Nétional Library

'Bbiothéque nationale

.*. - of Canada , du Canada '
Canadian Theses Service Service des théses canadiennes)
Cttawa, Canada
K1A ON4 v» — . -
“ . i
- J
NOTICE AVIS

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every etfort has been made to ensure the highest quality of

reproducticn possible. '
~

‘ . 1 pages are missing, contact the university which granted = ~

the degree.

Some pages may have indistinct piftyespecially #f the
original pages were typed with a poo writer ribbon or
if the university sent us an inferior oCopy. :

Hebroduction in full or in pan of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments. :

NL-339 (7. 384} ca

parvenir une photocopie de qual‘r@iéwirméﬁrig?qrg 7

La qualité de ce&é‘rmcroforme dépend grandement de la
qualite de la thése soumise au microfiimage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-.
tion. ' ’ g o

Sl manque des pages, veuillez communiquer avec
Funiversité qui a contéré le grade. '

La qualite d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont-é1é dactylogra-
phiées a 'aide d'un-ruban usé ou si l'université nous a fai

La reproduction, méme partielie, de cette microforme est

soumise a la Loi canadienne sur le drott d'auteur, SRC
1870, ¢c. C-30, et ses amendements subséquents. ~

Generatin Conceptual Graphs
v rom ’
Functional Structures

A S

N
Pierre Massicotte
B. Sc. (Honours), McGill University, 1985

A THESIS simwrrEDﬁJ PARTIAL FULFILLMENT OF
" THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
" in the School ,
of : 9
. f\u ‘

Computing Science

© Pierre Massicotte 1988
SIMON FRASER UNIVERSITY -
| December 1988

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

\ .
Permission has been granted
to the National Library of
Canada .microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the ¢thesis nor
extensive extracts from it
-may be printed or otherwise
reproduced without his/her
written permission.

rd

L'autorisation a &t& accordée
4 la Bibliothégque nationale
du. Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film. :

L'auteur (titulaite du droit’
d'auteur) ' se réserve les

autres droits de publication;

ni la thése ni de
extraiteg de celle-ci ne
doivent ~étre imprimés ou
autrement reproduits sans son
autorisation écrite.

longs

IEBN 0-315-48605-0

v C o o - B
. e
a 5 ’
Approval -
A _ .
;Namc : i Pierre M;ssiconc
-Pegree : Masterof Science
. 0 _ .
Title of Thesis : Generating Conceptual Graphs from Functional Structures
‘Examining Committee: ' '
Chairman: Dr. James P. Delgrande !
K\ . . L Dr. Verdnica Dahl —
. Senior Supervisor
L)
Dr. Roben F. Hadley ~
‘Dr. Nick Cercone
Extemal Examiner
School of Computing Science
’ Simon Fraser University
- ?
| Detpresin 2™ 10¢¢

Date Approved

PARTIAL COPYRIGHT LICENSE

-

.
®

| hereby grant .to Simon Fraser University the right to-lend
my thesis, project or extended essay (the title of which is shown be low)
to users of the Simon Fraser University L}bra$y,'énd'to make partial or
single copies only for such users-or in resﬁbnse‘to a request from the
library of any other univérsity,.or other educationa! insiifution, on
its own behalf or for one of its users. | further agree that permisslion -

for multiple copying of this work for scholarly purposes may be granted

by me or the Dean of Graduate Studies. It y5 understood that copying
or publication of this work for finpancial in shall not be allowed
Without my written permission. j]

, . o

~Title of Thesis/Project/Extended Essay

Generating Conceptual Graphs from Functional Structures 3

~

1 o~ N
¥
Author: - w
“(signature) % £
' 52
Pierre Massicotte o) .
o . . > - ‘/‘v

(name) ~
J—

Dec. 14, 1988

(date)

Abstract .

\

Natural language ahalysis is the pmo:%s of extracting the information carried by the various
constructs of the language. This information can be used for various purposes, and dependmg ona
particular purpose, can be appmpnatcly represented by a specific foxmahsm

4Analysis syslzéms can be divided into many speciali_zéd tasks. Thxs thesis is concemned with one of
these tasks for natural language understanding. A semantic interpreter based upon a linguistic
theory (Lexical Functional Grammar) is developed, which produces. Conceptual - Graphr
representations. Conceptual Graphs have been successfully used for other language processing
tasks. Since there exist systems to generate language from this formalism (5, 4, 23], our interpreter
could contribute to a machine translation system. Throughout this work, emphasisrhas been given
w\jinguisﬁc adequacy and implementation methodology rather than extensive language coverage:
| we ka&z developed a methodology sﬁitable 1o the t:)/o formalisms used. More possibilities' 6ffered

A m;}g,semaﬁon for directed graphs in logic pmgramming is also immduced. Its advantage lies in

the possibility of verifying node accessibility very efficiently. The scope of the ideas presented for
this repreéem’ation goes beyond the particular application within whicha'we exemplify it. For
instance, the techniques developed for thls verification operation can be used in any Aﬁiﬁcial
intelligence aptplircation that represents knowledge through graphs. - o |

[4

This representation scheme contributes 1o the efficient implementation of an important semantic
verification in our system. In a different framework, this representation scheme has been used to
implement 1 enforcement of constraints expressed in terms of node domination in a syntactic

_ structure.

—

Acknowledgements 0
This thesis would not be complete without including the expression of my gratitude | towands
many people who contributed time and effort. First, T would like to thank my scnior supemsor Dr,
V. Dahl, not only for her guidance and generous help she provided throughout this work but also
for the responsibilities and opportunities she offered me during my entire degree. Her constant

support and encouragement have been an essential asset in bringing me to this point. I.would also

- like to acknowledge my other supervxsor Dr. R. Hadley, for the useful comments and suggcsmns ‘

he brought to my attenuorL In addition, lne undelstandmg and care he has shown me at all times |
are very much appreciated. Dr. N. Cercone, my exLe,Tal exammcr, also -helped 1mprovmg this

document considerably. His positive and accurate suggestions transformed the fear of the defense

* into an instructive experience. F'mally. Dr. P. Saint-Dizier contributed to this work through many

conversations we had. It was he who introduced me to Lexlcal Functional Grammar while he was

-

visiting Simon Fraser Umversuy

The realization of such a lengthy document requires considerable knowledge of various text
processing facilities. Steve Cumming’s help is gratefully acknowledged in Lhal‘réspc’ct.

1 wish to express my deépest recognition to my colleague T. Pattabhiraman who has been very
patient and urceful in introducing me to computational linguistics. He has also been a very
important friefid at critical moments during my degree.

Finally, I want to thank all the other 3(‘g/gmduate students in the Compuung Science Department who
fostered a very. pleasant work aunosphere«;é

‘h
v"a’

o

Table of Contents

e

Approval
Abstract
Acknowledgements
Table of Contents
List of Figures
1. Introduction
2, Preliminaries
" 2.1.The Problem -
2.2. Initial Formalism
2.2.1. Introduction
2.2.2. Lexical Funcnonal Grammar
2224.) n -
2222, ion of LFGs -
2.2.2.3. Analysis Task with LFG
2.2.3. Functional Structures’
2.2.3.1. General Format of Functional Structures
2.2.3.2. Verbal Information —
2.2.3.3. Nouns -
2.2.3.4. Pronouns
= 2.2.3.5. Modifiers
'22.3.6. Adjuncts
2.2.4. Related Computational Work
2.3. Target Formalism
2.3.1. Justification , s
2.3.2. Description of Conceptual Graphs
2.3.3. Type Hierarchy
2.3. %W Work with Comeptual Graphs
3. A Graph Representation Scheme

3.1. Introductory Details)
3.1.1. Definitions
3.1.2. Goal of the Representation

3.2. Usefulness to Our System

3.3. Related Work . 4
3.3.1. An Integer Comparison Approach

.~ 3.3.2. A Unification Approach

3.4. A New, Solution
3.4.1. Introduction
3.4.2. Description of the New Representation
3.4.3. Use of Difference Lists

344, Prepmcessi’ng

ii

iii

iv
vi
viii

27

O~ O L

1

11
13
15
18

18
20 -
21

23

23

23
25

26 -

28
28

29

29

31

3P

32

3.4.5. Comparison Mechanism
3.4.6. Analysis .
3.5, Summary -

" .4, Components of the System

4.1. Lexicon
4.1.1. Lexicon and LFG
4.1.2. Lexicon and CG
4.1.3. The Lexicon of Our System
4.1.3.1.’ e-R.Oks
4.3.3.2. General Format of Lexical Entries
4.1.3.3, Consultation Mechanism
4.2. Type Hierarchy
4.2.1. Role of the Hierarchy
4.2.2. Implementation
4.3. Connection Between Both Componems
5. Algorithms and Operations
5.1. General Strategy
5.2. Processing Subcategorizing Predicates
5.2.1. Subcategorizing for Graimmatical Functions
5.2.2. Subcategorizing for a Clause
5.3. Processing Non-Subcategonung Predicates
5.4. Processing Modifiers X
5.5. Processing Relative Clauses
5.6. Processing Determiners
5.7. Processing Tense Information
6. Extenslons and Conclusion

6.1 SummaryoftthorkDom
6.2. Extensions @~ =

Appendix A. Some Implementation Details

A.1. Representation of F-Structures

A.2. Representation of Conceptual Graphs
A.3. Important Predicates -

Appendix B. Sample Runs
References

4

53

61

66

72
78

Figlye 2-2;
Figure 2-3:
Flghre 2-4:

Figure 2-§:

Figure 2-6:.

Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:

Figure 2-12:
Figure 3-1:

Figure 3-2

I\

List of Figures
d

: Machine translation paradlgm assumed

Example of a constituent structure. - S }
Sample LFG rules. v

General Format of F-Structure . .
F-Structure for The gxrl handed the baby a toy.

chmemauon of sentences containing auxiliaries.

Example of a representation for a relative clause.

Representation of nouns subcategorizing for complements.
Representation of noun complements that are not subcatcgonzcd for
Representation of modifiers.

Representation of a "modified” modifier.

Example of a graph structure. The type hxerarchy used in CG has the same -

format.
Compiler generating the new graph representaﬂon

E.
3
Jdiy,

10
11
12
14
14

16

17
18
19

20 -
32,

37

Prolog. S ' |

4 —

T Chapter 1
- . Introduction =
Natural lariguage analysis is the _process of extraeting the inforruation carried by the various
_constructs of the language Many apphcauons for this prygess exxst but one of the most unpoxtant ~

. is that of enhencmg commumcauons between humans and computers

v

There is no doubt that a system thaﬁcan"‘underétarﬁ" what the ‘requiretnents of its users are in a
}anguage more natural for them is a goal,worth pursuing, Another challenging application for
natural language analysis is in automatlc machine translation. The objective here is to produce an
appropriate - representation for the meamng of a sentence that is suitable for use by a language
genera.or which would produce a sentence expressmg the same mformauon in a different language.
Many approaches for this task exist, some of which use/more than one semantic representatton in

|

order to facilitate both language processmg tasks. : |
_ ‘ . !

|

Th:s project is concemned wxﬂrﬁus latter application. We are mterested in producmg mstancee of

a semarmc representauon scheme -called Conceptual Graphs [31]. This project was ma#nly :
motivated by a previous project involving several researchers, mcludmg the author whxch yleltjed »
a prototype for automatic language generation in which Cogceptual Graphs were used as the :

‘semantic representation guldmg the generation. process. [4,23,6,5] We have developed\
 framework to produce instances of this meaning representation that is based on a partlcular'

linguistic theory: Lexxcal Functional Grammar [22]. To our knowledge, this is the first attempt to 3
unify these two contempora:y theories. The .ideas presented here have been implemented in

1
; o
There is no doubt that a good iinguistic framework is essential to any system such as ours. Due tu

the tnl.enuons of its designers, this theory appears to be very suitable for work in namral Ianguage\
processmg and in pamcular language analysis.

~

3

" In order to make our objective tractable, we oonoenuated on the gencration of Conoeptual Graphs - | ,
from an intermediate representation which lies between syniaand semantics. This rc)ﬁftsenmdoh -
is an 1mportant part of the linguistic mory used and cortsnmtes a very good mpresent‘atim from
which a semantic representation can be derived. This intermediate representation, called functional

. Struc fes, is not difﬁcult to produce for a given sentence and implernentations to generate it from |
vanous languages have succ&ssfully been developed “Therefore, we assume that any of these
unplementanons could be combmed to this work in order to' produce a complete natural language
analysis system. o . B 7 <.

A

v A . : : .

- Throughout this wofle, emphasrs has been attributed:to linguistic adequacy and implementation
methodology, rather than extensive language coverage. We were mainly interested in developing a
framework suitable to both formalisms used, on which extensrons could be done modularly should .
broader Wught Nevertheless, the system we constructed is capable of handlmg an
interesting subset of English. The set of target constructions originates from a collection of |

7operat1ng system error messages which was used by the above menuoned language generator. (‘
- Aside from the main gdal, an interesting result of this work' is a new graph representation scheme
in Logic Programmmg We have devised a way of represermng directed acychc graphs that , v

provides economical comparisons between nodes for accessrbrlrty We show how thrs :

representation is usefulAto implement the type hierarchy of Conceptual Graphs, which is an
important component of the system. This result originates in joint work with V, Dahl. The
author’s work stresses its application to the Conceptual Graph formalism [25], whercas V. Dah! has
concentrated-on applying it to represent and process symacttc structures on ‘which the enforcemcnt.
of constraints expresseqd m terms of node dominations .has to be 1mplemented (11,15, 12, 13].
Such constraints are very important in another linguistic framework (Govemment and Binding [7]) .
and we elaborate on thls application bneﬂy in the last chapter.

?

The second chapter of this thesrs will mtroduce the prehmmary mformauon relevant to the system
developed. We begin this chapter by clearly stating the problem examined. An outline of the
.language coverage in included. Theseleet:ronofdnscovemgewasgmdedbymatofm
~aforementioned generation system. An important motivation for the present\sysiem is automatic

- " .
. . ‘ ’
. . \>
- Pe T

- - -

3

L 3

machmmslauon and we present the parucular translation paradlgm assum;a‘ﬂus para.dlgm is

shared by both the present system and the ex1sung language generauon one, and therefore
establishes a link between the two. Next, we describe each of the two formalisms used by the
system. The lmgmsuc framework underlymg our system is introduced first. From this lmgulstlc

framework originates the initial forma.hsm of this work. Before describing this initial formalism,
* we detail how it is obtained, as well as its posmon.wélde the overall linguistic theory, The general

pmperues of the initial formalism are then presented. We also mtroduced some mology that
will be useful in the discussion of the subsequent chapters Then we present actual fepresentations
of the formalism for vanpus constructs of the speech. Most qf these representations are exactly as

- dictated by the theory, but we included a few changes_te better suit our needs. In doing these

changes, we tried to stay in the philosophy of the theor¥. The last part of ChaptesZ is devoted to
the presentation of the Conceptual Graph formalism, where the major aspects relevant to our
system are briefly detailed. For each formalism, we valso pfeseht some arguments to support their
adoption in the sfsterﬁ. Also, nelaLed computetional work to each one is surveyed.

The next chapter wﬂl introduce the graph representamn scheme. The set of structures 1t handles

/ls formally \denuﬁed “We specify the type of opemuons on those structures which we w1sh to
perform efﬁmenﬂy . After having presemed the scheme and a preprocessor to generate it

automaucally. we gwe an analysis of both the efficiency of the 1mplementat10n of the operation of

“ interest and the memory requirements needed. Thé efﬁc1ency gains are by and large due to the use
of dlfference lists, on which many lmportam operanons can be reduced to unification. Two ottér
g approaches with similar goa.ls are surveyed and some comparisons are drawn.

Chap(er 4 will mu'oduce the two major components of ‘the system the lexicon and the type
hierarchy. We descnbe “how the information néeded by both formalisms can be combined and kept,
in a single umt This comnbutes greatly to a simpler implementation of a system that uses both'
formalisms. The lexicon consultation mechanism contains interesting aspects from an
implementational point of view. The discussion of the second component!.the type hierarchy,

. / L.}
'u_zamly focuses-on the role it plays within the system, as its structure and implementation will have .

bedn already introduced.

<

4

Chapier S is concemed witlfthe algorithms and the variobs operations relevant 1o ihe production
of conceptual graphs from functional structures. A single unit is resp’ohsible for handling‘all the
paris of the input formalism and this contributes to the modularity of the approach.: The most
important parts are isblated and, for each one, the actual operations neocss}ary 10 the eon'cci

processing are outlined.

The last chapter summarizes the work that has been done and points out directions for further
research. An interesting approach to the problem of repfesc;lling wm'poralr information is
mentioned. This approach is compatible with the theoretical basis of this Qork and could easily be
inéorpdral:ed in our system to provide a broader and more theoretical coverage of temporal
adjuncts. The application of the graph representation scherﬁe of Chapm% to the enforcement of
linguistic constraints expressed in terms of node domination is also included.

Two appendices are included to cover some details relevant to the implementation. The first
appendix begins with the description the Prolog representations used for both formalisms before
listing the more important parts of the transformation program. The second appendix shows some

sample runs of our implementation, illustrating some of the constructions handl by the system.

Chaptet 2 | o

Preliminaries

" This chapter first describes explicitly the problem sgudie:d'in this thesis. This description is
followed by the introduction of the formalisms involved in the system, which is naturally divided
into two pants. The first part is concered with the linguistic theory where the initial formalism
originates. The secbnd part introduces the knowledge representation scheme generated by the
system. In addition to a cisscription, each section includes some justification for the choice of the

corresponding formalism, as well as a survey of relat_ed work.

2.1. The P?ib_lem

The main aim of this thesis is 10 develop a semantic interpreter 10 producey conceptual .graphs
from functional structures. This interpreter takes as iﬁput a sentence represented in an intermediate
formalism between Syn_tax and semantic and produces a representation in the conceptual graph

formalism., ; - : v - .

The identification of the subset of Wage covered was inspired from a collection of

operaling system error messagcs used in a.previous project. in which we were involved [4, 231 In
—

addition 1o regular subject-verb-object sentences, the current system handles \/J
» arbitrarily embedded modifier constructions (e.g., very large, not very pretty),

» modal and auxiliary constructions, including passives (e.g., A man is drinking wine.)

e arbitrarily embedded relative clauses (e g., The students read a book that won a prize
which deserves mention.)

e some compiex noun phrases containing preposmonal phrases (¢.g., the construction of
house by the workers)

ﬂu'ougmutﬂtdcvdcpmamofﬂnsworkpamcu}aranmuonhasbecn focussed on the generality A
of the process so that the techniques used could easﬂybeextendedloaccommodatealargersubset
of the language.

L

-

The framework of the previous project was machine translation. The translation paradigm that
was assumed can be visualized by the diagram of figure 2-1. _ e

seatence in ' analysis semantic ion senience in a
some language " y representation g , ' different language

Figure 2-1: Machine translation paradigm assumcd
According 10 this approach, the translation task is divided into two indcpendent compomms'
analysis and generation, plus some overhead considerations to ensure compatibility between the
two. The purpose of that project was to investigate the possibility. of automatically gencratmg
(Enghsh) sentences describing typical operaling system error messages, The generation of a
particular seniencc was guided by the encoding of its "mea‘nir)\g" in the Conceptual Graphs
formalism. Material related to this project can be found 'in [4, 23,6, 12, 15, 5}. ﬁenéc, the
prototype developed in that project 1mplememed the second component of the process shown in

ﬁgureZl -

The present work aéopts the transiation paradigm depictéd ab.ove1 and materializes a step in the
other component. However, this work does not constitute a complele analyser as the starting ;;oim
is an abstract representation over sentences. We chose to overlook the production of this abstract
fepresenxan’on, since there exists already a number of implementations producing such a
representation (see section 2.2.4). "

“~ LY

2.2. Initial Formalism -

In our desc;ipdon of the problem, we mentioned the intc(rﬁodialc natyre of the initial formalism.
In this section, we describe this formalism in some detail; but first we introduce the theory in which
it originates. ' '

“We refer the reader to [30] for & survey of different approaches w machine ranslation.
[AY.a

)

i

12.2.1. Introduction

A solid linguistic background is, for obvious reasons, an essential requirement for any
computational linguistic application. Linguistics is still an evolving discipline; there is no
unanimously mcognizéd theory that captures the phenomena of language soundly and completely.
. Although all linguistic ‘u;corics aim at a similar goal (that of providing an adequate model for
language) they diverge considerably in their respective approach, as each one is supported by a
different set of assumptions. ’

-

Such distinctions among theories can occur at various levels. For instance, at the syntactic level,

a distinction can bethe use or not of transformational rules. In evaluating linguistic theories for

computational uses, another important point 10 examine is the inclusion or not of semantic
considerations in the syntactic component In addition 1o their respective impact in Iinguistics,
‘ these and other similar aspects of theories can imply important consequenbes in a computational
linguisu"c‘ application. Considerations of this nature played an important role in selecting the

linguistic basis of this work.
2.2.2. Lexical Functional Grammar

The linguistic formalism that we chose is called Lexical Functional Grammar (LFG) developed
by Kaplan and Bm {221 It hasri!s roots in previous results in transformational grammar as
well as in considerations from computer science and psychology. This grammar formalism
requires only simple phrase structure rules, by transferring a substantial amount of syntactic
infonnaﬁdq into the lexicon and by using multple levels of representation.

2.2.2.1. Justification

The main attraction of this formalism is its modular approach to grammar. The different
 intermediate levels are obtained without any semantic considerations, which makes it very suitable
for our purposes. The simplicity of the syntactic component reinforces this suitability to analysis.

The exclusion of %ormadoml rules is partly responsible for the simplicity of the grammar

rules. Let us now cxamimthisiaszstmmmsomedaaﬂ.

8

Transformation rules are syntactic rules that do not introduce any new items in a syntactic
representation but, instead, rearrange already generated items, They take a more abstract
reprwemaﬁbn of a senience (deep-structure) and produce one or many éorresponding surface-

structure(s), which accouni(s) for the particular word ordering of a given sentence. During'

analysis, such transformations must be reversed in order 10 retrieve the decp-structure of the

sentence. Such rules are responsible, within their own grammatical cnvxmnmcm for construcuons'
such as passives, wh-quesnons and other complex constructions. '

From a computational point of view, a grammar containing transformation rules provides some

desirable aspects, as they help 1o keep the number of rules to a minimum by having rules that can

apply to a collection of constructs, rather than having an individual production for cach onc. This

reduction of the size of the grammar is usually achieved by sacrificing some efficiency: the
application of transformations is guided by co ints whose implcmemaﬁons have traditionally
been of limited efficiency. However, more dnt work has shown some gain in the cfficiency of

such constraint implementations (4, 11, 12].

The most complete application in the 2forementioned references mainly focuses on language
generation, as opposed to analysis. However, the solutions they propose could be applied to
analysis, but in using transformations in this latter process, an additional problem arises. In
general, before a transformation can'be done or undone, the item 1 be mqvcd along with its
destination must be identified. - In the case of generation, the presence of specif:;c nodes in the
syntactic representation, which are natural destinations for movement, helps greatly to simplify the
various possibilities. No such help is directly available during analysis. Thercfore a grammar that

dbes not include transformations can lead to a more efficient implementation of analysis.

LFGs avoid the complexity of the si-mactic component usually cmountcrc;i in pon-
transformational approaches by representing a substantial amount of sfﬁmcﬁc information in the
lexicon. However, for our purposes, this trade-off between syntactic simplicity and lexicon
complexity is not as pronounced. The conceptual graph formalism also necessitates some
information that is simifar in some respect. A major hypothesis behind this work is that a lot of this

-information overlaps with what is needed by the LFG formalism and can also be represented in the

lexicon.

2.2.2.2. Description of LFGs
LFG is probably the only contemporary linguistic theory that uses traditional grammatical
relationg (such as subject, object, etc.) as primitives. The validity of a sentence, according to this
grammar, depends mainly on specifications stated in terms of these relations. In this theory, every . |
. sentence is assigned two pre-semantic representations: cénstituent stmcture! (c-structure) and
functional structure (f-structure). The first representation is basicall& a parse tree, that is a
hierarchical structure indicating the various combinations of words unophmscs inside a spntence.
This structure is obtained by context-free-like rules (i.e., rules that have only one symbol on their
left hand side) to which is associated some additional information, called functional annotations,
used to construct the second representation. These functional annotations are dependent upon the
the properties of the head of cach category. Hence there is no one to one correspondence between
the constituent and functional structures of a sentence. Figure 2-2 shows the c-structure ‘of the

The cat drank the milk 7 ‘
obtained using the rules shown in figure 2-3. e
S
(TsuBp=4 =1
. .))’ v / \ -
l (ToBN=4
drank L '
the cat (TTENSE)=past ' _ DE N
{(TDET)=the (TNUM)=sg (TPRED)= drink<(TSUBIXTOBT)>'
(TNUM)=sg - (TPRED)="car’
. muk
-~ (TDET)=the

{("NUM)=sg | (TPRED):'nSfm"

Figure 2-2: Exampie of a constituent structure.

The arrows included in the rules of figure 2-3 are variables referring to f-structures. The up- -
arrows ("T") refer to the f-structure of the mother node and the down-arrows ("4 ™ refer to the one

10 o,

S - NP
(Tsup=l ~ T=i P
VP - \Y NP
. (ToBn={
NP - (DET) N

v Figure 2-3: Sample LFG rules.
of the current n(;de. So for instance, the annotation undér the NP node in the S-rule specifies that the
f-structure of that node corresponds to the subject part of the f-structure of the sentence, Similarly,
the annotation of the VP node (T ={) of the same rule specifies that the information about that '
node is directly included in its mother’s f-structure. It is assumed that the annotation T = 4- is ”
 associated with each pre- -terminal node. , S : '

The information actually carried by these variables is obtained from the lexicon. To every lexical
entry is associated some specific functional information. For instance, the followings could be
possible entries for our sample sentence:

. cat N (TPRED)='cat’
milk N (TPRED) = 'milk’
drank V (TPRED) = 'drink<(TSUBIXT OBI)>’
- (TTENSE) = past

’I‘ne "<(TSUBJ)(TOBY)>" part in the verb entry is the subcategorization restriction specnﬁcd by » —
that verb. Section 2.2.3.1 will present actual format of f-structures for various constructs.

In this lexical approach to grammar, it is assumed that there is a different lexical entry for each
use or form of a word. For instance, verbs that passivize will have a separate lexical entry for both
“their active and paésive use. It is this strategy mgt is Jresponsible for keeping the syntax rules
needed to describe the language very simple, as most of the burden usually carried out by
sophlsncaled rules in other frameworks is accomplished in this theory by an extended lexicon.

-

. . ’

7

22.2.3. Analysis Task with LFG \

Using this LFG formalism, the task of analysis naturally separates into independent components.
First, a c-structure is derived for the sentence using the annotated context-free rules. Then, all the _
functional "specifications are gathered to derive the f-structure. This collection of functional
amnmotations, called the functional description of a sem'encc can be considered as formmg a set of
equations expressing some property of the senfé'nce The solution to this set of equations is the
f-structure of the sentence. Multiple solutions lead to syntactic ambiguity. Functional descriptions
statements can be used to either directly generate an f-structure or to apply some constraints onv\
existing structures, ensuring that they correspond 1o properties allowed by the gramimar. An
algorithm to solve these eciuaﬁom is given in [22). The f-structures so produced then serve as input
to the semantic interpreter. ' ‘

2.2.3. Functional Structures ‘

We saw briefly how a functional structure is derived from a sentence. These strucmre§\are the
starting point of the work presented here. We now look in some details at the general format of
these structures before examining representations for various constructs of the speech.

2.2.3.1. General Format of Functional Structures

An f-structure is a collection of attribute-value pairs expressing grammatical relations and other
information relevant to the semantic interpreter. Its general format is shown by figure 2-4.
r | —
Attribute 1 Value 1
Attrl"butcz \";?lue'2 :

Auribute n Value n ‘
F‘i%re 2-4: General Format of F-Structure _
Thcaﬁnbumeanmﬁxerbemenamccfagmmmancal relation (e.g., subject, object, etc.}, the name

12

ofa syniacuc feature (e.g., tense agreement etc.)? or other symacuc mt'ormauon such as modifier,.

adjunct, relative. There are four types of values: symbols, semantic pred:catcs f-stmcturcs and sets

A symbol is the simplest type and can be thought as an atom 1_n conventional logic formahsms.

Semantic predicates originate from the lexicon and are to be haﬁdled by the semantic invtvcrpreter.r

Some of them take argumeni(s), referring to other parts in the structure. The oonéept ‘here isk

similar to that of a lbgical predicate. The third type of value is an f-(sub)structure, that is a
__ collection of attribute-value pairs as currently described, representing some information that form

an entity, such as the information associated with a subject. Intuitively, a set here is a finite

unordered collection of items. Figure 2-5 shows an example of a f-structure for the sentence The

girl handed the baby a toy, possibly produced by Kaplan and Bresnan's grammar.

- SUBJ DET the : |
AGR [] UM %]
PERS 3
. : PRED "~ GIRL_
TENSE past ° o
PRED "HAND<(TSUBIXTOBI2)(TOB)>*
— —
OBJ2 - DET the
AGR [NUM sg]
- LPERS 3
PRED . 'BABY’ _
ht—— —————
OBJ DET a]
NUM sSg
AGR PERS 3]
T | PRED TOY’
e T e

Figure 2-5: F-Structure for The girl handed the baby a ty.
N In this structure, SUBJ, TENSE, PRED are examples of attributes. PAST /is a symbol value,
'HAND<(SUBJ)'(OBJZ) (OBI)>’ and 'GIRL' are semantic predicates, and the value of SUBJ, OBJ, OBJ2

are f-structures.

2Appropriate abbreviations are usuaily used in the actual representations.

13

Three conditions control the well formedness of f-structures. The uniqueness condition ensures
that every attribute has at most one value. The other two deal with the arguments of the semantic
predicates. Together they unpose a one 10 one qorrwpandence between the arguments of a
predicate and the parts of the structure that depend upon them. The completeness condition
speciﬁésmatanf-stmcauemustcomainallmegmmmaﬁcal functions that appear in the argument
liét of the predicate. That is every argument of a predicate (c.-g.. SUBJ, OBJ2, OBJ in figure 2-5) must
- correspond to an attribute whose value represents the grammatical function. The term government

" designates the relation between a predicate’s argument(s) and the grammatical functions for which
that subcatcgorizcé. The coherence condition takes care of the counter part, stipulating that every
grammaucal function present in a f-stmcture must be governed by the arguments of the predicate of
the sentence. An input string to which is assocxated an f-structure sauﬁyu;&ﬁme three conditions
is accepted as a grammatical sentence. '

With these ifications, we can now / examine actual f-structure representations for some parts’
¢

handled by dur system. In what follows, the mention of traditional grammatical categon’&s is purely
. for exemplifying purposa As it will be obvious shortly, there is no such distinction in the

formahsm

In order 10 ease the following discussion, we introduce some terminology. Two eftries in a
f-structure are said 10 be neighboirs (or aliematively in the same neighbourkood) ifﬂiey‘are part of
_x_z_agllmcsamcf-stmcnm For example in figure 2-6, SUBJ and VCOMP, NUMWaremthe
same m:ghboﬂmd but DET and VCOMP, and DET and TENSE are not. Two nmghbounng entries are

Vagsosmdmbcatmesamelevel . os

22.3.2. Verbal Information

mgutm,verbsmmpmnwdbyapwdimqudnmgariumcmégoveﬁﬁpgoﬂmpam.
These predicates, together with the appmpnaze tense and agreemembspeciﬁcalmns, appear in the
f-structure of their reéspective clause: However, auxiliaries* are understood as the main verb of a

3ThcMlm&mdpmmmumfw;ﬂhdxom&vebpadm&vmﬁdBmﬁngm
‘Undamﬂmummc!m'admmmm&vmubmqu&(fmmweﬂp«fmfm)MVm
used M passive comstructions. .

®
3} \\j

14

- .1’.__ — — .
NoMm . | '
| SUBJ DET .
PRED
T TENSE .. |
\ VCOMP
. L__ h_l""RED .
~ Figure 2-6: : - e

clause, taking another clause (predicated by the regular verb with which the auxiliary is used) as \
complement. For instance, figure 2-7 shows the main lines of the representation of an English

sentence having a progressive construction.

SUBJ o —n
TENSE g
PRED *prog<(TVCOMP)>*
vCcoMP | PARTICIPLE present| |
’ - |- sUBJ —_—
PRED
_OBJ » _J
o -

Figure 2-7: Representation of sentences containing auxiliaries.

In this representation, a pointer (represented by the arrow) is used to indicate that the véluc of its

SUBJ attribute is exactly the same as the value pointed to. Such pointers arise in many constructions

" within the formalism. The representation of clauses without auxiliaries is easily deduced from
figure 2-7. \

' 22.33. Nouns

15

In contrast to verbs, nouns can play one of many grammatical relations These relations, as

outlmcd ‘above, appear in the f-structure of a sentence. As for verbs, the noun itself is represented
. by a semantic predicate that may or may not take arguments, Tlus\predlcate is part of an f-structure.

always introduced by a grammatical relation (SUBT, OB]J, etc.) atmbhte The rest of the mformauon
related to the noun appears at the same level as the PRED attribute. This informatien includes the

" type of dewerminer; the agreement features, and possibly a relative clause, some modifiers, and a
iy . L - o

noun complement.

The type of determiner is represented by an entry having the a&,ribute DET taking only a symbol
as value. Determiners include articles and demonstratives. Henge fossible values are a, the, this,
that, these, those; In our application, we require this attribute-value pair to be present in the
represemation of every noun. The reason for this is that we niake a distinction between a noun that
occurs wiLhoui a deterniiner and nouns that can never have ény (e.g., proper nouns). The value m
the former case is none and in the latter n/a (for non-applicable).

The agreement part has the attribute AGR to which is associated an f-structure value Jcontaining
dttribute-value pairs [NUM ...] (for the number) and [PERS ...] (for the person). Case and
gender are not necessary for English but could be easily added in this structure (with a similar
fom:ai as the number of the person) for otbér languages. The representation for the modifiers will
be discussed in a forthcoming sub-section. o

Relative clauses, when present, are'represmted by an f-structure being the value of the attribute
REL. This attribute is a neighbor of the semanti¢ predicate of the noun modified by the relative:

The same parts as a main clause can appear inside a relative representation, However, there is an
extra entry for the relative marker. This field has the attribute REL MARK. It is kept even thought

the relative marker usually has a grammatical funcuon in the felat\ive. Since the same value cannot
have two attributes, the value of the attribute of the grammatical rdl?ph{%by the relative marker
will be a pointer to the f-structure of the relative marker.

4

This format covers constructions such as

f;

Ireadabookmatwonapnze . -)
The wine John bought is excellent>. - = :

(where nouns are being modified by a clause. For example, the noiin phrase The book that John

read has the representation shown in figure 2-8

i

e —
' DET
AGR 'NUM g
| PERS]
PRED *book -
REL’ — ' —
REL-MARKER A that -—
SUBJ T DET na]
' AGR [%RIM sg]
« - S 3
_PRED *john*™ -
VERB _[TENSE past 7
PRED ’<read(TSUBJ)(TOBI)>
OBJ : A
- —
b P |

Fi’gure 2-8: Example of a représemation for a relative clause.

In addition to nelanve clauses, nouns can also be Momer nouns. We dxsungulsh two

separate sn:uatlons in this case, resulting in two different f-structure represcntauons The first one

covers nouns that are always used with such modifiers. Consider for example:
The construction of the boat by the sailors.

In that use of the noun construction, there is always a by-object and a of-object |mp1|cd even when
not explicitly stated. Such nouns are similar to verbs in that they imply and relate together other
parts of the sentence. Hence it is natural 10 treat these nouns in a similar manner-as verbs. Frey [16]
uses semantic predlcatcs taking arguments, correspondmg to the predicate of the verb of the same
root {e.g., construct, construction). The number of argumcnts is usually the same in both cases; but
their names, however, may differ. Those arguments relates to ganbute-valuc p_aus at the same lcvgl
as the predicate for the noun, just as in the case of verbs, as shown in figure 2-9. Hence, the
Completeness and Coherence Conditions apply to these arguments..

5The relative marker is not realized in this example

N _

-~

W

.

¢ ~ \
;; s j /17 - - .
L — e
DET the
AGR: 'NUM sgj
S 3 :
PRED mstmcuon<(TBY—0BJ)(fOF—0BJ)>)
- - | orooBy [DET
- - AGR sg]
; l PERS 3
PRED "boat
, C— N =
_ -..—-4 BY-OBJ DET the s
’ "AGR | NUM plur
l PERS 3
PRED ’sailors’

Figure 2-9: Representation of nouns subcategorizing for complements.

The second situation covers nouns to which precision not entailed by them is added. A good
example of that is the possessive information as in the book of John. These nouns phrases are called
noun complements and are represented in a similar way as relatives. Our representation follows the
intuilivé concept that such constructions can be easily paraphrased using a relative clausenfez., the
book of John — the book that belongs to John). Furthermore, as it is the case for adjuncts (which

will be discussed shortly), the last two conditions on well-formedness cannot apply 1o such
| constructions. We use the attribute NCOMP and an f-structure value to repmse;u the complement
itself. Figure 2-10 is a good ﬂlustrancm of the possible nestedness that can occur in such a structure.
The predicate color is, as expected at thc outmost level in that structure since it is the one that

would carry the grammatical relation associated with that noun phrase in a sentence.

Some nouns can be used in either situation®. In this case, different semantic predicates are kept
from the lexicon, reflecting a difference in the handling of the semantics of both cases.

6Notit:t:!.l'm%.he(:ascofno\msLhualwnysappen’wid:modiﬁersissimplytkercgularc&scwixhanaddiﬁonalent’ry.
- N

18

for the antecedent of ttie pronoun. The value of such a field is a pointer to the f-structure of
the antecedent. However, this field must be optimal'in the representation of pronouns, since the
‘antecedent’ may not be explicitly stated. When not explicit' in the sentence, the task of relating a
pronoun to its antecedent is clearly part of the semantic interpretation. |

2.2.3.5. Modifiers

‘Modifiers are not very much detailed in the literature. We developed a representation for them
that fpllows the philosophy of the theory. Nouns verbs can be modified by adjectives and
adverbs (respectively). In tum, these modifiers can be modified by others as in very tall. Hence,
wesoughiarepresemaﬁonfefmodiﬁemﬁmwou}dbcgeneraimghmbeapplicdlomany
different constructions, regardless of their nature.

TThere is never any argument in the predicate of 2 pronoun.

C -
DET the '
{AGR - oM g
PERS 3
NCOMP DET the 7
AGR 'NUM g -
| PERS 3 '
PRED ~ uniform’
NCOMP DET the T 1
AGR NUM sg g J
ERS 3 .
. '«T PRED ‘team’
_— : I\‘J MOD [QUAL vismng]
' . B ‘ - —
: e pu— A
o 3 . Figure 2-10: Representation of noun complements that are not subcategorized for.
2.2.3.4. Pronouns
The represenfation of pronouns is simpler than the one of nouns. There is no need for the DET..
REL and NCOMP fields. The PRED and AGR fields retain the same format”. There is an additional .«

19 e o

Each modifier of a noun or a verb has its own muy,of;vhich its modifier(s), ifiany, are part. The
modifiers are introduced by the attribute MOD and an f-structure value comaihing the pair [QUAL

..} and possibly the pair {OP ...] for negation. The collection of these [MOD ..,] pairs
becomes the value of the attribute MODATTR that appears at the same level as the PRED of the
modified category. The same structure is used inside this one to handle the modifier to the one
being represented in the first place. .

Simple modifier(s) o a hqun (or to a verb) are represented as in figure 2-11.

‘MOD | QuUAL ol% ’
MODATTR.) L

MOD | QUAL mst] \

MOD | QuAaL yellcg

PRED

Figure 2-11: Representation of modifiers.
‘Ige MOD atmbute appear at the same level as the PRED of the modified category. When a modifier
to another modifier is present, then a structural representation similar to the one of figure 2-12 is
used. Again, the second MODATTR attribute appears at the same level than the category being
modified (friendly). As for verbs, OP only appears when negation is employed. This is a modular
representation scheme that allows 1o keep together all information related to each modifier.

[DET the o] ‘
AGR NUM g A
PERS 3

MODATTR | MOD [QUAL fncndly]
op

MODATTR EDEG vcry]

;PRED . *officier”

Figure 2-12: Repmscnﬁation of a "modified” modifier.

22.3.6. Adjuncts

@

We have seen how verbs and certain nouns relaie other parnts of the sentences in a similar way as a
logical predicate by the use of arguments. However, a sentence can contain other elements that
although modnfymg or complemenung the predicate, are not syntactically related to it. This is the

case, for instance, of the temporal or locative information in the sentence:
They met at three o’clock, in the park.

three o’clock and in the park serve as adjunct to the predicate meer. The information carried by

these adjuncts is important for the semantic interpretation but cannot be associated with the

predicate in the same manner as the subject or the object because predicaies do not put any .

restriction on their adjuncts other than semantic ones. Hence adjuncts are not affected by the
Completeness and Coherence Conditions.

Kaplan and Bresnan give an overview of how adjuncis can be treated. They chose to represent
them as a set. This set is the value of the attribute ADJUNCT and ilsilcmems are {-structures, onc
for each particular adjunct. They gi#e no detail about the inlcr:nal representation of each adjunct.

, - —
We propose a more detailed structure for the adjuncts of a sentence. Each particular one has an

f-structure being the value of the atribute describing the type of adjunct (e.g., location, time, cause.
eic.). Each ofdmese f-structures is basically the same as the one for nouns, except that there will be
an additional field ~ having the anribute RELATION — o describe how the event represented by the
predicate is affected by the adjuncts. This allows us 1o distinguish easily bet@een things fike in the
park, in front of the park, eic. The f-structure representation for that is simply a- field with the

P

21

~
attribute RELATION and with an {-structure value. Such a value type is necessary here in order 1o
handle possible modifiers as in shortly after four o’ clock. The f-structures for ail the adjuncts of a
sentence are gathered into another f-structure which is the value of the attribute ADJUNCT,
appearing at the same level as the predicate of the verb modified.

[LOCATION [T pgr the 7]
PRED , park’
| RELATION [TYPE in]]
LOCATION, [peT : the]
PRED "fountain’
. .
| RELATION [ryPE in_frontof]
TIME — DET n/a =]
PRED "4-0'clock’
RELATION TYPE after
MOD [QuAL shoruy]
CAUSE SET o,
PRED “meeting’
RELATION [TYPE for]

- . — —

2.2.4. Related Computational Work

Frey and Reyle [17] completed a Prolog implementation of this relatively new linguistic theory.
- Their syszém inputs a sentence in German (##check##) and produces an f-structure. In accordance
with the theory, théy diyide the task of parsing with this formalism into three major steps. First a
parse tree is generated by the contexi-free-like rules. Then functional equations are instantiated.
These equations are at the category level and their values are coming from the lexical items. Finally
these equations are solved, producing f-stmctures..mir paper shows how to translate LFG into
Definite Clause Grammar {DCG) and claims that the use of DCG and the procedural semantics of
Prolog lcads to an efficient implementation by having the abovc three steps realized.
simultaneously. '

This work was [ater used as the parsing component in a knowledge base interface [18]. Frey et al.

°

+ 22 e

developed a question-answenng system capable of handling requests in a subset of German. The
most important ructicns with respect to such an application are covered, including conditional

and relative clauses, universally and existentially quantified noun phrases, sentence and constituent

negation, etc. The f-structures output associated with the input sentences arc then passed 10 a
semantic analyser. Discourse Representation” Structures (DRS) developed by Kamp are the
semantic formalism of this system. Finally, a data base is built from the DRS’s using two possible

methods: DRS’s can be translated into Prolog clauses augmented with some deductive principlcs.‘

or some inference rules can be derived to operate on these structures. |

Another Prolog implementation of LFG was done by Yasukawa [37]. Although hc aimed at

comparable gbals with Frey and Reyle’s (use of DCG, dircct constructions of f{-structures during

parsing), he focussed more on building a formal system to represent syntactic knowledge. As a

result, he came up with good data structures for representing the various LFG primitives. These
abstract data types are hidden from the user in order to keep the grammar rules closer to the
original LFG theory. This is realized by having a macro notation that is similar to regular LFG

rules, which are later translated into Prolog programs. This gives a less cfficient implementation |

than the first one. However the LFG coverage is claimed to be wider in this second

implementation.

Frey also investigated the details of a particular construction, the noun phrase, in the specific
context of LFG [16]. He gives complete LFG treatment for constructions like comparatives,
partitives, and noun complement. This ir;cltxdcs deﬁn'mé appropriate phrasc structure rules, along
© with associating these rules with functional schemata in order to produce f-structure.

Uehara et al. [35] used also LFG in their Integrated Parser. Their project integrated into a same
module syntactic, semantic, and contextual analysers. Their goal aimed at text understanding as
opposed to understanding sequences of individual sentences. Havi‘ng these thréc components
grouped together helps resolving some ambiguities that would be difficult to handle in a sequential
process (i.e. syntax — semantics — cmLext;‘ |

2.3. Target Formalism

The semantic representation that we used for this interpreter is the Conceptual Graphs (CG).
_ These graphs were developed by John Sowa and are based on evidence from linguistics,
ptdlosophy,‘ and artificial intelligence. In[31], Sowa first mofivates conceptual graphs from
different pans of cognitive science. Then he introduces the graphs formally in an axiomatic way. |
Finally he explains how conceptual graphs can be in some areas of Antificial Intelligence.

2.3.1. Justification

Conceptual graphs provide a good formalism to capture many aspects of natural language. The
main motivation for using this formalism is to entertain the possibility 0f producing instances of the

formalism used in the generation sysiem, as mchﬁoned above, in order 10 build a translator.

23.20 Description of Conceptual Graphs b

5
The information in CGs is divided into two classes, each of which corresponding to a type of

node. The concept nodes, represented by a box, carry the information about entities, attributes,

staics', and events. The relation nodes, always appearing in a circle, show how the ccmcepts are

related and the role that each one plays. These nodes can be thought of as names associated with
"every arc of the graph. These relations are directed and most of them are monadic or dyadic.

Howévcr, there is nothing in Sowa’s formalism that prevenis having relations with a gx"ea;er-
number of arcs. This type of nodes indicates the case relations, as well as the logical and causal

links between various parts.)

The concept nodes contain a type label and possibly a referent. A rype label is a token describing
the nature of a concept. The referen:, separated from the label by a colon, specifies the extension of
th concept referred to in the sentence. These referent include generic, individual, generic set,
specified and parntly specified sets. The following table illustrates the differences between each one.

Every generic concept is assumed to be existentially quantified. Variables can be used in generic
concepts to indicate cross-reference: two concepts with the same l;abel inraagrapb are assurned to
represent distinet entities, unless they appear with the same referent (including variable name).

24

KIND OF REFERENT GRAPH NOTATION POSSIBLE READING
Generic [MONKEY] or MONKEY:*] a monkey

Individual [MONKEY #29] or [MONKEY:#] the monkey

Generic Set ~ [MONKEY: {*}] B monkeys

Named Individual [MONKEY:Jocko] Jocko

Specified Set IMONKEY: {Jocko, Toto}] Jocko and Toto
Partially Specified Set / [MONKEY: {Toto,6}] " Toto and others

All the labels are grouped into a partial ordered structure defined over the set of all the type
labels, according to the level of generality. This hierarchy is introduced in the following section.
~

A particular CG is assumed to represent a unique proposition. It is possible to find a CG for any
syntactically well formed sentence. However not all such sentences are meaningful. For instance,

the sentence::
The treg ate a green dream.

is a syntactically valid English construction but conflicts with common sense knowledge. Its, for
obvious reasons, desirable to prevent a semantic interpreter from finding representation for such

sentences and to rule them out as nonsense, incon.sistsmiés. erTors, elc.

Sowa identifies the subset of conceptual graphs that represent actual or possible situations as
canonical graphs. Initially, there is a set of CGs that form the canonical basis of the system. This
basis associates a valid graph with every type in the hierarchy. Examples of such graphs are:

[EAT]-(AGENT)— [ANIMAL]
[PHYSOBJ}-(ATTR)— [COLOR}®) \

TheﬁfstonespeciﬁesmaimeagemofEATmustbeoftypeAMMAL.mscco_ndomensur’csthat ’

COLOR is an attribute associated with a physical object. Such graphs can be _uscd as semanlic
constraints o rule out sentences such as the one above, or o give patiems that are expected to be
present with a particular concept For instance, the concept GIVE is generally associated with
. someone giving, someone receiving, and something being transferred, so a canonical graph for this
concept should include all these three items.

5CGs can also be represented in a linear form by using square beackets for boxes, and parentheses for circles.

28 | S

There are four rules defined to form new canonical graphs out of existing ones. Copy creates an
exact duplicate of a CG. Restrict replaces the type label of a concept by the label ofa subtype; or if
the concept is generic, change the referent to an individual (e.g., (DOG:*] = [DOG:SNOOPY]). In
‘both cases, the conformity relation (to be introduced in A& next section) must be satisfied before
and after the modification. Join merges identical concepts found in two different graphs. The new
graph is obtained by removing one instance of the concept and linking to the other one all the arcs
originally connected 1o the first p‘ne..‘Simplify removes identical relations connecting the same

S

concepts.

23.3. Type Hierarchy)

‘Sowa defines a set (T) gihose elements are type labels. Each of these type labels represents a set
whose elements (if any) are assumed to satisfy a particular type. These elements are said 19/66
irmdnces of the given type. A unary operator (8), called the denotation operator, yields, when
applied 10 a type label, its corresponding set of instances. A function (called type) maps entities
into T. This set of types is augmented by a partial ordering. This ordering relation, denoted ".S ", is
mﬂcxivc. antisymmetric and transitive. It captures the ndtion of sub/supertype. Let 7, and 7, be
two type labels, T, < T, is satisfied if 87, < 87, |

To this structure are added two binary operators (U and M), the first one retuning the least upper

bound and the second, the greatest lower bound of any two elements in the set 7. These two
bounds are aiso called minimum common supertype and maxzmum common subtype With the

addition of the these ope:ators, the sn'ucmre becomes a lamce. This lattice of types is bounded .
above by the universal types (7), of which everything is a subtype, and below by the absurit&pe _

(1), of which nothing is a member. This bounded lattice forms the type hierarchy. An additional
relation, called the conformity relation (denoted "::"), is defined on this hierarchy. It relates

individuals markers 1o type labels and is satisfied when the particular individual is a member of the -

given type.

This hierarchy framework is first set up for concepts. However,itcaﬁbeexmdedwmélude
actions and properties. The function fype can be extended to map conceptual relations to type
labels. The same partial ordering of the structure can also be extended to type labels of conceptual

2%

relations. However, no type Igbels of concepts shw}d have any common superype with type
labels of conceptual relations {except of course for the universal type).

23.4. Related Work with Conceptual Graphs

Concepmal graphs have been used in vanous areas of antificial mlclhgence However, most of

" their applications are oriented towards natural language processing. 1n this section, we present

some papers that focus on parsing languages with this semantic formalism.

Sowa and Way [32] developed a semantic interpreter covering a largé subset of English, They
generate CGs from a parse tree. The parse trees input to their system are gencrated by augmented

phmsestrucruregréxﬁmarnﬂes.OrﬂysynLacﬁcnﬂwmusedlopmduccthcpamctrccsonwhich ‘

the semantic component operates. The idea of the production of graphs is as follows. A canonical
graph is obtained from a canonical graph lexicon and is assomamd with every word. These graphs
are then joined to.form the sen/iantic mpfesematic;n of the sentence. ’I‘hcAjoimng process is guided
by the parse tree, determining the order in which the joins should occur. This‘ system is rﬁsponsiblc
also for detecting anomalous sentences ii.e. syntactically well formed but non mecaningful), since

no semantic information is used to generate the parse trees. They have implemented this sysiem

using the Programming Language‘for Natral Language Processing, a language with built-in
' faciliﬁes for parsing and graph operations. ‘

Sowa also empmsim the importance of including appropriate information in the lexicon in order
to achieve good paising. In [33], he presents a series of examples illustrating the scmahtig pattemns
that have w'be represemed in the lexicon. This includes thematic relations as well ag other relations
not explicitly stated by the syntax (e.g., complex noun phrascs like sound system technician) and
the fact that the meaning of more complex sentence can equally be carried by many simpler ones
(e.g. Tk:z Jjanitor opened the door with an old key and The janitor opened the door. He used an old

~ key.). He then goes on 1o outline a general procedure to derive conceptual graphs from

conventional syntax directed parser, without imposing any more restriction on the grammar rules.
The implementation described above is based on this approach. The nature of his approach
suggests some similarities with LFGs. Although they differ in goal, they both put emphasis on the
lexicon and on head categories. |

Chapter 3

A Graph Representation Scheme® 4

The use of graphs to represent knowlcdge originates at the’earliest stage of artificial intelligence

and has since then been very popular [26]. Graphs havé been incorporated in numerous

applications, which justify the large amount of attention they have x'-eccivcd in the literature (e.g.,

(24,736, 1)). ‘However, the implementational details of even the most frequently performed
operations have often been overiooked. |

. o ;-
In the conceptual graph formalism, a directed acyclic graph serves to represent the type
hierarchy.10 In the original CG formalism, the hierarchy is assumed to represent the links among

the various concepts. As we shall see later, in our system the type hierarchy is involved in a-
semantic verification process. For our purposes, we need to devote some attention to the -

implemenyation of the operations performed on the hicrarchy, as their efficiency directly influences
that of the entire system. 7 | ' [' '
-/

In this chapter, we introduce a method to represent directed acyclic graphs in Logic
Programming. ’Ihel main characteristic of this représemar.ion is that it fallow‘s frequenﬂy
encountered graph operations to be performed very quickly, using features of Logic Programming.
We also present a compiler that genérétes this representation from a more natural one. Section 6.2
will discuss some other applications for this graph representation scheme.

mmumwmmwumwnmmmwmmwmm].

%Recall from Section 2.3.3 that the rype hierarchy of conceptual graphs is a set of type labels on which a pertial
ordering (denoted ™S ") is defined. Hence this structure can wrivially be representéd by a graph

27

/

3.1. Introductory Details

»

Let us first introduce formally the type of structurc we are considering and provide & few
additional details about the nature of thc problem. The class of structurcs on ‘which this method
applics is that of directed acyclié graphs which we present next, together with some of its
characteristics. ' '

3.1.1. Definitions

-

A directed graph (DG) is a 3-tuple (¥, E, T). N is a finitc non-cmpty set, called the set of nodes,-
E is a set of ordered pairs, called the set of edges and I is called the incidence mapping and maps
E into NXN. If ee E, then T(e) = (nm), where n is called the initial node of ¢ and m, the

terminal node of e. We impose the following two restrictions on DG’s:

»For any nyn e N, there is at most one e € £ such that I'(e) = (n.m) (i.c., there are no
muitiple edges in our DG’s).

»For any ne N, there is no ee E such that F(e) = (n,n) (i.c., there is no loop in our
" DG’s). . '

~

Let DG = (N, E,T) be a dirccted graph. A root r of DG is a node such that re N, and Bee E

such that T(e) = (m,n). A path P in DG is a scquence < .
e giEg, - NN 120, neN, ¢ekE and I"(e‘.) = (ni,n.ﬂ), Isist

1+1’ 5

For every n;, 1sist, onP, we'say that P passes through n;. The above two restrictions on the
stz;acml;e of directed graphs enable the representation of a path by a sequence of nodes only. A
path P is called a simple path if no node appears more than once in it. Apodcmissaidtobc
accessible from another node n if there is a path containing both n and m in the DG. If there is at
-least onc path that passes through every node of a DG then it is said to be connected. A DG s
acyclic if all the p'azhsvi; contains are simple. In what follows, we use the cxpression directed
acyclic graph (DAG) to refer ib a connected, directed and acyclic graph having a singlc root.
v

3.1.2. Goal of the Representation

A very 1mportam operation on the structure defined above is the one of acc&sslbillty venﬁcauon
gwcntwomdes determine whether there exists a path from one to the other or not. Inthecase
where the DAG represents a type hierarchy, this <accessxb111ty operation corresponds to
sub/supertype verification. “A node ¢, is a subtype of another one t, if there is a path from ¢, to 1,
in the graph representing the hierarchy. ’I'he representation propose& here aims at optimizing this

node accessibility relation, in terms of which many hierarchy operations can be expressed.

An obvious method to determine whether a node N, is accessible from another node N, is to
traverse the sub@ph rooted at N,, looking for N,. However, depending on the representation_ of
the DAG, this apbroach can be costly (O (nz)). More efﬁc_ient solutions can be obtained by taking
advantage of the characteristics of the structure itself.

o

3.2. Usefulness to Our System

Although the representation introduced in this chapter has been used for implementing a
particular approach to grammar than the one used in this work (see Sectipn 6.2), the main
motivation that lead us to develép the graph representation scheme described in this chapter was to
devise a good implementation for the type hierarchy. Such a type hierarchy is an mtegral part of
the Conceptual Graphs formahsm and we adopied the same structure for the hierarchy of our
system as the one defined by Sowa and introduced in 2.3.3.

As we shall explain in more getaﬂs in the following chapter, the type hierarchy plays an important ,
role mour system. In particular, a frequently performed oberation, subtype verification, can easily
De expressed in terms of node accessibility. _We will see how this subtype operation is part of an
important semantic verification. Due to the way in which the system operates, subtypé is the

fast subt

dominant operation in this semantic verification. Therefore, a hierarchy representation that allows
y; verifications between nodes constitutes a crucial problem worth investigating.

. 3.3. Related Work

This problem of accessibility was examined inside the framework of type hicrarchy clsewhere.
The two papers we now survey take insights from the structure being searched to yield an{ efficient

solution.

. _
3.3.1. An Integer Comparison Approach

In [29], Schubert et al. present a method for type verification that reduces to integer intcrval
inclusions. The various types present in their system are gm_upe:d in a tree structure. Each node of
the tree represents a single type and is associated two numbers. The first one is the preorder
traversal numberx(;f that node and the second one is the highest preorderAnumber of its descendants.
With this numbering scheme, a node will be identified as-an anccsl.or' of another one if the interval
_ specified by its two numbers contains that of the other node. Ciearly. this -allows for quick
verification of sub/supertype. However, the applicability of this numbering process solely rests
upon the tree nature of the hierarchy, and hence cannot accommodate the hierarchy structure of
Conceptual Graphs. | | |

3

3.3.2. A Unification Approach

® 7 . ¥
Dahl proposed in [8] a solution for the type verification problem based mostly on unification.

There is no central structure representing the entire hierarchy. Instead, a paniél hierarchy of types
is included in every lexical entry. The partial hierafchy for a given entity contains only the types
from the root to this entity. The, comparison of two such parliai hierarchies is doné only via
Prolog’s uniﬁéation of the two terms. This is the only operation needcd to determine whether an
entity is @ subtype of another one. | |

a1
3.4.-A New Solution .

- As it was observed in the second approach surveyed, the use of unification yields not only a much

~ simpjer impiczﬁemation‘ than traversal, but also a more efficient one. The execution of any Prolog

. program necessitates some unifications. = Since unification is a built-in part of any Prolog

implementation, a progran requiring only a fixed number of unifications for its execution is bound
10 be more efficient than another that requires some additional processing in addition to unification.
Therefore, using &\jﬁcau'on as for a§\much processing as possible is clearly a desirable aspect

which wé sought while designing our representation.

3.4.1. Introduction ’

Our solution is based on the second method surveyed above. However, there are some aspects of
this approach on which we wish 1o improve. First having a partial hierarch)} to describe the type of
a particular entry implies that a lot of redundascies are stored, in comparison to having a central - |
structure and storing only one node per entry. This means that the common éupenypes 6f closely ‘/.
related entities are stored<for each one of these entities. This redundancy could be acceptablé in the
case of a tree structure. The nuntber of redundancies in the representation is linearly dependent on
the number of nodes in the structure. However, in the case of- graphs, that relation becomes /
quadratic. Also, every time the hierﬁn:hy needs to be modified (e.g., to include more specific
types) every entry has to be examired, sinééits‘panjal hierarchy might be affected by the change.

Furthermore, this approach is also limited to type relationships structured as trees To befit the
hierarchy structure of CG, we must allow more general relationship structures (i.e., graphs)

In Dahl's system, uniﬁcaﬁon is used to ’compared nodes for accessibility; but in. reality, the
unification process takes place on paths from the root to particular nodes For the reasons just
mentioned, we do not want to associate a path to every node exphcxtly The idea behind our
approach to ﬁg acccssnblhty problem is to have a representation allowing fast access to paths and
then use unification on such paths for comparisons. This representation is introduced next.

\

—y

32

3.4.2. Description of the New Representation (”Sw

1

In order to minimize traversal during node comparisons, we digress from traditional graph

_representation and associate a node with an incomplete path from the root to that node as its

repreéemaﬁon. To simplify the discussion, we will-always refer to the partial DAG of‘ﬁgurc 3-1in
our examples. '

i < ‘
IO\,
5/2\7/§\9 lIO\ll :
12/ \13/ \ILZ \IIS/ / I\ |]
VAVERERNVIN

21 22 23

\I/

Figure 3-1: Example of a graph structure. The type hierarchy used in CG has the samc format.

In general, graphs such as the one in figure 3-1 can comamf@ bciween two nodes that are
deterministic (i.e., umquc) For instance, the path from 22 to 4 is deterministic; as opposcd 1o, say,
the one from 15 Jto 1. Accordingly, we introduce the notion of node deter;mmsm to easc the
discussion. We say that a node is deterministic if the path from the root to it is unique. Otherwise,
the node i is said to be non-deterministic. In figure 3- 1,22 s an example of a deterministic node,
whereas 15 exemplifies the second kind of node.

The path(s) are associated ach node by the binﬁry predicate path(Node,Path). Let us
consider the deterministic pod:’;sL The path from the root to such nodes is represented in our
system by a difference list!l. For example, here are some actual representations for nodes of this

nature taken from figure 3-1.

1iWe will give more details on this data structure shortly

path(2,[1,21ANA)-
_ path(16,{1,4,11,16lANA).
path(22,(1,4,11,18,221ANA).

In this,case, the path relations are stored as facts in a Prolog database.

The representation of nodes of the second kind is more complex. Because of their non-
dcu:mumsuc muure storing their various paths explicitly can lead to combinatorial explosmn

Hence, we must resort to some.\comw(a/non in order to represent the paths of such nodes.

The path representations will again be expressed in terms of itie binary relaﬁon path. However,
in this case, the predicate will be siored as a Prolgg ule, as opposed to a fact. ‘The part of the path
from a x;c;le to its first non-deterministic anéestor“is kept explicitly. “Then a variable is introduced
o represent the non-deterministic part. The role of the rule’s body is to instantiate this variable to
various paths through backtracking. For instance, node 20 in figure 3-1 would be represented as:

path(20,A\B) :- k(
path_to_parent(14,0), (5
addend(C,14,A\20iB)). : : :

path_to_parent(14,[1,2,6lANA).

path_to_parent(14,A\B) :-
path_to_parent(7,C), .
addend(C,7,A\B). . </

path_to_parent(14,(1,3 81ANA). | y' -

The path rule is to be interpreted as follows. The path from the root to ;0 is: A to which 20 is
added at the end if the path from the root to a parent of 14 (which is the first non-deterministic
ancestor of 20) is C and A is obtained from C by adding 14 at the end. The binary predicate
path to_parenl retums a path (as second argument) from the root to a par-nt ofth\e noce passed as
its first argument. Such paths to parents are represented in the same way, that is, exphculy listed if
unique, and by a recursive call to path_to_parent othermse The predlcate addend retums as
third argument a difference list formed by msemng the second argument at.the end of the
difference list passed as first argument.

)Quring execution, a call such as
™ 7 path(20.X).

would instantiate X to all possible paths to ye node 20 succéssively. through Prolog’s backtracking

mechanism:

L3

'
o~

B

X=112,71420ZN\Z ;
X =1{1,3,7,14201ZNZ ;
X =(1,3,8,14201ZN\Z ;

X‘={1,2,6,14,ZQZ}\Z’; Q

However, all the processing to find a particular value for X is done entirely by Prolog's unification.

@.4.3. Use of Difference Lists

.

An important data structure used in this algorithm is a difference list. This strucsure provides a
good altemnative to process sequences of elements in a simpler and more emc%y than regular .
lists. The basic concept is to use the difference of two lists in order to represent a certdin list. For
example, the list {a,b,c] can be represented as the difference of the lists L1 = [a,b.c.d,e,fland L2 =
fd,e.f]. L1 is called the head of the difference list and L2 the tail. We use the backslach character

("™\") for the difference operator between the head and the tail. The improvements over regular list
/

‘operations are achieved by a clever use of variables. A more complete presentation of difference

- lists appears in {34]. The following two proceg'gres illustrate very well the kind of efficiency

gained By the use of difference lists, compared to the equivalent procedures for regular lists.
addend_dI(HNEIUT]EILH\T).

append_dI(HINT1,TINT2, HI\T2). -
The first predicate takes in a difference list (as first argument) and an element (as second argument)
and returns the same difference list with that element inserted at its end. The other predicate retums
as third argument the concatenation of the differf.nce lists bf its first two arguments. Its successful
completion is conditional upon the possibility of unifying the tail of the first list with the head of
the second one. The interesting feature about ! ‘two procedures is that everything is donc

through unification, which makes these two :mons executable in constant time!2, The
equivalent predicates for regular lists have linear complexiy in the size of the input list. These two

procedures play a key role in the efficiency of our system.

This particular data structure was used to take care ot3 the following situation. The only restriction
to use unification to compare two paths is that they be-both represented from the root to the nodes

S

124 formal account of efficiency is given in Section 3.4.6.

35

~

(top-down), rather than from the nodes 1o the root (bottom-up). But nodes have 10 be visited from
bottom up during path construction in order to take advantage of possible tree-like structures.-
Irxfuitively. regular lists (or any other Prolog operators) could be used since they allow fast insertion
in the first position, which is very suitable to the direction of the traversal. A problem originates
with the variables that are possibly introduced for a path. Those variables get instantiated to 2
sub-path cbntairﬁng one or more nodes. If such a variable is inserted as the first element of a list,
“then it can be instantiated 10 only one term. For example, during the processing of the node 14 in
figure 3-1 we would have the list [X,14] representing(its path. Due to the way in which 'Pmlog
handles operators, the variable X can not be instantiated to more than ong node as would be
necessary, unless sublists are u‘éedn. To avoid this problem, we delay the addition of a node to a
path until this path is fully instantiated. If paths are represented by a difference list, then insertions
can be done at the end of the fistsjust as fast as 10 the beginning (i.e., the list does not have to be
.raversed), using the predicale addend dl. This strategy is best illustrated- with an example.
Consider the actual predicate gererated for the node 20: !
' path(20,A\B) :- |

path_to_parent(14, ©),

addend(C, 14,A\I20[B])
First a path from the root 10 14, the first non-deterministic ancestor “of 20, is ob{amcd Then 14 is
added at the end of that path 7e) produce a new path itself terminated by 20. It might be useful to

reexamine the predicate addend_dl dxspla’;cd above in order to fully understand this process.

Hence, during consultation of the new structure to find a path, the only processing done is in the
case of nodes with multiple parents. In such cases, some kind of processing (i‘ecursibn or iteration)
is unavoidable. All the other operations, including the ones for the deterministic case, are handled

by uniﬁcatic@onc. -

13This is not 2 probiem inherent 1o lists, any defined operators would behave in the same way.

3.4.4. Preprocessing

N

In ‘order 10 prevent potential users from being discouraged By the complexity .of this

representation, we developed a short compiler to generate the new graph representation

automatically from a more intuitive one. Not only is such a compiler uscful fqr the first generation
of the representation, but it becomes extremely convcniem‘ when the hierarchy needs to be
modified (to include more specific types for example). In such a case, one would normally have to
examine the representation of all the nodes of the hierarchy, as their repmseﬁiation could be
affected by such changes. Instead, the compiler can reprocess the new input representation, which
can easily be updated. " | '

The coﬁlpﬂér assumes that the hierarchy 1o be processed is input by a binary predicate that
describes for each node (first argument) the list of its parent(s) (sccond argument). These binary
predicaies are assumed to be stored as facts in a Prolog-database. For exampic, a valid input
representation for the graph of figure 3-1 could be:!4 .

parent(2,{1]). o © parent(3,[1)).

. parent(4,[1]). parent(5,[2])).
parent(6,[2]). ‘ parent(7,(2,3)).
parent(8,[3]). : parent(9,[3]).
parent(10,[4]). ‘ parent(11,[4)).
parent(12,[5]). parent(13,[5,6]).
parent(14,(6,7,8]). parent(15,(8,9,10]).
parent(16,[11]). - parent(17,(11)).
parent(18,{11]). parent(19,[14]).
parent(20,[14]). parent(21,[17,18]).
parent(22,(18]). ' parent(23,[18]).
parent(24,[21,22,23)), ‘

This representation is reasonably simple, although perhaps not the most intuitiye one, and also very
concise: there is only one fact for each node and each edge is represented oy:ly\mcz. Since the
representation of non-deterministic nodes involves representations of its ancestors the ¢compiler
requires that all the input predicates describing a node’s ancestors appear before that node’s
predicate in the database.!3 The compiler is shown in figure 3-2. * |
(. \
7 - B '
**The name of the predicate used can be different, as it has 1o be specified by the user.

lsAmrﬁngprocuscwldbexﬁgdLorcplmemjsrutrisﬁmshouldilbemidaedmomaeinmpuﬁcuw
case,

transform(UserPred) :-
assert(path(1,{1IX]NX)),
Goal =.. [UserPred Node Ps],
call(Goal),
genrules(Node,Ps),
fail.

transform(_).

genrules(A,[B]) :-
clause(path(B,C),D),

addend(C,AE),
assen((path(AE):-D)),

gcnmles(A B) :-
assent((path(A,C) :- path_to _parem(A D), addend(D,A,C))),
lookparent(A,B).

lookparent(A,[}).
lookparent(A,[BIC]) :-

clause(path(B,D\E),F),
assert((path_to_parent{A, DAE):-F)),
lookparent(A,C).

Figure 3-2: Compiler generating the new graph representation.

In the procedure transfoﬁ UserPred is the name of the pmm\mm represents the input graph
(for example, parent in the above example). The first subgoal in the procedure simply initializes
the system by specifying that the path from the Toot of the lamce‘is simply composed of that node.
Then a fact UserPred(Node,Ps) is constructed and called to instantiate its arguments. ’I‘be
resolution mechanism of Prolog will instantiate this-call with the first UserPred predicate in the

data base.’l'hecalltogmfules wiﬂgémralc all the facts and rules for that node in the new

representation. It is divided into two disjoint possibilities. If Node only has a single parent then it is
—d

added 1o its parent’s path and this newly fo path becomes the path of Node and the body of

the parent’s rule also becomes the body of the rule for Node to mstannate any variable that were

originally on the parent’s path. Otherwise, fif the node has more than on¢ parent, then a single

variable is inserted for its path and icate (path_to_parent) to instantiate that variable is

_-asseried. There are as many clauses asseried for such nodes as their number of parents. The

generation of these clauses is done as follows. For each parent, add the node 10 the path of that
parent and use the same body as in the parent’s rule in the new one. The same process takes place
for every fact describing the input graph.

3.4.5. Comparison Mechanism

The above described representation was designed to allow more flexibility in’bo;h the type of

structure being processed and its input representation, while preserving the possibility of using -

unification 16 compare nodes for accessibility. We now examine the details of this operation in the
framework of the subtype relation in type hierarchies.

Suppose we wish to determine whether T, is a subtype of T,. Their respective paths are obtained

by the calls path(T,,Path;) and path(T,,Path,). For simplicity, let’s examine only a successful -

case. The case in which it fails wilt be clear from thxs discussion. The subtype opcration can be
reduced to the one of determining whether Path,l is the beginning of Path,. Path, and Path, being
.tw'a différence lists, the task can ‘be thought of as trying to find a third (difference) list which
apf;eﬂdeé to Path, would produce Paihl The concatenation of two difference lists, done in constaﬁt
_ time and only via umﬁcanon producas the desired result. Thc procedure for subtype is as follows

subtype(T1,T2) :-
path(T1.Path), . .
path(T2,Path2),
prefix(Path2,Pathl).))
prefix(Path1,Path2) - append1_di(Path2, Paih). ' R

append1_dlI(XS\Ys, YS\Zs, XS\Zs) - var(Zs).

-

The call to bu11un pmdlcate var in append_d! is neccssary in order to dxsunguxsh subtypc from

supertype, a distinction lost since all the arguments of appendl dl can either bc instantiated when
the predicate is called or not. The predicate to verify supertype would be exactly the same as the
above one for subtype with the exception that the call 1o var would be replaced by one o nonvar.
If only compatibility (i.e., either subtype or superiype) was desired, then no subgoals would be
needed inappend_dl. |

3.4.6. Analysis

Before analysing the results obtained with the above representation, it is important to indicate the = -

basis on which we judge efficiency. All our progi‘amnﬂpg was developed in a logic programming
- framework, which differs substaniially from any conventional languages. Thé-_mmrc of logic
programs calls for a slightly different method of complexity measures, as opposedto the usual

4

3

specification of complexity as a function of the size of the input. A good waymwdumﬂw
complexity of a logic program is to examine the number of goals that need to be resolved in order
10 satisfy a given predicate {34]. '

Any successful computation of a lbgic program can be E;scribed by a proof tree. The nodes of
such a tree comrespond o the goals of the computations and the arcs show how they are invoked.
The root of the tree is the initial goal of the computation. With such a representation, Shapiro
(28] defines three complemy measures over logic program. In a proof R, the }ength of R is the
nifmber of nodes mmepmoftreeofk medepthofosmedep{hoftheproofn'ee and the
goal-size is the maxlmum size of any node (goal) in the tree, the s1ze of a goal being the number of
symbols in its textual representation. The following measures are then introduced. Let P be a logic

o P is of goal-size complexity G(n) if for any goal A in the meaning of P of size n, there
wapfoofofAfmmPofgoalsxzes G(n). .

o P is of depth complexity D(n) if for any goal A in the meaning of P of size n, there is a
proof of A from P of depth < D(n).

o P is of length complexity L(n) if for any goal A in the meaning of P of size n, there is a
proof of A from P of length < L{n).

Wlth the above definitions, Shapiro shows that for any logic program P of depth complexity D(n),
goalfsiiéi'complexity G(n) and length complexity L(n), there exits an ﬂkmﬁng Turing machine!

(M) and a constant ¢ uniform in P such that the set of strings accepted by M corresponds o the
meaning of P and M operdtes in time c-D{n)-G{n).

We are aware that the results possibly obtained with this complexity treatment cannot be directly
compared With ones obtained with the conventional treatment, due to major differences between ;
both frameworks. Such a consideration would have to be taken into account if comparisons with
implcmcmdﬁons in odicr'programming language were to be drawn. However, it is not the purpose
of this work 10 compare implementations. We were merely interested in finding efficient solhitions
using the specific computational power offered by Prolog, since this language proved to suit our
needs the best.

"Mmeme(Am)unmﬂwmmem(Nmmm}mg
two types of states: existential and universal In a exisienpal state, an ATM behaves similarly as 1 NDTM, accepting an
nput sring if and only if at least one of its nex! move lead 1o accepance. In an universal state on ATM accepts a string if
and only if all of i3 nexi moves lead 1o acceptance.

-

w . A - - [

Using Shapiro’s result, one can easily show that a goal that does not have any body (i.c.. a fact)
can be executed in constant time. 7 Hence the unification of the argument(s) of a given goal is
bounded by a constant. 1 Clearly then, the time spent to compare two paths is constant since every
operation is done through unification and a call to the f’rolog built-in predi'ca}c var. The predicate
path also retums deterministic paths in constant time because of similar considerations. Recursion
' happéns-orﬂy in cases of more than one path to the compared node(s). The non-determinism of

such cases implies additional processing for any sequential algorithm.

For space censiderations, our interest focuses on the nui:nber of rules that needs to bc generated.
Let n and e be respectively the number of nodes and edges in the graph being processed. As we
saw, there are n predicates path generated. In addition, eVery node having more than onc parent
gpnerafes a path_to _pafent predicate for each one of its parent. Let p(n) represent the number of
parent of node n. Hence there are p(n) edges afriv'mg at node n in the graph. We can define a
function (say r{n)) mapping nodes 10 integers representing the number of rules they originate in-the
new representation as follows: ‘

{1 pim=t
rn) = {p+l if p(nyx=p, p>1

Therefore, it is eésy 10 see that the number of rules produced for the new representation is a linear
function of the number of edges in the graph.

3.5. Summary ' -

We presented a new method to represent DAG which allows quick node accessibility comparison.
It can handle a wider rﬁnge of sn-ucmres‘ than both systems surveyed. The possibility of quickly
identifying tree structure and taking advantage or their determinism is allowed by specifying the
input structure from botiom up. Furthermore, this way of represenung the input does not affect the

efficiency of the processing of multi-parent nodes. In such cases, no representation can avoid non-

$7When we talk about “consunt time”, we refer W the number of resolution sieps during the execution.

"ﬂmmuhﬂaldsonlylfdxunphmemnmofumﬁcumuuddounotuxmdemdwak.whmhuwmfor
most Prolog implementations.

~

41 o : ~

determinism. We used this methodology to represent our type hierarchy, which is not restricted to
~ atree. However, in cases of tree structures, the efficiency of this représemaﬁon is similar to the one
of [29] and it becomes equivatent to the one described in [8). This has been studied in depth in
{11] with respect to parse tree representation and processing. The additional preprocessing, which

is not necessary in this latter system, is easily compensated by the avoidance of the mentioned -

update problem. When the graph is modified, all that rieeds to be done is to run the program 1o
generate the new representation on the updated input; nothing else is affected.

" e

Chapter 4

Compo.nents of the System'

/

There is a certain amount of information that is required about the various entities manipulated by
both formalisms used in our system. Access to such information is required at various stages in our
system. In order to reprwem this mforrnanon efficiently, two major components are uscd a type
hzerarchy and a lexzcorL This faidy stralghtfomard approach cmphasncs the distinction between
information about the entities and information about their relationship with respect to a common
aspect of their associated information (type). ‘

This chapter focuses on the description of these two components and their respective
implementation. Both formalisms used in the system specify quite clearly the nature of the
mformauon they requlred and that consmutes the basis of the contents of the componcents of the
present system The dmgn of these components has been guided by two fagtors: conformity with
respect to the original formalism and efficiency of the operations accessing the information of the

4.1. Lexicon

The first major component of our system is the lexicon. Lexicons have always constituted an
important component of natural language understanding systems, as they embrace information
about the syniactic characteristics of the different words known to the system. It is becoming more
and more common ycnce to also include semantic details about each entry. In our systcm the
lexicon establishes a hnk between the two formalisms (f-stmcturc and Conccpmal Graphs) Both
of these formaliszs require some specific information about words and concepts respectively,
which can be kept in the lexicon.

a

Most of the information needed by one formalism complements that ofthq other as one is syntax

42

43

oriented and the other is directed towards semantics. With regards to some aspects, there are
similaritie; between the information used by each one. Our representation attempis o capture in a
sinéle component the details corresponding to both formalisms. Such a unification leads to the
simplification of the entire system, as all the information about the concepts and words handled by
the system are grouped in a unique location and accessed unifdtmly. The possibility of structuring
- the lexicon in such a way as o minimize the stgring of redundancies without jeopardizing the
efficiency of the mtchanism that access such information constitute an importaiit characteristics of

our system.

Before examining the structure of our lexicon, we describe briefly the various details needed by
each formalism and which have o be included in the system.

»

4.1.1. Lexicon and LFG

In LFG theory, the lexicon plays a very importa{u\‘ role. As we mentioned before, 'meileygdcon |
greatly contributes to the syntactic component, which is thus simplified. This is realized not by
having overly sophxsncated entries, but rather by having relatively siraple entries and a different
one for each use of a word, Hence, the size of an LFG lexicon tends o be much larger than that of
other linguistic theories.

‘ Basically, lexical entries in LFG contain the symabtic categ‘ory‘of the word (e.g., noun, verb,
adjccﬁvle, etc.) togethég' with some syntactic features such as, for instance, number, gender and case
for nouns and adjectives, mood, tense, person, number for verbs, etc. They also include a semantic
predicate which is of no use to the syntactic component; but is assumed to be treated by the

semanlic interpreter.
a

The basic idea behind the LFG approach is 1 take advantage of the information conveyed by the
morphological structure of each word. This information will interact with the grammar rules
through the annotations associated with each rule. Various rules will be selected or restricted
according to the information originating from the lemcom For mance in the case of passive
vcm&:mﬁcmmmccammonwouldbemntmedtoadnﬁ'eremlexxcaluseofd)everb
mappingdiffcmmpansofuxsmmwdxmm;icargumemofmepredm. To illustrate

\ “’fﬁ&f"‘ T

“ ’) V : B N ,,,,’ .

this, consider the following two m'edxcates that would normally explain the active and passive

(respectively) uses of the verb to scarel”: ' Q%

scare: V, (T ‘Fred) = *scare<(T suBsXToBJ)>’
scared: V, (T pred) =’)Care<(TBY oBIXTsuBnNx'20

S

It is also pbssible to use lexical redundancy rules to réduce the number of entries of the lexicon
not only in the case of the passive, but for other constructions as well {31.2! However, whether
such rules are used or not, the effect is the same: the syntactic component makes full use of the
information provided by the morphology of each word of the seménce.

4.1.2. Lexicon and CG

The inclusion of semantic information in lexicons has abolished the exclusivity of their

interaction with syntactic components only. ‘Sowa suggests that the collection ot canonical graphs -

known to a Conceptual Graph system be kept in a conceptual catalog (31). This conceptual
cau;log contains a single entry for each'conccpt which includes the word, its grammatical catcgory
and its semantic type. The formalism also includes a canonical basis which is a complete
collection of canomcal graphs that can be manipulated using the four formation rules (join, éopy.
restrict, simplify) in order to derive larger graphs. A canonical graph for a concept ¢ specifies the
type of concept(s) which can be linked to c. The relations used are also specified b}} a canonical
graph. The nature of this canonical basis shows some similarities with that of lexicons. Although

~ not explicitly states, it is easily conceivable that the conceptual catalog and the canonical basis be *

merged mto a smgle unit (lexicon).

19%e refer the reader 1o [2] for a mote complete description ofpusive constructions in LFG.

20Intimec.xs-eofvcﬂ:;stha:cansubcuegon.zeforanon-ﬁmdnumberofa:gurmstu(s) (e.g- to read), mmlummamun
be included for each use.

211'hescopeofnxchnﬂumunheexzmxmdweﬁmyudwyshouldmuppiywcvaypomblemuy(eg some verb
do not passivize).

———

A

R

#£1.3. The Lexicon of Our System

The main objective of our lexicon is to group in the same location all the information required by
both formalisms. In doing so, we tried to avoid imposing restrictions on either formalisms. In
particular, the independence of LFG td any semantic formalism has been preserved. Although the
semantic infoqnation included in each lexical entry happens to be very appropriate to CGs, we feel

uce an importans kind of information kept in the lexicon: 8-role.

that it is gcncral enough to guit other formalism just as well. Before examining the format of the
lexical entries, we need 10 inil:od

4.1.3.1. 8-Roles

F-structures express the relationships between various parts of a sentence mainly in terms of
grammatical functions. However, in order to derive 4 semantic representation for a sentence,
grammatical functions do not suffice; as more information is needed. A good illustradon of this
fact is obtained in examining the difference between corresponding active and passive sentences,
such as: ’

John helps Payl.

Paul is helped by John.
'ﬁzcsc l/o\semences roughly provide the same information and thcrefore should be mapped to
similar semaﬂ&c representations. This implies that the relationships between Paul and John should
be the same in the representation assocmed with either sentence. In order 10 capture that propérty, 7
more mformauon that what is included in the . f-structures is necessary. The' f-structure
corresponding 1o these two sentences are quite different.. In particilar, John and Paul will not™ .
realize the same grammatical function in both f-structures. Such semantic similarities between

: symacucally different scmences are weﬁ explained b) thematic roles

~

Thematic roles (8-roles) have now become a reasonably well accepted framework in linguistics as -
they have been included in many syntactic theories. They are intended to account for some -
semantic relations=% between words of a sentence. Very informally, some parts of a sentence play

an impornant role in its semantic structure. Such roles include the the theme, the agent and the -

DPrimarily and originally for the notion of theme, hence the name.
+

46

1

object of the action, as well as destination, goal, etc. We refer to these roles as thematic rdlcs.
Intuitively, some words presuppose or imply such mles;. Consider for instance the verb to;drink.
Whenever this verb is used it automatically suggests that someone-is doing the action of drinking‘
(the agent 9-role) and that someminé is being drankA(me object 6-role). These roles might not be
realized in a sentence, but they- are nevertheless understood. Such ds arc said 1o assign 8-roles.
In contrast, words like wine, cat, good do not assign any_e-mlcs as they don’t always occur in nor
imply the same. con;éxL However, they can‘be asmgned a 9-role by another word. Verbs and
prepositions assign 8-roles most frequently. Thé reader is feferfcd t_d-_[Zl] for a more formal and

L

complete discussion of 8-roles.

The link between 6-roles and grammatical functions if done invthc_ lexicon. We asspciatc a B-role
1o each grammatical function subcategorized for by a,prédicaw.‘ Thxs approach is not new to the
LFG formalism {2). The various 0-roles will evenmgliy"bq used as relh_ﬁon names between the
concept corresponding 1o subcamgox{zihg entities and their argument(s) in the graph, résuicﬁon

2t

such relations to be 8-roles.

Canonical graphs alSo include the nature of the relations linking two concepts. However, no

iction ’[

formal account is given to identify the set of concepts that ‘Originates relations. The res
the use of B-roles as relations\petween entities subcategorized and U entity that govem them g not

incompatible with CG theory| A way of identifying such relations is essential to the formalis
and 8-roles constitute an adequate approach. They also provide a more solid theoretical basis to our
system, and do not cause any loss of information in comparison with canonical graphs. In fact,
canonical graphs could easily be built from the lexicon if they were needed in an auﬁmcnu:d Cb
application. ' i

4.1.3.2. General Format of Lexical Entries

The format used for our lexical entries allows a uniform consultation mechanism for the entire
lexicon. Each lexical entr; contains four fields, some of which might left unspecified. The first
one is the token used in the f-structure formalism to refer to this entity. That is either a predicate
name without its subcategorized argument appearing in the f-structurc or the value of one of the
aributes QUAL, DET, OP, DEG. Just like predicates, value of these auributes corresponds

‘ 47
¥l

{possibly indirectly) to a word of the sentence. The second one is the corresponding token in the
conceptual graphs formalism, whieh may or may not be the same as the first field for some or all of
the entries, depending on the application?3 The two fields are independent and establish a -

..

mapping between f-structure entities and CG concepts.

The thud field is the subcalegonzauon information possmly prescribed by the lexical item. The

actual representayon for the argumems subcategorized for by a predicate is a list o‘f patrg (being
operands of the functnr24 “.:"). Each pair comams the name of the grammatical ‘funétion

subcategonzed for and the thematic role that the subcategorized argument is assumed o play in the

~

scnlence R

Fmally, the last field of a lexlcal entry is als.o a list whose elements are understood 10 be in a one-

. 10 one commespondence wuh the ones of the previous lxst_ Thﬁe’v_gpec:@ a semanuctype that must be
| respected by the predmate fulﬁlhng the grammaucal function prescnbed by the corresponding

element of the’ other list. The elemems of this last list are taken from the | type hxerarchy In order
for a given argumem 10 play a specxﬁc 8-role, the _concept correspondmg to that argument must’

satisfy a consistency condxuorL This is useful to detect syntacncally correct but semantic ill

sentences. We shall explam this process shonly. =

All the: entries are divided into dlSjOlﬂl classes. The four fields of a given entry are stored as
arguments of a predicate named according- to the grammancal category of.the Iexical entry. The

- choice of grammatical categories-to distinguish the entries is arbn_trartly, ‘that is no advantage is

taken from®this fact by the access mechanism. The following examples of actual entries will

hopcfully clarify the representanon of lexxcal entries. . o .

adj(red,red,).] .
adv({very,very,_,). *

- det(a,unspec,_,).

noun{cat.cat:i_,_,).

verb(dnnk dnnk {subi:agent,obj: theme [ammal .beverage}).

}

N

Dﬂiw&mofmdm“mmedmbelmgWLsodxydomthxvetoodrrespondtothe ‘

omofmytm;mmcmyofommawmmmm

mtmnfwiornuudhenmunmdzdelogmmmg,&muthemmeorarehnonhxvmgaﬁxednmnbaor
argumeni(s).

/“‘\

=3

48

The first three entries exemplify entities that do not subcategorize. The last two fields of these
 entries are included, although left unspecifiéd, to allow a uniform consultation mechanism for all
the emries;(In the case of deie'rm'me:s. the corresponding gmph‘}represe.mation will be a referent

: appeanng as .a suffix o the appropriaté'concept Thercfore, the second ficld of the entries
corresponding to determiners (¢.g., the third entry above) should be interpreted as referents rather
m;n concepts. A slot is included in graph tokens of céncep(s that gcnerauy appear with a referent

(e.g., nouns), as shown in the forth entry above. This slot is separated with the actual token by, the
user defined functor "::". Such condepts always appear with some referent. Hence, this encoding

strategy altows 1o assomaze a referent 10 a given concept using unification alonc. wh:ch is an

efficient and simple way of mampulaung terms.

For simplicity, we assume that no lexical redundancy rules are used; therefore, if a.word

subcategorizes for more than one combination of arguments, an additional entry is required for

each set as exemphﬁed in thc following:

vex‘t{glve give,[subj: agem.objz :theme,obj: remplent] {human,entity,animal}).
verb{(give,give,[subj::agent,obj::theme,i0-0bj::recipient}, [human,enmy animal]). °

The first one would normally correspond to the di-transitive use of to give as in
John gave the cat setfig mjlk.

The second one corresponds 1o the use of to give with a pneposmona] phrasc as in
JOMgavesomemﬂktomecat T -

Notice how the same semantic information is included in both entries, which correctly ensure the

))semamic equivalence between the twd syntactically different uses of the verb.

E

4.1.33. Consultation Mechanism ' » ,

Let us now introduce the manner in which the lexicon injonnétion is accessed. The. approach

used in our lexicon consuiLaﬁoﬁris inspired from the well established technique of hashing.
The lexicon isuconsultcd in order to retrieve the associated information of a particular f-structure
element. ‘At that point, the only information known about l.hxs elemcrms the attribute of which it is
the value in the f-structure. In particular, Lhe aueai ca;egory of the corresponding word is

not included in the f-structure. Thereforé, e must resont to-an alternative way of directing the

search. / B

49 o R

We saw that the different lexical entries were divided into disjoint groups. The criteria by which
this division was realized was the attribute under which a given entry was most likely be accessed .
from. In our system, we used4gramma£ical categories to identify each group,‘ but in theory, any
other labeling would produce the same results, Then 1o each f-structure attribute which requires
lexicon consultation is associated a collection of group names, listed in decreasing order of
likeliness of finding a particular entry used inside this atu:ibuta under a particular group name in the
lexicon. The search of the lexicon procécds heuristically according to the order of the listing. The
heuristic rules given from the lists are only useful to lmprove the efficiency of the search. Such
lists are obtamed from a bmary predicate (orderlist) from which the following clauses are taken for

sake of exemplification.

orderlist(fsir,[verb]}.
orderlisi{subj,{noun,pronoun,verb}).
orderlist{vcomp,[verb}).
. orderlist{mod,[adj,adv]). ¢

oy

All the lexicon consultation is done through the predicate lex whose first four arguments |
correspond to the oiies of the lexical entries and the last one correspond to the part of the f-strudture

that is being processed (e.g., SUBJ, OBJ, elc.)

lex(Fioken,Gtoken, TR, Types,Part) :-
findorden(Pant,Orderl),
searchlex(OrderL ,Ftoken,Gioken, TR, Types).

+ findorder(subj,[noun,pronoun,verb]).
findordes(obj,[noun,pronoun,verbl).
findorder(by_obj,[noun,pronoun,verb}).
findorder(of_obj,[noun,pronoun,verb}).
findorder(fstr,[verb]). “ -
findorder(vcomp,[verb}). A : .
findorder(det,[det]).
findorder(mod,[adj,adv]).

searchlex([Catl_],Ftoken,Gtoken, TR, Types) :- v
Goal =.. [Cat,Fioken,Gioken TR, Types],
call(Goal), !.
searchlex([_IRest],Ftoken,Gtoken, TR, Types) :-
searchiex(Rest,Floken,Gtoken, TR, Types).

4 - .
We are aware that this way Of directing the search through the lexicon is dependent upon the

lf;nguagc being processed and that in general the ordering cannot be axiomatized rigorously.

~

~

50

- However, only limited linguistic kndwledge is necessary in order to provide a good heuristic

account for this task. The indexing facility of Prolog is highly responsible for the efficiency of this

- consultation mechanism. Further advantages can be gained with versions of Prolog that index with

the first non variable argument in addition to the functor hame.

4.2. Type Hierarchy

The second major.component of the sy?tem is the type hierarchy. Such a structure has always-

been a faithful companion to graphjcal meaning representations, and Conceptual Graphs do not
consqﬁtute an exception. Sowa defines and dctaivls carefully a hierarchy structure, together with
some operations for the CG formalism [31], which we include in its entirety in our sysxcm.. The
main characteristics of this structure and some of its related operations have been presented in
Section 2.3.3. In Section 3.4 we presented some'arguments justifying the uvse of a independent

component for the implementation of this structure.

42.1. Role of the Hierarchy

As was mentioned briefly before, a type hierarchy depicts all the relations that exist between the

“various concepts. In our system, it also carries out another important task. The type hicrarchy

provides a basis in order to reject syntactically well formed but semantically invalid sentences.
Such sentences can very well be assigned an f-structure since they do not violate any rule of syntax.
in particular, they respect the three conditions goveming the well-formedness of [-structures. It is

therefore a task of the semantic interpreter 1o block the analysis of such sentences. - J

Consider for example the erToneous sentence
The tree ate big dreams.

The f-structure predicate for are presumably subcategorizes for two arguments: SURJECT and
OBJECT, 10 which should be associated the 8-roles AGENT and THEME respectively. In order to
detect such anomalies, we associate a {ype‘!ha{ the concept fulfilling each argument must respect
(_fourth field of lexical entries). Careful specification of such type constraints is the key to this

problem. For instance, the above sentence would be ruled out as semantically incorrect if we

restrict the type of the concept corresponding to the AGENT 8-role 1o be a subtype of the type

* 42.2. Implementation

[

51

animal. Hence, the type hierarchy provides all the information mded'for the enforcelperit of such
semantic constraints during the generation of conceptual graphs.

This particular approach-to semantic verification’ might be considered a ijule oo se\;eré,- as it
allows a unique interpretation for sentences according to a fixed framework. For the specific
purpose of machine translation, it could be argued that such semantic feriﬁcatiops are unnecessary:
a translation system could simply attempt to produce an equivalent sentence in a different Ianguage
regardless of whether the original sentence is meaningful or not. However, \v}e chose to include
such semantic verification in our system because we want to keep the possibility of using’ our
system as part of an analysis s;‘fstem ihdependent from any possible enclosing application. In such
analysis’systcms. the detection of semantically erronébus sentences is a very important task; one
that cannot be excluded. | - | |

However, it might be desirable to loosen the fixed interpretation currently done by the system and
allow the generation of a representation for sentences made about,a different domain of reference
than the simpler one (e.g., metaphoric sentences). The system does not presently handleuch
sentences. The approach used for semantic verification could be adapted to handle such sentences.
For example, the same strategy as the one outlined above could be used on a different hierarchy,
possibly with information coming from different lexical entries, 10 re-examine semences ruled out '
as being semantically wrong by the existing verification mechanism to see if they could not be |

interpreted using this different scheme. This extension would not conflict at all with what is

currently implemented.

,/ .

The graph represeniation scheme presented in the previous chapter was primarily desigllcd to
implement efficiently the type hierarchy of CGs. It is easy to verify that this ﬁcrarchy structure
respects the definition of a cirected acyclic graph stated in Section 3.1.1.

 The most frequent operation on this hierarchy and therefore the one whose efficiency is of most

concem is that of subtype verification. We saw in the previous chapter how such verifications can
equivalently be expressed in terms of nodes accessibility in the graph Hence, the representation

52

introduced in the preyious chapier is ideal for implementing the type hierarchy with respect to this
operation. ' |

We assumed that all the concepts known to the system ard structured appropriately by the type
hierarchy. This collection of types could be input to the pre-processor generaling the new g'iaph
rez&%:aﬁon using a two-place predicate as explained in 3.4.4. All the subtype verifications are
performed exclusively on the new repfesentation using the predicate subtype listed in 3.4.5.

4.3. Connection Between Both Components

In Sowa’s formalism, the very inportant connection between the lexicon and the type hierarchy is
easily established: all the type labels of a given canonical graph arc assumed to correspond 10
elements in the type hierarchy. This applics to concepts as well as to the spccnﬁcauon of the class

of concepts that can be linked 10 that concept. .

Our system does not make use of canonical graphs. Howcver that prccious connection is
preserved. Relations with the type hierarchy appear at two levels Flrstiy, the conccptua] graph
tokens (second field of the lexical entries) are assumed to correspond to type labels. chcc they
represent the most specific type that includes this entity. Secondly, the types specified by the
* fourth field and associated with thc subcategorized arguments also correspond 10 type labels. ’f‘hcy
are assumed 10 be the most general typgthﬂl’ an entity needs to respect in order to appear (in a
meaningful way) as argument to this entity. Since the types of the entities satisfying the various
8-roles assigned by a lexical entry need not be the same, it is impdnam 10 keep a mapping of what
role calls for what type. This justifies the assumption of the one to one comspohdencc.bctwccn
the elements of the | -

1ists of the lexical er\m'i,esA

Our method includes the same information as that conveyed by the canonical graphs. We chose a
different medium to represent this information and hence digress slightly from the CG philosophy
of building larg‘é‘graphs smcﬂw from smaller ones. In order to suit both formalisms, such a
diversion was unavoidable. However, we feel that in doing so we don’t loose any generalily, as Lhc
graphs are produced using the same information, but represented and accessed in a different

manner, ’ . //\

Chapter 5

Algorithms and Operations

The previous two chapters have presented the components containing necessary information to
the system, together with their representation and all the opcrétions that is needed during the
generation of a'graph. We are now in a position to describe the operations taking place in the
production of a conceptual graph from an f-structure. By consideration to the reader, we will try to
stay away from overly technical details, as wé intend to keep this discussion at a higher level.
(However, due o the nature of the material presented and the sluijectivi[}'/ of this aim, no guarantee
for its fulfillment can be made!) The most relevant parts of the implementaticn of the process
appears in Appendix A. Some sample graphs produced by the system are shown in Appendix B.
In addition to these two appendices, the reader might find useful to consult some of the {-structure
representations for various parts of the speec\h that are displayed in Chapter 2.

5.1, Genéfal Strategy

The generation of a conceptual graph from an f-structure naturally breaks down into three parts:
» extract some information from the f-structure,

eperform some operations in order*to derive appropriate CG representation (including
some verification of constraints),

o perform the necessary operations 1o include the derived information into the graph.
In order 1o achieve these steps, a single unit (predicate) identifies particular f-structure parts and
takes the appropriate action drpending upon the nature of those parts. These include lexicon
consultation, some semantic verifications, and operations on a "working” data structure. Once the
graph information is determined, it is inserted as concepts and relations.

3

. £
This unit treats one single aitribute-value pair at a time. It takes in an anribu -value pair, a

(partial) CG and the external data structure. It returns an updated CG and a modified instance of

¥4

A 3

54

the extenal data structure. These updates are done acoordihg to the information obtained from
translate{AttrVal,Graphin,GraphOut, IntDataln IntDataOut) .

&

The control flow is determined by another unit which isolates a single attribute-value pair and
calls the first unit to process that pair. Basically, the pairs are processed in the order in which they
appear and the system is, in general, independent of any particular order. If the value of a pair is
another f-structure, then the processing of that f-(sub)structure takes precedence over the original »
one. This processing scheme reflects the uniformity of the mmposiﬁon of f-structures.
Structurally, all attribute-value pairs of an f-structure are similar, hence, no discrimination can be
done on this "external” aspect. It is therefore natural to abstract the examination of f-structures in a
single unit that can handle any valid f-structure.

Since a single attribute-value pair is isolated from the rest of the f-structure during the processing,
details concefning neighbouring parts become temporarily opaque. ”ﬂ\e bconsultation of
neighbouring parts is often necessary, and therefore an accessing mechanism must be established.
An obvious approach is to make the entire f-structure visible at all times. Other than being
'oonccpmally simble. this approach shows! limited advantages. Not only is it inefficient, but the
traversal and selection of specific information of an f—suucturebis also complex to realize. Instcad,
we identify the information that will potentially e necessary to the processing of a subscquent
pairs, and collect it in an external structure that is input to and updated by the unit processing
anribute-value pairs. |

This external structure consists of three parts, some of w‘hjch may not be nccessary in processing
a partcular anribute-value pair. Phis structure is represented using the uscr-defined operator "#"
and its general format is%:
FstrPan#ConceptList#RequiredParts “
‘The first part (FstrPart) is the name of the enclosing grammatical function attribute, which is
useful in the lexicon consultation. The second part (ConceptList) is a list of the concepts that have

BAlthough consisting of unrelsied components, this exiemal mnformation is represenied’ usmg a single sinucture,
fendamgmﬁarm&zprocmm;mwavhaemcmmmnemﬂeqmmd

»

\

already been inserted in the graph. Finally, the last item (RequiredParts) this structure may
include is a list of details relevant to a concept that has not yet been processed. For instance, a
concept corresponding 10 a grammatical function subcategorized formigmnotbélmownatme
lime the subcategorizing concept is inserted, and yet it is required in order to complete a particular
r:miorL In thig case, the extemal structure is useful in order to remove any restriction on the
ordering of the attribute-value pairs of a particular f-structure. When a concept is about to be
insented, it is verified whether that concept had been referred 1o (ie., subcategorized for)
prtviouslyr.v If 50, then the proper operations that had to be postpored take place.

We now examine the particular operations done during the processing of the majf f-structure

attributes.

5.2. Processing Subcategorizing Predicates

We distinguish' between two cases in processing f-structure predicates that subcategorize. The
distinction 'is based upon'the nature of the subcatzgor:ized information and upon the operations

required in each case, which are quite different.

5.2.1. Subcategorizing for Grammatical Functions

The first case is the one in which a predicate subcategorizes for grammatical function(s). A call

10 the lexicon retums the corresponding concepk:
lex(Fioken,Gtoken. ArgL Types,Part)

This call also retums the 8-role 10 be associated with each argument of the f-structure. predicate
‘ throug?x Argl, along with the semantic types that each argument must respect. The concept is then
ingerted into the graph. The subcategorization aspect of this f-structure predicate will be reflected
in the graph by having its corresponding concept instigating relations. These relations are named
according to the B-roles associated with the particular arguments. The destination concept?® for
each relation will be the concept associated with the predicate of the subcategorized grammatical
function.

2R ecall tha: the relations of 1 CG e directad.

~ NN . . -
(74 R

If that predlcatehas already been mserted then the relation can easily be completed The part ol‘.
ﬂreextemalsuucturecomaxmnglhchstofpmdlcammmegraphcanbeusedasaqmckwaymgc(
to that conoept from the grammatical function (o&hewvxse, the f-structure predicate has to be
identified and the lexicon needs to be consulted). The semantic type of the oonccp(is compared
with the type prescribed by the relation for compatibility (i.e., subtype) usmg the mechanism
described in earlier chapters. If this verification is successfil, then the relation is updated to
include the new concept as destination. Otherwise, the generation of the CG is aborted,, as the
sentence is semantically ill formed. In the event where the concept corresponding to the predicalc ‘
of the subcategorized grammatical function has not yet been inserted in the graph, then the relevant
information about this relation is stored in the external structure. This information includes the

’ wncépt originating the relation, the name of that relation, the grammatical function whésc
‘predicate is linked by the relation and the sernan}ic type that the concept needs to respect in order (0
°correcﬁy be used in this relation. When processing a predicate for a grammatical function, the

external structure is always examined in order to determine whether its concept had been required.

No mention is made here 10 grammatical categories. Although verbs most 6ﬁe;\ subcategorize for
grammatical functions, this is no assumed by the way in which we process such predicates. The v
same processing can be done on any predicate that subcategorizes for grammatical functions,
independently of the category. The fast that some nouns (eﬁg..lconstrlgczion) should be treated in a
similar way as verbs with respect to subcategorization is due to Frey [16]. Following this, our
impleméntaﬁon treats verbs such as to construct and their coneé;ﬁonding noun (construction)

f!similariy with respect to subcategorization. That is both words will be ;1 the origin of a concept_
; // that will instigate two relations in a CG: agent and theme. This is illpsuatcd in the following, using
the linear representation of“CFEs:

[-- -] (AGENT)~ [construct] - (THEME) - [- - -]
P

4

) (AGENT) - [construction: - - - |~ (THEME) = [- - -]

5.2.2. Subcategorizing for a Clause

“The second case of subcalcgoﬁzing,pmdicatc is that of a'verb taking a verbal complement?’. “The
representation of sentences including such verbs requires more than one graph, which will be
imbricated one within another. The reason for this multi-graph represenuition is that a single CG is
assumed to represent a single propositon. Just as more complex propositions can be built from
simpler ones, more complex graphs can be composed of smaller ones.v For instance, aci:ordigg to
the CG theory, the sentence

A man is drinking wine. .
should be represented by two CGs. One to capture the relations between man and drink, and
between drink and wine. This graph will appear inside the other one, which will include the
temporal information (in this case progressive present) which operates on the inner graph. Some

“overhead operations on graphs are required in this case.

Since parts subcategorized for appear at a deeper level in an f-structure than the predicatev that
subcategorizes for them, the subcategorized part might not be processed when the subcategorizing
predicate is processed. Therefore, its corresponding graph will not be completed yet. For that
reason, a marker is generated 1o indicate that a subgraph that the current graph will include a
subgraph. At that point the generation of the current graph is suspended until the subgraph is
compieted. Upon completion of the generation of the subgraph, thc presence of the marker will
indicate that this subgraph should be included inside the original one whose generation is then
resumed. Arbitrarily long chains of subgraphs can be produced using this strategy.

The f-structures corresponding 1o such cases usua'lliinclude a pom'.,e'28 as the same part plays
more than one role (e.g., the subject of the auxiliary and of the main verb). &his is the reason why
we always verify whether a concept corresponding to a particular entity-has already been inserted
in the graph. According to CG theory, two different instances of the same concept are assumed to
represent different entities unlcss explicitly co-referenced. The part of the external struchire
containing the insented predicates is very useful in this task.

P inchuded by this are helping verts and auxiliaries.

BSome co-reference scheme can aiso be used.

N

)

58 | \//_/—-\L,
5.3. Proééssing Non-Su!;categorizing Predicétes,

The case of non-subcategorizing predicates is a little simpler. -F-structure prédicatcs are again
mapped to corresponding conoépt.; by the lexicon, whose consultation is as usual guided by the
enclosing f-structure attribute. The concept so obtained is’ then inserted in the graph. .If this
concept was needed to complete a relation (i.e., a predicate subcategorizing for the f-structure
attribute under which it appears has been processed already) then the information applicable to this
concept is e;tracted from the external structure, using the at;ributc name to index the search. The
' semantic type that the relation requires this concept to satisfy is isdlated and the subiype
verification, using the process explained eérlier. is applied. Depending upon the result of this
verification, either the relation will be u’pdated in the graph with this concept, or the generation of
the graph will be stopped, due to a semantic type-conflict.

5.4. Processing Modifiers

Modifiers can appear at various places in an f-structure and can be arbitrarily complex (e.g., tall,
very tall, not ver} tall). A modifier phrase is identified in the f-structure by the attribuLe'MODATTR.
We introduced this special attribute to capture the scope of each modifier. This was illustrated by
figures 2-11 and 2-12, The value of MODATTR is assumed to modify the predicate or the modifier
appearing at the same level as MODATTR. '

Correct processing of modifiers requires a consultation of the lexicon, to get the cor;'csponding ;
concept name, and the concept modified by this modifier (which we call the victim), which is
passed through the extemnal information snucturc ~ The operations include the generation of a_
concept in the graph together with the insertion of a relation (named according to the nature of the
modifier) between the modified concept and its victim. The f-structure is then examined to see if
there is any modifier to the current one (e.g., very, not, etc.) in which case the same process takcs
place with the current modifier as a victim. Otherwise the other modifiers the original victim arc

processed.

1y

5.5. Processing Relative Clauses o N

Rclauve clauses are mmoduced in an"f'strucmre by the attribute REL. 'I‘hcy wﬂlMpresemed in

' a CG by a sub-ggph attach to the noun they modify by the relation rel-op. The generanon of IhlS

sub-graph is very similar to thar of a regular gmph, except for point. The value of the annbute. '
* of one of the grammatical function subcategorized for in the relgtive may be a pointer to. the.

relative marker, indicating that this marker fulfill that function. In this case, the semantic type
corresponding to the concept being modified by the relation hasxto be retrieved and used in the

subtype verification for the relative’s relation. In the event of a successful verification, the concept

imroduced‘is co-indegged with the one to which the relative is attached.

B
wals

5.6. Processing-Determiners

"The processing of determiners is relatively simple. Determiners are represented in CG as
* referents to concepts. The pamcular referent corresponding 10 a detemnner is obtamed from the

1ex100n t.hmugh thecall /
lex(Ftoken,Gtoken,_,_d et) /
- V4

Then this refcrenl is added 1o the appropriate concept, which is always the value of the PRED

>

A S

attribute appearing at the same level as the determiner. This predlcate is obtamed from the
predicate list in the external structure. Thc rest of the processing is handled by the followmg two

calls, executed after the call to the lexicon. ~ . T e

‘member(Part::(Pred::_),PredL), o _ - .
member(Pred::Gtoken,CL) ' ’]

Here, mequ)er is the standard list membership predicate. The first call to member retrieves the
concept corresponding to the predicate of the f-structure part being processed, from the external

structure. In general, this will be the first element in the predicate list. ‘The second call to member

is used 1o instantiate the unspecified variahlf kept in the lexical representation of the concept to the
i ~—
graph representation of the determiner. Because of our lexical representation for concepts used

with a rcferenf, the association of the referent to the concept can be done througl"x unification only.

The processing of determiners is the only case where we impose a pamcular order in the attrityte-
value pairs. For simf)!icity,‘we assume that the predicate appear before the determiner ih the
f-structure. ‘

5.7. Processing Tensehformation - -

The tense information is kept at

can be used for two purposes— -first-one-i5-fatrty-straightforward:. generate the appropriate

1

temporal information, which is repfesented as an operator on a (sub)graph.

The second one is to control the scmantic validi_ty of certain adjuncts constructions. For instance,

the temporal information can be uszad to block the generation of erroncous sentences such as
I will leave yesterday.

In this case, yesterday is incompatible with the future tense of the verb. , o

#

same level as the predicate for the verb of the proposition. It

- Chapter 6

. Extensions and Conclusion

6.1. Summary of the Work Done

’ |

The objective of this thesis was t investigate the possibility of producing Conceptual Graphs -

representing the meaning of sentences. We have achieved this goal wit.hin a working framework.

is framework suggests that f-structures constitute an appropnate basis for semannc

interpretation. -For instance, the theory undcﬂymg lhxs formahsm would

representation for verbs and nouns which could tiken be easnly treated similarly by tlk semantics.

Hence a useful abstraction over grammalical category is easily obtained. Our syrstem impiements

)

Throughout this work, we tried 1o avoid ad hoc solutions by basing the various parts of the system

this approach.

on pdncipied.linguiéﬁc grounds. This is perhaps best illustrated by the restriction we imposed on
relations originating from the concepis obrresponding 10 a predicate and its subcaaééorized

arguments. Those relations are very important in a conceptual graph and we chose to have them

correspond 10 the 8-roles of the sentence. No such restriction exists on Conceptual Graphs Other,
possibilities exist and could possibly have lead to similar résults for this system. However due to.
the possibilities offefed“’by B-theory ‘and its strong support in Linguistics, we feel that its’ »
incorporation provides a solid basis 10 the system, and keeps the possibility of extensicns to include [

other constructions open.

~ ' es U o
An interesting pant of the system is the lexicon. In order to use each of the two formalisms in the

system, a large amount of information about the vanous entities is necessary A nice feature of our

system is the inclusion of all that information into a single unit ThlS was madc possible byv
re-expressing and representing the information used by Conceptual Graphs i in a dlfferem way.
There is nothing inherently wrong with the Conceptual Graph thedry itself. .However, we feel that

4 SN\
e
.

similar

62 ~ . -

our adaptalion is more suitable 10 our needs and, in general, to any computational linguistic
application that uses Conceptual Graphs. | . -
i .

With respect to the implementation of the-system, the main‘chgracten'stic is the use of uniﬁcalion
to accomplish various tasks. The design has been purposely o’ricntcd to.allow such m}isivc
. use of this mechanism.. Reducing many operations to unification is very attractive. It produces
very efficient implementations, as this mecharusm fs inherent to the ;(::utnon of all Prolog
programs. Thcref/rr,a program with a lot of opcranons ‘performed strictly by unification is bound

to be more efficient than another one using other kind of manipulations.

’I‘hls point is well supponed by the gra presentation scheme we developed. In Lhi‘s case, an

| eperanon that normally involves Lraversal of the graph (node acocsmbxhty) can be reduced to liule

more than unification. This scheme mkes’full advantage of partial tree structure often present in
directed acyclic graph. The node sibility problem is transformed to that of paths com‘pan'sons, '

which is entirely done through unifi u n. In case of trees,-the |mplcmanauon of lhat operation is

optimal with that scheme. In the gencra] caseof directed acyclic graphs cfﬁcmncy is affected

by the non-determinism of the structure. However. the advantages "8f pamal trec structure(s)

present in the graph are nevertheless preserved.

- - v

6.2. Extensions _ \

As it is the case for most computational linguistic applications, the next sensible objective after
this work would be to enlarge the class of constructions har.dled. The implementation of such
constructs should not interfere with what is presently in place as we Lried to keep possibilities for
su{;h additions open during the project’s evolution. In particular, we have been careful to eliminate
umiesirable side effects after the processing of each pant. We now poixint éut somc specific areas for
extending this work.

* A weak part of our system is the way in which adjuncts are handled. Such consmxcuon}srusually
calry some important semantic tﬂ:ﬂ)fm&ﬁ()ﬁ&t)()u{ the circumstances surrounding an event or a state
A described‘by a sz;tenoe. A major characteristic of these constructs.is that they add semantic
| information without being syntactically related to the rest of the sentence. Hence, they cannot be

63

subcategorized for, as opposed (o0 object complements for instance. It is therefore difficult to verify
whether the semantic information of adjuncts is cgmpatible with the rest of the sentence.

We mentioned a very simple case, handled by the system, about the relation conceming the tense
of a clause and wmporal adverbs. This approach is only useful for the sunpler cases, as it cannot

~be nicely exlcnded to cover more complex temporal constructions.

An inlresting approach to the problem of mpresenung temporal mformauon is the one developed
stkin [20, 19]. He extends a general framework 10 represent tcmporal information which

can, in partcular, capture the interaction of tense with some temporal adverbs (like yesterday,

tomorroiv, etc.) ard conjunctions (e.g., when, before, elc.). He uses an approach in which three

- entities are laken as basic: S — the moment of speech, R — a reference point, and E — the moment

of the action. The idég isto réprcscm tense by specifying these as points on an imaginary ime lingr
In order to do so, two operations are- introduced: linearity r‘(denoted by "__") and associativity
(denoted by ","). The first one’ indicates an order between the points (i.e., one happened "before”
the other) whereas the second one is uscd to spec:fy that two points are contemporaneous. A given
tense is then represented by a unique configuration of these three entities with the two operations.

For instance, the simple past tense of English conesponds to the conﬁguranon
ER_S

where both the time of the event and the point of reference occur before the moment of speech.

The past perfect would correspond to -)
E_R_S |

Tcmporal adverbs are assumed to modnfy either R of E. >

The following process takes place in order to account for correct temporal constructions that use
ad_;uncts First a conﬁguraum is obtained from the tense of the verb. The various temporal
ad)uncts will be assocmcd to eithér R or E, forcmg a change on the initial conﬁguranon For

instance, the sentence
> | " Y
The caz ale lomormow.

wmﬂdmaﬂybcasmawdrhccouﬁguramnfiﬁ Sfmmﬂmtcnscofthcvcrb The adverb
LOMmOTTOW forcesmepoimtowmch it is attached to move after the point of speech. This is inherent

in the meaning of tomorrow. The configuration S__E R would then result. - ¢ \

’

-

N~ , y’(

64

In order 10 comml the acceptance of derived configurations, the hneam\y condition is introduced.
‘“This condition specifies that the original linear order of a configuration cannot be chang'cd by a
derivation. [20]. The above example would violate this cendition and hence be rejected as

%

semantically ill formed.

1

This framework can also account for cgmplex sentences in which the tcniporal informaubn of

some parts is expressed in relation to that of another pan: as for instance in
The game was over when he got home at 10. '

Both events will have a configuration from the tense of their respective verbs. Correct construction
will be easily identified as foliows. Both S points will be associated and the R point of the second

- one will be placed undemeath the.one of the first. If this can be done without affecting the linear
order of either configuration, Lhezi the sentence will be assumed o be consistent with resped to the |

L3

temporal information.

This approa‘ich‘ is very suitable to our system. '» In order to treat temporal adjuncis this way, we
would have to implement the correspondence between the ‘panicular ienses and their conﬁgu‘rau'on
in terms of the three entities. In the case of simple tenses, this is easily done, as the tcnse
information is already present in the f-structure, Fo; complex tenses (e.g., perfect), the exact tense
conﬁguratioh could be deduced from spec'%ﬁc pattemns in the f-structure. ALThc manipulation df the
adjuncts on a configuration could be coded in the Iexico_n. by possibly using one of the unuscd
fields, as these adjuncts are always introduced by a non-subcategorizing entity. The inclusion of
this approach would allow the system to handle more sophisticated constructions and would not

interfere in any way with the processing of existing constructs.

Another imporiant aspect of the system that could be enhanced is the treatment of quantification.
Conceptual Graphs provide suppont for the simpler cases of quantification, as it was illustrated by
the table shown on page 23. This treatment becomes inadequate when the scope of a particular
quantifier ranges over more complex constructions, such as,rdalives clauses. Consider for inswzcc

the phrase ‘
Books that have a hard cover cosis ...

The concept representing books will have a generic referent. However, there is no easy way of

Do

65

extending the scope of this referent over the relative clause. The fomialism doesrnoti'_pmvjde'any
mechanism for capturing the mbdiﬁcaﬁm of the referer) by other concepts/sub-graphs. A solution
.10 this problem would involve the development of a more detailed @msentatioh of referents, and a
mechanism that would properly specify the range of each referent. Part of the problem is due to the
fact that the scope may range over parts of a graphs which is hard to identify in terms of concepts
and sub-graphs. ' ’ '

. r
The graph representation scheme presented in Chapter 3, as we have said in the introduction, has

"been adapted to a very different framework than the current one {11]). The framework is called
= "Discontinuous Grammars?® (9, 14} and in particular, its Static Discontinuity family [10, 13, 15, 12}

is attractive to implement transformational grammars, such as Government and Binding [7).. In
such grammars, constraints on movement are usually éxpressed in terms of node domination. An
example of such a constraint is subjacency, which stipulates that the movement of a node cannot

cross two nodes with a particular characteristic (called bounding nodes). L

The graph representation scheme of Chapter 3 can be used to represent the pérsing history of a

. derivation. 'I'hen, when a Umsfonna{ion rule is about to0 be applied, the path to two bounding

nodes are retrieved and the verification for the cxpssing over these two nodes can be done by
@_jjcadon alone, using predicates similar to the ones we gave in Chapter 3 for subtype. The
structures represented in this case are always trees, therefore the comparison of nodes is always

done in constant time.

- AppendixA . o

- Some Implementation Details L

The major ideas presented in this thesis have been incorporated into an implcmcmalion in Prolog.

Although not complete, the imp]émenta;jon covers the initial target language. ~

We now provide the reader with some implementational details thdt have purposely been omitied |

in the dis¢ussion for sake of ckaﬁly. This’ appendix is devoted the presentation of some
implementational details of the transformation program, whose (Englisrg\q\t:scﬁmion a'ppcars in

Chapier 5. We have included the most important parts-here.

In order 1o ease the discussion, weA introduce the Prolog representation of f-structures and
Conceptual Graphs. ’

AL Representation of F-Structures

%

The representation of f-structures is easily understood from its definition. Recal! that an f-

structure is composed of attribute-value pairs. We define the binary operator "A" 10 represent an

f-structure. Its first argument is an attribute and the second one is its associated value.

.
In cases where the value represent a predicate that subcategorizes for ments, we include the
argument(s) in a list which isjgincd {0 the value using the operator "::" as in: '
drink::[subj,obj]
This altows quick separation of the value and its argumeni(s) through unification.

The remainder of the representation of f-structures i:s reasonably straightforward, except in the
case of coreference. Similar predicate values in an f-structure are assumed to refer to different
entitiés, unless they areecoindexed. In order to represent this co-reference, we define the operator

"A”, which joins a predicate to a subscript value, as in: _
)

T 67

predAmant1
Two wbscri;'xzd predicates will be assumed 1o refer to different entities, unless they have the same

-

co-index. The following example shows an example of our representation for the sentence
A man is drinkin, \'gwmc' . ' .
2atz/\[subj/\[pred/\man*1; det/\a, agx/\ [num/\sg, pers/\3]],
. tns/\present, : .
N pred/\prog: :voomp, :
* voomp/\[participle/\present,
subj/\[pred/\man*1,det/\a,agzr/\{num/\sg, pers/\3]],
pred/\drink:: [subj, obj], tns/\pres,agx/\ [nua/\sg, pers/\3],
obj/\{pred/\wine, det/\a, agz/\[num/\sqg, pers/\3]}

P

] :
I _ 7]
For consistency of the operations, we assume that the f-structure of a sentence appear as a value of

the attribute fstr, as illustrated in the above example.

A.2. Representation of Conceptual Graphs

o

One of the main objective of this work was to complete a language translator as outlined in
Section 2.1, In paniculaf,'we_ wanted to hhv.e the possibility of using the graphs ;S’roduced by thev
present sysiem as input 1o an existing language generator using CGs. Therefore, the representation
for CGs that we chose has been strongly influenced by that of the o(her system, which is fully
described in [27). | {

Following the abo‘ve mentioned reference, we represent a Conceptual Graph by a three-place
predicaie graph, having the following format:

‘ graph(ld,ConceptList,RelList). | .

. ‘ ,I,d is siniply an integer idem‘\ﬁer of the graph. ConceptList is a list of concepts/subgraphs of the
graph, each one of which is associated a number. Rellist is a list of the relations of the graph. The
elments of that list ar; dyadic function terms describing for each concept originating relatiop(s) the
list of concept(é) lo‘ which the originating concept is linked to, “along with the name/of each
,reladons. The following are examples of graphs generated by the system

graph(2,[1~prog 2~g/ 1],{rel(1,[2::0p])])
grapt1,[3~wine::unspec,2~drink, 1 ~man::unspec},[rel(2,[3::theme,1::agent])])

‘Only minor syntactic variances have been adopted in comparison with the representation of [27], to
improve readability.

~

-

Aul

oy, .
A.3. Important Predicates

/ittttttttﬁttttttttttttttttiitttttiiiiiiiitititit.ttttttttittittit.t..tttiti/

/* Translate for an f-str pred. . A */
/* , : 0/
/* lst 3 a:q\ F-structure, graph in and graph out 4 */
/* last 2: part from when it is called (e.g. subj, verb, eto., for use */
/* by the laxioon)§list of f£-str attr-graph token : e/
/® {e.g. [subk::1-cat_g, verb::2~drink g, ...])#list of things 0/
/® already rgd to by relations but nct processed yet. e/
/* Format: */
/% [GF::Chno::Rame, ...], vhere Cno is tbo .conocept originating a rel. */

/ttttttttttttttttttttttﬁttttttttttttttttitttttttttiltttttittttt.tttttttttttt/
t:anolat.(_/\ptr::Dest,graph (Id, CL,Rell), graph (Id, CL, Rell),
Puzt.?:.d!.himtodnln Part§PredLiNantedlout) :-
—ﬁ.r(b,nt: :Cno~Gtoken::_,Predl), !,
seeaifwanted (Part,Rell, (Cno~Gtokan) MantedLin, Wantedlout) .

translate (pred/\Ftoken:: ,G,G A A) :-
auxiliary (Ftoken), !,
assert (subgraph (Ftoken)) .

translate (pred/\Ftoken: :G¥L, graph (Id,CLin, RelLin), graph (Id, CLout ,RelLout),
Pu:thr.dLianantodLin Part§PredloutiVantedlout) : -
addvar (GFL, Axgl) ,
lex (Ftoken, Gtokan, ArglL, '.l'yp.a Part),
addcono (Gtoken, Clin, CLout,Cno) , |,
seeifwanted (Part,Rellin, (Cno~Gtokan) fMantedLin, WantedLtmp) ,
insertTR (ArgL, Types, Cno, Rellin,Rellout,
T {Part::Cno~Gtokan |PredlLin] WantedLtmp, Predlout §Want edlout) .
translate (pred/\Ftoken, graph (Id, CLin, Rall}, graph (14, C.Lout Rall),
Part§PredliniWantedlin, Ptrtl{?nrt l-Ol‘.ok.an:.dLLn]ﬂmtodLmt) T -
lex (Ftoken, Gtoken,_,_, Part),
addcono (Gtoken, C‘.‘Lin CI.out mn, 1,
sesaifwanted (Part,Rell, (M~Gtoken) fMantedLin, Wantedlout) .

/ttt.ttttttttttttttttt.tttt;f‘tttttt.ttttttttttttttttttttttttttttttttttttttt/

/* Translate for the det part. */
/* : ' ' */
/* lst 3 arg.: F-structure, graph in graph out */
/* last 2: AuxInfo as described for the pred part. */
/% Rote: - assumes that the predicate has slready boen inserted in the */
/* graph i.e. it appears before in the f-str. ./

AL e L ey R R R R LR R AL LTI Y
translate (det/\Ftokan, graph (Id,CL, RellL), graph (Id,CL, Rell) , Part §PredLWL,
) Part§PredlywL) : -
lex (Ftoken, Gtokean, _,_.,det),
member (Part : (-P:.d i), Predl),
mamber (~Pred: :Gtoken, CL)} .

h) N ‘9

/ttltltttfttttttﬁi‘ttfffitt*t.ittttttttttttlttiltlﬁiﬁl.tttiittiiiiitttttttit/

/* Translate for modifier pnrr. . . 5 */
/*) */
/* 1st 3 arg.: F-structure, grspd in and graph out ' s/

/* last 2: Part of the f-str whose predicats is modifiedisame 2 as above */
/titttttttttttttttttttitﬁtittittiitttttttttttittittitttitttitttitiittiiiitit/
translate (modattr/\ModL, Gin, Gout , PartiPredLiWL, Pu.tl?t.dl.lﬂf
sssber (Part: :Cono~_ ,PredlL), <
process (ModlL, Gin, Gout, Cnod_,).

L

’

/'ttttttttt'ittttttttttttitttttttti'tttttttttttittitttttlttﬁ.ﬁtiitﬁitﬁ.ﬁtttt/

/* Same argument as above except that Victim is the # of the conc modified */
/ttttttittittttt.ttt..iti*.tblt..tt.ittt..ttttt.ti‘itttttt'itttittttttt.ttt'/
translate (mod/\[Rel/\Ftoken|More], graph(ID,CLin, Rellin), v
. graph (1D, Clout, RelLout) , Vict imfPredLliWL, Vict isfPredL4WL) :-
lax (Ftokan, Gtoken, ., .mod),
o (Gtokan, CLin, CLtap, Cno),
addrel (Victim, Cno: :Rel, Rellin, Relltap),
proocess (More, graph (Id, CLtmp, Relltmp) , graph (Id, CLout, Rellout) ,
Cano#AuxI, CnofAuxlI) .

/'t"titttitttttttttti'ttittt'ttttt"tttttttt‘ttt't"itttttttt"ttttttttt'tt/

/* Translate for other attributes. Simply call process on the valua list */
/"t’ttt!ttttttttt'tttttttttttttttttiit.tittitttit‘.t.tﬁ.ttttttttt.t'.ttt‘tt/
translate/Attr/\ValL, Gin, Gout,_ §PredLiNantedL, AuxIout) :-

member (Attz, [fstr, sub),obj, by_abj, of_obj, voomwp]),

process (Vall,Gin, Gout, Attr#Prd&LiWantedL, Auxlout) .

/t...tt'ttttttttttt.ttttt'ttttt'ttt.ttttttttttttttttttttt.'ttttttttttttttttt/

/* This predicate takes in a list of lttz—nlu. pllxl and calls translate */
/% for each alement of that list' */
/'....tt.tt.t.ttt.tt.....t...t....ttt.t....t'.....t'.'.tt'.t.t"t'ttt..t..'t/
process ([).G, G, Auxl, AuxI).
process ([Attr/\Val |Rest], Gin, Gout, Glll.d«l’?:nd!.ﬂn;bdl AuxIout) :-
(member (Attr, [subj, obj, voomp, by obj,of_obj]) ->
translate (Attr/\Val, Gin, Gtmp, AttriPredLi¥antedl, §PredlimpiVWantedltmp) |
translate(Attr/\Val,K Gin, Gtap, CalledjPredLivantedl,
n:odz.t-plunudu-p)).
process (Rest , Gtmp, Gom: c;ll.dl?:qﬂ.tqﬂmtun.tq AuxlIout) .

/tt't't"...tttttttttttttttttttttt't.tttttttttt.ttttttttttttttttitttttttttt./.
/% sesifwanted: sees if a the predicate of part (an f-str attr having a v/

VA pred field) is needed as a dest. in a relation. Is so, it */
/* removed from the wanted list (assume ss many entries in thet/
/* wanted list as necessary. */
- /* 1st arg.: part of the f-str whose predicate i-ahoakod v/
/* 20d arg.: relation diff list */

/*msuhuq:mummwmmmmnnum.-/
/tttttttttttttttttttttttti.tttttt’ttttttttttttttttttttttttttittt.tttfititttt/
seelifwanted {Part,Rell, (Coo~CDest) Mantedlin, Wantedlout) :-
dalets (Pazt: :Ino: :Rame::Type, Wantedlin, Wantedlout), !.
compatible (COest, Type, Part),
changerel {Ino, Coo: : Bame, Rell) .
sseifwanted(_, ., WL ,WL). ﬁ

.

70

/iiittiititiiitttittiitttiiititttttttttiiiiiiiiiiiiiiiii"iiiiiiiiiiiiiiitii/

/* ipsertTR : - . : v/
/* : ’ ' »/
/'I-tu:q.:listot‘rl :G¥ obtained by convert (or o.w.) ' »/
/* 2nd arg.: list of types associated with the -ubontogoril.d gf R VA
/* 3rd arg. oono.pt # initiating relations X */
/* ath & Sth arg.: relation diff list (in and out) - »/

/* 6th & 7th arg.: last 2 elts of the aux info str as do-cr!.hod Ln tho 0/

/* pr.d.tcato part B .7

/i""ii'i'i""iii"'t'ii'i"i"""i"""t't'tt""'t'tt""tttttt'tttttt/‘A
insertTR([])._,_,Rell, Rell, AuxInfo, AuxInfg) .
insertTR ([GF::TR|Rest], [Typel|Types), Ino,Rallin, Rellout,
S P:odl.ﬂh.ntodx.ln ProdLllmt.d.Lout) -
ssmber (GF: : Cno~CDest, Predl), !,
ocompatible (CDest, Typeal, GF),) .
addrel (Ino,Cno: :TR, Rellin, Ralltmp), >
insertTR (Rest, Types, Ino, Relltmp, Rellout, PredLiWantedlin, Prodl.ﬂmtodnwt)
insertTR([GF: :'let] [TypeliTypes],Ino, Rellin, Rellout, PredLiWantedlin, .
Prodl-lﬂlntodlout) P
addrel (Ino, n Rallin, RelLtmp) .
insertTR (R.at. Typas, Ino,Relltmp, hllmt.)
PredL$(GF::Ino: :TR: :Typel|WantedLin], PredLiWantedlout) .

/tm't"'t'tttttttt"""ti'ttttt"tttt"tﬁ'tg't"ii'tg";gtttttttt't'tttttttt/&
/* Pradicate that preforms the type verification between a conocept (lst arg)*/
/* and a type (2nd arg). The type of the subset has to be a subtype of the */
/% 2nd arg. The 3rd aryg. 1-thag£kbuxngp:ooa--odmdin used only for */
/* thea error message in case of failurw. */
/tttt"it""it't"i"'tttttttttttttt'.t’tttttttt'ttttttttttttttttttttttt.if./
ocmpatible (Conbept::_, Type,) :- subtype (Conoept, Type) . !. v special. for ref.
compatible (Concept, Type,) :- subtype(Concept, Type), !. ;
compatible (Conocmpt , Type, GF) :- <

write(’##**’) pn], *

write (' Ganeration of the graph stopped because '), nl,

write(Concept), write(’ is not a subtype of '), write{Type). nl,

write ('Exror while processing the '), write(GF). nl, nl,

fail.

/.'tttt"ttt'i""'."'tt"i".tltt"'llttt'tt'ltllttttltttttlttttttttttttt./

/* Predicate to check whether a fstr tokem (without arg.) is an auxiliary 1/
/tﬁtttt'ﬁtti"i"t'tttttl'ttttttttllttttttttttttttltttttltttt.t.tttt.ttttttt/

auxiliary (Ftoken) :- msmber (Ftoken, -
[be, bave, prog, pert, can, could, nqht should, would]).

/'.it'l'tllil'ttlt'tl'ttll‘l"'t't"'t't"t'tttt'tttt'ttt"tttltttlt'i't.ttt/

/* Predicate that takes care of the ganeration of sub-graphs */
/'ll'l*"'lll'll'*"ﬁ.""".l"l".l'l'l"."l"'."'."""""t't""'.ll/
gensub ((G1Gs], [graph (KewId, [1-Name, 2~g::1d], [rel(l, (2::0p])]).Gl|Ge]) :-

retract (subgraph (Mame)), !,
Gl = graph (Id,- :_)»
Bewld is Id + 1.

qu:uub(m 1G) .

\
7

/.tttt.ttttttttt.tttt‘ttttttttttttttttttttttttttttt‘tttttttttt'ttttitttttttt/

/* Predicate that the generation of sub-graphs for relatives */
JARAAE RS AN RS SRR R AN e I L ey A A T e A R R L I e A L L L
genrel (LG, BewlG) : - .

retraot (cxel (Cno,Goo)) , % Concept Cno of graph Gno has a relative

Selgzaph is Gno + 1,

retract (graph (Relgraph, CL, RL)), A

retract (rel (Gtoken,Relgraph)), . %

delete (graph (Goo, CL1,R11), 16, LGd) ,

addoonc (¢: :Relgzraph, CL1, CL2, Grelno),

addrel (Cno, Grelno: :Gtoken, RL1, R12),

q.nx.l([qrtph(l.lgzaph CL, RL) , graph (Gno, CL2, RL2)|LGd] IovLG)
genrel (LG, 1LG) .

72

Appendix B

Sample Runs ‘

a

- Here are some sample runs generaxed by the system for different constructions. In what follows,
we use the symbol "%" to indicate that the rest of the line is a comment inserted by the author.
Each gr!ph is describe by the spedhcaﬁon of its identifier, concepts and relations. - The relations

use the number associated with each concept in their representation.

h

- 73

% start is a predicate genarating the hioraﬁ:chy prépresentation and
% reminding the user of the format of particular query. /
f
{ 7- starxt. A
Processing tbo type h.inv---a’:y .- : . :
fstx (F), tx:-.n-lat.(l' graph(1,[].[1).G,_#[1#[],) mlub([G] Gs), :
genrel (Ge, Gsl) ,printigraph (Gs) .) v =

The p;odiuto "ru.n" can alsc be need, the M of 'vh:l.c.i'.: is this sample query

yes

] ?- run.

£-str processed:
- > F-8tructure <

fstr ~ subj - pred construction:: [by obj, of_obj]
det the .
- agr pum sg
- ‘Pers 3 .
. by obj pred beaver:
- det the
- ‘ " agr num sg
x pers 3
) of_obj pred . dam
det a .
agr num sg
. pers 3
pred halp:: [subj, obj]
tns . past N))
obj . pred lake
dat the i t
agr num g
e pers i § “
. /
, Graph: 1
‘Concepts:

Name $ Hame #
lake::spec 5 halpl 4
dam: :unspec 3 beaver::spec 2
construction: :spec 1l
Ralations: N
from to Name from to Hame from to Kame

1 3 thems 1 2 agent 4 5 theme

4 1 agent

A This graph is associated with the sentence:
L] The construction of a dam oy the beavers halp the lake. o

f-str -processed:

> F-8tructure <

74

drink: : [subj, obj]

fatr subj pred man
dat *a
agr nua
pers
tas pIesant .
pred p:oq::vconp/ -
veomp participle preseant
subj ptr::subj
pred
tos Pres —
’ agr aum
. pers
obj) . prad
dat
\X , agr
Graph: 2
Concepts:
Hame 4
prog ~ b3 "graph 1
A &
Ralations: «
 from to Hame from to Hame
1 2 op '
s Graph: 1
Concepts:
© . Bame $
wine: :unspec : -3 drink
Ban: :unspec 1
Ralations: *\)
from to Name ‘from to Mame
2 3 thame 2. 1 agent

% Thesa graphs r.proscnt the sentance:
3 A man is drinking wine. '

=

ag.
3
wine
a
num

pers

from

from

n

to Name

Cbgcopts:
Jood *

CAX: :unsped
man: :unspec

Relations:
from to
3 R

2
3

4

subj pred man
det a”
agr ous
pers
pred drive: : [subj,ob]]
tas pres :
agr num »g
pers 3
obj ' " pred car
: dat a
agr num
pers
modattr mod
mod
Grapa: 1
Hame $
. L xed”
3 drive
1
Nane from to Fame
theme 2 1 agest
qual

% This graph corresponds to ths santencs:

L

A man drives a red, good car.’

i

from to NHame

3

5

qual

LY 34

' Z-str processed:

76

fstx

subj
pred
tns
agr
obj}
Concq;t- :
Hame
hot
good 7
drink
Ralations:
from to Nane
2 3 thama
3 4 qual

=> F-Strugture <

% This graph represents.the santence:
% The cat drinks hot, very good milk.

pred cat
det the ,)
agr nus - 8g N)
B g.rl T 3
drink: : [subj, obj)t
pr.x-* i
nus g
pers 3
pxed milk
det norie
agr num ag
pers 3
modattr mod qual good
mod deag
’ =od qual hot
Graph: 1 R
- ' ' ‘
6 very S
4 milk: :unspec 3
2 cat: :spec 1
from to Naoe from - to Name
) 2 1 agent 3 § qual
4 5 deg

77

> P-Structure <

fotr subj - . pred book , -
det the TR, i -
. agr " num g
- . pers. 3 LT
, .) rel relmark that :
6(~ subj pred studant
det the -
agr num . - pl
pers 3
tns past N
pred read: : [subj, obj}
o . obj ptr::relmark) ~
s tns {* pest :
pred win: : [subj, obj]
obj pred prize !
det a bre
. agr num sg ‘
. - pers 3
, = ') e
. \
Graph: 2
- ~. ,
Concepts:
book: : spec 3 read 2 -
studant: IP.G 1l
.Q.J.Atioa.:
from to Hame from -to Hame from to Nane
2 3 theme 2 1 agent
. Graph: 1
Concepts:
Mams ? Hame)
graph 2 4 prize: :unspec 3
win 2 book::spec - 1
.7 L !
Ralations: .
from to Hame from to Name _ from to Name
1 4 relop 2 3 theme 2 71 agent
V¥ These two graph represant the sentenoce:
s The book that the studants read won a prire.
‘ ‘ v, -
% The concepts ’'book’ pmcnt {.n both qraplu are assumed to rcp:uont the
$ same instance. i

(1]

(2]

[6)

(7]

(8]

(9]

, PhD thesis, Simon Fraser University, 1987.

Dahl, V.
‘Gramaticas discontinuas: una herramxema computacxonal con aplicaciones en la teoria de

References

Ronald J. Brachman.
What IS-A Is and Isn’t: An Analysis of Taxonomic Links in Semantic Nelworks
1EEE Computer 16(10):30-36, October, 1983.

J. Bresnan.

The Passive in Lexical Theory

The Mental Representation of Grammatical Relations.
The MIT Press, Cambridge, Mass., 1982,

J. Bresnan (editor).
The Mental Representation of Gr ical Relations.
The MIT Press, C/bndge Mass., 1982,

Brown C., Dahl, C., Massam, D., Massicotie, P., Pauabhxraman T. ‘
Tailoring Government and Binding Theory for Use in Natural Language Translation.
Technical Report LCCR 864, Sxmon'Fraser University,1986.

Brown, C.
Generating Spanish Clitics using Static Discontinuity Grammar.

I

. Brown, T. Pattabhiraman, P. Massicotte.
Towards a Theory of Natural Language Generation: The Connection between Symax and
Semantics.

- Natural Language Understanding and Logic Programming 11,

North-Holland, 1988.

Noam Chomsky.
Lectures on Government and Binding, the Pisa Lectures 2nd (revised) Edition.
Foris Publications, Holland, 1982.

" Verdnica Dahl.

On Database Systems Development Through Logic.

. ACM Transactions on Database Systems 7(1):102-123, March, 1982.- -

Dahl, V.

More on Gapping Grammars. .

In Proceedings International C or;ference on V Generation Computer Systems. Tokyo,
1984,

V.

Reccion y Ligamiento.
Revista Argentina de Linguistica 2(2), 1986.

78

(11]

(12},

e

{14]

[17]V

(18]

(19]

{20]

(21]

~ On Gapping Grammars.

79

Dahl, V. and Massicotte, P.
» Meta-Programming for Discontinuous Grammars.
In Proceedings of the Meta-Programming for Logzc Programming Workshop. University
of Bristol, 1988. 7 .

Dahl, V. : i .

Representing Linguistic Knowledge through Logic Programming. ,

In Fifth International Conference/Symposium on Logtc Programmmg Seattle, Augusi,
- 1988.

V. Dahl.

Discontinuous Grammars.

Technical Report CSS/LCCR TR 88-26, Simon Fraser University,1988:

Verdnica Dahi and Harvey Abramson. '

In Proceedings, Second International Logic Programming Conference, Uppsala, Sweden,
pages 77-88. Universitet Uppsala, 1984.

Dahl,V.
Static Discontinuity Grammars for Government and Binding Theory.

In Proc. Workshop ' Informatique and langue naturelle’, Université de,Nantes. 1988.

Wemer Erey.

Noun Phrases in Lexical Funcuonal Grammar.

Natural Language Understanding and Logic Programmmg
North-Holland, 1985.

Uwe R_eylc and Wemer Frcy.

A Prolog Implementation of Lexical Functional Grammar.

In Proceedings of the Eight International Conference on Al, pages 693-695. 1JCAI,
Karisruhe, 1983. '

Wemer Frey, Uwe Reyle, and Christian Rohrer.
Automatic Construction of knowledge Base by Analysing Texts in Natural Language.
In Proceedings of the Eight International Conference on Al, pages 727- 729 DCAL
Karisruhe, 1983. N

N. Homstein. .
Towards a Theory of Tense. .
Linguistic Inquiry 8(3):521-557, 1977.

N. Homnstein. \ .
The Study of Meaning in Natural Language: Three Approaches to Tense.
Explanation in Linguistics.

. Longman, 1981.

R.S. JackendofT. o
Semantic Interpretation in Generative Grammar. ~.
The MIT Press, Cambridge, Ma, 1972.

{26]

(277

(28]

(311

[32)

[33)

{34]

- MIT Press, Cambridge, MA, 1968.

80

R. Kaplan and J. Bresnan. é

Lexical Funcfional Grammar: A Formal System for Grammatical Represeritation.
The Mental Representation of Grammatical-Relations.

The MIT Press, Cambridge, Mass., 1982.

C. Brown, T. Pattabhiraman, M. Boyer, D. Massam V. Dahl.
Tailoring Conceptual Graphs for Use in NL Translation.
Technical Report LCCR 86-14, Simon Fraser University,1986.

A.S. Maida and S.C. Shapiro. \
Intensional Concepts in Propositional Semantic Networks.
Cogruuve Science &(4), 1982.

Massicotte, P. and Dahl, V.
Handling Concept-Type Hicrarchies through Loglc Prograinming.
In Proc. Third Amwal Workshop on Conceptual Graphs. 1988.

M. Minsky (edllor)
Semantic Information ProcFssing.

L

T. Pattabhiraman, P. Massicgtte, C. Brown.
User Manual for the MRI T\ lation Project
Laboratory for Computer and Communication Research, Simon Fraser Umvcmuy 1987.

Ehud H. Shapiro.
Alternation and the Computational Comple;uty of Lognc Programs.
Journal of Logic Programming 1(1):19-33, June, 1984.

L.K. Schubert, M.A. Papalaskaris, J. Taugher.
Determining Type, Part, Color, and Time Relationships.
{EEE Computer 16(10):53-60, October, 1983.

L. Slocum (editor).

Machine Translation Systems.

Cambridge University Press, 1988. S
First published as Computational Linguistics vol. 11 (1985) nos. 1-3.

John F. Sowa. .
Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Company, 1984,

John F. Sowa. !

* 4

Using a Lexicon of Conceptual Graphs in a Semantic Interpreter.
1987.

John F. Sowa and Eileen C. Way. :
Implementing a Semantic Interpreter using Conceptual Graphs.
IBM Journal of Research and Development 3(X1), January, 1986.

L. Sterling and E. Shapiro.
The Art of Prolog.
The MIT Press, Cambridge, Ma, 1986.

[35]

(36]

Rtul

K. Ueham R. Ochitani, O. Mikami, J. Toyoda.

R)|

An Integrated Parser for Text Understanding: Viewing Parsmg as Passing Messages

Among Actors.
Natural Language Understanding and Logic Programmmg
North-Holland, 1985.

W.A. Woods.

What's in a link: Foundauons for Semantic Networks.

Represemation and Understanding: Studies in Cognitive Sctence
Academic Press, New York, 1975. *

i»hdelu Yasukawa.

LFG system in Prolog.

In Proceedings of COLING84, 10th Intérnational Corgference on Comp

ngtusttc ,

pages 358-361. Assocxauon for Computational Linguistic, Stanford U versuy July,

1984,

4

k

RV 4

(‘{ :

SN

.‘0

