
Elimination of Wasteful Operations
in Natural Language Accesses to Relational Databases,

Using a Knowledge-Based Subsystem

by

Stefan W. Joseph

Diplom Ingenieur Elekrotechnik, Technische Universitat Berlin

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

0 Stefan W. Joseph 1988
SIMON FRASER UNIVERSITY

April 1988

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Stefan W. Joseph

Degree: Master of Science

Title of Thesis: Elimination of Wasteful Operations in Natural Language Access to Relational Databases,
Using a Knowledge-Based Subsystem

Jia-Wei Han
Chairman

Nick Cercone
Senior Supervisor

-
Wo-Shun Luk
External Examiner

A p r i l 15, 1988
Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Univers i ty the r l g h t t o lend

my thesis, proJect o r 'extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty Llbrary, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f I t s users. I f u r t he r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scholar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t ha t copying

o r pub l i ca t ion o f t h i s work f o r f inanc ia l gain sha l l not be allowed

without my w r i t t en permission.

Author:
/

(s(/gnature~
8

(date)

Acknowledgements

It is a pleasure to acknowledge the help and support I have received from many people during the

efforts that have culminated in this thesis.

Nick Cercone is responsible for creating the Automated Academic Advisor project within which I

have carried out this research. I am most grateful to Nick for his patience with me, for carefully reading

earlier drafts of my thesis, for his valuable advice, and his financial, and moral support throughout my time at

Simon Fraser University.

I am very grateful to Romas Aleliunas with whom I spent numerous hours discussing almost all

aspects of my thesis. Romas carefully read earlier drafts, and his constructive criticism and his

uncompromising demand for clarity have greatly helped to improve my thesis.

I am very grateful to Bob Hadley, who also carefully read earlier drafts of my thesis and gave me

valuable comments on several aspects, especially on the four valued 'logic'.

/

Tomek Strzalkowski carefully read an early draft of my thesis and sent me valuable comments on it. a

Jia-Wei Han and Wo-Shun Luk carefully read my thesis and also gave me some valuable comments. '

I had long discussions about my work with many of the graduate students of the School of Computing

Science, mostly with Mimi Kao who did her Master's degree in a directly related area within the AAA

project, and with Sanjeev Mahajan. All those discussions contributed to clarifying different aspects of my

thesis.

I am also grateful to the people taking care of the computing facilities at the School of Computing

Science, especially to Steve Cumming for his help whenever it was needed. Keith Vincent created some of

the special characters which were not available in the normal version of scribe.

Abstract

We present an approach to eliminate wasteful operations in natural language accesses to relational

databases, using a knowledge-based subsystem. The wasteful operations to be eliminated are mainly those

that would be carried out if no special actions were taken, in case null events of type 'property inapplicable'

that is, type mismatches, were bound to occur.

We first design a database with an academic environment as domain. The design is based on the

extended relational model RMIT for which we present a diagramming technique in Appendix A.. The R W

model is introduced and slightly modifkd and further extended to our own version: RW*. The

modifications are of a general nature, and not specific to the particular application. The extensions primarily

affect the catalog, which is the intensional part of the model, they are particularly important for an efficient

treatment of type mismatches.

We identify and classify the different types of null events according to the stage of query processing at

which they can be detected with and without the assistance of a knowledge-based subsystem. We clarify the

fundamental distinction between these two types of null events, which has been overloo5ed in the current

literature.

We then outline an efficient way of processing the queries such that null events of type 'property

inapplicable' can be detected with only limited database access, or without any database access.

Finally we extend Codd's notion of a three valued logic to deal with null events of type 'value at

present unknown' to a fourth value in order to include the null events of type 'property inapplicable'. Our

approach is distinct from Codd's recent approach [Codd 871 to a four-valued logic.

Throughout the thesis we compare our work to previous work that has been done in the area, and

propose some further extensions as appropriate.

Wie nur dem Kopf nicht alle Hoffnung schwindet,
Der immerfort an schalem Zeuge klebt,

Mit gier'ger Hand nach Schaetzen graebt,
Undfroh ist, wenn er Regenwuermerfindet !

(Faust, NACHT;
Johann Wolfgang Goethe)

How can such hope still dwell with him,
whose mind tenaciously adhem to rubbish,

who digs with eager hands for treasure
and is delighted when he finds a worm !

(Faust, NIGHT,
Johann Wolfgang Goethe)

Table of Contents

Approval ii
Acknowledgements iii
Abstract iv
Table of Contents vi
List of Figures ix
1. Introduction 1

2. The RM/T* database 10
2.1. The RM/T model
2.2. The two kinds of relations in R W

2.2.1. Entity relations
2.2.2. Property relations

2.3. Entity classes
2.3.1. Kernel entities
2.3.2. Associative entities
2.3.3. Characteristic entities

2.4. Designative references
2.5. Additional integrity constraints

3. The catalog of the RMR* database 29
3.1. DOMAINS, RELATIONS and ATTRIBUTES relations

3.1.1. The CATLG-DOMAINS relation
3.1.2. The CATLG-RELATIONS relation
3.1.3. The CATLG-ATI'RIBUTES relation

3.2. Graph relations
3.2.1. The property graph relation
3.2.2. The association graph relation
3.2.3. The characteristic graph relation
3.2.4. The designation graph relation
3.2.5. The subtype graph relation
3.2.6. Alternative generalizations
3.2.7. Temporal constraints

4. Classification of null events 37
4.1. Null events that can be detected without database access

4.1.1. Null events that can be detected without support by the knowledge-based subsystem
4.1.2. Null events that cannot be detected without support by the knowledge-based subsystem

4.2. Null events that can be detected only after some database access
4.2.1. Null events that can be detected without the need of join operations on the database

4.2.1.1. Null events that can be detected without support by the knowledge-based
subsystem

4.2.1.2. Null events that can be detected only with support by the knowledge-based
subsystem

4.2.2. Null events that can be detected only after some join operations have been performed on
the database

5. Null event detection in the RWT* model
5.1. Additional integrity constraints
5.2. Relational Operations
5.3. Detection of Z-type null events
5.4. Example

6. A four-valued logic to deal with two types of null events
6.1. The value at present unknown type of null event

6.1.1. Some problems with the third truth-value
6.1.2. Implication and incomplete information

6.2. The property inapplicable type of null event
6.3. The four-valued logic

6.3.1. Expressive completeness
6.4. Final remarks

7. Conclusions
7.1. Summary of the work done
7.2. General advantages of the RW* model
7.3. The problem of focus
7.4. Pseudo-indexed null values as a future extension

7.4.1. Relations for comparisons and set in/exclusions
7.4.1.1. Extensional comparisons
7.4.1.2. Intensional comparisons
7 A. 1.3. Deducing values

Appendix A. A diagramming technique for RWT databases
Appendix B. The relations of the database

B. 1. E-relations for kernel entities
B.2. E-relations for associative entities
B.3. E-relations for characteristic entities
B.4. P-relation for ACADEMIC
B.5. P-relation for ADMINISTR
B.6. P-relation for AFFILIATION
B.7. P-relation for AREA
B.8. P-relation for BOOK
B.9. P-relation for BOOK-MVP
B. 10. P-relations for CLASS
B. 1 1. P-relation for C O M m E
B. 12. P-relation for COURSE
B .l3. P-relation for CURNT-DATE
B. 14. P-relation for DEPARTMENT
B. 15. P-relation for ENROLLMENT
B.16. P-relation for FACILlTY
B. 17. P-relation for GRAD
B. 18. P-relation for INSTRUCTOR
B. 19. P-relation for OFFERED
B.20. P-relation for PRE-REQ
B.21. P-relation for ROOM
B.22. P-relation for ROOM-MVP
B .23. P-relation for SCHEDULE
B.24. P-relation for SEMESTER
B.25. P-relation for STAFF
B.26. P-relation for STUDENT
B.27. P-relation for TEXr
B.28. P-relation for TIME-TABLE

vii

B.29. P-relation for UNDER-MVPI
B.30. P-relation for UNDER-MVP~

Appendix C. The catalog for the database: relations and their contents
C. 1. DOMAINS
C.2. Definition of the enumeration types
C.3. A'ITRIBUTEUTEDOMAINS
C.4. ELEMENTS
C.5. INTERVALS
C.6. RELATIONS
C.7. A'ITRIBUTES
C.8. property graph
C.9. association graph
C. 10. characteristic graph
C. 1 1. designation graph
C.12. subtype graph

Appendix D. The contents of the knowledge-base
D. 1. Exception Rules

Appendix E. Mathematical terms to specify functional relationships
References

viii

List of Figures

Figure 1-1: Traditional natural language - database system.
Figure 1-2: A natural language interface to a database, supported by a knowledge-based

subsystem.
Figure 2-1: Entity relation for entity type STUDENT.
Figure 2-2: Entity relation for entity type STUDENT and a corresponding property relation.
Figure 2-3: Superior kernel entity type STUDENT and its two subtype kernel entities GRAD and

UNDER-GRAD
Figure 2-4: The E-relation ENROLLMENT and the P-relation ENROLLMENT-INSTANCE for the

associative entity type ENROLLMENT, together with the E-relations for the entity types
STUDENT and CLASS, which are associated by ENROLLMENT.

Figure 2-5: The E-relation and the P-relation for kernel entity type BOOK and the E-relation and
the P-relation for the characteristic entity type BOOK-MVP, characterizing the superior
entity type BOOK.

Figure 2-6: The E-relation and P-relation for kernel entity type ACADEMIC and the E-relation and
the P-relation for the designative kernel entity type GRAD, designating the entity type
ACADEMIC.

Figure 4-1: Different manifestations of null, as given by the ANSI Study Group on DBMS [ANSI
751

Figure 4-2: Overview of the classification of null events
Figure 6-1: The 16 truth functions for statements with two two-valued components.
Figure A-1: Representation of the entity type STUDENT.
Figure A3: Representation of the entity type STUDENT together with its properties NAME,

NUMBER, and SEX. 0

Figure A-3: Representation of the associative entity type TEXT together with its associative
references to the entity types COURSE and BOOK.

Figure A-4: Representation of the kernel entity type BOOK together with its single-valued
property WILE and its multi-valued property AUTHOR. The multi-valued property
AUTHOR is represented via the characteristic entity type BOOK-MVP.

Figure A-5: Representation of the designative kernel entity type GRAD, together with its
designative reference SUPRV to the entity type ACADEMIC.

Figure A-6: Representation of the kernel entity type STUDENT, together with its subordinate entity
types GRAD and UNDER-GRAD. The category of the specialization / generalization is
named STATUS.

Figure A-7: Representation of the kernel entity type DEPARTMENT, together with its property
types. The properties CHAIR# and FACLTY accept null values.

Figure A-8: Diagram of the logical structure of the database.
Figure E-1: Graphical illustration of the functional relationships

List of Tables

Table 6-1: Truth tables for two-valued negation, conjunction and disjunction 70
Table 6-2: Truth tables for three-valued negation, conjunction and disjunction, as given by 71

Lukasiewicz and Codd
Table 6-3: Truth table for two-valued implication A + B 73
Table 6-4: Truth tables for three-valued implication A + B as given by Kleene (left) and by 74

Lukasiewicz (right)
Table 6-5: Truth tables for three-valued negation, conjunction and disjunction, as given by 77

Bochvar
Table 6-6: Truth table for implication A + B in the presence of misconceptions 77
Table 6-7: Truth tables for four-valued negation, conjunction and disjunction 78
Table 6-8: Truth table for four-valued implication A + B 78

Introduction

Chapter 1

Introduction

The use of natural language as a means of communication between a database system and its human

users has become increasingly important since database systems have become widespread and their

accessibility to nonexpert users is desirable, if not essential, to facilitate full use of the database system.

Although natural language tends to be ambiguous and/or unspecific in a number of situations, it can be seen

as the ideal language for the communication between the database system and its human users since it is

available to virtually every human. The user's effort to learn a formal query language is thus converted into

the effort it takes to make the system accept and generate natural language sentences.

According to the natural language front-end paradigm, [Cercone and McCalla 861, the natural

language access to a database system can be broken down into two major parts, the linguistic component and

the database component. The database component performs the part corresponding to the traditional

database management system, whereas the linguistic component is responsible for translating the natural

language input into a formal query and generating a natural language response based on &he results from the

database search. Thus we have the structure depicted in Figure 1-1, where the linguistic component is *

represented by the solid vertical paths and the database component by the solid horizontal path. he lexicon

is basically a table which is used to map the words of the natural language input onto the formal objects

(relation names, attribute names, ...) of the database. Both the parser and the semantic interpreter make use

of the lexicon. The natural language generator takes the formal response as its input, and also inspects the

parse tree in order to generate an adequate natural language response.

More recent research Winograd 831, [Cercone and McCalla 863 suggests we abandon this

decomposed approach to a certain extent in favor of an integrated understanding system.

for example, the question 'Does J o b or Mary have a phone ?' could be interpreted as expecting a 'YeslNo' answer or one or more
numbers as a response

Introduction 2

semantic
interpreter

logical 0
generator a

output a
generator --@

DB query evaluator

Figure 1-1: Traditional natural language - database system.

The main reason for this trend is based on the fact that knowledge is essential in order to allow the

system to accept natural language input and to generate natural language output. Knowledge of the discourse

issues and the surrounding context, for example, [Grosz 77, as well as of the domain and structure of the

database must be included in the system in order to allow it to properly interpret and possibly disambiguate

the queries.

Somewhat similar to the way humans make use of their knowledge about syntactic rules of the

Introduction 3

language spoken and about the context of discourse when trying to decipher distorted radio transmissions,

natural language database systems could make use of syntactic knowledge and of knowledge about the actual

database in order to properly relate the natural language input to the structure and contents of that database.

Of course, the system will expect the user to ask questions pertaining to the domain of the database, which, in

turn, represents some aspect of the real world. The syntactic knowledge usually resides in the linguistic

component of the system, in particular in the syntax analyzer whereas knowledge about the actual database

resides to some extent in the semantic data model used.

Knowledge about the user and the goals of his speech acts (see [Martinich 851, [Winograd and

Flores 861 3, are especially important if a user friendly dialogue is to be carried through and Grice's

cooperative principles of conversation (see [Martinich 851) are to be followed.

A part of the knowledge that has to be implemented in order to improve the overall performance of

the system might be of direct interest to the user. For example, knowledge about the structure and the

domain of the database and knowledge about the rules in the knowledge-base could sometimes help the user

to use the system more effectively. Therefore it makes sense to let the user have access to at least a part of

the knowledge that is included in the system.

The next step towards an integrated understanding system is to include additional knowledge to

represent aspects of the real world that could not be captured in an acceptable way by the traditional database
rr

system. One such aspect could be the representation of rules, for example, the rule that in the School of

Computing Science a specific course, say CMPT 810, is always taught by either Dr. Hell, Dr. Liestman, or

Dr. Peters and offered at least once every year.

Cercone and McCalla [Cercone and McCalla 861 have identified six issues that are particularly

important to achieve an integrated understanding system. They are:
1. The full complexity of English is overwhelming, which means that the kind of language used when

interfacing with a database are usually constrained; ways must be found of a p d i n g the linguistic
coverage of natural language systems.

2. The "stratified approach of doing syntactic analysis, then semantic interpretation, then query evaluation, is
ineffective; m~refl~blepursing strategies must be created, in particular techniques to integrate syntax,
semantics, and pragmatics so that whatever action is appropriate at a given time can be done.

3. The separation of the linguistic component from the database components sets up an arbitrary barrier which
may have become counterproductive; a means of reintegrating data and language, and ultimately of
integrating knowledge and language must be found.

Part 2, containing six articles by Austin, Grice. Searle, and Vendler, all related to speech acts

Chapter 5: Language. Listening, and Commitment

Introduction

4. Traditional (relational) database structures are not necessarily conductive to promoting the kinds of
inferences which need to be made for the query to be comprehended or answerededproperly~~more
sophisticated structures i.e. appropriate knowledge representation schemes must be devised.

5. The user's understanding of the capabilities of the complete system and the current level to which he is or
thinks to be informed is an important aspect of the man-machine communication which must be taken into
~ c c o u n ~ modeling the user @ important and cannot be ignored.

6. Even in a restricted linguistic domain such as natural language database interfacing, many discourse
phenomena arise which must be accounted for if the natural language system is to behave cooperatively.

This thesis focuses on one aspect of such an integrated understanding system for which the

implementation of additional knowledge is required, namely the elimination of wasteful operations that may

occur during query processing, and in particular the treatment of null events and directly related issues.

We distinguish between null events, null values and null responses as follows:
A null value is an actual value occupying some memory space, that would otherwise be used for
a genuine value. The null value represents the fact that some information is missing in the field,
where the null value is found.

A null response (or empty response) is one that contains no information.

A null event is an event that may happen sometime during query processing and that results in
the generation of a null response unless special actions are taken.

Given a query to a particular database, there are different possible reasons which explain why a null

event may occur. One possible reason could be the fact that a null value was found during query processing,

that is, the information stored was incomplete with respect to the query at the time the query was entered to
e

the system. For example, the phone numbers of several persons might have been missing although the rest of

their personal data such as their names and addresses were present. Some of these persons whose phone

numbers were missing, that is, substituted by null values in the corresponding attribute field in the database,

might have a phone in real life, others might not have one.

Another possible reason could be a misconception on the part of the database user. Contrary to the

user's expectations (reflected in the way he words his query), the requested information might be represented

in a different way, or not at all. In this case a query would result in a null event although no actual null value

is detected in the database, rather the structure of the database does not allow the interrelation of entities and

properties as suggested by the wording of the query. In the above example, this type of null event would be

the case if the database designer had chosen to include information about phone numbers for some of the

persons represented in the database (say STAFF members), but not for others (say STUDENTS), or if he had

chosen to exclude information about phone numbers altogether.

Introduction 5

Knowledge, in addition to the extensional data in the database, can help to detect null events and

generate appropriate responses to the user. This additional knowledge can be knowledge about the structure

of the database, or about the real world The part that deals with knowledge about the database structure

alone, is probably easier to adapt to different systems, than the part that deals with real world knowledge

about the aspect of the world being represented by the system.

In our approach to the problem of null events and directly related issues, the complete natural

language database system still adheres to the stratified structure as illustrated in Figure 1-1. However a

knowledge-based subsystem interacts with different parts of this system and supervises the different

processing stages, in particular the query generation and the query interpretation stages. Thus, this approach

represents a step towards an integrated system, while leaving the clearly decomposable parts basically

unaltered as separate modules. Figure 1-2 shows the general structure of our approach. Here the dashed

arrows originating from the knowledge-base indicate the interactions of the knowledge-based subsystem as

proposed in this thesis. The dotted arrow to the semantic interpreter module indicates a possible assistance of

the knowledge-based subsystem to disambiguate some natural language input with respect to the database at

hand. The dotted arrow to the natural language generator indicates a control function of the knowledge-

based subsystem in case it can run in parallel with the rest of the system. In this case it could sometimes be

necessary to abort the natural language generator in its current processing in order to process an alternative

formal response, which turns out to be more appropriate.

H

The underlying database is structured according to the R I W model [Codd 791 and represents a part of a

the domain of an academic advisory environment. A knowledge-based subsystem will exploit an extended

version of the catalog to predict the occurrence of null events and thus to avoid wasteful searches through the

database. The same information will be used to generate answers to help the user understand the reasons

why a search was wasteful.

The less a user knows about the database domain and logical data independence, the higher the

chances of null events and inputs that cannot be properly processed by the system. An unsophisticated

database system might
not be able to avoid wasteful searches,

simply reply with a null response when a null value is encountered, leaving the correct
interpretation up to the user.

0 prevent misleading responses when null events occur due to user misconceptions, by rejecting
input that could somehow be determined to be illegal without educating the user about the
reasons for doing so,

Introduction 6

Figure 1-2: A natural language interface to a database, supported by a
knowledge-based subsystem.

The problem of turning null responses into cooperative responses has been addressed extensively in

[Kaplan 791 and [Kao 861. Here null responses obtained from the database after an exhaustive search

through the extensional data are m e d into quality responses in order to improve the communication

between the database system and the human user.

The objective of this research is to prevent the exhaustive and time consuming searches and to give a

direct but helpful answer to the user. We cannot deal with all null events in this manner. Some null events

occur because of a lack of extensional data and can be detected only after an exhaustive search has been

carried out. In these cases, approaches such as Kao's will continue to be useful to improve the overall system

Introduction 7

performance. Our objective then is to identify those null events that can be detected with only limited

database access or without any database access, and to find an efficient way to perform this ktection. For

the analysis part of the problem and the identification of the predictable null events, we design a database

wich is based on a well recognized semantic model.

Since a natural language system is most probably used in an environment where the percentage of

database expert users is small, a high number of queries has to be expected that could result in wasteful

searches and null events if no special precautions are being taken. In general the search through the database

is the most time consuming part of the system, even if a sophisticated natural language interface is included.

For example in the CO-OP system Dplan 791, a natural language database system that provides cooperative

responses to simple questions requesting data retrieval, about 90 % of the real time required to get a response

is spent in the database system itself, not in the natural language components. Avoiding dispensable searches

through the database would mean a valuable improvement in performance, especially in systems, where the

domains are sufficiently complex to let the users of the natural language facility make incorrect presumptions

in their queries.

A higher system acceptance of the users can be expected for two reasons:

1. because of the higher efficiency of processing the queries (the user has to wait less long for
responses) and

2. because of the higher quality of the responses (an explanation on any misconceptions on the
side of the user is better than a null response).

*

The quality of our approach is arguable with respect to point 1 since the effects of the inclusion of the

knowledge-based subsystem will be twofold: the response time to queries that would otherwise result in null

responses will decrease, but the response time to the other queries will increase. For the two goals,

optimization of response time, and expansion of linguistic coverage, priority should be given to an expansion

of the linguistic coverage as long as queries that a human user sees as pertaining to the domain of the

database, might result in null responses. With our approach we attempt to expand the linguistic coverage

with a minimum increase in response time.

This short introduction into the general area of research in which the thesis is embedded, the

development of integrated knowledge-based systems, serves to orient the reader. We now present a brief

overview of the following Chapters.

The example database referred to throughout this thesis is introduced in Chapter 2. The domain of

Introduction 8

this database covers a representative part of an academic environment. The structure of the database follows

the RM/T * model, which is basically the extended model with a number of yet further extensions and

constraints. The description of the database goes hand in hand with a general introduction to the RMlT

model and the changes and additions made in the RM/T * model. The relevant concepts are introduced step

by step and as they are required in the database.

A detailed description of the catalog of the database is introduced in Chapter 3. The catalog is

actually a part of the RMIT database, but clearly separable from the extensional data; it represents the

intensional aspect of the world as represented by the database. Since the information in the catalog is time

independent, both, the catalog structure and its complete contents are presented. The catalog of the RM/T *

model has some further extensions concerning integrity constraints and representing further information,

especially about the domains of the attributes.

In Chapter4 we first clarify the distinction between null values and null events. Based on this

distinction, we show the fundamental distinction between null events of type 'value at present unknown' and

of type 'property inapplicable'. This distinction has been overlooked in the current literature, and has

significant influence on database design. Finally we present a classification of null events, which goes hand

in hand with an identification of those null events that can be detected with limited database access, or no

database access at all.

/

In Chapter 5 we present the relevant aspects required to process the queries in such a way, that null
*

events can be detected with as little database access as possible: We outline algorithms used to inspect each

particular query and retrieve applicable information from the catalog before accessing the actual database.

With these algorithms wasteful operations can be eliminated which would otherwise be carried out and result

in null events of type 'property inapplicable'.

In Chapter 6 we present a digression on Codd's notion of a three-valued logic to deal with null events

of type 'value at present unknown' to a fourth value in order to include null events of type 'property

inapplicable'. The elements of the four-valued logic reflect the pragmatic nature of the approach proposed in

this thesis.

A summary of what has been achieved is given in Chapter 7. Open issues as well as directions for

further, future work are presented. We finally suggest some further extensions to the RMIT * model, which

allow the representation of partial information. This approach can be seen as a realization of a pseudo-

Introduction 9

indexed representation of null values of type 'value at present unknown': only those null values are indexed,

for which some further information is available.

In Appendix A we present a diagraming technique for the RM/I' (and RMD *) model. Based on this

diagraming technique, we present a diagram of the logical structure of our example database. Frequent

reference to this diagram might prove helpful while reading most parts of the thesis.

In Appendix B we present all relations of the example database, including some explanation on their

intended meaning. This appendix is contains information at a level of detail, that is only rarely required

while reading the thesis and is mainly added for reasons of completeness.

In Appendix C we present the relations of the catalog, as well as the contents of those relations. The

contents reflects the structure of the database.

In Appendix D we present the parts of the knowledge-base, which are not represented in the catalog.

In Appendix E we give a brief overview of some mathematical terms used in the description of the

R W model.

The RMIT* database

Chapter 2

The RMIT* database

In order to show the interactions of the knowledge-based subsystem with a database, we use a

database representing aspects of an academic environment as a practical example. This choice is mainly due

to the fact that some work in this area, the AAA-project (AAA stands for automated academic advisor), is

currently being pursued at Simon Fraser University [Cercone et al. 831, [Cercone et al. 841, [Hall 861, [Kao

861, [McFebidge et al. 881.

An inadequate database design could create problems which could then (partially) be solved by

additional processing. Our intention is to show that even a good, or at least adequate, database design will

leave some unsolved problems which can successfully and efficiently be handled using a knowledge-based

subsystem. The design methodology for the database is based on the RJWT model [Codd 793, [Date 831.

RM/T is based on the relational model, but imposes additional structure on the comparatively unstructured

collection of information of a 'normal' relational database, and inrroduces some discipline into the integrity

enforcement scheme. In [Date 86a1 C. J. Date sees a direct parallel d

"... to the basic relational model which was used for logical database &sign long before any relational
DBMS was ever available. Even if no W system per se is ever developed, its use in design may nonetheless
prove an important contribution."

In addition to providing a set of objects (entities of different types, properties, etc.) and rules

(integrity constraints), RMIT also provides a set of high-level operators over and above the operators of the

basic relational model. However, we use the RM/T model solely as a basis of the semantic data model of our

database, and are not concerned with its manipulative aspect. Also note that in pate 86b1, when referring to

the operational aspect of the RM/T model in his overview, Date points out that
"much additional work remains to be done in this area".

An introduction to the relevant concepts of the RM/T model and a few elaborations on the design

* stands for Relational Model Tasmania: Codd presented this model for the first time during an invited talk presented at the
Australian Computer Science Conference in Hobart. Tasmania, in February 1979.

The Relational Future, page 489.

The RMPT* database 11

decisions concerning our database are given in this chapter. A detailed description of the R I W model and

the extended RM/T model can be found in [Codd 791 and [Date 831, respectively. We introduce a number of

further extensions to the R W model and to the extended RM/T model and refer to our extended model as

RMIT*. As an initial overview, a diagram showing the complete database is given in Appendix A. In

Appendix B individual relations are specified in detail. The description of the catalog of the database will be

given in Chapter 3.

2.1. The RM/T model

We give a brief overview of the RM/T model to orient the reader. The different RMIT concepts

involved will all be explained in more detail in subsequent sections.

According to the RMIT model, a micro-world of interest is represented in terms of entities, their

properties, and nothing else. Each entity can be arranged along two distinct dimensions: its type and the

class it belongs to. The type gives some indication as to what type of real world object the entity corresponds

to; the class indicates some of the integrity constraints that apply to the entity.

Real-world objects, relationships among them, as well as relationships among those relationships, are

all represented as entities. Informally, we may say that an entity is any distinguishable object - where the

'object' in question may be as concrete or as abstract as we please. Internally, all entities are identified by

system generated surrogates which are invisible to the user who uses his own key attribttes to identify the

tuples of interest.

References from an entity type A to an entity type B (A and B need not be distinct) are represented by a

special attribute field in a property relation (introduced in Section 2.2.2) for entity type A, containing a

surrogate identifying an entity of type B. Independent of the entity type of A, or B, all references are

classified into a set of disjoint classes of references. Each class of reference is subject to a specific integrity

constraint. Thus each entity is characterized by its type, the classes of references involved in the entity, and

the set of single valued properties that apply to it.

The RMPT* database

2.2. The two kinds of relations in RM/T

Before describing the three classes of entities and their corresponding integrity constraints in detail,

we introduce the two kinds of relations that may exist in an R I W database, entity relations and property

relations, and the two integrity' constraints that hold for all entity relations and for all property relations,

respectively.

2.2.1. Entity relations

Just as in the basic relational model, entities are categorized into different entity types. For example,

we use the entity type ~ E N T to represent students and their properties in our database.

In order to keep track of the instances of a particular entity type that are currently represented in the

database, a specific kind of relation, an E-relation, is used. An E-relation is a unary relation, which is given

the same name as the entity type it represents. For example, Figure 2-1 shows the entity relation for the

entity type STUDENT. There is an E-relation for each entity type in the database. Its sole attribute is called an

E-attribute and named by appending the character 'e' at the end of the relation name, for example,

STUDENT$.

STUDENT e

STUDENTI

surrogates

Figure 2-1: Entity relation for entity type STUDENT.

Every instance of an entity is uniquely identified by a system assigned surrogate. The surrogates are

used for system internal identification only; they are invisible to the user. A special domain, the E-domain,

serves as a source of all surrogates. The mapping from real-world entities to the surrogates in the

corresponding E-relation is partial and bijective (see Appendix E). For example, for every student in the

real-world there is at most one smgate in the E-relation STUDENT, and if there is such a surrogate, then it

The RMIT* database

uniquely identifies that student. Each E-relation lists the surrogates of all the instances of the corresponding

entity type that are currently represented in the database. As stated in [Codd 791, [Date 831 and [Date 86b3,

all E-relations are subject to the following integrity constraint:

rn Entity Integrity: E-relations do not accept null values; E-relations accept insertions and deletions but

not updates.

The first part of this rule conforms to the entity integrity rule of the basic relational model, stating that

no primary key of a base relation is allowed to be null or have a null component. The second part is meant to

conform with the ground rules for surrogates and is somewhat misleading. Since an E-relation is a unary

relation, an update of any of its tuples is in effect identical to a deletion-insertion pair.

The system uses single E-attributes as primary keys for all relations (both E-relations and property

relations), that is, internally all entities in the database are identified by their surrogates and by nothing else.

The users may use their own (possibly composite) primary key attributes, which will be treated as property

attributes (see Section 2.2.2) by the system, but the users do not see the system internal E-attribute primary

keys.

Every reference in RM/r is a reference from an E-attribute of some relation to the E-relation of some

entity type.

2.2.2. Property relations

Each entity in RM/T may have a set of zero or more immediate, single-valued properties, represented

by a corresponding set of attribute fields. For example, as shown in Figure 2-2, the three property types of a

student, identification number, name of the student, and sex of the student, are represented by the property

attributes NUMBER, NAME, and SEX, respectively, of the STUDENT entity.

The property attributes of a particular entity type are represented in a set of n-ary property relations

(or P-relations) for that entity type. The set of P-relations for a particular entity type satisfies the following

?he W model does not assume a c l w d world. that is, more real-world entities than the ones currently represented may exist

' However, users need not invent rutifid key attributes, in case no 'natural' key exists for a relation.

The RMIT* database 14

STUDENT STUDENT-PROPERTIES

Figure 2-2: Entity relation for entity type STUDENT
and a corresponding property relation.

eadxg999
aadxhOOO
aadxhOOl

rn Naming Integrity:
the primary key of every P-relation in the set is an E-attribute with the same name as the single
E-ataibute of the corresponding E-relation;
no two P-relations in the set have any attribute names in common except those E-attribute names
mentioned above.

For example, as shown in Figure 2-2, the set of P-relations for entity type STUDENT consists of the

843901737
8339CMO5V
871234567
818767654
787656545

single element STUDENT-PROPERTIES, whose key attribute is the E-attribute STUDENT$, and whose remaining

attributes, NUMBER, NAME, and SEX represent immediate, single-valued properties of a STUDENT entity

JONES
WALKER

SMITH
JONES
WHITE

A property reference is a reference from the E-attribute primary key of a P-relation to the
H

corresponding E-relation. This reference is a total and injective function: the domain from which the values

in the key attribute field of a P-relation are taken, is a subset of surrogate values represented in the

M
M
F
F
M

corresponding E-relation. Expressed in the terminology of database theory the integrity constraint

corresponding to the property references is the following

Property Integrity: No tuple can exist in a P-relation, unless the primary key value of that tuple is

identical to some value in the E-relation corresponding to that P-relation.

For example, no tuple can exist in the P-relation STUDENT-PROPERTIES unless its key attribute

STUDENT$ contains a (surrogate) value identical to some existing value in the E-relation STUDENT.

Informally, this means that in the P-relation STUDENT-PROPERTIES we cannot represent the id-number, and/or

the name and/or the sex of some entity, unless that entity is known to be of type STUDENT.

The same property attributes could also be represented using two, or three P-relations. For example, one P-relation containing the
single property attribute NUMBER, and one P-relation containing the two property attributes NAME and SFX.

In general, the complete set.

The RM/T* database

Although the RM/T model uses exclusively E-attributes as primary keys for all relations, any attribute

of a P-relation can be declared as user key. All attributes declared to be user keys are subject to the

User-key Integrity: User key attributes do not accept null values and duplicates are not permitted.

The P-relations contained in our database are given in detail in Appendix B. We summarize the list of

property attributes for each entity in the database.

Entiry m e
ACADEMIC
ADMINISTR
AFFILIATION
AREA
BOOK
BOOK-MVP
CLASS
COMMITI'EE
COURSE
CURNT-DATE
DEPARTMENT
ENROLLMENT
FAClLlTY
GRAD
INSTRUCTOR
OFFERED

PRE-REQ
ROOM
ROOM-MVP
SCHEDULE
SEMESTER
STAFF
STUDENT
TEXT
TIME-TABLE
UNDER-GRAD
UNDER-MVPI
UNDERUNDER_MVP2MvF'2

Properfy attributes

STATUS
FOR$, POSlTN
ACADEMIC$, DEPARTMENT$
NAME
TITLE
BOOK$, AUTHOR
COURSE$, SEMESTER$, INSTRUCTOR$, FINAL
ACADEMIC$, GRAD$
FIELD@, NUMBER, UNITS
DATE
CHAIR$, NAME, FACLTY
STUDENT$, CLASS$, GRADE
OF$, DIREC$, NAME
SUPRV$, PROG
ACADEMIC$, DEPARTMENT$
AREA$, DEPARTMENT$
FOR-COURSE$, IS-COURSE$
OFFICE$, BUILDING, NUMBER
ROOM$, PHONE
TIME-TABLE$, ROOM$, CLASS$
TERM, YEAR
DEFT$, NUMBER, NAME, SEX
NUMBER, NAME, SEX
BOOK$, COURSE$
DAY, HOUR

UNDER-GRAW, MAJOR
UNDER-GRAD$, MINOR

Some of the property attributes in the above list have names ending in the special character '$', that is,

they are at the same time E-attributes. These property attributes represent references to other entity types.

The specific roles they play will be explained in the following sections.

The RM/T* database

2.3. Entity classes

All R W entity types are classified into three disjoint clusses: kernel, characteristic, and associative.

For expository reasons Codd also introduces the concept of a 'nonentity association' [Codd 791, which has no

E-relation and therefore no existence in its own right. Codd points out that
"... RM/T may be applied to database design completely avoiding the nonentity association concept

altogether."

An additional constraint applies to those nonentity associations. We do not make use of this kind of

association in our database.

23.1. Kernel entities

Kernel entities are entities that have totally independent existence. A kernel entity is one that is

neither characteristic nor associative. For example, STUDENT and COURSE are kernel entities.

Aside from the entity integrity and the property integrity, no further constraints need to apply to kernel

entities. However, some additional integrity constraints may apply if certain criteria are met, as we will see

later in this section and in Section 2.4.

Our database contains the following kernel entities, see Appendix B:

Kernel entity

ACADEMIC
ADMINISTR
AREA
BOOK
COURSE
CURNT-DATE
DEPARTMENT
FACZLITY
GRAD
ROOM
SEMESTER
STAFF
STUDENT
TIME-TABLE
UNDER-GRAD

Property attribute

STATUS
FOR$, Po!jlTN
NAME
TITLE
FIELD$, NUMBER, UNITS
DATE
CHAIR$, NAME, FACLTY
OF$, DIRECe, NAME
SUPRV$, PROG
OFFICE$, BUILDING, NUMBER
TERM, YEAR
DEPTe, NUMBER, NAME, SEX
NUMBER, NAME, SEX
DAY, HOUR

The entities GRAD and UNDER-GRAD are sub-entities of the STUDENT entity in the sense that an

instance of any of these subentities is automatically also an instance of the superior entity STUDENT (see

Appendix A, which contains an overview of the database structure). Figure 2-3 illustrates the representation

of the superior kernel entity STUDENT and its two subtype kernel entities GRAD and UNDER-GRAD.

The RM/T* database

STUDENT

STUDEN'& -
aadxg997
aadxg998
aadxg999
aadxhm
aadxhool
aadxhm

GRAD

UNDER-GRAD

STUDENT-PROPERTIES

GRAD-PROPERTIES

aadxg997
aadxg998

E%E
aadxhml

SUPRVC PROC

I aadxhooo
aadxhool
aadxhm

843901737
833904097
871234567
818767654
787656545

/

Figure 2-3: Superior kernel entity type STUDENT
and its two subtype kernel entities GRAD and UNDEKGRAD

JONES
WALKER
SMlTH
JONES
W H n E

Properties of the superior entity STUDENT (for example, the student name NAME) are inherited by the

subordinate entities. The analogue applies to the entities of type STAFF and their subordinate entities of types

ADMINIsTR and ACADEMIC. This requires a special constraint that applies to the &tabase design.

Attribute-Naming Integrity: the P-relations for a given entity type do not have any attribute names in

common with the P-relations for any supertype, at any level, of that entity type.

This constraint allows supertype properties to be automatically inherited by subtypes, without any risk

of ambiguity. For example, entity type STUDENT is the only supertype (at any level) of entity type GRAD, and

the only P-relations for the two entity types are STUDENT-PROPERTIES and GRAD-PROPERTY, respectively.

The names SUPRV~ and PROG of P-relation GRAD-PROPERTY are distinct from all the names of the property

attributes of the P-relation STUDENT-PROPERTIES (NUMBER, NAME, and SEX). Thus the corresponding

inheritance of properties cannot cause ambiguities.

The RMA" database

A subtype reference is a reference from the E-relation for a subtype to the E-relation for an immediate

supertype of that subtype. For example, the reference from the E-relation GRAD to the E-relation STUDENT is

a subtype reference. A subtype reference is a total injective function, that is, the domain of the E-relation of

a subtype is a subset of the domain of the superior E-relation. Expressed in the terminology of database

theory, the following integrity constraint applies to subtype entities:

w Subtype Integrity: Whenever a surrogate, say e, belongs to the E-relation for an entity of type E, e must

also belong to the E-relation for each entity type for which E is a subtype.

For example, no (surrogate) value can exist in the E-attribute GRAD$ of the E-relation GRAD, unless

the same value exists in the E-attribute STUDENT$? of the E-relation STUDENT (see the example in Figure 2-3).

Informally this means that an entity cannot be represented as graduate student without being known to be a

student in the first place.

The set of subtypes (GRAD and UNDER-GRAD) spans the supertype STUDENT per category STATUS, lo

that is, the union of the domains of the subtypes GRAD and UNDER-GRAD is identical to the domain of their

supertype STUDENT. Expressed in the terminology of database theory, we have the following

rn Spanning constraint: If a set of subtypes spans a supertype per some category c, then every instance of

the supertype must also be an instance of some subtype in that category c.

The subtypes ADMINIsTR and ACADEMIC of the Supertype STAFF do not Span the Supertype STAFF per
.I

category JOB, that is, an instance of an entity of type STAFF might not be an instance of any subtype per ..
category JOB; this would be the case, for example, with technical personnel.

In RM/~* we add the notion of 'mutually exclusive subtypes'. For example, the two subtypes GRAD

and UNDER-GRAD are mutually exclusive: any STUDENT can (and must due to the spanning constraint) only

be either a GRAD or an UNDER-GRAD, but never both. However, exceptions are allowed among STAFF

members, who could at times be administrators and academics at the same time. The subtypes ADMINIsTR

and ACADEMIC are not mutually exclusive. We obtain an additional

Mutex Integrity: No instance of a supertype entity can be an instance of two distinct subtypes if these

subtypes are mutually exclusive.

Note that the concept of subtypes does not apply to kernel entities only. Entities of characteristic or

associative type could have subtypes as well.

lo The notion of a 'categoy' serves to identify a particular ramification within an arbitrarily complex hierarchy.

The RM/T* database 19

The motivation for including SEMESTER, TIME-TABLE and CURNT-DATE as kernel entities is because

this makes it easier to deal with temporal constraints, as shown in Chapter 5. The entity type CURNT-DATE is

a trivial entity in the sense that it always contains exactly one tuple specifying the current date and it gets

updated automatically.

23.2. Associative entities

An associative entity is one whose function is to represent a many-to-many, or many-to-many-to-

many, etc., relationship between two or more entities. For example, an ENROLLMENT represents an

association between a STUDENT and a CLASS. Many students can be e ~ 0 l k d in one class, and each

individual student can be enrolled in many classes.

As the name indicates, associative entities involve association references. An association reference is

a reference from an E-attribute of a P-relation to the E-relation for a participant in that association. The

participants of an association are the entity types that are associated via the association. For example, as

Figure 2-4 illustrates, the participants of the association ENROLLMENT are the two entity types STUDENT and

CLASS. Each value of the E-attribute STUDENT$ of the P-relation ENROLLMENT-INSTANCE refers to the

E-relation for the entity type DEPARTMENT; each value of the E-attribute CLASS$ of the P-relation

ENROLLMENT-INSTANCE refers to the E-relation for the entity type CLASS. Each associative entity has at least

two, and may have more than two associative references among its immediate properties.
H

..
The following integrity constraint applies to associative entities:

First Association Integrity: Let A be an entity type belonging to the class of associative entities, and let

E be the set of E-attributes that identifies the participants in A. Then a given instance of A can exist in the

database only if, for that instance, each E-attribute in E either
1. has the value E-null, or
2. identifies an existing entity of the appropriate type.

In other words, the domain of each of those E-attributes is a subset of the surrogate values currently existing

in the E-relation to which the particular E-attribute refers, together with the value E-null. The value E-null

represents a null value in an E-attribute; that is, a null value where a system assigned surrogate was

expected. l 1

" E-null values can only appear in a non-key E-attribute of a P-relation. that is, in a property attribute that refers to some E-relation;
they canna appear in the E-attribute primary key of a relation.

The RMIT* database 20

ENROLLMENT

STUDENT

a h 9 9 7
aadxg998
aadxhool
aadxh002

ENROLLMENT-INSTANCE

CLASS

ENROLLMENT-GRADE

GRADE

Figure 2-4: The E-relation ENROLLMENT and the P-relation ENROLLMENT-INSTANCE
for the associative entity type ENROLLMENT,

together with the E-relations for the entity types STUDENT and CLASS,
which are associated by ENROLLMENT.

For example, no entity of type ENROLLMENT can exist in the database, unless the following two

conditions hold:
1. the E-attribute STUDENT$ of the corresponding tuple in the P-relation ENROLLMENT-INSTANCE,

contains a (surrogate) value, which is either
the value E-null, or
identical to some existing value in the E-relation STUDENT.

2. the E-attribute CLASS$ of the corresponding tuple in the P-relation ENROLLMENT-JNSTANCE,
contains a (surrogate) value, which is either

the value E-null, or

The RMPT* database

identical to some existing value in the E-relation CLASS.

Informally this means that no entity of type ENROLLMENT can be represented in the database, unless

the two entities associated via the attributes STUDENT$ and CLASS$ are known to be of the appropriate entity

types STUDENT and CLASS, respectively.

At least two of the attributes of the P-relations of an associative entity are E-attributes and refer to

other entities, namely, to the ones that are associated. Additionally, the P-relations of an associative entity

may contain attributes, which represent some 'normal' single-valued properties of the association. For

example, the entity type ENROLLMENT, has the 'normal' single-valued property GRADE, representing the

grade of a particular student in a particular class (see Figure 2-4).

In addition to the associative integrity rule, each associative entity is constrained by the

w Second Association Integrity: for the P-relation containing the set of participants of the association,

this set of participants constitutes a composite alternate key, l2 unless this set contains one or more E-null

values.

For example, no two tuples in the P-relation ENROLLMENT-INSTANCE can have the same pair of values

in their E-attributes STUDENT$ and CLASS$. If two tuples have the same values in their STUDENT$ attribute,

and one of them has an E-null value in its c ~ ~ s s $ attribute, then this E-null value substitutes some value that

is necessarily distinct from the value in the CLASS$ attribute of the other tuple. Codd i&oduces so called
a

MAYBE versions of all the common relational database operators (such as SELECT, PROJECT, JOIN,,etC.) in

order to appropriately deal with these situations ([Codd 791). For example, a MAYBE-SELEm applied to

some attribute, would select all tuples containing a null value in the respective attribute field. Based on those

MAYBE operators Codd introduces further operators, such as OUTER-UNION, OUTER-JO~, etc. For our

purposes these operators are irrelevant as we will see in Chapter 5.

Our database contains the following associative entities (for a complete description see Appendix B):

Associative entity Participants

AFFILIATION ACADEMIC$, DEPARTMENT$
CLASS COURSE$, SEMESTER$, INSTRU<JTOR$
CO-E ACADEMIC$, GRAD@

l2 Hen we exclude the exceptional and misleading case in which the participants of the association are distributed over several
P-relations for the associative entity type.

The RM/T* database

ENROLLMENT STUDENT$, CLASS$
INSTRUCTOR ACADEMIC$, DEPARTMENT$
OFFERED AREA$, DEPARTMENT$
PRE-mQ FOR-COURSE$, ISISCOURSE$
SCHEDULE TIME-TABLE$, ROOM$
TEXT BOOK$, COURSE$

Some of the associative entities exclusively associate kernel entities, while others associate kernel entities

and other associative entities.

The names of the E-attributes in the P-relations for the associative entities indicate which entity type

they are referring to (see Appendix B). In fact, they are all identical to the E-attribute names of the respective

entity types, except for the attribute names of the ~ R E Q entity. The reason is that the PRE-REQ entity

associates two entities of the same type (COURSE): one COURSE is a prerequisite of the other COURSE; two

distinct names are necessary to differentiate between the two E-attributes refemng to the same entity type.

23.3. Characteristic en ti ties

A characteristic entity is one whose sole function is to qualify or describe some other, superior entity.

It is a database construct used solely to represent multi-valued properties of the superior entity being

characterized. A characteristic reference is a reference from an E-attribute of a P-relation of a characteristic

entity to the E-relation of the immediately superior entity type.

As Figure 2-5 illustrates, an entity of type BOOK has the single valued TITLE and the
rC

multi-valued property AUTHOR. TO represent this multi-valued property (MVP), the characteristic entity

BOOK-MVP is introduced. For each of the multiple values of AUTHOR that a particular BOOK has, there is one

tuple in the E-relation BOOK-MVP and one tuple in the corresponding property relation BOOK-AUTHOR. The

property relation BOOK-AUTHOR of the characteristic entity type BOOK-MVP contains two property attributes:

the atmbute AUTHOR containing the name of one author, and the E-attribute BOOKG identifying the particular

BOOK of which one AUTHOR is represented in the same tuple. Each value in the E-attribute BOOK$ of the

relation BOOK-AUTHOR represents a characteristic reference to the superior entity type BOOK.

No E-null values are allowed in an E-attribute representing a characteristic reference, since a null

value in such an atmbute would in a sense be equivalent to a null value in the key attribute of a relation. The

domain of an E-attribute representing a characteristic reference, is a subset of the values currently existing in

the E-relation of the entity type being characterized. The mapping from the E-attribute representing a

characteristic reference to the E-relation of the entity type being characterized is a total function:

The RM/T* database

BOOK

BOOK-MVP

BOOK-PROPERTY

The Handodc of Artificial Intelligence
The Knowledge Frontier

Parallel Distributed Roassing

BOOK-AUTHOR

AUTHOR

Avrm Barr
Paul R. Cohen

Edward A. Feigenbaum
Nick Cercone
Gordon McCalla

James L. McClelland
David E. Rumelhart

Figure 2-5: The E-relation and the P-relation for kernel entity type BOOK
and the E-relation and the P-relation for the characteristic entity type BOOK-MVP,

characterizing the superior entity type BOOK.

rn Characteristic Integrity: A characteristic entity cannot exist in the database unless the entity it

describes is also in the database. d

rC

For example, no entity of type BOOK-MVP can exist in the database, unless the E-attribute BOOK$ of

the corresponding tuple in the P-relation BOOK-AUTHOR contains a (surrogate) value identical to some

currently existing value in the E-relation BOOK. Informally this means that no author can be represented in

the database, unless the entity described by the author (via the E-attribute BOOK) is known to be of the

appropriate type BOOK.

The correspondence of the entity described to its characteristic entity is one-to-many, whereas the

inverse correspondence is one-to-one. For example, a BOOK could have several AUTHORS, but any given

AUTHOR can characterize one BOOK only. This might seem surprising at first sight, since we would expect

some authors to have written a number of distinct books. The important thing to notice is that due to a

deliberate choice of the database designer to make BOOK-AUTHORS existence-dependent on BOOKS, they are

represented as distinct entities as they describe distinct courses. In our database an AUTHOR is a property, not

an entity. In RM/T* we use as a naming convention the suffix '-MVP' for all characteristic entities to clarify

The RM/T* database 24

this concept. Naming the characteristic entity 'AUTHOR' and the property 'NAME' (analogous to examples

given in [Codd 791 and [Date 831) would disguise the concept.

An additional constraint of our RMIT* model is the restriction in the use of characteristic entities to a

single level, that is, characteristic entities should not be allowed to in turn have characteristic entities

describing them. Such a construct would in fact be one representing a property, which in turn had properties

and would be prone to update anomalies. For example, suppose we represent a book as a characteristic

entity, describing a course, that is, a BOOK will be a multi-valued property of a ComsE. A particular B o o K

may be used for several courses, and thus be represented several times. For each individual representation

the set of AUTHORS has to be entered in the system. It is now possible, that due to a mistake during data

entry, 'the same book' has two distinct sets of authors. Since the user need not be aware of the distinct

surrogates involved in the distinct representations (this is an important feature of the RMlT model), the

distinct representations of a particular book, with distinct sets of authors might cause misinterpretations by

the user. In short, once a property type is allowed to in turn have properties, it should no longer be

considered as property type, but turned into an entity type.

All versions of the RM/T model offer all the constructs required for this approach: the entity type

BWK can be represented as kernel entity instead of characteristic entity, and associated with the entity type

COURSE via an associative entity type. We use the associative entity type TEXT for this purpose. A particular

COURSE can be associated to many distinct BOOKS and a particular BOOK can be associa* to many distinct

COURSES. Thus a particular BOOK is no longer represented several times and the corresponding anomalies
a

cannot occur.

Our database contains the following characteristic entities (see Appendix B):

Chamcteristic entity Entity being characterized Multi-valued property

BOOK-MVP BOOK
ROOM-MVP ROOM
UNDER-MWl UNDER-GRAD
UNDER-MVP2 UNDER-GRAD

AUTHOR
PHONE
MAJOR
MINOR

The RW* database

2.4. Designative references

Independently of the class (kernel, associative, or characteristic) an entity type belongs to, it can also

designate another entity type. For example, as illustrated in Figure 2-6, the kernel entity type GRAD

designates the kernel entity 'type ACADEMIC. Values of the E-attribute SUF'RVk? of the P-relation

GRAD-PROPERTY refer to the E-relation of entity type ACADEMIC. The corresponding reference is called a

designative reference.

ACADEMIC ACADEMIC-PROPERTY

GRAD GRAD-PROPERTIES

SUPRVC PROC

I

Figure 2-6: The E-relation and P-relation for kernel entity type ACADEMIC
and the E-relation and the P-relation for the designative kernel entity type GRAD,

designating the entity type ACADEMIC.

An ACADEMIC could supervise several GRADS, but any given GRAD can have only one supervisor and thus

designate only one ACADEMIC.

The domain of an E-attribute referring to the E-relation of the entity type being designated is a subset

of the surrogate values currently existing in that E-relation, united with the value E-null. Expressed in the

terminology of database theory, the following constraint applies to designative entities:

Designative Integrity: Let D be a designative entity type, and let E be the set of E-attributes representing

designations by D. Then a given instance of D can exist in the database only if, for that instance, each

E-attribute in E either

The RW* database

1. has the value E-null, or
2. identifies an existing entity of the appropriate type.

For example, no entity of type GRAD can exist in the database unless the E-attribute SUPRVft of the

corresponding tuple in the P-relation GRAD-PROPERTIES contains a value which is either
1. the value E-null, or
2. identical to some currently existing value in the E-relation ACADEMIC.

Informally this means that no graduate student can be represented in the database, unless the entity described

by that student via the E-amibute SUPRV~ is either completely unknown, or known to be of the appropriate

type ACADEMIC.

There is an obvious similarity between designative entities and characteristic entities. In both cases

some other entity is indirectly described by the properties of the characteristic entity or the properties of the

designative entity. In [Date 86bl (footnote on page 616) Date states that
"A characteristic entity is in fact a special case of a designative entity; it is really nothing more than a

designating entity that happens to be existencedependent on the entity it designates."

However, this statement is not correct, as we now show. Many instances of a characteristic entity type can

describe one particular instance of the superior entity type; and in exactly the same way, many instances of a

designative entity type can describe one particular instance of the entity type being designated. Similarly,

one particular instance of a characteristic entity type can characterize only one instance of the superior entity

type; and in exactly the same way, one particular instance of a designative entity type can designate only one

instance of the entity type being designated. *

rC

The fundamental difference is this: Since the sole purpose of a characteristic entity is to represent

multi-valued properties of some superior entity (the one on which it is existence-dependent), those properties

that characterize several instances of the superior entity, are represented several times. No equivalent is

possible with a non-characteristic entity type.

For example, consider the characteristic entity type BOOK-MVP used to represent the multi-valued

property AUTHOR in our database. If one particular AUTHOR has co-authored n distinct BOOKS, then this

AUTHOR is represented n times. If instead we had used a kernel entity AUTHOR designating the entity type

BOOK, then each AUTHOR could only designate one particular BOOK, or else several distinct surrogates would

identify the same real-world author, which would undermine the whole idea of surrogates as unique

identifiers.

The somewhat misleading (or at least missing) naming conventions used by both Codd [Codd 791 and

The RM/T* database

Date [Date 831 l3 might have led Date to his conclusion cited above. It is important to notice that among all

entities, characteristic entities are unique in the sense that they are in fact constructs to represent nothing but

properties.

Designations do have some particulars in common with associations. An associative entity could be

seen as designating the entities it associated. For example, the associative entity type ENROLLMENT could be

seen as designating the kernel entity type STUDENT and also designating the associative entity type CLASS.

However, in order to obtain a completely equivalent representation using designations instead of the

association, we would have to add the additional constraint, that the two attributes STUDENT$ and CLASS$

must constitute a composite primary key of the P-relation ENROLLMENT-INSTANCE (unless E-null values are

involved). Otherwise we could obtain, for example, two distinct representations of one particular student

enrolled in one particular class, having distinct grades in the two representations.

The database designer uses his discretion to determine what classes of references to use in order to

represent the interrelationships among real-world entities and their properties, and what classes of entities to

use in order to represent the real world entities themselves. The choices made reflect the database designer's

understanding of the world.

Our database contains the following designative entities (see Appendix B):

/

Entity type Designaa've E-attribute Designated entity type

ADMINISTR
COURSE
DEPARTMENT
FACILITY
FACILlTY
GRAD
ROOM
SCHEDULE
STAFF

FACILlTY
AREA
ACADEMIC
DEPARTMENT
ACADEMIC
ACADEMIC
STAFF
CLASS
DEPARTMENT

The names of the E-attributes in the P-relations designating other entity types, indicate which role the

designation plays.

We could alternatively declare the entity type SCHEDULE as purely associative, that is, with a set of

l3 Both Codd and Date would probably have used the name AUTHOR for the characteristic entity BOOK-MVP, and the name NAME for
the property MJTHoR.

The RMPT* database 28

three participants: ROOM, TIME-TABLE, and CLASS. However, this choice has unfavorable consequences.

Since the composite alternate key now consist of the three attributes ROOM$, TIME-TABLE$, and CLASS$, two

distinct classes could be assigned to the same room at the same time. An additional integrity constraint for

this particular relation would be required.

Similarly, if we had declared the entity type CLASS (see Section 2.3.2) to associate only the two entity

types COURSE and SEMESTER, and to designate the entity type INSTRUCrOR, then only one INSTRUCTOR could

teach a particular COURSE in a particular SEMESTER.

2.5. Additional integrity constraints

Integrity constraints reflect a part of the database designer's understanding of the micro-world

represented. All the constraints specified so far, are direct consequences of the R W model. Every database

system adhering to the RM/T model is subject to those constraints. Thus the database designer is forced to

structure the micro-world to be represented, according to rigid guidelines. This task is at times not trivial, but

has great advantages. Due to the rigid structure of the R W model, once the database is designed according

to this model, only very few additional constraints are required in order to obtain an accurate representation

of the particular micro-world. Those additional constraints will generally turn out to be very specific.

We delay the introduction of additional integrity constraints until Chapter 5, where some of the

RMjT-integrity constraints and some of those additional integrity constraints will be exGloited to eliminate
.c

wasteful operations in the extensional database.

The description of the extensional part of the database is now complete. In Chapter 3 we describe the

catalog, which contains information about the structure of the database. The catalog contains information

about what entity types exist in the database, to which classes (kernel, associative, characteristic) they

belong, what properties they have, and so on. The contents of the extensional database changes after each

update, whereas the contents of the catalog remains constant at all times, except when the structure of the

database is changed. In this latter case we could also speak of a new database with its new catalog, which

again would remain constant throughout the lifetime of that database.

The catalog of the RM/T* database

Chapter 3

The catalog of the RMIT* database

Part of the RIvl/T model is a catalog which describes the structure and the functional dependencies of

the actual database. The catalog can be considered as a database in its own right It will serve as a crucial

source of information required to predict the occurrence of null events.

Since the catalog represents the time invariant part of the database, both its structure and contents can

be specified. These details are given in Appendix C. We introduce the different concepts involved with the

catalog and explain how to interpret its contents. Date's extended version of the R I W catalog [Date

831 slightly deviates from Codd's original proposal [Codd 793: The primary keys of the catalog relations are

not E-amibutes; a designation graph relation, which was not present in Codd's original version, is added-, and

the notational efficacy is improved. Our RMP version basically follows Date's version, but includes some

further extensions to the model as we show in this chapter.

3.1. DOMAINS, RELATIONS and ATTRIBUTES relations .-
..

The relations of the catalog can be divided into two types: graph relations and non-graph relations.

We begin our presentation with the three non-graph relations: DOMAINS, RELATIONS and

ArnIBuTES.

3.1.1. The CATLG-DOMAINS relation

CATLG-DOMAINS (DOMNAME, DATA-TYPE, QUALIFIER, ORDERING)

The CATLG-DOMAINS relation (see Appendix C.l) contains a tuple for each domain in the database,

giving the name (DOMNAME) and data-type (DATA-TYPE) for the domain in question and indicating whether

the 5' predicate is applicable between values of that domain (ORDERING is either YES or NO).

In RW*, we add the attribute QUALIFIER to the catalog relation CATLG-DOMAINS in order to qualify

the data-types specified in the DATA-TYPE attribute field.

The catalog of the RM/T* database 30

The interpretation of the QUALIFW attribute field depends on the value in the DATA-TYPE field. The

following list shows the six data-types used in our database, together with the interpretation of the

corresponding qualifier amibute.

DATATYPE QUALIFIER Comments

boolean RelName the name of the relation containing the two boolean constants
enumeration RelName the name of the relation enumerating the members of the domain
integer min - max the smallest and the largest member of the domain
real min - max the smallest and the largest member of the domain
string Number the number of elements (characters) in the string
surrogate no qualifier

For example, the qualifier RelName applies to enumeration types and specifyes the name of the

relation in which the members are enumerated. This data-type can, but need not be ordered. If ORDERING is

'YES', then the relation RelName enumerates the members in ascending order, that is, the first element

specified in the relation RelName is the 'lowest' element. For example, the DATA-TYPE for the domain

GRADE is 'GRADE'; in rekition GRADE the tuple with ELEMENT# = '1' contah~ the lowest value of the GRADE

domain.

The qualifier for boolean data-types is also RelName. The respective relation contains the two

boolean constants, that is, the two values, say A and B, for which 'T A = B' and '1 B =A' holds. In our

database we have only one such data-type, namely SEX, with Male = Female' and '1 Female = Male'.

The relations named in the QUALIFIER attribute of relation CATLG-DOMAINS in,Appendix C.l are

rendered in Appendix C.2. rC

The domain of all E-attributes in the RM/T models is the E-domain, containing system generated

surrogate values, each uniquely identifying an instance of some entity type. The Edomain carries no

information with respect to the different entity types. Such information can be extracted from the names of

the E-attributes and from the catalog. For example, the E-attribute GRADS contains those surrogate values

that uniquely identify instances of entities of type GRAD. The subtype graph (see Section 3.2.5) curies

further information about this set of surrogate values with respect to the set of surrogate values identifying

entities of type STUDENT and the set of surrogate values identifying entities of type UNDELGRAD.

In RMP we add the relation A'ITRIBUTE-DOMAINS (see Appendix C.3) to represent further

information about the different domains of the P-attributes in the database.
ATTRIBUTE-DOMAINS

(RELNAME, ATT'NAME, DOMNAME, CARDINALITY, EL-KEY, INTRV-KEY)

The attributes of relation ATIRIBUTE-DOMAINS have the following function:

The catalog of the RM/T' database 31

RELNAME and A ~ A M E form the composite primary key of the relation and identify a
particular attribute within a particular relation in the database.

0 MIMNAME specifies the corresponding domain name.

C A R D I N A ~ specifies the cardinality of the set of domain values, if this is possible.

EL-KEY contains one coniponent of a composite primary key of the relation ELEMENTS. This
relation is used to represent domains, which are subdomains of some other domains. The
concept is similar to that of the hierarchical aspect among entity types. Here the domain of a
particular property can be specified as the subdomain of another domain. For example, in our
database more fields are being offered, than there are departments. Consequently, the domain of
the P-attribute DEPARTMENT-PROPW~.NAME is a subset of the domain of the P-attribute
AREA-NAMENAME. The index to the elements (listed in relation HELD, see Appendix C.2) of this
subset are listed in the relation ELEMENTS together with the value of EL-KEY (see Appendix (2.4).

INTRV-KEY has the same purpose as EL-KEY, but for those domains that have ordered elements,
such that they can be specified via minimum and maximum values. INTRV-KEY contains one
component of a composite primary key of the relation INTERVALS.

There are several sets of domains that use the same data type. The distinct names (MIMNAME)

facilitate the checking required to avoid nonsensical join operations. For example, although the two

attributes BOOK.'ITIZE and STUDENT.NAME have the same data type ('string'), a join operation applied to these

two attributes is nonsensical. By naming the respective domains distinctly and by recording the distinction in

the AT~RIBUTES relation (see Section 3.1.3) such a nonsensical operation can easily be avoided.

3.1.2. The CATLG-RELATIONS relation

/

CATLG-RELATIONS (RELNAME, RELTYPE)
rC

The CATLG-RELATIONS relation (see Appendix C.6) contains a tuple for every relation in the database,

giving the name (RELNAME) and type (RELTYPE) of the relation in question. The attribute (RELTYPE) specifies

one of the two kinds of relations, and for E-relations, the class of the respective entity type, whether it is also

designative, and whether or not it is a subtype. The specification is done by concatenating the appropriate

letters from the following list
P property relation
E E-relation
I inner kernel entity type relation
K kernel entity type
A associative entity type
C characteristic entity type
D designative

Inner kernel entities are entities that are not subtypes of any other entity.

The catalog of the RMIT* database

3.1.3. The CATLG-ATTRIBUTES relation

CATLG-A'ITRIBUTES
(RELNAME, ATTNAME, DOMNAME, PKEY, UKEY, NULLS, EXC)

The C A T L G - A ~ U T E S . relation (see Appendix C.7) contains a tuple for each attribute of each

relation in the database, giving the relation-name, attribute-name, and underlying domain-name, and also

indicating whether the attribute
participates in the primary key of the relation concerned (PKEY is YES or NO);
participates in a user key for the entity type concerned (UKEY is YES or NO); and
can accept null values (NULLS is YES or NO).

As mentioned in Section 3.1.1, the distinct domain names recorded in attribute DOMNAME facilitate

the elimination of nonsensical join operations: a join operation can be applied only to attributes that have

identical domain names.

In RMF we add the attribute ~ x c , which serves to identify constraints which are activated whenever

the respective attribute is to be accessed in the database. These constraints are recorded in the special table

MCEPT~ON~RULES, see Appendix D.1, which is basically a list of lists, where each sublist contains one

constraint. The details concerning the contents and use of the attribute ExC and of the table

EXCEPTION~RULES will be explained in Chapter 5.

3.2. Graph relations

The catalog also includes a set of graph relations, whose function is to represent the various

connections among relations in the database - for example, the connection between an E-relation and its

corresponding P-relation(s). In order to increase the notational efficacy, we change some of the names

proposed in [Codd 791 and [Date 831, but the respective concepts and applicable constraints remain

unaltered. The graph relations are the following:

PROFT-GRAPH : the property graph relation
CHARC-GRAPH : the characteristic graph relation
ASSOC-GRAPH : the association graph relation
DESIG-GRAPH : the designation graph relation
SUBTP-GRAPH : the subtype graph relation

Neither the concept of a designation nor the DESIG-GRAPH relation is mentioned in [Codd 791 but they

are introduced as an extension in [Date 831. On the other hand, Date considers only unconditional

generalizations with the SUBV-GRAPH relation, while Codd used two relations in place of the SUBTKGRAGH

relation, one for unconditional generalization and one for alternate generalization.

The catalog of the RM/'I" database

33.1. The property graph relation

PROFT-GRAPH (P RELNAME, E-RELNAME)

The PROPT-GRAPH relation (see Appendix C.8) contains a tuple for every P-relation in the database,

giving the name of that P-relation and the name of the corresponding E-relation, as indicated by the

respective attribute names.

The property graph is a collection of disjoint trees, in the sense that no two E-relations have a

P-relation in common. Each of those trees consists of a 'parent' (the E-relation) and a set of 'children' (the

P-relations), and thus involves exactly two levels.

3.2.2. The association graph relation

ASSOC-GRAPH
(ASSOCIATION E RELNAME, ASSOCIATION P AlTNAME, PARTICIPANT-E-RELNAME)

The ASSOC-GRAPH relation (see Appendix C.9) contains a tuple for every participant in every

association in the database. This graph cannot be represented by a binary relation since such a relation would

lead to ambiguities in certain cases. For example consider the associative E-relation PRE-REQ in the database

(see Appendix B). This relation associates two entities of the same type. In order to distinguish between the

two attributes and the role they play in the association, we need to give them two distinct names. Thus, for

each participant in the association we must record the participant name and the name of the entity it refers to.

The original RM/T proposal [Codd 791 did not take this case into account, however, the extended model a

[Date 831 does so.

Each tuple of the association graph relation gives the name of an associative E-relation, the name of

the attribute that identifies a participant in the corresponding P-relation of the association, together with the

name of the E-relation of that participant. The association graph is not a collection of disjoint trees, in

general: a given entity type can participate several times in a given association and/or in multiple associations

(for example, the entity type COURSE in our database participates twice in the associative entity type PRE-REQ

and it also participates in the associative entity types CLASS and TEXT).

The catalog of the RW* database

33.3. The characteristic graph relation

CHARC-GRAPH (CHARACTERISTIC E RELNAME, SUPERIOR-E-RELNAME)

The CHARC-GRAPH relation (see Appendix C.lO) contains a tuple for every characteristic E-relation in

the database, giving the name of that E-relation and the name of the immediately superior E-relation.

The characteristic graph, like the property graph, is a collection of disjoint trees. According to Codd's

[Codd 793 and Date's [Date 831 definition, individual trees are not necessarily restricted to two levels

(superior entity type TI may have a characteristic entity type n, which in turn may have a lower level

characteristic entity type n, and so on). However, as described in Section 2.3.3, we do not allow

characteristic entities to have in turn characteristic entities describing them. Thus in our database all trees in

the CHARC-GRAPH relation have only two levels.

3.2.4. The designation graph relation

DESIG-GRAPH
(DESIGNATIVE E RELNAME, DESIGNATIVE P ATT'NAME, DESIGNATED-E-RELNAME)

The DESIG-GRAPH relation (see Appendix C.ll) contains a tuple for every designation in the database.

Each tuple of the designation graph relation gives the name of a designative E-relation, the name of the

E-attribute that identifies the designated entity type in the corresponding P-relation of the designation,

together with the name of the designated entity type. Neither in general, nor in our specific case is the

designation graph a collection of disjoint trees.

3.2.5. The subtype graph relation

SUBTP-GRAPH (SUBTYPE E RELNAME, SUPERTYPE E RELNAME, CATEGORY,
SPANNING-SUPERTYPE, MUTUALLY-EXCLUSIVE)

The SUBTP-GRAPH relation (see Appendix C.12) contains a tuple for every immediate

subtypelsupertype relationship in the database. Each such tuple gives the names of the E-relations for the

subtype and the supertype, together with the name of the applicable category. The subtype graph is not a

collection of disjoint trees, in general. It corresponds to Codd's unconditional generalization by inclusion

relation (uG1-relation) [Codd 791. In RIWf we add the attribute SPANNING-SUPERTYPE to indicate whether

or not the respective Category spans the supertype and the attribute MUTUALLYJXCLUSIVE to indicate

whether or not the subtypes are mutually exclusive.

The catalog of the RM/T* database

3.2.6. Alternative generalizations

Alternative generalizations are necessary if an entity type may have two or more distinct supertypes.

For example, we might want to represent the fact that an instructor could be either an academic staff member,

or a graduate student. We could then add a kemel entity type LE-R, which would be declared to be a

subtype of either the kernel entity type ACADEMIC, or, alternatively, a subtype of the kernel entity type GRAD.

This would be recorded in an alternative generalization by inclusion relation (AGI-relation). The associative

entity type I N S T R U ~ R would then associate entities of type LECTURER and entities of type DEPARTMENT.

Consider further the possibility of having an additional kemel entity type PERSON, and the entity types

STAFF and STUDENT to be declared as subtypes of PERSON. This would be recorded in the

SUBT-GRAPH-relation. Consider now the introduction of a new instance of type LECTURER into the database.

The A G I - E ~ ~ ~ O ~ tells us that the LECWRER must either be an ACADEMIC, or a GRAD, but we cannot deduce

which one. However, the S U B T - G R A P H - ~ ~ ~ ~ ~ O I I allows us to deduce that the surrogate added to the E-relation

LECTURER to identify the new lecturer, can also be added to the E-relation PERSON, since no matter whether

the particular LECI'URER is an ACADEMIC, or a GRAD, he must also be a PERSON.

Our database does not make use of the concept of alternative generalization, therefore we do not

include an AGI-relation in the graph relations of our catalog.

Our database also does not make use of the concept of cover aggregation andzherefore the graph

relations of the catalog do not include a cover membership relation. r.

33.7. Temporal constraints

In [Codd 791 Codd proposes four different graph relations to deal with temporal constraints. These

are

the unconditional successor relation (US-relation),
the alternative successor relation (AS-relation),
the unconditional precedence relation (Up-relation), and
the alternative precedence relation relation).

The only temporal constraint imposed on the world represented by our database refers to the

properties FINAL and GRADE of the entities CLASS and ENROLLMENT, respectively: The value of the DATE

attribute of the CURRENT-DATE must have 'passed' the value of the FINAL attribute of a CLASS, before the

GRADE attribute of an ENROLLMENT which associates that class to some STUDENT, can have a non-null value.

Informally, this means that the final exam of a class must have been written, before a grade can be expected.

The catalog of the RMIT* database 36

We are mainly dealing with properties and not with event type entities as conceived in [Codd 791.

None of the graph relations proposed there is appropriate to deal with the situation in our database.

Therefore, the graph relations of our catalog do not include any of the four graph relations mentioned above.

The knowledge-based subsystem is used to deal with our particular situation, as will be shown in Chapter 6.

In this and the previous chapter, we have presented our database and its catalog. We are now in a

better position to approach the specific problems concerning wasteful operations that might occur in this

database, and in relational databases in general. In Chapter 4 we clarify a fundamental distinction between

the two major kinds of null events and subsequently present a classification of null events as they occur

during query processing.

Classification of null events

Chapter 4

Classification of null events

Since null events generally indicate that the user's request for information cannot be satisfied, they

constitute one primary area for query optimization. Thus a database system should be designed in such a

way that null events can be detected quickly and with least effort. In Chapters 2 and 3 we presented the basic

database and its associated catalog which will serve as a concrete example for the general study of null events

that might occur in a natural language - database system. In the present chapter we examine the different

possible manifestations of null events as they occur during query processing.

For convenience, we repeat our distinction between null events, null values, and null responses, as

stated in Chapter 1:
A null value is an actual value occupying some memory space that would otherwise be used for
a genuine value. The null value represents the fact that some information is missing in the field,
where the null value is found.

A null response (or empty response) is one that contains no information.

A null event is an event that may happen sometime during query processing, and that results in
the generation of a null response unless special actions are taken.

*

Thus a null response is the result of some null event. A null event, in turn, is often erroneously seen

as the result of some null value (for example, see [Codd 791, [Vassiliou 793, [Atzeni and Parker 821, [Codd

861, [Date 86b3, [Codd 871). As a consequence of this view, phenomena such as type mismatches, which

also cause null events, are erroneously equated to null values.

According to SPARC/DBMS Study Group of the American National Standards Committee [ANSI

751, there are 14 different manifestations of null, see Figure 4-1.

The different meanings of null values are usually classified into two distinct types, with the meaning

'value at present unknown' and 'property inapplicable', respectively. Thus the first null value in Figure 4-1

would be of type 'property inapplicable'; null values 2 through 13 of type 'value at present unknown'; and

null value 14 of either type, depending on the type of null value from which is has been derived. Notice that

Classification of null events 38

1. Not valid for this individual (e.g., maiden name of male employee)

2. Valid, but does not yet exist for this individual (e.g., married name of female unmarried employee)

3. Exists, but not permitted to be logically stored (e.g., religion of this employee)

4. Exists, but not knowable for this individual (e.g.. last efficiency rating of an employee who worked for
another company)

5. Exists, but not yet logically stored for this individual (e.g.. medical history of newly hired employee)

6. Logically stored, but subsequently logically deleted

7. Logically stared, but not yet available

8. Available, but undergoing change (may be no longer valid)

Change begun, but new values not yet computed

Change incomplete, committed values are part new, part old, may be inconsistent

Change incomplete, but part new values not yet committed

Change complete, but new values not yet wmmitted

9. Available, but of suspect validity (unreliable)

Possible failure in conceptual data acquisition

Possible failure in internal data maintenance

10. Available, but invalid

Not too bad

Too bad

11. Secured for this class of conceptual data

12. Secured for this individual object

13. Secured at this time
d

14. Derived from null conceptual data (any of the above)

Figure 4-1: Different manifestations of null, as given by the
ANSI Study Group on DBMS [ANSI 751

this is not the only possible interpretation of the manifestation of nulls in Figure 4-1. For example, the

second manifestation could also be interpreted as 'property currently inapplicable'.

Although this classification has found wide acceptance (for example, see [ANSI 751, [Codd 793,

[Vassiliou 791, [Atzeni and Parker 821, [Reiter 841, [Codd 861, [Date 86b1, [Codd 871). we feel

uncomfortable with it, since it seems to lead to less rigorous solutions to the problem of dealing with null

events.

With respect to null values of type 'value at present unknown' Reiter ([Reiter 841) proposes an

approach using Skolem constants instead of uniform null values, that is, existentially quantified variables.

Thus a distinct null value would be used for each occurrence of some missing piece of information.

Referring to this approach, Codd ([Codd 861) points out that

Classification of null events 39

Under certain circumstances the database management system might be able to deduce equality or inequality
between two distinctly named variables - or it might be able to deduce certain other constraints on the
variables. However, it would rarely be possible for the database management system to deduce the actual
values of these variables. Instead, most of the missing or unknown items are eventually supplied by users in
the form of late-arriving input.

To this argument we could add the fact that in case it is possible to deduce the actual values of missing

information, the explicit storage of this 'missing' information is redundant and might reflect some flaw in the

database design. We are faced with a different situation than in deductive databases, where the information

represented allows the deduction of further information which is not to be explicitly represented in the

database. Neither approach to deal with null values of type 'value at present unknown' seems to be perfect;

we follow Cocld's approach.

The notion of a null value of type 'property inapplicable' is clearly misleading. This classification

suggests an analogy between null events of type 'value at present unknown' caused by null values of type

'value at present unknown' and null events of type 'property inapplicable' caused by null values of type

'property inapplicable'. However, null events of type 'property inapplicable' are, in general, not caused by a

corresponding null value, but by a 'type mismatch': the property MAIDEN-NAME is inapplicable to a

MALE-EMPLOYEE not because the corresponding MAIDEN-NAME attribute field contains some specific value,

which is inapplicable, but because the property 'maiden name' does not match any of the properties of a male

person in general. The representation of misconceptions in the database will only cause additional problems,

as we will show in Chapter 5 and should never be allowed in a proper database design.
/

From now on we make use of the following notation to clearly distinguish between four distinct a

concepts: The upper case greek letters !2 and B denote null events of type 'value at present unknbwn' and

'property inapplicable', respectively; the lower case greek letters w and 5 denote null values of type 'value at

present unknown' and 'property inapplicable', respectively.

If information concerning the maiden names of female employees is to be represented in the database,

MALE-EMP~YEES and FEMALE-EMPLOYEES could be represented as distinct subtypes of the entity type

EMPLOYEE. The distinction can be seen as analogous to the one between UNDER-GRAD students and GRAD

students with respect to the attribute SUPRV~OT: it is applicable to GRAD students, and inapplicable to

UNDER-GRAD students.

Another proper representation would simply split up the different property attributes such that only

those properties are grouped together in one relation, which are guaranteed to be applicable at the same time.

We would then use two distinct relations, both having the same primary key, and one of them would

Classification of null events 40

represent such properties as the number, the name, and the sex of the employee, l4 while the other would

represent the maiden-name of the employee. This latter relation would contain tuples only for female

employees, for which the maiden-name is applicable, and none for male employees. This approach is similar

to the one taken in our database to represent the property GRADE of entity type ENROLLMENT. An

ENROLLMENT associating a STUDENT and a CLASS might exist in the database at a time, when the property

GRADE is inapplicable to that ENROLLMENT. Therefore the GRADE is represented in a separate P-relation,

whenever it is applicable, and not represented at all if it is inapplicable.

If the database is not properly designed, 6-type null values could be entered in the those attribute

fields that are inapplicable to the entity represented by the complete tuple (for example in the MAIDEN-NAME

field of a male EMPLOYEE, or the sUPRV fieId of an undergraduate STUDENT), but even in that case they are

not required: No matter what value is entered in the MAIDEN-NAME attribute field of a male EMPLOYEE, be it

an @type null value, an &type null value, or any normal value, the property MAIDEXNAME always remains

inapplicable to a male EMPLOYEE. An E-type null event caused by a user query, which request the retrieval

of some inapplicable information, can be seen as a misconception on the part of the user. An E-type null

event caused by an 6-type null value represented in the database, can be seen as a misconception on the part

of the database designer. As we have shown above, a solution to the latter problem can easily be achieved by

a proper database design and is not worth extensive elaboration. A solution to the former problem will be

presented in Chapter 5.

/

Notice, that also Q-type null events might occur without a corresponding a-type null value in the a

database. For example, in our database a query such as

Q.: Is John Doe an 'academic' ?

could result in an Q-type null event since John Doe could be represented as STAFF in the database but he

might not be represented as either A D m s m or ACADEMIC. Making use of the 'open world' assumption, we

can interpret a missing value in the E-attribute primary key of some relation, that is, a missing surrogate, l5

as an Q-type null value. Thus both a missing property and a missing entity can be the cause of an Q-type

null event

For pragmatic reasons, we use the capabilities and knowledge of the database system as a guideline

for our classification. The null events are strictly dependent on the interrelation between the query to the

l4 Some of which might be 'currentIy unknown', but none of which would be 'inapplicable' at any time.

l5 notice that all surrogates are used to identify entities

Classification of null events 41

particular system and the system itself. One query can result in different responses from different systems.

Since the classification at hand is for null events occurring in a relational database, the criteria for

classification are directly related to the way the query that triggers the null event is (or can be) processed in a

relational database. Thus, the classification can in turn be used as a guideline for a strategy to efficiently

process the query.

Our classification is primarily based on minimizing the amount of operations required on the database

and on the knowledge-base in order to detect the null event. We use the term 'knowledge-base' for the

ensemble of the RM/T* catalog and some additional, as yet unspecified representations of relevant

knowledge. The term 'database' will be used for the basic database excluding the catalog. Thus, the

database contains all the extensional facts, whereas the knowledge-base contains all the intensional facts.

We assume a system structure as depicted in Figure 1-2. The NL-query is parsed by a parser and

analyzed by a semantic interpreter. Both, the parser and the semantic interpreter have access to the lexicon of

the database. The output of the semantic interpreter is the logical form of the query. The logical form serves

as input to both the query generator of the database system and the knowledge-based subsystem. The

knowledge-based subsystem supervises the query generator and the query evaluator.

We divide the database processing required to generate an answer to a query into three groups:
1. no database access,

w
2. database access

a. - including select and project operations, but excluding join operations, a

b. - database access including join (and all other) operations

An access to the database might or might not be necessary to detect a null event. Similarly, after some

database accesses have been performed, subsequent join operations might or might not be necessary to detect

the null event Our classification reflects these distinctions. Figure 4-2 shows an overview of the

classification.

Classification of null events 42

Null event increase in processing -
can be
detected ... :

increase
in KB-
~ p p o r t

v

without
KB-subs.
~uppo*

with KB-
subsystem

suppo*

Figure 4-2: Overview of the classification of null events

prior to DB access

Null values in class 1.1 can be detected without database access. A knowledge-based subsystem is

not necessary to detect those null values.

after some DB access

withoutpin I with join
I

Null values in class 1.2 can be detected without database access, if the support of some suitable

knowledge-based subsystem is available. Without a suitable knowledge-based subsystem, these null values

cannot be detected prior to a database access.

Null values of type 2.1.1 require some database accesses but no join operatigns, in order to be

detected. The database accesses cannot be dispensed with whether or not a knowledge-based subsystem is a

available; but once the database accesses have been performed, the null values can be detected without

support of a knowledge-based subsystem.

Null values in class 2.1.2 require some database accesses but no join operations, in order to be

detected, if the support of some suitable knowledge-based subsystem is available. Without a suitable

knowledge-based subsystem, these nu11 values require some join operations in order to be detected; even with

the support of a knowledge-based subsystem, the database accesses cannot be dispensed with.

Null values of type 2.2 require some database accesses and some join operations, in order to be

detected. Neither the database accesses, nor the join operations can be dispensed with, whether or not a

knowledge-based subsystem is available.

We explain of the classification in detail and include some examples.

Classification of null events

4.1. Null events that can be detected without database access

Class 1 of our classification contains those null events that can be predicted or detected without access

to the database. Since no database access is involved, these null events are all of type Z. An Z-type null

event reveals some mismatch between the words (recognized as objects) of the natural language input and the

objects of the database. Depending on the point of view taken, this mismatch can be attributed to a

misconception on the side of the user who tries to relate two or more objects in some inapplicable way, or to

an imperfect database representation of the micro-world of interest, or both. Since this distinction can only

be seen from outside the self-contained database system, it does not result in a further subclassification. We

do however subclassify according to whether or not a knowledge-based subsystem is required in order to

detect or predict the null events at this stage of query processing, that is, prior to any access to the database.

4.1.1. Null events that can be detected without support by the knowledge-based subsystem

Some of the null events are taken care of by the semantic interpreter (see Figure 1-2) which uses the

lexicon to establish the proper cross reference between the words of the NL-query and the formal objects

represented by the database. A failure of this process results in a null event. The semantic interpreter can

then generate some appropriate message to the user. The corresponding null events fom~subclass 1.1 of our

classification. a

Example:
Q: What is the address of student Mary Lou ?

The semantic interpreter fails to find any matching keyword to the input 'address' in the lexicon.
Therefore 'address' cannot be mapped into any entity or property represented in the database.

The user obviously expected an aspect of his conception of the real world to be represented in
the database, but this was not the case. From the user's point of view, the null event is caused by
some inapplicability with respect to the imperfect database representation of the micro-world. In
our database students do not have addresses. However, from the database system's point of view
the query is just as inapplicable as the query 'What is the address of the fall 87 semester ?'. The
user would see this latter query as inapplicable not only with respect to the database
representation, but also with respect to the real world, since a semester doesn't have an address.

A human observer would probably see the object 'address' in the above queries as a missing
property of the entity types STUDENT and SEMESTER, respectively. In the next example the
missing object is more likely to be seen as an entity.

Example:
Q: Who are the classmates of John Smith ?

Classification of null events 44

The semantic interpreter fails to find any matching keyword to the input 'classmate' in the
lexicon. Therefore 'clussmute' cannot be mapped into any entity or property represented in the
database.

Again the user expected an aspect of his conception of the real world to be represented in the
database, but this was not the case.

Although the use of a knowledge-based subsystem is not crucial in predicting this class of null events,

it can have other beneficial effects. As we show in Section 5.1 (where the concept of a CLASSMATE is added

to the system via a simple rule in the knowledge-base), the knowledge-based subsystem can sometimes help

to eliminate the problems with null events by expanding the linguistic coverage of the system.

4.1.2. Null events that cannot be detected without support by the knowledge-based subsystem

Subclass 13 of the class of null events that can be detected prior to a database access consists of those

null events that require the knowledge-based subsystem which makes use of the information represented in

the RMIT* catalog, in order to be detected at this stage of query pmcessing. The knowledge-base inspects

the logical form of the query, and determines whether or not any inapplicability with respect to the database

described by the extended catalog can be detected. If some inapplicability is detected, the knowledge-based

subsystem generates an appropriate response to the user, otherwise the query processing goes on to the next

'normal' stage.

The feasibility of this approach varies drastically, depending on the particular case, as the following

two examples will show. For the first example assume that the database contains a MAIDEN-NAME attribute

for entities of type STUDENT. It is a trivial question when addressed to a human listener whose native

language is English.

Example:
Q: What is the maiden name of student John Smith ?

Common sense tells us that this query will result in a null event even though the database
contains information about maiden names since maiden names only make sense for female
persons. We do know this fact and we are also capable of deducing from his name the fact that
John Smith must be a male person. If the same knowledge and capabilities were implemented in
the knowledge-based subsystem, then this null event could be predicted without database access.
However, a reliable algorithm to determine the sex of a person, given the persons name, would
probably require more time to execute than can be saved by avoiding the database access.

A solution using null values of type 'property inapplicable' and no assistance of a knowledge-
based subsystem would require a database access before the null event could be detected. A
normalization of the database such that male and female persons are distinct entity types might
save some space in memory, but would also require a database access before the null event could
be detected, since only after such a database access could the sex of the instance specified via the
name 'John Smith' be determined.

Classification of null events 45

The above example is one that a human listener could easily cope with, but which could hardly be

handled efficiently by a knowledge-based system. The next example could be solved by a knowledge-based

system, that has access to the catalog and that includes some appropriate rules.

Example:
Q: What are the minor fwlds of the students who got A grades in last semester's CMPT 810
course ?

Assuming that 'CMPT 810' was in fact offered in the last semester, and that - as presumed by
the query - some students did get 'A' grades in it, this query still turns out to be inapplicable,
because the respective students must all be a graduate students (that is, instances of entity type
GRAD): CMPT810 refers to a graduate course and only graduate students are allowed to take
graduate courses. The attributes MAJOR and MINOR are applicable to entities of type
UNDER-GRAD only.

Null values of type 'proper@ inapplicable' do not help in this case. Not only is the attribute
MINOR inapplicable to the specified students, it is - as a sensible consequent - not represented
at all. From the database point of view this query is similar to the query 'What is the address of
the fall 87 semester ?', of Section , with the difference that now the semantic interpreter is no
longer capable of detecting the inapplicability.

A detection of this null event without prior access to the database requires the implementation of
additional knowledge along with associated capabilities, namely

- the knowledge that only graduate students can take graduate courses, as well as
- some means to detect and differentiate between undergraduate and graduate courses by their

number. This is feasible since the course number allows a direct determination of whether the
respective course is an ungraduate course or a graduate course.

An approach based on normalization would divide the entity type COURSE into two new types,
one for undergraduate courses and one for graduate corns. However, to detect the null value
prior to any database access, this approach would still require the knowledge-based subsystem.
It would also require the additional representation of the fact that graduate students can still take
undergraduate courses, but not vice versa. In short, normalization seems to be an"mappropriate
approach in this case.

4.2. Null events that can be detected only after some database access

Class 2, the second major class of null events consists of those whose prediction or detection requires

some database access. In contrast with the previous class, we can now expect both Z-type, and a-type null

events to occur.

A 8-type null event reveals some mismatch between the words (recognized as objects) of the natural

language input and the objects of the database. Depending on the point of view, this mismatch can be

attributed to a misconception on the side of the user who tries to relate two or more objects in some

inapplicable way, or to an imperfect database representation of the micro-world of interest, or on both.

In case of an S2-type null event the requested information is not present in the database: an applicable

Classification of null events 46

entity or a property value is missing. If a property value is missing, a tuple can be retrieved, but the property

attribute of interest contains an o-type null value. If an entity is missing, no matching surrogate exists in the

appropriate E-relation, that is, a whole tuple is missing.

Whether or not either type of null event, Q or E, occurs, depends on the structure of the database and

the particular state the database is in. Depending on the complexity of the query relative to the structure of

the database, join operations might, or might not be necessary before a null event can be predicted or

detected. We further subclassify according to these two alternatives.

4.2.1. Null events that can be detected without the need of join operations on the database

Subclass 2.1 contains those null events, whose detection requires no join operations to be performed

in the database. Again both E-type, and Q-type null events can be expected. We further subclassify

according to whether or not the knowledge-based subsystem is required in order to detect the null event at

this stage of query processing.

4.2.1.1. Null events that can be detected without support by the knowledge-based subsystem

Null events whose detection requires some database access, but neither requires join operations to be

performed, nor the assistance of the knowledge-based subsystem in order to be detected, form class 2.1.1,

which is at the lowest level of our classification. Again both E-type, and Q-type null events can be expected.
*

One particular query might result in either an Q-type null event, or a E-type null event of this class, *

depending on the current state of the database.

Example:
Q: Is John Smith in a PhD program ?

Suppose 'John Smith' refers to an identifiable instance of type GRAD, and furthermore, that the
respective tuple in the GRAD-PROPERTIES relation contains an o-type null value in its PROGRAM
attribute. This would constitute a typical case of an Q-type null event.

On the other hand, if 'John Smith' is not represented at all in the database, that is, neither as
STUDENT nor as STAFF, nor as AUTHOR, we would again obtain an R-type null event because of
missing information. This time not the attribute value, but a whole tuple is missing. The
difference should be visible in the distinct responses generated for the distinct cases.

For yet another result suppose 'John Smith' refers to an identifiable instance of type
UNDER-GRAD. This would constitute a typical case of a E-type null event, since the attribute
PROGRAM is inapplicable to entities of type UNDERGRAD.

In all the above cases only a search through the database was necessary, and the assistance of a
special knowledge-based subsystem might not be required: The natural language interface with
its access to the lexicon (see Figure 1-1) might be enough.

Classification of null events 47

The 5-type null event is a borderline case with respect to our classification. Normally the query
evaluator (see Figure 1-2) would search through the STUDENT_PROPERTIES relation and find a
surrogate value for the instance referred by 'John Smith'. However, a search for the same
surrogate in the GRAD relation, or the GRAD-PROPERTIES ~ b . h would fail. A 'dumb' query
evaluator might interpret this as an Q-type null event, a 'smart' one might detect a possible
misconception.

In any case a knowledge-based subsystem could at least be helpful in generating a cooperative
response to the user, such as 'John Smith is not a graduate student and therefore cannot be in
any program', or preferably 'John Smith is an undergraduate student and therefore cannot be in
any program'. Although the entity type STUDENT is categorized in only two subentity types, the
latter choice is particularly informative since John Smith could also be a GRAD student, or a
STAFP member, or an AUTHOR. In general, we cannot require a user of a natural language
front-end to specify the appropriate database relation in order to eliminate this ambiguity. The
generation of a (highly) cooperative response would then require some processing which was not
requested by the query, namely a determination of the subtype 'John Smith' belongs to.

In the next example, a knowledge-based subsystem would again be helpful to detect the null event at

the present stage of query processing, but does not represent the only possible solution.

Example:
Q: What grade did John Smith get in CMPT I00 this semester ?

Suppose that at the time the query is entered to the system, the specified course is still in
progress and the grades could not yet be computed. Thus, the query would be inapplicable and
should result in a E-type null event. The knowledge-based subsystem could predict this after a
mere search through the database by comparing the FINAL attribute value of the specified course
with the CURRENT-DATE, and give an appropriate response to the user. A cooperative response
should also inform the user about the value of the applicable FINAL. If the FINAL attribute of the
corresponding tuple contains an mtype null value, the null event will be considered as being of
type Q instead of 5. *

An approach using null values of type 'property inapplicable' in the GRADE attribute would
require an automatic update of those values to o-type null values in case no manual update has
been performed by the appropriate due date. This automatic update would again require 'the
assistance of a knowledge-based subsystem in some form or another. However, the detection of
the =-type null event would then not require the assistance of the knowledge-based subsystem
and therefore the null event under consideration belongs to the current class in our classification.

We conclude our elaborations on this class of null events with a final example:
Q: What are the minor fields of the students who got A grades in all courses taught by Newton
last semester ?

Suppose Newton was on sabbatical leave last semester and therefore didn't teach at all. Since
our database does not represent information on whether or not an instructor is (or was) on
sabbatical leave, an initial search revealing the Q-type null event cannot be avoided.

Classification of null events

4.2.1.2. Null events that can be detected only with support by the knowledge-based subsystem

Null events that can be detected after a database access and with the assistance of the knowledge-

based subsystem only, form subclass 2.12 of the class of null events that can be detected without the need of

any join operations. In Section we gave an extensive list of examples in order to show the possible

advantages of a knowledge-based subsystem in that class. Some of those examples involved borderline cases

already with respect to the need of a knowledge-based subsystem. In the present class the advantages are

obvious; a single example will suffice to illustrate this.
Q: What are the minor fields of the students who got A grades in all courses taught by Newton
last semester ?

Suppose one of the courses Newton taught last semester, was a graduate course. Then any
student who got A grades in all those courses must be a graduate student to whom the attribute
MINOR is not applicable. In order to detect this null event before any join operations are
performed, the knowledge-based subsystem can direct the query evaluation in such a way, that
initially only the respective course numbers are determined. As soon as the information about
the course numbers is available, the knowledge-based subsystem can detect the null event and
generate an informative response to the user.

4.2.2. Null events that can be detected only after some join operations have been performed

on the database

Some null events can be detected only after an access to the database and some join operations on the

data have been performed. Those null values belong to subclass 2.2 of our classification. Since in this class

we release all restrictions on searches and join operations, the null event will eventually Be detected with or

without the support of a knowledge-based subsystem.

Although it would still be possible to distinguish between the stages of query processing at which a

null event could or could not be detected with or without the support of a knowledge-based subsystem, we do

not further subclassify this class.

In this subclass again, both E-type and SZ-type null events can be expected. As before, the =-type null

events reflect some mismatch between the elements of the natural language query and the corresponding

objects of the database, whereas the SZ-type null events reflect some current lack of information within the

database which otherwise appropriately represents the relevant aspect of the real world.

The following is a typical example of an a-type null event. It can be detected only after searches and

join operations in the database.

Example:

Classification of null events 49

Q: What are the minorjields of the students who got A grades in last semester's CMPT 410 and
CMPT 41 1 courses ?

Assuming that both CMPT 410 and CMPT 411 were in fact offered in the last semester, and that
-as presumed by the query - some students did get A grades in both courses, extensive
searches and join operations on the database might still result in R-type null events, namely in
case the the minor fields of the respective students are not recorded in the database, that is,
substituted by o-type null values.

A cooperative response clarifying the user's misconception should also be generated in case the
set of students who got A grades in both courses is empty. In this case the null event would also
be of type R, but distinct from the previous one. The distinction should be apparent in the
different responses generated.

The following is a typical example of a E-type null event, where the user suggests with his query to

relate some property to an entity, to which it is not applicable at the time the query is entered.

Example:
Q: What are the minor fwl& of the students who got A grades in last semester's CMPT 410 and
CMPT 41 1 courses ?

Assuming again that both CMPT 410 and CMPT 411 were in fact offered in the last semester,
and that -as presumed by the query - some students did get A grades in both courses, query
processing might still result in 2-type null events following extensive searches and join
operations on the database, namely in case some of the respective students have graduated in the
mean time. The support of a knowledge-based subsystem is the most appropriate approach to
handle these null events, that is, to detect the possibility of a user misconception and to generate
an informative response. However, the searches and relational operations on the database to find
all applicable students in the fmt place cannot be avoided.

In this chapter we have clarified the important distinction between null events of type 'value at

present unknown' (Q-type null events) and null events of type 'property inapplicable' (E-type null events).

Based on this distinction, we have shown that the representation of null values of type 'property

inapplicable' (5-type null values) reflects a poor database design and can in general be seen as the

manifestation of misconceptions on the part of the database designer. We have then presented an

identification and classification of null events, which is primarily based on minimizing the amount of

database access required to detect the null events. In Chapter 5 we present an approach which puts the ideas

developed so far into practice: We investigate on the required representation of additional information about

the intensional contents of the database, and outline a way to process the queries such that null events are

detected with a minimized amount of database access.

Knowledge-based detection of null events

Chapter 5

Null event detection in the RMIT* model

In this chapter we describe the knowledge-based subsystem in action. The goal is to determine the

existence of an E-type null event with as little database access as possible. The main idea embodied in the

knowledge-based subsystem is to extract information from the catalog, specifically information about the

domains of the attributes involved in each particular query.

From the catalog we stepwise retrieve available information about the domains of the attributes

involved during query processing. The retrieval sometimes activates constraints that are then added to the

current environment of processing. The constraints are formally specified in Section 5.1. For the use of the

algorithms to be outlined, the corresponding rules are listed and indexed in the table MCEPTION-RULES in the

knowledge-base. Activation of a rule occurs, whenever a relational attribute is accessed in the extended

c~nx;-~?nusv~~s relation, whose corresponding tuple contains a reference to an exception rule. The

respective rule is added to the current environment. An environment extends over all attributes of a relation

and over all the attributes of those relations that are connected to the relation via a join operator. All

constraints that are added to a specific environment, propagate to all attributes involved in that environment. a

We assume the query is stated in relational calculus which will be introduced briefly in Section 5.2.

In Section 5.3 we describe the processing of the query. Rather than giving the actual program for all

functions and procedures, we give an outline of the algorithms used and the pseudo code for some important

functions. In Section 5.4 we finally give a detailed example of the processing of a query which results in null

events.

Knowledge-based detection of null events

5.1. Additional integrity constraints

In this Section we formally specify additional integrity constraints and other rules, that apply to the

micro-world modelled in our database. Most of the integrity constraints are represented as rules in the table

MCEPTION~RULES in the knowledge-base and used for the detection of null events of type 'property

inapplicable'.

We use the following notation for the formal specification:
REL-NAM (t) declares t to be a tuple of relation REL-NAM
~[ATIR-NAM] specifies the value of attribute ~na-NAM in the tuple t
'dom-val' denotes an arbitrary domain-value
8 denotes any one of the comparison operators <, I, =, 2, >, and #

Informally this means that unless the final date of a class has passed, the assignment of any grade is

inapplicable.

W Q) W r W s { C O ~ E - ~ O P E R T I E S (Q)
A CLASS-INSTANCE (r)
A ENROLLMENT-INSTANCE (s)

Informally this means that students enrolled in 800- and higher level courses must be graduate

students.

Knowledge-based detection of null events

(V q) (V r) (V s w t ENROLLMENTENTGRADE (q)
A ENROLLMENT-INSTANCE (r)
A CLASS-INSTANCE (s)
h TODAY (t)

Informally this means that the final date of a class for which the grades are recorded already, must be

in the past.

+ -I ((3 t) (SCHEDULE-INSTANCE (t)
A ROOM$] = S[ROOM$])))

Informally this means that a room which is used as an office, cannot be scheduled for a class.

+ i ((3 t) (SCHEDULE-INSTANCE (t)
A R ROOM$] = S[ROOM$])))

Informally this means that a room which has a phone (and is thus used as an office), cannot be

scheduled for a class.

+ 7 ((3 t) (ROOM-OFFICE (t)
A ROOM$] = S[ROOM$]))) @

Informally this means that a room in which a class is scheduled, cannot be an office.

+ 7 (@ t) (ROOM-PHONE (t)
A t[ROOM$] = s[ROOM$])))

Informally this means that a room in which a class is scheduled, does not have a phone in it.

All the above integrity constraints are reflected in the Table EXCEPTION-RULES in the knowledge-base

(see Appendix D). For example the first one of the integrity constraints above corresponds to the exception

rule '(1)'. This rule is activated whenever the relation CLASS-PROPERTY or the relation TODAY appears in a

query (see Appendix C.7). The Table EXCEPTION-RULES also contains rules that correspond to none of the

above integrity constraint, but to some of those constraints imposed by the W* model in general. For

example, exception rule '(4)' corresponds to the mutex contraint imposed on the subentities GRAD and

UNDER-GRAD.

Knowledge-based detection of null events 53

We now present two more rules which are not directly related to the detection of null events and for

which an actual implementation is not shown.
d r) t) { ENROLLMENT-GWDE (d

A ENROLLMENT-INSTANCE (r)
A CLASS-INSTANCE (s)
A . TODAY (t)

Informally this means that if an enrollment exists for some course, and the final has passed, and a

corresponding grade is not available (that is, substituted by an o-type null value), we may deduce the value

'D' (deferred) for the respective grade.

r) s) t) (ENROLLMENT-INSTANCE (r)
A ENROLLMENT-JNSTANCE (s)
A CLASS-INSTANCE (t)

+ 'Classmate - In - COU~S~'(~[STUDENT~!], STUDENT^], S COURSE^!]))

Informally this rule introduces the concept of a classmate: any two distinct students who are enrolled

in the same class, are considered to be classmates in the respective course. This concept could now be added

to the lexicon of the database.

5.2. Relational Operations

In this Section we present the relational operations, expressed in relational calculus, and give an

example for each. The five basic operations that serve to define the relational algebra are union, set

difference, cartesian product, projection, and selection. Further operations like intersection, quotient, and

join, can be expressed in terms of these five basic operations. We use the following notational conventions:
the greek letter 9 denotes one of the binary relations <, I, =, 2, >, #.

a string of capital letters denotes a relation with ordered attributes

a string of lower case letters denotes a name of an attribute

superscripts denote arities

subscripts denote attribute names

lower case italic letters denote tuples

R(t) denotes that (t E R)

Knowledge-based detection of null events

t[i] denotes the value of the ih attribute of tuple t

t[~lT-NAME] denotes the value of attribute A~T-NAME in tuple t

For all operations, the domains of the corresponding attributes or constants must be subsets (not necessarily

proper subsets) of the same domain.

Union:

Example:

Q n u T n =

(t I QO) v T(t) 1
Q and T must have the same arity for the union operation to make sense. The resulting

relation has then the same arity as Q and T.

GRAD = GRADmg

UNDER-GRAD = UNDER-GRADUNDmORADe

GRAD u UNDER-GRAD =

(t 1 GRAD(^) v UNDER_GRAD(~))

The result of the operation is a unary relation containing all surrogates that identify either entities of type

GRAD, or entities of type UNDER-GRAD. Since the category STATUS divides the super-type STUDENT in

precisely the two sub-types GRAD and UNDER-GRAD, and STATUS spans the super-type, the resulting relation

is equal to the E-relation STUDENT.

Example: STUDENT = STUDENTSTUDme

GRAD = GRAD-

STUDENT- GRAD =

(t I STUDENT(^) A GRAD(^))

The result of this operation is a unary relation containing all surrogates, that identify entities of type

STUDENT, but not entities of type GRAD. Since the category STATUS divides the super-type STUDENT in

precisely the two sub-types GRAD and UNDER-GRAD, and STATUS spans the super-type, the resulting relation

is equal to the E-relation UNDER-GRAD.

Knowledge-based detection of null events

Cartesian product: Q x T " =

(tm'" 1 Oem)Ol")(Q(e)~T(O

A t[l] = e[l] A, .., A t[m] = e[m] A

A t[m+ll= 1[1] A, ..,A t[m+n] = l[n]))

Example: ROOM-PROPERTIES = ROOM-PROPERTIES RmMe, ,,,, ,,
TIME-TABLE-PROPERTIES = TIME-TABLE-PROPERTIES71MB71MBTA DAY, HOUR

ROOM-PROPERTIES X TIME-TABLE-PROPERTIES =

(t I @ e 3, 3, (ROOM-PROPERTIES(~) A TIME-TABLE-PROPERTIES(I)

A TA ROOM^] = TA ROOM$]

A BUILDING] = B BUILDING]

A t[NUMBER] = ~[NLJMBER]

A t[TIME-TABLE$] = l[TIME-TABLE$]

A t[DAY] = DAY]

A HOUR] = l[HOUR])

The result of this operation is a relation with six attributes, the first three are identical to the attributes of

relation ROOM-PROPERTIES, the last three are identical to the attributes of relation TIME-TABLE-PROPERTIES.

The contents of the relation can be seen as a list of tables, one for each room (including offices), listing all

the possible hours at which a lecture could be scheduled.

/

Example: STUDENT-PROPERTIES = STUDENT-PROPERTIES, mm,$, MJMBER, NAMB, SEX

x; ,,, ., (STUDENT-PROPERTIES) =

(t 1 (3 e) (STLJDENT-PROPER~(~) A t[NUMBER] = e[NUMBER] A t[NAME] = e[NAME]))

The result of this operation is a binary relation with student NUMBERS and their NAMES for all entities of type

STUDENT.

Knowledge-based detection of null events 56

Cr qi 0 c --. 4,)' where qi E (ql, .., qn); C is a constant.

= (t I ~ ~ ~ (t [q ~ l e C)) ,

The operands of operator 8 are either both attributes of relation Q, or one operand is an

attribute of relation Q and the other operand is a constant.

Example: ROOM-PROPERTIES = ROOM-PROPERTIES RmMe, ,,
BU~LDINQ = 'MPX* (ROOM-PROPERTIES) =

(t 1 ROOM-PROPERTIES(~) A t[BUILDING] = 'MPX')

The result of this operation is a ternary relation with identical attributes as relation ROOM-PROPERTIES. All

tuples in this relation have the value 'MPX' in their BUILDING attribute; the numbers in the NUMBER attribute

are those of all the rooms in the 'MPX' building.

The following operations are useful during query processing, but could also be expressed in terms of

the five basic operations:

Example: STUDFiNT = STUDENTSmBNTe

GRAD = GRAD-

STUDENT~GRAD =

(t I SIZTDENT(~) A GRAD(O)

The result of this operation is a unary relation containing all surrogates that identify entities of type STUDENT

and simultaneously identify entities of type GRAD. Since the category STATUS divides the super-type

STUDENT in precisely the two sub-types GRAD and UNDER-GRAD, and STATUS spans the Super-type, the

resulting relation is equal to the E-relation GRAD.

Knowledge-based detection of null events

Example: TEXT-INSTANCE = TEXT-INSTANCE -*, BmKe

BOOK = BOOK

TEXT-INSTANCE + BOOK =

t m e , COURSW 1 (3 e (TEXT-INsTANCE(C~) A BOOK(e)))

The result of this operation is a binary relation with the two E-attributes TExT$ and COURSE$; the E-attribute

COURSE$ contains only surrogates identifying courses, that use all available books as their textbooks.

Example: DEPARTMENT-PROPERTIES = DEPARTMENT-PROPERTIES $, .,, ,,,,
STAFF-PROPERTIES = STAFF-PROPERTIES ,,$, mm, .-, sax
DEPARTMENT-PROPERTIES [CHAIR$ = STAFF$] STAFF-PROPERTIES is i+ relation with nine

attributes: the first four are identical to the attributes of the relation DEPARTMENT-PROPERTIES, the last five a

are identical to the attributes of the relation STAFF-PROPERTIES. Each tuple has identical values in ik CHAIR$

and its STAFF$ attribute, that is, the relation lists the departments together with their respective chairpersons.

Natural Join: R w S

A natural join is a a special kind of join operation: It is equivalent to a sequence of join

operations with the operand 8 being equality ('=') and applied to all attributes that appear in both

relations R and S, followed by a removal of the redundant columns generated by the join

operations.

None of these four additional operations can be expressed by the five basic operations without use of

the set difference or the selection operation. Therefore all four operations can cause =-type null events to

Knowledge-based detection of null events 58

happen, no matter how the database is structuted. In the next section we present some additional catalog

relations and a set of procedures which will allow us to detect the null events as early as possible. We

assume a database normalized such as the one presented in this thesis, that is, tuples containing inapplicable

attributes are not represented.

5.3. Detection of E-type null events

In this section we outline the processing of the query stated in relational calculus as described in

Section 5.2. The goal is to detect =-type null events with a minimum amount of database access. To do this,

we determine the set of domain values of each attribute that appears in a particular query and reduce each set

as much as possible, but such that the reduced set is still guaranteed to contain all domain values that could

possibly be present in that attribute field in the current state of the database. Whenever we determine that

one of those reduced sets is empty, we have detected an E-type null event, since the respective attribute field

can then not contain any applicable value, and the query cannot result in any tuple being retrieved. As we

have shown in Chapter 4, this might be possible without any database access, or only after some database

access.

We assume that the query is stated in relational calculus, using the formulae presented in Section 5.2.

For each relation occurring in a particular query, we first determine the set of attributes participating in that

relation. For each of those attributes we create a list, referred to as ADOM-list. Thus a relation with n
.I

attributes will result in a set of n ADOM-lists. Each ADOM-list consists of four elements referred to as
*

FLAG, Am-NAME, DOMAIN, and ENVIRONMENT:
FLAG: a list containing one of the three characters 'N', 'C', and 'D'.
ATT-NAME: a list containing a full attribute name, that is, a relation name, followed by a
period ('.'), followed by an attribute name.

a DOMAIN: a list, which is interpreted according to the character in the FLAG:
'N': DOMAIN contains the name of the domain, as specified in the C A T L G - A ~ U T E S
relation.
'C': DOMAIN contains a set of domain values as obtained from the catalog of the
database and possibly reduced by additional constraints of the applicable environment.
'D': DOMAINS contains a set of domain values obtained from the database, that is, after a
database retrieval of the corresponding relation and possibly reduced by additional
constraints of the applicable environment.

ENVIRONMENT: a list containing an integer value, identifying the environment which is
applicable to the corresponding attribute.

During retrieval of the information necessary to built up these lists, we also activate the set of

exception rules applicable to the current environment. An environment in this context is a set of attributes

which is subject to the same set of exception rules. All attributes of a base relation belong to the same

Knowledge-based detection of null events 59

environment. An exception rule, which is activated in the current environment need not have any effect.

Only if all antecedents of the respective formula are part of the current environment and true in that

environment, and if at least one of the consequents is part of the current environment, does the particular rule

'fire'. This concept will become clearer in the example given in Section 5.4.

The next step is to apply functions to these lists, corresponding to the relational operators of the

relational interpretation of the query. The functions transform the list elements in a way compatible to the

relational interpretation of the query and the applicable exception rules. The functions corresponding to the

selection and to the join operatom cause the affected environments to be expanded: All attributes of two

relations that are connected via a selection or join operator belong to the same environment; thus the set of

exception rules activated in one relation can propagate to another relation. Other operators do not cause the

set of exception rules to propagate from one relation to another, that is, the respective environments remain

distinct. However, functions corresponding to the other relational operators can also cause a reduction of the

set of domain values of the affected attributes. For example, the function corresponding to the set difference

operator, can cause a reduction of the set of domain values, as we show later i this Section.

An empty set resulting from the application of the functions for any attribute domain is equivalent to

the detection of a null event: The result guarantees, that under no circumstances will we find any value in the

corresponding attribute field. Thus not a single tuple will satisfy the constraints imposed by the query in the

current state of the database, or in any state, if no database access was required to pr~duce~the empty set.

a

If no empty set is produced, we start retrieving relations from the database and wry out further

operations, based on the sets of domain values, which are then additionally restricted according to the current

contents of the database.

We now describe the representation of the required information and some of the functions retrieving

and manipulating the information. As mentioned in Chapter 3, in RMIT* we extend the catalog relation

C A L T G - A ~ U T E S by one further attribute field: '~xc'. This attribute field contains integer values

identifying indexed exception rules which are listed in table MCE~TLON~RULES (see Appendix C.7 and

Appendix D.l). The value '0' acts as a dummy, in case no exception rule applies. The table

EXCEPTION~RULES is a list of lists. Each list element corresponds to one exception rule. The structure of

each exception rule is also a list: The first element is the integer value identifying the rule; the second

element is a formula, the third element is a comment. For example, exception rule '(2)' has the three

elements

Knowledge-based detection of null events

. (2)
((COURSE-PROPERTIE~.NUMBER 2 800) -+

((UNDER-GRAD.UNDER-GRAW := 0)
A ((UNDER-MAJORUNDER-GRAD$:= 0)
A ((UNDER-MINORUNDER-GRAD# := 0)))

(You specijied some higher level course(s); undergraduate students cannot be enrolled in such
courses.)

Not all formulae of exception rules have antecedents: sometimes the mere fact that a specific relation

participates in a query results in applicable constraints. For example, exception rule '(4)' corresponds to the

mutex integrity constraint and has the three elements

(4)
((UNDER-GRAD.UNDER-GRAD$:= 0)
A ((UNDER_MAJOR.UNDER-GRAD$:= 0)
A ((UNDER-MLNOR.UNDER_GRAW := 0))
(You specijied some graduate student(s); graduate students are distinct from undergraduate
students; 'major' and 'minor' are inapplicable to them.)

For each relation appearing in the query, we determine the list of attributes corresponding to that

query, and add all exception rules identified by those attributes to the current environment. This task is done

by function G E T - A ~ U T E S :

Function GET - ATI'RIBUTES takes as input the two values 'RELNAM', specifying the name of a

relation and 'E', identifying the current environment GET-ATRlBUTES returns a set of n ADOM-lists

corresponding to the n attibutes of relation RELNAM. Function GET-A'TTRIBUTES also adds all applicable

exception rules to the current environment. fl

Get a l l N tuples From catalog relation CATLG-ATTRIBUTES, a

which have the value r a m i n their f i r s t attribute f i e l d . .
For each of the N tuples create an ADOM-list as follows:

FLAG := \Nf
ATT-NAME : = RBLNAn. ATTNAM
DOMAIN : = DOMNAm
ENVIRONMENT : = E
add the value of attribute EXC t o the set of rules

activated i n the current environment E
Return the N ADa- l i s t s .

We now describe the functions corresponding to the relational operators described in Section 5.2. We

assume that the ADOM-lists of the respective relations are available to these functions. Each function first

makes sure, that the corresponding attributes have the same domain name, since only then are they

compatible. Attributes whose domains are subsets of the same domain are either E-attributes with the

common domain name '$', or P-attributes which do not differ in their domain names, but only in their

Knowledge-based detection of null events 61

EL-KEY or INTRV-KEY attributes in the AmUTE-DOMAINS relation (see Appendix C.3). If the domain

names of two attributes that need to be matched by a relational operator are distinct, then the set of domain

values for both resulting attributes is the empty set.

The function corresponding to the union operator augments the set of domain values for each pair of

attributes such that the set of domain values for both domains consists of the union of the two individual sets.

These resulting sets are stored in the DOMAIN-list of the ADOM-lists corresponding to the affected

attributes.

For example, applied to the attributes GRAD.GRAD$ and sTvDENT.sTvDENT$, the function

corresponding to the union operator returns the set denoted 'STUDENT$', which represents all surrogates

identifying entities of type STUDENT. Applied to the attributes AREA-NAME.NAME and

DEPARTMENT-PROPERT~.NAME, the same function returns the set denoted FIELD, which contains the set of

domain values identifying the different fields of study in the university.

The function corresponding to the set-dgference operation Q - T depends on the FLAGS of the

ADOM-lists corresponding to T. If the FLAG has the value 'D', the corresponding DOMAIN contains the set

of values actually found in the database. In this case DOMAIN(Q) is reduced to

(e I ((e E DOMAIN@)) A (e c DOMAINO))). Otherwise DOMAIN(Q) remains unaltered. There are

two exceptional cases to consider:

For Q - Q, the function returns the empty set for the DOMAINs of each pair of ADOM-lists.

The function corresponding to the cartesian product operation Q m x T n and the function

corresponding to the projection operation do not cause any restrictions on the affected domains.

The function corresponding to the selection operation oqi 0 qj (Q ..., .) reduces the DOMAINS

corresponding to qi and qj such that

DOMAIN(q) = (e I (e E DOMAIN(qi)) A ((3 1 E DOMAIN(q,)) (e 0 0)) and

DOMAIN(q,) = (e I (e E DOMAIN(q,)) A ((3 I E DOMAIN(qi)) (I 0 e)) 1.

Knowledge-based detection of null events 62

The function corresponding to the intersection operation Q n T reduces the DOMAINS such that for

each pair of attributes

DOMAIN(qi) := (e I (e E DOMAIN(qi)) A (e E DOMAIN($)))

DOMAIN($) := (e 1 (e E D()MAIN(qi)) A (e E DOMAIN(ti)))

The function corresponding to the quotient operation Q " + T with the respective attributes

Itl, .., &) E (ql, .., qJ leaves the DOMAINS corresponding to the attributes q, where qi E {tl, .., &),

untouched. The remaining DOMAINS get reduced only if the DOMAINS of T consists of those values

actually retrieved from the database, that is, the corresponding FLAG is set to 'D'. If this is the case, we

obtain:

if ((3 (i I j I k)) @OMAIN(qj) c DOMAIN(tj)))

then (V (i I 1 I k) @OMAIN(ql) := 0))

else no reduction occurs.

The function corresponding to the join operation Q [qi 9 tj] T reduces the DOMAINS of the ADOM-

lists corresponding to qi and tj such that

DOMAIN(qi) := (e I (e E DOMAINS(@) A ((3 1 E DOMAINS(5)) (e 9 l))) and

DOMAIN(t,) := (e I (e E DOMAIN(tj)) A ((3 1 E WMAIN(qi)) (1 9 e)))

r.

The functions assume a database normalized in such a way as described in Chapter 4, that.is, tuples

containing inapplicable attributes are not represented. Consider a user-query which simply requires the

retrieval of a complete relation, such as the relation TIME-TABLE-PROPERTIES, corresponding to the query

'List all time slots of the week, at which a class could be scheduled'. In this case all tuples currently

represented in that relation will be retrieved. A proper database design guarantees that none of those tuples

represents a misconception of some sort or another.

As a result of our proper database design, =-type null events can occur only, when the query, stated in

relational calculus, includes operators which impose constraints on the tuples to be retrieved, since only those

constraints could result in empty sets, reflecting the E-type null event. Out of the five primitive operators,

union, set-difference, cartesian product, projection and selection, only two, set-difference and selection,

impose constraints on the tuples to be retrieved. Thus every query which uses only the other three operators

is guaranteed to cause no Z-type null events. The operators intersection, quotient, and join require set-

Knowledge-based detection of null events 63

difference and selection operators in order to be expressed with only primitive operators. As a result they

also may cause E-type null events.

5.4. Example

In this section we illustrate our solution with a sample query. The sample query chosen results in a

null event which will be predicted prior to any access to the extensional data. All information required for

the detection is represented in the catalog of the RW* model and in the MCEPTION-RULES which apply to

the specific micro-world modelled in our database. The processing of the query begins at the innermost level

of the corresponding formula stated in relational calculus. During query processing a number of exception

rules are activated, one of those rules eventually 'fues' and produces an empty set as the domain for two

attributes. The empty sets correspond to the detection of a null event. The comment part of the specific rule

that fued and produced the empy set is then used for the response generation for the query.

Our example is based on the following query:

'What are the minor fields of the students who got A grades in CMPT810 ?'

Expressed in relational calculus, this query reads:

Starting the evaluation of the formula at the innermost level, for the relation

(AREA-NAME)
we inspect the catalog relation CA'I'LG-A'ITRIBLJTES (see Appendix C.7) and obtain two ADOM-lists:

E(l) is the current environment and contains the set of rules that are active in this environment. At

this stage E(l) is empty.

For the selection operation

Knowledge-based detection of null events 64

(aN- = *-*(=-NAME))

we access the catalog relation A ~ U T E - D O M A I N S (see Appendix C.3) to determine the set of domain-

values corresponding to AREA-NWE.NAME; this set is equal to the complete domain FIELD. We make sure

that 'CMPT' is a member of FIELD (see Appendix C.2) and obtain:

Adding the join operation
(COURSE-PROPERTIES [FIELD$ = AREA$]

(aNm = .-*(AREA-NAME)))
we obtain:

[(N) (COURSE-PROPERTIE.S.COURSE$) ($) (I)]
[(C) (COURSE-PROPERTIES.FIEL~) (AREA$) (I)]
[(N) (COURSE-PROPERTIES.NUMBER) (cours_num) (I)] *
[(N) (C~UR~E~PR~PERTIES.UNITS) (unit-num) (I)]
[(C) (AREA-NAME.AREA$) (AREA$) (111
KC) AREA-NAME.NAME) (('CMPT')) (111
E(l) = (2) .

An exception rule has been activated by attribute COURSE-PROPERTIES.NUMBER (marked with a '*'). It is the

exception rule number 2, as specified in the catalog relation C A T L G - A ~ U T E S (see Appendix C.7). The

exception rule is specified in the table of EXCEPTION-RULES in the knowledge-base (see Appendix D. 1). Due

to the join operation, two ADOM-lists are identical; both denote the set of surrogates identifying instances of
.I

entities of type AREA. This information is obtained as follows: from the catalog relation CAT~~;_ATTRIBUTES
rC

we know that AREA-NAME.AREA$ is the primary key of the relation. Thus the entity type described, is AREA.

The attribute C O ~ R S E - ~ O P E R T I E ~ . F I E L ~ is not the primary key of the relation. In this case we need some

further information. Catalog relation CATLG-RELATIONS (see Appendix C.6) tells us that

COURSE-PROPERTIES contains a designation. Relation DESIG-GRAPH (see Appendix C.11) tells us that the

designated entity type is AREA.

For
k u M e a R = sale*

(COURSE-PROPERTIES [FIELD$ = AREA$]

(aN- = .-*(=-NAME))) 1
we determine the set of domain-values of attribute C ~ I J R ~ E - P R ~ P E R ~ ~ . N U ~ E R , which corresponds to the

entire domain 'cours-num' (see relation A'ITRJBUTE-DOMAINS, Appendix C.3). We make sure that '810' is a

member of 'cours-num' and replace the set of domain-values by the specified value. We obtain:

[(N) (COUR~E~PROPER~E~.COUR~E$) ($) (I)]
[(C) (COURSE-~OPERTIES.AREA$) (AREA$) (I)]

Knowledge-based detection of null events

For
(CLASS-INSTANCE [COURSE$ = COURSE$]

(oNUMBER = '810'

(COURSE-PROPERTIES [FIELD# = AREA$]

(oN- = .-'(AREA-N~E))J 1 1
we obtain:

The attribute CLASS-INSTANCE.FINAL (marked with a '*') has activated another exception rule. It is

the rule number 1, specified in the table of MCEPTION~RULES in the knowledge-bas. Due to the join

operation, the DOMAINS of two more ADOM-lists are identical, both denote the set of surrogates a

identifying instances of entities of type COURSE.

For
(ENROLLMENT-INSTANCE [CLASS$ = CLASS$]
(CLASS-INSTANCE [COURSE$ = COURSE$]

[(N) (ENROLLMENT-~STANCE.ENROLLMENT$) ($) (I)]
[(N) (ENR~LLMENT-~sTANcE.~DENT$) ($) (I)]
[(C) (ENROLLMENT~INSTANCECLASS$) (CLASS$) (1)l
[(C) (CLASS-INSTANCE.CLASS$) (CLASS$) (I)]
[(N) (CLASJNSTANCE.INSTRU~R$) ($1 (I)]
[(C) (c L A ~ ~ J N ~ T A N ~ E . ~ ~ ~ R ~ E $) (COURSE$) (I)]
[(N) (CLASS-INSTANCE.SEMEsTER$) ($1 (111
[(N) (CLASS-INSTANCE.FINAL) (day-num) (I)]
[(C) (C ~ U R ~ E ~ ~ P E R T I E ~ . C ~ ~ R S E $) (COURSE$) (I)]
[(C) (COURSE-PROPERTIES.FIELD$) (AREA$) (1)l

Knowledge-based detection of null events

Before performing the step corresponding to the next join operation, we have to evaluate the relation

to be joined. We start again at the innermost level and in a new environment, E(2):

For
(ENROLLMENT-GRADE)

we obtain:

[(N) (ENROLLMENT-GRADE.ENROLLM~$) ($ (24
[(N) (ENROLLMENT-GRADE.GRADE) (GRADE) (2)]
E(2) = (3) .

Another exception rule has been activated here. It is rule number 3, specified in the table of

MCEPTION~RULES in the knowledge-base and is valid in the current environment E(2).

For
{a- = . A . (~ ~ ~ ~ - ~ ~ ~ ~))

we determine the set corresponding to ENROLLMENT-GRADE.GRADE, which is the entire set of domain values

of GRADE. We then make sure that 'A' is a member of the set GRADE. We obtain:

[(N) (ENROLLMENT~GRADE.ENROLLMENT$) ($1 (211
[(C) (ENROLLMENTGRADE.GRADE) (('A')) (2)]
E(2) = (3) .

We now perform the operation corresponding to the join: For
((ENROLLMENT-INSTANCE [CLASS$ = CLASS$]

(CLASS-INSTANCE [COURSE$ = COURSE$]

(aNUMBER = '810'

{COURSE-PROPERTIES [FIELD$ = AREA$]

(a,, = .-.(AREA-NA~) 1 1 1 1
[ENROLLMENT$ = ENROLLMENT$]
(a,, = , A . (~ ~ ~ ~ - ~ ~ ~ ~))

we obtain:

[(C) (ENROLLMENT-INSTANCE.ENROLLMENT$) (ENROLLMENT$) (I)]
[(N) (ENROLLMENT-INsTANCE.STUDENT$) ($) (I)]
[(C) (ENROLLMENT-INSTANCE.CLAS%) (CLASS$) (I)]
[(C) (CLASSJNSTANCE.CLA~~) (CLASS$) (I)]
[(N) (CLASS-INSTANCE.INSTRU~R$) ($) (1)l
[(C) (CLA~~~IN~TANCE.C~UR~E$) (COURSE$) (1)l
[(N) (CLA~~~TANCE.SEMESTER$) ($) (1)l

Knowledge-based detection of null events

The last join operation has caused the two environments E(l) and E(2) to become identical: they both

include their current union.

For
(UNDER-MINOR [UNDERGRAD$ = STUDENT$]
((ENROLLMENT-INSTANCE [CLASS$ = CLASS$]

(CLASS-INSTANCE [COURSE$ = COURSE$]

we obtain:

~ ~ E R _ ~ O R . ~ E R - M V P ~ ~) ($1 (111 *
[(C) (~ E K ~ ~ R . W E R - G R A D $) (0) (111
[(N) (~ E R - ~ O R ~ O R) (FIELD) (111
[(C) (ENROLMENT-INSTANCE.ENROLLMENT$) (ENROLLMENT$) (I)]
[(C) (ENROLLMENT-INSTANCE.STUDENT$) (0) (l)]
[(C) (ENROLLMENT~INSTANCE.CLASS$) (CLASS$) (I)]
[(C) (CLASS-INSTANCE.CLASS$) (CLASS$) (I)]
[(N) (C L A ~ S T A N C E . I N S T R U ~ R ~) (e) (I)]
[(C) (CLASS-INSTANCE.COURSE$) (COURSE$) (I)]
[(N) (CLASS-INSTANCE.SEMESER$) ($1 (I)]
[(N) (CLASS-INSTANCE.~AL) (day-num) (I)]
[(C) (COIJRSE-PROPERTIES.COURSE$) (COURSE$) (I)]
[(C) (COURSE-PROPERTIES.FIELD$) (AREA$) (111
[(C) (COURSE-PROPERTIES.NVMBER) (('8 lo')) (I)]
[(N) (COURSE-PROPERTIES.UN-ITS) (unit-num) (l)]
[(C) (AREA-NAME.AREA$) (AREA$) (111
[(C) (AREA-NAME.NAME) (('w' 1) (1)l
[(C) (ENROLLMENT-GRADE.ENROLLMENT$) (ENROLLMENT$) (2)]
[(C) (ENROLLMENT-GRADE.GRADE) (('A')) (2)]
E(l) = E(2) = (2,1,3,7).

The operation corresponding to the last join operation, together with exception rule 2, has produced an empty

set, which in turn corresponds to an =-type null event. We abort the processing of the entire formula

Knowledge-based detection of null events 68

representing the query. No database access was required. For the response generation we supply the

comments associated with all the rules that were involved in the derivation of the empty set. In this case

there is just one such rule and one comment You specified some higher level course(s); undergraduate

students cannot be enrolled in such courses.

In this chapter we have outlined an algorithm to process user queries, stated in relational calculus, in

such a way that null events will be detected with a minimized amount of database access. The amount of

database access is a good parameter to evaluate the cost of a query, since even in sophisticated natural

language-database systems, most of the time from query entry to response presentation is spend for database

accesses (see [Kaplan 791).

A four-valued logic

Chapter 6

A four-valued logic to deal with two types of null events

We introduce a formal method for handling the two different types of null events introduced in

Chapter 4, namely the R-type null event caused by some missing piece of information (value at present

unknown) and the =-type null event caused by some type mismatch (property inapplicable). The title of this

chapter indicates that we use the term 'logic' to refer to this method. As we will show in Section 6.4, this

term could be considered inadequate, nevertheless 'logic' is used because of its widespread use in this

context. Our approach extends Codd's notion of a three valued logic to deal with R-type null events [Codd

791 to a fourth truth value to deal with =-type null events. In fact, the present Chapter is a digression on

Codd's proposals of a three-valued logic and a four-valued logic [Codd 871. The four-valued logic we

introduce does not constitute a relational reconstruction of the algorithms of Chapter 5 used to detect Z-type

null events.

The relevant aspects of the standard two-valued logic and of two different three-valued logics will be

presented first. Those aspects are then gradually extended to a four-valued logic, whiclrallows a combined

treatment of both Q-type and E-type null events. a

As we have seen in Chapter 5, relational calculus is based on first order predicate calculus and thus a

kind of first order logic is used during query processing and answer generation (see, for example, [Ullman

821 l6 or [Reiter 841). Under the closed world assumption, a two-valued logic is appropriate for a relational

database without null values. The corresponding truth tables for negation, conjunction, and disjunction are

illustrated in Table 6-1

l6 Chapter 5: The Relational Model

A four-valued logic 70

AND I F T OR I F T

Table 6-1: Truth tables for two-valued negation, conjunction and disjunction

Thus, for conjunctions the truth value F dominates over the truth value T, whereas for disjunctions the

truth value T dominates over the truth value F. Basically the closed world assumption, together with the

assumption that no null values exist in the database, guarantees that the law of excluded middle (an object

must either have a predicate or its negation) holds. Under these assumptions, such queries as
Are the students Mary and ~ o h n both PhD students ? or

Is Mary or John a PhD student ?

can always be answered properly using the two-valued logic, since the PROGRAM attribute for each student

represented in the database, contains some nonnull value. Problems arise, however, in more conventional

cases that allow the occurrence of null values.

6.1. The value at present unknown type of null event

In [Codd 791, Codd suggests the use of a three-valued logic in order to deal with the value at present

unknown type of null values and gives the corresponding truth tables for conjunction, disjunction, and denial.

He uses the symbol 'a' to denote two distinct kinds of unknown information, namely thmull events and the

null values for which we introduced the two distinct terms Q and o in Chapter 4. rC

Codd ([Codd 791) l7 justifies his twofold use of 'o' by stating:
"We use the same symbol 'a' to denote the unknown truth value, because truth values can be stored in

databases and we want the treatment of all unknown or null values to be uniform."

A proper distinction between null values and null events is important for rigorous approaches to the

problem with null events in general. We adapt the notation introduced in Chapter 4:
1. 'a' substitutes a missing and therefore currently unknown value in some attribute field in the

database.

2. 'Q' denotes the unknown truth value of a statement about the current state of the database.

The truth tables shown in Table 6-2 are the ones given in [Codd 791, except for the symbol 'o' which

l7 In later publications ([Codd 861, [Codd 871) Codd makes the distinction clearer by using the logical truth value 'MAYBE', and a
'mark' to record the fad that a database value is missing.

A four-valued logic

AND I F R T OR I F R T

NOT(T) = F F I F F F F I F R T
NOT(F) = T R I F R R R I R R T
NOT(R) = R . T I F R T T I T T T

Table 6-2: Truth tables for three-valued negation, conjunction and disjunction,
as given by Lukasiewicz and Codd

is now replaced by 'a'. These truth tables are also identical with the ones given by Lukasiewicz (except for

the notation) when he first introduced his three-valued logic in 1920 in order to deal with propositions such

as "I shall be in Warsaw at noon on 21 December of next year". According to Lukasiewicz such

propositions are, at the moment they are considered, neither true nor false and must possess a third value,

different from falsity and truth (see [Rescher 691). This truth value corresponds to our unknown truth value

n, used to signal a state of partial ignorance (the truth value is at present unknown), not a state in which

neither True, nor False are applicable.

As the truth tables in Table 6-2 show, the truth value n dominates over the truth value T in

conjunctions, and dominates over the truth value F in disjunctions. The obvious reasoning behind this is the

fact that
In the case of a conjunction the truth value F can be established as soon as one component has
truth value F, whereas the truth value T can only be established when all components have truth
value T.

0

In case of a disjunction the truth value T can be established as soon as one component has truth
value T, whereas the truth value F can only be established when all components have truth value rC

F.

Consider, for example, the STUDENT-PROPERTIES relation of our database (see Appendix B.26) and assume

that two tuples have the values '87000MX)l' and '87000-0002' in their respective NUmER attributes and the

values 'F' and 'a' in their respective SEX attributes. We obtain the following question - answer pairs: l8

8 Are the two s&nts with numbers 87000-0001 and 87000-0002 both female ? - n
Is one of the two students with numbers 87000-0001 and 87000-0002 female ? - T

In case the first of the above two tuples contains the value 'M' instead of 'F' in its SEX attribute, and the rest

remains unchanged, we obtain:
Are the two students with numbers 87000-0001 and 87000-0002 both female ? - F

8 Is one of the two students with numbers 87000-0001 and 87000-0002 female ? - a
Reconsidering our primary objective to eliminate wasteful operations and null events, we can see that n-type

la 'he question - answer pairs given as examples in this chapter do not include the complae answers a knowledge-based system
should provide, but a simplified form only.

A four-valued logic 72

null events cannot be predicted by inspection of the catalog of the database or other preprocessing the

knowledge-based subsystem might perform. A search through the extensional data is necessary before the

o-type null value can be found, and the o-type null value has to be found in the database before the unknown

truth value 'a' can be determined.

6.1.1. Some problems with the third truth-value

Some problems arise when a decision has to be made as to whether or not to include elements in an

answer list when the attribute used as a selection criteria for a tuple contains the o-type null value. Two

examples of a corresponding query are
List all female students and

List all male students.

The question is whether those students whose SEX in not known at the time of query processing should be

included in either one or both of the answers to the above queries. The most appropriate solution seems to

include them in both cases, together with an explanatory comment.

However, such comments might seem superfluous or even annoying in cases such as
List all students which are female or male and

List all students which are female and male.

The first of these two queries should preferably result in a list of all students, the second in an empty list

together with the additional comment that in the micro-world represented by this database al l students are

bound to be either female or male, but cannot be both at the same time. This latter case would constitute one, a

in which dispensable operations could be eliminated even though no null event was bound to occur.

The above case is not trivial in the database world, even though it seems obvious to the human user.

The cause of this phenomenon is the fact, that in the given three-valued logic (P v P) need not be True

and (P A ~ P) neednotbeFalse, namely incaseP=R.

The above examples are chosen for illustrative purposes only and might seem somewhat contrived.

More realistic examples would involve attributes that accept a larger, yet limited number of distinct values

instead of only two, like Female and Mde. For example, the course PRE-REQuisita of any COURSE offered in

a university is a proper subset of all COURSES offered.

Here the o-type null value acts as a special additional value and similar counterintuitive results have

to be expected if the given three-valued logic is to be applied directly in some specific cases. In general, if

A four-valued logic 73

V, is the value of a specific attribute of tuple T, and n is the number of possible distinct values for that

attribute, then

([V,=V,l v [V,=V21 v ... v [V,=V,]) neednotbeTrue, and

([V,=V,] A [V,.=Vb]) , witha#b, neednotbeFalse,

in case V, = 'o'; in this case both of the above propositions have the truth value 'a' .
A feasible solution to this problem of generating appropriate responses to all composite queries, where

the components are connected via the logical AND or OR operator, requires query preprocessing, which

detects precisely the two cases specified above and acts accordingly.

Notice, that even in a database without null values, the database system might not be able to infer that

the truth values of the above propositions must be True. To do so the system needs to know the complete set

of values that make up the domain of the respective attribute. In databases designed according to the RMF
model, the required information is available via the extended catalog, unless it is not specifiable in principle

(if the domain of the respective attribute is not enumerable).

We have elaborated on some peculiarities arising from the fact that the law of excluded middle does

not hold in the three valued logic introduced, and based on the three connectives conjunction, disjunction,

and negation. These are the only connectives that Codd defines in his papers [Codd 791, [Codd 861, [Codd

871; he gives no definition for implication.

6.1.2. Implication and incomplete information

An appropriate definition of implication for a multi-valued logic is not a trivial problem. In the

standard two valued logic, negation reverses the truth value. Here the substitution of (A + B) by (T A v B)

causes no problems: If (A + B) holds, all combinations for the values of A and B are permissible, except the

value pair (< A, B > = c True, False >) and we obtain the truth table illustrated in Table 6-3.

A B I F T

T I F T

Table 6-3: Truth table for two-valued implication A + B

Table 6-3 is identical with the truth table for (1 A v B). This interpretation of implication is usually

referred to as 'material implication'.

A four-valued logic 74

In the three-valued logic negation does not necessarily reverse the truth value since the law of

excluded middle does not hold (7 f2 = f2). If we use the analogue of material implication in the three valued

logic as specified by Codd, we end up with the left table of the two truth tables illustrated in Table 6-4.

A B I F R T A B I F R T

F I T T T F I T T T
R I R R T R I R T T
T I F R T T I F R T

Table 6-4: Truth tables for three-valued implication A + B as given by Kleene (left)
and by Lukasiewicz (right)

Now the reflexive law (P + P) need not hold any more, namely if (P = a). This seems counter-

intuitive: no matter what truth value proposition P may have, we would expect (P + P) to always be true.

In order to ensure that (P + P) is tautologous, Lukasiewicz changed the corresponding entry to True

in his system, as shown in the right truth table for implication in Table 6-4. In fact, Lukasiewicz chose

negation and this definition of implication as the primitives of this system (see [pescher 69]), and derived the

other two connectives OR and AND:
O A V B isgivenby (A+B)+B, and

O A A B isgivenby 7 (7 A ~ 7 B) .

Lukasiewicz' solution is not problem-free either: we obtain the counter-intuitive result ((P + P) = True) if

(P= a) . d

Kleene argued (see [Rescher 691) that the truth value of (A v B) is defined only if either both A and B

are known to be false (in which case the resulting truth value is False), or either one of A and B is known to

be true (in which case the resulting truth value is True). In the latter case nothing is said about the other

variable. Consequently he did not adopt the change made by Lukasiewicz and used the left truth table in

Table 6-4 to define implication for his 'strong' connectives (see [Rescher 691).

For the p w s e of information retrieval from a database, Kleene's version is more appropriate. Since

all deductions are based on propositions whose truth values are either True or False, all the implication

(A + B) tells us is that the truth value True propagates from proposition A to proposition B. Nothing is said

about the propagation of truth-value False. If the truth-value False was also supposed to propagate from

proposition A to proposition B, we would write A = B. Thus in Table 6-4 for implication we obtain the truth

value

A four-valued logic 75

True whenever A = F (since then B could be anything) and whenever B = T (since then A
could be anything),

l False whenever ((A = T) A (B = F)) (since in this case the truth value T has not propagated
from A to B).

If we base our interpretation of Table fj-4 on the more intuitive notion of entailment, we find the truth

value
l True whenever the current state of the database is consistent with the proposition 'A entails B',
Fa lse whenever the current state of the database is inconsistent with the proposition

'A entails B',
l Q whenever the current state of the database does not allow either one of the above

conclusions.

Notice that the extensional database does not contain enough information to allow us to conclude that

an entailment holds among the data. Even the inspection of the complete set of states which the extensional

data in the database can adopt would not allow the conclusion of such rules. Given a pair of values for A and

B, one can conclude whether or not (-, A v B) holds for this pair. Given a complete set of value pairs that A

and B can possibly adopt, one can conclude whether or not (T A v B) always holds. But such a set includes

no information about whether or not B is True only due to A, that is, whether or not A is relevant for B.

Therefore it is impossible to derive any rule governing the interrelationship between the entities described by

the data without observing this interrelationship in the first place. Such a rule must be explicitely specified in

the knowledge-base, or via integrity constraints.

Directly related to this problem is the problem of interpreting ambiguous queries. Consider the query
Does every graduate s&nt have a supervisor ? *

which can be interpreted in two different ways:
a

1. Does every graduate student currently represented in the database have a supervisor, who is
also represented ?

2. Does in the micro-world represented by the database being a graduate snrdent entail having a
supervisor in general ?

The first interpretation aims at the extensional aspect of the micro-world being represented; it

corresponds to the logic form (-, A v B). This interpretation is probably correct, if it is entered by some

department administrator wishing to know whether he has to assing a supervisor to some new grad student.

Based on this interpretation and the values of the extensional data, a 'Yes' answer is possible.

The second interpretation aims at the intensional aspect of the micro-world being represented; it

corresponds to the logic form (A I - B) (that is A entails B). This is probably the correct interpretation if

the query is entered by a new student at the university. Based on this interpretation and no more than the

values of the extensional data, a 'Yes' answer to the query is impossible.

A four-valued logic 76

There exist a number of other proposals for a definition of implication in many-valued logics. An

extensive overview is given in Wescher 691. In the Section 6.2 we introduce another type of null event and

an associated fourth truth value; we also present the corresponding truth tables for negation, conjunction,

disjunction and our version of implication.

6.2. The property inapplicable type of null event

We adapt the notation introduced in Chapter 4 and distinguish between the database value '6' and the

truth value 'E' as follows:
1.6 substitutes an inapplicable value in some attribute field in the database.

2. E denotes a fourth possible truth value of a statement about the current state of the database.
It is distinct from truth, falsity, and ignorance, and represents the truth value of a proposition
that is malformed with respect to the intensional content of the database.

We obtain a the truth value E whenever the elements of a query cannot be matched with the structure

of the database. In general this happens without the existence of a corresponding 6-type null value among

the extensional data, unless some misconceptions are actually represented in the database. As we have

shown in Chapter 5 , s type null events are predictable by careful inspection of the database catalog and with

the use of some additional knowledge. However, Lukasiewicz's three-valued logic is not applicable to this

kind of null events, as we show in this section.

Our database differentiates between students and instructors (academics) by u&ng distinct entities,
a

The attribute PRoG is present for some students (namely GRAD students), but not for instructors. With only

one third truth value (Q), we would end up with question - answer pairs such as
Is instructor Galilei or inslructor Kepler a PhD student ? - SZ

This statement makes sense if we change the interpretation of the truth value SZ to that of the truth value E.

However we could get the same answer for a different question too:
Is instructor Galilei or student Mary a PhD student ? - i2

Now the interpretation of the answer is not clear. Furthermore, in case of the question - answer pair
Are instructor Galilei and student Mary PhD students ? - F

Mary must be a Master's or Special student and cannot be a PhD student, but by generating the above answer

Lukasiewicz's three-valued logic would hide the underlying misconception in the query. In order to deal

with 8-type null events, we need to introduce a different kind of logic.

We disregard the SZ-type null events for a moment, and concentrate on the E-type null events. An

appropriate set of connectives to deal with E-type null events could be based on the three-valued logic

A four-valued logic 77

presented by D. A. Bochvar in 1939. Here the third truth value stands for something like 'paradoxical' or

'meaningless' (see [Rescher 69]), which is analogous to the property inapplicable interpretation of null

events. This truth value, which we denote with '3, is assigned to any compound which has at least one

component with that value. Thus, the presence of the third truth value among any connectives infects the

entire formula with meaninglessness and the user will be informed about the existence of any detectable

misconception, no matter where in his query such a misconception is manifested. The corresponding truth

tables for negation, conjunction, and disjunction are illustrated in Table 6-5.

AND I B F T OR I F T B

NOT(T) = F - - - - = I I = = F I F T E
NOT(F) = T F I B F F T I T T E
NOT(E) = B T I E F T - - - - = I = 3 =

Table 6-5: Truth tables for three-valued negation, conjunction and disjunction,
as given by Bochvar

For implication we use the interpretation introduced in Section 6.1.2 and obtain for (A + B):
True whenever (A = False) or (I3 = True)
False whenever ((A = True) A (B = False))
R in all other cases

The last of these three cases requires further explanation. Assume the implication (A + B) is given. If A's

value is E (inapplicable), B's value might, but need not, be so too. We cannot assume that the implication

(A + B) always interrelates two equally in/applicable concepts, that is, the implication need not be
*

inapplicable just because the antecedent or the consequent is inapplicable. Consider the following example:
a

Assume PREGNANT (X) + ON-LEAVE (X). NOW, if MALE (X), then PREGNANT (X) = E, but

ON-LEAVE (X) f E.

In this case there is not enough information to confirm or refute the implication

(PREGNANT (X) + ON-LEAVE (X)), or to establish its inapplicability. Thus, we need to make use of the truth

value R and obtain the truth table for implication illustrated in Table 6-6.

A B I F B T

F I T T T
E I R R T
T I F R T

Table 6-6: Truth table for implication A + B in the presence of misconceptions

A four-valued logic

6.3. The four-valued logic

We now combine the two distinct three-valued logics presented and obtain a four-valued logic which

is suitable to deal with both a-type and E-type null events. The corresponding truth tables for negation,

conjunction, and disjunction a& illustrated in Table 6-7.

AND I B F R T OR I F R T B

N O T (T) = F - - - - - = I = = = a F I F R T E
N O T (F) = T F I B F F F R I R R T B
N O T (R) = n n I B F R R T I T T T B

T I B F R T - - - - - N O T (=) = B = I = G = E

Table 6-7: Truth tables for four-valued negation, conjunction and disjunction

Again the truth value E dominates over all the other truth values in both, conjunctions and

disjunctions. Contrast this with Codd's proposal of a four-valued logic [Codd 871, which hides

misconceptions from the user: In Codd's logic the truth value E does not infect the whole disjunction and we

could obtain such question - answer pairs as, for example,
Is Mr. Brown or Mrs. White pregnant ? - Yes,

which is impossible in our four-valued logic, since it reveals all misconceptions that can be detected.

For implication we obtain the truth table illustrated in Table 6-8:

A B I F R B T

F I T T T T
R I R R R T
B I R R R T
T I F R R T

Table 6-8: Truth table for four-valued implication A + B

63.1. Expressive completeness

The logic proposed is not expressively complete (see [Jeffrey 811 for a definition of expressive

completeness). For the two-valued logic the three truth-functional connectives conjunction, disjunction, and

negation form an expressively complete set: for each of the 22n different ways of assigning Truth and Falsity

to each of the 2" different truth functions of a statement consisting of n variables, there exists a statement

compounded out of those variables by means of conjunction, disjunction and negation, that has the same

A four-valued logic 79

truth values. For example, let n = 2 and call the two variables A and B. Then we obtain the 222= 16

different truth functions illustrated in Figure 6- 1.

Figure 6-1: The 16 truth functions for statements with two two-valued components.

The following list shows how these functions can be obtained by means of conjunction, disjunction

and negation.
f, =
f, =
f2 =
f3 =

f4 =
f, =
fa =

f7 =
f, =
f9 =

f10 =
fll =
f12 =
f13 =
f14 =
f15 =

In the case of a three-valued logic, we obtain 33n truth functions for n variables. The three connectives do not

form an expressively complete set. For example, the assignment of the truth value to any compound

statement that does not contain at least one variable with truth-value a, is not representable by means of the

three truth functional connectives.

However, for the purpose of data retrieval from a database, the logic is not required to be expressively

complete: for example, functions that take True and False as the only truth values of their arguments and

return an E value are meaningless. They should neither be directly expressible, nor indirectly via some

combination of given connectives. The same applies to truth functions that produce f2 under equivalent

circumstances.

A four-valued logic

6.4. Final remarks

We have presented a formal way of handling the two types of null events introduced in Chapter 4,

namely the Q-type null event (value at present unknown), and the =-type null event (property inapplicable).

The 'truth values' Q (value at present unknown) and E (property inapplicable) could also be seen as

'epistemic values'. The four-valued logic would then be seen as a four truth-valued semantics. In fact, as

mentioned in the introduction, the term 'logic' has been used quite loosely in this Chapter, not to classify the

concepts introduced as logics, but rather to follow the tradition of other papers published in this area, for

example, [Belnap 751, [Vassiliou 791, [Date 864 19, [Codd 871. What has been introduced as three-valued

and four-valued 'logic' in those papers is far from being a complete logic system. No rules of derivation are

given, and the fact that these 'logics' are not expressively complete is not even mentioned.

Our four-valued logic is also not expressively complete but we have shown that the specific purpose it

has been designed for, does not require expressive completeness. We have given a set of rules of inference

and an appropriate definition of implication, which are of crucial importance as soon as the system is to make

use of intensional data such as functional dependencies and additional rules in order to derive values that are

missing among the extensional data, whenever possible.

Our four-valued logic is based on pragmatic and methodological considerations, with a specific

application in mind. It provides a formal way to investigate on composite queries wh<re each component
a

may result in a known, unknown or inapplicable value. The generation of appropriate responses to all kinds

of queries can be stated in a formal and shorter way than it would be possible using algorithms or procedures.

The notation is clear, exact and therefore easily verifiable.

l9 Null Values in Database Management, page 313-334

Chapter 7

Conclusions

7.1. Summary of the work done

We have presented a practical approach to eliminate wasteful operations in natural language access to

relational database systems, using a knowledge-based subsystem.

The presentation of the approach is based on the extended relational model R m , which we have

further extended to the RMF model. All relevant aspects of the extended RM/T model and all further

extensions of the RM/T* model are presented in Chapters 2 and 3. Extensions of the RMP model

concerning the database structure mainly consist of:
A naming convention for characteristic entity types: the names of all characteristic entity types
end in '-MVP' or '-MVP~', where n is an integer.

A restriction in the use of characteristic entity types: In RW*, only kernel entity types and
associative entity types are allowed to have characteristic entity types characterizing them.

The notion of mutually exclusive subtypes.
/

In Chapter 2 we have also explicitly stated a number of integrity constraints which apply to the model but
J.

were not directly pointed out in [Codd 793 and [Date 831. We have also c W ~ e d the distinction between

characteristic entities and the designative entities of the extended RM/T model. This distinction seems to

have been overlooked so far (see, for example, [Date 86bl); it is applicable to RM/T* as well. In Appendix A

we have presented a diagramming technique for all versions of the RM/T model. This diagraming technique

has proven to be helpful in the design of the database.

In Chapter 3 we have presented the catalog of the extended RM/T model and the additional extensions

of the RMM model. The extensions are partially the counterparts of the extensions made in the database

structure, and partially extensions which are independent of the changes made in the database structure.

Altogether the extensions concerning the catalog of the R& model include:
An additional QUALIFIER attribute in the CATLG-DOMAINS relation used to further qualify the
data types of the different domains.

An explicit representation of the domain values of boolean data types and enumeration data
types using a distinct relation for each type.

Three additional relations: A m U T E - D O M A I N S , ELEMENTS, and INTERVALS, which allow the
representation of sub-domains for property attributes, that is, the domain of one property
attribute can be a subdomain of the domain of another property attribute. This concept is
analogous to the hierarchical aspect of entity types with their subtypes and supertypes.

An additional EXC attribute in the CA~~;_A-ITRIBUTES relation, whose purpose is to facilitate the
detection of the null events caused by misconceptions on the part of the user, which manifest in
the query. The values in the EXC attribute field refer to specifically applicable constraints
specitM in the table MCXPTION-RULES of the knowledge-base.

Two additional attributes in the SUBW-GRAPH relation: SPANNING-SUPERTYPE and
MUTUALLY_MCLUSIVE which specify whether or not a category spans the supertype and whether
or not the subtypes are mutually exclusive.

In Chapter 4 we have clarified the distinction between null values and null events, and based on that

distinction, shown the fundamental distinction between null events of type 'value at present unknown'

(R-type null events) and null events of type 'proper0 inapplicable' (E-type null events). We have then

shown that a misconception which manifests in the user query reflects a misconception on the part of the

user, whereas a misconception which is actually represented in the database reflects a misconception on the

part of the database designer. In a properly designed database, null values of type 'property inapplicable'

should not be represented. In fact, as we have shown, the notion of a null value of type 'property

inapplicable' [Atzeni and Parker 821, Feiter 841, [Codd 861, Date 86b1, [Codd 871, is misleading by itself.

We have then presented a classification of null events which is mainly based on minimizing the amount of

database access required to detect the null event.

In Chapter 5 we outlined a practical implementation to detect 2-type null events which is based on the
a

results of the previous Chapters. The method relies on the extensions made in the RIWf model, although it

is in principle adaptable to other semantic models as well. The goal in this method is to minimize, for each

attribute occurring in a query, the set of possibly matching attribute values in the database. The minimization

is subject to the constraint that the resulting set includes all domain values which could possibly be present in

the tuples matching the constraints implied by the query. An 8-type null value is detected, whenever the

resulting set for any of the attributes involved in the query is empty. The comment part of the rule which was

involved in producing the empty set is then used for an appropriate answer generation.

Finally, in Chapter 6 we presented a digression on Codd's notion of a 'three valued logic' to deal with

R-type null events [Codd 791 and an alternative to his notion of a four-valued logic to deal with Q-type and

9-type null events [Codd 871. Since the term 'logic' is widely used in the context of null values to designate

an extension of the two standard truth values, we refer to our method as 'four valued logic'. However, we

are aware of the fact that the term is actually a misnomer: the respective methods are far from being 'logics'.

7.2. General advantages of the RMPT* model

An important aspect of the RM/r* model is the fact that the domains of the different attributes are

specified in a precise manner. The favorable consequences of this aspect are not limited to the detection of

E-type null events. As was pointed out in Chapter 6, such queries as
Q.: List all graduate students who are either in a special program, or in a master's program, in
a PM. program.

Can be simplified if the knowledge that the three values specified represent the complete list of al l possible

domain values, is available.

In addition to the impact on query evaluation, R M I ~ could also offer advantages to the query

interpretation. For example, the different values of the NAME attribute of the relation

DEPARTMENT- PROPER^ are specified as a complete list. This list could be made accessible the parser and

the semantic interpreter in the same way as the lexicon (see Figure 1-2). Thus the semantic interpreter of an

RW* database could properly handle such queries as
Q.: Who taught CMPT 567 last semester ? and

Q.: Who taught BOND 007 last semester ?

The first query would be processed 'as expected' and result in a null value in case the CMPT department

does not offer a course with number 567. For the processing of the second query, the semantic interpreter

would make use of the information that BOND is not a legal value for the DWARTMENT-PROPER~.NAME

attribute and either reject the query (with an appropriate explanation, and free the knowledge-based

subsystem from doing the same task), or interpret BOND 007 as a possible instance of a student name and *

generate the corresponding formal database query.

7.3. The problem of focus

An investigation on whether or not the problems associated with a lack of knowledge about the user

and about the current focus might be reduced if the database system gives some explanations on what it is

currently doing while the searches through the extensional data are going on might be quite interesting.

Consider again the example of Section 6.1.2, page 75:
Does every grad student have a supervisor ?

A system explaining its activities might respond with the following sequence of comments to the user:

I'm looking for all the grad students ...
Done.

I'm checking whether any of them does not have a supervisor ...

Done.

ANSWER: Yes, every grad student has a supervisor.

A user might then interact as soon as he detects that the system interprets his query in some

unintended way. For example, he might interrupt the evaluation process after reading the first comment and

reformulate his query:
Is there a rule stating that every grad student has to have a supervisor ?

7.4. Pseudo-indexed null values as a future extension

One important result of the research presented in this thesis is the disclosure of the concept of a 'null

value of type property inapplicable' (see, for example, [ANSI 751, [Codd 791, [Vassiliou 791, [Atzeni and

Parker 821, [Reiter 841, [Codd 861, [Date 86b], [Codd 871) as a misconception. This disclosure has

considerable impact on earlier approaches to the problems with null events of type property inapplicable (for

example, [Vassiliou 793, [Codd 861, [Codd 871) which rely on this misconception.

In this final section we present some guidelines for future extensions concerning the representation of

null values of type value at present unknown. As was mentioned in Chapter 4, there is some dispute over the

proper representation of those null values, in particular over the question whether the null values should be

indexed or not. The approach outlined here can be seen as a pseudo-indexed representation of null values: a

null value would be indexed in precisely thoses cases, when the actual value of the Gspective attribute is

unknown, but some further information about the value is present. In this case we replace the term 'null
a

value' with the term 'special value'. The null value would not be indexed if no further information is

available.

To represent a null value in some attribute field of a database, it is necessary to find a bit

configuration that is different from all bit configurations that represent nomull values in that field so that the

null value cannot be confused with any nonnull value. In general such a bit configuration might not exist. It

is then necessary to introduce a hidden field, in order to distinguish the null values from all other values in

the attribute field. For example, in [Date 86bl Date states that 20

"In DB2, a column that can accept null values is physically represented in the stored database by two
columns, the data column itself and a hidden indicator column, one byte wide, that is stored as a prefvc to the
actual data column. An indicator column value of all ones indicates that the corresponding data column value
is to be ignored (that is, taken as null); an indicator column of all zeroes indicates that the corresponding data
column value is to be taken as genuine (that is. nonnull)."

page 120. DB2 is an IBM ~lational database product.

And in [Codd 861, Codd argues that
"in the context of computer-supported database management, it is unacceptable to reserve any specific

character string value to denote the fact that a db-value is missing".

In case the hidden field .marks an entry as null value, the data field of the attribute is wasted in the

standard approach. Any bit configuration appearing in that part is not interpreted according to the declaration

of the attribute type, but simply ignored. We propose to make extended use of both the hidden field and the

data field. Part of our proposal is to use a minimum width for the physical storage of the data column such

that each data column can accommodate for a surrogate value, and to add a hidden field to each attribute in

the database which is allowed to contain null values or special values.

Theoretically the hidden field need be no more than a single bit wide, but for pragmatic reasons

(mainly hardware of the system) it is more convenient to let it occupy an entire byte or word 21. The hidden

field will be used to mark not only null values, but also other special cases that could all be seen as special

values with respect to the declaration of the attribute field: values whose data fields are to be interpreted in a

different way (specified by the hidden field) than the declaration of the respective attribute suggests. Except

for the case of the 'normal' null values, the data field will be used to store a key value of some additional

catalog relation whenever the hidden field marks some special value.

We use a one-byte hidden field as prefix to the data field

Instead of using the bit combinations '00000000' and ' 11 1 1 1 1 11 ' in the hidden field to distinguish between a

genuine data value and a null value, the database uses only bit H7 for the same purpose and ignores bits H6

through Ho. Thus the database will interpret the contents data field as genuine value whenever H7 = '0' and

as null value otherwise.

Whenever H7 = 'l', the knowledge-base will interpret the data field as special value. The specific

type of special value is specified by bits H6 - %. For example, if bits cH7, H6> = ' l l ' , the data field is

interpreted as the 'normal' o-type null value; if bits cH7 - H4> = '1000', the data field is interpreted as a

surrogate value, referring to one or more special relations in the catalog. Bits H3 - Ho specify those special

21 here 'word' refers to a computer word, that is, the number of bits addressable by the cpu at a time, or the number of bits stored as
one unit in memory.

relations. Thus the extensions are hidden from the database and only visible to the knowledge-based

subsystem.

7.4.1. Relations for comparisons and set in/exclusions

We add four distinct relations to the catalog to represent extensional and intensional comparisons

among values of equal type. Whenever the hidden field contains the bit combination '1000' in bits H7 - Hq,
the data field will contain a system generated surrogate. Bits Hg - HO will then be used to specify one or

more of the additional catalog relations, which contain the respective surrogate in one of their key attributes

(all four additional relations have composite key attributes). All constraints specified via these additional

relations hold simultaneously.

7.4.1.1. Extensional comparisons

We add the two relations SPECIAL-E-AND and SPECIAL-E-OR to the catalog in order to represent the

extensional constraints that are met by specific special values in the database, relative to specified constant

values. 22

SPECIAL-E-AND (SPECIAL-E-ANW, IS, VALUE)

SPECIAL-E-OR (SPECIAL E OR$, IS, VALUE)

The format of both relations is identical. SPECIAL-E-AND represents the constraints that must hold
C

simultaneously, SPECIAL-E-OR represents the set of constraints of which at least one must hold. Bit Ho of the

hidden field indicates, whether or not the data field contains a surrogate value refemng to the SPE~L-E-AND

relation; bit HI indicates, whether or not the data field contains a surrogate value refemng to the

SPECIAL-E-AND relation. We use the SPECIAL-E-OR relation to explain how the information is represented in

both relations. The analogue holds for the SPECIAL-E-AND relation.

The SPECIAL-E-OR relation has two key attributes, SPECIAL-E-OR$ and VALUE. As the suffix '$'

indicates, the domain of SPECIAL-E-OR$ consists of system generated surrogates. The domain of the VALUE

attribute field is not directly specified. In some way it might be seen as a superset of all the declared domains

of the database. The values in the VALUE attribute field of all tuples that contain the same value in their

SPECIAL-E-OR$ attribute field, belong to precisely one of the declared domains of the database: the 'primary'

domain of the attribute field which contains the respective value of the SPECIAL-E-OR$ attribute. Thus the

" Adapting the terminology from programming languages, we could call this a 'specification by value'.

specification of the domain of the VALUE attribute field of the knowledge-base relation SPECIAL-E-OR is

inherited from the database for each individual entry, and so is the correct interpretation of the data stored in

the VALUE field. The same bit pattern stored in different locations in the VALUE field might have different

meanings, depending on what interpretation of the data has been inherited in the particular case. The

specification of the inherited interpretation need not be stored in the knowledge-base, since the access path to

the SPECIAL-E-OR relation always starts somewhere in the database and implicitly carries the required

information. A direct access to the SPECIAL-E-OR relation would result in meaningless data and is made

impossible. The SPECIAL-E-OR relation is invisible to the user. The attribute name VALUE does not have the

suffix 'e', since the corresponding values could refer to entities as well as to properties.

The domain of the IS attribute consists of six different symbols representing the six comparators 'I',

'4, '=', '2', '>', and '#'. Semantically the special value in the SPECIAL-EPR$ field of a tuple is connected to

the constant value in the VALUE field via the comparator in the IS field.

An example will clarify this concept. Suppose we want to represent the fact that
The status of instructor Newton is one of the three: instructor, assistant professor, or associate
professor.

Notice, that the specified list is complete. If Newton could as well have some other status, the information

provided by giving just that subset is equal to none. Further suppose the surrogate identifying Newton is

'newtonO1'. The ACADEMIC-PROPERTY relation then contains the following tuple (call it acal for further

reference):

ACADEMIC-PROPERTY
-

I ACADEMIC$ i STATUS I
I=-== I I
I ... I ... I
I newton01 I82 surrgOl l ucal
I ... I ... I

The special value 'surrg01' in the data field of the STATUS attribute is a system generated surrogate;

the prefbi '82' represents the bit pattern in the hidden field, coded in hexadecimal

(' 8 L ' = ' 1000001~,~ ') . This bit pattern in the hidden field indicates that the data field contains a

surrogate value referring to the SPECIAL-E-OR relation of the catalog. Just as it was the case with the

'normal' null values, the value in the hidden field prohibits an interpretation of the data field according to the

domain declaration of the attribute.

Now the SPECIAL-E-OR relation in the extended catalog could contain the three tuples:

SPECIAL-E-OR
- -

I SPECIAL-E-OR@ I IS I VALUE I
I=----- - I-----I=- I
I ... 1 ... I ... I
l m g 0 l I = I PROF l
l sul~g0l I = I . ASSOI
l surrgol I = I ASS1 l
I ... 1 ... I ... I

Notice that the above table renders the 'interpreted' data of the VALUE field. The information stored

here is recognizable only due to the specific access path to the SPECIAL-E-OR relation. The same bit patterns

could have a totally different interpretation, were they accessed via a different relation (or just a different

attribute of the ACADEMIC-PROPERTY relation). Here the domain of the !STATUS attribute has propagated to

the VALUE attributes of all tuples with the specific SPECIAL-E-OR$ value surrgOl.

As long as it is not known, which one of the three stati corresponds to the instructor Newton, all

possible values are represented in the SPECIAL-E-OR relation; as soon as one value is known to be true, the

knowledge-based subsystem enters that value in the STATUS field for the respective academic in the

ACADEMIC~PROPERTY relation and deletes all the remaining corresponding entries in the SPECIAL-E-OR

relation.

The above representation in the SPECIAL-E-OR relation is not the most efficient one. Since the domain

of the ACADEMIC~PROPERTI.STATUS attribute is declared as one to which the '>' predicate is applicable

('ORDERING' is 'YES'; see Appendix C.7 and Appendix C.1). and the three alternative d u e s are adjacent to

each other in the given ordering (see Appendix C.2), we can represent the same information with only two *

tuples (call them spl and sp2 for further reference) in the SPECIAL-E-AND relation:

SPECIAL-E-AND
-

I SPECIAL-EEAND@ I VALUE I
I==-= I ----- I----- I
I ... 1 ... I ... I
l surrgol I S I ASS0 l spl
l surrgol I2 I INST l sp2
I ... I ... I ... I

The switch to the SPECIAL-E-AND relation was required, since the constraints represented by the two

tuples must hold simultaneously and not alternatively as was the case in the SPECIAL-E-OR relation. The only

difference in the ACADEMICCPRoPER~ relation is the fact that among the set of the four bits H3 - Ho of the

hidden field, used to represent the respective references, bit Ho is set instead of bit HI to indicate that the

surrogate in the data field refers to the SPECIAL-E-AND relation instead of to the SPECIAL-E-OR relation. Thus

we have the bit pattern 'lOOOOOOlbhaV7 or '81,,,' as prefix.

7.4.1.2. Intensional comparisons

We add two more relations to the catalog in order to handle incomplete information via special values:

SPECIAL-1-AND and SPECIAL-I-OR.

SPECIAL-1-AND (SPECIALJ-AND$, IS, REF-~LNAME, REF-KEY$, REF-~m, XX, OFFSET)

SPECIAL-1-OR (SPECIAL-I-OR#, Is, REF-RELNAME, REF-KEY$, REF-~m, XX, OFFSET)

SPECIAL-I-AND and SPECIAL-I-OR are used to represent the intensional constraints that are met by

special values in the database, that is, constraints not relative to specified constant values, but relative to

other values stored in the database, and referred to via these two relations 23. Bit H2 in the hidden field

indicates whether or not the surrogate in the data field refers to the SPECIAL-LAND relation; bit H3 in the

hidden field indicates whether or not the surrogate in the data field refers to the SPECIAL-I-OR relation.

In the relations SPECIAL-E-AND and SPECIAL-E-OR introduced in the last section, we need only one

attribute (VALUE) to represent the value, the special value is to be compared to. Here we need five attributes

(REF_RELNAME, REF-KEY, REF-Am, XX, and OFFSET) to represent the value the special value is to be

compared to. REF-RELNAME specifies the relation in which that value is to be found, REF-KEY specifies the

key value of the respective tuple, and REF-~m specifies the attribute within that tuple. The two attributes

xx and OFFSET are used to specify a constant offset. The domain of attribute OFFSET is inherited in exactly

the same way as it is the case with the attribute VALUE in the previous two relations. The domain of attribute

xx consists of the three symbols '+', '-', and 'nu'. The first two specify the sign of thce offset, if an offset

value is given; the third specifies that an offset is not given or not applicable (for unordered domains).

Otherwise the use of these two relations SPECIAL-I-AM) and SPECIAL-I-OR is very similar to the one of the

two relations SPECIAL-E-AND and SPECIAL-E-OR described in the last section.

An example should clarify the concept. First let us add the fact that
Kepler has the status of assistant professor

Thus we add another tuple (call it acd for further reference) to the ACADEMIC-PROPERTY relation (assume

that 'kepler02' is the surrogate identifying Kepler):

" Adapting the terminology from programming languages, we wuld call this 'specification by reference'

ACADEMIC-PROPERTY
-

I ACADEMICt2 l STATUS I
I=----------= I I
I ... I ... I
I newton01 I81 surrgOl l wal
I kepler02 1 81 sung02 1 aca2
I ... I ... I

Now suppose we want to add some more infomation about Newton's status:
Newton's status is at least as high as Kepler's

The respective tuple (acal) is already present in the ACADEMIC~PROPERTY relation. So far the special value

surrgOl only refers to the SPECIAL-E-AND relation since the value of the hidden field is '10000001~,'. We

additionally set bit H2 in the hidden field of the STATUS attribute and thus specify that there are additional

constraints represented in the SPECIAL-LAND relation. Thus the value of the hidden field becomes

'lOOOO1Olbh,,' or '85h,'. The SPECIAL-LAND relation now contains the following tuple (call it sp3 for

further reference):

SPECIAL-I-AND
-

I SPECIAL-1-AND$ IIS I REF-RELNAME I REF-KEY$ I REF-A'ITR IXX IOFFSET I
I==== I ----- I--== I-==== I============= I== I=--- I
I ... I ... I I ... I ... I ... I ... I
l surrgol 1 2 l ACADEMICPROPERTY I kepler02 l STATUS I I ----- I,
I ... I ... I I ... I ... I ... I ... I

The values of the attributes Is, REF-RELNAME, and R E F - A m specify that the respective special value

is greater than some value (be it special too, or not) in the STATUS attribute of the ACADEMIC-PROPERTY

relation. The value 'kepler02' of the REF-KEY attribute specifies the respective tuple. @

rC

The value 'nu' in the xX field specifies, that no offset is given (although it would be applicable here,

since the domain STATUS is ordered). We could also have specified an offset of zem units, but this would

result in a wasteful addition or subtraction operation whenever the value is retrieved.

It should be noted that the four relations introduced to handle incomplete information via special

values, can relate a specific special value to any number of other values, but all those values have to be of the

same matching type. Thus it is possible to represent such propositions as
Mary has a better grade than John and

The departments for Physics and Business belong to dzfferent faculties

but it is not possible to directly represent such propositions as
Newton is an assistant professor, or CMPT 100 has 9 units.

Here two properties of different type are related to each other in a single statement. Higher level concepts are

needed to be represented such propositions.

7.4.1.3. Deducing values

As soon as a set of values previously believed to be possible is known to be false, the respective tuples

can be deleted from the corresponding SPECIAL 24 relations. If these operations leave no more than a single

precise value for the respective group of entries, the system can deduce that this must be the only possible

value and copy that value to the original attribute field. The single remaining tuple in the SPECIAL relation

can then be deleted too.

In our above example this works as follows: The tuples spl and sp2 tell us that

Newton's status is INST, ASSI, Or ASSO.

After adding the tuple sp3 to the SPECIAL-1-AND relation we also know that

Newton's status is at least as high as Kepler's.

An attempt to retrieve Kepler's status successfully returns the value 'ASSI' from tuple in2 Thus we know that

in the current state
Newton's status is at least ASSI.

This excludes 'INST' from the alternatives specified via tuples spl and sp2. We are left with the more concise

information
Newton's status is ASSI or ASSO.

We could now update the VALUE attribute in tuple sp2 in the SPECIAL-E-AND relation accordingly, but

we cannot delete the tuple in the SPECIAL-I-AND relation. Doing so would mean that we misinterpret the
C

intensional information
Newton's status is at least as high as Kepler's. e

with the extensional information
Newton's status is at least ASSI.

Even an update of the VALUE attribute in tuple sp2 should not be performed, since degradation of Kepler's

status cannot be ruled out unless the database contains the respective constraints.

In general the deduction procedures should not be invoked by update operations (delete, insert, and

change), but by retrieval operations only. If only extensional information was used to obtain the value, then

that value can be represented in the respective tuple@).

swaa stands for any of the four relations introduced to handle special values.

Although we believe that the outlined suggestion for future research is a promising alternative to

represent both null values and partial information, we realize that the proposal is far from being a solution.

Much work remains to be done in this area as well as related areas.

Appendix A

Appendix A

A diagramming technique for RM/T databases

We propose a diagramming technique for R W databases. The corresponding diagrams do not show

all implementational details. For example, instead of showing the individual P-relations that are used to

represent the different properties of an entity type, only the property attributes themselves are represented.

However, we believe that it is a useful part of the overall documentation, as well as a valuable guide during

the actual database design. Based on this technique we present in Figure A-8 a diagram of the RMC
database designed in this thesis.

An entity type is represented by a wide rectangular box labeled with the name of the E-attribute

primary key of the corresponding E-relation. Note that all E-attribute names end with the character ' G ' .

Figure A-1 illustrates the representation of the entity type STUDENT.

Figure A-1: Representation of the entity type STUDENT.

The set of property attributes for a particular entity type is represented by a contiguous string of boxes

attached to the right of the rectangular box representing the entity type. The property references, that is, the

references from the E-attribute primary keys of those P-relations, which actually contain the property

attributes, to the E-relation for the corresponding entity type are thus implicitly described by one contiguous

string of boxes.

Each box represents one property attribute of a P-relation for the corresponding entity type, and is

labeled with the respective attribute name, except for those property attributes representing associative and

characteristic references (see the next two paragraphs). Figure A-2 illustrates the representation of the entity

type STUDENT, together with its pr0pemes NAME, NUMBER and SEX.

Appendix A 94

Figure A-2: Representation of the entity type STUDENT
together with its properties NAME, NUMBER, and SEX.

An association reference, that is, a reference from an E-attribute of a P-relation for an associative

entity type to the E-relation for a participant in that association, is represented by an arrow pointing to the

representation of the respective entity type participating in the association, and originating from a square with

a circle labeled 'A'. Thus the square represents a property attribute which happens to be an E-attribute

referring to some other entity type. The name of this E-attribute is not represented, instead an arrow points to

the representation of the entity type referred to by the E-attribute. Like all boxes representing property

attributes, the square is placed at the right of the wide rectangular box representing the corresponding

associative entity type. Figure A-3 illustrates the representation of the entity type TEXT, together with its

associative references to the entity types COURSE and BOOK.

Figure A-3: Representation of the associative entity type TEXT
together with its associative references to the entity types COURSE and BOOK.

A chamcterktic reference, that is, a reference from an E-attribute of a P-relation for a characteristic

entity type to the E-relation for the immediately superior entity type being characterized, is represented by an

arrow pointing to the representation of the respective entity type being characterized, and originating from a

square with a circle labeled 'c'. Like all boxes representing property attributes, the square is placed at the

right of the wide rectangular box representing the corresponding characteristic entity type. Figure A-4

illustrates the representation of the kernel entity type BOOK, together with its single-valued property nTLE

and its multi-valued property AUTHOR. The multi-valued property AUTHOR is represented via the

characteristic entity type BOOK-MVP.

Appendix A 95

I

BOOK-MVPe [C] AUTHOR

Figure A-4: Representation of the kernel entity type BOOK together with
its single-valued property TITLE and its multi-valued property AUTHOR.

The multi-valued property AUTHOR is represented via the characteristic entity type BOOK-MVP.

A designation reference, that is, a reference from an E-attribute of a P-relation for a designative entity

type to the E-relation for the immediately superior entity type being designated, is represented by an arrow

pointing to the representation of the respective entity type being designated, and originating from a narrow

rectangular box with half circles at its left and right ends. It is labeled with the name of the E-attribute

property representing the designation. Figure A-5 illustrates the representation of the designative kernel

entity type GRAD, together with its designative reference SUPRV to the entity type ACADEMIC.

ACADEMIC@ 1 STATUS -
I

I GRAD@ ~SUPRV$] PROG

Figure A-5: Representation of the designative kernel entity type GRAD, a

together with its designative reference SUPRV to the entity type ACADEMIC.

Kernel-, associative- and characteristic entities can all be designative in addition. Thus,
an associative entity type is one whose representation has at least two squares with circles
labeled 'A' attached to its right,

a characteristic entity type is one whose representation has a square with a circle labeled 'c'
attached to its right, and

a kernel entity type is one whose representation has neither a square with a circle labeled 'A' nor
a square with a circle labeled 'c' attached to its right.

The dashed lines connecting the representations of entity types represent the hierarchical aspect:

they connect the superior entity with the immediately subordinate entities. The attached label specifies the

category of the specialization / generalization. Figure A-6 illustrates the representation of the kernel entity

type STUDENT, together with its subordinate entity types GRAD and UNDEKGRAD. The category of the

specialization / generalization is named STATUS.

Appendix A 96

STUDENT# lNUMBERl NAME I SEX
I

I

I

I GRAD# [SUPRVeJ PROG

Figure A-6: Representation of the kernel entity type STUDENT,
together with its .Subordinate entity types GRAD and UNDER-GRAD.

The category of the specialization / generalization is named STATUS.

As mentioned above, the name of a property attribute representing an associative or a characteristic

reference to some other entity type is not represented in this diagram. In general, such a name is identical to

the name of the corresponding E-attribute. There are, however, exceptions to this rule of thumb. For

example, two distinct attribute names, FOR_COURSE$ and IS-COURSE$, are required for the two properties of

the entity type PRE-REQ. All non-square rectangular boxes are labeled with the names of the attributes they

represent.

Attributes that do not accept null values (for example, all E-attribute primary keys) are enclosed in

solid boxes. All attributes represented by dashed boxes, do accept null values. Figure A-7 illustrates the

representation of the kernel entity type DEPARTMENT, together with its property types CHAIR$, NAME and

FAcLTY. The primary key DEPARTMENT$ and the user key NAME do not accept null values. The designative

reference CHAIR$ and the 'normal' property FACLTY do accept null values.

Figure A-7: Representation of the kernel entity type DEPARTMENT,
together with its property types. The properties CHAIR$ and FACLTY accept null values.

Based one this diagramming technique, Figure A-8 shows the diagram of the complete RM/T database

designed in this thesis.

Appendix A

TIME-TABLWl DAY I HOUR

t

CLASS* b
NROLLMENT A A +

UNDER-GRADC F?

Figure A-8: Diagram of the logical structure of the database.

Appendix B: The database relations in detail

Appendix B

The relations of the database

B.1. E-relations for kernel entities

ACADEMIC kernel;
subentity of STAFF p e ~ category JOB

-
IACADEMIC$ I
I=-=== I
I I

ADMINISTR kernel;
subentity of STAFF percategory JOB
designating (FAuLlTY via FOR$

AREA inner kernel;

Appendix B: The database relations in detail

BOOK inner kernel;

COURSE inner kernel;
designating (AREA via-

inner kernel

DEPARTMENT inner kernel
designating (ACADEMIC via CHAIR$ 1

FACILITY

GRAD

inner kernel
designating (DEPARTMENT via OF$ 1
designating (ACADEMIC via DIREC$ 1

kernel
subentity of STUDENT per category STATUS
designating (ACADEMIC via SUPRV$ 1

Appendix B: The database relations in detail

ROOM

SEMESTER

STAFF

STUDENT

TIME-TABLE

UNDER-GRAD

inner kernel
designating (STAFF via OFFICE#

inner kernel

inner kernel
designating (DEPARTMENT via DEPTe 1

inner kernel

inner kernel

kemel
subentity of S T U D E ~ per category STATUS

Appendix B: The database relations in detail

B.2. E-relations for associative entities

AFFILIATION associating (ACADEMIC via ACADEMIC$.
DEPARTMENT via DEPARTMENT$)

-
I AFTILIATION$ I
I =------ - I
I I

CLASS

COMMITTEE

associating (COURSE via COURSE$,
INSTRUCTOR via INSTRUCTOR$,
SEMESTER via S E M E ~ $ 1

associating (ACADEMIC via ACADEMIC$,
GRAD via GRAD$ 1

ENROLLMENT associating (CLASS via CLASS$,
STUDENT via STUDENT$

INSTRUCTOR associating (ACADEMIC via ACADEMIC$,
DEPARTMENT via DEPARTMENT$)

Appendix B: The database relations in detail

OFFERED associating (AREA via AREA$,
DEPARTMENT via DEPARTMENT$)

SCHEDULE

TEXT

associating (COURSE via FOR-COURSE$,
COURSE via IS-COURSE$ 1

associating (ROOM via ROOM$.
nME-TABLE via TIMETABLE$);

designating (uss via CLASS$ 1

associating (BOOK via BOOK$,
COURSE via COURSE$

Appendix B: The database relations in detail

B.3. E-relations for characteristic entities

BOOK-MVP characterizing
with multi-valued property

-
IBOOK-MVPe I
I =------ - I
I I

ROOM-MVP characterizing
with multi-valued property

-
IROOM-MVPe I
I==--= I
I I

UNDER-MVP1 characterizing
with multi-valued property

I UNDER-MVPle 7
I =------ - I

I I

BOOK
AUTHOR

ROOM
PHONE

UNDER-GRAD
MAJOR

UNDER-MVP2 characterizing UNDER-GRAD
with multi-valued property MINOR

Appendix B: The database relations in detail 104

B.4. P-relation for ACADEMIC

ACADEMIC-PROPERTY
-

I ACADEMIC# l STATUS I
I=---- - _ I_________ -------- -------- I
I I I

ACADEMIC is a kernel entity, subordinate to STAFF, representing academic staff members. The

primary key of the relation ACADEMIC-PROPERTY is E-attribute ACADEMIC$, the corresponding domain is the

set of surrogate values currently existing in the E-relation ACADEMIC. The attribute STATUS represents a

single valued property: the status of the academic staff member (for example 'ASSI'). The domain of

STATUS is 'STATUS', the respective value type is represented as a complete list in Appendix C.2.

B.5. P-relation for ADMINISTR

ADMINISTR-PROPERTIES

ADMINISTR is a kernel entity, subordinate to STAFF, representing administrative staff members. The

primary key of the relation ADMINISTR-PROPERTIES is E-attribute ADMINISTR$, the corresponding domain is

the set of surrogate values currently existing in the E-relation ADMINISTR. The attribute FOR$ represents a

designative reference to the kernel entity type FACILITY; it indicates to which facility within the department

the ADMINIsTR is assigned. The domain of E-attribute FOR$ is the set of surrogate values currently existing in

the E-relation FACULTY, unioned with the null value E-null. The attribute POSITN represents a single valued

property: the position of the administrative staff member within the department (for example

'SECRETARY'). The domain of POSITN is ' P O S ~ O N ' , the respective value type is represented as a complete

list in Appendix C.2.

Appendix B: The database relations in detail

B.6. P-relation for AFFILIATION

AFFILIATION is an associative entity type. The primary key of relation AFFILIATION-INSTANCE is

E-attribute AFFILIATION$, the corresponding domain is the set of surrogate values currently existing in the

E-relation AFFILIATION. Each tuple of the AFFILIATION-INSTANCE relation associates an ACADEMIC and a

DEPARTMENT, whose respective surrogates are contained in the E-attributes ACADEMIC$ and DEPARTMENT$.

The domain of E-attribute ACADEMIC$ is the set of surrogate values currently existing in the E-relation

ACADEMIC, unioned with the null value E-null. The domain of E-attribute DEPARTMENT$ is the set of

surrogate values currently existing in the E-relation DEPARTMENT, unioned with the null value E-null. The

associative entity type AFFILIATION is used to represent the fact that an academic staff member of on

department can be affiliated with several other departments.

B.7. P-relation for AREA

AREA-PROPERTY

AREA is a kernel entity, representing the different areas of study offered in the university. The primary

key of the relation AREA-NAME is E-attribute AREA$, the corresponding domain is the set of surrogate values

currently existing in the E-relation AREA. The attribute NAME represents a single valued property: the name

of the area (for example 'CMPT'). The domain of NAME is 'FIELD', the respective value type is represented

as a complete list in Appendix C.2.

Appendix B: The database relations in detail

B.8. P-relation for BOOK

BOOK-PROPERTY

BOOK is a kernel entity, representing the different books used for the different courses offered in the

university. The primary key of the relation BOOK-PROPERTY is E-attribute BOOK$, the corresponding domain

is the set of surrogate values currently existing in the E-relation BOOK. The attribute TITLE represents a single

valued property: the title of the book (for example 'The Knowledge Frontier'). The domain of TITLJZ is

'NAME', the respective value type is an array of 60 characters representing one full title of a book.

B.9. P-relation for BOOK - MVP

BOOK-AUTHOR

BOOK-AUTHOR is a characteristic entity, characterizing BOOK. The primary key of relation

BOOK-AUTHOR is the E-attribute BOOK-MVP$, the corresponding domain is the set 6f surrogate values

currently existing in the E-relation BOOK-MVP. The E-attribute BOOK$ represents the characteristic reference *

to the BOOK being characterized, the corresponding domain is the set of surrogate values currently existing in

the E-relation BOOK. The property attribute AUTHOR represents the name of one author (for example 'Nick

Cercone'). The domain of the attribute AUTHOR is 'NAME', the respective value type is an array of 60

characters representing the full name of one author.

Appendix B: The database relations in detail

B.10. P-relations for CLASS

CLASS-INSTANCE

CLASS-PROPERTY
-

I CLASS$ l FINAL I
)----- I I
I I I

CLASS is an associative entity type. The primary key attribute of the relation CLASS-INSTANCE is

E-attribute CLASS$, the corresponding domain is the set of surrogate values currently existing in the E-

relation CLASS. Each tuple associates a COURSE and an INSTRUCTOR, and a SEMESTER. The respective

surrogate values are contained in the E-attributes COURSE$, INSTRUCTOR$ and SEMESTER$. The domain of

E-attribute COURSE$ is the set of surrogate values currently existing in the E-relation COURSE, unioned with

the null value E-null. The domain of E-attribute I N s T R u ~ R $ is the set of surrogate values currently

existing in the E-relation I N S ~ U C T O R , unioned with the null value E-null. The domain of E-attribute

SEMERSTER~ is the set of surrogate values currently existing in the E-relation SEMERSTER, unioned with the

null value E-null.

The primary key of the relation CLASS-PROPERTY is E-atmbute CLASS$, the corresponding domain is

the set of surrogate values currently existing in the E-relation CLASS. The attribute FINAL represents a a

property of a class. The FINAL is the date of the final exam of the respective class. This date is specified as

the day of the year; the domain of FINAL is 'day-num', the respective values are of type ' 1 ..365'.

B.11. P-relation for COMMITTEE

COMMITTEE-INSTANCE

C O ~ E is an associative entity type. The primary key of relation COMMIT~EE-INSTANCE is

E-attribute COMMITrEEG, the corresponding domain is the set of surrogate values currently existing in the

E-relation C O m E . Each tuple of the COMMIlTEEJNSTANCE relation associates an ACADEMIC and a

Appendix B: The database relations in detail 108

GRAD, whose respective surrogates are contained in the E-attributes ACADEMIC$ and GRAD@. The domain of

E-attribute ACADEMIC$ is the set of surrogate values currently existing in the E-relation ACADEMIC, unioned

with the null value E-null. The domain of E-attribute GRAD$ is the set of surrogate values currently existing

in the E-relation GRAD, unioned with the null value E-null. The associative entity type COMMI'ITEE is used to

represent that every graduate student can have several academic staff members in his supervisory committee,

and every academic staff member can be part of several supervisory committees.

B.12. P-relation for COURSE

COURSE-PROPERTIES

COURSE is an inner kernel entity, designating entities of type AREA. The primary key of the relation

COURSE-PROPERTIES is E-attribute COURSE$, the corresponding domain is the set of surrogate values

currently existing in the E-relation COURSE. The E-attribute FIELD$ refers to the E-relation of the AREA being

designated. The domain of E-attribute FIELD@ is the set of surrogate values currently existing in the E-

relation AREA, unioned with the null value E-null. The two properties NUMBER and UNITS represent the

course number and the number of units of the respective course. The domain of NUMBER is 'cours-num', the
e

respective values are of type '0..999'. The domain of UNITS is 'unit-num', the respective values are of type

'0..9'.

B.13. P-relation for CURNT-DATE

TODAY
-

I CURNT-DATE$ l DATE I

c m - D A T E is an inner kernel entity. TODAY is a dummy relation. Its primary key is E-attribute

CURNT-DATE$, the corresponding value is a system generated surrogate. At any point in time TODAY

contains exactly one tuple with one property value for the entity CURNT-DATE: the value of the current date

represented in the DATE attribute. The domain of DATE is 'day-num', the respective type is '1..365'; the date

Appendix B: The database relations in detail 109

is specified as the day of the year. Over the time, the surrogate key value of the single tuple in TODAY

remains unchanged, only the value of its DATE attribute is updated daily.

B.14. P-relation for DEPARTMENT

DEPARTMENT-INSTANCE

DEPARTMENT is an inner kernel entity, designating entities of type ACADEMIC. The primary key of the

relation DEPARTMENT-PROPERTIES is E-attribute DEPARTMENT$, the corresponding domain is the set of

surrogate values currently existing in the E-relation DEPARTMENT. Each tuple contains three properties of a

department a reference to its chairperson, its name (for example, 'CMPT') and the name of the faculty it

belongs to (for example, 'Applied Sciences'). The E-attribute CHAIR$ refers to the E-relation of the

ACADEMIC being designated. The domain of E-attribute CHAIR$ is the Set of surrogate values currently

existing in the E-relation ACADEMIC, unioned with the null value E-null. The other two property values are

stored in the two attributes fields NAME and FACLTY. The attribute NAME forms the user key of relation

DEPARTMENT-PROPERTIES. The domain of NAME is 'FIELD', the respective value type is specified as a

complete list in Appendix C.2, page 119. The domain of FACLTY is 'FACULTY', the respective value type is
I

specified as a complete list in Appendix C.2, page 119.
rC

B.15. P-relation for ENROLLMENT

ENROLLMENT-INSTANCE

ENROLLMENT-GRADE
-

I ENROLLMENT# l GRADE I
I=-== I I
I I I

ENROLLMENT is an associative entity. The primary key of the relation ENROLLMENT-INSTANCE is

E-attribute ENROLLMENT@, the corresponding domain is the set of surrogate values currently existing in the

Appendix B: The database relations in detail 110

E-relation ENROLLMENT. Each tuple of the ENROLLMENT-INSTANCE relation associates a STUDENT and a

CLASS, whose respective surrogates are contained in the E-attributes STUDENT$ and CLASS$. The domain of

E-attribute STUDENT$ is the set of surrogate values currently existing in the E-relation STUDENT, unioned

with the null value E-null. The domain of E-attribute CLASS$ is the set of surrogate values currently existing

in the E-relation CLASS, unioned with the null value E-null. The associative entity type ENROLLMENT is used

to represent the fact that a student can be enrolled in several classes, and in each class there can be a number

of students.

The primary key of the relation ENROLLMENT-GRADE is E-attribute ENROLLMENT$, the corresponding

domain is the set of surrogate values currently existing in the E-relation ENROLLMENT. The attribute GRADE

represents a single valued property: the grade the respective student, enrolled in the respective class, got (for

example 'B'). The domain of GRADE is 'GRADE', the respective value type is represented as a complete list in

Appendix C.2.

The P-relation ENROLLMENT-INSTANCE does not include the attribute GRADE, since in the micro-world

represented, the attribute GRADE can be inapplicable to some existing enrollment (associating a particular

student and a particular class), and should thus not be represented toghether with those attributes.

B.16. P-relation for FACILITY

FACILITY-INSTANCE

FACIUTY is an inner kernel entity, designating entities of type DEPARTMENT and of type ACADEMIC.

The primary key of the relation FACILITY-PROPERTIES is E-attribute FACILITY$, the corresponding domain is

the set of surrogate values currently existing in the E-relation FACILITY. E-attribute OF$ identifies the

department to which the facility belongs; it refers to the E-relation of the DEPARTMENT being designated.

The domain of E-attribute OF$ is the set of surrogate values currently existing in the E-relation DEPARTMENT,

unioned with the null value E-null. E-attribute DIREC$ identifies the director of the facility; it refers to the

E-relation of the ACADEMIC being designated. The domain of E-attribute DIREC$ is the set of surrogate

values currently existing in the E-relation ACADEMIC, unioned with the null value E-null. The property NAME

represent the name of the facility. The domain of NAME is 'FACILITY' , the respective value type is

represented as a complete list in Appendix C.2.

Appendix B: The database relations in detail

B.17. P-relation for GRAD

GRAD-INSTANCE
-

1 GRAD# I SUPRV# l PROG I
I=----- _ (_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ------- I__________________ ------- I
I I I I

GRAD is a kernel entity, subordinate to STUDENT, and designating entities of type ACADEMIC. GRAD

stands for 'graduate student'. The primary key of the relation GRAD-PROPERTY is E-attribute GRAD$, the

corresponding domain is the set of surrogate values currently existing in the E-relation GRAD (which in turn

is a subset of the surrogate values currently existing in the E-relation STUDENT). E-attribute s m v $

identifies the supervisor of the graduate studenr it refers to the E-relation of the ACADEMIC being designated.

The domain of E-attribute s m v # is the set of surrogate values currently existing in the E-relation

ACADEMIC, unioned with the null value E-null. The attribute PROGRAM represents a single valued property:

the program the graduate student is registered in (for example 'PhD'). The domain of PROGRAM is

'PROGRAM', the respective value type is represented as a complete list in Appendix C.2.

B.18. P-relation for INSTRUCTOR

INSTRUCTOR-INSTANCE

INSTRUCTOR is an associative entity. The primary key of the relation INSTRUCTOR- STANCE is

E-attribute msmucro~#, the corresponding domain is the set of surrogate values currently existing in the

E-relation INSTRUC~OR. Each tuple of the I N S T R U ~ R ~ I N S T A N C E relation associates an ACADEMIC and a

DEPARTMENT, whose respective surrogates are contained in the E-attributes ACADEMIC$ and DEPARTMENT$.

The domain of E-attribute ACADEMIC# is the set of surrogate values currently existing in the E-relation

ACADEMIC, unioned with the null value E-null. The domain of E-attribute DEPARTMENT# is the set of

surrogate values currently existing in the E-relation DEPARTMENT, unioned with the null value E-null. The

associative entity type ~sTRUCTOR is used to represent the fact that a particular academic can be appointed

as instructor by several departments and each department can appoint a number of academics.

Appendix B: The database relations in detail

B.19. P-relation for OFFERED

OFFERED-INSTANCE

OFFERED is an associative entity. The primary key of the relation OFFERED-INSTANCE is E-attribute

OFFERED$, the corresponding domain is the set of surrogate values currently existing in the E-relation

OFFERED. Each tuple of the OFFERED-INSTANCE relation associates a DEPARTMENT and a AREA, whose

respective surrogates are contained in the E-attributes DEPARTMENT$ and AREA$. The domain of E-attribute

DEPARTMENT$ is the set of surrogate values currently existing in the E-relation DEPARTMENT, unioned with

the null value E-null. The domain of E-attribute AREA$ is the set of surrogate values currently existing in the

E-relation AREA, unioned with the null value E-null. The associative entity type OFFERED is used to represent

the fact that a department can offer courses in several areas (for example, CMm can offer CMPT, COGS,

MACM, ...), and in each area can be offered by several departments (for example, COGS can be offered by

CMPT, LING, PHIL, and PSYCH).

B.20. P-relation for PRE-REQ

PRE-REQ is an associative entity. The primary key of the relation PRE-REQINSTANCE is E-attribute

PRE-REW, the corresponding domain is the set of surrogate values currently existing in the E-relation

PRE-REQ. Each tuple of the PRE-REQINSTANCE relation associates two entities of type COURSE, whose

respective surrogates are contained in the E-attributes FOR-COURSE$ and Is-COURSE$. The domain for both

E-attributes FOR-COURSE$ and IS-COURSE is the set of surrogate values currently existing in the E-relation

COURSE, unioned with the null value E-null. The associative entity type PRE-REQ is used to represent the fact

that a particular course can have several other courses as its pre-requisites, and each course can be a

pre-requisite for a number of other courses. Notice, that two distinct names are required for the two distinct

associative references, even though both refer to the same entity type.

Appendix B: The database relations in detail

B.21. P-relation for ROOM

ROOM-PROPERTIES

ROOM-OFFICE

ROOM is an inner kernel entity, designating entities of type STAFF. Two property relations are used to

represent the three properties of a room: ROOM-OFFICE and ROOM-PROPERTIES. The primary key for both

property relations is E-attribute ROOM$, the corresponding domain is the set of surrogate values currently

existing in the E-relation ROOM. The E-attribute OFFICE$ identifies the staff member, for which the room is

an office; it refers to the E-relation of the STAFF being designated. The domain of E-attribute OFFICE$ is the

set of surrogate values currently existing in the E-relation STAFF, unioned with the null value E-null. The two

properties BUILDING and NUMBER represent the building and the number of the respective room. The domain

of BUILDING is 'BUILDING', the respective value type is specified as a complete list in Appendix C.2. The

domain of NUMBER is 'room-num', the respective value is 'integer'. The two attribu'tes BUILDING and

NUMBER might seem to be a good candidate for a composite user key, however, we want to allow null values

in either one of these two attributes. As a result relation ROOM-PROPERTIES has no user key. We use two

distinct property relations to represent the three properties of a mom, since only a fraction of all the rooms

are used as offices. A single property relation representing all three properties would inevitably contain a lot

of null values in it's omcEe attribute.

B.22. P-relation for ROOM-MVP

ROOM-PHONE
-

I ROOM-MVP$ l ROOM$ l PHONE I
\=-==I I I
I I I I

ROOM-PHONE is a characteristic entity, characterizing ROOM. The primary key of relation

Appendix B: The database relations in detail 114

ROOM-mom is the E-attribute ROOM-WP$. the corresponding domain is the set of surrogate values

currently existing in the E-relation ROOM-MVP. The E-attribute ROOM$ represents the characteristic reference

to the ROOM being characterized, the corresponding domain is the set of surrogate values currently existing in

the E-relation ROOM. The property attribute PHONE represents the number of one phone (for example

'2914302'). The domain of the attribute PHONE is 'NUMBER', the respective values are of type integer.

B.23. P-relation for SCHEDULE

SCHEDULE-INSTANCE

SCHEDULE is an associative entity. The primary key of the relation SCHEDULE-INSTANCE is E-attribute

SCHEDULE$, the corresponding domain is the set of surrogate values currently existing in the E-relation

SCHEDULE. Each tuple of the SCHEDULE-INSTANCE relation associates a TIME-TABLE and a ROOM, whose

respective surrogates are contained in the E-attributes TIMETIMETABLE$ and ROOM$. The domain of E-attribute

TIME-TABLE$ is the set of surrogate values currently existing in the E-relation TIME-TABLE, unioned with the

null value E-null. The domain of E-attribute ROOM$ is the set of surrogate values currently existing in the

E-relation ROOM, unioned with the null value E-null. The associative entity type SCHEDULE is used to
e

represent the fact that a room can be occupied at several times of the day, and at each time of the day a

number of rooms can be occupied. The E-attribute CLASS$ identifies the class, for which the particular room

is occupied at the particular time; it refers to the E-relation of the CLASS being designated. The domain of

E-attribute CLASS$ is the set of surrogate values currently existing in the E-relation CLASS, unioned with the

null value E-null.

B.24. P-relation for SEMESTER

SEMESTER-PROPERTIES
-

I SEMESTER$ l TERM l YEAR I
+----= I I I
I I I I

SEMESTER is an inner kernel entity. The primary key of the relation SEMESTER-PROPERTIES is E-

attribute SEMESTER$, the corresponding domain is the set of surrogate values currently existing in the

Appendix B: The database relations in detail 115

E-relation SENIESTER. The attribute TERM represents a single valued property: the term of the respective

semester. The domain of TERM is 'TERM', the respective value type consists of the three elements 'Spring',

'Summer', and 'Fall' (see Appendix C.2). The attribute YEAR represents a single valued property: the

respective year. The d o m b of YEAR is 'year-num', the respective value type is 'integer'. The two

attributes TERM and SEMESTER, together form the c~p0Si te user key to relation SEMESTER-PROPERTIES.

B.25. P-relation for STAFF

-
I STAFT# I D E E # l NUMBER l NAME l SEX I
I==== I I I I I
I I I I I I

STAFF is an inner kernel entity, designating entities of type DEPARTMENT. The primary key of the

relation STAFF-PROPERTIES is E-attribute STAFF$, the corresponding domain is the set of surrogate values

currently existing in the E-relation STAFF. The E-attribute DEE$ refers to the E-relation of the DEPARTMENT

being designated. The domain of E-attribute DEFT$ is the set of surrogate values currently existing in the

E-relation DEPARTMENT, unioned with the null value E-null. The attribute NUMBER represents a single

valued property: the instructor's id-number. This attribute forms the user key of relation STAFF-PROPERTIES.

The domain of NUMBER is 'ins-num', the respective value type is 'integer'. The attribute NAME represents a
@

single valued property: the instructor's name. The domain of NAME is 'pers-name', the respective value is
a

an array of 60 characters representing one full name. The attribute sm represents a single valued property:

the instructor's sex. The domain of Sm is 'SEX', the respective value type contains two elements: 'Male'

and 'Female' (see Appendix C.2).

B.26. P-relation for STUDENT

STUDENT-PROPERTIES
-

l STUDENT$ l NUMBER l NAME l SEX I
+--------=I I I I
I I I I I

STUDENT is an inner kernel entity. The primary key of the relation STUDENT-PROPERTIES is E-attribute

STUDENT$, the corresponding domain is the set of surrogate values currently existing in the E-relation

STUDENT. The attribute NUMBER represents a single valued property: the student's id-number. This attribute

Appendix B: The database relations in detail 116

forms the user key of the relation STUDENT-FROPERTIES. The domain of NUMBER is 'stu-num', the respective

value type is 'integer'. The attribute NAME repents a single valued property the student's name. The

domain of NAME is 'pers-name', the respective value is an array of 60 characters representing one full name.

The attribute SEX represents a single valued property: the student's sex. The domain of SEX is 'SEX', the

respective value type contains two elements: 'Male' and 'Female' (see Appendix C.2).

B.27. P-relation for TEXT

TEXT-INSTANCE

TEXT is an associative entity. The primary key of the relation TEXT-INSTANCE is E-attribute TEXT$,

the corresponding domain is the set of surrogate values currently existing in the E-relation TEXT. Each tuple

of the TEXTJNSTANCE relation associates a COURSE and a BOOK, whose respective surrogates are contained in

the E-attributes COURSE$ and BOOK$. The domain of E-attribute COURSE$ is the set of surrogate values

currently existing in the E-relation COURSE, unioned with the null value E-null. The domain of E-attribute

BOOK$ is the set of surrogate values currently existing in the E-relation BOOK, unioned with the null value

E-null. The associative entity type TEXT is used to represent the fact that a book can be used as text-book in
@

several courses, and each course can use a number of books as its text-books.
a

B.28. P-relation for TIME - TABLE

TIME-TABLE-PROPERTIES
-

I TIME-TAElLE$ l DAY I HOUR I
I=----- . _ I__________ --------------- I____________ ------------- I
I I I I

TIME-TABLE is an inner kernel entity. The primary key of the relation TIME-TABLE-PROPERTIES is

E-attribute TIME-TABLE$, the corresponding domain is the set of surrogate values currently existing in the

E-relation TIME-TABLE. The attribute DAY represents a single valued property: the day of the week (for

example 'Monday'). The domain of DAY is 'DAY-OF-WEEK', the respective value type is specified as a

complete list in Appendix C.2. The attribute HOUR represents a single valued property the time of the day at

which a lecture can begin (for example 1530). The domain of HOUR is 'hour', the respective value type is

Appendix B: The database relations in detail 117

given by two 'integers', separated by a ':'. The two attributes DAY and HOUR form the composite user key of

the relation TIME-TABLEYROPERTIES. This relation records all the possible times at which a class could be

scheduled. Each semester the courses offered have to be scheduled anew and entered in the database. If a

course is scheduled at some 'odd' time, then the user entering the update might notice this, because a separate

addition of the 'odd' time will be required in the TIME-TABLE-PROPERTIES relation.

B.29. P-relation for UNDER - MVPl

UNDER-MAJOR

UNDER-m1 is a characteristic entity, characterizing UNDER-GRAD. The primary key of relation

UNDER-MAJOR is the Eattribute UNDER-MWl$, the corresponding domain is the set of surrogate values

currently existing in the E-relation UNDEKMWI. The E-attribute UNDER-GRAD$ represents the characteristic

reference to the UNDER-GRAD being characterized, the corresponding domain is the set of surrogate values

currently existing in the E-relation UNDER-GRAD. The property attribute MAJOR represents the name of one

major field of the undergraduate student (for example 'CMPT'). The domain of the attribute MAJOR is 'F'IELD',

the respective value type is specified as a complete list in Appendix C.2.
&

B.30. P-relation for UNDER - MVP2

UNDER-MINOR
-

I UNDER_MVP2$ I UNDER-GRAD$ l MINOR I
I==-= I I I
I I I I

UNDER-MVP~ is a characteristic entity, characterizing UNDER-GRAD. The primary key of relation

UNDER-MINOR is the E-attribute LNDER_M~P~$, the corresponding domain is the set of surrogate values

currently existing in the E-relation UNDER-MVP'. The E-attribute UNDERGRAD$ represents the characteristic

reference to the UNDER-GRAD being characterized, the corresponding domain is the set of surrogate values

currently existing in the E-relation UNDER-GRAD. The property attribute MINOR represents the name of one

minor field of the undergraduate student (for example 'MATH'). The domain of the attribute MINOR is

'FIELD', the respective value type is specified as a complete list in Appendix C.2.

Appendix C: The catalog of the database

Appendix C

The catalog for the database: relations and their contents

C.1. DOMAINS

CATLG-DOMAINS

name l sfring 160 I NO
number l integer I 1 - maxint I NO
per-name l string 1 60 I NO

l integer I 1 - 999999999 l YES
l integer I 1 - 9999 I NO

stu-num l integer 1 650000000 - 999999999 l YES
unit-num
yw-num
BUILDING
DAY
FACILITY
FACULTY
FIELD
GRADE
POSITION
PROGRAM
SEX
STATUS
TERM

l enumeration
l enumeration
l enumeration
l enumeration
l enumeration
l enumeration
l enumeration
l boolean
l enumeration
l enumeration

l integer 10-12
l integer I
l enumeration I

I
I
I
I
I
I
I
I
I
I

65 - 99
BUILDING
DAY
FACIL,llY
FACULTY
FIELD
GRADE
POSITION
PROGRAM
SEX
STATUS
TERM

l YES
l YES
I NO
l YES
I NO
I NO
I NO
l YES
I NO
l YES
I NO
l YES
l YES

Appendix C: The catalog of the database

C.2. Definition of the enumeration types

BUILDING

l ELEMENT# I VALUE I
I------ I I
1 1 I AQ I
12 l ASB I
13 I B I
14 I C I
15 I CA I
16 l CAE I
17 I CC I
18 l DEC I
19 l FLTC I
110 l GYM I
111 I IMAGES-TH I
112 I K I
1 13 I LB I
114 l MMT I
115 l MPX I
116 I P I
1 17 l PDC I
118 ITHTR I

DAY
-

I ELEMENT# I VALUE I
I ------------------ I

I 1 l Monday I
12 l Tuesday I
13 l Wednesday I
14 l Thursday I
15 l Friday I
16 l Saturday I
17 l Sunday I

Appendix C: The catalog of the database

FACILITY
-

I ELEMENT# l VALUE I
I=---= 1 ... I
I 1 I BAMFIELD-MARINE-STATION I
12 I CENTRE~FORRECONOMICCRESEARCH I
13 I CENTRE-FOR-PEST-MANAGEMENT I
14 I CENTRE_FoR-SYSTEMSIcENTRE_FoR_sysTEMssCIENcESCIENCE I
15 I CHEMICAL-ECOLOGY-RESEARCH-GROUP I
16 I CRIMINOLOGY-RESEARCH-CENTRE I
17 I ENERGY-RESEARCH-INSlTUTE I
18 I GERONTOLOGY-RESEARCH-CENTRE I
19 I HISTORICAL_RECORDS-INSmUTE I
110 I MSm-FOR-BUSINESS-STUDIES I
111 I INm-OF-FISHERIES-ANALYSIS I
1 12 I INSTITUTE-FORRHUMANJERFORMANCE I
113 I INSTITUTE-FOR-THE-HUMANlTlES I
114 I IN-E-OF-INTERNATIONAL-DEVELOPMENT I
1 15 I IN--FOR-QUARTERNARY-RESEARCH I
116 I INSmUTE-FOR-STUDIES-IN-CRUlINAL-NSTICE-mLICY I
117 I INSTRUCTIONALJSYCHOLOGYYRESEARCHHGROUP I
1 18 I LABORATORY-FOR-COMPUTER~ANDANDCOMMUNICATIONSSRESEARCH I
119 I NORTHERN-CONFERENCE-RESOURCE-CENTRE I
1 20 I PSYCHOUXtYIpsycHouxty_AND_LAw_JNSmuTEANDANDLAWWJNSmUTE I
121 I THEORETICAL_SCIENCECINSTITUTE I
I I I

FACULTY
-

I ELEMENT# I VALUE I
I=-----= 1 .. I
I 1 I APPLIED-SCIENCES I
12 l ARTS I
13 I BUSINESS-ADMINISTRATION I
14 l EDUCATION I
15 l SCIENCE I

Appendix C: The catalog of the database

FIELD
-

I ELEMENT# I VALUE I

ARC
ATHL
BICH
BISC
BUS
BUEC
m-s
CHEM
CHIN
CMNS
CMPT
CRIM
ECON
EDUC
ENSC
ENGL
FPA
FREN
G-s-
GEOG
GERM
GERO
GRE
HIST
HUM
KIN
LAS
LING
MACM
MASC
MATH
MSSC
NUSC
PHIL
PHYS
POL
PSYC
RUSS
S-A-
SPAN
w-s-

GRADE

Appendix C: The catalog of the database

POSITION
-

I ELEMENT# I VALUE I
I----- I I
I1 I RECEF'TIONIST I
12 l SECRETARY I
13 I DEmASSISTANT I

-

PROGRAM
-

I ELEMENT# I VALUE I
I-----= I ------------------ I
I1 l Special I
12 l MSc I
13 lPhD I

SEX
-

I ELEMENT# I VALUE I
I=-= I ------------------ I
I1 l Male I
12 l Female I

SEX
-

I ELEMENT# I VALUE I

STATUS
-

I ELEMENT# I VALUE I
I-------= I ------------------ I
I 1 l SESS I
12 l ASS1 I
13 l ASS0 I
14 l PROF I

TERM

Appendix C: The catalog of the database

C.3. ATTRIBUTE - DOMAINS

l RELNAME I A'ITNAME I D~MNAME I CARD IN^ I EL-KEY I INTRV-KEY I
I=-=== I=-=__ I I I I I
I ACADEMIC-PROPERTY l STATUS l STATUS I
I ADMINISTR-PROPERTIES l POSITN l POSITION I
I AREA-NAME l NAME l FIELD I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I STAFF-PROPERTIES l NAME I pen-name I
I STAFF-PROPERTIES l NUMBER I p_num I
I STAFF-PROPERTIES l SEX l SEX I

BOOK-PROPERTY
BOOK-AUTHOR
CLASS-PROPERTY
COURSE-PROPERTIES
COURSE-PROPERTIES
DEPARTMENT-PROPERTIES
DEPARTMENT-PROPERTIES
ENROLLMENT-GRADE
FACILITY-INSTANCE
GRAD-INSTANCE
ROOM-PROPERTIES

m L E
AUTHOR
FINAL
NUMBER
m s
FACLTY
NAME
GRADE
NAME
PROG
BUILDING

I
I
I
I

unit-num I
FACULTY I
FIELD I
GRADE I
FACILITY I
PROGRAM I
BUILDING I

ROOMIPROPERTIES l NUMBER I buil-num I
ROOM-PHONE l PHONE l number I
SEMESTER-PROPERTIES l TERM l TERM I
SEMESTER-PROPERTIES l YEAR l year-num I

I STUDENTJROPERTIES l NAME I pen-name I
I STUDENTIPROPERTIES I NUMBER I Stu-n-
I STUDENT-PROPERTIES l SEX l SEX
I TIME-TABLE-PROPERTIES l DAY l DAY
I TIME-TABLE-PROPERTIES l HOUR l hour
l TODAY l DATE I day-num
I UNDER-MAJOR l MAJOR l FIELD
I UNDER-MINOR l MINOR l FIELD

Appendix C: The catalog of the database

C.4. ELEMENTS

ELEMENTS
-

I EL-KEY I EL-NUM . I
I =----- - - I=-- I
I 1 I 1 I
I 1 I 4 1
I 1 l 8 1
I 1 I 10 1
I 1 I 11 1
I 1 I 12 1
I 1 I 13 1
I 1 I 15 1
I 1 I 16 1
I 1 I 20 1
I 1 I 24 1
I 1 I 26 1
I 1 I 28 1
I 1 I 31 1
I 1 I 34 1
I 1 I 35 1
I 1 I 36 1
I 1 I 37 1
I 1 I 39 1
I I I

C.5. INTERVALS

INTERVALS
-

I KEY l MIN l MAX I
I=--- -_I=-- I====--= I
I I I I

Appendix C: The catalog of the database

C.6. RELATIONS

CATLG-RELATIONS

l ACADEMIC
I ACADEMIC-PROPERTY
I ADMINISTR
I ADMINISTR-PROPERTIES
l AFFILIATION
I AFFILIATION-INSTANCE
l AREA
I AREA-NAME
l BOOK
I BOOK-PROPERTY
I BOOK-MVP
I BOOK-AUTHOR
l CLASS
I CLASS-INSTANCE
I CLASS-PROPERTY
I COMMl'REE
I COMMl'ITEE-INSTANCE
l COURSE
I COURSE-PROPERTIES
I CURNT-DATE
l DEPARTMENT
I DEPARTMENT-PROPERTIES
l ENROLLMENT
I ENROLLMENT-GRADE
I ENROLLMENT-INSTANCE
l FACILITY
I FACILITY-INSTANCE
l GRAD
I GRAD-INSTANCE
I INSTRUCTOR
I INSTRUCTOR-INSTANCE
l OFFERED
I OFFERED-INSTANCE
I PRE-REQ
I PRE-REQINSTANCE
l ROOM
I ROOM-PROPERTIES
I ROOM-OFFICE
I ROOM-MVP
I ROOM-PHONE
l SCHEDULE
I SCHEDULE-INSTANCE
l SEMESTER
I SEMESTER-PROPERTIES
l STAFF
I STAFF-PROPERTIES
l STUDENT
I STUDENTJROPERTIES
l TEXT
I TEXT-INSTANCE
I TIME-TABLE
I TIME-TABLE-PROPERTIES

I EI
I P
l EKD
I P
I EA
I P
I EI
I P
I EI
I P
I EC
I P
IEA
I P
I P
I EA
I P
l EID
I P
I EI
l EID
I P
I EA
I P
I P
l EID
I P
l EKD
I P
I EA
I P
I EA
I P
I EA
I P
l EID
I P
I P
I EC
I P
l EAD
I P
I EI
I P
l EID
I P
I EI
I P
I EA
I P
I EI
I P

Appendix C: The catalog of the database

Appendix C: The catalog of the database

C.7. ATTRIBUTES

l RELNAME I AlTNAME
I _ _ _ - - _ _ _ I ----

l ACADEMIC
I ACADEMIC-PROPERTY
I ACADEMIC-PROPERTY
l ADMINISTR
I ADMINISTR-PROPERTIES
I ADMINISTRJROPERTIES
I ADMINISTR-PROPERTIES
l AFFILIATION
I AFmLZATION-INSTANCE
I AFFILIATION-INSTANCE
I AFFILIATION-INSTANCE
l AREA
I AREA-NAME
I AREA-NAME
l BOOK
I BOOK-PROPERTY
I BOOK-PROPERTY
I BOOK-MVP
I BOOK-AUTHOR
I BOOK-AUTHOR
I BOOK-AUTHOR
CLASS
CLAS S-INSTANCE
CLASS-INSTANCE
CLASS-INSTANCE
CLAS S-INSTANCE
CLASS-PROPERTY
CLASS-PROPERTY
COMMFTTEE
COMMFTTEE-INSTANCE
COMMITI'EE-INSTANCE
COMMlTTEE-INSTANCE
COURSE
COURSE-PROPERTIES
COURSE-PROPERTIES
COURSE-PROPERTIES
COURSE-PROPERTIES
CURNT-DATE
DEPARTMENT
DEPARTMENT-PROPERTIES
DEPARTMENT-PROPERTIES
DEPARTMENT-PROPERTIES I

I DEPARTMENT_PROPERTIES
l ENROLLMENT
I ENROLLMENT-GRADE
I ENROLLMENT-GRADE
I ENROLLMENT-INSTANCE
I ENROLLMENT-INSTANCE
I ENROLLMENT-INSTANCE
I FACILITY
I FACILITY-INSTANCE
I FACILITY-INSTANCE

I ACADEMIC$
I ACADEMIC$
l STATUS
I ADMINISTRg
I ADMINISTRd

l NAME
I BOOK$
I BOOK$
l m L E
I BOOK-MVP$
I BOOK-MVP$
I BOOK$
l AUTHOR

$ IYES IN0
$ IYES IN0
STATUS I N 0 IN0
$ IYES IN0
d IYES IN0

FIELD
$
$
name
$
$
$
pers-name

COMMllTEE$
COMMIlTEE$
ACADEMIC$
GRAD$
COURSE$
COURSE$
FIELD$
NUMBER
UNlTS
CURNT-DATE$
DEPARTMENT$
DEPARTMENT$
C H m $
FACULTY
NAME
ENROLLMENT$
ENROLLMENT$

CLASS$
CLASS$ I $
COURSE$ I $
INSTRUCTOR$ I $
SEMESTER$ I $
CLASS$ I $
FINAL I day-num

I e
I
I
I
I
I
I
I

I NO
l YES
l YES
I NO
l YES
l YES
i NO
I NO
l YES
l YES
I NO
I NO
I NO
l YES
I NO
l YES

$ IYES IN0
$ IN0 IN0
$ IN0 IN0
e IYES IN0
e IYES IN0
$ IN0 IN0
cows-num IN0 IN0
unit-num
$
$
$
e
FACULTY
FIELD
$
$

NO IN0
YES IN0
YES IN0
YES IN0
NO IN0
NO IN0
NO IYES
YES IN0
YES IN0

l GRADE IGRADE IN0 IN0
I CLASS$ I $ IN0 IN0
IENROLLMENTg I$ IYES IN0
l STUDENT$ I $ IN0 IN0
I FACILITY$ I $ IYES IN0
I FACILITY$ 1 $ IYES IN0
I OF& I & IN0 IN0

YES I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
YES I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
NO I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
YES I 0 1
YES I 0 1
YES I 0 1
NO I 0 1
Y k S I 1 I
NO I 0 1 a

NO I 0 1
YES I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
YES I 0 1
YES 1 2 1

NO I 0 1
YES 1 3 1
YES I 0 1
NO I 0 1
YES I 0 1
NO I 0 1
NO I 0 1
YES I 0 1

Appendix C: The catalog of the database

I FACILlTY-INSTANCE
I FACIU'N-INSTANCE
l GRAD
I GRAD-INSTANCE
I GRAD-INSTANCE
I GRAD-INSTANCE
I INSTRUCTOR
I INSTRUCTOR-INSTANCE
I INSTRUCTOR-INSTANCE
I INSTRUCTOR-INSTANCE
l OFFERED
I OFFERED-INSTANCE
I OFFERED-INSTANCE
I OFFERED-INSTANCE
I PRE-REQ
I PRE-REQINSTANCE
I PRE-REQINSTANCE
I PRE-REQINSTANCE
l ROOM
I ROOM-OFFICE
I ROOM-OFFICE
I ROOM-PROPERTIES
I ROOM-PROPERTIES
I ROOM-PROPERTIES
I ROOM-MVP
I ROOM-PHONE
I ROOM-PHONE
I ROOM-PHONE
l SCHEDULE
I SCHEDULE-INSTANCE
I SCHEDULE-INSTANCE
I SCHEDULE-INSTANCE
I SCHEDULE-INSTANCE
l SEMESTER
I SEMESTER-PROPERTIES
SEMESTER~PROPERTIES
SEMESTER-PROPERTIES
STAFF
STAFF-PROPERTIES
STAFF-PROPERTIES
STAFF-PROPERTIES
STAFF-PROPERTIES I

I STAFF~PROPERTIES
l STUDENT
I STUDENT-PROPERTIES
I STUDENT-PROPERTIES
I STUDENT-PROPERTIES
I STUDENT-PROPERTIES
l TEXT
I TEXT-INSTANCE
I TEXT-INSTANCE
I TEXT-INSTANCE
I TIME-TABLE
I TIME-TABLE-PROPERTIES
I TIME-TABLE-PROPERTIES
I TIME-TABLE-PROPERTIES
l TODAY
l TODAY
I UNDER-GRAD

I DIRK!$ I $ IN0 I N 0
l NAME IFACILlTY NO IYES
l GRAD#
I GRAD$
I SUPRV$
l PROG
I INSTRUCTOR$
I INSTRUCTOR$
I ACADEMIC$
I DEPARTMENT$
I OFFERED$
I OFFERED$
I AREA$
I DEPARTMENT$
I PRE-REQ$
I FOR-COURSE$
I IS-COURSE$
I PRE-REQ$
I ROOM$
I OFFICE$
I ROOM$
l BUILDING
l NUMBER
I ROOM$
I ROOM-MVP$
l PHONE
I ROOM$
I ROOM-MVP$
I SCHEDULE$
I CLASS$
I ROOM$
I SCHEDULE$
I TIME-TABLE$
I SEMESTER$
I SEMESTER$
l TERM
IYEAR
I STAFF$
I STAFF$
I DEFT$
l NAME
l NUMBER
l SEX
I STUDENT$
l NAME
l NUMBER
l SEX
I STUDENT$
I TEXT$
I BOOK$
I COURSE@
I TEXT$
I TIME-TABLE$
l DAY
l HOUR
I TIME-TABLE$
I CURNT-DATE$
l DATE
I UNDER-GRAD$

YES IN0
YES IN0
NO I N 0
NO I N 0
YES I N 0
YES I N 0
NO I N 0
NO IN0
YES
YES
NO
NO
YES
NO
NO
YES
YES
NO
YES
NO
NO
YES
YES
NO
NO
YES
YES
NO
NO
YES
NO
YES
YES

I NO
I NO
l YES
l YES
I NO
I NO
I NO
I NO

$ l YES
pers-name IN0
stu-num I NO
SEX I NO

l YES
$ l YES
$ I NO
@ I NO
e
e
DAY
hour
e
$
day-num
G!

l YES
l YES
I NO
I NO
l YES
l YES
I NO
l YES

I
I
I
I
I
I
I
I
I NO
I NO
l YES
l YES
I NO
I NO
I NO
I NO

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
YES
NO
NO
NO
NO
YES
NO
NO
NO
YES
NO
NO
NO
NO
NO

IYES I 0 1
IN0 I 0 1
IN0 1 4 1
IN0 1 4 1
IYES I 0 1
IYES I 0 1
IN0 I 0 1
IN0 I 0 1
IYES I 0 1
IYES I 0 1
NO
NO
YES
YES
NO
YES
YES
NO
NO
YES
NO
YES
YES
NO
NO
YES
NO
NO
NO
YES
YES
NO
YES
NO
NO
NO
NO
NO
NO
YES
YES
NO
YES
NO
YES
NO
YES
NO
NO
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO

Appendix C: The catalog of the database

I UNDER-MVPl
I UNDER-MAJOR
I UNDER-MAJOR
I UNDER-MAJOR
I UNDER-MVP2
I UNDER-MINOR
I UNDER-MINOR
I UNDER-MINOR

I UNDER-MVPl#
l MAJOR
I UNDER-GRAD$
I UNDER-MVPl#
I UNDER_MVP2$
l MINOR
I UNDER-GRAD#
I UNDER_MVP2#

FIELD
$
$
$
FIELD

l YES
1 NO
I NO
IYES
l YES
I NO
I NO
l YES

Appendix C: The catalog of the database

Graph relations

C.8. property graph

I ACADEMIC-PROPERTY
I ADMINISTR-PROPERTIES
I AFFILIATION-INSTANCE
I AREA-NAME
I BOOK-PROPERTY
I BOOK-AUTHOR
I CLASS-INSTANCE
I CLASS-PROPERTY
I COMMITIEE-INSTANCE
I COURSE-PROPERTIES
I DEPARTMENTJROPERTIES
I ENROLLMENT-GRADE
I ENROLLMENTJNSTANCE
I FACILITY-INSTANCE
I GRAD-INSTANCE
I INSTRUmR-INSTANCE
I OFFERED-INSTANCE
I PRE-REQINSTANCE
I ROOM-PROPERTIES
I ROOM-OFFICE
I ROOM-PHONE
I SCHEDULE-INSTANCE
I SEMESTER-PROPERTIES
I STAFF-PROPERTIES
I STUDENT-PROPERTIES
I TEXT-INSTANCE
I TIME-TABLE-PROPERTIES
l TODAY
I UNDER-MAJOR
I UNDER-MINOR
I

l ACADEMIC
I ADMINISTR
l AFFILIATION
l AREA
l BOOK
I BOOK-MVP
I CLASS
l CLASS
I COMMMTEE
l COURSE
l DEPARTMENT
l ENROLLMENT
l ENROLLMENT
I FACILlTY
l GRAD
I INSTRUCTOR
l OFFERED
I PRE-REQ
l ROOM
l ROOM
I ROOM-MVP
l SCHEDULE
l SEMESTER
l STAFF
l STUDENT
l TEXT
I TIME-TABLE
I CURNT-DATE
I UNDER-GRAD
I UNDER-GRAD

Appendix C: The catalog of the database

C.9. association graph

ASSOC-GRAPH
-

I ASSOCIATION- I A S S W T I O N - I PARTICIPANT- I
I E-RELNAME I P-ATl'NAME I E-RELNAME I
I====
I AFTILIATION
l AFTILIATION
I COMMITEE
I COMMllTEE
l CLASS
l CLASS
l CLASS
l ENROLLMENT
l ENROLLMENT
I INSTRUCTOR
I INSTRUCTOR
l OFFERED
l OFFERED
I PRE-REQ
I PRE-REQ
l SCHEDULE
l SCHEDULE
ITEXT
l TEXT
I

--- - - I__________________ --------- I
DEPARTMENT$ l DEPARTMENT I
ACADEMIC$ l ACADEMIC I
ACADEMIC$ l ACADEMIC I
G h W l GRAD I
COURSE$ l COURSE I
INSTRUCTOR$ l INSTRUCTOR I
SEMESTER$ l SEMESTER I
CLASS$ l CLASS I
STUDENT$ l STUDENT I
ACADEMIC$ l ACADEMIC I
DEPARTMENT$ l DEPARTMENT I
AREA$ l AREA I
DEPARTMENT$ l DEPARTMENT I
FOR-COURSE$ l COURSE I
IS-COURSE$ l COURSE I
ROOM$ l ROOM I
TIME-TABLE$ I TIME-TABLE I
COURSE$ l COURSE I
BOOK$ l BOOK I

I I

C.10. characteristic graph

CHARC-GRAPH
-

I CHARACTERISTIC- I SUPERIOR- I
I E-RELNAME I E-RELNAME I
I=--- --- I I
I BOOK-MVP l BOOK I
I ROOM-MVP l ROOM I
I UNDER-MVP1 I UNDER-GRAD I
I UNDER-MVP2 I UNDER-GRAD I

Appendix C: The catalog of the database

C.ll . designation graph

DESIG-GRAPH
-

I DESIGNATIVE- I D E S I G N m E - I DESIGNATED- I
I E-RELNAME I P-ATTNAME I E-RELNAME I
1 =--- 1 - - - - (- - - - ~ ~ ~ ~ ~ ~ ~ ~ _ ----_--------- I
l ADMINISTR I FOR$ l FACILITY I
l COURSE I FIELD$ l AREA I
l DEPARTMENT I CHAIR$ l ACADEMIC I
FACILITY
FACILITY
GRAD
ROOM
SCHEDULE
STAFF

DIRK$ l ACADEMIC I
OF$ IDEPARTMENT I
SUPRV$ l ACADEMIC I
OFFICE$ l STAFF I
CLASS# l CLASS I
DEFT$ IDEPARTMENT I

C.12. subtype graph

SUBTP-GRAPH
-

I SUBTYPE- I SUPERTYPE- I CATEGORY I SPANNING- I MUTUALLY- I
I E-RELNAME I E-RELNAME I I SUPERTYPE l EXCLUSIVE I
I=----- !------- I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I) _ _ _ _ _ _ _ _ ------------------- 1 --------- ------------------ I
l ACADEMIC l STAFF l JOB I NO I NO I
l ADMINISTR l STAFF l JOB I NO I NO I
l GRAD l STUDENT l STATUS I YES I ' YES I
I UNDER-GRAD l STUDENT l STATUS I YES I YES I)I

Appendix D

Appendix D

The contents of the knowledge-base

D.1. Exception Rules

(You specified some class(es) for which the date of the final has not passed yet; grades are not

available for such classes.)]

(You specified some higher level coursefs); undergraduate students cannot be enrolled in such courses.)]
&

(You specijied some class(es) for which the grades are currently available; for such classes the final date

must have passed.)]

(You specified some graduate studentfs); graduate students are distinct from undergraduate students;

'major' and 'minor' are inapplicable to them.)]

(You specified some officefs); oflces cannot appear in schedules for classes.)]

(You specified some classroom(s); classrooms are not used as ofices and have no phones.)]

Appendix D

[(7) ((GRAD.GRAD$:= 0)
A (GRAD-INSTANCE.GRAD$:= 0))

(You specifiid some undergraduate student(s); undergraduate students are distinct from graduate students;

they have neither supervisors nor committees, and 'program' is inapplicable to them.)]

Appendix F

Appendix E

Mathematical terms to specify functional relationships

A function f: D C is a right unique mapping of elements of a domain D to elements of a co-domain

C. A mapping is right unique if it maps no element of the domain to more than one corresponding element in

the codomain, i.e.,

(V x E D, V y E C, V y' E C) ((f(x) = y A f(x) = y') + (y = y')).

Partial means there may be elements of the domain on which the function is not defined.

Total means the function is defined on all elements of the domain, i.e.,

(V X E D) (3 y ~ CIf(x)=y)

Surjective means d l elements of the co-domain correspond to some function values, i.e.,

(V Y E C) (~ X E DIf(x)=y)

&

Injective means all function values are left unique, i.e.,

(V x E D, b' X' E D) ((f(x) f f(x9)) J x # x')

Bijective means both surjective and injective.

Figure E-1 illustrates these terms graphicaly.

Appendix F

domain D codomain C

partial

-
partial, surjective

C partial, injective

h partial, bijective

w total

1

total, surjective

total, injective

1

total, bijective

Figure E-1: Graphical illustration of the functional relationships

References

[ANSI 751 ANSI/X3/SPARC Study Group on Data Base Management Systems.
Interim Report 7:2.
American National Standards Committees: X3--Computers & Information Processing,

CBEMA, 1828 L St NW (suite 1200), Washington DC 20036,1975.

[Atzeni and Parker 821
Atzeni, Paolo and Parker, D. Stott, Jr.
Assumptions in Relational Database Theory.
Association for Computing Machinery :pages 1-9, 1982.

[Belnap 753 Belnap, Nuel D. Jr.
A Useful Four-valued Logic.
Modern Uses of Multiple-Valued Logic.
D. Reitel Pub. Co., 1975.

[Cercone and McCalla 861
Cercone, Nick, and McCalla, Gordon.
Accessing Knowledge through Natural Language.
Advances in Computers, 25th Anniversary Issue .
Academic Press, New York, 1986, pages 1-99.

[Cercone et al. 83]Cercone, Nick; Hadley, Robert; Stnalkowski, Tomek.
The Automated Academic Advisor: Introduction and Initial Assessment.
Technical Report TR83-11, LCCR, School of Computing Science, S@on Fraser

University, Burnaby, British Columbia, 1983.
a

[Cercone et al. 84]Cercone, Nick; Hadley, Robert; Martin, Fred; McFetridge, Paul; Strzalkowski, Tomek.
Designing and Automating the Quality Assesment of a Knowledge-Based System: The

Initial Automatic Academic Advisor Experience.
In Proceedings of the Workshop on Principles of Knowledge-Based Systems, pages

193-204. IEEE Computer Society, 1984.

[Codd 791 Codd, Edgar F.
Extending the Database Relational Model to Capture More Meaning.
ACM Transactions on Database Systems 4(4):pages 397-434,1979.

[Codd 861 Codd, Edgar F.
Missing Information (Applicable and Inapplicable) in Relational Databases.
ACM SIGMOD RECORD 15(4):pages 53-78,1986.

[Codd 871 Codd, Edgar F.
More Commentary on Missing Information in Relational Databases (Applicable and

Inapplicable Information).
ACM SIGMOD RECORD 16(1):pages 42-50.1987.

[Date 831 Date, Christopher J.
An Introduction to Database Systems.
Addison-Wesley, 1983.

[Date 864

[Date 86b3

[Grosz 771

[Hall 863

[Jeffrey 811

[Kao 861

[Kaplan 791

[Martinich 851

Date, Christopher J.
Relational Databases: Selected Writings.
Addison-Wesley, 1986.

Date, Christopher J.
An Introduction to Database Systems.
Addison-Wesley, 1986.

Grosz, Barbara J.
The Representation and Use of Focus in Dialogue Understanding.
Technical Report 151, SRI International, Menlo Park, California 94025, 1977.

Hall, Gary W.
Querying Cyclic Databases in Natural Language.
Master's thesis, Simon Fraser University, Ocbber, 1986.

Jeffrey, Richard.
Formal Logic: Its Scope and Limits.
McGraw-Hill, 198 1.

Kao, Mimi A.
Turning Null Responses into Quality Responses.
Master's thesis, Simon Fraser University, November, 1986.

Kaplan, Samuel J.
Cooperative Responsesfrom a Portable Natural Language Data Base Query System.
PhD thesis, University of Pennsylvania, 1979.

Martinich, Aloysius P. (editor).
The Philosophy of language.
Oxford University Press, 1985.

[McFetridge et al. 881
~ c ~ e t r i d ~ e , Paul; Hall, Gary; Cercone, Nick; Luk, Wo-Shun .
System X: A Portable Natural Language Interface. @

In Proceedings of the CSCSI'88 Conference. Canadian Society for Computational Studies
of Intelligence, 1988.

[Reiter 841

[Rescher 691

[Ullman 821

[Vassiliou 791

[Winograd 831

Reiter, Raymond.
Towards a Logical Reconstruction of Relational Database Theory.
On Conceptual Modelling.
Springer-Verlag, New York, 1984, pages 191-238.

Rescher, Nicholas.
Many-Valued Logic.
McGraw Hill ,1969.

Ullman, Jeffrey D.
Principles of Database Systems.
Computer Science Press, Inc., Maryland, 1982.

Vassiliou, Yannis.
Null Values in Database Management: A Denotational Semantics Approach.
In Proc. ACM SIGMOD 1979 International Conference on Management of Data, pages

162-169. Boston, Mass., May, 1979.

Winograd, Terry.
Language as a Cognitive Process.
Addison-Wesley, 1983.

[Winograd and Flores 861
Winograd, Terry; Flores, Fernando.
Understanding Computers and Cognition: A New Foundation for Design.
Ablex Publishing Corporation, Norwood, New Jersey, 1986.

