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Abstract 

Transitive closure operation is one of the most useful new operations in deductive 

database systems. When it is added to conventional relational database systems, most 

practical problems with recursion can be coped with. Therefore, efficient processing of 

transitive closure is an important task in deductive database systems. 

Transitive closure operation can be divided into total closure and query closure 

operations. To implement the operations, we can have unary or binary algorithms. A lot 

of work has been done on the efficient derivation of total closures and unary query 

closures, but not much work has been done on binary query closures. A binary query 

closure algorithm derives the transitive closure relevant to a set of query constants, 

associated with pairs of the initial query constants and their driven elements. The binary 

query closure operation is more frequently used than the unary one. 

In this research, 6 algorithms are developed for binary query transitive closure 

processing, namely Binary Wavefront, Unary Wavefront with Frontier-Edges, Unary 

Wavefront with Implied-Edges-Closure, Unary Wavefront Preprocessing with Total- 

Frontier-Edges, level-relaxed Binary Wavefront, and level-relaxed Unary Wavefront 

Preprocessing with Total-Frontier-Edges. These algorithms are analyzed and their relative 

performances are compared on their VO behavior and other processing costs. More 

importantly, the analysis is done on different characteristics of data and on different buffer 

sizes. 

Our analysis and performance study show that reference locality and data clustering play 

an important role in the performance of the algorithms. The ordering of the set of relational 

operations is also important in determining the 110 performance of the algorithms. Our 

research also demonstrates that the rate at which the disk VO of an algorithm decreases 



with the increase in buffer size is affected by the Maximum Buffer Requirement of the 

algorithm. Among the algorithms without level relaxation, Binary Wavefront outperforms 

the others in a wide range of data sets when the buffer size is small. Unary Wavefront 

Preprocessing with Total-Frontier-Edges Algorithm performs better when the number of 

query constants is small and the buffer size is large. A base relation that requires a lot of 

iterative processing and generates a large volume of answers to the transitive query is best 

processed by Unary Wavefront with Implied-Edges-Closure Algorithm. The analysis of the 

YO behavior of Unary Wavefront with Frontier-Edges Algorithm helps to develop a better 

algorithm, like the Unary Wavefront Preprocessing with Total-Frontier-Edges Algorithm. 

The level relaxed versions of the algorithms are best for clustered data. 

Our research provides insight into binary query closure processing. We hope that this 

will, in turn, stimulate further research on the processing of more complex recursions. 
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Chapter 1 

Introduction 

Deductive database (DDB) is an important research area to integrate relational database 

systems and logic programming. Relational database systems are inadequate in handling 

recursion and making inferences. On the other hand, logic programming languages like 

Prolog are inefficient in large database management. The general database system features 

like integrity constraints, concurrency control and recovery are not well-addressed by 

Prolog. Deductive database systems incorporate both relational operations and inference 

rules. As pointed out in [18], the objective of DDB is to enrich the query language of the 

relational database system, and to handle missing or unknown data. 

Transitive closure operation is the most important operation in DDBs (eg. [7], [9], 

[ll] and [l2]). Most other recursions may include transitive closure computation as an 

operation or suboperationl. Therefore, most practical applications involving recursion will 

need the evaluation of transitive closure. Hence, efficient processing of transitive closure is 

an important issue in DDB research. 

There kre two types of transitive closures: Total Closures and Query Closures. To find 

the total closure of a binary base relation, one needs to compute the transitive closure of all 

the attribute values in the base relation. On the other hand, query closure computation 

requires one to find the transitive closure of some attribute values of the base relation only. 

A transitive closure algorithm can be either unary or binary. The output of a unary 

algorithm is a unary relation, while that of a binary one is a binary relation. The definitions 

of these terms will be treated more formally in section 1.2. The problem of computing 

'1n [7], the relationship of various complicated recursive clusters to transitive closure is discussed. This is 
beyond the scope of this research; interested readers should refer to [7]. 



total closure (eg. [I], [9], [19], [20] and 1211) has received much more attention than the 

query closure (eg. [7], [lo], [16] and [ti]). We feel that it is more important to study the 

query closure computation of transitive closures. This is because query closure enables us 

to find only those portions of interest of the closure in the database. In practice, we are 

seldom interested in the whole portion in the database, and hence, query closure 

computation will be more frequently encountered in the real world. For example, it is 

more common to ask questions like "Find the ancestors of the individuals in Group A of 

the database", which is a query closure question, than questions like "Find the ancestors of 

all the individuals in the database", which is a total closure query question. The study of 

query closure is thus more practically relevant. Moreover, we also feel that it is more 

important to study binary algorithms than unary ones. In the example above, it is more 

likely that we want to find out the ancestors for each individual, and attach this relationship 

to that particular individual. In other words, it is more interesting to know the ancestor- 

descendant pairs (binary) than just a list of ancestors or a list of descendants (unary). 

To our best knowledge, there has not been any in-depth study of binary query closure 

algorithms. In this thesis, we will introduce several algorithms for computing binary query 

closure. The efficiency of the algorithms is measured in terms of its disk VO. The disk VO 

of these algorithms is measured in simulation against both randomly generated and 

specially constructed databases, using various VO buffer sizes. This performance study 

will provide insight into the algorithms; not only does it identify the strengths and 

weaknesses of these algorithms, but it also suggests ways to produce improved algorithms. 

In Chapter 2, we will introduce and present some algorithms used to compute binary 

query closure. The correctness and the termination problem of the algorithms will also be 

discussed. In Chapter 3, some typical data sets are given in order to show the strengths and 

weaknesses of the algorithms presented in Chapter 2. Then in Chapter 4, our database 

model will be described. The analytical tools will be presented in Chapter 5. The general 

performance of the algorithms on randomly generated data is studied and analyzed in 

Chapter 6. In Chapter 7, a further refinement of the algorithms, the level-relaxation on the 

algorithms, is proposed, and the new versions are presented and discussed. Finally, in 

Chapter 8, we will draw our conclusions, and discuss issues for further research. 



1.1. Deductive Database 

The goals of research into DDB systems are: 

to enhance relational database system with the use of deductive logic, and 

to increase the expressive power of relational database system to cope with 
more complicated queries. 

As defined in [4], a DDB has three major components: 

1. elementary facts. 

2. deductive rules. 

3. integrity constraints. 

The elementary facts are the sets of relations which are composed of tuples stored in the 

database. These sets of tuples form the extensional database (EDB), and the relations are 

known as base relations. Deductive rules and integrity constraints are collectively known 

as the intensional database (IDB). In the extreme sense, integrity constraints can be 

considered as deductive rules. In this research, this view will be adopted, and IDB will be 

considered to consist of merely deductive rules. 

DDB can be viewed as a theorem proving system, [4], in which queries are represented as 

theorems. Query processing is then considered to be a theorem proving activity. Recursive 

query processing in DDB is the resolution of query using not only the explicit information 

stored in EDB, but also implicit facts that can be derived by using the rules in IDB. Thus, 

the evaluation of recursive queries requires iterative access to the information in the EDB 

as well as the deductive rules in the IDB. 

In current DDB literature, there are two common approaches to resolving recursive 

. queries. They are the interpretive approach and compilation approach. Using the 

interpretive approach, the theorem prover of DDB interleaves to both the IDB and EDB. 

The merit of this approach is that it can dynamically retrieve relevant facts towards the 



answer at run time. However, this approach is very expensive when accessing large 

databases because of the nature of interleaving EDB and IDB. On the other hand, the 

compilation approach requires the theorem prover to preprocess the deductive rules into a 

set of relational operations, and then search for facts in the EDB. Thus it is easier for this 

approach to obtain global optimization of database accesses by using the techniques 

developed in relational database systems. For the advantages and disadvantages of these 

approaches, interested readers are referred to more formal studies in [2], [14] and [17]. In 

this research, we will consider recursive query processing using the compilation approach. 

1.2. Transitive Closure 

Transitive closure is the simplest kind of recursive query processing. Formally, the 

transitive closure of a binary base relation A is defined by the following Horn clauses 

expressed in notation very similar to Prolog, but we use capital letters to denote predicate 

head, small letters to denote variables: 

The first implication rule is often referred to as the exit rule for the predicate R. The 

second rule is the recursive rule for predicate R. The symbol ":-" separates the conclusion 

(on the left of the symbol) and the antecedent (on the right of the symbol) of the 

implication rule, and the symbol "," is "logical and". Thus, the recursive rule reads like 

"R(x,y) is true when R(x,z) and A(z,y) are both true". After compilation, a sequence of 

expanded formulas will be formed.. 

The number i in ~ ~ ( x , y )  denotes the chain distance between x and y. The compiled 

formula for transitive closure is then defined as 



where n is the smallest m such that 

We call the number n the longest chain distance between x and y. 

In the theorem-prover view of DDB, the truth of A ~ ( X , ~ )  implies that there exist constants 

yl,y2, - . . ,yi-l such that A(x,yl), A(y1,y2), and so on to A(Y'-~,~)  are true. A+(x,y) is true, 

if ~ ' ( x , ~ )  is true for some i, 1 i i i n. On the other hand, in a relational database system, 

the expanded formulae are viewed as a series of join operations. Besides, we will 

determine whether the set ~ ' ( x , ~ )  is empty or not by searching for the tuple (x,y) in the 

result of joining the relation A with itself i-1 times. In the rest of this section, we will 

adopt the theorem-prover view of DDB to define terms, but the readers should be aware 

that these terms can be defined equally well by using the relational database terminology. 

A transitive closure can be either a total closure or a query closure. We define two 

different closures using the above Horn clauses rules as follows: 

Definition 1-1: Total Closure of A is the set { (x,y): A+(x,y) is true 1. 

Definition 1-2: Query Closure of C in A is the set { (c,y): c E C and A+(c,y) is 
true ), where C is a set of constants, called the query constants. 

The depth of total closure of A is the maximum over all x and y of the set 

{ nxy : nxy is the longest chain distance between x and y; A+(x,y) is true ) 

The depth of query closure of C in A is defined in a similar fashion. That is, it is the 

maximum over all c and y of the set 

{ ncy : ncy is the longest chain distance between c and y; A+(c,y) is true and c E C )  

When it is clear whether a query closure or a total closure evaluation is needed, we will use 

the term depth of transitive closure instead of either "the depth of query closure" or "the 

depth of total closure". 



A base relation may be represented as a digraph, in which each node in the graph 

represents an attribute value, and each arc represents a tuple with the attribute values on its 

two ends. In the rest of this thesis, we use attributes and nodes, tuples and edges, and, a 

relation and a digraph interchangeably. For example, for a base relation A with the tuples: 

{ ( a d ,  (b,d), (a,d), (c,e), (df ) ,  (d,g)1 

the digraph will be the one shown in Figure 1-1. The set of initial query constants will'be 

some nodes in the digraph. This set of nodes which corresponds to the set of query 

constants is referred as starting nodes in the graphical representation. 

Figure 1-1: The digraph of relation A 

The total closure of a digraph is defined as the set of all possible node pairs where the 

first element is any node in the digraph and the second element is a node reachable from 

the first. The query closure of some given nodes in a given digraph is the set of all possible 

node pairs where the first element is a starting node, and the second element is a node 

reachable from the first. For example, in the above base relation, assuming the starting 

nodes to be a and b, we have: 

When computing transitive closure, some tuples which are not in the set of the original 

edges of the digraph will be added to the final closure (total or query closure). A tuple, say 

(x,z), is produced when we have edges (x,yl), (y1,y2), . . -, (ykz). We call the tuple (x,z) 

implied edge. Take the above example, (a,e) is an implied edge which is formed because 

of the existence of the edges (a,c) and (c,e). 



In the process of computing transitive closure, if we compute using a relation A(x,y), 

starting from a set of x values to find a set of y values, we call the set of x drivers, and the 

set of y driven elements. For the above example, driver a will lead to driven element c 

because we have the tuple (a,c). 

As stated before, a query transitive closure algorithm can be classified as unary or 

binary. Their formal definitions are given as follows: 

Definition 1-3: The unary query closure of a set of initial query constants with 
respect to a relation is the set of driven elements that are derived from the initial 
drivers2. (The unary query closure can also be defined as the set of all the nodes 
that are accessible from the set of starting nodes.) 

Definition 1-4: A unary query closure algorithm is an algorithm that computes 
unary query closures. 

Definition 1-5: The binary query closure of a set of initial query constants with 
respect to a relation is the set of tuples, associating the driven elements with their 
corresponding initial drivers. (The binary query closure consists of node pairs of 
the starting nodes and the nodes accessible from them.) 

CZ(C,A) = { (c,y) : c E C and A ~ ( C , ~ )  is true for ssome positive integer 
i l  n )  

where C is the set of the initial drivers. 

Definition 1-6: A binary query closure algorithm is one that computes binary 
query closures. 

If we want to find the descendants of each individual within a group, a binary query 

closure algorithm is needed. This is because we have to keep information on the kinship of 

the individual and hisher descendants. However, if we just want to know who are the 

descendants of a group of individuals, all we need is a unary algorithm, because the 

information on the relationship of two individuals is not needed. It should be noted that 

applying a unary algorithm to total closure evaluation will generate the set of all the nodes 

with in-degree greater than 0. Take the base relation A in Figure 1-1 as an example. If we 

 h he term "initial query constants" is used interchangeably with the term "initial drivers" in this thesis. 



use a unary algorithm to find the query closure for the starting nodes a and b  then all we 

will get is the following set of nodes: 

N = {  cJdJeJf,g 1- 
In contrast, if a binary algorithm is used, we will get 

Cl( C 0 1  ,A) = { (aJc)J(aJd)J(aJe),(af)J(aJg)p(bfd)J(bfl,)) 

1.3. Unary Query Closure Algorithms 

In the current literature, &Wavefront is a popular unary algorithm for the evaluation of 

the transitive closure. Its efficiency can be further improved by an algorithm called level- 

relaxed S-Wavefront in [6].  &Wavefront uses two intermediate sets: the frontier F to store 

the "active" drivers, and closure Cl to collect the results. These sets are initialized to the set 

of query constants C. At each iteration, a new driver set F (frontier) will be derived by 

joining the drivers generated from the last iteration to the base relation A. The occurrence 

of each of the new drivers in Cl will be checked. Those drivers which exist in Cl are 

discarded from the driver set. The remaining drivers will then be added to Cl. The loop 

terminates when no more drivers are available. 

The &Wavefront algorithm is as follows: 

C1 := C 
P := C 
while ( IP # 0 ) 

F : = F A A - C 1  
C1 := C1 Uc F 

a d  while 

A is the join operator joining a unary relation with a binary relation. Thus, the result of 

the join operation is the set of y values in A(x,y), where (x,y) is a tuple of A, and x is an 

attribute value in F. Unlike the standard union operation, u, concatenates its two 

operands without removing any duplicates. The result of u, is a unary relation which is a 

set of driven elements from the drivers in F. Readers interested in the proof of correctness 

and termination of the algorithm are referred to [ S ] .  



Chapter 2 

Binary Query Closure Algorithms 

In Section 1.3, the &Wavefront algorithm was described. This unary algorithm is very 

efficient in computing the query closure of a relation. However, &Wavefront does not 

keep track of the starting nodes from which each of the elements in the final closure is 

derived. To find such relationships using the unary algorithm, one needs to separately 

apply the algorithm to each of the starting nodes, instead of applying to the set of query 

constants (starting nodes) collectively. Nevertheless, this strategy is not efficient in terms 

of disk YO. Several drivers from several starting nodes may be in the same data page of 

the base relation. By using the above strategy, the number of times the data page where the 

drivers reside is accessed at least equals the number of the drivers. Hence, what we need is 

some strategies that enable us to compute the transitive closures of the starting nodes 

simultaneously, so that the number of data pages accesses is reduced. Such global 

optimization is possible also with binary algorithms. In the following sections, we will 

present some binary algorithms for query closure evaluation, and we will also prove their 

correctness and termination. 

2.1. Binary Wavefront (BWFT) 

Binary Wavefront is the simplest and most straightforward algorithm derived from the 

unary 6Wavefront algorithm. Being a binary algorithm, BWFT determines the pairs of 

initial drivers and their driven elements. The major characteristic of BWFT which 

distinguishes it from the GWavefront algorithm is the use of binary relation F to store the 

driver-driven elements pairs, and binary relation Cl to accumulate the final answers. We 

call each tuple (x,y) in F a binary driver, y an active driver, and F the binary frontier. In 

BWFT, both F and Cl are initialized to the set of tuples resulting from the selection of A on 



the query constants. As in the &Wavefront algorithm, at each iteration of BWFT, new 

binary drivers will be derived. These newly generated binary drivers will be checked 

against CE for occurrence. Existing binary drivers will then be deleted from the set of 

binary drivers and the closure Cl will be updated by adding to it the remaining drivers. 

The basic algorithm for BWFT is presented as follows: 

a := OA 
P := C1 
while ( P # 0 ) 

P:= F A A - c l  
C1 := C1 uc F  

end while 

a represents the selection operator. The first step of the algorithm is to select all the 

tuples in the relation A with the query constants on its first attribute column. These tuples 

are assigned to the binary relation CZ. The final closure will be stored in this relation. A 

here represents the join operation on two binary relations F and A. The joining attributes 

are the second attribute in F and the first attribute in A. The result of the join operation will 

consist of the first attribute of F and the second attribute of A. The generated tuples are 

stored in some temporary relation. u, concatenates its two operands without duplication 

removal. The following theorem shows that BWFT is an effective and correct algorithm. 

Theorem 2-1: BWFT terminates and generates the correct query closure in CE. 

Sketched Proof : 

Inside the loop, the new frontier (F) is found. The new frontier is the difference 
of 'the result of joining the previous frontier with the base relation A, and the 
closure Cl. The size of CI can never exceed n2 (n = size of the base relation A) 
because the size of total closure is bounded by n2 and query closure is a subset of 
total closure. As the size of CI grows iteratively, the new frontier will become 
empty eventually. Hence, the loop must terminate. 

The correctness of BWFT follows directly from the &Wavefront algorithm. 
Initially, the frontier equals the closure CI which is the result of selection of A on 
the query constants. Hence we get the paths of length 1 from the starting nodes 
to their immediate descendants. These descendant nodes are associated with their 
initial drivers in tuples which are stored in Cl. Then inside the loop, the nodes 
which are at distance 2, 3, ..., and so on to the longest path length from the set of 
starting nodes, will be found. Cycles are avoided by performing the difference 
operation with Cl. Therefore, in the graphical representation, each arc that is 



accessible from a given starting node will be visited once and only once during 
the derivation of the closure for the given starting node. 

2.1.1. Example of Using BWFT 

Consider the digraph in Figure 2-1 with nodes a and b as the starting nodes. The closure 

Cl and frontier F are initialized to be the tuples corresponding to the edges emanating frdm 

nodes a and b. That is, we have (a,c) and (b,c) in Cl and F initially. At the first iteration, 

joining the frontier F with the base relation A will get the tuples (implied edges) (a,d) and 

(b,d), which do not yet belong to Cl. These tuples are then added to CI. So C1 now 

contains (a,c), (b,c), (a,d) and (b,d). In the second iteration, new frontier F with the tuples 

(a,e) and (b,e) will be produced. These tuples are then used in updating Cl. As there is no 

more arc emanating from node e, the new frontier formed in the third iteration is empty. 

Hence, no updating is needed for the closure Cl, and the loop terminates. The computation 

by BWFT is also shown in Figure 2-2. 

Figure 2-1: The digraph of a simple base relation 



Figure 2-2: Derivation process of BWFI' 

Iteration 

1 

2 

3 

2.1.2. Discussion on BWFT 

If we take a closer look at BWFI' algorithm, we will notice certain redundancies. Let us 

re-consider the graph in Figure 2-1. The drivers c, d and e for each of the iterations are 

common to the nodes a and b. BWFT ignores the fact that nodes a and b have a common 

descendant c. Therefore in each iteration, BWFT must consider two tuples. However, if 

we operate on only their common descendant c, then for each iteration, we need to 

consider one tuple. After that, we just attach the nodes reachable from c to nodes a and b. 

Old-Frontier 

(a,c),(b,c) 

(a,dl,(bd) 

(a,e),(b,e) 

Consider another more illustrative example of redundant processing inherent in BWFT. 

In Figure 2-3, nodes al  and a2 are the starting nodes. It can be shown that in 3 iterations, 

B W  can produce the implied edge (a2,bl) into Cl (the relation to store the final closure). 

Then BWFT needs two more iterations to get (a2,d1) into Cl. In total, BWFT requires 5 

iterations to compute the query closure. However, the process from the third iteration to 

the fifth iteration is actually redundant. This is because the edges from bl to cl and from cl 

to dl have been accessed during the computation of the transitive closure for node al  in the 

first and second iterations. Therefore, if the information that bl can lead to cl and dl was 

kept in the first and second iterations, when bl is discovered to be a descendant of a2, we 

can know that cl and dl are also descendants of a2. Thus, in the third iteration, we should 

be able to include the tuples (a2,cl) and (a2,d1) along with (a2,bl) into Cl. 

New-Frontier 

(a,dMb,d) 

( a d h e )  

Closure 

(a,c),(b,c),(aP),(b,d) 

(a,c),(b,c),(a,d),(b,d),(a,e),(b,e) 

(a,c),(b,c),(a,d),(b,d),(a,e),(b,e) 



Figure 2-3: BWFT will retraverse the path from bl to dl 

There are two observations from the above examples that will serve as guidelines for the 

design of alternative binary query closure algorithms. First, we can use a unary frontier 

rather than a binary one. Initially, the frontier consists of the starting nodes. At each 

iteration, the frontier is joined with the base relation to produce new nodes which are 

reachable from the starting nodes. With duplicates removed, these unique new nodes will 

form the frontier for the next iteration of processing, until no more new nodes are 

produced. Thus, at the beginning of the i-th iteration, the frontier will consist of all the 

nodes which are at distance i from at least one of the starting nodes. We call this set of 

nodes i-th-frontier, i 2 0  (when i=O, it is the set of starting nodes). For example, Oth- 

frontier in the example shown in Figure 2-3 will contain al and a2, 1st-frontier will contain 

bl and b2, 2nd-frontier will contain cl and c2 and 3rd-frontier will contain dl and d2. 



The second observation concerns the processing during each iteration. The processing 

can produce new edges (tuples) that will be part of the final answer (the query closure), or 

it can produce nothing of that sort, in which case the algorithm is only a preprocessing 

algorithm We will discuss the former case first. We define i-th-edges to be the set of 

direct edges leading from the nodes in i-th-frontier and i-frontier-edges to be the union of 

all j-th-edges, 0 1  j l i .  We also define the i-closure to be the query closure which'is 

derivable from i-frontier-edges with the same starting nodes. When the algorithm 

terminates, the i-closure will be the final answer. This is because at the end of the 

algorithm, say at the m-th iteration, all the nodes accessible from the starting nodes must 

be included in k-th-frontier, where 01 k l  m. Thus, k-frontier-edges must be all the edges 

with which the starting nodes can access their descendants. Hence, the closure derived 

from these k-frontier-edges must be the desired query closure. 

There are two ways to compute the i-closure. The i-closure at each iteration can be 

obtained using the BWET method. Alternatively, the total closure of i-frontier-edges can 

be computed, which is called the i-implied-edges-closure here. At the end, say after the 

n-th iteration, the query closure can be computed by performing a selection on the n- 

implied-edges-closure. We call the n-implied-edges-closures the 

total-implied-edges-closure, and it is the total closure of the set n-frontier-edges which is 

defined as total-frontier-edges. The chief benefit of finding the i-implied-edges-closure 

in each iteration is that it requires fewer iterations of computation than that of the i-closure 

computation because of more implied edges being stored. Consider the example in Fig. 

2-3 again. If the 3-closure is computed, the implied edge (a2,dl) will be established 

(deduced) in 2 iterations because (a2,cl) has to be first established. However, if we have in 

the i-implied-edges-closure the edge (bl,dl), then the implied edge (a2,d1) can be 

established in one iteration. Of course, the total closure computation is more intensive and 

worst of all, the i-implied-edges-closure can be huge in size. 

As a preprocessing strategy, one can make use of a unary frontier algorithm to identify all 

edges (tuples) that may be needed to compute the query closure. In doing so, all redundant 

tuples in the base relation may be removed before applying a standard query closure 

algorithm, i.e., BWFT. 



In the next few sections, we shall describe three different unary frontier algorithms based 

on the above discussions. They are: the Unary Wavefront with Implied-Edges-Closure 

algorithm, which computes the i-implied-edges-closure at each iteration, the Unary 

Wavefront with Frontier-Edges algorithm, which computes the i-closure at each iteration, 

and the Unary Wavefront Preprocessing with Total-Frontier-Edges algorithm which is a 

preprocessing algorithm. 

2.2. Unary Wavefront with Implied-Edges-Closure (UIEC) 

In the previous section, we have discussed the use of unary frontier in each iteration. In 

this section, we will present and study an algorithm, Unary Wavefront with Implied- 

Edges-Closure (UIEC). UIEC will compute the i-implied-edges-closure at each iteration. 

In fact, the i-implied-edges-closure provides a complete information about the derivation 

path of each of the drivers encountered so far. In particular, there are (implied) edges 

associating a node with each of its descendants found in the i-implied-edges-closure. Thus, 

when a driver a reaches a node b, the descendants of b can be simply passed to a instead of 

deriving from scratch. 

In our implementation, we have a relation SubCl to store the i-implied-edges-closure. The 

major objective in each iteration of UIEC is to find the i-implied-edges-closure which is 

the total closure of i-frontier-edges. Direct application of total closure algorithm to i- 

frontier-edges is costly, so we attempt to reduce the cost by making use of the (i-1)- 

implied-edges-closure from the last iteration. 

Each iteration m begins by first exploring the nodes in m-th-frontier. This results in 

finding new edges, which are stored in newsub, different from (m-1)-frontier-edges. This 

set of newly discovered edges is actually equivalent to m-th-edges. From the nodes in m- 

th-frontier, the edges in newsub can lead to driven elements which fall into one of the three 

categories: the set of current driver (m-th-frontier) ci, the set of unexplored drivers ((m+l)- 

th-frontier) dl, and the set of previously explored drivers el, This can be visualized as in 

Fig. 2-4. If we can find all the implied edges leading from the set ci to all the visited nodes 



Figure 2-4: Digraph with edges incident from current drivers 

(i.e., to the nodes in the union of I-th-frontier's, where 0 1  1s m+l), the job that remains for 

finding the m-implied-edges-closure is to compute the implied edges leading from the 

nodes in I-th-frontier's, where 0 1  Ism-1, to all the visited nodes using nodes in m-th- 

frontier as intermediates nodes. Now, let us look at the pseudo-code of UIEC: 



SubC1:= oA /* 0-frontier-rdges */ 
T := n2 (SubCl) - nl (SubC1) /* 1.t-frontier */ 

/* Loop 1 : Compute 0-frontier-edge.-closure */ 
newsub := SubCl A SubCl - SubCl 
while ( newsub # 0 ) 

SubCl := SubCl uc newSub 
newSub := newSub A SubCl - SubCl 

end while 

/* Loop 2 */ 
while ( I # 0 ) 

newSub : = I  A A 
if ( newsub = 0 ) then exit the loop 
newSub2 := newsub A SubC1 - newsub 
newSub := newSub uc newSub2 

/* Loop 3 : Com~pute the implied edges leading from the */ 
/* current driver. to the visited no&.. * / 

newSub2 := newsub A newsub - new&& 
while ( newSub2 # 0 ) 

new- := newSub uc newSub2 
newSub2 := n e w ~ u b 2 - ~  newSub - newsub 

a d  while 

newSub3 := -1 A newSub - SubCl /*find implied edges from */ 
/*the starting nodes to all*/ 
/*vi.ited node. using the */ 
/*current drivers as */ 
/*intermodlate nodes. */ 

SubCl : 3 SubCl uc new- /* compute the i-implied- */ 
SubCl := SubCl uc newsub3 /* edqea-cloaure. */ 
I := 112 (newsub) - Ill (-1) /* (i+l)th-frontier */ 

end while 

o as before represents the selection of the base relation on the query constants. Two 

selections are done in this algorithm. The first one chooses the tuples with the starting 

nodes in the first attribute of the base relation A, and the second one chooses from the 

relation SubCl. T(re1) is the operator to do projection on the i-th attribute of relation rel. 

In the second line of the code, the difference from the set of the first attribute and the set of 

second attributes of SubCl is computed. The result is the unary relation F. This step 

ensures that the frontier (driver set) F contains drivers never processed before. Inside loop 

1, the operands of the join operator A are both binary (SubCl and newsub are binary), like 



those in BWFT. The joining attributes are the second attribute of the left operand and first 

attribute the right operand. The result of the join operation is a binary relation whose first 

attribute is the first attribute of the left operand, and second attribute is the second attribute 

of the right operand. The join operator functions differently in loop 2, where F is unary but 

A is binary. The joining attributes are from F and the first attribute of A. The result is 

binary, and its attributes come from the attributes of A. Join operation in loop 3 is the s&e 

as in loop 1. 

Lemma 2-2: SubCl correctly stores the i-implied-edges-closure at the end of 
the i-th iteration. 

Sketched Proof : 

We must note that loop 1 and loop 3 perform similar function. In fact, it can be 
proved that the total closure of the relations SubCl and newsub will be found 
after the termination of loop 1 and loop 3, respectively. 

Initially, the drivers are all the starting nodes, i.e., 0th-frontier, After the first 
selection, SubCl will contain all the edges from the starting nodes to their direct 
descendants. Thus, SubCl is equivalent to 0-frontier-edges. Since loop 1 compute 
the total closure of SubCl, therefore, after the completion of loop 1, the 0- 
implied-edges-closure must be stored in SubCl. 

At the beginning of each iteration i of loop 2 of UIEC, we assume that the 
lemma holds. That is to say, SubCl contains the (i-1)-implied-edges-closure. 
Finding i-implied-edges using the (i-1)-implied-edges-closure, we need to 
compute: i) all the implied edges leading from the nodes in i-th-frontier; ii) the 
implied edges using nodes in i-th-frontier as intermediate nodes. 

Joining the frontier F to the base relation A, we will get all the edges from the 
current drivers to their descendants in newsub, and hence, we get i-th-edges. 
Performing join operation from newsub to SubCl will result in finding the set of 
implied edges 

{(cj,y) : there is an arc from cj to ek; cj€ i-th-frontier, eke lth-frontier, 
where 0 1  11 i- 1, and (ek,y)€ SubCl) . 

The difference operation performed after the join operation is mainly to remove 
duplicates. The implied edges found are unioned to newSub. It should be noted 
that newsub now contains i-th-edges and some implied edges from the nodes in 
i-th-frontier to all the visited nodes. By using loop 3, the total closure of newsub 
will be found. Hence, all the implied edges leading from the current drivers to all 
the visited nodes can be found. 



After the completion of loop 3, SubCl is joined to newSub. Thus, the implied 
edges leading from the nodes in lth-frontier, where 05 1s i-1, to i-th-frontier and 
to all the visited nodes are found. Then, the join operation is followed by two 
union operations, so that all the implied edges found are included in SubCl. 
Hence, SubCl will contain the i-implied-edges-closure at the end of loop 2. 

Furthermore, the lemma is valid after loop 1, therefore, by induction on the 
iteration i, the lemma must hold. 

Theorem 2-3: UIEC terminates and correctly computes the query closure in Cl. 
Sketched Proof : 

There are n tuples in A, and hence, the n-th-frontier set is empty. Thus, in at 
most n iterations, all the nodes in i-th-frontier (05 i5 n) must have been explored. 
Therefore, loop 2 must terminate. 

Since at the termination of loop 2, all the drivers have been considered, and 
hence their driven elements must also been considered. Therefore, all the 
descendants from the starting nodes must be considered, too. By Lemma 2-2, 
SubCl must contain the i-implied-edges-closure which is a superset of the i- 
closure. Thus, at the completion of loop 2, query closure will be a subset of the 
i-implied-edges-closure. Therefore, by performing a selection of SubCl on the 
initial nodes, we can get the query closure for the starting nodes. Hence, upon 
termination of UIEC, Cl contains the query closure. 

22.1. Example of Using UIEC 

Let us consider Figure 2-1. The derivation process of UIEC is shown in Figure 2-5. SubCl 

is initialized to ((a,c),(b,c)), and F contains node c only. Since nodes a and b are not 

directly linked to each other, loop 1 will not be entered. At the first iteration of loop 2, 

newsub will contain tuple (c,d). Node d will be the only element in i-th-frontier for the 

next iteration. At the time when loop 3 is being entered, newsub contains the tuple (c,d). 

As node d has not been explored, loop 3 will not be entered. Now, newSub3 will contain 

tuples (a,d), (b,d). Then updating SubCl will set it to ( (a,c), (b,c), (a,d), (b,d), (b,c) }. 

Similarly, at the second iteration of loop 2, (d,e) will be derived and stored in newsub. 

Loop 3 will not be entered. After the update, tuples (a,e), (b,e) and (d,e) will be added to 

SubCl. Since node e has no outgoing arc, SubCl need not be updated, and loop 2 

terminates. The last step is to perform selection on SubCl and to take the tuples starting 

with a and b into Cl. 



Figure 2-5: The derivation process of UIEC 

23.2. Discussion on UIEC 

As pointed out earlier, loop 1 and loop 3 of UIEC are actually implementations of a total 

closure algorithm. Loop 1 finds the total closure of 0th-frontier-edges, and loop 3 

computes the total closure of newsub, i-th-edges. Much research has been done on total 

closure evaluation, involving good algorithms like the Logarithmic Algorithm [9], 

Warshall's Algorithm [21] and Warren's Algorithm [20], etc. These algorithms are proved 

to be very efficient in total closure processing. In this section, we will modify the 

algorithm UIEC by employing the Logarithmic Algorithm in its loop 1 and loop 3. The 

disk I/O performance of the original and the improved version are then compared. The 

new version for UIEC is as follows: 



SubCl := Totrlcl ( SubC1 ) 

while ( P # 0 ) 
newsub : = F A  A 
if ( newsub = 0 ) axit the  loop 
newsub2 := newsub A  SubCl - newSub 
newsub := newsub uc newSub2 

newSub3 := SubCl A  newsub - -1 
SubCl : = SubCl uc newSub 

SubCl := SubCl uc new- 

P := n2 (newsub) - lTl (-1) 
end while 

/* procedure TotalCl */ 
procedure TotrlCl( re1 ) 

TC1 := re1 
LW := re1 
m i r e ~ ~ a  := I T C I I  
loop 

LW := LW A  LW 
i f  ( LW = 0 ) thur exi t  loop 

W := TC1 A LW 
if ( w = 0 ) then exit loop 

T c l  := TC1 U W 

if ( sireTC1 = (TCI I ) then exi t  loop 

mireTC1 := I T C I  ( 
end loop 

return ( TC1 ) 
end Totalc1 

For the comparison purpose, we perform experiments on the original and improved 

versions of UIEC using special data (Sawtooth data) that is favorable to UIEC. This kind 

of data will be discussed in Section 3.2. Different parameter values and different relation 

sizes are used, and the result is shown in Table 2-1. The second column of Table 2-1 



corresponds to the number of starting nodes in Section 3.2 (in Figure 3-2). The third and 

the forth columns of Table 2-1 show the disk I/03 performance of the original and the 

improved versions of UIEC, respectively. 

Table 2-1: The disk VO of UIEC is improved 

The result shows that the disk VO performance of the improved version is better than that 

of the original one. In fact, the number of times loop 1 and loop 3 of the original UlEC 

presented in Section 2.2 are executed is also logarithmic in the depth of the transitive 

closure. Take loop 1 as an example. The loop finds the total closure for SubClo. Joining 

SubCIO with itself yields S U ~ C Z ; .  After the union operation, SubCl contains SubCIO and 

3 ~ i s k  110 is the number of pages swapped between disk and main memory 



SubC6, and, newsub contains SubCl; and SubCG. In the second iteration, SubCl becomes 

the union of SubClo, s&c(, SubCl; and S U ~ C ~ .  Thus, when we join n d u b  with 

SubC1, we will get S & C ~  u S & C ~  u . - . u s&c(. However, a large number of 

duplicates are produced. The result of joining SubCl; in newsub to s&c(, in SubCl is 

S & C ~ ~  which can also be produced by joining SubC6 to s&c$-' in SubCl. Then in  the 

16 third iteration, we can get the union of S&Cl0, SubC6, . . ,SuM710 and so on. Hence, in 

logarithmic time of the depth of the transitive closure, we will get the total closure for 

SubClo. The implication of the results from Table 2- 1 is twofolds: 

1. The duplication produced at each iteration is an important factor in the disk 
VO performance. The duplicates require extra storage. This implies that 
more buffer memory or else incurs high disk VO will be required. Moreover, 
we can see that duplication removal is a very costly operation. 

2. The selection of an efficient algorithm for total closure processing affects the 
disk VO performance of UIEC. In other words, if an efficient total closure 
algorithm is used, then the performance of UIEC will be improved. 

As the improved version of UIEC performs very well, in our performance studies, we 

will embed the Logarithmic Algorithm into UIEC, and do the analysis based on this 

improved version. 

2.3. Unary Wavefront with Frontier-Edges (UWFE) 

To reduce the redundancy inherited by BWFI' algorithm, we devise UWFE. As in UIEC, 

we proceed by using a unary driver set (unary frontier). However, in each iteration, instead 

of computing the i-implied-edges-closure as in UIEC, UWFE will compute the i-closure. 

The computation is made possible by storing i-frontier-edges. UWFE has three important 

intermediate relations which are: i) the unary frontier F; ii) Cl which stores the i-closure, 

and iii) PB which stores i-frontier-edges. Both Cl and PB are initialized to be the set of 

those edges originating from the starting nodes, i.e., 0th-edges. F is initialized to be 1st- 

frontier. Note that, we use the same method as the one in UIEC to find the frontier. In each 

iteration of PB, newPB, which is i-th-edges, will be found and unioned to (i-1)-frontier- 



edges to obtain i-frontier-edges. Then the i-closure will be computed by making use of the 

(i-1)-closure. The algorithm of UWFE is stated as follows: 

Cl :5 GA 
PB := Cl 
r : = n2 (PB) - nl (PB) /* col~putr the 1st-frontirr */ 

/* Loop 1 : computr tho 0-closura */ 
d l  := C1 A P B  - Cl 
whilo ( noel # 0 ) 

C1 := C1 uc nmCl 
nrwCl := nrwCl A PB - C1 

mnd whilr 

whilr ( T # 0 ) 
newPB := IP A A 
if ( newPB 5 0 ) u i t  the loop 

/* Loop 2 : c4mpute the i-closure from (i-1)-aloaure */ 
nrwCl : = Cl A nowPB - Cl 
whilr ( newCl # 0 ) 

C1 :5  C1 uc newCl 
no- := nee1 A PB - Cl 

and whilr 

r := n2 {PB) - nl (PB) /* compute the (i+l)th-frontier */ 
end while 

As in UIEC, the join operator A functions differently depending on whether its left 

operand is unary or binary. 

Lemma 2-4: UWFE correctly stores the i-closure in Cl at the end of the i-th 
iteration. 

Sketched Proof : 

After the initialization, PB and Cl contain all the edges emanating from the 
starting nodes. Thus, PB and Cl are equivalent to 0-frontier-edges. As loop 1 is 
an implementation of BWFT, therefore, after the completion of loop 1, Cl must 
contain the 0-closure. 

In each iteration of loop 2 of UWFE, i-th-edges are found using the join 
operation and are stored in newPB. By induction, PB contains the union of k-th- 
edges (02 k l  i-1), and so with newPB unioned to PB, we can obtain i-frontier- 
edges in PB. 

Now, assume that Cl contains the (i-1)-closure. By joining CZ to newPB, we can 



get all the implied edges from the starting nodes to the driven elements of the 
current drivers (i-th-frontier) using nodes in i-th-frontier as the intermediate 
nodes. With loop 3 that follows, instead of joining Cl to newPB, if we join Cl to 
PB, we will have an implementation of BWFT on i-frontier-edges. However, 
using PB will not produce more implied edges to be added to the i-closure than 
using newPB. Let us assume to the contrary that one more implied edge, say 
(x,z), is found when using PB. This means that we have a tuple (x,y) in C1 and a 
tuple @,z) in PB, for some y. The node y must be in k-th-frontier (Ol kSi-1), , 

because if it is in i-th-frontier, we must have @,z) in newPB (i-th-edges), and this 
implies that (x,z) should have been found using newPB. This contradicts our 
assumption. Therefore, node y is in k-th-frontier and this implies that (y,z) is in 
k-frontier-edges. By definition, the implied edge (x,z) should be contained in the 
(i-1)-closure. Therefore, (x,z) cannot be distinct from edges in the (i-1)-closure, 
and thus, using newPB is the same as using PB. Now, loop 3 can be seen to be an 
implementation of BWFT, and therefore, the query closure of i-implied-edges 
(i.e., i-closure) will be found at the end of loop 3. Thus, Cl contains the i-closure 
at the end of iteration i. 

Theorem 2-5: The algorithm UWFE terminates and produces the correct 
closure in C1. 

Sketched Proof : 

As UWFE has the same i-th-frontier as that of UIEC for each iteration, UWFE 
must terminate by Theorem 2-3. 

As all the drivers must have been considered at the end of loop 2, PB must 
contain all the edges accessible from the starting nodes. By Lemma 2-4, Cl 
contains the i-closure which is the query closure of i-frontier-edges. Therefore, 
when UWFE terminates, Cl must be the final query closure. 

23.1. Example of Using UWFE 

Consider Figure 2-1. As before, we take nodes a and b as the starting nodes. After the 

selection operation, we derive tuples (a,c) and (b,c) in PB and Cl. As there are no edges 

between nodes a and b, then the complete 0-closure will be stored in CI, and so we can 

proceed to the second loop. At the first iteration, F contains the driver c. With the driver, 

after the join operation, we get (c,d) which is then stored in newPB. Then this new tuple is 

. added to PB. Computing 1-closure, we get {(a,~),  (b,c), (a,d), (b,d)). The only driven 

element is node d, which has not been explored, so it is the only element in 2nd-frontier. 

At the second iteration, (d,e) is the only element in newPB after the join operation and it is 

added to PB. The new implied edges (a,e) and (b,e) are formed by joining Cl and newPB in 



the computation of the 2-closure. The set of these tuples is then unioned with Cl. Then 

node e will be found as the only element in 3rd-frontier. Since node e does not have any 

outgoing arc, and so the loop terminates. The derivation process of UWFE is also shown 

in Figure 2-6. 

Figure 2-6: The derivation process of UWFE 

23.2. Discussion on UWFE 

UWFE and UIEC use the same driver set for each iteration. However they use different 

methods of derivation. While UIEC uses the i-implied-edges-closure to record the 

derivation path, UWFE uses i-frontier-edges to record only edges from one driver to other 

driver(s). The use of the i-implied-edges-closure will provide complete information of the 

derivation process, in the sense that whenever a driver b is revisited while a node a is being 

explored, all the reachable nodes leading from b can be immediately recognized as 

successors of a. This means that by one join operation, we can get all the implied edges 

( ( a j )  : ( b j )  is an implied edge leading from b) . 
In contrast, the use of i-frontier-edges only gives partial information. We only know the 

. direct edges leading from j-th-frontier (OSjli), i.e., j-th-edges. Thus every time when a 

node b is revisited, the successors of node b are not explicitly stored, and we have to use 

node b as the root and traverse through the edges in PB to find the successors of b. 



Therefore, when many such nodes are revisited throughout the derivation stage, UWFE has 

to find the successors of these nodes repeatedly. This implies that more I/O is needed for 

UWFE. On the other hand, in order to provide such complete information on the derivation 

stage, UIEC needs extra effort to update the i-implied-edges-closure. If there are not many 

nodes being revisited, then the effort of updating the implied edges for each of the 

encountered drivers will become a substantial overhead. Thus, there is a tradeoff between 

providing the full derivation information and the extra effort of updating the i-irnplied- 

edges-closure. In the performance studies presented in Chapter 6, we will demonstrate such 

tradeoffs. 

2.4. Unary Wavefront Preprocessing with Total-Frontier-Edges (UPFE) 

UPFE is a preprocessing algorithm. It first finds total-frontier-edges and then finds the 

query closure of total-frontier-edges. To accomplish the task, UPFE computes the query 

closure by the direct application of BWFT on total-frontier-edges. UPFE employs 

intermediate relations PB to record the i-frontier-edges set, F to store i-th-frontier (current 

drivers), and Cl to collect the i-closure. As UWFE, PB and Cl are initialized to be the set of 

edges leading from the starting nodes. The frontier F is found by using the same method as 

that in UIEC and UWFE. There are two stages in UPFE. The f i t  stage is to fmd i-frontier- 

edges (the preprocessing stage), and the second stage is to find the i-closure (the 

propagation stage). The preprocessing stage is the iterative process of finding a new driver 

buffer by exploring the current drivers. The new drivers are all the unexplored direct 

successors of the current drivers. Edges leading from the current drivers will be added to 

PB as in UWFE. Each iteration of the propagation stage will require i-th-edges to be found 

and stored in an intermediate relation newel which will then be unioned to Cl. The UPFE 

algorithm is stated as follows: 



/* preprocessing stage */ 

w h i l r  ( O # 0 ) 
newPB : = P A A 
i f  ( newPB = 0 ) exit the loop 

R' : = n2 (newPB) - (PB) 
end w h i l e  

/* propagation stage */ 

newCl := n ( C1 A PB - C1 ) 
w h i l e  ( newCl # 0 ) 

C1 := C1 uc newCl 
newCl := nrwCl A PB - cl 

md w h i l e  

Theorem 2-6: UPFE terminates and correctly computes the query closure upon 
termination. 

Sketched Proof : 

The preprocessing stage terminates because there are at most 2n distinct drivers 
(n = size of the base relation A), and also only i-th-frontier are considered for 
each iteration. Besides, at each iteration, we record i-th-edges in PB. In other 
words, we explore the current drivers, and record the direct edges leading from 
these current drivers. Hence, the active driver set must be exhausted at some 
iteration and the loop terminates. Moreover, all the drivers driven from the 
starting nodes must be considered. Thus we must have recorded all the driving- 
driven pairs (total-frontier-edges) in PB upon termination of the preprocessing 
stage. 

All the edges needed for the derivation process are recorded after the 
preprocessing stage, and using these edges is sufficient to derive the query 
closure. That is, we have eliminated those useless edges (edges that are not 
incident on the successors of the starting nodes) from the base relation A. In the 
propagation stage, we find the query closure on the smaller relation PB instead 
of the larger relation A. As we use BWFT for this propagation process, upon 
termination, Cl must collect the query closure properly, by Theorem 2-1. 



2.4.1. Example of Using UPFE 

Let us consider Figure 2- 1 again. The preprocessing stage is started by initializing PB and 

Cl to be (a,c) and (b,c). The only driver found is node c. With driver c in 1st-frontier, we 

find newPB to be (c,d) which is then added to PB. Then in the next iteration, the driver d in 

2nd-frontier has only one edge (d,e) leading from it, and so newPB will contain (d,e) only. 

With newPB unioned to PB, we now have in the PB (i-frontier-edges) the tuples {(a,~),  

(b,c), (c,d), (d,e)}. Since node e is not drivable, the preprocessing stage is completed. The 

first iteration of propagation stage will add the tuples (a,d) and (b,d) to Cl. Then in the next 

iteration, the two tuples (a,e) and (b,e) will be added. Now, newCl is empty, and the loop 

terminates. The query closure found is {(a,c), (b,c), (a,c), (b,d), (a,e), (b,e)}. The 

derivation process of UPFE is also shown in Figure 2-7. 

Figure 2-7: The derivation process of UPFE 



2.4.2. Discussion on UPFE 

Both UPFE and UWFE find and record i-frontier-edges, and stores these direct edges 

emanating from the drivers in PB. The algorithms will also compute the i-closure. 

However, the computation of i-closure in UWFE is done within the loop of deriving the 

driver sets, but that in UPFE is done after the drivers derivation process is completed. 

Thus, they are different in the order of the relational database operations. It is this ordering 

that makes the two algorithms different in their relation reference pattern (RRP) and values 

of Least Maximum Buffer Requirement (LMBR), which will be treated more formally in 

Chapter 5. Moreover, reference localities of the two algorithms are different. Independence 

of driver derivation and i-closure update processing enables UPFE to concentrate on fewer 

relations in each stage. Thus, the chance that these relations are in the main memory will 

be higher. In particular, the data pages of the base relation A needed during the join 

operation, which is a very costly operation, in the preprocessing stage of UPFE will be 

more likely in the main memory than those data pages needed during the corresponding 

join operation in UWFE. On the other hand, updating i-closure inside the driver derivation 

loop has its advantage. The merit of the action lies in the data clustering property of the 

relations during the updating process. To be precise, each iteration of the updating process 

of UWFE will encounter much smaller relations than that of UPFE. Hence, there will be a 

higher chance for those relations to be found in the main memory, and thus there will be 

less disk traffic. All of these factors contribute to the difference in disk VO performance of 

UPFE and UWFE. In Chapter 5, these factors will be considered, and the difference in disk 

VO performance of the two algorithms will be discussed in more detail in Chapter 6. 



Chapter 3 

Algorithm Analysis On Some Typical Data Sets 

In this chapter we will consider some special data sets in order to get a deeper 

understanding of the algorithms. These special data sets are arranged such that one of the 

algorithms will be seen to outperform all others. For each data set, simulation experiments 

are carried out to compare the disk I/O performance of the algorithms. A small buffer size 

(10 pages) is used in each experiments, and each of the pages is assumed to hold 20 binary 

tuples4. 

3.1. Parallel-Chains Data 

When the base relation contains only independent chains of data like that in Figure 3-1, 

we refer the kind of data as Parallel-Chains Data. The base relation may contain complex 

relationships among the nodes, but from the starting nodes chosen to their descendants, the 

outdegree and in-degree of the nodes must be equal to or less than 1. 

In the discussion of B W ,  we pointed out that extra processing occurs when some of the 

drivers have common descendants, and the path leading from those descendants to their 

descendants may be revisited. However, if no such case occurs, that is, if the base relation 

has nodes with indegree I 1, then each of these nodes cannot be revisited by any search 

mechanism. Parallel-Chains Data has this property. This means that BWFT satisfies the 

condition that no path is revisited as other algorithms, but without the overhead. The only 

difference is the arity of the driver (binary vs. unary). Thus B W  is expected to 

outperform the others for this kind of data set. In fact, the number of iterations that BWFT 

%e buffer size and page size will be discussed in Section 6.1. 
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Figure 3-1: Parallel-Chains Data 

takes is exactly the same as those for UIEC and UWFE, thus eliminating the motivation of 

UIEC and UWFE, as stated in Chapter 2. 

We have generated this kind of data with 2 parameters and compared the results of the 

algorithms. The parameters are: the number of starting nodes and the depth of each chain 

(all chains have equal depth). The results are shown in Table 3- 1. From Table 3- 1, we can 

see that the experimental results agree with the discussion we have made above. 

3.2. Sawtooth Data 

We refer to those relations that are composed of a long single chain with each odd node 

as a starting node as the Sawtooth Data. Figure 3-2 shows this kind of data. 

In Figure 3-2, al, . . - , a, are all the starting nodes, and the closure for the relation is the 

set of tuples such that C1 = { (ai,aj) : j < i ) u { (ai,bj) : jSi  ). Since this data set has a 

long chain, BWFT will iterate the loop for 2n-2 times in order to find the closure. Both 

UWFE and UIEC will exit from its second loop after one iteration. As a preprocessing 

algorithm, UPFE does not perform better than BWlT because all the edges needed for 



Table 3-1: Disk VO performance of the algorithms on Parallel-Chains Data 

propagation can be found in one iteration. Sawtooth data requires UPFE to put much 

effort on its propagation stage which is just the implementation of BWFT. Even though 

UWFE and UIEC exit from their respective loops after the same number of steps, the 

processing inside the loop makes a difference in their disk YO. The computation of the 

i-closure inside loop 2 of UWFE is an implementation of B m ,  hence loop 3 of UWFE 

(loop that carries out the i-closure computation) will iterate 2n - 2 times in its loop 2. 

However, finding the i-implied-edges-closure inside loop 2 of UIEC requires only ln(2n-2) 

steps. (Recall that a logarithmic algorithm is used for the total closure evaluation.) This 

makes UIEC outperform the other algorithms for this kind of data. 

The experimental results are shown in Table 3-2. The data set generated has two 



Figure 3-2: Sawtooth Data 

parameters, i.e., the number of starting nodes, and the size of the base relation. The first 

and second columns of Table 3-2 correspond respectively to the relation size and the 

number of starting nodes. The third to sixth columns correspond to the disk I/O of BWFT, 

UWFE, UPFE and UIEC respectively. The result in Table 3-2 shows that UIEC has the 

best disk ID performance. This confirms with the above discussion. 



Table 3-2: Disk VO performance of the algorithms on Sawtooth Data 

3.3. One-Cycle Data 

When the base relation contains one large cycle and there is a direct edge from each 

starting node to a node on the cycle, we refer this kind of data as One-Cycle Data. In 

Figure 3-3 we have a One-Cycle Data set with two starting nodes al and a2. In our 

experiment with this kind of data, there are two parameters: the cycle length and the 

relation size. The results of the experiment are tabulated in Table 3-3. 

The results indicate that UPFE outperforms the others when the cycle length is of 

moderate size, such as 20. When the length of the cycle increases, BWFT becomes the 



Figure 3-3: One-Cycle Data 

best. Generally speaking, the performance gap between UPFE and BWFT narrows as the 

size of the relation increases. UIEC is the worst in this kind of data. This is because the 

effort to update the i-implied-edges-closure is a waste. For this kind of data, only the 

implied edges leading from bl and bRn (see Figure 3-3) are useful. Hence, UIEC has a 

higher overhead than the other algorithms and its disk VO performance becomes the worst. 

When we examine the data more closely, we will find that it exhibits the property of 

Parallel-Chains Data. For example, al to ba is a long chain, and bnn to bl is also a long 



chain. When the length of the cycle increases, the property of Parallel-Chains Data 

becomes more apparent. However, for moderate cycle length, UPFE has the least disk YO. 

The reason is that it preprocesses the base relation to a smaller relation (total-frontier-edges 

PB), and then finds the closure by just focusing on PB. Since the relation PB is smaller 

than the original base relation, the page swapping during the propagation stage is reduced, 

and hence, the disk I D  is small. UWFE stores i-frontier-edges and computes the i-closure 

at each iteration. In a small memory buffer environment, this will make more frequent disk 

swapping of these intermediate relations (PB and CI, etc.) for processing, and hence, 

UWFE will have higher disk I/O than that of UPFE. Therefore, UPFE will outperform the 

others on moderate cycle lengths. 



Table 3-3: Disk I/O performance of the algorithms on One-Cycle Data 



Chapter 4 

Database Model 

In this chapter, we will describe the database model we use. The introduction of our 

database model is to provide the readers with information about the environment in which 

the simulation experiments will take place (Chapter 6). The buffer requirements of the 

algorithms are analyzed in Chapter 5. 

4.1. Architecture of the Database System 

As described in logic and database literature, a deductive database system is divided into 

an intensional database (IDB) system and an extensional database (EDB) system. The 

intensional database consists of deductive rules and integrity constraints whereas the 

extensional database is the set of data stored in the database. Normally, IDB and EDB 

reside in the disk, and are brought to the main memory when needed. Since we use the 

compilation approach (see Chapter 1) to query processing, the rules in IDB will be 

compiled first into one of the query processing algorithms we have. The query processing 

algorithms are embedded in our system software. Query processing requires the system to 

access the EDB in the disk, and to manage the 110 between the main memory and the disk. 

4.2. General View of the System Software 

Our System Software Model is divided into Relational Data System (RDS) and Data 

Storage System (DSS). The input to RDS is the compiled query which consists of a set of 

relational database operations. In RDS, these operations will be transformed into sequences 

of read and write requests, and these operations are the input to the DDS module. Each of 

these read/write operations is at the tuple level, i.e., the interface of RDS and DDS. 



DDS is further divided into two modules. The two software modules are File Structure 

System (FSS) and Buffer Management System (BMS). The tuple ~leadlwrite operations 

from RDS are directed toward FSS. In fact, the operations can be sequential read/write or 

indexed read. A sequential operation is one that reads from and writes to a relation 

sequentially. For indexed read, a B+ tree structured indexing is built for the relation which 

has not been indexed. A tuple is accessed directly through the use of the index. FSS is h e  

module responsible for these direct and sequential read and write operations at the tuple 

level. In order to carry out its job, FSS will convert the tuple readwrite operations into 

page readJwrite operations which are then forwarded to BMS. 

Within BMS, the buffer manager is responsible for managing a buffer pool of pages. 

Basically, the task of the buffer manager is to: 1) serve the page requests passed from FSS, 

2) communicate with the disk manager in order to do readlwrite operation from/to disk, 

and 3) decide which page in the buffer is to be replaced when the buffer is full. BMS also 

acts as the interface to the disk manager. 

In our simulation model, each of the above layers is implemented as a module. The 

communication between the modules is by subroutine invocation. The devices such as the 

main memory (buffer pool of pages) or the disk are simulated by data structures in our 

package. 

4.3. Relational Database Operations 

The transitive closure algorithms will be transformed into a sequence of relational 

database operations serving as input to RDS. Within RDS, the modules Assign, Join, 

Select, Project, D ig  and Union which correspond to each of the six relational operations, 

Assign, Join, Selection, Projection, Difference, and Union will perform a series of read 

and write operations either sequentially or directly using indexing. The relational database 
- operators are implemented as follows: 

Assign(A,C) - This is perhaps the simplest operation. The function of this operation is 
to copy all the tuples of relation A to relation C. Hence a loop is 
needed to do a sequential read on relation A, and write on relation C. 



Jointi - attb,r - attb,AJ,C) - 
j-attb and r-attb are bit vectors representing the join attributes of the 
operands and the resulting attributes of the result relation, respectively. 
Using the bit vectors, we can arbitrarily choose any of the attributes of 
the operands to be the join attributes or resulting attributes. 

In this research, we adopt the nested-loop indexing strategy to 
implement the join operation. The outer loop will do sequential read 
on one of the two relations. Using the joining attribute of the retrieved 
tuple as a key, we will find all the matching tuples of the other relation 
in the inner loop by direct read operations on that key. Then a resulting 
tuple will be formed for each pair of the matching tuples by examining 
the bit vector r attb. The relation to be chosen in the outer loop is 
always the smAler relation. In Appendix A, we describe our 
experiments on two different choosing strategies for the inner and 
outer relations, and justify our choice. 

Select(attb,constant,A ,C) - 
The parameter attb designates the selection attribute column. Since we 
are considering only unary or binary relations, attb can be either 1 or 2. 
A value of 1 denotes that the selection is done on the first attribute, and 
a value of 2 means the second attribute is the selection attribute. The 
result relation C can be unary or binary, depending on whether A is 
unary or binary. constant is an array which is the set of constants by 
which the selection is applied. If indices have already been built on the 
selection attributes, then direct read operation will be issued using the 
list of constants as keys; otherwise, relation A will be accessed 
sequentially to find all the tuples that have one of the values in the 
constant list in its selection attribute column. 

Project(attb,A,C) - This operation not only performs projection, but also duplication 
removal. If relation A is unary, then the only job that can be done is 
removing all the duplicates of A. For binary relation A, projection can 
be done on the first or second attribute, and attb is used to represent 
which of the attributes should be applied on. Instead of having values 
''1" or "2", attb may have value "3". In that case, only duplication 
removal is done for the binary relation A. 

In our implementation, we first sort the relation A on the projection 
attribute. Then the sorted relation will be scanned sequentially to find 
distinct values or tuples. Hence, the cost of this operation is the sorting 
cost, and the cost to read the sorted relation. 

Diff(A,B,C) - The relations A, B, and C can all be unary or all be binary. All the 
tuples in A that are not in B will be written to C. Like join operation, 
this operation also requires a pair of nested loops. Sequential read 
operations will be done on relation A in the outer loop. For unary 
relation A, the attribute of the retrieved tuples will be used as the key to 
do an index read to relation B in the inner loop. If no such key can be 
found for relation B, then the key will be written to relation C. In the 



case of binary relation A, the first attribute of the retrieved tuple of A 
will be used as the key to the index search in relation B. If no 
equivalent tuple is found in B, then the tuple will be written to C. 

Union(AJ3,C) - Relation B will be unioned to relation A. These relations can be both 
unary or both binary. There are two versions of Union operation. The 
first one is quite simple, and it just needs to read all the tuples of 
relation B and writes them to the end of relation A. The other version is 
equipped with a mechanism for duplication removal. In that version; a 
pair of nested loops are needed. The outer loop will read A 
sequentially, and the second loop is to use the first attribute of A as the 
key to do an index search on relation B. If no occurrence of the 
retrieved tuple of A is found on B, then the tuple will be written to the 
end of A. In addition to writting the tuples of B to the end of the 
relation A, the two versions also build an index to those tuples added to 
A if an index table has been built for A before. 

4.4. Other Operations Used in The Simulation Model 

We implemented three more operations to free space for a relation which will not be used 

later on, to sort a relation on one specific attribute column, or to build an index for a 

relation. The three operations are Freespace, SortRel and Buildndex. Moreover, our 

algorithms sometimes require the application of the same sequence of relational database 

operators. For easy analysis and improved performance, we have added two operators both 

of which combine two relational database operations. These are the operators for join and 

difference, and project and difference operation. We call these operators JoinDifl and 

FreeSpace(A) - This operation will free all the storage occupied by the relation A. This 
operation proved in some of our tests to be useful because when we 
have only limited buffer space (main memory), releasing those 
unwanted pages in the main memory will allow useful pages to remain 
in main memory without being swapped out. Without this command, it 
is very hard to use any replacement algorithm to ensure that all the 
pages that are no longer needed will be chosen to be swapped. 
Therefore, using this command, the overall performance will be 
improved. 

SortRel(attb,A) - As before, attb denotes the attribute the operation is applied on. We 
have implemented the quick sort algorithm for sorting the relation. In 
our simulation model, the base relation will be sorted on the f ~ s t  
attribute before any of the binary query closure algorithms are 
executed. The disk VO performance is improved by sorting the base 



relation first, because all the drivers with the same value will be 
clustered together. 

BuildIndex(attb,A) - 
A B+ tree indexing will be built on the attribute column designated by 
attb. This operation will be applied on the base relation at the 
beginning of all the algorithms because we always need the first 
attribute of the base relation as the key for finding driver sets. 

JoinDiffO - attb,r-attb,AB ,CP)  - 
j-attb and r attb are the bit vectors for choosing the join attributes and 
result attributes of joining relations A and B. This operation finds the 
difference of the result relation of joining A and B from C. The 
difference will be stored in D . 
Like the join operator, this operator is also implemented with a pair of 
nested loops. In its second loop, after a matching tuple t is found, the 
tuple will be checked immediately against relation C for occurrence. 
This test is carried out by using the tuple as the key to the index table 
of C. That is to say, we also need index table for C. Our 
implementation of difference operation also requires the index table, so 
it is not an extra effort to build an index table for relation C here. If no 
equivalent tuple t is found in C, then t will be written to relation D. 
Thus, no intermediate relation is needed to store the intermediate result 
of joining A and B. 

ProjDiff(AB,C) - All the three relations are binary. This operation finds the projection 
of A on the second attribute, and the projection of B on the first 
attribute, and then stores the difference of the former projection from 
the latter projection into C. 

A will be sorted on the second attribute. Then the sorted relation will 
be scanned sequentially to find distinct values. Each of the distinct 
values will be used as the key to access the index table of B on its first 
attribute. If the index entry exists for the key, then the key will not be 
recorded, otherwise, the key will be written to C. Therefore, there is no 
need for intermediate relations for the two projections, and hence VO 
performance will be improved. 

4.5. File Manager 

The File Manager manages the interface between File Structure System PSS) and Buffer 

Mangement System (BMS) inside Data Storage System (DDS). Upon receiving the tuple 

requests from Relation Data System (RDS), the File Manager will find out whether the 

requests are sequential or directed ones. If sequential operations are needed, then the File 

Manager will convert the requests to page requests and then pass the page request to the 



Buffer Manager. The conversion is a trivial calculation as long as we know the number of 

tuples that can reside in a page. When a direct request is passed from RDS, then there are 

two things the File Manager needs to do. First, the File Manager needs to see whether the 

relation already has an index. If not, then an index table must be built on the relation. 

Second, the File Manager should initiate an index search. The index search requires the 

traversal of the B+ tree table built for the relation until a leaf node is reached. At the leaf 

level, the address of the data pages where the tuples with the key in question can be found. 

Readers interested in the B+ tree structure are referred to [3]. 

4.6. Buffer Manager 

In addition to the buffer pool (main memory) mentioned earlier, there are some system 

buffers within Buffer Mangement System (BMS). These system buffers simulate cache 

memory. In our system, we have in total 2 buffers for reading, 1 buffer for writing, and 1 

buffer for indexing.5 All these buffers (the main memory and the cache memory) are 

managed by the Buffer Manager. When a page request arrives, the Buffer Manager will 

first find out whether the page is in one of the system buffers. In fact, a read request will 

entail a search in the read buffers, and a write request will entail a search in the write 

buffer. If the page is found in one of those buffers, then it will be read or written according 

to the request. When the page is not in the system buffers, then it will try to search in the 

main memory, and finally to search in the disk when the page is not in main memory 

either. 

4.7. Disk Manager 

There are 3 main tasks which the Disk Manager is responsible for: 

1. To load the base relation into the disk storage when the system is first 
initialized. 

2. To read and write some tuples to a page in the disk. 

5~ buffer in our context means memory large enough for a page of tuples. 



3. To communicate with the Buffer Manager to copy a page frorn/to in the main 
memory tolfrom the corresponding page in the disk. 



Chapter 5 

Buffer Requirement Analysis 

In this chapter, the analytical tools which are the basis for the analysis in the performance 

studies we will cany out in the following chapters are described. This chapter will then be 

proceeded by applying the analysis tools to each of the algorithms described in Chapter 2. 

A general comment of these algorithms based on the analysis will then be followed. 

5.1. The Reference Pattern and the Least Maximum Buffer Requirement 

In this section, we will introduce the analytical tools we will use in our performance 

studies. Now let us first define the Least Maximum Buffer Requirement (LMBR) of an 

algorithm as follows: 

Definition 5-1: The LMBR is the least buffer size required by an algorithm so 
that all the base relations will be read only once into the main memory and the 
intermediate relations will reside in the main memory whenever needed without 
generating any disk YO. When an algorithm reaches its LMBR, increase in the 
buffer size will not improve the disk VO performance of the algorithm. 

When the buffer size is large enough, then the base relation or intermediate relations need 

not be swapped between the disk and main memory, and thus minimum disk traffic is 

incurred. However, in most situations, the amount of memory available for allocation as 

buffer space is rather limited and the LMBR of the algorithm will be a useful indicator for 

the amount of memory in the buffer required to ensure good disk VO performance. If a 

number of algorithms are compared to determine their disk I/O performance, the algorithm 

with the smallest LMBR will be a good choice, especially when main memory is 

considered as a resource that need to be conserved. Obviously, one cannot guarantee that 

LMBR is always well-behaved, i.e. the VO performance of an algorithm will smoothly 

converge to its minimum as the buffer size approaches its LMBR. However, our 



experience with LMBR here as well as the results reported in [15] convince us that the 

LMBR is a very well-behaved indicator. With LMBR, we can compare the disk VO 

performance of alternative algorithms (in this thesis, the algorithms for comparison were 

described in Chapter 2). To estimate the LMBR of an algorithm, we need to know how the 

relations are accessed. The Relation Reference Pattern (RRP), which records the 

accessing pattern of the relation, is defined as follows: 

Definition 5-2: An RRP of an algorithm is the chronological order of relations 
(base and intermediate) by which the algorithm accesses the relations. 

In order to show the relation reference pattern of some sequence of operations, we have 

the notation: A -+ B. This means that the access to the relation A is followed by the access 

to relation B. If "+" is used repeatedly, then the sequence of relations will be made 

explicitly. For example, if we have: 

R 1 + R 2 +  - * *  +R, 
then we know that the operation requires access to relation R1 first, then to relation R2, and 

SO on, to R,. 

A relational operation will usually cause reference to its operands and the result relation. 

However, sometimes, a relational operation will access other relations, such as the index 

table6 of an operand. For example, the join operation as described in section 4.3 requires 

the access to one of its operand A to create the index table for A, the other operand B to 

access a tuple t. Let k be the join attribute of tuple t. Then the join operation accesses the 

index table of A to find the address of a matching tuple with key k. Finally, it accesses the 

relation A to find the matching tuples, and places the result tuple into relation C. Thus, the 

RRP for the join operation on A, B to get C will be : 

A + B + Aindex + A + C 

where Aindex is the index for A. 

Other relational operators like difference, select, project will also access the index 

4"he index table itself is also represented as a relation. 



relation. Since the RRP of an algorithm is generally quite complicated, we will make some 

assumptions to simplify the process of deriving RRP. In the sections that follow, we will 

consider only data pages. The index relation will not be considered. The size of the index 

table of a relation is always proportional to that of the relation. Normally, accesses to the 

index of a relation will also be followed by accesses to the relation itself. Thus, if we have 

to access a large relation, we expect its large index table also to be accessed. ~heref&e, 

considering only the data pages will also provide an idea of the whole picture of relation- 

accessing including index. 

5.2. RRP and LMBR for BWFT 

As stated before, we will not consider index reference here. Before presenting the RRP of 

BWlT, we present the algorithm of BWFT, described in Chapter 2, for easy reference: 

cl := ClA 
P := Cl 
whilr ( F # 0 ) 

O : =  F A A - C 1  
C1 := C1 UC F 

end whilr 

We use the notation Fi and Cli to denote the binary frontier and the derived closure at the 

iteration i. As BWFT must terminate, it is possible to find some integer Mb such that 

BWFT stops at that iteration. The relation reference pattern (RRP) for BWFT looks like 

the following: 

Stage 0 : Selection is done on A to get the closure CIO. Then CIO is accessed 
again for the assign operation to get the frontier Fg, 

Stage 1 : The first iteration of the loop. 
. . . 

Stage i : The frontier Fi-l at the previous iteration and the base relation A are 



joined. Fi is then obtained as the difference of the result relation and 
the closure Cli-l. The reader should note that we do not reference the 
result relation from the join operation. This is the consequence of the 
use of our new operator join and difference as described in section 4.4. 
After Fi is found, Cli-l will be accessed in the union operation with Fi 
to produce Cli. 

Stage Mb: The last iteration of the loop. The final query closure Cl will be 
produced at this iteration. 

It should be noted that in finding the Least Maximum Buffer Requirement for BWFT, 

after the derivation of new driver set F, the old one will be deleted. But the deletion can 

only be brought about after the formation of the new set. Hence, we must have a buffer 

large enough to hold the old and new sets for LMBR. However, the formation of new 

closure will not cause deletion of the old one. The union operation causes attachment of 

the new frontier set to the old closure to produce the new closure at that iteration. Now, 

the LMBR of BWFT is calculated to be: 

I A )  + 1 ~ 1 1  + 2 1 ~ I  
pagesize 

w h e ~  pagesize is the number of tuples a system page can hold, 
I Cl I is the size of the final results (the closure), 
I F I is the size of the largest frontier. 

5.3. RRP and LMBR for UIEC 

As pointed out in Chapter 2, UlEC requires implementation of the total closure algorithm. 

Hence, the relation reference pattern (RRP) of UIEC depends on the implementation 

method. In order to show such dependency, we will use RRPTC(rel) to represent the RRP 

of total closure algorithm to the relation rel. Before we show the RRP of UIEC, let us 

present UIEC algorithm again: 



w h i l e  ( P # 0 ) 
n e w S u b  := P A A 
if ( n e w s u b  = 0 ) axit the loop 
n.wSub2 := n e w s u b  A -1 - n e w s u b  
n e w S u b  := n e w S u b  uc n e w S u b 2  

F := n2 ( n e w s u b )  - nl (-1) 
end w h i l e  

We use Fi to denote i-th-frontier, and SubClij to indicate the j-th step in getting the i- 

implied-edge-closure SubCli. Since UIEC must terminate, we should be able to find the 

last iteration Mu where UIEC complete its job7. The relation reference pattern for UIEC is 

then described as follows: 

'we use a subscript "u" here instead of " b  used in BWFT before in order to distinguish that UIEC uses 
unary frontier, whereas BWFT uses a binary one. 



Stage 0 : A + SubCl,,, + SubCl,, , + P, + RRP,, (SubCl,,,) + 
SubCl, + 

1 : P1 + A +  nowSub,,, + SubCl, + newsub,,, + 
newSub2, + newSub,,, + n e ~ S u b ~ , ~  4 RRP, (new-, ,) + 
newSub, 4 SubCl, + newSub, + SubCl, + 
nrwSub3, + =lo + newsub, + SubCll,o + 
newsub3, + SubCl, + newsub, + -1, + 

... 
i : Fi + A + newSubi,, + SubCli-, + + 

n e ~ S u b 2 ~  + newSubi,, + new8ubi,, + RRP, (nrwSubi,,) 4 

newSubi + SubCli-, + newSubi + SubCli-l 4 

newSub3, + SubCli-, + newSubi + SubCli,, + 
r1ewSub3~ + SubCli + newSubi + 8ubCli -, 

Stage 0 : Selection on base relation A to get SubCl0,@ The 1st-frontier F 1  is 
obtained next as the difference of the second attribute and the first 
attribute of SubCIO O. Then total closure is to be found for SubClo,o to 
get the 0-implied-&ges-closure SubCIO. 

Stage 1 : The loop starts. 

Stage i : The i-th-frontier Fi and base relation A are accessed in a join operation 
to get newSubi,? Together with SubCIO, novSubip is referenced again 
in the join and hfference operation to produce ne~Sub2~.  n e w S ~ b ~ , ~  is 
produced after the union operation of n e ~ S u b ~ , ~  and ne~Sub2~.  Total 
closure operation is then performed on n e w S ~ b ~ , ~  to get d u b i .  The 
(i-1)-implied-edges-closure S U ~ C Z ~ _ ~  and newSubi will then be 
referenced in another join and difference operation. The result of the 
operation is stored in ne~Sub3~.  The i-implied-edges-closure SubCli is 
obtained by performing the union of S U ~ C Z ~ - ~  first with newSubi, and 
then with ne~Sub3~.  Finally, newSubi and SubCli are involved in 
another projection and difference operation to get the (i+ 1)- th-frontier 
Fi+ 1. 
. . .  

Stage Mu : The loop terminates. The Mu-implied-edges-closure will be found and 
stored in SubCly,. 

Stage Mu+l : Selection on ~ u d C 1  to get the closure Cl. % 



Before we can calculate the LMBR for UIEC, we should know the RRP of the total 

closure we used. Here, we will use the Logarithmic Algorithm which has been presented in 

Section 2.2.2. For easy reference, we present the procedure here again: 

procedure Totalc1 ( re1 ) 
TC1 := re1 
LW := rol 
aireTC1 := JTCI]  
loop 

LW := Lw A LW 
if ( LW = 0 ) then exit loop 

W := TC1 A LW 
if ( W = 0 ) then ucit loop 

if ( sizeTCl = ITClI ) then exit loop 

sireTCl := J T C I I  
end loop 

We denote the partially computed total closure at iteration i by TCli, and the j-th step in 

evaluating TCli by TCli j. LWi and Wi are the intermediate relations LW and W respectively 

computed at the i-th iteration. We assume that the invokation to the Logarithmic 

Algorithm will terminate in some iteration, say the L-th iteration. The RRP of the total 

closure algorithm on re1 is as follows: 

Stage 0 : re1 4 TClo + re1 + LWo + 
1 : LWo -$ LW1 + %lo + TCll,, + 

TCll,, + LWl + W1 4 TCllro + %11 + 
. . . 

L : LWL-l 4 LW, + + TCl,, + 
TCl,, + LW, 4 W, + TCl,,o + TC1, 

The stage 0 of the Logarithmic Algorithm references to re1 in two assign operations. Then 

inside the loop, LW will be referenced in a join operation. The updated LW is involved in a 

. union and a join operation. W is then accessed in a union operation to produce the total 

closure TCli at that iteration. 

In the Logarithmic Algorithm, the old LW at each iteration will be deleted after the 



formation of new LW, so we should have a buffer large enough for the new and old LW for 

LMBR. Moreover, the new LW is used to find W at each iteration, so W will be formed 

after the old LW is deleted. Thus, LMBR of the algorithm is at least: 

where ) LW I is the maximum size of all the LWi found, 
I W I is the maximum size of all Wi, 
rnax{x,y) is the function that computes the maximum of x and y. 

Our implementation of total closure algorithm, TotalCl(re1) procedure in 2.2.2, will build 

the total closure by directly updating the relation rel. The relation TC1 takes over the space 

occupied by rel, hence we saved some memory. Thus the LMBR for the total closure 

algorithm is: 

where TCl is the final closure. 

At each iteration in UIEC, the relation A, the implied edges from the current drivers to all 

their visited descendants in newSubi the intermediate relations for deriving the total closure 

(i.e., LW and W), intermediate relations for deriving the i-implied-edges-closure (i.e., 

n e ~ S u b 2 ~  and ne~Sub3~),  and the i-th-frontier Fi are needed. Thus, the iterative process 

requires the buffer size of: 

where newSub2 and newSub3 are the largest of 
all the newSubZi and n e ~ S u b 3 ~  respectively, and, 

F is the largest driver set. 

Once we get the total-implied-edges-closure SubCl (i.e. SubCl ), we can release the M, 
storage of other relations including the base relation. Thus, the storage requirement for the 

. last step is: 

Therefore, the LMBR of UIEC is: 



5.4. RRP and LMBR for UWFE 

As stated before, loop 1 and loop 3 of UWFE compute the i-closure by making use of the 

arcs directing from the nodes in i-th-frontier, and/or the (i-1)-closure from the previous 

iteration. A call to propagation procedure propagate needs 3 parameters: the closure to be 

updated (Cl), the arcs from directing from the current driver (navPB), and i-frontier-edges 

(PB). We present UWFE algorithm with the invocation to this procedure: 

Cl := oA 
PB := Cl 
E' : = nZ (PB) - nl (PB) 

Cl : = P r o p a g a t e  ( C l  , PB, PB) 

w h i l e  ( P # 0 ) 
newPB := F A A 
i f  ( newPB = 0 ) uit the loop 

C1 : = P r o p a g a t e  ( C l  , newPB, PB) 

P : = n, (PB) - nl (PB) 
end w h i l e  

The propagation is done using BWFT algorithm. We use Clo to denote the initial closure 

(i.e. the (i-1)-closure), and Cli to signify the result of the modification of the closure from 

the previous iteration. We assume that the procedure will terminate at some iteration 

P. Thus, Clp will become the i-closure. The RRP of propagate(Cl,nMB,PB) is as 

follows: 

S t a g e  0 : C l o  + newPB + C l o  + newC1, + 
1 : C l o  + C l l  + newC1, + PB + C l l  + newCll + 

. . . 
i : Cl,-, + C1, + n ~ w C l , _ ~  + PB + Cl ,  + newCl, -+ 

At stage 0, the join and difference operation on CIO and newPB yields newClg, Then for 

each iteration i from stage 1 to P, a union operation is done on closure Cli-l and newCli_l to 



get the new closure Cl? This is then followed by another join and difference operation on 

n e ~ C l ~ - ~ ,  PB and Cli to get newCli for the next iteration. The LMBR for this procedure is: 

where 1 newCl I is the maximum size of all newC19s derived. 

For the RRP of UWFE, Fi, Cli and PBi are used to denote i-th-frontier, i-closure and i- 

frontier-edges respectively at the i-th iteration. As we use the same sets of i-th-frontier as 

that of UIEC in each iteration, UWFE will terminate at same iteration of UIEC, i.e. at Mu 

iteration. Now the RRP of UWFE looks like the following: 

S t a g e  0 : A + Clo ,o  + PBo 4 PBo + T, + 
Propagate  (Clo,, , PBO, PB,) + Clo + 

1 : Fl + A + newPBl + PBo + PB1 + 
Propagat* ( a o ,  newP%,PB1) + C l l  + newPBl + PB1 + 

. . . 
i : Fi + A + newPBi 4 PBi-l + PBi + 

Propagate  (Cli-l, newPBi,PBi) + Cli + newPBi 4 PBi 4 
. . . 

I q , :  T + A +  newPs +P%-1+P13,, + 
% u u u 

Propagate  (CS, -1, newPB,, , PR,, ) + Cl,, + nrwP% + PE,, 
U u u U U u 

Stage O: 

Stage 1 : 

Stage .i : 

Selection on A to get Clo,o; assignment of CIos0 to get PBo; projection 
and difference on PBO to get the 1st-frontier F1; computation of the 
i-closure on Clop to &rive the 0-closure Clo. 

Beginning of the loop. 

Join operation on the i-th-frontier Fi and A to get newPBi, all the arcs 
emanating from the current drivers. newPB then involves in a union 
operation with the (i-1)-frontier-edges (PBim1) to produce the i-frontier- 
edges PBi; using the (i-1)-closure Clidl and newPB to compute the i- 
closure Cli; projection and difference on newPBi and PBi to derive the 
(i+l)-th-frontier Fi+l. 

Stage Mu : The driver set is exhausted, and the final closure Cl is produced. The 
loop terminates. 

M, 

We can see that each iteration requires buffers for F, A, newPB, PB, newel and Cl for 

LMBR. Hence the LMBR for UWFE is: 



pagesize 

where Cl is the final closure, 
ntwPB is the largest newPBi, 
PB is total-frontier-edges, 
F is the largest driver set encountered, 
newCl is the largest newCli found. 

5.5. RRP and LMBR for UPFE 

UPFE algorithm can be divided into two stages: the preprocessing stage and the 

propagation stage. The pseudocode of UPFE (described in Chapter 2) is as follows: 

/* preprocessing atage */ 

while ( F # 0 ) 
newPB :=F A A 
if ( newPB = 0 ) )it the loop 

T : 3 n2 (newPB) - Ill (PB) 
end while 

/* propagation stage */ 

newCl := n (  C1 A PB - Cl ) 
while ( newCl # 0 ) 

C1 := C1 vc nrwCl 
nmCl := newC1 A PB - Cl 

and while 

CIO denotes the set of all arcs leading from the starting nodes (i.e., 0th-edges). Fi is i-th- 

frontier, newPBi is i-th-edges, and PBi is i-frontier-edges. The preprocessing stage of 

UPFE will terminate at the same iteration, Mu, as that of the other unary frontier 

algorithms (UIEC and UWFE), as it has the same sets of i-th-frontier. The RRP of the 

preprocessing stage of UPFE is: 



Stage 0 : 

Stage 1 : 

Stage i : 

Stage Mu : 

1 : + A - +  n r w B ~ ,  + PBo + PB1 + nrwPBl + PB1 + 
. . . 

i : Ti + A  + newPB, -+ + PB, + newPBi + PB, + 
. . . 

3 A + nrwP& + PB,, + PB, + newPB,, + PB,, 
U U U U U 

Before getting into the loop, the preprocessing stage of UPFE will 
perform: selection on A, assignment of CIO to produce PBO (O-fronti'er- 
edges), and projection and difference on PBO to get the 1st-frontier F1.  

The beginning of the loop of preprocessing stage. 

Join operation on i-th-frontier Fi with A; union of the set of arcs 
leading from the current drivers, newPBi, with (i-1)-frontier-edges 
PBi-l to form i-frontier-edges; projection and difference operation on 
newPBi and PBi to get a new driver set, the (i+l)-th-frontier Fi+l. 

The end of preprocessing stage. The total-frontier-edges PBY (i.e. PB, 
all the arcs leading from the starting nodes and their descendants) is 
found. newCli is the set of all the newly found implied edges leading 
from the starting nodes in the i-th iteration. 

In the RRP of the propagation stage of UPFE that will be formulated below. we use Clj 

(i>O) to denote the partially derived query closure at the iteration i. Clo as before will be 

0th-edges. Since the propagation stage is an implementation of BWFT, so it will terminate 

at the Mb iteration as that in BWFT. The RRP for the propagation stage of UPFE looks 

like: 

Stagr 0 :  C l 0 +  P B +  C l o +  newClo+ 
1 : C1, + Cll  + newCl, + PB + Cl l  + newCll + 

. . . 
i : Cl,-, + C1, + newC1,-, + PB + C1, + nawC1, + 

. . . 
M,, : + C k  + newC + PB + C 

=% + nrVClyp 
Stage 0 : Join and difference of relations CIO and PB to get newClo. 
Stage 1 : The propagation stage begins. 

. . . 
Stage i : Union of newCli-l with Cli-l (the partially derived closure at the 

previous iteration) to get Cli; projection and difference operation on 
the current closure Cli and PB to form newCli. 



Stage Mb : The propagation stage ends. The final closure Cl (i.e. the query 
closure CI) is found. 

M, 

The LMBR for preprocessing stage is: 

IAI+ I c I , I  + I P B I  + ( n e w ~ B ( +  I F (  
pagesize 

where CIO is 0th-edges, 
PB is total-frontier-edges, 
newPB is the largest newPBi, 
F is the largest driver set Fi. 

The LMBR for the propagation stage is: 

where 1 newCI1 is the size of largest newC1. 

Combining the two stages, we get the LMBR for UPFE to be: 

5.6. Discussions on the RRP and LMBR of the Algorithms 

The RRP of BWFT is the simplest, and it accesses only three different relations: the base 

relation A, the driver set F, and the closure Cl. Besides, BWFT has a strong reference 

locality. It accesses F, then A and then Cl repeatedly inside the loop. This property of 

strong locality makes higher probability of accessing to data pages that are in the main 

memory. The RRP of UPFE is also simple, and it is composed of the separate sequences: i) 

F, A, newPB and PB (in preprocessing phase); ii) Cl, newC1 and PB (in propagation stage). 

However, UPFE needs access to at least 6 binary relations. Therefore, UPFE requires more 

page accessing than that of B W .  The RRP of UIEC and UWFE are more complicated 

and these algorithms access even more intermediate relations. More data (and/or index) 

accessing means that the page 110 of UPFE, UWFE and UIEC will be more than that of 

BWFT. It was pointed out in [13] that there is a strong correlation between the disk VO 



and page VO with small buffer size. In fact, the algorithm with the least pages VO is 

expected to achieve the best disk VO performance in small buffer size. Thus, B W  

should have the least disk YO when buffer size is small. 

From previous sections we have the following estimation for the LMBR of the 4 

algorithms: 

B W :  

UIEC : 

m: 

UPFE : 

14 + Ic1l +21d 
pagesize 

MM( (IAI + lnew~ubl + ]LW) + I w ]  + InewSub2l + ]new~ub31), IclI) + ISubClI 
pagesize 

I A (  + I C I (  + ( - P B (  + (PB( +21new~f( 
pagesize 

Note that we have deliberately dropped out the size of the frontier in the formulae of 

LMBR of UIEC, UWFE and UPFE above. This is because unary frontiers are used in these 

algorithms, and unary relations are usually small in comparison with the other binary 

relations. Even so, the comparison on the LMBR of the algorithms is quite difficult. The 

major difficulty lies in the fact that the sizes of the intermediate relations like newSub, LW, 

newPB and newel are hard to estimate. Each size depends on the characteristics of the 

data, and varies from one data set to another. The join and selection selectivities described 

later in Section 6.1 determine the volume of final results, but they are not sufficient to 

represent the overall characteristics of the data. However, a rough estimate will be enough 

for our analysis at this stage. 

UIEC has the largest LMBR value. This is mainly due to the storage required for the 

i-implied-edges-closure SubCl. When the final query closure is large, SubCl, the superset 

of the query closure, will become even larger. The LMBR value of UPFE is smaller than 

that of UWFE, because the query closure of i-frontier-edges is computed after total- 

frontier-edges is formed, and at that time the base relation A can be released to provide 

space required for the intermediate relations in the propagation stage of UPFE. When the 



1 ~ 1  + ]cI,I + Inew~Bl + I P B I  
query closure Cl is small8, the LMBR of UPFE is 

pagesize . This also 

implies that PB will be small. PB can never have tuples other than those in A, and it is also 

smaller than the query closure Cl. As CIO (0th-edges) which is a subset of Cl, will also be 

small, thus, the LMBR of UPFE will be smaller than that of BWFT when Cl is small. 

However, Cl can be very large, and hence, the size of PB can be more than half the size of 
I c ~ I  +2lnewC11 + JPB) 

A. At that time, the LMBR of UPFE is pugesize . This value will be bigger 

than that of the LMBR of BWFT. To sum up, we state the following: 

BWFI' has the least disk I/O when the buffer size is small. 

UIEC has the largest LMBR value. 

UWFE has larger LMBR value than that of UPFE. 

UPFE has a smaller LMBR value than that of BWFT when the size of the final 
closure CI is small, but its value will be larger than that of the BWFT when Cl 
is large. 

Recall that when we have limited buffer resources, the algorithm with the smallest 

LNlBR will be a good candidate for query processing. From the above estimation, BWFT 

has the least LMBR except when the query closure Cl is large, in which case UPFE has the 

least LMBR. This implies that BWFT will be a good choice for query processing for a 

wide range of data as it also has a simple RRP. UPFE is good when C1 is not very large. 

These guidelines provided by RRP and LMBR will be reconfirmed by the simulation 

studies we have in Chapter 6. 

@I'his will happen when selection selectivity or join selectivity is small. 



Chapter 6 

Simulation Studies 

This chapter presents the simulation results using randomly generated data. The size of 

the generated base relation will be kept to 1000 tuples (binary relation) throughout our 

simulation. Three parameters affecting the VO performance will be studied. They are, 

namely, the buffer size (main memory capacity), the join selectivity and selection 

selectivity. All algorithms will be run on 5 base relations, generated for each set of the 

parameter values. The performance of an algorithm is measured by the disk I/O generated 

by the algorithm, although occasionally page ID9 is also used. The average of these runs 

will be calculated. The results will then be analyzed and interpreted. 

6.1. Parameters of the Simulation Model 

In our performance studies, we generated some uniformly distributed data to construct the 

tuples for the base relation on which the binary query closure algorithms are applied. Each 

tuple of the base relation has two attributes, and the values are generated independently. 

To control the volume of the final query closure, we have two parameters: Join Selectivity 

and Selection Selectivity. Let A and B be two relations, J is the result relation of joining A 

and B, and S is the result relation after selection is done on A. Now the selectivities are 

defines as follows: 

Definition 6-1: Selection Selectivity is defined as the ratio of the size of S to 
the size of A. 

%eaders interested in the difference between page 110 and disk YO as cost metric are referred to [15] 
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Definition 6-2: Join Selectivity is defined as the ratio of the size of J to the 
product of the sizes of A and B. 

Assume that the attribute values of both relations A and B are chosen from the same 

domain D'O. Let jattb, and jattbB denote the join attributes from A and B respectively. Let 

sattb, be the selective attribute from A. Without loss of generality, we assume that the 

domain D consists of positive integers 1,2, . . . , ( D ( . Xf the attributes are randomly chosen 

from the domain D, and c is an integer in domain D, then the probability that a tuple t from 

A has sattbA I C is: 

Prob(a tuple t from A has sattbA 5 c) - - &  
then the expected number of tuples in A with sattb* I c is: 

E(number of tuples with sattb, i c) = 6 x I A 1 
Hence, the average size of the S, i.e., the result of selection on A with a range of values less 

than or equal to c is: 

Et lsl, = & X I4 
Therefore, 

For each tuple tA from A, let its jattb, = j for some integer j. Then the probability that a 

tuple tB from B has jattbB = j is: 
1 

Prob(a tuple tB from B with jattbB = j) = ~m 
This implies that the expected number of tuples in B matches with tA is: 

'@This is not a necessary condition, but this will simplify a lot of calculations. 



E(number of matching tuples of B with tA) - Is l m 
Thus, the expected number of matching tuples of relation A and B is: 

E(tota1 number of matching tuples) = x I A 1 
Hence, the expected size of the result relation J of joining A and B is: 

Therefore, 

In order words, if we perform selection of A on sattbA attribute using constant values 5 c, 

then we expect the size of the result relation to be I S 1 = I A I  . Besides, the mean size of J 

is equal to 1 4 .  l ~ l  
lal . In this way, we can have some control regarding the size of the result 

relations of the operations. Hence, if we use a small constant value c, i.e., SS is small with 

ID I being kept as constant, then the selection which is performed on the base relation at 

the beginning of all the binary query algorithms (described in Chapter 2) will produce a 

small relation. Then the outcome of the query closure will not be large. Moreover, if JS is 

small, i.e., ID I is large, then the query closure will not be big. On the other hand, if we 

want to produce large volume of tuples for the query closure, then we have to make JS and 

SS both large (small ID I and large c). In o w  simulation, we do not have different join 

selectivity for each pair of joining relations in the algorithms, not only because it is hard to 

get the values right, but also because it will complicate the analysis. Instead, we use only 

one join selectivity and one selection selectivity for each randomly generated base relation. 

The values we use are: 

JS : 0.0001,0.0005, and 0.001 
SS : 0.001,0.005,0.05,0.1,0.3, and0.5 

In addition to those parameters to control the data volume of the final result, we have two 

other parameters to control the system performance. These are the page size (the number of 



the binary tuples that can reside in a system page), and the buffer size (number of pages in 

the main memory). Since varying one of the parameters will be sufficient to control the 

capacity of the data in the main memory, we fix the page size parameter to 20 tupleslpage 

throughout our experiments. The buffer size will have values 10,25,50,75, 100, 150 and 

200. 

6.2. Observations and Interpretations of the Results 

In this section, we will present our simulation results using random data. In the previous 

sections, we have mentioned that we have 3 different values for JS, and 6 different values 

for SS. For each pair of the values from the combination of the two parameters, we 

generated 5 sets of 1000-tuple base relation on which query closure is to be found by the 4 

algorithms. Each of the test runs will further experiment through the 6 different buffer 

sizes. Then the average of the 5 runs will be calculated and recorded. The page VO of the 

algorithms are plotted and presented in Figures 6-1 to 6-3. The significant results of the 

disk I/O of the algorithms are plotted and presented in Figures 6-4 to 6-6. 

From the graphs in Figure 6-4, Figure 6-5 and Figure 6-6, we have the following 

observations and interpretation: 

Fact 1 : For small SS and small JS (SS 5 0.005; JS I 0.0005), the curves of 
the 4 algorithms almost coincide with each other. Thus, when the data 
volume of the query closure produced is very small, there is no 
difference in choosing any of the 4 algorithms for processing with any 
buffer size. 

Fact 2: 

Fact 3: 

The curve of BWFI' is always below the other curves when the buffer 
size is small. When buffer size is large (B.S > 25), the curve of BWFT 
is not very much higher than the other curves. This implies that BWFT 
on the average outperforms all other algorithms. Its disk VO 
performance is more steady than the others, so that varying the buffer 
sizes does not cause a dramatically decrease in its disk VO. When the 
main memory resource is limited (buffer size is small), it makes 
BWFT the best candidate for binary query processing. 

When SS and JS are not both very large (SS 5 0.3 when JS I 0.0005; 
SS I 0.05 when JS = 0.001), the curve of UPFE is below all the other 
curves for large buffer sizes (B.S. 2 75 pages). For large SS (i.e., SS = 
0.5), the UPFE curve is above all the other curves when the buffer size 
is small. This means that UPFE performs as well as BWFT when the 
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buffer size is large, and when the values for SS and JS are not both 
large. That is when the data volume of the query closure is not large, 
UPFE is a good choice for query processing for large buffers. UPFE 
even outperforms BWFT in those situations. However, UPFE has the 
worst disk VO performance when the SS value is high with limited 
buffer resources. 
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Curve UWFE is above curve UPFE for a large range of data, but it is 
below curve UPFE when SS and JS are both large (SS=0.5, JS=0.001). 
Hence, UWFE does not always perform worse than UPFE in its disk 
VO performance. When the volume of data handled by the algorithms 
increases, UWFE does outperform UPFE. 

0.001 0.005 0.050 0.100 0.300 0.500 

Starting at a very high point when SS or JS is large, the curve of UIEC 
decreases rapidly with the increase in buffer sizes. When SS and JS are 
both large (SS=0.5; JS=0.001), UIEC even drops below the curve of 
BWFT when the buffer size is large (B.S. = 200 pages). Therefore, it 
seems that UIEC is very sensitive to the changes in the buffer size, 
especially when the final data volume is large. In the case when SS and 
JS are large, UIEC will have the best disk I/O performance. Therefore, 
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Figure 6-2: Page VO with JS = 0.0005 

UIEC can be chosen for binary query processing to handle large data 
volume results when the system is provided with rich main memory 
resource. 

6.3. Simulation vs Analytical Results 

In this section, we will compare the simulation results with the analysis presented in 

Chapter 5 which are based on the RRP and LMBR of the algorithms, and the 

characteristics of the data. We do so by providing an explanation for each of the simulation 

results stated in the previous section. 

Fact 1: 

When the values for SS and JS are small, then the data volume for the result closure will 

be small too. This means that all the algorithms will execute only a few steps before the 
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answer to the query closure is found. Therefore, even algorithms with bad reference 

locality will produce the answer without lot of disk YO. Besides, the buffer requirement 

will be the least, and so the algorithms will achieve their LMBR for small buffer size. 

Fact 2: 

BWFT has overall the least disk UO performance. This confms  with our conjecture that 

simple RRP, high degree of reference locality, and small LMBR is desirable for query 

processing. 

Fact 3 & 4: 

When the data volume handled by the algorithms is small (SS I 0.3, JS I 0.0005; SS I 

0.05, JS I 0.001), UPFE will have the least LMBR. Thus, increasing the buffer size makes 

UPFE better chance to have least disk I/O. Therefore, when the buffer size increases to 
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moderate size (B.S. -- 75 pages), UPFE has the best disk I/O performance. However when 

SS increases (SS = OS), total-frontier-edges PB of UPFE will be very largel1 In that case, 

the propagation process of UPFE must start with large total-frontier-edges PB, while 

UWFE starts with a much smaller intermediate relation newPB. The data clustering effect 

with smaller intermediate relation in i-closure updating process of UWFE enhances it to 

perform better that UPFE. 

Fact 5: 

When both SS and JS are large (i.e., SS=0.5 and JS4.001), the data generatec ri will 

require more iterative processing from the algorithms. That is, the depth of the transitive 

closure will be large. This kind of data resembles the Sawtooth Data (described in Chapter 

3) and is best processed by UIEC. UIEC performs quite poorly when the buffer is very 

small (B.S. < 100 pages) and improve drastically as the buffer increases to 200 pages. Our 

explanation for this seemingly strange disk 110 behavior of UIEC is that the page I/O of 

UIEC is so poor that when the buffer size is small, the page I/O becomes the dominating 

factor in its disk I/O performance. The Sawtooth data effect becomes apparent only when 

the buffer size becomes much larger (say 200 pages, which is still only a small fraction of 

its LMBR). 

" 1 PB I is greater than half of 1 A I . 



Chapter 7 

Level Relaxation 

The level relaxation version of the 6Wavefront Algorithm was developed in [7]. Level 

relaxation further eliminates redundancy in data accessing. The main feature of the level 

relaxation algorithm is the extraction of all the drivers at different levels of iteration from a 

page before the page is swapped back to disk. Therefore, as long as the tuples in the main 

memory can be accessed by the current drivers, the data page will not be swapped out from 

the memory. Some disk I/O may be saved by doing this if the main memory contains 

some of the derivation paths. We have implemented the level relaxation versions of the 

algorithms. Since UWFE and UIEC have already shown their weaknesses in their disk YO 

performance, we will focus on level-relaxed BWFT and level-relaxed UPFE. 

7.1. Level-relaxed BWFT (LWFT) 

The level relaxation version of BWFT is very similar to the original version. The only 

difference is that we have provided a set of routines that enable us to achieve a higher level 

control of page swapping. To facilitate, we have two assumption: 

Al : A is sorted so that all the tuples with the same drivers will be 
clustered together. 

A, : The page fetching to the data page of A is done in the way that 
either all the pages corresponding to an active driver (data pages 
of A that contain tuple(s) having the active driver in its (their) 
first attribute) or none of these pages will be brought into the 
main memory. 

We first consider the algorithm for level-relaxed BWFT. The implementation issues will 

be addressed later. 



Cl := 0 (A) 
IP := C1 
whilm ( IP # 0 ) 

P a t c h  drivable data page. of A to nvin mmory (MM) 
NT := drivmrm i n  P drivable in  main memory 
# M P : = T - 1 1 6  
T  := 1WP 
whilo ( MF # 0 ) 

newF := NT AMM A - Cl 
C1 := C1 u n M  
MF := driver. i n  news are drivable in main msmory 
lUM6' : = newP - MF 
P : = P u  ITME' 

end whilm 
end whilm 

The statement "Fetch drivable data pages of A to main memory (MM)" means that we 

will fetch those data pages of base relation A which contain some drivers according to 

those in the driver set F. For example, if in F we have {(al ,bl),(a2,b2), ,(a,,b,)) , the 

data pages of A, with the first attribute column having any values of bi ( l l i l m ) ,  may be 

fetched. However, sometimes not all these pages will be fetched, since the number of 

pages fetched can never be more than what the main memory can hold. Thus, unless the 

main memory has a large buffer (or there are not many of these drivable pages), normally 

not all the drivable data pages are fetched. In order to optimize further, we can fetch ir, 

pages that have more active drivers. Since not all the binary drivers will be used for each 

page fetching, we divide the driver set F into two subsets, MF and NMF. MF (NMF) is the 

driver set which is (not) drivable with respect to the portion of data pages of A in MM. 

NMF must be retained in the driver set (F) for processing until their corresponding data 

pages in A have been fetched. The operator AMM is used for the level-relaxed join 

operation. Unlike the original join operator (A), it will not cause page fetching of the 

joining relation A. It will only consider the portion of A in main memory and do ordinary 

join operation on that portion. New binary drivers will be found and these will also be 

checked of occurrence against the tuples in Cl, as that in the original BWFT algorithm. 

Then the unique new binary drivers will be divided into two subsets MF and NMF again. 

This process of finding new binary drivers according to the current data pages of A in main 

memory will continue until no more active drivers can be found in the data pages of A in 

main memory (i.e. MF is empty). At that time, new drivable data pages of A will be 

fetched in. The algorithm will terminate when F is empty. 



Theorem 7-1: The level-relaxed B W  will produce the complete query 
closure in Cl upon termination. 

Sketched Proof : 

In the trivial case when the buffer is large enough to hold all the data pages of 
A, each fetching will enable all the drivable pages to be brought into the main 
memory. This implies that MF must equal the whole set of F at the beginning of 
the loop, and equal newF inside the second loop. NMF must be empty all the 
time. Hence, in each iteration of the inner loop, newF actually get the same set of 
tuples as that of the binary frontier in the original BWFT algorithm. The inner 
loop of the level-relaxed version then resembles the original one. Thus, the same 
set of Cl will be computed. Since F is the union of all the NMF's, and so it is 
empty. When the inner loop termiantes, the outer loop must also terminate. 
Therefore, the claim is valid. 

When only a part of A is in main memory, the binary frontier will be divided 
into MF and NMF where at least one of the sets will be non-empty if the binary 
frontier is non-empty. With assumption A2 if MF is not empty, all the binary 
drivers in MF will get the same set of implied edges as that when these binary 
drivers are joined with the whole relation A. Therefore, the drivers in MF will 
derive the same implied edges as before. When NMF is not empty, all its binary 
drivers will be retained. Page fetching of different portion of A will enable some 
elements in NMF to become elements in MF, and hence allow each of the active 
drivers to be fully explored. Therefore, each of the binary driver ever derived 
will get the same set same of implied edges as before. Thus, upon termination, 
level-relaxed BWFT must produce the correct closure. u" 

7.2. Level-relaxed UPFE (LPFE) 

The algorithm for UPFE has two loops, one for the derivation of total-frontier-edges 

(preprocessing stage), and the other one for finding the query closure of total-frontier- 

edges (propagation stage). In the level relaxed version of UPFE, there are also two 

separate stages, and they are very similar to the original UPFE. In its preprocessing stage, 

level-relaxed strategy will be used to get total-frontier-edges. The propagation stage of 

level-relaxed UPFE is just the level-relaxed B W  in which total-frontier-edges PB is 

used instead of the base relation A. The assumptions made in level-relaxed BWFT will also 

applied here. The derivation stage and the propagation stage of the level-relaxed UPFE are 

given as follows: 



/* Proproaessing Stagr */ 
C1 := b (A) 
RB := C1 
T := n2 (PB) - n, (PB) 
while ( F # 0 ) 

Fetch in drivable data pages of A to main mmmry 
ME' := driver. in P are drivable in main w r y  
um : = F - m  
T := 1JW6 
while ( M6' # 0 ) 
newRB := AMM A 
PB := PB u newPB 
n e w  : = n2 (newPB) - nl (PB) 
YP := driver. in newF arm drivable in main w r y  
u m : = T - M 6 '  
T : = F  u r n  

end while 
end while 

/* Propagation Stage */ 
F := C1 
while ( F # 0 ) 

Fetch in drivable data pages of OB to main m o m ~ r y  (m) 
M6' := drivers in T are drivable in main memory 
um:=Ii'-m 
T := #MF 
while ( MCl # 0 ) 
newF := M6' AMM PB - C1 
C1 := C1 U news 
M6' := driver. in F are drivable in main m r y  

:= MWF - M6' 
F:=FuLOWlP 

md while 
end while 

As before, the operator AMM is the level-relaxed join which will not cause page fetching. 

We will not consider the propagation stage as it is just the implementation of the level- 

relaxed BWFT with A changed to PB. Here, we will focus on the derivation stage. 

Lemma 7-2: The derivation stage of level-relaxed UPFE terminates and get 
total-frontier-edges PB. 

Sketched Proof : 

When the buffer is large enough to hold the whole data relation A, then each 
time all the drivable data pages can be fetched into the main memory. Thus, MF 
always equal the binary frontier of the original UPFE at each iteration. Hence, 
the derivation stage of level-relaxed UPFE functions just as in the original one. It 
will terminate because NMF is empty, and hence, when the inner loop 
terminates, the derivation stage also completed. 



If only a fraction of drivable data pages of A can be brought into the main 
memory each time, because of our assumption in page fetching, each driver in 
MF will be fully explored before it is deleted. Therefore, we will get all the arcs 
directing from the drivers in MF. For the drivers in NMF, page fetching enables 
the data pages that are correspond to the drivers to be brought into the main 
memory at some time. Thus, these drivers will become element in MF, and 
hence, they will be fully explored. Therefore, all the drivers will derive the same 
set of driven elements as that in the original UPFE. Hence, upon termination of 
the derivation stage, the same total-frontier-edges set as that of the original 
UPFE will be found in PB. 

Theorem 7-3: Level-relaxed UPFE terminates and computes the query closure 
correctly. 

Sketched Proof : From Lemma 7-2, total-frontier-edges PB must be correctly 
computed after the derivation stage. Then by Theorem 7-1, and by the fact that 
the propagation stage of UPFE is the implementation of BWFT on the relation 
PB, the level-relaxed UPFE must terminate and produce the correct query 
closure. 

7.3. Experiments with Level-Relaxed Algorithms 

Level relaxation requires the control of the fetching and the retention of data pages in the 

main memory. In our implementation, we adopt the reservation strategy, so that some part 

of the main memory is for the extensive use of some relations. In algorithms like the level- 

relaxed BWFT and level-relaxed UPFE, some portion of main memory should be reserved 

for storing pages of the base relation A. Therefore, in that particular implementation, we 

have to assign a maximum number of buffer pages, say numofiage, reserved by these 

relations. This implies that while the number of pages of A that can be fetched at any one 

time can be controlled, the buffer memory for the other relations will be less. This results 

in more disk VO for the other relations. Generally, it is very hard to predict the optimal 

value for numofiage, and this is left for further investigation. 

In our simulation studies, we have used different values for numofiage to reserve 

different pages, and then look for the best disk VO performance for the set of parameters 

used. However, since in our experiments, we also need to vary the buffer size to examine 

the effect on the performance, instead of assigning some value as the maximum number of 

reserved pages, we choose to use the ratio of the maximum reserved pages to the size of 



the main memory (buffer size), reserve-ratio. In our experiments, the values for 

reserve - ratio we use are: 

0.3,0.4,0.5,0.6,0.7. 

Thus, if the ratio of 0.3 and buffer size of 10 are used, then the maximum number of 

reserved buffers in main memory is 3 (or 0 . 3 ~  10). Level-relaxed UPFE also requires 

reserved memory for total-frontier-edges PB which is ready only at the end of' the 

preprocessing stage. Therefore, the memory reserved for A can be released at that time and 

be re-used by PB. For each set of data, the two level-relaxed algorithms (i.e. level-relaxed 

BWFT and level-relaxed UPFE) will be run using different buffer sizes (10, 25, 50, 75, 

100, 150,200). For each buffer size used, the reserved ratio will be varied from 0.3 to 0.7, 

and the value of the least 110 performance among the ratios will be recorded only for that 

particular buffer size. Therefore, we are varying the maximum reserved pages in order to 

find the best possible VO performance for the buffer size. 

In the test runs, we used the same set of random generated data as that in Chapter 6. 

However, there is not much improvement of the level-relaxed versions as compared to the 

original versions. It is suggested in [7] that the level-relaxed versions will perform better in 

clustered data than in uniformly distributed data. Hence, in the section that follows, we will 

test the level-relaxed versions on clustered data. 

7.4. Clustered Data 

Clustered data, in our context, refers to the set of tuples of which a driver in a particular 

set of pages will drive to some other drivers in the same set of pages. Thus, the degree of 

cluster effect of a data relation is defined as the probability that a driver will find its driven 

elements in the same page where it resides. In order to generate different clustered base 

relation, we have the following procedure: 

1. Using a random generator, we get one column of attribute values for the set 
of the tuples from the range 1, . . - , I D I (where ID I is the size of the 
domain). This column is actually the attribute on which the selection is 
applied (this is also the column for the drivers). 



2. Sort the values, and divide them into pages. 

3. For each of the pages, find the minimum and maximum values. 

4. For each of the generated attribute value in a page, we generate another value 
to pair with it to form a tuple. We repeatedly use the random generator at 
most n times to produce such value in the range 1, . a ,  ID I , until we find a 
value between the minimum and maximum value of the page we found 
before. If after n times, no such value can be found, then we will take the last 
number generated and pair it with the attribute value in question. 

When n is large, there will be a high chance of occurrence of the value of the second 

attribute in a tuple t l  in the first attribute of another tuple t2, where tl  and t2 are in the same 

page. Thus, when n is large, the degree of clustering effect will be high. Hence, we vary 

the number n to control the degree of clustering for the data. We call this number n degree 

of clustering @C). 

7.4.1. Experimental Results on Clustered Data 

In this section, we will present the experimental results and make some observations on 

them. All the clustered data sets we generated contain 1000 tuples. We use the same 

technique as described in section 6.1 here to control the data volume. In the analysis that 

follows, we will use the values of JS and SS to signify the volume of the final results. 

However, the reader should note that the formulae for JS and SS in section 6.1 are not 

valid for the join and selection selectivities respectively for the clustered data. In order to 

calculate the selectivities for clustered data, we have to consider the conditional 

probabilities given the value for degree of clustering. Nonetheless the interpretation that 

when JS is large, the size of the result relation of joining the relations is expected to be 

large, is still valid here. Hence, we will not derive the formula for the selectivities for the 

clustered data. We will use the same formulae for SS and JS as in Section 6.1 (on page 63). 

- We produce different clustered data with different values of JS and SS. In all the 

experiments, we use a value of 20 for DC (degree of clustering) for the clustered data. We 

do not use different DC because we do not intend to investigate the effect of the 



comparative performance of the level-relaxed versions and the original algorithms on 

different degree of clustering. 

The results are plotted in Figure 7- 1 and Figure 7-2. These results are from clustered data 

of JS = 0.0005 and SS = 0.5. Since the results from other JS and SS values are quite 

similar, we do not include them here. 

7.4.2. Analysis on Clustered Data 

We make the following observations and explanation with reference to the graphs in 

Figure 7- 1 and 7-2: 

1. The curve of LWFT (level-relaxed BWFT) is below that of BWFT in the 
"BWFT vs LWFT" plot in Figure 7-1 for small buffer sizes. When buffer size 
becomes larger (buffer size = 200), BWFT curve is below the LWFT curve. 
Thus, the level-relaxed BWFI' will outperform BWFT when the buffer size is 
not large (B.S. I 150 pages), but it will not perform better than BWFT when 
the buffer size is large. In fact, we expect that level-relaxed BWFT should be 
better than BWFT in all cases when a clustered data set is used. The fact that 
level-relaxed BWFT will lose when the buffer size is large is surprising and 
interesting. The reason is due to the implementation strategy we use for the 
level relaxation. Recall that we use the reservation method to retain some 
portion of main memory to hold the base relation. However, reserving part 
of the main memory to a relation means that the working space for the other 
relations will be reduced. Thus, level-relaxed BWFT requires more buffer 
space for operation on the intermediate relations. In other words, the Least 
Maximum Buffer Requirement (LMBR) of level-relaxed BWFT will be 
larger than that of BWFT. In Section 6.3, we have already discussed the 
effect of small LMBR on the algorithm's disk VO when the buffer is large. 
Therefore, with smaller LMBR, BWFT should perform better in its disk VO 
than level-relaxed BWFT when the buffer size is large. 

2. From the plot of "UPFE vs LPFE" in Figure 7-1, the observation as that 
above can also be seen. The curve of LPFE (level-relaxed UPFE) is also 
seen to be below that of UPFE when buffer size is small, but will be higher 
than that of UPFE when the buffer size is large. The same phenomenon being 
observed indicates that our implementations to the algorithms are consistent. 
Hence, the level-relaxed version versus its original algorithm should produce 
the same trend for all the algorithms. 

3. The LWFT curve is seen to be below the LPFE curve when the buffer size is 
small (B.S. I 100 pages), but it will be above LPFE curve when the buffer 
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Figure 7-1: Original vs. Level-relaxed Algorithms with JS4.0005, SS4.5 
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Figure 7-2: Level-relaxed B WFT vs. level-relaxed UPFE 

size is large (B.S 2 150 pages). In last chapter we concluded that BWFf 
outperforms UPFE in its disk VO when the buffer size is small. However, 
when the data volume of the final results is not large, UPFE will be better 
than BWFT with large buffer. Thus we can make a similar conclusion 
regarding the level-relaxed versions of the two algorithms. That is to say, 
level-relaxed UPFE will be better than level-relaxed B W  when the data 
volume of the final results are not large, and when the buffer size is large. 
This is understandable, because the level-relaxed version should preserve the 
property of the original algorithm, and thus the comparative performance of 
the level-relaxed versions should resemble the original ones. 



Chapter 8 

Conclusions 

In this research, we have developed some binary algorithms for query closure processing. 

These algorithms are compared and analyzed using different characteristics of data on 

different buffer sizes. From our analytical studies augmented by a simulation study, we 

have found some interesting characteristics of the algorithms and interesting results: 

1. BWFT on the average performs well in its disk I/O for a wide range of data 
sets and buffer sizes as compared to the other non-level-relaxed algorithms. 
It will have the least disk VO when it is run on Parallel-Chains Data. 

2. UPFE will outperform the other algorithms when the data volume of the final 
query closure is not large, and the buffer size is large. If UPFE is run in 
One-Cycle Data with moderate cycle length, it will outperform the other 
algorithms in its disk I/O. 

3. UIEC has good disk 110 performance as compared to the other algorithms 
when the base relation requires a lot of iterative processing and generates a 
large volume of answers to the binary query closure. UIEC performs very 
well in Sawtooth Data. 

4. UWFE will perform better than UPFE when the volume of data handled by 
the algorithms increases, even though UWFE does not perform as well as 
UPFE in most cases. 

5. Small volume of data can be handled equally well by the four non-level- 
relaxed algorithms. 

6. Level-relaxed algorithms in general have better performance than the non- 
level-relaxed algorithms though not by much. In fact, level-relaxation does 
not work too well for large buffer sizes. 

Our research on the binary query closure processing ought to stimulate further research 

on the processing of more complex recursions. During this research, we uncovered some 

interesting aspects that need further investigation: 



By separating the propagation process from the driver derivation process of 
UWFE, we obtain the preprocessing algorithm UPFE. Similarly, we can delay 
the total closure processing in UIEC until all the driver sets have been 
considered. Thus, we may have a different preprocessing algorithm that has 
relation reference pattern (RRP) simpler than that of UIEC, and thus may have 
smaller Least Maximum Buffer Requirement (LMBR) value than that of 
UIEC. This new preprocessing algorithm may have better disk 110 than that of 
UIEC. A further studies should be carried out. 

As a preprocessing algorithm, UPFE can be improved when a more efficient 
method is used in its preprocessing stage. A better method may be one that 
requires selections and projections on the base relation only to find out all the 
relevant tuples in the preprocessing stage. More intensive studies are needed. 

BWlT can be modified to incorporate the logarithmic property. To be precise, 
at each iteration of BWFT, instead of joining the frontier and the base relation, 
we can join the current closure and the power of the base relation. The power 
of the base relation is initialized to be the base relation, and it is updated in 
each iteration by joining to itself. Although we may get larger intermediate 
relations, the saving in iteration steps may provide a net decrease in the disk 
VO. Further studies should lead to conclusive results. 

Since the propagation processes of UPFE and UWFE employ BWFT 
algorithm, an improvement to B W  discussed above may lead to an 
improvement to UPFE and UWFE. Thus, further performance studies are 
needed. 

We are using the Least Recently Used Algorithm (LRU) for choosing a page to 
be swapped to disk when the buffer is full. The use of LRU faces a lot of 
criticism on not being able to provide a good buffer management environment, 
and thus a better replacement algorithm is needed. The effect of choosing 
different replacement algorithms on the query closure algorithms should be 
studied more intensively so that a better replacement algorithm can be found. 

Our implementation of the level relaxation algorithms needs further 
refinement. Better alternatives to the reservation strategy that we used should 
be investigated. 

The studies of the degree of cluster effect of a binary base relation may 
provide an insight to the nature of level relaxation strategy. In particular, 
simulation studies on the performance of the level-relaxed algorithms using 
different generated data sets by varying the degree of clustering may provide 
information that can lead to further improvement of the algorithms. 



Appendix A 

Experiment on Join Operation 

In Chapter 6, we described the implementation strategy of join operation. In 

implementing the nested-loop indexed join method, the operand with the larger size is 

always chosen for the indexing operation. In this appendix we justify this indexing 

strategy. We do so by comparing this indexing strategy with an alternative one. 

In the experiment, we will join two binary relations R1 and R2. The size of relation R1 is 

increased, while that of R2 is fmed. R2 always contains 1000 tuples. We assume that the 

index table has been built for R2, but not for R1. There are two schemes of the join 

operation: 

1. Scheme I: R1 is always the outer relation. Indexing is done on R2. Thus, 
inside the first loop, the join attribute of a tuple of R1 will be used as key to 
access the index table of R2 to find a matching tuple. 

2. Scheme II: This is the indexing strategy we adopted. That is, the outer 
relation will be the smaller of the relations R1 and R2. If R2 is chosen for the 
outer relation, then an index table must be built for the larger relation R1.  

The results of the experiment are plotted in Figure A-1. The X-axis represents the size of 

relation R1,  and the Y-axis represents the disk VO incurred by the two schemes. In this 

experiment, we fixed the buffer size to be 10 pages. 

From Figure A-1, we can see that when the size of R1 is less than 1000 tuples, both 

schemes get the same disk YO. This is because both schemes choose R2 for indexing. As 

the size of Rl  increases, the disk I/O of Scheme 11 is more than that of Scheme I, indicating 

that more disk VO is needed for building the table for R1.  However, when the size of R1 

increases to 5 times that of R2 (i.e., about 5000 tuples), then Scheme I and Scheme I1 have 
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Figure A-I: Disk VO on different choices of operands for index in join operation 

about the same disk VO performance. When the size of R1 grows very large, Scheme 11 

performs better than Scheme I. 

From this we conclude that Scheme I1 will be better than Scheme I when one operand of 

the join operation is substantially larger than the other operand. This implies that although 

the cost in building the index table is quite high, this cost can be offset by the saving in the 

cost of sequential access to smaller relation in the outer loop according to the indexing 

strategy we adopted. In fact, in most cases we encountered in our experiments, the size- 

increasing relation R1 is either the relation for i-closure or i-implied-edges-closure. These 

intermediate relations (i-closure and i-implied-edges-closure) always take part in a union 

operation after the join operation. Once an index table is built for these relations, the table 

will be updated in the union operation with much less effort than building the whole table. 

Hence, the cost of the disk VO should be much lower than the one we presented here. The 

indexing strategy that we adopted is thus justified. 
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