
The Design and Performance Study
of

Binary Transitive Closure Algorithms

Paul L. C. Wu

B.Sc, Simon Fraser University, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science
in the School

of

Computing Science

0 Paul L. C. Wu 1988

SIMON FRASER UNIVERSITY

December 198 8

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Paul L. C. Wu

Degree: Master of Science

Title of Thesis: The Design and Performance Study Of Binary Transitive Closure
Algorithms

Examine Commitee:

Chairman: Dr. Binay K. Bhattacharya

Dr. 'Woshunbuk,
Senior Supervisor

Dr. JiaWei kan
Supervisory 'Co' mittee Member 5

Dr. Tiko Kameda,
External Committee Member

5 , 1788
Date of ~ b ~ r o v a l

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un lve rs l t y the r i g h t t o lend

my thesis, proJect o r extended essay (t he t i t l e of which i s shown below)

t o users o t the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the ,

l i b r a r y o f any o ther un lve rs l t y , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I fu r the r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean o f Graduate Studies. It i s understood t h a t copying

o r publication o f t h i s work f o r f i nanc ia l gain sha l l not be allowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

The Design and Performance Study of Binary T r a n s i t i v e Closure Algorithms.

Author :

(s ignature)

Loong Cheong P a u l WU

(name

December 1 4 , 1988

(date)

Abstract

Transitive closure operation is one of the most useful new operations in deductive

database systems. When it is added to conventional relational database systems, most

practical problems with recursion can be coped with. Therefore, efficient processing of

transitive closure is an important task in deductive database systems.

Transitive closure operation can be divided into total closure and query closure

operations. To implement the operations, we can have unary or binary algorithms. A lot

of work has been done on the efficient derivation of total closures and unary query

closures, but not much work has been done on binary query closures. A binary query

closure algorithm derives the transitive closure relevant to a set of query constants,

associated with pairs of the initial query constants and their driven elements. The binary

query closure operation is more frequently used than the unary one.

In this research, 6 algorithms are developed for binary query transitive closure

processing, namely Binary Wavefront, Unary Wavefront with Frontier-Edges, Unary

Wavefront with Implied-Edges-Closure, Unary Wavefront Preprocessing with Total-

Frontier-Edges, level-relaxed Binary Wavefront, and level-relaxed Unary Wavefront

Preprocessing with Total-Frontier-Edges. These algorithms are analyzed and their relative

performances are compared on their VO behavior and other processing costs. More

importantly, the analysis is done on different characteristics of data and on different buffer

sizes.

Our analysis and performance study show that reference locality and data clustering play

an important role in the performance of the algorithms. The ordering of the set of relational

operations is also important in determining the 110 performance of the algorithms. Our

research also demonstrates that the rate at which the disk VO of an algorithm decreases

with the increase in buffer size is affected by the Maximum Buffer Requirement of the

algorithm. Among the algorithms without level relaxation, Binary Wavefront outperforms

the others in a wide range of data sets when the buffer size is small. Unary Wavefront

Preprocessing with Total-Frontier-Edges Algorithm performs better when the number of

query constants is small and the buffer size is large. A base relation that requires a lot of

iterative processing and generates a large volume of answers to the transitive query is best

processed by Unary Wavefront with Implied-Edges-Closure Algorithm. The analysis of the

YO behavior of Unary Wavefront with Frontier-Edges Algorithm helps to develop a better

algorithm, like the Unary Wavefront Preprocessing with Total-Frontier-Edges Algorithm.

The level relaxed versions of the algorithms are best for clustered data.

Our research provides insight into binary query closure processing. We hope that this

will, in turn, stimulate further research on the processing of more complex recursions.

Acknowledgements

I owe a great debt of gratitude to Dr. Woshun Luk and Dr. Jiawei Han who introduced me

into this area. Their support, both financial and academic, and their thoughtful guidance

are deeply appreciated. I would also like to thank Dr. Tiko Kameda for his constructive

comments and suggestions, and for helping with the revision of the thesis.

Thanks also to Ada Fu and T. Pattabhiraman for their long hours devoted to editing this

thesis. I am very grateful to Frank Tong, Mimi Kao and Steven Yap for their useful ideas

and implementation techiques. I owe thanks to the faculty, staff, and graduate students of

the School of Computing Science for providing me with an enjoyable environment to work

in. My sincere thanks also to Carolina Chan and Ponch Poon for their general support.

Finally, I thank my very dear grandparents and parents who have unfailingly supported

my studies. I wish to dedicate this work to them.

Table of Contents

Approval
Abstract
Acknowledgements
Table of Contents
List of Tables
List of Figures
1. Introduction

1.1. Deductive Database
1.2. Transitive Closure
1.3. Unary Query Closure Algorithms

2. Binary Query Closure Algorithms
2.1. Binary Wavefront (BWFT)

2.1.1. Example of Using B WFT
2.1.2. Discussion on BWFT

2.2. Unary Wavefront with Implied-Edges-Closure (UIEC)
2.2.1. Example of Using UIEC
2.2.2. Discussion on UIEC

2.3. Unary Wavefront with Frontier-Edges (U r n)
2.3.1. Example of Using UWFE
2.3.2. Discussion on UWFE

2.4. Unary Wavefront Preprocessing with Total-Frontier-Edges (UPFE)
2.4.1. Example of Using UPFE
2.4.2. Discussion on UPFE

3. Algorithm Analysis On Some Typical Data Sets
3.1. Parallel-Chains Data
3.2. Sawtooth Data
3.3. One-Cycle Data

4. Database Model
4.1. Architecture of the Database System
4.2. General View of the System Software
4.3. Relational Database Operations
4.4. Other Operations Used in The Simulation Model

. 4.5. File Manager
4.6. Buffer Manager
4.7. Disk Manager

ii
iii
v

vi
viii

ix
1

5. Buffer Requirement Analysis
5.1. The Reference Pattern and the Least Maximum Buffer Requirement
5.2. RRP and LMBR for BWFT
5.3. RRP and LMBR for UIEC
5.4. RRP and LMBR for UWFE
5.5. RRP and LMBR for UPFE
5.6. Discussions on the RRP and LMBR of the Algorithms

6. Simulation Studies
6.1. Parameters of the Simulation Model
6.2. Observations and Interpretations of the Results
6.3. Simulation vs Analytical Results

7. Level Relaxation
7.1. Level-relaxed BWFT (LWFT)
7.2. Level-relaxed UPFE (LPFE)
7.3. Experiments with Level-Relaxed Algorithms
7.4. Clustered Data

7.4.1. Experimental Results on Clustered Data
7.4.2. Analysis on Clustered Data

8. Conclusions
Appendix A. Experiment on Join Operation
References

vii

List of Tables

Table 2-1: The disk VO of UXEC is improved 22
Table 3-1: Disk I/O performance of the algorithms on Parallel-Chains Data 33
Table 3-2: Disk VO performance of the algorithms on Sawtooth Data 35
Table 3-3: Disk I/O performance of the algorithms on One-Cycle Data 3 8

viii

List of Figures

Figure 1-1: The digraph of relation A 6
Figure 2-1: The digraph of a simple base relation 11
Figure 2-2: Derivation process of B W 12
Figure 2-3: BWFT will retraverse the path from bl to dl 13
Figure 2-4: Digraph with edges incident from current drivers 16
Figure 2-5: The derivation process of UIEC 20
Figure 2-6: The derivation process of UWFE 26
Figure 2-7: The derivation process of UPFE 29
Figure 3-1: Parallel-Chains Data 32
Figure 3-2: Sawtooth Data 34
Figure 3-3: One-Cycle Data 36
Figure 6-1: Page VO with JS = 0.0001 65
Figure 6-2: Page I/O with JS = 0.0005 66
Figure 6-3: Page VO with JS = 0.001 67
Figure 6-4: Disk VO with JS = 0.0001 68
Figure 6-5: Disk VO with JS = 0.0005 69
Figure 6-6: Disk VO with JS = 0.001 70
Figure 7-1: Original vs. Level-relaxed Algorithms with JS=0.0005, SS=0.5 80
Figure 7-2: Level-relaxed B W vs. level-relaxed UPFE 8 1
Figure A-1: Disk Z/O on different choices of operands for index in join 85

operation

Chapter 1

Introduction

Deductive database (DDB) is an important research area to integrate relational database

systems and logic programming. Relational database systems are inadequate in handling

recursion and making inferences. On the other hand, logic programming languages like

Prolog are inefficient in large database management. The general database system features

like integrity constraints, concurrency control and recovery are not well-addressed by

Prolog. Deductive database systems incorporate both relational operations and inference

rules. As pointed out in [18], the objective of DDB is to enrich the query language of the

relational database system, and to handle missing or unknown data.

Transitive closure operation is the most important operation in DDBs (eg. [7], [9],

[ll] and [l2]). Most other recursions may include transitive closure computation as an

operation or suboperationl. Therefore, most practical applications involving recursion will

need the evaluation of transitive closure. Hence, efficient processing of transitive closure is

an important issue in DDB research.

There kre two types of transitive closures: Total Closures and Query Closures. To find

the total closure of a binary base relation, one needs to compute the transitive closure of all

the attribute values in the base relation. On the other hand, query closure computation

requires one to find the transitive closure of some attribute values of the base relation only.

A transitive closure algorithm can be either unary or binary. The output of a unary

algorithm is a unary relation, while that of a binary one is a binary relation. The definitions

of these terms will be treated more formally in section 1.2. The problem of computing

'1n [7], the relationship of various complicated recursive clusters to transitive closure is discussed. This is
beyond the scope of this research; interested readers should refer to [7].

total closure (eg. [I], [9], [19], [20] and 1211) has received much more attention than the

query closure (eg. [7], [lo], [16] and [ti]). We feel that it is more important to study the

query closure computation of transitive closures. This is because query closure enables us

to find only those portions of interest of the closure in the database. In practice, we are

seldom interested in the whole portion in the database, and hence, query closure

computation will be more frequently encountered in the real world. For example, it is

more common to ask questions like "Find the ancestors of the individuals in Group A of

the database", which is a query closure question, than questions like "Find the ancestors of

all the individuals in the database", which is a total closure query question. The study of

query closure is thus more practically relevant. Moreover, we also feel that it is more

important to study binary algorithms than unary ones. In the example above, it is more

likely that we want to find out the ancestors for each individual, and attach this relationship

to that particular individual. In other words, it is more interesting to know the ancestor-

descendant pairs (binary) than just a list of ancestors or a list of descendants (unary).

To our best knowledge, there has not been any in-depth study of binary query closure

algorithms. In this thesis, we will introduce several algorithms for computing binary query

closure. The efficiency of the algorithms is measured in terms of its disk VO. The disk VO

of these algorithms is measured in simulation against both randomly generated and

specially constructed databases, using various VO buffer sizes. This performance study

will provide insight into the algorithms; not only does it identify the strengths and

weaknesses of these algorithms, but it also suggests ways to produce improved algorithms.

In Chapter 2, we will introduce and present some algorithms used to compute binary

query closure. The correctness and the termination problem of the algorithms will also be

discussed. In Chapter 3, some typical data sets are given in order to show the strengths and

weaknesses of the algorithms presented in Chapter 2. Then in Chapter 4, our database

model will be described. The analytical tools will be presented in Chapter 5. The general

performance of the algorithms on randomly generated data is studied and analyzed in

Chapter 6. In Chapter 7, a further refinement of the algorithms, the level-relaxation on the

algorithms, is proposed, and the new versions are presented and discussed. Finally, in

Chapter 8, we will draw our conclusions, and discuss issues for further research.

1.1. Deductive Database

The goals of research into DDB systems are:

to enhance relational database system with the use of deductive logic, and

to increase the expressive power of relational database system to cope with
more complicated queries.

As defined in [4], a DDB has three major components:

1. elementary facts.

2. deductive rules.

3. integrity constraints.

The elementary facts are the sets of relations which are composed of tuples stored in the

database. These sets of tuples form the extensional database (EDB), and the relations are

known as base relations. Deductive rules and integrity constraints are collectively known

as the intensional database (IDB). In the extreme sense, integrity constraints can be

considered as deductive rules. In this research, this view will be adopted, and IDB will be

considered to consist of merely deductive rules.

DDB can be viewed as a theorem proving system, [4], in which queries are represented as

theorems. Query processing is then considered to be a theorem proving activity. Recursive

query processing in DDB is the resolution of query using not only the explicit information

stored in EDB, but also implicit facts that can be derived by using the rules in IDB. Thus,

the evaluation of recursive queries requires iterative access to the information in the EDB

as well as the deductive rules in the IDB.

In current DDB literature, there are two common approaches to resolving recursive

. queries. They are the interpretive approach and compilation approach. Using the

interpretive approach, the theorem prover of DDB interleaves to both the IDB and EDB.

The merit of this approach is that it can dynamically retrieve relevant facts towards the

answer at run time. However, this approach is very expensive when accessing large

databases because of the nature of interleaving EDB and IDB. On the other hand, the

compilation approach requires the theorem prover to preprocess the deductive rules into a

set of relational operations, and then search for facts in the EDB. Thus it is easier for this

approach to obtain global optimization of database accesses by using the techniques

developed in relational database systems. For the advantages and disadvantages of these

approaches, interested readers are referred to more formal studies in [2], [14] and [17]. In

this research, we will consider recursive query processing using the compilation approach.

1.2. Transitive Closure

Transitive closure is the simplest kind of recursive query processing. Formally, the

transitive closure of a binary base relation A is defined by the following Horn clauses

expressed in notation very similar to Prolog, but we use capital letters to denote predicate

head, small letters to denote variables:

The first implication rule is often referred to as the exit rule for the predicate R. The

second rule is the recursive rule for predicate R. The symbol ":-" separates the conclusion

(on the left of the symbol) and the antecedent (on the right of the symbol) of the

implication rule, and the symbol "," is "logical and". Thus, the recursive rule reads like

"R(x,y) is true when R(x,z) and A(z,y) are both true". After compilation, a sequence of

expanded formulas will be formed..

The number i in ~ ~ (x , y) denotes the chain distance between x and y. The compiled

formula for transitive closure is then defined as

where n is the smallest m such that

We call the number n the longest chain distance between x and y.

In the theorem-prover view of DDB, the truth of A ~ (X , ~) implies that there exist constants

yl,y2, - . . ,yi-l such that A(x,yl), A(y1,y2), and so on to A(Y'-~,~) are true. A+(x,y) is true,

if ~ ' (x , ~) is true for some i, 1 i i i n. On the other hand, in a relational database system,

the expanded formulae are viewed as a series of join operations. Besides, we will

determine whether the set ~ ' (x , ~) is empty or not by searching for the tuple (x,y) in the

result of joining the relation A with itself i-1 times. In the rest of this section, we will

adopt the theorem-prover view of DDB to define terms, but the readers should be aware

that these terms can be defined equally well by using the relational database terminology.

A transitive closure can be either a total closure or a query closure. We define two

different closures using the above Horn clauses rules as follows:

Definition 1-1: Total Closure of A is the set { (x,y): A+(x,y) is true 1.

Definition 1-2: Query Closure of C in A is the set { (c,y): c E C and A+(c,y) is
true), where C is a set of constants, called the query constants.

The depth of total closure of A is the maximum over all x and y of the set

{ nxy : nxy is the longest chain distance between x and y; A+(x,y) is true)

The depth of query closure of C in A is defined in a similar fashion. That is, it is the

maximum over all c and y of the set

{ ncy : ncy is the longest chain distance between c and y; A+(c,y) is true and c E C)

When it is clear whether a query closure or a total closure evaluation is needed, we will use

the term depth of transitive closure instead of either "the depth of query closure" or "the

depth of total closure".

A base relation may be represented as a digraph, in which each node in the graph

represents an attribute value, and each arc represents a tuple with the attribute values on its

two ends. In the rest of this thesis, we use attributes and nodes, tuples and edges, and, a

relation and a digraph interchangeably. For example, for a base relation A with the tuples:

{ (a d , (b,d), (a,d), (c,e), (df) , (d,g)1

the digraph will be the one shown in Figure 1-1. The set of initial query constants will'be

some nodes in the digraph. This set of nodes which corresponds to the set of query

constants is referred as starting nodes in the graphical representation.

Figure 1-1: The digraph of relation A

The total closure of a digraph is defined as the set of all possible node pairs where the

first element is any node in the digraph and the second element is a node reachable from

the first. The query closure of some given nodes in a given digraph is the set of all possible

node pairs where the first element is a starting node, and the second element is a node

reachable from the first. For example, in the above base relation, assuming the starting

nodes to be a and b, we have:

When computing transitive closure, some tuples which are not in the set of the original

edges of the digraph will be added to the final closure (total or query closure). A tuple, say

(x,z), is produced when we have edges (x,yl), (y1,y2), . . -, (ykz). We call the tuple (x,z)

implied edge. Take the above example, (a,e) is an implied edge which is formed because

of the existence of the edges (a,c) and (c,e).

In the process of computing transitive closure, if we compute using a relation A(x,y),

starting from a set of x values to find a set of y values, we call the set of x drivers, and the

set of y driven elements. For the above example, driver a will lead to driven element c

because we have the tuple (a,c).

As stated before, a query transitive closure algorithm can be classified as unary or

binary. Their formal definitions are given as follows:

Definition 1-3: The unary query closure of a set of initial query constants with
respect to a relation is the set of driven elements that are derived from the initial
drivers2. (The unary query closure can also be defined as the set of all the nodes
that are accessible from the set of starting nodes.)

Definition 1-4: A unary query closure algorithm is an algorithm that computes
unary query closures.

Definition 1-5: The binary query closure of a set of initial query constants with
respect to a relation is the set of tuples, associating the driven elements with their
corresponding initial drivers. (The binary query closure consists of node pairs of
the starting nodes and the nodes accessible from them.)

CZ(C,A) = { (c,y) : c E C and A ~ (C , ~) is true for ssome positive integer
i l n)

where C is the set of the initial drivers.

Definition 1-6: A binary query closure algorithm is one that computes binary
query closures.

If we want to find the descendants of each individual within a group, a binary query

closure algorithm is needed. This is because we have to keep information on the kinship of

the individual and hisher descendants. However, if we just want to know who are the

descendants of a group of individuals, all we need is a unary algorithm, because the

information on the relationship of two individuals is not needed. It should be noted that

applying a unary algorithm to total closure evaluation will generate the set of all the nodes

with in-degree greater than 0. Take the base relation A in Figure 1-1 as an example. If we

 h he term "initial query constants" is used interchangeably with the term "initial drivers" in this thesis.

use a unary algorithm to find the query closure for the starting nodes a and b then all we

will get is the following set of nodes:

N = { cJdJeJf,g 1-
In contrast, if a binary algorithm is used, we will get

Cl(C 0 1 ,A) = { (aJc)J(aJd)J(aJe),(af)J(aJg)p(bfd)J(bfl,))

1.3. Unary Query Closure Algorithms

In the current literature, &Wavefront is a popular unary algorithm for the evaluation of

the transitive closure. Its efficiency can be further improved by an algorithm called level-

relaxed S-Wavefront in [6]. &Wavefront uses two intermediate sets: the frontier F to store

the "active" drivers, and closure Cl to collect the results. These sets are initialized to the set

of query constants C. At each iteration, a new driver set F (frontier) will be derived by

joining the drivers generated from the last iteration to the base relation A. The occurrence

of each of the new drivers in Cl will be checked. Those drivers which exist in Cl are

discarded from the driver set. The remaining drivers will then be added to Cl. The loop

terminates when no more drivers are available.

The &Wavefront algorithm is as follows:

C1 := C
P := C
while (IP # 0)

F : = F A A - C 1
C1 := C1 Uc F

a d while

A is the join operator joining a unary relation with a binary relation. Thus, the result of

the join operation is the set of y values in A(x,y), where (x,y) is a tuple of A, and x is an

attribute value in F. Unlike the standard union operation, u, concatenates its two

operands without removing any duplicates. The result of u, is a unary relation which is a

set of driven elements from the drivers in F. Readers interested in the proof of correctness

and termination of the algorithm are referred to [S] .

Chapter 2

Binary Query Closure Algorithms

In Section 1.3, the &Wavefront algorithm was described. This unary algorithm is very

efficient in computing the query closure of a relation. However, &Wavefront does not

keep track of the starting nodes from which each of the elements in the final closure is

derived. To find such relationships using the unary algorithm, one needs to separately

apply the algorithm to each of the starting nodes, instead of applying to the set of query

constants (starting nodes) collectively. Nevertheless, this strategy is not efficient in terms

of disk YO. Several drivers from several starting nodes may be in the same data page of

the base relation. By using the above strategy, the number of times the data page where the

drivers reside is accessed at least equals the number of the drivers. Hence, what we need is

some strategies that enable us to compute the transitive closures of the starting nodes

simultaneously, so that the number of data pages accesses is reduced. Such global

optimization is possible also with binary algorithms. In the following sections, we will

present some binary algorithms for query closure evaluation, and we will also prove their

correctness and termination.

2.1. Binary Wavefront (BWFT)

Binary Wavefront is the simplest and most straightforward algorithm derived from the

unary 6Wavefront algorithm. Being a binary algorithm, BWFT determines the pairs of

initial drivers and their driven elements. The major characteristic of BWFT which

distinguishes it from the GWavefront algorithm is the use of binary relation F to store the

driver-driven elements pairs, and binary relation Cl to accumulate the final answers. We

call each tuple (x,y) in F a binary driver, y an active driver, and F the binary frontier. In

BWFT, both F and Cl are initialized to the set of tuples resulting from the selection of A on

the query constants. As in the &Wavefront algorithm, at each iteration of BWFT, new

binary drivers will be derived. These newly generated binary drivers will be checked

against CE for occurrence. Existing binary drivers will then be deleted from the set of

binary drivers and the closure Cl will be updated by adding to it the remaining drivers.

The basic algorithm for BWFT is presented as follows:

a := OA
P := C1
while (P # 0)

P:= F A A - c l
C1 := C1 uc F

end while

a represents the selection operator. The first step of the algorithm is to select all the

tuples in the relation A with the query constants on its first attribute column. These tuples

are assigned to the binary relation CZ. The final closure will be stored in this relation. A

here represents the join operation on two binary relations F and A. The joining attributes

are the second attribute in F and the first attribute in A. The result of the join operation will

consist of the first attribute of F and the second attribute of A. The generated tuples are

stored in some temporary relation. u, concatenates its two operands without duplication

removal. The following theorem shows that BWFT is an effective and correct algorithm.

Theorem 2-1: BWFT terminates and generates the correct query closure in CE.

Sketched Proof :

Inside the loop, the new frontier (F) is found. The new frontier is the difference
of 'the result of joining the previous frontier with the base relation A, and the
closure Cl. The size of CI can never exceed n2 (n = size of the base relation A)
because the size of total closure is bounded by n2 and query closure is a subset of
total closure. As the size of CI grows iteratively, the new frontier will become
empty eventually. Hence, the loop must terminate.

The correctness of BWFT follows directly from the &Wavefront algorithm.
Initially, the frontier equals the closure CI which is the result of selection of A on
the query constants. Hence we get the paths of length 1 from the starting nodes
to their immediate descendants. These descendant nodes are associated with their
initial drivers in tuples which are stored in Cl. Then inside the loop, the nodes
which are at distance 2, 3, ..., and so on to the longest path length from the set of
starting nodes, will be found. Cycles are avoided by performing the difference
operation with Cl. Therefore, in the graphical representation, each arc that is

accessible from a given starting node will be visited once and only once during
the derivation of the closure for the given starting node.

2.1.1. Example of Using BWFT

Consider the digraph in Figure 2-1 with nodes a and b as the starting nodes. The closure

Cl and frontier F are initialized to be the tuples corresponding to the edges emanating frdm

nodes a and b. That is, we have (a,c) and (b,c) in Cl and F initially. At the first iteration,

joining the frontier F with the base relation A will get the tuples (implied edges) (a,d) and

(b,d), which do not yet belong to Cl. These tuples are then added to CI. So C1 now

contains (a,c), (b,c), (a,d) and (b,d). In the second iteration, new frontier F with the tuples

(a,e) and (b,e) will be produced. These tuples are then used in updating Cl. As there is no

more arc emanating from node e, the new frontier formed in the third iteration is empty.

Hence, no updating is needed for the closure Cl, and the loop terminates. The computation

by BWFT is also shown in Figure 2-2.

Figure 2-1: The digraph of a simple base relation

Figure 2-2: Derivation process of BWFI'

Iteration

1

2

3

2.1.2. Discussion on BWFT

If we take a closer look at BWFI' algorithm, we will notice certain redundancies. Let us

re-consider the graph in Figure 2-1. The drivers c, d and e for each of the iterations are

common to the nodes a and b. BWFT ignores the fact that nodes a and b have a common

descendant c. Therefore in each iteration, BWFT must consider two tuples. However, if

we operate on only their common descendant c, then for each iteration, we need to

consider one tuple. After that, we just attach the nodes reachable from c to nodes a and b.

Old-Frontier

(a,c),(b,c)

(a,dl,(bd)

(a,e),(b,e)

Consider another more illustrative example of redundant processing inherent in BWFT.

In Figure 2-3, nodes al and a2 are the starting nodes. It can be shown that in 3 iterations,

B W can produce the implied edge (a2,bl) into Cl (the relation to store the final closure).

Then BWFT needs two more iterations to get (a2,d1) into Cl. In total, BWFT requires 5

iterations to compute the query closure. However, the process from the third iteration to

the fifth iteration is actually redundant. This is because the edges from bl to cl and from cl

to dl have been accessed during the computation of the transitive closure for node al in the

first and second iterations. Therefore, if the information that bl can lead to cl and dl was

kept in the first and second iterations, when bl is discovered to be a descendant of a2, we

can know that cl and dl are also descendants of a2. Thus, in the third iteration, we should

be able to include the tuples (a2,cl) and (a2,d1) along with (a2,bl) into Cl.

New-Frontier

(a,dMb,d)

(a d h e)

Closure

(a,c),(b,c),(aP),(b,d)

(a,c),(b,c),(a,d),(b,d),(a,e),(b,e)

(a,c),(b,c),(a,d),(b,d),(a,e),(b,e)

Figure 2-3: BWFT will retraverse the path from bl to dl

There are two observations from the above examples that will serve as guidelines for the

design of alternative binary query closure algorithms. First, we can use a unary frontier

rather than a binary one. Initially, the frontier consists of the starting nodes. At each

iteration, the frontier is joined with the base relation to produce new nodes which are

reachable from the starting nodes. With duplicates removed, these unique new nodes will

form the frontier for the next iteration of processing, until no more new nodes are

produced. Thus, at the beginning of the i-th iteration, the frontier will consist of all the

nodes which are at distance i from at least one of the starting nodes. We call this set of

nodes i-th-frontier, i 2 0 (when i=O, it is the set of starting nodes). For example, Oth-

frontier in the example shown in Figure 2-3 will contain al and a2, 1st-frontier will contain

bl and b2, 2nd-frontier will contain cl and c2 and 3rd-frontier will contain dl and d2.

The second observation concerns the processing during each iteration. The processing

can produce new edges (tuples) that will be part of the final answer (the query closure), or

it can produce nothing of that sort, in which case the algorithm is only a preprocessing

algorithm We will discuss the former case first. We define i-th-edges to be the set of

direct edges leading from the nodes in i-th-frontier and i-frontier-edges to be the union of

all j-th-edges, 0 1 j l i . We also define the i-closure to be the query closure which'is

derivable from i-frontier-edges with the same starting nodes. When the algorithm

terminates, the i-closure will be the final answer. This is because at the end of the

algorithm, say at the m-th iteration, all the nodes accessible from the starting nodes must

be included in k-th-frontier, where 01 k l m. Thus, k-frontier-edges must be all the edges

with which the starting nodes can access their descendants. Hence, the closure derived

from these k-frontier-edges must be the desired query closure.

There are two ways to compute the i-closure. The i-closure at each iteration can be

obtained using the BWET method. Alternatively, the total closure of i-frontier-edges can

be computed, which is called the i-implied-edges-closure here. At the end, say after the

n-th iteration, the query closure can be computed by performing a selection on the n-

implied-edges-closure. We call the n-implied-edges-closures the

total-implied-edges-closure, and it is the total closure of the set n-frontier-edges which is

defined as total-frontier-edges. The chief benefit of finding the i-implied-edges-closure

in each iteration is that it requires fewer iterations of computation than that of the i-closure

computation because of more implied edges being stored. Consider the example in Fig.

2-3 again. If the 3-closure is computed, the implied edge (a2,dl) will be established

(deduced) in 2 iterations because (a2,cl) has to be first established. However, if we have in

the i-implied-edges-closure the edge (bl,dl), then the implied edge (a2,d1) can be

established in one iteration. Of course, the total closure computation is more intensive and

worst of all, the i-implied-edges-closure can be huge in size.

As a preprocessing strategy, one can make use of a unary frontier algorithm to identify all

edges (tuples) that may be needed to compute the query closure. In doing so, all redundant

tuples in the base relation may be removed before applying a standard query closure

algorithm, i.e., BWFT.

In the next few sections, we shall describe three different unary frontier algorithms based

on the above discussions. They are: the Unary Wavefront with Implied-Edges-Closure

algorithm, which computes the i-implied-edges-closure at each iteration, the Unary

Wavefront with Frontier-Edges algorithm, which computes the i-closure at each iteration,

and the Unary Wavefront Preprocessing with Total-Frontier-Edges algorithm which is a

preprocessing algorithm.

2.2. Unary Wavefront with Implied-Edges-Closure (UIEC)

In the previous section, we have discussed the use of unary frontier in each iteration. In

this section, we will present and study an algorithm, Unary Wavefront with Implied-

Edges-Closure (UIEC). UIEC will compute the i-implied-edges-closure at each iteration.

In fact, the i-implied-edges-closure provides a complete information about the derivation

path of each of the drivers encountered so far. In particular, there are (implied) edges

associating a node with each of its descendants found in the i-implied-edges-closure. Thus,

when a driver a reaches a node b, the descendants of b can be simply passed to a instead of

deriving from scratch.

In our implementation, we have a relation SubCl to store the i-implied-edges-closure. The

major objective in each iteration of UIEC is to find the i-implied-edges-closure which is

the total closure of i-frontier-edges. Direct application of total closure algorithm to i-

frontier-edges is costly, so we attempt to reduce the cost by making use of the (i-1)-

implied-edges-closure from the last iteration.

Each iteration m begins by first exploring the nodes in m-th-frontier. This results in

finding new edges, which are stored in newsub, different from (m-1)-frontier-edges. This

set of newly discovered edges is actually equivalent to m-th-edges. From the nodes in m-

th-frontier, the edges in newsub can lead to driven elements which fall into one of the three

categories: the set of current driver (m-th-frontier) ci, the set of unexplored drivers ((m+l)-

th-frontier) dl, and the set of previously explored drivers el, This can be visualized as in

Fig. 2-4. If we can find all the implied edges leading from the set ci to all the visited nodes

Figure 2-4: Digraph with edges incident from current drivers

(i.e., to the nodes in the union of I-th-frontier's, where 0 1 1s m+l), the job that remains for

finding the m-implied-edges-closure is to compute the implied edges leading from the

nodes in I-th-frontier's, where 0 1 Ism-1, to all the visited nodes using nodes in m-th-

frontier as intermediates nodes. Now, let us look at the pseudo-code of UIEC:

SubC1:= oA /* 0-frontier-rdges */
T := n2 (SubCl) - nl (SubC1) /* 1.t-frontier */

/* Loop 1 : Compute 0-frontier-edge.-closure */
newsub := SubCl A SubCl - SubCl
while (newsub # 0)

SubCl := SubCl uc newSub
newSub := newSub A SubCl - SubCl

end while

/* Loop 2 */
while (I # 0)

newSub : = I A A
if (newsub = 0) then exit the loop
newSub2 := newsub A SubC1 - newsub
newSub := newSub uc newSub2

/* Loop 3 : Com~pute the implied edges leading from the */
/* current driver. to the visited no&.. * /

newSub2 := newsub A newsub - new&&
while (newSub2 # 0)

new- := newSub uc newSub2
newSub2 := n e w ~ u b 2 - ~ newSub - newsub

a d while

newSub3 := -1 A newSub - SubCl /*find implied edges from */
/*the starting nodes to all*/
/*vi.ited node. using the */
/*current drivers as */
/*intermodlate nodes. */

SubCl : 3 SubCl uc new- /* compute the i-implied- */
SubCl := SubCl uc newsub3 /* edqea-cloaure. */
I := 112 (newsub) - Ill (-1) /* (i+l)th-frontier */

end while

o as before represents the selection of the base relation on the query constants. Two

selections are done in this algorithm. The first one chooses the tuples with the starting

nodes in the first attribute of the base relation A, and the second one chooses from the

relation SubCl. T(re1) is the operator to do projection on the i-th attribute of relation rel.

In the second line of the code, the difference from the set of the first attribute and the set of

second attributes of SubCl is computed. The result is the unary relation F. This step

ensures that the frontier (driver set) F contains drivers never processed before. Inside loop

1, the operands of the join operator A are both binary (SubCl and newsub are binary), like

those in BWFT. The joining attributes are the second attribute of the left operand and first

attribute the right operand. The result of the join operation is a binary relation whose first

attribute is the first attribute of the left operand, and second attribute is the second attribute

of the right operand. The join operator functions differently in loop 2, where F is unary but

A is binary. The joining attributes are from F and the first attribute of A. The result is

binary, and its attributes come from the attributes of A. Join operation in loop 3 is the s&e

as in loop 1.

Lemma 2-2: SubCl correctly stores the i-implied-edges-closure at the end of
the i-th iteration.

Sketched Proof :

We must note that loop 1 and loop 3 perform similar function. In fact, it can be
proved that the total closure of the relations SubCl and newsub will be found
after the termination of loop 1 and loop 3, respectively.

Initially, the drivers are all the starting nodes, i.e., 0th-frontier, After the first
selection, SubCl will contain all the edges from the starting nodes to their direct
descendants. Thus, SubCl is equivalent to 0-frontier-edges. Since loop 1 compute
the total closure of SubCl, therefore, after the completion of loop 1, the 0-
implied-edges-closure must be stored in SubCl.

At the beginning of each iteration i of loop 2 of UIEC, we assume that the
lemma holds. That is to say, SubCl contains the (i-1)-implied-edges-closure.
Finding i-implied-edges using the (i-1)-implied-edges-closure, we need to
compute: i) all the implied edges leading from the nodes in i-th-frontier; ii) the
implied edges using nodes in i-th-frontier as intermediate nodes.

Joining the frontier F to the base relation A, we will get all the edges from the
current drivers to their descendants in newsub, and hence, we get i-th-edges.
Performing join operation from newsub to SubCl will result in finding the set of
implied edges

{(cj,y) : there is an arc from cj to ek; cj€ i-th-frontier, eke lth-frontier,
where 0 1 11 i- 1, and (ek,y)€ SubCl) .

The difference operation performed after the join operation is mainly to remove
duplicates. The implied edges found are unioned to newSub. It should be noted
that newsub now contains i-th-edges and some implied edges from the nodes in
i-th-frontier to all the visited nodes. By using loop 3, the total closure of newsub
will be found. Hence, all the implied edges leading from the current drivers to all
the visited nodes can be found.

After the completion of loop 3, SubCl is joined to newSub. Thus, the implied
edges leading from the nodes in lth-frontier, where 05 1s i-1, to i-th-frontier and
to all the visited nodes are found. Then, the join operation is followed by two
union operations, so that all the implied edges found are included in SubCl.
Hence, SubCl will contain the i-implied-edges-closure at the end of loop 2.

Furthermore, the lemma is valid after loop 1, therefore, by induction on the
iteration i, the lemma must hold.

Theorem 2-3: UIEC terminates and correctly computes the query closure in Cl.
Sketched Proof :

There are n tuples in A, and hence, the n-th-frontier set is empty. Thus, in at
most n iterations, all the nodes in i-th-frontier (05 i5 n) must have been explored.
Therefore, loop 2 must terminate.

Since at the termination of loop 2, all the drivers have been considered, and
hence their driven elements must also been considered. Therefore, all the
descendants from the starting nodes must be considered, too. By Lemma 2-2,
SubCl must contain the i-implied-edges-closure which is a superset of the i-
closure. Thus, at the completion of loop 2, query closure will be a subset of the
i-implied-edges-closure. Therefore, by performing a selection of SubCl on the
initial nodes, we can get the query closure for the starting nodes. Hence, upon
termination of UIEC, Cl contains the query closure.

22.1. Example of Using UIEC

Let us consider Figure 2-1. The derivation process of UIEC is shown in Figure 2-5. SubCl

is initialized to ((a,c),(b,c)), and F contains node c only. Since nodes a and b are not

directly linked to each other, loop 1 will not be entered. At the first iteration of loop 2,

newsub will contain tuple (c,d). Node d will be the only element in i-th-frontier for the

next iteration. At the time when loop 3 is being entered, newsub contains the tuple (c,d).

As node d has not been explored, loop 3 will not be entered. Now, newSub3 will contain

tuples (a,d), (b,d). Then updating SubCl will set it to ((a,c), (b,c), (a,d), (b,d), (b,c) }.

Similarly, at the second iteration of loop 2, (d,e) will be derived and stored in newsub.

Loop 3 will not be entered. After the update, tuples (a,e), (b,e) and (d,e) will be added to

SubCl. Since node e has no outgoing arc, SubCl need not be updated, and loop 2

terminates. The last step is to perform selection on SubCl and to take the tuples starting

with a and b into Cl.

Figure 2-5: The derivation process of UIEC

23.2. Discussion on UIEC

As pointed out earlier, loop 1 and loop 3 of UIEC are actually implementations of a total

closure algorithm. Loop 1 finds the total closure of 0th-frontier-edges, and loop 3

computes the total closure of newsub, i-th-edges. Much research has been done on total

closure evaluation, involving good algorithms like the Logarithmic Algorithm [9],

Warshall's Algorithm [21] and Warren's Algorithm [20], etc. These algorithms are proved

to be very efficient in total closure processing. In this section, we will modify the

algorithm UIEC by employing the Logarithmic Algorithm in its loop 1 and loop 3. The

disk I/O performance of the original and the improved version are then compared. The

new version for UIEC is as follows:

SubCl := Totrlcl (SubC1)

while (P # 0)
newsub : = F A A
if (newsub = 0) axit the loop
newsub2 := newsub A SubCl - newSub
newsub := newsub uc newSub2

newSub3 := SubCl A newsub - -1
SubCl : = SubCl uc newSub

SubCl := SubCl uc new-

P := n2 (newsub) - lTl (-1)
end while

/* procedure TotalCl */
procedure TotrlCl(re1)

TC1 := re1
LW := re1
m i r e ~ ~ a := I T C I I
loop

LW := LW A LW
i f (LW = 0) thur exi t loop

W := TC1 A LW
if (w = 0) then exit loop

T c l := TC1 U W

if (sireTC1 = (TCI I) then exi t loop

mireTC1 := I T C I (
end loop

return (TC1)
end Totalc1

For the comparison purpose, we perform experiments on the original and improved

versions of UIEC using special data (Sawtooth data) that is favorable to UIEC. This kind

of data will be discussed in Section 3.2. Different parameter values and different relation

sizes are used, and the result is shown in Table 2-1. The second column of Table 2-1

corresponds to the number of starting nodes in Section 3.2 (in Figure 3-2). The third and

the forth columns of Table 2-1 show the disk I/03 performance of the original and the

improved versions of UIEC, respectively.

Table 2-1: The disk VO of UIEC is improved

The result shows that the disk VO performance of the improved version is better than that

of the original one. In fact, the number of times loop 1 and loop 3 of the original UlEC

presented in Section 2.2 are executed is also logarithmic in the depth of the transitive

closure. Take loop 1 as an example. The loop finds the total closure for SubClo. Joining

SubCIO with itself yields S U ~ C Z ; . After the union operation, SubCl contains SubCIO and

3 ~ i s k 110 is the number of pages swapped between disk and main memory

SubC6, and, newsub contains SubCl; and SubCG. In the second iteration, SubCl becomes

the union of SubClo, s&c(, SubCl; and S U ~ C ~ . Thus, when we join n d u b with

SubC1, we will get S & C ~ u S & C ~ u . - . u s&c(. However, a large number of

duplicates are produced. The result of joining SubCl; in newsub to s&c(, in SubCl is

S & C ~ ~ which can also be produced by joining SubC6 to s&c$-' in SubCl. Then in the

16 third iteration, we can get the union of S&Cl0, SubC6, . . ,SuM710 and so on. Hence, in

logarithmic time of the depth of the transitive closure, we will get the total closure for

SubClo. The implication of the results from Table 2- 1 is twofolds:

1. The duplication produced at each iteration is an important factor in the disk
VO performance. The duplicates require extra storage. This implies that
more buffer memory or else incurs high disk VO will be required. Moreover,
we can see that duplication removal is a very costly operation.

2. The selection of an efficient algorithm for total closure processing affects the
disk VO performance of UIEC. In other words, if an efficient total closure
algorithm is used, then the performance of UIEC will be improved.

As the improved version of UIEC performs very well, in our performance studies, we

will embed the Logarithmic Algorithm into UIEC, and do the analysis based on this

improved version.

2.3. Unary Wavefront with Frontier-Edges (UWFE)

To reduce the redundancy inherited by BWFI' algorithm, we devise UWFE. As in UIEC,

we proceed by using a unary driver set (unary frontier). However, in each iteration, instead

of computing the i-implied-edges-closure as in UIEC, UWFE will compute the i-closure.

The computation is made possible by storing i-frontier-edges. UWFE has three important

intermediate relations which are: i) the unary frontier F; ii) Cl which stores the i-closure,

and iii) PB which stores i-frontier-edges. Both Cl and PB are initialized to be the set of

those edges originating from the starting nodes, i.e., 0th-edges. F is initialized to be 1st-

frontier. Note that, we use the same method as the one in UIEC to find the frontier. In each

iteration of PB, newPB, which is i-th-edges, will be found and unioned to (i-1)-frontier-

edges to obtain i-frontier-edges. Then the i-closure will be computed by making use of the

(i-1)-closure. The algorithm of UWFE is stated as follows:

Cl :5 GA
PB := Cl
r : = n2 (PB) - nl (PB) /* col~putr the 1st-frontirr */

/* Loop 1 : computr tho 0-closura */
d l := C1 A P B - Cl
whilo (noel # 0)

C1 := C1 uc nmCl
nrwCl := nrwCl A PB - C1

mnd whilr

whilr (T # 0)
newPB := IP A A
if (newPB 5 0) u i t the loop

/* Loop 2 : c4mpute the i-closure from (i-1)-aloaure */
nrwCl : = Cl A nowPB - Cl
whilr (newCl # 0)

C1 :5 C1 uc newCl
no- := nee1 A PB - Cl

and whilr

r := n2 {PB) - nl (PB) /* compute the (i+l)th-frontier */
end while

As in UIEC, the join operator A functions differently depending on whether its left

operand is unary or binary.

Lemma 2-4: UWFE correctly stores the i-closure in Cl at the end of the i-th
iteration.

Sketched Proof :

After the initialization, PB and Cl contain all the edges emanating from the
starting nodes. Thus, PB and Cl are equivalent to 0-frontier-edges. As loop 1 is
an implementation of BWFT, therefore, after the completion of loop 1, Cl must
contain the 0-closure.

In each iteration of loop 2 of UWFE, i-th-edges are found using the join
operation and are stored in newPB. By induction, PB contains the union of k-th-
edges (02 k l i-1), and so with newPB unioned to PB, we can obtain i-frontier-
edges in PB.

Now, assume that Cl contains the (i-1)-closure. By joining CZ to newPB, we can

get all the implied edges from the starting nodes to the driven elements of the
current drivers (i-th-frontier) using nodes in i-th-frontier as the intermediate
nodes. With loop 3 that follows, instead of joining Cl to newPB, if we join Cl to
PB, we will have an implementation of BWFT on i-frontier-edges. However,
using PB will not produce more implied edges to be added to the i-closure than
using newPB. Let us assume to the contrary that one more implied edge, say
(x,z), is found when using PB. This means that we have a tuple (x,y) in C1 and a
tuple @,z) in PB, for some y. The node y must be in k-th-frontier (Ol kSi-1), ,

because if it is in i-th-frontier, we must have @,z) in newPB (i-th-edges), and this
implies that (x,z) should have been found using newPB. This contradicts our
assumption. Therefore, node y is in k-th-frontier and this implies that (y,z) is in
k-frontier-edges. By definition, the implied edge (x,z) should be contained in the
(i-1)-closure. Therefore, (x,z) cannot be distinct from edges in the (i-1)-closure,
and thus, using newPB is the same as using PB. Now, loop 3 can be seen to be an
implementation of BWFT, and therefore, the query closure of i-implied-edges
(i.e., i-closure) will be found at the end of loop 3. Thus, Cl contains the i-closure
at the end of iteration i.

Theorem 2-5: The algorithm UWFE terminates and produces the correct
closure in C1.

Sketched Proof :

As UWFE has the same i-th-frontier as that of UIEC for each iteration, UWFE
must terminate by Theorem 2-3.

As all the drivers must have been considered at the end of loop 2, PB must
contain all the edges accessible from the starting nodes. By Lemma 2-4, Cl
contains the i-closure which is the query closure of i-frontier-edges. Therefore,
when UWFE terminates, Cl must be the final query closure.

23.1. Example of Using UWFE

Consider Figure 2-1. As before, we take nodes a and b as the starting nodes. After the

selection operation, we derive tuples (a,c) and (b,c) in PB and Cl. As there are no edges

between nodes a and b, then the complete 0-closure will be stored in CI, and so we can

proceed to the second loop. At the first iteration, F contains the driver c. With the driver,

after the join operation, we get (c,d) which is then stored in newPB. Then this new tuple is

. added to PB. Computing 1-closure, we get {(a,~), (b,c), (a,d), (b,d)). The only driven

element is node d, which has not been explored, so it is the only element in 2nd-frontier.

At the second iteration, (d,e) is the only element in newPB after the join operation and it is

added to PB. The new implied edges (a,e) and (b,e) are formed by joining Cl and newPB in

the computation of the 2-closure. The set of these tuples is then unioned with Cl. Then

node e will be found as the only element in 3rd-frontier. Since node e does not have any

outgoing arc, and so the loop terminates. The derivation process of UWFE is also shown

in Figure 2-6.

Figure 2-6: The derivation process of UWFE

23.2. Discussion on UWFE

UWFE and UIEC use the same driver set for each iteration. However they use different

methods of derivation. While UIEC uses the i-implied-edges-closure to record the

derivation path, UWFE uses i-frontier-edges to record only edges from one driver to other

driver(s). The use of the i-implied-edges-closure will provide complete information of the

derivation process, in the sense that whenever a driver b is revisited while a node a is being

explored, all the reachable nodes leading from b can be immediately recognized as

successors of a. This means that by one join operation, we can get all the implied edges

((a j) : (b j) is an implied edge leading from b) .
In contrast, the use of i-frontier-edges only gives partial information. We only know the

. direct edges leading from j-th-frontier (OSjli), i.e., j-th-edges. Thus every time when a

node b is revisited, the successors of node b are not explicitly stored, and we have to use

node b as the root and traverse through the edges in PB to find the successors of b.

Therefore, when many such nodes are revisited throughout the derivation stage, UWFE has

to find the successors of these nodes repeatedly. This implies that more I/O is needed for

UWFE. On the other hand, in order to provide such complete information on the derivation

stage, UIEC needs extra effort to update the i-implied-edges-closure. If there are not many

nodes being revisited, then the effort of updating the implied edges for each of the

encountered drivers will become a substantial overhead. Thus, there is a tradeoff between

providing the full derivation information and the extra effort of updating the i-irnplied-

edges-closure. In the performance studies presented in Chapter 6, we will demonstrate such

tradeoffs.

2.4. Unary Wavefront Preprocessing with Total-Frontier-Edges (UPFE)

UPFE is a preprocessing algorithm. It first finds total-frontier-edges and then finds the

query closure of total-frontier-edges. To accomplish the task, UPFE computes the query

closure by the direct application of BWFT on total-frontier-edges. UPFE employs

intermediate relations PB to record the i-frontier-edges set, F to store i-th-frontier (current

drivers), and Cl to collect the i-closure. As UWFE, PB and Cl are initialized to be the set of

edges leading from the starting nodes. The frontier F is found by using the same method as

that in UIEC and UWFE. There are two stages in UPFE. The f i t stage is to fmd i-frontier-

edges (the preprocessing stage), and the second stage is to find the i-closure (the

propagation stage). The preprocessing stage is the iterative process of finding a new driver

buffer by exploring the current drivers. The new drivers are all the unexplored direct

successors of the current drivers. Edges leading from the current drivers will be added to

PB as in UWFE. Each iteration of the propagation stage will require i-th-edges to be found

and stored in an intermediate relation newel which will then be unioned to Cl. The UPFE

algorithm is stated as follows:

/* preprocessing stage */

w h i l r (O # 0)
newPB : = P A A
i f (newPB = 0) exit the loop

R' : = n2 (newPB) - (PB)
end w h i l e

/* propagation stage */

newCl := n (C1 A PB - C1)
w h i l e (newCl # 0)

C1 := C1 uc newCl
newCl := nrwCl A PB - cl

md w h i l e

Theorem 2-6: UPFE terminates and correctly computes the query closure upon
termination.

Sketched Proof :

The preprocessing stage terminates because there are at most 2n distinct drivers
(n = size of the base relation A), and also only i-th-frontier are considered for
each iteration. Besides, at each iteration, we record i-th-edges in PB. In other
words, we explore the current drivers, and record the direct edges leading from
these current drivers. Hence, the active driver set must be exhausted at some
iteration and the loop terminates. Moreover, all the drivers driven from the
starting nodes must be considered. Thus we must have recorded all the driving-
driven pairs (total-frontier-edges) in PB upon termination of the preprocessing
stage.

All the edges needed for the derivation process are recorded after the
preprocessing stage, and using these edges is sufficient to derive the query
closure. That is, we have eliminated those useless edges (edges that are not
incident on the successors of the starting nodes) from the base relation A. In the
propagation stage, we find the query closure on the smaller relation PB instead
of the larger relation A. As we use BWFT for this propagation process, upon
termination, Cl must collect the query closure properly, by Theorem 2-1.

2.4.1. Example of Using UPFE

Let us consider Figure 2- 1 again. The preprocessing stage is started by initializing PB and

Cl to be (a,c) and (b,c). The only driver found is node c. With driver c in 1st-frontier, we

find newPB to be (c,d) which is then added to PB. Then in the next iteration, the driver d in

2nd-frontier has only one edge (d,e) leading from it, and so newPB will contain (d,e) only.

With newPB unioned to PB, we now have in the PB (i-frontier-edges) the tuples {(a,~),

(b,c), (c,d), (d,e)}. Since node e is not drivable, the preprocessing stage is completed. The

first iteration of propagation stage will add the tuples (a,d) and (b,d) to Cl. Then in the next

iteration, the two tuples (a,e) and (b,e) will be added. Now, newCl is empty, and the loop

terminates. The query closure found is {(a,c), (b,c), (a,c), (b,d), (a,e), (b,e)}. The

derivation process of UPFE is also shown in Figure 2-7.

Figure 2-7: The derivation process of UPFE

2.4.2. Discussion on UPFE

Both UPFE and UWFE find and record i-frontier-edges, and stores these direct edges

emanating from the drivers in PB. The algorithms will also compute the i-closure.

However, the computation of i-closure in UWFE is done within the loop of deriving the

driver sets, but that in UPFE is done after the drivers derivation process is completed.

Thus, they are different in the order of the relational database operations. It is this ordering

that makes the two algorithms different in their relation reference pattern (RRP) and values

of Least Maximum Buffer Requirement (LMBR), which will be treated more formally in

Chapter 5. Moreover, reference localities of the two algorithms are different. Independence

of driver derivation and i-closure update processing enables UPFE to concentrate on fewer

relations in each stage. Thus, the chance that these relations are in the main memory will

be higher. In particular, the data pages of the base relation A needed during the join

operation, which is a very costly operation, in the preprocessing stage of UPFE will be

more likely in the main memory than those data pages needed during the corresponding

join operation in UWFE. On the other hand, updating i-closure inside the driver derivation

loop has its advantage. The merit of the action lies in the data clustering property of the

relations during the updating process. To be precise, each iteration of the updating process

of UWFE will encounter much smaller relations than that of UPFE. Hence, there will be a

higher chance for those relations to be found in the main memory, and thus there will be

less disk traffic. All of these factors contribute to the difference in disk VO performance of

UPFE and UWFE. In Chapter 5, these factors will be considered, and the difference in disk

VO performance of the two algorithms will be discussed in more detail in Chapter 6.

Chapter 3

Algorithm Analysis On Some Typical Data Sets

In this chapter we will consider some special data sets in order to get a deeper

understanding of the algorithms. These special data sets are arranged such that one of the

algorithms will be seen to outperform all others. For each data set, simulation experiments

are carried out to compare the disk I/O performance of the algorithms. A small buffer size

(10 pages) is used in each experiments, and each of the pages is assumed to hold 20 binary

tuples4.

3.1. Parallel-Chains Data

When the base relation contains only independent chains of data like that in Figure 3-1,

we refer the kind of data as Parallel-Chains Data. The base relation may contain complex

relationships among the nodes, but from the starting nodes chosen to their descendants, the

outdegree and in-degree of the nodes must be equal to or less than 1.

In the discussion of B W , we pointed out that extra processing occurs when some of the

drivers have common descendants, and the path leading from those descendants to their

descendants may be revisited. However, if no such case occurs, that is, if the base relation

has nodes with indegree I 1, then each of these nodes cannot be revisited by any search

mechanism. Parallel-Chains Data has this property. This means that BWFT satisfies the

condition that no path is revisited as other algorithms, but without the overhead. The only

difference is the arity of the driver (binary vs. unary). Thus B W is expected to

outperform the others for this kind of data set. In fact, the number of iterations that BWFT

%e buffer size and page size will be discussed in Section 6.1.

31

Figure 3-1: Parallel-Chains Data

takes is exactly the same as those for UIEC and UWFE, thus eliminating the motivation of

UIEC and UWFE, as stated in Chapter 2.

We have generated this kind of data with 2 parameters and compared the results of the

algorithms. The parameters are: the number of starting nodes and the depth of each chain

(all chains have equal depth). The results are shown in Table 3- 1. From Table 3- 1, we can

see that the experimental results agree with the discussion we have made above.

3.2. Sawtooth Data

We refer to those relations that are composed of a long single chain with each odd node

as a starting node as the Sawtooth Data. Figure 3-2 shows this kind of data.

In Figure 3-2, al, . . - , a, are all the starting nodes, and the closure for the relation is the

set of tuples such that C1 = { (ai,aj) : j < i) u { (ai,bj) : jSi). Since this data set has a

long chain, BWFT will iterate the loop for 2n-2 times in order to find the closure. Both

UWFE and UIEC will exit from its second loop after one iteration. As a preprocessing

algorithm, UPFE does not perform better than BWlT because all the edges needed for

Table 3-1: Disk VO performance of the algorithms on Parallel-Chains Data

propagation can be found in one iteration. Sawtooth data requires UPFE to put much

effort on its propagation stage which is just the implementation of BWFT. Even though

UWFE and UIEC exit from their respective loops after the same number of steps, the

processing inside the loop makes a difference in their disk YO. The computation of the

i-closure inside loop 2 of UWFE is an implementation of B m , hence loop 3 of UWFE

(loop that carries out the i-closure computation) will iterate 2n - 2 times in its loop 2.

However, finding the i-implied-edges-closure inside loop 2 of UIEC requires only ln(2n-2)

steps. (Recall that a logarithmic algorithm is used for the total closure evaluation.) This

makes UIEC outperform the other algorithms for this kind of data.

The experimental results are shown in Table 3-2. The data set generated has two

Figure 3-2: Sawtooth Data

parameters, i.e., the number of starting nodes, and the size of the base relation. The first

and second columns of Table 3-2 correspond respectively to the relation size and the

number of starting nodes. The third to sixth columns correspond to the disk I/O of BWFT,

UWFE, UPFE and UIEC respectively. The result in Table 3-2 shows that UIEC has the

best disk ID performance. This confirms with the above discussion.

Table 3-2: Disk VO performance of the algorithms on Sawtooth Data

3.3. One-Cycle Data

When the base relation contains one large cycle and there is a direct edge from each

starting node to a node on the cycle, we refer this kind of data as One-Cycle Data. In

Figure 3-3 we have a One-Cycle Data set with two starting nodes al and a2. In our

experiment with this kind of data, there are two parameters: the cycle length and the

relation size. The results of the experiment are tabulated in Table 3-3.

The results indicate that UPFE outperforms the others when the cycle length is of

moderate size, such as 20. When the length of the cycle increases, BWFT becomes the

Figure 3-3: One-Cycle Data

best. Generally speaking, the performance gap between UPFE and BWFT narrows as the

size of the relation increases. UIEC is the worst in this kind of data. This is because the

effort to update the i-implied-edges-closure is a waste. For this kind of data, only the

implied edges leading from bl and bRn (see Figure 3-3) are useful. Hence, UIEC has a

higher overhead than the other algorithms and its disk VO performance becomes the worst.

When we examine the data more closely, we will find that it exhibits the property of

Parallel-Chains Data. For example, al to ba is a long chain, and bnn to bl is also a long

chain. When the length of the cycle increases, the property of Parallel-Chains Data

becomes more apparent. However, for moderate cycle length, UPFE has the least disk YO.

The reason is that it preprocesses the base relation to a smaller relation (total-frontier-edges

PB), and then finds the closure by just focusing on PB. Since the relation PB is smaller

than the original base relation, the page swapping during the propagation stage is reduced,

and hence, the disk I D is small. UWFE stores i-frontier-edges and computes the i-closure

at each iteration. In a small memory buffer environment, this will make more frequent disk

swapping of these intermediate relations (PB and CI, etc.) for processing, and hence,

UWFE will have higher disk I/O than that of UPFE. Therefore, UPFE will outperform the

others on moderate cycle lengths.

Table 3-3: Disk I/O performance of the algorithms on One-Cycle Data

Chapter 4

Database Model

In this chapter, we will describe the database model we use. The introduction of our

database model is to provide the readers with information about the environment in which

the simulation experiments will take place (Chapter 6). The buffer requirements of the

algorithms are analyzed in Chapter 5.

4.1. Architecture of the Database System

As described in logic and database literature, a deductive database system is divided into

an intensional database (IDB) system and an extensional database (EDB) system. The

intensional database consists of deductive rules and integrity constraints whereas the

extensional database is the set of data stored in the database. Normally, IDB and EDB

reside in the disk, and are brought to the main memory when needed. Since we use the

compilation approach (see Chapter 1) to query processing, the rules in IDB will be

compiled first into one of the query processing algorithms we have. The query processing

algorithms are embedded in our system software. Query processing requires the system to

access the EDB in the disk, and to manage the 110 between the main memory and the disk.

4.2. General View of the System Software

Our System Software Model is divided into Relational Data System (RDS) and Data

Storage System (DSS). The input to RDS is the compiled query which consists of a set of

relational database operations. In RDS, these operations will be transformed into sequences

of read and write requests, and these operations are the input to the DDS module. Each of

these read/write operations is at the tuple level, i.e., the interface of RDS and DDS.

DDS is further divided into two modules. The two software modules are File Structure

System (FSS) and Buffer Management System (BMS). The tuple ~leadlwrite operations

from RDS are directed toward FSS. In fact, the operations can be sequential read/write or

indexed read. A sequential operation is one that reads from and writes to a relation

sequentially. For indexed read, a B+ tree structured indexing is built for the relation which

has not been indexed. A tuple is accessed directly through the use of the index. FSS is h e

module responsible for these direct and sequential read and write operations at the tuple

level. In order to carry out its job, FSS will convert the tuple readwrite operations into

page readJwrite operations which are then forwarded to BMS.

Within BMS, the buffer manager is responsible for managing a buffer pool of pages.

Basically, the task of the buffer manager is to: 1) serve the page requests passed from FSS,

2) communicate with the disk manager in order to do readlwrite operation from/to disk,

and 3) decide which page in the buffer is to be replaced when the buffer is full. BMS also

acts as the interface to the disk manager.

In our simulation model, each of the above layers is implemented as a module. The

communication between the modules is by subroutine invocation. The devices such as the

main memory (buffer pool of pages) or the disk are simulated by data structures in our

package.

4.3. Relational Database Operations

The transitive closure algorithms will be transformed into a sequence of relational

database operations serving as input to RDS. Within RDS, the modules Assign, Join,

Select, Project, D ig and Union which correspond to each of the six relational operations,

Assign, Join, Selection, Projection, Difference, and Union will perform a series of read

and write operations either sequentially or directly using indexing. The relational database
- operators are implemented as follows:

Assign(A,C) - This is perhaps the simplest operation. The function of this operation is
to copy all the tuples of relation A to relation C. Hence a loop is
needed to do a sequential read on relation A, and write on relation C.

Jointi - attb,r - attb,AJ,C) -
j-attb and r-attb are bit vectors representing the join attributes of the
operands and the resulting attributes of the result relation, respectively.
Using the bit vectors, we can arbitrarily choose any of the attributes of
the operands to be the join attributes or resulting attributes.

In this research, we adopt the nested-loop indexing strategy to
implement the join operation. The outer loop will do sequential read
on one of the two relations. Using the joining attribute of the retrieved
tuple as a key, we will find all the matching tuples of the other relation
in the inner loop by direct read operations on that key. Then a resulting
tuple will be formed for each pair of the matching tuples by examining
the bit vector r attb. The relation to be chosen in the outer loop is
always the smAler relation. In Appendix A, we describe our
experiments on two different choosing strategies for the inner and
outer relations, and justify our choice.

Select(attb,constant,A ,C) -
The parameter attb designates the selection attribute column. Since we
are considering only unary or binary relations, attb can be either 1 or 2.
A value of 1 denotes that the selection is done on the first attribute, and
a value of 2 means the second attribute is the selection attribute. The
result relation C can be unary or binary, depending on whether A is
unary or binary. constant is an array which is the set of constants by
which the selection is applied. If indices have already been built on the
selection attributes, then direct read operation will be issued using the
list of constants as keys; otherwise, relation A will be accessed
sequentially to find all the tuples that have one of the values in the
constant list in its selection attribute column.

Project(attb,A,C) - This operation not only performs projection, but also duplication
removal. If relation A is unary, then the only job that can be done is
removing all the duplicates of A. For binary relation A, projection can
be done on the first or second attribute, and attb is used to represent
which of the attributes should be applied on. Instead of having values
''1" or "2", attb may have value "3". In that case, only duplication
removal is done for the binary relation A.

In our implementation, we first sort the relation A on the projection
attribute. Then the sorted relation will be scanned sequentially to find
distinct values or tuples. Hence, the cost of this operation is the sorting
cost, and the cost to read the sorted relation.

Diff(A,B,C) - The relations A, B, and C can all be unary or all be binary. All the
tuples in A that are not in B will be written to C. Like join operation,
this operation also requires a pair of nested loops. Sequential read
operations will be done on relation A in the outer loop. For unary
relation A, the attribute of the retrieved tuples will be used as the key to
do an index read to relation B in the inner loop. If no such key can be
found for relation B, then the key will be written to relation C. In the

case of binary relation A, the first attribute of the retrieved tuple of A
will be used as the key to the index search in relation B. If no
equivalent tuple is found in B, then the tuple will be written to C.

Union(AJ3,C) - Relation B will be unioned to relation A. These relations can be both
unary or both binary. There are two versions of Union operation. The
first one is quite simple, and it just needs to read all the tuples of
relation B and writes them to the end of relation A. The other version is
equipped with a mechanism for duplication removal. In that version; a
pair of nested loops are needed. The outer loop will read A
sequentially, and the second loop is to use the first attribute of A as the
key to do an index search on relation B. If no occurrence of the
retrieved tuple of A is found on B, then the tuple will be written to the
end of A. In addition to writting the tuples of B to the end of the
relation A, the two versions also build an index to those tuples added to
A if an index table has been built for A before.

4.4. Other Operations Used in The Simulation Model

We implemented three more operations to free space for a relation which will not be used

later on, to sort a relation on one specific attribute column, or to build an index for a

relation. The three operations are Freespace, SortRel and Buildndex. Moreover, our

algorithms sometimes require the application of the same sequence of relational database

operators. For easy analysis and improved performance, we have added two operators both

of which combine two relational database operations. These are the operators for join and

difference, and project and difference operation. We call these operators JoinDifl and

FreeSpace(A) - This operation will free all the storage occupied by the relation A. This
operation proved in some of our tests to be useful because when we
have only limited buffer space (main memory), releasing those
unwanted pages in the main memory will allow useful pages to remain
in main memory without being swapped out. Without this command, it
is very hard to use any replacement algorithm to ensure that all the
pages that are no longer needed will be chosen to be swapped.
Therefore, using this command, the overall performance will be
improved.

SortRel(attb,A) - As before, attb denotes the attribute the operation is applied on. We
have implemented the quick sort algorithm for sorting the relation. In
our simulation model, the base relation will be sorted on the f ~ s t
attribute before any of the binary query closure algorithms are
executed. The disk VO performance is improved by sorting the base

relation first, because all the drivers with the same value will be
clustered together.

BuildIndex(attb,A) -
A B+ tree indexing will be built on the attribute column designated by
attb. This operation will be applied on the base relation at the
beginning of all the algorithms because we always need the first
attribute of the base relation as the key for finding driver sets.

JoinDiffO - attb,r-attb,AB ,CP) -
j-attb and r attb are the bit vectors for choosing the join attributes and
result attributes of joining relations A and B. This operation finds the
difference of the result relation of joining A and B from C. The
difference will be stored in D .
Like the join operator, this operator is also implemented with a pair of
nested loops. In its second loop, after a matching tuple t is found, the
tuple will be checked immediately against relation C for occurrence.
This test is carried out by using the tuple as the key to the index table
of C. That is to say, we also need index table for C. Our
implementation of difference operation also requires the index table, so
it is not an extra effort to build an index table for relation C here. If no
equivalent tuple t is found in C, then t will be written to relation D.
Thus, no intermediate relation is needed to store the intermediate result
of joining A and B.

ProjDiff(AB,C) - All the three relations are binary. This operation finds the projection
of A on the second attribute, and the projection of B on the first
attribute, and then stores the difference of the former projection from
the latter projection into C.

A will be sorted on the second attribute. Then the sorted relation will
be scanned sequentially to find distinct values. Each of the distinct
values will be used as the key to access the index table of B on its first
attribute. If the index entry exists for the key, then the key will not be
recorded, otherwise, the key will be written to C. Therefore, there is no
need for intermediate relations for the two projections, and hence VO
performance will be improved.

4.5. File Manager

The File Manager manages the interface between File Structure System PSS) and Buffer

Mangement System (BMS) inside Data Storage System (DDS). Upon receiving the tuple

requests from Relation Data System (RDS), the File Manager will find out whether the

requests are sequential or directed ones. If sequential operations are needed, then the File

Manager will convert the requests to page requests and then pass the page request to the

Buffer Manager. The conversion is a trivial calculation as long as we know the number of

tuples that can reside in a page. When a direct request is passed from RDS, then there are

two things the File Manager needs to do. First, the File Manager needs to see whether the

relation already has an index. If not, then an index table must be built on the relation.

Second, the File Manager should initiate an index search. The index search requires the

traversal of the B+ tree table built for the relation until a leaf node is reached. At the leaf

level, the address of the data pages where the tuples with the key in question can be found.

Readers interested in the B+ tree structure are referred to [3].

4.6. Buffer Manager

In addition to the buffer pool (main memory) mentioned earlier, there are some system

buffers within Buffer Mangement System (BMS). These system buffers simulate cache

memory. In our system, we have in total 2 buffers for reading, 1 buffer for writing, and 1

buffer for indexing.5 All these buffers (the main memory and the cache memory) are

managed by the Buffer Manager. When a page request arrives, the Buffer Manager will

first find out whether the page is in one of the system buffers. In fact, a read request will

entail a search in the read buffers, and a write request will entail a search in the write

buffer. If the page is found in one of those buffers, then it will be read or written according

to the request. When the page is not in the system buffers, then it will try to search in the

main memory, and finally to search in the disk when the page is not in main memory

either.

4.7. Disk Manager

There are 3 main tasks which the Disk Manager is responsible for:

1. To load the base relation into the disk storage when the system is first
initialized.

2. To read and write some tuples to a page in the disk.

5~ buffer in our context means memory large enough for a page of tuples.

3. To communicate with the Buffer Manager to copy a page frorn/to in the main
memory tolfrom the corresponding page in the disk.

Chapter 5

Buffer Requirement Analysis

In this chapter, the analytical tools which are the basis for the analysis in the performance

studies we will cany out in the following chapters are described. This chapter will then be

proceeded by applying the analysis tools to each of the algorithms described in Chapter 2.

A general comment of these algorithms based on the analysis will then be followed.

5.1. The Reference Pattern and the Least Maximum Buffer Requirement

In this section, we will introduce the analytical tools we will use in our performance

studies. Now let us first define the Least Maximum Buffer Requirement (LMBR) of an

algorithm as follows:

Definition 5-1: The LMBR is the least buffer size required by an algorithm so
that all the base relations will be read only once into the main memory and the
intermediate relations will reside in the main memory whenever needed without
generating any disk YO. When an algorithm reaches its LMBR, increase in the
buffer size will not improve the disk VO performance of the algorithm.

When the buffer size is large enough, then the base relation or intermediate relations need

not be swapped between the disk and main memory, and thus minimum disk traffic is

incurred. However, in most situations, the amount of memory available for allocation as

buffer space is rather limited and the LMBR of the algorithm will be a useful indicator for

the amount of memory in the buffer required to ensure good disk VO performance. If a

number of algorithms are compared to determine their disk I/O performance, the algorithm

with the smallest LMBR will be a good choice, especially when main memory is

considered as a resource that need to be conserved. Obviously, one cannot guarantee that

LMBR is always well-behaved, i.e. the VO performance of an algorithm will smoothly

converge to its minimum as the buffer size approaches its LMBR. However, our

experience with LMBR here as well as the results reported in [15] convince us that the

LMBR is a very well-behaved indicator. With LMBR, we can compare the disk VO

performance of alternative algorithms (in this thesis, the algorithms for comparison were

described in Chapter 2). To estimate the LMBR of an algorithm, we need to know how the

relations are accessed. The Relation Reference Pattern (RRP), which records the

accessing pattern of the relation, is defined as follows:

Definition 5-2: An RRP of an algorithm is the chronological order of relations
(base and intermediate) by which the algorithm accesses the relations.

In order to show the relation reference pattern of some sequence of operations, we have

the notation: A -+ B. This means that the access to the relation A is followed by the access

to relation B. If "+" is used repeatedly, then the sequence of relations will be made

explicitly. For example, if we have:

R 1 + R 2 + - * * +R,
then we know that the operation requires access to relation R1 first, then to relation R2, and

SO on, to R,.

A relational operation will usually cause reference to its operands and the result relation.

However, sometimes, a relational operation will access other relations, such as the index

table6 of an operand. For example, the join operation as described in section 4.3 requires

the access to one of its operand A to create the index table for A, the other operand B to

access a tuple t. Let k be the join attribute of tuple t. Then the join operation accesses the

index table of A to find the address of a matching tuple with key k. Finally, it accesses the

relation A to find the matching tuples, and places the result tuple into relation C. Thus, the

RRP for the join operation on A, B to get C will be :

A + B + Aindex + A + C

where Aindex is the index for A.

Other relational operators like difference, select, project will also access the index

4"he index table itself is also represented as a relation.

relation. Since the RRP of an algorithm is generally quite complicated, we will make some

assumptions to simplify the process of deriving RRP. In the sections that follow, we will

consider only data pages. The index relation will not be considered. The size of the index

table of a relation is always proportional to that of the relation. Normally, accesses to the

index of a relation will also be followed by accesses to the relation itself. Thus, if we have

to access a large relation, we expect its large index table also to be accessed. ~heref&e,

considering only the data pages will also provide an idea of the whole picture of relation-

accessing including index.

5.2. RRP and LMBR for BWFT

As stated before, we will not consider index reference here. Before presenting the RRP of

BWlT, we present the algorithm of BWFT, described in Chapter 2, for easy reference:

cl := ClA
P := Cl
whilr (F # 0)

O : = F A A - C 1
C1 := C1 UC F

end whilr

We use the notation Fi and Cli to denote the binary frontier and the derived closure at the

iteration i. As BWFT must terminate, it is possible to find some integer Mb such that

BWFT stops at that iteration. The relation reference pattern (RRP) for BWFT looks like

the following:

Stage 0 : Selection is done on A to get the closure CIO. Then CIO is accessed
again for the assign operation to get the frontier Fg,

Stage 1 : The first iteration of the loop.
. . .

Stage i : The frontier Fi-l at the previous iteration and the base relation A are

joined. Fi is then obtained as the difference of the result relation and
the closure Cli-l. The reader should note that we do not reference the
result relation from the join operation. This is the consequence of the
use of our new operator join and difference as described in section 4.4.
After Fi is found, Cli-l will be accessed in the union operation with Fi
to produce Cli.

Stage Mb: The last iteration of the loop. The final query closure Cl will be
produced at this iteration.

It should be noted that in finding the Least Maximum Buffer Requirement for BWFT,

after the derivation of new driver set F, the old one will be deleted. But the deletion can

only be brought about after the formation of the new set. Hence, we must have a buffer

large enough to hold the old and new sets for LMBR. However, the formation of new

closure will not cause deletion of the old one. The union operation causes attachment of

the new frontier set to the old closure to produce the new closure at that iteration. Now,

the LMBR of BWFT is calculated to be:

I A) + 1 ~ 1 1 + 2 1 ~ I
pagesize

w h e ~ pagesize is the number of tuples a system page can hold,
I Cl I is the size of the final results (the closure),
I F I is the size of the largest frontier.

5.3. RRP and LMBR for UIEC

As pointed out in Chapter 2, UlEC requires implementation of the total closure algorithm.

Hence, the relation reference pattern (RRP) of UIEC depends on the implementation

method. In order to show such dependency, we will use RRPTC(rel) to represent the RRP

of total closure algorithm to the relation rel. Before we show the RRP of UIEC, let us

present UIEC algorithm again:

w h i l e (P # 0)
n e w S u b := P A A
if (n e w s u b = 0) axit the loop
n.wSub2 := n e w s u b A -1 - n e w s u b
n e w S u b := n e w S u b uc n e w S u b 2

F := n2 (n e w s u b) - nl (-1)
end w h i l e

We use Fi to denote i-th-frontier, and SubClij to indicate the j-th step in getting the i-

implied-edge-closure SubCli. Since UIEC must terminate, we should be able to find the

last iteration Mu where UIEC complete its job7. The relation reference pattern for UIEC is

then described as follows:

'we use a subscript "u" here instead of " b used in BWFT before in order to distinguish that UIEC uses
unary frontier, whereas BWFT uses a binary one.

Stage 0 : A + SubCl,,, + SubCl,, , + P, + RRP,, (SubCl,,,) +
SubCl, +

1 : P1 + A + nowSub,,, + SubCl, + newsub,,, +
newSub2, + newSub,,, + n e ~ S u b ~ , ~ 4 RRP, (new-, ,) +
newSub, 4 SubCl, + newSub, + SubCl, +
nrwSub3, + =lo + newsub, + SubCll,o +
newsub3, + SubCl, + newsub, + -1, +

...
i : Fi + A + newSubi,, + SubCli-, + +

n e ~ S u b 2 ~ + newSubi,, + new8ubi,, + RRP, (nrwSubi,,) 4

newSubi + SubCli-, + newSubi + SubCli-l 4

newSub3, + SubCli-, + newSubi + SubCli,, +
r1ewSub3~ + SubCli + newSubi + 8ubCli -,

Stage 0 : Selection on base relation A to get SubCl0,@ The 1st-frontier F 1 is
obtained next as the difference of the second attribute and the first
attribute of SubCIO O. Then total closure is to be found for SubClo,o to
get the 0-implied-&ges-closure SubCIO.

Stage 1 : The loop starts.

Stage i : The i-th-frontier Fi and base relation A are accessed in a join operation
to get newSubi,? Together with SubCIO, novSubip is referenced again
in the join and hfference operation to produce ne~Sub2~. n e w S ~ b ~ , ~ is
produced after the union operation of n e ~ S u b ~ , ~ and ne~Sub2~. Total
closure operation is then performed on n e w S ~ b ~ , ~ to get d u b i . The
(i-1)-implied-edges-closure S U ~ C Z ~ _ ~ and newSubi will then be
referenced in another join and difference operation. The result of the
operation is stored in ne~Sub3~. The i-implied-edges-closure SubCli is
obtained by performing the union of S U ~ C Z ~ - ~ first with newSubi, and
then with ne~Sub3~. Finally, newSubi and SubCli are involved in
another projection and difference operation to get the (i+ 1)- th-frontier
Fi+ 1.
. . .

Stage Mu : The loop terminates. The Mu-implied-edges-closure will be found and
stored in SubCly,.

Stage Mu+l : Selection on ~ u d C 1 to get the closure Cl. %

Before we can calculate the LMBR for UIEC, we should know the RRP of the total

closure we used. Here, we will use the Logarithmic Algorithm which has been presented in

Section 2.2.2. For easy reference, we present the procedure here again:

procedure Totalc1 (re1)
TC1 := re1
LW := rol
aireTC1 := JTCI]
loop

LW := Lw A LW
if (LW = 0) then exit loop

W := TC1 A LW
if (W = 0) then ucit loop

if (sizeTCl = ITClI) then exit loop

sireTCl := J T C I I
end loop

We denote the partially computed total closure at iteration i by TCli, and the j-th step in

evaluating TCli by TCli j. LWi and Wi are the intermediate relations LW and W respectively

computed at the i-th iteration. We assume that the invokation to the Logarithmic

Algorithm will terminate in some iteration, say the L-th iteration. The RRP of the total

closure algorithm on re1 is as follows:

Stage 0 : re1 4 TClo + re1 + LWo +
1 : LWo -$ LW1 + %lo + TCll,, +

TCll,, + LWl + W1 4 TCllro + %11 +
. . .

L : LWL-l 4 LW, + + TCl,, +
TCl,, + LW, 4 W, + TCl,,o + TC1,

The stage 0 of the Logarithmic Algorithm references to re1 in two assign operations. Then

inside the loop, LW will be referenced in a join operation. The updated LW is involved in a

. union and a join operation. W is then accessed in a union operation to produce the total

closure TCli at that iteration.

In the Logarithmic Algorithm, the old LW at each iteration will be deleted after the

formation of new LW, so we should have a buffer large enough for the new and old LW for

LMBR. Moreover, the new LW is used to find W at each iteration, so W will be formed

after the old LW is deleted. Thus, LMBR of the algorithm is at least:

where) LW I is the maximum size of all the LWi found,
I W I is the maximum size of all Wi,
rnax{x,y) is the function that computes the maximum of x and y.

Our implementation of total closure algorithm, TotalCl(re1) procedure in 2.2.2, will build

the total closure by directly updating the relation rel. The relation TC1 takes over the space

occupied by rel, hence we saved some memory. Thus the LMBR for the total closure

algorithm is:

where TCl is the final closure.

At each iteration in UIEC, the relation A, the implied edges from the current drivers to all

their visited descendants in newSubi the intermediate relations for deriving the total closure

(i.e., LW and W), intermediate relations for deriving the i-implied-edges-closure (i.e.,

n e ~ S u b 2 ~ and ne~Sub3~), and the i-th-frontier Fi are needed. Thus, the iterative process

requires the buffer size of:

where newSub2 and newSub3 are the largest of
all the newSubZi and n e ~ S u b 3 ~ respectively, and,

F is the largest driver set.

Once we get the total-implied-edges-closure SubCl (i.e. SubCl), we can release the M,
storage of other relations including the base relation. Thus, the storage requirement for the

. last step is:

Therefore, the LMBR of UIEC is:

5.4. RRP and LMBR for UWFE

As stated before, loop 1 and loop 3 of UWFE compute the i-closure by making use of the

arcs directing from the nodes in i-th-frontier, and/or the (i-1)-closure from the previous

iteration. A call to propagation procedure propagate needs 3 parameters: the closure to be

updated (Cl), the arcs from directing from the current driver (navPB), and i-frontier-edges

(PB). We present UWFE algorithm with the invocation to this procedure:

Cl := oA
PB := Cl
E' : = nZ (PB) - nl (PB)

Cl : = P r o p a g a t e (C l , PB, PB)

w h i l e (P # 0)
newPB := F A A
i f (newPB = 0) uit the loop

C1 : = P r o p a g a t e (C l , newPB, PB)

P : = n, (PB) - nl (PB)
end w h i l e

The propagation is done using BWFT algorithm. We use Clo to denote the initial closure

(i.e. the (i-1)-closure), and Cli to signify the result of the modification of the closure from

the previous iteration. We assume that the procedure will terminate at some iteration

P. Thus, Clp will become the i-closure. The RRP of propagate(Cl,nMB,PB) is as

follows:

S t a g e 0 : C l o + newPB + C l o + newC1, +
1 : C l o + C l l + newC1, + PB + C l l + newCll +

. . .
i : Cl,-, + C1, + n ~ w C l , _ ~ + PB + Cl , + newCl, -+

At stage 0, the join and difference operation on CIO and newPB yields newClg, Then for

each iteration i from stage 1 to P, a union operation is done on closure Cli-l and newCli_l to

get the new closure Cl? This is then followed by another join and difference operation on

n e ~ C l ~ - ~ , PB and Cli to get newCli for the next iteration. The LMBR for this procedure is:

where 1 newCl I is the maximum size of all newC19s derived.

For the RRP of UWFE, Fi, Cli and PBi are used to denote i-th-frontier, i-closure and i-

frontier-edges respectively at the i-th iteration. As we use the same sets of i-th-frontier as

that of UIEC in each iteration, UWFE will terminate at same iteration of UIEC, i.e. at Mu

iteration. Now the RRP of UWFE looks like the following:

S t a g e 0 : A + Clo ,o + PBo 4 PBo + T, +
Propagate (Clo,, , PBO, PB,) + Clo +

1 : Fl + A + newPBl + PBo + PB1 +
Propagat* (a o , newP%,PB1) + C l l + newPBl + PB1 +

. . .
i : Fi + A + newPBi 4 PBi-l + PBi +

Propagate (Cli-l, newPBi,PBi) + Cli + newPBi 4 PBi 4
. . .

I q , : T + A + newPs +P%-1+P13,, +
% u u u

Propagate (CS, -1, newPB,, , PR,,) + Cl,, + nrwP% + PE,,
U u u U U u

Stage O:

Stage 1 :

Stage .i :

Selection on A to get Clo,o; assignment of CIos0 to get PBo; projection
and difference on PBO to get the 1st-frontier F1; computation of the
i-closure on Clop to &rive the 0-closure Clo.

Beginning of the loop.

Join operation on the i-th-frontier Fi and A to get newPBi, all the arcs
emanating from the current drivers. newPB then involves in a union
operation with the (i-1)-frontier-edges (PBim1) to produce the i-frontier-
edges PBi; using the (i-1)-closure Clidl and newPB to compute the i-
closure Cli; projection and difference on newPBi and PBi to derive the
(i+l)-th-frontier Fi+l.

Stage Mu : The driver set is exhausted, and the final closure Cl is produced. The
loop terminates.

M,

We can see that each iteration requires buffers for F, A, newPB, PB, newel and Cl for

LMBR. Hence the LMBR for UWFE is:

pagesize

where Cl is the final closure,
ntwPB is the largest newPBi,
PB is total-frontier-edges,
F is the largest driver set encountered,
newCl is the largest newCli found.

5.5. RRP and LMBR for UPFE

UPFE algorithm can be divided into two stages: the preprocessing stage and the

propagation stage. The pseudocode of UPFE (described in Chapter 2) is as follows:

/* preprocessing atage */

while (F # 0)
newPB :=F A A
if (newPB = 0))it the loop

T : 3 n2 (newPB) - Ill (PB)
end while

/* propagation stage */

newCl := n (C1 A PB - Cl)
while (newCl # 0)

C1 := C1 vc nrwCl
nmCl := newC1 A PB - Cl

and while

CIO denotes the set of all arcs leading from the starting nodes (i.e., 0th-edges). Fi is i-th-

frontier, newPBi is i-th-edges, and PBi is i-frontier-edges. The preprocessing stage of

UPFE will terminate at the same iteration, Mu, as that of the other unary frontier

algorithms (UIEC and UWFE), as it has the same sets of i-th-frontier. The RRP of the

preprocessing stage of UPFE is:

Stage 0 :

Stage 1 :

Stage i :

Stage Mu :

1 : + A - + n r w B ~ , + PBo + PB1 + nrwPBl + PB1 +
. . .

i : Ti + A + newPB, -+ + PB, + newPBi + PB, +
. . .

3 A + nrwP& + PB,, + PB, + newPB,, + PB,,
U U U U U

Before getting into the loop, the preprocessing stage of UPFE will
perform: selection on A, assignment of CIO to produce PBO (O-fronti'er-
edges), and projection and difference on PBO to get the 1st-frontier F1.

The beginning of the loop of preprocessing stage.

Join operation on i-th-frontier Fi with A; union of the set of arcs
leading from the current drivers, newPBi, with (i-1)-frontier-edges
PBi-l to form i-frontier-edges; projection and difference operation on
newPBi and PBi to get a new driver set, the (i+l)-th-frontier Fi+l.

The end of preprocessing stage. The total-frontier-edges PBY (i.e. PB,
all the arcs leading from the starting nodes and their descendants) is
found. newCli is the set of all the newly found implied edges leading
from the starting nodes in the i-th iteration.

In the RRP of the propagation stage of UPFE that will be formulated below. we use Clj

(i>O) to denote the partially derived query closure at the iteration i. Clo as before will be

0th-edges. Since the propagation stage is an implementation of BWFT, so it will terminate

at the Mb iteration as that in BWFT. The RRP for the propagation stage of UPFE looks

like:

Stagr 0 : C l 0 + P B + C l o + newClo+
1 : C1, + Cll + newCl, + PB + Cl l + newCll +

. . .
i : Cl,-, + C1, + newC1,-, + PB + C1, + nawC1, +

. . .
M,, : + C k + newC + PB + C

=% + nrVClyp
Stage 0 : Join and difference of relations CIO and PB to get newClo.
Stage 1 : The propagation stage begins.

. . .
Stage i : Union of newCli-l with Cli-l (the partially derived closure at the

previous iteration) to get Cli; projection and difference operation on
the current closure Cli and PB to form newCli.

Stage Mb : The propagation stage ends. The final closure Cl (i.e. the query
closure CI) is found.

M,

The LMBR for preprocessing stage is:

IAI+ I c I , I + I P B I + (n e w ~ B (+ I F (
pagesize

where CIO is 0th-edges,
PB is total-frontier-edges,
newPB is the largest newPBi,
F is the largest driver set Fi.

The LMBR for the propagation stage is:

where 1 newCI1 is the size of largest newC1.

Combining the two stages, we get the LMBR for UPFE to be:

5.6. Discussions on the RRP and LMBR of the Algorithms

The RRP of BWFT is the simplest, and it accesses only three different relations: the base

relation A, the driver set F, and the closure Cl. Besides, BWFT has a strong reference

locality. It accesses F, then A and then Cl repeatedly inside the loop. This property of

strong locality makes higher probability of accessing to data pages that are in the main

memory. The RRP of UPFE is also simple, and it is composed of the separate sequences: i)

F, A, newPB and PB (in preprocessing phase); ii) Cl, newC1 and PB (in propagation stage).

However, UPFE needs access to at least 6 binary relations. Therefore, UPFE requires more

page accessing than that of B W . The RRP of UIEC and UWFE are more complicated

and these algorithms access even more intermediate relations. More data (and/or index)

accessing means that the page 110 of UPFE, UWFE and UIEC will be more than that of

BWFT. It was pointed out in [13] that there is a strong correlation between the disk VO

and page VO with small buffer size. In fact, the algorithm with the least pages VO is

expected to achieve the best disk VO performance in small buffer size. Thus, B W

should have the least disk YO when buffer size is small.

From previous sections we have the following estimation for the LMBR of the 4

algorithms:

B W :

UIEC :

m:

UPFE :

14 + Ic1l +21d
pagesize

MM((IAI + lnew~ubl +]LW) + I w] + InewSub2l +]new~ub31), IclI) + ISubClI
pagesize

I A (+ I C I (+ (- P B (+ (PB(+21new~f(
pagesize

Note that we have deliberately dropped out the size of the frontier in the formulae of

LMBR of UIEC, UWFE and UPFE above. This is because unary frontiers are used in these

algorithms, and unary relations are usually small in comparison with the other binary

relations. Even so, the comparison on the LMBR of the algorithms is quite difficult. The

major difficulty lies in the fact that the sizes of the intermediate relations like newSub, LW,

newPB and newel are hard to estimate. Each size depends on the characteristics of the

data, and varies from one data set to another. The join and selection selectivities described

later in Section 6.1 determine the volume of final results, but they are not sufficient to

represent the overall characteristics of the data. However, a rough estimate will be enough

for our analysis at this stage.

UIEC has the largest LMBR value. This is mainly due to the storage required for the

i-implied-edges-closure SubCl. When the final query closure is large, SubCl, the superset

of the query closure, will become even larger. The LMBR value of UPFE is smaller than

that of UWFE, because the query closure of i-frontier-edges is computed after total-

frontier-edges is formed, and at that time the base relation A can be released to provide

space required for the intermediate relations in the propagation stage of UPFE. When the

1 ~ 1 +]cI,I + Inew~Bl + I P B I
query closure Cl is small8, the LMBR of UPFE is

pagesize . This also

implies that PB will be small. PB can never have tuples other than those in A, and it is also

smaller than the query closure Cl. As CIO (0th-edges) which is a subset of Cl, will also be

small, thus, the LMBR of UPFE will be smaller than that of BWFT when Cl is small.

However, Cl can be very large, and hence, the size of PB can be more than half the size of
I c ~ I +2lnewC11 + JPB)

A. At that time, the LMBR of UPFE is pugesize . This value will be bigger

than that of the LMBR of BWFT. To sum up, we state the following:

BWFI' has the least disk I/O when the buffer size is small.

UIEC has the largest LMBR value.

UWFE has larger LMBR value than that of UPFE.

UPFE has a smaller LMBR value than that of BWFT when the size of the final
closure CI is small, but its value will be larger than that of the BWFT when Cl
is large.

Recall that when we have limited buffer resources, the algorithm with the smallest

LNlBR will be a good candidate for query processing. From the above estimation, BWFT

has the least LMBR except when the query closure Cl is large, in which case UPFE has the

least LMBR. This implies that BWFT will be a good choice for query processing for a

wide range of data as it also has a simple RRP. UPFE is good when C1 is not very large.

These guidelines provided by RRP and LMBR will be reconfirmed by the simulation

studies we have in Chapter 6.

@I'his will happen when selection selectivity or join selectivity is small.

Chapter 6

Simulation Studies

This chapter presents the simulation results using randomly generated data. The size of

the generated base relation will be kept to 1000 tuples (binary relation) throughout our

simulation. Three parameters affecting the VO performance will be studied. They are,

namely, the buffer size (main memory capacity), the join selectivity and selection

selectivity. All algorithms will be run on 5 base relations, generated for each set of the

parameter values. The performance of an algorithm is measured by the disk I/O generated

by the algorithm, although occasionally page ID9 is also used. The average of these runs

will be calculated. The results will then be analyzed and interpreted.

6.1. Parameters of the Simulation Model

In our performance studies, we generated some uniformly distributed data to construct the

tuples for the base relation on which the binary query closure algorithms are applied. Each

tuple of the base relation has two attributes, and the values are generated independently.

To control the volume of the final query closure, we have two parameters: Join Selectivity

and Selection Selectivity. Let A and B be two relations, J is the result relation of joining A

and B, and S is the result relation after selection is done on A. Now the selectivities are

defines as follows:

Definition 6-1: Selection Selectivity is defined as the ratio of the size of S to
the size of A.

%eaders interested in the difference between page 110 and disk YO as cost metric are referred to [15]

61

Definition 6-2: Join Selectivity is defined as the ratio of the size of J to the
product of the sizes of A and B.

Assume that the attribute values of both relations A and B are chosen from the same

domain D'O. Let jattb, and jattbB denote the join attributes from A and B respectively. Let

sattb, be the selective attribute from A. Without loss of generality, we assume that the

domain D consists of positive integers 1,2, . . . , (D (. Xf the attributes are randomly chosen

from the domain D, and c is an integer in domain D, then the probability that a tuple t from

A has sattbA I C is:

Prob(a tuple t from A has sattbA 5 c) - - &
then the expected number of tuples in A with sattb* I c is:

E(number of tuples with sattb, i c) = 6 x I A 1
Hence, the average size of the S, i.e., the result of selection on A with a range of values less

than or equal to c is:

Et lsl, = & X I4
Therefore,

For each tuple tA from A, let its jattb, = j for some integer j. Then the probability that a

tuple tB from B has jattbB = j is:
1

Prob(a tuple tB from B with jattbB = j) = ~m
This implies that the expected number of tuples in B matches with tA is:

'@This is not a necessary condition, but this will simplify a lot of calculations.

E(number of matching tuples of B with tA) - Is l m
Thus, the expected number of matching tuples of relation A and B is:

E(tota1 number of matching tuples) = x I A 1
Hence, the expected size of the result relation J of joining A and B is:

Therefore,

In order words, if we perform selection of A on sattbA attribute using constant values 5 c,

then we expect the size of the result relation to be I S 1 = I A I . Besides, the mean size of J

is equal to 1 4 . l ~ l
lal . In this way, we can have some control regarding the size of the result

relations of the operations. Hence, if we use a small constant value c, i.e., SS is small with

ID I being kept as constant, then the selection which is performed on the base relation at

the beginning of all the binary query algorithms (described in Chapter 2) will produce a

small relation. Then the outcome of the query closure will not be large. Moreover, if JS is

small, i.e., ID I is large, then the query closure will not be big. On the other hand, if we

want to produce large volume of tuples for the query closure, then we have to make JS and

SS both large (small ID I and large c). In o w simulation, we do not have different join

selectivity for each pair of joining relations in the algorithms, not only because it is hard to

get the values right, but also because it will complicate the analysis. Instead, we use only

one join selectivity and one selection selectivity for each randomly generated base relation.

The values we use are:

JS : 0.0001,0.0005, and 0.001
SS : 0.001,0.005,0.05,0.1,0.3, and0.5

In addition to those parameters to control the data volume of the final result, we have two

other parameters to control the system performance. These are the page size (the number of

the binary tuples that can reside in a system page), and the buffer size (number of pages in

the main memory). Since varying one of the parameters will be sufficient to control the

capacity of the data in the main memory, we fix the page size parameter to 20 tupleslpage

throughout our experiments. The buffer size will have values 10,25,50,75, 100, 150 and

200.

6.2. Observations and Interpretations of the Results

In this section, we will present our simulation results using random data. In the previous

sections, we have mentioned that we have 3 different values for JS, and 6 different values

for SS. For each pair of the values from the combination of the two parameters, we

generated 5 sets of 1000-tuple base relation on which query closure is to be found by the 4

algorithms. Each of the test runs will further experiment through the 6 different buffer

sizes. Then the average of the 5 runs will be calculated and recorded. The page VO of the

algorithms are plotted and presented in Figures 6-1 to 6-3. The significant results of the

disk I/O of the algorithms are plotted and presented in Figures 6-4 to 6-6.

From the graphs in Figure 6-4, Figure 6-5 and Figure 6-6, we have the following

observations and interpretation:

Fact 1 : For small SS and small JS (SS 5 0.005; JS I 0.0005), the curves of
the 4 algorithms almost coincide with each other. Thus, when the data
volume of the query closure produced is very small, there is no
difference in choosing any of the 4 algorithms for processing with any
buffer size.

Fact 2:

Fact 3:

The curve of BWFI' is always below the other curves when the buffer
size is small. When buffer size is large (B.S > 25), the curve of BWFT
is not very much higher than the other curves. This implies that BWFT
on the average outperforms all other algorithms. Its disk VO
performance is more steady than the others, so that varying the buffer
sizes does not cause a dramatically decrease in its disk VO. When the
main memory resource is limited (buffer size is small), it makes
BWFT the best candidate for binary query processing.

When SS and JS are not both very large (SS 5 0.3 when JS I 0.0005;
SS I 0.05 when JS = 0.001), the curve of UPFE is below all the other
curves for large buffer sizes (B.S. 2 75 pages). For large SS (i.e., SS =
0.5), the UPFE curve is above all the other curves when the buffer size
is small. This means that UPFE performs as well as BWFT when the

Selection Seldvity (SS) (not in scale)

Figure 6-1: Page I/O with JS = 0.0001

Legend:

- BWFT

0-----a UWFE

x. x up^^

b-4 UIEC

i

Page I/O(pages)

buffer size is large, and when the values for SS and JS are not both
large. That is when the data volume of the query closure is not large,
UPFE is a good choice for query processing for large buffers. UPFE
even outperforms BWFT in those situations. However, UPFE has the
worst disk VO performance when the SS value is high with limited
buffer resources.

20000

18530

17060

15590

Fact 4:

B
, i..'

h'
k'

C'
14120

12650

11 180

9710

8240

6770

(0,5300)

Fact 5:

8
6'

lm

Curve UWFE is above curve UPFE for a large range of data, but it is
below curve UPFE when SS and JS are both large (SS=0.5, JS=0.001).
Hence, UWFE does not always perform worse than UPFE in its disk
VO performance. When the volume of data handled by the algorithms
increases, UWFE does outperform UPFE.

0.001 0.005 0.050 0.100 0.300 0.500

Starting at a very high point when SS or JS is large, the curve of UIEC
decreases rapidly with the increase in buffer sizes. When SS and JS are
both large (SS=0.5; JS=0.001), UIEC even drops below the curve of
BWFT when the buffer size is large (B.S. = 200 pages). Therefore, it
seems that UIEC is very sensitive to the changes in the buffer size,
especially when the final data volume is large. In the case when SS and
JS are large, UIEC will have the best disk I/O performance. Therefore,

Page UO@ages)

35300

32300

29300

26300

23300

Legend:

- BWFT

0-----El UWFE

X X UpFE

L A UIEC

Selecticm Selectivity (SS) (not in scale)

Figure 6-2: Page VO with JS = 0.0005

UIEC can be chosen for binary query processing to handle large data
volume results when the system is provided with rich main memory
resource.

6.3. Simulation vs Analytical Results

In this section, we will compare the simulation results with the analysis presented in

Chapter 5 which are based on the RRP and LMBR of the algorithms, and the

characteristics of the data. We do so by providing an explanation for each of the simulation

results stated in the previous section.

Fact 1:

When the values for SS and JS are small, then the data volume for the result closure will

be small too. This means that all the algorithms will execute only a few steps before the

Page UO@ages)

543000

489240

435480

381720

327960

274200

Legend:

- BWFT

m-----€I UWFE

X X UpFE

8-4 UIEC

Selection Seleaivity (SS) (not in scale)

Figure 6-3: Page VO with JS = 0.001

answer to the query closure is found. Therefore, even algorithms with bad reference

locality will produce the answer without lot of disk YO. Besides, the buffer requirement

will be the least, and so the algorithms will achieve their LMBR for small buffer size.

Fact 2:

BWFT has overall the least disk UO performance. This confms with our conjecture that

simple RRP, high degree of reference locality, and small LMBR is desirable for query

processing.

Fact 3 & 4:

When the data volume handled by the algorithms is small (SS I 0.3, JS I 0.0005; SS I

0.05, JS I 0.001), UPFE will have the least LMBR. Thus, increasing the buffer size makes

UPFE better chance to have least disk I/O. Therefore, when the buffer size increases to

Disk UO@ages)
Legend:

- BWFT

0-----€I UWFE

x...X upm

UIEC

I I I I

(0.0) 10 25
I I

50 75 100 150 200
Buffer Size@ages)

Buffer Size@ages)
Figure 6-5: Disk I/O with JS = 0.0005

Disk UO@ages)

Buffer Siz,e@ages)

Disk I/O@ages)

Buffer Size@ages)
Figure 6-6: Disk I/O with JS = 0.001

moderate size (B.S. -- 75 pages), UPFE has the best disk I/O performance. However when

SS increases (SS = OS), total-frontier-edges PB of UPFE will be very largel1 In that case,

the propagation process of UPFE must start with large total-frontier-edges PB, while

UWFE starts with a much smaller intermediate relation newPB. The data clustering effect

with smaller intermediate relation in i-closure updating process of UWFE enhances it to

perform better that UPFE.

Fact 5:

When both SS and JS are large (i.e., SS=0.5 and JS4.001), the data generatec ri will

require more iterative processing from the algorithms. That is, the depth of the transitive

closure will be large. This kind of data resembles the Sawtooth Data (described in Chapter

3) and is best processed by UIEC. UIEC performs quite poorly when the buffer is very

small (B.S. < 100 pages) and improve drastically as the buffer increases to 200 pages. Our

explanation for this seemingly strange disk 110 behavior of UIEC is that the page I/O of

UIEC is so poor that when the buffer size is small, the page I/O becomes the dominating

factor in its disk I/O performance. The Sawtooth data effect becomes apparent only when

the buffer size becomes much larger (say 200 pages, which is still only a small fraction of

its LMBR).

" 1 PB I is greater than half of 1 A I .

Chapter 7

Level Relaxation

The level relaxation version of the 6Wavefront Algorithm was developed in [7]. Level

relaxation further eliminates redundancy in data accessing. The main feature of the level

relaxation algorithm is the extraction of all the drivers at different levels of iteration from a

page before the page is swapped back to disk. Therefore, as long as the tuples in the main

memory can be accessed by the current drivers, the data page will not be swapped out from

the memory. Some disk I/O may be saved by doing this if the main memory contains

some of the derivation paths. We have implemented the level relaxation versions of the

algorithms. Since UWFE and UIEC have already shown their weaknesses in their disk YO

performance, we will focus on level-relaxed BWFT and level-relaxed UPFE.

7.1. Level-relaxed BWFT (LWFT)

The level relaxation version of BWFT is very similar to the original version. The only

difference is that we have provided a set of routines that enable us to achieve a higher level

control of page swapping. To facilitate, we have two assumption:

Al : A is sorted so that all the tuples with the same drivers will be
clustered together.

A, : The page fetching to the data page of A is done in the way that
either all the pages corresponding to an active driver (data pages
of A that contain tuple(s) having the active driver in its (their)
first attribute) or none of these pages will be brought into the
main memory.

We first consider the algorithm for level-relaxed BWFT. The implementation issues will

be addressed later.

Cl := 0 (A)
IP := C1
whilm (IP # 0)

P a t c h drivable data page. of A to nvin mmory (MM)
NT := drivmrm i n P drivable in main memory
M P : = T - 1 1 6
T := 1WP
whilo (MF # 0)

newF := NT AMM A - Cl
C1 := C1 u n M
MF := driver. i n news are drivable in main msmory
lUM6' : = newP - MF
P : = P u ITME'

end whilm
end whilm

The statement "Fetch drivable data pages of A to main memory (MM)" means that we

will fetch those data pages of base relation A which contain some drivers according to

those in the driver set F. For example, if in F we have {(al ,bl),(a2,b2), ,(a,,b,)) , the

data pages of A, with the first attribute column having any values of bi (l l i l m) , may be

fetched. However, sometimes not all these pages will be fetched, since the number of

pages fetched can never be more than what the main memory can hold. Thus, unless the

main memory has a large buffer (or there are not many of these drivable pages), normally

not all the drivable data pages are fetched. In order to optimize further, we can fetch ir,

pages that have more active drivers. Since not all the binary drivers will be used for each

page fetching, we divide the driver set F into two subsets, MF and NMF. MF (NMF) is the

driver set which is (not) drivable with respect to the portion of data pages of A in MM.

NMF must be retained in the driver set (F) for processing until their corresponding data

pages in A have been fetched. The operator AMM is used for the level-relaxed join

operation. Unlike the original join operator (A), it will not cause page fetching of the

joining relation A. It will only consider the portion of A in main memory and do ordinary

join operation on that portion. New binary drivers will be found and these will also be

checked of occurrence against the tuples in Cl, as that in the original BWFT algorithm.

Then the unique new binary drivers will be divided into two subsets MF and NMF again.

This process of finding new binary drivers according to the current data pages of A in main

memory will continue until no more active drivers can be found in the data pages of A in

main memory (i.e. MF is empty). At that time, new drivable data pages of A will be

fetched in. The algorithm will terminate when F is empty.

Theorem 7-1: The level-relaxed B W will produce the complete query
closure in Cl upon termination.

Sketched Proof :

In the trivial case when the buffer is large enough to hold all the data pages of
A, each fetching will enable all the drivable pages to be brought into the main
memory. This implies that MF must equal the whole set of F at the beginning of
the loop, and equal newF inside the second loop. NMF must be empty all the
time. Hence, in each iteration of the inner loop, newF actually get the same set of
tuples as that of the binary frontier in the original BWFT algorithm. The inner
loop of the level-relaxed version then resembles the original one. Thus, the same
set of Cl will be computed. Since F is the union of all the NMF's, and so it is
empty. When the inner loop termiantes, the outer loop must also terminate.
Therefore, the claim is valid.

When only a part of A is in main memory, the binary frontier will be divided
into MF and NMF where at least one of the sets will be non-empty if the binary
frontier is non-empty. With assumption A2 if MF is not empty, all the binary
drivers in MF will get the same set of implied edges as that when these binary
drivers are joined with the whole relation A. Therefore, the drivers in MF will
derive the same implied edges as before. When NMF is not empty, all its binary
drivers will be retained. Page fetching of different portion of A will enable some
elements in NMF to become elements in MF, and hence allow each of the active
drivers to be fully explored. Therefore, each of the binary driver ever derived
will get the same set same of implied edges as before. Thus, upon termination,
level-relaxed BWFT must produce the correct closure. u"

7.2. Level-relaxed UPFE (LPFE)

The algorithm for UPFE has two loops, one for the derivation of total-frontier-edges

(preprocessing stage), and the other one for finding the query closure of total-frontier-

edges (propagation stage). In the level relaxed version of UPFE, there are also two

separate stages, and they are very similar to the original UPFE. In its preprocessing stage,

level-relaxed strategy will be used to get total-frontier-edges. The propagation stage of

level-relaxed UPFE is just the level-relaxed B W in which total-frontier-edges PB is

used instead of the base relation A. The assumptions made in level-relaxed BWFT will also

applied here. The derivation stage and the propagation stage of the level-relaxed UPFE are

given as follows:

/* Proproaessing Stagr */
C1 := b (A)
RB := C1
T := n2 (PB) - n, (PB)
while (F # 0)

Fetch in drivable data pages of A to main mmmry
ME' := driver. in P are drivable in main w r y
um : = F - m
T := 1JW6
while (M6' # 0)
newRB := AMM A
PB := PB u newPB
n e w : = n2 (newPB) - nl (PB)
YP := driver. in newF arm drivable in main w r y
u m : = T - M 6 '
T : = F u r n

end while
end while

/* Propagation Stage */
F := C1
while (F # 0)

Fetch in drivable data pages of OB to main m o m ~ r y (m)
M6' := drivers in T are drivable in main memory
um:=Ii'-m
T := #MF
while (MCl # 0)
newF := M6' AMM PB - C1
C1 := C1 U news
M6' := driver. in F are drivable in main m r y

:= MWF - M6'
F:=FuLOWlP

md while
end while

As before, the operator AMM is the level-relaxed join which will not cause page fetching.

We will not consider the propagation stage as it is just the implementation of the level-

relaxed BWFT with A changed to PB. Here, we will focus on the derivation stage.

Lemma 7-2: The derivation stage of level-relaxed UPFE terminates and get
total-frontier-edges PB.

Sketched Proof :

When the buffer is large enough to hold the whole data relation A, then each
time all the drivable data pages can be fetched into the main memory. Thus, MF
always equal the binary frontier of the original UPFE at each iteration. Hence,
the derivation stage of level-relaxed UPFE functions just as in the original one. It
will terminate because NMF is empty, and hence, when the inner loop
terminates, the derivation stage also completed.

If only a fraction of drivable data pages of A can be brought into the main
memory each time, because of our assumption in page fetching, each driver in
MF will be fully explored before it is deleted. Therefore, we will get all the arcs
directing from the drivers in MF. For the drivers in NMF, page fetching enables
the data pages that are correspond to the drivers to be brought into the main
memory at some time. Thus, these drivers will become element in MF, and
hence, they will be fully explored. Therefore, all the drivers will derive the same
set of driven elements as that in the original UPFE. Hence, upon termination of
the derivation stage, the same total-frontier-edges set as that of the original
UPFE will be found in PB.

Theorem 7-3: Level-relaxed UPFE terminates and computes the query closure
correctly.

Sketched Proof : From Lemma 7-2, total-frontier-edges PB must be correctly
computed after the derivation stage. Then by Theorem 7-1, and by the fact that
the propagation stage of UPFE is the implementation of BWFT on the relation
PB, the level-relaxed UPFE must terminate and produce the correct query
closure.

7.3. Experiments with Level-Relaxed Algorithms

Level relaxation requires the control of the fetching and the retention of data pages in the

main memory. In our implementation, we adopt the reservation strategy, so that some part

of the main memory is for the extensive use of some relations. In algorithms like the level-

relaxed BWFT and level-relaxed UPFE, some portion of main memory should be reserved

for storing pages of the base relation A. Therefore, in that particular implementation, we

have to assign a maximum number of buffer pages, say numofiage, reserved by these

relations. This implies that while the number of pages of A that can be fetched at any one

time can be controlled, the buffer memory for the other relations will be less. This results

in more disk VO for the other relations. Generally, it is very hard to predict the optimal

value for numofiage, and this is left for further investigation.

In our simulation studies, we have used different values for numofiage to reserve

different pages, and then look for the best disk VO performance for the set of parameters

used. However, since in our experiments, we also need to vary the buffer size to examine

the effect on the performance, instead of assigning some value as the maximum number of

reserved pages, we choose to use the ratio of the maximum reserved pages to the size of

the main memory (buffer size), reserve-ratio. In our experiments, the values for

reserve - ratio we use are:

0.3,0.4,0.5,0.6,0.7.

Thus, if the ratio of 0.3 and buffer size of 10 are used, then the maximum number of

reserved buffers in main memory is 3 (or 0 . 3 ~ 10). Level-relaxed UPFE also requires

reserved memory for total-frontier-edges PB which is ready only at the end of' the

preprocessing stage. Therefore, the memory reserved for A can be released at that time and

be re-used by PB. For each set of data, the two level-relaxed algorithms (i.e. level-relaxed

BWFT and level-relaxed UPFE) will be run using different buffer sizes (10, 25, 50, 75,

100, 150,200). For each buffer size used, the reserved ratio will be varied from 0.3 to 0.7,

and the value of the least 110 performance among the ratios will be recorded only for that

particular buffer size. Therefore, we are varying the maximum reserved pages in order to

find the best possible VO performance for the buffer size.

In the test runs, we used the same set of random generated data as that in Chapter 6.

However, there is not much improvement of the level-relaxed versions as compared to the

original versions. It is suggested in [7] that the level-relaxed versions will perform better in

clustered data than in uniformly distributed data. Hence, in the section that follows, we will

test the level-relaxed versions on clustered data.

7.4. Clustered Data

Clustered data, in our context, refers to the set of tuples of which a driver in a particular

set of pages will drive to some other drivers in the same set of pages. Thus, the degree of

cluster effect of a data relation is defined as the probability that a driver will find its driven

elements in the same page where it resides. In order to generate different clustered base

relation, we have the following procedure:

1. Using a random generator, we get one column of attribute values for the set
of the tuples from the range 1, . . - , I D I (where ID I is the size of the
domain). This column is actually the attribute on which the selection is
applied (this is also the column for the drivers).

2. Sort the values, and divide them into pages.

3. For each of the pages, find the minimum and maximum values.

4. For each of the generated attribute value in a page, we generate another value
to pair with it to form a tuple. We repeatedly use the random generator at
most n times to produce such value in the range 1, . a , ID I , until we find a
value between the minimum and maximum value of the page we found
before. If after n times, no such value can be found, then we will take the last
number generated and pair it with the attribute value in question.

When n is large, there will be a high chance of occurrence of the value of the second

attribute in a tuple t l in the first attribute of another tuple t2, where tl and t2 are in the same

page. Thus, when n is large, the degree of clustering effect will be high. Hence, we vary

the number n to control the degree of clustering for the data. We call this number n degree

of clustering @C).

7.4.1. Experimental Results on Clustered Data

In this section, we will present the experimental results and make some observations on

them. All the clustered data sets we generated contain 1000 tuples. We use the same

technique as described in section 6.1 here to control the data volume. In the analysis that

follows, we will use the values of JS and SS to signify the volume of the final results.

However, the reader should note that the formulae for JS and SS in section 6.1 are not

valid for the join and selection selectivities respectively for the clustered data. In order to

calculate the selectivities for clustered data, we have to consider the conditional

probabilities given the value for degree of clustering. Nonetheless the interpretation that

when JS is large, the size of the result relation of joining the relations is expected to be

large, is still valid here. Hence, we will not derive the formula for the selectivities for the

clustered data. We will use the same formulae for SS and JS as in Section 6.1 (on page 63).

- We produce different clustered data with different values of JS and SS. In all the

experiments, we use a value of 20 for DC (degree of clustering) for the clustered data. We

do not use different DC because we do not intend to investigate the effect of the

comparative performance of the level-relaxed versions and the original algorithms on

different degree of clustering.

The results are plotted in Figure 7- 1 and Figure 7-2. These results are from clustered data

of JS = 0.0005 and SS = 0.5. Since the results from other JS and SS values are quite

similar, we do not include them here.

7.4.2. Analysis on Clustered Data

We make the following observations and explanation with reference to the graphs in

Figure 7- 1 and 7-2:

1. The curve of LWFT (level-relaxed BWFT) is below that of BWFT in the
"BWFT vs LWFT" plot in Figure 7-1 for small buffer sizes. When buffer size
becomes larger (buffer size = 200), BWFT curve is below the LWFT curve.
Thus, the level-relaxed BWFI' will outperform BWFT when the buffer size is
not large (B.S. I 150 pages), but it will not perform better than BWFT when
the buffer size is large. In fact, we expect that level-relaxed BWFT should be
better than BWFT in all cases when a clustered data set is used. The fact that
level-relaxed BWFT will lose when the buffer size is large is surprising and
interesting. The reason is due to the implementation strategy we use for the
level relaxation. Recall that we use the reservation method to retain some
portion of main memory to hold the base relation. However, reserving part
of the main memory to a relation means that the working space for the other
relations will be reduced. Thus, level-relaxed BWFT requires more buffer
space for operation on the intermediate relations. In other words, the Least
Maximum Buffer Requirement (LMBR) of level-relaxed BWFT will be
larger than that of BWFT. In Section 6.3, we have already discussed the
effect of small LMBR on the algorithm's disk VO when the buffer is large.
Therefore, with smaller LMBR, BWFT should perform better in its disk VO
than level-relaxed BWFT when the buffer size is large.

2. From the plot of "UPFE vs LPFE" in Figure 7-1, the observation as that
above can also be seen. The curve of LPFE (level-relaxed UPFE) is also
seen to be below that of UPFE when buffer size is small, but will be higher
than that of UPFE when the buffer size is large. The same phenomenon being
observed indicates that our implementations to the algorithms are consistent.
Hence, the level-relaxed version versus its original algorithm should produce
the same trend for all the algorithms.

3. The LWFT curve is seen to be below the LPFE curve when the buffer size is
small (B.S. I 100 pages), but it will be above LPFE curve when the buffer

Disk UO@ages)

BWFT vs LWFF

Buffer Size(pages)

Disk VO(pages)

Buffer Size(pages)

Legend: El

Figure 7-1: Original vs. Level-relaxed Algorithms with JS4.0005, SS4.5

Disk W@ages)

Buffer Si@ages)

Legend: I

Figure 7-2: Level-relaxed B WFT vs. level-relaxed UPFE

size is large (B.S 2 150 pages). In last chapter we concluded that BWFf
outperforms UPFE in its disk VO when the buffer size is small. However,
when the data volume of the final results is not large, UPFE will be better
than BWFT with large buffer. Thus we can make a similar conclusion
regarding the level-relaxed versions of the two algorithms. That is to say,
level-relaxed UPFE will be better than level-relaxed B W when the data
volume of the final results are not large, and when the buffer size is large.
This is understandable, because the level-relaxed version should preserve the
property of the original algorithm, and thus the comparative performance of
the level-relaxed versions should resemble the original ones.

Chapter 8

Conclusions

In this research, we have developed some binary algorithms for query closure processing.

These algorithms are compared and analyzed using different characteristics of data on

different buffer sizes. From our analytical studies augmented by a simulation study, we

have found some interesting characteristics of the algorithms and interesting results:

1. BWFT on the average performs well in its disk I/O for a wide range of data
sets and buffer sizes as compared to the other non-level-relaxed algorithms.
It will have the least disk VO when it is run on Parallel-Chains Data.

2. UPFE will outperform the other algorithms when the data volume of the final
query closure is not large, and the buffer size is large. If UPFE is run in
One-Cycle Data with moderate cycle length, it will outperform the other
algorithms in its disk I/O.

3. UIEC has good disk 110 performance as compared to the other algorithms
when the base relation requires a lot of iterative processing and generates a
large volume of answers to the binary query closure. UIEC performs very
well in Sawtooth Data.

4. UWFE will perform better than UPFE when the volume of data handled by
the algorithms increases, even though UWFE does not perform as well as
UPFE in most cases.

5. Small volume of data can be handled equally well by the four non-level-
relaxed algorithms.

6. Level-relaxed algorithms in general have better performance than the non-
level-relaxed algorithms though not by much. In fact, level-relaxation does
not work too well for large buffer sizes.

Our research on the binary query closure processing ought to stimulate further research

on the processing of more complex recursions. During this research, we uncovered some

interesting aspects that need further investigation:

By separating the propagation process from the driver derivation process of
UWFE, we obtain the preprocessing algorithm UPFE. Similarly, we can delay
the total closure processing in UIEC until all the driver sets have been
considered. Thus, we may have a different preprocessing algorithm that has
relation reference pattern (RRP) simpler than that of UIEC, and thus may have
smaller Least Maximum Buffer Requirement (LMBR) value than that of
UIEC. This new preprocessing algorithm may have better disk 110 than that of
UIEC. A further studies should be carried out.

As a preprocessing algorithm, UPFE can be improved when a more efficient
method is used in its preprocessing stage. A better method may be one that
requires selections and projections on the base relation only to find out all the
relevant tuples in the preprocessing stage. More intensive studies are needed.

BWlT can be modified to incorporate the logarithmic property. To be precise,
at each iteration of BWFT, instead of joining the frontier and the base relation,
we can join the current closure and the power of the base relation. The power
of the base relation is initialized to be the base relation, and it is updated in
each iteration by joining to itself. Although we may get larger intermediate
relations, the saving in iteration steps may provide a net decrease in the disk
VO. Further studies should lead to conclusive results.

Since the propagation processes of UPFE and UWFE employ BWFT
algorithm, an improvement to B W discussed above may lead to an
improvement to UPFE and UWFE. Thus, further performance studies are
needed.

We are using the Least Recently Used Algorithm (LRU) for choosing a page to
be swapped to disk when the buffer is full. The use of LRU faces a lot of
criticism on not being able to provide a good buffer management environment,
and thus a better replacement algorithm is needed. The effect of choosing
different replacement algorithms on the query closure algorithms should be
studied more intensively so that a better replacement algorithm can be found.

Our implementation of the level relaxation algorithms needs further
refinement. Better alternatives to the reservation strategy that we used should
be investigated.

The studies of the degree of cluster effect of a binary base relation may
provide an insight to the nature of level relaxation strategy. In particular,
simulation studies on the performance of the level-relaxed algorithms using
different generated data sets by varying the degree of clustering may provide
information that can lead to further improvement of the algorithms.

Appendix A

Experiment on Join Operation

In Chapter 6, we described the implementation strategy of join operation. In

implementing the nested-loop indexed join method, the operand with the larger size is

always chosen for the indexing operation. In this appendix we justify this indexing

strategy. We do so by comparing this indexing strategy with an alternative one.

In the experiment, we will join two binary relations R1 and R2. The size of relation R1 is

increased, while that of R2 is fmed. R2 always contains 1000 tuples. We assume that the

index table has been built for R2, but not for R1. There are two schemes of the join

operation:

1. Scheme I: R1 is always the outer relation. Indexing is done on R2. Thus,
inside the first loop, the join attribute of a tuple of R1 will be used as key to
access the index table of R2 to find a matching tuple.

2. Scheme II: This is the indexing strategy we adopted. That is, the outer
relation will be the smaller of the relations R1 and R2. If R2 is chosen for the
outer relation, then an index table must be built for the larger relation R1.

The results of the experiment are plotted in Figure A-1. The X-axis represents the size of

relation R1, and the Y-axis represents the disk VO incurred by the two schemes. In this

experiment, we fixed the buffer size to be 10 pages.

From Figure A-1, we can see that when the size of R1 is less than 1000 tuples, both

schemes get the same disk YO. This is because both schemes choose R2 for indexing. As

the size of Rl increases, the disk I/O of Scheme 11 is more than that of Scheme I, indicating

that more disk VO is needed for building the table for R1. However, when the size of R1

increases to 5 times that of R2 (i.e., about 5000 tuples), then Scheme I and Scheme I1 have

Size of R

Figure A-I: Disk VO on different choices of operands for index in join operation

about the same disk VO performance. When the size of R1 grows very large, Scheme 11

performs better than Scheme I.

From this we conclude that Scheme I1 will be better than Scheme I when one operand of

the join operation is substantially larger than the other operand. This implies that although

the cost in building the index table is quite high, this cost can be offset by the saving in the

cost of sequential access to smaller relation in the outer loop according to the indexing

strategy we adopted. In fact, in most cases we encountered in our experiments, the size-

increasing relation R1 is either the relation for i-closure or i-implied-edges-closure. These

intermediate relations (i-closure and i-implied-edges-closure) always take part in a union

operation after the join operation. Once an index table is built for these relations, the table

will be updated in the union operation with much less effort than building the whole table.

Hence, the cost of the disk VO should be much lower than the one we presented here. The

indexing strategy that we adopted is thus justified.

References

1. F. Bancilhon. Naive Evaluation of Recursively Defined Relations. In M. Brodie and
J. Mylopoulos, Ed., On Knowledge Base Management Systems, Springer-Verlag, 1986, pp.
165-178.

2. F. Bancilhon an R. Ramakrishnan. An Amateur's Introduction to Recursive Query
Processing Strategies. Proc. of 1986 ACM-SIGMOD International Conference on
Management of Data, Washington, DC, May, 1986, pp. 16-52.

3. R. Bayer and E. McCreight. "Organization and Management of Large Ordered
Indexes". Acta Inforrnatica 1 , 3 (1972), pp. 173-189.

4. H. Gallaire, J. Minker and Nicolas. "Logic and Database: A Deductive Approach".
ACM Computing Survey 16,2 (1984), pp. 153-195.

5. J. Han and L. J. Henschen. Compiling and Processing Transitive Closure Queries in
Relational Database Systems. Tech. Rept. EECS Tech. Rep. 86-06-DBM-02,
Northwestern Univ., June, 1986.

6. J. Han. Selection of Processing Strategies for Different Recursive Queries. Proc. of the
3rd International Conference on Data and Knowledge Bases, Jerusalem, Israel, June, 1988,
pp. 59-68.

7. J. Han, G. Qadah and C. Chaou. The Processing and Evaluation of Transitive Closure
Queries. Proc. of the International Conference on Extending Database Technology
(EDBT'88), Venice, Italy, March, 1988, pp. 49-75. [Lecture Notes in Computer Science
303, Springer-Verlag, 19881.

8. L. J. Henschen and S. Naqvi. "On Compiling Queries in Recursive First-Order
Databases". J ACM 31, 1 (1984), pp. 47-85.

9. Y. E. Ioannidis. On the Computation of the Transitive Closure of Relational Operators.
Proc. of the 12th Int'l Conf. Very Large Data Bases, Kyoto, Japan, August, 1986, pp.
403-41 1.

10. Y. Ioannidis and R. Ramakrishnan. Efficient Transitive Closure Algorithms. 14th
International Conference on Very Large Data Bases, Los Angeles, USA, August, 1988, pp.
382-394.

11. H. V. Jagadish, R. Agrawal and L. Ness. A Study of Transitive Closure as a
Recursion Mechanism. Proc. of 1987 ACM-SIGMOD Conference on Management of
Data, San Fransisco, California, May, 1987, pp. 33 1-344.

12. H. Lu. New Strategies for Computing the Transitive Closure of a Database Relation.
Roc. of the 13th International Conference on Very Large Data Bases, Brighton, England,
September, 1987, pp. 267-274.

13. W. S. Luk, H. M. Mok. Disk I/O Performance of Some Linear Recursive Query
Processing Algorithms. Submitted for publishcation.

14. J. Minker. "Search Strategy and Selection Function for an Inferential Relational
System". ACM Transactions on Database Systems 3, 1 (1978), pp. 1-3 1.

15. H. M. Mok. Disk I/O Performance of Linear Recursive Query Processing. Master
Th., School of Computer Science, Simon Fraser University,July 1987.

16. J. F. Naughton. One-sided Recursions. Proc. of the 6th ACM Symposium on
Principles of Database Systems, San Diego, CA, March, 1987, pp. 340-348.

17. R. Reiter. Deductive Question-Answering on Relational Databases. Logic and Data
Bases, Plenum, New York, 1978, pp. 149-178.

18. J. D. Ullman. Database Theory: Past and Future. Proc. of the 6th ACM Symposium
on Principles of Database Systems, San Diego, CA, March, 1987, pp. 1-10.

19. P. Valduriez and H. Boral. Evaluation of Recursive Queries Using Join Indices. Proc.
of the 1st International Conference on Expert Database Systems, Charleston, South
Carolina, April, 1986, pp. 271-293.

20. H. S. Warren. A Modification of Warshall's Algorithm for the Transitive Closure of
Binary Relations. Communications of ACM 18, April, 1975, pp. 2 18-220.

21. S. Warshall. "A Theorem on Boolean Matrices". J. ACM 9, 1 (January 19621, pp.
11-12.

