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Abstract 

Specularity reflecting surfaces confuse traditional shape-from-shading algorithms because 

the variation in image intensity within a specularity does not directly relate to the cosine of 

the incident angle, as it would for a simple Lambertian reflector. To overcome this problem. 

color is introduced and a method of removing the specular component of the intensity vari- 

ation is proposed based on a dichromatic model of surface reflection. Unlike Shafer's 

method for specularity removal, which is restricted to uniformly colored surface patches, 

our algorithm uses information from several differently colored regions. The problem of 

segmenting an image into color regions is successfully avoided as the specular component is 

calculated and removed using local operations only. The image resulting from specularity 

removal preserves the relative intensity of the diffuse component so it can then be input to 

a shape-from-shading algorithm. Our shape-from-shading algorithm is based on variational 

calculus. Without assuming the location of the scene illurninant, and allowing background 

illumination, the algorithm computes the shape from the diffuse component image in a more 

general setting than the existing algorithms do. In the thesis, the algorithm is formulated 

into a local relaxation scheme which allows a parallel network implementation. 
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Chapter 1 

Introduction 

1.1. Motivation 

When light strikes a surface, it is reflected both diffusely and specularly. Surfaces fat- 

ing the light source reflect the most diffuse light while surfaces oriented half-way between 

the source and the viewer exhibit the strongest specular reflection. Shading is the 

phenomenon of intensity variation in the image due is variation in surface orientation in 

the scene. Comprised of both diffuse and specular components, the intensity variation car- 

ries a lot of information about surface orientation. 

Shading therefore provides rich cues about surface orientation. But shape-from- 

shading is a hard problem. The difficulty lies in the fact that the intrinsic characteristics -- 

for instance, the orientation, illumination and reflectance -- are all encoded in a single inten- 

sity value. As Barrow and Tenenbaum [Ba~e78] have commented, while the encoding pro- 

cess gives unique value, the decoding is ambiguous. A single intensity value may result 

from an infinite number of combinations of illumination, orientation and reflectance. 

Horn and Brooks have derived a numerical scheme [ ~ o ~ r 8 6 . ~ r ~ o 8 5 ]  for computing 

local surface orientation from the image intensity. But to render the problem solvable. some 

Introduction 



assumptions about the world were adopted. Smooth surfaces1 of uniform reflectance2, 

illuminated by a single point source at great distance were used to constrain the problem. 

Horn looked at the world of perfect diffuse reflectors3, devoid of highlights, so that the 

reflectivity of the surfaces is kept simple enough to be modeled by a very simple function. 

In addition, color is excluded from consideration so that reflectance variations can be 

avoided. The location of the distant point source is usually assumed to be known. In his 

work [BrHo85]. Horn relaxed this assumption to an unknown distant point source and 

derived a scheme which computes both the local surface orientation and the light source. 

However, evaluation of the light source requires global scans of the image data. 

While Horn's method is sufficient to solve problems involving monochromatic 

Lambertian reflectors, it will not cope with the real world. In our daily life, we see color 

everywhere, also, it is common to find highlights reflected off smooth surfaces. In this 

thesis, a wider scope of shape-from-shading problems is investigated. 

Extending beyond Horn's world of Lambertian reflectors, we work on the more realis- 

tic situation where, besides the diffuse component, a specular and an ambient component are 

reflected off the surfaces as well. The diffuse component is reflected by the pigment particles 

embedded in the surface. It exhibits a specific color depending on the chromaticities of the 

surface pigment and the scene illuminant. The diffuse component is supposed to be scat- 

tered equally in all directions but with an intensity varying in accordance with the imaging 

geometry. The ambient component is due to the background illumination which is generally 

assumed to be uniformly incident from the environment and reflected equally in all 

'The notion of surface smoothness is formulated in various ways. In Horn's work [~rHo85], smoothness is 
realized as a minimization of the gradient of the surface. In another work [HoBr86], a more sophisticated formula- 
tion is used. A smooth surface is considered as an integrable one, i.e. zxj .=-Zj , .  where Z is thede~th~map of-the 
image. 

'The reflected intensity is at a constant ratio to the illuminating intensity. 

'The reflected intensity is independent of the viewing angle. They are also known as Lambertian reflectors. 

Introduction 
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directions. It does not contribute to the variation of the reflected intensity across the sur- 

face. The specular component represents the reflection of light at the surface interface. It 

appears as highlights which are concentrated about the specular direction. The chromaticity 

of the specular component is related to the scene illuminant but independent of the surface 

pigment. 

Our strategy is to uncover the the specular component in a picture, and then remove it 

from the image resulting in an image containing only the diffuse and the ambient com- 

ponents. Since ambient reflection is constant with respect to imaging geometry and diffuse 

reflection is usually assumed to be Lambertian [Shaf84a.~e~e66],  with the simple 

reflectivity function describing the two reflection processes, the shape of the objects can be 

recovered. 

We would also like to move from the monochromatic world to the color world. One 

reason is that specular image component is easier to detect in a color image as it exhibits a 

consistent color across the whole image. Another reason is that a color image represents a 

more realistic picture of the world. 

1.2. The Scope of Investigation 

The diffuse component appears as intensity variation in an image. Unfortunately, the 

specular component is also present as intensity variation. Since the intensity profile is the 

only information available in a black-and-white picture, given a monochromatic image 

there is no way to separate the two features without assumptions about their patterns of 

variation. Usually, slow. variation and sharp peaks are the commonly employed 
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assumptions about the intensity profiles of the diffuse and specular image components 

respectively. Nonetheless, the assumption of slow intensity variation inevitably limits the 

class of surfaces to relatively flat ones. The second assumption restricts the world to that of 

optically smooth surfaces that reflect highlights concentrated around the specular direction. 

Therefore, it is preferable to be able to uncover the specular image component without sub- 

jecting the method to these restrictive assumptions. 

The distinctiveness of specular reflection can be recognized when data from multiple 

chromatic channels is brought together. Since specular reflection is an interface 

phenomenon4, its occurrence has no relationship to the surface reflectance5. In an image, the 

specular component should show uniformity in spectral features across differently colored 

regions. Thus, in spite of its intensity variation being obscured in the monochromatic image. 

the spectral characteristics of the specular component can be calculated by comparing the 

data from different chromatic channels. Hence, to understand the specular component in an 

image, we move from the black-and-white to the color world. 

The smoothness requirement of the surfaces is still observed in the thesis. Although 

color gives additional information for understanding the specular component, on the other 

hand, it also adds an extra dimension of complexity to the analysis. To avoid color changes 

that obscure other physical events. the investigation is restricted to smooth surfaces in 

order to avoid any orientation variations being obscured by color edges. However, purely 

specular surfaces are excluded from consideration. As these surfaces reflect specularities 

only, removal of the specular image component would thus result in a void of shape 

'when light strikes a surface, part of it is reflected at  the air-material interface due to the difference in the re- 
fractive indices across the interface. See [Shaf84b] 

'when light traverses the bulk of a surface, it undergoes scattering, absorption, and reemission by the 
colorant particles on the way. The degree of interaction differs with the wavelength of the light. When the light 
reemerges from the surface, it shows a different spectrum with respect to the incident light. The ratio between the 
reflected and the incident spectra is called the surface reflectance. See [Shaf84b]. 

Introduction 
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information, 

In summary. this thesis addresses the problem of shape-from-shading in a scene 

domain with the following characteristics: 

color images. 

partially specularly reflecting surfaces. I 

smooth surfaces. 

single distant point source illumination. 

light source of unknown location and color. 

unknown ambient background illumination. 

Figure 1.1 shows a typical scene within the scope of the thesis. 

Figure 1.1 : A typical scene consisting of smooth surfaces with differently colored 
patches. Components due to diffuse and specular reflections are reflected off the 
surfaces: 
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1.3. The Strategy 

Specular reflection is difficult to model analytically. Any shape computation depend- 

ing upon specular reflectance is expected to be complicated. In order to avoid the problem, 

we prefer to remove the specular component from the shading information, to obtain an 

image consisting of only the diffuse and the ambient components, on which the shape com- 

putation is realizable. As ambient reflection is constant with respect to the image geometry. 

and diffuse reflection is usually assumed to be Lambertian [~haf84a,WeHe66], a shape- 

from-shading algorithm using the Lambertian reflection model augmented with a constant 

ambient term can be applied to the image resulting from the specularity removal process to 

recover the surface shape. 

1.3.1. Removing the Specular Image Component 

The first step in our method is to remove the specular component from the shading 

information. As a color image contains sufficient information about the spectral charac- 

teristics of the specular component, we can combine the information of 'the intensity varia- 

tions in multiple chromatic channels to resolve for the color of the specular component. 

In the thesis, Shafer's Dichromatic Model [shaf84b] for color reflection is used as an 

analytical tool to understand the relationships between different image compnents. The 

model has two merits. First, it is applicable to a wide class of surfaces, namely those of 

optically inhomogeneous materials6. This fits with our restriction that no region is purely 

6 ~ h e y  are composed of colorant particles embedded in a bulk of optically transparent medium. Light is 
reflected specularly at the interface and diffusely by the body colorants. See Chapter 2. 

lnrroduct ion 
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specular. Second, the model is based on the theories of optical physics. In addition, the 

model simplifies computation on color reflection as it describes the phenomenon of reflection 

as a linear process. Reflected light is interpreted as a sum of independent reflection com- 

ponents'. In an image, while the diffuse component is responsible for the diffuse shading, 

the specular component accounts for the highlights, and their combination yields the 

reflected light. Since the various components are mingled together in a linear combination. 

we can employ linear algebra to help in solving for their properties, in particular, the 

specularity color and the diffuse component intensity. 

Applying the linear transformation from light mixtures to color coordinatess, the 

reflected coicrr can be described as a linear combination of the color of the respective 

reflection components. Consequently, pixels corresponding to a uniformly colored region 

are contained in a dichromatic plane9 defined by the color vectors of the specular. diffuse 

and ambient components. As regions of different body reflectances reflect light in different 

colors, they should show different colors in their diffuse components. It thus follows that 

they are contained in different dichromatic planes. However, there is one uniformity 

among the regions. Since specularities arise from interface reflection, they are not affected 

by the spectrally-biased body reflectance. Therefore, every region should reflect speculari- 

ties of the same colorlo. As the color of the specular image component is common to all the 

regions. it should be obtainable as the intersection line of all the dichromatic planes. 

A specularity removal algorithm exploiting the invariance of the specularity color 

across an image has been developed. The algorithm calculates the dichromatic planes in an 
- 

'~eflected light is a linear combination of the ambient, the diffuse and the specular reflection components. 

'See [Shaf82] for Spectral Projection. It is also discussed in Section 3.3.2. 

9 ~ t  is a plane in color space. Here Dlchromatic means that the plane is defined by the chromaticity of two com- 
ponents, namely the interface and body reflection components. 

l01t is the color of the light source [Shaf84b]. Also see [ ~ g ~ i 7 9 ] .  
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RGB color space. Unlike Shafer's algorithm which requires a prior image segmentation into 

uniformly colored regions, our algorithm successfully avoids the segmentation problem by 

using only local information to calculate the planes. Then the common intersection of the 

planes is found yielding the specularity color. 

After the specularity color has been found, it is used to filter out the specula; com- 

ponent. This can be done by resolving each pixel color into two components: one with the 

specularity color, the other with the orthogonally complementary color. With the former 

component removed, an image without specularities is obtained. This resultant image 

preserves the relative intensity of the diffuse and ambient components, and is good enough 

for shape-from-shading computation. In the thesis, a shape-from-shading algorithm which 

handles Lambertian reflection under a point source plus an ambient illumination of unk- 

nown intensity is presented. 

1.3.2. The Shape-from-Shading Computation 

While the existing shape-from-shading algorithms restricted the problem domain to 

surfaces of uniform Lambertian reflectance, we relax the scope to include regionally con- 

stant reflectance. Hence, we have to handle images with color regions and thus color boun- 

daries. Moreover, as non-zero ambient illumination is allowed. discontinuities at  color 

boundaries are further complicated by the difference in the ambient reflection components 

across the boundary1'. In our problem setting where surface smoothness is assumed, the 

discontinuity across a color boundary is attributed to the changes' in the body reflectance 

*"surface reflectances are different on both sides of a color boundary, so the two regions reflect the ambient 

Introduction 
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and ambient component. but not the surface orientation. So. we get around the by 

handling each color region as an independent smooth surface of uniform body reflectance 

and under constant illumination. The requirements of surface smoothness and constant 

point source illumination are, however, still observed at the color edges by propagating the 

corresponding information over as boundary constraints. 

Like Horn [ ~ o ~ r 8 6 ] ,  we approach shape-from-shading as a variational problem12 

rWein52.CoHi53.Ho~r861. Suppose we make a guess about the local surface orientation. 

reflectance, and illumination. We can then calculate the predicted reflected intensity based 

on the guess. Very likely, our guess will be quite far off, and the predicted intensity so 

obtained will show a significant discrepancy from the measured one. Since the discrepancy 

is the manifestation of the error in the guess, we can formulate the problem as a minimiza- 

tion of the discrepancy so that the guess is forced towards the correct solution. 

However, just minimizing the discrepancy would not be sufficient to make the prob- 

lem well-posed13 because a measured intensity can be caused by an infinite number of corn-. 

binations of orientation, illumination and reflectance. We have to use some constraints to 

resolve the ambiguity in order to arrive at a unique interpretation of the image. In the 

thesis, the requirement of smooth surfaces, constant regional reflectances and invariant 

illumination are adopted to constrain the problem to a resolvable one. 

~ o s t l ~ ,  the information about the light source-in shape-from-shading computation is 

' known aepriori. Brooks and Horn, in [~rHo85], treated the intensity and direction of the 

light in different chromaticities. 

12A variational problem is a one in which it seeks to extremize a functional so that the pro.blem is forced to 
the optimal solution. Some constraints are usually incorporated into the functional to restrict the set of candidate 
solutions to a plausible one. 

I3A variational problem is said to be well-posed if extremization of the functional would lead to a unique 
solution. 

Introduction 
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illumination as unknowns and derived an iterative scheme to compute the local surface 

orientation and the source direction and intensity. Although their method iterates locally 

to evaluate the local orientation. the computation for the source requires global scans over 

the whole image data. 

Aiming at a true local method, the unknown source problem is formulated in such a 

way that a scheme facilitating local iteration towards both the source and the surface orien- 

tation can be derived. This can be done by recasting the problem of shape computation as a 

variational problem which takes the unknown source as a function rather than a global 

variable. A constancy constraint is adopted to force the source direction and intensity to be 

globally constant14. The ambient reflection component also introduces unknown parameters 

in our shape-from-shading problem. In our formulation. the ambient component is handled 

in a similar way. Consequently, a formulation with the source and the ambient component 

treated as local quantities can be derived, leading to a local computational scheme which 

enables a network implementation. 

1.3.3. Summary 

Our method involves two steps. The first step is to remove the specular component. 

Then a shape-from-shading algorithm is applied. Since the specular component exhibits a 

consistent color across an image, different color regions can be brought together to discover 

the spectral characteristics of the image specularities. Knowing the specularity color, it is 

possible to remove the specular component from the original color image-and obtain an 

 he unknown source is defined as a function of s ( x  ,y ). Any departure of S ( X  ) from a constant 
function is penalized heavily so as to inhibit the s value from varying with respect to ( X  .Y f This is discussed in 
details in S.ection 4.2.3. 
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image consisting of only the diffuse and the ambient components. Shafer's Dichromatic 

Reflection Model is used as an analytical tool. It portraits reflectioon as a linear process, 

which leads to the possibility of using linear algebra for the removal of image specularities. 

As the diffuse component is assumed to be Lambertian. and the ambient component is 

assumed to be constant. the next step then computes the local orientation using the Lamber- 

tian reflection model augmented with a constant ambient term. The shape-from-shading 

problem is formulated using variational principles while subjected to the constraints of 

smooth surfaces, constant regional reflectances and constant illumination. Without assum- 

ing knowledge about the source location and intensity, but recognizing the effect of region- 

ally constant body reflectances and non-zero ambient illumination, the problem is handled 

in a more general setting relative to the existing algorithms. A numerical scheme has been 

derived based on the variational formuIation. A local method which enables a network 

implementation formed the main objective in the design of the scheme. 
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Chapter 2 

Physical Properties of Reflection 

In the thesis, scenes of partially specularly reflecting surfaces are investigated. These 

surfaces reflect both specularly and diffusely. Many common materials reflecting in this 

way can be described as optically inhomogeneous - for example, most paints, varnishes. 

paper, ceramics and plastics [~haf84b]. Therefore, we focus our attention to the optically 

inhomogeneous materials in our work. This section presents an account of the specular and 

diffuse reflections of inhomogeneous materials. 

Inhomogeneous materials can be understood as comprised of an optically transparent 

medium that constitutes the bulk of the material. Embedded in it are the particles of a 

colorant that produce scattering and coloration [Shaf84b]. When incident light is reflected 

off a surface of inhomogeneous material, two processes take place. Due to the difference in 

the refractive indices across the air-material interface, the incident light is partially 

reflected at the interface. This is interface reflection. The residua1 light penetrates through 

the interface. Traversing the medium, the light is scattered or absorbed by the colorant on 

its way. Eventually, some light reemerges through the interface producing body reflection. 

Figure 2.1 illustrates the reflection phenomena occurring on inhomogeneous materials. 

Physics of Reflection 
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Figure 2.1 : Reflection of ~ i g h t  from an Inhomogeneous Material. (Figure 2-1 
[ ~ h a f  84bl) 

macroscopic perfect 

specula direction interface reflection incident light 
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Interface reflection is governed by Fresnel's laws. Figure 2.2 depicts the ray diagram 

of interface reflection. 

Physics of Reflection 



Speurlarity Runoval for Shape-~hm-Shading 

normal 

Figure 2.2 : Reflection and Refraction at a plane surface. 
. ,- 

Fresnel described the relationship among the reflected light, incident angle and refractive 

indices in the equations [~on~73,~r i180] :  

where 

0 A, and A, are the amplitudes of the incident and the reflected light respec- 

tively. . The su&rscripts I' and indicate the light components in and perpendicular 

to the plane of incidence. 

0 By the Snell's law. 7)sinZ = 7)'sinI' , where 7) and 7)' are the refractive in- 

dices of the two media respectively. 

So, at an angle of incidence. Fresnel's equations relate the reflection coefficient to the refrac- 

tive indices. As refractive index depends on wavelength, the reflection coefficient is thus also 

a function of wavelength. But since refractive index is usually relatively constant across 

Physics of RefIcczion 
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the visible spectrum, for example, the refractive index of acrylic plastic varies only 1.3% 

between the ends of the visible spectrum, the reflection coefficient is generally assumed to be 

constant with respect to wavelength. Thus the reflected light is usually said to have the 

same color as the incident light [Shaf84b]. 

However. the color of the body reflection is generally different from that of the 

incident light. In the surface body. the light undergoes scattering, absorption and reemission 

upon interacting with the colorant particles. The colorant pigment usually exhibits selective 

absorption towards different wavelengths. Thus, in general, interaction with the colorant 

particles results in a spectrally biased reflection. The body reflection therefore exhibits a 

different color from that of the incident light. 

Optically smooth surfaces reflect light along the perfect specular direction. However. 

real surfaces are always rough. The analytical model assumes that a roughened surface is 

comprised of small, randomly disposed &or-like facets, and the mean surface is the one 

that we observe macroscopically [ ~ o ~ p 6 7 ] .  Each facet reflects the incident light along its 

own local perfect specular direction. As the facets are disposed about the mean surface, the 

local specular direction differs from the macroscopic specular direction but scatters about it. 

This is the reason specularities usually scatter over a range about the specular direction 

[~haf84a]. When light illuminates the facets at an oblique angle, masking and shadowing 

[ToSp67] of one facet by adjacent ones may occur. See Figure 2.3. 

Physics of .Reflection 
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Figure 2.3 : (a) masking. (b) shadowing, and (c) simultaneous masking- 
,.; shadowing. 

This constitutes the geo'metrical attenuation of the specular reflection. As the attenuation is 

asymmetric about the specular direction. a peak of reflected intensity is usually observed 

beyond the specular angle. Figure 2.4 shows some experimental data about the off-specular 

peak. 

Physics of RrJTcction 
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Figure 2.4 : Bidirectional reflectance distributions in the plane of incidence for 
various angles of incidence $, h=O.Sp. (a) Aluminum (2024-T4). aluminum coat- 
ed, a;, ~ 1 . 3 ~ .  (b) Magnesium oxide ceramic. urn ~ 1 . 9 ~ .  (Figure 2 [ToSp67]) 

While specular reflection is highly directional, body reflection, contrarily, is usually 

assumed isotropic15 [~Haf84b]. Its magnitude depends directly on the intensity of illumina- 

tion. 

lSi.e. the intensity is independent of the viewing dircction. Also see [EgHi79]. 

Physics of Refleuion 
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Chapter 3 

Related Work 

As this thesis investigates how the variations in image color tell about the surface 

shape. the reflectance functions which relate these two quantities are interesting to us. In 

particular, the complication of expressing the specular reflection coefficient analytically 

leads us to the idea of removing the image specularities for shape computation. In this 

chapter, some reflectance functions are reviewed. Thee a brief account of the Dichromatic 

Color Reflection Model is presented. The algorithm due to Shafer [~haf84b] is discussed. 

Lastly, the shape-from-shading algorithms are surveyed. As the approach based on varia- 

tional principles is adopted to handle the shape-from-shading computation, our survey was 

done primarily on the work based on variational formulations. 

3.1. Reflectance Functions 

As mentioned in the previous chapter. the image shading provides a good constraint on 

surface orientation. The diffuse reflection component tells how much the surface turns 

away from the light source, whereas, the highlights are reflected off the surface at the 

R.&d Work 
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characteristic specular angle. If we bring in these constraining factors to solve the shape 

computation, we have to know how they relate to the surface orientation in a given illumi- 

nation environment. In this section, we investigate some reflectance models that represent 

attempts to describe accurately the reflectivity of an illuminated surface. 

Phong [Phon75] proposed a shading model describing both the diffuse and specular 

reflection effects. The shading at a point p on an object surface is expressed as: 

Sp = Cp [cosi (1 -d )+d]+  W(i)cosna 

where 

Cp is the reflection coefficient of the object at point p . 
i is the angle of incidence. 

.d 

d is the environmental diffuse reflection coefficient. 

W (i ) gives the intensity ratio of the highlight and the incident light. 

a is the off-specular an&. 

n is the power which models the specular reflected light. 

The function W (i ) and the power n express the specular reflection characteristics of the 

material. For a highly reflective material. the values of both W (i ) and n are large. 

Based on empirical measurements of some paints. Horn [Horn751 arrived at an equa- 

tion describing the reflectivity as: 

1 
+(i ,e ,g ) = - s (n +1) (2 cosi cose - cosg )" + (1-s cosi 

2 

where 

i ,e .g are the angles of incidence, reflection and the phase angle respectively. 

See Figure 3.1 for their definitions. 

s lies between 0 and 1, it determines the fraction of light reflected off the sur- 

face interface. 

n determines the sharpness of the specularity peak. 

Related Work 
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Figure 3.1 : Definition of the angles of incidence i , reflection r and the phase angle 
,. b 

g 

Although these models capture the phenomenological characteristics of specular and 

diffuse reflections quite well. they lack the theoreticaj background of optical physics. ]For 

example, the sharpness of the highlight peaks is modeled by the empirically adjusted 

parameter n , and no physical justification is made. Not surprisingly, these models cannot 

predict the commonly observed off-specular peak phenomenon. In the following, we look a t  

two reflectance functions which have been developed on the basis of geometrical optics. 

3.1.1. Torrance and Sparrow's Theory of Roughened Surf aces 

In their work [ToSp67]. Torrance and Sparrow proposed an analytical model which 

assumes that a surface consists of small, randomly disposed, mirror-like facets. Diffuse 

reflection of the surface arises from the multiple reflections and internal scattering. Specular 
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reflection from these facets and the diffuse reflection are postulated as the basic mechanisms 

of the reflection process. 

Consider the geometry a t  the reflecting surface as shown in Figure 3.2. 

\INCIDENT BEAM Z 

Figure 3.2 : Spatial angles of incident and reflected flux. (Figure 1 [ ~ o ~ p 6 7 ] )  

The composition of the reflected flux dNr from the surface is expressed as a sum of the 

specular component dN,  and the diffuse component dNr . 

The diffuse component varies directly as the flux incident on the surface, i.e. the projection 

of the radiance Ni on a unit area of the surface. 

dNr ($1 = a Ni  cos$. where a is a constant. 

Assuming a Gaussian probability distribution of the facets about the mean surface. the pro- 

bability of the facet orienting a away from the mean surface is: 

- .- 
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P(a) = b s -(c 2'x2) 
, where b and c are constants. 

If f is the area of each facet, and Ni is the incident radiance. the flux incident upon the 

facets whose normals lie within do' is given by: 

As the reflection is governed by Fresnel's laws, the fraction of flux being reflected is given 

by the Fresnel's reflectance. 

F (+,r)) where q is the refractive index. 

Masking and Shadowing represent a geometrical attenuation factor of the reflection. Tor- 

rance and Sparrow assumed every facet comprises one side of a symmetric V-groove cavity 
'. /_ 

on the surface. In Figure 3.3, the cross-section of the V-groove shows how the masking and 

shadowing occur. 

Figure 3.3 : The cross-section of a V-groove shows (a) the masking; (b) the sha- 
dowing and (c) the simultaneous masking-shadowing. 

. . 
Depending on the angles of incidence qP and reflection Op in the cross-section. the reflection 
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is attenuated accordingly. Let G (t,hp dP ) be the attenuation factor, the reflected flux is 

expressed as: 

Since the reflected flux can also be written in terms of the radiance dN, .. 
and d w' can be expressed as d or /4 cos$'. 

Therefore 

The geometrical attenuation factor G ($p  .Bp ) is a complicated expression. Consider the 

geometry of masking in a V-groove cavity as shown in Figure 3.4, using the reflection trian- 

gle. G can be evaluated as 

2 OP -% sin ep - cos2 IT I 
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Figure 3.4 : (a) masking in a V-groove cavity. (b) the reflection triangle. 

. 
In the cases of shadowing and sjmultaneous masking-shadowing, the geometry and the 

reflection triangles are similar. The same equation for the G factor is derived. At certain 

ranges of incident angles. the reflection is free from masking or shadowing. Torrance and 

Sparrow enumerated those G values in their paper [~oSp67]. The following table summer- 

izes the results. 

Rrlored Work 
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Incidence angle : 0 < $p < n/4 

Reflection angle Attenuation Formula 

Jlp -r -rn<eP ,<- masking / masking-shadowing G (rCP .ep > 
+3 
J 

+P t l P  ++?T <eP 6-- free 
3 3 

4p +r ,<e, < r / 2  masking G ($P .eP 
3 

Incidence angle : r / 4  6 $p < 7r/2 

Reflection angle Attenuation Formula 

- ~ / 2  4 OP < -6 masking-shadowing G ($p  

-$tP <eP -7r shadowing G (8, .rCP > 
II, +r 

3 4 1 ~  -7r<Op  <- free 1 
3 

+p G.,+T < 6, < r / 2  masking G ( $ p  .ep 1 
3 

Torrance and Sparrow's model is based on geometrical optics. It represents an analyti- 

cal model for the reflection process of roughened surfaces. The model predicts the off- 

specular peak in very good agreement with the experimental findings [ToSp67]. 

3.1.2. Cook and Torrance's Reflectance Model 

Cook and Torrance [CoTo82] developed a reflectance model that treats reflection as 

consisting of three components: ambient, diffuse and specular. The ambient component is a , 

Related Work 
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constant term, independent of the imaging geometry. The diffuse component is a Lamber- 

tian term, varying as the cosine of the incident angle. The specular component, however, is 

a very complicated term involving the factors of the surface facet slope distribution, the 
\ 

geometric attenuation (G factor), and the Fresnel's reflectance. In their paper, they 

expressed the reflected intensity as: 

where 

I, is the intensity of the ambient illumination. 

R, is the ambient reflectance. 

Ii is the incident intensity due to the light source. 

R, , R, are the specular and diffuse reflectances. 

s . d are the relative weights of the specular and diffuse components, s +d =I. 

Cook and Torrance chose to adopt the Beckmann distribution function [BeSp63] to 

mode! the facet s!ope distribution: In contrast to the Gaussian model [ToSp67]. the Beck- 

mann function has an advantage that no arbitrary constant is needed. 

tan2, -- 
I rn P ( d =  e 

m cos a 

where 

m is the rms measure of the slope of the facets. 

They also used a simplified expression for the G factor16. 

I 2 cosrr C O S ~  2 coscv COS+ 
G (+:9.+) = min 1, 

cosy?' cosy?' I 
Then they were able to write R, as" 

1 6 ~ l s o  see [Blin77,Blin78]. 

17c.f, Torrance and Sparrow's work [ToSp67]. 

Related Work 
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-- 
1 G 0 1 

F ($'.$ 
"I R, = - e 

7r cos$ 2 4 
C O S ~  m cos a 

3.2. Highlight Detection 

[Pel1861 and [GJTS~] deal with the problem of specularity detection. In [Pe1186], the 

specular component is assumed to correspond to a sinusoidal peak in the intensity profile: 

and the locations of specular reflectances are marked as the simultaneous peaks in all the 

three chromatic signals. Pellicano uses a local differential operator to find the zero-crossings 

in the first differential of the intensity image. Zero-crossings of different resolution scales 

are then ORed together to capture the peaks of various widths. After that, a concavity test 

is conducted to discrimate those zero-crossings corresponding to the intensity troughs from 

those corresponding to the peaks. The true highlights are then found as the simultaneous 

peaks in the R, G, and B signals by ANDing the corresponding zero-crossing maps together. 

[GJTS~] also addresses the problem of highlight identification. Gershon observes that 

the reflected light shows a color shift when the reflecting surface transits from a diffuse 

region to a highlight area. In the color-constant space (C-space) [Gers~7]'~, the cluster 

corresponding to the pixels in the transition region looks like a Hdog-legn structure. Based 

on this observation, Gershon derives an algorithm which segments an image into uniformly 

colored regions and then looks for the "dog-leg" color shift between all the adja- 

cent region pairs. (See section 6.3 for more detailed discussion on Gershon's method.) 

 he R , G , B values are transformed into a three-dimensional color-constant space where the chromatic 
effect of the illurninant is discounted. 

Related Work 
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Both [Pel1861 and [GJT&~]  present their methods for identifying highlight regions in an 

image. (See section 6.3 for the comments on them.) However, neither of them addresses the 

issue of removing image specularities. Furthermore. we argue that finding the highlight 

regions does not fit very well into our scheme. The reason is explained in the following. 

Inside a highlight region, the pixel chromaticity is a mixture of the ambient, the 

diffuse. and the specular spectra. The composition of the mixture is determined by the 

geometric parameters of the imaging system and also by the diffuse and specular 

reflectances of the surface. It is not easy at all to recover the information of the speculari- 

ties in the presence of so many unknown parameters. 

Shafer's method of separating the diffuse and specular components [Shaf84b] 

represents a more closely related work. His method computes the diffuse and specular com- 

ponents without requiring knowledge about the imaging geometry nor the surface 
, 

reflectance. In this thesis, we derive a specularity removal algorithm based on Shafer's 

model of color reflection. Our method is, however, more general than Shafer's method. 

3.3. The Dichromatic Reflection Model 

Shafer, in his work [Shaf84b,Shaf84a], addressed the problem of separating the com- 

ponents due to the diffuse and specular reflections respectively in a color image. He postu- 

lated reflection as a linear process in a simple mathematical model, called Dichrornatic 

Reflection Model. Using the spectral projection [~haf84bShaf84a,Shaf82], which is the pro- 

cess whereby pixel values are computed from the spectral power distribution. SPD, of the 

measured light, he transformed the problems of color image analysis into ones in. color 
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space. The problems encoded in terms of the color space parameters by then become nicely 

manageable using linear algebra. Working on the encoded version of the original problem in 

color space, Shafer claimed to be able to separate the various components which in the 

whole account for the perceived color image. 

Shafer assumed the illumination to consist of a light source plus an ambient light of 

low intensity and possibly with a different color than the light source. The reflected light is 

composed of three parts. One part is due to the interface reflection. constituting the 

highlights. The second part is due to the body reflection. The third part is caused by 

reflection due to the ambient illumination. It is a constant quantity as the ambient light is 

incident and reflected equally in all directions. 

In Shafer's model, each of the reflection components has a constant relative SPD, i.e. 

the highlight has a constant color, the body exhibits a constant color, and the ambient 

reflection adds a constant color to the reflected light. Thus the patterns in the perceived 

image can be explained as variations of the relative intensity levels of the respective 

reflection components. Such a variation is attributed to the imaging geometry. So. Shafer 

postulated that the reflected light is a sum of independent reflection components, and each 

component corresponds to light of a specific color but its intensity is modulated by the 

imaging geometry. Consequently, viewing the chromatic and geometric features of the 

imaged scene independently. Shafer arrived at an irradiance equation expressing the 

reflected light as a linear combination of the characteristic colors of the respective reflection . . 

components. The irradiance equation is stated as: 

Reloled Work 



It says that the total radiance L of the reflected light is composed of three independent 

parts: 

(1) the radiance Li due to the interface reflection. 

(2) the radiance Lb due to the body reflection. 

(3) the radiance La due to the ambient reflection. 

and each of these components can be decomposed into two parts: 

composition 

SPD's of Li , Lb and La which are represented by ci . cb and c, respectively. 

They are independent of the imaging geometry. 

magnitude 

geometric scale factors mi and mb which depend on the geometry but are in- 

dependent of the wavelength. 

3.3.1. The Dichromatic Model in Color Space 

The chromatic information of a beam of light can be- adequately represented by a- vec- 

tor in a color space whose basis is composed of orthogonal primary 'colors. Thus we can 

have a spectral projection function: 

where 

L is the set of possible spectral composition. 

C is the color space of dimension n described by the n orthogonal primary 

colors. 

f is a linear mapping function from L to C. 

If L E L then there exists one and only one c E C. such that f (L )=c and the mapping is 
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linear. 

The Dichromatic Model states irradiance as: 

Now, apply the linearity of spectral projection. 

Rewrite it as: 

In this form, the reflected color is a !hear combination of the three color vectors: ci , c, and 

ca where 

ci is the characteristic color of interface reflection, or equivalently, the color of 

incident light. 

cb is the characteristic color of body reflection. 

ca is the color of ambient reflection. 

Let us look at the coefficients of the various color vectors. The mi and m, are scale 

. factors of cj and c, . They vary according to the imaging geometry. ca , on the other hand. 

is a constant quantity. So. the locus of c in the color space C is a parallelogram plane 

described by c, and cb with the lowest corner displaced from the origin by ca (see Figure 

- 3.5). Within the parallelogram. the position of any color is determined by its mi and mb . 
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A- ' color of pixels in shadow . 

Figure 3 5  : (a) Pixel values on a surface lie on a parallelogram in color space. 
-" (Figure 4-1 [Shaf84b]) (b) Position within the parallelogram is determined by mi 

and m, . (Figure 3-2 [Shaf84b]) 

The color qace  model provides a powerful analytical tool for interpreting the color of 

an image. A surface of consistent body reflectance would have its spectral projection lying 

in a parallelogram floating in the color space. The parallelogram is defined by the three 

characteristic color vectors -- ci . cb and c, . 

The generality of the model well deserves appreciation. There is no assumption about 

the imaging geometry nor is there any about the surface curvature. The model is not based 

on any reflectance model. No distribution of the light sources is assumed. Whether it is a 

point source, extended source or multiple sources. the model applies equally well. Even 

when the distribution of illumination varies. it does not affect the power of the model in 

describing and analysing the situation. The model is general and applicable to a wide range 
. . .. . . .. . . 

of problems. In the thesis. we use the model as an analytical tool in solving for the color of 

the specular reflection. 

Rdorui Work 



Sp&itp Runovd far Shape-from-Shading 

33.2. The Spectral Projection 

Shafer studied the color reflection of a scene in the three-dimensional RGB color 

space. He used linear spectral projection to map the measured light mixture to the color 

coordinates in the RGB space. Specifically, the transformation he used is [Shaf84b,~haf84a]: 

L is the measured light mixture. 

c is the color vector specified by the components r , g and b . 
f is the spectral projection transformation. 

7. g .  gare the responsivity functions of the camera system in the red, green 

and blue spectra. 

The vector space of light mixture has an infinite number of dimensions [Shaf82]. A 

light mixture L can be considered as a linear combination of the pulse functions 

They form the basis functions of the vector space. As there are infinite number of these 

pulse fun~tions '~,  the space has an infinite number of dimensions. It is shown that a tri- 

- chromatic system2' is adequate to distinguish lights of different colors [Gers84]. So, it is 

justified to use the linear spectral projection to map the infinite-dimensional light com- 

ponents to the three-dimensional color coordinates. 

190ne pulse function for each A. 
Z o ~ l s o  see the trichromatic theory of color vision suggested by Thomas Young. The hypothesis were support- 

ed by J. Maxwell, H. von Helmholtz and confirmed by E. MacNichoI and G. Wald. 



3.3.3. Shafer's Algorithm for Separating the Diffuse and Specular 
Components 

A linear spectral projection codes the image pixels as color points in the color space. In 

the model. each pixel value is a linear combination of independent color vectors. The color 

points together sweep out a parallelogram in the color space. By this observation. Shafer 

suggested a simple algorithm [Shaf84b] for computing the intrinsic images, mi and mb , of 

an imaged surface under no ambient illumination. The algorithm is presented as follows: 

Algorithm: 

(1) Project the pixel values into a color space as a set of color points. 

(2) Fit a plane to these points. with the restriction that the plane must 

pass through the origin. 

(3) Fit a parallelogram on this plane with the lowest corner at the ori- 

gin. The sides are c, and cb respectively. 

(4) At each pixel, express its color as a linear combination of ci and cb . 
The coefficients of the combination are the values for mi and mb . 

With the plane-fitting and parallelogram-fitting operations relaxed. the algorithm can be 

extended to cope with ambient illumination as well [Shaf84b]. 

Shafer's algorithm is amazingly neat and simple. However. it is still quite restrictive 

in handling the complexity of real world images. In practice. there is usually more than one 

color surface in a scene. So. there is more than one color space parallelogram. Moreover. the 

distribution of the color points may not be as easy to model as expected. When extending 

Shafer's algorithm to these cases, difficulties are met. 

Rdad Work 
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First of all, Shafer's algorithm relies on fitting planes to the points. When several sur- 

faces happen to occur in the same scene, more than one plane will occur in the color space. 

Fitting a plane through all the points is a standard problem having standard solutions. 

Nevertheless. finding different planes so that every point lies on one plane is no less than a 

segmentation problem. In his paper [~haf84b], Shafer did make a note that the model in 

color space assumes a prior segmentation of the image into groups of pixels corresponding to 

each surface respectively. 

Fitting a parallelogram on the plane to the points is another crucial step in Shafer's 

algorithm. Shafer commented that the distribution of pixel values within the parallelogram 

must not be pathological2' [Shaf84b] in order to be able to fit the parallelogram. What he 

meant is that most of the pixel points should lie close to either the ci or the cb axis. Nor- 

mally. such non-pathological distributions correspond to the cases where sharp and well- 

defined highlights are reflected off shiny surfaces. The reflection k dominated by the specu- 

lar component once inside the highlight region and falls to mere diffuse reflection once out 

of it. However. in practice. many surfaces are rough enough to give an extensively broad 

highlight area. Those highlights are neither sharp nor well-defined. In those cases. the distri- 

bution of the pixel values would be pathological. Moreover, it may happen that only part 

of a surface is imaged. The whole distribution of pixel values is not available in the image. 

It is then likely to run into a pathological data sample again. 

3.4. Shape-f rom-Shading Computation 

21~ee  fX~X871  for non-pathological examples. 
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As we know, surfaces facing the light source are bright whereas those turning away 

from the source appear dark. Under fixed lighting, the reflected intensity varies as the imag- 

ing geometry. People working on the problem want to recover the information about the 

surface orientation from the image of reflected intensity. In this area of research, Horn has 

contributed a lot. Let us review his work in the following paragraphs. 

In his doctoral thesis [Horn75], Horn addressed the problem of shape-from-shading. 

He showed that shape can be recovered from the shading information if the reflectance 

function and the position of the light source are known. He formulated the relationship 

between the image irradiance, the reflectance, the source and the gradient of the surface in a 

system of partial differential equations. Horn wrote the image irradiance equation in the 

form of a first-order non-linear partial differential equation in two independent variables. 

x andy: 

where 

I ( r  ) is the incident light intensity at the image point r . 
#(i ,e ,g ) is the reflectance function of the imaging angles i ,e .g , 

E ( r  ) is the intensity measured at the image point r . 

Then he sought to solve the equivalent set of ordinary differential equations: 

I; = XF, 
y = XF, 
i = X(p Fp + q  F,) 
p = A(-F, - p  F,) 
q = A(-Fy - q  Fz)  

where 
1 

The dot denotes differentiation with respect to s, a parameter which varies with the 
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distance along a characteristic strip2'. When these equations are integrated numerically 

along the characteristic strips, characteristic curves can be traced out on the surface and 

hence the information of depth and surface orientation is obtainable. See Figure 3.6. 

Figure 3.6 : Image of a sphere and the characteristic curves obtained from the 
shading. (Figure 4-2 [Horn75]) 

In [Horn771. Horn reformulated his work in terms of gradient space, which makes it ... ... -..- 

much simpler to understand. The work combined his previous shape-from-shading method 

with geometric arguments in gradient space2'. Horn introduced the reflectance map 

[Horn77,Marr82] as a tool for computing surface orientation. For some surfaces. mathemat- 

ical models are possible for analytical determination of the reflectance function. However. 

such techniques are usually difficult to use in practice. so reflectance functions are in general 

determined empirically. For a given type of surface and distribution of light sources. the 

"11 is a representation of surfacc orientation popularized by Huffman and Mackworth in their work 
[Huff71,Mack731. A brief account can also be found in [ ~ a r r 8 ~ . 1 k ~ o 8 1 . ~ o r n 7 7 ] .  The surface patchwith gradient 
2, = p .  Zy =q is mapped to the gradient space point a t  coordinate (P ,q ). Geometrically, we can think of this 
as the projection of the Gaussian sphcrc from its center onto the tangential plane ncar tq the viewer. See [ I ~ H O S ~ ] .  

Rctolcd work 
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surface reflects in accordance with the local orientation. Horn recorded the image intensity 

as a single-valued function in gradient space. This is used as the reflectance map for reading 

the orientation from the image intensity. Figure 3.7 shows an example. 

Figare 3.7 I Contours for q5(i ,r .g ) = lh -r (n + 1) (2 cosi cose - cosg In f 
(1-s )cog.  This is the reflectance map for a surface with both a diffuse and a spec- 
ular component of reflectivity illuminated by a single point-source. (Figure 7 
[Horn7711 

Based on the previous work. Horn and Ikeuchi [IkHo81] developed ah iterative method 

for computing shape from shading using occluding boundary information. The previously 

used gradient. space is insufficient for representing the gradient at occluding boundarid4 as 

it becomes unbounded when the surface turns at a right angle to the viewer. Horn and 

Ikeuchi employed the stereographic plane [1kHo8l ,Soho41] to express the orientation of sur- 

face patches. In the stereographic plane. the whole visible hemisphere of the Gaussian 

sphere is projected onto a circle only twice as big (see Figure 3.8). 

2 4 ~ t  thc occluding boundaries, thc surface turns away into the hidden side of the viewed object. Points on thc 
equator of thc Guassian sphcre correspond to the occluding boundary when the viewer is at the north. With the 
gradient space projection, the equator maps to thc infinity. c 



Figure 3.8 : The stereographic mapping projects each point on the surface of the 
sphere. along a ray from one pole. onto a plane tangent to the opposite pole. (Fig- 
ure 7 [1kHo8l]) 

Adopting the smoothness constraint which requires minimum slope of the surface. Horn 

and Ikeuchi formulated the shape-from-shading as a problem of minimizing the functional: 

where 

f ,g are the stereographic representation of the surface orientation. 

E is the observed image intensity. 

R is the reading from the reflectance map. 

Here. the first two terms in the integrand measure the departure from the smooth surface 

and the last term measures the error in brightness estimation, whereas X is the weight fac- 

tor between the smoothness constraint and the error of image irradiance. 

Minimization of an integral is a problem in variational calculus [~ein52,CoHi53]. 

When the integrand F is a function of the independent variables f and g as well as their 

fim partial derivatives f, , f, . g, and g, , it is sufficient to solve the associated Euler equa- 
C 
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tions: 

Applying these formulas, we have: 

As a way to solve these equations. Horn and Ikeuchi derived a discrete version of the prob- 

lem using the finite element method, and constructed an iterative scheme to compute the 

numerical solution. 

In his work [Pent84], Pentland developed a non-iterative local operation to recover the 

shape from shading with an unknown point source. His method assumes the surface is 

locally equal-curvatures25. Commenting against the restrictiveness of the equal-curvatures 

assumption and the incapability of the non-iterative method to propagate the occluding 

boundary constraint across the image. Horn and Brooks extended their previous work to 

show how the problem can be solved when the reflectance map is not available but is 

known to have a given form with some unknown parameters. 

In [~rHo85]. Horn and Brooks proposed an iterative scheme to calculate the surface 

normals and the source direction and intensity as well. They sought to minimize the bright- 

ness estimation error and the departure from surface smoothness. In their method. the 

functional being minimized is: 

=~r inc i~a l  curvatures are the curvatures Kl and K2 that occur along the directions of maximum and 
minimum surface curvature. For an equal-curvatures surface, I K1 I = I K2 I everywhere. 

R d a t d  Work 
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where 

n is the surface normal. 

s specifies the source direction and strength. 

p is the Langrangian multiplier function used to force n to be unit vector. 

The associated Euler equation is then solved for the surface normals. To compute the 

source. we evaluate the partial derivative of the functional I with respect to s . 

From this, we obtain the source s as 

In the next year. Horn and Brooks published another paper. This time. they developed 

a meth~d that enforces the integrability constraint: 

- 
zxp - Zyx 

2 Instead of using the regularization method that minimizes the term n: + n,, . they changed 

to minimize the functional: 

This method represents an improvement over the previous one as it converges to a better 

solution. i.e. closer to the true solution in many cases. 

The variational approach provides a mathematical framework enabling a good treat- 

ment of shape-from-shading problems. In the thesis, we extend the existing method td color 

images. A variational formulation is derived which leads to a local and scheme 

Related Work 



solving for the local surface orientation and the light source simultaneously. The method 

also takes care of the irregularities at the color boundaries. 

26~ontrasting to the global method for computing the source by Horn and Brooks in [BrHo85]. 



Chapter 4 

The Algorithms 

Our method for solving shape-from-shading for scenes of non-Lambertian reflectors 

involves two steps. The first one is to remove the specular component from an image. The 

second step then calculates the shape from the resultant image. In the following sections. 

the problem is broken down into these two subproblems. namely the specularity removal 

and the shape-from-shading. 

4.1. An Algorithm for Specularity Removal 

Shafer's algorithm [Shaf84b] computes the specular and diffuse reflection components 

of an image. His algorithm could have been used to uncover the diffuse image component 

for shape-from-shading computation. However. the algorithm assumes prior image segmen- 

- tation into uniformly colored regions. and non-pathological pixel distributions are required 

for calculating the specuiarity and the body colors. As a matter of fact. these pathological 

distributions occur quite often in real images.  oreo over. image segmentation is a difficult 

problem. In the thesis. we do not count on prior image segmentation nor, to the same extent. 
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non-pathological pixel distributions. Our algorithm is expected to be more robust in practice 

for removing image specularities. 

The specularity removal algorithm consists of two steps. First. it computes the specu- 

larity color. Then. it uses it to filter out the specular component from the original image. 

4.l.l. Computing the Specularity Color 

Regions of different body reflectance reflect light of different colors. They sweep out 

different dichromatic planes in color space. The reflected colors. however. share a common 

specular component. The specular component arises from interface reflection, so it is not 

affected by the spectrally-biased body reflectance: and thus every region should reflect 

specularities of the same color. Since the specular component color is common to all the 

regions, it will similarly be common to all the planes swept out in color space. Therefore as 

shown in Figure 4.1, it can be calculated as the intersection line of the color planes gen- 

erated by the different regions. As a result, instead of segmenting the image into different 

color regions and using each to compute its ci , c, , mi and mb - as Shafer's algorithm does 

- we combine the information across regions to compute just ci . the common specular com- 

ponent. 



SpecurcVitp Runoval for Shapofrom-Shading 

Figure 4.1 : The color planes in the RGB space. The intersection of the planes 
represents the color vector of the specularity color. 

Before the color planes are intersected to discover ci . they have to be computed. This 

involves calculating dichromatic planes fitting the color points in the color space. Without 

knowledge about which planes the points belong to, finding planes to all the points would 

be no easier than a general segmentation problem. However. we can make use of the spatial 

distribution pattern of the points in the color space to avoid running into the hard segmen- 

tation problem. Here, we make two observations: 

(1) By the Dichromatic Reflection Model, the image pixels in the same dichromat- 

ic region are projected onto the same plane in the color space. 

(2) Color patches in the 3-dimensional object world are continuous. They should 

produce continuous regions in the image space. 

At each image pixel. therefore. we can pick a neighborhood p that lies in a single 

dichromatic region. When projecting p into the color space, it resides on a single plane. 

Furthermore. all the pixels in that dichromatic region should project to the same plane. So. 
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at each pixel in a dichromatic region. if we pick its neighbors and map them to the color 

space, their best-fitting plane will be biased towards the global plane which corresponds to 

the region. 

Thus. in order to get the color planes. we do not need to do a general region segmenta- 

tion. Instead, we can make use of the adjacency structure in the image space. We compute 

the local best-fitting plane of each pixel in the color space. As each local plane represents a 

suggestion to the global dichromatic plane, the histograms of the local planes then yield the 

global plane. 

Since every dichromatic parallelogram has one of its sides defined by the color vector 

of the specular image component, the parallelogram planes should all contain the vector 

representing the specularity color. This is a very nice property as the intersection of the 

planes will reveal the common vector among them which should be the specularity color 

vector. 

By' exploiting, the constancy of the ambient component. we can actually discount the 

ambient component from affecting the above computation. Thus, the same arguments can 

also be applied to the scenes with non-zero ambient illumination. With non-zero ambient 

illumination, a dichromatic plane can be expressed as: 

c = c,, + mb cb + mi ci 

Despite the three component colors - ca , c, and ci - being mixed together, ca can be sorted 

out from the other two. Indeed. as ca contributes a constant term to c only. while cb and 

ci define the plane orientation. ca takes part only in the displacement of the plane from the 

origin. Therefore, the effect of ca can be discounted by dropping the term about the dis- 

placement of the fitting pIane from the origin. The remltant orientation plane. however. 

The Algorithm 



still preserves the linear combination of c, and ei . 

Thus. ci is expected to be defined as the intersection of the orientation planes obtained 

by the above process. In our method. a least-squares fit is used to find the line of intersec- 

tion as the line closest to perpendicular t~ all the plane normals. 

4.1.1 .l. Finding Local Plane Orientations using a Least-Squures Fit 

This section presents a method of calculating the dichromatic plane orientations in 

color space. The computation is conducted using local information. At every pixel. the local 

plane orientation is calculated and it. according to the above discussion. is biased towards 

the global orientation. When working together. these local orientations vote for the orienta- 

tions of the global dichromatic planes. In the thesis. a least-squares fit [BFR~?.PFTV~~! k 

used to find the local plane orientations. 

The problem is stated as: 

Given a pixel pi, located a t  the ( i  . j ) Ih  grid position in the image space. a 
n Xn neighborhood is then picked and its projection into the RGB space is 
denoted as the color points c, . where k =i - k /2 ),...i + In 12 1. 
I = j - In /2 I,.... j + In /2 I. Find the plane which best fits the color points. 

We .find the best-fitting plane using the least-squares method. Let us express a plane in the 

RGB space as rr(, ). 

The Algorithms 
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where 
r ,g b are the coordinates of a point on ?r(, 1. 

The best plane corresponds to the one with the sum of the squares of the residues in the b - 
direction minimized. 

At X2*s minimum, we have 

Defining terms: S, = xi , j  aij bij . we rewrite the system as: 

Denoting the matrices as S(b ), x ( ~  ) and s (,  ) respectively. we obtain a, /3 and 6 in x as: 

and the least-squares estimation error is calculated as: 
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where 
2 2 2 T  thenotationu(2)meansu(2)=[x y z ] if u = [ x  y r 1'. 

Therefore. we can obtain the plane normal n ( b )  and the associated error term C P ( ~ )  as fol- 

lows: 

. However. we can also express the plane as T ( ~  ). 

Minimizing the sum of the squares of the residues in the g -direction, we ~btain the least- 

squares fitting plane as: 

The Algorithm 
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Similarly, expressing the plane as n(, 1. 

n,,): r =fig + y b  + 6  

No matter whether we express the plane as n(, ), R ( ~  ) or 7r(. ). the best plane is the one with 

the smallest least-squares error. For example. the best-fitting plane WilI be 7 ~ ( . )  if (Z(,,) is 

the smallest among the three error terms: <r(, ). a(g ). u(, ); and n (,) will be the correspond- 

ing surface normal. 

4.1 .1 .2, intersecting the P l m s  to find the Specularity Color 

The Algorithms 
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The specularity color lies in the common intersection of the dichromatic orientation 

planes. As the modes of distribution of the local orientation planes yield the global 

dichromatic orientation planes, the common intersection among the global planes may as 

well be calculated by intersecting the local planes found in the modal classes. However, due 

to the errors occurring in the imaging process and the plane calculation. the local planes 

may not intersect nicely. Nevertheless, the line closest to perpendicular to all the plane nor- 

mals should be good enough to suggest their intersection. and thus the intersection of the 

global dichromatic orientation planes. From that. the specularity color follows. 

For computing the intersection of the local orientation planes. we have the problem 

stated as: . 

Given a set of planes denoted by plane normals ni = [ ai Pi yi 1. i =l,...m . 
find the line closest to perpendicular to all the plane normals. 

Again. we find the best line using least-squares techniques. Choose the vector 

r 
s = [ r g 1 ] on the line closest to perpendicular to all ni . Realizing the closeness in the 

sense of least-squares, the sum of the squares of the dot products between s and the plane 

normals should be minimum. 

At its minimum. 

Denoting xi ai bi as S, , 

The Algorithm 



Spculmity Runoval jar Shapcfnun-Shading 

Now, we have s specifying the line closest to perpendicular to all the plane normals. We 

can always normalize s by: 

4.1.2. Removing the Specular Component 

' Knowing the specularity color. it becomes possible to get rid of the image specularities. 

Our method is to remove all the image components which bear the specularity color. Thus. 

those components whose color coincides with the specularity color will be filtered out com- 

pletely. The image specularities, thereupon, will be removed successfully. However, the 

diffuse and ambient components may also be partially filtered out due to their color decom- 

position yielding some specularity-colored subcomponents. Nevertheless. the residual sub- 

components still preserve the relative intensity changes; and that does provide sufficient 

information for shape computation as far as shape-from-shading is concerned. 

The problem considered in this section is: 
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Given a color image with each pixel specified by its red, green and blue inten- 

sities, and the specularity color denoted by the unit vector ti = [ r g b l T .  
find the image with the specular component removed while the relative inten- 
sity changes are preserved. 

In the dichromatic reflection model. the reflected color is a linear combination of three 

components. 

c = ca + mb cb + mi ci 

By the linearity of color coordinate computation, we can decompose the color terms in the 

equation into two orthogonal components: one is parallel to c i a  and the other is perpendicu- 

lar to it. as shown in Figure 4.2. 

Figure 4.2 : The color terms of the reflected light are decomposed in two orthogo- 
nal components: one is parallel to ci , and the other is perpendicular to it. 
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From the above equation. it can be observed that all the components which are parallel to 

ci can be isolated out. but the factor mb which governs the diffuse intensity variation is 

still captured in the residual components. 

cL = Ca1+mb cb 1 

Figure 4.3 shows that the result of removing the components parallel to ci . Note that the 

relative diffuse intensity is still preserved. 

. - --- 

(a) ( b) 
Figure 4.3 : (a) shows the intensity reflected by  a spherical surface. (b) shows the 
case after the specularities are removed. The thick lines trace the intensity profile 
of the reflected light whereas the thin lines show the profiles of the various com- 
ponents. 

I1 c can be calculated from the given ti . 

1 Thus. c is simply 

By the above equations. c - ( c . ti ) zi yields an image due to the ambient and diffuse 
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components while the image specularities are successfully filtered out. 

In summary, an algorithm for specularity removal has been presented. It  consists of a 

local method for computing the dichromatic planes. The specularity color is then evaluated 

as the common intersection of them. Lastly, the image specularities are removed leaving an 

image consisting of only the diffuse and ambient components. In the next section, a shape- 

from-shading algorithm is presented. It is a method adopted from Horn's and Brooks's 

work [HoBr86], but modified to adapt to the image features of reflectance edges and non- 

zero ambient component. As a result, it is able to handle the images passed down from the 

specularity removal process. 

42. A Shape-from-Shading Algorithm for Scenes with 
Reflectance Edges and Non-zero Ambient Illumination 

4.2. I. The Lrrzrdiance Equation 

Using the method discussed in the previous section. the image specularities can be sub- 

tracted away from the original image. As a result, information about the diffuse component 

is preserved without being obscured by the image specularities. In addition. a Lambertain 

reflection model becomes sufficient to understand the resultant image. 

Under a fixed illumination environment (in our case, a constant ambient illumination plus a 

fixed point source), the resultant image intensity directly relates to the surface orientations. 

As the relationship is assumed to be Lambertain in the .cases of diffuse reflection. the 



coefficient mb of the diffuse component in the above equation can be written as: 

where 

n is the surface normal 

s is the directional vector of the light source 

As intensity corresponds to the magnitude of the color vector, change in the light intensity 

thus does not alter its color. It also means that the relative intensities of the chromatic sig- 

nals do not change with respect to each other. Hence. any intensity change can be captured 

equally well by any one of the chromatic signals. Since it is the intensity variation that 

reflects the surface shape. we can reduce our input from a color image to just one chromatic 

signal. Therefore. we have a simplified irradiance equation with the color terms replaced by 

intensity variables. 

Without loss in expressive power, we include Ib into s to obtain a further simplified irradi- 

ance equation. We also rewrite I as  L and I, as a to avoid confusion in the use of vari- 

ables. Consequently, we have the irradiance equation: 

4.2.2. The Variational Formulation for Known Illumination 

Our specularity removal algorithm yields an image whose intensity is expressible by 

the simple irradiance equation: 
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With the intensity map and the irradiance equation. we want to find the most probable sur- 

face described by n (x .y ). which, under the illumination environment specified by a and s o  

yields the given intensity image. 

In practice, the image data will be corrupted by noise. So, instead of insisting on the 

equality of the measured intensity E (x .y ) and the predicted irradiance L (x .y ), we choose 

to compute n (x  .y ) by minimizing the brightness errors: 

J / ,  ( E G . ~ ) - L ( X , Y )  1 % ~  dy 

Horn and Brooks derived a numerical method in their work [ ~ o ~ r 8 6 ] .  They solved the 

shape-from-shading problem using variational calculus. Their method is employed in our 

algorithm in computing n (x .y ). To start. let us see how the computation of n (x .y ) is for- 

mulated using variational principles. 

m Horn and Brooks compute n (x .y) by minimizing the above brightness errors. l o  

make the problem well-posed. n ( x  .y ) is required to correspond to a smooth surface. The 

integrability property of twice-differentiable surfaces is used to enforce surface smooth- 

ness. In other words. a surface defined by a function z (x .y ) is said to be smooth if 

Zxp = ZyX 

To enforce that, a penalty term based on the departure from perfect integrability is used. It 

is written as ( z,, - z,, 1. However. as the derivatives become unbounded near the occlud- 

ing boundaries. Horn and Brooks modified the penalty expression so that it enables incor- 

poration of the occluding boundary information. The modified expression reads as follows: 

Another constraint that forcis the surface normals to be unit vectors is written as 
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Butting all these together, the extremum of the following functional will give the most 

probable field of surface normals n  ( x  .y 1. 

where , 
A is a scalar weighting the relative importance between the brightness error 

and the integrability penalty. 

p is a Lagrangian multiplier function used to impose the constraint that n  be a 

unit vector. 

The extremum of the functional can be obtained by evaluating the associated Euler equa- 

tion [CoHi53]. 

which is simplied to read [HoBr86]: 

where 

k = ( n x - i ) ( n x ; ) + ( n ; i ) ( n ~ ; )  

r = [ n n , i ] + [ n n , ; ]  

Horn and Brooks [Ho~r86] developed a numerical method to solve the above nonlinear 

partial differential equation. We employ their method to calculate the field of surface nor- 

mals n  ( x  ,y ). However, there are additional problems we have to consider in deriving our 

variational formulation. First of all. besides the surface normals n ( x  ,y ), the illumination 

parameters a and s are unknown quantities as well. Thus. the above formulation has to be 

modified so that evaluation of n  ( x  ,y ) does not rely on a priori evaluation for a and s . 



Secondly, we are dealing with color images. Although our specularity removal algorithm 

removes the image specularities. reflectance edges still remain. Thus, the invariance assump 

tion on surface reflectance no longer holds in our case. This leads to discontinuities in the 

terms a and s in our irradiance equation when stepping across reflectance edges. In the 

above formulation. however, a and s are globally constant terms. 

4.2.3. Incorporating the Unknown Illumination 

As long as the illumination parameters are considered independent of x , y . n . nx , and 

n~ * the above variational formulation is still valid. To evaluate a and s , we minimize the 

brightness errors with respect to them. As a and s are constants. no variational calculus is 

needed. 

Let A be the area of the image space. Then 

For s , we have 
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Now, all the unknowns - a .  s , n ( x  ,y ) - can be evaluated based on each other. As the 

Horn and Brooks method iterates towards the n  ( x  .y ) satisfying the above Euler equation. 

we can include the following iterative formulas for a and s so that at  each iteration. better 

estimates for all of a .  s and n ( x  ,y ) are evaluated. 

-a 

(k +1) ( k  +1)  (k + l ) T  
S 

(rn ( k  +1) ) = I 2 ( n u  nij ) 1 , a . ) n i j  

This method represents a straightforward adaptation of Horn and Brooks's method to 

handle unknown illumination parameters. However, there is an argument against it. The 

relaxation method which calculates the new estimates for a and s requires global scans. 

This is undesirable because we then cannot avoid processing the image data sequentially. 

This impairs the parallelism of the relaxation method. Thus, we prefer a scheme in which 

n . a and s are computed iteratively within a local neighborhood only. 

We still approach the problem as an extremization problem. Like the previous scheme. 

this one also minimizes the brightness errors; it also imposes the integrability penalty and 

the unit normal constraint as before. This time. we treat a and s in a different way. They 

are not considered constants but functions of x  and y .  Their constancy is enforced in 

another way. however. 

We t ry  to find the function values of a ( x  .y ) and b ( x  ,y ) that minimize the bright- 

ness error. Since without imposing any constraints on a ( x  .y ) and b ( x  .y ) the problem 
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would not be well-posed. we introduce the constraint terms enforcing the functions to be 

constant across the image. 

Constraint for a (x  .y 1: 
a, = 0 a,, = 0 

Constraint for s (x  ,y 1: 
S ,  = 0 S,, = 0 

2 2 The penalty terms ( ax + a, ' ) and ( sx + s,, ' ) are used to inhibit departure from 

these constancy requirements. Incorporating these terms into the functional. we minimize 

= IS, (E-L )* + A l l 2  + A2(ax '+a,, + A&, '+s,, 2 ,  + &'-I) dx d y  

The Euler differential equations for this functional are: 

which are simplified to read: 

where 

k = ( n x - I ) ( n x x ^ ) + ( n Y - i ) ( n x ; j  
I' = [ n n , i l + [ n n y ; ]  
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where 

a2 a2 v2 = - +- is the Laplacian operator. 
dx2  ay2 

To enforce the constancy requirements on a and s , we choose to make the scale fac- 

tors X2 and X3 very large so that deviations from the constancy requirements are penalized 

very heavily. In the Euler equations. these large scale factors keep any variations in a and 

s to a very small magnitude. 

4.2.4. The Iterative Scheme 

For the terms v 2 a  and v2s, we approximate the Laplacian operator by 

where 
E is the grid distance. 

Hence. we have the iterative formulas for a and s as follows: 

Adding these iterative formulas to Horn and Brooks's scheme, we have the folIbwing itera- 
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tive scheme. 
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This scheme operates in a neighborhood around a pixel. It iterates locally towards the 

solutions to n . a and s . The scheme represents a relaxation m e t h ~ d  with a high degree of 

parallelism. 

4.2.5. Dealing with the Reflectance Edges 

The above relaxation method should work fine within a region of uniform reflectance. 

However, the method breaks down at the reflectance edges mainly because the constancy 

assumptions on a and s no longer hold at  those places. 

Recall the irradiance equation L = a + n . s , in which a represents the reflected 

intensity due to the ambient reflection, and s is a composite term packed with the direc- 

tional vector, the magnitude of the point source and the surface reflectance. As the surface 

reflectances differ across a reflectance edge, the terms a and s can no longer be assumed con- 

stant. In fact. they undergo a step change across a reflectance edge. Consequently, the con- 

stancy assumptions used in the variational formulation on a and s become invalid at  the 

edges leading to failure of the relaxation method. 

The relaxation method, however, works fine within a single region, and fails only at  

the reflectance boundaries. Thus, we can avoid the problem by running the relaxation 

method on each region separately. That means each region computes its own a .  s and n 
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with the smoothness requirement on n and the constancy requirements on a  and s 

satisfied. At the reflectance edges, information about n and ; are passed in from the neigh- 

boring regions as boundary conditions whereas the propagation of a  and I s I are not. Con- 

sequently. the regions are knitted together by propagating the surface smoothness con- 

straint and the constant point source direction. At the same time, the constancy constraints 

on a and Is I are confined to single regions. 

This leads to modifications to the iterative formulas for a and s . The formulas for n 

are fine because the smoothness constraint holds over the entire surface and across different 

regions. However, for a  and s , we estimate them from the local neighborhood in the fol- 

lowing way. 

For the pixel pij located at the ( i  . j lrh grid position. the local information about a 

and s supplied by the pixel p,, in its neighborhood is propagated as: 

akl if pi, and p,, are in the same region. 

a i l ,  othemise. 

This means that if p,, is located in a different region. then the information about a from 

p,, is simply ignored. Similarly, only the directional aspect of vector s from p,, is adopted 

while the magnitude is discarded. 

In summary, the previous section (section 4.1) has presented the specularity. removal 

algorithm; and we have an shape-from-shading algorithm in this section. which is able to 

handle the images passed down from the specularity removal process. Most of these images 

contain features of reflectance edges and non-zero ambient component. Besides, the 
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information about the source of illumination is not known a priori. In the algorithm. a 

variational formulation which deals with unknown ambient and source terms has been laid 

down. Reilectance edges are handled. From the formulation, a local iterative method has 

been derived. 

The Algorithm 
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Chapter 5 

Implementation Results 

The algorithms that calculate the specularity color of a scene and remove the specular 

component from an image have been implemented. Many practical complications have been 

uncovered and difficulties have been resolved. Since the algorithms have already been 

explained in the previous chapters, we will concentrate mainly on the implementation 

details and the corresponding results in this section. 

5.1. The Imaging System 

First of all. let us look at the set-up of the imaging process. In the experiments, the 

objects imaged were optically inhomogeneous. Two plastic jugs and a leather bag were used 

in one experiment, and a vividly colored ball was used in another. While the plastic jugs 

. represent glossy surfaces reflecting strong highlights, the leather bag shows the effect of a 

comparatively rough surface. In the second experiment. the simple geometry of the beach 

ball provides a good illustration of how well the algorithm performs in recovering the 

Lambertian image of a sphere. 

Implunuuation Results 
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The scene illumination was provided by a tungsten bulb. It was chosen to provide a 

single-color illuminant as required by the dichromatic reflection model. It also agrees with 

the point source assumption required by the shape-from-shading algorithm. The back- 

ground illumination was from ordinary office lighting. It was reasonably uniform from all 

directions and thus fits the model of constant ambient illumination. 

We took the pictures using an SCSOS VSP Labs CCD camera. on which an Apollo MC 

TV lens was mounted. The camera was coupled with an International Imaging Systems (11s) 

Model 75F which supports a video digitizer. In this setting, the scene intensity captured by 

the camera was delivered to the IIS and a digitized image was then obtained. In each experi- 

ment, three pictures were taken using the red (No. 25). green (No. 58) and blue (No. 47B) 

Kodak Wratten gelatin filters. In addition, an infra-red filter was employed. Figure 5.1 

shows the RGB image recorded in Experiment 1. 

Implemontat ion Resulrs 
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- - 
Figure 5.1 : The scene. 

5.2. The Specularity Color 

The program computes the specularity color by first finding the dichromatic planes in 

color space and then intersecting them to obtain the common color vector. Finding the 

dichromatic plane locally was not as easy as expected. There are practical problems to 

tackle. First, the local cluster of color points may not be large enough to determine the 

local plane orientation. Second, even if it is sufficiently scattered. it may not show a planar 

distribution. In the following, we will discuss these practical problems and their solutions. 
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By the dichromatic reflection model, neighboring pixels in an image should sweep out a 

portion of a dichromatic plane in color space. It is demonstrated in Figure 5.2. Thus, given a 

group of neighboring image pixels, it should be possible to calculate the dichromatic plane 

by locally fitting a plane to the cluster of the corresponding color points. 

Figure 5.2 : A patch in the blue region in Figure 5.1 are projected to the color 
space as a set of color points shown in this figure. They sweep out a portion of the 
dichromatic plane. The cluster's locally fitting plane should be consistent with the 
global dichromatic plane to which it belongs. 

To guarantee successful local fitting, it is necessary that the neighborhood of the pixel 

under consideration be large enough. Otherwise, the corresponding cluster of color points 

will not be scattered enough to reveal any information about the dichromatic plane. On the 

other hand. the neighborhood should be kept small so that it will not extend over two 

different color regions. A dynamic windowing method was employed to resolve the 



problem. It starts with a small window around the pixel under consideration and extends 

progressively outwards. Once the windowed pixels yield a large enough cluster, it uses it 

for the subsequent local fitting. The following algorithm has been implemented:- 

(1) for w = 1 to MuxWinddize do (2) through (4): 

(2) if pij is a color edge point. and li-iol < w and I j-jol < w ,  then 

retum(NoSuit4bleWihdow ); 
4 
1 

(3) P I = -  h j , f o r  li-iol < w and l j-jol 6 w ;  
4W2 

- 1 
-f i i f , for  li-iol b w and I j-jol < w ;  p2- q w 2  

(4) if ( p2  - p: ) > CIusterThreshoId then return(w 1: 

(5) retum(NoSuitab1e Window 1. 

The program progressively widens the window from size 3 up to 2~MaxWindowSize 4-1. 

At each window size. the variance of distribution of the corresponding cluster is tested to 

determine if it is large enough (step (3) and (4)). However, if the window extends across a 

color edge. clusters of two different dichromatic planes will be mixed up. So, the program 

stops and returns NoSuitableWindow at that point. as in step (2). Besides. the program can- 

not dilate the window without limit. When the maximum window size is reached, and yet. 

the cluster is still too small. it also stops and returns NoSuitableWindow too, as in step (5). 

After a suitable window has been selected. the program proceeds to calculate the 

dichromatic plane from the windowed pixels. Nevertheless. there is a practical complication 

we have to deal with in this step. In real images, the local fitting plane usually fails to show 

the global dichromatic plane. This is because the cluster is rarely planar enough for a stable 

I m p l m t a r i o n  Results 
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fit to be possible. So even a small error in pixel intensity arising in the imaging process may 

displace the fitting plane to such a great extent that the fitting result will no longer 

represent reliable information about the global dichromatic plane. Figure 5.3 shows a plot 

of the image pixels in the RGB space. Note that the color points are largely clustered in a 

linear pattern. Fitting a plane to a cluster is thus very unstable. 

. 4 .  - . 8 u.. .I> , 

Figure 53 : It is a RGB plot of the image in Figure 5.1. 
1 _ * I  1.. , 

-, 

In our implementation, the difficulty is resolved by augmenting the straightforward 

plane-fitting method with a procedure that computes the local plane indirectly when the 

plane-fitting fails on a non-planer cluster distribution. At first. the program attempts the 

direct approach of fitting a plane to the cluster of the windowed pixels. If the cluster is dis- 

tributed in a good planar pattern. the fitting will yield a stable plane and the error estimate 
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will be small. In that case. the plane fitting is considered successful. Otherwise. it is con- 

sidered unsuccessful because the cluster is not a good planar distribution. However, if it is 

not planar, there is likely to be linear scattering. If the color points do yield a -dichromatic 

plane but the local plane fitting fails only because the local cluster distribution is not planar 

enough, then the linear scattering of the clusters should differ from each other but still lie 

on the same plane. This variation in the linear scattering among local pixel clusters pro- 

vides information about the dichromatic plane. 

Therefore, in the cases where direct plane-fitting fails, the program finds the line that 

best represents the longitudinal direction of the cluster. Then it looks at  the neighboring 

clusters and collects information about their fitting planes and lines. Finally. the local plane 

is calculated as the one that contains all the fitting lines in the neighborhood that is con- 

sistent with the fitting planes there too. Algorithmically, it can be presented as follows: 

At a pixel, select the suitable window size so that the corresponding 

cluster is large enough for local fitting operations. 

Fit a plane to the cluster. If the estimation error is small, the fitting 

result is reliable and thus can be returned as an estimation for the di- 

chromatic plane. 

Otherwise. fit a line to the cluster. Then select a neighborhood so that. 

(a) there is successful plane-fitting. or 

(b) the line-fitting results vary enough to calculate the dichromatic 

plane. 

Within the neighborhood, if there are successful fitting planes. make 

sure that the planes are consistent with the fitting lines. If they are. re- 

turn the fitting planes as the estimation for the local dichromatic plane. 

Otherwise. compute the plane containing all the local fitting lines and 

return it as the result of local dichromatic plane estimation. 

Impiomurtat ion Results 
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The algorithm has been implement&. with the &xel distribition as described in Fig- 

ure 5.3, the planefitting was found to be very unstable. So. instead of fitting planes. the 

Implementation Results 
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Figure 5.+\ b) 

Figure 5.4 : Orientation of the fitting lines to the local clusters. They are plotted 



on the (a) RG , (b) RB and (c) GB planes. All three planes are at a unit distance 
from the RGB origin. , . [%?. . 

I' 
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In the figure. we can see thai although each cluster yields only a fitting line. they vary 

enough from each other to indicate the global dichromatic plane. The result of the local 



Figure 5JW 

Figure 5 5  : Normals ta the local fitting planes. They are calculated as the plane 

Impluncncation ResuIts 



which contains all the local fitting lines in the neighborhood. The plane normals are 
plotted on the (a) RG , (b) RB . and (c) GB planes. 

As explained in Section 4.1.1, the specularity color lies on the line of intersection of 

the dichromatic planes. With the results of the local plane-fitting, we can calculate the 

specularity color as the perpendicular to all the local plane normals. In our example. the 

specularity color was found to lie on the vector: [ 0.65 0.58 0.48 lr . 

5.3. Removal of Specularities 

The specular component can be removed from an image by projecting the pixel colors 

onto the plane orthogonal to the specularity color. The algorithm has been explained in Sec- 

tion 4.1.2. The result of the implementation is quite satisfactory. The following figure 

shows the result of projecting the pixel colors. Note that the parallelogram patterns of the 

pixel distribution in Figure 5.3 have been reduced to a set of lines in Figure 5.6. This 

signifies that the component of specularity color has been removed from the image. 

Implemenrcuiwc Results 



Figure 5.6 : The result of projecting the pixel colors onto the plane orthogonal to 
the specularity color, . , .  . 
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Figure 5.7G) shows the intensity map of the image'iv'lth specul'ar%ies removed. We 

can see that the highlights have been filtered away successfully. Within a single-color 

region, the intensity variation is attributed to the body reflection only. Note that the resul- 

tant image shows typical Lambertian shading indicating that the specularities have been 

successfully remqvd. 

Implementat ion Ruults 



Figure 5.7Ib) 

Figure 5.7 : (a) is the.intensity map of the image in Figure 5.1 with the specular 

Implementation Rcrulfs 
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component removed. (b) is the original intensity map. 

We have also run another set of experiments on an image of a beach ball. The results 

are shown in Figure 5.8 through Figure 5.14. Note that the pixel distribution in the RGB 

space looks much nicer in this experiment. We relate this to the good variety of surface 

orientations on the spherical beach ball. Figure 5.14(a) displays the image obtained after 

the effects of the image specularities have been discounted. The success of specularity remo- 

val is illustrated in Figure 5.13 as the parallelogram patterns of the color clusters have been 

reduced to a set of lines. Compare the the way the image intensity varies in Figure 5.14(a) 

and (b). the sharp peak in Figure 5.14(b) no longer appears in Figure (a). Instead. Figure (a) 

shows a typical Lambertian shading when the surface turns away gradually from the 

source. 

Implentenrcuion Results 
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. . Figure 5.8 : The scene. 
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Figure 5.9 : A patch in the red region in Figure 5.8 are projected to the color space 
as a set of color points shown in this figure. They sweep out a portion of the di- 
chromatic plane. The cluster's locally fitting plane should be consistent with the 
global dichromatic plane to which it belongs. 
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Figure 5.1 1(c) 

Figure 5.11 : It shows the orientation of the fitting lines to the local clusters. 
They are plotted on the (a) RG . (b) RB and (c) GB planes. All three planes are at 
a unit distance from the RGB origin. , 

' .,- 

Implementat ion Results 





Figure 5.12 : It shows the local planes. They are calculated as the plane which 
contains all the local fitting lines in the neighborhood. The plane normals are plot- 
ted on the (a) RG , (b) RB , and (c) GB planes. 





Sp&ity Removd for Shapcfnwn-Shading 

Figure 5.14(a) 

Figure 5.14(b) 1 
Figure 5.14 : (a) is the intensity map of the image in Figure 5.8 with the specular 
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component removed. (b) is the original intensity map. 



Chapter 6 

Concluding Remarks 

This chapter summaries what we have achieved. Then it reviews our work in relation 

to some recent results. Following that. we discuss a possible extension of our results in 

specularity color computation to the problem of highlight detection. 

6.1. Research Summary 

Based on the Dichromatic Model, light reflected from a surface is projected into color 

space on a dichromatic plane. We are able to observe the fact that dichromatic planes inter- 

sect along a line parallel to the axis of the specularity color. A local method for computing 

the specularity color has been developed. It avoids the global dichromatic plane calculation. 

which would otherwise involves difficult image segmentation problems. It is possible to 

remove the image specularities from the original image after the specularity color has been 

determined. A projection of the pixel color into a plane orthogonal to the axis of the specu- 

larity color readily eliminates all the image specularities. 

Condud ing Remarks 
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For the part of shape-from-shading computation. we are able to solve the shape- 

from-shading problem with unknown source and non-zero ambient illumination. Without 

assuming a priori knowledge about source location and intensity, but recognizing the 

regional constancy of body reflectance and ambient component, we handle the problem in a 

more general setting, compared to the existing algorithms. As we are able to formulate the 

problem based on local computations. a local relaxation method which enables a parallel 

network implementation is thus possible. 

6.2. Discussion 

During the course of my thesis. other researchers have been simultaneously working 

on related problems and have recently published interesting results. We have observed the 

fact that dichromatic planes intersect along the axis of illuminant; the papers [KSK87] and 

[DZLe86] also make use of this observation. We are able to compute the specularity color 

using local methods so that the need for global segmentation is avoided. Lee [Lee861 also 

proposes an algorithm for computing the illuminant chromaticity using information from 

different color regions but requiring no image segmentation. however, his algorithm does 

not work for the case of ambient illumination. 

In spite of the coincidence. we still believe that we have achieved good results in 

specularity color computation. We argue this in three respects: 

Condudin g Remarks 



(1) the generality of our method. 

(2) the global method which involves image segmentation is replaced with local 

computation. 

(3) the ability of our method to handle the ambient illumination. 

We also relate our work to recent results on image specularities so as to position our work 

in the general trend of progress in computer vision on specularity computation. 

6.2.1. The Generality of our Method 

Our method is general because f i )  the reflection model on which the method is based is 

general. and ( i i )  it is not subjected to the glossiness and the shape of the reflecting surface as 

, for example, Shafer's algorithm is [Shaf84beKSK87]. 

As explained in Section 1.3.1. the Dichromatic Reflection Model which we use to 

understand the relationship between the various reflection components is applicable to a 

wide class of surfaces, namely the optically inhomogeneous dielectric materials. Most of the 

partially specular reflectors. including plastics, paints, varnishes and ceramics. .are classified 

into this category. As a matter of fact. these kinds of materials occur so often in our daily 

life that the generality of the model is well recognized and used to interpret the components 

in color images. For example. D'Zmura and Lennie in [ ~ ~ ~ e 8 6 ]  depicted the reflection 

response.of a surface in a linear model of the diffuse and specular components. Gershon's 

algorithm [GJT87] detects the color shift phenomenon predicted by the model at  the 

highlight regions. The work in [Lee861 and [KSK87] on specular highlight color computation 

is developed based on the physical model of inhomogeneous dielectric materials. 

Condud in g Remarks 



Shafer proposed an algorithm in [~haf84b] for separating the specular and diffuse 

components. In the work due to Klinker, Shafer and Kanade [KSKS~], the algorithm was 

implemented leading to a successful extraction of the interface and body reflection intrinsic 

images. However. the method is restrictive (see the comments in Section 3.3.3). Shafer 

[Shaf84b] comments on the algorithm that the distribution of pixels within the color space 

parallelogram must not be pathological. By that he meant the pixels should be lying close to 

the ci and cb axes of the parallelogram so that the axes can be calculated accurately. In 

[KSK87], Klinker, Shafer and Kanade considered the color cluster of the matte and 

highlight pixels look like a skewed T or comb. The matte and highlight lines are calculated 

as the two straight edges of the skewed T. Figure 6.1 shows the typical cluster shape. 

Figure 6.1 : The shape of the color cluster for a cylindrical object. (Figure 2 
[KSKS~]) 

We count an argument against the generality of the T-cluster assumption. The 

Dichromatic Model is general not only because it is applicable to a wide class of reflecting 

surfaces, but also due to its making no assumption about the surface shape. Naturally,. we 

Conclud in fi  Rrniarks 
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will expect the algorithms developed basing on the model also inherit the generality. Con- 

sider the T-cluster assumption, the two edges of the T-cluster partitions the pixels into 

purely matte and purely specular classes. This corresponds to surfaces reflecting purely 

matte and purely specular light. Therefore, the assumption of skewed-T shape on color 

clusters inevitably restricts the reflecting surfaces to the class of highly glossy reflectors. In 

addition, the two edges of the skewed-T must be extending significantly so that the matte 

and highlight lines can be fitted successfully. This again leads to the requirement for 

sufficient surface orientations so that the reflected color changes enough to sweep out a dis- 

tinguishable T in the color space. 

Nevertheless, in practice, many surfaces are rough enough to give a broad highlight 

area. As those highlights are neither sharp nor well-defined. the pixel distribution would be 

pathological. i.e. the T-cluster assumption is invalid. Besides, very often only part of the 

surface is imaged. As the whole pixei distribution may not be available in the image. it is 

likely to run into a pathological data sample again. As a result. these pathological cases lead 

to failure of the algorithm. 

In this respect. our algorithm is relatively more general. We calculate only the 

dichromatic plane orientation from a color cluster. The specularity color is then obtained by 

intersecting the local planes. This means that the planarity of the color clusters is sufficient 

for computing the specularity color. There is no need for extra assumptions about the pixel 

distribution. As a result. our algorithm is generally applicable to those surfaces described in 

the Dichromatic Model. 

6.2.2. No Image Segmentation is Needed 



Shafer's algorithm [Shaf84b] assumes the image is segmented a priori into regions of 

uniform body reflectance. In the implementation of the algorithm [ K S K ~ ~ ] ,  the problem of 

prior segmentation still remains unsolved. The program projects the pixels of a selected 

image area into the color space and a dichromatic plane is fitted. It then searches within each 

dichromatic plane for the matte and highlight lines. The crucial step which selects an image 

region of uniform body reflectance is not done by the program. but done by an image seg- 

mentation process performed a priori. However. how the segmentation is done has still not 

been answered. 

D'Zmura and Lennie published their work on mechanisms of color constancy in 

[DZLe86]. In an attempt to discount the effect of illuminant from the cone signals of a color 

image. they thought of finding the illuminant using highlights. They observed that surfaces 

in a scene exhibit different variations in specular and diffuse components. and their response 

planes intersect along the axis of the illuminant. This could have been the method they used 

to find the illuminant in order to discount the effect of illuminant so as to achieve color 

constancy. However, the idea was abandoned as they were held back by the need of image 

segmentation for determining the loci of responses that correspond to different object. They 

tended to believe that image segmentation in color vision plays an important role in obj& 

discrimination and identification rather than finding the unknown illuminant. 

Our algorithm. as described in Section 4.1.1, exploits local information only. it does 

not require global image segmentation. Without. bothering with segmenting the image into 

regions each of which yields a single dichromatic plane. we calculate the dichromatic planes 

by letting them be voted by the local planes. In comparison. our method, unlike Shafer's 

algorithm, is not subjected to the impact of the difficult segmentation problem. Further- 

more, we might be able to alleviate D'Zumera's and Lennie's doubt about using segmenta- 
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tion in finding unknown illuminant from specular highlights. 

6.2.3. The Ability to Handle Ambient Image Component 

As mentioned earlier, Lee was able to propose an algorithm [~ee86] for computing the 

illuminant color without running into the segmentation problem. However, we argue that 

our algorithm is more general because we handle ambient image component as well. 

Lee's method is also based on the linear reflection model of inhomogeneous materials. 

As the reflected light is a linear mixture of the specular and diffuse components, in the 

ClE(x,y) chromaticity diagram. the locus of the reflected light from a surface is a straight 

line connecting the illuminant color point and the surface color point. When several sur- 

faces are imaged, the foci form a radial pattern centered at the illuminant coior point. Fig- 

ure 2 Figure 6.2 shows the CIE(xy1 diagram of five differently colored surfaces. 
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Figure 6.2 : CIE 1931 xIy chromaticity diagram showing the ideal loci of chroma- 
ticities corresponding to colors from five surfaces of different colors. (Figure 3 
[~ee86]) 

The loci in the GIB[xj! diagram are traced out at the locality of the edge points where 

the color change is maximum. Since the process is carried out locally near the edge points. 

no global segementation is required. In this respect. Lee's algorithm shares with our method 

the credit of requiring no image segmentation. His method. however. fails to handle the 

ambient image component. 

When a surface is imaged under non-zero ambient illumination, the reflected light is 

added with a constant ambient component. This results in a translational effect on the locus 

of the color point in the CIE(x,y) map. Because different surfaces have different spectral 

reflectances, they reflect the ambient light in different chromaticities. As a result. their loci 

in the CIEfx,y) map are translated both to different extents and in different directions. The 

overall radial pattern of the loci. consequently. is no longer preserved and the radial center 

can no longer meaningfully be used as the illuminant color point. 
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The major problem of Lee's method is due to the data compression from the tri- 

chromatic color data info the two-dimensional CIE space. The data compression reduces the 

degree of freedom of the data set from three to two. thus causing loss in information. Our 

method. on the other hand, uses the three-dimensional color space and does not suffer from 

the same problem. It is successful in coping with ambient image component (see Section 

4.1). 

6.3. Related Problem - Highlight Detection 

In this section. we consider the use of specularity color computation in another related 

problem. As discussed in section 3.2, the results of highlight detection [~e1186,GJT87] are 

not used in this thesis to compute the specularity component. On the contrary. our results 

in specularity color computation may be used for detecting highlights. 

[Pel1861 describes a method for detecting highlights as the simultaneous intensity 

peaks in all the R , G . and B chromatic signals. We argue that the simultaneous peaks cri- 

terion is not an exclusive phenomenon of the presence of highlights. For example. a bright 

white surface marking may reflect more energy in all the chromatic bands and thus will be 

mistaken for a highlight. However, if we base highlight detection on the physics of 

reflection. we will have a better understanding of the specular reflection component and 

thus be able to detect the highlights more accurately. 

Gershon's work [ G J T ~ ~ ]  is based on the dichromatic model of color reflection and thus 

represents a more accurate method. In the following, we will review Gershon's algorithm 

and show the possibility of a simpler method when our results in specularity color 
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computation are applied. 

Gershon noticed that in moving from a diffuse region to a highlight area, the specular- 

ity color is added to the diffuse color of the surface, resulting in a transition from the 

diffuse color spectrum to a mixture of the diffuse and specularity spectra. Gershon made 

use of such a color shift to identify the specular highlights in color images. The color shift 

appears as a "og-leg" structure in the C-space [Gets871 with one of the dog-leg points 

towards the end of the line segment which represents the C -values of perfect reflectors (see 

Figure 6.3). 

Figure 6 3  : A 3-d scatter plot of a "dog-leg". The dashed line represents the C- 
values of perfect reflectors. (Figure 2 [GJT~~]) 

As Gershon's method relies on finding the color shift that corresponds to the transition 

from diffuse to highlight regions. he proposed segmentation as the first step so as to compile 

the image into uniformly colored regions. Since the "dog-leg pattern occurs a t  the diffuse- 

highlight transition areas, the second step then checks between every pair of adjacent 
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regions for a "dog-leg" relationship. 

In fact, we can have a simpler method to solve the problem. First of all. Gershon's 

algorithm requires a split-and-merge segementation. Usually, it requires a follow-up 

adjustment procedure which re-absorbs the spurious small regions resulting from the 

split-and-merge technique. Since we already have a specularity color algorithm which does 

not require image segmentation. we prefer to make use of the specularity color to detect 

highlights. We can employ our algorithm and avoid doing the tedious segmentation process. 

The purpose of the second part of Gershon's algorithm is to correctly detect the color 

changes due to specular highlights. As detection of the "dog-leg" pattern involves rather ela- 

borate steps. we would like to replace it with another method as long as the new method 

also correctly detects the color shift. In fact. we observe that color changes can actually be 

identified by the shape of the cluster in color space. Therefore, we can look at a color clus- 

ter to determine whether it is a color shift due to specular highlights or not. If the cluster 

shows a linear structure biased towards the specularity color direction. we can conclude 

that the color is changing due to increasing specular component. That means it is moving 

into the highlight region. 

Thus. we are able to propose a relatively simple algorithm for highlight detection: We 

use the specularity color computed by the algorithm explained in Section 4.1.1: then lines 

are fitted to the local clusters: those clusters with their fitting lines running along the axis 

of specularity color are considered as highlight areas. Although the algorithm looks feasible. 

it only represents an intuition of using specularity color in highlight detection. Further 

investigation on its validity and performance is necessary. 
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