
Program Debugging with Toolkits

by

Joseph Chiu Leung Wu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Joseph Chiu Leung Wu 1987

SIMON FRASER UNIVERSITY

September 1987

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Joseph Chiu Leung Wu

Degree: Master of Science

Title of Thesis: Program Debugging with Toolkits

Examining Committee:

Chairperson: Dr. Wo Shun Luk

r -.-..-- - - - .
Senior Supervisor: Dr. Robert D. Cameron

Dr. Joseph G. Peters

7- - - -
Dr. James J. Weinkam

_-__-
~xtern&?Ekudd Dr. ~ou-fer

Date Approved: Se~tember 14. 1987

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un lve rs l t y the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o t the Simon Fraser Un ive rs i t y Library, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ivers i ty , o r o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one o f I t s users. I f u r t he r agree t h a t permission

f o r m u l t i p l e copying of t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r pub l l ca t lon o f t h i s work f o r financial gain sha l l not be allowed

wiPhout my w r i t t e n permission.

T i t l e of Thes i s/Project/Extended Essay

Author:

(s ignature)

(name

(date)

ABSTRACT

Traditional debugging tools provide primitive program monitoring facilities with

which general debugging can be carried out. These tools thus can be characterized as

general-purpose. Debugging with general-purpose tools entails the understanding of the

dynamic behavior of programs through data captured during execution. The

voluminous amount of information flow between the user and the debugging system

can easily overwhelm one's administrative capacity and patience.

Debugging can be liberated from the ad hoc style of program tracing through the

use of special-purpose tools. Each special-purpose tool is designed to cope with a class .

of programming errors and incorporates an effective procedure to assist the detection

and diagnosis of such errors. Unimportant clerical details can be relegated to these

tools, thereby allowing efforts to be concentrated on the problem-solving aspect of

debugging. A debugging facility composed of a collection of special-purpose tools is
. .

called a tdolkit system. This thesis considers issues in the design and implementation

of toolkit systems. Example toolkit components are described and an overall

evaluation of the toolkit approach is presented.

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor. Rob Cameron, not only for his technical

contributions to this thesis, but also for his insights to many facets of software

development. He has been a constant source of inspiration, without which this thesis

would not have been possible. His patience and encouragement during the struggling

periods are very much appreciated.

Gratitudes are extended to other members of my examining committee. Lou Hafer.

Joe Peters, and Jay Weinkam. They have made many valuable comments about the

thesis.

I am thankful to my fellow grad students, particularly the gang in Radandt Hall.

for' bringing life to an otherwise dull working environment. Special thanks to Brent

Johnston, Ed Merks, and Bob Neville for their effort in proofreading the manuscripts.

I would like to pay tribute to a special friend. Doris Anderson. She has

accompanied and guided me through the early years of my endeavor to Canada. She

has also taught me most of the English that I know today. Her means of

instruction, including word games such as Scrabble, have been both educational and

fun. I am most grateful for this skill.

Finally. I acknowledge the unfailing support of my family.

TABLE OF CONTENTS

APPROVAL
ABSTRACT
ACKNOWLEDGEFVIENTS
LIST OF TABLES
LIST OF FIGURES
1. INTRODUCTION

1.1. Software Errors
1.2. Program Debugging
1.3. Current Debugging Tools

1.3.1. Traditional Debugging Tools
1.3.2. Static Analysis Tools
1.3.3. Knowledge-Based Debuggers

1.4. Outline
1.5. A Note About Typography

2. A METHODICAL DESIGN FRAMEWORK
2.1. The Toolkit Paradigm
2.2. Human Engineering in Design
2.3. Taxonomy of Features

2.3.1. Semantic Error Detection
23.2 . Consistency Checking
2.3.3. Code Auditing
2.3.4. Data Structure Analysis

2.4. Program Analysis Methods
2.5. Implementation

2.5.1. Model
2.5.2. Program Instrumentation Techniques
2.5.3. Efficiency Considerations

2.6. Pragmatic Issues

3. EXAMPLE TOOLKIT COMPONENTS
3.1. Uninitialized Variable Access Detection
3.2. Bounded Execution Failure Diagnosis
3.3. Parameter Usage Checking

iii

iv

vii

viii

1

1
2
4
4
6
7
8
9

11

11
14
17
18
20
22
23
26
30
30
32
38
40

42

42
50
54

4. AN ASSESSMENT
5. EPILOGUE
APPENDIX A. ALGORITHM FOR DETECI'ING UNINITIALIZED

VARIABLE ACCESS
A. 1. Exhaustive Monitoring
A.2. The Reduction Algorithm

A.2.1. Handling Goto Statements
A.2.2. Handling Procedure Calls
A.2.3. Complete Listing of Algorithm

A.2.3.1. The Analyze Procedure
A.2.3.2. Auxiliary Procedures

APPENDIX B. LISTING OF INSTRUMENTED P R O G W
B. 1. Uninitialized Variable Access Detection
B.2. Bounded Execution Failure Diagnosis
B.3. Parameter Usage Checking

REFERENCES
AUTHOR INDEX

LIST OF TABLES

Table 2-1: Dynamic Semantic Errors
Table 2-2: Consistency Checks
Table 2-3: Implementation-Dependent Features

vii

LIST OF FIGURES

F 1 Systematic Debugging Methods
Figure 2-1: Erroneous Sort Procedure
Figure 2-2 Structure of Debugging System
Figure A-1: Example to Illustrate the Reduction in Monitor Statements
Figure A-2 Syntax of Pascal Statements
Figure A-3: Computing the Analysis State of Statements
Figure A-4: Handling Goto Statements and Procedure Calls

Debugging appears to be the single part of the software-production proceJs that
ymgrammrs seem to abhv t h p mwt.

Glen ford .Myers 15 1]

1, I., Ssf t-wa re Errors

I t is a imtorio~is fact that bugs have infected every 4gnrf ica~t piece o f software

Studks t y Jaws 1441 indicate that a t least ono error 1s introduced for every 6'7 lines

d zxci,;:b-tt~5rtc w u n e mde produced :znd that annual expenditure on defect removal

exce~r ls $7 F I.Gllinn In the United States I c m Shoometl and Eelsky [53] report that

wrrzcting an zrnor takes an average of 4.44 man-hours, with the worst case being 35

:nanhom.s These alarming figures signify an urgent need for practical t e ~ h n r q w s l o

improve soft A ,ire reliability.

The currenf pt lctice ft)r coping w ~ t h sot tware errors is by means of program testing.

Testing 1s concerned with exposrng errors that were previously unknown. .A wide

variety .,f techlsc< fw:,,, w c h as functional trstmg [38], sy rnbollc testing [37], test~ng by

instrumetrt tttij i : {O 401, ,inJ PI. qt@m \iei i t rt;ttlon [18, 3 3 . 151, have been proposed

and a i ~ p l ~ ~ ~ ~ i in ract I , e 6 h 111 \ 1111' , k<ree of wccesc In a l l cases. debugging

o w i , . ; ellmrnnte errors disc~vered.

h o t h e r npproach IS to take preventive measures rather than resort to after the-fact

INTRODUCTION 2

cures. The central idea is to adopt a more disciplined attitude toward programming.

Methodologies introduced include structured programming [17], zero-defect

development [21], and defensive programming. These methodologies have proved to be

very effective in reducing the chance of error; nevertheless, the possibility of error

still persists. A more ambitious approach aims at eliminating sources of programming

errors altogether. Proponents of this approach devote attention to the automatic

construction of programs from specifications [16. 29. 481. Here. the problem is

merely shifted to a different level. Naturally, errors will be committed regardless of

the notation used, and removing errors from these very-high-level notations is not

necessarily any easier than from their conventional counterparts. More sadly.

development in automatic programming is still in its infancy, and only toy problems

can be tackled successfully.

A conceptual breakthrough that leads to the production of error-free software is

unlikely in the foreseeable future. In the meantime, testing and debugging will

remain essential to the attainment of quality software. This thesis addresses the

software reliability problem from such a viewpoint. We investigate the fundamental

issues In constructing practical and effective supporting tools for the elimination of

programming errors. We restrict our attention to debugging tools, but, as we shall

see, these tools may also be used for testing.

1.2. Program Debugging

Program debugg~ng involves the diagnosis and correction of errors. When an error

is initially discovered, only symptoms, or external manifestations of the error, are

apparent. Common symptoms include abnormal termination, incorrect output, and

missing output. Error diagnosis attempts to relate error symptoms to an actual cause.

Once the cause of an error is identified, error correction follows to remove the

discrepancy between program behavior and the intended effect. This requires

modifications to either the source code or the documentation associated with earlier

phases of the development life cycle, depending on where the error was committed.

This thesis is primarily concerned with coding errors in transforming a correct design

into an executable program, so-called logic errms.

In tmsidering autcmated support for debugging, this work. will concentrate on error

diagnmis ::mls rather than error correction tools, Automating error correction appears

to be ::r .walqv r.tteasible with current technology. This is because there are many

diffe>t ' way. lo achieve the same compufajional effect and it is most doubtful that

the hest ~l\rrectmn strategy in every situation will be selected by mechanical means. if

any sr . .,A, can he selected at all. Moreover, error diagnosis and error correction

need ndt bt, separate actlv~ties; pertinent informtion for correction is often obtained

during error diagnosis In fact, Myers [Sl] suggests that diagnosis accounts for 95%

sf overall aL:l\ity in debugging. The term debugging hereinafter means error

diag~r,)sis i~nless the context requires otherwise.

Errw diagnosis is a trial-and-error task often attempted with semi-automated tools.

A commonly used method 1s to nawely collect and examine execution information

hoping that anomalous condit~ons leading to the source of error will be recognized.

Another pre~adinb method is backtracking [51], which involves tracing the program in

reverse t.)tecutlcw order starting from the point of error until the cause is pinpointed.

These t:ri4:e fort,= methods are appealing because they are simple to apply, but the

amount ,)f labur required is often intolerable for large programs. Other more

systemar ~c methods, namely debugging by induction and debugging by deduction [51].

involve deriv~ng hypotheses about the error, which are subsequently subjected to

repeat
analyze available in formation
devise a hypothesis about the error
verify the hypothesis

until cause is known

(a) Debugging by Induction

repeat
list all conceivable causes
eliminate the impossible ones by simple reasoning
verr f y remaining hypotheses

until cause is known

(b) Debugging by Deduction

Figure 1-1: Systematid Debugging Methods

YI' ,ttron bigure 1 1 out 'mes the yro~edure employed. 4lrhough usmg s y \ 1 t h ' - , d , ,

rib 1 , . ' % u r ll generallj 8nplc)vc debugging tlme. t h e ~ r (tpparently burdensomr I ~ I t , *

has c .er ti:% main unpedlment to then gaming vc idesprrad acceptanct I kbugging

pr:duct I \ kc) :s d:rect!y related to the took used in lhat they can infiuence ihe

debuqg~ng style adopted

1.3. Current Debugging Tools

1.3.1. 'I'ra di t ional Debugging Tools

rradt ! i \) d debugging tools, of ten cal led interactive debuggers, provide mechanisms to

monitor the run time behavior of programs. Typlcal facilities offered are the ability

to suspend program execution, to trace execution flow, and to examine and modify

the exrcutlon state [n the earl) develnpmenr of interactive debuggers, these facilities

were ,,nly supported at the object code level [2. 24. 421. Today. debuggers that

operate a t the source language level are widespread [7. 9, 19, 26. 31. 601. Aside

from supporting higher level program monitoring facilities, some modern interactive

'INTRODUCTION 5

debuggers [IS. 20, 491 take advantage of advanced hardware. such as high-resolution

displays and pointing devices, to provide a more convenient user interface. Further

improvements to interactive debuggers are directed a t extending the current capability

for debugging concurrent programs [6, 8. 681 and programs that are written in

multiple source languages [9. 14. 431.

The facilities provided by interactive debuggers dictate a tracing style of debugging.

Because very little is known about how program monitoring can be used effectively

and efficiently, t~ilrtng tends to proceed in an ad hoe, brute-force manner. This often

results in prcionged debugging time. Systematic debugging methods, outlined in Figure

1 - l * m y be go8Powed. In these methods, ve~ifying hypotheses is a major step. Using

hteractiw ~ichuggers for this task entails translating each hypothesis h t o conditions

that inre know* Lls be true at different points of program execution, Debugging

commands are then issued to implement the necessary breakpoints.. Upon reaching

each bxeakpoi~t, the execution state is examined manually to check for violation of

the predetexrnined conditions. This procedure is repeated until the error is properlq

diagnosed. Although the use of systematic methods will generally improve debugging

productivity, the amount of preplanned and coordinated activity appears to be ton

demanding of the user. Consequently, systematic debugging is seldom attempted

Interactive tiebuggers have two major shortcomings. The first lies m the debugging

stvle imposed Debugging by tracing requires the programmer to cope with and

comprehend 4 ~ d s t number of bookkeeping details. This is ~ounterproductive in itself

l ' h ~ ctthex shtwtcuming is that the program monitoring facilities provided are not

su~ra t~ le for supporting systematic debugging methods. The programmer is thus

discou~ nged from domg so. In our view, if significant debugging productivity is to be

achieved, tool4 must deviate from the tracing style of debugging and gear toward

support for systematic debugging.

INTRODUCTION 6

1.3.2. Static Analysis Tools

Static analysis tools provide useful information for debugging by systematically

examining the program source text, but without actually executing the program.

Cross-reference generators are familiar examples of static analysis tools, though they

are of limited use for debugging. More sophisticated static analyzers are capable of

generating diagnostics that are directly related to programming mistakes, using program

flow analysis [34, 501 as the underlying methodology. DAVE [27. 521 is a good

representative example of such systems. It detects inconsistent usage of variables.

such as referencing uninitialized variables and consecutive assignments to the same

variable without an intervening reference. LINT [47], a well-known utility for C

programs, offers more extensive program checking capabilities, including more strict

type checking (than that performed by standard C compilers) and detection of

nonportable constructs. MAP [67] takes a novel approach in the presentation of

diagnostics: it stores the available information in a database and offers a query

language for retrieving the details of interest.

Static analysis tools are attractive for several reasons. First of all, they are easy to

operate in that little effort is involved in initiating them to generate diagnostics. This

is an important benefit to the user. Secondly, the types of diagnostics produced are

more helpful for debugging than the execution state information obtained from

interact~ve debuggers. A final advantage is the thoroughness of checking offered.

Instead of tocusing on a single execution error, the diagnostics cover all (possible)

instances of the same programming mistake, including the ones that lie outside of the

particular execution path under consideration. Despite these advantages, static analysis

tools have received limited acceptance as debugging aids. This is due partly to the

narrow scope of current static analyzers and partly to the inherent theoretical

limitations of static techniques (See Section 2.4). Remedies to these problems must be

devised before the techniques of static analysis can be effectively utilized.

1.3.3. Knowledge-Based Debuggers

Knowledge-based debuggers apply techniques from Artificial Intelligence to partly

mechanize the debugging process. Typical of such systems are a fixed debugging

procedure and an extensible knowledge base. The knowledge base can be defined a

priori ox can be acquired (and even learned) through interaction with an external

agent d u h g t.he operation of the system.

A notew-)r.tlty work in this field is Shapiro's PDS system1 [62] This system is

capable i ~ f diagnosing and correcting Prolog programs that contain three general clrt:ises

o f errorb. eer~nhation with incorrect output, termination with missing ourput and

zpyarant nim2errninat1on. Tile system mimics debuggins by tracing using an

augmerri,ec; Pwlog interpreter for monitoring execution. The knowledge required deais

x~~ainly w%i: the input/output behavior of the monitored program and is acquired

dynamically Through queries presented to the user.

I'he F41XjSY system of Sedlmeyer, et al. 1611 concentrates on error diagnos~s. I'he

\)stem, using a predefined knowledge base, proposes error hypotheses which are

subje~ted to verification. An error hypothesis is a functional model of a program

with a budt--in defect. A hypothesis is verified by performing some pattern-matching

between the proposed functional model and the given program. If pattern-matching

succeeds, then the expected defect is cnni~rmed and ix reported Otherwise another

'shd-pro's work is ccir~~erned u , t h a theoretical framework for debugging. He has also extended the
results t<r program synthesis, Our superfic~al treatment here can hardly do just~ce to this slgnlficant work.
It 1s recummeri~lecl reading for Interested readers.

hypothesis is generated. The procedure is repeated until exhaustion of hypotheses, in

which case system failure is reported.

Other work on knowledge-based debugging has been reported by Adam and

Laurent [I], Gupta and Seviora [32]. Ruth [59] . and Sussman [65].

Knowledge-based debuggers are only a t early experimental stages. Very little

\ \mess has been achieved to date. The difficulties encountered are fundamental and

ncntri\ial. For instance, the issues of what kinds of knowledge are necessary and

how the) can be effectively captured, represented, and generalized are only vaguely

understood. The mderlying problem-solving strategy employed by current knowledge

based debngyrrs, which often involves searching a vast solution space for An

aylpropr~dte answer. is computationally unacceptable for any realistic undertaking, even

with ~I11: mwst modern computer hardware. Practical solutions to these problems. nre

far over ;he: horizon. Although Artificial Intelligence trchniques may have an

ixportant impact in the long run, more practical alternatives can be investigated in

the inter'm

1.4. Outline

This thesis is concerned with a methodology for designing advanced debugging

systems. From the brief survey on current debugging aids, several desirable

characteristics of an advanced system are evident. First of all, the system should

directly support a disciplined approach to debugging, through which improved

tlt.l'ti::d~ile productivity is to be realized. It is essential that in place of lou level

fiic~litles, high-level debugging functions that reflect the nature of systematic

debugging be provided. Secondly, humdn factors in tool design should be addressed.

A debugging tool, regardless of sophistication, is only useful if i t will be accepted by

INTRODUCTION 9

the user. To this end, simplicity of use is a key point. Finally, in order to be

practical, resource requirements of the system must be adequately handled by current

computing hardware. This restricts implementation techniques to those whose

practicality has been demonstrated. The subject of this work is a design framework

which accommodates the abovementioned pragmatic issues within the constraints of

current technology.

This thesis is organized as follows. Chapter 2 expounds on a framework for

constructing advanced debugging systems. A new approach in structuring debugging

systems is first introduced. Design and implementation issues are then addressed.

The principles and techniques discussed will be demonstrated in Chapter 3 through

examples, An overall evaluation of our approach is given in Chapter 4. Concluding

ternarks are presented in Chapter 5. Appendix A elaborates on algorithms for

detecting unmitsalized variable access, which is one of the tool examples to be

discussed in Chapter 3.

Our discussion is oriented toward the predominant Algol family of languages. For

concreteness. ANSI Standard Pascal [5] has been chosen as the language for illustrating

the ideas.

1.5. A Note About Typography

Pascal programs are presented with keywords in lower-case bold and identifiers in

entire upper case. For reasons of clarity, underscores are used as word separators

within identifiers, even though this is not permitted in Standard Pascal. This style.

adopted from the ~ d a ~ Programming Language Reference Manual [55] and admittedly

2 ~ d a is a registered trademark of the U.S. Government (Ada Joint Program Office).

INTRODUCTION 10

not the most pleasing in the aesthetic sense, allows mixing program notations in

running text without additional typographical concerns. For example, the sentence

"The c m d i d i t y of a set, computed by the function CARDINALITY, is the
number of elements in the set."

clearly shows the two roles of "cardinality". It is evident that readability will be

reduced if italics are used for identifiers. Using a different font for program

notations is also arguably unpleasant.

Algorithms in the appendix are presented in bold and italics to distinguish them

from Pascal notations.

CHAPTER 2

A METHODICAL DESIGN FRAMEWORK

. . . [softwme] engineers b k e scientific principles, economic issues, and
social concerns in a pragmatic manner when solving problems and developing
technologicul products. . . . Intangibility und luck of physical properties for
software limit the number of findamental guidelines and basic constraints
available to s h p e the design and implementation of a software product.

Richard Fairley / 25]

2J. The Toolkit Paradigm

Designers of traditional debugging tools take the view that debugging can be

performed by observing the program dynamics. Hence, mechanisms are provided to

examine the program state at various points of execution. Its ramification is that

reasoning about programs must be perceived in terms of the underlying execution

model. This approach to debugging system design is evidently low-level.

The low-level approach has the merit that general debugging can be carried out with

the primitive facilities provided. Traditional debugging tools thus can be characterized

as general-purpose tools. Achieving generality, however, has greatly compromised

usability. Every detail of the entire debugging process must now be attended to.

. The massive amount of information flow between the user and the debugging system

often overwhelms one's administrative capacity and patience. Much of the work

involves bookkeeping details that require little intellectual sophistication. An advanced

system must remove these unimportant levels of clerical detail. Identifying a new

A METHODICAL DESIGN FRAMEWORK 12

level of abstraction in the debugging process is thus the paramount issue in high-level

debugging system design.

Recall from Section 1.2 that deductive and inductive debugging methods involve

deriving and verifying error hypotheses. Deriving hypotheses, which requires

knowledge of the problem and programming expertise, is more mentally demanding

than the verification part, which is largely laborious and tedious. The verification

process can be modeled as procedural abstractions; that is, the concrete operations

needed to test a hypothesis are encapsulated to form a single entity and represented

conceptually as an atomic operation. By suppressing irrelevant details, efforts can be

concentrated on the problem solving aspect of debugging. A system adopting this

principle of abstraction is naturally composed of a collection of tools, with each tool

implementing a procedural abstraction. Such a high-level system, characterized by its

constituent parts. is called a toolkit system.

Toolkit systems have a number of important characteristics not typified in

conventional systems. As a consequence of the design decision adopted, toolkit

systems support a more abstract view of debugging. Each tool can be viewed as an

oracle to certain conjectures on program misbehavior. Because low-level operations

such as crude examination of program state changes are not provided. debugging

liberally without forethought is discouraged. Although an abuse of tools cannot be

avoided, systematic debugging is better supported and will more likely be adhered to.

Another distinctive feature of toolkit systems is that each individual tool can only

be applied to detect a specific kind of error and is therefore said to be

specid-purpose. Because of its confined scope, effectiveness can be attained by

incorporating into the tool knowledge specific to its application domain. Special-

A METHODICAL DESIGN FRAMEWORK 13

purpose tools also can be made easy to use: because of the built-in knowledge.

minimal human guidance is needed to operate them. In contrast, early (and even

some existing) interactive debuggers are typically difficult to learn and operate; this

often diverts the user to manual methods. From the users' perspective, achieving

effectiveness without sacrificing simplicity of use is the most appealing aspect of

toolkit systems.

In contrast to conventional monolithic systems, components of toolkit systems are

small and functionally independent. A consequence of structuring systems with

autonomous units is that these systems are extensible. Toolkit systems thus may

evolve over time, acquiring increased functionality as new tools are added. At the

early stages of evolution, the toolkit is typically small and the tools serve more as

valuable supplements to general-purpose tools. As the toolkit is gradually expanded.

it will play a more dominant role in debugging and eventually general-purpose tools

will become the last rescrt. For obvious reasons, however, it is inconceivable that

toolkit systems will replace general-purpose systems. This shortcoming can actually

be taken advantage of by the tool designers and implementors. Since the goal is to

complement general-purpose tools rather than to eliminate them. development of

toolkits may proceed incrementally, with attention focused on tools that give the

greatest potential benefit. In addition, flaws found in early development efforts can

be subsequently avoided, giving rise to higher quality tools.

In summary. the essence of toolkit systems is that each constituent tool incorporates

an effective procedure for detecting a class of programming error. Hence, suspicion

about the presence or absence of a particular error can be confirmed easily. From the

perspective of the users, the designers, and the implementors, toolkit systems in many

respects offer advanced features surpassing available alternatives. It is anticipated that '

A METHODICAL DESIGN FRAMEWORK 14

debugging time will be reduced drastically with a reasonably developed toolkit.

However. toolkit systems should be regarded as complements to general-purpose

systems, rather than as a complete solution exhausting all debugging needs. A

detailed evaluation of the toolkit approach to debugging system design is presented in

Chapter 4.

2.2. Human Engineering in Design

As mentioned earlier, consideration of human factors is a prerequisite to successful

software tool development. With respect to debugging tools, this argument can be

taken further: as manual methods are always viable and preferred alternatives.

complicated tools will be abandoned regardless of sophistication in capability.

Designing practical debugging tools must take user psychology into consideration. The

tmst concern is to gain user confidence in using the tools.

Establishing user confidence means (among other things) that the tools can be

trusted to perform designated tasks. In addition to being adequately robust and

reliable, it is essential for the tools to tackle the problem as a whole. A common

fault in tool design is that only special instances of the problem are handled. The

solutions adopted are motivated primarily by premature concern for efficiency and

secondarily by ease of implementation. It is sometimes forgotten that performance

characteristics are meaningless unless requirements are first fulfilled. Our answer to

attaining economy while insisting that tools meet their functional expectations is to

combine reasonably efficient but simple algorithms with exhaustive methods, which are

used only for a few difficult cases. Although tools which employ such a mixed

strategy may not be the most efficient, the implementors will be able to deliver the

expected capabilities without spending undue effort in finding the best algorithm.

A METHODICAL DESIGN FRAMEWORK 15

Another important human concern is to minimize the effort needed to use the tools.

The criterion is to substantially reduce. if not totally eliminate, human interaction

during the course of exercising the tools. It has been explained earlier that special-

purpose tools typically need minimal human guidance because of the built-in error

detecting procedures. In fact, some special-purpose tools may carry out error analysis

tasks without iequiring explicit information from the user; the information needed is

derived from other sources. It may seem that such sources are scarce, but as we

shall see in Section 2.3, there are many ways to extract useful information from the

program.

A final important human aspect is usefulness. In addition to the preceding ways to

initiate users. tools must produce results useful for further debugging efforts in order

to receive final acceptance. For error analysis tools, it means that the diagnostics

produced can be easily related to the actual cause. Ideally, errors detected should be

described in pragmatic terms. that is, in terms of how language features are misused

in a particular context. Pragmatic error descriptions are more helpful for correction

than symptomatic descriptions, which merely give an account of the external

(observable) effects of the program at termination. The erroneous program fragment

in Figure 2-1, which is intended to sort a vector by repeatedly moving the minimum

element from a successively smaller vector slice to the head of the slice under

consideration, serves to illustrate the difference between symptomatic and pragmatic

error descriptions. An error is revealed upon examination of the vector processed by

procedure SORT. (We encourage the reader to diagnose the error at this point.) The

symptomatic error description might be "incorrect result," but the pragmatic cause is

"missing declaration for variable I in procedure MIN." Correction is straightforward

given the latter error description. -.

A METHODICAL DESIGN FRAMEWORK 16

procedure SORT(var V : VECTOR);
var I : INDEX;

function MIN(START : INDEX) : INDEX;
var POSITION : INDEX;

begin
POSITION := START;
f o r I:=START+l to UPPER-BOUND do

if V[I] < V[POSITION] then
POSrnON := I;

MIN := POSITION
end;

begin
for I:=LOWER-BOUND to UPPER-BOUND-1 do

SWAP(1. MIN(1))
end;

Figure 2-1: Erroneous Sort Procedure

Although pragmatic error descriptions are preferable from a debugging standpoint, it

is in general impossible to derive such descriptions precisely from the source code

alone without additional information or constraints on the various language entities.

In the preceding example, it will be impossible for a mechanical tool to discover that

the inner loop control variable must be a local entity, if such a restriction is relaxed

by the language definition. Disregarding whatever information that can be obtained.

the problem of determining precise descriptions of detected errors is inherently a very

difficult one. As it occurs in the context of compilation, the problem has received

considerable attention [53. 57. 641. but much remains to be learned3. Compared with

syntax errors, the handling of programming errors is much more difficult. With this

difficulty in mind, a more modest goal is to furnish diagnostics that are helpful.

though perhaps imprecise.

3 ~ s a point of interest, some recent commercial compilers circumvent the problem by invoking a visual
editor at the point of error and thus relying on the user to make the necessary corrections, which are
typically straightforward. This solution might well be the preferred one in an integrated programming
environment.

A METHODICAL DESIGN FRAMEWORK 17

2.3. Taxonomy of Features

Toolkit systems may gradually evolve. It is important to delineate their

functionalities not only to help visualize the limitations, but also to assist tool

- designers in selecting applicable features. An obvious way to define the boundaries of

toolkit systems is to classify errors according to the nature of their causes. For

example. an error in an expression may be traced to the operator used, giving the

error type "Incorrect Operator Used", which can in turn be classified as

"Computational Errorw. Such attempts have been reported by Boehm, et d. [lo].

Endres [231. Rubey [58]. and Thayer. et d. [66]. "The principal problem encountered

in such an approach is the tendency to create a category for each error

analyzed." [661 Any earnest attempt results in a prohibitively large number of error

types. The largest classification known lists over 400 error types [66]. It is

doubtful whether such long lists are useful at all for our purpose. Another problem

is that such classifications do not yield insights as to how each error type can be

handled. The error type "Incorrect Operator Used" hardly suggests any useful

interpretation for automatic detection. This approach is not adopted here.

The features discussed here are grouped into four classes: semantic error detection.

consistency checking, code auditing, and data structure analysis; each is treated in a

separate section. Other features are possible and may even be desirable. A more

detailed classification will require practical experience with toolkit systems; it will not

be attempted at this point.

A characteristic of the above classification is that each class represents the

enforcement of some predefined rules. Thereby, means for detecting violations become

apparent. In addition, the requirement to minimize user effort is easily satisfied. For

A METHODICAL DESIGN FRAMEWORK 18

example, semantic error detection tools expose logic errors that manifest themselves by

violation of the language semantics. Necessary information for their detection can be

derived from the language definition without user participation.

23.1. Semantic Error Detection

A programming language specification must define rules governing syntax and

semantics; any deviation from the prescribed rules constitutes an error. Syntax errors

are much less relevant with respect to debugging and thus are not considered further.

Semantic errors can be classified as either static or dynamic, depending on whether

detection is possible at compile-time or at run-time. Compilers must perform

complete static semantic analysis in order that code generation can proceed correctly.

Dynamic semantic error analysis, however, is sometimes neglected due to the

substantial execution overhead incurred from the addition of run-time checks8.

Compilers should not be relied upon for detecting all language stated violations.

To illustrate the inadequacy of compilers as debugging aids, consider again the

erroneous sort procedure in Figure 2-1. Strictly speaking, the oversight of nat

declaring the for-loop control variable is a violation of the standard Pascal language

definition [5] , and the error should have been caught by a conforming compiler.

Unfortunately, our local production compiler accepted the illegal program without

complaint. As another example, consider the following program fragment.

'~ynarnic semantic errors that cannot possibly be checked for are indications of language design
deficiencies.

A METHODICAL DESIGN W E W O R K 19

procedure OUTER:
var I : INTEGER;

procedure INNER(var V : INTEGER);

begin
v := 1

end:

begin
for I:=l t o 100 do

INNER(I)
end:

The language definition clearly states that the for-loop control variable must not be

subjected to explicit assignment and must not be passed as a reference parameter to a

subprogram. Thus, this error can be detected rather easily and inexpensively during

compilation. However. a student compiler, which claims close conformance to the

standard and is well-known for its diagnostic capability, failed to recognize the error.

Indeed with existing compilers compliance to the standard appears to be the exception

rather than the norm5. Consequently, tools for detecting semantic violations will

form an important set of debugging aids.

Some dynamic semantic errors are listed in Table 2-1. They are grouped into two

categories: control structure errors and type constraint errors (on data objects). Since

a data type is characterized by a set of values and a set of operations, type

constraint errors can be further divided into value constraint errors and operation

constraint errors. Note that in designing tools for detecting dynamic semantic errors.

error types should be selected such that they are known to occur frequently (based

on experience or experimental data) and that they do not overlap with the capabilities

 ortu tun at el^ this unorthodox situation is gradually improving as recent language design efforts tend to be
more rigorous, complete, and unambiguous in order to promote faithful implementation (cf. Ada [%I).

A METHODICAL DESIGN FRAMEWORK 20

No corresponding case statement alternative for the selector value.
Function not returning a valid value.
A process attempting to communicate with another terminated process.

(a) Control Structure Errors

Assigning a value not in the valid range of the variable.
Index selectors not in the valid range.
Selecting fields from an inactive variant of a discriminated union.
Attempting to reference a variable/pointer that has an invalid value.
Division by zero.
Arithmetic overflow.
Arithmetic underflow.

fb) Type Constraint Errors

Table 2-1: Dynamic Semantic Errors

already offered by existing facilities (including but not limited to compilers). For

example, arithmetic overflow errors are almost always trapped by the hardware

whereas referencing uninitialized variables is often left to the programmer's discretion;

a tool for detecting the latter error type is therefore much more useful.

23.2. Consistency Checking

Violating semantic rules is but one of many ways that logic errors may manifest

themselves. Another perhaps more common way is for logic errors to exhibit

themselves as inconsistencies. Inconsistent usage patterns in programs are frequently

referred to as (program) anomalies. Anomalies may be symptomatic of potential

problems, but are not necessarily errors in the strict sense. A trivial example of an

anomaly is the absence of references to a declared variable. This might indicate a

typographical error due to similar variable names, as the variables in the declaration

var UK-POPULATION. US-POPULATION : POPULATION:

A simple tool for checking declarations against references will detect and warn about

the inconsistency. Should. it happen to be an error, much of the debugging effort

A METHODICAL DESIGN FRAMEWORK 21

A variable is assigned but never referenced subsequently.
No reference to a variable between two assignments.
Presence of unreachable statements.
Some fields of an active variant of a discriminated union are not assigned to
before another variant is selected.
A recursive function that produces no side effect is invoked with the same
values of arguments in successive calls.

(a) Program Anomalies

Interface consistency across separately compiled modules.
Data and control flow consistency between program and design.
Adherence to the pre- and post-conditions identified in the design.

(b) Checks based on Design

Table 2-2: Consistency Checks

normally required will be avoided. As another example, an unreachable-statement

anomaly is present in

if (DAY >= 1) or (DAY <= 366) then
SCHEDULE(DAY)

else
WRITELN('Not in valid range.'):

This is inconsistent with the purpose of an if-statement, and an examination of the

if-expression will reveal the error. Again, in this case, much labor will be saved.

Table 2-2(a) lists more program anomalies.

The extent of anomaly checks depends somewhat on the amount of redundant

information made available by language designers. Type declaration is an example of

redundancy, which allows illegal manipulations 6f logically incompatible objects to be

. caught. Although there is a growing trend to incorporate more secure features into

programming languages, anomaly checks represent only part of all possible consistency

checks that can be taken. Another major source of information that can be utilized

for consistency checking is provided by the design documents. DACC [lo], for

A METHODICAL DESIGN FRAMEWORK 22

example, is a tool that demonstrates the feasibility and advantages of such an

undertaking. Some consistency checks that can be performed based on the design

documents are presented' in Table 2-2(b). Lichtman [46] describes a methodology for

detecting inconsistencies between a program and its design.

23.3. Code Auditing

Code auditing is the process of examining programs for coding malpractice according

to a prescribed set of rules denoting proper usage. which is known as a programming

standard. The purpose of such subjective, but generally well-accepted, standards is to

assure uniform style and appearance of programs in order to promote reliability and

maintainability. To these ends, items addressed by a standard include format of

indentation, naming and documentation conventions, and usage restrictions on certain

language features. Only the last of these items -is of particular interest to debugging.

though violations of the others might well impair debugging productivity.

Certain language features are often considered as harmful, yet programming

convenience is sacrificed without them. Goto statements, side effects, aliasing.

pointers, and global variables are a handful of well-known examples. Their harmful

aspects are documented in detail in [22. 36. 54. 561. Since these features are

important sources of errors, violations of usage restrictions set by a programming

standard serve as an early indication of problems, and should be taken as errors. For

example, the expression

SEED + RANDOM(SEED)

may yield different values on different compilers, if function RANDOM modifies

variable SEED. Debugging is necessitated when programs of this sort are transported

-.

A METHODICAL DESIGN FRAMEWORK 23

Default initialization value of variables.
Evaluation order dependencies.
Storage allocation and alignment for predefined types.
Execution timing of program constructs.
Strategy in choosing an alternative in constructs involving nondeterministic
selection.

Table 2-3: Implementation-Dependent Features

to 'incompatible' environments. In general, reliance on implementation-dependent6

features is a dangerous practice. Table 2-3 lists some implementation-dependent

features. In other cases, violations of the standard might well point out actual

errors. For example, an infinite loop construct without exit violates any intent of

finite computation, as in

while TRUE do
WRITELN('Hello!');

The utility of code auditors as debugging aids is readily evident.

23.4. Data Structure Analysis

Thus far, attention has been focused on logic errors originating from the misuse of

language constructs without considering the purpose for which they are used. A large

number of errors occur in the context of implementing (abstract) data structures.

Each data structure can be described by a set of structural properties and a set of

primitive operations provided explicitly to the client for manipulation. This

description serves as a basis for determining integrity, whether manually or otherwise.

For a particular data representation, tool designers may develop a description that will

facilitate the construction of tools for detecting integrity violations. Consider the case

6 ~ h i s term is used here to represent those implementation-defined attributes that are not warrant to be
taken advantage of by programs. MAXINT, denoting the largest representable integer, is an example of an
implementation-defined, but not implementation-dependent, attribute.

A METHODICAL DESIGN FRAMEWORK 24

of a linear list implemented using pointers. Conceptually, a linear list 1 consists of

an integer count of nodes and an ordered set of nodes satisfying the structural

properties that

1. count is always nonnegative.

2. 1 is nil if count = 0.

3. 1 points to the first node if count > 0.

4. each node has a link field from which the successor node can be reached.
and

5. the link field of the last node is nil.

The primitive operations of concern are

1. insertfl,p), which increments count associated with list I by one.

2. deletef1,p). which decrements count associated with list I by one.

3. searchf1,key). which returns in q the value nil, or the value of I , or the
link field of some node of iist i, and

4. successorfl,p), which returns in q either the value nil or the link field of
some node p of list I.

The above description can be made more elaborate or general depending on the level

of checks desired; it suffices here to illustrate the essence of such descriptions. Tools

can now be constructed to check for structural conformity with respect to the above

description. These tools will be able to detect improper manipulation of the

underlying data representation initiated by both the implementor of the data structure

and the client of the data structure if direct access to the representation is possible.

As an example to illustrate the utility of data structure analysis tools, suppose that

in implementing the operation INSERT-TO-HEAD for linear lists, the LINK of the

newly added node is not updated to connect with the rest of the list. This oversight

A METHODICAL DESIGN FRAMEWORK 25

can be detected by a tool which compares the actual number of nodes with the count

of the list. As another example, suppose that when restructuring the links in the

operation DELETE-NODE, the correct statement

PREDECESSORT.LINK := CURRENTT.LINK

is inadvertently written as

CURRENTT.LINK := PREDECESSORT-LINK

A circular list has now resulted. This mistake can be detected by the same tool used

previously. The trick lies in the implementation of the tool itself. Instead of

comparing the count at the end of a full traversal of the list, the tool will stop and

report an error as soon as count is exceeded. A more sophisticated version will be

able to report the circular condition by maintaining a list of distinct pointers

encountered in the traversal. This points out that through careful design a single tool

can be used to detect different pragmatic errors.

In order to use such tools, the correspondence between the conceptual entities in the

descriptions and the actual entities used in the implementation must be given. The

exact nature of specifying the correspondence is left to the tool designers. Note that

the correspondence need not be one-to-one. For instance, the conceptual entity count

above may not have a counterpart in an implementation, in which case the tool will

create and maintain such an item for internal use.

With a small, fixed tool set, debugging support will likely be limited to some

primitive structures, such as lists, trees, stacks, and queues. It is hoped that the

continuing research on data structure specification techniques will bring more insights

to the problem.

A METHODICAL DESIGN FRAMEWORK 26

2.4. Program Analysis Methods

The features offered by a toolkit system are the types of errors that the system is

able to detect. In implementing a tool, different program analysis methods for

- detecting errors may be adopted. In order to build useful tools. a thorough

understanding of the tradeoffs between alternative program analysis methods is

necessary. Program analysis methods are divided into two broad categories: static and

dynamic; each is examined in turn.

Static analysis methods can determine the presence or absence of certain types of

errors in a program without actually executing the program. Many mistakes, such as

omitting references to declared variables and data type mismatches between formal

and actual parameters, can be detected easily and dependably by a textual scan on the

program. More involved static error analysis can be performed using program flow

analysis techniques. Flow analysis techniques can discover errors that can be

represented as a sequence of events. For example, the event sequence

{undefine, reference} on variables denotes accessing undefined values. This type of

error can be detected by flow analysis, with some limitations as noted below. See

Hecht [341 and Muchnick and Jones [50] for a more thorough treatment on the

subject. Essentially, static analysis methods work on a formal program model, such

as parse tree or graph representation, and involve a simulated execution of the

program over all program paths. Therefore, the result of analysis is applicable to all

possible program executions irrespective of the input data. It follows that if the

presence of certain errors is not shown, their absence can be assumed. Furthermore.

algorithms developed for static analysis are generally efficient, making them attractive

from a computational standpoint. However, static analysis methods suffer from many

theoretical limitations. Many properties of a program cannot be determined in general

A METHODICAL DESIGN FRAMEWORK 27

by merely examining the program text. For example. complete variable aliasing

information and feasibility of program paths cannot be known statically. These

problems are handled by making worse case assumptions, and, as a result, insignificant

diagnostic messages will be generated. Experience has shown that existing static

analysis tools tend to produce a massive amount of superfluous messages, which will

distract, or even annoy, the user. This is the main drawback of static methods.

Dynamic analysis methods can discover the presence of errors through execution of

the program under analysis. The detection of errors in dynamic analysis is

accomplished by adding monitoring code (run-time checks) to the program. The

resulting program is then executed. By executing the program, many properties of a

program unknown by static methods can now be determined. Diagnostics will only

be generated for actual errors encountered rather than for all possible errors as

generated by static methods. The reduction of superfluous diagnostics is the major

advantage over static methods. Dynamically produced diagnostics, however, are only

relevant to the particular execution path caused by the given input data. Hence,

dynamic analysis methods can show the presence of errors with respect to the given

data sets, but cannot guarantee the absence of errors. Demand for resources is also

relatively higher for dynamic methods, although this should only be of secondary

importance.

A debugging tool for a given error type may be best implemented using either static

methods or dynamic methods or a combination thereof. If an error type is amenable

to positive identification by static methods, then only static methods are considered.

In this case, all errors detected will be reported even though they might be irrelevant

to the particular execution under consideration. The reason for not supporting

execution error analysis is to encourage the user to remove all known errors before

A METHODICAL DESIGN FRAMEWORK 28

proceeding further. This restriction on how tools can be used is in support of the

view that the early identification of errors will lead to improved software reliability.

and with obvious cost advantages. In spirit, it is similar to strong typing. When

static means alone are inadequate, an integrated static and dynamic method can be

used. Static analysis is first applied to achieve a thorough program analysis. Errors

found at this stage can be classified as either definite or potential. A statement in a

program is said to produce a definite (respectively, potential) error if its execution

will always (respectively, sometimes) cause the same error to occur. All definite

errors found should be reported because it is reasonable to assume that each statement

in a program lies on some executable path. Potential errors, on the other hand.

should be monitored with run-time checks as it is unclear when these errors will be

triggered. Run-time checks for definite errors are also inserted to test if they will

cause run-time errors for some particular execution. If any run-time checks are

inserted. the modified program will then be executed (the dynamic analysis phase) to

obtain a profiie of execution errors (if any). In order to avoid overwhelming the

user with diagnostics, only definite errors and the first execution error will be

reported. Of course, the reporting of potential errors and subsequent execution errors

may be optionally selected by the user. Such a selection may be done via a tool

option, say DIAGNOSTICS. The possible values for this option are Terse and Full.

whose meanings are given below.

Terse provide short diagnostics.
(Report only definite errors and first execution error.)

Full provide comprehensive diagnostics.
(Report all definite, potential and execution errors.)

Although this option is only meaningful for tools employing both static and dynamic

analysis, extending it to the entire collection of tools will give a more unified. view

of the system. For tools that employ only static analysis, this option has no effect

other than to maintain interface consistency.

A METHODICAL DESIGN FRAMEWORK 29

When an integrated static and dynamic method is used to implement a tool, there

are other selection possibilities for the diagnostic messages. The selection for the

diagnostics from static analysis can be Terse. FuU, or Ignored, with the following

meaning:

Terse report only definite errors.

Full report definite and potential errors.

Ignored do not report any definite or potential error.

These three choices apply also to diagnostics from dynamic analysis, with the

following meaning:

Terse report first execution error.

Full report all execution errors.

Ignored do not report any execution error.

By using two tool options (one for diagnostics from static analysis and the other for

diagnostics from dynamic analysis), a greater range of possibilities for diagnostic

reporting can be provided. Although using an extra tool option will give the user

more flexibility, it is not apparent in this case whether the added flexibility will be

of any practical value. In fact, one might argue that it will be a mere source of

confusion for someone who is unfamiliar with notions of static and dynamic analysis.

Therefore, the original choice of using a single tool option should be retained. When

the benefits of adding more features to a tool (by means of tool options) are unclear.

a simpler interface should be opted for. Adding tool options freely is indeed a bad

practice, as Kernighan and Pike [45] commented on some UNIX' tools: "Creeping

featurism encrusts commands [tools] with options that obscure the original intention of

the programs."

7~~~~ is a registered trademark of Bell Laboratories.

A METHODICAL DESIGN FRAMEWORK 30

2.5. Implementation

2.5.1. Model

A toolkit system, as viewed by the user, is a black box which takes as input a

program and produces as output an error report. (The report is specific to a

particular type of error, depending on the tool selected.) This view is depicted in

Figure 2-2(a). Internally, static and dynamic analysis are performed on the given I

program. Static analysis reports program errors that are detected by examining the

source text, and inserts run-time checks to monitor errors in execution. Dynamic

analysis reports errors that are caught by the inserted run-time checks during the

execution of the modified program. Prior to the actual static analysis, parsing is first

done to convert the flat source text into a more convenient form for manipulation.

Tools for these tasks are the parser, the static analyzer, and the code executor. Their

organization is shown in Figure 2-2(b).

For each error type that the system is able to detect, a separate static analyzer is

implemented. It is very important to standardize the input and output representations

used by the collection of static analyzers, although it is tempting for convenience

reasons that different types of analysis employ their own esoteric representations.

The use of standardized representations allows all static analyzers to share the same

parser and code executor, thus reducing the implementation effort. More importantly,

it provides a common basis for independent implementors to communicate and

understand the work of others. This point is particularly important to the long term

viability of the system as maintainability becomes the crucial factor.

We choose the parse tree (abstract syntax tree) as the unique internal representation.

There are several reasons for this choice. As the input representation to static

Program
errors

A METHODICAL DESIGN FRAMEWORK 31

Program Debugging Error report System

(a) External View

Program

Static
Analyzer I

Execution
errors

Program
errors

Error report

Program

Parser

Parse tree

t
Error report

(b) Internal Organization (c) Proposed Model

Figure 2-2: Structure of Debugging System

A METHODICAL DESIGN FRAMEWORK 32

analyzers, a parse tree captures all information of, the original program and is a

useful structure for performing general analysis. The work of Cameron and Ito [I l l

has demonstrated that the parse tree is a convenient basis for performing static

analysis (and program manipulation in general). More specialized representations, such

as the call graph and flow graph combination that is used widely in flow analysis

applications. are less desirable because it is unclear whether they are suitable for

general analysis. As the output representation of static analyzers, a parse tree offers

a simpler alternative for implementing dynamic analysis. Instead of writing an

intricate code executor, an existing compiler can be taken advantage of, with a

straightforward unparser (prettyprinter) serving as the interface. The program

resulting from unparsing can also be made accessible to the user, allowing him the

flexibility of retaining the run-time checks as a permanent part of his program (for

testing purposes, for instance) - Should efficiency become a concern. he may delete

part of the checks. This possibility is feasible because the user is dealing with a

program at the source level, not some obscure intermediate language. Finally, the use

of a parse tree as *the unique internal representation means that static analyzers can

be directly cascaded together without additional processing. Figure 2-2(c) illustrates

the proposed implementation model. Note that this model represents only the kernel

of the system; additional elements, including a user interface, are needed to create a

stand-alone and a more usable system.

2.5.2. Program Instrumentation Techniques

Program instrumentation refers to the insertion of source statements into a program

for information gathering purposes [41]. It is commonly used as a means to collect

execution statistics about a program (program profiling as it is known) [28. 301; our

use of it is for detecting execution errors. We now discuss some useful ideas about

program instrumentation in this narrow sense.

A METHODICAL DESIGN FRAMEWORK 33

An error occurs in a program's execution when the state of computation violates

certain expected (predetermined) conditions. These conditions can be expressed in

terms of certain program entities. Errors in execution are detected by monitoring

these entities. To do this, we associate a monitor variable with each such entity. A

monitor variable is used to capture the abstract state of the associated entity during

execution. The actual monitoring is carried out by inserting statements into the

program. For this reason, such inserted statements are called monitor statements. We

shall use the more intuitive term run-time checks to mean monitor statements when

there is no need to be more precise.

The value of a monitor variable denotes the abstract state of the associated entity.

The possible states that a monitor variable may assume (that is, the characteristics of

the associated entity that are of interest) are known in advance. For many practical

purposes, the set of possible states is enumerable and is typically'small in number.

Some of the states may be designated as error states. When a monitor variable enters

into an error state, a message to that effect is emitted. For example, to detect

whether a function returns a value, two states. FunctionAssigned and

I.unctionNotAssigned, would suffice, with the latter being an error state. In Pascal.

the set of possible states of a monitor variable can be denoted by an enumeration

type. Identifiers for monitor variables should be selected such that they can be easily

distinguished from the ordinary program variables. Using a unique name suffix will

serve the purpose. For example.

type FUNCTION-RETURN-MONTYPE =

(FUNCTION-ASSIGNED. FUNCTION-NOT-ASSIGNED);
var FACTORIAL-MON : FUNCTION-RETURN-MONTYPE;

where FACTORIAL-MON is the monitor variable for the function FACTORIAL.

A METHODICAL DESIGN FRAMEWORK 34

When monitor variables are being associated with program variables, care must be

taken to ensure that the proper monitor variable associations are maintained

throughout program execution. The identity of a monitor variable may be confused

when the proper monitor variable to be used is not known statically, but must be

determined at run-time. In Pascal, this happens with the monitor variables of array

elements, dynamically allocated objects (called heap objects henceforth), and parameters

that are passed by reference. Some possible solutions for disambiguating such monitor

variables at run-time are presented below.

Case 1: monitor variables of array elements.

Suppose that each element of an array has an associated monitor variable

and that we want to identify the monitor variable of an array element

whose indices are given by expressions that cannot be evaluated statically.

The solution is straightforward. Temporary variables are first established to

hold the values of the indexing expressio~s. The indices of the array

element in question are then replaced by the respective temporary variables.

These temporary variables can now serve to identify the proper monitor

variable. Alternatively, the indices can be recomputed, thus saving storage at

the expense of efficiency. This solution is applicable when the indexing

expressions are free of side effects.

Case 2: monitor variables of heap objects.

Heap objects are created and destroyed dynamically. Aliases to them can

exist as a result of pointer assignments. A simple method that allows the

monitor variables of' a heap object to be identified easily is to package the

heap object and its monitor variables into the same data aggregate by

A METHODICAL DESIGN FRAMEWORK 35

modifying the declaration of the heap object. An example will clarify the

point. Consider the following declarations.

type LIST = ?NODE;
NODE = record

INFO
LINK

end

Suppose a monitor variable

: INTEGER:
: LIST

is desired for INFO. This is done by changing

the declaration of NODE to

NODE = record
INFO : INTEGER:
LINK : LIST;
INFO-MON : SOME-MONTYPE

end

With this method, the monitor variables of a heap object can be assessed as

long as a pointer to that heap object is known. Even when pointer aliases

are present. the proper monitor variable can always be identified.

Case 3: monitor variables of reference parameters.

If a variable under monitoring is being passed to a subprogram via call by

reference, then monitoring must also be taken on that formal parameter of

the called subprogram. Since a formal reference parameter is just an alias

of the corresponding actual parameter and an operation on any alias will

affect the same datum, it must be ensured that the monitor variables of the

aliases will remain consistent at all times; that is, any change to the monitor

variable of an alias must be propagated to all other monitor variables of the

alias group. One solution is to ensure that all aliases share the same

monitor variable. To do this, aliases among monitor variables can be created

A lMETHODICAL DESIGN FRAMEWORK 36

using the same parameter passing mechanism. Specifically, the relevant

subprogram calls are modified to include the monitor variable of the actual

parameter as an extra argument that is also passed by reference. The

corresponding subprogram heading must be modified accordingly. For

example, consider the subprogram call

FOO(X)

where the heading of FOO is

procedure FOO(var I : INTEGER);

'The necessary modifications are shown below.

FOO(X. X-MON)
procedure FOO(var I : INTEGER; var I-MON : SOME-MoNTYPE);

Note that to maintain semantic validity, all calls to FOO must be modified

even if the argument of some calls does not need to be monitored. In that

case, a dummy monitor variable can be used.

We now turn our attention to monitor statements. There appear to be two useful

types of monitor statements, namely, state-assignment statements and error-report

statements State-assignment statements are used to maintain monitor variables in the

proper state. In particular, they serve as initializations to monitor variables. Error-

report statements are used to report errors when erroneous conditions are encountered.

Each of these two types of monitor statements can be further classified as either

. conditional or unconditional. An unconditional monitor statement causes the intended

action to be performed whenever that monitor statement is executed. In contrast, the

action of a conditional monitor statement will be executed only if certain conditions

are first satisfied. The choice of the types of monitor statements and the appropriate

A METHODICAL DESIGN FRAMEWORK 37

places for their insertion are determined by static analysis. Usually, there is more

than one possible solution.

As an example, we shall continue with the "function returning value" problem.

Consider the following function for computing the factorial of a number.

function FACTORIAL(1 : INTEGER) : INTEGER:
begin

i f 1 < = O t h e n
WRITELN('1nput must be greater than 0')

else if I = 1 then
FACTORIAL := 1

else
FACTORIAL := FACTORIAL(I-1) * I;

end;

A smart static analyzer would produce

function FACTORIAL(1 : INTEGER) : INTEGER;
begin

if I <= 0 then
begin

WRITELN('1nput must be greater than 0');
{ unconditional error-report statement }
WRITELN(ERR0R-FILE.'FACTORIAL not returning value.')

end
else if I = 1 then

FACTORIAL := 1
else

FACTORIAL := FACTORIAL(1-1) * I;
end:

while a straightforward one might arrive at

A METHODICAL, DESIGN FRAMEWORK 38

function FACTORIAL(I : INTEGER) : INTEGER;
var FACTORIAL-MON : FUNCTION-RETURNMONTYPE:
begin

{ unconditional state-assignment statement }
FACTORIAL-MON := FUNCTION-NOT-ASSIGNED;
i f 1 < = O t h e n

WRITELN('1nput must be greater than 0');
else if I = 1 then

begin
FACTORIAL := 1;
FACTORIAL-MON := FUNCTION-ASSIGNED

end
else

begin
FACTORIAL := FACTORIAL(1-1) * I;
FACTORIAL-MON := FUNCTION-ASSIGNED

end;
{ conditional error-report statement
if FACTORIAL-MON = FUNCTION-NOT-ASSIGNED then
WRITELN(ERRORFILE.'FACTORIAL not returning value.')

end;

Note that the monitor statements used here are simple statements. In more complex

situatiom, a monitor statement might involve 2 series of computations. Using I.UG

subprogram facilities to convey the monitoring action would be more appropriate in

such cases.

We have attempted to shed some light on the instrumentation process. This is only

the beginning of the investigation. A more formal and complete characterization is

beyond the scope of this thesis.

2.5.3. Efficiency Considerations

There is usually more than one way to instrument a program for detecting a certain

error. The overall cost of a method can be characterized by the amount of time

spent in analysis and the execution overhead incurred from running the instrumented

program. Analysis time and execution overhead are inversely related; a sophisticated

A METHODICAL DESIGN FRAMEWORK 39

analysis takes more time than a straightforward one, but it would reduce the need

for monitor statements which would in turn contribute to a decrease in execution

overhead, and vice versa. The instrumentation example of the factorial program in

the preceding section illustrates this point. The first instrumented program uses one

monitor statement compared to four in the other one, but achieving the reduction

requires a more costly analysis. Tool designers must consider both cost factors in

selecting an economical design. Ideally, of course, the investment in analysis should

never exceed the expected gain in execution cost.

A more involved analysis will likely reduce the number of monitor statements

needed, but the corresponding decrease in execution time is not necessarily

proportional. In fact. such occurrences should be regarded as coincidence. Empirical

evidence has shown that as much as 90% of execution is spent in 10% of code.

Although these figures are not conclusive, it does point out that reducing monitor

statements has only marginal value unless it takes place in frequently executed

regions of the program.

Despite that the number of monitor statements is a deceiving indicator of execution

overhead, it is also the most accessible quantitative measure available to tool

designers. The rule to bear in mind is never overwork the analysis for the mere

sake of reducing monitor statements. When the benefits of reducing monitor

statements are unclear, other indirect factors, such as the implementation complexity

of a sophisticated analysis algorithm, can be taken into consideration in the cost

tradeoff process.

A METHODICAL DESIGN FRAMEWORK 40

2.6. Pragmatic Issues

A toolkit system is intended for interactive debugging. When an error is

discovered, the user would examine the program output, the source code, and/or

- related documentation to gather hints about the error. An error hypothesis would

then be devised, perhaps with the aid of other tools in the programming environment.

A toolkit system can now be used to verify the hypothesis, if the system is equipped

with such a capability. A possible scenario of using a toolkit system is as follows.

Through a menu-driven interface, the user selects the desired tool. After the selection

is made, the system might present some simple queries, such as

What is the desired level of diagnostic report?

What is the name of the erroneous program?

0 What are the input data files for the program?

Of course, the answers to these queries can be stored and changed only as required,

saving the user from repeatedly giving the same responses in a debugging session.

When the necessary information is gathered, analysis of the given program is

performed. The result of the analysis is turned into a report for presentation. The

user then acts upon the report as appropriate, and the debugging cycle can now be

repeated.

Besides interactive debugging, a toolkit system can be utilized for other purposes.

We consider two possibilities. The first possibility is to supplement existing compilers

with additional error detection capabilities. The dynamic semantic error detection

tools will be of particular use here. In a loose programming environment, selected

toolkit components can be grouped together via some specially created "shell". It can

then be treated as a preprocessor to the compilers. Another more ideal situation is

A METHODICAL DESIGN FRAMEWORK 41

that after parsing and static semantic analysis, the compiler would directly access the

desired static analyzers to insert run-time checks before proceeding further with the

normal compilation procedure.

Another possibility of use is for program testing. Traditional black box testing can

be facilitated by inserting run-time checks into the program before testing begins.

After the program has been exercised with some sample test data, the user will first

turn to the error report. If errors are found, corrective action can be taken

immediately. The usual step of examining the program input and output for

correctness is thus by-passed. Alternatively, the toolkit components can be adapted to

report errors interactively. The acknowledgement of errors at an earlier stage will

save both time and effort in testing.

EXAMPLE TOOLKIT COMPONENTS

I expect progrcunmtcunmtng languages to do their utmost to protect me from myself -
from the many stupid errors I am b d to commit when I program.

J o r t a t h Amsterdam [4]

This chapter presents the design of three tools: uninitialized variable access detection.

bounded execution failure diagnosis, and parameter usage checking. These tools have

been implemented as stand-alone instrumentation utilities using the program

manipulation facilities provided by a Pascal metaprogramming system [12].

3.1. Uninitialized Variable Access Detection

Uninitialized variable access refers to the use of a data object's value before a valid

value has been assigned. It is a common programming mistake as well as a semantic

violation in virtually all programming - languages. Unfortunately, few compilers are

equipped to handle the error. It is even more discouraging that several language

standardization efforts, including Ada [55] and Pascal [5] , have decided to allow

conforming compilers to ignore the error. Designing a tool to detect uninitialized

variable accesses is a worthwhile undertaking since such a capability is not likely to

be found in compilers, not even validated ones.

An obvious method for detecting uninitialized variable access is to use exhaustive

monitoring, which involves inserting statements into the program to monitor all

variable accesses and variable assignments. One disadvantage of this strategy is that

42

EXAMPLE TOOLKIT COMPONENTS 43

because the relationships among variable assignments and accesses are not computed, it

is not possible to provide the user with an intelligent static diagnostic report which

warns about errors and probable errors; the discovery of uninitialized variable accesses

will depend entirely on dynamic analysis. Another disadvantage is that the execution

overhead incurred from exhaustive monitoring may be unacceptably expensive in some

computation intensive applications. When a static diagnostic report is desired or when

execution overhead is a concern, the use of a more sophisticated analysis algorithm is

warranted. The objectives in designing such an algorithm are to provide a concise

static diagnostic report and to reduce the amount of run-time checks inserted into the

program.

Data flow analysis is applicable to the detection of uninitialized variable access.

although traditionally it is used for program optimization. The relevant data-flow

problem is use-definition chaining (ud-chaining). The ud-chaining problem is to

compute, for a c h use of a variable iz z progrzm, the ! i s of definiticns that cax

reach that use. This list of definitions for a use is called the ud-chain for that use.

A definition is a statement which attributes a value to a variable, such as an

assignment or a read statement. A definition is said to reach a use if the use may

potentially refer to the value attributed by the definition. To compute the ud-chains.

the standard data-flow algorithm, reaching-definitions. can be used. The reaching-

definitions algorithm is described in detail in Aho and Ullman [31 and Hecht [34].

The ud-chaining problem can be applied to detecting uninitialized variable access as

follows. Before computing the ud-chains, introduce dummy definitions for all

variables at the beginning of the program. After the ud-chains are computed for the

modified program, they can be examined for elkor conditions. If a ud-chain contains

a dummy definition, then there is a possibility that the use corresponding to that ud-

chain is erroneous. (Note that a possibility for error does not mean an error will

EXAMPLE TOOLKIT COMPONENTS 44

necessarily occur at run-time. In particular, the use will never be in error if there is

no executable path between the dummy definition and the use.)

Recall from Section 2.4 that a statement in a program is said to produce a definite

(respectively, potential) error if its execution will always (respectively, sometimes)

cause the same error to occur. The ud-chains are useful in determining the

statements (uses of variable) that will produce definite or potential uninitialized-

variable-access errors. In particular, if a ud-chain contains only dummy definitions.

then the corresponding use will produce a definite error. Similarly, a use will

produce a potential error if its ud-chain contains a dummy definition. Using the ud-

chains in this manner to generate static diagnostics, however, could lead to redundant

warnings. For example, if the variable X in

QUOTIENT := X div Y:
if QUOTIENT >= 0 then

MODULO := X - QUOTIENT * Y
else

MODULO := X - (QUOTIENT - 1) * Y

is not initialized, then each of the three uses of X above would be reported as a

definite error, but reporting the first occurrence is sufficient to warn the user about

the error. In addition, the ud-chains do not give direct information as to where

monitor statements can be eliminated. While it is possible to design an algorithm

which uses the ud-chains to reduce redundant diagnostics and run-time checks8, we

suspect that the resulting solution for the problem at hand will be neither simple nor

cheap. These factors prompt the design of a new algorithm in favor of modifying

the ud-chaining solution to fit our needs.

'one solution that comes to mind is to use the topological ordering of the flow graph together with the
ud-chains to decide where warnings and/or monitor statements are needed or not needed. When procedure
calls are present, interprocedural analysis is required; it is not entirely clear how to handle side effects,
aliasing, and recursion with this method.

EXAMPLE TOOLKIT COMPONENTS 45

Some features of Pascal, which are also typical of other common programming

languages, hinder the design of an algorithm for statically detecting uninitialized

variable access. The most difficult-to-handle features are heap objects and arrays.

For simple. semistatic variables9, such as variables of INTEGER type, there is no

ambiguity as to which data object is being referred to by a variable access. This is

not the case with variable access to heap objects or array elements because the same

textual representation of a variable access, such as A[I], can and will denote different

data objects at run-time. Static methods are incapable of resolving this identification

ambiguity, let alone determining the validity of such variable accesses.

The scheme adopted here involves the use of exhaustive monitoring and a

supplementary algorithm, which we shall refer as the Reduction Algorithm.

Exhaustive monitoring will be used exclusively when a static diagnostic report is not

desired and reducing execution overhead is not a concern. Otherwise, exhaustive

monitoring and the Rediletion Algorithm will be used in a complementary fashion,

where the former is responsible for handling the difficult language problems and the

latter takes care of the remaining language features. Specifically, exhaustive

monitoring is used to handle structured variables and programs with arbitrary gotos.

while the Reduction Algorithm is used to handle unstructured variables (including

pointer and set variables) in programs which use only certain restricted forms of

gotos or no gotos at all. Unlike exhaustive monitoring, the Reduction Algorithm

computes variable usage information which can be used to generate static diagnostics

and to guide the insertion of monitor statements. Details of the algorithms are given

in Appendix A.

9~emistatic variables refer to the class of variables whose lifetime, size, and relative
activation record are known at compile-time. In Pascal, all variables except heap objects are

location in the
semistatic.

EXAMPLE TOOLKIT COMPONENTS 46

We now examine the operation of a program instrumentation tool which employs

both exhaustive monitoring and the Reduction Algorithm. When the tool is invoked.

the following queries will be made to the user:

@ Would you like a static diagnostic report on unstructured variables?

If the answer is positive, then the Reduction Algorithm will be used and
static diagnostics will be produced. If the answer is negative, then no
static diagnostics will be produced but the Reduction Algorithm may still
be used. See the last query below.

Would you like the diagnostics to be reported in full or in terse form?

This option affects the diagnostics (if any) from both static and dynamic
analysis. See Section 2.4 and the example diagnostic reports below.

Is it desirable that the execution overhead of the instrumented program be
reduced?

This query is presented only if the answer to the first query is negative.
It determines whether the Reduction Algorithm should be used.

To show some flavor of the diagnostics produced, consider the following program:

program EXAMPLE(INPUT,OUTPUT);

tspe
LIST = TNODE;
NODE = record

NUM : INTEGER;
LINK : LIST

end;
var

NUMBERS. ENTRY : LIST;
FOUND, LAST : BOOLEAN;
NEWNUM : INTEGER;

procedure SEARCH(L : LIST; NUMBER : INTEGER:
~ a r SUCCESS : BOOLEAN);

var CURR : LIST;
begin

1 SUCCESS := FALSE;
2 CURR := L;

EXAMPLE TOOLKIT COMPONENTS 47

3 while CURR < > nil do
4 if CURRT.NUM = NUMBER then

begin
5 SUCCESS := TRUE;
6 CURR := nil

end
else

7 CURR := CURRTLINK
end:

=peat
SEARCH(NUMBERS.NEWNUM.FOUND):
if FOUND then

LAST := FALSE
else
begin

NEW(ENTRY 1:
ENTRYT.NUM := NEWNUM;
ENTRYT.LINK := NUMBERS;
NUMBERS := ENTRY;
if LAST then

WR~TELN('Consecutive new entries.')
else

LAST := TRUE
end

until EOF
end.

The program contains two uninitialized variables: NEWNUM and LAST.

Suppose the user wants a static diagnostic report.

1. When the user selects terse diagnostics, the static diagnostics produced are

Uninitialized Variable Accesses Detected:
Variable 'NEWNUM' of subprogram 'EXAMPLE' -
An execution error will result when the variable is first referenced in

Subprogram 'EXAMPLE' statement 3 - used as a value parameter.

and the execution diagnostics produced are

EXAMPLE TOOLKIT COMPONENTS 48

Execution Errors Detected:
Accessing uninitialized variable at statement 3 of subprogram 'EXAMPLE'.

Program execution is halted.

2. When the user selects full diagnostics, the static diagnostics produced are

Uninitialized Variable Accesses Detected:
Variable 'NEWNUM' of subprogram 'EXAMPLE' -
An execution error will result when the variable is first referenced in

Subprogram 'EXAMPLE' statement 3 - used as a value parameter.

Warnings:
Variable 'LAST' of subprogram 'EXAMPLE' -
The following references to the variable may be invalid:

Subprogram 'EXAMPLE' statement 10.

and the execution diagnostics produced are

Execution Errors Detected:
Accessing uninitialized variable at statement 3 of subprogram 'EXAMPLE.
Accessing uninitialized variable at statement 10 of subprogram 'EXAMPLE'.

Two points are worth noting about the static diagnostics produced by the Reduction

Algorithm.

1. Although there are two references to NEWNUM (at statements 3 and 7).
only the first error at statement 3 is reported. This is so because the
algorithm has determined that the reference at statement 3 will always be
executed before the one at statement 7, and hence, reporting the erroneous
reference at statement 7 is redundant.

2. By examining the program carefully, we know that on the first iteration
of the repeat loop. FOUND will be false and an erroneous reference will
then be made to LAST. The Reduction Algorithm is incapable of
discovering this fact, but it manages to report that the reference to LAST
could be in error. We suspect that the same difficulty will be
encountered by other data flow based algorithms because they are
incapable of "understanding" the semantics of a program.

The instrumented program for the example is given in Appendix B.1. Note that

instrumentation is performed in such a manner that when an uninitialized variable is

EXAMPLE TOOLKIT COMPONENTS 49

detected at run-time. its associated monitor variable will be set to a valid state so

that further errors on the same variable will not be generated. For example, even

though the erroneous reference to NEWNUM occurs within a loop, only one execution

error is generated for it.

We conclude this section by presenting some statistics of the Reduction Algorithm in

reducing monitor statements. The test data set consists of the following programs:

EightQueen a recursive solution to the eight queens problem

HeapSort heap sort of an array

Btree B-tree search, insertion, and deletion routines

PureLisp a Pure Lisp interpreter

The first three programs are taken from [69] and the Pure Lisp interpreter is a public

domain program. These programs are free of uninitialized variable access errors. The

statistics obtained are summarized in the following. table:

1 EightQueen (19 1 33 11 0 1 14

Exhaustive
Monitoring Only

UV Ops I Total Ops

With Reduction
Algorithm

UV Ops I Total Ops

I I I I I

PureLisp 1 360 1 63 7 I I 9 I 286

I

where

Amount of Reduction
with respect to

0

8

UV Ops = (Unstructured Variable Operations) the number of assignments and
references to unstructured variables which require monitoring, and

UV Ops

100%

100%

96%

98%

20

135

61

349

HeapSort

Btree

Total Ops = (Total Operations) the number of assignments and references to all
program variables which require monitoring.

Total Ops

58%

67%

61%

55%

41

222

EXAMPLE TOOLKIT COMPONENTS 50

3.2. Bounded Execution Failure Diagnosis

Execution of a program will fail when the program has exhausted all its allotted

processor time or memory space. Such a condition is called a bounded execution

- failure. One reason for this failure may be that the program has been given

insufficient resources (because the resource requirement of the program is unexpectedly

high or the algorithm used is overly inefficient.) Another, perhaps more likely.

reason is that the program contains some infinite computation. When a bounded

execution failure occurs, the programmer may wish to know if there is indeed an

infinite computation. This section presents a tool to facilitate the detection of the

two most common sources of infinite computation, namely, infinite loops and infinite

recursion.

The problem of determining whether or not a computation will terminate is well-

known to be undecidable. Thus, it is in general impossible to mechanically detect the

presence of infinite loops or infinite recursion. To circumvent this difficulty, a more

restrictive notion of infinite computation is adopted. Specifically, a loop is considered

infinite if the number of run-time repetitions exceeds a certain user-defined limit.

Similarly, a subprogram invocation is considered as an infinite recursion when the

number of outstanding calls (ie.. the depth of recursive calls) on that subprogram

exceeds the limit set by the user. Given these restrictions, detection of infinite loops

and infinite recursion can be accomplished by monitoring, respectively, the number of

loop iterations and the depth of recursion. We now describe the operation of a

program instrumentation tool for this purpose.

When the tool is invoked, the user will be queried about the limits on loop

repetitions and depth of recursive calls. After answers to these questions are

EXAMPLE TOOLKIT COMPONENTS 51

supplied, the tool will proceed to analyze and instrument the program. The analysis

part involves associating a counter variable with each loop and each subprogram.

Currently, only language-defined structured loops are taken into account: no provision

is made to monitor loops that are simulated with goto statements. Instrumentation

of the program is illustrated by the following transformations:

1. Monitoring of loop

while E do -> LOOP-COUNTER-1 := 0;
SOME-PROCESS while E do

begin
if LOOP-COUNTER-1 = LOOPLIMIT then

LOOP-ERROR
else

LOOP-COUNTER-1 := LOOP-COUNTER-1 + 1:
SOME-PROCESS

end

for-loops and repeat-loops are transformed similarly.

2. Monitoring of recursion

procedure P; procedure P:
begin -- --> begin

SOME-PROCESS if COUNTERFOR-P = RECURSIONLIMIT then
end; RECURSION-ERROR

else
COUNTER-FOR-P := COUNTER-FOR-P + 1:

SOME-PROCESS:
COUNTERFOR-P := COUNTER-FORP - 1

end;

(The actual instrumented code includes additional statements to keep track of

statement locations for error reporting purposes. See Appendix B.2 for examples.)

Note that initialization of a loop counter variable is performed every time its

associated loop is entered, but subprogram counters are initialized only once in the

main program.

EXAMPLE TOOLKIT COMPONENTS 52

The instrumented program produced can now be compiled and executed. If, at run-

time, any counter variable attempts to exceed the preset limit, the running program

will be terminated and an error report will be given. Several examples are given

below to show the diagnosis produced; the actual instrumented programs for these

examples are presented in Appendix B.2. In the examples. 10000 is used as the limit

for both loops and recursion.

1. Infinite loop

program EXAMPLEl(1NPUT. OUTPUT);
var I. J. K : INTEGER;
begin

J := 0:
K := 0;
for I:=l to 100 do

if I = 24 then
*Peat

J := J -+ 1:
if J = 15 then

while TRUE do
K : = K + l

until FALSE
end.

Execution of the instrumented program produces the following error report:

The loop beginning at statement 8 in 'EXAMPLEI' has exceeded its
iteration limit of 10000.
Iteration status of outer loops:

Loop at statement 3 has iterated 24 times.
Loop at statement 5 has iterated 15 times.

2. Infinite recursion involving only one subprogram

EXAMPLE TOOLKIT COMPONENTS 53

program EXAMPLE2(INPUT. OUTPUT);

procedure RECURSIVE;
begin

RECURSIVE
end;

begin
RECURSIVE

end.

The error report given is

Subprogram 'RECURSIVE' has exceeded its recursive call limit of 10000.
The subprogram is self-recursive.

3. Infinite recursion involving several subprograms

program EXAMPLE~(INPUT. OUTPUT);

procedure MUTUAL2; FORWARD:
procedure MUTU AL3; FOR WARD;

procedure MUTUAL1 :
begin

MUTUAL2
end;

procedure MUTUAL2;
begin

MUTUAL3
end;

procedure MUTUAL3;
begin

MUTUAL1
end;

begin
MUTUAL1

end.

The error report given is

EXAMPLE TOOLKIT COMPONENTS 54

Subprogram 'MUTUALl' has exceeded its recursive call limit of 10000.
The last cycle of mutually recursive calls involves the following
user-def ined subprograms:

MUTUAL1 <- end of cycle
MUTUAL3
MUTUAL2
MUTUAL1 <-- start of cycle

3.3. Parameter Usage Checking

The last example that we shall present is a code auditing tool. The tool is intended

to help programmers diagnose certain problems resulting from the misuse of

parameters. Data parameters (as opposed to procedural parameters) in Pascal are

either passed by reference or passed by value. Reference parameters are used

primarily as means for communication between the calling and the called subprogram.

Thus, upon subprogram exit, one would normally expect that the subprogram has

attributed a value to each of its formal reference parameters. If such is not the case.

it could mean either that the called subprogram has failed to return an expected

result or that the reference parameter should have been declared as a value parameter

in the first place. To help detect these mistakes, the following rules on the usage of

reference parameters are prescribed:

1. Each formal reference parameter of a subprogram must be attributed a
value during the execution of the subprogram. In other words, each
reference parameter must have been given a value by the subprogram
when the subprogram terminates.

2. If a reference parameter is a structured object, then an attribution of
value to any of its components shall suffice.

3. An exception is made to reference parameters of an array type because in
Pascal, read-only array arguments are often passed as reference parameters
in order to avoid the run-time overhead in parameter binding.

To enforce these rules, run-time monitoring is necessary. This is so because the

presence of assignments to reference parameters does not necessarily imply that such

statements are reachable.

EXAMPLE TOOLKIT COMPONENTS 55

Rules on the usage of value parameters are as follows:

1. A value parameter cannot be used as the target of an assignment
statement.

2. A value parameter cannot be passed in turn as a reference parameter in
subprogram calls, including calls to the standard VO routines READ and
READLN.

The first rule prohibits direct assignments to value parameters, whereas the second

rule eliminates the possibility of indirect assignments. Essentially, value parameters

are treated as local constants which can be read but not written. Violation of these

rules can be detected statically.

There are several rationale behind the above rules. With respect to debugging, a

violation of these rules could indicate that a reference parameter has been

inadvertently declared as a value parameter. As a style of programming, it has been

argued in [13] that using value parameters as temporary variables is a poor

programming practice. Finally, incorporating these rules into a language (as is the

case in Ada) will obviate the need for the user to reluctantly pass read-only objects

as reference parameters in order to gain efficiency; the compiler may choose to

simulate pass-by-value using pass-by-reference based on the type of the parameter in

question.

We now describe the operation of a tool which enforces the above parameter usage

rules. Given a program. the tool first locates:

1. assignment statements whose target is a formal parameter, and

2. subprogram calls where a formal parameter is being passed in turn as a
reference parameter.

This information is then used to generate a static diagnostic report and to guide the

EXAMPLE TOOLKIT COMPONENTS 56

insertion of monitor statements. As noted earlier, run-time monitoring is needed for

reference parameters only. Instrumentation of the program involves the use of

monitor variables to keep track of whether assignments to reference parameters have

taken place.

Consider the following program:

program EXAMPLE(INPUT,OUTPUT);
var X : INTEGER;

procedure Pl(var A : integer: B : CHAR);

procedure P2(var C : CHAR);
begin

WRITELN(A)
end:

procedum P3(D : 'CHAR):
begin

A := ORD(D) - ORD('0')
end:

begin
READ(B);
A := ORD(B);
P2(A);
P3(B)

end;

begin
1 ~1(X, '9 ')

end.

The instrumented program is presented in Appendix B.3. The static diagnostic report

. for the above program is given below:

EXAMPLE TOOLKIT COMPONENTS 57

Diagnostics on Reference Parameter:
Subprogram 'P2' -
'C' is never assigned.

Diagnostics on Value Parameter:
Subprogram 'PI' -
'B' is passed as a reference parameter in Subprogram 'PI' statement(s1 1.

Executing the instrumented program will produce the following diagnostics:

The reference parameter 'C' of Subprogram 'P2' has not been assigned a
value upon subprogram exit.

CHAPTER 4

AN ASSESSMENT

Our claim is that the toolkit approach to debugging system design leads to better

engineered debugging products. In support of this claim, we shall evaluate our

approach against the approach of the prevailing interactive debuggers with respect to

some qualitative characteristics of software.

Effectiveness. that is, the efficiency with which errors can be diagnosed, is perhaps

the most important attribute of a debugging tool. In this respect, a toolkit system is

superior to interactive debuggers when applied to the error domains that the system

encompasses. Debugging with ir?teractive debuggers takes place at ihe execution model

level. It entails the understanding of the dynamic behavior of programs through data

captured during execution. The vast amount of execution details that must be coped

with and comprehended can easily cause the source of errors to be overlooked. This.

coupled with the tendency of using the program monitoring facilities in an

unstructured manner, would prolong the debugging process unnecessarily. In contrast.

the debugging functions offered by a toolkit system are more abstract, and they

support the error diagnosis task directly. Instead of tracing the program, the user

selects the appropriate tool and the system will verify his suspicion about a certain

type of error. The error report produced by the system is more helpful for

debugging than the execution state information obtained by tracing. Chances of

clerical error are also greatly reduced. Furthermore, systematic debugging is better

supported. Even though the support is rather loose, it is a step forward in that

AN ASSESSMENT 59

direction, particularly in view of the crude form of current debugging methodologies.

All these factors contribute to better debugging productivity.

Simplicity of use is another important attribute in favor of toolkit systems. Using

toolkit systems involves selecting the desired tools and possibly answering some

straightforward queries. The same procedure applies for accessing all facilities of the

system, even if new tools are added. During interaction with the system, the action

of the user is directed by the system: the desired user response is clear from the

context. The intuitive nature of toolkit systems makes them very easy to use. The

use of interactive debuggers, on the other hand, requires learning a command language

that bears little resemblance to the source language. The rich set of facilities offered

is often reflected in notational complexity. Increasing the power of the debugger will

likely make the command language even harder to learn and comprehend.

Furthermore interactive debuggers are passive tools; the user must decide on the

course of actaon and issue the proper commands. The !ask of directions fro= the

debugger is a disadvantage compared with toolkit systems. Although the wide

audience of interactive debuggers is evidence that their complexity can be tolerated.

toolkit systems are clearly better alternatives from the human engineering standpoint.

Portability is another measure of quality software. Interactive debuggers are

typically tied to the implementation of language translators so that the required

symbolic information about the object program can be acquired for carrying out the

source-level debugging commands. Because of the tight coupling to particular language

translators, interactive debuggers are not easily portable. In comparison, the toolkit

systems as proposed in Section 2.5.1 do not rely on the implementation details of

compilers; any compiler that accepts the same language as the toolkit system can be

used. Thus, portability is improved over typical interactive debuggers.

AN ASSESSMENT 60

Completeness is the final attribute that we

debugging system refers to how applicable the

problem in general. Interactive debuggers are

shall examine. Completeness of a

supplied facility is to the debugging

preferable to toolkit systems in this

respect. Because of their low-level nature, interactive debuggers allow the user to

diagnose a very broad class of errors. This generality of use is seriously lacking in

toolkit- systems. The completeness problem in toolkit system design is twofold. On

the one hand, it is inconceivable that the universe of all possible programming errors

can be completely and meaningfully characterized. Even if such a characterization is

found, it is most likely that the error categories are too general to be of use for

designing mechanical detection tools. On the other hand, should a sufficiently well-

developed error list be already available, it too will probably be of limited use. This

is because such an error list will, of necessity, be exceedingly long and a system that

encompasses all the error types in the list -will overwhelm the user at the outset.

defeating the whole purpose of usability. There appears to be no easy solution to

this predicament. It should be noted, however, that the utility of a debugging system

is only loosely related to completeness. A toolkit system that allows the painless

detection of just a few common errors will well justify its implementation effort.

The lack of completeness means that toolkit systems will not fully supplant low-level

debuggers, but will rather complement them to achieve a more effective overall

debugging facility.

CHAPTER 5

EPILOGUE

We have presented a fresh approach to the design of advanced debugging systems.

Our work is motivated by the need for debugging aids that are more effective and

easier to use than the ubiquitous interactive debuggers, yet they must also be

practical. The notion of special-purpose tools is conceived in response to the first set

of constraints, and the implementation techniques proposed reflect the recognition of

practtcality The consolidation and integration of various ideas into a design

framework is the main contribution of this thesis.

The toolkit approach is demonstrated through the design and implementation of three

tools, An algorithm for detecting uninitialized variable access is also presented. The

algorithm differs from existing data flow algorithms in that the former is concerned

with reducing the amount of variable usage information collected. Reducing the

amount of variable usage information leads in turn to a more concise error report and

a reduction in the amount of monitor statements. The preliminary statistics obtained

show that the algorithm is able to reduce the total amount of run-time checks by

over 50%.

A direction to pursue at this point is to further the implementation effort to

produce an experimental toolkit system. An important question that we do not have

a satisfactory answer for is the usefulness of toolkit systems. An experimental

system will allow us to evaluate the toolkit approach more critically and will

certainly bring the deficiencies of our ideas to light.
6 1

ALGORITHM FOR DETECTING
UNNITMLIZED VARIABLE ACCESS

This appendix presents the algorithm for uninitialized variable access detection. As

mentioned in Section 3.1, the algorithm consists of an exhaustive method and a

supplementary procedure, called the Reduction Algorithm. The exhaustive method is

described in the next section. Section A.2 describes the Reduction Algorithm.

A.1. Exhaustive Monitoring

The most obvious method of detecting uninitialized variable access is to exhaustively

monitor the program for such errors. To do this, we employ the program

instrumentation techniques discussed in Section 2.5.2. First of all, associate a monitor

variable with each variable in V, where V is the set of variables in the program for

which monitoring is desired. Since we are only interested in knowing whether or not

a variable has a valid value, possible values that monitor variables may take are

Initialized or Notlnitialized. (That is, the monitor variables used here are bistate.)

For convenience, monitor variables are declared as BOOLEAN type with TRUE

denoting Notlnitialized. Names for monitor variables are formed by adding the suffix

- " UVAn to the original names. For instance, the monitor variable associated with

variable "X" is named "X-UVA". Now, monitor statements can be inserted. The

types of monitor statements used here are unconditional state-assignment and

conditional error-report statement. They are inserted into the program as follows.

Let v be a variable in V.

62

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 63

1. For each assignment or input to v , insert an unconditional state-assignment
of the form

V-WA :- FALSE;

after the assignment or input statement. This ensures that when a
variable receives a valid value, the associated monitor variable is updated
accordingly.

2. For each variable access to v, insert a conditional error-report statement of
the form

if V-UVA then report error:

befwe the statement in which the variable access is part of. This ensures
that every variable access is preceded by a validity check.

Of course, declarations of monitor variables and statements to initialize them must

also be inserted.

Although this exhaustive algorithm lacks elegance and is rather expensive in terms

of execution overhead, it is straightforward and simple to implement, It is used here

to handle structured variables (arrays, records, and heap objects) and arbitrary gotos.

As mentioned earlier, arrays and heap objects are very difficult to handle statically.

We believe the exhaustive algorithm is an effective way to handle them. A more

elaborate analysis might actually be more expensive since savings are not always

possible with arrays and heap objects. Consider the following example.

NEW(P.Q);
QT-INFO := SOMETHING;
fo r I:=X t o Y do

begin
PT.INF0 := QT.INF0; (error when X < Y}
NEW(Q)

end;
Pf.INFO := QT.INF0; {error when X = Y)

Here, exhaustive monitoring for heap objects is necessary unless we know the loop

ALGORITHM' FOR DETECTING UNINITIALIZED VARIABLE ACCESS 64

will never execute. It is unlikely that X will always be greater than Y, if that can

be determined at all, and the cost incurred in the determination is wasted.

There is a simple extension to the exhaustive algorithm that is worthwhile

considering. When an array is being used as a structured constant, it is common to

initialize it using a for-loop, where the initial and final values of the loop are

specified by the constant array bounds. To detect this case, check whether the first

operation on an array variable is an assignment inside a for-loop and whether the

initial and final values of the loop coincide with the array bounds. If so, monitor

statements for that array variable are not necessary.

A.2. The Reduction Algorithm

We now present an algorithm that handles simple semistatic variables for programs

without goto statements and procedure calls; extensions to handle goto statements and

procedure calls are discussed in separate sections. Unlike the exhaustive algorithm.

the aim here is to reduce the number of monitor statements.

program ERRORS(INPUT, OUTPUT):
var A. B. C, D. X. Y, Z : INTEGER;
begin

I X := A + 100;
2 if X > A * D then
3 Y := B + C;

else
begin

4 Y := A + C;
5 Z : = C + D

end
6 X : = A + B + C + D + Y + Z

end.

Figure A-1: Example to Illustrate the Reduction in Monitor Statements

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 65

Consider the insertion of monitor statements for the program in Figure A-1. The

goal is to reduce the number of monitor statements needed without leaving any

significant error undetected. An error is significant if the same error may not have

occurred earlier (and therefore has not necessarily been reported). We will examine

the execution effect of the statements and collect monitoring information for the

variables. Statements in the program are numbered for convenience of reference.

In statement 1. X is assigned and A is referenced. Since A has not been initialized.

the reference to A is a definite error. To avoid generating insignificant diagnostics on

A (and save monitor statements), further monitoring on A is not taken. For the

same reason. X can also be ignored from now on, even though the value assigned to

X is meaningless. In general, if a variable v has been assigned or referenced, then

within the range of statements that this is true, all subsequent assignment or

reference to v can be ignored. (If the earlier reference is valid, then all subsequent

references within that ratlge ~f statements will be valid. If the earlier reference is

invalid, then an error has already been reported and no further error should be

generated on the same variable.) Now, monitoring information needs to be collected

for only five of the original seven variables. In statement 2, the expression of the

if-statement gets evaluated first. The reference to D is a definite error. Variable D

can now be ignored. Either the then-part or the else-part will be executed next.

Even though we do not know which part will be executed next. examination of both

branches of the if-statement reveals that

1. no matter which part gets executed. Y will be assigned and an error
should be generated for the reference to C in either statement 3 or
statement 4 (but not statement 5) .

2. if the then-part is executed, an error should be generated for the reference
to B in statement 3, and

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 66

3. if the else-part is executed. Z will be assigned.

The erroneous references mentioned above are definite errors. Since variables C. D.

and Y will be either assigned or referenced after the execution of the if-statement.

we conclude that only B and Z need further monitoring information. In statement 6 ,

the reference to B is a definite error and the reference to Z is a potential error

(rather than a definite error because Z will have a value if the else-part of the

if-statement is executed). To summarize, we have the following information:

definite error potential error significant assignment
A: 1 Z: 6 Z: 5
B: 3, 6
C: 3. 4
D: 2
X: 1

Monitor statements can be inserted based on this information. Definite and potential

errors are monitored using, respectively, unconditional and conditional error-report

statements; significant assignments are monitored using unconditional state-assignment

statements. The statement numbers associated with each variable indicate the relative

positions in which to insert the monitor statements. Note that in addition to the

initialization monitor statements, nine monitor statements are needed to properly

monitor the program. None of them can be eliminated.

From the foregoing discussion, we see that monitoring information for a statement

can be obtained by analyzing the execution effect of the statement with respect to

assignment and reference operations. The analysis process is repeated for each

statement in the program. Monitoring information obtained from each statement is

combined together, and, when all statements have been analyzed, the resulting

monitoring information is used to guide the insertion of monitor statements. The set

of variables for which (partial or complete) monitoring information has been obtained

is called the set of instrumentation variables, or simply instrumentation set.

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 67

For each instrumentation variable v, the monitoring information consists of lists of

statement identifications. A statement identification serves to uniquely identify a

statement in the program; statement numbers are used for this purpose in our

examples. Each list associated with v represents statements in the program whose

execution produces the same effect on v. The relevant execution effect of a statement

can be captured using four operations, namely, definite assignment, potential

assignment, definite reference, and potential reference. A definite (respectively.

potential) assignment to variable v occurs if after the execution of a statement, v will

(respectively, may) be assigned a value. A definite (respectively, potential) reference

to variable v occurs if the execution of a statement may use the value of v , but v is

(respectively, may be) uninitialized. For instance, the statement

if A > 0 then
begin

if A mod 2 = 0 then
X := 0;

Y :- X
end

else
Y := A

causes a definite assignment to Y, a potential assignment to X, a definite reference to

A, and a potential reference to X. Note that the potential operations are used to

express uncertainty about the execution effect of a statement because of the presence

of branches. Except for the list of definite-assignment operations, the other three lists

are used to guide the insertion of monitor statements. The definite-reference list

corresponds to definite errors; the potential-reference list and the potential-assignment

list correspond, respectively, to potential errors and significant assignments.

In order to reduce the amount of monitoring information collected (and thereby

reduce the number of monitor statements inserted), we keep track of the set of

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 68

variables which require further monitoring information. This set is called the set of

active vmicrbles, or simply active set. Initially, the active set is the set of variables in

the program for which monitoring is desired. In addition to gathering monitoring

information for the active variables, the analysis of a statement also determines an

updated active set by eliminating those variables which have been definitely assigned

or referenced. This updated active set is used in the analysis of succeeding

statements.

The term analysis state is used to refer to the collective information obtained from

the analysis of a statement and other executable language constructs. (An executable

construct is a program fragment which specifies a computation on its own. An

expression, a list of statements, and a procedure or function are examples of

executable constructs, but the label of a statement or the variable on the left hand

side of an assignment statement are not.) Specifically, an analysis state contains an

active set, an instrumentation set, and monitoring information for each instrumentation

variable. Formally. an analysis state, denoted by S, is represented as a two-tuple

(A. V), where A is the (updated) active set and V is the instrumentation set.

Associated with each variable v in V are four lists. DA(v), PA(v). DR(v), and PR(v),

representing, respectively, the definite-assignment list. the potential-assignment list, the

definite-reference list, and the potential-reference list.

The problem of instrumenting a program for detecting uninitialized variable access

can now be phrased as

Given a program P consisting of a list of statements L and an active set A
for P, compute the analysis state of L with respect to A.

That is, the problem is to determine how the analysis state of different types of

statements can be computed and how the analysis states of the statements can be

combined together.

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 69

<statement > ::=
<assignment > < if-then-statement > I < while-loop >

1 < repeat-loop > 1 < f or-loop >) < if-statement >
1 <casestatement > I < with-statement > I <compound-statement >
1 <null-statement > I < goto-statement > 1 < procedure-call >

<assignment > ::= [< label > :] <variable > := <expression >
<if-then-statement > ::= [<label> :] if <expression> then <statement >
< while-loop > ::= [<label > :] while <expression > do <statement >
< repeat-loop > ::= [< label > :] repeat < statement-list > until <expression >
< f or-loop > ::= [< label > :] for < identifier > := < expressionl >

< sequencing-specif ier > < expression2 > do <statement >
< sequencing-specif ier > ::= to I downto
<if -statement > ::=

[<label > :] if <expression > then <statementl > else < statementZ >
< case-statement > ::= [< label > :] case <expression > of < case-clause-list > end
< case-clause-list > ::= < case-clause > { ; < case-clause > }
< case-clause > ::= < constant-list > : <statement >
< with-statement > ::= [<label > :] with < variable-list > do <statement >
< compound-statement > ::= [<label > :] begin < statement-list > end
< null-statement > ::= [< label > :]
< goto-statement > ::= [<label > :I goto < target-label >

. < procedure-call > ::= [<label> :I <identifier > [(< expression-list > 11
< statement-list > ::= <statement > { ; <statement >)
< expression-list > ::= <expression > { . <expression > }
< variable-list > ::= <variable > {. <variable > }
< indexed-variable > ::= <variable > '[' < expression-list > '1'

Figure A-2: Syntax of Pascal Statements

The algorithm to be discussed works on the parse-tree representation of programs

instead of the flow-graph representation (See Section 2.5.1). The exact structure of

the parse tree of a program depends on the grammar used. The grammar of Pascal

statements used in our discussion is given in Figure A-2. Although the grammar is

incomplete and ambiguous, it suffices to illustrate the basic concepts involved.

Several operations on the parse tree are used in our discussion. A selection operation

on a node n of a parse tree corresponds to moving the focus of attention from that

node to another node in the parse tree whose location will be evident from the

grammar production corresponding to n and from the name of the particular operation

used. For instance.

ALGORITHM FOR DETECTING UNINmALIZED VARIABLE ACCESS 70

ExpressionOf (node)

where node is an assignment statement. selects the rightmost child of node. The

function NodeType takes a node as argument and returns the name of the construct

. represented by that node. The function GetStatementIdentificcztion returns the

statement identification of its argument; if the argument is not a statement, it returns

the identification of the closest-enclosing statement which contains the argument as a

component. The function MukeExp-essionList is self-explanatory. Other parse tree

operations will be explained where appropriate.

Operations on sets used are set difference, union, and intersection. When a new

element v is added to the instrumentation set V of an analysis state, it is assumed

that the lists associated with v will be automatically set to nil, the empty list.

When an element is removed from V, its associated lists will no longer be part of

the analysis state. Operations on lists are Append and Concat. Append builds a list

by destructively- appending the list arguments in the given order, assigns the resulting

list to the first argument, and sets the rest of the arguments to nil. Concat takes as

arguments an element and a list and returns a new list that is the concatenation of

the arguments.

Figure A-3 presents an algorithm to compute the analysis state of different types of

Pascal statements, except the goto statement and procedure call. In the algorithm.

analysis states and their components are subscripted to differentiate them from other

program variables.

The algorithm is basically a recursive depth-first-search procedure. In the absence

of goto statements, visiting nodes in the order indicated resembles closely the actual

execution flow. As each node is visited, its analysis state is computed. The context

ALGORITHM FOR DETECTING UNIMTIALIZED VARIABLE ACCESS 71

function Analyze(rwde; Ao) return Analysisstate is
/* node = the program fragment to be analyzed */
/* A, - the active set for node * /

begin
case NodeType(node) of

Expression, ExpressionList :
SI .= (Ao, $)
W ,- (the set of simple variables in the expressions) A.
RecordRe ference(Sl, W , G e t S t a t e ~ I d e n t i f icatwn(node))
return Sl

Assignment:
Sl := Analyze(Expression0f (node), Ao)
v := VariableOf(node)
if v is in A, and is a simple variable then

RecordAssignment(SI, { v) , GetStatementIdenti fication(rwde))

elsif v is an indexed variable then
S, := ~na~~ze(ExpressionList0f (v) , A&

comBine(sl, s2)
fi
return S1

IjThenStatement , Whi l ehp :
Sl -:= ~nalyze(Expression0f (node), Ao)

S, :- Adyze(statemetltOfCrrode), Al 1
CombineAlternativedS,, (A I , $))

C0mbine(S1, s2)
return SI

Repeathop:
S1 := ~nal~te(StatementList0 f (node), A&
SZ := Anolyze(Expression0f (node), A l)

Combine(Sl, SZ)
return S1

ForLoop:
Sl + ~nal~ze(~ake~xpression~ist (Expre s s ion lO f e Expression2Of (node)), Ao)

v := Identifierof (node)
Record~ssi~nment(S~, {v} , ~et~tatement~dent i f ication(~tatement0 f (node)))

S, := ~nalyze(Statement0f (node), A I)

if not ProvablyExecutable(node) then
~ombine~lternatives(~, , (A I , $))

fi

Figure A-3: Computing the Analysis State of Statements

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE AC@ESS 72

A, := A, U { v)
v, 3= v, - {v)

combine(S,, S2)
return s,

IfStatement :
S, .- Analyze(ExpresswnOf~node), A&
S, .= ~nalyze(Statemehtl0f (node), AI)
S, .- ~ n a l ~ z e (~ t a t e m n t 2 0 f (node), A,)
~ombineAlterturtives(S~, S3)
Combine (S,, S2)
return SJ

Casestatement:
S, := ~nal~ze(ExpresswnQf~node), Ao)
S2 := ~nal~ze(~ta ternent0 f (~irst~aseClauseOf (node)), A,)
for each remaining case-clause c do

S3 := Analyze(Staternent0f (c), A t)
CombineAlternatives(S2, S3)

od
Combine (S,, S2)
return SJ

Withstatement:
/* update scope information */
return Analyze(Statement0f (node), Ao)

Compoundstatement :
return Analyze(StatementList0f (node), A&

Nullstatement :
return (Aot d)

StatementList :
Stnt := first statement in the list
S, := ~ n a l y z e (~ t m t , Ao)
for each remaining statement s in the list do

S2 := A d y z e (s , A I)
Combine(S,, S2)

od
return S,

esac
end

Figure A-3, continued

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 73

of a node is immaterial in computing its analysis state; that is, the analysis method

used for a node is independent of the surrounding nodes. A consequence of this is

that the analysis state of an expression or an assignment statement can be determined

easily. For an expression, the analysis state simply contains a record of definite-

reference operations for active variables appearing in the expression. The active set

and instrumentation set of the analysis state are constructed accordingly. For an

assignment statement, its analysis state is obtained by updating the analysis state of

the expression of the assignment statement to include a definite-assignment operation

for the variable to be assigned. The update is necessary only when the variable to

be assigned is active. For example, the analysis state of

with respect to the active set Ao= {W. X. Y) is

Only nonempty lists are shown. Lists are delimited by square brackets.

The analysis state of other types of statements is determined by recursively

computing the analysis states of the executable components of the statement. These

analysis states of the components are then manipulated according to the semantics of

that statement to obtain the final analysis state.

Intermediate analysis states are manipulated with the auxiliary procedures given in

Section A.2.3.2 on Page 85. Procedure RecordRe ference is responsible for updating the

analysis state when active variables are being referenced. RecordAssignment is the

dual of RecordReference; it updates the analysis state to indicate assignments to active

variables are being taken. Function ProvublyExecutable performs a static check to

ALGORITHM FOR DETECTING UNINmALIZED VARIABLE ACCESS 74

determine whether a for-loop will iterate at least once. It is used in the analysis of

for-loops in an attempt to obtain stronger analysis information. Two procedures.

Combine and CombineAlternatives, are used for combining analysis states together.

Combine is used when the analysis states represent program fragments that will be

executed in succession. CombineAIternatives is used when the analysis states represent

program fragments that will be executed in mutual exclusion. Some context

information is recovered when analysis state are combined together.

In CombineAIternatives. a definite operation will be changed to the corresponding

potential operation if the same operation does not occur in both alternatives.

Intuitively, this means that if a statement contains branches, we can be sure that a

definite operation occurs only if the same operation is performed in each of the

branches. For example, in the statement

if C then
begin

x := I;
Y :- 2

end
else

X := 3;

a definite-assignment to X occurs because X is assigned in both branches, but the

assignment to Y is only potential.

In Combine, redundant potential-assignments are first eliminated. This happens when

the potential-assignments occur before a definite-assignment and there are no

intervening references, as in

if C then
X := 1;

X := 2;

ALGORITHM FOR D E m m G UNINITIALIZED VARIABLE ACCESS 75

In this example, the first assignment to X does not need to be monitored because no

references will depend on it.

We now apply the algorithm to the program in Figure A-1. Let

A,= {A. B. C. D. X. Y. Z) be the initial active set. The analysis state of statement 1

with respect to A. is

The analysis state of the expression of the if-statement with respect to A, is

The analysis states of the then-part and else-part with respect to A2 are respectively

and

Combining S3 and S4 using ~ombine~lternatives gives .the analysis state of the action

of the if-statement.

S5 = (A5 = {B, Z). V5 = {B. C. Y. Z})
PR5fB) = Dl. DR5(C) - [3.41. DA5fy) = [3.4]. PA~(Z) = [5]

Combining S2 and S5 using Combine gives the the analysis state of the if-statement.

Combining S1 and S6 using Combine, we obtain the analysis state for the first two

statements in the program.

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 76

The analysis state of statement 6 with respect to A7 is

Finally, combining S7 and S8 using Combine, we obtain

The final analysis state indicates that Y has a potential-reference. but no potential-

assignment. Since without an assignment, a reference, no matter where it occurs, is

always erroneous, the potential-reference must be changed to a definite-reference. The

necessary checks for this condition is incorporated in the final version of the

algoriihm, given in Section A.2.3.

A.2.1. Handling Goto Statements

The rich set of control structures available in Pascal has greatly reduced the need

for goto statements. The most notable uses of gotos in Pascal are for simulating

"exits" and "returns". (Incidentally, these are the only forms of explicit jumps

provided by Modula2 [70], the successor of Pascal.) We shall extend our algorithm

to handle these two important cases. Programs that contain general gotos are handled

using the exhaustive method. This mixed strategy to handle gotos is chosen because

we feel that general gotos occur very rarely in practice and the use of a sophisticated

algorithm will not be cost-effective.

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 77

The kinds of goto statements that are considered can be characterized as forwmd

jumps. A forward jump is a goto statement that satisfies the following properties.

1. Both the goto and its target appear in the same procedure.

2. The goto appears textually before its target.

3. The goto, if executed, will terminate the action of the statement list that
the goto is part of.

(Of course, restrictions set by the language definition must also be observed. See [5].)

Forward jumps are illustrated in the following program.

program JuMPS(INPUT.OUTPUT);
label 111. 222. 333;
begin

for6 I:=l to 10000 do
begin

{ some action 1 }
if C1 then goto 111; { normal exit }

- { some action 2)
if C2 then goto 222; { long exit }

end:
ill: (some action 3 j;
222: { some action 4 1;
if C3 then goto 333; { return 1
{ some action 5 1
333:

end:

An important property of forward jumps is that if program statements are examined

in their textual order, then all jumps to the same label will be encountered before

their target.

In computing the analysis state of a statement, our algorithm requires an active set

as input. Thus far, the input active set of a statement is taken from the analysis

state of the preceding statement. (Except for the first statement in the procedure, in

which case the required active set is assumed to be available.) This is valid because

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 78

without goto statements, the predecessor of a statement (if there is one) is unique.

When gotos are used, their targets can be reached from more than one point. The

problem now is to determine the proper active set for each distinct target label based

on the active sets from the goto statements.

Our solution involves extending the analysis state to include an additional set G. G

contains the set of target labels encountered thus far. Associate with each label g in

G is an active set GIfg). (GI stands for Goto Informution.) The necessary

modification to the Analyze procedure is shown in Figure A-4.

A.2.2. Handling Procedure Calls

The last extension that we shall consider is handling procedure and function calls.

The modifications to the Analyze procedure is presented in Figure A-4. Procedures

and functions will be treated synonymously in the following discussion.

The basic idea of our solution is as follows. Each procedure is treated as a

separate entity and is analyzed independent of its calling context. Nonlocal variables

and reference parameters (but not value parameters) are included in the initial active

set for analysis. Now, the previous algorithm can be applied to compute the analysis

state of the procedure. When the analysis is completed, the result is stored in a

global space for future references. Assume now the analysis states of all procedures

have been computed. To handle a procedure call, the appropriate analysis state from

the global space is returned, but with information on local variables removed. The

analysis state so returned represents the effect of the called procedure on nonlocal

entities. The returned analysis state is further shrunk by removing all information

that is not of interest at the point of call. The last step is to change all statement

identifications from this new analysis state to that of the procedure call, thus

effectively hiding the fact that a call has been made.

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 79

function Analyze(node; Ao) return AnalysisState is
begin
case NodeType(node) of

Expression, ExpressionList: /* extensions for handling procedure calls */
s, .= (Ao, $, 4)
W := (the set of simple variables in the expressions) n A.

for each jhction application f in the expressions do
S, .- A d y z e (f , A,)

od
return s,

RocedureCaU, FunctionApplication:
S, := Adyze(ActualValuePm4ntetersOf (node), Ao)
p := CdedSubprogramOf (node)
S, := Analyze(p,A,)
Renurne(S,, ~ormalRefere12ceParametersOf (p),

~ c t w l ~ e ferenceParameters0 f (node))
A, := A , - (V, - A+

h e d u r e , Function:
if Visited(node) then

if AnalysisCompleted (node) then
S, := LookUpState(node)

else
s, := (Ao, $, $)
AssumeAssignments(S1, {nonlocal variables and reference parameters))

fi
else

Mark(node) /* mark the node as being visited */
S, := Analyze(StatementList0f (node), QueryActiveSet(node))

Figure A-4: Handling Goto Statements and Procedure Calls

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 80

/* si@ analysis of procedure hrrs been completed */
f i
A , .= A, - {local variables}
V I := V , - {local vm'ables}

GI := 4
return sz

Assignment:

(See Figure A-3, page 71)

St'atementList: /* extensions for M l i n g gotos */
Stmt := first statement in the list
S, := Analyze(Stnt, Ao)

for each remaining statement s in the list do
if s is the target of goto statements then

UpdateAnalysisState(Sz, Labelof (s))
f i
S, := Analyze(s,AI)
Combine (S,, S2)

exit when s is a goto statement
od
return S,

Gotostatement:
g := ~argetLubelO f (node)
s, := (Ao. $5, {gl)
G q g) := A.
return s,

eSaC

end

Figure A-4, continued

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 81

In computing the analysis state of a procedure, the statements of the procedure may

contain recursive calls. This case is handled by making the worse case assumption

that all nonlocal variables and reference parameters may be assigned a value. Calls

to predefined or library procedures are handled by pre-installing their analysis states

in the global space. This implies that predefined or library procedures can only

modify the nonlocal environment through the parameters. A last detail worth noting

is that insertion of monitor statements is based on the information in the global space

and takes place after the entire program has been analyzed.

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 82

A.23. Complete Listing of Algorithm

A.23.1. The Analyze Procedure

function Analyzefnode; A,) return AnalysisState is
/* nude = the program fragment to be analyzed */
/* A, - the active set for node */

begin
case NodeType(node) of

Expression, ExpressionList :
S, := (Ao, $, +)
W := (the set of simple variables in the expressions) A,
RecordReference (S,, W , GetStatementIdentification (node))
for each function application f in the expressions do

S, .= A d y z e (f , A ,)

Combine (St, S,)
od
return s,

ProcedweCdl, FunctwnApplication:
S, := ~nal~ze(ActualVdue~mameters0f (nude), Ao)

p := CalledSubprogramOf (node)
S, := A d y z e (p , A 1)

Ac~ReferenceParametersOf(node))
A, := A , - (V, - A,)
V , := V , n Ar
ChangeStatementIds(S2, GetStaternentIdentificaton(node))
Combine(S1, S2)

return S,
Procedure, Function:

if Visited(node) then
if AdysisCompleted(node) then

S, := LookUpStatefnode)

AssumeAssignmentsfSI, {nonlocal variables and reference parameters)
fi

else
Markfnode) /* mark the node as being visited */
S, := AnalyzefStaternentListOf(node), QueryActiveSet(node))
for each locd variable v in V , do

if PA,(v) - nil then

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 83

fi
od
InsertState(S,, node)
/* s i g d d y s i s of procedure hus been completed */

fi
A , .= A , - {local variables)
V , := V , - {local variables}

GI := $
return s,

Assignment:
S, := Andyze(Enpression0f (node), Ao)
v := VariableOf(node)
i f v is in A. and is a simple variable then

RecordAssignment(SI, { v) , ~etStatementIdenti fication(node))
elsif v is an indexed variable then

S2 := ~nel~ze(EnpressionListOf(v), A,)

-Combine(S,, S2)
fi
return S,

IfThenStatement , Whilebop:
S, := ~nalyze(Expression0f (node), Ao)

S2 := ~nalyze(Statement0f (node), A ,)

CombineAlternatives(S,, (A,, t$) $))

Combine(Sl, S2)
return SI

Repeatbop:
S1 := ~ d y z e (~ t a t e m e n t L i s t 0 f (node), Ao)

S2 := Analyze (ExpressionOf (node), A,)

Combine(S,, S2)
return S,

F o r h p :
S, := ~nal~ze(~ake~xpressionlist(~xpressionlOf), Expression20f(node)), A ~)
v := Identi fierOf (node)
RecordAssignment(SI, {v} , ~e~ ta temen t lden t i fication(~tatement0f (node)))

S2 := Analyze(Statement0f (node), A ,)
if not ~ovablyExecuta2de (node) then

combine~lternativedS,, (A , , $, $))
fi

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 84

A , .= A , U (v)
v, := v1 - { v)

Combine(S,, S2)
return s,

Ifstatement:
S, := Adyze(Expressionof (node), Ao)

S2 .= ~dyze (~ ta t emen t lOf (node) , A,)
S3 := Adyze(Statement20f (node), A,)
CombineAIternatives(S,, S3)

Combine(S,, S2)
return s,

CaseStatement :
S, := Adyze(ExpressionOf (node), Ao)
S2 := Adyze(statement0f (FirstCaseClause~f (node)), A I)

for each remaining case-clause c do
S, := ~ n d y z e (~ t a t e m e n t 0 f fc), A,)
~ombine~ l t e rmt i ves (S~ , S3)

od
Codine(S,, S2)
return s,

Withstatement :
/* update scope information */
return ~ d ~ z e (~ t a t e m e n t O f (1 2 o d ~ e j , Ao)

CompoundStatement :
return ~ d y z e (~ t a t e m e n t L i s t 0 f (node), Ao)

Nullstatement:
return (Ao, 6 4)

Statement List:
Stmt := first statement in the list
S, := A d y z e f S t m t , Ao)
for each remaining statement s in the list do

if s is the target of goto statements then
~pdateAndysisState(S,, Label0 f (s))

f i
S2 := Andyze(s, A,)

Combine(S,, S2)
exit when s is a goto statement

od
return S,

GotoStatement :
g := TwgetLabelOf(node)

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 85

s, := (Ao,+, IgH
Gl l fg) := A,
return s1

esac
end

A23.2 Auxiliary Procedures

procedure RecordReference(var So; W ; Statementld) is

/* So = (Ao, V,, Go), an analysis state */
/* W = a set of variables which are referenced */
/* Statementld = the statement where the reference operations occur */

begin
A, := A,- W
v, := v, u w
for each variable v in W do

DRofv) := Concat (Statementld , nil)
od

end '

procedure RecordAssignment(var So; W; Statementld) is

begin
A, := A,- W
v, := v, u w
for each variable v in W do

DAo(v) := Concat(Statementld, nil)

od
end

function A-ovablyExecutable(ForLoop) return boolean is
/* ForLoop = a program fragment which is a for-loop */

begin
if both loopexpressions are constant expressions t h e n

Diff := difference between final and initial value of loop
return (Diff = 0) or (Diff > 0 and IsForToLmp(ForLoop)) or

(Diff < 0 and IsForDowntoLoop(ForLoop~)
else

return false
fi

end

procedure CombineAlternatives(var Sl; S2) i s

/* SI , S2 = Qnalysis states of alternatives */

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 86

begin
A, := A, U A,
for each v in V , U V2 do

if v in V, n V2 then
if DR,(v) # nil and DR2(v) f nil then

Appnui(DR,h), D R , (v) ~
elsif DR,(v) f nil then

DRtoPR(S,, v)
elsif DR2(v) # nil then

elsif DA,(v) f nil .then

else /* v in V2 - V , */

for each g in G2 do /* used to handle gotos */
if g is in GI then

GI,(g) := GI,(g) U G12(g)
else /* g in G2 - GI */

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 87

end

procedure Combine(var S,; S,) is

/* S,, S2 = successive andysis states */

/* AssignedBefmeRefIn2 flag to indicate i f an active variable */
/* in A , is assigned before any reference occurs in S2 */

begin
A , := A,
for each v in V, do

AssignedBeforeRefInZ := (DA2(v) f nil and PR2(v) = nil)
if AssignedBefmeRefln2 then

PA2(v) := nil
f i
if v in V I then

if AssignedBeforeRefln2 and PRI(v) = nil then
PA,(v) := nil

f i
AppendfDA,fv), DA2(v))
k PA,(v) = nil then

AppendfDR,fv), DR,fv))
AppendfPRIfv), PR,(v))
PA,(V) = PA,(V)

fi
else /* v in V2 - Vl */

vI := V1 u {vJ

P A ~ (V) := PA2fv)
f i

od
for each g in G2 -GI do /* used to handle gotos */

end

procedure UpdateAnalysisState(var So; g) is

ALGORITHM FOR DETECTING UNINITIALIZED VARIABLE ACCESS 88

proceekrrGhgsState~ntIds(var SO; ReplacementId) is
/* So = (A,, Vo, Go), an analysis state */
/* ReplacernentId = new identification */

begin
for each v in Vo do

if DAo(v) # nil then

DAofv) := Concat (ReplacementId, nil)
fi
if PA0(v) # nil then

PAP(v) := Concat (ReplacementId , nil)
f i
if DRO(v) # nil then

DRo(v) := Concat(Replacementld, n i l)

fi
if PR,(v) # nil then

PRo(v) := Concatf ReplacementId, nil)
fi

od
end

procedure AssumeAssignments(var So; W) is
/* DummyId = a unique nonexisting statement id, ignored during instrumentatwn */

begin
v, := vo u w
for each variable v in W do

PAo(v) := Append(PAo(v),Concat(DummyId, nil))
od

end

APPENDIX B

LISTING OF INSTRUMENTED PROGRAMS

This appendix presents the instrumented programs for the examples given in Chapter

El. Uninitialized Variable Access Detection

PROGRAM EXAMPLE (INPUT. OUTPUT);

TYPE
LIST = t NODE;
NODE =

RECORD
NUMUVA : boolean; LINKUVA : boolean; NUM : INTEGER; LINK : LIST

END;

VAR
NUMBERS. ENTRY : LIST;
FOUND, LAST : BOOLEAN;
NEWNUM : INTEGER:
ErrorFile : text;
UVANameMap : PACKED ARRAY [1..2, 1.~71 OF char;
LASTUVA : boolean;
NEWNUMUVA : boolean;

PROCEDURE UVAerrl (VAR MonVar : boolean;
NameIndex. StatementNumber : integer);

VAR
I : integer;

BEGIN
WRITE (

LISTING OF INSTRUMENTED PROGRAMS 90

ErrorFile. ' Accessing uninitialized variable a t statement '.
StatementNumber : 0. ' of subprogram "'1;

FOR I := 1 TO 7 DO
IF WAIVameMap[NameIndex. I] < > ' ' THEN

WRITE (ErrorFile. WANameMap[NameIndex. I]);
WRITELN (ErrorFile. "'.');

{ When a full report is selected, the tool generates
"MonVar := falsew in place of the following code 1;

WRITELN (ErrorFile);
WRITELN (ErrorFile. 'Program execution is halted.');
halt

END;

PROCEDURE UVAerr2 (NameIndex, StatementNumber : integer);

VAR
I : integer: -

BEGIN
WRITE (

ErrorFile. ' Accessing inactive variant field a t statement '.
StatementNumber : 0, ' of subprogram "'):

FOR I := 1 TO 7 DO
IF U ~ ~ ~ a r n e ~ a ~ [l V e r n e I ~ l d e x . I] < > ' ' THEN

WRITE (ErrorFile. UVANameMap[NameIndex, I]);
WRITELN (ErrorFile. "'.');

{ When a full report is selected, the tool replaces
the following code by a null statement 1

WRITELN (ErrorFile);
WRITELN (ErrorFile. 'Program execution is halted.');
halt

END;

PROCEDURE UVAInit;

BEGIN
rewrite(ErrorFi1e. '-ERROR '1;
WRITELN (ErrorFile. 'Execution Errors Detected:'):
~ ~ ~ ~ a m e ~ a ~ [l] := 'EXAMPLE';
u ~ ~ ~ a m e M a ~ [2] := 'SEARCH '

END:

LISTING OF INSTRUMENTED PROGRAMS 91

PROCEDURE NODEUVAs (VAR MonVar : NODE; NewValue : boolean);

BEGIN
WITH MonVarT DO

BEGIN
NUMUVA := NewValue; LINKLVA := NewValue

END
END;

PROCEDURE NODEUVAc (VAR MonVar : NODE; Subprogram. Statement : integer):

BEGIN
WITH MonVart DO

BEGIN
IF NUMUVA THEN UVAerrl(NUMUVA. Subprogram. Statement);
IF LINKUVA THEN UVAerrl(L1NKUVA. Subprogram, Statement)

END
END;

PROCEDURE SEARCH
(L : LIST; NUMBER : INTEGER; VAR SUCCESS : BOOLEAN);

VAR
CURR : LIST;

BEGIN
SUCCESS := FALSE;
CURR := L:
WHILE CURR < > NIL DO

BEGIN
IF CURRt .NUMUVA THEN UVAerr 1 (CURRT.NUMUVA. 2. 4);
IF CURRt.NUM = NUMBER THEN

BEGIN
SUCCESS := TRUE; CURR := NIL

END
ELSE
BEGIN

IF CURRT.LINKUVA THEN UVAerrl(CURRT.LINKUVA, 2, 7);
CURR := CURRt.LINK

END
END

END;

LISTING OF INSTRUMENTED PROGRAMS 92

BEGIN
UVAInit;
LASTUVA := true;
NEWNUMWA := true;
NUMBERS := NIL:
REPEAT

IF NEWNUMWA THEN UVAerrl(NEWNUMUVA. 1, 3);
SEARCH(NUMBERS. NEWNUM. FOUND);
IF FOUND THEN

BEGIN
LAST := FALSE: LASTUVA := false

END
ELSE
BEGIN

NEW(ENTRY 1;
NODEUVAs(ENTRY 7, true);
ENTRYT.NUM := NEWNUM:
EPJTRYT.NUMUVA := false;
ENTRYt.LINK := NUMBERS:
ENTRYt.LINKUVA := false;
NUMBERS := ENTRY;
IF LASTUVA THEN UVAerrl(LASTUVA. 1. 10):
IF LAST THEN WRITELN ('Consecutive new entries.')
ELSE LAST := TRUE

END
UNTIL EOF

END.

8 2 . Bounded Execution Failure Diagnosis

TYPE
BEFStackType = T BEFStackNode:
BEFStackNode =

RECORD
Info : integer; Link : BEFStackType

END;

VAR
I. J. K : INTEGER;
BEFLoopCounters : ARRAY [1..3] OF integer { inserted by debugger 1;
ErrorFile : text:
~ ~ ~ ~ o o ~ ~ t a c k : BEFStackType:

LISTING OF INSTRUMENTED PROGRAMS 93

BEFCallStack : BEFStackType;

PROCEDURE BEFPush (VAR Stack : BEFStackType; ProcNameIndex : integer);

VAR
StackElem : BEFStackType;

BEGIN
new(StackE1em);
StackElemt.Info := ProcNameIndex;
StackElemt.Link := Stack:
Stack := StackElem

END;

FUNCTION BEFPop (VAR Stack : BEFStackType) : integer;

VAR
StackElem : BEFStackType:

BEGIN
StackElem := Stack;
Stack := StackT.Link;
BEFPop := StackElem?.lnfo;
dispose(StackE1em)

END;

PROCEDURE BEFLoopErr (LoopLineNum : integer; OuterLoops : integer):

VAR
LineNumber, Iterations, I : integer:

BEGIN
WRITELN (sercom, '*** Infinite loop detected. Execution is halted.');
WRITELN (sercom. '*** See error report in "-ERRORM');
WRITE (

ErrorFile. 'The loop beginning at statement ', LoopLineNum : 0. ' in
WRITE (ErrorFile. "'EXAMPLE1 "');
WRITELN (

ErrorFile. "' has exceeded its iteration limit of '. 10000 : 0. '.'I;
IF OuterLoops > 1 THEN

BEGIN
WRITELN (ErrorFile. 'Iteration status of outer loops:');

LISTING OF INSTRUMENTED PROGRAMS 94

FOR I := 1 TO OuterLoops DO
BEGIN

LineNumber := BEFPop(BEFLoopStack);
Iterations := BEFPop(BEFLoopStack);
WRITELN (

ErrorFile. ' * - . 5. 'Loop a t statement ', LineNumber : 0.
' has iterated '. Iterations : 0. ' times.')

END
END;

halt
END;

PROCEDURE BEFInit :

BEGIN
rewrite(ErrorFi1e. '-ERROR '1; BEFLoopStack := NIL

END;

PROCEDURE BEFExit ;

BEGIN
WRITELN (

sercom. '*** No infinite loop or infinite recursion has been'.
' detected.');

WRITELN (sercom);
WRITELN (ErrorFile. 'All loops iterate less than the limit of '.
WRITELN (

ErrorFile, 'Recursive subprogram calls have not exceeded'.
' the depth limit of ', '.')

END;

BEGIN
BEFInit;
J := 0;
K := 0;
BEF~oopCounters[l] := 0;
FOR I := 1 TO 100 DO

BEGIN
IF BEFLoopCountersE 11 = 10000 THEN BEFLoopErr(3. 0)
ELSE BEFLoopCounters[l] := BEFLoopCounters[l] + 1 ;
IF I = 24 THEN

BEGIN
BEFLoopCounters[2] := 0;

times.');

LISTING OF INSTRUMENTED PROGRAMS 95

REPEAT
IF BEFLoopCounters[2] = 10000 THEN

BEGIN
BEFPush(BEFLoopStack. BEFLoopCounters[l]);
BEFPush(BEFLoopStack. 3);
BEFLoopErr(5. 1)

END
ELSE BEFLoopCounters[2] := BEFLoopCounters[2] + 1;
J := J + 1;
IF 3 = 15 THEN

BEGIN
BEFLoopCounters[3] :- 0:
WHILE true DO

BEGIN
IF BEFLoopCounters[3] = 10000 THEN

BEGIN
BEFPush(BEFLoopStack. ~ ~ ~ ~ o o ~ C o u n t e r s [2]) :
BEFPush(BEFLoopStack. 5 1;
BEFPush(BEFLoopStack. ~EF~oopCounters[l]);
BEFPush(BEFLoopStack. 3);
BEFLoopErr(8, 2)

END
ELSE BEFLoopCounters[3] := BEFLoopCounters[3] + 1;
K : = K + l

END
END

UNTIL FALSE
END

END;
BEFExit

END.

PROGRAM EXAMPLE2 (INPUT. OUTPUT):

TYPE
BEFStackType = 7 BEFStackNode:
BEFStackNode =

RECORD
Info : integer; Link : BEFStackType

END;

VAR
ErrorFile : text { inserted by debugger 1;
BEFLoopStack : BEFStackType:
BEFCallStack : BEFStackType:

LISTING OF INSTRUMENTED' PROGRAMS 96

BEFNameMap : PACKED ARRAY [1..1, 1..13] OF char:
BEFProcCounters : ARRAY [I .. 11 OF integer;

PROCEDURE BEFPush (VAR Stack : BEFStackType; ProcNameIndex : integer);

VAR
StackElem : BEFStackType;

BEGIN
new(StackE1em);
StackElem1.Info := ProcNameIndex:
StackElemf.Link := Stack;
Stack := StackElem

END;
,

PROCEDURE BEFRemoveTopElem (VAR Stack : BEFStackType);

VAR
StackElem : BEFStackType;

BEGIN
StackElem := Stack: Stack := Stackf.Link; dispose(StackE1em)

END:

PROCEDURE BEFCallErr;

VAR
Key : integer;
Next : BEFStackType: ,

BEGIN
WRITELN (sercom. '*** Infinite recursion detected. Execution is halted.');
WRITELN (sercom. '*** See error report in "-ERROR"');
Key := BEFCallStackf .Info;
Next := BEFCallStackf.Link;
WRITELN (

ErrorFile, 'Subprogram "', B ~ ~ N a r n e ~ a ~ [~ e ~] . "' has exceeded its '.
'recursive call limit of '. 10000 : 0. '.');

IF Nextt-Info = Key THEN
WRITELN (ErrorFile. 'The subprogram is self-recursive.')

ELSE
BEGIN

LISTING OF INSTRUMENTED PROGRAMS 97

WRITELN (
ErrorFile. 'The last cycle of mutually recursive calls'.
' involves the following user-defined subprograms:');

WRITELN (ErrorFile. ' ' : 5. BEmVameMap[Key]. ' <- end of cycle');
REPEAT

WRITELN (Error~ile, ' ' : 5. ~E~~arne~a~[~extf.~nfo]); Next := ~ext f .Link
UNTIL Nextt.Info - Key;
WRITELN (

ErrorFile. ' ' : 5. ~~FNameMa~[Next?.~nfo] . ' <- start of cycle')
END;
halt

END:

PROCEDURE BEFInit;

VAR
I : integer;

BEGIN
rewrite(ErrorFi1e. '-ERROR ')i
BEFCallStack := NIL;
FOR I := 1 TO 1 DO ~ ~ F P r o c ~ o u n t e r s [~] := 0:
BEFNameMap[l] := 'SELFRECURSIVE'

END:

PROCEDURE BEFExit;

BEGIN
WRITELN (

sercom, '*** No infinite loop or infinite recursion has been'.
' detected.');

WRITELN (sercom);
WRITELN (ErrorFile, 'All loops iterate less than the limit of '. ' times.');
WRITELN (

ErrorFile. 'Recursive subprogram calls have not exceeded',
' the depth limit of '. '.')

END:

PROCEDURE SELFRECURSIVE;

BEGIN
BEFPush(BEFCa1lStack. 1):

IF BEFProcCounters[l] = 10000 THEN BEFCallErr
ELSE BEFProcC!ounters[l] := ~ ~ ~ P r o c C o u n t e r s [l] + 1;
SELFRECURSIVE;
BEFProcCounters[l] := B~FProcCounters[l] - 1;
BEFRemoveTopElem(BEFCallStack)

END;

BEGIN
BEFInit; SELFRECURSIVE; BEFExit

END.

PROGRAM EXAMPLE3 (INPUT, OUTPUT);

TYPE
BEFStackType = 1 BEFStackNode;
~ ~ ~ ~ t a c k ~ o d e =

RECORD
Info : integer; Link : BEFStackType

END:

VAR
ErrorFile : text { inserted by debugger 1;
BEFLoopStack : BEFStackType;
BEFCallStack : BEFStackType;
BEFNameMap : PACKED ARRAY [I..% I..?] 8F chr;
BEFProcCounters : ARRAY [1..3] OF integer;

PROCEDURE BEFPush (VAR Stack : BEFStackType; ~ roc~amelndex : integer):

VAR
StackElem : BEFStackType:

BEGIN
new(StackE1em);
StackElemt.Info := ProcNameIndex:
StackElemt.Link := Stack:
Stack := StackElem

END;

PROCEDURE BEFRemoveTopElem (VAR Stack : BEFStackType);

VAR
StackElem : BEFStackType:

LISTING OF INSTRUMENTED PROGRAMS 99

BEGIN
StackElem := Stack: Stack := Stackt.Link; dispose(StackE1em)

END;

PROCEDURE BEFCallErr:

VAR
Key : integer:
Next : BEFStackType;

BEGIN
WRITELN (sercom. '*** Infinite recursion detected. Execution is halted.');
WRITELN (sercom. '*** See error report in "-ERRORN');
Key := BEFCallStackT.Info;
Next := BEFCallStackT.Link:
WRITELN (

ErrorFile. 'Subprogram "', B E F N ~ ~ ~ M ~ P [K ~ Y] . "' has exceeded its '.
'recursive call limit of '. 10000 : 0. '.");

IF NextT.Info = Key THEN
WRITELN (ErrorFile. 'The subprogram is self-recursive.')

ELSE
BEGIN

WRITELN (
ErrorFile. 'The last cycle of mutually recursive calls'.
' involves the following user-defined subprograms:'):

WRITELN (ErrorFile. ' ' : 5. BEFNameMap[Key]. ' <-- end of cycle');
REPEAT . . WRITELN (ErrorFile. : 5. ~ ~ ~ ~ a m e M a ~ [~ e x t , t . ~ n f o]) ; Next := Nextt.Link
UNTIL NextT.Info = Key:
WRITELN (

ErrorFile. ' ' : 5. ~ ~ ~ ~ a m e M a ~ [~ e x t f . ~ n f o] . ' <- start of cycle')
END;
halt

END;

PROCEDURE BEFInit:

VAR
I : integer;

BEGIN
rewrite(ErrorFile, '-ERROR '1;
BEFCallStack := NIL;

LISTING OF INSTRUMENTED PROGRAMS 100

FOR I := 1 TO 3 DO ~ ~ ~ ~ r o c C o u n t e r s [~] := 0:
B ~ ~ ~ a m e M a ~ [l] := 'MUTUALI';
BE~~arneMap[2] := 'MUTUAL.2';
B E F N ~ ~ ~ M ~ P [~] := 'MUTUAL3'

END;

PROCEDURE BEFExit :

BEGIN
WRITELN (

sercom. '*** No infinite loop or infinite recursion has been',
' detected.');

WRITELN (sercom);
WRITELN (ErrorFile. 'All loops iterate less than the limit of '. ' times.');
WRITELN (

ErrorFile. 'Recursive subprogram calls have not exceeded'.
' the depth limit of ', '.')

END;

PROCEDURE MUTUAL2;
forward;

PROCEDURE MUTUAL3;
forward;

PROCEDURE MUTUAL1 ;

BEGIN
BEFPush(BEFCa1lStack. 1);
IF ~EF~rocCounters[l] = 10000 THEN BEFCallErr
ELSE BEFProcCounters[11 := BEFProcCounters[11 + 1 ;
MUTUAL2;
B ~ ~ ~ r o c C o u n t e r s [l] := BEFProcCounters[l] - 1;
BEFRemoveTopElem(BEFCallStack)

END;

PROCEDURE MUTUAL2;

BEGIN
BEFPush(BEFCa1lStack. 2);

LISTING OF INSTRUMENTED PROGRAMS 101

IF BEFProcCounters[2] = 10000 THEN BEFCallErr
ELSE BEFProcCounters[2] := BEFProcCounters[2] + 1;
MUTUAL3;
BEFProcCounters[2] := BEFProcCounters[2] - 1:
BEFRemoveT~pElem(BEFCallStack)

END:

PROCEDURE MUTUAL3;

BEGIN
BEFPush(BEFCa1lStack. 3);
IF BEFProcCounters[3] = 1OOOO THEN BEFCallErr
ELSE BEFProcCounters[3] := BEFProcCounters[3] + 1;
MU~VAL 1 ;
~ ~ ~ ~ r o c C o u n t e r s [3] := ~ ~ ~ ~ r o c C o u n t e r s [3] - 1;
BEFRemoveTopElem(BEFCallStack)

END:

BEGIN
BEFInit: MUTUAL 1; BEFExit

END.

B.3. Parameter Usage Checking

PROGRAM EXAMPLE (INPUT. OUTPUT):

VAR
X : INTEGER;

VAR
APUC : boolean;

PROCEDURE P2 (VAR C : INTEGER);

BEGIN
WRITELN (A);
WRITELN (

sercom. 'The reference parameter ', "'C"'. ' of subprogram '. "'P2"'.
' has not been assigned a value upon subprogram exit.')

END;

PROCEDURE P3 (D : CHAR);

BEGIN
A := ORD(D) - ORD('O'); lhPUC := false

END:

BEGIN
APUC := true:
READ(B):
A := ORD(B);
APUC := false:
P2(A);
APUC := false;
P3(B):
IF APUC THEN

WRITELN (
sercom. 'The reference parameter ', "'A"'. ' of subprogram '. "'PI"',
' has not been assigned a value upon subprogram exit.')

END:

BEGIN
PI(X. '9')

END.

REFERENCES

[I] Adam, Ann and Laurent. Jean-Pierre.
LAURA, a system to debug student programs.
Artificial Intelligence l5(1). 1980.

121 adb.
Commands Reference Manual for the Sun Workstation.
Sun Microsystems. Inc.. California, 1985.

[3] Aho, V. Alfred and Ullman. Jeffery D.
Principles of Compiler Design.
Addison-Wesley Publishing Company. Massachusetts. 1977.

[4] Amsterdam. Jonathan.
Programming project: safe storage allocator.
BYTE Magazine 1 l(10). October. 1986.

151 ANSI/IEEE 770 X3.97 - 1983, IEEE Standard Pascal Computer Progranuning

Language
American National Standards Institute. 1983.

161 Baiardi. F.. De Francesco, N.. Matteoli. E.. Stefanini, S.. and Vaglini. G.
Development of a debugger for a concurrent language.
SIGPLAN Notices 18(8), August. 1983.
(Proceedingr of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

High-Level Debugging.' March. 1983).

[7] Balzer, R. M.
EXDAMS -- extendable debugging and monitoring system.
A FIPS Conference Proceedings 34, 1969.

181 Bates. Peter and Wileden. Jack C.
An approach to high-level debugging of distributed systems.
SIGPLAN Notices 18(8). August. 1983.
(Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

High-Level Debugging, March. 1983).

REFERENCES 104

Beander . Bert.
VAX DEBUG: an interactive, symbolic, multilingual debugger.
SlGPLAN Notices 18(8). August. 1983.
(Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

High-Level Debugging, March. 1983).

Boehm. B. W.. McClean. R. K., and Urfrig, D. B.
Some experience with automated aids to the design of large-scale software.
I . Transactions on Software Engineering SE-1(2), March. 1975.

Cameron. Robert D. and Ito, M. Robert.
Grammar-based definition of metaprogramming systems.
ACM Transactions on Programming L u n p g e s and Systems 6(1). January. 1984.

Cameron. Robert D.
Multi MPS Reference Manual (draft)
School of Computing Science. Simon Fraser University. 1986.

Cameron. Robert D.
Value parameters should be read-only.
Unpublished proposal submitted to the IS0 Modula2 Standardization Working

Group. 1987.

Cardell, James R
Multilingual debugging with the SWAT high-level debugger
SIGPLAN Notices 18(8), August. 1983.
(Prcceedings of the ACM SiGSOI;T/SIGIDLAN S~f iware Engineering Sympsium on

High-Level Debugging, March. 1983).

Cargill. Thomas A.
Debugging C programs with the Blit.
AT & T Bell Laboratories Technical Journal 63(8), October, 1984.

Cordell. Green and Barstow. David.
On program synthesis knowledge.
Artificial Intelligence 10(3). November, 1978.

Dahl. 0.-J.. Dijkstra. E. W.. and Hoare. C. A. R.
Structured Programming.
Academic Press, New York. 1972.

Dannenberg, R. B. and Ernest. G. W.
Formal program verification using symbolic execution.
IEEE Transactions on Software Engineering SE-8(1), January. 1982.

dbx.
Commands Reference Man& for the Sun Workstation.
Sun Microsystems. Inc.. California. 1985.

dbxtool.
Commands Reference M e n d for the Sun Workstation.
Sun Microsystems, Inc.. California. 1985.

DeMarco. Tom.
Controlling Software A.0 jects: Manugement , Measurement, and Estimation.
Yourdon Press. New York, 1982.

Dijkstra, E. W.
Goto statement considered harmful.
Communications of the ACM 11(3), March. 1968.

Endres. Albert.
An analysis of errors and causes in system programs.
SIGPLAN Notices 10(6), June. 1975.
(heed ings - I975 International Conference on Reliable Software. April. 1975).

Fairley. Richard E.
ALADDIN: assembly language assertion driven debugging interpreter.
IEEE Transactions on Software Engineering SE-5(4), July. 1979.

Fairley. Richard E.
Software Engineering Concepts.
McGraw-Hill Book Company. New York. 1985.

Ferguson, Earl H. and Berner. Elizabeth.
Debugging systems at the source language level=
Communications of the ACM 6(8). August. 1963.

Fosdick. D. Lloyd and Osterweil. Leon J.
Data flow analysis in software reliability.
ACM Computing Surveys 8(3), September, 1976.

Foxley. E. and Morgan. D. J.
Monitoring the run-time activity of Algol 68-R programs.
Software Practice & Experience 8(1). January. 197 8.

Frenkel. Karen A.
Toward automating the software-development cycle.
Communications of the ACM 28(6). June. 1985.

Graham. S. L.. Kessler. P. B.. and McKusick. M. K.
An execution profiler for modular programs.
Software Practice & Experience 13(8), August. 1983.

1311 Grishman. Ralph.
The debugging system AIDS.
AFIPS Conference Pr~c~eedings 36. 1970.

Gupta. N. K. and Seviora. R. E.
An expert system approach to real time system debugging.
In Roceedings of the lSt Conference on Artificial Intelligence Applications.

December. 1984.

Hantler. Sidney L. and King, James C.
An introduction to proving correctness of programs.
ACM Computing Surveys 8(3). September. 1976.

Hecht. Matthew S.
Flow Analysis of Computer Programs.
North-Holland Publishing Inc.. New York. 1977.

Hoare, C. A. R.
An axiomatic basis for computer programming.
Communications of the ACM 12(10), October. 1969.

Hoare. C. A. R.
Data reliability.
SIGPLAN Notices 10(6), June. 1975.
(Roceedings-1975 Internutiod Conference on Reliable Software. April. 1975).

Howden. William E.
Symbolic testing and the DISSECT symbolic evaluation system.
IEEE Transactions on Software Engineering SE-3(4), July, 1977.

Howden. William E.
Functional program testing.
IEEE Transactions on Software Engineering SE-6(2). March. 1980.

Huang. J. C.
An approach to program testing.
ACM Computing Surveys 7(3), September, 1975.

Huang, J. C.
Program instrumentation and software testing.
Computer 11(4), April. 1978.

Huang. J. C.
Detection of data flow anomaly through program instrumentation.
IEEE Transactions on Software Engineering SE-5(3). May, 1979.

Itoh, Daiju and Izutani, Takao.
FADEBUG-I, a new tool for program debugging.
In A-oceedings of the IEEE Symposium on Computer Software Reliability. May.

1973.

REFERENCES 107

Johnson. Mark Scott.
The Design and Implementation of a Run-Time Analysis curd Interactive Debugging

Environment.
PhD thesis. University of British Columbia. 1978.

Jones. T. C.
Programming Productivity: Issues for the Eighties.
IEEE Computer Society Press, New York. 1981.

Kernighan. Brian W. and Pike. Rob.
The UNIX Programming Environment.
Prentice-Hall. Inc.. New Jersey, 1984.

Lichtman. Zavdi L.
Generation and consistency checking of design and program structures.
IEEE Transactions on Software Engineering SE- 12(1). January. 1986.

LINT - a C program checker.
Programming Tools for the Sun Workstation.
Sun Microsystems. Inc.. California. 1985.

Manna, Zohar and Waldinger. Richard.
Knowledge and reasoning in program synthesis.
Artificial Intelligence 6(2). Summer. 1975.

Mauger. Claude and Pammett. Kevin.
An event-driven debugger for Ada.
ACM SIGAda Ada Letters 5(2). September. 1985.
(A-oceedings of the Ada International Conference. May. 1985).

Muchnick. Steven S. and Jones. Neil D.
Program Flow Analysis: Theory and Applications.
Prentice-Hall, Inc.. New Jersey. 198 1.

Myers, Glenford J.
The Art of Software Testing.
Wiley Interscience. New York. 1979.

Osterweil. Leon J. and Fosdick. Lloyd D.
DAVE -- a validation error detection and documentation system for Fortran

programs.
Software Practice & Experience 6(4), October. 1976.

Pai. Ajit B. and Kieburtz. Richard B.
Global context recovery: a new strategy for syntactic error recovery by table-

driven parsers.
ACM Transactions on Programming Languages and Systems 2(1). January. 1980.

REFERENCES 108

Popek. G., Homing, J.. Lampson. B.. Mitchell. J.. and London, R.
Notes on the design of Euclid.
SIGPLAN Notices 12(3). March. 1977.

Reference Manual for the ADA Programming Language,
A NSI/MIL-STD-l815A-l983
United States Department of Defense. 1983.

Reynolds. J. C.
Syntactic control of interference.
In Proceedings of the Fifth Ann& ACM Symposium on Principles of

Programming Languages. January. 1979.

Richter. Helmut.
Noncorrecting syntax error recovery.
ACM Transactions on Programming Languages and Systems 7(3), July. 1985.

Rubey. Raymond L.
Quantitative aspects of software validation.
SIGPLAN Notices lO(6). June. 1975.
(A-oceedings-1975 Intenzational Conference on Reliable Software. April. 1975).

Ruth. Gregory R.
Intelligent program analysis. .

Artificial Intelligence 7(1). 1976.

Satterthwaite. E.
Debugging tools for high level languages.
Software A-actice & Experience 2(3). July. 1972.

Sedlmeyer. Robert L.. Thompson. William B.. and Johnson. Paul E.
Knowledge-based fault localization in debugging.
SIGPLAN Notices 18(8). August. 1983.
(Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

High-Level Debugging. March. 1983).

Shapiro. Ehud Yo
Algorithmic Program Debugging.
PhD thesis. Yale University. 1982.

Shooman. M. L. and Bolsky. M. I.
Types, distribution, and test and correction times for programming errors.
SIGPLAN Notices lO(6). June. 1975.
(Proceedings-1975 International Conference on Reliable Software. April. 1975).

1641 Sippu. Seppo and Soisalon-Soininen, Eljas.
A syntax-error-handling technique and its experimentaL.ana1ysis.
ACM Transactions on Programming Languages and Systems 5(4). October. 1983.

REFERENCES 109

[65] Sussman, Gerald Jay.
A Computer Model of SkiU Acquisition.
American Elsevier Publishing Company. Inc.. New York. 1975.

[66] Thayer. Thomas A.. Liprow, M.. and Nelson. Eldred C.
Software Reliability - A Study of Large Project Reality.
North-Holland Publishing Inc.. New York. 1978.

[67] Tischler. R.. Schaufler, R., and Payne. C.
Static analysis of programs as an aid to debugging.

, SEPLAN Notices 18(8). August. 1983.
(Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineenertng Symposium on

High-Level Debugging. March. 198 3):

[68] Weber. Janice Cynthia.
Interactive debugging of concurrent programs.
SIGPLAN Notices 18(8). August. 1983.
(Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

High-Level Debugging. March. 1983 1.

[69] Wirth. Niklaus.
Algorithms + Data Structures = Programs.
Prentice-Hall, Inc., New Jersey, 1976.

[70] Wirth, Niklaus.
Rogramming in Modda2.
Springer-Verlag. New Yoric, i982.

Adam. Ann 8
Aho, V. Alfred 43
Amsterdam, Jonathan 42

Baiardi. F. 5
Balzer, R. M. 4
Bates, Peter 5
Beander, Bert 4, 5
Boehm, B. W. 17, 21

AUTHOR INDEX

Cameron, Robert D. 32, 42, 55
Cardell, James R. 5
Cargill, Thomas A. 5
Cordell. Green 2

Dahl, 0.-J. 2
Dannenberg, R. B. 1
DeMarco, Tom 2
Dijkstra, E. W . 22

Endres. Albert 17

Fairley, Richard E. 4, 11
Ferguson, Earl H. 4
Fosdick, D. Lloyd 6
Foxley, E. 32
Frenkel, Karen A. 2

Graham, S. L. 32
Grishman. Ralph 4
Gupta, N. K. 8

Hantler, Sidney L. 1
Hecht, Matthew S. 6. 26, 43
Hoare, C. A. R. 1, 22
Howard, William E. 1
Huang, J. C. 1, 32

Itoh, Daiju 4

Johnson, Mark Scott 5
Jones, T. C. 1

Lichtman. Zavdi L. 22

Manna. Zohar 2
Mauger, Claude 5
Muchnick, Steven S. 6, 26
Myers, Glenford J. 1, 3

Osterweil. Leon J. 6

Pai, Ajit B. 16
Popek, G. 22

Reynolds, J. C. 22
Richter, Helmet 16
Rubey, Raymond L. 17
Ruth, Gregory R. 8

Satterthwaite, E. 4
Sedlmeyer. Robert L. 7
Shapiro, Ehud Y. 7
Shooman, M. L. 1
Sippu, Seppo 16
Sussman, Gerald Jay 8

Thayer, Thomas A. 17
Tischler, R. 6

Weber, Janice Cynthia 5
Wirth, Niklaus 49, 76

Kernighan, Brain W. 29

