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ABSTRACT 

Traditional debugging tools provide primitive program monitoring facilities with 

which general debugging can be carried out. These tools thus can be characterized as 

general-purpose. Debugging with general-purpose tools entails the understanding of the 

dynamic behavior of programs through data captured during execution. The 

voluminous amount of information flow between the user and the debugging system 

can easily overwhelm one's administrative capacity and patience. 

Debugging can be liberated from the ad hoc style of program tracing through the 

use of special-purpose tools. Each special-purpose tool is designed to cope with a class . 

of programming errors and incorporates an effective procedure to assist the detection 

and diagnosis of such errors. Unimportant clerical details can be relegated to these 

tools, thereby allowing efforts to be concentrated on the problem-solving aspect of 

debugging. A debugging facility composed of a collection of special-purpose tools is 
. . 

called a tdolkit system. This thesis considers issues in the design and implementation 

of toolkit systems. Example toolkit components are described and an overall 

evaluation of the toolkit approach is presented. 
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Debugging appears to be the single part of the software-production proceJs that 
ymgrammrs seem to abhv t h p  mwt.  

Glen ford .Myers 15 1 ] 

1, I., Ssf t-wa re Errors 

I t  is  a imtorio~is fact that bugs have infected every 4gnrf ica~t  piece o f  software 

Studks t y  Jaws 1441 indicate that a t  least ono error 1s introduced for every 6'7 lines 

d zxci,;:b-tt~5rtc w u n e  mde produced :znd that annual expenditure on defect removal 

exce~r ls  $7 F I.Gllinn In the United States I c m  Shoometl and Eelsky [53] report that 

wrrzcting an zrnor takes an average of 4.44 man-hours, with the worst case being 35 

:nanhom.s These alarming figures signify an urgent need for practical t e ~ h n r q w s  l o  

improve soft A ,ire reliability. 

The currenf pt lctice ft)r coping w ~ t h  sot tware errors is by means of program testing. 

Testing 1s concerned with exposrng errors that were previously unknown. .A wide 

variety .,f techlsc< fw:,,, w c h  as functional trstmg [38], sy rnbollc testing [37], test~ng by 

instrumetrt tttij i : {O 401, ,inJ PI. qt@m \iei i t  rt;ttlon [18, 3 3 .  151, have been proposed 

and a i ~ p l ~ ~ ~ ~ i  in  ract I ,  e 6 h 111 \ 1111' , k<ree  of wccesc In a l l  cases. debugging 

o w  i , . ; ellmrnnte errors disc~vered.  

h o t h e r  npproach IS to take preventive measures rather than resort to after the-fact 
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cures. The central idea is to adopt a more disciplined attitude toward programming. 

Methodologies introduced include structured programming [17], zero-defect 

development [21], and defensive programming. These methodologies have proved to be 

very effective in reducing the chance of error; nevertheless, the possibility of error 

still persists. A more ambitious approach aims at eliminating sources of programming 

errors altogether. Proponents of this approach devote attention to the automatic 

construction of programs from specifications [16. 29. 481. Here. the problem is 

merely shifted to a different level. Naturally, errors will be committed regardless of 

the notation used, and removing errors from these very-high-level notations is not 

necessarily any easier than from their conventional counterparts. More sadly. 

development in automatic programming is still in its infancy, and only toy problems 

can be tackled successfully. 

A conceptual breakthrough that leads to the production of error-free software is 

unlikely in the foreseeable future. In the meantime, testing and debugging will 

remain essential to the attainment of quality software. This thesis addresses the 

software reliability problem from such a viewpoint. We investigate the fundamental 

issues In constructing practical and effective supporting tools for the elimination of 

programming errors. We restrict our attention to debugging tools, but, as we shall 

see, these tools may also be used for testing. 

1.2. Program Debugging 

Program debugg~ng involves the diagnosis and correction of errors. When an error 

is initially discovered, only symptoms, or external manifestations of the error, are 

apparent. Common symptoms include abnormal termination, incorrect output, and 

missing output. Error diagnosis attempts to relate error symptoms to an actual cause. 



Once the cause of an error is identified, error correction follows to remove the 

discrepancy between program behavior and the intended effect. This requires 

modifications to either the source code or the documentation associated with earlier 

phases of the development life cycle, depending on where the error was committed. 

This thesis is primarily concerned with coding errors in transforming a correct design 

into an executable program, so-called logic errms. 

In tmsidering autcmated support for debugging, this work. will concentrate on error 

diagnmis ::mls rather than error correction tools, Automating error correction appears 

to be ::r .walqv r.tteasible with current technology. This is because there are many 

diffe>t ' way. lo achieve the same compufajional effect and it is most doubtful that 

the hest ~l\rrectmn strategy in every situation will be selected by mechanical means. if 

any sr . .,A, can he selected at all. Moreover, error diagnosis and error correction 

need ndt bt, separate actlv~ties; pertinent informtion for correction is often obtained 

during error diagnosis In fact, Myers [Sl] suggests that diagnosis accounts for 95% 

sf overall aL:l\ity in debugging. The term debugging hereinafter means error 

diag~r,)sis i~nless the context requires otherwise. 

Errw diagnosis is a trial-and-error task often attempted with semi-automated tools. 

A commonly used method 1s to nawely collect and examine execution information 

hoping that anomalous condit~ons leading to the source of error will be recognized. 

Another pre~adinb method is backtracking [51], which involves tracing the program in 

reverse t.)tecutlcw order starting from the point of error until the cause is pinpointed. 

These t:ri4:e fort,= methods are appealing because they are simple to apply, but the 

amount ,)f labur required is often intolerable for large programs. Other more 

systemar ~c methods, namely debugging by induction and debugging by deduction [51]. 

involve deriv~ng hypotheses about the error, which are subsequently subjected to 



repeat 
analyze available in formation 
devise a hypothesis about the error 
verify the hypothesis 

until cause is known 

(a )  Debugging by Induction 

repeat 
list all conceivable causes 
eliminate the impossible ones by simple reasoning 
verr f y  remaining hypotheses 

until cause is known 

(b)  Debugging by Deduction 

Figure 1-1: Systematid Debugging Methods 

YI' ,ttron bigure 1 1 out 'mes the yro~edure  employed. 4lrhough usmg s y \ 1 t h ' - , d ,  , 

rib 1 , .  ' %  u r ll generallj 8nplc)vc debugging tlme. t h e ~ r  (tpparently burdensomr I ~ I  t ,  * 

has c .er ti:% main unpedlment to then gaming vc idesprrad acceptanct I kbugging 

pr:duct I \  kc) :s d:rect!y related to the took used in lhat they can infiuence ihe 

debuqg~ng style adopted 

1.3. Current Debugging Tools 

1.3.1. 'I'ra di t ional Debugging Tools 

rradt ! i \ ) d  debugging tools, of ten cal led interactive debuggers, provide mechanisms to 

monitor the run time behavior of programs. Typlcal facilities offered are the ability 

to suspend program execution, to trace execution flow, and to examine and modify 

the exrcutlon state [n the earl) develnpmenr of interactive debuggers, these facilities 

were ,,nly supported at the object code level [2. 24. 421. Today. debuggers that 

operate a t  the source language level are widespread [7. 9, 19, 26. 31. 601. Aside 

from supporting higher level program monitoring facilities, some modern interactive 
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debuggers [IS. 20, 491 take advantage of advanced hardware. such as high-resolution 

displays and pointing devices, to provide a more convenient user interface. Further 

improvements to interactive debuggers are directed a t  extending the current capability 

for debugging concurrent programs [6, 8. 681 and programs that are written in 

multiple source languages [9. 14. 431. 

The facilities provided by interactive debuggers dictate a tracing style of debugging. 

Because very little is known about how program monitoring can be used effectively 

and efficiently, t~ilrtng tends to proceed in an ad hoe, brute-force manner. This often 

results in prcionged debugging time. Systematic debugging methods, outlined in Figure 

1 - l *  m y  be go8Powed. In these methods, ve~ifying hypotheses is a major step. Using 

hteractiw ~ichuggers for this task entails translating each hypothesis h t o  conditions 

that inre know* Lls be true at  different points of program execution, Debugging 

commands are then issued to implement the necessary breakpoints.. Upon reaching 

each bxeakpoi~t, the execution state is examined manually to check for violation of 

the predetexrnined conditions. This procedure is repeated until the error is properlq 

diagnosed. Although the use of systematic methods will generally improve debugging 

productivity, the amount of preplanned and coordinated activity appears to be ton 

demanding of the user. Consequently, systematic debugging is seldom attempted 

Interactive tiebuggers have two major shortcomings. The first lies m the debugging 

stvle imposed Debugging by tracing requires the programmer to cope with and 

comprehend 4 ~ d s t  number of bookkeeping details. This is ~ounterproductive in itself 

l ' h ~  ctthex shtwtcuming is that the program monitoring facilities provided are not 

su~ra t~ le  for supporting systematic debugging methods. The programmer is thus 

discou~ nged from domg so. In our view, if significant debugging productivity is to be 

achieved, tool4 must deviate from the tracing style of debugging and gear toward 

support for systematic debugging. 
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1.3.2. Static Analysis Tools 

Static analysis tools provide useful information for debugging by systematically 

examining the program source text, but without actually executing the program. 

Cross-reference generators are familiar examples of static analysis tools, though they 

are of limited use for debugging. More sophisticated static analyzers are capable of 

generating diagnostics that are directly related to programming mistakes, using program 

flow analysis [34, 501 as the underlying methodology. DAVE [27. 521 is a good 

representative example of such systems. It detects inconsistent usage of variables. 

such as referencing uninitialized variables and consecutive assignments to the same 

variable without an intervening reference. LINT [47], a well-known utility for C 

programs, offers more extensive program checking capabilities, including more strict 

type checking (than that performed by standard C compilers) and detection of 

nonportable constructs. MAP [67] takes a novel approach in the presentation of 

diagnostics: it stores the available information in a database and offers a query 

language for retrieving the details of interest. 

Static analysis tools are attractive for several reasons. First of all, they are easy to 

operate in that little effort is involved in initiating them to generate diagnostics. This 

is an important benefit to the user. Secondly, the types of diagnostics produced are 

more helpful for debugging than the execution state information obtained from 

interact~ve debuggers. A final advantage is the thoroughness of checking offered. 

Instead of tocusing on a single execution error, the diagnostics cover all (possible) 

instances of the same programming mistake, including the ones that lie outside of the 

particular execution path under consideration. Despite these advantages, static analysis 

tools have received limited acceptance as debugging aids. This is due partly to the 

narrow scope of current static analyzers and partly to the inherent theoretical 



limitations of static techniques (See Section 2.4). Remedies to these problems must be 

devised before the techniques of static analysis can be effectively utilized. 

1.3.3. Knowledge-Based Debuggers 

Knowledge-based debuggers apply techniques from Artificial Intelligence to partly 

mechanize the debugging process. Typical of such systems are a fixed debugging 

procedure and an extensible knowledge base. The knowledge base can be defined a 

priori ox can be acquired (and even learned) through interaction with an external 

agent d u h g  t.he operation of the system. 

A notew-)r.tlty work in this field is Shapiro's PDS system1 [62] This system is 

capable i ~ f  diagnosing and correcting Prolog programs that contain three general clrt:ises 

o f  errorb. eer~nhation with incorrect output, termination with missing ourput and 

zpyarant nim2errninat1on. Tile system mimics debuggins by tracing using an 

augmerri,ec; Pwlog interpreter for monitoring execution. The knowledge required deais 

x~~ainly  w%i: the input/output behavior of the monitored program and is acquired 

dynamically Through queries presented to the user. 

I'he F41XjSY system of Sedlmeyer, et al. 1611 concentrates on error diagnos~s. I'he 

\)stem, using a predefined knowledge base, proposes error hypotheses which are 

subje~ted to verification. An error hypothesis is a functional model of a program 

with a budt--in defect. A hypothesis is verified by performing some pattern-matching 

between the proposed functional model and the given program. If pattern-matching 

succeeds, then the expected defect is cnni~rmed and ix reported Otherwise another 

'shd-pro's work is ccir~~erned u , t h  a theoretical framework for debugging. He has also extended the 
results t<r program synthesis, Our superfic~al treatment here can hardly do just~ce to this slgnlficant work. 
It 1s recummeri~lecl reading for Interested readers. 



hypothesis is generated. The procedure is repeated until exhaustion of hypotheses, in 

which case system failure is reported. 

Other work on knowledge-based debugging has been reported by Adam and 

Laurent [I], Gupta and Seviora [32]. Ruth [59] .  and Sussman [65]. 

Knowledge-based debuggers are only a t  early experimental stages. Very little 

\ \mess  has been achieved to date. The difficulties encountered are fundamental and 

ncntri\ial. For instance, the issues of what kinds of knowledge are necessary and 

how the) can be effectively captured, represented, and generalized are only vaguely 

understood. The mderlying problem-solving strategy employed by current knowledge 

based debngyrrs, which often involves searching a vast solution space for An 

aylpropr~dte answer. is computationally unacceptable for any realistic undertaking, even 

with ~I11: mwst modern computer hardware. Practical solutions to these problems. nre 

far  over ;he: horizon. Although Artificial Intelligence trchniques may have an 

ixportant impact in the long run, more practical alternatives can be investigated in 

the inter'm 

1.4. Outline 

This thesis is concerned with a methodology for designing advanced debugging 

systems. From the brief survey on current debugging aids, several desirable 

characteristics of an advanced system are evident. First of all, the system should 

directly support a disciplined approach to debugging, through which improved 

tlt.l'ti::d~ile productivity is to be realized. It is essential that  in place of lou level 

fiic~litles, high-level debugging functions that reflect the nature of systematic 

debugging be provided. Secondly, humdn factors in tool design should be addressed. 

A debugging tool, regardless of sophistication, is only useful if i t  will be accepted by 
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the user. To this end, simplicity of use is a key point. Finally, in order to be 

practical, resource requirements of the system must be adequately handled by current 

computing hardware. This restricts implementation techniques to those whose 

practicality has been demonstrated. The subject of this work is a design framework 

which accommodates the abovementioned pragmatic issues within the constraints of 

current technology. 

This thesis is organized as follows. Chapter 2 expounds on a framework for 

constructing advanced debugging systems. A new approach in structuring debugging 

systems is first introduced. Design and implementation issues are then addressed. 

The principles and techniques discussed will be demonstrated in Chapter 3 through 

examples, An overall evaluation of our approach is given in Chapter 4. Concluding 

ternarks are presented in Chapter 5. Appendix A elaborates on algorithms for 

detecting unmitsalized variable access, which is one of the tool examples to be 

discussed in Chapter 3. 

Our discussion is oriented toward the predominant Algol family of languages. For 

concreteness. ANSI Standard Pascal [5] has been chosen as the language for illustrating 

the ideas. 

1.5. A Note About Typography 

Pascal programs are presented with keywords in lower-case bold and identifiers in 

entire upper case. For reasons of clarity, underscores are used as word separators 

within identifiers, even though this is not permitted in Standard Pascal. This style. 

adopted from the ~ d a ~  Programming Language Reference Manual [55] and admittedly 

2 ~ d a  is a registered trademark of the U.S. Government (Ada Joint Program Office). 
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not the most pleasing in the aesthetic sense, allows mixing program notations in 

running text without additional typographical concerns. For example, the sentence 

"The c m d i d i t y  of a set, computed by the function CARDINALITY, is the 
number of elements in the set." 

clearly shows the two roles of "cardinality". It is evident that readability will be 

reduced if italics are used for identifiers. Using a different font for program 

notations is also arguably unpleasant. 

Algorithms in the appendix are presented in bold and italics to distinguish them 

from Pascal notations. 



CHAPTER 2 

A METHODICAL DESIGN FRAMEWORK 

. . . [softwme] engineers b k e  scientific principles, economic issues, and 
social concerns in a pragmatic manner when solving problems and developing 
technologicul products. . . . Intangibility und luck of physical properties for 
software limit the number of findamental guidelines and basic constraints 
available to s h p e  the design and implementation of a software product. 

Richard Fairley / 25 ]  

2J. The Toolkit Paradigm 

Designers of traditional debugging tools take the view that debugging can be 

performed by observing the program dynamics. Hence, mechanisms are provided to 

examine the program state at various points of execution. Its ramification is that 

reasoning about programs must be perceived in terms of the underlying execution 

model. This approach to debugging system design is evidently low-level. 

The low-level approach has the merit that general debugging can be carried out with 

the primitive facilities provided. Traditional debugging tools thus can be characterized 

as general-purpose tools. Achieving generality, however, has greatly compromised 

usability. Every detail of the entire debugging process must now be attended to. 

. The massive amount of information flow between the user and the debugging system 

often overwhelms one's administrative capacity and patience. Much of the work 

involves bookkeeping details that require little intellectual sophistication. An advanced 

system must remove these unimportant levels of clerical detail. Identifying a new 
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level of abstraction in the debugging process is thus the paramount issue in high-level 

debugging system design. 

Recall from Section 1.2 that deductive and inductive debugging methods involve 

deriving and verifying error hypotheses. Deriving hypotheses, which requires 

knowledge of the problem and programming expertise, is more mentally demanding 

than the verification part, which is largely laborious and tedious. The verification 

process can be modeled as procedural abstractions; that is, the concrete operations 

needed to test a hypothesis are encapsulated to form a single entity and represented 

conceptually as an atomic operation. By suppressing irrelevant details, efforts can be 

concentrated on the problem solving aspect of debugging. A system adopting this 

principle of abstraction is naturally composed of a collection of tools, with each tool 

implementing a procedural abstraction. Such a high-level system, characterized by its 

constituent parts. is called a toolkit system. 

Toolkit systems have a number of important characteristics not typified in 

conventional systems. As a consequence of the design decision adopted, toolkit 

systems support a more abstract view of debugging. Each tool can be viewed as an 

oracle to certain conjectures on program misbehavior. Because low-level operations 

such as crude examination of program state changes are not provided. debugging 

liberally without forethought is discouraged. Although an abuse of tools cannot be 

avoided, systematic debugging is better supported and will more likely be adhered to. 

Another distinctive feature of toolkit systems is that each individual tool can only 

be applied to detect a specific kind of error and is therefore said to be 

specid-purpose. Because of its confined scope, effectiveness can be attained by 

incorporating into the tool knowledge specific to its application domain. Special- 
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purpose tools also can be made easy to use: because of the built-in knowledge. 

minimal human guidance is needed to operate them. In contrast, early (and even 

some existing) interactive debuggers are typically difficult to learn and operate; this 

often diverts the user to manual methods. From the users' perspective, achieving 

effectiveness without sacrificing simplicity of use is the most appealing aspect of 

toolkit systems. 

In contrast to conventional monolithic systems, components of toolkit systems are 

small and functionally independent. A consequence of structuring systems with 

autonomous units is that these systems are extensible. Toolkit systems thus may 

evolve over time, acquiring increased functionality as new tools are added. At the 

early stages of evolution, the toolkit is typically small and the tools serve more as 

valuable supplements to general-purpose tools. As the toolkit is gradually expanded. 

it will play a more dominant role in debugging and eventually general-purpose tools 

will become the last rescrt. For obvious reasons, however, it is inconceivable that 

toolkit systems will replace general-purpose systems. This shortcoming can actually 

be taken advantage of by the tool designers and implementors. Since the goal is to 

complement general-purpose tools rather than to eliminate them. development of 

toolkits may proceed incrementally, with attention focused on tools that give the 

greatest potential benefit. In addition, flaws found in early development efforts can 

be subsequently avoided, giving rise to higher quality tools. 

In summary. the essence of toolkit systems is that each constituent tool incorporates 

an effective procedure for detecting a class of programming error. Hence, suspicion 

about the presence or absence of a particular error can be confirmed easily. From the 

perspective of the users, the designers, and the implementors, toolkit systems in many 

respects offer advanced features surpassing available alternatives. It is anticipated that ' 
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debugging time will be reduced drastically with a reasonably developed toolkit. 

However. toolkit systems should be regarded as complements to general-purpose 

systems, rather than as a complete solution exhausting all debugging needs. A 

detailed evaluation of the toolkit approach to debugging system design is presented in 

Chapter 4. 

2.2. Human Engineering in Design 

As mentioned earlier, consideration of human factors is a prerequisite to successful 

software tool development. With respect to debugging tools, this argument can be 

taken further: as manual methods are always viable and preferred alternatives. 

complicated tools will be abandoned regardless of sophistication in capability. 

Designing practical debugging tools must take user psychology into consideration. The 

tmst concern is to gain user confidence in using the tools. 

Establishing user confidence means (among other things) that the tools can be 

trusted to perform designated tasks. In addition to being adequately robust and 

reliable, it is essential for the tools to tackle the problem as a whole. A common 

fault in tool design is that only special instances of the problem are handled. The 

solutions adopted are motivated primarily by premature concern for efficiency and 

secondarily by ease of implementation. It is sometimes forgotten that performance 

characteristics are meaningless unless requirements are first fulfilled. Our answer to 

attaining economy while insisting that tools meet their functional expectations is to 

combine reasonably efficient but simple algorithms with exhaustive methods, which are 

used only for a few difficult cases. Although tools which employ such a mixed 

strategy may not be the most efficient, the implementors will be able to deliver the 

expected capabilities without spending undue effort in finding the best algorithm. 
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Another important human concern is to minimize the effort needed to use the tools. 

The criterion is to substantially reduce. if not totally eliminate, human interaction 

during the course of exercising the tools. It has been explained earlier that special- 

purpose tools typically need minimal human guidance because of the built-in error 

detecting procedures. In fact, some special-purpose tools may carry out error analysis 

tasks without iequiring explicit information from the user; the information needed is 

derived from other sources. It may seem that such sources are scarce, but as we 

shall see in Section 2.3, there are many ways to extract useful information from the 

program. 

A final important human aspect is usefulness. In addition to the preceding ways to 

initiate users. tools must produce results useful for further debugging efforts in order 

to receive final acceptance. For error analysis tools, it means that the diagnostics 

produced can be easily related to the actual cause. Ideally, errors detected should be 

described in pragmatic terms. that is, in terms of how language features are misused 

in a particular context. Pragmatic error descriptions are more helpful for correction 

than symptomatic descriptions, which merely give an account of the external 

(observable) effects of the program at termination. The erroneous program fragment 

in Figure 2-1, which is intended to sort a vector by repeatedly moving the minimum 

element from a successively smaller vector slice to the head of the slice under 

consideration, serves to illustrate the difference between symptomatic and pragmatic 

error descriptions. An error is revealed upon examination of the vector processed by 

procedure SORT. (We encourage the reader to diagnose the error at this point.) The 

symptomatic error description might be "incorrect result," but the pragmatic cause is 

"missing declaration for variable I in procedure MIN." Correction is straightforward 

given the latter error description. -. 
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procedure SORT(var V : VECTOR); 
var I : INDEX; 

function MIN(START : INDEX) : INDEX; 
var POSITION : INDEX; 

begin 
POSITION := START; 
f o r  I:=START+l to UPPER-BOUND do 

if V[I] < V[POSITION] then 
POSrnON := I; 

MIN := POSITION 
end; 

begin 
for I:=LOWER-BOUND to UPPER-BOUND-1 do 

SWAP(1. MIN(1)) 
end; 

Figure 2-1: Erroneous Sort Procedure 

Although pragmatic error descriptions are preferable from a debugging standpoint, it 

is in general impossible to derive such descriptions precisely from the source code 

alone without additional information or constraints on the various language entities. 

In the preceding example, it will be impossible for a mechanical tool to discover that 

the inner loop control variable must be a local entity, if such a restriction is relaxed 

by the language definition. Disregarding whatever information that can be obtained. 

the problem of determining precise descriptions of detected errors is inherently a very 

difficult one. As it occurs in the context of compilation, the problem has received 

considerable attention [53. 57. 641. but much remains to be learned3. Compared with 

syntax errors, the handling of programming errors is much more difficult. With this 

difficulty in mind, a more modest goal is to furnish diagnostics that are helpful. 

though perhaps imprecise. 

3 ~ s  a point of interest, some recent commercial compilers circumvent the problem by invoking a visual 
editor at the point of error and thus relying on the user to make the necessary corrections, which are 
typically straightforward. This solution might well be the preferred one in an integrated programming 
environment. 
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2.3. Taxonomy of Features 

Toolkit systems may gradually evolve. It is important to delineate their 

functionalities not only to help visualize the limitations, but also to assist tool 

- designers in selecting applicable features. An obvious way to define the boundaries of 

toolkit systems is to classify errors according to the nature of their causes. For 

example. an error in an expression may be traced to the operator used, giving the 

error type "Incorrect Operator Used", which can in turn be classified as 

"Computational Errorw. Such attempts have been reported by Boehm, et d. [lo]. 

Endres [231. Rubey [58]. and Thayer. et d. [66]. "The principal problem encountered 

in such an approach is the tendency to create a category for each error 

analyzed." [661 Any earnest attempt results in a prohibitively large number of error 

types. The largest classification known lists over 400 error types [66]. It is 

doubtful whether such long lists are useful at  all for our purpose. Another problem 

is that such classifications do not yield insights as to how each error type can be 

handled. The error type "Incorrect Operator Used" hardly suggests any useful 

interpretation for automatic detection. This approach is not adopted here. 

The features discussed here are grouped into four classes: semantic error detection. 

consistency checking, code auditing, and data structure analysis; each is treated in a 

separate section. Other features are possible and may even be desirable. A more 

detailed classification will require practical experience with toolkit systems; it will not 

be attempted at this point. 

A characteristic of the above classification is that each class represents the 

enforcement of some predefined rules. Thereby, means for detecting violations become 

apparent. In addition, the requirement to minimize user effort is easily satisfied. For 
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example, semantic error detection tools expose logic errors that manifest themselves by 

violation of the language semantics. Necessary information for their detection can be 

derived from the language definition without user participation. 

23.1. Semantic Error Detection 

A programming language specification must define rules governing syntax and 

semantics; any deviation from the prescribed rules constitutes an error. Syntax errors 

are much less relevant with respect to debugging and thus are not considered further. 

Semantic errors can be classified as either static or dynamic, depending on whether 

detection is possible at compile-time or at run-time. Compilers must perform 

complete static semantic analysis in order that code generation can proceed correctly. 

Dynamic semantic error analysis, however, is sometimes neglected due to the 

substantial execution overhead incurred from the addition of run-time checks8. 

Compilers should not be relied upon for detecting all language stated violations. 

To illustrate the inadequacy of compilers as debugging aids, consider again the 

erroneous sort procedure in Figure 2-1. Strictly speaking, the oversight of nat 

declaring the for-loop control variable is a violation of the standard Pascal language 

definition [ 5 ] ,  and the error should have been caught by a conforming compiler. 

Unfortunately, our local production compiler accepted the illegal program without 

complaint. As another example, consider the following program fragment. 

'~ynarnic semantic errors that cannot possibly be checked for are indications of language design 
deficiencies. 
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procedure OUTER: 
var I : INTEGER; 

procedure INNER(var V : INTEGER); 

begin 
v := 1 

end: 

begin 
for I:=l t o  100 do 

INNER(I) 
end: 

The language definition clearly states that the for-loop control variable must not be 

subjected to explicit assignment and must not be passed as a reference parameter to a 

subprogram. Thus, this error can be detected rather easily and inexpensively during 

compilation. However. a student compiler, which claims close conformance to the 

standard and is well-known for its diagnostic capability, failed to recognize the error. 

Indeed with existing compilers compliance to the standard appears to be the exception 

rather than the norm5. Consequently, tools for detecting semantic violations will 

form an important set of debugging aids. 

Some dynamic semantic errors are listed in Table 2-1. They are grouped into two 

categories: control structure errors and type constraint errors (on data objects). Since 

a data type is characterized by a set of values and a set of operations, type 

constraint errors can be further divided into value constraint errors and operation 

constraint errors. Note that in designing tools for detecting dynamic semantic errors. 

error types should be selected such that they are known to occur frequently (based 

on experience or experimental data) and that they do not overlap with the capabilities 

 ortu tun at el^ this unorthodox situation is gradually improving as recent language design efforts tend to be 
more rigorous, complete, and unambiguous in order to promote faithful implementation (cf. Ada [%I). 
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No corresponding case statement alternative for the selector value. 
Function not returning a valid value. 
A process attempting to communicate with another terminated process. 

(a) Control Structure Errors 

Assigning a value not in the valid range of the variable. 
Index selectors not in the valid range. 
Selecting fields from an inactive variant of a discriminated union. 
Attempting to reference a variable/pointer that has an invalid value. 
Division by zero. 
Arithmetic overflow. 
Arithmetic underflow. 

fb) Type Constraint Errors 

Table 2-1: Dynamic Semantic Errors 

already offered by existing facilities (including but not limited to compilers). For 

example, arithmetic overflow errors are almost always trapped by the hardware 

whereas referencing uninitialized variables is often left to the programmer's discretion; 

a tool for detecting the latter error type is therefore much more useful. 

23.2. Consistency Checking 

Violating semantic rules is but one of many ways that logic errors may manifest 

themselves. Another perhaps more common way is for logic errors to exhibit 

themselves as inconsistencies. Inconsistent usage patterns in programs are frequently 

referred to as (program) anomalies. Anomalies may be symptomatic of potential 

problems, but are not necessarily errors in the strict sense. A trivial example of an 

anomaly is the absence of references to a declared variable. This might indicate a 

typographical error due to similar variable names, as the variables in the declaration 

var UK-POPULATION. US-POPULATION : POPULATION: 

A simple tool for checking declarations against references will detect and warn about 

the inconsistency. Should. it happen to be an error, much of the debugging effort 
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A variable is assigned but never referenced subsequently. 
No reference to a variable between two assignments. 
Presence of unreachable statements. 
Some fields of an active variant of a discriminated union are not assigned to 
before another variant is selected. 
A recursive function that produces no side effect is invoked with the same 
values of arguments in successive calls. 

(a) Program Anomalies 

Interface consistency across separately compiled modules. 
Data and control flow consistency between program and design. 
Adherence to the pre- and post-conditions identified in the design. 

(b) Checks based on Design 

Table 2-2: Consistency Checks 

normally required will be avoided. As another example, an unreachable-statement 

anomaly is present in 

if (DAY >= 1) or (DAY <= 366) then 
SCHEDULE( DAY) 

else 
WRITELN('Not in valid range.'): 

This is inconsistent with the purpose of an if-statement, and an examination of the 

if-expression will reveal the error. Again, in this case, much labor will be saved. 

Table 2-2(a) lists more program anomalies. 

The extent of anomaly checks depends somewhat on the amount of redundant 

information made available by language designers. Type declaration is an example of 

redundancy, which allows illegal manipulations 6f logically incompatible objects to be 

. caught. Although there is a growing trend to incorporate more secure features into 

programming languages, anomaly checks represent only part of all possible consistency 

checks that can be taken. Another major source of information that can be utilized 

for consistency checking is provided by the design documents. DACC [lo], for 
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example, is a tool that demonstrates the feasibility and advantages of such an 

undertaking. Some consistency checks that can be performed based on the design 

documents are presented' in Table 2-2(b). Lichtman [46] describes a methodology for 

detecting inconsistencies between a program and its design. 

23.3. Code Auditing 

Code auditing is the process of examining programs for coding malpractice according 

to a prescribed set of rules denoting proper usage. which is known as a programming 

standard. The purpose of such subjective, but generally well-accepted, standards is to 

assure uniform style and appearance of programs in order to promote reliability and 

maintainability. To these ends, items addressed by a standard include format of 

indentation, naming and documentation conventions, and usage restrictions on certain 

language features. Only the last of these items -is of particular interest to debugging. 

though violations of the others might well impair debugging productivity. 

Certain language features are often considered as harmful, yet programming 

convenience is sacrificed without them. Goto statements, side effects, aliasing. 

pointers, and global variables are a handful of well-known examples. Their harmful 

aspects are documented in detail in [22. 36. 54. 561. Since these features are 

important sources of errors, violations of usage restrictions set by a programming 

standard serve as an early indication of problems, and should be taken as errors. For 

example, the expression 

SEED + RANDOM(SEED) 

may yield different values on different compilers, if function RANDOM modifies 

variable SEED. Debugging is necessitated when programs of this sort are transported 

-. 
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Default initialization value of variables. 
Evaluation order dependencies. 
Storage allocation and alignment for predefined types. 
Execution timing of program constructs. 
Strategy in choosing an alternative in constructs involving nondeterministic 
selection. 

Table 2-3: Implementation-Dependent Features 

to 'incompatible' environments. In general, reliance on implementation-dependent6 

features is a dangerous practice. Table 2-3 lists some implementation-dependent 

features. In other cases, violations of the standard might well point out actual 

errors. For example, an infinite loop construct without exit violates any intent of 

finite computation, as in 

while TRUE do 
WRITELN('Hello!'); 

The utility of code auditors as debugging aids is readily evident. 

23.4. Data Structure Analysis 

Thus far, attention has been focused on logic errors originating from the misuse of 

language constructs without considering the purpose for which they are used. A large 

number of errors occur in the context of implementing (abstract) data structures. 

Each data structure can be described by a set of structural properties and a set of 

primitive operations provided explicitly to the client for manipulation. This 

description serves as a basis for determining integrity, whether manually or otherwise. 

For a particular data representation, tool designers may develop a description that will 

facilitate the construction of tools for detecting integrity violations. Consider the case 

6 ~ h i s  term is used here to represent those implementation-defined attributes that are not warrant to be 
taken advantage of by programs. MAXINT, denoting the largest representable integer, is an example of an 
implementation-defined, but not implementation-dependent, attribute. 



A METHODICAL DESIGN FRAMEWORK 24 

of a linear list implemented using pointers. Conceptually, a linear list 1 consists of 

an integer count of nodes and an ordered set of nodes satisfying the structural 

properties that 

1. count is always nonnegative. 

2. 1 is nil if count = 0. 

3. 1 points to the first node if count > 0. 

4. each node has a link field from which the successor node can be reached. 
and 

5. the link field of the last node is nil. 

The primitive operations of concern are 

1.  insertfl,p), which increments count associated with list I by one. 

2.  deletef1,p). which decrements count associated with list I by one. 

3. searchf1,key). which returns in q the value nil, or the value of I ,  or the 
link field of some node of iist i, and 

4.  successorfl,p), which returns in q either the value nil or the link field of 
some node p of list I. 

The above description can be made more elaborate or general depending on the level 

of checks desired; it suffices here to illustrate the essence of such descriptions. Tools 

can now be constructed to check for structural conformity with respect to the above 

description. These tools will be able to detect improper manipulation of the 

underlying data representation initiated by both the implementor of the data structure 

and the client of the data structure if direct access to the representation is possible. 

As an example to illustrate the utility of data structure analysis tools, suppose that 

in implementing the operation INSERT-TO-HEAD for linear lists, the LINK of the 

newly added node is not updated to connect with the rest of the list. This oversight 
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can be detected by a tool which compares the actual number of nodes with the count 

of the list. As another example, suppose that when restructuring the links in the 

operation DELETE-NODE, the correct statement 

PREDECESSORT.LINK := CURRENTT.LINK 

is inadvertently written as 

CURRENTT.LINK := PREDECESSORT-LINK 

A circular list has now resulted. This mistake can be detected by the same tool used 

previously. The trick lies in the implementation of the tool itself. Instead of 

comparing the count at the end of a full traversal of the list, the tool will stop and 

report an error as soon as count is exceeded. A more sophisticated version will be 

able to report the circular condition by maintaining a list of distinct pointers 

encountered in the traversal. This points out that through careful design a single tool 

can be used to detect different pragmatic errors. 

In order to use such tools, the correspondence between the conceptual entities in the 

descriptions and the actual entities used in the implementation must be given. The 

exact nature of specifying the correspondence is left to the tool designers. Note that 

the correspondence need not be one-to-one. For instance, the conceptual entity count 

above may not have a counterpart in an implementation, in which case the tool will 

create and maintain such an item for internal use. 

With a small, fixed tool set, debugging support will likely be limited to some 

primitive structures, such as lists, trees, stacks, and queues. It is hoped that the 

continuing research on data structure specification techniques will bring more insights 

to the problem. 
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2.4. Program Analysis Methods 

The features offered by a toolkit system are the types of errors that the system is 

able to detect. In implementing a tool, different program analysis methods for 

- detecting errors may be adopted. In order to build useful tools. a thorough 

understanding of the tradeoffs between alternative program analysis methods is 

necessary. Program analysis methods are divided into two broad categories: static and 

dynamic; each is examined in turn. 

Static analysis methods can determine the presence or absence of certain types of 

errors in a program without actually executing the program. Many mistakes, such as 

omitting references to declared variables and data type mismatches between formal 

and actual parameters, can be detected easily and dependably by a textual scan on the 

program. More involved static error analysis can be performed using program flow 

analysis techniques. Flow analysis techniques can discover errors that can be 

represented as a sequence of events. For example, the event sequence 

{undefine, reference} on variables denotes accessing undefined values. This type of 

error can be detected by flow analysis, with some limitations as noted below. See 

Hecht [341 and Muchnick and Jones [50] for a more thorough treatment on the 

subject. Essentially, static analysis methods work on a formal program model, such 

as parse tree or graph representation, and involve a simulated execution of the 

program over all program paths. Therefore, the result of analysis is applicable to all 

possible program executions irrespective of the input data. It follows that if the 

presence of certain errors is not shown, their absence can be assumed. Furthermore. 

algorithms developed for static analysis are generally efficient, making them attractive 

from a computational standpoint. However, static analysis methods suffer from many 

theoretical limitations. Many properties of a program cannot be determined in general 
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by merely examining the program text. For example. complete variable aliasing 

information and feasibility of program paths cannot be known statically. These 

problems are handled by making worse case assumptions, and, as a result, insignificant 

diagnostic messages will be generated. Experience has shown that existing static 

analysis tools tend to produce a massive amount of superfluous messages, which will 

distract, or even annoy, the user. This is the main drawback of static methods. 

Dynamic analysis methods can discover the presence of errors through execution of 

the program under analysis. The detection of errors in dynamic analysis is 

accomplished by adding monitoring code (run-time checks) to the program. The 

resulting program is then executed. By executing the program, many properties of a 

program unknown by static methods can now be determined. Diagnostics will only 

be generated for actual errors encountered rather than for all possible errors as 

generated by static methods. The reduction of superfluous diagnostics is the major 

advantage over static methods. Dynamically produced diagnostics, however, are only 

relevant to the particular execution path caused by the given input data. Hence, 

dynamic analysis methods can show the presence of errors with respect to the given 

data sets, but cannot guarantee the absence of errors. Demand for resources is also 

relatively higher for dynamic methods, although this should only be of secondary 

importance. 

A debugging tool for a given error type may be best implemented using either static 

methods or dynamic methods or a combination thereof. If an error type is amenable 

to positive identification by static methods, then only static methods are considered. 

In this case, all errors detected will be reported even though they might be irrelevant 

to the particular execution under consideration. The reason for not supporting 

execution error analysis is to encourage the user to remove all known errors before 
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proceeding further. This restriction on how tools can be used is in support of the 

view that the early identification of errors will lead to improved software reliability. 

and with obvious cost advantages. In spirit, it is similar to strong typing. When 

static means alone are inadequate, an integrated static and dynamic method can be 

used. Static analysis is first applied to achieve a thorough program analysis. Errors 

found at  this stage can be classified as either definite or potential. A statement in a 

program is said to produce a definite (respectively, potential) error if its execution 

will always (respectively, sometimes) cause the same error to occur. All definite 

errors found should be reported because it is reasonable to assume that each statement 

in a program lies on some executable path. Potential errors, on the other hand. 

should be monitored with run-time checks as it is unclear when these errors will be 

triggered. Run-time checks for definite errors are also inserted to test if they will 

cause run-time errors for some particular execution. If any run-time checks are 

inserted. the modified program will then be executed (the dynamic analysis phase) to 

obtain a profiie of execution errors (if any). In order to avoid overwhelming the 

user with diagnostics, only definite errors and the first execution error will be 

reported. Of course, the reporting of potential errors and subsequent execution errors 

may be optionally selected by the user. Such a selection may be done via a tool 

option, say DIAGNOSTICS. The possible values for this option are Terse and Full. 

whose meanings are given below. 

Terse provide short diagnostics. 
(Report only definite errors and first execution error.) 

Full provide comprehensive diagnostics. 
(Report all definite, potential and execution errors.) 

Although this option is only meaningful for tools employing both static and dynamic 

analysis, extending it to the entire collection of tools will give a more unified. view 

of the system. For tools that employ only static analysis, this option has no effect 

other than to maintain interface consistency. 
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When an integrated static and dynamic method is used to implement a tool, there 

are other selection possibilities for the diagnostic messages. The selection for the 

diagnostics from static analysis can be Terse. FuU, or Ignored, with the following 

meaning: 

Terse report only definite errors. 

Full report definite and potential errors. 

Ignored do not report any definite or potential error. 

These three choices apply also to diagnostics from dynamic analysis, with the 

following meaning: 

Terse report first execution error. 

Full report all execution errors. 

Ignored do not report any execution error. 

By using two tool options (one for diagnostics from static analysis and the other for 

diagnostics from dynamic analysis), a greater range of possibilities for diagnostic 

reporting can be provided. Although using an extra tool option will give the user 

more flexibility, it is not apparent in this case whether the added flexibility will be 

of any practical value. In fact, one might argue that it will be a mere source of 

confusion for someone who is unfamiliar with notions of static and dynamic analysis. 

Therefore, the original choice of using a single tool option should be retained. When 

the benefits of adding more features to a tool (by means of tool options) are unclear. 

a simpler interface should be opted for. Adding tool options freely is indeed a bad 

practice, as Kernighan and Pike [45] commented on some UNIX' tools: "Creeping 

featurism encrusts commands [tools] with options that obscure the original intention of 

the programs." 

7~~~~ is a registered trademark of Bell Laboratories. 
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2.5. Implementation 

2.5.1. Model 

A toolkit system, as viewed by the user, is a black box which takes as input a 

program and produces as output an error report. (The report is specific to a 

particular type of error, depending on the tool selected.) This view is depicted in 

Figure 2-2(a). Internally, static and dynamic analysis are performed on the given I 

program. Static analysis reports program errors that are detected by examining the 

source text, and inserts run-time checks to monitor errors in execution. Dynamic 

analysis reports errors that are caught by the inserted run-time checks during the 

execution of the modified program. Prior to the actual static analysis, parsing is first 

done to convert the flat source text into a more convenient form for manipulation. 

Tools for these tasks are the parser, the static analyzer, and the code executor. Their 

organization is shown in Figure 2-2(b). 

For each error type that the system is able to detect, a separate static analyzer is 

implemented. It is very important to standardize the input and output representations 

used by the collection of static analyzers, although it is tempting for convenience 

reasons that different types of analysis employ their own esoteric representations. 

The use of standardized representations allows all static analyzers to share the same 

parser and code executor, thus reducing the implementation effort. More importantly, 

it provides a common basis for independent implementors to communicate and 

understand the work of others. This point is particularly important to the long term 

viability of the system as maintainability becomes the crucial factor. 

We choose the parse tree (abstract syntax tree) as the unique internal representation. 

There are several reasons for this choice. As the input representation to static 
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analyzers, a parse tree captures all information of, the original program and is a 

useful structure for performing general analysis. The work of Cameron and Ito [I l l  

has demonstrated that the parse tree is a convenient basis for performing static 

analysis (and program manipulation in general). More specialized representations, such 

as the call graph and flow graph combination that is used widely in flow analysis 

applications. are less desirable because it is unclear whether they are suitable for 

general analysis. As the output representation of static analyzers, a parse tree offers 

a simpler alternative for implementing dynamic analysis. Instead of writing an 

intricate code executor, an existing compiler can be taken advantage of, with a 

straightforward unparser (prettyprinter) serving as the interface. The program 

resulting from unparsing can also be made accessible to the user, allowing him the 

flexibility of retaining the run-time checks as a permanent part of his program (for 

testing purposes, for instance) - Should efficiency become a concern. he may delete 

part of the checks. This possibility is feasible because the user is dealing with a 

program at the source level, not some obscure intermediate language. Finally, the use 

of a parse tree as *the unique internal representation means that static analyzers can 

be directly cascaded together without additional processing. Figure 2-2(c) illustrates 

the proposed implementation model. Note that this model represents only the kernel 

of the system; additional elements, including a user interface, are needed to create a 

stand-alone and a more usable system. 

2.5.2. Program Instrumentation Techniques 

Program instrumentation refers to the insertion of source statements into a program 

for information gathering purposes [41]. It is commonly used as a means to collect 

execution statistics about a program (program profiling as it is known) [28. 301; our 

use of it is for detecting execution errors. We now discuss some useful ideas about 

program instrumentation in this narrow sense. 
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An error occurs in a program's execution when the state of computation violates 

certain expected (predetermined) conditions. These conditions can be expressed in 

terms of certain program entities. Errors in execution are detected by monitoring 

these entities. To do this, we associate a monitor variable with each such entity. A 

monitor variable is used to capture the abstract state of the associated entity during 

execution. The actual monitoring is carried out by inserting statements into the 

program. For this reason, such inserted statements are called monitor statements. We 

shall use the more intuitive term run-time checks to mean monitor statements when 

there is no need to be more precise. 

The value of a monitor variable denotes the abstract state of the associated entity. 

The possible states that a monitor variable may assume (that is, the characteristics of 

the associated entity that are of interest) are known in advance. For many practical 

purposes, the set of possible states is enumerable and is typically'small in number. 

Some of the states may be designated as error states. When a monitor variable enters 

into an error state, a message to that effect is emitted. For example, to detect 

whether a function returns a value, two states. FunctionAssigned and 

I.unctionNotAssigned, would suffice, with the latter being an error state. In Pascal. 

the set of possible states of a monitor variable can be denoted by an enumeration 

type. Identifiers for monitor variables should be selected such that they can be easily 

distinguished from the ordinary program variables. Using a unique name suffix will 

serve the purpose. For example. 

type FUNCTION-RETURN-MONTYPE = 

(FUNCTION-ASSIGNED. FUNCTION-NOT-ASSIGNED); 
var FACTORIAL-MON : FUNCTION-RETURN-MONTYPE; 

where FACTORIAL-MON is the monitor variable for the function FACTORIAL. 



A METHODICAL DESIGN FRAMEWORK 34 

When monitor variables are being associated with program variables, care must be 

taken to ensure that the proper monitor variable associations are maintained 

throughout program execution. The identity of a monitor variable may be confused 

when the proper monitor variable to be used is not known statically, but must be 

determined at run-time. In Pascal, this happens with the monitor variables of array 

elements, dynamically allocated objects (called heap objects henceforth), and parameters 

that are passed by reference. Some possible solutions for disambiguating such monitor 

variables at run-time are presented below. 

Case 1: monitor variables of array elements. 

Suppose that each element of an array has an associated monitor variable 

and that we want to identify the monitor variable of an array element 

whose indices are given by expressions that cannot be evaluated statically. 

The solution is straightforward. Temporary variables are first established to 

hold the values of the indexing expressio~s. The indices of the array 

element in question are then replaced by the respective temporary variables. 

These temporary variables can now serve to identify the proper monitor 

variable. Alternatively, the indices can be recomputed, thus saving storage at 

the expense of efficiency. This solution is applicable when the indexing 

expressions are free of side effects. 

Case 2: monitor variables of heap objects. 

Heap objects are created and destroyed dynamically. Aliases to them can 

exist as a result of pointer assignments. A simple method that allows the 

monitor variables of' a heap object to be identified easily is to package the 

heap object and its monitor variables into the same data aggregate by 
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modifying the declaration of the heap object. An example will clarify the 

point. Consider the following declarations. 

type LIST = ?NODE; 
NODE = record 

INFO 
LINK 

end 

Suppose a monitor variable 

: INTEGER: 
: LIST 

is desired for INFO. This is done by changing 

the declaration of NODE to 

NODE = record 
INFO : INTEGER: 
LINK : LIST; 
INFO-MON : SOME-MONTYPE 

end 

With this method, the monitor variables of a heap object can be assessed as 

long as a pointer to that heap object is known. Even when pointer aliases 

are present. the proper monitor variable can always be identified. 

Case 3: monitor variables of reference parameters. 

If a variable under monitoring is being passed to a subprogram via call by 

reference, then monitoring must also be taken on that formal parameter of 

the called subprogram. Since a formal reference parameter is just an alias 

of the corresponding actual parameter and an operation on any alias will 

affect the same datum, it must be ensured that the monitor variables of the 

aliases will remain consistent at all times; that is, any change to the monitor 

variable of an alias must be propagated to all other monitor variables of the 

alias group. One solution is to ensure that all aliases share the same 

monitor variable. To do this, aliases among monitor variables can be created 
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using the same parameter passing mechanism. Specifically, the relevant 

subprogram calls are modified to include the monitor variable of the actual 

parameter as an extra argument that is also passed by reference. The 

corresponding subprogram heading must be modified accordingly. For 

example, consider the subprogram call 

FOO(X) 

where the heading of FOO is 

procedure FOO(var I : INTEGER); 

'The necessary modifications are shown below. 

FOO(X. X-MON) 
procedure FOO(var I : INTEGER; var I-MON : SOME-MoNTYPE); 

Note that to maintain semantic validity, all calls to FOO must be modified 

even if the argument of some calls does not need to be monitored. In that 

case, a dummy monitor variable can be used. 

We now turn our attention to monitor statements. There appear to be two useful 

types of monitor statements, namely, state-assignment statements and error-report 

statements State-assignment statements are used to maintain monitor variables in the 

proper state. In particular, they serve as initializations to monitor variables. Error- 

report statements are used to report errors when erroneous conditions are encountered. 

Each of these two types of monitor statements can be further classified as either 

. conditional or unconditional. An unconditional monitor statement causes the intended 

action to be performed whenever that monitor statement is executed. In contrast, the 

action of a conditional monitor statement will be executed only if certain conditions 

are first satisfied. The choice of the types of monitor statements and the appropriate 
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places for their insertion are determined by static analysis. Usually, there is more 

than one possible solution. 

As an example, we shall continue with the "function returning value" problem. 

Consider the following function for computing the factorial of a number. 

function FACTORIAL(1 : INTEGER) : INTEGER: 
begin 

i f 1  < = O t h e n  
WRITELN('1nput must be greater than 0') 

else if I = 1 then 
FACTORIAL := 1 

else 
FACTORIAL := FACTORIAL(I-1) * I; 

end; 

A smart static analyzer would produce 

function FACTORIAL(1 : INTEGER) : INTEGER; 
begin 

if I <= 0 then 
begin 

WRITELN('1nput must be greater than 0'); 
{ unconditional error-report statement } 
WRITELN(ERR0R-FILE.'FACTORIAL not returning value.') 

end 
else if I = 1 then 

FACTORIAL := 1 
else 

FACTORIAL := FACTORIAL(1-1) * I; 
end: 

while a straightforward one might arrive at 
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function FACTORIAL(I : INTEGER) : INTEGER; 
var FACTORIAL-MON : FUNCTION-RETURNMONTYPE: 
begin 

{ unconditional state-assignment statement } 
FACTORIAL-MON := FUNCTION-NOT-ASSIGNED; 
i f 1  < = O t h e n  

WRITELN('1nput must be greater than 0'); 
else if I = 1 then 

begin 
FACTORIAL := 1; 
FACTORIAL-MON := FUNCTION-ASSIGNED 

end 
else 

begin 
FACTORIAL := FACTORIAL(1-1) * I; 
FACTORIAL-MON := FUNCTION-ASSIGNED 

end; 
{ conditional error-report statement 
if FACTORIAL-MON = FUNCTION-NOT-ASSIGNED then  
WRITELN(ERRORFILE.'FACTORIAL not returning value.') 

end; 

Note that the monitor statements used here are simple statements. In more complex 

situatiom, a monitor statement might involve 2 series of computations. Using I.UG 

subprogram facilities to convey the monitoring action would be more appropriate in 

such cases. 

We have attempted to shed some light on the instrumentation process. This is only 

the beginning of the investigation. A more formal and complete characterization is 

beyond the scope of this thesis. 

2.5.3. Efficiency Considerations 

There is usually more than one way to instrument a program for detecting a certain 

error. The overall cost of a method can be characterized by the amount of time 

spent in analysis and the execution overhead incurred from running the instrumented 

program. Analysis time and execution overhead are inversely related; a sophisticated 
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analysis takes more time than a straightforward one, but it would reduce the need 

for monitor statements which would in turn contribute to a decrease in execution 

overhead, and vice versa. The instrumentation example of the factorial program in 

the preceding section illustrates this point. The first instrumented program uses one 

monitor statement compared to four in the other one, but achieving the reduction 

requires a more costly analysis. Tool designers must consider both cost factors in 

selecting an economical design. Ideally, of course, the investment in analysis should 

never exceed the expected gain in execution cost. 

A more involved analysis will likely reduce the number of monitor statements 

needed, but the corresponding decrease in execution time is not necessarily 

proportional. In fact. such occurrences should be regarded as coincidence. Empirical 

evidence has shown that as much as 90% of execution is spent in 10% of code. 

Although these figures are not conclusive, it does point out that reducing monitor 

statements has only marginal value unless it takes place in frequently executed 

regions of the program. 

Despite that the number of monitor statements is a deceiving indicator of execution 

overhead, it is also the most accessible quantitative measure available to tool 

designers. The rule to bear in mind is never overwork the analysis for the mere 

sake of reducing monitor statements. When the benefits of reducing monitor 

statements are unclear, other indirect factors, such as the implementation complexity 

of a sophisticated analysis algorithm, can be taken into consideration in the cost 

tradeoff process. 
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2.6. Pragmatic Issues 

A toolkit system is intended for interactive debugging. When an error is 

discovered, the user would examine the program output, the source code, and/or 

- related documentation to gather hints about the error. An error hypothesis would 

then be devised, perhaps with the aid of other tools in the programming environment. 

A toolkit system can now be used to verify the hypothesis, if the system is equipped 

with such a capability. A possible scenario of using a toolkit system is as follows. 

Through a menu-driven interface, the user selects the desired tool. After the selection 

is made, the system might present some simple queries, such as 

What is the desired level of diagnostic report? 

What is the name of the erroneous program? 

0 What are the input data files for the program? 

Of course, the answers to these queries can be stored and changed only as required, 

saving the user from repeatedly giving the same responses in a debugging session. 

When the necessary information is gathered, analysis of the given program is 

performed. The result of the analysis is turned into a report for presentation. The 

user then acts upon the report as appropriate, and the debugging cycle can now be 

repeated. 

Besides interactive debugging, a toolkit system can be utilized for other purposes. 

We consider two possibilities. The first possibility is to supplement existing compilers 

with additional error detection capabilities. The dynamic semantic error detection 

tools will be of particular use here. In a loose programming environment, selected 

toolkit components can be grouped together via some specially created "shell". It can 

then be treated as a preprocessor to the compilers. Another more ideal situation is 
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that after parsing and static semantic analysis, the compiler would directly access the 

desired static analyzers to insert run-time checks before proceeding further with the 

normal compilation procedure. 

Another possibility of use is for program testing. Traditional black box testing can 

be facilitated by inserting run-time checks into the program before testing begins. 

After the program has been exercised with some sample test data, the user will first 

turn to the error report. If errors are found, corrective action can be taken 

immediately. The usual step of examining the program input and output for 

correctness is thus by-passed. Alternatively, the toolkit components can be adapted to 

report errors interactively. The acknowledgement of errors at an earlier stage will 

save both time and effort in testing. 



EXAMPLE TOOLKIT COMPONENTS 

I expect progrcunmtcunmtng languages to do their utmost to protect me from myself - 
from the many stupid errors I am b d  to commit when I program. 

J o r t a t h  Amsterdam [ 4 ]  

This chapter presents the design of three tools: uninitialized variable access detection. 

bounded execution failure diagnosis, and parameter usage checking. These tools have 

been implemented as stand-alone instrumentation utilities using the program 

manipulation facilities provided by a Pascal metaprogramming system [12]. 

3.1. Uninitialized Variable Access Detection 

Uninitialized variable access refers to the use of a data object's value before a valid 

value has been assigned. It is a common programming mistake as well as a semantic 

violation in virtually all programming - languages. Unfortunately, few compilers are 

equipped to handle the error. It is even more discouraging that several language 

standardization efforts, including Ada [55] and Pascal [5] ,  have decided to allow 

conforming compilers to ignore the error. Designing a tool to detect uninitialized 

variable accesses is a worthwhile undertaking since such a capability is not likely to 

be found in compilers, not even validated ones. 

An obvious method for detecting uninitialized variable access is to use exhaustive 

monitoring, which involves inserting statements into the program to monitor all 

variable accesses and variable assignments. One disadvantage of this strategy is that 

42 
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because the relationships among variable assignments and accesses are not computed, it 

is not possible to provide the user with an intelligent static diagnostic report which 

warns about errors and probable errors; the discovery of uninitialized variable accesses 

will depend entirely on dynamic analysis. Another disadvantage is that the execution 

overhead incurred from exhaustive monitoring may be unacceptably expensive in some 

computation intensive applications. When a static diagnostic report is desired or when 

execution overhead is a concern, the use of a more sophisticated analysis algorithm is 

warranted. The objectives in designing such an algorithm are to provide a concise 

static diagnostic report and to reduce the amount of run-time checks inserted into the 

program. 

Data flow analysis is applicable to the detection of uninitialized variable access. 

although traditionally it is used for program optimization. The relevant data-flow 

problem is use-definition chaining (ud-chaining). The ud-chaining problem is to 

compute, for a c h  use of a variable iz z progrzm, the ! i s  of definiticns that cax 

reach that use. This list of definitions for a use is called the ud-chain for that use. 

A definition is a statement which attributes a value to a variable, such as an 

assignment or a read statement. A definition is said to reach a use if the use may 

potentially refer to the value attributed by the definition. To compute the ud-chains. 

the standard data-flow algorithm, reaching-definitions. can be used. The reaching- 

definitions algorithm is described in detail in Aho and Ullman [31 and Hecht [34]. 

The ud-chaining problem can be applied to detecting uninitialized variable access as 

follows. Before computing the ud-chains, introduce dummy definitions for all 

variables at the beginning of the program. After the ud-chains are computed for the 

modified program, they can be examined for elkor conditions. If a ud-chain contains 

a dummy definition, then there is a possibility that the use corresponding to that ud- 

chain is erroneous. (Note that a possibility for error does not mean an error will 
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necessarily occur at run-time. In particular, the use will never be in error if there is 

no executable path between the dummy definition and the use.) 

Recall from Section 2.4 that a statement in a program is said to produce a definite 

(respectively, potential) error if its execution will always (respectively, sometimes) 

cause the same error to occur. The ud-chains are useful in determining the 

statements (uses of variable) that will produce definite or potential uninitialized- 

variable-access errors. In particular, if a ud-chain contains only dummy definitions. 

then the corresponding use will produce a definite error. Similarly, a use will 

produce a potential error if its ud-chain contains a dummy definition. Using the ud- 

chains in this manner to generate static diagnostics, however, could lead to redundant 

warnings. For example, if the variable X in 

QUOTIENT := X div Y: 
if QUOTIENT >= 0 then 

MODULO := X - QUOTIENT * Y 
else 

MODULO := X - (QUOTIENT - 1) * Y 

is not initialized, then each of the three uses of X above would be reported as a 

definite error, but reporting the first occurrence is sufficient to warn the user about 

the error. In addition, the ud-chains do not give direct information as to where 

monitor statements can be eliminated. While it is possible to design an algorithm 

which uses the ud-chains to reduce redundant diagnostics and run-time checks8, we 

suspect that the resulting solution for the problem at hand will be neither simple nor 

cheap. These factors prompt the design of a new algorithm in favor of modifying 

the ud-chaining solution to fit our needs. 

'one solution that comes to mind is to use the topological ordering of the flow graph together with the 
ud-chains to decide where warnings and/or monitor statements are needed or not needed. When procedure 
calls are present, interprocedural analysis is required; it is not entirely clear how to handle side effects, 
aliasing, and recursion with this method. 
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Some features of Pascal, which are also typical of other common programming 

languages, hinder the design of an algorithm for statically detecting uninitialized 

variable access. The most difficult-to-handle features are heap objects and arrays. 

For simple. semistatic variables9, such as variables of INTEGER type, there is no 

ambiguity as to which data object is being referred to by a variable access. This is 

not the case with variable access to heap objects or array elements because the same 

textual representation of a variable access, such as A[I], can and will denote different 

data objects at run-time. Static methods are incapable of resolving this identification 

ambiguity, let alone determining the validity of such variable accesses. 

The scheme adopted here involves the use of exhaustive monitoring and a 

supplementary algorithm, which we shall refer as the Reduction Algorithm. 

Exhaustive monitoring will be used exclusively when a static diagnostic report is not 

desired and reducing execution overhead is not a concern. Otherwise, exhaustive 

monitoring and the Rediletion Algorithm will be used in a complementary fashion, 

where the former is responsible for handling the difficult language problems and the 

latter takes care of the remaining language features. Specifically, exhaustive 

monitoring is used to handle structured variables and programs with arbitrary gotos. 

while the Reduction Algorithm is used to handle unstructured variables (including 

pointer and set variables) in programs which use only certain restricted forms of 

gotos or no gotos at all. Unlike exhaustive monitoring, the Reduction Algorithm 

computes variable usage information which can be used to generate static diagnostics 

and to guide the insertion of monitor statements. Details of the algorithms are given 

in Appendix A. 

9~emistatic variables refer to the class of variables whose lifetime, size, and relative 
activation record are known at compile-time. In Pascal, all variables except heap objects are 

location in the 
semistatic. 
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We now examine the operation of a program instrumentation tool which employs 

both exhaustive monitoring and the Reduction Algorithm. When the tool is invoked. 

the following queries will be made to the user: 

@ Would you like a static diagnostic report on unstructured variables? 

If the answer is positive, then the Reduction Algorithm will be used and 
static diagnostics will be produced. If the answer is negative, then no 
static diagnostics will be produced but the Reduction Algorithm may still 
be used. See the last query below. 

Would you like the diagnostics to be reported in full or in terse form? 

This option affects the diagnostics (if any) from both static and dynamic 
analysis. See Section 2.4 and the example diagnostic reports below. 

Is it desirable that the execution overhead of the instrumented program be 
reduced? 

This query is presented only if the answer to the first query is negative. 
It determines whether the Reduction Algorithm should be used. 

To show some flavor of the diagnostics produced, consider the following program: 

program EXAMPLE(INPUT,OUTPUT); 

tspe 
LIST = TNODE; 
NODE = record 

NUM : INTEGER; 
LINK : LIST 

end; 
var 

NUMBERS. ENTRY : LIST; 
FOUND, LAST : BOOLEAN; 
NEWNUM : INTEGER; 

procedure SEARCH(L : LIST; NUMBER : INTEGER: 
~ a r  SUCCESS : BOOLEAN); 

var CURR : LIST; 
begin 

1 SUCCESS := FALSE; 
2 CURR := L; 
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3 while CURR < > nil do 
4 if CURRT.NUM = NUMBER then 

begin 
5 SUCCESS := TRUE; 
6 CURR := nil 

end 
else 

7 CURR := CURRTLINK 
end: 

=peat 
SEARCH(NUMBERS.NEWNUM.FOUND): 
if FOUND then 

LAST := FALSE 
else 
begin 

NEW(ENTRY 1: 
ENTRYT.NUM := NEWNUM; 
ENTRYT.LINK := NUMBERS; 
NUMBERS := ENTRY; 
if LAST then 

WR~TELN('Consecutive new entries.') 
else 

LAST := TRUE 
end 

until EOF 
end. 

The program contains two uninitialized variables: NEWNUM and LAST. 

Suppose the user wants a static diagnostic report. 

1. When the user selects terse diagnostics, the static diagnostics produced are 

Uninitialized Variable Accesses Detected: 
Variable 'NEWNUM' of subprogram 'EXAMPLE' - 
An execution error will result when the variable is first referenced in 

Subprogram 'EXAMPLE' statement 3 - used as a value parameter. 

and the execution diagnostics produced are 
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Execution Errors Detected: 
Accessing uninitialized variable at statement 3 of subprogram 'EXAMPLE'. 

Program execution is halted. 

2. When the user selects full diagnostics, the static diagnostics produced are 

Uninitialized Variable Accesses Detected: 
Variable 'NEWNUM' of subprogram 'EXAMPLE' - 
An execution error will result when the variable is first referenced in 

Subprogram 'EXAMPLE' statement 3 - used as a value parameter. 

Warnings: 
Variable 'LAST' of subprogram 'EXAMPLE' - 
The following references to the variable may be invalid: 

Subprogram 'EXAMPLE' statement 10. 

and the execution diagnostics produced are 

Execution Errors Detected: 
Accessing uninitialized variable at statement 3 of subprogram 'EXAMPLE. 
Accessing uninitialized variable at statement 10 of subprogram 'EXAMPLE'. 

Two points are worth noting about the static diagnostics produced by the Reduction 

Algorithm. 

1. Although there are two references to NEWNUM (at statements 3 and 7). 
only the first error at statement 3 is reported. This is so because the 
algorithm has determined that the reference at statement 3 will always be 
executed before the one at statement 7, and hence, reporting the erroneous 
reference at statement 7 is redundant. 

2. By examining the program carefully, we know that on the first iteration 
of the repeat loop. FOUND will be false and an erroneous reference will 
then be made to LAST. The Reduction Algorithm is incapable of 
discovering this fact, but it manages to report that the reference to LAST 
could be in error. We suspect that the same difficulty will be 
encountered by other data flow based algorithms because they are 
incapable of "understanding" the semantics of a program. 

The instrumented program for the example is given in Appendix B.1. Note that 

instrumentation is performed in such a manner that when an uninitialized variable is 
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detected at  run-time. its associated monitor variable will be set to a valid state so 

that further errors on the same variable will not be generated. For example, even 

though the erroneous reference to NEWNUM occurs within a loop, only one execution 

error is generated for it. 

We conclude this section by presenting some statistics of the Reduction Algorithm in 

reducing monitor statements. The test data set consists of the following programs: 

EightQueen a recursive solution to the eight queens problem 

HeapSort heap sort of an array 

Btree B-tree search, insertion, and deletion routines 

PureLisp a Pure Lisp interpreter 

The first three programs are taken from [69] and the Pure Lisp interpreter is a public 

domain program. These programs are free of uninitialized variable access errors. The 

statistics obtained are summarized in the following. table: 

1 EightQueen ( 19 1 33 11 0 1 14 

Exhaustive 
Monitoring Only 

UV Ops I Total Ops 

With Reduction 
Algorithm 

UV Ops I Total Ops 

I I I I I 

PureLisp 1 360 1 63 7 I I 9 I 286 

I 

where 

Amount of Reduction 
with respect to 

0 

8 

UV Ops = (Unstructured Variable Operations) the number of assignments and 
references to unstructured variables which require monitoring, and 

UV Ops 

100% 

100% 

96% 

98% 

20 

135 

61 

349 

HeapSort 

Btree 

Total Ops = (Total Operations) the number of assignments and references to all 
program variables which require monitoring. 

Total Ops 

58% 

67% 

61% 

55% 

41 

222 
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3.2. Bounded Execution Failure Diagnosis 

Execution of a program will fail when the program has exhausted all its allotted 

processor time or memory space. Such a condition is called a bounded execution 

- failure. One reason for this failure may be that the program has been given 

insufficient resources (because the resource requirement of the program is unexpectedly 

high or the algorithm used is overly inefficient.) Another, perhaps more likely. 

reason is that the program contains some infinite computation. When a bounded 

execution failure occurs, the programmer may wish to know if there is indeed an 

infinite computation. This section presents a tool to facilitate the detection of the 

two most common sources of infinite computation, namely, infinite loops and infinite 

recursion. 

The problem of determining whether or not a computation will terminate is well- 

known to be undecidable. Thus, it is in general impossible to mechanically detect the 

presence of infinite loops or infinite recursion. To circumvent this difficulty, a more 

restrictive notion of infinite computation is adopted. Specifically, a loop is considered 

infinite if the number of run-time repetitions exceeds a certain user-defined limit. 

Similarly, a subprogram invocation is considered as an infinite recursion when the 

number of outstanding calls (ie.. the depth of recursive calls) on that subprogram 

exceeds the limit set by the user. Given these restrictions, detection of infinite loops 

and infinite recursion can be accomplished by monitoring, respectively, the number of 

loop iterations and the depth of recursion. We now describe the operation of a 

program instrumentation tool for this purpose. 

When the tool is invoked, the user will be queried about the limits on loop 

repetitions and depth of recursive calls. After answers to these questions are 
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supplied, the tool will proceed to analyze and instrument the program. The analysis 

part involves associating a counter variable with each loop and each subprogram. 

Currently, only language-defined structured loops are taken into account: no provision 

is made to monitor loops that are simulated with goto statements. Instrumentation 

of the program is illustrated by the following transformations: 

1. Monitoring of loop 

while E do -> LOOP-COUNTER-1 := 0; 
SOME-PROCESS while E do 

begin 
if LOOP-COUNTER-1 = LOOPLIMIT then 

LOOP-ERROR 
else 

LOOP-COUNTER-1 := LOOP-COUNTER-1 + 1: 
SOME-PROCESS 

end 

for-loops and repeat-loops are transformed similarly. 

2. Monitoring of recursion 

procedure P; procedure P: 
begin -- --> begin 

SOME-PROCESS if COUNTERFOR-P = RECURSIONLIMIT then 
end; RECURSION-ERROR 

else 
COUNTER-FOR-P := COUNTER-FOR-P + 1: 

SOME-PROCESS: 
COUNTERFOR-P := COUNTER-FORP - 1 

end; 

(The actual instrumented code includes additional statements to keep track of 

statement locations for error reporting purposes. See Appendix B.2 for examples.) 

Note that initialization of a loop counter variable is performed every time its 

associated loop is entered, but subprogram counters are initialized only once in the 

main program. 
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The instrumented program produced can now be compiled and executed. If, at run- 

time, any counter variable attempts to exceed the preset limit, the running program 

will be terminated and an error report will be given. Several examples are given 

below to show the diagnosis produced; the actual instrumented programs for these 

examples are presented in Appendix B.2. In the examples. 10000 is used as the limit 

for both loops and recursion. 

1. Infinite loop 

program EXAMPLEl(1NPUT. OUTPUT); 
var I. J. K : INTEGER; 
begin 

J := 0: 
K := 0; 
for I:=l to 100 do 

if I = 24 then 
*Peat 

J := J -+ 1: 
if J = 15 then 

while TRUE do 
K : = K + l  

until FALSE 
end. 

Execution of the instrumented program produces the following error report: 

The loop beginning at statement 8 in 'EXAMPLEI' has exceeded its 
iteration limit of 10000. 
Iteration status of outer loops: 

Loop at statement 3 has iterated 24 times. 
Loop at statement 5 has iterated 15 times. 

2. Infinite recursion involving only one subprogram 
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program EXAMPLE2(INPUT. OUTPUT); 

procedure RECURSIVE; 
begin 

RECURSIVE 
end; 

begin 
RECURSIVE 

end. 

The error report given is 

Subprogram 'RECURSIVE' has exceeded its recursive call limit of 10000. 
The subprogram is self-recursive. 

3. Infinite recursion involving several subprograms 

program EXAMPLE~(INPUT. OUTPUT); 

procedure MUTUAL2; FORWARD: 
procedure MUTU AL3; FOR WARD; 

procedure MUTUAL1 : 
begin 

MUTUAL2 
end; 

procedure MUTUAL2; 
begin 

MUTUAL3 
end; 

procedure MUTUAL3; 
begin 

MUTUAL1 
end; 

begin 
MUTUAL1 

end. 

The error report given is 
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Subprogram 'MUTUALl' has exceeded its recursive call limit of 10000. 
The last cycle of mutually recursive calls involves the following 
user-def ined subprograms: 

MUTUAL1 <- end of cycle 
MUTUAL3 
MUTUAL2 
MUTUAL1 <-- start of cycle 

3.3. Parameter Usage Checking 

The last example that we shall present is a code auditing tool. The tool is intended 

to help programmers diagnose certain problems resulting from the misuse of 

parameters. Data parameters (as opposed to procedural parameters) in Pascal are 

either passed by reference or passed by value. Reference parameters are used 

primarily as means for communication between the calling and the called subprogram. 

Thus, upon subprogram exit, one would normally expect that the subprogram has 

attributed a value to each of its formal reference parameters. If such is not the case. 

it could mean either that the called subprogram has failed to return an expected 

result or that the reference parameter should have been declared as a value parameter 

in the first place. To help detect these mistakes, the following rules on the usage of 

reference parameters are prescribed: 

1. Each formal reference parameter of a subprogram must be attributed a 
value during the execution of the subprogram. In other words, each 
reference parameter must have been given a value by the subprogram 
when the subprogram terminates. 

2. If a reference parameter is a structured object, then an attribution of 
value to any of its components shall suffice. 

3. An exception is made to reference parameters of an array type because in 
Pascal, read-only array arguments are often passed as reference parameters 
in order to avoid the run-time overhead in parameter binding. 

To enforce these rules, run-time monitoring is necessary. This is so because the 

presence of assignments to reference parameters does not necessarily imply that such 

statements are reachable. 
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Rules on the usage of value parameters are as follows: 

1. A value parameter cannot be used as the target of an assignment 
statement. 

2. A value parameter cannot be passed in turn as a reference parameter in 
subprogram calls, including calls to the standard VO routines READ and 
READLN. 

The first rule prohibits direct assignments to value parameters, whereas the second 

rule eliminates the possibility of indirect assignments. Essentially, value parameters 

are treated as local constants which can be read but not written. Violation of these 

rules can be detected statically. 

There are several rationale behind the above rules. With respect to debugging, a 

violation of these rules could indicate that a reference parameter has been 

inadvertently declared as a value parameter. As a style of programming, it has been 

argued in [13] that using value parameters as temporary variables is a poor 

programming practice. Finally, incorporating these rules into a language (as is the 

case in Ada) will obviate the need for the user to reluctantly pass read-only objects 

as reference parameters in order to gain efficiency; the compiler may choose to 

simulate pass-by-value using pass-by-reference based on the type of the parameter in 

question. 

We now describe the operation of a tool which enforces the above parameter usage 

rules. Given a program. the tool first locates: 

1. assignment statements whose target is a formal parameter, and 

2. subprogram calls where a formal parameter is being passed in turn as a 
reference parameter. 

This information is then used to generate a static diagnostic report and to guide the 
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insertion of monitor statements. As noted earlier, run-time monitoring is needed for 

reference parameters only. Instrumentation of the program involves the use of 

monitor variables to keep track of whether assignments to reference parameters have 

taken place. 

Consider the following program: 

program EXAMPLE(INPUT,OUTPUT); 
var X : INTEGER; 

procedure Pl(var A : integer: B : CHAR); 

procedure P2(var C : CHAR); 
begin 

WRITELN(A) 
end: 

procedum P3(D : 'CHAR): 
begin 

A := ORD(D) - ORD('0') 
end: 

begin 
READ(B); 
A := ORD(B); 
P2(A); 
P3(B) 

end; 

begin 
1 ~1(X, '9 ' )  

end. 

The instrumented program is presented in Appendix B.3. The static diagnostic report 

. for the above program is given below: 
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Diagnostics on Reference Parameter: 
Subprogram 'P2' - 
'C' is never assigned. 

Diagnostics on Value Parameter: 
Subprogram 'PI' - 
'B' is passed as a reference parameter in Subprogram 'PI' statement(s1 1. 

Executing the instrumented program will produce the following diagnostics: 

The reference parameter 'C' of Subprogram 'P2' has not been assigned a 
value upon subprogram exit. 



CHAPTER 4 

AN ASSESSMENT 

Our claim is that the toolkit approach to debugging system design leads to better 

engineered debugging products. In support of this claim, we shall evaluate our 

approach against the approach of the prevailing interactive debuggers with respect to 

some qualitative characteristics of software. 

Effectiveness. that is, the efficiency with which errors can be diagnosed, is perhaps 

the most important attribute of a debugging tool. In this respect, a toolkit system is 

superior to interactive debuggers when applied to the error domains that the system 

encompasses. Debugging with ir?teractive debuggers takes place at ihe execution model 

level. It entails the understanding of the dynamic behavior of programs through data 

captured during execution. The vast amount of execution details that must be coped 

with and comprehended can easily cause the source of errors to be overlooked. This. 

coupled with the tendency of using the program monitoring facilities in an 

unstructured manner, would prolong the debugging process unnecessarily. In contrast. 

the debugging functions offered by a toolkit system are more abstract, and they 

support the error diagnosis task directly. Instead of tracing the program, the user 

selects the appropriate tool and the system will verify his suspicion about a certain 

type of error. The error report produced by the system is more helpful for 

debugging than the execution state information obtained by tracing. Chances of 

clerical error are also greatly reduced. Furthermore, systematic debugging is better 

supported. Even though the support is rather loose, it is a step forward in that 
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direction, particularly in view of the crude form of current debugging methodologies. 

All these factors contribute to better debugging productivity. 

Simplicity of use is another important attribute in favor of toolkit systems. Using 

toolkit systems involves selecting the desired tools and possibly answering some 

straightforward queries. The same procedure applies for accessing all facilities of the 

system, even if new tools are added. During interaction with the system, the action 

of the user is directed by the system: the desired user response is clear from the 

context. The intuitive nature of toolkit systems makes them very easy to use. The 

use of interactive debuggers, on the other hand, requires learning a command language 

that bears little resemblance to the source language. The rich set of facilities offered 

is often reflected in notational complexity. Increasing the power of the debugger will 

likely make the command language even harder to learn and comprehend. 

Furthermore interactive debuggers are passive tools; the user must decide on the 

course of actaon and issue the proper commands. The !ask of directions fro= the 

debugger is a disadvantage compared with toolkit systems. Although the wide 

audience of interactive debuggers is evidence that their complexity can be tolerated. 

toolkit systems are clearly better alternatives from the human engineering standpoint. 

Portability is another measure of quality software. Interactive debuggers are 

typically tied to the implementation of language translators so that the required 

symbolic information about the object program can be acquired for carrying out the 

source-level debugging commands. Because of the tight coupling to particular language 

translators, interactive debuggers are not easily portable. In comparison, the toolkit 

systems as proposed in Section 2.5.1 do not rely on the implementation details of 

compilers; any compiler that accepts the same language as the toolkit system can be 

used. Thus, portability is improved over typical interactive debuggers. 
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Completeness is the final attribute that we 

debugging system refers to how applicable the 

problem in general. Interactive debuggers are 

shall examine. Completeness of a 

supplied facility is to the debugging 

preferable to toolkit systems in this 

respect. Because of their low-level nature, interactive debuggers allow the user to 

diagnose a very broad class of errors. This generality of use is seriously lacking in 

toolkit- systems. The completeness problem in toolkit system design is twofold. On 

the one hand, it is inconceivable that the universe of all possible programming errors 

can be completely and meaningfully characterized. Even if such a characterization is 

found, it is most likely that the error categories are too general to be of use for 

designing mechanical detection tools. On the other hand, should a sufficiently well- 

developed error list be already available, it too will probably be of limited use. This 

is because such an error list will, of necessity, be exceedingly long and a system that 

encompasses all the error types in the list -will overwhelm the user at the outset. 

defeating the whole purpose of usability. There appears to be no easy solution to 

this predicament. It should be noted, however, that the utility of a debugging system 

is only loosely related to completeness. A toolkit system that allows the painless 

detection of just a few common errors will well justify its implementation effort. 

The lack of completeness means that toolkit systems will not fully supplant low-level 

debuggers, but will rather complement them to achieve a more effective overall 

debugging facility. 



CHAPTER 5 

EPILOGUE 

We have presented a fresh approach to the design of advanced debugging systems. 

Our work is motivated by the need for debugging aids that are more effective and 

easier to use than the ubiquitous interactive debuggers, yet they must also be 

practical. The notion of special-purpose tools is conceived in response to the first set 

of constraints, and the implementation techniques proposed reflect the recognition of 

practtcality The consolidation and integration of various ideas into a design 

framework is the main contribution of this thesis. 

The toolkit approach is demonstrated through the design and implementation of three 

tools, An algorithm for detecting uninitialized variable access is also presented. The 

algorithm differs from existing data flow algorithms in that the former is concerned 

with reducing the amount of variable usage information collected. Reducing the 

amount of variable usage information leads in turn to a more concise error report and 

a reduction in the amount of monitor statements. The preliminary statistics obtained 

show that the algorithm is able to reduce the total amount of run-time checks by 

over 50%. 

A direction to pursue at this point is to further the implementation effort to 

produce an experimental toolkit system. An important question that we do not have 

a satisfactory answer for is the usefulness of toolkit systems. An experimental 

system will allow us to evaluate the toolkit approach more critically and will 

certainly bring the deficiencies of our ideas to light. 
6 1 



ALGORITHM FOR DETECTING 
UNNITMLIZED VARIABLE ACCESS 

This appendix presents the algorithm for uninitialized variable access detection. As 

mentioned in Section 3.1, the algorithm consists of an exhaustive method and a 

supplementary procedure, called the Reduction Algorithm. The exhaustive method is 

described in the next section. Section A.2 describes the Reduction Algorithm. 

A.1. Exhaustive Monitoring 

The most obvious method of detecting uninitialized variable access is to exhaustively 

monitor the program for such errors. To do this, we employ the program 

instrumentation techniques discussed in Section 2.5.2. First of all, associate a monitor 

variable with each variable in V, where V is the set of variables in the program for 

which monitoring is desired. Since we are only interested in knowing whether or not 

a variable has a valid value, possible values that monitor variables may take are 

Initialized or Notlnitialized. (That is, the monitor variables used here are bistate.) 

For convenience, monitor variables are declared as BOOLEAN type with TRUE 

denoting Notlnitialized. Names for monitor variables are formed by adding the suffix 

- " UVAn to the original names. For instance, the monitor variable associated with 

variable "X" is named "X-UVA". Now, monitor statements can be inserted. The 

types of monitor statements used here are unconditional state-assignment and 

conditional error-report statement. They are inserted into the program as follows. 

Let v be a variable in V. 

62 
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1. For each assignment or input to v ,  insert an unconditional state-assignment 
of the form 

V-WA :- FALSE; 

after the assignment or input statement. This ensures that when a 
variable receives a valid value, the associated monitor variable is updated 
accordingly. 

2. For each variable access to v,  insert a conditional error-report statement of 
the form 

if V-UVA then report error: 

befwe the statement in which the variable access is part of. This ensures 
that every variable access is preceded by a validity check. 

Of course, declarations of monitor variables and statements to initialize them must 

also be inserted. 

Although this exhaustive algorithm lacks elegance and is rather expensive in terms 

of execution overhead, it is straightforward and simple to implement, It is used here 

to handle structured variables (arrays, records, and heap objects) and arbitrary gotos. 

As mentioned earlier, arrays and heap objects are very difficult to handle statically. 

We believe the exhaustive algorithm is an effective way to handle them. A more 

elaborate analysis might actually be more expensive since savings are not always 

possible with arrays and heap objects. Consider the following example. 

NEW(P.Q); 
QT-INFO := SOMETHING; 
fo r  I:=X t o  Y do 

begin 
PT.INF0 := QT.INF0; (error when X < Y} 
NEW(Q) 

end; 
Pf.INFO := QT.INF0; {error when X = Y) 

Here, exhaustive monitoring for heap objects is necessary unless we know the loop 
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will never execute. It is unlikely that X will always be greater than Y, if that can 

be determined at all, and the cost incurred in the determination is wasted. 

There is a simple extension to the exhaustive algorithm that is worthwhile 

considering. When an array is being used as a structured constant, it is common to 

initialize it using a for-loop, where the initial and final values of the loop are 

specified by the constant array bounds. To detect this case, check whether the first 

operation on an array variable is an assignment inside a for-loop and whether the 

initial and final values of the loop coincide with the array bounds. If so, monitor 

statements for that array variable are not necessary. 

A.2. The Reduction Algorithm 

We now present an algorithm that handles simple semistatic variables for programs 

without goto statements and procedure calls; extensions to handle goto statements and 

procedure calls are discussed in separate sections. Unlike the exhaustive algorithm. 

the aim here is to reduce the number of monitor statements. 

program ERRORS(INPUT, OUTPUT): 
var A. B. C, D. X. Y, Z : INTEGER; 
begin 

I X := A + 100; 
2 if X > A * D then 
3 Y := B + C; 

else 
begin 

4 Y := A + C; 
5 Z : = C + D  

end 
6 X : = A + B + C + D + Y + Z  

end. 

Figure A-1: Example to Illustrate the Reduction in Monitor Statements 
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Consider the insertion of monitor statements for the program in Figure A-1. The 

goal is to reduce the number of monitor statements needed without leaving any 

significant error undetected. An error is significant if the same error may not have 

occurred earlier (and therefore has not necessarily been reported). We will examine 

the execution effect of the statements and collect monitoring information for the 

variables. Statements in the program are numbered for convenience of reference. 

In statement 1. X is assigned and A is referenced. Since A has not been initialized. 

the reference to A is a definite error. To avoid generating insignificant diagnostics on 

A (and save monitor statements), further monitoring on A is not taken. For the 

same reason. X can also be ignored from now on, even though the value assigned to 

X is meaningless. In general, if a variable v has been assigned or referenced, then 

within the range of statements that this is true, all subsequent assignment or 

reference to v can be ignored. (If the earlier reference is valid, then all subsequent 

references within that ratlge ~f statements will be valid. If the earlier reference is 

invalid, then an error has already been reported and no further error should be 

generated on the same variable.) Now, monitoring information needs to be collected 

for only five of the original seven variables. In statement 2, the expression of the 

if-statement gets evaluated first. The reference to D is a definite error. Variable D 

can now be ignored. Either the then-part or the else-part will be executed next. 

Even though we do not know which part will be executed next. examination of both 

branches of the if-statement reveals that 

1. no matter which part gets executed. Y will be assigned and an error 
should be generated for the reference to C in either statement 3 or 
statement 4 (but not statement 5 ) .  

2. if the then-part is executed, an error should be generated for the reference 
to B in statement 3, and 
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3. if the else-part is executed. Z will be assigned. 

The erroneous references mentioned above are definite errors. Since variables C. D. 

and Y will be either assigned or referenced after the execution of the if-statement. 

we conclude that only B and Z need further monitoring information. In statement 6 ,  

the reference to B is a definite error and the reference to Z is a potential error 

(rather than a definite error because Z will have a value if the else-part of the 

if-statement is executed). To summarize, we have the following information: 

definite error potential error significant assignment 
A: 1 Z: 6 Z: 5 
B: 3, 6 
C: 3. 4 
D: 2 
X: 1 

Monitor statements can be inserted based on this information. Definite and potential 

errors are monitored using, respectively, unconditional and conditional error-report 

statements; significant assignments are monitored using unconditional state-assignment 

statements. The statement numbers associated with each variable indicate the relative 

positions in which to insert the monitor statements. Note that in addition to the 

initialization monitor statements, nine monitor statements are needed to properly 

monitor the program. None of them can be eliminated. 

From the foregoing discussion, we see that monitoring information for a statement 

can be obtained by analyzing the execution effect of the statement with respect to 

assignment and reference operations. The analysis process is repeated for each 

statement in the program. Monitoring information obtained from each statement is 

combined together, and, when all statements have been analyzed, the resulting 

monitoring information is used to guide the insertion of monitor statements. The set 

of variables for which (partial or complete) monitoring information has been obtained 

is called the set of instrumentation variables, or simply instrumentation set. 
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For each instrumentation variable v,  the monitoring information consists of lists of 

statement identifications. A statement identification serves to uniquely identify a 

statement in the program; statement numbers are used for this purpose in our 

examples. Each list associated with v represents statements in the program whose 

execution produces the same effect on v. The relevant execution effect of a statement 

can be captured using four operations, namely, definite assignment, potential 

assignment, definite reference, and potential reference. A definite (respectively. 

potential) assignment to variable v occurs if after the execution of a statement, v will 

(respectively, may) be assigned a value. A definite (respectively, potential) reference 

to variable v occurs if the execution of a statement may use the value of v ,  but v is 

(respectively, may be) uninitialized. For instance, the statement 

if A > 0 then 
begin 

if A mod 2 = 0 then 
X := 0; 

Y :- X 
end 

else 
Y := A 

causes a definite assignment to Y, a potential assignment to X, a definite reference to 

A, and a potential reference to X. Note that the potential operations are used to 

express uncertainty about the execution effect of a statement because of the presence 

of branches. Except for the list of definite-assignment operations, the other three lists 

are used to guide the insertion of monitor statements. The definite-reference list 

corresponds to definite errors; the potential-reference list and the potential-assignment 

list correspond, respectively, to potential errors and significant assignments. 

In order to reduce the amount of monitoring information collected (and thereby 

reduce the number of monitor statements inserted), we keep track of the set of 
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variables which require further monitoring information. This set is called the set of 

active vmicrbles, or simply active set. Initially, the active set is the set of variables in 

the program for which monitoring is desired. In addition to gathering monitoring 

information for the active variables, the analysis of a statement also determines an 

updated active set by eliminating those variables which have been definitely assigned 

or referenced. This updated active set is used in the analysis of succeeding 

statements. 

The term analysis state is used to refer to the collective information obtained from 

the analysis of a statement and other executable language constructs. (An executable 

construct is a program fragment which specifies a computation on its own. An 

expression, a list of statements, and a procedure or function are examples of 

executable constructs, but the label of a statement or the variable on the left hand 

side of an assignment statement are not.) Specifically, an analysis state contains an 

active set, an instrumentation set, and monitoring information for each instrumentation 

variable. Formally. an analysis state, denoted by S, is represented as a two-tuple 

(A. V), where A is the (updated) active set and V is the instrumentation set. 

Associated with each variable v in V are four lists. DA(v), PA(v). DR(v), and PR(v), 

representing, respectively, the definite-assignment list. the potential-assignment list, the 

definite-reference list, and the potential-reference list. 

The problem of instrumenting a program for detecting uninitialized variable access 

can now be phrased as 

Given a program P consisting of a list of statements L and an active set A 
for P, compute the analysis state of L with respect to A. 

That is, the problem is to determine how the analysis state of different types of 

statements can be computed and how the analysis states of the statements can be 

combined together. 
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<statement > ::= 
<assignment > < if-then-statement > I < while-loop > 

1 < repeat-loop > 1 < f or-loop > ) < if-statement > 
1 <casestatement > I < with-statement > I <compound-statement > 
1 <null-statement > I < goto-statement > 1 < procedure-call > 

<assignment > ::= [ < label > :] <variable > := <expression > 
<if-then-statement > ::= [<label> :] if <expression> then <statement > 
< while-loop > ::= [ <label > :] while <expression > do <statement > 
< repeat-loop > ::= [ < label > :] repeat < statement-list > until <expression > 
< f or-loop > ::= [ < label > :] for < identifier > := < expressionl > 

< sequencing-specif ier > < expression2 > do <statement > 
< sequencing-specif ier > ::= to I downto 
<if -statement > ::= 

[<label > :] if <expression > then <statementl > else < statementZ > 
< case-statement > ::= [ < label > :] case <expression > of < case-clause-list > end 
< case-clause-list > ::= < case-clause > { ; < case-clause > } 
< case-clause > ::= < constant-list > : <statement > 
< with-statement > ::= [ <label > :] with < variable-list > do <statement > 
< compound-statement > ::= [<label > :] begin < statement-list > end 
< null-statement > ::= [ < label > :] 
< goto-statement > ::= [ <label > :I goto < target-label > 

. < procedure-call > ::= [ <label> :I <identifier > [( < expression-list > 11 
< statement-list > ::= <statement > { ; <statement > ) 
< expression-list > ::= <expression > { . <expression > } 
< variable-list > ::= <variable > {. <variable > } 
< indexed-variable > ::= <variable > '[' < expression-list > '1' 

Figure A-2: Syntax of Pascal Statements 

The algorithm to be discussed works on the parse-tree representation of programs 

instead of the flow-graph representation (See Section 2.5.1). The exact structure of 

the parse tree of a program depends on the grammar used. The grammar of Pascal 

statements used in our discussion is given in Figure A-2. Although the grammar is 

incomplete and ambiguous, it suffices to illustrate the basic concepts involved. 

Several operations on the parse tree are used in our discussion. A selection operation 

on a node n of a parse tree corresponds to moving the focus of attention from that 

node to another node in the parse tree whose location will be evident from the 

grammar production corresponding to n and from the name of the particular operation 

used. For instance. 
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ExpressionOf (node) 

where node is an assignment statement. selects the rightmost child of node. The 

function NodeType takes a node as argument and returns the name of the construct 

. represented by that node. The function GetStatementIdentificcztion returns the 

statement identification of its argument; if the argument is not a statement, it returns 

the identification of the closest-enclosing statement which contains the argument as a 

component. The function MukeExp-essionList is self-explanatory. Other parse tree 

operations will be explained where appropriate. 

Operations on sets used are set difference, union, and intersection. When a new 

element v is added to the instrumentation set V of an analysis state, it is assumed 

that the lists associated with v will be automatically set to nil, the empty list. 

When an element is removed from V, its associated lists will no longer be part of 

the analysis state. Operations on lists are Append and Concat. Append builds a list 

by destructively- appending the list arguments in the given order, assigns the resulting 

list to the first argument, and sets the rest of the arguments to nil. Concat takes as 

arguments an element and a list and returns a new list that is the concatenation of 

the arguments. 

Figure A-3 presents an algorithm to compute the analysis state of different types of 

Pascal statements, except the goto statement and procedure call. In the algorithm. 

analysis states and their components are subscripted to differentiate them from other 

program variables. 

The algorithm is basically a recursive depth-first-search procedure. In the absence 

of goto statements, visiting nodes in the order indicated resembles closely the actual 

execution flow. As each node is visited, its analysis state is computed. The context 
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function Analyze(rwde; Ao) return Analysisstate is 
/* node = the program fragment to be analyzed */ 
/* A, - the active set for node * / 

begin 
case NodeType(node) of 

Expression, ExpressionList : 
SI .= (Ao, $) 
W ,- (the set of simple variables in the expressions) A. 
RecordRe ference(Sl, W ,  G e t S t a t e ~ I d e n t i  f icatwn(node )) 
return Sl 

Assignment: 
Sl := Analyze(Expression0f (node), Ao) 
v := VariableOf(node) 
if v is in A, and is a simple variable then 

RecordAssignment(SI, { v )  , GetStatementIdenti fication(rwde)) 

elsif v is an indexed variable then 
S, := ~na~~ze(ExpressionList0f (v) ,  A& 

comBine(sl, s2) 
fi  
return S1 

IjThenStatement , Whi l ehp :  
Sl -:= ~nalyze(Expression0f (node), Ao) 

S, :- Adyze(statemetltOfCrrode), Al 1 
CombineAlternativedS,, (A I ,  $)) 

C0mbine(S1, s2) 
return SI 

Repeathop: 
S1 := ~nal~te(StatementList0 f (node), A& 
SZ := Anolyze(Expression0f (node), A l )  

Combine(Sl, SZ) 
return S1 

ForLoop: 
Sl + ~nal~ze(~ake~xpression~ist (Expre s s ion lO f  e Expression2Of (node)), Ao) 

v := Identifierof (node) 
Record~ssi~nment(S~,  {v}  , ~et~tatement~dent i  f ication(~tatement0 f (node ))) 

S, := ~nalyze(Statement0f (node ), A I )  

if not ProvablyExecutable(node) then 
~ombine~lternatives(~, , ( A  I ,  $)) 

fi  

Figure A-3: Computing the Analysis State of Statements 
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A, := A,  U { v )  
v, 3= v, - {v) 

combine(S,, S2) 
return s, 

IfStatement : 
S, .- Analyze(ExpresswnOf~node), A& 
S, .= ~nalyze(Statemehtl0f (node), AI )  
S, .- ~ n a l ~ z e ( ~ t a t e m n t 2 0 f  (node), A,) 
~ombineAlterturtives(S~, S3) 
Combine (S,, S2) 
return SJ 

Casestatement: 
S, := ~nal~ze(ExpresswnQf~node), Ao) 
S2 := ~nal~ze(~ta ternent0 f  (~irst~aseClauseOf (node)), A,) 
for each remaining case-clause c do 

S3 := Analyze(Staternent0f (c),  A t )  
CombineAlternatives(S2, S3) 

od 
Combine (S,, S2) 
return SJ 

Withstatement: 
/* update scope information */ 
return Analyze(Statement0f (node), Ao) 

Compoundstatement : 
return Analyze(StatementList0f (node), A& 

Nullstatement : 
return (Aot d) 

StatementList : 
Stnt  := first statement in the list 
S,  := ~ n a l y z e ( ~ t m t ,  Ao) 
for each remaining statement s in the list do 

S2 := A d y z e ( s ,  A I )  
Combine(S,, S2 ) 

od 
return S, 

esac 
end 

Figure A-3, continued 
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of a node is immaterial in computing its analysis state; that is, the analysis method 

used for a node is independent of the surrounding nodes. A consequence of this is 

that the analysis state of an expression or an assignment statement can be determined 

easily. For an expression, the analysis state simply contains a record of definite- 

reference operations for active variables appearing in the expression. The active set 

and instrumentation set of the analysis state are constructed accordingly. For an 

assignment statement, its analysis state is obtained by updating the analysis state of 

the expression of the assignment statement to include a definite-assignment operation 

for the variable to be assigned. The update is necessary only when the variable to 

be assigned is active. For example, the analysis state of 

with respect to the active set Ao= {W. X. Y) is 

Only nonempty lists are shown. Lists are delimited by square brackets. 

The analysis state of other types of statements is determined by recursively 

computing the analysis states of the executable components of the statement. These 

analysis states of the components are then manipulated according to the semantics of 

that statement to obtain the final analysis state. 

Intermediate analysis states are manipulated with the auxiliary procedures given in 

Section A.2.3.2 on Page 85. Procedure RecordRe ference is responsible for updating the 

analysis state when active variables are being referenced. RecordAssignment is the 

dual of RecordReference; it updates the analysis state to indicate assignments to active 

variables are being taken. Function ProvublyExecutable performs a static check to 
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determine whether a for-loop will iterate at least once. It is used in the analysis of 

for-loops in an attempt to obtain stronger analysis information. Two procedures. 

Combine and CombineAlternatives, are used for combining analysis states together. 

Combine is used when the analysis states represent program fragments that will be 

executed in succession. CombineAIternatives is used when the analysis states represent 

program fragments that will be executed in mutual exclusion. Some context 

information is recovered when analysis state are combined together. 

In CombineAIternatives. a definite operation will be changed to the corresponding 

potential operation if the same operation does not occur in both alternatives. 

Intuitively, this means that if a statement contains branches, we can be sure that a 

definite operation occurs only if the same operation is performed in each of the 

branches. For example, in the statement 

if C then 
begin 

x := I; 
Y :- 2 

end 
else 

X := 3; 

a definite-assignment to X occurs because X is assigned in both branches, but the 

assignment to Y is only potential. 

In Combine, redundant potential-assignments are first eliminated. This happens when 

the potential-assignments occur before a definite-assignment and there are no 

intervening references, as in 

if C then 
X := 1; 

X := 2; 
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In this example, the first assignment to X does not need to be monitored because no 

references will depend on it. 

We now apply the algorithm to the program in Figure A-1. Let 

A,= {A. B. C. D. X. Y. Z) be the initial active set. The analysis state of statement 1 

with respect to A. is 

The analysis state of the expression of the if-statement with respect to A, is 

The analysis states of the then-part and else-part with respect to A2 are respectively 

and 

Combining S3 and S4 using ~ombine~lternatives gives .the analysis state of the action 

of the if-statement. 

S5 = (A5 = {B, Z). V5 = {B. C. Y. Z}) 
PR5fB) = Dl. DR5(C) - [3.41. DA5fy) = [3.4]. PA~(Z)  = [5] 

Combining S2 and S5 using Combine gives the the analysis state of the if-statement. 

Combining S1 and S6 using Combine, we obtain the analysis state for the first two 

statements in the program. 
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The analysis state of statement 6 with respect to A7 is 

Finally, combining S7 and S8 using Combine, we obtain 

The final analysis state indicates that Y has a potential-reference. but no potential- 

assignment. Since without an assignment, a reference, no matter where it occurs, is 

always erroneous, the potential-reference must be changed to a definite-reference. The 

necessary checks for this condition is incorporated in the final version of the 

algoriihm, given in Section A.2.3. 

A.2.1. Handling Goto Statements 

The rich set of control structures available in Pascal has greatly reduced the need 

for goto statements. The most notable uses of gotos in Pascal are for simulating 

"exits" and "returns". (Incidentally, these are the only forms of explicit jumps 

provided by Modula2 [70], the successor of Pascal.) We shall extend our algorithm 

to handle these two important cases. Programs that contain general gotos are handled 

using the exhaustive method. This mixed strategy to handle gotos is chosen because 

we feel that general gotos occur very rarely in practice and the use of a sophisticated 

algorithm will not be cost-effective. 
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The kinds of goto statements that are considered can be characterized as forwmd 

jumps. A forward jump is a goto statement that satisfies the following properties. 

1. Both the goto and its target appear in the same procedure. 

2. The goto appears textually before its target. 

3. The goto, if executed, will terminate the action of the statement list that 
the goto is part of. 

(Of course, restrictions set by the language definition must also be observed. See [5].) 

Forward jumps are illustrated in the following program. 

program JuMPS(INPUT.OUTPUT); 
label 111. 222. 333; 
begin 

for6 I:=l to 10000 do 
begin 

{ some action 1 } 
if C1 then goto 111; { normal exit } 

- { some action 2 ) 
if C2 then goto 222; { long exit } 

end: 
ill: ( some action 3 j; 
222: { some action 4 1; 
if C3 then goto 333; { return 1 
{ some action 5 1 
333: 

end: 

An important property of forward jumps is that if program statements are examined 

in their textual order, then all jumps to the same label will be encountered before 

their target. 

In computing the analysis state of a statement, our algorithm requires an active set 

as input. Thus far, the input active set of a statement is taken from the analysis 

state of the preceding statement. (Except for the first statement in the procedure, in 

which case the required active set is assumed to be available.) This is valid because 
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without goto statements, the predecessor of a statement (if there is one) is unique. 

When gotos are used, their targets can be reached from more than one point. The 

problem now is to determine the proper active set for each distinct target label based 

on the active sets from the goto statements. 

Our solution involves extending the analysis state to include an additional set G. G 

contains the set of target labels encountered thus far. Associate with each label g in 

G is an active set GIfg). (GI stands for Goto Informution.) The necessary 

modification to the Analyze procedure is shown in Figure A-4. 

A.2.2. Handling Procedure Calls 

The last extension that we shall consider is handling procedure and function calls. 

The modifications to the Analyze procedure is presented in Figure A-4. Procedures 

and functions will be treated synonymously in the following discussion. 

The basic idea of our solution is as follows. Each procedure is treated as a 

separate entity and is analyzed independent of its calling context. Nonlocal variables 

and reference parameters (but not value parameters) are included in the initial active 

set for analysis. Now, the previous algorithm can be applied to compute the analysis 

state of the procedure. When the analysis is completed, the result is stored in a 

global space for future references. Assume now the analysis states of all procedures 

have been computed. To handle a procedure call, the appropriate analysis state from 

the global space is returned, but with information on local variables removed. The 

analysis state so returned represents the effect of the called procedure on nonlocal 

entities. The returned analysis state is further shrunk by removing all information 

that is not of interest at the point of call. The last step is to change all statement 

identifications from this new analysis state to that of the procedure call, thus 

effectively hiding the fact that a call has been made. 
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function Analyze(node; Ao) return AnalysisState is 
begin 
case NodeType(node) of 

Expression, ExpressionList: /* extensions for handling procedure calls */ 
s, .= (Ao, $, 4) 
W := (the set of simple variables in the expressions) n A. 

for each jhction application f in the expressions do 
S, .- A d y z e ( f ,  A,) 

od 
return s, 

RocedureCaU, FunctionApplication: 
S, := Adyze(ActualValuePm4ntetersOf (node), Ao) 
p := CdedSubprogramOf (node) 
S, := Analyze(p,A,) 
Renurne(S,, ~ormalRefere12ceParametersOf (p),  

~ c t w l ~ e  ferenceParameters0 f (node )) 
A, := A ,  - (V, - A+ 

h e d u r e  , Function: 
if Visited(node) then 

if AnalysisCompleted (node ) then 
S, := LookUpState(node) 

else 
s, := (Ao, $, $) 
AssumeAssignments(S1, {nonlocal variables and reference parameters) ) 

fi 
else 

Mark(node) /* mark the node as being visited */ 
S, := Analyze(StatementList0f (node), QueryActiveSet(node)) 

Figure A-4: Handling Goto Statements and Procedure Calls 
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/* si@ analysis of procedure hrrs been completed */ 
f i  
A ,  .= A,  - {local variables} 
V I  := V ,  - {local vm'ables} 

GI := 4 
return sz 

Assignment: 

(See Figure A-3, page 71) 

St'atementList: /* extensions for M l i n g  gotos */ 
Stmt := first statement in the list 
S,  := Analyze(Stnt, Ao) 

for each remaining statement s in the list do 
if s is the target of goto statements then 

UpdateAnalysisState(Sz, Labelof ( s  )) 
f i  
S, := Analyze(s,AI) 
Combine ( S,, S2) 

exit when s is a goto statement 
od 
return S, 

Gotostatement: 
g := ~argetLubelO f (node) 
s, := (Ao. $5, {gl) 
G q g )  := A. 
return s, 

eSaC 

end 

Figure A-4, continued 
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In computing the analysis state of a procedure, the statements of the procedure may 

contain recursive calls. This case is handled by making the worse case assumption 

that all nonlocal variables and reference parameters may be assigned a value. Calls 

to predefined or library procedures are handled by pre-installing their analysis states 

in the global space. This implies that predefined or library procedures can only 

modify the nonlocal environment through the parameters. A last detail worth noting 

is that insertion of monitor statements is based on the information in the global space 

and takes place after the entire program has been analyzed. 
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A.23. Complete Listing of Algorithm 

A.23.1. The Analyze Procedure 

function Analyzefnode; A,) return AnalysisState is 
/* nude = the program fragment to be analyzed */ 
/* A, - the active set for node */ 

begin 
case NodeType(node) of 

Expression, ExpressionList : 
S, := (Ao, $, +) 
W := (the set of simple variables in the expressions) A, 
RecordReference ( S,, W ,  GetStatementIdentification (node)) 
for each function application f in the expressions do 

S, .= A d y z e ( f , A , )  

Combine (St, S,) 
od 
return s, 

ProcedweCdl, FunctwnApplication: 
S, := ~nal~ze(ActualVdue~mameters0f (nude), Ao) 

p := CalledSubprogramOf (node) 
S, := A d y z e ( p , A 1 )  

Ac~ReferenceParametersOf(node)) 
A, := A ,  - (V, - A,) 
V ,  := V ,  n Ar 
ChangeStatementIds(S2, GetStaternentIdentificaton(node)) 
Combine(S1, S2) 

return S, 
Procedure, Function: 

if Visited(node) then 
if AdysisCompleted(node ) then 

S, := LookUpStatefnode) 

AssumeAssignmentsfSI, {nonlocal variables and reference parameters) 
fi  

else 
Markfnode) /* mark the node as being visited */ 
S, := AnalyzefStaternentListOf(node), QueryActiveSet(node)) 
for each locd variable v in V ,  do 

if PA,(v) - nil then 
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fi 
od 
InsertState(S,, node) 
/* s i g d  d y s i s  of procedure hus been completed */ 

fi 
A ,  .= A ,  - {local variables) 
V ,  := V ,  - {local variables} 

GI := $ 
return s, 

Assignment: 
S, := Andyze(Enpression0f (node), Ao) 
v := VariableOf(node) 
i f  v is in A. and is a simple variable then 

RecordAssignment(SI, { v )  , ~etStatementIdenti fication(node )) 
elsif v is an indexed variable then 

S2 := ~nel~ze(EnpressionListOf(v), A,) 

-Combine(S,, S2) 
fi 
return S, 

IfThenStatement , Whilebop: 
S, := ~nalyze(Expression0f (node), Ao) 

S2 := ~nalyze(Statement0f (node), A ,  ) 

CombineAlternatives(S,, (A,, t$) $)) 

Combine(Sl, S2) 
return SI 

Repeatbop: 
S1 := ~ d y z e ( ~ t a t e m e n t L i s t 0 f  (node), Ao) 

S2 := Analyze (ExpressionOf (node ), A,) 

Combine(S,, S2) 
return S, 

F o r h p :  
S, := ~nal~ze(~ake~xpressionlist(~xpressionlOf), Expression20f(node)), A ~ )  
v := Identi fierOf (node) 
RecordAssignment(SI, {v}  , ~e~ ta temen t lden t i  fication(~tatement0f (node))) 

S2 := Analyze(Statement0f (node ), A , ) 
if not ~ovablyExecuta2de (node ) then 

combine~lternativedS,, ( A  , , $, $ )) 
fi 
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A ,  .= A ,  U ( v )  
v, := v1 - { v )  

Combine(S,, S2) 
return s, 

Ifstatement: 
S, := Adyze(Expressionof (node), Ao) 

S2 .= ~dyze (~ ta t emen t lOf (node ) ,  A,) 
S3 := Adyze(Statement20f (node), A,) 
CombineAIternatives(S,, S3) 

Combine(S,, S2) 
return s, 

CaseStatement : 
S, := Adyze(ExpressionOf (node), Ao) 
S2 := Adyze(statement0f (FirstCaseClause~f (node)), A I )  

for each remaining case-clause c do 
S, := ~ n d y z e ( ~ t a t e m e n t 0 f  fc),  A,) 
~ombine~ l t e rmt i ves (S~ ,  S3) 

od 
Codine(S,, S2) 
return s, 

Withstatement : 
/* update scope information */ 
return ~ d ~ z e ( ~ t a t e m e n t O f ( 1 2 o d ~ e j ,  Ao) 

CompoundStatement : 
return ~ d y z e ( ~ t a t e m e n t L i s t 0 f  (node), Ao) 

Nullstatement: 
return (Ao, 6 4 )  

Statement List: 
Stmt := first statement in the list 
S, := A d y z e f S t m t ,  Ao) 
for each remaining statement s in the list do 

if s is the target of goto statements then 
~pdateAndysisState(S,, Label0 f ( s ) )  

f i  
S2 := Andyze(s, A,) 

Combine(S,, S2) 
exit when s is a goto statement 

od 
return S, 

GotoStatement : 
g := TwgetLabelOf(node ) 
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s, := (Ao,+, IgH 
Gl l fg )  := A, 
return s1 

esac 
end 

A23.2 Auxiliary Procedures 

procedure RecordReference(var So; W ;  Statementld) is 

/* So = (Ao, V,, Go), an analysis state */ 
/* W = a set of variables which are referenced */ 
/* Statementld = the statement where the reference operations occur */ 

begin 
A, := A,- W 
v, := v, u w 
for each variable v in W do 

DRofv) := Concat (Statementld , nil) 
od 

end ' 

procedure RecordAssignment(var So; W;  Statementld) is 

begin 
A, := A,- W 
v, := v, u w 
for each variable v in W do 

DAo(v) := Concat(Statementld, nil) 

od 
end 

function A-ovablyExecutable(ForLoop) return boolean is 
/* ForLoop = a program fragment which is a for-loop */ 

begin 
if both loopexpressions are constant expressions t h e n  

Diff  := difference between final and initial value of loop 
return (Diff  = 0 )  or (Diff > 0 and IsForToLmp(ForLoop)) or 

(Diff < 0 and IsForDowntoLoop(ForLoop~) 
else 

return false 
fi 

end 

procedure CombineAlternatives(var Sl; S2) i s  

/* SI ,  S2 = Qnalysis states of alternatives */ 
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begin 
A, := A, U A, 
for each v in V ,  U V2 do 

if v in V,  n V2 then 
if DR,(v) # nil and DR2(v) f nil then 

Appnui(DR,h), D R , ( v ) ~  
elsif DR,(v) f nil then 

DRtoPR(S,, v )  
elsif DR2(v) # nil then 

elsif DA,(v) f nil .then 

else /* v in V2 - V ,  */ 

for each g in G2 do /* used to handle gotos */ 
if g is in GI then 

GI,(g) := GI,(g) U G12(g) 
else /* g in G2 - GI  */ 
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end 

procedure Combine(var S,; S,) is 

/* S,, S2 = successive andysis states */ 

/* AssignedBefmeRefIn2 flag to indicate i f  an active variable */ 
/* in A ,  is assigned before any reference occurs in  S2 */ 

begin 
A ,  := A, 
for each v in  V, do 

AssignedBeforeRefInZ := (DA2(v) f nil and PR2(v) = nil) 
if AssignedBefmeRefln2 then 

PA2(v) := nil 
f i  
if v in  V I  then 

if AssignedBeforeRefln2 and PRI(v) = nil then 
PA,(v) := nil 

f i  
AppendfDA,fv), DA2(v)) 
k PA,(v) = nil then 

AppendfDR,fv), DR,fv)) 
AppendfPRIfv), PR,(v)) 
PA,(V) = PA,(V) 

fi  
else /* v in V2 - Vl */ 

vI := V1 u {vJ  

P A ~ ( V )  := PA2fv) 
f i 

od 
for each g in G2 -GI do /* used to handle gotos */ 

end 

procedure UpdateAnalysisState(var So; g) is 
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proceekrrGhgsState~ntIds(var SO; ReplacementId) is 
/* So = (A,, Vo, Go), an analysis state */ 
/* ReplacernentId = new identification */ 

begin 
for each v in Vo do 

if DAo(v) # nil then 

DAofv) := Concat (ReplacementId, nil) 
fi 
if PA0(v) # nil then 

PAP(v) := Concat (ReplacementId , nil) 
f i 
if DRO(v) # nil then 

DRo(v) := Concat(Replacementld, n i l )  

fi 
if PR,(v) # nil then 

PRo(v) := Concatf ReplacementId, nil) 
fi 

od 
end 

procedure AssumeAssignments(var So; W) is 
/* DummyId = a unique nonexisting statement id, ignored during instrumentatwn */ 

begin 
v, := vo u w 
for each variable v in W do 

PAo(v) := Append(PAo(v),Concat(DummyId, nil)) 
od 

end 



APPENDIX B 

LISTING OF INSTRUMENTED PROGRAMS 

This appendix presents the instrumented programs for the examples given in Chapter 

El. Uninitialized Variable Access Detection 

PROGRAM EXAMPLE (INPUT. OUTPUT); 

TYPE 
LIST = t NODE; 
NODE = 

RECORD 
NUMUVA : boolean; LINKUVA : boolean; NUM : INTEGER; LINK : LIST 

END; 

VAR 
NUMBERS. ENTRY : LIST; 
FOUND, LAST : BOOLEAN; 
NEWNUM : INTEGER: 
ErrorFile : text; 
UVANameMap : PACKED ARRAY [1..2, 1.~71 OF char; 
LASTUVA : boolean; 
NEWNUMUVA : boolean; 

PROCEDURE UVAerrl (VAR MonVar : boolean; 
NameIndex. StatementNumber : integer); 

VAR 
I : integer; 

BEGIN 
WRITE ( 
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ErrorFile. ' Accessing uninitialized variable a t  statement '. 
StatementNumber : 0. ' of subprogram "'1; 

FOR I := 1 TO 7 DO 
IF WAIVameMap[NameIndex. I] < > ' ' THEN 

WRITE (ErrorFile. WANameMap[NameIndex. I]); 
WRITELN (ErrorFile. "'.'); 

{ When a full  report is selected, the tool generates 
"MonVar := falsew in place of the following code 1; 

WRITELN (ErrorFile); 
WRITELN (ErrorFile. 'Program execution is halted.'); 
halt 

END; 

PROCEDURE UVAerr2 (NameIndex, StatementNumber : integer); 

VAR 
I : integer: - 

BEGIN 
WRITE ( 

ErrorFile. ' Accessing inactive variant field a t  statement '. 
StatementNumber : 0, ' of subprogram "'): 

FOR I := 1 TO 7 DO 
IF U ~ ~ ~ a r n e ~ a ~ [ l V e r n e I ~ l d e x .  I] < > ' ' THEN 

WRITE (ErrorFile. UVANameMap[NameIndex, I]); 
WRITELN (ErrorFile. "'.'); 

{ When a full report is selected, the tool replaces 
the following code by a null statement 1 

WRITELN (ErrorFile); 
WRITELN (ErrorFile. 'Program execution is halted.'); 
halt 

END; 

PROCEDURE UVAInit; 

BEGIN 
rewrite(ErrorFi1e. '-ERROR '1; 
WRITELN (ErrorFile. 'Execution Errors Detected:'): 
~ ~ ~ ~ a m e ~ a ~ [ l ]  := 'EXAMPLE'; 
u ~ ~ ~ a m e M a ~ [ 2 ]  := 'SEARCH ' 

END: 
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PROCEDURE NODEUVAs (VAR MonVar : NODE; NewValue : boolean); 

BEGIN 
WITH MonVarT DO 

BEGIN 
NUMUVA := NewValue; LINKLVA := NewValue 

END 
END; 

PROCEDURE NODEUVAc (VAR MonVar : NODE; Subprogram. Statement : integer): 

BEGIN 
WITH MonVart DO 

BEGIN 
IF NUMUVA THEN UVAerrl(NUMUVA. Subprogram. Statement); 
IF LINKUVA THEN UVAerrl(L1NKUVA. Subprogram, Statement) 

END 
END; 

PROCEDURE SEARCH 
(L : LIST; NUMBER : INTEGER; VAR SUCCESS : BOOLEAN); 

VAR 
CURR : LIST; 

BEGIN 
SUCCESS := FALSE; 
CURR := L: 
WHILE CURR < > NIL DO 

BEGIN 
IF CURRt .NUMUVA THEN UVAerr 1 (CURRT.NUMUVA. 2. 4); 
IF CURRt.NUM = NUMBER THEN 

BEGIN 
SUCCESS := TRUE; CURR := NIL 

END 
ELSE 
BEGIN 

IF CURRT.LINKUVA THEN UVAerrl(CURRT.LINKUVA, 2, 7); 
CURR := CURRt.LINK 

END 
END 

END; 
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BEGIN 
UVAInit; 
LASTUVA := true; 
NEWNUMWA := true; 
NUMBERS := NIL: 
REPEAT 

IF NEWNUMWA THEN UVAerrl(NEWNUMUVA. 1, 3); 
SEARCH(NUMBERS. NEWNUM. FOUND); 
IF FOUND THEN 

BEGIN 
LAST := FALSE: LASTUVA := false 

END 
ELSE 
BEGIN 

NEW(ENTRY 1; 
NODEUVAs(ENTRY 7, true); 
ENTRYT.NUM := NEWNUM: 
EPJTRYT.NUMUVA := false; 
ENTRYt.LINK := NUMBERS: 
ENTRYt.LINKUVA := false; 
NUMBERS := ENTRY; 
IF LASTUVA THEN UVAerrl(LASTUVA. 1. 10): 
IF LAST THEN WRITELN ('Consecutive new entries.') 
ELSE LAST := TRUE 

END 
UNTIL EOF 

END. 

8 2 .  Bounded Execution Failure Diagnosis 

TYPE 
BEFStackType = T BEFStackNode: 
BEFStackNode = 

RECORD 
Info : integer; Link : BEFStackType 

END; 

VAR 
I. J. K : INTEGER; 
BEFLoopCounters : ARRAY [1..3] OF integer { inserted by debugger 1; 
ErrorFile : text: 
~ ~ ~ ~ o o ~ ~ t a c k  : BEFStackType: 
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BEFCallStack : BEFStackType; 

PROCEDURE BEFPush (VAR Stack : BEFStackType; ProcNameIndex : integer); 

VAR 
StackElem : BEFStackType; 

BEGIN 
new(StackE1em); 
StackElemt.Info := ProcNameIndex; 
StackElemt.Link := Stack: 
Stack := StackElem 

END; 

FUNCTION BEFPop (VAR Stack : BEFStackType) : integer; 

VAR 
StackElem : BEFStackType: 

BEGIN 
StackElem := Stack; 
Stack := StackT.Link; 
BEFPop := StackElem?.lnfo; 
dispose(StackE1em) 

END; 

PROCEDURE BEFLoopErr (LoopLineNum : integer; OuterLoops : integer): 

VAR 
LineNumber, Iterations, I : integer: 

BEGIN 
WRITELN (sercom, '*** Infinite loop detected. Execution is halted.'); 
WRITELN (sercom. '*** See error report in "-ERRORM'); 
WRITE ( 

ErrorFile. 'The loop beginning at statement ', LoopLineNum : 0. ' in 
WRITE (ErrorFile. "'EXAMPLE1 "'); 
WRITELN ( 

ErrorFile. "' has exceeded its iteration limit of '. 10000 : 0. '.'I; 
IF OuterLoops > 1 THEN 

BEGIN 
WRITELN (ErrorFile. 'Iteration status of outer loops:'); 
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FOR I := 1 TO OuterLoops DO 
BEGIN 

LineNumber := BEFPop(BEFLoopStack); 
Iterations := BEFPop(BEFLoopStack); 
WRITELN ( 

ErrorFile. ' * - . 5. 'Loop a t  statement ', LineNumber : 0. 
' has iterated '. Iterations : 0. ' times.') 

END 
END; 

halt 
END; 

PROCEDURE BEFInit : 

BEGIN 
rewrite(ErrorFi1e. '-ERROR '1; BEFLoopStack := NIL 

END; 

PROCEDURE BEFExit ; 

BEGIN 
WRITELN ( 

sercom. '*** No infinite loop or infinite recursion has been'. 
' detected.'); 

WRITELN (sercom); 
WRITELN (ErrorFile. 'All loops iterate less than the limit of '. 
WRITELN ( 

ErrorFile, 'Recursive subprogram calls have not exceeded'. 
' the depth limit of ', '.') 

END; 

BEGIN 
BEFInit; 
J := 0; 
K := 0; 
BEF~oopCounters[l] := 0; 
FOR I := 1 TO 100 DO 

BEGIN 
IF BEFLoopCountersE 11 = 10000 THEN BEFLoopErr(3. 0) 
ELSE BEFLoopCounters[l] := BEFLoopCounters[l] + 1 ; 
IF I = 24 THEN 

BEGIN 
BEFLoopCounters[2] := 0; 

times.'); 
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REPEAT 
IF BEFLoopCounters[2] = 10000 THEN 

BEGIN 
BEFPush(BEFLoopStack. BEFLoopCounters[l]); 
BEFPush(BEFLoopStack. 3); 
BEFLoopErr(5. 1 ) 

END 
ELSE BEFLoopCounters[2] := BEFLoopCounters[2] + 1; 
J := J + 1; 
IF 3 = 15 THEN 

BEGIN 
BEFLoopCounters[3] :- 0: 
WHILE true DO 

BEGIN 
IF BEFLoopCounters[3] = 10000 THEN 

BEGIN 
BEFPush(BEFLoopStack. ~ ~ ~ ~ o o ~ C o u n t e r s [ 2 ] ) :  
BEFPush(BEFLoopStack. 5 1; 
BEFPush(BEFLoopStack. ~EF~oopCounters[l]); 
BEFPush(BEFLoopStack. 3); 
BEFLoopErr(8, 2) 

END 
ELSE BEFLoopCounters[3] := BEFLoopCounters[3] + 1; 
K : = K + l  

END 
END 

UNTIL FALSE 
END 

END; 
BEFExit 

END. 

PROGRAM EXAMPLE2 (INPUT. OUTPUT): 

TYPE 
BEFStackType = 7 BEFStackNode: 
BEFStackNode = 

RECORD 
Info : integer; Link : BEFStackType 

END; 

VAR 
ErrorFile : text { inserted by debugger 1; 
BEFLoopStack : BEFStackType: 
BEFCallStack : BEFStackType: 
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BEFNameMap : PACKED ARRAY [1..1, 1..13] OF char: 
BEFProcCounters : ARRAY [I .. 11 OF integer; 

PROCEDURE BEFPush (VAR Stack : BEFStackType; ProcNameIndex : integer); 

VAR 
StackElem : BEFStackType; 

BEGIN 
new(StackE1em); 
StackElem1.Info := ProcNameIndex: 
StackElemf.Link := Stack; 
Stack := StackElem 

END; 
, 

PROCEDURE BEFRemoveTopElem (VAR Stack : BEFStackType); 

VAR 
StackElem : BEFStackType; 

BEGIN 
StackElem := Stack: Stack := Stackf.Link; dispose(StackE1em) 

END: 

PROCEDURE BEFCallErr; 

VAR 
Key : integer; 
Next : BEFStackType: , 

BEGIN 
WRITELN (sercom. '*** Infinite recursion detected. Execution is halted.'); 
WRITELN (sercom. '*** See error report in "-ERROR"'); 
Key := BEFCallStackf .Info; 
Next := BEFCallStackf.Link; 
WRITELN ( 

ErrorFile, 'Subprogram "', B ~ ~ N a r n e ~ a ~ [ ~ e ~ ] .  "' has exceeded its '. 
'recursive call limit of '. 10000 : 0. '.'); 

IF Nextt-Info = Key THEN 
WRITELN (ErrorFile. 'The subprogram is self-recursive.') 

ELSE 
BEGIN 
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WRITELN ( 
ErrorFile. 'The last cycle of mutually recursive calls'. 
' involves the following user-defined subprograms:'); 

WRITELN (ErrorFile. ' ' : 5. BEmVameMap[Key]. ' <- end of cycle'); 
REPEAT 

WRITELN (Error~ile,  ' ' : 5. ~E~~arne~a~[~extf.~nfo]); Next := ~ext f .Link  
UNTIL Nextt.Info - Key; 
WRITELN ( 

ErrorFile. ' ' : 5. ~~FNameMa~[Next?.~nfo] .  ' <- start of cycle') 
END; 
halt 

END: 

PROCEDURE BEFInit; 

VAR 
I : integer; 

BEGIN 
rewrite(ErrorFi1e. '-ERROR ')i 
BEFCallStack := NIL; 
FOR I := 1 TO 1 DO ~ ~ F P r o c ~ o u n t e r s [ ~ ]  := 0: 
BEFNameMap[l] := 'SELFRECURSIVE' 

END: 

PROCEDURE BEFExit; 

BEGIN 
WRITELN ( 

sercom, '*** No infinite loop or infinite recursion has been'. 
' detected.'); 

WRITELN (sercom); 
WRITELN (ErrorFile, 'All loops iterate less than the limit of '. ' times.'); 
WRITELN ( 

ErrorFile. 'Recursive subprogram calls have not exceeded', 
' the depth limit of '. '.') 

END: 

PROCEDURE SELFRECURSIVE; 

BEGIN 
BEFPush(BEFCa1lStack. 1 ): 



IF BEFProcCounters[l] = 10000 THEN BEFCallErr 
ELSE BEFProcC!ounters[l] := ~ ~ ~ P r o c C o u n t e r s [ l ]  + 1; 
SELFRECURSIVE; 
BEFProcCounters[l] := B~FProcCounters[l] - 1; 
BEFRemoveTopElem(BEFCallStack) 

END; 

BEGIN 
BEFInit; SELFRECURSIVE; BEFExit 

END. 

PROGRAM EXAMPLE3 (INPUT, OUTPUT); 

TYPE 
BEFStackType = 1 BEFStackNode; 
~ ~ ~ ~ t a c k ~ o d e  = 

RECORD 
Info : integer; Link : BEFStackType 

END: 

VAR 
ErrorFile : text { inserted by debugger 1; 
BEFLoopStack : BEFStackType; 
BEFCallStack : BEFStackType; 
BEFNameMap : PACKED ARRAY [I..% I..?] 8F chr; 
BEFProcCounters : ARRAY [1..3] OF integer; 

PROCEDURE BEFPush (VAR Stack : BEFStackType; ~ roc~amelndex  : integer): 

VAR 
StackElem : BEFStackType: 

BEGIN 
new(StackE1em); 
StackElemt.Info := ProcNameIndex: 
StackElemt.Link := Stack: 
Stack := StackElem 

END; 

PROCEDURE BEFRemoveTopElem (VAR Stack : BEFStackType); 

VAR 
StackElem : BEFStackType: 
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BEGIN 
StackElem := Stack: Stack := Stackt.Link; dispose(StackE1em) 

END; 

PROCEDURE BEFCallErr: 

VAR 
Key : integer: 
Next : BEFStackType; 

BEGIN 
WRITELN (sercom. '*** Infinite recursion detected. Execution is halted.'); 
WRITELN (sercom. '*** See error report in "-ERRORN'); 
Key := BEFCallStackT.Info; 
Next := BEFCallStackT.Link: 
WRITELN ( 

ErrorFile. 'Subprogram "', B E F N ~ ~ ~ M ~ P [ K ~ Y ] .  "' has exceeded its '. 
'recursive call limit of '. 10000 : 0. '."); 

IF NextT.Info = Key THEN 
WRITELN (ErrorFile. 'The subprogram is self-recursive.') 

ELSE 
BEGIN 

WRITELN ( 
ErrorFile. 'The last cycle of mutually recursive calls'. 
' involves the following user-defined subprograms:'): 

WRITELN (ErrorFile. ' ' : 5.  BEFNameMap[Key]. ' <-- end of cycle'); 
REPEAT . . WRITELN (ErrorFile. : 5. ~ ~ ~ ~ a m e M a ~ [ ~ e x t , t . ~ n f o ] ) ;  Next := Nextt.Link 
UNTIL NextT.Info = Key: 
WRITELN ( 

ErrorFile. ' ' : 5.  ~ ~ ~ ~ a m e M a ~ [ ~ e x t f . ~ n f o ] .  ' <- start of cycle') 
END; 
halt 

END; 

PROCEDURE BEFInit: 

VAR 
I : integer; 

BEGIN 
rewrite(ErrorFile, '-ERROR '1; 
BEFCallStack := NIL; 
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FOR I := 1 TO 3 DO ~ ~ ~ ~ r o c C o u n t e r s [ ~ ]  := 0: 
B ~ ~ ~ a m e M a ~ [ l ]  := 'MUTUALI'; 
BE~~arneMap[2] := 'MUTUAL.2'; 
B E F N ~ ~ ~ M ~ P [ ~ ]  := 'MUTUAL3' 

END; 

PROCEDURE BEFExit : 

BEGIN 
WRITELN ( 

sercom. '*** No infinite loop or infinite recursion has been', 
' detected.'); 

WRITELN (sercom); 
WRITELN (ErrorFile. 'All loops iterate less than the limit of '. ' times.'); 
WRITELN ( 

ErrorFile. 'Recursive subprogram calls have not exceeded'. 
' the depth limit of ', '.') 

END; 

PROCEDURE MUTUAL2; 
forward; 

PROCEDURE MUTUAL3; 
forward; 

PROCEDURE MUTUAL1 ; 

BEGIN 
BEFPush(BEFCa1lStack. 1); 
IF ~EF~rocCounters[ l ]  = 10000 THEN BEFCallErr 
ELSE BEFProcCounters[ 11 := BEFProcCounters[ 11 + 1 ; 
MUTUAL2; 
B ~ ~ ~ r o c C o u n t e r s [ l ]  := BEFProcCounters[l] - 1; 
BEFRemoveTopElem(BEFCallStack) 

END; 

PROCEDURE MUTUAL2; 

BEGIN 
BEFPush(BEFCa1lStack. 2); 
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IF BEFProcCounters[2] = 10000 THEN BEFCallErr 
ELSE BEFProcCounters[2] := BEFProcCounters[2] + 1; 
MUTUAL3; 
BEFProcCounters[2] := BEFProcCounters[2] - 1: 
BEFRemoveT~pElem(BEFCallStack) 

END: 

PROCEDURE MUTUAL3; 

BEGIN 
BEFPush(BEFCa1lStack. 3); 
IF BEFProcCounters[3] = 1OOOO THEN BEFCallErr 
ELSE BEFProcCounters[3] := BEFProcCounters[3] + 1; 
MU~VAL 1 ; 
~ ~ ~ ~ r o c C o u n t e r s [ 3 ]  := ~ ~ ~ ~ r o c C o u n t e r s [ 3 ]  - 1; 
BEFRemoveTopElem(BEFCallStack) 

END: 

BEGIN 
BEFInit: MUTUAL 1; BEFExit 

END. 

B.3. Parameter Usage Checking 

PROGRAM EXAMPLE (INPUT. OUTPUT): 

VAR 
X : INTEGER; 

VAR 
APUC : boolean; 

PROCEDURE P2 (VAR C : INTEGER); 

BEGIN 
WRITELN (A); 
WRITELN ( 

sercom. 'The reference parameter ', "'C"'. ' of subprogram '. "'P2"'. 
' has not been assigned a value upon subprogram exit.') 



END; 

PROCEDURE P3 (D : CHAR); 

BEGIN 
A := ORD(D) - ORD('O'); lhPUC := false 

END: 

BEGIN 
APUC := true: 
READ(B): 
A := ORD(B); 
APUC := false: 
P2(A); 
APUC := false; 
P3(B): 
IF APUC THEN 

WRITELN ( 
sercom. 'The reference parameter ', "'A"'. ' of subprogram '. "'PI"', 
' has not been assigned a value upon subprogram exit.') 

END: 

BEGIN 
PI(X. '9') 

END. 
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