
EXPERIMENTAL ANALYSIS
OF

LAN SORTING ALGORITHMS

Mohamed Salehmohamed

B.Sc., Simon Fraser University, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Mohamed Salehmohamed 1987

SIMON FRASER UNIVERSITY

April 1987

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means. without the permission of the author

Approval

Name : Mohamed Saiehmohamed

Degree : Master of Science

Title of Thesis : Experimental Analysis of LAN Sorting Algorithms

Examining Committee:

Chairman: Dr. Louis Hafer

Dr. WO-shun Luk
Senior Supervisor

Dr. Joseph1, G. Peters

Senior Supervisor

- --

Dr. Arthur L. Liestman

Dr. Anthony H. Dixon

External Examiner

School of Computing Science

Simon Fraser University

1 5 / 4 / 7 7
Date Approved

PARTIAL COPYRIGHT LICENSE

my thesis, pro ject o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty Library, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. I t i s understood t h a t copying

o r publication of t h i s work f o r f l nanc la l gain sha l l not be a ! lowed

without my wr i t t en permission.

T i t l e o f Thesis/Project/Extended Essay

(s ignature)

Abstract

This thesis provides empirical results for selected parallel sorting algorithms

(block sorting algorithms) and distributed sorting algorithms which have been

adapted for implementation on an Ethernet network with diskless Sun workstations.

Most work concerning the performance of parallel and distributed sorting

algorithms has been theoretical and assumes simplified models. Hence. we adopt

an empirical approach which provides more insight into the performance of the

algorithms. Our cost model considers both local processing costs and

communication costs to be important factors when evaluating the performance of
b

the sorting algorithms in the LAN environment.

We obtain our experimental results on communication time, local processing

time and response time of each algorithm for various file sizes and different

numbers of processors. These results are analyzed and compared to our

theoretical model. In cases where the experimental results do not agree with the

theoretical results. the discrepancies are explained. We also make an attempt to

project the behaviour of the algorithms as number of processors or interprocess

communication facilities changes.

To my wife, Zeinul

Acknowledgements

I would like to express my sincere gratitude to Dr. Wo-Shun Luk and Dr.

Joseph Peters for their invaluable support and encouragement throughout my

research. Special thanks to Dr. Arthur Liestman and Dr. Anthony Dixon for their

advice on the revision of this thesis.

Table of Contents

Approval

Abstract

Acknowledgements
Table of Contents

List of Tables
List of Figures

1. Introduction
1.1. Network Configuration
1.2. Parallel vs Distributed Sorting Algorithms
1.3. Objectives of the Thesis
1.4. Thesis Organization

2. LANSAs
2.1. Model
2.2. LANSA 0
2.3. LANSA 1
2.4. LANSA 2
2.5. LANSA 3
2.6. LANSA 4

3. Theoretical Cost Analysis
3.1. LANSA 0
3.2. LANSA 1
3.3. LANSA-2
3.4. LANSA 3
3.5. LANSA 4
3.6. Summary

4. Experimental Results and Analysis
4.1. Experiment

4.1.1. Hardware and Software Requirements
4.1.2. Data Collection

4.2. Methodology of the Analysis
4.3. Size of the Data Sets

4.3.1. LANSA 3
4.4. Ranking of the Algorithms

4.4.1. General Ranking
4.4.2. Local Processing vs Communication Costs
4.4.3. Improvement of the Network Performance

4.5. Four Processors vs Eight Processors
4.5.1. LANSA 0
4.5.2. LANSA 1
4.5.3. LANSA 2
4.5.4. LANSA 3
4.5.5. LANSA 4
4.5.6. Summary

5. Conclusion

Appendix A. Fundamental Parallel Merging Schemes
A.1. Odd-Even Transposition Sort
A.2. Stone's Bitonic Sort

Appendix 6. Empirical Results
References

vi i

List of Tables

Table 1-1:
Table 3-1:
Table 3-2:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:
Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:

Characteristics of Distributed Processing Systems 1
Local Processing Costs 29
Communication Costs 30
Communication Costs in Seconds 39
Algorithm Ranks for p = 4 and N = 16K 40
Algorithm Ranks for p = 8 and N = 16K 40
Cost Components for p= 4 and N = 16K 41
Cost Components for p = 8 and N = 16K 41
Improved Response Time (in seconds) for p = 4 44
Improved Response Time (in seconds) for p = 8 44
LANSA 0 - Communication Costs 48
LANSA 1 - Communication Costs 50

LANSA 2 - Communication Costs 51
LANSA 3 - Communication Costs 52
LANSA 4 - Communication Costs 54
Communication Parallelism and Communication Costs 54

Response Time (in seconds) for p = 4 63 '
Response Time (in seconds) for p = 8 63
Cost Components (in seconds) for the LANSAs for p = 4 64
Cost Components (in seconds) for the LANSAs for p = 8 65

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure A-1:
Figure A-2:

Two-way Merge-Split step
LANSA 1
LANSA 2
LANSA 3
LANSA 4
Response Time for p = 4
Response Time for p = 8
Cost Components
Parallel Odd-Even Transposition Sort
Stone's Bitonic Sort

Chapter 1

Introduction

1.1. Network Configuration

Processors are interconnected mainly to share resources. There are a

number of ways to interconnect them. One extreme is where large computers

located at different geographic sites are linked together to form a long-haul

network, e.g. ARPANET. The other extreme is where several computers are

closely connected together to form a multiprocessor system. Near the middle of

these extremes is local area networking (LAN). the interconnection of computers to

gain the resource sharing of computer networking and the parallelism of
b

multiprocessing [BrH 83. MeB 76).

The distance between computers and the associated communication data rate

can be used to distinguish among the different methods of connecting processors

(see table 1-1) [MeB 76).

System Distance Data Rate

Long-haul network > 25 km.
Local area network 25-.1 km.
Multiprocessors < .I km.

< .1 Mbps
.I-100 Mbps
> 100 Mbps

Table 1-1: Characteristics of Distributed Processing Systems

Another distinction between local area networks and long-haul networks is

that local area networks generally experience significantly fewer data transmission

errors and much lower communication costs than long-haul networks. so cost-

performance tradeoffs are very different [Sta 841.

The main difference between local area networks and multiprocessor systems

is the degree of coupling. Multiprocessor systems are tightly coupled, and usually

have centralized control. shared memory. and completely integrated communications

functions. Local area networks tend to exhibit the opposite characteristics [Sta

841.

Local networks have become more popular in recent years. The main

reasons are the continuing decrease in cost and an increase in the capabilities of

computer hardware and local networking technology. There has been an increase

in the use of systems consisting of single-user machines (workstations)

interconnected by a fast local area network. The workstations usually have their

own processor and memory, but they need to share other expensive resources such

as disk storage and printers. The workstations can operate independently, or. if

i

the application requires distributed processing. they communicate through the

network. These systems are being used for many applications -- general office

tasks, computer-aided engineering design. academic computing facilities, and

software development. to name a few [Sta 84, Svo 841.

3

1.2. Parallel vs Distributed Sorting Algorithms

Sorting is theoretically interesting and an important application [Knu 73. Baa

781. Over the past two decades, much computing science research has focussed

on sorting on a single processor or on an array of processors. Recently, parallel

sorting and distributed sorting have received increasing attention from computing

science researchers. Parallel sorting algorithms are generally designed for a

multiprocessor system whereas distributed sorting algorithms are generally designed

for a network of computers.

The designer of a parallel sorting algorithm usually assumes that the number

of processors available to perform the sort is very large. However. for a general-

purpose sorting algorithm. it is desirable to set a limit on the number of

processors available. We are. thus. interested in Block sorting algorithms. b

Block sorting algorithms require relatively small number of processors to sort a

large array of keys. Also. block sorting algorithms can easily be adapted to the

LAN environment.

Block sorting algorithms partition the file to be sorted into a number of

blocks depending on the number of processors available to perform the sort. In

the literature on parallel sorting algorithms. the time complexity is expressed in

terms of parallel comparisons and exchanges between processors in the

interconnecting network. i.e. local processing cost. The communication cost is

4

assumed to be proportional to local processing cost and is usually ignored in the

analysis of a parallel sorting algorithm.

In contrast, distributed sorting algorithms are designed for a network of

processors that do not share memory. Here. fragments of the file to be sorted

reside in the memory of each processor. Most distributed algorithm research

assumes an environment in which communication costs are orders of magnitude

higher than local processing costs. Consequently, communication costs dominate

the sorting time and local processing costs are ignored.

1.3. Objectives of the Thesis

Most work concerning the performance of parallel and distributed sorting

algorithms has been theoretical and assumes simplified models. In most research

b

papers concerning this subject, empirical results are not provided. In the case of

parallel sorting algorithms, the time complexity of the algorithm is usually given in

terms of parallel comparisons. In the case of distributed sorting algorithms, the

time complexity of the algorithm is usually given in terms of the number of

messages. This thesis provides empirical results 'for selected parallel and

distributed sorting algorithms which have been run in a local area network

environment.

It is our belief that the cost models commonly used to evaluate parallel and

distributed algorithms are not appropriate for distributed processing in a LAN

environment. Since local area networks lie between multiprocessor systems and

long-haul networks, our cost model considers both communication costs and local

processing costs to be important factors when evaluating the efficiency of a sorting

algorithm. To test this model. we have selected existing parallel and distributed

sorting algorithms from the literature. These algorithms have been analyzed.

adapted to our LAN environment and then implemented. These algorithms are

called Local Area Network Sorting Algorithms (LANSAs).

The goal of this thesis is to test the validity of our theoretical model. We

take the experimental approach to determine how communication cost and local

processing cost affect the performance of the algorithms. The experimental

approach aids us in ranking the algorithms in ways that a theoretical analysis

cannot. We believe that it also informs us more about the subtle behaviour of

the LAN than a theoretical analysis could. As a consequence. the sorting

algorithms may be improved due to the experimental observations.

The results gathered from our experiments are analyzed and compared to

our theoretical model. In cases where the experimental re;ults do not agree with

the theoretical results. we propose explanations for the discrepancies. The

algorithms are also ranked according to their performance.

1.4. Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes

the model that we use in this thesis and the five LANSAs that we have

implemented. Chapter 3 contains a theoretical cost analysis of the LANSAs

according to our model. The experimental setup is described in Chapter 4 and the

experimental results are presented and analyzed. Chapter 5 summarizes the major

contributions of this :thesis.

Chapter 2

LANSAs

In this chapter, we describe the model that we use in this thesis and the

f ive LANSAs that we have implemented.

2.1. Model

Our model is a broadcast network consisting of a medium-speed bus (e.g.

Ethernet) and p processors Pi, 1 < i < p which are attached to the bus.

Processors can communicate with each other by sending messages through the

network. A long message may be segmented into a number of packets that can
b

be individually transmitted through the network.

When p processors are available and N keys are to be sorted. the keys are

assumed to be distributed among the p processors so that a block of M = I N / ~ I

keys is stored in each processor's local memory. These blocks are sometimes

referred to as local files. Processors are labeled PI.P2.P,, according to a

presumed order. The processors cooperate to redistribute the keys so that the

block residing in each processor's local memory is a sorted sequence of length

approximately M. and the concatenation of these blocks (according to the

Presumed order) is a sorted sequence of length N. Processors do not share
. .

7

memory and each processor has sufficient memory to perform an internal sort of

N keys.

In our theoretical cost model for the LAN environment, we consider two

major components: communication cost and local processing cost. In our

theoretical model. the number of parallel packet transmissions in the network is a

lower bound on communication cost while the total number of packets transmitted

in the network is an upper bound. A parallel packet transmission is the

transmission of packets that are initiated simultaneously by the processors in the

network. The local processing cost is the number of parallel comparison-exchanges

performed by the processors. Experimentally, communication cost is the total time

that network resources are being used. Local processing cost is the total time a

processor takes to process a local activity. In both cases, the sum of

communication cost and local processing cost yields the response time to solve

the sorting problem.

2.2. LANSA 0

LANSA 0 is a Centralized Sorting Algorithm. Let a file. F. be a

sequence of keys distributed equally among processors P1.P2.PP.

Processors Pi. 2 < i < p transmit their local files to processor P I . Processor PI

sorts the combined files using the quicksort algorithm and redistributes the file

equally so that each processor receives a locally sorted file which is also globally

sorted.

2.3. LANSA 1

LANSA 1 has been adapted from the parallel block sorting algorithm, Block

Odd-Even Sort based on Two-way Merge-Split [BDHM 841. Before the

description of the algorithm is given. let us define a two-way merge-split step. A

two-way merge-split step is defined as a two-way merge of two sorted blocks of

size M. followed by a split of the resulting block of size 2M into two halves.

Both operations are executed within a processor's local memory. The contents of

a processor's memory before and after a two-way merge-split step are shown in

Figure 2-1 [BDHM 841.

Figure 2-1: Two-way Merge-Split step

LANSA 1 has been derived from the Odd-Even Transposition Sort, which

is described in Appendix A. The algorithm consists of a preprocessing step (step

0) and p additional steps (steps 1 to p) where p is the number of processors.

Initially. each processor's memory contains a sequence of length M (block size).

During step 0, each processor independently sorts the sequence residing in its local

memory. This local sort step uses a quicksort algorithm. During steps 1 to p, all

processors cooperate to merge the p sequences generated by step 0. These p

steps are similar to the p steps of the odd-even transposition sort. During the

odd (even) steps. the odd- (even-) numbered processors receive from their higher-

even (higher-odd) numbered neighbor a sorted block, perform a two-way merge.

and send back the higher M keys. During the odd- (even-) numbered steps, the .

odd- (even-) numbered processors are active while the even- (odd-) numbered

processors are idle. This algorithm is illustrated in Figure 2-2 for four processors,

where M =5.

2.4. LANSA 2

LANSA 2 has been adapted from the parallel block sorting algorithm, Block
b

Bitonic Sort based on Two-way Merge-Split [BDHM 841. This algorithm also

performs a two-way merge-split which has been defined in Section 2.3.

LANSA 2 has been derived from Stone's Bitonic Sort, which is described

in Appendix A. The comparison-exchange step in Stone's bitonic sort is replaced

by a two-way merge-split step to obtain LANSA 2. LANSA 2 can sort M p keys

with p processors in two local sort steps. ((logp)(log p + 1)/2 + 1) shuffle steps

(shuffle step is explained in Appendix A). (log p + 1) (log p + 2)/2 merge-split steps

and (logp- 1) transmission steps. The local sort steps use a quicksort algorithm.

During a shuffle step. each processor sends a sorted sequence of length M /2 to

Step 0 local sort

Step 1 odd step

Step 2 even step

Step 3 odd step

Figure 2-2: LANSA 1

each of its logical neighbors. During a merge-split step. each processor performs a

tweway merge of the two sequences of length M/2 and splits the resulting

sequence into two sequences of length M/2. The algorithm is illustrated in Figure

2-3 for two processors. where M=4 [BDHM-84).

Step I Step 2 Step 3
n

Figure 2-3: LANSA 2

LANSA 2 is different from Block Bitonic Sort based on TweWay Merge-

Split in that the transmission step is an added feature. The transmission steps

reduce the number of shuffle steps. Each transmission step is the combination of

several consecutive shuffle steps. There may be several transmission steps

depending on the number of sets of consecutive shuffle steps. In our theoretical

model and in our experimental broadcast network, data can be transmitted to any

processor in the network in a single transmission step. This modification reduces

a number of shuffle steps and makes LANSA 2 a faster algorithm than Block

Bitonic Sort based on Two-way Merge-Split.

2.5. LANSA 3

LANSA 3 has been adapted from the Distributed Sorting algorithm by

[RSS 851. Let F be a file of M p keys distributed among p processors

P,. P2.Pp. Let F[k] denote the kth smallest element in F where

k=iM. l \ < i < p .

The algorithm consists of four phases. In the first phase, each processor

locally sorts the sequence residing in its local memory using a quicksort algorithm.

In the second phase. each key in F is assigned a destination. This is

accomplished by determining the F[k]'s distributively. To find F[k] distributively.

the distributed selection algorithms in [SaS 831 and [SaS 821 are used. Once the

F[k]'s are found. all processors assign destinations simultaneously. In the third

phase. the keys are sent to their assigned destinations. This phase is called the

Routing phase. In the final phase. each processor independently carries out a

local sort using the quicksort algorithm. Figure 2-4 illustrates LANSA 3 for four

processors. where M=5. Note that in the example, the numbers in parenthesis

refer to the processor number to which the key is assigned.

The distributed selection algorithms from [SaS 831 and [SaS 821 are

described below. These algorithms have also been adapted to our model. We call

these algorithms SEL 1 and SEL 2 respectively.

SEL 1 is a reduction technique for selection in distributed files. Let F be

Phase 1 (local sort)

Phase 2 (assign destination)

Phase 3 (Routing phase)

Phase 4 (local sort)

Figure 2-4: LANSA 3

a file of N elements distributed among p processors. We want to find the kth

smallest element (F [k]) of F. SEL 1 is designed for applications in which the

size of the file is much greater than the number of processors. i.e. N>>p. It

goes through a sequence of iterations whose effect is to reduce the size of the

problem until another efficient selection algorithm (SEL 2, for example) can be

employed to determine F [k] . Occasionally. SEL 1 may locate the element being

sought.

Since SEL 1 is a reduction algorithm. a predetermined parameter T

(termination criterion) is used. When the size of the problem is reduced to a

value smaller than T. the algorithm is terminated. We have determined T

experimentally. SEL 1 also requires a controller to perform some bookkeeping

tasks: we chose P1 as the controller. The algorithm consists of four steps:

1. The controller. PI, determines the current set size mi of each Pi and

finds the lowest numbered processor PI with maximum set size m.

P 2. PI requests P, to return i t s lmk/n l th value where n = E . 1=1 mi. We

call this value x.

3. P1 broadcasts x . Each Pi 2 \< J \< p. determines aj and aj, where aj

is the number of keys < x and a, is the number of keys \< x for

processor Pj and sends both values to PI. PI. in the meantime, also

determines al and PI .

P 4. Upon reception of all such values. PI determines a = EiZl a; and

0 = zP 0; and 1=1

a. If a < k \< P , halt: x is the value sought.

b. If @ < k, discard values < x; k + k - 6.

If the stopping criterion is met. terminate the algorithm: otherwise
return to step 1.

c. If /3 > k. discard values > x. Also discard value x at P,.

If the stopping criterion is met. terminate the algorithm; otherwise
return to step 1.

SEL 2 is a distributed selection algorithm to find the kth smallest element.

F[k]. in a file of N elements distributed over p processors. Without loss of

generality. let k < I~/21. The algorithm requires a controller to perform some

bookkeeping tasks: we chose PI as the controller. SEL 2 consists of three steps:

1. The controller. PI. requests each processor PI. 2 < j < p to return i t s

ath smallest element. sj where a = ((k - l) lp) . PI. in the meantime.

also determines sl.

2. Upon reception of all such values P1 finds the processor P, with the

smallest si, 1 < I < p.

3. P1 discards the smallest a elements from P,'s set.

P1 discards the largest (a - 1) elements' from Pi's set. 1 < i 6 p, i f s.

If k > 1 , go to step 1; otherwise find the smallest value a t each Pi
which we call xi. 1 Q i Q p. The smallest of all such xi's is the value

sought.

LANSA 3 differs from the original description of Distributed Sorting in

17

[RSS 851 in that phase 1. which is the local sort phase, is an added feature.

This modification was done to make distributed selection in the second phase of

the algorithm more efficient. SEL 1 and SEL 2 require us to determine the

(rnk/nlth value at PI and the (k - l P h smallest element at each Pi

respectively. The original algorithm determines these values using a local selection

algorithm at each processor. Since each processor determines (p - l) (p + log log k)

values on the average. the local processing costs to perform an additional local

sort at each processor are dwarfed by the local processing costs to perform the

local selections.

Another point worth mentioning is that sometimes the block size (M) a t the

end of the sort may differ from the original block size. This situation arises when

an F[k] is found to be a duplicate; however. our experimental results show that
b

this difference is within 1 % of the original block size.

2.6. LANSA 4

LANSA 4 has been adapted from the Distributed Quicksort algorithm in

[Weg 84). Quicksort is a recursive sorting algorithm that partitions the keys of

a file F into two subfiles. F1 and F2. such that all keys in F1 are smaller than a

randomly chosen pivot value v. and all keys in F2 are greater than v. The two

subfiles are then sorted independently and recursively using Quicksort.

Consider a file F containing N keys that is distributed among p processors

18

such that a block of M = ~ N / ~] keys is stored in each processor's local memory.

F can be partitioned into two subfiles F1 and F2 by letting each processor

Pi, 1 \< i \< p, independently partition its block using the same pivot value v. To

obtain v. we let P1 be the controlling processor, and ask each processor

Pi. 2 < j 6 p to report m the median of its block to PI. PI. in the meantime. j *

also determines ml. This phase is called the Median phase. P1 calculates the

mean of the mi's. 1 \< i \< p. to obtain v which is then broadcast. Each median.

mi, is determined using the local selection algorithm from [SFR 831. Let li and hi

be the number of keys < v and > v, respectively. in Pi (1 \< i G p) . The

process of determining the li's and hi's is called the Qsort phase. Since v is

the mean of the medians. we assume that the sum of the li's gives the global

split position for F at processor Pp12 (assuming p is even). Keys can now be

exchanged between P1 and P, and

obtain two subfiles FI and F2. This phase is called the Exchange phase. F1

and F2 are sorted with the same method. The algorithm stops when the subfiles

are of lengthXM after which the subfiles can then be sorted locally within a

processor. using a quicksort algorithm. Figure 2-5 illustrates this algorithm for four

processors. where M = 5.

The local k-select algorithm from [SFR 831 has been adapted to our model.

We call this algorithm SEL 3. Let S be the set containing the elements. We are

interested in finding the kth smallest element of S. The algorithm consists of two

steps:

Qsort phase vlP1. P2. P3. P4] = 10

Exchange Phase

Qsort phase vlP1. P2) = 6 vlP3. P41 = 15

Exchange Phase

Local sort

Figure 2-5: LANSA 4

1. Choose an element x at random from S.

2. Partition the elements of S into 3 subsets SL. SE. SG which contain
the elements of S which are smaller, equal, and larger than x.
respectively. Then

a. If k \< (SLI. S = SL
i.e.. discard values > x and return to step 1.

b. If (SL(< k \< (SLI + ISEI. halt: x is the value sought.

k + k - (SL: - jSEI
i.e.. discard values \< x and return to step 1.

LANSA 4 differs from the original description of Distributed Quicksort in

that the global split position for F is assumed to be a t processor Pp12 (assuming i

I
p is even) while the original algorithm may split the f i le at any processor 1,
Pg. 1 \< g \< p. This modification can lead to the block size M a t the end of the 1 '

sort being different from the original block size: however, our experimental results

show that this difference is within 1 % of the original block size.

Chapter 3

Theoretical Cost Analysis

In this chapter. we perform average case cost analyses of the LANSAs

according to our theoretical model. Our theoretical cost model considers both the

communication costs and local processing costs to be important quantities in

evaluating the efficiency of the LANSAs. The local processing cost is the average

number of parallel comparison-exchanges performed by the processors. The

number of parallel packet transmissions in the network is a lower bound on the

communication cost (maximum communication parallelism) while the total number

of packets transmitted in the network is an upper bound (minimum communication b

parallelism).

Our model is incomplete in the following ways. First, we do not specify

what weights should be given to the cost components because we do not know

these weights.

Second, it is difficult to estimate the degree of communication parallelism

(defined below). Also the program and system overheads cannot be estimated and

are thus ignored.

22

Third. our model does not consider packet collisions in the network or

buffer overflow. When two or more processors attempt to transmit at precisely

the same time. a packet collision occurs. A processor recovers from a detected

collision by abandoning the attempt and retransmitting the packet. Buffer overflow

occurs when several processors attempt to send packets to one processor. This

results in a loss of packets and necessitates retransmission of packets. In both

cases, additional communication resources are used which are not accounted for in

our model.

According to an empirical

approximately 90% of the total time

processing of the packet by the

study on a LAN environment [Pap 851.

for the transmission of a packet is spent on

transmitting and receiving processors. The

network is utilized only 10% of the time. As a result. although a bus type
b

network such as an Ethernet is not sharable. much of the transmission of packets

can proceed in parallel. Parallel packet transmission is the transmission of packets

that are initiated simultaneously by the processors in the network. Maximum

communication parallelism is achieved when the time required to transmit two or

more packets is (almost) the same as the time required to transmit one packet.

In contrast. minimum communication parallelism is the serial transmission of

packets.

Before we analyze the algorithms. we need some definitions. Let F be the

23

global file containing N keys and let p be the number of processors available to

perform the sort. The keys are distributed equally among the p processors so

that a block of M = IN/~I keys is stored in each processor's local memory. Let

S be the maximum sine of a packet (in number of keys) that can be transmitted

through the network.

3.1. LANSA 0

In this algorithm, processor P1 receives blocks of data from processors

P2.Pp. .Pp. P1 performs a local sort using a quicksort algorithm and

retransmits the sorted blocks back to these processors. The local sort takes

coN log N comparisons

on average. where co is a constant.

The lower bound for the communication cost is

2 l ~ j s l packets

while the upper bound is

2 (p - ~)IM/s~ packets.

3.2. LANSA 1

Recall that this algorithm consists of (p+ 1) steps. Step 0 is a local sort

which is performed independently by each processor. During the odd (even) steps.

the odd- (even-) numbered processors receive from their higher-even (higher-odd)

24

numbered neighbor a sorted block. perform a two-way merge. and send back the

higher M keys. Thus. the local processing cost consists of the local sort and p

merge-split steps. The local sort takes c l M log M comparisons on average and a

merge-split takes 2M comparisons. Hence, the total local processing cost is

cI M log M + 2M.p comparisons

on average. where cl is a constant.

The lower bound for the communication cost per step is 2 1 ~ 1 4 packets.

Thus. p steps require

2 p l ~ / ~ 1 packets

to be transmitted in the network. During an odd (even) step. p (p - 2) I
I

processors transmit p l ~ / ~ l ((p - 2) 1 ~ / ~ l) packets in total. Since there are p/2

odd steps and p/2 even steps, the upper bound for the communication cost
, ii I

I I

evaluates to

p(p - I) I M / s I packets.

3.3. LANSA 2

This algorithm consists of (log p + 2) stages. Stage 0 consists of each

processor locally sorting two blocks of data of size M / 2 . Stage 1 consists of a

merge-split step performed by each processor. Stage i . 2 < i \< log p, consists of

(i - 1) shuffles, I merge-splits and a transmission step. Finally. stage (log p + 1)

consists of (log p + 1) shuffles and (log p + 1) merge-splits. To sort a block of

M/2 keys requires c2M(log M-1) /2 comparisons on average and to merge two

blocks of M/2 keys requires M comparisons. Hence. the total local processing

costs are

c2M(log M - 1) + (log p + 1) (log p + 2) M/2 comparisons

on average, where c2 is a constant.

The communication costs are incurred during stage. i (2 \< i \< log p) and

stage (log p+ 1). Stage i consists of (i - 1) shuffles and one transmission step:

stage (log p + 1) consists of (log p + 1) shuffles. Although a shuffle step is

different from a transmission step. the number of packets transmitted is the same.

We can, therefore. assume that stage i (2 \< i \< log p + 1) consists of i

transmission steps. This gives us a total of (log p) (log p + 3)/2 transmission

steps required for the entire sort. Thus. the lower bound for the communication b

cost is

(log p) (log p + 3) IM/~s] /~ packets.

The upper bound for the communication cost must take into account the

number of actual output lines in a shuffle or a transmission step. Since there are

2(p- 1) actual output lines in a shuffle or a transmission step, the upper bound

for the communication costs is

(log p) (log p + 3) (p - 1) 1 ~ / 2 ~ 1 packets.

3.4. LANSA 3

In LANSA 3. the local processing costs are incurred during the two local

sorts. the selection phase, and the assignment phase. The two local sorts use

2clMlog M comparisons on average and the assignment phase requires M

comparisons.

To determine .the average complexity of the selection phase. we have to

make some assumptions. Note that the kth smallest element is determined for

k = M. 2M. . . . , (p - 1) M. During this phase. P1 broadcasts x and requests. in

return, the number of elements \< x. Let us assume that every time this request

is made by PI, each processor (including PI) searches through its file and finds

an average of klp elements

is valid since our keys are

[SaS 831, it is proved that

before it finds the kth

comparisons to find the kth

< x. This takes klp comparisons. The assumption i

generated randomly and are uniformly distributed. In

the algorithm iterates log log k times, on the average.

smallest element. Thus, it takes (log log k)k/p

smallest element. Since the kth smallest element is

determined for k = M. 2M. (p- 1)M. the selection phase takes an average

comparisons at each processor. Hence, the total local processing costs are

P-1
M(2cllog M + 1 + l l p Z log log (kM) i) comparisons

i=l

on average, where cl is a constant.

Communication costs, in this algorithm. are due to the selection and routing

phases. In [SaS 831, the authors analyze the distributed selection algorithm in

detail and derive an upper bound on its average complexity. They show that the

algorithm requires (p + log log k) basic communication activities. on the average, to

determine the kth smallest element. A basic communication activity (bca)

consists of a processor broadcasting a message and receiving a reply from all

other processors. In our model. the lower bound for a bca is 2 packets while the

upper bound is 2(p- 1) packets. Since the kth smallest element is determined for

k = M . 2 M(p-1)M, the lower bound for the selection phase is

2 (p + l o g l o g M + p + l o g l o g 2 M + + p + l o g l o g (p - l) M) packets on

average. This simplifies to 2(p(p - 1) + 2 ~ ; log log (kM)) packets. The upper

bound for the selection phase is

2(p-1) (p+log log M +p+ log log 2 M + . . . + p + log log (p - 1) M) packets

on average. This simplifies to 2(p - 1) (p(p- 1) + log log (kM)) packets.

In the routing phase. each key is sent to its final destination. To analyze

this phase. assume that IMlpl keys (on the average) are transmitted by each

processor Pi to each processor Pi (1 \< i j b p: i # j) . The lower bound for the

routing phase is. thus. p l~/~p(packets on average while the upper bound is

p(p - ~) IM /s~~ packets on average. Hence. the lower bound for the

communication cost is

P-1

2p(p - I) + p (~ / ~ p l + 2 Z log log (PM) packets
i=l

on average while the upper bound is

on average.

3.5. LANSA 4

The local processing costs are incurred during the median phase. the qsort

phase, and the local sort phase. The median and the qsort phases are executed

(log p) times while the local sort is performed at the end. To determine the

median. we used the sequential selection algorithm by [SFR 831. [SFR 83)'s

algorithm, on average. requires cjM comparisons to determine the median. The

qsort phase is similar to the "partioning/swapping" operation in quicksort and

requires M comparisons. Finally, the local sort requires clMlog M comparisons on

average. Hence. the total local processing costs are

(M log p) (c3 + 1) + cl M log M comparisons

on average, where cl and c3 are constants.

The communication costs are incurred when the pivot value v is being

determined and during the exchange phase. The pivot value v is determined as

follows. Each processor Pj (2 6 J 6 p) . after determining its median. transmits it

to PI. P1 calculates v and broadcasts it to Pi. This process is performed

(log p) times. Thus. the lower bound for determining v and broadcasting it is

2(log p) packets. The upper bound is 2(p - 1) (log p) packets.

In the exchange phase. each processor exchanges keys with one other

processor to obtain the two subfiles F1 and F2. To analyze this phase. assume

that after the qsort phase is over, each processor has to transmit M /2 keys (on

the average) to obtain the subfiles F1 and F2. Since this phase is done (log p)

times. the lower bound for this phase is (log P) [M /~S~ packets while the upper

bound is (log p) p l ~ / 2 ~ 1 . Hence. the lower bound for the communication cost is

(log p) (IM/~s~+ 2) packets

on average while the upper bound is

on average.

3.6. Summary

In this section. we summarize the theoretical results derived in this chapter. b

Table 3-1 shows the average local processing costs (in number of comparisons)

while table 3-2 shows the lower and upper bounds for the communication costs (in

average numbers of packets).

Algorithm Local Processing Costs (comparisons)

LANSA 0 c,Nlog N
LANSA 1 cl Mlog M + 2M.p

LANSA 2 c2M(log M - 1) + (log p + 1) (log p + 2) M/2

LANSA 3 M(2cllog M + 1 + I l p 2:; log log (kM) 1)

LANSA 4 (Mlog p) (c, + 1) + c1Mbg M

Table 3-1: Local Processing Costs

Communication Costs (packets)
Algorithm Lower Bound Upper Bound

LANSA 0 2 l M / s l
LANSA 1 2 p (M / S]

LANSA 3 2p(p - 1) + plM/sp l +
LANSA 2 (log p) (1% P + 3) I ~ / 2 ~ 1 / 2 (1% P) (1% P + 3) (P - l) l ~ / 2 ~ J

(P - 1) (~ P (P - 1) + PIMISPI +

2 LT' /=I log log (+M) xi=' P-' log log (+M))

LANSA 4 (log p) (I M / ~ s / + 2) (1% P) (2(P - 1) + P b W)

Table 3-2: Communication Costs

From the above summaries. it can be seen that for each LANSA

the local processing costs decrease as the number of processors to
perform the sort increases.

the communication costs increase as the number of processors to
perform the sort increases.

We cannot make an overall relative comparison of these algorithms because

the constants are unknown, and

we have not attached any weights to the local processing and
communication cost components.

Chapter 4

Experimental Results and Analysis

In this Chapter we first describe the experiment. In the rest of the

Chapter. we present and analyze the experimental results for the five LANSAs

described in Chapter 2.

4.1. Experiment

4.1.1. Hardware and Software Requirements

The experiments were performed on a network of 18 Sun workstations
i

connected by an Ethernet. a high-speed LAN. Ethernet is a popular local area ' li
I1

broadcasting network used for local communication among computing stations.

The 10 megabits per second Ethernet can effectively handle data traffic for

hundreds of stations within an area of 2 square kilometres.

Our facility is a homogeneous system. Each Sun workstation (Model

Sun-2) uses the 10-MHz version of Motorola's 32-bit 68010 microprocessor and

comes with 2 MB of main memory. These workstations run the same operating

system. Sun UNIX, and have access to the same file system. The operating

system supplies inter-network communication primitives and services allowing users

to make use of the distributed nature of the facility. In our experiments, we used

the Transmission Control Protocol (TCP) for transmission of packets over

Ethernet. TCP is a reliable transmission protocol that limits the maximum

Ethernet packet size to 1024 bytes (256 keys).

Of the 18 Sun workstations. three are file servers. Each file server has 2

or 4 MB of main memory and a 380 MB disk drive with controller. The server

systems provide the remaining diskless workstations with shared disk storage for

file systems and paging. and shared access to other peripherals. During the

experiments, we avoided using the file servers to perform the sort for obvious

reasons.

The facility provided us with all the hardware and software required to

carry out the experiments. The experiments were performed on four and eight

processors using various global file sizes. In each case, we used two equal size

sets of diskless workstations. In addition. two file servers were used -- one for

each set of workstations.

The LANSAs were run on four and eight processors with the configurations

mentioned in section 4.1.1. All of our experiments were run on a dedicated

system so that timing measurements would be accurate.

In our experiments. the files consisted of keys which were integers. The

keys were generated randomly and were uniformly distributed over a given range.

Each processor Pi. 1 < i < p, generated M keys (block size). Duplicate keys were

possible both locally (within a block) and globally (over the entire file F). The

LANSAs performed the sort successfully on global file sizes of 2K. 4K. 8K and 16K

keys (where K = 1024).

All our LANSAs consist of several phases or steps. For each phase. the
b

communication costs and local processing costs were measured in terms of

elapsed time in milliseconds (ms) to give us communication time and local

processing time. The sum of these components over all phases yields the

response time for the entire sort. Note that some phases may only consist of

one of the above cost measurement components. The timer that we used was

rounded-off to the nearest 10 ms. The results gathered were the average

response times over twenty runs. For each run. the same keys were regenerated

and at the end of the run the timings were recorded. At the end of all of the

runs, the average timings were calculated and stored in a file. Note that the

connection time for the processors was not included as part of the response time.

This connection time, which typically runs in hundreds of milliseconds. is required

by the TCP/IP protocol to link the processors before any packets are exchanged.

After the connections are made, a selected processor broadcasts a sync message

to synchronize the processors. The sync message is four bytes long and is

broadcast at the beginning of each run after which timing measurement begins in

each processor.

4.2. Methodology of the Analysis

The rest of this chapter is devoted to the analysis of the five LANSAs

described in Chapter 2. The algorithms are analyzed in the following manner

There are two parameters that affect the performance of the algorithms: N and p.

During the experiment. various files of different sizes were created and run on four
b

and eight processors. In section 4.3, we describe the behaviour of the algorithms

based on the parameter N. Section 4.4 ranks the algorithms based on parameter

p and assuming N is large (16K keys). In section 4.5, we present the analysis of

each algorithm as parameter p increases leaving N constant at 16K keys.

4.3. Size of the Data Sets

Figure 4-1 and figure 4-2 show a plot of the performance of the five

LANSAs for p = 4 and p = 8 respectively. The results are also summarized in

table B-1 and table B-2 in Appendix B. Table B-3 and table B-4 in Appendix B

show the breakdown of the response time in terms of local processing cost and

communication cost.

X LANSA 1

4 Processors

Legend
A LANSA 0

D LANSA 2 --

LANSA 3

XX LANSA 4

No. of Keys (x 1024)

Figure 4-1: Response Time for p=4

Normally, the performance of a sorting algorithm is dependent on the size

of the data set i.e, the larger the data set. the longer the algorithm takes to sort

the keys. Figure 4-1 and figure 4-2 show that all the LANSAs behave normally

except LANSA 3 for the case p = 8.

4.3.1. LANSA 3

The behaviour of this algorithm is quite erratic for p = 8 . The interesting

situation is that the algorithm does better when sorting 4K keys than when

sorting 2 K keys (see figure 4-2).

The graph in figure 4-3 shows the response time, local processing cost

component and communication cost component for LANSA 3. It can be seen that

local processing cost increases as N increases. so the interesting behaviour is in

the communication component of the algorithm. The communication cost is
b

incurred in the selection phase and the routing phase. Table 4-1 shows the

communication costs for the selection and the routing phases.

From table 4-1. it is clear that the selection phase is responsible for the

peculiar behaviour of this algorithm. In fact, the communication cost in the

selection phase is higher at N = 2 K than at any other value of N. This suggests

that the selection algorithms go through more iterations to find the kth smallest

element for N = 2 K than for any other value of N. Recall that we used SEL 1

X LANSA 1

Kesponse l lme
8 Processors

Legend
A LANSA 0

6 8 10 12

No. of Keys (x 1024)

Figure 4-2: Response Time for p = 8

0 LANSA 2 --

rxl LANSA 3

XX LANSA 4

Cost Components
LANSA 3 for p=8

Legend

6 8 10 12

No. of Keys (x 1024)

Figure 4-3: Cost Components

X Local Processlnp i ----
0 Cornmunlcatlon I -- I

N
Phase 2K 4K 8K 16 K

Selection 4.98 3.96 4.36 3.52
Routing 0.22 0.26 0.32 0.56

Table 4-1: Communication Costs in Seconds

and SEL 2 to determine the kth smallest element. SEL 1 is a reduction algorithm

that goes through a sequence of iterations to reduce the size of the problem to a

value smaller than T (termination criterion). When the termination criterion is

met. SEL 2 is employed to determine the kth smallest element. We chose T

experimentally. The number of iterations SEL 1 and SEL 2 went through were

recorded for all values of N and p. A single value of T was chosen for p = 4

and was used for all values of N. Similarly, a single value of T was chosen for

p = 8 and was used for all values of N. One possible reason why SEL 1 and

SEL 2 behave in this manner could be that the value of T we chose was not

suitable for all values of N. We think that more comprehensive tests on T for

each N may provide us with more insight into the nature of LANSA 3.

4.4. Ranking of the Algorithms

4.4.1. General Ranking

In this section, we rank the algorithms according to their performance for

N=16K. Table 4-2 shows the algorithms ranked for p = 4 while table 4-3 shows

the ranking for p = 8 .

Rank Algorithm Response Time

LANSA 2
LANSA 1
LANSA 4
LANSA 3
LANSA 0

Table 4-2: Algorithm Ranks for p = 4 and N = 16K

Rank Algorithm Response Time

LANSA 4
LANSA 2
LANSA 3
LANSA 1
LANSA 0

Table 4-3: Algorithm Ranks for p = 8 and A/= 16K

The experimental results show that LANSA 2 is the best algorithm for

p = 4 , while LANSA 4 is the best algorithm for p = 8. LANSA 3 and LANSA 4

(distributed algorithms) perform better when run on eight processors than when

run on four processors. LANSA 1 and LANSA 2 (parallel algorithms) perform

better when run on four processors than when run on eight processors. The next

subsection discusses the change of ranking from p = 4 to p = 8 .

4.4.2. Local Processing vs Communication Costs

Table 4-4 and table 4-5 show the local processing costs and communication

costs for p = 4 and p= 8 respectively

Cost Component

Algorithm Local Processing Cost Communication Cost

LANSA 0 13450 (92%) 10% (8%)
LANSA 1 4252 (58%) 3035 (42%)
LANSA 2 4386 (66%) 2281 (34%)
LANSA 3 6800 (83%) 1440 (17%)
LANSA 4 5050 (64%) 2802 (36%)

Table 4-4: Cost Components for p = 4 and N = 16K

Cost Component

Algorithm Local Processing Cost Communication Cost

LANSA 0 13143 (87%) 1841 (13%)
LANSA 1 2584 (33%) 5289 (67%)
LANSA 2 2487 (37%) 4271 (63%)
LANSA 3 3300 (56%) 4080 (44%)
LANSA 4 3310 (53%) 2984 (47%)

Table 4-5: Cost Components for p = 8 and N = 16 K

It can be seen that the local processing cost is lower for p = 8 than for

p=4 . The reason for this is that the size of the local file (i.e.. block size M) at

each processor is smaller in the case of p = 8 than in the case of p=4. so local

processing activities such as local sorts take less time.

The communication cost is higher for p= 8 than for p=4. One reason for

42

this increase may be that more processors are contending for access to the

Ethernet. This should result in more packets collisions. Packets that collide have

to be retransmitted. and this requires additional communication resources.

In our theoretical model. we assumed that both local processing costs and

communication costs are important. Table 4-4 and 4-5 show that. indeed.

communication costs and local processing costs are both important quantities and

neither can be ignored.

It is interesting to compare the cost components of the algorithms with

their design principles. LANSA 1 and LANSA 2 (parallel algorithms) were

designed to minimize local processing cost while LANSA 3 and LANSA 4

(distributed algorithms) were designed to minimize communication cost. These
b

principles are reflected in tables 4-4 and 4-5. However, it should be noted that

LANSA 3 has a large increase in communication cost from p = 4 to p = 8 . The

fact that i t s total response time is reduced from p = 4 to p = 8 is due to the

drastic reduction in processing cost.

4.4.3. Improvement of the Network Performance

In this section, we extrapolate the behaviour of the LANSAs assuming that

the performance of the network can be improved. This improvement of the

network concerns the interprocess communication (IPC) facilities built into Sun

UNIX. The basic building block for communication in Sun UNIX is the socket.

A socket is an endpoint of communication. These sockets can be connected to

form bidirectional communication streams. However, since they were designed to

be a general-purpose robust communication mechanism, the overhead in using the

socket facility is substantial. If we were to use an IPC design which is

performance oriented such as the V Kernel [Che 841. the communication costs

would decrease and this would improve the overall performance of the LANSAs.

We are doing this extrapolation because two of the algorithms being

considered here were designed for an environment where communication costs were

low or negligible. We would like to compare these algorithms and predict the

behaviour when the communication facility is much improved with respect to the

local processing facilities. Table 4-6 and table 4-7 show the extrapolation for

p = 4 and p = 8 respectively. The improved response time (in seconds) is obtained

by adding the known local processing costs to the diminished communication costs.

Table 4-6 shows that improving the network performance by 90% when 4

processors are used will only affect the relative performances of LANSA 1 and

LANSA 2. The outcome is that LANSA 1 will perform better than LANSA 2.

% lmprovement of
Network Performance

Proc. Comm. Response
Algorithm Costs Costs Time 30% 60% 90%

LANSA 0
LANSA 1
LANSA 2
LANSA 3
LANSA 4

Table 4-6: lmproved Response Time (in seconds) for p =4

% lmprovement of
Network Performance

Proc. Comm. Response
Algorithm Costs Costs Time 30% 60 % 90 %

LANSA 0 13.143 1.841 14.984 14.428 13.877 13.23
LANSA 1 2.584 5.289 7.873 6.286 4.700 3.113
LANSA 2 2.487 4.271 6.758 5.477 4.195 2.914
LANSA 3 3.300 4.080 7.380 6.156 4.932 3.708
LANSA 4 3.310 2.984 6.294 5.399 4.504 3.608

Table 4-7: lmproved Response Time (in seconds) for p = 8

Table 4-7 shows that the improvement of the network can significantly

affect the relative performances of the LANSAs when the number of processors is

increased. If the network performance is improved by 60%. LANSA 2 trades

places with LANSA 4 and LANSA 1 trades places with LANSA 3. A 90%

improvement results in LANSA 1 performing better than LANSA 4. However. in

both the cases (60% and 90% improvement). LANSA 2 performs better than all

the other LANSAs.

45

4.5. Four Processors vs Eight Processors

In this section. the performance of the algorithms for p = 4 is compared to

the performance of the algorithms for p = 8 . with constant N(=16K). We analyze

each algorithm. and compare the expected performance with the actual

(experimental) performance, we describe why our results are not as anticipated.

We are particularly interested in the amount of the communication parallelism (CP)

that can be achieved by the different algorithms and the way the communication.

parallelism changes as the number of processors increases.

Experimentally, communication parallelism can occur between the point a

transmitting processor starts to send a message and the point a receiving

processor receives this message. Between these extreme points. a message goes

through a packet building and buffer management process (at the transmitting '

end). packet transmission. and a buffer management and packet disassembly

process (at the receiving end). During the actual packet transmission process. no

parallelism can be attained in a broadcast network such as an Ethernet. However.

a very small portion of the time between the two extreme points is devoted to

the actual transmission of the packet. Thus, parallelism can be achieved during

the packet building and buffer management processes among contending processors,

and a user gets the illusion that packets can be transmitted through the network

in parallel.

46

A LANSA achieves maximum CP if the time required to transmit all

simultaneously initiated messages is equal to the time required to transmit a single

message. In contrast. a LANSA achieves minimum CP when the time required to

transmit all simultaneously initiated messages is equal to the time required to

transmit these messages serially. The lower and upper bounds derived in Chapter

3 are theoretical bounds on the CP possible for each LANSA. If the maximum

degree of CP is assigned a value of 1 and the minimum degree of CP is assigned

a value of 0, then the degree of CP for a LANSA is c. where 0 \< c < 1. In

practice. the transmission of simultaneously initiated messages cannot be entirely

parallel and is usually not entirely serial.

Before investigating the CP of the algorithms, we compare two ratios for

each algorithm. R1 is the ratio of the theoretical local processing costs for p = 8
b

and p = 4. and R2 is the ratio of the experimental local processing costs for p = 8

and p = 4. We expect that R2 = R1. i.e.. the experimental results agree with the

theoretical results. If R2= R1. then we can assume that our timing function

used in the experiments is accurate.

The theoretical upper and lower bounds on communication costs derived in

Chapter 3 were expressed in terms of number of packets transmitted. Our

experimental results, however. were measured in terms of elapsed time in

milliseconds. Since the theoretical bounds are in different units than the

47

experimental results. we cannot directly compare them. Nonetheless, we can

indirectly compare them as follows.

Let t be the time in milliseconds needed to transmit one packet (including

the packet building and disassembly times and the buffer management times a t

both sending and receiving ends) when no packet collisions or buffer overflows

occur. Experimentally. t was found to be 16 milliseconds. For each particular

LANSA, let t4 and t8 be the total empirically measured time (in milliseconds)

during which packets were transmitted for p = 4 and p = 8 respectively. Then

a4= t q / t and a8= t 8 / t are the numbers of "intervals" during which packets were

transmitted. In other words. a4 and a8 are the experimental numbers of parallel

packet transmissions. a4 and a8 are in the same units as the theoretically

determined lower and upper bounds. Let u4 (I4) and u8 (Ig) be the theoretical
C

upper (lower) bounds for p = 4 and p = 8 respectively

Definition 1: The degree of communication parallelism for an
algorithm is

where p = 4 or p = 8 is the number of processors.

If no packet collisions or buffer overflows occur. then Ip ,< ap 6 up and it follows

directly that 0 < cp 6 1. As a approaches lp. c,,
P

approaches 1 (maximum CP)

and as ap approaches up. cp approaches 0 (minimum CP). Although it is rarely

the case that no packet collisions or buffer overflows occur. cp should give us a t

least a general idea of how much communication parallelism the LANSAs exhibit.

4.5.1. LAMSA 0

The local processing cost is coN log N comparisons. For p = 4 or p=8.

this evaluates to the same number of comparisons. Consequently. R1=1. The

experimental ratio R2 evaluates to

Thus. the theoretical ratio R l is approximately equal to the experimental

ratio R2 as expected.

The lower bound for the communication cost is ~ I M / s) packets while the

upper bound is 2 (p - I) I M / ~ packets. We evaluate these expressions for

p = 4. M = 4K and p = 8, M = 2K to give us I,,, u4 and 18. U8 respectively. The

results are summarized in table 4-8.

Number of Packets

Bound p = 4 p = 8

Lower 32 16
Upper % 112

Table 4-8: LANSA 0 - Communication Costs

Using the definition of c,,. c4 =0.43 and cs =-0.03. c4 suggests that there

was some communication parallelism when p = 4 while c8 suggests that there was

no communication parallelism when p = 8. We expected the amount of

communication parallelism to be small in both cases. In LANSA 0 , processor PI

receives blocks of data from P2.P3.Pp. Since these processors all try to

send their data a t the same time, packets are bound to collide. Furthermore. P1

receives data from only one processor a t a time; thus data from other processors

is ignored. This al l leads to retransmission of packets. After P1 has sorted the

data. it transmits blocks back to P2.P3. . . . ,Pp. Since P1 is the only

transmitting processor. no parallelism is possible in this part of the algorithm.

One possible reason that c4 is higher than c8 is that fewer processors are

contending for use of the network. so fewer collisions occur during the first phase

when P1 is receiving blocks of data.

4.5.2. LANSA 1

The local processing cost is clMlog M+2Mp comparisons. If we evaluate

this expression for p = 4 . M =4K we get 212(12c1 + 23) comparisons while for
b

p = 8. M = 2K we get 211(11c1 + comparisons. Thus. the theoretical ratio R I

24c1 + 16

If cl = 0. then R1= 1. If cl is large. then Rl"0 .5 . The experimental

ratio R2 is

2584 = 0.6 -
4252

which is consistent with the bounds on R1.

The lower bound for the communication cost is 2 p l ~ / ~ l packets while the

upper bound is p (p - l) I ~ / s I packets. Table 4-9 shows these expressions

evaluated for p = 4 . M = 4 K and p = 8 . M = 2 K to give us 14. uq and 18. U8

respectively.

Number of Packets

Bound p = 4 p = 8

Lower 128 128
Upper 192 448

Table 4-9: LANSA 1 - Communication Costs

Using the definition of c,,. c4=0.04 and c8 =0,37. c4 exhibits minimal

communication parallelism while c8 shows that there was some communication

parallelism. We expected the communication parallelism to be higher than this

since processors communicate in pairs at the end of each phase. This should
b

have resulted in minimum packet collisions.

4.5.3. LANSA 2

The local processing cost is c2M(log M - 1) + (log p + 1) (log p + 2) M/2

comparisons. If we evaluate this expression for p = 4 . M = 4 K we get

212(11cl + 6) comparisons while for p = 8. M = 2K we get 211(10cl + 10)

comparisons. Thus, the theoretical ratio R1 is

10c2 + 10

If c2 =0, then R1 "0 0.8. If c2 is large. then R l " 0.5. The experimental

ratio R2 is

which is consistent with the bounds on R1.

The lower bound for the communication cost is (log p) (log p + 3) l ~ / 2 5] / 2

packets while the upper bound is (log p) (log p + 3) (p - ~) I M / ~ S] packets. Table

4-10 shows these expressions evaluated for p = 4. M = 4K and p = 8. M = 2 K to

give us 14, u4 and Is. og respectively.

Number o f Packets

Bound p = 4 p=8

Lower 40 36

Upper 240 4%

Table 4-10: LANSA 2 - Communication Costs

Using the definition of cp. c4 =0.49 and c8 = 0.50. Both c4 and c8 suggest

that some communication parallelism has occurred.

4.5.4. LANSA 3

The local processing cost is M(2cllog M + 1 + 1 l p f 1 log log (FM) i)
1=1

comparisons. If we evaluate this expression for p = 4 . M = 4 K we get

210(%c1 + 26) comparisons while for p = 8. M = 2 K we get 28(176c1 + H2)

comparisons. Thus. the theoretical ratio R1 is

If cl = 0. then R1 a 1.1. If cl is large, then R l Z 0 . 5 . The experimental

ratio R2 is

which is consistent with the bounds on R1.

b

The lower bound for the communication cost is

2p(p - 1) + p l ~ / ~ d + 2 ET' 1=1 log log (kM) packets while the upper bound is

(p - 1) (2p(p - 1) + p l ~ / ~ p l + 2 z:. - log log (F M)) packets. Table 4-11 shows

these expressions evaluated for p = 4. M = 4 K and p = 8. M = 2K to give us I,,. u4

and 18, u8 respectively.

Number of Packets

Bound p=4 p = 8

Lower 62 171
Upper 186 1200

Table 4-11: LANSA 3 - Communication Costs

53

Using the definition of cp. c4=0.78 and c8 =0.92. This suggests that this

algorithm achieves high degree of communication parallelism. These figures for

communication parallelism were a bit surprising. We expected cp to be small

because of the nature of the selection phase. Recall that most of the

communication costs are incurred in the selection phase where processors

P2.P3.Pp all communicate with P i . Since P2.P3.Pp try to

communicate at the same time. we expected serious buffer overflow problems a t

PI . However. it seems that this was not the case here.

4.5.5. LANSA 4

The local processing cost is (M log p) (c3 + 1) + c l M log M comparisons. If

this expression is evaluated for p = 4 . M = 4 K we get 2'*(12c1+2c3+2)

comparisons while for p = 8. M = 2K we get 21•‹(22c1 + 6 ~ 3 + 6) comparisons.

Thus, the theoretical ratio R1 is

If c1 = c3 = 0 , then R1 3. If both cl and c3 are equally large, then

R1 "0 0.5. The experimental ratio R2 is

3310 "0 0.7 -
5050

which is consistent with the bounds on R1.

The lower bound for the communication cost is (log p) (I M / ~ s] + 2) packets

while the upper bound is (log p) (2 (p - 1) + P I M / ~ S I) packets. Table 4-12 shows

these expressions evaluated for p = 4. M = 4K and p = 8. M = 2 K to give us 14, u4

and 18, u8 respectively.

Number of Packets

Bound p = 4 p = 8

Lower 20 18

Upper 76 138

Table 4-12: LANSA 4 - Communication Costs

Using the definition of cp. c4 = -1.77 and c8 = - 0 .40 which suggests that

the algorithm does not exhibit any communication parallelism. This is probably

due to the congested exchange phase where all processors communicate with one

another at the same time, thus resulting into a lot of packet collisions.

4.5.6. Summary

In this section, we summarize the communication parallelism attained by

each algorithm. Table 4-13 shows the communication parallelism and the

communication costs (in milliseconds) for each algorithm for p = 4 and p = 8.

Algorithm ti tR - cA c8

LANSA 0 1096 1841 0.43 -0.03
LANSA 1 3035 5289 0.04 0.37
LANSA 2 2281 4271 0.49 0.50
LANSA 3 1440 4080 0.78 0.92
LANSA 4 2802 2984 -1.77 -0.40

Table 4-13: Communication Parallelism and Communication Costs

Except for LANSA 0, each LANSA attained higher communication parallelism

when the number of processors was increased. This is a surprising result. We

expected the communication parallelism to decrease as the number of processors

increased because more processors are contending for access to the Ethernet and

the rate of packet interference should increase. This suggests that out theoretical

model is incomplete. A more sophisticated model should consider packet collisions

and buffer overflows since these two factors appear to be the source of the

problems encountered by our algorithms.

Table 4-13 also shows that the communication cost is not linearly related to

the communication parallelism.

Chapter 5

Conclusion

This research provides us with empirical results for selected parallel and

distributed sorting algorithms in the local area network environment. We name

these algorithms Local Area Network Sorting Algorithms. We adopted a cost

model which accounted for both communication costs and local processing costs.

The experimental results reported in this thesis confirm that our cost model is

correct; both cost parameters -- communication costs and local processing costs.

are important in evaluating the LANSAs.

b

The bulk of the results of this thesis concern the performance of the

algorithms that we have implemented. The two main parameters that were varied

during the experiments were N (number of keys to sort) and p (number of

processors available for sorting). Various sizes of data sets were sorted

successfully on four and eight processors.

Normally. the performance of a sorting algorithm is dependent on the size

of the data set. i.e.. the larger the data set, the longer the algorithm takes to sort

the keys. The individual LANSAs behave normally except in the case of LANSA

57

3 for p = 8. A possible reason for the unexpected behaviour of this algorithm is

that the value of T (termination criterion) we used was not suitable for all values

of N. More tests with different values for T would tell us whether the choice of

T is causing the unexpected behaviour of this algorithm.

We ranked the algorithms for four and eight processors assuming N is

large. LANSA 0 is the worst algorithm of the five LANSAs for p = 4 and p = 8 .

This result was expected since this algorithm does not take advantage of the

distributed nature of the local area network environment. LANSA 2 is the most

efficient algorithm for p = 4 while LANSA 4 is the most efficient algorithm for

p = 8.

We analyzed the local processing costs and communication costs of the

b

LANSAs for four and eight processors assuming N is large. The local processing

costs are lower for p = 8 than for p = 4 because the size of the local file at each

processor is smaller in the former case. The communication costs are higher for

p = 8 than for p = 4 . We think that this is because there are more processors

contending for access to the Ethernet. so the number of packet collisions is

greater

We extrapolated the behaviour of the LANSAs assuming that the

performance of the network is improved. Improvement of network performance is

possible if we use a performance oriented interprocess communication facility such

58

as the V Kernel instead of the Sun UNlX interprocess communication facility.

However, the V Kernel was not available at the time of the experiments.

Nevertheless, our extrapolations suggest that if the network performance is

improved by 90 %. LANSA 1 (LANSA 2) becomes the overall best algorithm when

run on four (eight) processors.

We analyzed the performance of the algorithms for p = 4 and p = 8 with

constant N and compared the results. One reason for doing this kind of analysis

was to find out whether the theoretical results agree with the experimental results.

The other reason was to determine whether any kind of communication parallelism

can be achieved by the different algorithms and to study the way that

communication parallelism changes as the number of processors increases. We

found that the theoretical predictions of the local processing costs were

approximately equal to the experimental results. To determine if an algorithm

achieves communication parallelism. we developed a framework within which the

degree of communication parallelism can be estimated. We found that some

parallelism is achieved during the packet building and buffer management processes.

The parallelism is not entirely dependent on the Sun UNlX networking software. It

also depends on the nature of the transmission phases of each algorithm. LANSA

1 and LANSA 2 exhibit some communication parallelism while LANSA 4 exhibits

no parallelism. LANSA 0 exhibits no parallelism for eight processors; however.

parallelism was achieved for four processors. LANSA 3 appears to achieve a high

degree of communication parallelism.

59

The amount of communication parallelism achieved by the different

algorithms was not as anticipated. This is probably because our theoretical model

does not consider packet collisions and buffer overflows. A more sophisticated

model which accounts for packet collisions and buffer overflows should give more

accurate predictions of communication parallelism.

Appendix A

Fundamental Parallel Merging Schemes

In this Appendix. two algorithms are discussed: Odd-Even Transposition

Sort and Stone's Bitonic Sort. These two algorithms have been generalized to

block sorting algorithms which have been adapted to our model.

A.1. Odd-Even Transposition Sort

The serial Odd-Even Transposition Sort is a variation of the bubble sort.

It requires n phases. each of which requires n/2 comparisons (n is the number of

elements to be sorted). Odd and even phases alternate: during an odd (even)

phase. odd (even) elements are compared with their right adjacent logical neighbor.

i.e. the pairs (x1.x2). (x3.x4) . . . ((~ 2 . ~ 3) . (x4,x5) . . .) are compared. To

obtain a completely sorted sequence. a total of n phases is required [BDHM 84).

This serial algorithm can easily be parallelized. Consider n processors

P1.P2.Pn. Assume that initially xi resides in Pi for i = 1.2.n. To

sort (xl,x2xn) in parallel. let P1.P,.P5. . . . (P 2 .P 4 " ") be active

during the odd (even) steps. and execute the odd (even) phases of the serial odd-

even transposition sort in parallel. Thus, the parallel odd-even transposition

algorithm sorts n numbers with n processors in n parallel comparisons and 2n

transfers. An example is illustrated in Figure A-1 for n=4.

Step 1 odd step I
I

Step 2 J, even step

Bl?JgB
Step 3 odd step 1
Step 4 even step 1

Figure A-1: Parallel Odd-Even Transposition Sort

A.2. Stone's Bitonic Sort

Stone's Bitonic Sort is an algorithm that utilizes an interconnection pattern

called the perfect shuffle. A perfect shuffle of elements of a vector is similar to

shuffling a deck of cards so that after a shuffle the elements from the two halves

of the vector alternate. To make a sorting network fast. it is necessary to have

a number of comparators perform comparisons in parallel. A comparator is a

comparison-exchange module that receives two numbers on its two input lines A.B

and outputs the minimum on its line L and the maximum on i ts output line H

[Sto 711.

To sort n numbers. Stone's bitonic sort requires a total of (n/2)(logn)2

comparators. arranged in (log n)* ranks of (@) comparators each. The network

has (log n) stages, with each stage consisting of (log n) steps. At each step. the

output lines are shuffled before they enter the next rank of comparators. The

comparators in the first (log n- i) steps do - not exchange their inputs: their only

use is to shuffle their input. The network that realizes this algorithm is shown in

Figure A-2 for eight input lines [BDHM 841. For sixteen input lines. the network

connection can be found in [Knu 73).

stage I stage 2 stoge 3

modry)
min(ry)

Figure A-2: Stone's Bitonic Sort

Appendix B

Empirical Results

In this Appendix. we tabulate the empirical results obtained during our

experiments. The results are shown in tables B-1 and B-2 for p= 4 and p = 8

respectively. These results are also plotted in figures 4-1 and 4-2 respectively

Tables B-3 and B-4 show the breakdown of the costs components for p = 4 and

p = 8 respectively.

N
A lgo r i t hm 2K 4K 8 K 16 K

LANSA 0 1.358 2.947 6.827 14.546
LANSA 1 0.766 1.780 3.671 7.287 b

LANSA 2 0.920 1.637 3.565 6.667
LANSA 3 1.360 2.280 4.020 8.240
LANSA 4 1 .036 2.058 3.620 7.852

Table 6-1: Response Time (in seconds) for p=4

LANSA 0 1.367 4.431 7.535 14.984
LANSA 1 0.986 1 .971 4.194 7.873
LANSA 2 1.182 1.591 3.161 6.758
LANSA 3 5.560 5.100 6.540 7.380
LANSA 4 1.337 2.027 3.430 6.294

Table 6-2: Response Time (in seconds) for p = 8

N
Cost 2K 4K 8K 16K

Local Proc. 1.246 2.723 6.266 13.450
Comm. 0.112 0.224 0.561 1.096

(a) LANSA 0

N
Cost 2K 4K 8K 16K

Local Proc. 0.452 1 .035 2.014 4.252
Comm. 0.314 0.745 1.657 3.035

(b) LANSA 1

N
Cost 2K 4K 8K 16K

Local Proc. 0.472 0.996 2.150 4.386
Comm. 0.448 0.641 1.415 2.281

(c) LANSA 2

N
Cost 2K 4K 8K 16K

Local Proc. 0.640 1.440 3.040 6.800
Comm. 0.720 0.840 0.980 1.440

(d) LANSA 3

N
Cost 2K 4K 8K 16K

Local Proc. 0.661 1.236 2.987 5.050
Comm. 0.375 0.822 0.633 2.802

(e) LANSA 4

Table 8-3: Cost Components (in seconds) for the LANSAs for p = 4

N
Cost 2K 4K 8K 16 K

Local Proc. 1.248 2.744 5.920 13.143
Comm. 0.119 1.687 1.615 1.841

(a) LANSA 0

N
Cost 2K 4K 8K 16K

Local Proc. 0.275 0.592 1.364 2.584
Comm. 0.711 1.379 2.830 5.289

(b) LANSA 1

N
Cost 2K 4K 8K 16K

Local Proc. 0.253 0.541 1.174 2.487
Comm. 0.929 1 .050 1.987 4.271

(c) LANSA 2

N
Cost 2K 4K 8K 16K

Local Proc. 0.360 0.880 1.860 3.300
Comm. 5.200 4.220 4.680 4.080

(d) LANSA 3

N
Cost 2K 4K 8K 16K

Local Proc. 0.507 0.863 2.073 3.310
Comm. 0.830 1.164 1.357 2.984

(e) LANSA 4

Table 6 -4 : Cost Components (in seconds) for the LANSAs for p = 8

References

[Baa 78)

[BDHM 841

[BrH 831

[Che 841

[Knu 73)

[MeB 761

[RSS 851

Baase. S.
Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley Publishing Co.. Reading. Mass.. 1978.

Bitton. D.. Dewitt. D.J.. Hsaio. D.K. and Menon. J.
A Taxonomy of Parallel Sorting.
ACM Computing Surveys l6(3). September. 1984.

Broomell, G. and Heath. J.R.
Classification Categories & Historical Development of Circuit

Switching Topologies.
ACM Computing Surveys 15(2). June. 1983.

Cheriton. D.R.
The V Kernel: A Software Base for Distributed Systems.
IEEE Software. 1(2), April. 1984.

Knuth. D.E.
The Art of Computer Programming: Sorting and Searching.
Addisson-Wesley Publishing Co.. Reading. Mass.. 1973.

Metcalfe. R.M. and Boggs. D.R.
Ethernet: Distributed Packet Switching for Local Computer

Networks.
ACM Communications 19(7). July. 1976.

-Page Jr., T. W. and Popek. G.J.
Distributed Data Management in Local Area Networks.
In Proc. 3rd ACM Symp. on Princ. of Database Systems..

ACM-SIGACT-SIGMOD. March. 1985.

Rotem. D.. Santoro. N. and Sidney. J.
Distributed Sorting.
IEEE Trans. on Comp. C-34(4). April. 1985.

[SaS 821

[SaS 831

[SFR 831

[Sta 841

[Sto 71)

[Svo 84)

[Weg 841

Santoro. N. and Sidney. J.B.
Communication Bounds for Selection in Distributed Sets.
Technical Report SCS-TR-10. School of Computing Science.

Carleton University. September. 1982.

Santoro. N. and Sidney. J.B.
A Reduction Technique for Selection in Distributed Files: I.
Technical Report SCS-TR-23. School of Computing Science.

Carleton University. April. 1983.

Shrira. L.. Francez. N. and Rodeh. M.
Distributed k-Selection: From a Sequential to a Distributed

Algorithm.
In Proc. 2nd A C M Symp. Princ. Distrib. Comput.. ACM-

SIGACT, August. 1983.

Stallings. W.
Local Networks.
A C M Computing Surveys 16(1). March, 1984.

Stone. H.S.
Parallel Processing with the Perfect Shuffle.
I E E E Trans. on Comp. C-20(2). February. 1971.

Svobodova. L.
File Servers for Network-Based Distributed Systems.
A C M Computing Surveys l6(4). December. 1984.

Wegner. L.M.
Sorting a Distributed File.
Computer Networks (8). August. 1984.

