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Abstract 

\ , 
Natural language analysis is the p x & s  of extracting the infomation carrig by the various 

COIlStNctf of €he language. This information can be used for various p~rposes, and depending on a 
i 

pmicular purpose, c+ be appropriately npmmled by a specific formalism. 

Analysis systems can be divided inlo many spscialized tasks. This thesis is concerned with one of 

these tasks for natural language understanding. A semantic interpreter based upon a linguistic 

theory (Lexical Funct iod  G r ~ v n a r )  is developed, wHch produces Conceptual Graph 

represcntati0n.s. Conceptual Graphs have been swxs$fully used for other language processing 

tasks. Since there exist systems LO generate language from this formalism [S, 4,231, our interpreter 
r 

could conaibute to a machine vanslation system. Thtougbout this work, emphasis has been given 

&guistic adequacy and implementation methodology rather than extensive language coverage: , 
'* 

we have developed a methodology suitable to tbe tyo formalisms used. More possibilities offered 
d 

by these formalism3 could be add@'@ thig me&dology to augment language coverage. 

4' 
A r e p y o n  for direded graphs in Logic programming is also introduced. Its advanvge lies in 

7 

the possibility of verifying node accessibility .very efficiently. The scope of the ideas presented for 

this representation goes beyond the particular application wittiin which we exemplify it. For 

inawe,  the techniques developed for this verification operation can be used in any artificial . 

inrefligence application that represents knowledge through graphs. 
P 

Tl-tis representation scheme contributes to the efficient implementation of an important semantic 

verification in our system. In a different framework, this representation sckme has been used to 

of c~llstraul * ts ex- in terms of node dominkon in a syntactic 

s m m .  
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Chapter 1 

Introduction I 

- 
Nrural lan'guage analysis is the pmcess of ei&ting the information canied by the various 

constructs of the langu&e. Many applications for this phpss  ehst; but one of the most impltvlt 
' 

is that of enhencig communications &tween humans and computers. 
b .  
9 

There is no d o u W  a sy& that'fan "understard" what the requirements of its users are in a 

language more natural for &em is a g&&worth pu-g. Another challenging applicatiod for . , 
natural language analysis is h automatic machine translation. The objective here is to produce an 

appropriate representation for the meaning of a se&ence that is suitable for use by a language . 
e 

genemar which would produce a sentence expressing the same infomtation in a different language. 

Many approaches for this task exist, some of which use mok than one semantic representation in 
I 
1 

order to facilitate both language pcessing tasks. 
- 

This projen is eoncemed with-this latterapplication. We are inte* in producing ins;ancek of , ,- 

I a semantic representation scheme ailed Conceptual G1aph.v [31]. 7lis project was m h y  
1 motivated by a previous project involving several Rwarchers, including the author, which yiel/kd I 

a prototype for ,automatic language generation in which Ctxyeptual Graphs were used as fhe I 

I 
semantic representation guiding the generation process. [4,23,6,5] We have developed, a 

framework to pruduce instances of -this meaning repwntation that is based on a partic* 

linguistic thcory: ~exical Functional Grammar [ZZ]. To our knowledge, this is the fht attempt to 
* \ 

uni@tkse two c ~ t u n ~ r a <  wes. The ideas presented here have been implemented 

Prolog. I 

There is no doubt that a good lingaistic framework is essential to any system such as ours. Due tq 

intentions of its designers, tfris W r y  appears 6 be very suitable for work in natural language 
I 

proctssing, and in particular language anal d s 



- -- - - - -- 

In order to ma& our objective tractable, we cona?ntrated on the generation of Conceptual .Graphs 

f h m  an intermediate represenmion whichiies knueen s&taaand manti&. -This &nudon 

is an imponant part of the linguistic theory used and coptitutes a very g d  representabon from I 

antic representation can be derived. ThiIhis intermediate representation, callMfunctioncll 

not difficult to produce for a givefi sentewe and implementations to generate it from 

various languages have successceSS1lly been developed. "I'herefore, we assume chat any of thcsc . '  
~plementationscould be cqmbined to this work in order to produce a complete natural language 

/ 
analysis system. \s 

Throughout this work, emphasis has been attributed to linguistic adequacy and implementation 

metk&logy, rather than extensive language coverage. We were mainly interested in developing a 
7 

R-amework suitable to both formalisms used, on which extensions could be done modularly should 

broader c o o & .  Nevertheless, the system we constructed is capable of handling an 

interesting subset of En- The set of target constructions originates hanos collection of 
E 

operating system error messages, which was used by the a b l e  mentioned language genemr. 
) .  

P 

. . 
Aside from the main g%al, an interesting result of this work is a new,graph representation scheme . 

in Logic Programming. We have devised a way of representing directed acyclic graphs that , 
provides economical comparisons between - nodes for a~cessibilit~~ We show how this 

- --- 

representation is useful to implement tk type hierarchy of Conceptual Graphs, which is an 

important component of the system. This result originates in joint work with V, Dahl. The 

author's work stresses its appli&on to the Conceptual Graph formalism 1251, whereas V. Dahl has 

concentrated. on applying it to represent and process syntactic structum on which the enforcement 

of constraints expressed in tern of node dominations.has to be implemented [I 1.15,12,13]. . - 
Such cgnstraints are very importar% in another linguistic framework (Government and Binding 171) <. . , 4 

and we elaborak on this application briefly in the last chapter. . , 
=I - 

I li I 

The second chapter of this thesis will introduce tk preliminaj infonpaiion relevant to the system 

developed. We begin this cfiapter by cleariy stating tbe problem eiramin'ed. An o u t h  of the 

aforementioned generation system. An important motivation for the presentkystem is automatic 



- cJ 

machino.tmslaiion and we present the particular translation paradigm assumsThis  paradigm is 
B * 

w- 
shared by both &he present system and &he existing language generation one, and ttKrefore 

establishes a link between the two. Next, we describe each of the two formalisms used by the 

system.' Thc iinguistic framework underlying our system is in&uced fim From this linguistic 

framework originates the initial formalism of this work. Before describing this initial formalism, 

we detail how it is obtained, as well as  its p o s i t i o d d e  the overall linguistic 
L 

4 
properties of the initial formalism are then presenred. We also introduced so 

will be useful in the discussion of tfme subsequent chapters. Then we present actual representations . 
af the formalism for various constructs of the speech Most of .these representations are exactly as 

7 diaated by the theory, hbul we included a few changes k better suit our needs. h doing these 

changes, we tried to stay in the philosophy of the theo The last part of Chapter 2 is devoted to 9- 
the presentation of the Conceptual Graph formalism, where me major aspects relevan? to our 

system ane briefly detailed. For each formalism, we also present some arguments to support their 

adoption in the system. Also, related computational work to each one is surveyed. ' \  

T k  next chapter will introduce the graph representation scheme. The set of structures i; hand@ 
' /  

is formally identified. -We specify the type of operations on thosemctures which we wish'to 
P 

perform efficiently. . After having presented - - the - scheme and a preprocessor to generate it . - 

- 

autornaticaily, we give an analysis of both the efficiency of the implementation of the operalion of 

intenst and the memory requirements needed. Thk: efficiency gains are by and large due to the use 

of difference lists, on which many important operations can be reduced to unification TWO o d r  - 
approaches with ,similar goals are surveyed and some comparisons are drawn. 

& 

Chapter 4 will introduce the two major components of'the system: the lexicon and' the type 

hierarchy. We de&berihow the dormation needed by both formalisns can be combined and kept, 
\ 

fn a single unit. This contributes greatly to a simpler implementation of a system that uses both 

formalisms. The lexicon consultarion mechanism contains interesting asqxxts from an 



Chapter 5 is concerned wittftk algorithns and the variok operations relevant to the production 

of mmp?ml graphs h m  functionaI structures. A single unit is respbnsibk for handling all the 
/ 

parts of the input formalism @ this dontributes to the modularity of tke approach., Thc most - 
important parts are isolated and, for each om, the actual operations necessary to the corm1 

processing jxe outlined. 

The last chapter summarizes the work &at has been done and points out directions for funher 

research Art interesting approach to the problem of representing temporal information is 

mentioned, This approach is compatible with the theoretical basis of this work and could easily tc 

Incorporated in our yystem to provide a broader and more theoretical coverage of tcmpord 

adjuncts. The application of the graph representation scheme of chap% lo the enforcement of 

linguistic constraints expressed in terms of node domination is also included. 

7, 
Two appendices are included to cover some details relevant to the implementation. The first 

e x  begins with the description the Prolog representations used for both formalisms before 
e 

W g  the more imponant parts of the transformation program. The second appcndix shows some 

sample nms of our implementation, illustrating some of the constructions hand1 



Preliminaries 

- 
This chapter first describes explicitly the problem sr\ldied in this thesis. This description is 

followed by h iritroduction of the formalisms involved in the system, which is naturalIy divided 

into two parts. The fim pan is cokrned with the linguistic theory where the initial formalism 

originates. T& second part invoduces the knowledge representation scheme generated by the 

system. h addition to a h r i p t i o n ,  each section includes some justification for the choke of the 

corresponding formalism, as well as a survey of related work. 

2.1. The Pr blem p' 
The main aim of this -is is to develop asemantic interpreter to produce conceptual.graphs 

from func'tional structures. This interpreter takes as &t a sentence represented in an intermediate 

formaiism between syntax and semantic and produces a representation in the conceptual graph 

I 

The identification of the subset of -ge covered was inspired from a collection of 

operating system error messages used in a previous project, in which we were involved [4,23$ In 
-=--- 

addition to kgular subjea-verhbjea s e w  c m n t  system handles: 
(e.g., very large, not very preffy), 

d 
r modal and auxiliary ~ u n s ,  includmg passives (e.g., A man is drinking wine.) 

arbitrarily embedded relative clauses (e.g., 7hc swaknts read a book that won a prize 
which &serves mention) 

some m p k x  noun phrases Wxtaining prepositional phrases (e-g, tk construction of 
h3mc by the workers) 

' F f r r w ~ t t n : ~ m ~ ~ & , p a m c n t a r a ~ ~ n i m h s t s ~ f o ~ t t s s e d m ~ g e r w a t i t y  
L 

of the pmcess so that the tecfiniqves used could easily be extended to accommodate a larger subset 

of the language. 



* 

l k  framework af the previous pmjeu was machine translation. The t r ans la  pamdigm that 

was assumed can be visuatited by the diagram of figure 2-1. ( 

2-1: Machine vanslation paradigm assumed. 

Aawding to tftis appro& the irandation is divided into two irxtqmdtnt corn-, 

anatysd and generution, plus some overhead considerations to ensure compaubiity bclwccn thc 

two. The plrpose of that project was to investigate the possibilily of autmatically generating 

: ' 

L 

(English) seruences describing typical operaring system error messages. Tht generation of a 

- m-in 
W f - f - f e ~ g c -  

particular sentence was guided by e n c d n g  of its "meiining" in Lhe Cmcprual Graph.5 

4 

gcnaatim 

I 

sunantic 
WJ==~W 

analysis 

formalism. Material related to this project can k found in 14.23.6, 12. 15.5). Hen&, thc 

s m ~ c  in a - diffmnt Lnnguagc 

prototype developed in that project implemented rhe second componeni of the p m s s  shown in 
+ - -  

figure 2-1. 

The present work adops the translation paradigm depicted above1 and makrialitm a step in thc 

Mher componem. However, lhis work dm m constitute a complete analyrwr as the staning bin1 
\ 

is an absmct representation over sentnutr. We chose to overlook the production of this abstract 1 
9 

r e w o n ,  since there exists alrexiy a number of implemeruations producing such a 

representation (see section 2.2.4). , 

2.2. Initial Formalism w 
In our description of &he pmbkrn, we mentioned the intepcdiatc nature of thc initial formalism. 

C B . (  

In this section, we describe rhis formalism in some &tail; but first we i n t d u c e  the W r y  in which 
l 



A solid lirtguistic backgnwnd is, for obvious reasons, an L essentiaI requirement for any 

c o m p u t a W  linguistic aQpficatia Linguistics is still an evolving discipline; there is no 

u n a n i W f y  reoopbxl thewy that capprres th phenomena of language soundly and completely. 

, Altfiough all linguistic theories aim at a similar goaf (that of providing an adequate m d e l  for 

language) h y  diverge -dcnb?y in heir Rspcrive approach, as each or& is supponcd by a 

different set of assumptions. - 
Such &stinaim among W r i e s  can occur at various levels. For instance, at the synladc level, 

a distinction can beathe use or of transformational rules. In evaluating linguistic t)mries for 
\ 

computational uses, another important point b examine is the inclusion or not of semantic 

these and other similar arpects of W r i e s  can imply i m p o m t  comqmces in a compmional 

linguistic'application. Considerations of this nature played an i m p o m  role in selecting the 

linguistic W s  of this work. 

23.2. Lexical Functional Grammar 

The linguistic formalism W we chose is called Laical Functional Grammar (LFG) developed 

by Kaptan and Bresnan f22f. it hs iB mts in previous results in transformational grammar as 

well as in considerations h cpnpttter science wd psychfogy. This grammar formalism 

requires only simple phrase strucnue rules, by ?ransferring a su-A amount of syntactic 

infomation into the lexicon and by using multiple levels of representation. 

Tht main amaction of this formalism is its rnmblar approach to grammar. Tbe different 

intcmdiate levels are chained withorn any seznanzic ccmsiderations, which makes it very suitable 



I Transformation rules are qmrauic: rules that do not introduce any new items in a syntactic 

I representation but, inste;d, remange &ready g e ~ ~ r a t e d  items. They takc a mon abstract 

I repesentation of a semxe (bzp-suucture) and produce one or many corresponding surface- 

strucDm(s), which accrwnt<s) for the particular word ordering of a given sentence. During 

analysis, su'ch transformarions must be reversed in order to &eve the dsrspstntcture of the 

sentence. Such rules are W b l e .  within their own grammatical mvir6nmcnt. for constructions' 

such as passives, whquestions, and other complex constructions. 

l From a m p n k i o n a l  p i n t  of view, a grammar cuntaining transformation rules providcs some 

desirable asjxmj, as w h e l p  to keep the number of rules to a minimum by having rules that can 

apply to a collection of wmcts ,  rather than ving an individual production for each one. This "4 
reduction of the size of tbe grammar is by sacrificing same efficiency: k 

applicarion of transformations is guided implementations have traditionally 
, 

been of Uited efficiency. However, some gain in thc efficiency of 

such consu-aird implementarias f4, 1 1, 121. 

The most m p l e t e  application in the i3forementioned references mainly focuses on language 

generation, as oppt>sed to analysis. However, the solutions they propose could k applied la 

analysis, but in using transfonnafions in this laner pnxess, an a d d i t i d  prohiem ar$a. In 

gmral, before a transformation can be done or d o n e ,  the item to be moved along with k s  

synuctic repmamioa  which are natural d m i m b n s  for movement, helps greatly to simplify thc - 
various possibilities. No such help is directly available during analysis. Thercfore a grammar that 

* 
d@ nor include t r a n s f o m a h ~ ~  wr lead to a more effrciem irnplementaticm of anaIysis. 

LFGs 'avoid the complexity of the sjmzctic compmcnt usually encountered in non- 

mfonnational approaches by r e p d n g  a gubmntial amount of syntactic information in the 

lexicon, However, for our purposes, this trade-off betwm synractic simplicity Bnd lexicon 



LPG is  pob~bly the c m ~ y  'txmeznporary linguistic t iwry ~ u t  uses rrsditional grammatical 

rcMq (such as sub* objea, m.) as primitives. The validity of-a sentence, according to this 

grammar, depends mainly m specifications stated in terms of these relations. In this theory, every 

scrrtcnce is assigned two pre-smamic representations: constincent Stnrctrue (c-structure) and 

fwlctbnal structure (f-strucarre). The first representation is basically a parse tree, that is a 

hierarchical structure indicating the various ambinations of words i&o phrases inside a qntence. 
- 

This stntdure is obtain4 by rxrmext-free-like rules (i.e., rules that have only one symbol on their 

left hand side) to which is associated some additional infoxmation, calledfunctional annotorions, 

used m cmmuct the second represerrration. These functional annotations are dependent upon the 

the properties of the head of each category. Hence there is no one to one correspondence between 

the constituent and functional structures of a sentence. Figure 2-2 shows the c-structure'of the 

The cat drank the milk 

obraiml using the nrles shown in figure 2-3. - -A- 

Figure 2-2: Exam& of a constituent structure. 



Figure 23: Sample LIG rules. 

of the current &e. So for inrtanoe, the annotation under the NP node in the S-rule specifies that the 

f-structure of that node corresponds to the subject part of the f-structure of the senterEe. Similarly, 

tfie annotation of the VP node (? = 3-1 of the same rule specifies that the information about that 

node is dixectly included in its mother's f-structure. It is assumed that the annotation t = 4- is 
associated with each pre-terminal node. ,- r q  

The information actually carried by these variabIes is obtained from-jhe lexicon. To every lcxical 

entry is associated some specific functional information. For instance, the followings could bc 

possible entries for our sample smence: 

cat N CfFRED)='cats 
- mi& N OED) = 'milk' 

drank V (~PRED) = 'drink<(? SUBJX? OBJ)>' 
(?TENSE) = past 

'Ihe "c(?suBI)(?oBI)>" part in the he& enfry is & subcategorimion nrvictim r&ified by 

that verb. Section 2.2.3.1 will present actml format of f-structures for various consuucts. 

In this lexicaI approach to grammar, it is assumed that there is a different lexical entry for each 

use or form of a word. For instance, verb that passivize will have a separate lexical entry for both 

tlxir active and passive use. It is this strategy that is responsible for keeping the syntax mlcs 

needed to describe the language very simple, as most of the burden usually carried out by 

sophislicated rules in other frameworks is accumplished in this theory by an extended lexicon. 



v 
U* ~ LFG f o e .  t a s ~  of imalysis na~lnl ly  sqa;ates imo indepadent components. 

Fim, a c--re is derived for the senterrce using the awotated contea-free rules. Then, aIl the _ 
W o n a l  specifications are gafkred to derive the f-structure. This collection of functionat 

- annotations, called the functional description of a senlence, can be considered as forming a set of 

equations expressing some property of the se&ke.  The solution to this set of equations is the 

f-structure of the sentence. Mdtipk solutions lead to syntactic ambiguity. Functional descriptions 
- 

ntatemEnur can be used to either di-y generate an f-struckre or to apply some cOIlStraints on , 

existing structures, ensuring that they correspond to pmperties allowed by the grammar. An 

algorithm to solve these equations is given in [22]. The f-structures so produced then serve as input 

to the semantic interpreter. t 
- 

C 

223. Functional Structures 
\ 

We saw briefly how a fkzional stnrcnue is derived from a sentence. Tbese svucntre are the 
3 4 
starting point of the work presented here. We now look in some details at the general format of 

these sm~ctures before examining representations for various constructs of the speech. 

233.1. General Format of Fundional Structures 

An f-structure is a collection of attribute-value pairs expressing grammatical relations and other 

infamation relevant to the semantic interpreter. Its general format is shown by figure 2-4. 

Attribute Value 
Attribute2 Value* 

Amibuten Value, 



Of a qmactic featw (e.g, tease, agmment, etc.p or other sptactip information such as modifier. 
/ a 

adjunct, relative. ?bere are four typs of values: symbols, semantic pndicPs. I-smctum Md sets. 

Some of them take arment(s), referring to other pans in the smcture. The concept hen is 

similar to that of a logical predicafe. The third t y p  of value is an f-(sub)structure. that is a 

Lcollection of attribute-value pain as currently described, repres~ticlg some information that form 

an entity. &h as the information asmiared with a subject. Intuitively, a set here is a finite ' 
( 

unordered collection-of items. Figure 2-5 shows an example of a f-structure for the scntcnee The 

girl bonded the buby a toy, possibly produced by Kaplan and Bresnan*~ grammar. 

- 
the ' 

m s  
.PRED 

'BABY' 

rz 
TOY' '1 

figure 2-5: F-Srm- for T k  girl handed the 'baby o my. 
\ & 

In this nructure, SWJ. TENSE, P m  are examples of aaribulcs. P*sr ,is a symbol value, 

' H ~ M X ( s ? 3 3 3 )  (om) (O~J)>' and 'GIRL' M semandc prtdicaks, and ilr value of sUBl. 001. UBj2 

are f-mcture~. 



that every attribute has at most one value. The other two deal with the ixpents  of the semantic 
* 

predicates. Together they imprwe a om to one correspondence between the arguments of a 

pffdicau and the parts of tk smcwe that depend upon them. The cosnplefeness condirion 

specifies that an f-stnrcture must coruain all the grammatical functions that appear in the argumm , -- 
- 

lisr of tbe predicate. That is every argument of a predicate (e.g., SUBJ. OI3Q OBJ in figure 2-5) must _ 
correspond to an attribute w h w  value represents the grammatical function. The term governme& 

designates the relation between a predicate's argument@) and the grammatical fkmions for which - 
that subcategorizes. The coherence comiifbn takes care of-the counter part, stipllafir~g that every 

grammatical function present in a f-- must be governed by the arguments of the predic* of 

the senkme. An input string to whit21 is associated an f-structure s a t i w t h s e  three cDnditions 

is accepted as a grammatical smmce. 

~ -7 
we can nowjxamine acruaI f-structure representations for some parts 

< 

\ '  
follows, the merrtioo of traditional grammaticat categories is purely 

for exem$fying purposes. As it will be obvious &only, there is no such distinction% the 

formalism. 
r 

tn order rc, ease tIae ioTIowing -on, we imduce some terminology, Two i h s  in a 

f - s t n x ~  an said to be neighborn (or almnaiively in the same neighbow@ if they are part of 

exactly the same f-stmcmm. Fur m @ e  in figure 2-6, SUBJ and VCOMP, NUM are in the 

Jso said to be at the same l o e l .  , - 
2233. Verbal InfomaatJon 

h fnd, verbs are nqm$md by a prediwe a#lraining & gavcming parts. 

predicates, together wi& mae trme mj agnemnlspecificatioar. appear in the 



TENSE 

v ~ - [ ~ .  :::I 
Figure 26: a f 

clause, taking another c h w  (pRdiW by the regular verb with which the auxiliary is used ) as \ 
complement. For instance, figure 2-7 shows the main lines of the repraentation of an English 

se~uence having a progressive construction. 

OBJ - 

Figure 27: Represenmion of sentem containing auxiliaries. 

In this representation, a pointer (represmted by the arrow) is used to indicate thaf tk value of its 

S n J  amiklfe is exactly the same as the value pointed to. Such pointers arise in many consvuctionr 

within Zbe formalism. Tbe rqxaenratioo of c l a w  wilhsut auxiliaries is easily deduced from 

fiw 2-7. 



In cmtmst to v e h ,  nouns can play one df many grammatid reldons These relations, as 
-- outlined above, appear in the f-mnrcture of a sernence. As for verbs, the wun itself is represented 

by a semantic pediuse thas m y  w may not take argumem. This$kdicate is part of an f-srmctu~ 
\ / 

I always introduced by a grammatid relation (smX OBI, etc.) a#ribiite. The reg of the information 

related t the mun appears at the same level as the PRED attribute. This infomation includes &' 

typ of &ter rn incr~greemmt  features, and possibly a nlative clause, some modifiers, and a 
t 

noun complement. 

The type of  detcnnincr is represented by an envy having the apibute D m  taking only a symbol 

as value. Determiners include articles and demonstratives. Ekn&@ssible values are a, the, this, 

repesedon'of every noun. The reason for this is that we make a distinction between a noun that 

occurs without a detern-ixr and nouns that can never have any (e.g., proper nouns). The value in 

the former case is nbne and in the latter ntu (for m-applicable). 
s 

The agreement part has the attribute AGR to which is associated an f - s t r u m  value containing 
r ' .  

ittribute-value pairs [NUM . . . I  (for the number) and [PERS . . , 1 (for the person). Case and 

gcndrr are mt necessary for Englidr buf cwld be easil; added in this shunv~ (with a similar - -- 

formar as the number of the person) for other languages. The representation for the modifiers will 

be discussed in a forthcoming subseaion. 

Rtlative clauses, when present, are represented by an f-structure being the value of the attribute 

REL. This attrihte is a neighbor of the semanq predicate of the noun modified by the relative. 

P The samc parts as a main clause can a p p r  idde a relative representation, However, there is an , ' 

extra entry for the relative marker. 'Ihis f ~ l d  has the amibute &MARK. It is kept even thought 

the nlative marker usually has a grammatical fundon in the repve. Since the same value carmot 
? 

have two attributes, the value of the attribute of the grammatical rol the relarive marker 

be a pointer to the f-qucture of the relative marker. 



I read a bdoL mat won a Prize. 
The wine {ohn bwght is excellent5. . 

where mms are being modified by a clause. For example. the noto phrase ~k buo& thut J d n  

read tbe representation shown in figure 2-8 

7 

DET 

AGR 

PRED 
REL 

( 

- 

REL-MARKER 
SURJ 

that 

OBJ J1 

Figure 2-8: Example of a representation for a relative clause. - 

In addition to relative clauses, nouns can also be other nouns. We distinguish two 

separate situations in this case, resulting in two different f-structure repnsentations. The first one 

covers nouns that are always used wirh such modifiers. Consider for example: 
The construction of the bo'at by W sailors. 

In that use of the noun conrtrucfiun, &re is always a by-objeet and a qfGbjecr implied, even when 

wt explicitly stated. Such nouns are similar to verbs in that they imply and relate together other 

parts of fhe sentence. Hence it is naplral to treat these nouns in a similar rn@ifimis verbs. Frey [I61 

uses semantic predicates taking arguments, corresponding to the predicate of the verb of the same 

m t  (e-g., construct, construaim). Ih: number of arguments usually the same in boih cases; but 

their names, however, may differ. Those argumems relate; to attribute-value pairs at the same level 

as 'be predicate for the mu, just as in k case of verbs, as shorn in figure 2-9. Hare, the 

Completwess and Coherence Conditions apply to ckse arguments.. 



- 
D F  
AGR 

PRED 
OF-OBJ 

r 

-- BY-OBJ 

' ~ ~ ~ ~ O I I C ( ~ Y % ~ ~ > ~ O F - O B J ) > *  
tbe 

Figure 2-9: Representation of nouns subcategorizing for comp%ents. 

The second situiuion covers nouns b which precision not enkiled by them is added. A good . 
") 

example of that is the possessive information as in rfie book dJohn. These nouns phrases are called 

noun complements and are represented in a similar way as relatives. Our representation follows the 

intuitive ooncept that such conmctions can be easily paraphrased using a relative c l a m . ,  the 

bmk of John j lhe book that belongs to John). Furllrermore, as it is the case for adjuncts (which 

will be discussed shortly), the last two conditions on well-formedness cannot a 6 l y  to such 

c o ~ c t i u n s .  We use the attribute NCOMP and an f-structure value to represent the complement 

itself. Figure 2-10 is a good illustration of the possible nestedness that can occur in such a sthcture. 

The predicate color is, as expected, at the outmost level in that s t r u m  since it is the one that 

would cany the grammatical relation d a t e d  with that noun phrase in a sentence. 

Some nouns can be used in either situation6. In this case, different semantic predicates are kept 
1 

from the lexicon, reflecting a difference in the handling of the semantics of both cases. 



- 
DET tbe 
AGR , 

[E 3 
PRED 

NCOMP 

'Cow  - 
DET the 

AGR 

PRED 'uniform' 

DET the 

\ Figure 2-10: Representation of noun complements that are not subcategorized for. 
I 

223.4. Pronouns 

The represenCition of pronouns is simpler than the one of nouns. l'lkre is no need for ihc DET. 

REL and NCOMP fields. The PRa, and AGR fields retain the same formr7. T h c ~  is an additional 

the antecedent of tHe pronoup. The value of such a field is a pointer to the f-nructurc of 

the antecedent However, this field must be optional in the represenmion of pronouns, since ihe 

antecedent may not be explicitly stated. When not expliciiin the sentem, the task of relating a 

pronoun to its antecedem is clearly part of the semantic interpretation. 
< 

2235. Modifiers 

Modifiers are not very much detailed in the literature. We developed a repremtafion for lhem 

ha fplIows the phlosophy of h e  ttmry. Nouns verbs can be modified by adjectives and 

adverbs (Rspeaively). In auh b s e  modifiirs can modified by others as in tdf. H C ~ .  

w e ~ l U g h t a ~ f o r ~ ~ r s t t a a e m t t h l b e g m a t m g h t o b e a p p t i e d t o m a n y  

different constructions, regardIess of their nu&. 



modifiers are i W u c e d  by the amibute MoD and an f-structure value containing the pair [QUAL 

. . , ] and &ibly thc pair i0P . . . 1 for mg&m ll?e collection of these [MOD . . . ] pain 

becomes h e  value of the anribote MODA'ITR that appears at the same level as the PRED of the 

modified category. The same structure is used inside this one to handle the modifier to the one 

being represeaed in ttre fim place. 
> 

, Simple mdifier(s)-to a noun (or to a verb) are represenml as in figure 2-11, 

MOD [QUAL 0] ' 

Figure 2-11: Representation of modifiers. 

l& MOOD aaribute appear at tbe same level as the P W  of the modified category. When a modifier 

to another modifier is present, then a suucairal representation similar to the one of figure 2-12 is 

used. Again, the second MODATTR d b u t e  appears at the same level than the category being 

modified (friendly). As for verbs, OP only appears whan negation is employed. This is a modular 

reptxntation scheme that allows to keep together all information related to each modifier. 



Representation of a "modified" mociifier. 

We have seenhow v&ardcenainaow~sretate&pansoftheswtrencesinasimilarway as a 

logical predicate by the use of argurnems. However. a sentence can contain other elemena h a t  

although modifying or cornplemenling the predicafe..an: m t  syntacticallg related to i L  This is the 

case, for instance, of the tempxal or !ocative information in the scnknce: 
They met at three o'clock, in rhe park. 

rhrce o'cbck and in ihe park wrve as a u j w v r  to ihe predicate m e t .  The information carried by 
Z 

thew adjuncts is imponaol for the sanaruic interpreWon but c m  be W u e d  with ihc 

predicate in Lhe syne manner as ur blea object because pmcatt?s do not put any 

rearinion on their adjwrts other than semantic ones. Hence adjuncts arc not affcckd by ihe 
4 I 

Compieteness and cohere& Conditions. 

Kaplan and Bresiw give an ovewiew of how adjuncts can be m a .  They c h m  to rcprcvnl 

them as a set This set is the value of the anribucc ADJUNCT and irs elanen& are f-structures, on. 
* \ for each particular adjunct They give n, detail abou~ the i n t c k  reprebemaion of each adjunct. 

#- 

We propose a more detailed maw for the a d j m  of a s e n ~ .  Each pantcular one has an 

f-slruclwe being the value of ihe &Me describing the type of adjunct (e.g.. bcatim, time, cause. 

a . 1 .  Each of these f-mcttirer is b s i d y  rtr m e  as the one for hwns, exccp tha& rhcrc will bc 
C 

an aeditnnaf fretd - iming IIE ambite -TION - u, describe how the e v m  reprcgcnrcd by h e  
- 

pmhcate is affect& by the adjunas. This allows us to distinguish easily & w e n  things like rhr 

pasC in fronr OJ ihc park etc. Ihe f-anmure represenmion for that is simply* a. field with thc 

/ 
-2 



-ring at tht same levd as the predicae of tfie verb modified. 

CAUSE 

RELATION t DET 

R E D  

RELAnON 

after [E [QUU my-] I 

33.4. Rdated C o m p u t a t f ~ l  Work 

Their system inputs a senkm in German (#ifcheck#) @ produces an f - ~ ~ .  In accordance 

with the W r y .  Whey d' idc & tzsk of parring with &is formalism into three major steps. Fm a P 
pvle oac is garra ted by he con&-free-like rules. Then functional equations are innantiated. -. 
These equations are at t!k caregory level and their values afe coming f m  the lexical items. 

lhese equations are solved, pmiucing f - ~ t ~ U - u r w .  Their paper shows hoy to &ate LKi into 

P d q  io an t f f h t  i m @ m ~ o n  by faaving tfse a b o k r :  b e e  steps re&z&- 



negarion, etc. The f-sbrumres outpuf &akd with the input sentences arc then passcd to a 

seman~c anatyser. Dixourse RepreseruaWn' Smchms (DRS) d e v e w d  by Kamp arc the 

semanlic formatism of hhis qS tem.  finally, a daLa bse is built from the DRS's using two possible 

methods: DRS's can be mndafed into Prolog c l a w s  augmented with some deductive principles. 

or some ~~~ rules can b d & v d  to crperate un tfiese structures. A 

. h a h e r  Prolog irnplemenrarion of LFG was done by Yasukawa [37j. Although hc aimed at 

comparable gods with Frey and Reyle's (use of DCG, dinct constructions of f-suucrurcs during 

parsing), he hcu& mxe m bai#irtg a fern& system to qxcimf syntactic tmowledgc. As a 

result, he m e  up with good dm smctures for representing the various LFG primi~ivcs. Thcsc 

abstract data types are hidden from rhe user in order to keep the grammar rules closer to the 

original LFG W r y .  ?his is w&xd by having a macro notation that is similar to regular LFG 

d w ,  which are later tramlad inm Prolog programs. This gives a Iw efficient implementation 

than the first one, However the LFG coverage is claimed to bc wider in this scc~nd 

Frey also investigated t f ie  details of a particular conmetion, tfr noun phrase, in the specific 

mWxt of LFG 1161. He gives complete LFG walment fur construc- like compmtives, 

partiuves, and noun complernetu. This includes d e f ~ g  appropriate phrase smaure  rulcs, along 

with associating these rules with functional schemata in order to produce f-structure. 

t iebra et d. [35f used also L K ;  in their Integrated Parser. Their prow integrated into a same 

opposed lo undemanding q e m x s  of individual sentences. Having these three components 

grouped togetfier helps resolving some ambiguities that would be difficdt to handle in a sequential 
4 

process (i.e. syntax -4 sernanfh -+ context). 

\ 



23. Target Formalism 

The seminnic npremtation that we used for this interpreter is the h e k p u a l  Graphs (CG). 

Thbse graphs were cleveioped by fohn Sowa and are based un evidence from linguistics, 

phlosophy, and artifidaI intrlligmce. In [3l], Sowa first motivates conceptual graphs from 

different parts of cognitive science, Then he M c e s  the graphs formally in an axiomatic way. 

Enally he explains how concepual lpaphs can be in some areas of Artificial InteUigence. 

23.1. Justification 

Gomptual graphs provide a good formalism to ca@n many aspects of natural language. The 

p i n  motivarion for using this formalism is to entenain the possibility !sf producing instances of the 

formalism used in the generarim s y m ,  mendoned above, in order to build a translator. , 

, 
23Z Description of Conceptual Graphs i 

\ & 

The information in CGs is divided into two classes, each of which c o m n d i n g  to a type of 

node. The mncep rmodes, represew by a b x ,  carry the information a b u t  entities, attributes, 

states, and events. The relath noch, a l w a ~  appearkg in a circle, show how the concepts are 

refared and W mle tfiat each ore plays. T ~ E  mks can be of as names &at& with 

every arc of the graph. These rehions are d i m  and most of them are monadic or dyadic. 

However, there is n o m g  in Sowa's f m & s m  Uat prevents having rehtiorts with a greater 
\ 

number of arcs. This type of nodes indicates the case relations, as wen as the bgical and causal 

links between various pans. A 

The concept nodes contain a type late1 and possibly a re fe~nt .  A type lube1 is a token describing 

tfic nature of a concept The rQwdnf, seSeparated fmm the label by a colon, specifies the extension of 

tfie concept ~ f e r r e d  to in the sentence, These referent include generic, individual, generic set, 

spxified and @y specified sets. The following table illustrates the differences b e e n  each one. 

E v q  generic c ~ l c e p t  is assumed to be existentially quantified. Variables can be used in geoeric 

anocps to indicate aos-refe-: two mnap wi& the same label in a*@ are assuwd to 

regmat distinct encitk, unless they appear with he same referent @xIu&ng vaFiaMe name). 



KIND OF REFERENT C W H  NOTATION POSSIBLE READING 

Generic 

Individual 

Generic Set 

Named Individual 

FIONREYl or IMONKEY:* ] a monkey 

 MOLYK KEY@^] or [MONKEY:#] the m d d y  

[MONKEY: {* ) I  
[MOhXEY :Jockof 

monkeys 

i d 0  

Specified Set [MOhXEY: (Jbcko, Toto) ] Jocko and Toto 

Partidly Specified S e t  Toto and others 

All the labels are grouped into a panial ordered snucture defined over the set of dl 

labels, according to the kvef of generality, Tfiis hierarchy is introduced in the following section. 
-? 

A particular CG is assumed to represent a unique proposition. It is possible to find a CG for any 

s y n ~ c a l i y  well formed s e n m .  However not ali such sentences are meaningful. For instance, 

the senrence:, 
7"k teg are a green dream. 

is a s w a y  valid English cortsvuction but cu&tcts with common sense b w t e d g e .  Itis, for 

obvious reasons, desirable to prevent a semandc krpreter from finding reprcscntation for such 

xnknces and to q l e  them wr as m~lsense, inconsistencies, errors, etc. 

Sowa idemifies the subset of compual graphs that represent actual or possible situations as 

canonicnf graph. Initially, tfiere is a set of CGs tfiat form the c ~ o n i c a l  basis of the system. This 

basis associ- a valid graph with wery type in the hierarchy. Examples of such g n p b  are: 

constraints to rule out sentem such as the ow above, or to give patrems that rue expected to be 

someone giving, someone receiving, and something'being transferred, so a canonical graph for this 

cowp should include all tflese three items. 



exact dupiicatc of a CG. RestrM q l a m  the type label of a concept by the label of a subtype; or if 

the concept is generic, change the r e f m  to an individual (e.g., [DOG:*) fDOG:SNOOPYJ). In 

both cases, the conformity nM& (to be introduced in next section) mast be satisfied before 

and after the modification. Join merges iWcxd cmceps found in two different graphs. Tbe new 

graph is obtained by removing one insarm of the concept and linking to tbe other one all the arcs 

originally c o m t e d  to the first one. Simplify removes identical relations connecting the same 
w m m p .  

Sowa defines a set (T) whose elements are type labels. Each of these type labels represents a set 

whose elerncnls (if any) are armmed to Eatisfy a particular type. lkse  elements are said p4k 
instences of the given type. A unary operator (F), called the denotation operutor, yields, when 

applied to a type label, its corresponding set of insfances. A function (caIled type). maps entities 

into T. This set of types is augmented by a partial ordering. This ordering relation, denoted "S ", is 

reflexive, antisymmetric and transitive. It capures the notion of sub/supertype. Let TI and T2 be 

two type labels, T1 5 Tz is satisfled if &TI E STZ. , 

lp - 

To this structure are added two binary operators (u and n), the first one returning the Ieast upper 

bound and the second, the g r e m  Iower bound of any two elements in ttK set T. These two 

bwnds are a h  called minimum cornman supertype and maximum common subtype. With the 

xldition of the'thes opentors, thc mu& becomes a lonice. ?his lanice of types is bpunded 

above by the universal types f ), of which everything is a subtype, and below by th abwd.type 

relation, called the confonniry relation (denoted "::"), is defined on this hierarchy. It relates 

individuals markers to type labefs and is satisfied when the particular individual is a member of the 

given type. 

actions and properties. The fundon type can be exterded to map cormcegnral relations to type 

labels. The same partial ordering of the slnxntre caa also be extended to type labels of c m q t u d  



W+4. Related Work with ConceptuaI Graphs 

/% Conoeptual graphs have been used in various areas of artificial intelligence. However, most of 
-+I 

their applications are oriented towards natural language processing. in section, wc prcscnt 

some pipers thai f a  on parsing hguag t s  with this semantic formdim. 

Sowa and Way [32] developed a semantic imrpreter covering a large subset of English. They 

geneme CGs from a parse tree. The pame trees input to their system are gmrated by augrncnwd 8 

phrase structure grammar &s. Onty s y m d c  rules are used to produce the parse vces on which 

the semanric component operales. The idea of the production of graphs is as follows. A canonical 

graph is obtained from a cmmkal graph Ieximn and is associated with every word. These graphs 

, are then joined to form ttu: sekantic repmentation of h e  sentence. The joining p m s s  is guided 

by the parse tree, determining the order in which the joins should occur. This system is respnsiblc 

also for de-g anomalous seniences (i.e. syntactically weH formed but non-meaningful), since 

no semantic information is used to generate the parse u'ees. They have implemented this system 

using the Pmgramming Language f o r  Natural hqpage  Processing, a LanguaBc wiih built-in 

facilities for parsing and graph operations. 

Sowa also emphasizes ttie importance of induding appropriate information in the Iexicon in order 

to achieve g d  parsing. In 1331, be presem a series of examples UusVating the semantic p m m s  
4 

thar have tdbe represented in the l e x i m  This includes thematic relations as well ag other relations 

not explicitly stared by tk s m  (e.g., complex noun phrases like sound system techru'chn) and 

the fact that the meaning of more cumpiex sentence can equally be carried by many simpler ones 
5 

(e.g. The jmitor opened the door w ih  an old Ice). and The janitor opened the door. He wed an old 

key.). He goes on to outline a general procedure to derive conceptual graphs from 

crxrvm~ional syntax dimxed parser, without imposing any more restriction on the grammar ndes. 

The implementation described above is based on rhis approach. The nature of his qpmch  

suggests some similarities with WGs. Although they differ in goal, they both p t  emphasis on tht 

lexim and Cnl bed categories. 



A Graph Representation Scheme9 
Y 

appka&ions, which justify the large amount of attenrim they have received in the literature (e.g., 

[24,36, 11). However, tk impkmem~onal details of .even the most frequently performed 

J operariono have often been o~erlooked. 

6 the colscepual gnph formation, a d i d  acyclic graph serves to represent the type 

hierimhy.10 In the original CG formalism, the hierarchy is assumed to represent the links among . 
tht various concepts. As w t  shall see later, in our system the type hierarchy is involved in a 

~ a n u ' c  verification pfixess. For our purposes. we need to devote some attention to the 

irnplun *on of the opradom performed ,m the hierarchy, as their efficiency dirtcdy influences 

., FntiR ,,,. 
1 

f - 
in rhis m r ,  we introdue a mew to represent directed acyclic graphs in Logic 

Programming. The main charaaeristic of tixis r e p d o n  is that it allows frequently 

encountered graph operalions to be performed very quickly, using features of Logic Programming. 

We also present a cornpller that generates this representarion from a more mura l  0%. Section 6.2 

discuss some other applications for this graph representation scheme. 



3.1. Introductory Details 

Let & first ioaoduce formally tbe type of s t r u m  we are Maddering and pmvidc zi fcw 

additional &tails abou the wrm of thc probim. Thc class of stnrcturcs on which this mcthod 

applies is that of directed acyclic graphs which we present next, togcthcr with some of its 

characteristics. 

A directed graph @G) is a 3-tuple (N,  E, T). N is a finite non-empty set, called thc set of nodes, 

E,is a set of ordered pain, called r.k set orf edges and r is callcd the incidence mapping and maps 

. E into N . x N .  If e  E E ,  M f ( e ) =  ( n m ) ,  where n is callcd the initial node of e and m ,  the 

tenninul node of e.  We impose the following two restrictions on X ' s :  
For any nJn E N ,  there is at most one e E E such that T(e) = (nm)  (ix., Ihcrc arc no 
muItiple edges in our DG's). 

For any n E N, there is no e E E such that F(e) = ( n a )  (LC., them is no loop in our , 

X's). 

Let DG = ( N , E , r )  te a directcd graph. A root r of DG is a d c  such that r~ N ,  and Be€ E 

such that f ( e )  = fm,n). A push P in DG is a scqucnoe 

m1,el~,e2,  . . . ,n,,e,~~,,~, t 2 0, ni E N, ei E E and R e i )  = ( n i q + $ ,  1 5 i 5 t. 

For every ni , 1 5 i S  r , on P, wesay that Ppbssu through ni. Thc above two ,. mvictions on the 

~~~~ of dirated graphs enable the represenration of a path by a sequcncc of nodes only. A 

p& P is called a simple path if no node appears more than oncc in it. A nodc m is said to bc 

uccessible from another node n if there is a p& containing both n and m in the DG. If lhctc is at 

least onc path that passes through every nodc of a DG then it  is said to be connected. A ffi is 

q c l i c  if all  the parkis it conains are simple. In what foUows, we use thc expression directed 

acyclic graph @AG) to refer ?o a cortr@cted, dimtcd and acyclic graph having a singlc m t .  

9 
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3.1.2. God of the ~ e p r k t a t i o n  

I 

A very important operation on the stnrcture defined above is the one of accessibility verification: 

given two nodes, determine whether there exists a path from one to the other or not. In the case , 

where the DAG represents a type hierarchy, this accessibility operation corxespodds to 

sub/supertype verification. ' A  no& tl is a subtype of another one t2 if there is a path from t2 to tl 

in the graph representing the hierarchy. The representation proposed bere aims at optbizkg @is 

node accessibility relation, in terms of which many hierarchy operations can be expressed. 

An obvious method to determine whether a node N1 is accessible from another node N2 is to 

traverse the sub* rooted at N2, looking for N*. However, depending on the representation of 

the DAG, this approach can be costly (0 (n2)). More efficient solutions can be obtained by taking 

advmmge of ttte characteri-stks o fhe  stmatire &self. 
3 

3.2. Usefulness to Our System 

Although the representation introduced in this chapter has been used for implementing a 

particular approach to grammar than the one used in this 'work (see Sectipn 6.2), the main 

motivation &hat lead us to develop the graph representation scheme described in this chapter was to 

devise a good implementation for the type hierarchy. Such a type hierarchy is an integral part of 

the Conceptual Graphs formalism an8 we adopted the same structure for the hierarchy of our 

system as the one defined by Sowa and introduced in 2.3.3. 

As we shall explain in more details in the following chapter, the type hierarchy plays an important 
t 

role in, our system. In particular, a frequently performed operation, subtype verification, can easily 

t>c expressed in terms of M& accessibility. We will see how this subtype operation is part,of an 

important sanantic verifiearioa Due to the way in which the system operates, subtypk is the 

in this semantic verification Therefore, a hierarchy representation that allows 

W e e n  nodes cunstim a crucial problem worth investigating. 



3.3, Related Work 
3 

This problem of accessibility was examined inside the framework of type hierarchy elsewhere. 

The two papers we now survey take insights from the.structure being searched to yield an eflicicnt 
I 

solution 

\ 

33.1. An Integer Comparison Approach 

In [29], Schubert et al. present a method for type verification that reduces to integer interval 
1 

inclusions. The various types present in their system are grouped in a tree structure. Each node of 

the tree represents a single type and is associated two numbers. The first one is the pmrdcr 

traversal number of that node and rhe second one is the highest preorder number of i& descendants. 

With this n&bering scheme, a node will be S d e Q  as .an ancestor of another one i f  the interval 
* 

specified by its two numbers contains that of the other node. Clearly, this allows for quick 

- 
verification of sublsupertype. However, the applicability of this numbering process solely rests 

upon fhe tree nahlre of the hierarchy, and hence cannot accommodate b e  hierarchy s!rucfure of 

C- Graphs. 
a 

333,  A Unifmtion Approach 
. b 

Dahl proposed in [8] a solution for the type verification problem based mostly on unification. 

There is no central structure representing the entire hierarchy. Instead, a partial hierarchy of types 

is included in every lexical entry. The partial hierarchy for a given entity contains only tfre types 

- from h e  m t  to this entity. The, comparison of two such partial hierarchies is dom only via \ 
Aolog's unification of the two terms. This is the only operation needed to determine whether an 

entity is r9 subtype of another one. 



3,4..A New Solution 
< 

As it was &saved in the seoctnd approach surveyed, tbe use of unification yields not only a much 

simpler irnplanentation than traversd, but also a more efficient one. The execucon of any Prolog 

p&m necessitates some tmificatiuns. Since is a built-in part of any Prolog 

irnplmemtation, a pro- requiring only a fixed number of unifications for its execution is kund 

to be more efficient than amtfier that requires some Aditionai processing in addition to unification. 

Thenfore, using jbuficvion as for &much processing as possible is clearly a desirable aspect 

whicb wC sought while designing wr representation. 

Our sblution is hased on the second method surveyed above. However, there are some aspects of 

this approach on which we wish u, improve. Fim having a partial hierarch; to describe the type of 

a particular entry implies that a lot of redundmeies are &red, in comparison to having a central - i 
i 

svuctwe and storing only one rode per entry. This means tiul the urmmon supertypes of closely I 
, I 

r e W  entities ?.re stored-for each one of these entities. This redundancy could be acceptable in the 

case of a uee- structure. The nurdbr of redundancies in the repmentation is linearly dependent on 
)r, 

the number of d e s  in the s t r u m .  However, in the case of-graphs, that relation .becomes 

quadmic. Also, every tine fhe h i m h y  needs to be modified (e-g.. to include more spe~ific / 
I 

types) every entry has to be examined, sin& its partial hierarchy might be affected by the change. 

Furthermore. this approach is also limited to type relationships structured as trees. To befit ,the 
w , 

hieraichy structure of CG, we must allow more general relationship structures (i.e., graphs). 
v 

In Dahl's system, unification is used to 'compared nodes for accessibility; but in reality, the 
,. 

unification pmass takes place on paths from the rca to particular nodes. For the reasons just 

mentioned, wendo not want to m a t e  a path to every node explicitly. The idea behind our 
&d - 

approach to the accessibility problem is to have a representation allowing fast access to paths and 

then use unification on such paths for comparisons. ' h i s  representation is intmdttced next. 



3.4.2- Description of the New Rep-& 
* 

h order to minimize traversal during node amparisom, we digress from traditional graph 

crepesentaxion and associare a node with an incopqlete path from the nxw to that no& as_ its 

our examples. 

figure 3-1: Example of a graph structure. The type hierarchy used in CG has the same format. 
- * 

In general, graphs such as the one in figure 3-1 can fontai between two nodes hat arc , 

dererminiaic (i.e.:unique). For instance, the path fmm 22 to 4 is deterministic; as opposed to, say. 
! 

the one from 15 b 1. Accordingly, we introduce the notion of node determinism to ease thc 
\ discussion. We say that a node is &eministic if tfie path from the root to it is unique. Othcrwisc, 

the node is said to be non-deterministic. In figure 3-1, 22 is an example of a deterministic node, 

whereas 15 exemplifies the second kind of node. 
1 

The palh(sf are associated y a c h  node by the bi&y predicate path(Node,Path). Let us 

consider the dwrministic podes f& 'lk pa& from the root to such noden is represented in our 

system by a difference listll. For example, here a& some actual representations for nodes of this 
* nalW laken from figure 3-1. 



In rhiuase, the path relations are stored as  facts in a Prolog database. 

The representation of nodes of LIX second kind is more complex. Because of their non- 
1 

deterministic nmre, storing W i r  various paths explicitly can lead to mbinatorial explosion. 

$3 Hence, we must resort to smm.compu on in order to repwent the paths of such nodes. 

The path representations will again be expressed in terms of ik binary relation pdth. However, 

in h i s  c a r .  Ux predicate will be rtond as a P ~ V G  rule, as opposed to a fdct The part of the path 

from a' w e  to its first nondeterministic ancesto;% kept expli~idy. Then a variable is iruroduced 
8 

to represent the nondeterministic part. The role of the rule's body is to instantiate this variable to 

various paths through backtracking. For instance, node 20 in figure 3-1 would be represented as: 

t 

The path NLe is to be interpreted as follows. The path from the root to 20 is: A to which 201s 

added at the end if the path from the root to a parent of 14 (which is the first nondeterministic 

ancestor of 20) is C and A is obtained from C by adding 14 at the end. The b i  predicate 

path-togprent returns a path (as second argument) from the root to a parmt of the no ie  passed as 

its fm argument+ Such paths to parents are represented in the same way, that is, explicitly listed if 

unique, and by a recursive call to path - togarent otherwise. The pmhcate addend mums as 

third argument a difference list formed by inserting the second argument at the end of the 

difference'list passed as fim arpment. 

. 
During execution, a calI such as 
i 

d d  imtvlDiak X to all possible paths to& ) lee 20 successively, through Prolog's backtracking 
- 



However, all the processing to 

3.43. Use of Difference Lists 
*-k' 

/ 

-1 

find a particular value for X is done entirely by Prolog's unification. 

An important data structure used in this algorithm is  a difference list. Thi - 

gcod alternative to process sequences of elements in a simpler and more effi 

lists. The basic concept is to use the difference of two lists in order to represent a ceMn list. For 

example, the lisi [a,b,c] can be represented as the difference of the lists Ll = fa,b,c,d,e,fj and L2 = 

fb,e,fl. Ll  is &ed the katf of the biffemice iist and t2 ttte tail. We use tk backslach chamcr + 

('T') for the difference operator between the head and the tail. The improvements over regular list 
f 

operations are achieved by a clever use of variables. A more complete presentation of difference 

& appears in [34]. The following two procedures illustrate very well the kind of efficiency 
2- 

gained by the use of difference lists, compared to the equivalent procedures for regular lists. 

addend-dl W t t T ]  J2ltHT), 

The fim predicate takes in a difference list (as first argument) and an element (as second argument) - 
. and returns the same difference list with that element inserted at its end. The other predicate rctvrns 

as third argument the concatenation of the difference Iists of its first two arguments. Iu successful 

completion is conditional upon the possibility of unifying the tail of the first list with the head c$ 

the second om. The interesting feature about two p d u r e s  is that eve@ng is donc t through unification, which makes lhese two o p  'on5 executable in constbnt timei2. 7hc 

equivaIent predicates for regular lists have Bnear complex tk size of the input list. These two h 
procedures play a key role in the efficiency of our system. 

to use unification to compare two paths is that they tx both represented from the root to the nodes 



bouom up during path co~lsvuction in order to take advantage of pssible *-like structures. 

Intuitively, regular lists (or any other Prolog operators) could be used since they allow fast insertion 

in the first $xition, which is very suiuble to the direction of the traversal. A problem originates 

with ttLe va;iables that are posslbdy immduced for a path.  tho^ variables get instantiated to a 

sub-paih d i n i n g  one or more &. If such a variable is inserted as rhe first element of a list, 
4 

then it can be instantiated to only one term. For example, during the processing of the node 14 in 

figure 3- 1 we would have !he Est jX,14] representinq its path. Due to the way in which Prolog 
i 

handles operators, the variable X can not k htantiapxl to more than orq node as would be 

necusary, unless sublisu arc 9'). To avoid this pmblem, we delay tk addition of a node to a 

path until this path is M y  inmnriated. If paths are represented by a difference list, then insertions 
i - 

can be done at the end of the fists just as fast as to the beginning (i.e., the list does not have to be 

,uaversed), using the predicate addend-dl. This strategy is best illusuated-with an example. 

Consider the actual predica g w d  for the mk 2Q: 

por~~W'W :- 
path_togarent(14,C), 
addend(C,lqA\i20~]). 

I 

first a path from the mot to 14, the first nm-deterministic ancestor of M, is obtained. Then 14 is 

added at the end of that path to produce a new path itself terminated by 20. It might be useful to - reexamine the predicate addend-dl displ&ed above in order to fully undemand this ppnxess. 
* 

Hence, during consultarion of the new sfname to find a path, the only processing done is in the 

case of d e s  with rnuldple parents. In such cases, some kind of processing (recursion or iteration) 

is unavoidable. lh b e  other operations, includmg the ones for the deterministic case, are handled 

by unificahosane. 



In order ur prevent potenrial &rs from being discouraged by W complexity .of this 

representation, we developed a short compiler to generate the new graph rcprewntation 

automatically from a more intuitive one. Not only is such a compiler uscfid for the first generation 

of the representation, but it becomes extremely convenient when the hierarchy needs to bc 

modified (to include more s~ecific types for example). In such a case, one would normally havc to 

examine rhe representation of all the &s of the hierarchy, as h i r  represemition could be 

affected by such changes, Instead, fhe compiler can reprocess the ncw input reprcscntation, which 

: T k  compiler assumes rhat the hierarchy to k prucessed is input by a binary prcdicatc that 

describes for each node (first argument) the list of its parcnt(s) (second argument). These binary 

pdicates are assumed to be stored as facts in a Prolog,databasc. For example. a valid input 

representation for the graph of figure 3- 1 could be:I4 

This representation is reasonably simple, although pehaps not-& most intuiti me, and -also very % 
mncise: there is only one fact for each node and each edge is represented only&. Since the 

re-tation of nondeterministic nodes involves representations of its ancestors, the Cbmpikr 

requires thar all thr: inpa predica•’s describing a node's ancestors appear before ha node's 

predicare in the da~base.'~ The compiler is shown in figure 3-2. ' 



Figure 3-2: Compiler generating the new graph representation. 

In h p d u r e  transform, User&& is the name of the predqgtut  represents ihe input graph ' 

(for example, parent in the above example). The f m  subgoal in ,& pooedwe simply initializes 

Thcn a fact UserPred(Node,Ps) is cons t rud  and called to ,instantiate its arguments. The 

data bue. The call to gennrk will gemrate all the facts and rules for ut node in the new 
' 

I 

representatioa It is divided inro two disjoint pssibiiities. If  Node only has a single parent then it  is 
4' 

added to i t s  parent's path and this newly the path of Node and the body of 

the parenr's rule also kcomes tl%? W y  instdntiate any variable that were 

originally on the pareni's paih f the ncde has more than one paren6 tben a sin@e 

vbiaMe is insened for its pas icate ('path - togarent) to instantiate that variable is 

generarim of these clauses is dore as follows. For each parent, add the ride to tfie path of that . 



The above & e s c n i  represenration was designed to allow more flexibility in'bolh the type of 

mcarre being processed Hd irs inplt representation, A l e  pnserving the possibility of using 

unification to compare nodes for awsibiliry. We now examinc the details of this operafion in the 

framework of the subtype rel&on in,type hierarchies. 

Suppose we wish to determine whrher TI is a subyp of T2. Their respecuve paths are obtained 

by dte calls path(Tz,Pathz) and p a t h ( T P a t 4 .  For simplicity, let's exmine only a successW 

case. The case in which it fails will be clear from this discussion. The subtype opcration can bc 

reduced to the o x  of determining whether Path2 is h e  beginning of Pathl. P q  and Pa% being 

twz difference lists, the task can be lhought of as Vying to find a third (difference) list which 

The call to builtin predicate viu in append dl is necessary in ordcr to distinguish subtype from - 
supertype, a distinction lost since al i  the arguments of append1 dl can either be instantiated when - 
the predicate is called or not. The predicate to verify supertype would be exactly the same as the 

above one for subtype wirh the exception that the call to var would be replaced by one to nonvrr. - . 

If only m p a h b i t y  (i.e.. either subrj-pe or supertype) was desired, then no subgoals would be 

Before analysing the results o h k e d  with tfie a b v e  representation, it is important to indicate the ,-. 

W s  on a%& we judge e f f i c i eq .  Alt our programming was developed in a logic programming 

framework, which differs su-y from any mventional languages. Thc nauln of lbgic 

programs calls for a sligfialy different m e w  of complexity measures, as olpposed to the usual 
-.. 



g p t c i m  of complexity as a function of the size of the input, A good way to evaluate the 

mmty of a logic program is to examine the number of goals that need to be resolved in order 

v - 
Any suece~shrl computation of a Logic program can be described by a p m f  tree. The nodes of 

such a tree oorrespond to tk gmk of the comprtations and the arcs show how they are invoke& 

Tfae root of the tree is lk initid goal of the compuhtion With such a representation, Shapiro 

1281 defines three compllexlty measures over'bgic pro&. In a proof R, the iengrh of R is the 

nfrmkr  of nodes in* pf tree bf R, fhe depth of R is the depth of the proof tree, and the 

gwf-size is the maximum size of any node (goal) in the tree, the size of a goal being the number of 

symbls in its textual representation. The following measures are then M u c e d .  Let P be a logic 

P is of god-sue complexity G(n) if for any goal A in the meaning of P of size n, there 
is a proof of A from P of god-size 5 Gfn). 

. . 
I 

P is of depth complexity D{n) if for any goal A in the meaning of P of size n, there is a 
proof of A from P of deph 5 f i n ) .  

. P is of length complexity Un) if for any goal A in the meaning of P of size n, there is a 
proof of A from P of length 5 Un). , 

With the above definitions, Shaplro shows that for any logic program P of depth complexity D(n), 

goal-size complexity an) and length mmplexity L(n), there exits an alternating Turing machine16 

. (4 and a constant c uniform in P such that the set of strings accepted by M corresponds to the 

meaning of P and M operdks in time c-D(n)-G(n) . 

We are aware that the results w i b l y  obiabed with this complexity treatment canmt be directly 

compared with ones obtained wirh the conventional treatment, due to major differences between 

both frmeworks. Such a consideration would have to be taken into account if cornpariy with 

imglemenlalions in other ptogramming language were to be drawn However, it is not the purpose 

of this work to compare irnplementarions. We were merely interested in finding efficient sollitions 

using tk specific compxationai power offered by Frolog, since this language proved to suit our 



llsing Sapiru's d t ,  one can &y show a @ that does mt have any body (i.c ... a fact) 

can be executed in o o m  time.I7 ~&,h unification of the argummt(s) of a given goal is 

bounded by a constanLl8 CIearly then, the jime spent to compare two paths is constant since every 

operation is done through unification and a call to & Prolog built-in predicate var. The predicate , 
path also returns deterministic paths in constam time because of similar cansiderations Recursion 

happens.only in cases of more than one path to the compared node(s). The non-dcteminim of -- -- 
such cases implies additional processing for any sequential algorithm. 

For space mnsiderations, our interest focuses on the number of rules that needs to be gencratcd. 

Let n ard e be respectively the number of nodes and edges in the graph being processed. As wc 

saw, there are n predicates path generated. Ln addition, every node having more than one parent 
- 

gwmfxs a path togarent predicate for each one of its parent. Let p{n) repksmt the number of , - 
parent of nade n. H e m  there are p(n) edges arriving at node n in the graph. We can define a 

filnction (say qn) )  mapping rides to integers representing the nurnber of rules they originate in thc 

new repfesentation as follows: 

Therefore, it is easy to see W thr: number af lvles produced for the new repmntation is a linear 

function of tk number of edges in the graph. 

3.5. Summary 

We presenled a new methail to represent DAG which allows quick mde accessibility comparison. 

It can handle a wider range of srrumres than both systems surveyed. T l x  possibility of quickly 

i d d y i n g  tm s t r u m  and taking advamge or their determinism is allowed by specifying the 

input sVuchlre from bt fom up. Furthermore, this way of representing the input does mt affect the 

efficiency of the p m & g  of multi-parent nodes. In such cases, no representation can avoid non- 



determinism, We'used this mcdxxbiogy to represer~t our type hierarchy, which is not r e s t r i d  to 

a uct. However, m eases of me stnrctures, tk efficiency of this representation is similar to Ibe one - 
of [29] and it k a m e s  equivM to the one described in [8]. This has been studied in depth in 

- 
i 1 I ]  with respect to parse tree represenmion and processing. The ad&ti& preprocessing, which 

is riot n4usuy in Ulis lancr qsrcm, is easily cumpensated by the avoidance of the memimed 

update +1m. When the graph i s  modified, all that needs to be done is to nm the progsam to 



Chapter 4 

Components of the System 
# 

I 

- - 
r There is a certain mourn of information'that ismpired about the various entities manipulated by . 

both formalisms used in wr systw. Access lo such inforrn~on is required atvarious stages in our 

system. In order to rqmsm this informarim efficiently, two major componenrs are used: a type 

hierarchy d a lexicon. This fairly straightforward approach emphasim the distinction between 

information about the entities and information about their relationship with respect to a common 

This chapter focuses on ihe description of these two componenls Md their rcspctive 

implementation Both formalisms used in the system specify quite clearly the nature of thc 
'.. 

i n f o m a h ~  they required and hat ccznstitutes the basis of the contents of the components of thc 

present system. The design of these componerus has been guided by two factors: conformity with 
P 

respect m th: original formalism and efficiency of the operations accessing t$e infomation of the 

-m. 
4 

4.1. Lexicon 
. +  -') 

The first major component of our system is the lexicon. Lexicons have always constituted an 

imprtarrt compowrrt of nahiral language undemanding systems, as they embrace information 

about the syntactic cixwmmistics of t.he different words known to the system. It is b a m i n g  more 

and more man r ce m aha include semantic details abut  each entry. In our system, the 

lexicon csabhks a link k w m  the two formaIisns (f-stnraure and Conccpllal G-). Both 

of these formalisms require some q w i f i c  information about words and conceps respectrvely, 

w h i c f i ~ k k ~ i n ~ i e x i c c n .  
a 

Most of the informarion n e d d  by one formalism mplmen te r  that of dx Mhtr as is syntax 



oriented and the other is ctirected towards semantics. With regards to some aspects, there are 

similarities between the information used by each oae. Our representation attempts to capture in a 

singIe component tbe dew corresponding to both formalislrtz. Such a unification leads to the 

simplificatidh of the entire system, as all the information abou the concepts and words handled by 

the system are grouped in a unique location and rtccessed uniformly. 'Tbe possibility of structuring 
' 

the lcxicon in such a way as to minimize the stlying of redundancies without jeopardizing the 

efficiency of the &hanism that access such information constitute an importart characteristics'of 

our system. 

Before examining the smcture of our lexicon, we describe briefly the various details needed by 

each formalism and which have to be included in the system. 

* 

4.1.1. Lexicon and LFG 

In LFG theory, the l e x i y  plays a very i m p o m  role. As we menl ion  before, the le,xicon 
\ 

grea* contributes to the s y m d c   corn^^ which is thus simplified. This is realized not by 

having overly sophisticated enuies, but rather by having relatively sit6ple entries aed a different 

one for each use of a word. Hence, the size of an LFG lexicon tends to be much larger than that of 

other linguistic theories, 

Basically, lexical envies in LFG comain tbe q m ~ t i c  category of the word (e.g., noun, verb, 

adjective, etc.) together with some syntactic features such as, for instme, number, gender and case 

for nouns and adjectives, m d ,  tense, perm nurnkr for verbs, etc. They also include a semantic 

predicate which is of no use to me syntactic component; but is assumed to be treated by the 

semantic iaterpreter. 
I 

The basig idea khhl fhe LFG approach is to take advantage of (he information conveyed by the 

morpMogical svucnvt of tach word, This information will interact with the grammar rules 

b g h  the aMOtahm asSOciated with w h  &. Various rules will be selected or restricted - 
according to the information Miginating fn#n tbe lexicon. For instance, in the case of passive 



this, consider the following two predidtes that would normally ex@& the active pnd passiye 

(respectively) uses of the verb to scme19: 
scm: V, 0 red) = 'sc~~~<(?suBJ)(?oBJ)>' P scared:'V, ( pred) = 'par1?<('h3~ OBJ)(~ S U ~ J ) ~ ' ~  

It is-also possible to use lexical m3undancy rules to reduce the number of entries of the lexicon 

not only in the case of the passive, but for other constructions as well [31 .~*  However, whether 

such rules are used or not, the effect the same: the syntactic component makes full use of the 

informarion provided by the morpho10gy of each word of the sentence. 

4-12, Lexicon and CG 

The inclusion of semantic information in lexicons has atm!ished the exclusivity of their 

interaction with syntactic components, only. Sowa suggests that the collection of canonical graphs 

h w n  to a Concephd Graph system be kept in a conceptual catalog [31]. This conceptual 
* 

catalog contains a single entry for each concept which includes the word, ip grammatical category 

and its semantic type. The formalism also includes a canonical basis which is a complete 

collection of canonical graphs that can be manipulated using the four formation rules (join, copy, C 

resnict, simplifir) in order to derive larger graphs. A canonical graph for a concept c specifies the 

type of concept(s) which can be linked m c, 'Ik ~ a r i o n s  used are also specified by a canonical 

graph TI& nature of this canonical basis shows some similarities with that of lexicons. Allhough 

not explicitly states, it is easily conceivable that the conceptual catalog and the canonical basis be 

merged into a single unit (lexicon). '-- 



The main o b j d v e  of our lexicon is to group in the same location all the information required by 

bolh formalisms. In doing so, we tried to avoid imposing restrictions on either formalisms. In . 

particular, the independence of LFG td any sernantik formalism has been preserved. Although the 

smanlic infor(nation included in each lexical entry happens to be very appropriate to CGs, we feel 

&a it is enough to other formalism just as well. Before examining the format of the 

lexkil entries, we need to uce an i rnp~"kind  of information kept in the lexicon: 8-role. 

4.13.1.8-Roles 

F-structures express the relationships k w & n  various parts of a sentekx mainly in terms of 

grammatical functions. However, in order to derive .a semantic representation for a senience, 

grammaric& functions do not suffice. as more informatibn is needed.% good illustration of this 

faa is obtained in examining the difference between corresponding active and passive sentences, 

such as: 

John helps Paul. 

faul is helped by John. 

7hue tw senfences m u m y  provide the same infomation and tierefore shovld be mappd to A 

be the same in tfie representation associated with either sentence. In order to capture +tha& propkrty, 

more infomation that what is included in tbe f - s t r u c h  is n w s w y .  f-structure n 

corresponding to & two ante- are quite different In partidar, John and Puul will not- 

realize tbe same grammatid function in both f-mctures. Such semantic similarities ,ktween 

syntactically different sentences are ained by h a t i c  roles. 

Thematic roles (8roles) have now k a m e  a reasonably well accepted framework in linguistics as - - 
they have been indudcd in many sy~lraaic tlmries. They are intended to accrxlnt for some * 

semantic relationsS k l w e e n  words of a sentence. Very informally, some parts of a sentence play 

an imponant role in its semansic suurntre. Such roles include the the theme, 'h agent and the 



-% - 
object of tk &on, as well as destination, goal, etc. We refer to thcse roles as thcmuric roles. 

Wtively ,  some words presuppov or imply such roles. Consider for instance the verb @-drink 

Whenever this verb is used it automatically suggests that someone-is doing the action of drinking 

(the agent 0-role) and that something is being drank (the object 0-role). These roles might mt be 

realized in a senten+, but they are nevertheless understood. Such s are said to atsign 0-roles. "& 
, In contrast, words like wine, cat, g d  do not assign any 0-roles as they don't always occur in nor 

imply the same context. However, they can be assigned a 0-role by anolher word. Verbs and 

prepositions assign 8-roles most frequerdfy. 'IM reader is refen-ed to [Z i f  for a more formal and 

complete discussion of 0-roles. 

The link between 0-roles and grammatical hinetions if done in the lexicon. We associatc a 0-role 

to each grammatical function sutcategorized for by a predicate. This appmch is not new to the 

LFG formalism [2]. The various 0-roles will eventually. be used as relation names betweerr ihc 

concept companding to subcategorizing entities and their argurncnt(s) in the graph, restriction 

such relations to be 0-roles. a -  
9 

i 

Canonical graphs af& inctude he nahire of the relations Linking rwo concepls. However, no 

formal account is given to identify rhe set of concepts 

the use 01 0-roles as r e l m h t w e e n  endies 

incompatible with ffi theory\ A &ay of identifying such relations is essential to W formalis \ a 

and 8-roles constitute an adquare approach. 'They a h  provide a more solid theoretical basis to our 

s y a m ,  and do not cause any loss of information in comparison with canonical graphs. In fact, 

canonical graphs could easily k built from the kxim if they were needed in an aaugrnentcd Cc 

, The format used for our lexical w r i e s  allows a uniform consultation mechanism for tk cnlire 
?, 

iexioon. Each I t x l d  ronuim ffxtr fields, m e  of which mi- kft tmspedfi&. ?he first' 

name w i h u r  its subcategorized argument w a r i n g  in the f-stntctun: or the value af m of the 
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- - 

- 
lpossiMy Minxfly) to a word of the sentence. The second one is the corresponding token in the 

conce rn  graphs form&, vhiePTmay or may not be the sam~ ik the fm field for some or all df 

the enuies, +pending on the applicationB The two fields are ipiependentY and establish a - -. 
mapping between f-structure entities and CG concepts. 

' 

I 

The third field is the subakgorization information possibly pllescribed by the lexical item. The 
t 

actual repnsenyon for & argumargumetus subcategorized for by a predicate ib a list of (being 
-3 

operands of the functop "::"). Each pair contains the &me of the grammatical fundtion .- 

subcategorized for and the thematic role that the subcategorized argument is assumed to play in the 
.. 

sentence. 
\ 9- * ,  

. - 

finally, the last field of a lexical envy is also a list whose elements are undemmd td be in a one. 

lo one correrpoidence with the ones of the previous list. ~ h -  -. a semhntictype thH musi be 

nqx? b i  the predicate fuifillingShe ~grammaucal &don  by the corresporuling T+r 

element of *'other list. The elements of (his last List are taken from theiype hierarchy. In order 

for a given argumkt too play a specific 6~role. hexconcept corresponding to that argument must' 

satisfy a consistency condition. This is useful. to detect syntacticalIy correct but semantic ill 

sentences. We shall explain this prwess shorrly. 
. . 

Ail heenlries arc divided & disjoiht darses. The four fields of% given entry are sb&'as a 

arguments of a predicate named according to the grammatical category of the lexiql entry. The 

choice of gramrfiatiw categories tb distingursh the enuies is arbiuarily,'that - is no advantage is . 
taken frorn'@is fact by the access mechanism. TIy following examples of actual envies will 

hopful ly  clarify the rqxsenta.tion of lexical entries. I -r 



The fm three enrrks.exemplify artitis Ulai do not subcategorize. 7hc last two &Ids of lhes ' 

entries are inciuded, although Iefi unspecifid, to allow a uniform consultation mechanism for all 
J 

the entries. In the case of determiners, the corresponding graph representation will be a refcpt  

. a&arkg as a suffix to the appropriate concept. Therefore, the second field of the entries 

c o r r e ~ p ~ a  \o determiners (5.g.. ?.he third envy above) should be interpreted as rcferrnts rathcr 

than concepts. 4 slot is included in graph tokens of concepts that generally appear with a referent 

(e.g., nouns), as shown in the fonh entry above. This slot is separated with the actual tokenTby the 

user defined functor "::". Such conceps always appear with some referent. Hence, this encoding 

m g y  allows to asmate a referern to a given concept using unification alone, which is 

efficient and simple way of manipulating terms. 
i 

- 

J 
For simplicity, we assume that rm lexical redundancy rulcs arc usgd; therefore, if a-word 

sukategorizes for more than ore combination of arguments, an additional entry is rcquircd for 

each set as exemplified in the following: 
, 

The fim one wouId normally correspond to the di-transitive use of b give as in 

John gave,& cat xmie-nqk 

The second one co&nds to the use of to give wilh a prepositional phrase as in 

30h gave some rn&m the car 
m 

Kotice how the same semantic information is included in both enuies, which c o m t l y  ensure thc 

&mantic equivalence between & twb synta~tically different uses of the verb. 
t 

4.133. Consultation Mechanism I 

Let us now introduce the manner in which ihe lexicog informkon is a u r s r d .  The. approach 

wed in wr lexicon consultation is W r e d  from the weH established technique of b h i n g .  

'Ihe lexicon is. m u l t e d  in order to retrieve rhe &ated information of a panicular f-amcturc 
I 

element. At that point, lhe only information Lnown about this elememis the auribute of which it is 

k value in the f-strumre. h parudar,  the F d c a l  cwgory of rtr corresponding word is L 

mr incIuded in k f-structure. Therefore, w/e must reson t & + ~  alternative way of directing Ihc 

search 



We saw &a the different kxic;b entries were divided into disjeint gretrps. Tke miteria By W h  

this division was realized was the attribute under which a given entry was most likely be accessed 

from. In cxlr system, we u~ed.~rammatica~ categories to identify each p u p ,  but in theory, any 

other labeling would p&ltce rhe same d t s .  Then to each f-structure m i t e  which requires 

lexiuxl fonsultation is vso~iatcd a coUectim of group names, Listed in decreasing order o t  

likelineis of finding a particular entry used inside this attribute under a pamcular group name in the . 
lexicon. Tbe search of the lexicon proceeds buristicay accordkg to the order of the listing. The 

heuristic rules given from the lists are only useful to improve the efficiency of the search. Such 
0 

lists are obtained from a binary predicate (orderlist) from which the following clauses are taken for 

". * 
M ?.be lexicon consul&ion is done through the predica& lex whose first four arguments 

correspond to the o k  of he lexical entries and the last one correspond to the part of the f-struc%re 

lhat is king p n x a s d  (e.g., SLTBJ, OBI, etc.) 

4 

We are aware W th is way o%3recting the search tfirough the lexicon is deperdent upon the 

lmpagt king pncesstd and thaf in general rhc ordering c m  k axiomatited rigorously. 
2 



eowever, only limited linguistic k w l e d g e  is ~ecessary in order to provide a good heuristic 

account for this task 'The indexing fkciliky of Prolog is highly responsibk for the efficiency of h i s  

consultation mechanism. Further &vantages can be gained with versions of Prolog that index with 

the fim non variable argument in addition to ibe functor name. 

4.2. Type Hierarcvy 
& 

The second major component of the sjlstem is the type hierarchy. Such a structure has always 

been a faithful companion to graphical meaning representations, @ Concqmd Gmphs do not 

cons$tute in exception. Sowa defines and details carefully a hierarchy structure, together with 

some operarions for the CG forrnalkn [31]; which we include in its entirety in our system. The 
G main chara.eristics of rhLf s t . n x a  and some of its related operations haye bccn pr~scntcd in 

Section 2.3.3. In Section 3.4 we presented some arguments justifying thc use of a independent 

component for the implementasion of this structure. 
- 

I 

42.1. Role of the Hierarchy 

As was mentioned briefly before, a type hierarchy depicts all the relations that exist bctwccn the 
I 

various concepts. In our system, i t  also w r i e s  out another important task. The type hierarchy 

s 
provides a basis in order to re+ syn-tically well formed but semant idy  invalid sentences. 

Such sente~ace~ can very well be assigned an f-structure since they do not violate any rule of syntax. 

In panidar, they respect the three conditions governing the well-formedness of f-structures. 11 is 

therefore a task of tfK semantic interpreter to block the analysis of such sentences. . 
I 

Consider for examplk tbe erroneous semme 
b The tree ate big dreams. 

I 

I The f - s t m m  predicare for are presumably subcategorizes for two arguments: S U R ~  and 

i Ifo@ field of lexical enuies). Careful specification of such type consu;lipfs is the key to this 

I - 
problem. For bmamx, tfu: above sentence would be ruied out as semanrically rrlCorrcct i f  we 



a n i d .  Hence, ttg type h h m h y  provides aII tkinforrnation needed for the enfommekt of such 

semanric constraint3 during generation of conceptual graphs. 

This particular appo;tchLto semantic verificatidmight be considered a Little too severe, as it 

allows a unique i n t e r p d m  for sentences according to a fixed framework. For the specific 

purpose of machine translation, i t  could be argued that such semantic ferifications are unnecessary: 

a vanslation system could simply attempt to @uce an equivdent sentence in a different language 

regardless of whether Lhe original sentence is meaningful or not. However, we chose to include 

such semantic verificarion in our system hcause we warn to keep the possibility of using our 

system as part of an @ysis system independent from any possible enclosing application. In such 

analysis systems, the detection of semantically erronebus sentences is a very important tasg; one 

However, it might be desirable to loosen the fixed interpretation currently done by the system and 

allow the generation of a regresentation for sentences made aboutpa different domain of reference 

IhM the simpler OK (e.g.. rneLaphoric sente-). The system does not presently hand&uch 

s e n m s .  The approach used for semantic verification could be adapted to handle such sentences. 

For example, the same strategy as the one outlined above could be used on a different hierarchy, 

p & M y  with i n fo rmah  coming from differen% kxid enuies, tr, re<xamine sentences ruled dut 

as king semantically - wrong by tfie existing verification mechanism to see if they could not be 

interpreted using this d i f f e m  scheme. This extension would not conflict at al l  with what is 

currently implemented. 

+ 42.2. Implenfentation 
/ 

The graph represenration scheme prwented in the previous chapter was primarily designed to 

implement efficiently the rypc hierarchy of CGs. It is easy to verify that this kerarchy stnichre 

rcspcts lhc kfimdon of a directad acyclic graph stated in Sstion 3.1.1. . < 

Tht most frequent operaiion on this hierarchy and therefore the one whose efficiency is of most 

concern is tfiat of subtype venficaoon. We saw in the previous chapter how such verifications can 

cquivalatf y be expressed in terms of nodes acasibil i ty in the graph Hence, the representation 



operation. 

We &ed that all the concepts known to the system ard svuctured appropriately by the type 

. This collection of r y - p  d d  be input to the pre-proassor generating the ncw graph 

using a two-place predicate as explained in 3.4.4. All the s u m  verifications arc 

performed exclusively on the new representation using the predicate subtype listed in 3.4.5. 

4.3. Connection Between Both Components 

- In Sowa's formalism, k very hpomt connection ktween the lexicon and the type hierarchy is 

easily established: all tfie t y p  labels of a given canonical graph aE assumed to correspond to 

elements in the type hierarchy. This applies to concepts as wcll as ro thc spccifica~ion of Ihc class 

of concepts that can be linked to that concep 
&=-v 

Our system does not make use of canonical graphs. However, that prccious connection is 

preserved. Relations with the type hierarchy a p p r  at two levels. Firstly, the conceptual graph 

tokens (second field of rhe lexical enuies) are assumed to correspond to type labels. Hence thcy 

represent the most specfie type that includes this entity. Secondly, rhe types specified, by h c  
v 

fourth field and a n d a t e d  with the subcategorized arguments also correspond to type labels. They 

are m e d  to be the mosr general typeypeW an entity needs to respect in order to appcar (in a 

meaningful way) as argument to h i s  entity. S i m  the types of the entities satis%ng the various 

0-roles assigned by a lexical entry red  not be the same, it is important to keep a mapping of what 

role calls for what type. This jusufies the assurnFon of the one to one correspondence.betwcen . 
f LI-K Iexicat ekies .  

Our method includes the' same information as that conveyed by the canonical graphs. We chose a 

differem medium to represenr this information arid h e m  digress slightly from the CG philosophy 

graphs are ptoduced using the same information, but represented and acce;sed in a different 



Chapter 5 

Algorithms and Operations 

The previous two chqters have presented the components containing necessary information to 

!he s y s m ,  together with their reprewntation and all the oper&ons that is needed during the 

genetation of a graph. We are now in a posihn to describe the operations taking place in the 

production of a conceptual graph from an f-structure. By consideration to the reader, we will try to 

stay away from overly tecfinical details, as we intend to keep this discussion at a .higher level. 

(However, due to the nature of the fnmrial presented and the subjectivity of this aim, m guarantee 

for its fulfillment can 'be made!) The most relevant parts of tk implementaticn of the process 

appears in Appendix A. Some sample graphs pmduced by tfK system aie" shown in Appendix B. 

h addition to these two appendices, the r&r might find useful to consult some of the f-structure 

rtpresentations for various parts of be speech that are displayed in Chapter 2. 

5.1. General Strategy 

T k  generarion of a cmepual p q 4 1  from an f - m  naturally breaks down into three parts: 
extract some ~nfomatim from the f-structure, 

perform some operations in orderto &rive appropriate CG r e m c m  (includik , 

some verification of mnstraintsj, 

perform the rmxsaq operatiom to include the derived information into the graph 

In order to achieve these sreps, a single unit (predicate) identifies particular f-suucture parts and 

takes 'the appropriate action drpending upon tbe WE of those parts. These include lexicon 

WrFdtahon, some sernaMic verifications, and operations on a "working" data slructure. hex the 

Ths unit mars ont single anribute-value pair at a time. It takes in an awibu -value pair, a 



the externat data structure. 'I?-me updates are done according to the infonation obtained from 

piocessingrbepair* T b e ~ f O r m a t Q f ~ ~ r m p l d ~ r t a i s w i t i s :  

~ ~ m ~ a l . ~ ~ ~ r a p h o u t , h t ~ a t a ~ n ~ ~ n ~ t )  , 
C 

Tbe control flow is determined by another unit which isolates a single awibute-value pair and - 
calls the fim unit to process that pair. Basically, tbe pairs are processed in h e  order in which they 

a&xr and the system is, in general, independent of any particular order. If h e  value of a pair is t 

another f-smcture, then the prcxessing of thax f-(sub)sullcture takes precedence over the original 

' one. 'fhis processing scheme reflects the uniformity of the cornposition of f-stmctu~s. 

~ ~ r a l l y ,  rtlt atuibute-vdw pairs of an f-suucture are similar, hem, no discrimination can be 

done on this "external" aspect. It is therefore natural to &tract the examination of f-structures in a 

srngle unit rhat can handle any valid f-structure. 

Since a single aruibute-value pair is isolated from the rest of the f-suucntre dunng the processing, 

detrrib concerning neighbnhg parts k a m e  temporarily opaque. The consultation of 

neighbouring parts is often n e u s a q ,  and therefore an accessing mcchanisrn must be esta6lishcd. 

FLn obvious approach is to make tl?e entire f-structure visible at all times. Other than king 

concephlally simple, this approach hwsllimited advantages. ,Not o n l y 3  it ineffrcrent, but thc 

traversal and selection of specific infomation of an f-smcture is atso complex LO realize. Instcad, 
/ 

%e W f y  he i n f m u t h  W \MU pkmdly'be  necessary m the p w s i n g  of a subscqwt 

pairs, and collect i t  in an externat stmcture that IS  i n p t  to and updated by che unit pmcssing 

I anribUte-value pairs. 
1 

T h s  e x t e d  mcture consists of three pans, some of which may nor be xcessary in pcessing 

a pmcular anribute-value pair. R u s  nntcmre is represented using the uscr-ckfmd optrator "W" 

l7-e fim pan (FstrPart) is the name of rhe enclosing grammatical fwt ion  atuibuu, which is 

useful in the lexicon cmmltation. The second part (ConceptLia) is a list of tk concepts that have 



~ b t c n ~ i n h g f a p h . W y , & b s t i t e r n ( R e q u i r e e P r v t s ) t h i s s t n r c b r e m a y  

bizit include is a list of details rchant to a concep has not yet been pn>cessed. For instrcnce, a 

concep correJponding to a grammatical function subcategorized for might not be known at the 

time rht subcategorizing coacep is inserted. and yet it is required in order to compkte a particular 

relation. In this casc, tht external sVucture is useful in order to remove any restriction on the 

ordering of the attribute-value pairs of a particular f-structure. When a conoept is about to be 

inserted, i t  is verifi wkrher that concept had been referred to ({.e., subckgorized for) r" 1 

previously. If so, then tfie proper operations that had to be postponed take place. 

We now examine the ~ c u l a r  operations done during th processing of the m 

anributes. 

5.2. Processing Subcategorizing Predicates 

We distinguisi between two cases in prOceSSing f-structure predicates that subcategorize. The 

disrirmQion.is based u p ' r h :  namre of tk subcategorized infoxmation and upon the operations 

required in each case, which are quite differem 

53.1. Subcategorizing for Grammatical Functions 

The first case is tbe me in which a predicate suka&egorizes for grammatical function(s). A call 

Thrs call -also retwns the &role u, ke associated with each argument of the f-suucture pabeate 
d 

though A@, along with the m a n &  typx that e x h  argument must respect The concept is then 



K that predicate has ah&y k e n  inserted, then the relation can easily be compteted. ?k part of 

the external structure comahmg tbe list of predicate in the graph can be wed as a quick way to get 

to that concept from the ly-armr~atid h t i o n  (othewise, the f-structure predicate has to be 

identifKd and the lexicon needs to be consulted). The semantic type of the concept is canpard 

with the type prescribed by ttae relation for cumpatibility (i.e., subtype) using the mechanism 

described in earlier chapters. If this verification is successfrd, then the relation is u p d a d  to 

include +thz new concep as destiharion. Otherwise, the generation of h e  CG is aborted,, as the 

sentence is semantically ill formed. In the event wkre the concept corresponding to the predicate t 

of the sutdcategorized grammatical function has not yet been inserted in the graph, then the relevant 

infomation a b u t  this relation is mred in the exrernal structure. This information includes the 

concept originating the relation, the name of that relation, the grammatical funktion whose 

~redicate is linked by the relation and the semantic type that the concept needs to respect in order to 

' correctly be used in this relation When processing a for a grammatical function, the 

external structure is always examined in order to determine whether its c o m p  had been required. 

No mention is made here to grammatical categories. AlWugh verbs most often subcategorize for 

grarnmdcal functiorrs, this is no assumed by tk way in which we process such predicaks. The 

same processing can tx done on any predicate that subcategorizes for grammatical functions, 

rndependently of the category. a The fast that some nouns (e:g., conrtwriun) should be treatcd in a 

simiLar way as verbs with rqxa to mbcategofizattOn is due to Frey [l6].. Following this, our 

implementation treats verbs such as to commsct and their corresponding noun (construction) 

tsimilariy with respen to subcavgorization Thar is both words will be at ihe origin of a c o w p  

the linear represewtion oKGs:  

/'? rhar will instigate two relat50n.s in a CG: agent and heme. This is illustmed in the following, using 
> /  

4 

[ - . . ] ~ ( A G E N I " ) - [ c o w ~ ~ ] - ( T ~ E ) + {  
\ ' 
{J 

[ ..It (AGEm-[construcrion:...]-(THEME)+[-.-] 



5.23. Subcategorizing for a Claw - 
-bd 

Tht second case of subcategorizing predicate is that of a-ve& taking a verbal complement2'. The 

representation of sentem including such verbs requires more than one graph, which will be 

imbricated one within another. The reason for this multi-graph representation is that a single CG is 

assumed to repesent a single proposition Just as more complex propositions can be built from . 
simpler ones, more complex graphs can be composed of smaller ones. For instance. according to 

rhe CG theory, the sentence 
A man if drinking wine. 

should be represented by two CGs. One to c a w  the relations between man and drink, and 

&wen drinlr and wine. Ths graph will appear inside the other one, which will include the 

temporal information (in this case progressive present) which operates on the inner graph Some 

overhead operations on gram are required in this case. 

Sin& parts subcategorized for appear at a deeper level in an f-structure than the predicate that 

subcategorizes for them. the sutxategorized part might not be processed when the subcategorizing 

reason, a marker is generared to indicate that a subgraph that ?he current graph will include a 

subgraph. At that point the gemration of the current graph is suspended until the subgraph is 

comptereb. Upon compfetion of tk generation of the subgraph, the p r e m  of tfre m&er will . 

indicate rhat this subgraph should be included h i d e  the origmal one whose generarim is then 

resumed. Arbitrarily long chains of subgraphs can be produced using this mafegy. 

T k  f-suuctures corresponding to such cases usually include a s the same part plays 

mom than one role (e.g., rhe subject of she auxiliary ard of the main verb). @xi is the reason why 

we always verifj whether a concept corresponding to a particular entity has already been inserted 

in, the graph. Accwding to CG theory, rwo different indan;es of the same cwrcept are assumed to 



5.3. Processing Non-Subcategorizing Predicates 

The case of non-subcategorizing predicates is a little simpler. F-structure predicates are again 

mapped to corksponding concepts by the lexico~, whose consultation is as usual guided by the 

enclosing f-structure attribute. The concept so obtained is'then inserted in the graph. If lhis 

concept was needed to complete a relation (i.e., a predicate subcategorizing for the f-structure 

a#ribge under which it appears has been pn>cessed already) then the information applicable to this 

concept is from the extemal structure, using the attribute name to index the search. The 

-\ 
semantic type that the relation requires this concept to satisfy is isolated and the subtype 

verification, using the process explained earlier, is applied. Depending upon the result of thh 

verification, either the relation will be updated in the graph with this concept, or the generation of 

the graph will be stopped, due to a sern'antic typeamflict. 

- 
5.4. Processing Modifiers 

Modifiers can appear at various places in an f-structure and can be arbitrarily complex (e.g., tall, 

very tall, not very tall). A modifier phrase is identified in the f-structure by the attribute MODA'ITR. 

We introduced this special attribute to capture the scope of each mwiifier. This was illustrated by ' 

figures 2-1 1 and 2-12. The value of MODAT'I-R is assumed to modify the predicate or the modifier 

qpewing at the same levd as M O D A ~ .  

Correct pmcessing of modifiers requires a consultation of the leximn, to get the corkspading 

concept name, and the concept modified by this modifier (which we call k victim), which is 

passed through the external infomation structure. operations include the generation of a 

concept in the graph together with the insertion of a relarion (named according to thenature of the 

mobifier) between the m M K d  concept and its vicem. The f-structure is then examined to see if 

there is any .modifier to h e  current one (e.g., very, not, etc.) in which case the same process takcs 

p h  with tfpe current modifier as a victim. Othenvi& the other modifiers the aria victim arc 

processed. 
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5.5. Processing Relativ'e Clauses 

Fklative clauses are inmdtrced in anf-suueture by the attribute E. They wi,ll_bpresented in - 
a CG by a sub-* attach to the they modify by the relation rel-op. 7I-e generation of this 

0 .  

sub-graph is very similar to tha 3f a regutar graph, except for qy pint. The v&ue of the anribute. 

+' of one of the grammatical W o n  subcategorized for in the re 've may be a pointer. to. the at, 
relative marker, indicsing that this marker fulffl that function. ~n'this case, the semantic fype 

mnqmnding to the concept being modified by the relation haslto be retrieved and used in the 

subtype verification for the relarive's relation. In the event of a su6cessful ;erification, the concept 

introduced is co-indeged with the one to which thk relative is attached. 
L. 

The processing of determiners is relatively simple. Determiners are rqresented in CG as 

referents to concepts. The p & d a r  referent corresponding to a dete&r is obtained from the 

lexicon through the call 
> 

/ 

, Then this referent is added to the appropriate concept, which is always the value of the PRED 

auribute appearing at the same level as the determiner. This predicate is obtained from 9 e  

predicate list in the external structure. The rest of the processing is handled by the following two 

calls, executed after the call to the lexicon. b 

/' Here, mep l y  is ihe standard list membership predicate. The first call to member retrieves the 

concept coh.esponding to the predicate of the f - ~ ~ c t u r e  part k ing processed, from the external 

s t r u a .  En general, this will be the first element in the predicate list. ?he second call to member 
h 

' is used to instantiate the unspecified variahl kept in the lexical representation of the concept to the e 7 

graph repmtat ion of the determiner. Because of our lexical represenmion for concepts wed 

Tfhe pmxsing of determiners is the only case where we impose a particular order in tk --te- 

value pain. For sirn&icity,"we assume lhar the predicate appear before the determiner L I E  

f-suumre. - 
- i 



5.7. Processing Tense format ion 1 
The tense i n f ~ ~ a t . i ~ n  is kepa kvel as the for of & p ~ p & j ~ T  it 

can be used for two pupsx . -  &sme-&4&y-suei~tforward:~ generate ihe appropriate , 

1" 

temporal information, which is a an ovraor on a (sub)graph. 

The second one is to conuoI rhe scmamic validity of certain adjuncts consmtions. For instance, 

the temporal information can be w d  to block the generation of c r p w u s  Scnlcnces such as -- 

I will leave yesterday. - 

fn h s  c a x ,  yesterday is incompatible with rfre furure r c n x  of h e  verb. - 



Chapter 6 * 

Extensions and Conclusion 
1 

6.1. Summary of the Work Done 

Tk objective of this thesis was to investigate the possibility of produqing Conceptual Graphs 

~ p r t s e n h g  the meaning of sentences. We have achieved this goal within a working framework. 

s framework su e s ~  rhat f-structures mnstitute an appropriate basis for semantic Y b 
~nurprctation. -For instance, !he W r y  underlying this formalism would s u a t  similar 

reprrsenmlon for verbs arvl row which could tim be e i i l y  treated similarly by d! ~mantics .  

Hence a useful absmtion over grarnma.hl category is easily obta ih .  Our &ern implements 

this approach. 

Throughout t h ~ s  work, we uied to avoid ad hoc solutions by basing the various parts of the system 

on principiedhguistic grounds. This is perhap best illustrated by the restriction we imposed on 

rclauons originating f- 'ihe heconceprs &rresponding to a predicate and its subcategorized 

argwnen~s. l b s e  relations are very imponant in a conceptual graph and we chose to have them 

cornpond t the 8-roles of the senrence. No such restriction exists on Conceptual Graphs. Other. 

possibilitib exist and could possibly have lead to similar results for this system. However, due to, 

the possibilities o f f M y  e-theoq and i ts  strong support in Linguistics, we feel that its 

incorporation provides a solid hasis ta the system. and keeps the possibility of extensicns to include . 

olher consrmciions upen. 

/' 

.h inunsting pan of b e  sysvrn is UP lexicon In order to use eafh df the two formalisms in the 

s p m .  a Iargt aabwnt of information a b u t  the various entities is - necessary. A nice feature of our 

sjsmrn fi inclusion of all &iai mfonnanon into a slngle unit This was made poss1?1e by 

retxpressmg and representing the informarjon used by Cmcep4u.l Gnphs in a different way. 

There is &ng mherenily w m g  w i ~  the Gmapolal Graph be6ry itself. . ~ o w w k ,  we feel .W 



odr adapmon is more suilabk to our needs and. in general, to any computational linguistic 
w 

application that uses Cormprual Graphs. 
b 

- With respect to the implementation of the-system, the main characteristic is the use of unification 

to accomplish various tasks. Tke design has k n  purposely oriented to allow such -hive 

use of this mechanism.- Reducing many operations to unification is very atrmctive. It produccs 

very efficient implementations, as this mechanism is inherent to the $&ulion of all m l o g  
t 

programs. T h e r e f y a  pmgram with a lot of operations performed strictly b) unificatiov is bound 
< 

to be more efficient than another one &ing other kind of m.anipulatipns. 

This point is well supgk-c&i by the gra presentation scheme we developed. In this case, an -e.? 
operation that normally involves traversal of tbe graph (node accessibility) can be reduced to little 

more than unification This scheme takes full advantage of partial tree structure ohen pnsent in 

directed acyclic graph. The node ibility problem is transformed to that of p a h  wmparisnns, 
1 

which is entirely done through n. In case ,of uees,.the implementation of that operation is 

o p m d  with that scheme In the general caseof directed is affectcd 

by the non-determinism of tk structure. However, 

present in the graph are nevertheless p&served. 
* - - 1  

6.2. Extensions 

As it is the case for most computational hguistic applications, the next sensible objective after 

this work would be to enlarge the class of 'constructions har.3led. 7he imjhementacion of such 

I constructs should not inkrfere with what is presently in plrtce & we tried to keep possibilities for 

such additions open during the project's evolkion. In particular, we have been careful to eliminate ' 
? - 

undesirable side effects after the processing of each part. We now point out som'e specific areas for 

extending this work. 

A weak part of our system is he way in which adjuncts are har$iied. Such constructiork usually 

. ~ s o m e l m p o r t s t ~ s e w & ~ ~ ~ ~ c i ~ ~ s u ~ ~ m e ~ o r s ~ &  
1 

descrited by a sentence. A major chmmeristic of these consvuctslis that h e y  add stmanlic 

infomarion witboui being sjmxtically 

- 

related to the rest of the sxntcnce. Hence. they cartnot be 



i 

subcategorized for, as cppsed to ob* complements 60r instance. It is therefore difficult to verify I 

. wkthcr the'semantic information of adjuncts is cgmpatible with the rest of the sentence. 

We menrioned a very simple case, handled by the system, about the relation concerning the tense 
C - ' 

of a clause and tempo& adverb. This approach is only useful for the simpler cases, as it cannot 

. be nicely extended to cover more complex temporal constructions. 

An in resting approach to the proMem of representing temporal information is the one developed k by Hoqs 620, 19j. He exmds a general framework to represent temporal information which 

can, in partthlar, capture the interaction. of tense with some temporal adverbs (like yesterday, 

tomorrow, etc.) a& conjunctions (e.g., khen, w o r e ,  etc.). He uses an approach in which three , 
entities are taken as basic: S - tfse moment of speech, R - a reference point, and E - the moment 

of the action. The idea is to dmnr tense by specifying these as points on an imaginary time liw , 1 
In order to do so, two operatim are introduced: lineurity (denoted by "-") and associativity 

Idenoted by ","). The first one'indicahx an order between the points (i.e.. one happened "before" 
i 

the ouzer) whereas the second one is used to specify that two points are contemporaneous. A eiven 

re-nse is then represented by a unique configurarion of these three entities with the two operations. 

For inslance, the simple past tense of Enghsh c o w  to the configuration: 

E R S  

BP 
where both the time of the event arid the point of reference occur before the moment of s-h. 

The past perfect would correspond to . , 

E R - S  

Temporal adverbs are assum& to modify either R of E. 
I - J 

, . 
T k  foilowing pn>cess iakes place in order to account for coma temporal constructions that use 

adjuncts. First a configuratlm is o b i r e d  from the tense of the verb. The various temporal 

adj&ls will be associated to either R or E, forcing a change on the initial configuration  or B 

tomorr,~ forces LIE point to which it is attached to move after the point of speech This is inherent 



'This condition specifies that h e  original linear order of a configuration cannot be changed by a 

derivation. [m]. The above example wodd violate this mndition and hence be rejected as 

semantically ill formed. 

* 
This framework can a h  amount for complex sentences in which the temporal information of 

some parts is expressed in relation to that of another part, as for instance in 

The game was over when he got home at 10. 

- Both events will have a COnf?guration from the tense of their rcspcctive verbs. ~ o & t  construction 

will k easily identified as follows. Both S points will be associated and the R point of the sccond 

one will be placed underneath t h e . 0 ~  of the first. If this can be done without affecting thc linear 

order of either configuration, &en rhe sentence will be assumed to be consiftent with resped to the 

tempral information. 

This approach is very suitable to our system. In order u, treat temporal adjuncts this way, wc 

wad have to implement the correspondence between the particular tenses and their configuration 

in terms of the three entities. In the case of simple tenses. this is easily done, as the tense f 

information is already present in the f-suucnrre. For complex tenses (e.g., perfect), the exact tcnsc 
i 

configuration could be deduced fi-am specific pattern in the f-structure. The mmipulation of tk 

adjuncts on a configuration could be mded in the lexicon, by possibly using one of the u n u d  

fields, as these adjuncts are always invoduced by a non-subcategorizing entity. The inclusion of 

fhis approach would allow the sysrern to handle more sophisticated canstructions and would not 

interfere in any way with the p m s i n g  of existing conmcts.  

. h a h e r  important a s p a  of the system that could be enhancd. is the treatment of quantificarion. 

Conceptual Graphs provide support for the simpler cases of quantification, as i t  was illumted by " 
the table shown on page 23. This treatment becomes inadequate when the mpe of a panicular 

quantifier ranges over more complex consuuctions, such latives clauses. Consider for instance F *- f 

~ ~ h a v e a M m v e r c o s t s  ... 

The concept rep.esentlng book will have a generic referent. However, there is no easy way&of 



extending the scope of this referent over the relative clause. The formalism does not' provide any 

mechanism for capturing the mbdificatim of the refere by other mncepts/sub-graphs. A solution 14r 
to this pbkm would involve the development of a more detailed representation of referents, and a 

mechanih that would properf y q c i  fy the range of each referent. Part of the problem is due to* the 

fact that the m p c  may range over pans of a graphs which is hard to identify in terms of &mapts 

r 
TIk g&ph representation scheme presented in Chapter 3, as we have said in the introduction, has 

'been adapted to a verj different framework than the current one 1111. The framework is called 

- - - Dtsconrinuous ~ r a m m u r p  [9, 141 and in particular, its Static DiScontinuity family [ lo ,  13, 15, 121 

is amctive to implement transfornational grammars, such as Governmenr-and Binding 171. In a 

such grammars, constraints on movement are usually expressed in terms of node domination. An 

, example of such a constraint is subjucency, which stipulates that the movement of a node cannot 

cross two nodes with a particular characteristic (called bounding nodes). - _ - a, 
/ 

The graph representation scheme of Chapter 3 can be used to represent the parsing history of a 

derivation. Then, when a vansfomation rule is about to be applied, the path to two W i n g  

nodes are revieved aitd the verification for the crossing over these two nodes can be done by 

alone, using predicates similar to the oms we gave in Chapter 3 for subtype. The 

structures represented in this case are always trees, therefore the comparison,of nodes is always 

done in constant time. 



. Appendix A I 

Some ~rn~lemenf ation Details 

The major ideas presented in this thesis have ken incorporated into an impkrnentation in Prolog. 

Although not complete, the implementation covers the initial target language. \r 

- 

We now provide the reader with some implemenlational details t have purposely been omitted , a ;d in the dikussion for sake of clarity. ?his' appen ix is devoted the presentation of somc 

irnplementational details of the transformation program, whose (Englis appears in 

Chapter 5. We have included the most important parts.hem. 

In order to ease the discussion, we introduce the Prolog representaion of f-stmclurcs and 

Conceptual Graphs. 

A.1. Representation of F-Structures 
i 

The representation of f - s~c tu res  is easily undersM fm its definition. Rccail hat  an f- 

a suucture is com@sed of artribute-vat& pairs. We define the binary operator ",4" to represent an .- 
f-structure. Its first argument is an attribute and the second one is its associated value. 

In cases where the value represent a predicate tha subcaregoriles f o r ~ m e n a ,  we d u d e  the 
T J ' 

argument(sj in a list which is joked to the value using rhe operator "::" as m: 
- .  

drink:: [subj ,obj] 

This allows quick separation of the value and its argumenr(sj thrdugh unification. 

The remainder .of the reprwerttartm of f-swwtrres is reasonably straightforward, exoep in the 

case of corefenma. Similar predicate values in an f-suucture are assumed to refer to different 

d t i k ,  unless t h y  are-zomdexed. Ln order to repnseru this co-refenncc. we clef& h.opentor 

'"", which joins a pmbcate to a Nbxnp value, as irt: 
' i  



Two subscripcd predicates will be assumed to refer to different entities,'unless they have the same 

w-index. The following example shows an example of our representaliori for the sentence 
A man is drinfring wine. 

For consislency of the operations, we assume that the f-suucture of a sentence appear as a value of 

h aruibute fstr, +s illuqtrated in the h v e  example. 

A.2. ~e~resentat ion  of Conceptual Graphs 
- 

One of the main objective of this work was to complete a language translator as outlined in 

Section 2.1. In panicular, we- wanred to hayp the pssibility of using the graphs $x3xed by the 

present system as input to an existinglanguage generator using 03s. Therefore, the representation 

for CGs that we chose has been svongly influenced by that of the &r system, which is fully 
I 

described in [27J. 

Followirig the above mentioned reference, we represent a Conceptual Graph by a three-place 

predicak graph, having the following format: 

graph(Id,Co~;eptList,RelList). . 
/d  & simply an integer i d ~ f i e r  of the graph. ConceplLFr is a list of conceptdsubgraphs of the 

graph, each one of which is d a t e d  a number. RelList is a list of the relations of the graph The 
a 

dments of that list are dyadic functim terms describing for each concept originahng 

list of c~tcept(;) to which &e originuing concept is linked to, along with the 

nlations. The following are examples of graphs generated by the system \ 
" BnphCZ,[1-prog2-g!11,[~1(1,p::op~]) 

grapb(l,f~wine::unspec2drink,ldn~:unspec],[rel(2,[3::theme,l::agent])]) 

- M y  minor s y n W c  variances have ken adopred in oomparison with the &presentaiion of [27], to 

i m p e  readability. 
' 

\ 



+% 

A 3  Important Predicates 

/********-********t*+*t***t***tt**t**t**C.*****************&*****************+b*/ 

/* T r u u k k  f o r  aa f-otr prd. * /  
/* / 
/* 1st 3 Uq.& r-ot--, gr.ph in d gmpb out + / 
/* lut 2: part from- it i o  OcSlul ( 0 . 9 .  oubj ,  verb, r t o . ,  for UH / 
/* by #a l r r i a x s )  # l i e  of, f -*tr rt tr -graph t o k m  / 
/ ( r . , .  '.ub&\l --t-g, Vmrb : : 2-dria)t-g. . . . I  ) I l i . t  of tbkrg. / 
/ rlrudg rad to by xmlat ioao kt + prooaooed y m t .  / 
/* rorut : / 
/* f m : : Q l o : : l k u ,  . . .], uhum Cao i s  tho ooooept o r i g i x m t i a g  a ral.*/ 
/***t***tt************ft****Ct**f********~**********************************/ 

truirlrk (J\p+r : : -st, gra* (Id, CL, U L )  , gt.+ (Id, a, W L )  , 
ParttPrrdLPTrnkdLfa, R ~ # R ~ u M t ~ u t )  : - 

( D y t :  :Qzo-Otolua: :-,PruSL), 1 ,  
.rrFfw.ntod(P&,RdL,  (CnO-Otolun) mrntrdLLn, W r a t a d & u t )  * 





/* -?R 
/* */ . 

/ 
t* l+t ug.: list 01 TR: :a by (or o.w.) / 
/* 2 d  ug. : 1i.t of typu ruooi.tod w i t h  tln mubamtagorixad gf * /  & 

/* 3rd u g .  : cao- # inithtlng -tima * /  . 
/* 4 t h  L 5th q. : r r l r t ioa  diff 1i.t (in md out) / 
/* 6th L 7th uy.: 1- 2 d t m  of the 8- fafo mtr a8 domaribod in tho / 
/* prd ica ta  p.rt / 
/***************t*t********t************************************************/ 
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Appendix B 

Sample Runs 

Here are some sample runs generated by the system for different constructions. In what follows, 

we use the symbol "96" to indicate that the rest of the line is a comment insertcxj by the aurhor. 

Each gdph is describe by &E specification of iu identifier, concepts and relations. The relations 

use the number associated with each concept in their representation. 



tn. 
*j 

# LOI. 
5 halpl 
3 brrvu:  :.pra 
1 

R&atiops : 
. f r a  to U r n  

i 3 t & ,  
4 1 rgmnt 

frcn to w f r o m  t o  HLPY 
1 2 m g m t  4 5 -  

i h i a  grr* i s  a8soeiatd with -en-: 
t T h  eon.troation o f .  du -by the k. -8  u p  an I*. 









Graph: 2 

-lation.: 
f r a  +o U r w  
2 3 -  

irar to Iku frar to Vrw f r a  to Il- 
1 4 d o p  2 3 -  2 . l agmt 
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