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ABSTRACT 

Natural language interfaces (NLIs) to databases are an important technological advance 

because they enhance access to databases for non-specialists and casual users such as office 

workers, managers and consumers. Though some have argued that there are good alternatives to 

the use of natural language (NL) as an interface to databases, NLIs to databases provide an easy 

means of communication with databases for all including naive users. However, to increase the 

commercial acceptance of NLIs to databases, there is a need to increase the capabilities of existing 

systems. In addition, there is a need to make the target query language easy to read, in order to 

increase the confidence of users in the correctness of the translations. 

One of the most sophisticated NLI systems today is the Transformational Question 

Answering system (TQA), which is a domain-independent English interface to IBM SQL-based 

program products. TQA's target language provides some elegant extensions to SQL that enable the 

system to handle more classes of English language queries than SQL. TQA, however, retains one 

of SQL's shortfalls, which is that it is not a very easily understandable language. One major reason 

for this is that it lacks an explicit construct for a universal quantifier and has to rely on double or 

nested negation to simulate it. 

In this thesis, a method is provided for translating NL queries into a target language which 

is easily convertible to a simplified SQL syntax embedded in a host language program. With this 

method, we are able to solve more classes of queries than TQA and avoid the use of double or 

nested negation to simulate universal quantification. Two algorithms are involved in the 

transformation procedures. In addition to presenting these algorithms, the target language is 

defined, and the modified Logical Form and Canonical query representation are also presented. 
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CHAPTER 1 

INTRODUCTION 

1.1 What is a Natural Language Interface to a Database System ? -- - - 

A natural language interface (NLI) to a computer database provides users with the 

capability of obtaining information stored in the database by querying the system in a natural 

language (NL) ' [MAGP 851. An NLI to a database system is a system that accepts natural 

language queries from the user, and translates these queries into some intermediate form, and 

then to some formal query language before actual data retrieval. Natural Language Interfaces 

(NLIs) to databases make all these transformations without the user having to know about the 

particularities of the database structure. 

1.2 Motivation 

Natural language interfaces are desirable as  opposed to formal query languages because: 

People already know a NL and do not have to learn an artificial language. 

NL provides logical data independence since the user does not need to know about the 

structure of the database. 

In the future, spoken input will probably be preferred to typed input by users, and NL 

systems will be a necessary component of such a voice system. 

Typically, NLIs to relational databases translate NL input to an intermediate form called the 

logical form (LF) which expresses the system's understanding of an input query. The logical form is 

then translated into a query in the formal query language of the database. One of the fundamental 

limitations with these formal query languages is that they fail to handle linguistic devices such as 

' A natural language is a language spoken by a group of people, e.g., English. 



anaphora and ellipses [JKVSTW 851 2 .  Thus, these NLIs are restricted by their target query 

languages. This limitation apart, NLIs to relational databases are important because of the 

growing importance of the relational model [Codd 701 which is easier to use than the other main 

models of database design [Ullman 821. Secondly, many database management systems (e.g., 

INGRES [SWKH 761, QBE [Zloff 771 and SQLIDS) have used the relational model as  a basis. 

Structured Query Language (SQL) is becoming the de facto standard query language for 

relational database systems Thus, we are motivated to work on an NL interface which 

translates its input to SQL. SQL however, has some shortcomings like other database languages 

some of which are discussed in [Date 86bl. 

Transformational Question Answering system (TQA) [Johnson 841 is an English interface to 

IBM SQL-based program products [Johnson 841, [Petrick 841 and [Damerau 851. We have chosen 

to work with the TQA system in particular because it overcomes many of the restrictions of the 

formal query language, SQL by providing some elegant extensions to SQL. However, TQA still 

suffers from an obvious shortfall of SQL, which is that some SQL constructs are hard to 

understand because universal quantification is simulated with double or nested negation. [LukKl 

851 also show that not only are these SQL constructs hard to understand but the constructs 

generated are not always valid. 

System X is a NLI to SQL-based relational databases currently under development at  the 

Laboratory for Computers and Communications Research (LCCR) a t  Simon Fraser University. 

System X is similar to TQA in many respects [MHCL 871. In this research, we shall be using 

System X as  another implementation of the TQA system. 

Anaphoric queries are queries that need results of previous queries. Ellipses are fragmentary 
queries which need to reuse words from previous queries. For example, a preceeding query is 
"which math majors take math102?18. An anaphoric query posed after this query is "who got the 
highest mark ?", and an ellipse is "computing majors?" meaning "which computing majors take 
math102 ?". 

A brief description of a relational database system is given in Section 3.1 



Due to the inherent limitations of SQL, most commercial enterprises use embedded SQL 

when communicating with their databases. Embedded SQL consists of simple SQL statements 

embedded in programs written in some high level language. [Stone 881 observed that human 

factors studies and early usage of relational systems has shown clearly that end users prefer 

customized interfaces written by programmers to SQL. This is because the customized interfaces 

are made appropriate to the user's application needs. Thus, the interest of these commercial 

enterprises in adapting NLIs for their existing databases will be enhanced if NLIs can translate 

their NL inputs to embedded SQL rather than SQL. 

Two things are desirable if the commercial acceptibility of NL query systems is to be 

increased. 

1. The systems have to be made as expressive as possible so as to provide a wider linguistic 

coverage. This will allow the naive users in the organizations to carry out a t  least the same 

type of tasks that they were able to do with formal query language systems (e.g., SQL 

embedded in a host language program) if the organizations switch to the use of NLI systems. 

2. The database administrator (DBA) and the application programmers in the organizations 

must have a high degree of confidence in the transformational procedures and the 

correctness of the results from the NLI system. This will assure them that switching to NLIs 

will still provide the desired and correct response to the naive user. 

To achieve the above two objectives, it is essential to develop methods to make the NLI 

systems more expressive and their intermediate results easy to understand. 

1.3 The Task -- 

The objective of this thesis is to take a step towards increasing the commercial acceptibility 

of NLIs. We argue that it will be more beneficial to translate NL queries to embedded SQL using 



only easy-to-understand SQL constructs so that users4 will have confidence in the transformations. 

Achieving this objective involves formalizing a target query language into which NL queries 

can be mapped. Our target language is designed such that it is easily convertible to embedded SQL. 

With System X, an English language query is parsed and semantically analysed to generate an 

intermediate form called Canonical Query Representation (CQR). A CQR is a tree that explicitly 

defines the scoping of quantifiers in the query, and also shows the join paths among relations in the 

database schema. Although we have defined some extensions to the current capabilities of the 

System X CQR, it is outside the scope of this research to explain the procedures involved in 

transforming the English language query to the extended CQR. TQA and System X first transform 

CQR to a second intermediate form, LF, and then translate LF to a target language consisting of 

the full SQL syntax plus a few additional constructs. Our approach is quite different from TQA 

approach. Instead of adopting the full SQL syntax plus a few more constructs, we provide control 

constructs commonly found in high-level programming languages (e.g., FOR-LOOP and 

IF-THEN-ELSE), coupled with a much simplified SQL syntax. The advantages of our approach 

include: 

With the control constructs explicitly defined, instead of buried deep down in the SQL itself, 

the language can be more easily extended to provide more features than SQL has to offer. 

For example, many features of SQL are designed to provide easy reporting; GROUP-BY and 

some aggregate functions are examples. However, there are severe limitations in the report 

formatting. 

The whole system will be more portable since our target language is more adaptable to 

different implementations of relational database systems, and has a much reduced 

dependency on the idiosyncrasies of SQL. 

The target language is designed such that output of the translation of the input, after 

'By users here, we mean either the database administrator or the application programmer and not 
necessarily an end user. 



syntactic and semantic analysis resembles a program written in the syntax of the target 

language, which is a superset of TQA's "ad hoc" target language. 

The major tasks involved in the research are: 

* Providing some extensions to the structure of the CQR used by System X to handle more 

classes of English language queries than System X handles currently. 

* Modifying the structure of the LF* used by TQA and System X, to accomodate our 

extensions. 

* Presenting the BNF description of the target language. 

* Defining an extensive algorithm which accepts CQR as input and generates LF. 

* Defining a second algorithm which maps our LF to our target language. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 presents the literature review of 

some existing NL systems, discussing their capabilities and what needs to be done in order to  

increase the commercial acceptance of these systems. Chapter 3 discusses some basic database 

terms, embedded SQL and its use, as  well as TQA's target language, while Chapter 4 discusses 

System X and our extensions to some modules of that system. Chapter 5 discusses features of our 

target language and the simplified version of SQL that we use. Chapter 6 discusses the 

transformational algorithms in our system while Chapter 7 presents conclusions. 



CHAPTER 2 

NATURAL LANGUAGE INTERFACE TO DATABASE SYSTEMS 

In this Chapter, we present a general description of some existing NLIs to databases. In 

particular, we discuss their features, and describe their advantages and disadvantages over formal 

query languages. The capabilities of these NLIs are also discussed. 

2.1 Advantages - and Disadvantages -- of NLIs 

[PyKi 851 observed that a good goal in the commercial use of artificial intelligence (AI) is to 

make the machine know more about the user so that the user will need to know less about the 

machine. This slogan highlights the point that if the user is reluctant to learn the formal languages 

associated with the use of computers, he needs the computer to know about him and to provide him 

with tools so that he can use it. Since the user already knows how to communicate in a NL, NLIs 

provide a good tool for communication between the naive user and the computer. 

Although current NLIs seem to represent a great technological advance, these systems are 

still faced with problems, including: 

1. The linguistic coverage of the systems is not yet very wide. Some of the systems are not yet 

able to handle natural language queries involving pronoun references, more than two 

quantifiers, anaphoric queries and ellipses. 

2. Some of the NLIs to relational database systems are restricted by the capabilities of the 

formal query language to which they map their NL queries. 

3. The problems of interpreting queries in most NLIs, have only been solved in an ad hoc way 

for narrow relational databases, and the customization of such natural language systems 

This means for specific relational database schemas without being readily generalisable to other 
relational database schemas. 



to new databases or subject areas represents a serious investment of time and effort [SlJu 

851. 

2.2 Features of Some NLI Systems --- 

We have chosen some of the existing [PyKi 851 NLI systems to briefly discuss their features 

and capabilities. The sample systems are: 

* the User Specialty Language (USL) [LOZ 851, 

* the Transportable English Database Access Medium (TEAM) [MAGP 851, 

' a Simple Knowledgeable System (ASK) [BoFr 851, 

" the Layered Domain Class System (LDC) [BLT 841, and 

" the Transformational Question Answering System (TQA) [Damerau 851. 

2.2.1 Capabilities of Current Natural Language Systems 

Current NL systems have the capability of answering complete self-contained grammatical 

questions. Some of the systems can also understand user inputs containing simple pronoun 

references or minor grammatical errors, certain cases of ellipses, and certain definitions introduced 

by the user in interaction with the NL system. However, they incorporate only a very limited 

theory of the application domain, do not translate the query into a general logical form from which 

inferences can be carried out, and in general are not capable of analysis a t  the level of discourse 

pragmatics, which requires that the system maintain a model of the user's needs and intentions. 

That is, the LF is not general enough to represent the user's presupposition. 

1. System Structure - 

NLI systems have the same basic type of structure, which can be viewed as consisting 

of two major modules: 

a. the acquisition module for customization to new applications, which is not discussed' 



further in this thesis, and 

b. the NL module, which translates NL queries to some intermediate forms and then to the 

target query language. 

The main differences in the structure of NLIs lie in whether they map to existing 

database structures, and whether they generate some kind of intermediate structure. The 

NL module usually consists of a lexicon, a parser, a semantic interpreter, a translator, a 

retrieval module and a number of grammars. Some systems have additional features. NLIs 

require world knowledge in order to understand input questions. NLIs have semantic 

information stored in a lexicon. Since we are using System X as  a model of the TQA system, 

we proceed to give an idea of what the system structure of a typical NLI looks like by giving 

a brief description of the System X structure. Then, we outline the differences between the 

structure of these existing NLI systems outlined above. 

System X currently consists of a set of modules which create a CQR from an input 

query. The modules are a lexicon, a parser and a semantic interpreter. System X's lexicon 

consists of a syntactic and a semantic dictionary. The semantic dictionary has two parts: a 

domain-independent dictionary of predicates, operations, quantifiers, etc. which are 

transported from application to application. In this domain independent dictionary, the 

meaning of such words as "all, only, not, greater than, and so on" are defined. The second 

part of the semantic dictionary is an application-dependent dictionary which is largely 

generated from the database schema. In the application-dependent dictionary, exceptions to 

the general rules that are applicable in the domain are given. Actual data in a database 

schema are asserted in the semantic dictionary. System X's parser is a top-down 

breadth-first parser [MHCL 871. When an English query is received by the system, the 

lexicon first replaces every word in the query with its grammatical definition. Next, the 

parser applies the grammar rules to the query to return all possible parse trees. An example 

of a grammar rule used is: "a sentence could be a noun, followed by an auxilliary verb, 



followed by a verb phrase. These parse trees are then sent to the semantic interpreter. The 

semantic interpreter takes a parse tree, looks a t  each node, and recursively descends the tree 

if it is a non-terminal node. If it is a terminal  ode, it replaces the syntactic definition of that 

node with its semantic definitions. As it goes up the tree it applies the semantic rules 

associated with the syntactic rule that created that node. Nouns and adjectives are defined as  

values in the database; verbs, could be associated with relations. The semantic rules are 

organized so that those which apply first to the parse tree insert, delete or rearrange nodes 

in the parse tree to create a CQR. This CQR represents the query in terms of database 

entities and is first transformed to LF which is intermediate between CQR and SQL. In 

general, only one parse tree will be semantically allowed as  a parse tree is rejected if the 

semantic interpreter can not allow a meaning representation to it. We now return to the 

discussion of system structure of existing NLIs. 

USL has, in addition to the typical structure, a high level optimizer for SQL queries 

which removes irrelevant joins and thus improves the response time. TEAM has a scope 

determiner which allows it to handle a wide range of linguistic structures involving nested 

quantifiers. TQA has a SQL-to-English language translator which echoes the English 

language form of the SQL query formulated from the user's query, so the user can verify the 

correctness of the translation. This feature helps to increase the acceptability of the system. 

ASK can be used both as a stand-alone system with its own semantic network, and a NLI to 

an existing database system. USL, TEAM and TQA translate their NL inputs into an 

internal representation, which is then translated to some database query language. LDC 

accepts as its input a text file containing database queries in a format less restrictive than 

the format of relational database systems. USL, TEAM, and TQA all map their NL inputs to 

a relational query language, because the databases they support are relational. Both USL 

and TQA translate queries to SQL, while TEAM translates queries to SODA, another 

relational database query language. LDC, on the other hand, uses a formal query language 



specifically developed for the text file inputs. This formal query language has not been 

proved relationally complete. A diagrammatic representation showing a general overview of 

System X is given in Fig 2-1. 

2. Intermediate Structure 

TEAM and TQA translate their NL queries to an intermediate logical form which is 

derivable from first-order logic but extended with certain intensional and high-order 

operators, and augmented with special quantifiers Yor definite and interrogative determiners. 

USL has another kind of intermediate structure which is quite different from logical form. 

LDC and ASK have no intermediate structures. 

3. Linguistic Coverage 

ASK is the most advanced NLI that we consider with regard to the classes of the 

English language that it accepts. It is able to accept anaphoric queries, fragmentary queries, 

accept queries with pronouns and even give diagnostic messages when it receives ambiguous 

queries as input. I t  also allows the user to update the knowledge base, and corrects spelling 

errors in user input. Among the three systems that map to relational databases, USL, 

TEAM, and TQA, USL covers the widest range of linguistic structures. USL handles 

pronouns, quantification, and negation, while TEAM and TQA are poor a t  handling pronouns 

and some kinds of quantification. TEAM, however, can produce facts not physically stored in 

the database, but rather inferred from data in the database. This is an advanced feature 

which is also found in expert systems. 

The linguistic coverage of LDC is the most restrictive of the five systems discussed. All 

NL inputs to LDC have to be transformed to their noun-phrase equivalents by the user 

before the queries are posed. For instance, a query like "Which math majors take math100" 

has to be posed as "math majors taking math100". This is restrictive because some English 
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language queries might not readily be transformed to a noun phrase, and the user might 

have trouble doing such transformations. LDC does not allow interrogative queries that 

require yeslno answers, and cannot handle anaphoric and fragmentary queries or pronouns 

and negations. LDC does however, have some inferential capabilities: like TEAM, it can 

retrieve facts not physically stored in the database. 

From the linguistic coverage of TEAM as presented in [MAGP 851, it appears that 

TQA covers a wider range than TEAM. 

TQA accepts interrogatives, comparisons, quantifiers, and generates statistical 

outputs such as histograms, pie charts and bar charts. None of the other four systems 

including ASK has this form of output. 

2.3 Related Work -- 

Although there are many NLIs to databases in existence today, none of the systems that 

interface to SQL-based relational databases handle universally quantified queries in a systematic 

easy-to-understand way when translated to SQL. As well, none of the systems translate their 

natural language inputs into embedded SQL in a host language program. 

For cases of quantification, negation and coordination, USL may generate more than one 

SQL query from a given intermediate structure. The logical form our system uses is a modified 

version devised to handle more classes of queries and to explicitly interpret quantifiers and their 

scopes. 

In [LOZ 851 and [Damerau 851, it is reported that both USL and TQA translate their English 

language queries to straight SQL queries, which represent universal quantifiers with double and 

nested negations. Since these systems are NLIs to existing database systems, we think that in 

order to overcome their limitations, in particular to cover more sentences and remove the 



incomprehensibility associated with the SQL query language, it is necessary to translate English 

language queries to a program-like structure with some simple SQL queries in them. Our system 

translates the CQR of English language queries to our modified LF, and then to our target 

language which is easily convertible to simplified SQL embedded in a host language program. 

None of the two systems that are NLIs to SQL-based database systems (USL and TQA) can 

handle conditional queries; but our target language has been designed to handle this important 

class of queries, and has features to allow processing of such queries as  anaphoric queries. We 

believe that because of our program-like SQL structures intermediate results could be stored a s  

well as previous results. 



CHAPTER 3 

EMBEDDED SQL AND TQA TARGET LANGUAGES 

The target language into which we map our NL queries is designed in such a way that it can 

easily be converted to embedded SQL. This chapter introduces the reader to some basic database 

terms before it presents its discussion of SQL and embedded SQL. TQA's target language 

(TQA-TL), which is an extension of SQL [Date 86a1, is also discussed. 

3.1 Basic Database Terms 

A database is a model of some part of the world; that is, a system which maintains 

information about an individual or an organization, and makes that information available on 

demand [Date 86al. A relational database system is a database system that is perceived by its 

users as  a collection of tables. Fig 3-1 shows an example of a relational database schema, a 

suppliers-and-parts database which stores information about suppliers and the nature and 

quantities of parts that they supply. The database consists of three tables, S, P, and SP. 

* Table S represents suppliers, each with a unique supplier number (S#) and a supplier name 

(SNAME), a rating or a status value (STATUS), and a location (CITY). 

* Table P represents parts, each with a unique part number (P#) and a part name (PNAME), a 

color (COLOR), a weight (WEIGHT), and a location where parts of that type are stored 

(CITY). 

Table SP represents shipments and serves in a sense to connect the other two tables 

together. Each shipment has a supplier number (S#), a part number (P#), and a quantity 

(QTY). 

Suppliers and parts may be regarded as entities, and a shipment may be regarded as a relationship 



Fi 3-1: The Supplier-and-Parts database _ g - -  

between entities, suppliers and parts. Every table, or re~ation,~ has a unique identifier, called a 

candidate key, for every record in that table. A tuple is a row in a relation. The column names of a 

relation are called attributes: For example, S#, SNAME, STATUS and CITY are attributes of the 

relation S. 

3.1.1 The SQL Language 

Structured Query Language (SQL) is a language for relational databases. SQL can be used 

for data definition and data control (both not discussed further in this thesis) as well a s  for data 

manipulation. One of the things a user may want to do when manipulating data is data retrieval. 

SQL can either be used as a n  interactive query language or embedded in a host language program 

7 .  The general structure of SQL constructs for data retrieval is given below: 

The words table and relation are used interchangeably. 

In this thesis, when SQL is not qualified or strict SQL is used, we mean interactive SQL. 



FROM <list of relations> 
WHERE (condition(s) is/are true) 

For instance, the query "what is the city of supplier S2?" is expressed as: 

SELECT CITY 
FROM S 
WHERES# = 'S2' : 

The result of this query is a table which looks like: ---- 
CITY ---- 
Paris 

The query "what are the parts supplied by each supplier?" is expressed as: 

SELECT S.S#, SP.P# 
FROM S, SP 
WHERES.S# = SP.S# 
ORDER BY S . S# 

The result of this query is the following table: 

In the second example, the relations S and SP are said to be joined on the attribute S#. A virtual 

relation is a relation that  does not physically exist but is derived from various other physical 

relations when referenced. A view enables the user to define a virtual relation that  represents a 

picture of the database. Any valid SQL statement can be used to create a view by preceeding the 

SQL construct with the statement: 

CREATE VIEW (View name) AS 



Embedded SQL 

3.2.1 What is Embedded SQL ? 

SQL is both an interactive query language and a database programming language. Any SQL 

statement that can be used interactively a t  the terminal can also be used in an application program 

[Date 86al. When SQL is used in an application program (like PV1 or Pascal), it is called embedded 

SQL. When an interactive SQL query is executed in a host language program, an INTO clause is 

used in the query to tell the program where to place the result. The same query of Section 3.1, 

"what is the city of supplier S2?", when embedded in a host language program becomes: 

EXEC SQL SELECT CITY 
INTO :XCIT 
FROM S 
WHERE S# = 'S2'; 

where XCIT is a program variable to hold the result of the query. In this thesis, we call a program 

with some embedded SQL statements a database program or an embedded SQL program. 

3.2.2 Advantages of Making Embedded SQL a Component ofNLIs 

There are two main reasons why making embedded SQL a component of NLI systems would 

increase the commercial acceptance of NLIs. These reasons are discussed in turn. 

The first reason is that SQL queries sometimes are so difficult to understand that the DBA 

or application programmer may not be sure of the correctness of the queries. If NLI systems are to 

acquire wide commercial recognition, it is necessary to make the formal queries generated from the 

user's NLI input as easy to understand as possible. This becomes even more important in the 

TQA system that translates SQL queries back to English language for verification by the user, 

because the hard-to-understand SQL query could lead to hard-to-understand translations by the 

module. When NL queries are translated into simplified SQL constructs embedded in a host 

- - - 

a The end user need not understand or even see the internal translations but the database 
adminstrator and the application programmer may need to; 



language program, they are easier for users to comprehend. We demonstrate this point by 

discussing the obscure nature of some SQL constructs. 

One major cause of incomprehensibility in SQL queries is the use of double or nested 

negation to represent universal quantification. Consider the following query, adapted from a TQA 

file9 : 

How many suppliers in Paris supply all red screws ? 

SQL QUERY - 

SELECT COUNT(DIST1NCT B.SNO) 
FROM TQASQL.ZSP B, TQASQL.ZS A 
WHERE A.SNO = B.SNO 
AND A.CITY = 'PARIS' 
AND NOT EXISTS 

(SELECT DISTINCT D.PNO 
FROM TQASQL.ZP C,TQA.ZSP D 
WHERE C.PNO = D.PNO 
AND C.PNAME = 'SCREW' 
AND C.COLOR= 'RED' 
AND NOT EXISTS 

(SELECT DISTINCT E.SNO 
FROM TQASQL.ZSP E 
WHERE D.PNO = E.PNO 
AND E.SNO =B.SNO)); 

This query says : "Count the suppliers who are located in Paris such that there is no red 

screw that  is not supplied by these suppliers". The meaning of the English paraphrase is not 

obvious, raising uncertainty about its correctness. 

By explicitly defining control constructs, instead of burying them deep down in SQL itself, 

the language will be easier to understand.'' One may argue that if SQL is hard to understand 

when representing universal quantifiers, other languages like English and Pascal are also hard to 

understand.sometimes. The issue here is that  these other languages like English, have alternative 

The relations TQASQL.ZSP B, TQASQL.ZS A and TQASQL.ZP in this query are the same as 
the relations SP, S and P in Fig 3-1 above. 

'OExamples to demonstrate this alternative approach is in Section 5.3. 



representations for the hard-to-understand constructs. For instance, in English, instead of asking 

the obscure question "count the suppliers who are located in Paris such that there is no red screw 

that is not supplied by these suppliers", English allows the user to express the same query in an 

easier-to-understand form "how many suppliers in Paris supply all red screws?". Similarly, in 

Pascal several nesting of loops might make the program hard to understand but Pascal language 

allows its user alternative methods (e.g, using procedures to express the same thing). The problem 

with SQL in this regard is that if its user does not want to use double negation to express universal 

quantification, there is no alternative representation. 

The second reason for preferring embedded SQL programs for NLIs is that SQL is quite 

restrictive and cannot handle all necessary NL queries. 

Many English language queries can not be translated into a single SQL query and thus can 

not be solved with interactive SQL. In addition, a user may want his answer presented in a format 

different from that allowed by SQL, e.g., pie charts or bar charts. TQA circumvents this restriction 

of SQL in a limited fashion by extending SQL. 

To show the limitations of SQL, we give some classes of English language queries that SQL 

is not able to represent. 

Quota Queries that retrieve the identities of a specific number of objects that satisfy a stated 

condition. For instance, "Find exactly 2 suppliers each of whom supplies part P2". The 

closest SQL equivalent to the above query is : 

SELECT S.W, S.SNAME 
FROM P, S, SP 
WHERE SP.P#= ' ~ 2 '  
AND SPS#=S.S# ; 

This retrieves all S#'s of suppliers that supply P2 and not just 2 of them as required. 

Queries that return a specific number (greater than one) of objects within a set of objects that 

satisfy a maximum or minimum condition. For instance, "Get the three heaviest parts". The 



closest SQL equivalent to this query is: 

SELECT P.P#, MAX (P. WEIGHT) 
FROM P; 

However, this retrieves just the part with the highest weight and not the three heaviest 

parts as desired. 

Queries that rely on strict conditions and demand alternate answers. For instance, "If S2's 

city is London, give me his name else give me his name, status and city". This category of 

English queries can not be represented with SQL because of the "else" part of the 

conditional. For instance, "If S2's city is London, give me his name", will not pose any 

problem because it can be paraphrased as  : "Give me the name of supplier S2 whose city is 

London"; which can be expressed in SQL as: 

SELECT S.S#, S.SNAME 
FROM S 
WHERE S.CITY = 'LONDON' 
AND S.S#='S2'; 

SQL handles "if-then" statements as in the above example because most databases are 

based on the Closed World Assumption (CWA)" . With the CWA, if the city of supplier S2 in 

the above query is London but unknown to the database, the answer returned is Null. 

However, we are not concerned with this type of Null ambiguity, which is blocked off using 

CWA. The point we are stressing here is that although "if-then" statements can be 

represented with SQL, "if-then-else" statements can not. Users may desire to  have the 

power to specify alternate response depending on the result of the search condition. 

"IF-THEN-ELSE" query will provide this alternate response. A query like: "IF S2's city is 

London, give me his name else give me his name, status and city", can not be expressed a t  

all because of the else part of the query. 

l 1  The CWA assumes that everything in the world being modelled is present as  data, so that if 
something is not present it is assumed not to exist. 



4. Queries that need Yes or No answers, such as  "Is supplier S2 in Paris?". Queries in this 

category can also not be represented with SQL because strict SQL does not have facilities for 

writing out messages. It  can just retrieve the desired answer if it is in the stared data or 

return Null if the desired answer is not in the stored data. 

5. Queries that ask for graphic and statistical charting. For instance, "Make a bar chart of the 

quantities supplied by each supplier". Queries in this category can also not be solved with 

SQL. 

Thus, SQL is not powerful enough to handle all queries that an everyday user of a database 

may wish to have answered. We argue that the capability to embed SQL in a host programming 

language like PLI1 or Pascal is required if NLI are to handle these types of queries. 

3.2.3 A Sample Solution with Embedded SQL 

To enable us present a sample program solution to a natural language query using embedded 

SQL, we briefly discuss some of the syntactic features of embedded SQL program as  discussed in 

[Date 86al. 

1. Embedded SQL statements are prefixed by EXEC SQL, so that they can easily be 

distinguished from statements of the host language. 

2. Host variables are variables of the host language (in our case Pascal) declared in the 

program. When referenced by SQL statements, the host variable names are prefixed with a 

colon to distinguish them from SQL field names. These host variables can appear in 

embedded SQL wherever a constant can appear in interactive SQL. They can also appear in 

an INTO clause of an SQL statement to designate an input area for SELECT or FETCH. 

Host variables must have a data type compatible with the SQL data type of the fields they 

are to be compared with or assigned to or from. Host .variables and database fields can have 

the same name. 

3. Feedback information about the succesful execution of any SQL statement is available in an 



area called the SQL communication area (SQLCA). A field of the SQLCA called SQLCODE 

holds a numeric status indicator. A SQLCODE value of zero means that the SQL statement 

executed succesfully; a positive value means that the statement executed but constitutes a 

warning that no data was found to satisfy the request; and a negative value means that an 

error occurred and the statement did not complete succesfully. The SQLCA is included in the 

program by means of an EXEC SQL INCLUDE SQLCA statement. 

4. A SELECT statement in SQL causes a table to be retreived that, in general, contains 

multiple records. To be able to handle a record a t  a time, embedded SQL uses a cursor. A 

cursor is a pointer that can be used to run through a set of records. 

Example Query 

To demonstrate the use and simplicity of SQL constructs embedded in a host language 

program, let us express the same query we represented with SQL in Section 3.3 above. The query 

is: "How many suppliers in Paris supply all red screws ?". 

A pseudocode algorithm for solving this query is: 

Step 1: Get the number of different red screws, R. 

Step 2: For i = 1 to number of suppliers i n  Paris, 

do; 

Step 2.1: Get the  count of all red screws, Pi, supplied by supplier i i n  Paris. 

Step 2.2: If R = Pi  

then supplier-count = supplier-count + 1 

Step 3: Print  supplier-count 

The program for this algorithm is given below. The host language here is Pascal. 

programSQLembed; 

l a b e l  15; 



var 

R : integer ; 
Pi :integer ; 
count :integer ; 
supplieri :array [ 1. .5 ]  of char; 
moresuppliers :boolean; 

begin 

E X E C S Q L D E C L A R E S T A B L E  
( S #  C H A R ( S )  NOTNULL,  
SNAME  CHAR(^^), 
S T A T U S S M A L L I N T ,  
C I T Y  C H A R ( I ~ ) ) ;  

EXEC SQL DECLARE P TABLE 
( P # c H A R ( ~ )  NOTNULL,  
PNAME CHAR ( 2 0 ) , 
COLOR  CHAR(^^), 
WE1 GHT SMALLINT,  
CITY CHAR(^^)); 

E X E C S Q L D E C L A R E S P T A B L E  
( s #   CHAR(^) NOTNULL, 
P #  CHAR ( 5 ) NOT NULL, 
QTYSMALLINT); 

E X E C S Q L I N C L U D E S Q L C A ;  

EXECDECLARE Z C U R S O R F O R  
~ELECTCOUNT(UNIQUESP.P#),SP.S# 
FROM P ,S ,SP 
WHERE S P . S #  = S.S# 
AND S . C I T Y =  ' P A R I S '  
AND SP .P#=P .P#  
AND P . COLOR= ' RED ' 
AND P.PNAME='SCREW' 
GROUP BY S . S #  ; 

{The above declares a cursor to point 
at theset of redscrewsbyeach 
Paris supplier 1 

EXEC SQLWHENEVERNOTFOUNDCONTINUE; 
EXECSQLWHENEVERSQLERRORCONTINUE; 
EXEC SQLWHENEVERSQLWARNINGCONTINUE; 

{~hesethree statementswillmake the 
precompiler not to insert an " I F  condition 
GO TO label'' statement after each 
executable SQLstatement,itencounters. 
N O T F O U N D ~ ~ ~ ~ ~ S Q L C O D E = ~ ~ O ,  SQLWARNING 



meansSQLCODE>OandSQLCODE-=loo, 
SQLEKROR means SQLCODEcO 1 

EXECSQLSELECTCOUNT (UNIQUEP.P#) 
INTO : R 
FROM P 
WHERE P . COLOR= ' RED ' 
AND P. PNAME= ' SCREW' ; 

{Theabovekeepsthetotalnumberof different 
typesof redscrewsthataresupplied) 

IF SQLCODE 0 
then 
begin 
writeln (SQLCA); 
goto 15; 
end; 

EXEC SQL OPEN Z ; 
I f SQLCODE 0 
then 
begin 
writeln (SQLCA); 
goto 15; 
end; 

moresuppliers:=true; 
whilemoresuppliersdo 
E X E C S Q L F E T C H Z I N T O : P ~ , S U ~ ~ ~ ~ ~ ~ ~ ;  

caseSQLCODEof 
100:moresuppliers := false; 
-100:begin 

writeln (SQLCA); 
goto 15; 
end; 

0: begin 
if R=Pi 
then count:=count + 1 ; 
end; 

end; {for while) 
writeln  umberof of suppliers in 
Pariswhosupplyall redscrews 
is', count); 

EXECSQLCLOSE Z; 
15: end; 



3.3 TQA's Extension - of SQL 

TQA provides an elegant extension to the SQL query language which can express queries in 

categories (I), (2), (4), and (5) of Sub Section 3.2.2 above. For the purposes of this thesis, we name 

this extension TQA-TL. However, this extension to SQL can not express queries in category (3) 

above. That is, this extension does not handle conditional queries that are of "if-then-else" 

structure. In addition, the TQA target language, like SQL, tends to be incomprehensibile when 

queries involving universal quantifiers are expressed. We discuss the structure of TQA-TL . 
a. Queries that need Yes or No answers. 

(i) The first structure of TQA-TL for this class of queries (category (4) of Sub Section 

3.2.2) in the TQA-TL is given below: 

POS 

(SQL STATEMENT) 

*************** 

For instance, "Is S2 in Paris?". 

TQA-TL for this query is given below: 

POS 
SELECT S#, SNAME, CITY 
FROM S 
WHERE S#='S2' 
AND CITY = 'PARIS'; 

(ii) Another structure for Yes/No queries in the TQA-TL is counter queries, which are identical to 

POS queries except that they return Yes if the attached SQL query retrieves null, and No 



otherwise. The structure of this form of extension is a s  follows: 

CTR 

SQL STATEMENT 

*************  

For instance, the query "Does each supplier supply a t  least 25 parts?" 

can be represented with TQA-TL as: 

CTR 
SELECT S# 
FROM S P  
GROUP BY S# 
HAVING COUNT(DIST1NCT P#) < 25 ; 

This query says: "If there is any S# that  supplies less than 25 parts, then say No, otherwise say 

Yes". 

b. The second form of TQA-TL handles English queries in categories (1) and (2) of Sub 

Section 3.2.2 which are quota queries asking for the retrieval of a specific number of 

objects. The structure of the extension is a s  follows, where the symbol I means or. 

OPERATOR 

(OPERATOR TYPE) 

(ARITHMETIC EXPRESSION I VALUE 

(SQL STMT) 

( SQL STMT) 

Operator type can be any of the following: 

EQUAL, LESSTHAN, MORETHAN, LESSTHANEQ, MORETHANEQ, PERCENT, 

CHOOSE N, [CHOOSE 1 TO N ........ ORDER BY X DESCI, and so on. 



For instance, "Are there 3 P2's ?". 

OPERATOR 
EQUAL 
3 
SELECT SUM(SP.QTY) 
FROM SP, P 
WHERE SP.P#=P.P# 
AND P.P#= 'P2'; 

For instance, "Are there a t  least 10 red screws ?". 

OPERATOR 
LESSTHANEQ 
10 
SELECT COUNT(DIST1NCT P.P#) 
FROM P 
WHERE P. COLOUR = 'RED' 
AND P.NAME = 'SCREW' ; 

c. Making Charts: The third extension of TQA-TL handles queries in category (5)' which ask 

for graphics printing. The structure of this form of extension can be either of the 

following: 

(i) BAR CHART WITH 2 AXES SPECIFIED 

SQL STMT USING GROUP BY 

(ii) PIE CHART WITH 2 AXES SPECIFIED 

SQL STMT USING GROUP BY 

Example 1, "Draw me a bar chart of the number of parts supplied by each supplier". 

BAR CHART WITH 2 AXES SPECIFIED 
SELECT SP.S#, SUM(SP.QTY) 
FROM S P  
GROUP BY S# ; 

Example 2, "Draw me a pie chart of the number of suppliers by city". 



PIE CHART WITH 2 AXES SPECIFED 
SELECT CITY ,COUNT(DISTINCT S#) 
FROM S 
GROUP BY CITY; 



CHAPTER 4 

EXTENSIONS TO SYSTEM X 

In this Chapter, we present a general description of the structure of the CQR of System X 

before we discuss our extensions to this CQR. We also discuss briefly the System X LF before we 

describe our modified LF. Finally, our sample database schemas are presented. 

4.1 The System X Canonical Query Representation - - 

A System X CQR is produced by the application of a set of inverse lexical transformations 

and a set of syntactic transformations to a parse tree of the surface structure of a sentence. A CQR 

is a tree that explicitly defines the quantifiers in an English language query and their scoping, and 

also shows the relationship between the English language query and the database stored data. A 

CQR relates the English language query to the stored data by specifying join paths among relations 

in the database structure. In CQR, an English sentence is represented by the highest node S ̂  . 

This S ̂  node has descendant nodes which are from left to right: TYPE, QUANTIFIER, and S or 

NP. The TYPE node specifies whether the English query asks for the retrieval of data or for a "yes 

or no" answer to a question. The QUANTIFIER node may have more than one quantifier specified, 

depending on the number of quantifiers present in the English input. There are three types of 

quantifiers, sometimes referred to as  quants each with a variable argument. The quants are either 

EXIST, WHICH or ALL. For instance, the query "Which math majors take all math courses", will 

have a CQR with a QUANTIFIER node that looks like the following: WHICH XI, ALL X2. Here, 

X1 refers to math majors while X2 refers to math courses. The S or NP node of the S ̂  node 

specifies the conditions that apply to these variable arguments of the quants, the join paths in the 

relations and so on. Each S node has a descendant node which is V, and one or more NP nodes. A V 

node can have as its index one of the following: a name of a relation in the database, an operator 

(e.g., MAX, MIN, TOTAL), a predicate (e.g., LESSTHAN),a NOT, an OR, or an AND. An NP 



node can have an index which is a variable name or a constant, or it may have an S descendant. 

An NP may also have an S A descendant to represent relative clauses. The BNF description of this 

CQR used by System X is given in Appendix A and CQRs for our example queries are given in 

Appendix E. 

The CQR which our first algorithm accepts as  its input conforms to the CQR generated by 

System X. We have, however provided some extensions to the System X CQR, discussed in the 

following Section. These extensions are essential to enable us to handle the various kinds of queries 

already solved by the TQA system and as  well as  additional ones. 

4.2 Extensions to System X CQR - -- 

Recall that the objective of this research is to extend CQR and to show how it may be 

translated into a more powerful target query language than SQL. It is not the responsibility of this 

research to explain the procedures involved in transforming the English language query to 

extended CQR. However, we have carefully considered the issue of NL-to-CQR translation and it is 

our belief that implementing these extensions will not present serious problems in this regard 12 .  

We have extended System X CQR in the following ways: 

1. Single - Or Multiple Attribute Specification: 

The quant nodes of the CQR can have either single attributes or multiple attributes specified 

in the order they should be listed. For instance, the query "Which math majors take a math 

course ?", has a quant node defined as" : 

l 2  We assume that the various components of the lexicon, the parser and the semantic interpreter 
can easily be modified to handle our suggested extensions. 

l3  The triangle notation under a node replaces a deleted subtree which contains information not 
relevant to our discussion here. 



TYPE QUANT S 

WH WHICH 
X2 

This CQR means that  a single attribute X2, which stands for the student numbers of math 

majors, should be retrieved. Another query, "Display names and grade point averages of 

computing science students", is represented as follows with its quant node having multiple 

attributes. 

TYPE QUANT S 

This means that the multiple attributes 5 3  (which stands for the names of Computing 

students) and X5 (which stands for the grade point averages of computing studentsi are to be 

retrieved. 

2. - Y/N combined - with WHICH - a t  QUANT 

Although the BNF representation of CQR in [McFet 871 allows for a YhT type to have a 

WHICHat the QUANT node of a CQR, the current System X implementation does not allow 

this. For our purposes, we assume that this type of representation is possible. For instance, 



consider the CQR expression for the query, "Are there a t  least 100 math majors '?" 

S 

TYPE QLANT S 

x5 I 
pedicate 100 

I 
lessthan 

Here, X5 stands for the count of all math majors. 

3. Handling guota queries: 

We provide a second argument for the first variable term of the QUANT node. This allows us 

to express such queries as: "Get the best three math majors". 

TYPE QUANT NP 

WH WHICH 
X3(3)  

Here. X1 stands for the student numbers of math majors. and the numeral 3 in brackets 

indica~es that three such Y 1s are to be retrieved. 

4. IF-THEN-ELSE Type -- of Queries 

We provide an additional rule for extension of S A which is that an S A can also expand to 

< type><SA > < S A  > < S A  >. 

This allows us to represent such queries as: 

"If student number 8304 is a math major, give me the math courses, he takes else give me 



his name and department." 

The solution to this class of query will be given in Chapter 6. 

4.3 The Modified LF - - 

Recall that  the CQR is accepted as  input by some transformational algorithm to generate a 

LF. The structure of the System X LF has some resemblance to the system's CQR. In their LF, a 

query could be any of the following types: a verification, a retrieval, or an aggregation. A verification 
- 

is a Y/N type of query, a retrieval is a simple retrieval query that does not involve aggregate 

operations (e.g., "which math majors take all math courses?") and an aggregation is a query that 

involves some aggregate operations (e.g.. "how many math majors take all math courses"). 

Although the CQR of the system explicitly defines the quantifiers in a query, the representation of 

universally quantified queries in the LF uses double or nested negations. A LF query usually 

contains a declaration which is the L F  translation of some S or NP branches of the CQR. Further 

details on the translation of a CQR tree to LF are gwen in Chapter 6. The BNF grammar for LF 

used by System X is given in Appendix B [Hall 871. 

To enable us handle universally quantified queries procedurally rather than with double or 

nested negation, and also to cover some classes of queries not yet covered by TQA, we have 

modified the BNF grammar for LF used by System X. We discuss our modifications next. 



In our system's LF, a query can be any of the three types in System X's LF, as well as  one 

of the two new types, a comparative, or an ExplicitStruct. A comparative query is the same as an 

"if-then-else" type of query and consists of a verification, followed by two retrievals. An 

ExplicitStruct represents any query that involves some universal quantification. A query that can 

be represented by an ExplidtStruct is "which math majors take only math courses?". With 

ExplicitStruct, we are able to eliminate the use of double or nested negations to represent universal 

quantification. 

Our LF uses OrderByClause to specify when a LF declaration should translate to a sequence 

of SQL statements and an iterative program statement (like FOR loop). This procedure triggered 

by a LF OrderByClause will become clearer later. Our ExplicitStruct usually contains more than 

one declaration, and could have an OrderByClause. Each OrderByClause has a setcondition which 

depends on the second quantifier in the English query and its representation in the CQR. If the 

second quantifier in an English query is ALL, the set condition specified for the OrderByClause is 

SUPERSETOP, if it is ONLY, the setcondition for the OrderByClause becomes SUBSETOP. At the 

end of the LF representation for the ExplicitStruct, another setcondition for the very first 

quantifier in the query is specified. At this level, other quantifiers like WHICH and EXIST are also 

possible. ONLY a t  this first level is handled as ALL. The setcondition for WHICH is NOSETOP, 

that for EXIST is NOTEMPTYSETOP, while that for ALL is SUPERSETOP. An ExplicitStruct 

LF structure to solve the query "which math majors take only math courses?" is: 
( 
< LF for set of math majors > 
(ORDERBY math courses 

(SECONDARY math majors) 
(SUBSETOP) 
< LF for set of math majors 

and math courses they take > ) 
(NOSETOP) 

1 

The above ExplicitStruct has two declarations. The first is a simple declaration that represents the 

set of math majors. The second is an OrderByClause that represents set of math majors order by 

math courses they take. The setcondition in the OrderByClause is SUBSETOP because of "only" 



quantifier a t  the second position in the query while NOSETOP is the setcondition that represents 

"which" a t  the first position in the query. The BNF grammar showing only our addition to the 

System X's LF is given in Appendix C. 

4.4 Sample Database Schema3 

To enable the reader to understand our references to the database schemas our example 

queries use, we present the two database schemas used in this thesis. 

The first database is the supplier-and-parts database schema discussed in [Date 86al and 

presented in Chapter 3 as Fig 3-1. 

The second is an academic advice database schema. This is the same schema used by 

System X. The format of the schema entries is: 

RELATION-NAME = key-attr l...key-attr n attribute 1. ..attribute m 

for a relation with m non-key attributes and a key composed of n attributes, where m r 0 and n r 

1. The key attributes are underlined. The academic advice database is given below. 

OFFERING = offer# cname semester units 

STUDENT = student# name major minor sex status 

CLASS = class# offer# sec faculty# text 

FACULTY = facultv# name office sex status 

APPOINT = faculty# dept 

ENROLL = class# student# final-grade 

SCHEDULE = group# time room - 
DEPARTMENT = d e ~ t  chairman faculty 

COURSE = cname description dept 

The Academic Advice database scheme 



CHAPTER 5 

THE TARGET LANGUAGE 

This chapter presents definitions of simplified SQL and allowed SQL before discussing the 

design of our target language. Finally, an example representation of an English language query 

using our target language is presented. 

5.1 Simplified SQL and Allowed SQL -- - 

Our target language uses a simplified version of SQL which is described in this Section. The 

major cause of incomprehensibility in SQL is its use of double and nested negation. In our system, 

such constructs as: 

SELECT ------ 
FROM ------- 
WHERE NOT [EXISTIIN] 

(SELECT ------ 
FROM ------ 
WHERE NOT [EXISTIIN] 

(SELECT ------- 
FROM ------ 
WHERE -------); 

are excluded from the simplified SQL syntax. Simr ~lified SQL, however, allows SQ !L constructs 

involving just one NOT EXIST or NOT IN. Note that the double or nested negation we exclude are 

those represented at the SQL level and not a t  the NL level. That is to say that a user is not 

restricted from posing an English language query with more than one "not" if he desires to. Such 

queries that introduce double negation a t  the English language level are translated straight to 

SQL. If a user decides to introduce incomprehensibility which he could easily avoid by re-phrasing 

his English query, the system might not bear the responsibility of restricting the number of 

negations a t  the SQL level to one. For example, a query like "which suppliers do not supply parts 

not supplied by S2 ?" is an unnecessary complication. This same.query can easily be posed as 



"which suppliers supply parts sup;-,liud tly S2 ?". Thus, our target language is concerned with 

double negations introduced a t  the SQL level because of universal quantifiers. 

I To enable us summarise the syntax of our target language, we define allowed SQL 

statements, which are different from simplified SQL. Allowed SQL is TQA-TL, using simplified SQL 

instead of the regular SQL that TQA-TL normally uses. The syntax of allowed SQL is given below: 

1 Allowed SQL statements: 

a. simple retrieval SQL queries without double or nested negation. 

[simple SQL stmt] 

b. The YesINo type of query a s  defined in TQA-TL 

l-POSI 

[simple SQL stmtl 

c. TQA-TL's OPERATOR statement that handles quota queries 

[OPERATOR] 

[OPERATOR TYPE] 

[MATH EXPRESSION I VALUE I simple SQL stmtl 

[simple SQL stmtl 

where operator type is one of the following: 

EQUAL, LESSTHAN, MORETHAN, LESSTHANEQ, MORETHANEQ, PERCENT, 

CHOOSE N, [CHOOSE 1 TO N ---- ORDER BY X DESCI. 

5.2 Design of Our Target Language -- 

Having defined what an allowed SQL statement is, we now discuss the design of our target 

language. In forming the target language, we make the syntax as close to that of embedded SQL 

program (discussed in Chapter 3) as possible. The host language we use is Pascal [SWP 821. Unlike 



embedded SQL, our target language uses simplified SQL and allowed SQL statements. Like 

embedded SQL, the target language permits an allowed SQL statement wherever the host 

language, Pascal, would allow a Pascal statement. 

A statement in the target language can thus be any of the following: an allowed SQL 

statement, an  assignment statement, a whileloop, an if statement, a repeatloop, a print statement, a 

read statement and a procedure call. Those kinds of statements listed above other than allowed SQL 

statements are formed as defined for the Pascal language. The target language can also take a 

simple SQL statement as  an  expression, as described in Section 4.1. Examples of some statements 

of the target language are: 

1. Allowed SQL statement: 

SELECT A.NAME 
FROM STUDENT A 
WHERE A.NAME = 'JOHN X' 
AND A.MAJOR = 'MATH'; 

2. Assignment statement: 

P: = SELECT A.STUDENT# 
FROM STUDENT A 
WHERE A.MAJOR= 'MATH'; 

3. WhileLoop: 

WHILE MORE DO 
BEGIN 

statementlist 
END; 

4. If statement: 

IF 
POS 
SELECT A.NAME 
FROM STUDENT A 
WHERE A.NAME = 'JOHN X' 
AND A.MAJOR= 'MATH'; 

THEN 
SELECT A.STATUS 
FROM STUDENT A 
WHERE A.NAME = 'JOHN X' 
AND A.MAJOR= 'MATH'; 

ELSE 
SELECT A.MAJOR 
FROM STUDENT A 



WHERE 
5. Print statement: 

A.NAME = 'JOHN X'; 

WRITE (P); 

C The operators in the target language include set operators like subset (-), superset (3) and 

non empty set (f 0). The syntax of the target language is summarized in Appendix B. The target 

language assumes that all variables have been declared to be the appropriate data type in 

accordance with Pascal syntax. 

5.3 Example Solution of an English Language Query -- 

To demonstrate the use of the target language, we give our target language solution for the 

same English language query solved in Chapter 3 with embedded SQL and strict SQL. The query 

is: 

"How many suppliers in Paris supply all red screws ?". 

Q1:  = SELECT COUNT (UNIQUE P.P#) 
FROM P 
WHERE P.COLOR= 'RED' 
AND P.PNAME = 'SCREW'; 

(P now contains number of all red screws) 

Q2 : = SELECT COUNT (UNIQUE SP.P#), S.S# 
FROM P, S, SP 
WHERE SP.S#= S.S# 
AND S.CITY = 'PARIS' 
AND SP.P#=P.P# 
AND P.COLOUR= 'RED' 
AND P.PNAME = 'SCREW' 
GROUP BY S.W, 

{ Q2 now contains the number of red screws 
supplied by each Paris supplier } 

FOR I : = 1 TO number of Paris suppliers do 

BEGIN 
IF  Q2 = Q1 
THEN COUNT : = COUNT + 1 
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END; 

WRITE (COUNT); 

This solution is quite similar to the solution with embedded SQL program but quite different 

from the solution with SQL which used double negation. Our target language program is a concise 

representation of embedded SQL in Pascal program but with the following differences. 

One major difference between embedded SQL program and our target language program is 

that  while embedded SQL program permits double or nested negation, our target language 

program does not. Secondly, our target language allows some extensions to SQL using the TQA-TL 

constructs. The use of set operations by our target language only ignores implementaion details. 

C For instance, a set operation A --B, in our trirget language, becomes a for-loop or a while-loop to 



check if all elements of array A are contained in array B, when implemented. Although the target 

language uses Pascal, portability of the target language to systems that prefer other programming 

languages like PL/1 or C merely requires changing the syntax of Pascal to the syntax of the desired 

programming language. 

What part of the system structure of a NLI (e.g., System X in Fig 2-1) looks like using our 

solution approach is shown in Fig 5-1. 



CHAPTER 6 

THE TRANSFORMATIONAL ALGORITHMS 

This Chapter discusses our representation of universally quantified queries as  well as  other 

classes of queries and presents the transformational algorithms involved. Two algorithms are 

described. The first algorithm accepts CQR as its input and generates an intermediate form called 

logical form. The second algorithm accepts the logical form and generates the target language 

described in Chapter 5 as output. The CQRs, LFs, and our target language representations for 

eight example queries using these algorithms are given in Appendix E. 

6.1 Classification - of Quantified Queries 

For the purposes of expressing the algorithms, we have classified quantified queries 

according to the structure of the CQR they generate. We use the information a t  the Quantifier node 

of the CQR for this classification. This means that the category to which a query belongs depends 

on the number of quantifiers involved in the query, and the type of those quantifiers. We allow 

three quantifiers to be represented in the CQR: ALL <variable >, WHICH <variable> and 

EXIST <variable>. We restrict the maximum number of quantifiers that can be involved in any 

one query to three because the meaning of a NL query that involves more than three quantifiers is 

not readily obvious and it is doubted if any users will ever be interested in posing such a query. 

We therefore have three major classes of queries. 

1. Queries with one quantifier. 

2. Queries with two quantifiers 

3. Queries with three quantifiers. 

Each major class is further classified according to the type of quantifiers it has and their 

order of occurrence in the CQR. Thus, the three major classes are classified further into the 



following subclasses. An example of each class of query is presented. 

1. Queries with one quantifier. 

a. Quant-type is WHICH <variable > 

For instance, "Which students are taking math100 ?" 

b. Quant-Type is EXIST <variable > 

For instance, "Is John taking mathlOO?" 

c. Quant-Type is ALL <variable> 

For instance, "Does every math major take math100 ?" 

2. Queries with two quantifiers. 

We give the orders and combinations of the three defined quantifiers (ALL, EXIST, WHICH) 

which can currently be represented in System X's CQR. 

a. WHICH <variable 1 > , ALL < variable2 > 

For instance, "Which math majors take all math courses ?" 

b. ALL < variable 1 > , ALL < variable2 > 

For instance, 

1. "Do all math majors take all math courses ?" 

2. "Do all math majors take only math344 ?I1 lU 

c. EXIST <variable 1 > . ALL < variable2 > 

For instance, "Was a math course taken by every student ?" 

d. EXIST < variable 1 > , EXIST < variable2 > 

For instance, "did John not take every math course ?" l5 

Some negated universally quantified NL queries are interpreted at the CQR level 

with existential quantifiers (EXIST'S), and such queries account for the class which 

contain more than one EXIST quantifier in the CQR structure of a query. For instance, 

l4 This query is in this subclass because "only" is represented as  ALL a t  the CQR level. 

l5 Note that some other combinations that may not be possible at  the current stage of the System 
X prototype are not represented. 



the query: "Did John not take every math course ?" is interpreted in CQR as "Does there 

exist a student named John and does there exist a math course such that John did not 

take the course ?". 

3. Queries with three quantifiers. 

We can have the following sub-categories: 

a. WHICH <variable 1 > , ALL < variable2 > , ALL < variable3 > 

For instance, "which students take every course from every instructor?" 

b. EXIST <variable 1 > , ALL < variable2 > , ALL C variable3 > 

For instance,"was a math course taken by every student in every department ?" 

c. ALL < variable 1 > ,ALL < variable2 > , ALL < variable3 > 

For instance, "Do all math majors take every course from every instructor ?" 

Other classes of English language queries have CQR's that belong to one of these major and 

sub categories. For instance, quantified queries with COUNT fall into the groups with WHICH and 

ALL'S or WHICH and EXIST'S. Universally quantified queries that contain English "only" are also 

represented in terms of ALL. 

6.2 Idea Behind Our Approach --- 

To avoid using double or nested negation to simulate universal quantification, we break down 

the procedure into simple step-by-step retrievals. This Section also explains how the algorithms of 

Sections 6.4 and 6.6 handle all the classes of queries outlined in Section 6.1. The order in which 

quantifiers appear in the CQR of an English query is the same as the order in which they appear in 

the input query. Four quantifiers, WHICH, EXIST, ALL, and ONLY are of primary concern to us 

in this thesis, although the target language has been designed to handle many more. The following 

rules are applicable: 

" Each of the four quantifiers has an associated set operator. A WHICH quantifier a t  the CQR 



has the set condition NOSETOP attached to it, which means that there is no set operation 

involved a t  the level the quantifier appears. An EXIST quantifier has the set condition 

NOTEMPTYSETOP attached to it, which mzans that a t  the level it appears there is a test 

for a non empty set (# 0). An ALL quantifier has the set condition SUPERSETOP attached 

to it which means that'there is a test for a superset operation between some two sets. An 

ONLY has a set condition SUBSETOP attached to it which means that there is a test for a 

subset operation between some two sets. 

* In our algorithm, the processing of ONLY when in the first quantifier position is the same a s  

the processing of ALL in the same position. However, the set operator that applies to objects 

and subjects in the set of data retrieved changes when ONLY is in the second quantifier 

position. 

* We start solving a query with three quantifiers as though it is a query with just two 

quantifiers, its first and second quantifiers. Secondly, we collapse the part of the query 

containing the two innermost quantifiers to get a set of values. In this case, two 

interpretations are possible. For instance, with the query "which math majors take all math 

courses from all math instructors?", the first interpretation looks for those students who take 

all courses taught by all math instructors. The second interpretation wants each of the 

courses taken by the students to be taught by all math instructors. The algorithm has to be 

informed by the CQR which interpretation is desired so that the appropriate rule in our 

algorithm is triggered. If the first interpretation is desired, the part of the query containing 

the two innermost quantifiers is translated to a simple SQL query to get the desired set a t  

the second step. In the above example the set obtained from collapsing the part of query 

containing the two innermost quantifiers is {courses with instructors in math dept}. If the 

second interpretation is desired, then the part of the query containing the second and the 

third quantifiers is first translated as though it is a complete query containing the two 

quantifiers WHICH and the third quantifier in that order. For instance, the query "do all 

math majors take all math courses from all instructors?" is represented a t  the CQR as ALL 



(math majors), ALL (math courses), ALL (instructors). To get the desired set from collapsing 

the two innermost quantifiers, we look a t  that part of the query a s  WHICH (math courses), 

ALL (instructors). Then we pass this complete query structure to our algorithm that handles 

two quantifiers which returns the {math courses each of which is taught by all math 

instructor). Note that ONLY in the third position has just the second interpretation as  the 

first interpretation does not make sense. 

* The solution for ONLY when it is the first quantifier is the same as  that for ALL because of 

the structure of the CQR. 

Our general solution for queries is outlined below. This algorithm describes the criteria that 

our CF-to-LF and LF-to-Target-language algorithms are based on, but does not give details about 

any of these algorithms. The detailed discussions of our two algorithms are presented in the 

following Sections. 

1. If the query has only one quantifier and it is an EXIST or a WHICH, it is solved in the way . 

TQA and System X would solve it. If the only quantifier is an ALL <subjects>, the 

algorithm proceeds as  follows l6 : 

Step 1: A : = {subjects} 

Step 2: B : = {subjects satisfying the conditions shown on  the CQR entire S branch} 

Step 3: If B 3 A then say  "yes" else say "no"; 

Example 1.1 

To answer the query, "do only math majors take mathlOO?", we proceed as  follows. This 

query is represented a t  the CQR as "are all students taking math100, math majors?". 

Step 1: A := {students taking math100) 

Step 2: B := {math majors taking mathl00) 

l6 The set notation { } means set of all objects described by what is inside the brackets. For 
example, {student#) means the set of all student numbers. 



Step 3: If B 3 A then say "yes" else say "no"; 

2. If the query has two quantifiers, the query structure is: 

Quantl <subject>, Quanta <object> 

where Quantl can be- EXIST, WHICH, or ALL, and Quant2 can be EXIST, ALL, or 

(implicitly) ONLY. Our general solution here is: 

Step 1: A : = {subjects) 

{This s tep 1 is omitted if Quant l  is WHICH o r  EXIST.) 

Step 2: B : = {objects} 

Step 3: C : = {objects grouped by subject} 

For  i : = 1 to  number of subjects 

If {object for i th subject} C setcondition for Quant2 > B 

then make subject i a n  element of D. 

end; 

Step 4 : 

(a)If t he  setcondition for Quant l  is NOSETOP then write D; 

(b) otherwise If the  set condition for Quantl  is NOTEMPTYSETOP then write ('( If 

D # Q) then  say "yes" else say "no")'); 

(c) otherwise write ('(If D <setcondition for Quant l>  A then say "yes" else say 

"no")'); 

{i.e, if Quantl  is ALL, setcondition is SUPERSETOP} 

Example 2.1 

To answer the query, "do all math majors take all math courses ? ", we proceed as  follows: 

Step 1: A : = {math majors} 

Step 2: B : = {math courses} 



Step 3: C : = {Cmath courses(mc)> grouped by math majors (mm)} 

For i : = 1 to number of math majors 

If {me of ith mm) 3 B 

then make math major i an element of D. 

end; 

Step 4: If D 2 A then say "yes", otherwise say "no". 

In this case, our LF will specify SUPERSETOP both in the OrderByClause and after the 

OrderByClause because the second quantifier is ALL and the first quantifier is also ALL. 

Example 2.2 

To answer the query, "do all math majors take only math courses ?", the step by step 

solution proceeds as follows: 

Step 1: A : = {math majors) 

Step 2: B : = {math courses) 

Step 3: C 1: = {< courses(c) > grouped by math majors(mm) } 

For i := 1 to number of math majors 

If {c of the ith math major) B 

then make math major i the next element of B 

end; 

Step 4: If D 2 A then say "yes" otherwise say "no"; 

In this case, our LF will specify SUPERSETOP in the OrderByClause and SUBSETOP after 

the OrderByClause for the final set operation. 

Example 2.3 

To answer the query, "Which math majors take all math courses ? ", we proceed as follows: 



Step 1: A : = {math courses) 

Step 2: B := {Cmath courses(mc)> grouped by math majors (mm)} 

For i : = 1 to number of math majors 

If {mc for the ith mm) 3 A 

then make math major i an element of C. 

end; 

Step 3: Write C; 

In this case, our LF will specify NOSETOP as the setcondition for the final set operation and 

SUPERSETOP for the OrderByClause because of the two quantifiers WHICH and ALL 

involved in the query. 

Example 2.4 

If the query is "is there a math major taking all math courses ?", the solution is: 

Step 1: A := {math courses) 

Step 2: B : = {<math courses(mc)> grouped by math majors (mm)) 

For i : = 1 to number of math majoEs 

If {mc for the ith mm) 2 A 

then make math major i an element of C .  

end; 

Step 3: If C # Q) then say "yes" else say "no"; 

If the query has three .quantifiers, the first step is to look a t  the query as  a complete query 

with just two quantifiers, its first and second quantifiers. The second step is to collapse the 

two innermost quantifiers to get a set. This last step replaces step 2 of algorithm 2 above. 

Other steps proceed as  for case of two quantifiers (first and second) which we started with. 

The structure of this class of query is: 

Quant 1 <subject>, Quant2 < object 1 > , Quant3 < object2 > 



We start solving the query as  though it is: 

Quantl <subject > , Quant2 <object1 > 

Step 1: A : = {subjects) 

{This step 1 is omitted if Quantl is WHICH or EXIST.) 

Step 2: B := (objectl by Quant3 object21 

{Step 2 is the set obtained by collapsing the two innermost quants] 

Step 3: C : = {objectl grouped by subject] 

For i := 1 to number of subjects 

If {objectl for ith subject) < setcondition for Quant2 > B 

then make subject i an element of D. 

end; 

Step 4 : 

(a)If the setcondition for Quantl is NOSETOP then write D; 

(b) otherwise If the set condition for Quantl is NOTEMPTYSETOP then write ('( If 

D # Qj then say "yes" else say "no")'); 

(c) otherwise write ('(If D <setcondition for Quantl> A then say "yes" else say 

"no")'); 

{i.e, if Quantl is ALL, setcondition is SUPERSETOP) 

Example 3.1 

Consider the answer to the query "Which math majors take all courses from all math 

instructors ?" l7 

l7 Note that in solving three quantifiers using the first interpretation, we take it that the element of 
objectl counts just once, in this case, a course counts just once. That is to say, if there are just two 
instructors and both instructors teach a particular course, a student needs to take that course just 
once and not from both instructors. For instance, if instructor 1 teaches math101 and math 201 
and instructor 2 teaches math201 and math30 1, a student who takes math10 1, math20 1 and 
math301 is seen as having taken all courses from all math instructors. 



Step 1: omitted because Quantl is WHICH 

Step 2: A : = {courses taught by all math instructors} 

Step 3: B : = {<courses(c)> grouped by math majors(mm)) 

For i : = 1 to number of math majors 

If {courses for ith mm) 3 A 

then make math ma,jor i an element of C. 

end; 

Step 4: Write C; 

6.3 Description - of Procedures in CQR-to-LF Algorithm - 

This Section describes the procedures used in the algorithm that translates CQR to LF. The 

detailed algorithm that uses these procedures is given in Section 6.4. 

1. Procedure Translate-Tree (S A ). 

The CQR of every NL query has a tree structure that looks like one of the following: 

S * --> TYPE, Quantifier, S; '' S A --> TYPE, Quantifier, NP; or S A --> TYPE, S A , S A , 

S A for comparative queries, where S ̂ ,  TYPE, Quantifier, S, and NP are all nodes of the 

CQR tree. The procedure Translate-Tree (S A ) is a recursive procedure that takes an S A 

node as its input and generates the LF that conforms to our modified LF grammar. The 

procedure starts by writing the query type in the LF. Then, it traverses the quantifier nodes 

from left to right, processing each quantifier and its object in turn. When it encounters a 

quant, it invokes the procedure Translate-Subtree to process it. After all the quants have 

been processed, the rest of the S node next to the node is t r a ~ l a t e d  to LF only if 

there is just one quantifier in the quantifier node. Then, the set operation to apply in the 

query structure is specified. The set operation specified at this level depends on what the first 

"A notation "S A -->TYPE,Quantifier,SW means that node S A has descendants TYPE, Quantifier 
and S from left to right in the tree. 



quantifier in a query is. For instance, the query "Do all math majors take only math courses 

?" has ALL as  the first quant, while the query "Which math majors take all math courses?" 

has WHICH as  the first quant. If the first quantifier is a WHICH, the set operation specified 

is NOSETOP. If the first quantifier is an ALL, the set operation specified is SUPERSETOP. 

If the first quantifier is an EXIST, the set operation specified is NOTEMPTYSETOP. 

2. Procedure Translate-Subtree (subtree,quant) 

This procedure takes a quantifier and the object of the quantifier as its input, processes 

that  quantifier based on the position of the quantifier and its type in the CQR, to produce 

some L F  a s  it output. 

The main procedure passes as parameters to this subroutine, the quantifier and the 

object of that  quant. The object of a quantifier in the CQR is the subtree that has the 

quantifier variable as  its index. For instance, in Appendix E, the CQR for Example query 1, 

the object of the quantifier 'EXIST XI '  is the NOM node whose attribute name is cname in 

the relation offering, and this NOM node has descendants NOM and S. The index of the 

descendant NOM is X1 which identifies this object in the CQR tree. Every other reference to 

this object, like translate to L F  the object of X I  or delete the object of XI ,  refers to the S node 

following this NOM. The CQR also allows for another type of NOM whose descendants are 

NOM and S ̂ .  If the index of a NOM with this structure is encountered, the object of that 

index is the subtree for S ̂ ,  which is a complete query. The object of X 1  in the CQR of 

Example Query 1 in Appendix E, is shown as  Fig 6-1. Subroutine Translate-Subtree, when a 

quantifier and its object are passed in, checks the type of quant. If the quantifier is for 

universal quantification (an ALL or an  EXIST with negation as the first V node), and is the 

first ALL in the query, the subroutine translates the object of this quantifier to LF. But if it 

is not the first ALL in the query, i t  will in addition open up an OrderByClause using the 

variables of the quantifier and that  of the previous quant. I t  specifies the OrderByClause in 

such a way that the attribute in the database that  is bound to the current variable should be 



NOM 

relation cname dept 

I l l  course NOM NOM 

~1 math 

Fig 6-1: The Object of the Quant (EXIST XI) From Example 1 i n  Appendix E. 

selected, but ordered by the attribute bound to the previous variable. For instance, if the 

query is "do all math majors take all math courses ?", the quantifier node of the CQR will 

have a structure that  looks like: ALL XI,  ALL X2. Here, X1  is bound to math majors and 

X2 is bound to math courses. When processing the second quantifier ALL X2: the opening of 

the OrderByClause specified is (ORDERBY X1 (SECONDARY X2i. This means get the set 

of math courses taken by each math major with the rest of the OrderByClause specified. 

Next, the algorithm specifies the set operator to be used inside the iterative statement in the 

target language triggered off by the OrderByClause. If the universal quantifier is ALL as in 

the above query. the user is interested in a math major only if the set of math courses he has 

taken contains all available math courses. Thus. for ALL, the algorithm will specify 

SUPERSETOP. If the universal quantifier involved is - only, as in "do all math majors take 

only math courses ?", it will specify SUBSETOP. Next in the OrderByClause, the algorithm 

translates to LF the subtree linking the current subtree to the previous subtree. If the 

quantifier is WHICH, it checks whether an aggregate operator is involved, a s  in the query 

"how many math majors take all math courses ?". If there is an aggregate operator it takes 

note of that  and the variable bound to the result of the operation. The algorithm also takes 



note if a WHICH quantifier has a numeral argument to represent a quota query. If there is a 

WHICH in the quantifier node and at least one ALL, then the aggregate operator is specified 

just befcire the OrderByClause. 

3. Procedure Translate-CQR-Subtree-to-LF. 

This procedure is called by the Translate-Subtree procedure discussed in 2 above. This 

procedure translates a subtree passed in as  a parameter into LF, using the same technique 

used by TQA and System X. 

In these two systems, when a CQR subtree is to be translated to LF, each variable 

appearing in the branch or branches to be translated must be declared exactly once. If a 

variable is to hold aggregate values like sum of, count of, etc., it may be declared using 

BAGX. BAGX is used when we do not want to discard duplicate values in the "bag" of values 

being summed etc. Otherwise variables are declared using SETX. After declaring the 

variables, if there is more than one relation involved in the subtree, the condition "AND" is 

specified. Then the relation clauses are specified. A relation clause is formed out of an S node 

if the V branch of S is of type relation. The relation clause first shows the relation name, 

then the attribute names from that relation and then the indices of these branches. The 

indices can either denote attribute values, or variable names to be bound to these attribute 

values. Shared variables1' in the CQR structure specify the join path (the connecting link 

between one relation and another). 

This procedure specifies other clauses like comparison or setcondition , which are terms 

used in the BNF description of the LF  grammar. A comparison is of the form "(<cornpop> 

<variable > < attrvalue >)". For example, (GREATERTHAN X3 3) is a condition that 

requires that value bound to X3 be greater than 3. This comparison is formed if a V node 

found in a CQR subtree is a comparison predicate (e.g.,EQUAL, etc.). The setcondition is a 

''Variables that are indices to more than one S node of the CQR. 



new operator not used by TQA and System X, but which is necessary for our program-like 

set operations. In our algorithm, the set condition could be specified more than once in a LF 

query structure. Every OrderByClause in the LF should have a set condition specified. The 

four set conditions used, as described earlier, are SUBSETOP, SUPERSETOP, 

NOTEMPTYSETOP and NOSETOP standing for subset, superset, not an empty set and no 

set operations, respectively. Once a set operation is specified, the query is known not to be a 

simple retrieval query. Thus in our approach, the LF structure is an ExplicitStruct, (that is, 

the LF structure has more than one declaration). A LF declaration can stand for a complete 

query. From information found in the CQR, we are able to specify which of the setconditions 

is required. 

The translation of the subtree shown in Fig 6-1 to LF will give the following: 

(SETX 'X 1 

(RELATION OFFERING 

(CNAME DEFT) 

(X1 'MATH) 

(= =))I 

6.4 CQR to LF Algorithm --- 

This Section presents the algorithm that translates a CQR to LF, and uses the subroutines 

described in Section 6.3 above. 

Procedure Translate-Tree (S * 1; 

1. IF Query type of S A is COND 



1.1 THEN do the following: 

1.11 Let S1 A '52 A ,  53 A be the descendant nodes of S A from left to right. 
* 

1.12 write ('(COND ')20 ; 

1.13 Translate tree (S1 A ); 

1.14 Translate tree' (S2 A ); 

1.15 Translate tree (53 A ); 

1.2 otherwise do the following: 

' 

1.21 IF Query type of S A is Y/N 
* 

THEN write ('(INT '); 

1.22 IF Query type of S A is WH 

THEN write ('('); 

1.23 Initialize variables 

Number-of-quantifier = 0; 

Only = 0; 

Whichflag = 0; 

Existflag = 0; 

Allflag = 0; 

Previous-subtree = null; 

Var = null 

Agg-op = null 

Agg-op-var = null 

Whichalls = 0 

Threequantifier = 0 

Reading = 0 

20 The * in some of the key words in the LF is just a notation and has nothing to do with the 
Kleene closure 



Thirdquantifier = null 

{ Number-of-quant keeps count of the number of quants in the quantifier node. 

Only becomes 1 if the algorithm discovers from the search that the universal 

quantifier at the second level involved in the particular query is ONLY. 

Whichflag is set to 1 when the first quantifier node is WHICH and Existflag is 

set to 1 when the first quantifier is EXIST. Allflag is set to 1 when the first 

quantifier is an ALL Reading is used to indicate which interpretation should be 

in effect for queries with more than one interpretation. Previous-subtree stores 

the name of the variable which is the index to the previous subtree processed. 

Var contains the variable to a WHICH quant. If the WHICH variable is defining - 
an aggregation in the CQR like (quantity), Var is made to contain the object 

that this aggregation should be applied to. Agg-op is used to remember the 

aggregate operator (e.g, TOTAL) in a CQR. Agg-op-var is used to remember the 

CQR variable bounded to the result of an aggregate operation. Whichalls and 

Existalls are set to 1 only if the quantifier node has the structure that looks 

like "WHICH XI, ALL X2 .." or "EXIST XI ,  ALL X2 .." respectively; after 

processing the first ALL. Threequant is set to 1 if there are three quants in the 

quantifier node. Thirdquant holds the third quantifier in a three quantifier 

structure. } 

1.24 Search for the quantifier node. 

1.25 IF there are three quants in the quantifier node then do the following: 

(a) Threequantifier = 1 

(b) Thirdquantifier = the third quantifier 

(c)  Reading = the desired interpretaion (1 or 2) 

1.26 For every quantifier (q) up to the second one in the quantifier node, do the 



following: 

1.261 Increase the Number-of-quantifier by 1. 

1.262 IF Number-of-quantifier is 1 then do: 

(a) IF quantifier is WHICH, set Whichflag to 1 

(b) IF quantifier is EXIST and the V node of S is not an negation operator, 

then set Existflag to 1. 

(c) IF quantifier is ALL or (EXIST and the V node of S is not an operator), 

then set Allflag to one. 

1.263 Translate-Subtree (object'q) 

{ This is a procedure that translates the object of the quant, which is a 

subtree of the CQR that has the quantifier variable as its index } 

1.27 IF Number-of-quantifier = 1 then Translate subtree (proposition) to LF. 

{Some subtrees that have already been processed have been deleted from the CQR 

for the query. The deletion of processed subtrees occurs only if the query is 

simple retrieval type. After processing all quants, the branches of the main CQR 

that are left are translated as the proposition.} 

1.28 (a) IF Allflag = 1 

THEN write ('(SUPERSETOP)'); 

{ This means that the query contains the quantifier ALL in the first position (e.g, 

"Do all math majors take only math courses?"} 

(b) IF Whichflag = 1 

THEN write ('(NOSETOP)'); 

(4 IF Existflag = 1 and Number-of-quantifier > 1 



THEN write ('(NOTEMPTY SETOP)'); 

1.29 End the translation of the CQR to LF by inserting a closing bracket. 

Procedure Translate-Subtree (subtree'quant); 

1. IF quantifier is ALL or EXIST with the first V node equal to negation 

{This allows the processing of any ALL quantifier in the quantifier node; if it is 

EXIST with the first V node as negation, it looks at it as an ALL .) 

1.1 THEN do the following : 

1.11 IF Allflag = 1 and Previous-subtree is not null and is nested in the present 

subtree, then Only = 1; 

1.12 IF quantifier is the first ALL quantifier 

{It can use the variables Existflag, Existalls and Whichflag and Whichalls to find 

out when the first ALL quantifier is being processed. } 

1.121 then translate subtree to LF. 

1.122 otherwise do the following: 

1.1221 (a) If Only = 0 then just translate the subtree to LF without links to 

other subtrees. 

1.1221 (b) If Only = 1 then translate the CQR subtree adjacent to that of the 

subtree to LF. 

1.1221 (c) If Threequants = 1 and Reading = 1 then translate subtree linking it 

to the subtree for Thirdquant. 

1.1221 (d) If Threequants = 1 and Reading = 2 then CQRto-LF (WHICH 

variable2, Thirdquantifier variable3) 
* 

1.1222 IF the V node of the first S is negation, then write ('(NOT '1; 

1.1223 Open OrderByClause as (ORDERBY Previous-subtree (SECONDARY 



variable) 

{variable is the variable arguement to quant) 

1.1224 IF Only = 1 

(a) then write ('(SUBSETOP)'); 

(b) otherwise write ('(SUPERSETOP)'); 

1.1225 Translate the subtree to LF linking to only elements of the previous 

subtree. 

2. IF quantifier = WHICH variable, 

2.1 then do the following: 

(a) if the V node of the first S is an operator, set Var to the next variable in the 

CQR after the operator node, traversing the tree left to right. Set Agg-op-var to 

the quantifier variable, and set Agg-op to the Aggregate operator in the CQR. 

(b) otherwise set Var equal to the quantifier variable. 

3. If it is the second quantifier and Whichflag = 1 then do the following: 

3.1 IF Agg-op - = null then write ('(Agg-op Agg-op-var)'); 

3.2 Open OrderByClause a s  (ORDERBY Var (SECONDARY Previous-subtree) 

3.3 IF Only = 1, 

(a) then write ('(SUBSETOP)') 

(b) otherwise write ('(SUPERSETOP)'); 

3.4 Translate the subtree for Var to LF linking it to elements of the previous 

subtree. 

4. IF it is the second quantifier and Existflag = 1 

4.1 Open OrderByClause a s  (ORDERBY variable1 (SECONDARY Previous-subtree) 

4.2 IF subtree is nested in subtree for Thirdquantifier 



(a) then write ('(SUBSETOP)'); 

(b) otherwise write ('(SUPERSETOP)'); 

4.3 Translate subtree for Var to LF linking it to elements of previous subtree. 

5. Previous-subtree = subtree 

6. Return 

6.5 Description - of Procedures ---- Used in LF to Target Language Algorithm 

This Section describes the procedures that are used to translate LF to the target language. 

The detailed algorithm that calls these procedures is given in Section 6.6. 

1. Procedure Translate-LF (LF) 

This is a recursive procedure that takes a LF tree as  its input and generates the target 

language, which is a program-like structure with some embedded simplified SQL. If the LF 

input is that of a conditional query, the algorithm inserts an "IF" before the SQL translation 

of the first LF query structure. A "THEN" is inserted before the translation of the second LF 

query structure and an "ELSE" is inserted before the translation of the third LF query 

structure. However, if the query structure is a simple retrieval query, it just translates the 

query to SQL using the same technique that TQA and System X use (by "simple retrieval 

query" we mean a query that does not involve universal quantification). The simple retrieval 

query can be a verification like "is John a math major ?", or a retrieval like "which math 

majors take math100 ?", or an aggregation like "how many math majors take mathloo?". 

When a query is not a conditional type and is not a simple retrieval, in our current model, it 

is an ExplicitStruct. These are quantified queries like "do all math majors take all math 

courses ?". 



If the LF structure is that of an ExplicitStruct, the algorithm checks to see if the query 
* 

is a negative query, with "(NOT " early up in the LF tree, or if it contains an aggregate 

operator like "TOTAL", and'it takes note of which of these conditions islare true. Then, the 

algorithm translates each declaration, (which can be a complete LF for a simple SQL 

structure) into SQL using the same technique used by TQA and System X. The SQL form of 

each declaration is made the right hand side of a program assignment statement that has a 

unique variable as its left side. The unique variables used in the program are pushed onto a 

stack, and popped off for subsequent set operations. Then if the LF  for the ExplicitStruct 

contains a setcondition with value "SUPERSETOP", the last unique variable in the stack is 

popped off and written and the set operator to follow is a he ,  superset) and the next unique 

variable is popped off stack and written. If the setcondition is "NOSETOP", the algorithm 

pops off just the last unique variable and writes it as the result of the query; no set operation 

takes place in this case. If the setcondition is SUBSETOP, the algorithm pops off the last 

unique variable from the stack and writes it, then specifies the set operator & be ,  subset) 

before it pops off the next unique variable and .writes it. If the LF has no negation a t  the 

beginning, then the result of the query becomes the result of these last set operations. 

However, if negation is involved, the result of the query becomes the reverse of the result of 

the last set operation. If there is an aggregate operator involved in the LF, a procedure to 

evaluate the aggregate operation and write the result is invoked. 

2. Translate to SQL (declaration) 

Recall that the LF translation of CQR shown in Fig 6-1 is: 

(SETX 'X 1 

(RELATION OFFERING 

(CNAME DEPT) 

(XI 'MATH) 



This is an example of a LF declaration. To translate a declaration to SQL, the 

attributeb) to be specified in the SQL SELECT clause islare that bound to the variable(s) in 

the first SETX or BAGX in a LF declaration; in the above case, 0FFERING.CNAME. In our 

approach, to allow multiple attribute retrieval, the first SETX declares all the variables 

bound to the attributes to be retrieved. Other variables are declared in subsequent SETX 

statements. And the relations to be listed in the FROM part of the SQL query are all 

relations in the LF relation clauses of the LF declaration; in the above case, only one relation 

(OFFERING) is involved. The WHERE part of the SQL query uses the links between 

relations in the LF to specify join paths and also values bound to attributes as  well as  

condition clauses. The complete SQL translation of the above LF declaration is: 

SELECT A.CNAME 
FROM OFFERING 
WHERE A.DEPT = 'MATH'; 

3. Procedure Operator-Evaluate (variablename, Agg-OP) 

This procedure applies the aggregate operator involved in the query to the program 

variable passed in a s  argument, which a t  the time of invocation has some values. For 

instance, if the aggregate operator is "TOTAL" and the variable is V1. V1 a t  the point of 

invocation has a list of say, students. So, the procedure Operator-Evaluate will return the 

number of elements in V 1  as  the result. 

6.6 -- LF to Target Language Algorithm 

This Section presents the algorithm that translates the LF of the query into the target 

language. It  uses the procedures described in Section 6.5. 



Procedure Translate-LF (LF); 

1. IF LF Query is <comparative> 

1.1 THEN do the following: 

1.11 Let LFl, LF2, and LF3 be the <verification> <retrieval> and 

C retrieval > parts of the query. 

1.12 write ('IPh 

1.13 Translate LF (LFI); - 
1.14 write ('THEN'); 

1.15 Translate LF (LF2); - 
1.16 write ('ELSE'); 

1.17 Translate LF (LF3); - 

1.2 otherwise do the following: 

1.21 Initialize variables 

1.22 IF query is <verification > or <retrieval > or C aggregation > , then translate 

query to SQL using the same technique as TQA and System X. 

{In any of these three query structures, only simple SQL statements that do not 

involve double or nested negations a re  involved }. 

1.23 IF Query is < ExplicitStruct > , then do the following: 
4 

1.231 IF there is a (NOT preceeding the first <declaration>, then set the 

program variable Negate to 1. 

1.232 IF there is an  aggregate operator in the LF set the program variable 

Aggop to the the aggregate operator. 

{aggregate operators in the LF are such terms as TOTAL, QUANTITY and 

AVERAGE } 



1.233 If there is a numeral operator in the LF, set the program variable, 

Numeral to the value. 

1.234 For every declaration (d) in the LF, do the following : 

1.2341 Form a unique variable V. 

1.2342 write (': = '); 

1.2343 If (d) is not an OrderByClause then do the following; 

(i) Translate to SQL (d); 

(ii) Push V onto a stack. 

1.2344 If (d) is an OrderByClause then do the following: 

(i) Create a view called Temp as (Translate to SQL(d)) 

{If the declaration is an OrderByClause, then the first action is to create a 

view (a virtual relation) that has attributes bound to the SECONDARY 

variable and the ORDERBY variable of the OrderByClause. For instance, 

assume the OrderByClause contains (ORDERBY X2 (SECONDARY X4) ..) 

and X2 is bound to CNAME while X4 is bound to STUDENT#. The SQL 

view creation construct here is 

CREATE VIEW TEMP AS 

SELECT STUDENT#, CNAME 

FROM (some realations as  found in the LF) 

WHERE (conditions in the LF hold); 

Note that the condition ORDER BY CNAME, does not have to be 

specified. We use it in the algorithm just for purposes of clarity.) 

(ii) write ('TEMPVAR : = '); 

(iii) write SQL construct to select distinct elements of the attribute bound 

to the SECONDARY variable of the OrderByClause, from the view temp. 



(iv) Open up a Forloop with index going from one to the number of 

elements in Tempvar. 

(v) write ('SETi : = '); 

(vi)write the SQL construct to select the attribute bound to the ORDERBY 

variable 'from the view temp, where the attribute bound to the 

SECONDARY variable is the indexed element of Tempvar. 

(vii) Make a unique variable V. 

(viii) write ('IF SETi C setcondition> pop(stack) 

then make the ith element of Tempvar the next element of the last 

unique variable. 

(ix) Close the Forloop. 

(x) Push the unique variable onto the stack. 

1.234 (a) IF the next < setcondition> = SUPERSETOP then IF Negate = 0 

then write ('IF pop(stack) 3 pop(stack) 

THEN write ("yes"); 

ELSE write ("no");'); 

otherwise write ('IF pop(stack) 2 pop(stack) 

THEN write ("no"); 

ELSE write ("yes");'); 

(b) IF there is a <setcondition> = NOSETOP then IF Agg-op = null 

(i) If Numeral= 0 then write ('write pop(stack);'); 

(ii) If Numeral t 0 then write only Numeral elements of pop(stack); 

otherwise if Agg-OP z null then write ('write 

Operator-Evaluate(pop(stack),Agg-op)'); 

(c)  IF there is < setcondition> = SUBSETOP then IF Negate = 0 

then write ('IF pop(stack) pop(stack) 



THEN write ("yes"); 

ELSE write ("no");'); 

otherwise write ('IF pop(stack) pop(stack) 

THEN write ("no"); 

ELSE write ("yes");'); 

(d) IF there is < setcondition> = NOTEMPTYSETOP then IF Negate = 0 

then write ('IF pop(stack) f Q) 

THEN write ("yes"); 

ELSE write ("no");'); 

otherwise write ('IF pop(stack) # 0 

THEN write ("no"); 

ELSE write ("yes");'); 



CHAPTER 7 

CONCLUSIONS 

We have demonstrated that the SQL query language, though powerful and popular, is not an 

ideal target language for NLIs because: 

* SQL is quite restrictive and can not express many common NL queries some of which are 

quota queries, conditional queries and anaphoric queries. 

* SQL uses double and nested negations to simulate universal quantifiers and this makes SQL 

translations of such NL queries hard to understand leading to lack of user confidence in the 

translations. 

Secondly, we have described how the TQA system extends SQL to cover more classes of 

English language queries than SQL. However, the TQA target language is also not very ideal for 

NLIs because: 

" TQA uses the full SQL syntax, thus inheriting all the hard-to-understand features of SQL. 

' Many important classes of English language queries are still not handled by TQA system. 

TQA creates an additional external construct for each major class of English language 

queries, e.g., POS for interrogative queries, and so on. There may never be an end to the 

number of such external constructs that need to be created to handle many classes of English 

queries. That means the TQA target language is not very systematic. 

Thirdly, we have argued that mapping NL queries to simplified SQL embedded in a host 

language program, rather than directly to SQL or its extension, has the following advantages: 

' will increase the capabilities of the NL system 

" remove the incomprehensibility posed by some of the constructs in the full SQL syntax. 

can allow intermediate result of a query to be stored for future processing of such queries as 

anaphoric queries. 

" although the host language for our program-like target language is Pascal, portability of the . 



target language to systems that prefer other host languages like PL/1 or C is easy and 

requires merely changing Pascal syntax to the syntax of the new host language. 

In line with this argument, we have designed a target language which uses only simplified 

SQL syntax embedded in a host language program. Our target language also allows some of TQA's 

extension of SQL in the host language program as well as  set operators. Our definition of simplified 

SQL is SQL syntax that excludes all constructs involving double or nestid negation. Constructs 

involving a single negation are allowed in simplified SQL. 

Fourthly, we developed an algorithm to translate the CQR of the natural language query to 

our logical form, which is an extension of TQA's and System X's logical form. We also developed a 

second algorithm that translates logical form to our target language. Our algorithms are specially 

designed to handle universally quantified queries and to remove incomprehensibility. 

In the remainder of this chapter, we discuss some promising approaches to extending this 

work. 

7.1 Observations and Future Research -- 

The observations made in this section are speculative and require further investigation. 

However, they indicate what appears to be a natural and promising extension of the work reported 

in the thesis thus far. 

7.1.1 Number Of Universal Quantifiers in a Query 

This thesis is restricted only to queries with a maximum of three quantifiers. However, if it 

is necessary to pose NL queries that contain more than three quantifiers, we think that our work 

can be extended to accommodate them. We also think, however, that the meaning of NL queries 

that involve more than three quantifiers is not obvious, and that users might want to avoid such 

6 9 



naturally confusing queries. 

Example: "Does every female student in every math course take every course from every math 

instructor ?". 

7.1.2 Query and Search Optimization 

It was not the objective of this thesis to focus on the response time of the queries. However, 

this is a factor that needs some design attention. At present, there are several parses of our input 

trees and we believe that techniques could be developed to optimize the query and also reduce 

number of parses. For instance, Example Query 6 in Appendix E, has a step that could be 

optimized to save time. Since, the only element of V2 in that example is identified by itself and is 

MATH344, it is not necessary to issue the SQL command to pick this single element identified by 

itself. However, since we are using a general procedure to handle all cases, it is outside the scope of 

this thesis to consider query and search optimization. 

7.1.3 Future Implementation of Our Algorithms 

The possibility of implementing our algorithms in the future by probably modifying the 

existing modules of System X has always been given serious consideration during the design. Our 

first algorithm takes as  its input the CQR generated from the upper modules of System X. The 

modules of System X that need to be extended are those shown in Fig. 5-1. 

Little modification is needed to get our target language conform precisely to the syntax of the 

SQL programming language interface available in the database management system (DBMS) 

available. Some of these modifications are in defining tables, the set operators present in the target 

language, and cursors as  allowed in embedded SQL programs. 

It  is our belief that changing or extending some of the existing modules of System X to 

implement our algorithms will not pose serious problems. 



APPENDIX A 

The BNF Description of the System X Canonical Query Representation 

Examples that show the complete tree structures of the CQR which conform to this grammar 

are given in Appendix E. . 

<quantifier > :: = < quant > I variable I < np > 

<quant> :: = ALL I WHICH I EXIST 
* 

< s >  ::= (<ambig><v><np> ) 

< nom > .. - . . - (<relation> < coln > < ambig> <noun >) I (<relation > 

<coln> <ambig> <nom> < s >  I <relation> <coin> <ambig> < s  A >) 

<relation > :: = relation name 

<coin> :: = column name 

< n-type > :: = COLV ( NUMBER 

<V-type> :: = RELATION I PREDICATE I COORDINATE I NEGATION I OPERATION 

<index> :: = value I variable 

<verb > :: = relation naMe I <operation > I <predicate > I NOT I OR I AND 

<operation> :: = MAX I MIN I AVERAGE I TOTAL I QUANTITY 

<predicate> ::= GREATERTHAN I LESSTHAN I GREATERTHANEQ 1 LESSTHANEQ I EQ I 

NOTEQ 

<features> :: = a list of stored objects 



APPENDIX B 

The following is a BNF representation of the grammar that defines the logical form used by 

System X. 

<query > :: = < verification > I < retieval > I < aggregation > 

<retrieval > :: = < simplestmt > I <declaration > 
* 

< verification > :: = (INT <retrieval > I < agg-stmt > ) 

< aggregation > :: = (SETX < variable > < agg - calc > ) 
* * 

< simplestmnt> :: = (RELATION < relname > (< attrname > ) (<constant> )(< relop > )) 

< declaration > :: = (< declop > < variable > <declaration > I < condition-clause > ) 

< agg-calc > :: = (< aggop > <variable > <retrieval > ) 

< condition-clause > :: < conjunction > I < rclause > 
*: 

<conjunction > :: = (AND < conjclause > < conjclause > 

< conjclause > :: = < arithfunction > I < negation > I < selection > I < comparison > I 
<rclause> I < agg talc> - 

< arithfunction > :: = (< arithop > <variable > < arithvalue > < arithvalue > ) 

< comparison > :: (< cornpop > < variable > < attrvalue > 
1: 

<negation > :: = (NOT < retrieval > ) 

< selection > :: = (< selop > < variable > < retrieval > ) 
8 4: 8 

< rclause > :: = (RELATION < relname > ( < attrname > ) ( < attrvalue > )( < relop > )) 

rehame > :: =name of a base or virtual relation in the DB 

< atrrname > :: = DB attribute name 

< declop > :: = SETX I BAGX 

< aggop > :: = TOTAL I QUANTITY I AVERAGE 

< arithop > :: = PRODUCT~DIVISION~ADDITION~SUBTRACTION 

LESSTHANEQJNOTEQIEQUAL 



< selop > :: = MAXIMIN 

<relop>:: = = 

< arithvalue > :: = <number > I < variable > 

< attrvalue> :: = <variable 7 1 <constant> 



APPENDIX C 

Our Addition to System X's LF is given below. Examples that show structures of LF that  conform 

to a combination of this grammar and that  given in Appendix B are presented in Appendix E. 

<query > :: = < verification > I <retrieval > I < aggregation > I < comparative > 1 < ExplicitStruct > 
* 

<comparative > :: = (COND < verification > <retrieval > < retrieval > ) 
* * * 

< ExplicitStruct> :: = ([INT ] [NOT ][<ExplicitStruct>l <declaration > 

< setcondition > > :: = SUPERSETOP I NOSETOP I NOTEMPTYSETOP I SUBSETOP 

< OrderByClause > :: = (ORDERBY <variable > (SECONDARY <variable > ) 

< setcondition > < declaration > ) 

< aggregatestmt> :: = (aggop < variable >) 

< numeralstmt > :: = (Numeral number) 



APPENDIX D 

Grammar for the Target Language 

Examples showing the use of this target language are presented in Appendix E. 

<statement> :: = < allowed SQL stmt > I < assignment> I 

< whileloop > 1 < ifstmt> I < repeatloop > 1 < forloop > 1 < printstmt > 1 <procedurecall > 

< asignment> :: = < variable > ": = " <expression > 

< whileloop > :: ="WHILEm < condition:expression> "DO" <body: statement> 

< forloop > :: = "FOR" < forvar:identifier > ". . - - " < initialvalue:expression> "TO" 

< finalvalue:expression > "DO" < body:statement > 

< repeatloop > :: = "REPEAT" < body:statementlist> "UNTIL" < condition:expression > 

< ifstatement> :: = "IF" <predicate:expression > "THEN" < consequent:statement> ["ELSE" 

< a1ternate:statement > I 

< procedurecall > :: = < pr0cedurename:identif r > [ "(" < arguments:expressionlist> ")"I 

<expression > :: = < simple SQL strnt > I <variable > I < string > I <number > I C relation > 

<relation > :: = <operand 1:simpleexpr > < opera : rea t ionop > < operand2:simpleexpr > 

<variable > :: = <identifier > I < indexedvar > 



< indexedvar > :: = < array:variable > "[" < indeces:expressionlist > 



APPENDIX E 

This Appendix presents some sample queries and shows how they are translated from CQR 

to L F  and then from LF to our target language using the two algorithms presented in Chapter 6. 

Example Query - 1 

Was a Math course taken by every student ? 

?' 

The CQR for this query is the following. This example involves one EXIST and one ALL. The 

interpretation 

students ?". 

given to this query is "is there a particular math course which is taken by all 
s- 

NOM NOM 

relation 

I I \ 
classA NOM 

NOM 

/ Semester 
offering / 

\ 
NOM 

-4 NOM 

/ 

I I 
I ' I  relation cname Aept "rte se-,-... NOM , I 

r + ~ I -  n m n a  course 
I 1  

NOM NOM 

I '  
I math 

X6  



The L F  for example query 1 is the following: 

* 
(INT 

(RELATION ENROLL 

(STUDENT#) 

(ORDERBY 'X3 

(SECONDARY 'XI) 

(SUPERSETOP) 

(SETX 'X3 

. (SETX 'X4 

(SETX 'X5 

(SETX 'X 1 

(AND 

(RELATION ENROLL 

(STUDENT# CLASS#) 

(X3 X4) 

(= = ) I  

(RELATION CLASS 

(OFFER# CLASS#) 

(X5 X4) 

(= =>) 

(RELATION OFFERING 

(SEMESTER CNAME OFFEW) 

(X6 X1 X5). 



(= = = 1) 

(LESSTHAN X6 '881) 

(RELATION COURSE 

(CNAME DEPT) 

(X 1 MATH) 

(= =)))))))) 

(NOTEMPTYSETOP)) 

The target language for the example query 1 is as follows: 

v1:= 

SELECT UNIQUE A.STUDENT# 

FROM ENROLL A; 

CREATE VIEW TEMP AS 

SELECT UNIQUE A.STUDENT#, D.CNAME 

FROM ENROLL A,CLASS B,OFFERING C'COURSE D 

WHERE A.CLASS#= B.CLASS# 

AND B.OFFER#= C.OFFER# 

AND C.SEMESTER < '88 1' 

AND C.CNAME =D.CNAME 

AND D.DEPT = 'MATH'; 

TEMPVAR : = 

SELECT UNIQUE CNAME 

FROM TEMP; 

FOR I : = 1 to (Number of elements in TEMPVAR) 

DO; 



SETi : = 

SELECT STUDENT 

FROM TEMP 

WHERE CNAME = TEMPVAR i; 

IF SETi 3 V 1. 

then add CNAME i to V2 

END; 

IFV2  # Q) 

THEN write ("yes"); 

ELSE write ("no"); 



Example Q u e q  2 - 
Does every math major take a math course ? 

The CQR for this query is as  follows. This is an example of a query with only one ALL. The 

interpretation given to this query is "is it the case that every math major takes at  least one math 

course?". 

x1 
math 

NOM 

I 
5 4  

relation offer# 

I 

X 3  V cnarne 

Course x3 math 



The L F  for Example query 2 is as follows: 

* 
(INT 

(SETX 'X2 

(RELA I'ION STUDENT 

(STUDENT# MAJOR) 

(X2 'MATH) 

(SETX 'X2 

(SETX 'X4 

(SETX 'X5 

(SETX 'X3 

(AND 

(RELATION ENROLL 

(STUDENT# CLASS#) 

(X2 X4) 

(= =I)  

(RELATION STUDENT 

(STUDENT# MAJOR) 

(X2 MATH) 

(= =)) 

(RELATION CLASS 

(OFFER# CLASS#) 

(X5 X4) 

(RELATION OFFERING 

(CNAME OFFEW) 



(X3 X5) 

(= =I)  

(RELATION COURSE 

(CNAME DEPT) 

(X3 MATH) 

(= =))))))) 

(SUPERSETOP)) 

The target language for example query 2 is given below: 

v1:= 

SELECT A.STUDENT# 

FROM STUDENT A 

WHERE A.MAJOR= 'MATH'; 

v 2  := 

SELECT A.STUDENT# 

FROM ENROLL A'STUDENT B'CLASS C7 OFFERING D,COURSE E 

WHERE A.STUDENT#= B.STUDENT# 

AND A.CLASS#=C.CLASS# 

AND B.MAJOR = 'MATH7 

AND C.OFFER#= D.OFFER# 

AND D.CNAME = E.CNAME 

AND E.DEPT = 'MATH7; 

1 ~ ~ 2 2 ~ 1  

THEN write ("yes"); 

ELSE write ("no"); 



Example Query 3 - 
How many math majors take every math course ? 

The CQR for this query is as  follows: 
S A 

I 
WH WHICH ALL 

X5 X4 

X5 v NP 
i I 

operation student# 
I I 
I 

quantity 

I 
class# 

\ 
NOM 

relaiion student#&jol , 
/ 

student - I - 1 -- 
\/I c la>> 

NOM YOJI 

I I 
52 math 
7- S 

NOM - 
I L / NP NP 

/ / 
cname 

I r lation 
offer# 

offering I 
NOM 

I 

I 
X8 

X4 F' "' relation dept I 
' I  cname 

course math I 



The L F  for Example query 3 is given below: 

( 

(SETX 'X4 

(RELATION COURSE 

(CNAME DEPT) 

(X4 'MATH) 

(= =)I) 

(TOTAL 'X5) 

(ORDERBY 'X2 

(SECONDARY 'X4) 

(SUPERSETOP) 

(SETX 'X2 

(SETX 'X7 

. (SETX 'X8 

(SETX 'X4 

(AND 

(RELATION ENROLL 

(STUDENT# CLASS#) 

(X2 X7) 

(= = I )  

(RELATION STUDENT 

(STUDENT# MAJOR) 

(X2 MATH) 

(= = ) I  

(RELATION CLASS 

(OFFEW CLASS#) 



(X8 X7) 

(= =)I 

(RELATION OFFERING 

(CNAME OFFER#) 

(X4 X8) 

(= =)I 

(RELATION COURSE 

(DEPT CNAME) 

('MATH X4) 

(= = 1)))))))) 

(NOSETOP)) 

The target language for example query 3 is as even  below: 

v1:= 

SELECT UNIQUE A.CNAME 

FROM COURSE A 

WHERE A.DEPT = 'MATH'; 

CREATE VIEW TEMP AS 

SELECT D.CNAME, A.STUDENT# 

FROM ENROLL A'STUDENT B,CLASS C, OFFERING D, COURSE E 

WHERE A.STUDENT#= B.STUDENT# 

AND A.CLASS#= C.CLASS# 

AND B.MAJOR= 'MATH7 

AND C.OFFER#= D.OFFER# 

AND D.CNAME = E.CNAME 



AND E.DEPT = 'MATH'; 

TEMPVAR : = 

SELECT UNIQUE STUDENT# 

FROM TEMP; 

FOR I : = 1 to (Number of elements in TEMPVAR) 

DO; 

SETi : = 

SELECT CNAME 

FROM TEMP 

WHERE STUDENT# = TEMPVAR i; 

IF SETi 3 V1 

then add STUDENT# i to V2; 

END; 

WRITE Count of (V2); 

{The procedure Operator-Evaluate gives this count} 



Example Query 4 - 

Do only math majors take math455 ? 

The CQR for this query is given below. This is a case of a query that has only represented a s  an 

ALL a t  the quant level of the CQR. 

I 
NP NP 

"' I 
relation 

I I 
student# major 

I I I 
I NOM NOM 



The L F  for Example Query 4 is given below. 

* 
(INT 

(SETX 'X2 

(SETX 'XS 

(SETX 'X6 

(AND 

(RELATION ENROLL 

(STUDENT# CLASS#) 

(X2 X5) 

(= = ) I  

(RELATION CLASS 

(OFFER# CLASS#) 

(X6 X5) 

(= =I) 

(RELATION OFFERING 

(CNAME OFFER#) 

(SETX 'X2 

(SETX 'X5 

(SETX 'X6 

(AND 

(RELATI( ON STUDE 

(STUDENT# MAJOR) 

(X2 'MATH) 

(= =>) 



(RELATION ENROLL 

(STUDENT# CLASS#) 

(X2 X5) 

(= =)) 

(RELATION CLASS 

(OFFER# CLASS#) 

(X6 X5) 

(= =)I 

(RELATION OFFERING 

(CNAME OFFEW) 

(MATH455 X6) 

(= =))))>) 

(SUPERSETOP)) 

The target language for example query 4 is given below: 

v1:= 

SELECT UNIQUE A.STUDENT# 

FROM ENROLL A,CLASS B, OFFERING C 

WHERE A.CLASS#= B.CLASS# 

AND B.OFFER#=C.OFFER# 

AND C.CNAME = 'MATH455' ; 

SELECT UNIQUE A.STUDENT# 

FROM STUDENT A, ENROLL B, CLASS C, OFFERING D 

WHERE A.STUDENT# = B.STUDENT# 

AND A.MAJOR = 'MATH' 



AND B.CLASS# = C.CLASS# 

AND C.OFFER# = D.OFFER# 

AND D.CNAME = 'MATH455'; 

THEN WRITE ("yes"); 

ELSE WRITE ("no"); 



Example Query 5 - 
Do all students take every course from every instructor ? 

The CQR for this query is given below. This is a case of three ALL'S a t  the quant level of the CQR. 
s- 



The L F  for Example Query 5 is given below: 

* 
(INT 

(SETX 'X 1 

(RELATION ENROLL 

(SETX 'X5 

(SETX 'XI4 

(SETX 'X9 

(AND 

(RELATION OFFERING 

(OFFEW CNAME) 

(XI4 X5) 

(= = I )  

(RELATION CLASS 

(OFFEW FACULTY#) 

(XI4 X9) 

(= =)))I)) 

(ORDERBY X1 

(SECONDARY X5) 

(SUPERSETOP) 

(SETX 'X5 

(SETX 'X 1 

(SETX 'X 1 1 



(SETX 'X 12 

(AND 

(RELATION ENROLL 

(STUDENT# CLASS#) 

(Xl  X11) 

(= =)I  

(RELATION CLASS 

(OFFER# CLASM) 

(X12 X11) 

(= =)) 

(RELATION OFFERING 

(CNAME OFFEW) 

(X5 X12) 

(= =))))))) 

(SUPERSETOP)) 

The target language for example query 5 is given below: 

v1:= 

SELECT UNIQUE A.STUDENT# 

FROM ENROLL A; 

v 2 : =  

SELECT UNIQUE A.CNAME 

FROM OFFERING A, CLASS B 

WHERE A.OFFER# = B.OFFER# ; 

CREATE VIEW TEMP AS 



SELECT UNIQUE C.CNAME, A.STUDENT# 

FROM ENROLL A, CLASS B, OFFERING C 

WHERE A.CLASS# = B.CLASS# 

AND B.OFFER# = C.OFFER# 

TEMPVAR : = 

SELECT UNIQUE STUDENT# 

FROM TEMP; 

FOR I : = 1 to (Number of elements in TEMPVAR) 

DO; 

SETi : = 

SELECT CNAME 

FROM TEMP 

WHERE STUDENT# = TEMPVAR i; 

IF SETi 3 V2 

THEN add STUDENT# i to V3; 

END; 

1 ~ ~ 3 2 ~ 1  

THEN WRITE ("yes") 

ELSE WRITE ("no"); 



Example Query 6 - 

Do all math majors take only math344 ? 

The CQR for this query is given below: 

I 
relation cname 

I .J- 
cname 

\ 

I I NOM 
\ 

NOM S 

I I \  
relation student# major relation offer# 

I I 
student \OM Y o u  class 

\ 
SO.\.I 

I I 
NOM S 

\ 
x9 

X2 math 

relation cname offer# 

I I \ 
offering NOM &OM 

I 
X5 

\ 
X I 0  



The LF for Example Query 6 is given below: 

(SETX 'X2 

(RELATION STUDENT 

(STUDENT# MAJOR) 

(X2 'MATH) 

(= =))I 

(SETX 'X5 

(RELATION OFFERING 

(CNAME CNAME) 

(SECONDARY 'X5) 

(SUBSETOP) 

(SETX 'X5 

(SETX 'X9 

(SETX 'X 10 

(AND 

(RELATION OFFERING 

(CNAME ) 

(RELATION ENROLL 

(STUDENT# CLASS#) 



(X2 X9) 

(= =)I  

(RELATION CLASS 

(OFFER# CLASS#) 

(XI0 X9) 

(= =)I 

(RELATION OFFERING 

(CNAME OFFER#) 

(X5 X10) 

(= =)))))I 

(SUPERSETOP)) 

The target language for example query 6 is given below: 

v1:= 

SELECT UNIQUE A.STUDENT# 

FROM STUDENT A 

WHERE A.MAJOR = 'MATH'; 

v 2  := 

SELECT UNIQUE A.CNAME 

FROM OFFERING A 

WHERE A.CNAME = 'MATH344'; 

CREATE VIEW TEMP AS 

SELECT A.CNAME, C.STUDENT# 

FROM OFFERING A, ENROLL B'STUDENT C, CLASS D, OFFERING E 

WHERE A.CNAME = E.CNAME 

AND B.STUDENT# = C.STUDENT# 



AND C.MAJOR = 'MATH' AND D.CLASS# = B.CLASS# 

AND D.OFFER# = E.OFFER#; 

TEMPVAR : = 

SELECT UNIQUE STUDENT# 

FROM TEMP; 

FOR I : = 1 to (Number of elements in TEMPVAR) 

DO; 

SETi : = SELECT CNAME 

FROM TEMP 

WHERE STUDENT# = TEMPVAR i ; ' 

IF SETi C V2 

THEN add STUDENT# i to V3 

END; 

1 ~ ~ 3 2 ~ 1  

THEN WRITE ("yes"); 

ELSE WRITE ("no"); 



Example Query 7 - 

Did John not take every math course ? 

The CQR for this query is given below. This is a case of a query involving universal quantifier and 

negation which gets interpreted as  EX.IST's a t  the CQR level. If John is found to have taken all 

math courses, the algorithm answers "no", otherwise it answers "yes". 

s- 

X6 X1 math 



The L F  for Example Query 7 is given below: 

(INT* 

(SETX 'X5 

(RELATION STUDENT 

(STUDENT# NAME) 

(X5 'JOHN) 

(= =)I> 

(SETX 'X 1 

(RELATION COURSE 

(DEPT CNAME) 

('MATH XI)  

(NOT* 

(ORDERBY 'X5 

(SECONDARY 'XI) 

(SUPERSETOP) 

(SETX 'X 1 

(SETX 'X5 

(SETX 'X8 

(SETX 'X9 

(SETX 'X4 

(AND 

(RELATION ENROLL 

(STUDENT# CLASS#) 

(X5 X8) 



(= =I) 

(RELATION STUDENT 

(STUDENT# NAME) 

(X5 'JOHN) 

(= =)) 

(RELATION CLASS 

(CLASS# OFFER#) 

(X8 X9) 

(= =I)  

(RELATION OFFERING 

(OFFER# CNAME SEMESTER) 

(X9 X1 X4) 

( 5  = =)))))))))I) 

(SUPERSETOP)) 

The target language for example query 7 is given below: 

v1:= 

SELECT A.STUDENT# 

FROM STUDENT A 

WHERE A.NAME = 'JOHN'; 

v 2  := 

SELECT A.CNAME 

FROM COURSE A 

WHERE A.DEPT = 'MATH'; 

CREATE VIEW TEMP AS 

SELECT D.CNAME,B.STUDENT# 



FROM ENROLL A, STUDENT By CLASS C, OFFERING D, COURSE E 

WHERE A.STUDENT# = B.STUDENT# 

AND B.NAME = 'JOlIN' 

AND A.CLASS# = C.CLASS# 

AND C.OFFER# = D.OFFER# 

AND D.CNAME =E.CNAME 

AND DSEMESTER < '881' 

AND E.DEPT = 'MATH'; 

TEMPVAR : = 

SELECT UNIQUE STUDENT# 

FROM TEMP; 

FOR I : = 1 to (Number of elements in TEMPVAR) 

DO; 

SETi : = 

SELECT CNAME 

FROM TEMP 

WHERE STUDENT# = TEMPVAR i; 

IF SETi 3 V2 

THEN add STUDENT# i to V3; 

END; 

I F V ~ ~ V ~  

THEN WRITE ("no"); 

ELSE WRITE ("yes"); 



Example Query 8 - 
If student number 8304 is a math major, g v e  me the math courses he is taking else gwe me his 

name and dept. 

This is a case of a query which is of type COND; and the CQR for this query is given below. 

NP 
I 

student# 
I 

I I \ 
relation student# major 

student NOM 

NOM 
math 

V NP 

student N05'I 
I 
8304 

If Student Number 8304 is a math Major, Give me the 
math Courses he Takes else Give me his Name and Dept 



Q-TYPE WHICH 

I X3 ,f, 
WH V NP !UP 

I l l  

I 
8304 

54 iT A NP 

/ 
UP I relation I 

/ class# offer# 
I 

class I 

I / -  
WH WHICH Np ~p 

X6 I , . 

student# . 

.. 
relation class# i 

/ I I 
enroll NOM NOM 

I A 
X8 NOM S 

,' /" 
relation 

/ 
course 

I 

~p NP 

I I cname 
dept 
I I 

NOM NOM 

relation student# n:me 

/ / 
student Ml'kl 

I I 
&OM N()AI 

I 
8304 

I I 
5 6  x7 

I i 
math X7 



The LF for Example Query 8 is given below: 

(SETX 'X 1 

(SETX 'X2 

(AND 

(RELATION ENROLL 

(CLASS# STUDENT#) 

(= =)) 

(RELATION STUDENT 

(STUDENT# MAJOR) 

(X1 'MATH) 

(= =)I  

(RELATION STUDENT 

(STUDENT#) 

('8304) 

(=))>)))I 

(SETX 'X3 

(SETX 'X4 

(SETX 'X5 

(AND 

(RELATION ENROLL 

(CLASS# STUDENT#) 

(X4 '8304) 



(= =I)  

(RELATION CLASS 

(CLASS# OFFER#) 

(X4 X5) 

(= =)) 

(RELATION OFFERING 

(OFFER# CNAME DEPT) 

(X5 X3 'MATH) 

(= = =))))))) 

(SETX 'X6 

(SETX 'X8 

(SETX 'X9 

(SETX 'X6 

(SETX 'X7 

(AND 

(RELATION ENROLL 

(RELATION STUDENT 

(STUDENT# NAME MAJOR) 

(RELATION STUDENT 

(STUDENT#) 

(8304) 



The target language for the Example query 8 is given below: 

IF 

(POS 

SELECT STUDENT# 

FROM ENROLL A,STUDENT B 

WHERE A.STUDENT# = B.STUDENT# 

AND B.MAJOR = 'MATH 

AND B.STUDENT# = '8304;) 

THEN 

(SELECT C.CNAME 

FROM ENROLL A, CLASS B, OFFERING C 

WHERE A.CLASS# = B.CLASS# 

AND A.STUDENT# = '8304 

AND B.OFFER# = C.OFFER# 

AND C.DEPT = 'MATH ;) 

ELSE 

(SELECT B.NAME,B.MAJOR 

FROM ENROLL A'STUDENT B 

WHERE A.STUDENT# = B.STUDENT# 

AND B.STUDENT# = '8304 ;) 
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