic.

4.1. BL-Structures

Section 3.1 describes the logic of implicit and explicit belief, BL, from [Levesque 84b] and the
BL-model which provides its semantics. This subsection describes how the semantics of BL can be

described in terms of a modified belief structure called a BL-structure.

BL is different from weak S5 (which is represented in belief structures) in two major ways, and

the BL-structure reflects these differences as described below.

1. Agents whose beliefs are governed by BL can hold no meta-beliefs. BL-structures
are thus restricted to two levels, 0 and 1, since all higher levels represent beliefs about
beliefs.

2. The semantics of BL is given in terms of situations as well as worlds, to account for
both implicit and explicit belief. Belief structures associate with each agent a set of
worlds compatible with its beliefs at every level; BL-structures associate with each
agent a set of worlds and a set of situations at level 1 which are compatible with its
implicit and explicit beliefs, respectively.

Level 0 of a BL-structure, which describes the "real situation", consists of an assignment of truth

37
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values (true, false, Both or neither) to the finite set of primitive propositions which characterize the
situation. Level 1 of a BL-structure consists of an assignment of a set of possible situations and a
set of possible worlds for each agent. A BL-structure can be defined formally as follows. As

before, we assume a fixed, finite set of primitive propositions P, and a single agent A.

Definition 1: sy: P — 2ltruefalse} is 3 OM-order situation truth assignment. wy: P —
{true false} is a 0M-order world truth assignment.

Intuitively, s, assigns true, false, both or neither to the propositions in P, while wy assigns either
true or false to them. fj is the s, that represents the "real situation” at level 0 of a BL-structure.
Definition 2: <sy> is a I-ary situation (abbreviated situation), and <wy> is a I-ary
world (abbreviated world).
A world is a situation. T(p) is the set of all situations at which p is true, and F(p) is the set of all

situations at which p is false, for all p € P. Every world appears in exactly one of T(p) or F(p), but

each situation can appear in one, both, or neither.

Let S; be the set of all 1-ary situations, and W be the set of all 1-ary worlds.

Definition 3: 5;: {A} > 251 is a I-order situation assignment. wy: {A} - 2Wiisa
I%%order world assignment.

Intuitively, s; associates with the agent a set of "possible 1-ary situations”, those elements of S;
that are consistent with its beliefs. Intuitively, w; associates with the agent a set of "possible 1-ary
worlds" that are compatible (see Definition 6) with the situations assigned by s;. Let s1(A) be the
set of 1-ary situations associated with agent A by s, and let w;(A) be the set of 1-ary worlds

associated with agent A by w;.

Definition 4: f; = [s,w;] is a I®-order BL assignment iff w(A) is compatible with
sl(A).

Definition 5: A BL-structure is a two-level modal structure <fy.f;> = <fg,[s1,w1>.

Compatibility between worlds and situations is now defined.
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Definition 6: A 1-ary world <wy> is compatible with a 1-ary situation <s5> € S, if and
only if the following conditions hold:
1. <wy> is a member of exactly one of T(p) or F(p), forevery p € P.

2. if <sy> € T(p) then <wy> € T(p).
3. if <s¢> € F(p) then <wy> e F(p).

The set of worlds w;(A) is compatible with the set of situations s;(A) if every <wy> € w;(A) is
compatible with some <sp> € si(A). This definition of compatibility between worlds and
situations is modeled closely after the definition taken from [Levesque 84b], which is shown in

Section 3.1 on page 23,

Figure 4-1 shows a sample BL-structure f = <f.f;> = <fy, [s1,w]>. sp is the "real situation”. sy,
5y, and wy model the agent’s explicit beliefs, while w; and w; are each compatible with some

situation in 5,(A), and model the agent’s implicit beliefs. Note that s,(A) can contain worlds.

sl(A)=
w (A) =E’ B

Figure 4-1: A BL-Structure

The support relations for situations in BL-structures are analogous to those defined by Levesque
for situations in BL-models. Intuitively, a sentence o without modal operators is true at a BL-
structure fif o is true at Jo- Bavis true at fif o is true in all situations s € 5,(A), and Lot is true if o

is true at all worlds w € w;(A). The support relations follow.
L. <fg[s1;w11> =1 piff <fy> € T(p).
<f0,[S1,W1]> |=F p iff <f0> € F(P)-
2. <fplsywy 1> =1 (0 v B) iff <fy> l=p L or <fp> |=¢ B.
<foolsy:w11> = (a0 v B) iff <fy> |=p at and <fy> = B.
3. <fosls1sw11> =1 (0 A B) iff <fy> |=p ov and <f> |=1 B.
<foolsy:w1 1> =g (0 A B) iff <fy> [=p cor <fp> = B.
4. <foslsy.w11> =1 (~0) iff <fy> = o
<f0’[s1 ’W1]> I=F (~a) iff <f0> I=I- ol
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5. <fp.ls1,w11> [=p Badiff for every <gg.[s;”,w1’1> € 51(A), <gg.[s1";w1’1> |= 0.
“<fools1,w11> =g Baiff <sp> |[#1 Bow

- 6. <fy,[s1,w]> =1 Lauiff for every world <wy,[s,",w;’]> € w (A), <wg,[s"w{’]> |=1 O
<fo,[s1,w1]1> [Fp Loviff <sp> |#p Lo

If <fo> € W, (i.e, <fy> is a world) then « is said to be true at <fy> if <fy> |=p @, and said to be
false otherwise. A sentence o is satisfied (f |= o) if o is true at world <wg> of level 0 in some
BL-structure f = <wgfi>. « is valid (j= o) if o is true at world <wy> of level 0 in every BL-

structure <wy, f1>.

None of the semantic restrictions on belief structures described in Section 2.2 on page 12 are
applicable to BL-structures. T1 (the basic restriction on modal structures) and T2 (full
introspection) are inapplicable because there are no meta-beliefs, and T3 (consistency of beliefs) is
inapplicable to the situations at level 1 because explicit beliefs need not be consistent. T3 is
inapplicable to the worlds at level 1 because if the agent explicitly believes a contradiction, then it
also implicitly believes it. In this case, all the situations in s;(A) would be incoherent, and there
would thus be no compatible worlds in w;(A). None of the axioms in the proof theory of BL

require placing semantic restrictions on the BL-structure.

The equivalence between BL-structures and Levesque’s BL-models is now demonstrated. BL-
structures are equivalent to BL-models in the same way that modal structures are equivalent to
Kripke structures ( [Fagin, Halpern, and Vardi 84}, [Fagin and Vardi 85]). That is, while each
BL-model models a collection of situations, each BL-structure models a single situation. The
following theorem makes the equivalence explicit. Because satisfiability of sentences in BL is
determined only at worlds, equivalence of satisfiability in BL-models and BL-structures is proved

only for worlds.

Theorem 7: To every BL-model M and world w in M, there corresponds a BL-
structure fM,w such that M,w|= o iff fM,w |= o, for every formula . Conversely, there is
a BL-model M such that for every BL-structure f there is a world W in M such that f |=
iff M,wf I= «, for every formula .

Proof: To show the first part of the theorem, suppose M = <S,B,T,F> is a BL-model.
For every s € S, we construct a BL-structure IMs = <Ss f1> = <sg,[s1;w1 1> with A = {a},
where s, is the truth assignment at s. When s is a world, <sg,[s;,w,]> is a world also and
is written <wy,[s{,w,;]>. s gives 5;(A), which is the belief set B, and w; gives wy(A),
which is defined to be compatible with s;(A) in the same way that W(B) is compatible
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with B. T and F are the same in both models. I now show that M,w |= o iff fM’w = o
There are three cases.

oe P:
Suppose first that M,w |= . Then by the definition of |= in BL-models, M,w |=p

o, and by the definition of |=p in BL-models, w € T(c). We need to show that
<wyf1> |= @, or that <wy> |=p @, by the definition of |= in BL-structures. But
since w = <w; f;>, <wy> € T(0), and by the definition of |=f in BL-structures,
<wof1> =1 () as required.
To show the other direction, suppose that fM,w = a. Then by the definition of |=
in BL-structures, <w,f;> |= @, and by the definition of |= in BL-structures,
<wof1> Br @ and <wg f1> € T(o). We need to show that M,w |= @, or that M,w
I=r @, by the definition of = in BL-models. Since wy=winM, w € T(a), sow
[=r o, which gives M,w |= o as required.

o is a formula not containing a modal operator:
Suppose o = (B v v), and suppose also that M,w [=(B v v). Then M,w |=1 (B v ),
and w € T(B) or w € T(y) by the definition of |= for BL-models. But then since
w = <wy>, <wp> € T(B) or <wy> € T(Y). So <wyfi> = (B v ¥), by the
definition of |=p for BL-structures, and fM,w |=(B v V), as required.
To show the other direction, suppose that fM,w |= (B v v). Then by definition of
I=r for BL-structures, <wq,fi> = (B v ), and <wgfi> [=p & or <wyf;> |=1 V.
This means that <wy> e T(B) or <wy> € T(y). Since <wy>=w, w e T(B) orw
€ T(Y), and by definition of |=y and |=in BL-models, M,w |= (B v ¥), as required.
Similar reasoning establishes the equivalence when o is of of form (B A ) or ~.

o=Bp: ‘
First suppose that M,w |= o. Then M,w |=p BB. By definition of |=r in BL-
models, ¢ |=1 B for every ¢t € B, and thus t € T(B) for every t € B. B corresponds
to 51(A) in the BL-structure £, so <tp> € T(p) for every <y,8;> € s1(A). Then by
definition of |=p in BL-structures, <t,g;> |=y B for every <t,g,> € s;(A), and
<wyf1> I=p BB. Then f|=1 BB, as required.
To show the other direction, suppose that fy;,, |= B. Then <wyfi> |=r BB. By
definition of |=p in BL-structures, <#y,g;> |=p B for every <¢;,g,> € s;(A). This
means that <tp> € T(B) for every <#3,g,> € 5;(A). s51(A) in f corresponds to B in
M, sote T(B) forevery t € B, or ¢ |=1 B for every ¢ € B. By definition of |=r in
BL-models, w |=p BB, and hence M,w |=a.
A similar line of reasoning establishes the claim for o = L, substituting w;(A) =
W(B) for s;(A) =B.

To show part 2 of the theorem, suppose that M = <S,B,T,F> is a BL-model where S =

{sfl Sp= <fof1> for every BL-structure f = <f(f1> = <f,[s;,w;1>}. Asinpart 1, B =
51(A), and W(B) =w(A). f|= o iff M,wf |= o by the same reasoning as in part 1.

Levesque’s axiomatization (shown on page 24 in Section 3.1) is sound and complete with respect
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to his BL-model. From Theorem 1 it follows that the axiomatization is also sound and complete

with respect to BL-structures.

4.2. BLK-Structures and BL4-Structures

Section 3.2 describes BLK and BLA4, the two extensions to BL described in [Lakemeyer 86].
Section 4.2.1 describes how to represent BLK in an extended BL-structure called a BLK-structure.
A formalization of a BLK-structure is given, along with three semantic restrictions and a proof of
its equivalence to the BLK-model of [Lakemeyer 87]. The no-information BLK-extension is also
defined. In Section 4.2.2, a modification to the BLK-structure that enables it to represent BL4,
which is BLK with explicit positive introspection, is described. The equivalence between
BLA4-structures and Lakemeyer’s BL4-models is demonstrated, and the no-information

Bl A4-extension is described.

4.2.1. BLK-Structures

BLK is based on BL, and is similar in that it makes use of situations and worlds to model the
explicit and implicit beliefs of a single agent. It differs from BL in the following three ways,

however, and these differences will guide the design of BLK-structures,

1. An agent is allowed to hold beliefs about its own beliefs as well as about the world,
with the syntactic restriction on the language that it cannot hold explicit beliefs about
its implicit beliefs. BLK-structures are therefore not restricted to two levels like
BL-structures, but have an infinite number of levels like belief structures.

2. BLK-models contain two accessibility relations, one each for "positive" and

_ "negative" beliefs; the two accessibility relations coincide at the worlds compatible
with the agent’s implicit beliefs. To accommodate this feature, BLK-structures
assign two sets of situations to the agent at each level. A semantic restriction on the
BLK-structure enforces the coincidence of the two sets of situations accessible from
worlds.

3. The proof theory of BLK contains a new axiom and a new inference rule; the axiom,
which gives full introspection, is enforced through a semantic restriction similar to
the one on belief structures, and the inference rule, which allows relevant
implications at any level, is automatically enforced through the separation of levels in
the BLK-structure.

The BLK-structure must take into account these three differences in such a way as to make a

formula o € Lp; ¢ satisfied in a BLK-structure exactly when it is satisfied in the corresponding
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BLK-model. This iS done as follows. Level O of a BLK-structure contains an assignment of truth
values that represents the "real situation”, as in BL-structures. Each subsequent level associates
with the agent two sets of situations, which correspond to the situations accessible to the agent
through R and R. Level 1 models positive sentences like Bp in the positive set (those situations
accessible through R), and negative sentences liké ~Bp in the negative set (those situations
accessible through R), where p € P. Level 2 models sentences like BBp, B~Bp, and B(p A Bp A
~Bq) in the positive set, and sentences like ~BBp, ~B~Bp, and ~B(p A Bp A ~Bq) in the negative
set. Level 3 models sentences like BBBp, B~BBp, and B(p A B(p A ~Bq)) in the positive set, and

so on for all levels.

The formal definition of a BLK-structure is now given. We assume a fixed, finite set of
propositions P and a single agent A. Since level 0 of a BLK-structure is exactly the same as level 0
of a BL-structure, Definitions 1, 2, and 3 from Section 4.1 (starting on page 38) are used in the

definition of BLK-structures.
Let S, be the set of all 1-ary situations.

Definition 8: f: {A} — 251 is a It-order positive situation assignment. }1: {A} 528

is a I%-order negative situation assignment. [f1, f1] is a I*-order BLK-assignment.

Intuitively, f; associates with the agent a set of 1-ary situations compatible with its explicit positive
beliefs about the world. Intuitively,}"l associates with the agent a set of situations compatible with
its explicit negative beliefs about the world. In general, <f;, [flfl],...,[fk_lfk_lb is called a k-ary
BLK-situation. If <fy> is a world, <fy, [fyfy],---lfi1 fi.11> is also called a k-ary BLK-world. Let S,
be the set of all k-ary BLK-situations. Suppose that k-ary BLK-situations have been defined
recursively for all k > 0. Then the (k+1)-ary BLK-situation for each situation is defined recursively

as follows.

Definition 9: f,: {A} — 25« is a k-order positive situation assignment. f,: {A} = 25
is a kM-order negative situation assignment.

Intuitively, f; assigns to the agent a set of k-ary BLK-situations which are compatible with its

positive explicit depth-k beliefs. Intuitively,]_‘k assigns to each agent a set of k-ary BLK-situations
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which are compatible with its negative explicit depth-k beliefs. f(A) is the set of k-ary BLK-
situations assigned to the agent by f,, and }k(A) is the set of k-ary BLK-situations assigned to the
agent by ]-fk. W(fi(A)) is the set of k-ary BLK-situations <g0,[g1,:g-1],...,[gk_l,gk_1]> € fi(A) in
which <gg> is a world. The suffix of a k-ary BLK-situation <fy,[f;i1[fi 141> is the
(k-1)-order BLK-assignment Vi ljk-l]‘

Definition 10: The infinite sequence <f;, [fl,;—‘l], [fz,;’z],...> is a BLK-structure if every

BLK-prefix <fy, [fl,,;‘l],...,[fk.l,;’k_l]> is a k-ary BLK-situation for every k > 0, and the
structure satisfies the semantic restrictions S1, S2, and S3 given below.

Figure 4-2 shows the first three levels of a sample BLK-structure, and the corresponding BLK-
model. The BLK-structure models world w; of the BLK-model. In the BLK-model, the solid lines

represent the accessibility relation R and the dashed line represents R.

Figure 4-2: A BLK-Structure and the Corresponding BLK-Model

The unshaded regions at level 1 of the BLK-structure (in f;(A)) contain situations compatible with
positive beliefs about the world (those accessible through R from w), while the shaded regions (in
}I(A)) contain situations compatible with negative beliefs about the world (those accessible through
R from w)). Level 1 contains two situations and a world in each of f;(A) and ]-CI(A). The suffix of
each 2-ary BLK-situation at level 2 contains situations compatible with both positive and negative

beliefs, to represent beliefs of the form BBa: and B~Ba: in f,5(A), and ~BBa and ~B~Ba in]-CZ(A).
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In each element of f(A), g;(A) contains the uhshaded elements, while §1(A) contains the shaded
elements, and similarly for ]-’2(A). Each element of f,(A) (and ?k(A)) at every level is itself the

prefix of a BLK-structure that models some situation of the BLK-model.

Three semantic restrictions are needed to enforce the properties of BLK. S1 and S3 are closely
related to T1 and T2 of the belief structures, described in Section 2.2 on page 12. S2 enforces the

coincidence of R and R at worlds.

S1) Basic Restriction: <g, [gl,gl],..., [gk_z,gk_2]> € fi1(A) (f.1(A)) iff there exists a [gk_l,gk_l]
such that <gg, [g1,811:-+» [8k2:8k.2)s [8.1:8k-11> € fi(A) (fi(A)) fork 2 2.

S1 simply says that each (k-1)-ary BLK-situation at level k-1 forms the prefix for at least one
k-ary BLK-situation at level k, and the prefix of each k-ary BLK-situation at level k is equivalent to
some (k-1)-ary BLK-situation at level k-1. In Figure 4-2, for example, each of the three elements
of f(A) forms the prefix of some 2-ary BLK-situation in f,(A), and the prefix of each 2-ary BLK-
situation in f,(A) is equal to some element of f;(A). The same is true of]-‘l(A) and]-‘Z(A).

S2) wRsiff wRs: If <fy> is a world in the BLK-structure <fp,[f;f;],-..> then f,(A) = £(A) for all k
> 1.

Restriction S2 corresponds to the BLK-model restriction wRs iff wRs, which ensures that (Bo. A
B~q) is never true at a world. Since each BLK-structure models a single situation in a BLK-
model, this must be enforced whenever <f;> is a world. In a BLK-structure, the truth of a positive
depth-k sentence Ba is determined in some part of the positive set at level k, while the truth of the
corresponding negative sentence (~Ba) is determined in the corresponding part of the negative set
at level k. So if <f;> is a world, the positive and negative sets at each level must be the same.
Restriction S2 is illustrated in Figure 4-2. Notice that it holds not only in the main BLK-structure,
but also within the 2-ary BLK-world in fy(A) and f,(A).

$3) Full Implicit Introspection: If <wq, [g1,811;--+[8y 1-8,.1]> € fi(A) then g,_;(A) = fi;(A) for
k22, |

S3 enforces the new introspection axiom by stipulating that the positive part of the suffix of each
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positive k-ary BLK-world must contain exactly all the (k-1)-ary BLK-situations in the positive set
of the previous level. In Figure 4-2, for example, f,(A) contains one 2-ary BLK-world. The
unshaded parts of its suffix (g;(A)) contains all the situations in f;(A). Since implicit beliefs are
confirmed at positive BLK-worlds (see the definition of the support relations below), this ensures
that the agent implicitly knows about all of its positivé beliefs of the previous level. Although only
the positive part of the suffix (g;(A) in this example) is restricted by S3, the negative part (EI(A) in
this example) is restricted in exactly the same way by the application of S2 above. Combined with
the fact thatj—‘l(A) = f1(A) (also by S2), this ensures that the agent also implicitly knows about all of

its non-beliefs of the previous level, and is thus capable of full introspection.

The new BLK inference rule requires that the agent be able to make relevant implications at any
level as long as the nesting of operators is the same on both sides of the implication. This is
automatically enforced in BLK-structures by the strict separation of levels. For example, if BB(a
A PB) is true at level 2 of a BLK structure, then (BB A BBp) is also true. But the truth of BB(at A
B) at level 2 does not imply the truth of (BBBa A BBB) at level 3 because there is no enforced
transfer of BLK-situations from level 2 to the suffixes of level 3 in accessible situations, which is

where explicit beliefs are interpreted.

The truth of individual sentences is verified in a BLK-structure by recursively restricting the set
of BLK-situations to be inspected. The full support relations for a (k+1)-ary BLK-situation <f,
i ,?1],...,[fk,;-‘k]> are shown below; for comparison, the support relations for BLK-models are shown
on page 27. pis a primitive proposition, and «. is a sentence of L. ‘

L. <fo lfy f ) lfifi)> =7 P iff <fy> € T(p).
< folff ) lfich> I=p P iff <fy> € F(p).

2. <folfyfy b lfifid> op ~0UfE <foulfy fy e lfidid> g O
Solfyfilwolfiil> =g ~ 0 iff <fgulfy fy boenslfii]> = O

3. <folfyfy)lficid> =T @ A B folfy filenlfifild> l=7 0 and <fo [y 11 liid>
I=r B.
Efo,[fl,?ll,...,[fkik]> =g 0 A Biff <flf i beelficil> =g 0 0r <,y i), liid> =5

4. Efo,[fl,?ll,...,[fk,?k]> =p 00V Biff <o lfyfielfichid> F=r @ or <flfy fi L lfifid> =t

<fo,[f1j1],--~,[fka?k]> =g & v B iff <fo,[f1]1],---,[fkjk]> =g o and <fo,[f1j1],---,[fk]k]>
=g B.
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5. <f0,[f1,f1], ,[fk,fk]> =r Bo iff  <golgggilel8k18c1)> Fp o for all
<go,[81’81], ,[gk.l:gk.1]> € fk(A)
Solfifholfifid> =g Ba iff <gole1,81)l8k181]> 2y @ for some
<8o,[81’g1],---,[gk.1s_g-k.1]> € ?k(A)-

6. <foplfifilolfichid> I=r Lot iff  <wp,lg.8)el8i 8 q]> Fp o for all
WoL81:81 b8y 1,811 1> € WH(A)).
Soplfif (boslfidid> =g LOUEE <fou [y ) i )> 27 O

The truth of a sentence o of depth k is verified at level k of the BLK-structure. Satisfiability and
validity of sentences are determined only at BLK-structures that model worlds in the BLK-model.
Specifically, the BLK-structure f = <wy, [fl,;‘l],...> is said to satisfy sentence o of depth k (written "f
= o) if <w0,[f1,;‘1],...,[fk_1,?k_1]> l=r . o is valid (written "[=0") if it is satisfied in every BLK-

structure <W0, [fl’fl]’"')'

The equivalence between BLK-structures and Lakemeyer’s BLK-models is similar to the
equivalence between BL-structures and Levesque’s BL-models: BLK-structures model a single
situation, while BLK-models model collections of situations. The following theorem makes the
equivalence explicit. It shows the correspondence between the parts of the two models, and proves
that a sentence o is satisfied in one if and only if it is satisfied in the other. Since satisfiability in
both models is determined only at worlds, the theorem shows the correspondence of satisfiability

only for worlds.

Theorem 11: To every BLK-model M = <S,T,F,R,R> and world w in M, there
corresponds a BLK-structure fyy ., such that M,w |= o iff fyy ., I= @, for every formula .

Conversely, there is a BLK-model M such that for every BLK-structure [ there is a world
wfm M such that f |= o iff M wft- a for every formula o.

Proof: To show the first part of the theorem, suppose M = <S,TF,R.R> is a BLK-
model. For every situation s € S in M, we construct a BLK-structure fM,s = <fo.lf1:f1)s
[fz:?zl,--?, where f; is the assignment at situation s. Suppose we have constructed a k-ary
BLK-situation <f0,[f1,)-‘1],...,[fk_1,?k_1]> for each situation s € S. Then fi(A) = {<g,
[81:81)--[81-8k.1]> | sRg}, and £ (A) = {<hg, [hyhylsliy i q]> | SRR}, where
<g0,[gl,Ell,...,[gk_l,Ek_lb is the k-ary BLK-situation constructed for g, and
<hglhyhy).i [y 1,k 1> s the k-ary BLK-situation constructed for h. As well,

W(fi (A)) = {<wy, [gl,gl],...,[gk_l,gk_lb | sRw}, where w is a situation g € S that is a
world. I now show that M,w |= o iff’ fM,w = o
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!

ae P:
The proof is similar to its counterpart in the proof of Theorem 7 on page 40.

a. is a formula not containing a modal operator:
The proof is similar to its counterpart in the proof of Theorem 7 on page 40.

o = By, where a is of depth k+1:
First suppose that M,w |= o. Then M,w |=; By, by definition of |= in BLK-
models. By definition of [= in BLK-models, M,¢ |= 1Y for every ¢ such that wRt.
But by the construction, the set of all such situations ¢ is equivalent to the set of
k-ary BLK-situations <g,[81,81],[8.1-8. 11> € f(A) in the BLK-structure
e Then <folfyfil...lfifill> l=p By by the definition of |=p in BLK-
structures, and by the definition of |= in BLK-structures, M,w = @, as required.

To show the other direction, suppose that fy W |= o. Then by definition of |=r in

BLK-structures, wa l=rBy and <g0,[g1,g1], ,[gk_l,gk_1]> l=r ¥ for every
<80 [gl,gl], ,[gk_l,gk_1]> € fk(A) But by the construction fk(A) is equivalent to
the set of situations ¢ such that wRt in BLK-model M, so M,¢ |= ¥ for every ¢
such that wRe. But then Myw |= By by definition of |=y in BLK-models, and
M,w |= a. by the definition of |= in BLK-models, as required.
= ~BYy, where o is of depth k+1:

The satisfiability of a sentence ~By is verified in BLK-models by looking at the
situations accessible from w through R and in BLK-structures by looking at the
situations in set fk(A) at level k+1 of wa But in BLK-models, wRs iff wRs

(restriction R1 on BLK-models), and in BLK-structures, fi(A) = fk(A) (restriction
52 on BLK-structures). R1 and S2 are proved equivalent in Theorem 12. Thus,
that fM,w = ~By iff fM,w |= ~By follows from Theorem 12 and the above proof of
this theorem for y = BY.
o = Ly, where a.is of depth k+1.
First suppose that M,w |= .. Then M,w I=r LY, by definition of |= in BLK-
models. By definition of |=p in BLK-models, M,w =y 7 for all worlds v such that
wRv. But the set of such worlds v is equivalent by the construction to the set of
(k-ary) BLK-worlds <f;,[f; ,fl], ,[fk_lfk_1]> € W(f(A)) in the BLK-structure
fM,w- <f0,[f1f1],...,[fk_1fk_1]> l=r Ly, by the definition of |= in BLK-structures,
and by the definition of |= in BLK-structures, f |= ¢, as required.
To show the other direction, suppose that fM,w |= ¢.. Then fM,w I=r Ly, by
definition of |= in BLK-structures, and by definition of l=r in BLK-structures,
<w,[81,81 1) [8k-1,8k-11> I=7 ¥ for every <wy,[81,811,--..[8x1:8¢.11> € Wi (A)).
But the set W(f,(A)) is equivalent by the construction to the set of all worlds v
such that wRv, so M,v |=p ¥ for every such v by the definition of |=p in BLK-
models. Then M,w |=1 Ly, and M,w |= o by the definition of |= in BLK-models,
as required.
To show the converse of the theorem, let M = <S,T,F,R,i> be a BLK-model where S =
{sr | s; = fo for every BLK-structure f = <fy, [f;fyl..>}. Then sRg iff
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<8prl81.81 18118k 11> € f(A), and sRA iff <hoy[hyhy)elly 1l 1> € F(A) for
every k 2 1, where <g0,[g1,g1], ,[gk_l,gk_1]> is the k-ary BLK-situation that corresponds

to g, and <h0,[h1,h1], ,[hk_l,hk 11> is the k-ary BLK-situation that corresponds to .
W(f(A)) is defined as above. f|= o iff M, Wr |= a by the same reasoning as in part 1.

The next two theorems demonstrate that the restrictions on the BLK-structures correspond to the
restrictions on the BLK-model. In particular, Theorem 12 shows that the two accessibility relations
coincide at worlds in a BLK-model exactly when restriction S2 holds in the corresponding BLK-
structures. Theorem 13 shows that a BLK-model is transitive and Euclidean exactly when the
corresponding BLK-structures satisfy restriction S3.

Theorem 12: Let M = <S,T,F,R,R> be a BLK-model. A BLK-structure fy is
constructed for every s € S as described in the proof of Theorem 11. Then the restriction
"wRs iff wRs" holds in M iff the restriction "f(A) = fk(A) for all k 2 1" holds in every
fp,w that models some world w e § in M.

Proof: First suppose that "wRs iff wRs" holds for every world w & S and situation s &
S in M. Then for every w, the sets of situations accessible through R and R are the same.
Let fi, be the BLK-structure constructed for any w. Then at every level k 2 1, fi(A) is
the set of k-ary BLK-situations that correspond to the situations s such that wRs, and
fk(A) is the set of k-ary BLK-situations that correspond to the situations s such that wRs.

But then £, (A) = fk(A) forallk =1,

To show the converse, suppose that f,(A) =}k(A) in every modal structure fM,w which

corresponds to some world w € S in M. At every level of each fM,w’ fi(A) (;‘k(A))
con_tajns all the k-ary BLK_—situations which corres_;_>ond to the set of sitliz_ltions {s | wRs
(wRs)}. But since fi(A) = £ (A), {s| wRs} = {s | wRs}, and so wRs iff wRs.

The equality in Restriction S3 can be broken into two subset relations, one direction
corresponding to the transitive restriction on the worlds in M (which models positive introspection)
and the other direction to the Euclidean restriction (which models negative introspection).
Theorem 13 thus consists of two parts. The following two figures may aid in following the proof
of Theorem 13.

Figure 4-3 shows a transitive BLK-model and the first three levels of the corresponding BLK-
structure. It is the same as Figure 4-2 except that the Euclidean property does not hold in the

BLK-model, and the situations have been renamed to correspond more closely to the proof. The
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transitive property (if wRv and vRs then vRs) holds only if w and v are worlds. In the Figure, w
and v are worlds, and s, 55, 55, and s4 are any situations. The solid lines represent the accessibility
relation R, and the dotted lines represent R. This figure will be helpful in following the first part of

the proof of Theorem 13.

Figure 4-3: A BLK-Structure with Implicit Positive Introspection

Figure 4-4 shows a Euclidean BLK-model and the corresponding BLK-structure. It is the same
as Figure 4-2 except that the transitive property does not hold in the BLK-model, and the situations
are renamed as in Figure 4-3. The Euclidean property (if wRv and wRs then vRs) holds only if w
and v are worlds. The accessibility relations are as in Figure 4-3. This Figure will be useful in
following the second part of the proof of Theorem 13.

" Theorem 13: Let M = <S,T,F,R,ﬁ> be a BLK-model. A BLK-structure fM,s is

constructed for every s € S as described in the proof of Theorem 11. Then the following
two statements are true.

Positive Introspection: The __transitive rgstriction "if wRv and vRs then wRs" holds in M
iff the restriction "if <vg,[g;,81],-...[8x_1,8¢-1]> € fx(A) then g, _1(A) C fi 1 (A) for k = 2"
holds in I where fM,w = <f0,[f1,-7-‘1],...> is the BLK-structure constructed for world w €

S and My = <v0,[g1,§1],...> is the BLK-structure constructed for world v € S.

Negative Introspection: The I_S_uclideah restriction "if wRv and wRs then vRs" holds in
M iff the restriction "if <v(,[g1,81)s-.-:[8).1:8k-1]> € fi(A) then g, _(A) 2 fy_1(A) for k 2
2" holds in fM,w’ where fM,w = <f0,[f1f1],...> is the BLK-structure constructed for world

we Sand My = <v0,[g1,§1],...> is the BLK-structure constructed for world v € S.
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Figure 4-4: A BLK-Structure with Implicit Negative Introspection

Proof: Positive Introspection: First suppose that "if wRv and vRs then wRs" holds in
M for w, v worlds in S and s any situation in S. W(f, (A)) is the set of k-ary BLK-worlds
in wa that corresponds to the set of worlds {v | sRv}, for k 2 1. Let M,y be the
BLK-structure constructed for each such v. Then W(f(A)) contains the k-ary BLK-

world <v, [gl,gl],...,[gk_l,-g-k_l]> from each &M,y 8x.1(A) in each such tuple is the set of

(k-1)-ary BLK-situations that corresponds to the set of situations {s | vRs}, for every k 2
1. Let hy; ¢ be the BLK-structure constructed for each such s. Then g, _;(A) contains the

(k-1)-ary BLK-situation <s0,[h1,Zl],...,[hk_z,zk.zb from each hy s But we also know
that wRs. So, f,_;(A) also contains the (k-1)-ary BLK-situation <s0,[h1,Zl],...,[hk_z,_’;k_zb
from each hy ¢ as well as the (k-1)-ary BLK-worlds in W(f_;(A)). So g,_;(A) € fi.1(A)
for every k> 2.

To prove the converse, suppose that "if <v0,[g1,El],...,[gk_l,gk_l]> € f(A) then g1 (A)
C fi.1(A) for every k 2 2" holds in Imw  W(fi(A)) contains the k-ary BLK-worlds
<v0,[g1,-g_l],...,[gk_l,gk_l]> that correspond to the worlds {v | wRv}, for all k > 1. Within
each such tuple, g,_;(A) contains the (k-1)-ary BLK-situations <s0,[hl,;z-l],...,[hk_2,ﬁk_2]>
that model the situations {s | vRs}. So we have established that wRv and vRs. But we
know that g, ;(A) C f_1(A), 50 fi_;(A) must also contain all the (k-1)-ary BLK-situations

<s0,[hl,-h-l],...,[hk_z,;z-k_zl> that correspond to the situations {s | vRs}. But then it must be
the case that wRs as well, by the definition of f;_;(A).

Negative ntrospection First suppose that "if wRv and wRs then vRs" holds in M for
w, v worlds in S and s any situation in S. £ (A) is the set of k-ary BLK-worlds in M
that corresponds to the set of worlds {v | va} (in W(f,(A))) and the situations {s | wRs},

for every k 2 1. Let M,y = <v0,[gl,81],...> be the BLK-structure constructed for each
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such v, and let Ay ¢ = <s0,[h1,zl],...> be the BLK-structure constructed for each such s.
Then for some k 2 2, W(f_;(A)) contains the (k-1)-ary BLK-world

<v0,[g1,—g-1], o[8y- 2’§k-2]> from each &M,v and f,_;(A) contains in addition the (k-1)-ary
BLK-situation <s0,[h1, 1) ’[hk~2’hk »]> from each hM s Atlevel k, W(f,(A)) contains

the k-ary BLK-world <vg,[81,8;1,.--[8y.2:8.2:[8.1-8k.1]> from each 8m,» and since we
also know that VvRs, g ;(A) contains the (k-1)-ary BLK-situation

<s0,[h1,h1], olhy 2,hk »]> from each hM o Since wRv and wRv implies vRv by the
Euclidean  restriction, g, ;(A) also contains the (k-1)-ary BLK-world

<vo,[g1,21],...,[gk_2,§k_2]> from each M, 8x-1(A) may also contain other (k-1)-ary
BLK-situations, since additional situations may also be accessible from v. So we have
that g, ,(A) 2 1(A) forevery k=2,

To prove the converse, suppose that "if <w0,[g1,El],...,[gk_l,-g_k_l]> € fi(A) then g _;(A)
2 fx-1(A) for every k 2 2" holds in fM,w- W(f,_1(A)) contains the (k-1)-ary BLK-worlds
<v0,[g1,§1],...,[gk_2,§k_2]> that correspond to the worlds {v | wRv}, and f;_;(A) contains

in addition the (k-1)-ary BLK-situations <s0,[h1,-l;1],...,[hk_z,zk_2]> that correspond to the
situations {s | wRs}. W(f,(A)) contains the corresponding BLK-worlds

<v:[81:81)--5[8k2:8k-2):[8x 1,8k-1]> to those in W(f,_;(A)), by the basic restriction S1.
But we know that g, _;(A) 2 fi_;(A), so g,_;(A) must also contain all the (k-2)-ary BLK-
situations in f ,(A). But then vRs (including vRv) for every corresponding situation
(and world) in M.

The axiomatization of BLK given on page 27 is both sound and complete with respect to BLK-
models. From Theorems 11, 12 and 13, it follows that the axiomatization is also sound and

complete with respect to BLK-structures.

BLK-structures, like belief structures, are infinite in height. When no more new information is
known, implicit beliefs continue to accumulate as the agent continues to introspect. These implicit
beliefs can be propagated upwards through the levels by using a no-information BLK-extension

similar to the no-information extension of belief structures, described on page 15.

Intuitively, the no-information BLK-extension U1 J-‘k+1] describes the agent’s depth-(k+1)
beliefs, given that it has no new information than that expressed in its depth-k beliefs. The explicit
and implicit no-information extensions begin at the same level, since explicit beliefs are implicit
beliefs. The suffixes of positive (k+1)-ary BLK-worlds in the no-information BLK-extension

contain the entire previous level, to model the fact that the agent’s implicit beliefs at that level are a
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result of introspecting about its beliefs at the previous level. The suffixes of positive (k+1)-ary
BLK-situations contain all possible (k+1)-ary BLK-worlds to model the fact that the agent has no
pbsitive beliefs about either its beliefs or its non-beliefs at the previous level. The suffixes of all
negative (k+1)-ary BLK-situations and BLK-worlds contain all possible (k+1)-ary BLK-worlds to
model the fact that the agent does not believe anythiﬁg at that level. The formal definitions follow.

Definition 14: [f, +1’}k +1] i8 the no-information BLK -extension of [fk,}k] if
L fie1(A) = {<8g» [81:81]-+ [8c-1:8k1)» [818y]> such that
a.<gp 8181k - g1l [8p8l> € fiu(A) iff <g,
[81,21],.--,[gk_1,§k_1]> € f(A) (to satisfy S1),
b. if <g,> is a world, g, (A) = g;(A) = £ (A) (to satisfy S2 and S3),
c. if <gy> is not a world, g, (A) = Ek(A) = Wi}, and
2-}k+1(A) = {<go,[81’51],---,[81(.1’Ek-ll,[gk,gkb such that
a.<golergh - BeiBcbleesd> € @) iff
<80o181:81 18k 1:811> € fi(A) (to satisfy S1),
b. g(A) = g(A) = Wy}.

Definition 15: The no-information BLK-extension of the (k+1)-ary BLK-situation f =
<f0,[f1,f1], ,[fk,fk]> is the sequence <f0,[f1,f1], ,[fk,fk] I8 +1:fk +11>-..>, where [f, f ]is
the no-information BLK-extension of [fm_l,fm_l] for m > k. If <f> is a world, then also
fon =F for m >k (to satisfy S2). -

Figure 4-5 shows a BLK-structure which models the beliefs of an agent who has explicit beliefs
only about the world (at level 1). [fz,;"2] is then the no-information BLK-extension of [fl,?l]. The
corresponding BLK-model is also shown. The first tuple in £,(A) and all tuples in}z(A) contain all
possible 1-ary BLK-worlds in each of g;(A) and EI(A) to show that the agent has no beliefs about
what it does and does not believe about the world. The second tuple in f»(A) models a world, so
the positive part of its suffix contains all the tuples from f;(A) of level 1 to show that the agent
holds implicit beliefs about its beliefs about the world. Because it is a world, EI(A) is the same as

81(A)-

Theorem 16: For all BLK-situations f, the no-information BLK-extension is a BLK-
structure.

Proof: It suffices to show that if f = <fy, [f; fj],...[fifi]> is a (k+1)-ary BLK-situation,
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Figure 4-5: A No-Information BLK-Extension and the Corresporiding BLK-Model

and [f, +1’}k +1] is the no-information BLK-extension of [f,, J-‘k], then <f,, [flfl],..., [fk,;‘k],
e +1=?k 411> satisfies S1, S2, and S3. S1 and S3 are satisfied by definition 14, and S2 by
definition 15.

4.2.2. BL4-Structures

[Lakemeyer 87] transforms BLK into BL4, in which the agent’s explicit positive beliefs are
subject to positive introspection, by making R transitive for situations as well as worlds and adding
the balancing restriction that for all situations s, ¢, and u, if sRt and Ru, then sRu, BL4 can be
modeled in a BL4-structure, which is a BLK-structure with one additional semantic restriction, S4,
to enforce explicit positive introspection. The formal definitions of a BL4-structure and restriction
S4 are given below. The support relations for BL4-structures are exactly like those of BLK-

structures.

Definition 17: The infinite structure <f, [flfl],...> is a BLA-structure if the prefix <f;,

[flfll,...,[fk_lfk_l]> is a k-ary BLK-structure for every k and the structure satisfies the
semantic restrictions S1, S2, S3, and S4.

S4) Explicit Positive Introspection: If <go,[g1,81], ,[gk_l,gk_1]> € fi(A) (fk(A)) then g, ;(A) c
fie1(A) (F(A)) for all k> 2.
S4 says that at every level k above level 1, the positive part of the suffix of k-ary BL4-situations
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in both the positive and negative sets is a subset of the full positive and negative set at the previous
level, respectively. This is illustrated in Figure 4-6, which shows a BL4-structure and the
associated BL4-model. In the figure, w and v are worlds, while r, s, ¢, and 1 are not. In every tuple
of f,(A) the set g;(A) is a subset of f{(A), and similarly, every set g;(A) in }’2(A) is a subset of
}’I(A). In the tuples that model worlds w and v, the same is true of EI(A). In the tuples that model

the situations r and ¢, :g-l(A) is not a subset of the sets in the previous level.

Figure 4-6: A BL4-Structure and the Corresponding BL4-Model

Theorem 18 shows that the two new restrictions on BL4-models hold in a BL4-model M =
<S,T,F,R,§> exactly when restriction S4 holds in the corresponding BL4-structure. The theorem
is in two parts, one for each of the restrictions on BL4-models.

Theorem 18: Let M = <S,T,F;R,R> be a BL4-model. A BLK-structure fy  is

constructed for every s € S as described in the proof of Theorem 11. Then the followmg
two statements are true.

Part 1: The transitive restriction "if sR¢ and Ru then sRu" holds in M exactly when the
restriction "if <t0,[g1,g1], [8k-1 ,gk_1]> € fy(A) then g 1(A) C f,_1(A)" holds in fy, -
where fM,s = <s0,[f1,f1],...> is the BL4-structure constructed for situation s € S and M, =
<t0,[g1,§1],...> is the BL4-structure constructed for situation ¢ € S.



56

Part 2; The transitive restriction "if sRt and 7Ru then sRu" holds in M exactly when the
restriction "if <g,[87,81 ) [8x.1-8x.1]> € fi(A) then gy 1(A) < f; ((A)" holds in Fits
where fM, s = <Sg:lfy ,7-’1],...> is the BL4-structure constructed for situation s € S and M, =
<t0,[g1,§1],...> is the BL4-structure constructed for situation ¢ € S.

Proof: Part 1: First suppose that "if sR¢ and fRu then sR«" holds in M for s, ¢ and « any
situation in S. f,(A) in fM,s is the set of k-ary BL4-situations that corresponds to the set

of situations {z | sR¢}, for every k 2 1. My = <t0,[g1,§1],...> is the BL4-structure
constructed for each such ¢ Then fi(A) contains the k-ary BL4-situation

<t0,[g1,§1],...,[gk_l,gk_1]> from each M, 8k-1(A) in each such tuple is the set of (k-1)-
ary BL4-situations that corresponds to the set of situations {u | fRu}, forevery k 2 1. Let
hyy = <uglhy,hyls...> be the BL4-structure constructed for each such s. Then g _(A)

contains the (k-1)-ary BL4-situations <u0,[h1,Zl],...,[hk_z,zk_2]> from each hM,u' But we
also know that sRu. So fi(A) must also contain the k-ary BLK-situation

<u0,[h1, 11l Py l’hk 1J> from every hM . a well as the BLA4-situations
<t0,[g1,g1], ,[gk_l,gk_1]> from each &M, SO 8k-1(A) = fy1(A) forevery k 2 2.

To prove the converse, suppose that "if <#q, [gl,zl],...,[gk.p:?-k_l]> € }_‘k(A) then g ;(A)
c  fy1(A)" holds in fM,s- f(A) contains the k-ary BLA4-situations <z,
[gl,El],...,[gk_l,Ek_1]> that correspond to the situations {¢ | sR¢}, for all k 2 1. Within

each such tuple, g_;(A) contains the (k-1)-ary BL4-situations <u, [hl,;z-l],...,[hk_z,zk_zb
that correspond to the situations {u | fRu}. But we know that 8x-1(A) < fy1(A), so

Jx-1(A) must also contain all the (k-1)-ary BL4-situations <sg, [h, ,71-1 ],...,[hk_z,zk_zl,
[hk_l,zk_1]>. But then it must be the case that sRu as well.

Part 2: Similar to the proof of Part 1.

BL4-structures correspond to BL4-models in exactly the same way that BLK-structures
correspond to BLK-models. The theorem that makes this equivalence explicit it given here for
completeness; the proof is exactly like that of Theorem 11, so is not repeated here.

Theorem 19: To every BL4-model M = <S,T,F,R,R> and world w in M, there
corresponds a BL4-structure fy1 ,,, such that M,w |= o iff fM w [= 0., for every formula c.
Conversely, there is a BL4-model M such that for every BL4-structure fthere is a world
Wr in M such that f |= o iff M, Wr [= o for every formula o.

Explicit beliefs are extended through a no-information BL4-extension which incorporates
restriction S4. In the BLA4-structures, the BL4-situations that model non-worlds at the upper levels

model the beliefs the agent acquires by introsi)ecting explicitly about its positive beliefs. The
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no-information BL4-extension is the same as the no-information BLK-extension except that
condition 1c is replaced by 1c’ and 1d and condition 2b is replaced by 2b’ and 2c, as shown below.
Ic’  gr(A) £ (A) (to satisfy S4)
1d  if gyis not a world, g,(a) = W,
2b’ g (A) c £ (A) (to satisfy S4)
2c if gy is not a world, g,(a) =W

Conditions 1c’ and 2b’ allow explicit positive introspection, while 1d and 2c fill the suffixes of

non-worlds in the negative set with all k-ary BLK-situations.

Figure 4-7 shows a BL4-structure which models the beliefs of an agent who has explicit beliefs
only about the world (at level 1). [fz,;'z] is the no-information BL4-extension of [fl,;'l]. The

corresponding BL4-model is also shown.

Figure 4-7: A No-information BL4-extension and the Corresponding BL4-Model

Intuitively, the no-information BL4-extension tells what the agent’s depth k+1 beliefs are, given
that it has no more information than it had at level k. Consider the 2-ary BL4-situation in f,(A) that
models situation s,. In this tuple, g,(A) is a subset of f](A), so the agent explicitly believes that it
explicitly believes everything true at s,. El (A) contains all worlds because the agent does not know
what its explicit depth-1 non-beliefs are. The tuple that models world w in f,(A) has f,(A) as g,(A)
because it models the agent’s fully implicit ivntrospective beliefs, as in the no-information BLK-

extension. In this tuple, El(A) is the same as g;(A) because the two accessibility relations coincide
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at worlds. In the 2-ary BL4-situation in ]-’2(A), 81(A) contains a subset of ]I(A) (in this case the

same set), while EI(A) contains all worlds.

4.3. DBL-Structures

Section 3.3 describes the modification given in[Delgrande 87] to the logic BL given
in [Levesque 84b] and the DBL-model that provides its semantics. This section describes how the
semantics of DBL can be represented equivalently in a modal structure called a DBL-structure,
where each DBL-structure models a single situation in a DBL-model. Only the parts of the logic
that are described in Section 3.3 are represented here; although the representation is not complete,

it should be sufficient to demonstrate that DBL can indeed be modeled by modal structures.

A DBL-model is a 4-tuple M = <S,f,T,F>, where S is the set of all situations and T and F
associate primitive propositions with the situations at which they are true and false, respectively,
just as in BL-structures. The distinguishing feature of DBL-models is the function f. If |jc/|M, the
set of worlds in which a is true, is taken as the proposition that represents sentence o € Lpp;, f
produces a set of situations for [jo/M at every sitation. The sentence Bot is interpreted in terms of
the situations assigned by f for proposition |lo[M. The intuition is that a different set of situations is
relevant to the truth of every proposition. The function f can be thought of as defining an

accessibility relation for every sentence of Lyg; at every situation.

For a DBL-structure to represent a DBL-model, every level k (k = 1) of the DBL-structure must
associate with the agent a set of situations for the interpretation of every depth-k sentence of LppL-
For example, at level 1, depth-1 sentences of the form B and Lo are interpreted. Since the
DBL-structure represents some situation s, these sets are interpreted as containing the situations
accessible from the situation s. Since it is always known which DBL-structure a set is contained in,
and therefore where the situations are accessible from, it is not necessary to specify the situation
argument to the function f in DBL-structures. So ||oJ[M is now the proposition that represents the
sentence o, and f{A,||o]/M) returns the situations in which Bo is to be interpreted for agent A. The
formal definition of a DBL-structure is shown below; the definitions of S Wor <S> <Wp>» T(D),

F(p), S, and W are the same as for BLK-structures.
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Definition 20: f;: {A,|aiM} — 251 for every sentence & € Lpp;, is a I15-order

proposition assignment. F is the set of all 1%%-order proposition assignments at this
DBL.-structure.

The intuition is that f; associates with the agent a set of situations compatible with and relevant to

its explicit beliefs about o.. Lo is then interpreted at the worlds in the set returned by f;.

Definition 21: fl(A,IIaIIM) is the set of situations assigned to the agent by f; for
sentence (. W(fl(A,llocllM) is the subset of fl(A,IlocllM) that contains worlds.

Definition 22: <f,Fy,....Fy 1> is called a k-ary DBL-situation for k 2 1. If <fy>is a
world, <fy,F1,....Fy_1> is called a k-ary DBL-world.

Let S, be the set of all k-ary DBL-situations, and W be the set of all k-ary DBL-worlds.

Suppose that k-ary DBL-situations have been defined recursively for every situation in M.

Definition 23: f,: {A,llallM} — 25% s a M-order proposition assignment. Fy is the set
of all k™M-order proposition assignments at this structure.

The intuition is that f; assigns to the agent a set of k-ary DBL-situations which are compatible with
and relevant to its explicit depth-k beliefs about every .. The subset of these k-ary DBL-situations
which are worlds are compatible with and relevant to the agent’s implicit depth-k beliefs about

every (L.

Definition 24: fk(A,HallM) is the set of k-ary DBL-situations assigned to the agent by f;

for sentence «t. W(fl(A,IIOLHM) is the set of k-ary DBL-worlds assigned to the agent by f
for sentence o

Definition 25: The infinite sequence <f;, Fy,..> is a DBL-structure iff every
DBL-prefix <fy, Fy,...,Fy_1> is a k-ary DBL-situation for every k>0.

Figure 4-8 shows the first three levels of a DBL-structure which interprets the sentences (1) Bp,
(2) BBp, and (3) B(q A Bp) for an agent A, where p and q are propositions. The corresponding
DBL-model is also shown. The arcs point to the sets of situations that are supplied By function f
for each sentence at each situatioh; they are labeled with the numbers given above for ease of

reading. The DBL-structure reflects only those semantic restrictions which are described in this
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section, so the sets used to interpret sentence Bp are not shown to have any necessary relation to

those used to interpret BBp or B(q A Bp).
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Figure 4-8: A DBL-Structure and the Corresponding DBL-Model
As usual, level 0 represents the real simatioh, where the agent 4is located. Level 1 shows the sets
associated with the three sentences of Lpyp; . The fact that f provides 1-ary situations for depth-2
sentences BBp and B(q A Bp) at level 1 does not mean that these sentences are interpreted at the
1-ary situations of level 1; they are interpreted in the 2-ary situations supplied by fp atlevel 2. The
suffix of every 2-ary situation at level 2 contains a set of situations for every sentence, even though
they may not all be used to interpret sentences at sg- They are, of course, used to interpret the

beliefs of an agent at that situation.

The support relations for DBL-structures can now be defined; the support relations for DBL-
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models are shown on page 30 for comparison. The first four are analogous to those for BL-
structures. The truth of sentence ¢ of depth-k is confirmed at level k of the DBL-structure. pis a

pﬁmitive proposition, and ¢ is a sentence of Lpyg; .
L. <fg.F 5. F > =7 D iff <f> € T(p).
<f0,F1,...,Fk> I=F P iff <f0> € F(p).

2. <f0’F1""’Fk> l='r ~q, iff <f0’F1""’Fk> I=F .
<f0’F1"“’Fk> |=F ~o iff <f0,F1,...,Fk> I='T .

3. <f0’F1""’Fk> |='r av ﬁ iff <f0’F1""’Fk> |='r o or <f0’F1""’Fk>
= B.
<fosF 15F > [=p @V Biff <fo,Fq,...Fy> |=p o and <fo,F;,....F >
=g B-

4. <f0’F1""’Fk> l='r oA B iff <f0’F1"'°’Fk> |=1- o and <f0,F1,...,Fk>
= B.
<f0,F1,...,Fk> I=F oA B iff <f0’F1""’Fk> I=F o or <f0,F1,...,Fk>
=g B.

5. <f0’F1""’Fk> |=1- Boiff <go,G1,...,Gk_1> I='r o. for all
<gO,Gl’---,Gk.1> € fk(A’”a”M)-
FoF pooesFy> I=p BOUIFE <fy.F ... Fy> [y Bl

6. <f0,F1,...,Fk> |=1- Lo iff <WO’GI""’Gk-1> l='r o for all

<€p:G1r-Gy1> € W(fk(A,”a”M))-
<fosF 15 F > [Fp Ltiff <fo,Fq,....Fy> |21 Lo

The truth of a sentence o of depth k is verified at level k of the DBL-structure; satisfiability and
validity are determined only at worlds. The sentence o is satisfied at the DBL-structure f =
<Wo,F'1,...> (written "f |= ") if <w,F 1--F> =7 0. The sentence o is valid (written "|= ") if it is

satisfied in every DBL-structure <wg,F,...>.

In Figure 4-8, for example, the truth of B(q A Bp) is verified at level 2 in the set of situations
returned by f5(A,|lq A BpllM). B(q A Bp) is true if q is true in both s, and s5, and if p is true in both
sy3 and sy5. LBp is true if p is true in the situations assigned for Bp in the suffix of the 2-ary
DBL-world in fy(A,|[Bpl/M).
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The restrictions oﬂ DBL-structures that were described in Section 3.3 can now be defined. First,
the basic restriction on all modal structures ensures that each k-ary DBL-situation becomes the
prefix of a (k+1)-ary DBL-situation at the next level, and that each (k+1)-ary DBL-situation has as
its prefix a k-ary DBL-situation from the previous level. In Figure 4-8, for example, each situation
returned for sentence Bp at level 1 is the prefix if a 2;ary DBL-situation for sentence Bp at level 2,

and the same is true for the other sentences.

DB1) <g3,Gy,---Gro> € fk_l(A,IIoc”M) iff there exists a G_; such that <g,G1,....Gy 2,Gy 1> €
filAllodM), fork 22,

The restriction that makes the value of f at worlds independent of the proposition (D1 on page 29)
is now formulated for DBL-structures.
DB2) If <f> is a world in DBL-structure <fg,Fy,...>, then fk(A,llallM) = fl(A,IIBHM) forallk=1.
Restriction DB2 says that at a DBL-structure that models a world, the set of accessible k-ary
DBL-situations at level k is the same for every proposition, In Figure 4-8, fl(A,IIBoch) retums a
world w,. The 2-ary DBL-world that models w, in fz(A,llBaIIM) assigns the same set of situations
for every sentence. DB2 is the same as the corresponding restriction on DBL-models except for

notational differences.

Finally, the restriction that ensures consistency of belief is formulated as follows. Again, it is a
direct translation from the DBL-model restriction D2 shown on page 30. In Figure 4-8, no set of
situations is empty, so DB3 holds.

DB3) fk(A,llallM) is nonempty for every k = 1.

DBL-structures are related to DBL-models in the usual way: each DBL-structure models a single
situation in DBL-model, and each DBL-model models a collection of DBL-structures. Theorem 26
makes the equivalence explicit. Since satisfiability in both models is determined only at worlds,

the theorem shows the correspondence of satisfiability only for worlds.

Theorem 26: To every DBL-model M = <Sf,T,F> and world w in M, there
corresponds a DBL-structure fM ,» such that M,w |= o iff fM w [= @, for every formula o
Conversely, there is a BLK-model M such that for every DBL-structure f there is a world
Wy in M such that f |= o iff M, We |= o for every formula o

Proof: To show the first part of the theorem, suppose M = <S,f,T,F> is a DBL-model.
For every situation s € S in M, we construct a DBL-structure fM ¢ = <fg:F 15> Where f,

is the assignment at situation s. Suppose we have constructed a k-ary DBL- s1tuat10n
<fF 15---F.1> for each situation s € S and k 2 1, where F; = {f; (A, M) | & e
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LpgL}. Then for every sentence «, fk(A,II(XHM) = {<g0:G1sGy.1> | 8 € f(s,|](x||M)},
where <gq,G1....Gy.1> is the (k-1)-ary DBL-situation constructed for g, and f(s,||oyM) is
the set of situations assigned to the agent for the interpretation of « at situation s in the
DBL-model. I now show that M,w |= oL iff fM,w |= o

oe P: ‘
The proof is similar to its counterpart in the proof of Theorem 7 on page 40.

o is a formula not containing a modal operator:
The proof is similar to its counterpart in the proof of Theorem 7 on page 40.

o = By, where o is of depth k:

First suppose that M,w |= o. Then M,w |=p BY, and by definition of |= in
DBL-models, M,g |=p ¥ for every g € fow,[IYIM), so 7y s true at every such g But
by the construction, the set of all such situations g is equivalent to the set
fk(A,HYllM) of k-ary DBL-situations <gy,Gy,...,Gy.1> in DBL-structure
<foF 15F>. S0 Yis true at every such <gg, Gy,...,Gy 1>, and by definition of
l=r in DBL-structures, M EBY; as required.

To show the other direction, suppose that fM,w = . Then fM,w I=rBY, and by
definition of |=p in DBL-structures, <gg,Gy,...Gy.1> |=p ¥ for every
<80:G15-Gy1> € fi(AIVIM). But by the construction, £ (A,[IiM) is equivalent

to the set of situations g such that g € f(w,|ly|M), so y must be true at all such
situations g as well. But then by the definition of |=f in DBL-models, Mw |=
BY, as required.

o = Ly, where ais of depth k.
The proof is the same as that for o = By, with W(fk(A,ll(xHM)) replacing

fk(A,IlocllM) in the DBL-structure, and looking at worlds instead of all situations

in f(s,|jo/M) in the DBL-model, since implicit beliefs are confirmed at accessible
worlds.
To show the converse of the theorem, let M = <S,f,T,F> be a DBL-model where S = {sf

[ Sf is modeled by <fj,Fy,...>} for every DBL-structure f. Then g € f(sf,llocllM) in the
DBL-model iff <gy,Gy,....Gy.1> € fk(A,llocIIM) in the DBL-structure for every k 2 1 and
sentence o € Lpp;, where <g,Gy,...,Gy_; > is the k-ary DBL-situation that corresponds
to g. fl= o iff M,wf |= o by the same reasoning as in part 1.

If the agent has no beliefs about a certain sentence then the function f returns the set of all worlds
for that sentence from level 1 upwards, to show that the agent does not believe it. It is thus obvious
from level 1 which beliefs the agent does and does not hold. The no-information DBL-extension is
thus not actually an extension, as in the modal structures studied previously, and is called instead

the no-belief DBL-function. The formal definition follows.

Definition 27: fk(A,HOLIIM) is a no-belief DBL-function for sentence o. if fk(A,IIOLHM) =
{<wg,G1s...,Gy_> such that .
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1 fi(AlldM) = W,
2. <wg,G .., Gy 1 > satisfies restrictions DB1, DB2, and DB3 }.

Figure 4-9 shows a DBL-structure for an agent that holds no beliefs about Bp, so that BBp is
interpreted in the set of all k-ary worlds at every level k above level 0. The agent’s beliefs about

other sentences are interpreted as shown in Figure 4-8.

=
wanseil= ] [wa] [w]

"
vaneell = |willwi] [wifwe| ... wi|we|. b
m m wi|w2|, Bp
m m wifw2]. qABp

Figure 4-9: A No-Belief DBL-Function for the sentence BBp



Chapter 5
A First-Order Modal Structure

Section 3.4 describes the first-order language, KL, from [Levesque 84a} and the KB-model that
provides its semantics. This section demonstrates how the semantics of KL can be represented
equivalently in a modified modal structure called a KB-modal-structure. The KB-model consists of
a set of world-structures which are compatible with what is believed by the KB. Since the world-
structures in the KB-model are governed by the same accessibility relations as weak S5, the belief
structures of [Fagin, Halpern, and Vardi 84] and [Fagin and Vardi 85] described in section 2.2 can

be used as a starting point for KB-modal structures.

The difference between KL and the language L used with belief structures is that KL is a first-
order language complete with predicate and function symbols (including the equality symbol),
variables, parameters, and quantifiers, while L is a propositional language. Since the assignment of
truth values to propositions in belief structures is done at level 0, the assignment of truth values to
primitive terms and primitive sentences in KB-modal-structures is also done at level 0. Level 0 of
each KB-modal-structure is equivalent to a single KB world-structure [s,v], so level O contains an
assignment v of terms to parameters, and a set of primitive sentences § that are true given v at that
world-Structure. It also contains a domain-mapping function (DMF) d which maps the parameters
to the domain entities. In each KB-model there is a single, explicit DMF which applies over all
world-structures, but each KB-modal-structure models only a single world-structure, so the
mapping must be done in every KB-modal-structure. The universality of the mapping across the
world-structures in the KB-modal-structures must therefore be enforced. The DMF d is used later
in this section to formulate a semantic restriction for this purpose on KB-modal-structures. It has
no effect on the interpretation of sentences of KL, so the co-reference relation given on page 32

can be retained as is. Level 0 then consists of a triple f = [s,v,d].
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As in belief structures, level 1 of a KB-modal-structure contains the world-structures that are
compatible with the world-beliefs of the KB; these are exactly all the world-structures in the
corresponding KB-model. Level k contains the world-structures that are accessible to the KB from

each of the world-structures at level k-1, to model the KB’s depth-k beliefs.

The formal definition of a KB-modal-structure is now given. Assume countably infinite sets of
predicate and function symbols of every arity, including the 2-ary equality symbol =. Assume also
countably infinite sets of individual variables, parameters P, and domain entities D.

Definition 1: A primitive term is either a variable, a parameter, or a function
application containing at most one function symbol. A primitive sentence is a predicate
application that contains no function symbols.

Let s be a set of primitive sentences that are at a world, of KL that are true at the world, v be a
function that maps primitive terms to parameters, and d: P — D be a domain-mapping function
(DMF) that maps each parameter to a unique domain entity. Together, s, v, and each d describe a

world.

Definition 2: The triple [s,v,d] is a O0W.order world structure, abbreviated
world-structure. <[s,v,d]> is a I-ary KB-world.

Let S, be the set of all 1-ary KB-worlds.

Definition 3: f;: {KB} — 251 is a IStorder KB-assignment. f,(KB) is the set of
0™-order world-structures that are associated with the KB by f;.

The intuition is that f; associates with the KB a set of 1-ary KB-worlds that are compatible with its

beliefs about its domain.
Definition 4: <fyf},..fy_1> is called a k-ary KB-world.

Let S be the set of all k-ary KB-worlds. Suppose that k-ary KB-worlds have been defined

recursively for all k = 1.

Definition 5: f,: {KB} — 25k is a k™-order KB-assignment. f(KB) is the set of k-ary
KB-worlds assigned to the agent by f;.
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The intuition is that f; assigns to the KB a set of k-ary KB-worlds which are compatible with its
depth-k beliefs.

Definition 6: The infinite sequence <fyfi,...> is a KB-modal-structure iff every KB-

prefix <fyf,-..fy.1> is a k-ary KB-world for every k 2 0, and the structure satisfies the
semantic restrictions T1, T2, and T3 of belief structures, and restriction UD given below.

All three restrictions on belief structures (see page 12 in Section 2.1) are applicable to KB-modal-
structures. Since the restrictions refer only to the recursive structure of the levels and not to the
individual 1-ary worlds that compose the k-ary worlds, they need no modifications. Basic
restriction T1 ensures that the k-ary world-structures at each level build on the world-structures of

the previous level.

Restriction T2 enforces the forward part of the full introspection axiom schema KCL: "o, > Kot if
o.is pure." T2 ensures that the suffix of all the new k-ary world-structures at a level k contains all
the world-structures from level k-1. It turns out that this also enforces the reverse part of KCL:
"Ka o aif ouis pure”. T2 makes it clear that all the world-structures at level 1 are accessible to the

agent from every world-structure.

Restriction T3, which enforces consistency of beliefs, is applicable to KB-modal-structures

because axiom schema KCL also ensures that the KB is consistent.

The remaining axioms do not need to be enforced through additional semantic restrictions; their
truth follows from the truth-functional semantics given for terms and sentences and from the

definition of the KB.

Semantic restriction UD (Universal Domain), which is new for KB-modal-structures, ensures that
the DMF d is the same across all world-structures in the KB-modal-structure. Since levels 0 and
level 1 together contain all the worlds in the corresponding KB-model, it suffices to compare the
DMF of every wotld-structure at level 1 with that of level 0. Let <fy>.d represent the domain
mapping function d of the world-structure <fy> = <[s,v,d]>.

UD) <gy>.d = <fy>.d for all <gy> € f;(KB) in KB-modal-structure <fpf},...>.

The support relations of the KB-modal-structures bear a very close resemblance to the support
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relations of the KB-fnodel, shown on page 32. In fact, all but the last one, the support relation for
sentences of the form Ko, are identical. They are shown below.
1. <[s,vd], f1,.../y> I=p foreveryp € s.
. <[8,v,d], fi,-fi> [= (8 = 8) if £ and ¢, co-refer given V.
A<Is,v,d], fisfi> = q"t1 iff <[s,v,d], fi,.-fi> 1= q"tz) if ¢; and ¢, co-refer given v.
. <[8;v,d], f1penfi> [F ~0if <[8,v5d], £y fi> [ O
. <[$;v,d], fis-i> = (@0 B) if <[8,V,d], ... > [= @ or <[8,V,d], f1,...fy> = B.
. <[8,v,d], fiso-ofi> [= Txuif <[s,V,d], fi,....fy> [= &; for some parameter i.

~Nl O b bW

. <[s,v,d], fi,. > = Kt if <[8°,V,d], g15....83.1> |= @ for all <[$’,v’,d], g1,....8.1> €
fx(KB).

As in belief structures, the truth of a sentence of depth k is verified at level k of the KB-modal-
structure. A depth-k sentence o of KL is satisfied in a KB-modal-structure f = <fy.f},...> (written "f

= 0") if <fyfis-fy 1> F Q. QLis valid if it is satisfied in every KB-modal-structure.

KB-modal-structures are equivalent to Levesque’s KB-models in the same way that belief
structures are equivalent to Kripke structures: each KB-modal-structure models a single world in a
KB-model, and a KB-model models a collection of KB-modal-structures. The DMF d of the
KB-model must be equivalent to the DMF in the KB-modal-structure. Theorem 7 makes this
equivalence explicit. As described in Section 3.4, the accessibility relation on the set of world-
structures including the "possible” world-structures in m and the "real" world-structure [s,v], is
Euclidean, transitive, and serial. Thus, the proof of Theorem 7 can treat all the world-structures
alike, not distinguishing between the real world and the possible worlds. Let M = m U {[s,v]}, and

call M-the KB-model-set. The theorem follows.

Theorem 7: To every KB-model-set M with DMF d, and world-structure w € M, there
corresponds a KB-modal-structure fm’w such that m,w |= o iff fm,w |= o for every formula
o. Conversely, there is a KB-model-set M with DMF d such that for every KB-modal-
structure f with DMF d there is a world-structure Wy = [s,v] in M such that f |= o iff m,wy
[= o. for every formula o,

Proof: Let M = m U {[s,v]} be a KB-model-set with DMF d. For every world-
structure w = [s,v] € M, we construct a KB-model-structure fm,w = <[s,v,d], f1,...> = <f
Jys->. dis the DMF of M, and s and v are as in the world-structure w. Suppose we have
constructed <fy, f1,...fy_1> for each world-structure in M. Then £(KB) = {<[s’,v’,d],
815--+8k-1> | [8’,¥’] is accessible to the KB from [s,v], where <[s’,v’,d], g,...,8.1> is the
k-ary KB-world constructed for [s,v]}. Since all the world-structures in m are accessible
to the KB from every world-structure in M, f,(KB) contains the k-ary KB-worlds

constructed for every [s’,v’] € m. I now show that m,w |= o iff fm’w |= o Since all but
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one of the support relations for KB-modal-structures are the same as those for KB-
models, it is only necessary to show the correspondence for sentences of the form Kot

o = Kp, where o is of depth k:

First suppose that m,w |= KB, where w = [s,v]. . Then by the definition of |= for KB-
models, B is true on §°, v’, and m for every world-structure [s’,v’] € m. But by
the construction, the set of all such world-structures [s’,v’] is equivalent to the set
of k-ary KB-worlds <[s’,v’,d], g,....84.1> € fx(KB) in the KB-modal-structure
fm’w. So then <[s,v,d], fi,....;i> |= KB by the definition of |= in KB-modal-
structures, as required.

To show the other direction, suppose that fm’w |= KB. Then by definition of |= in
KB-modal-structures, <[s’,v’,d], g1,....8,.1> |= B for every <[s’,v’,d], gq,....8¢ 1>
€ fy(KB). But by the construction, f,(KB) is equivalent to the set of world-
structures [s’,v’] € m, so k,[s’,v’] |= B for every [s’,v’] € m. But then k,[s,v] |=
KB by the definition of |= in KB-models, as required.

To show the converse of the theorem, let M = m U {[s,v]} be a KB-model-set with
DMF d, where We = [s’,v’]fe M if and only if s’ and v’ are equivalent to s’ and v’ in
[s’,v’,d] of KB-modal-structure f. Then [s’,v’]f e m iff <[s’,v’,d]> € f{(KB). This
check is sufficient to determine which world-structures are contained in the set m
because every world-structure in m is accessible to every world-structure in M. Only the
"real" world-structure [s,v] may not be accessible to any world-structure. If it isn’t, then
it will not be in f;(KB), and will be identified as the "real" world-structure [s,v] in M. If
it is accessible from every world-structure, and the KB’s beliefs are in fact accurate, then
it will be in m with all the other world-structures, and it will not be apparent which
world-structure is in fact the "real” one. This does not represent a loss of information, for
to the KB, any of the world-structures in m could be the "real" one. f |= o iff m,wg = o
by the same reasoning as before.

When no new information is available above a level k in a KB-structure, the KB’s beliefs are
extended according to the no-information-extension of belief structures (described on page 15 in

Section 2.2), which enforces full introspection at the upper levels.



Chapter 6

Conclusions and Suggestions for Further
Research

In this thesis, I have demonstrated how the modal structures of [Fagin, Halpern, and Vardi 84)
and [Fagin and Vardi 85] can be extended to model the non-standard epistemic logics BL
of [Levesque 84b], BLK and BL4 of [Lakemeyer 87], and DBL of [Delgrande 87], as well as the
first-order epistemic logic of [Levesque 81] and [Levesque 84a]. Modal structures are defined in
the literature only for the classical propositional modal logics K, S4, weak S4, SS, and weak SS.
The semantic basis of these logics has only one kind of state (a world) and a single accessibility
relation. In this thesis, I have demonstrated that modal structures can be defined for logics whose
semantic basis requires more than one kind of state (e.g., both worlds and situations) and multiple
accessibility relations (e.g., R and R). I have also demonstrated that first-order versions of
propositional modal logics can be defined in terms of modal structures. I have shown that in all of
these instances, appropriate semantic restrictions can be defined to model the properties of belief
associated with the logic. I also presented an alternative definition of modal structures which

defines them in terms of trees and clarifies their relationship to Kripke structures.

Section 6.1 summarizes the approach taken in each case. It then analyzes the new extended
modal structures in terms of the advantages that are claimed for modal structures by their creators.

Section 6.2 suggests directions for extending the work presented here.
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6.1. Analysis of Extended Modal Structures

In Chapter 4, modal structures are extended to logics of implicit and explicit belief. The
extension of modal structures to the logic BL required defining them in terms of situations as well
as worlds. The further extension to BLK and BL4 required in addition modeling two accessibility
relations instead of a single one. This was done by building two parallel sets of situations at each
level. Two semantic restrictions on belief structures, the basic restriction and the restriction that
enforces full introspection, were adapted for the BLK-structure. As well, a new semantic
restriction was developed to enforce the coincidence of the two sets at worlds. The strict separation
of levels in BLK-structures automatically enforces the ability of the agent to perform relevant
implications within a level, so no further restriction was required. The addition of a semantic
restriction for explicit positive introspection to the BLK-structure transformed it into a BLA4-
structure for Lakemeyer’s logic BL4, Examples of BLK- and BL4-structures, along with
corresponding BLK- and BL4-models, their original semantic models, were given to illustrate the
equivalence between them, and to clarify the effect of the restrictions on the structures. No-
information BLK- and BL4-extensions were described and illustrated for BLK- and BL4-

structures.

The extension of modal structures to DBL-structures involved building many parallel sets of
k-ary situations at each level, one for each proposition. DBL-models have many accessibility
relations, since the function f describes a separate accessibility relation for each proposition at
every situation. The basic restriction on modal structures was adapted for DBL-structures, and two
new sémantic restrictions were defined to enforce consistency of belief and the coincidence of all
the sets at worlds. The new restrictions in the DBL-structure were identical to those on the DBL-
model except for notational differences. A no-information DBL-function was defined for DBL-
structures; it differs from the no-information extensions on the other modal structures in that it
begins at level 1 for the sentence that the agent has no beliefs about. DBL-structures are defined in

terms of situations as well as worlds, as in BL-structures.

The extension of belief structures to model Levesque’s first-order logic in Chapter 5 was

particularly straightforward: level O was redefined to accommodate the particular non-modal first-
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order features of the 'language"KL, and a single new semantic restriction was applied to enforce the
assumption of a universal domain across all worlds. The semantic restrictions on belief structures
and the no-information extension were transferable from belief structures without modification.
The ease with which belief structures were adapted for the first-order case suggests that modal
structures designed for any propositional logic could be adapted similarly to model the logic’s
first-order counterpart. Any new restrictions on the first-order modal structure would presumably
enforce the consistency of some property across all the worlds in the first-order model, as with the
new restriction UD on KB-structures, For example, the first-order version of BL, FOBL, given
in [Lakemeyer 86], could be modeled in a modal structure by using the BL-structure of Section 4.1
as a basis, modifying level O as necessary, and defining any restrictions that are needed to enforce
FOBL’s special first-order characteristics. Since parameters are used in FOBL to denote the fixed
universe of discourse just as in the KB-model, semantic restriction UD could be applied directly to
the modal structure for FOBL.

Modal structures do appear to be generally extensible to logics that differ from the standard
epistemic logics for which they were designed. But are they, as their authors claim, more
"intuitive” than the Kripke structures they replace? Certainly the ability to look at a particular level
k of the modal structure to determine the depth-k beliefs of an agent is appealing, compared to the
necessity of tracing all paths of length k in a Kripke structure to find the appropriate set of worlds.
But the relationship between the worlds, which is easily seen in a Kripke structure, can be obscured
in a modal structure by the redundancy at each level. In Figure 2-1, for example, it is clear that in
the Kripke structure the worlds accessible from wpg are in an equivalence class. To draw the same
conclusion from the corresponding modal structure, it is necessary to verify at every level that the

suffix of every tuple contains all the worlds from the previous level.

Level 0 of a modal structure assigns truth values to a fixed, finite number of primitive
propositions, presumably to model the beliefs of a finite agent. This feature undoubtedly makes it
easier to represent particular states of belief, since the number of unique possible worlds is now
finite, and all the possibilities are known from the beginning. This limitation may not always be a
reasonable one, however, since the number of potenu'él beliefs that an agent might hold is infinite.
The restriction to a finite set of propositions effectively bars the agent from ever holding those

beliefs that are not represented in the fixed, finite set of propositions.
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In a first-order qﬁantiﬁcaﬁonal system, the domain consists of an infinite number of individuals,
which are represented by variables in sentences. If the number of individuals is restricted to a finite
humber, the system can be reduced to a propositional system, in which sentences like Vaxp(x),
where x is an individual variable, can be represented as a finite number of propositions that
represent sentences of the form p(a), p(b),..., where va and b are individuals in the finite domain. If
first-order modal structures were restricted to a finite number of individuals, which would be
analogous to having a finite number of primitive propositions in propositional modal structures,

they would therefore be incapable of modeling a true first-order system.

There is no structural reason why modal structures cannot be defined for an infinite number of
propositions (or individuals) if necessary, and in fact, this was done in Chapter 5 in the definition
of KB-structures. With an infinite number of propositions or individuals, the number of possible
worlds at a level is not guaranteed to be finite, so determining validity in modal structures defined

this way is not decidable.

[Fagin and Vardi 85] claims that the semantic restrictions on belief structures model the
properties of knowledge and belief in a more intuitive fashion than the corresponding restrictions
on Kripke structures, presumably once gets past the intricate notation of modal structures. In belief
structures this does seem to be the case; the transitive and Euclidean restrictions on an accessibility
relation, for example, seem less obviously related to full introspection than using the same set of
accessible worlds at every successive level to verify beliefs. In BLK- and BL4-structures,
however, which contain situations and worlds as well as sets that correspond to two accessibility
relations, the intricacy of the semantic restrictions diminishes their clarity. The recursive nature of
the worlds in modal structures can make it difficult to define semantic restrictions, particularly in
complicated structures such as BLK-structures. In fact, the restrictions on BLK- and BLA4-
structures were defined by extrapolating from the appropriately restricted Kripke-style model.
Once defined, the restrictions on modal structures are still not easily understood without the aid of
a diagram, largely because of the complicated notation. For this reason, it is not clear that modal

structures are indeed more intuitive models of knowledge and belief than Kripke structures.

Both modal structures and Kripke structures require a good understanding of the properties of
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knowledge and belief in terms of possible worlds on the part of the user, and neither provides an
obvious interpretation of these properties. Those who hold philosophical reservations about the
piausibility of the possible worlds model will not find any of their objections resolved with modal
structures; since modal structures are defined in terms of possible worlds, they retain all the
advantages and disadvantages of possible worlds semantics. They appear to be generally
extensible to other epistemic logics, and can be used in place of Kripke structures wherever their

particular features are desired.

6.2. Suggestions for Further Research

This section suggests directions in which the research presented in this thesis might be extended.

[Fagin and Vardi 85] demonstrates that the ability to determine the truth of a depth-k sentence at
level k of a modal structure leads to/simpler proof techniques for soundness, completeness and
decidability in modal structures than in Kripke structures. This aspect of modal structures was not
followed up in this thesis, whose aim was simply to investigate the extensibility of modal
structures. Presumably, however, the advantages would carry over to the extended modal
structures, because they retain the property that depth-k sentences are verified at level k. This
could be verified by carrying out the soundness and completeness proofs for the logics described in
Chapter 3 with respect to the extended modal structures that model them, and comparing the proofs
with the original ones for their original models. Some of the proofs in [Fagin and Vardi 85] use the
assumption of a finite number of propositions. It is claimed that the proofs can be adapted to
handle an infinite number of propositions, but it is not clear exéctly what effect this would have on

the relative simplicity of their proof techniques.

The logic BLK defines two accessibility relations to model explicit meta-beliefs without logical
omniscience. It divides the beliefs into two categories, positive beliefs (those with a leading B
operator, such a Bat), and negative beliefs (those with a leading negated B operator, such as ~Ba).
The BLK-structure contains two parallel sets of k-ary situations at every level k above level 1. The
logic DBL takes a similar but finer-grained approach, by defining an accessibility relation for every

distinct proposition represented by a sentence of the language L. The DBL-structure contains
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as many parallel k-ary situations at every level k (k = 1) as there are propositions. It appears from
the sinlilarity of the modal structures that DBL is a generalization of BLK. Besides having more
than one accessibility relation for explicit belief, both models restrict the accessibility relations to
coincide at worlds, so that implicit beliefs are cqnsistent. The restrictions that enforce this
coincidence in BLK-structures (S2 on page 45) and DBL-structures (D2 on page 29) are very
similar. It would be interesting to investigate further the similarities between the two models.
Since DBL-models are very general, it might be possible to define BLK in terms of suitably

constrained DBL-model, and then in an equivalent DBL-structure.

DBL is worth investigating in its own right, since the intuition that different sets of situations are
relevant to different beliefs seems reasonable. The idea of expressing properties of belief in terms
of relations among sets of accessible situations is also appealing, and is the same idea used in
modal structures. The notation of DBL-models is not as intricate as that of modal structures,

however, so the restrictions may be more easily understood.

[Fagin and Vardi 85] presents a general proof of equivalence between modal structures and
Kripke structures. In this thesis, the equivalence between the extended modal structure and the
Kripke-style model that it replaces is demonstrated for each logic. It should be possible to devise a
general proof of equivalence between Kripke-style models with more than one type of state and
more than one accessibility relation, and extended modal structures of the form presented in this

thesis.

In Section2.3, an alternate definition of modal structures, which describes them in terms of trees,
was presented. This definition clarifies the relationship between Kripke structures and modal
structures, and is much less intricate than the original definition. The definition is given only for
the original modal structures, however, and not for the extensions described in later chapters. As
well, no semantic restrictions are defined in terms of the new definition. It would be interesting to
generalize the new definition to Kripke-style structures with multiple state-types and multiple
definitions. It would also be interesting to define various semantic restrictions using the new
definition, and compare them to the original semantic restrictions on modal structures. Finally, the

semantics of the epistemic logics surveyed in Chapters 2 and 3 could be defined using the new
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definition of modal structures. The new definition may lead to a more understandable semantic

basis for these logics than the original one.

[Fagin, Halpern, and Vardi 84] and [Fagin and Vardi 85] claim that modal structures are suitable
for modeling particular states of knowledge and belief, although to my knowledge, this claim has
not been supported in the literature. It would be worth testing this claim with the extended modal

structures of this thesis as well as with the original ones.

Modal structures could also be extended to other modal logics with different properties than those
described in this thesis, to further test their extensibility. It would be especially interesting to
investigate the extensibility of modal structures to a non-epistemic modal logic, such as a temporal
logic. Since time has quite different properties from knowledge and belief, this exercise might
uncover some of the inherent limitations of modal structures. When Kripke structures are used to
represent time, the worlds are interpreted as points in time and the accessibility relation as
specifying a precedence relation, such that wRv if w temporally precedes v in time. The states
assign truth values to the propositions at a particular time. Modal operators are defined to have
meanings such as "proposition p will necessarily be true in the future if it is true in all (future)
states accessible from the present one." Restrictions on the accessibility relation constrain the
various properties that time can have; these are in general more complex than the properties of
belief that are modeled in epistemic logics. For example, the precedence relation is transitive, so
that if a precedes b and b precedes c, then a precedes c, but it may allow only a single future and a
singlg past, or many possible futures, or even many possible pasts. Time may also be dense, so that
between any two time points there are an infinite number of time points. The time points in a dense
structure may correspond to the real or rational numbers. It appears that it would not be possible to
represent dense time in modal structures, because the levels of a modal structure correspond to the
natural numbers, and it is therefore impossible to insert an infinite number of levels between any

two levels.

Modal structures and temporal Kripke structures could also be combined to produce a model of
an agent’s beliefs over time. The idea is to replace every time point in a temporal Kripke structure

with a modal structure that represents the agent’s beliefs at that time. Level O of the modal
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structure contains the truth assignment that was originally at the time point. The agent’s beliefs can
then be tracked through time in a suitably constrained temporal model. Advantages of this
approach are that the semantics of the temporal logic does not have to be altered, and that any

modal structure can be used without modification.

[Fagin, Halpern, and Vardi 84] suggests modeling an agent’s beliefs in time by assuming a set of
linear time points represented by integers and assigning a set of worlds to the agent for each time
point at every level. They also add a semantic restriction that the agent’s beliefs increase
monotonically with time. This model is not as general as the approach described above in terms of
the varieties of time that can be modeled, and complicates the modal structure, since the restrictions
on beliefs must be modified to apply to worlds at the same time point at different levels, and at the

same level at different time points.
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