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Abstract 

This thesis provides empirical results for selected parallel sorting algorithms 

(block sorting algorithms) and distributed sorting algorithms which have been 

adapted for implementation on an Ethernet network with diskless Sun workstations. 

Most work concerning the performance of parallel and distributed sorting 

algorithms has been theoretical and assumes simplified models. Hence. we adopt 

an empirical approach which provides more insight into the performance of the 

algorithms. Our cost model considers both local processing costs and 

communication costs to be important factors when evaluating the performance of 
b 

the sorting algorithms in the LAN environment. 

We obtain our experimental results on communication time, local processing 

time and response time of each algorithm for various file sizes and different 

numbers of processors. These results are analyzed and compared to our 

theoretical model. In cases where the experimental results do not agree with the 

theoretical results. the discrepancies are explained. We also make an attempt to 

project the behaviour of the algorithms as number of processors or interprocess 

communication facilities changes. 
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Chapter 1 

Introduction 

1.1. Network Configuration 

Processors are interconnected mainly to share resources. There are a 

number of ways to interconnect them. One extreme is where large computers 

located at different geographic sites are linked together to form a long-haul 

network, e.g. ARPANET. The other extreme is where several computers are 

closely connected together to form a multiprocessor system. Near the middle of 

these extremes is local area networking (LAN). the interconnection of computers to 

gain the resource sharing of computer networking and the parallelism of 
b 

multiprocessing [BrH 83. MeB 76). 

The distance between computers and the associated communication data rate 

can be used to distinguish among the different methods of connecting processors 

(see table 1-1) [MeB 76). 

System Distance Data Rate 

Long-haul network > 25 km. 
Local area network 25-.1 km. 
Multiprocessors < .I km. 

< .1 Mbps 
.I-100 Mbps 
> 100 Mbps 

Table 1-1: Characteristics of Distributed Processing Systems 



Another distinction between local area networks and long-haul networks is 

that local area networks generally experience significantly fewer data transmission 

errors and much lower communication costs than long-haul networks. so cost- 

performance tradeoffs are very different [Sta 841. 

The main difference between local area networks and multiprocessor systems 

is the degree of coupling. Multiprocessor systems are tightly coupled, and usually 

have centralized control. shared memory. and completely integrated communications 

functions. Local area networks tend to exhibit the opposite characteristics [Sta 

841. 

Local networks have become more popular in recent years. The main 

reasons are the continuing decrease in cost and an increase in the capabilities of 

computer hardware and local networking technology. There has been an increase 

in the use of systems consisting of single-user machines (workstations) 

interconnected by a fast local area network. The workstations usually have their 

own processor and memory, but they need to share other expensive resources such 

as disk storage and printers. The workstations can operate independently, or. if 

i 

the application requires distributed processing. they communicate through the 

network. These systems are being used for many applications -- general office 

tasks, computer-aided engineering design. academic computing facilities, and 

software development. to name a few [Sta 84, Svo 841. 
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1.2. Parallel vs Distributed Sorting Algorithms 

Sorting is theoretically interesting and an important application [Knu 73. Baa 

781. Over the past two decades, much computing science research has focussed 

on sorting on a single processor or on an array of processors. Recently, parallel 

sorting and distributed sorting have received increasing attention from computing 

science researchers. Parallel sorting algorithms are generally designed for a 

multiprocessor system whereas distributed sorting algorithms are generally designed 

for a network of computers. 

The designer of a parallel sorting algorithm usually assumes that the number 

of processors available to perform the sort is very large. However. for a general- 

purpose sorting algorithm. it is desirable to set a limit on the number of 

processors available. We are. thus. interested in Block sorting algorithms. b 

Block sorting algorithms require relatively small number of processors to sort a 

large array of keys. Also. block sorting algorithms can easily be adapted to the 

LAN environment. 

Block sorting algorithms partition the file to be sorted into a number of 

blocks depending on the number of processors available to perform the sort. In 

the literature on parallel sorting algorithms. the time complexity is expressed in 

terms of parallel comparisons and exchanges between processors in the 

interconnecting network. i.e. local processing cost. The communication cost is 
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assumed to be proportional to local processing cost and is usually ignored in the 

analysis of a parallel sorting algorithm. 

In contrast, distributed sorting algorithms are designed for a network of 

processors that do not share memory. Here. fragments of the file to be sorted 

reside in the memory of each processor. Most distributed algorithm research 

assumes an environment in which communication costs are orders of magnitude 

higher than local processing costs. Consequently, communication costs dominate 

the sorting time and local processing costs are ignored. 

1.3. Objectives of the  Thesis 

Most work concerning the performance of parallel and distributed sorting 

algorithms has been theoretical and assumes simplified models. In most research 

b 

papers concerning this subject, empirical results are not provided. In the case of 

parallel sorting algorithms, the time complexity of the algorithm is usually given in 

terms of parallel comparisons. In the case of distributed sorting algorithms, the 

time complexity of the algorithm is usually given in terms of the number of 

messages. This thesis provides empirical results 'for selected parallel and 

distributed sorting algorithms which have been run in a local area network 

environment. 

It is our belief that the cost models commonly used to evaluate parallel and 

distributed algorithms are not appropriate for distributed processing in a LAN 



environment. Since local area networks lie between multiprocessor systems and 

long-haul networks, our cost model considers both communication costs and local 

processing costs to be important factors when evaluating the efficiency of a sorting 

algorithm. To test this model. we have selected existing parallel and distributed 

sorting algorithms from the literature. These algorithms have been analyzed. 

adapted to our LAN environment and then implemented. These algorithms are 

called Local Area Network Sorting Algorithms (LANSAs). 

The goal of this thesis is to test the validity of our theoretical model. We 

take the experimental approach to determine how communication cost and local 

processing cost affect the performance of the algorithms. The experimental 

approach aids us in ranking the algorithms in ways that a theoretical analysis 

cannot. We believe that it also informs us more about the subtle behaviour of 

the LAN than a theoretical analysis could. As a consequence. the sorting 

algorithms may be improved due to the experimental observations. 

The results gathered from our experiments are analyzed and compared to 

our theoretical model. In cases where the experimental re;ults do not agree with 

the theoretical results. we propose explanations for the discrepancies. The 

algorithms are also ranked according to their performance. 



1.4. Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 describes 

the model that we use in this thesis and the five LANSAs that we have 

implemented. Chapter 3 contains a theoretical cost analysis of the LANSAs 

according to our model. The experimental setup is  described in Chapter 4 and the 

experimental results are presented and analyzed. Chapter 5 summarizes the major 

contributions of this :thesis. 



Chapter 2 

LANSAs 

In this chapter, we describe the model that we use in this thesis and the 

f ive LANSAs that we have implemented. 

2.1. Model 

Our model is a broadcast network consisting of a medium-speed bus (e.g. 

Ethernet) and p processors Pi, 1 < i < p  which are attached to the bus. 

Processors can communicate with each other by sending messages through the 

network. A long message may be segmented into a number of packets that can 
b 

be individually transmitted through the network. 

When p processors are available and N keys are to be sorted. the keys are 

assumed to be distributed among the p processors so that a block of M = I N / ~ I  

keys is stored in each processor's local memory. These blocks are sometimes 

referred to as local files. Processors are labeled PI.P2. . . . .P,, according to a 

presumed order. The processors cooperate to redistribute the keys so that the 

block residing in each processor's local memory is a sorted sequence of length 

approximately M. and the concatenation of these blocks (according to the 

Presumed order) is a sorted sequence of length N. Processors do not share 
. . 
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memory and each processor has sufficient memory to perform an internal sort of 

N keys. 

In our theoretical cost model for the LAN environment, we consider two 

major components: communication cost and local processing cost. In our 

theoretical model. the number of parallel packet transmissions in the network is a 

lower bound on communication cost while the total number of packets transmitted 

in the network is an upper bound. A parallel packet transmission is the 

transmission of packets that are initiated simultaneously by the processors in the 

network. The local processing cost is the number of parallel comparison-exchanges 

performed by the processors. Experimentally, communication cost is the total time 

that network resources are being used. Local processing cost is the total time a 

processor takes to process a local activity. In both cases, the sum of 

communication cost and local processing cost yields the response time to solve 

the sorting problem. 

2.2. LANSA 0 

LANSA 0 is a Centralized Sorting Algorithm. Let a file. F. be a 

sequence of keys distributed equally among processors P1.P2. . . . .PP. 

Processors Pi. 2 < i < p transmit their local files to processor P I .  Processor PI 

sorts the combined files using the quicksort algorithm and redistributes the file 

equally so that each processor receives a locally sorted file which is also globally 

sorted. 



2.3. LANSA 1 

LANSA 1 has been adapted from the parallel block sorting algorithm, Block 

Odd-Even Sort based on Two-way  Merge-Split [BDHM 841. Before the 

description of the algorithm is given. let us define a two-way merge-split step. A 

two-way merge-split step is defined as a two-way merge of two sorted blocks of 

size M. followed by a split of the resulting block of size 2M into two halves. 

Both operations are executed within a processor's local memory. The contents of 

a processor's memory before and after a two-way merge-split step are shown in 

Figure 2-1 [BDHM 841. 

Figure 2-1: Two-way Merge-Split step 

LANSA 1 has been derived from the Odd-Even Transposition Sort, which 

is described in Appendix A. The algorithm consists of a preprocessing step (step 

0) and p additional steps (steps 1 to p) where p is the number of processors. 

Initially. each processor's memory contains a sequence of length M (block size). 



During step 0, each processor independently sorts the sequence residing in its local 

memory. This local sort step uses a quicksort algorithm. During steps 1 to p, all 

processors cooperate to merge the p sequences generated by step 0. These p 

steps are similar to the p steps of the odd-even transposition sort. During the 

odd (even) steps. the odd- (even-) numbered processors receive from their higher- 

even (higher-odd) numbered neighbor a sorted block, perform a two-way merge. 

and send back the higher M keys. During the odd- (even-) numbered steps, the . 

odd- (even-) numbered processors are active while the even- (odd-) numbered 

processors are idle. This algorithm is illustrated in Figure 2-2 for four processors, 

where M =5. 

2.4. LANSA 2 

LANSA 2 has been adapted from the parallel block sorting algorithm, Block 
b 

Bitonic Sort based on Two-way  Merge-Split [BDHM 841. This algorithm also 

performs a two-way merge-split which has been defined in Section 2.3. 

LANSA 2 has been derived from Stone's Bitonic Sort, which is described 

in Appendix A. The comparison-exchange step in Stone's bitonic sort is replaced 

by a two-way merge-split step to obtain LANSA 2. LANSA 2 can sort M p  keys 

with p processors in two local sort steps. ((logp)(log p + 1)/2 + 1) shuffle steps 

(shuffle step is explained in Appendix A). (log p + 1) (log p + 2)/2 merge-split steps 

and ( logp- 1) transmission steps. The local sort steps use a quicksort algorithm. 

During a shuffle step. each processor sends a sorted sequence of length M /2  to 



Step 0 local sort 

Step 1 odd step 

Step 2 even step 

Step 3 odd step 

Figure 2-2: LANSA 1 



each of its logical neighbors. During a merge-split step. each processor performs a 

tweway merge of the two sequences of length M/2 and splits the resulting 

sequence into two sequences of length M/2. The algorithm is illustrated in Figure 

2-3 for two processors. where M=4 [BDHM-84). 

Step I Step 2 Step 3 
n 

Figure 2-3: LANSA 2 

LANSA 2 is different from Block Bitonic Sort based on TweWay Merge- 

Split in that the transmission step is an added feature. The transmission steps 

reduce the number of shuffle steps. Each transmission step is the combination of 

several consecutive shuffle steps. There may be several transmission steps 

depending on the number of sets of consecutive shuffle steps. In our theoretical 

model and in our experimental broadcast network, data can be transmitted to any 

processor in the network in a single transmission step. This modification reduces 

a number of shuffle steps and makes LANSA 2 a faster algorithm than Block 

Bitonic Sort based on Two-way Merge-Split. 



2.5. LANSA 3 

LANSA 3 has been adapted from the Distributed Sorting algorithm by 

[RSS 851. Let F be a file of M p  keys distributed among p  processors 

P,. P2. . . . .Pp. Let F[k] denote the kth smallest element in F where 

k=iM. l \ < i < p .  

The algorithm consists of four phases. In the first phase, each processor 

locally sorts the sequence residing in its local memory using a quicksort algorithm. 

In the second phase. each key in F is assigned a destination. This is 

accomplished by determining the F[k]'s distributively. To find F[k] distributively. 

the distributed selection algorithms in [SaS 831 and [SaS 821 are used. Once the 

F[k]'s are found. all processors assign destinations simultaneously. In the third 

phase. the keys are sent to their assigned destinations. This phase is called the 

Routing phase. In the final phase. each processor independently carries out a 

local sort using the quicksort algorithm. Figure 2-4 illustrates LANSA 3 for four 

processors. where M=5. Note that in the example, the numbers in parenthesis 

refer to the processor number to which the key is assigned. 

The distributed selection algorithms from [SaS 831 and [SaS 821 are 

described below. These algorithms have also been adapted to our model. We call 

these algorithms SEL 1  and SEL 2 respectively. 

SEL 1 is  a reduction technique for selection in distributed files. Let F be 



Phase 1 (local sort) 

Phase 2 (assign destination) 

Phase 3 (Routing phase) 

Phase 4 (local sort) 

Figure 2-4: LANSA 3 



a file of N elements distributed among p processors. We want to find the kth 

smallest element ( F [ k ] )  of F. SEL 1 is designed for applications in which the 

size of the file is much greater than the number of processors. i.e. N>>p. It 

goes through a sequence of iterations whose effect is to reduce the size of the 

problem until another efficient selection algorithm (SEL 2, for example) can be 

employed to determine F [ k ] .  Occasionally. SEL 1 may locate the element being 

sought. 

Since SEL 1 is a reduction algorithm. a predetermined parameter T 

(termination criterion) is used. When the size of the problem is reduced to a 

value smaller than T. the algorithm is terminated. We have determined T 

experimentally. SEL 1 also requires a controller to perform some bookkeeping 

tasks: we chose P1 as the controller. The algorithm consists of four steps: 

1. The controller. PI, determines the current set size mi of each Pi and 

finds the lowest numbered processor PI with maximum set size m. 

P 2. PI requests P, to return i t s  lmk/n l th  value where n = E .  1=1 mi. We 

call this value x. 

3.  P1 broadcasts x .  Each Pi 2 \< J \< p. determines aj and aj, where aj 

is the number of keys < x and a, is the number of keys \< x for 

processor Pj and sends both values to PI. PI.  in the meantime, also 

determines al and PI .  

P 4. Upon reception of all such values. PI determines a = EiZl a; and 

0 = zP 0; and 1=1 



a. If a < k \< P ,  halt: x is the value sought. 

b. If @ < k, discard values < x; k + k - 6. 

If the stopping criterion is met. terminate the algorithm: otherwise 
return to step 1. 

c. If /3 > k. discard values > x. Also discard value x at P,. 

If the stopping criterion is met. terminate the algorithm; otherwise 
return to step 1. 

SEL 2 is a distributed selection algorithm to find the kth smallest element. 

F[k]. in a file of N elements distributed over p  processors. Without loss of 

generality. let k < I~/21.  The algorithm requires a controller to perform some 

bookkeeping tasks: we chose PI as the controller. SEL 2 consists of three steps: 

1. The controller. PI. requests each processor PI. 2 < j < p  to return i t s  

ath smallest element. sj where a = ((k - l ) lp) .  PI. in the meantime. 

also determines sl. 

2. Upon reception of all such values P1 finds the processor P, with the 

smallest si, 1  < I < p. 

3. P1 discards the smallest a elements from P,'s set. 

P1 discards the largest (a - 1) elements' from Pi's set. 1 < i 6 p, i f s. 

If k > 1 ,  go to step 1; otherwise find the smallest value a t  each Pi 
which we call xi. 1 Q i Q p. The smallest of all such xi's is the value 

sought. 

LANSA 3 differs from the original description of Distributed Sorting in 
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[RSS 851 in that phase 1. which is the local sort phase, is an added feature. 

This modification was done to make distributed selection in the second phase of 

the algorithm more efficient. SEL 1 and SEL 2 require us to determine the 

(rnk/nlth value at PI and the ( k -  l P h  smallest element at each Pi 

respectively. The original algorithm determines these values using a local selection 

algorithm at each processor. Since each processor determines (p - l ) ( p  + log log k) 

values on the average. the local processing costs to perform an additional local 

sort at each processor are dwarfed by the local processing costs to perform the 

local selections. 

Another point worth mentioning is that sometimes the block size (M) a t  the 

end of the sort may differ from the original block size. This situation arises when 

an F[k ]  is found to be a duplicate; however. our experimental results show that 
b 

this difference is within 1 % of the original block size. 

2.6. LANSA 4 

LANSA 4 has been adapted from the Distributed Quicksort algorithm in 

[Weg 84). Quicksort is a recursive sorting algorithm that partitions the keys of 

a file F into two subfiles. F1 and F2. such that all keys in F1 are smaller than a 

randomly chosen pivot value v. and all keys in F2 are greater than v. The two 

subfiles are then sorted independently and recursively using Quicksort. 

Consider a file F containing N keys that is distributed among p processors 
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such that a block of M = ~ N / ~ ]  keys is stored in each processor's local memory. 

F can be partitioned into two subfiles F1 and F2 by letting each processor 

Pi, 1 \< i \< p, independently partition its block using the same pivot value v.  To 

obtain v. we let P1 be the controlling processor, and ask each processor 

Pi. 2 < j 6 p to report m the median of its block to PI. PI. in the meantime. j *  

also determines ml. This phase is called the Median phase. P1 calculates the 

mean of the mi's. 1 \< i \< p. to obtain v which is then broadcast. Each median. 

mi, is determined using the local selection algorithm from [SFR 831. Let li and hi 

be the number of keys < v and > v, respectively. in Pi (1 \< i G p ) .  The 

process of determining the li's and hi's is called the Qsort phase. Since v is 

the mean of the medians. we assume that the sum of the li's gives the global 

split position for F at processor Pp12 (assuming p is even). Keys can now be 

exchanged between P1 and P, and 

obtain two subfiles FI and F2. This phase is called the Exchange phase. F1 

and F2 are sorted with the same method. The algorithm stops when the subfiles 

are of lengthXM after which the subfiles can then be sorted locally within a 

processor. using a quicksort algorithm. Figure 2-5 illustrates this algorithm for four 

processors. where M = 5. 

The local k-select algorithm from [SFR 831 has been adapted to our model. 

We call this algorithm SEL 3. Let S be the set containing the elements. We are 

interested in finding the kth smallest element of S. The algorithm consists of two 

steps: 



Qsort phase vlP1. P2. P3. P4] = 10 

Exchange Phase 

Qsort  phase vlP1. P2) = 6 vlP3. P41 = 15 

Exchange Phase 

Local sort 

Figure 2-5: LANSA 4 



1. Choose an element x at random from S. 

2. Partition the elements of S into 3 subsets SL. SE. SG which contain 
the elements of S which are smaller, equal, and larger than x. 
respectively. Then 

a. If k \< (SLI. S =  SL 
i.e.. discard values > x and return to step 1. 

b. If (SL( < k \< (SLI + ISEI. halt: x is the value sought. 

k + k - (SL: - jSEI 
i.e.. discard values \< x and return to step 1. 

LANSA 4 differs from the original description of Distributed Quicksort in 

that the global split position for F is assumed to be a t  processor Pp12 (assuming i 

I 
p is even) while the original algorithm may split the f i le at any processor 1, 
Pg. 1 \< g \< p. This modification can lead to the block size M a t  the end of the 1 '  

sort being different from the original block size: however, our experimental results 

show that this difference is within 1 % of the original block size. 



Chapter 3 

Theoretical Cost Analysis 

In this chapter. we perform average case cost analyses of the LANSAs 

according to our theoretical model. Our theoretical cost model considers both the 

communication costs and local processing costs to be important quantities in 

evaluating the efficiency of the LANSAs. The local processing cost is the average 

number of parallel comparison-exchanges performed by the processors. The 

number of parallel packet transmissions in the network is a lower bound on the 

communication cost (maximum communication parallelism) while the total number 

of packets transmitted in the network is an upper bound (minimum communication b 

parallelism). 

Our model is incomplete in the following ways. First, we do not specify 

what weights should be given to the cost components because we do not know 

these weights. 

Second, it is difficult to estimate the degree of communication parallelism 

(defined below). Also the program and system overheads cannot be estimated and 

are thus ignored. 
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Third. our model does not consider packet collisions in the network or 

buffer overflow. When two or more processors attempt to transmit at precisely 

the same time. a packet collision occurs. A processor recovers from a detected 

collision by abandoning the attempt and retransmitting the packet. Buffer overflow 

occurs when several processors attempt to send packets to one processor. This 

results in a loss of packets and necessitates retransmission of packets. In both 

cases, additional communication resources are used which are not accounted for in 

our model. 

According to an empirical 

approximately 90% of the total time 

processing of the packet by the 

study on a LAN environment [Pap 851. 

for the transmission of a packet is spent on 

transmitting and receiving processors. The 

network is utilized only 10% of the time. As a result. although a bus type 
b 

network such as an Ethernet is not sharable. much of the transmission of packets 

can proceed in parallel. Parallel packet transmission is the transmission of packets 

that are initiated simultaneously by the processors in the network. Maximum 

communication parallelism is achieved when the time required to transmit two or 

more packets is (almost) the same as the time required to transmit one packet. 

In contrast. minimum communication parallelism is the serial transmission of 

packets. 

Before we analyze the algorithms. we need some definitions. Let F be the 
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global file containing N keys and let p be the number of processors available to 

perform the sort. The keys are distributed equally among the p processors so 

that a block of M = IN/~I keys is stored in each processor's local memory. Let 

S be the maximum sine of a packet (in number of keys) that can be transmitted 

through the network. 

3.1. LANSA 0 

In this algorithm, processor P1 receives blocks of data from processors 

P2.Pp. .Pp. P1 performs a local sort using a quicksort algorithm and 

retransmits the sorted blocks back to these processors. The local sort takes 

coN log N comparisons 

on average. where co is a constant. 

The lower bound for the communication cost is 

2 l ~ j s l  packets 

while the upper bound is 

2 ( p  - ~)IM/s~ packets. 

3.2. LANSA 1 

Recall that this algorithm consists of (p+ 1) steps. Step 0 is a local sort 

which is performed independently by each processor. During the odd (even) steps. 

the odd- (even-) numbered processors receive from their higher-even (higher-odd) 
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numbered neighbor a sorted block. perform a two-way merge. and send back the 

higher M keys. Thus. the local processing cost consists of the local sort and p  

merge-split steps. The local sort takes c l M  log M comparisons on average and a 

merge-split takes 2M comparisons. Hence, the total local processing cost is 

cI M log M + 2M.p comparisons 

on average. where cl is  a constant. 

The lower bound for the communication cost per step is 2 1 ~ 1 4  packets. 

Thus. p  steps require 

2 p l ~ / ~ 1  packets 

to be transmitted in the network. During an odd (even) step. p  ( p - 2 )  I 
I 

processors transmit p l ~ / ~ l  ( ( p - 2 ) 1 ~ / ~ l )  packets in total. Since there are p/2  

odd steps and p/2  even steps, the upper bound for the communication cost 
, ii I 

I I 

evaluates to 

p(p - I ) I M / s I  packets. 

3.3. LANSA 2 

This algorithm consists of (log p +  2 )  stages. Stage 0 consists of each 

processor locally sorting two blocks of data of size M / 2 .  Stage 1 consists of a 

merge-split step performed by each processor. Stage i .  2 < i \< log p, consists of 

( i  - 1 )  shuffles, I merge-splits and a transmission step. Finally. stage (log p  + 1) 

consists of (log p  + 1 )  shuffles and (log p  + 1 )  merge-splits. To sort a block of 



M/2  keys requires c2M(log M-1) /2  comparisons on average and to merge two 

blocks of M/2 keys requires M comparisons. Hence. the total local processing 

costs are 

c2M(log M - 1) + (log p + 1) (log p + 2) M/2 comparisons 

on average, where c2 is a constant. 

The communication costs are incurred during stage. i (2 \< i \< log p) and 

stage (log p+ 1). Stage i consists of ( i - 1 )  shuffles and one transmission step: 

stage (log p + 1) consists of (log p + 1) shuffles. Although a shuffle step is 

different from a transmission step. the number of packets transmitted is the same. 

We can, therefore. assume that stage i (2 \< i \< log p + 1) consists of i 

transmission steps. This gives us a total of (log p) (log p + 3)/2 transmission 

steps required for the entire sort. Thus. the lower bound for the communication b 

cost is 

(log p) (log p + 3) IM/~s] /~ packets. 

The upper bound for the communication cost must take into account the 

number of actual output lines in a shuffle or a transmission step. Since there are 

2(p- 1) actual output lines in a shuffle or a transmission step, the upper bound 

for the communication costs is 

(log p) (log p + 3) (p - 1 ) 1 ~ / 2 ~ 1  packets. 



3.4. LANSA 3 

In LANSA 3. the local processing costs are incurred during the two local 

sorts. the selection phase, and the assignment phase. The two local sorts use 

2clMlog M comparisons on average and the assignment phase requires M 

comparisons. 

To determine .the average complexity of the selection phase. we have to 

make some assumptions. Note that the kth smallest element is determined for 

k = M. 2M. . . . , (p - 1) M. During this phase. P1 broadcasts x and requests. in 

return, the number of elements \< x. Let us assume that every time this request 

is made by PI, each processor (including PI) searches through its file and finds 

an average of klp elements 

is valid since our keys are 

[SaS 831, it is proved that 

before it finds the kth 

comparisons to find the kth 

< x. This takes klp comparisons. The assumption i 

generated randomly and are uniformly distributed. In 

the algorithm iterates log log k times, on the average. 

smallest element. Thus, it takes (log log k)k/p 

smallest element. Since the kth smallest element is 

determined for k = M. 2M. . . . . (p- 1)M. the selection phase takes an average 

comparisons at each processor. Hence, the total local processing costs are 

P-1 
M(2cllog M + 1 + l l p  Z log log (kM) i ) comparisons 

i=l 

on average, where cl is a constant. 



Communication costs, in this algorithm. are due to the selection and routing 

phases. In [SaS 831, the authors analyze the distributed selection algorithm in 

detail and derive an upper bound on its average complexity. They show that the 

algorithm requires (p + log log k) basic communication activities. on the average, to 

determine the kth smallest element. A basic communication activity (bca) 

consists of a processor broadcasting a message and receiving a reply from all 

other processors. In our model. the lower bound for a bca is 2 packets while the 

upper bound is 2(p- 1) packets. Since the kth smallest element is determined for 

k = M . 2 M .  . . . .(p-1)M, the lower bound for the selection phase is 

2 ( p + l o g l o g M + p + l o g l o g 2 M +  + p + l o g l o g ( p - l ) M )  packets on 

average. This simplifies to 2(p(p - 1) + 2 ~ ;  log log (kM) ) packets. The upper 

bound for the selection phase is 

2(p-1) (p+log log M +p+ log log 2 M +  . . . + p + log log (p - 1) M) packets 

on average. This simplifies to 2(p - 1) (p(p- 1) + log log (kM) ) packets. 

In the routing phase. each key is sent to its final destination. To analyze 

this phase. assume that IMlpl keys (on the average) are transmitted by each 

processor Pi to each processor Pi (1 \< i j  b p: i # j ) .  The lower bound for the 

routing phase is. thus. p l~/~p( packets on average while the upper bound is 

p(p - ~ ) IM /s~~  packets on average. Hence. the lower bound for the 

communication cost is 

P-1 

2p(p - I)  + p ( ~ / ~ p l  + 2 Z log log (PM) packets 
i=l 

on average while the upper bound is 



on average. 

3.5. LANSA 4 

The local processing costs are incurred during the median phase. the qsort 

phase, and the local sort phase. The median and the qsort phases are executed 

(log p) times while the local sort is performed at the end. To determine the 

median. we used the sequential selection algorithm by [SFR 831. [SFR 83)'s 

algorithm, on average. requires cjM comparisons to determine the median. The 

qsort phase is similar to the "partioning/swapping" operation in quicksort and 

requires M comparisons. Finally, the local sort requires clMlog M comparisons on 

average. Hence. the total local processing costs are 

(M log p) (c3 + 1 )  + cl M log M comparisons 

on average, where cl and c3 are constants. 

The communication costs are incurred when the pivot value v is being 

determined and during the exchange phase. The pivot value v is determined as 

follows. Each processor Pj (2 6 J 6 p) .  after determining its median. transmits it 

to PI. P1 calculates v and broadcasts it to Pi. This process is performed 

(log p) times. Thus. the lower bound for determining v and broadcasting it is 

2(log p) packets. The upper bound is 2(p - 1) (log p) packets. 



In the exchange phase. each processor exchanges keys with one other 

processor to obtain the two subfiles F1 and F2. To analyze this phase. assume 

that after the qsort phase is over, each processor has to transmit M /2  keys (on 

the average) to obtain the subfiles F1 and F2. Since this phase is done (log p) 

times. the lower bound for this phase is (log P ) [M /~S~  packets while the upper 

bound is (log p ) p l ~ / 2 ~ 1 .  Hence. the lower bound for the communication cost is 

(log p) (IM/~s~+ 2) packets 

on average while the upper bound is 

on average. 

3.6. Summary 

In this section. we summarize the theoretical results derived in this chapter. b 

Table 3-1 shows the average local processing costs (in number of comparisons) 

while table 3-2 shows the lower and upper bounds for the communication costs (in 

average numbers of packets). 

Algorithm Local Processing Costs (comparisons) 

LANSA 0 c,Nlog N 
LANSA 1 cl Mlog M + 2M.p 

LANSA 2 c2M(log M - 1) + (log p + 1) (log p + 2) M/2  

LANSA 3 M(2cllog M + 1 + I l p  2:; log log (kM) 1 ) 

LANSA 4 (Mlog p) (c, + 1) + c1Mbg M 

Table 3-1: Local Processing Costs 



Communication Costs (packets) 
Algorithm Lower Bound Upper Bound 

LANSA 0 2 l M / s l  
LANSA 1 2 p ( M / S ]  

LANSA 3 2p(p - 1 )  + plM/sp l  + 
LANSA 2 (log p) (1% P + 3 )  I ~ / 2 ~ 1 / 2  (1% P )  (1% P + 3 )  (P  - l ) l ~ / 2 ~ J  

(P  - 1 )  ( ~ P ( P  - 1 )  + PIMISPI + 

2 LT' /=I log log (+M) xi=' P-' log log (+M) ) 

LANSA 4 (log p) ( I M / ~ s /  + 2 )  (1% P)  (2(P - 1 )  + P b W )  

Table 3-2: Communication Costs 

From the above summaries. it can be seen that for each LANSA 

the local processing costs decrease as the number of processors to 
perform the sort increases. 

the communication costs increase as the number of processors to 
perform the sort increases. 

We cannot make an overall relative comparison of these algorithms because 

the constants are unknown, and 

we have not attached any weights to the local processing and 
communication cost components. 



Chapter 4 

Experimental Results and Analysis 

In this Chapter we first describe the experiment. In the rest of the 

Chapter. we present and analyze the experimental results for the five LANSAs 

described in Chapter 2.  

4.1. Experiment 

4.1.1. Hardware and Software Requirements 

The experiments were performed on a network of 18 Sun workstations 
i 

connected by an Ethernet. a high-speed LAN. Ethernet is a popular local area ' li 
I1 

broadcasting network used for local communication among computing stations. 

The 10 megabits per second Ethernet can effectively handle data traffic for 

hundreds of stations within an area of 2 square kilometres. 

Our facility is a homogeneous system. Each Sun workstation (Model 

Sun-2) uses the 10-MHz version of Motorola's 32-bit 68010 microprocessor and 

comes with 2 MB of main memory. These workstations run the same operating 

system. Sun UNIX, and have access to the same file system. The operating 

system supplies inter-network communication primitives and services allowing users 



to make use of the distributed nature of the facility. In our experiments, we used 

the Transmission Control Protocol (TCP) for transmission of packets over 

Ethernet. TCP is a reliable transmission protocol that limits the maximum 

Ethernet packet size to 1024 bytes (256 keys). 

Of the 18 Sun workstations. three are file servers. Each file server has 2 

or 4 MB of main memory and a 380 MB disk drive with controller. The server 

systems provide the remaining diskless workstations with shared disk storage for 

file systems and paging. and shared access to other peripherals. During the 

experiments, we avoided using the file servers to perform the sort for obvious 

reasons. 

The facility provided us with all the hardware and software required to 

carry out the experiments. The experiments were performed on four and eight 

processors using various global file sizes. In each case, we used two equal size 

sets of diskless workstations. In addition. two file servers were used -- one for 

each set of workstations. 



The LANSAs were run on four and eight processors with the configurations 

mentioned in section 4.1.1. All of our experiments were run on a dedicated 

system so that timing measurements would be accurate. 

In our experiments. the files consisted of keys which were integers. The 

keys were generated randomly and were uniformly distributed over a given range. 

Each processor Pi. 1 < i < p, generated M keys (block size). Duplicate keys were 

possible both locally (within a block) and globally (over the entire file F). The 

LANSAs performed the sort successfully on global file sizes of 2K. 4K. 8K and 16K 

keys (where K = 1024). 

All our LANSAs consist of several phases or steps. For each phase. the 
b 

communication costs and local processing costs were measured in terms of 

elapsed time in milliseconds (ms) to give us communication time and local 

processing time. The sum of these components over all phases yields the 

response time for the entire sort. Note that some phases may only consist of 

one of the above cost measurement components. The timer that we used was 

rounded-off to the nearest 10 ms. The results gathered were the average 

response times over twenty runs. For each run. the same keys were regenerated 

and at the end of the run the timings were recorded. At the end of all of the 

runs, the average timings were calculated and stored in a file. Note that the 



connection time for the processors was not included as part of the response time. 

This connection time, which typically runs in hundreds of milliseconds. is required 

by the TCP/IP protocol to link the processors before any packets are exchanged. 

After the connections are made, a selected processor broadcasts a sync message 

to synchronize the processors. The sync message is four bytes long and is 

broadcast at the beginning of each run after which timing measurement begins in 

each processor. 

4.2. Methodology of the Analysis 

The rest of this chapter is devoted to the analysis of the five LANSAs 

described in Chapter 2. The algorithms are analyzed in the following manner 

There are two parameters that affect the performance of the algorithms: N and p. 

During the experiment. various files of different sizes were created and run on four 
b 

and eight processors. In section 4.3, we describe the behaviour of the algorithms 

based on the parameter N. Section 4.4 ranks the algorithms based on parameter 

p  and assuming N is large (16K keys). In section 4.5, we present the analysis of 

each algorithm as parameter p  increases leaving N constant at 16K keys. 

4.3. Size of the Data  Sets 

Figure 4-1 and figure 4-2 show a plot of the performance of the five 

LANSAs for p = 4  and p = 8  respectively. The results are also summarized in 

table B-1 and table B-2 in Appendix B. Table B-3 and table B-4 in Appendix B 

show the breakdown of the response time in terms of local processing cost and 

communication cost. 
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Figure 4-1: Response Time for p=4 



Normally, the performance of a sorting algorithm is dependent on the size 

of the data set i.e, the larger the data set. the longer the algorithm takes to sort 

the keys. Figure 4-1 and figure 4-2 show that all the LANSAs behave normally 

except LANSA 3 for the case p =  8. 

4.3.1. LANSA 3 

The behaviour of this algorithm is quite erratic for p = 8 .  The interesting 

situation is that the algorithm does better when sorting 4K keys than when 

sorting 2  K  keys (see figure 4-2). 

The graph in figure 4-3 shows the response time, local processing cost 

component and communication cost component for LANSA 3. It can be seen that 

local processing cost increases as N  increases. so the interesting behaviour is in 

the communication component of the algorithm. The communication cost is 
b 

incurred in the selection phase and the routing phase. Table 4-1 shows the 

communication costs for the selection and the routing phases. 

From table 4-1. it  is clear that the selection phase is responsible for the 

peculiar behaviour of this algorithm. In fact, the communication cost in the 

selection phase is higher at N = 2 K  than at any other value of N. This suggests 

that the selection algorithms go through more iterations to find the kth smallest 

element for N = 2 K  than for any other value of N. Recall that we used SEL 1 
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N 
Phase 2K 4K 8K 16 K 

Selection 4.98 3.96 4.36 3.52 
Routing 0.22 0.26 0.32 0.56 

Table 4-1: Communication Costs in Seconds 

and SEL 2 to determine the kth smallest element. SEL 1 is a reduction algorithm 

that goes through a sequence of iterations to reduce the size of the problem to a 

value smaller than T (termination criterion). When the termination criterion is 

met. SEL 2 is employed to determine the kth smallest element. We chose T 

experimentally. The number of iterations SEL 1 and SEL 2 went through were 

recorded for all values of N and p. A single value of T was chosen for p = 4  

and was used for all values of N. Similarly, a single value of T was chosen for 

p = 8  and was used for all values of N. One possible reason why SEL 1 and 

SEL 2 behave in this manner could be that the value of T we chose was not 

suitable for all values of N. We think that more comprehensive tests on T for 

each N may provide us with more insight into the nature of LANSA 3. 

4.4. Ranking of the Algorithms 



4.4.1. General Ranking 

In this section, we rank the algorithms according to their performance for 

N=16K.  Table 4-2 shows the algorithms ranked for p = 4  while table 4-3 shows 

the ranking for p = 8 .  

Rank Algorithm Response Time 

LANSA 2 
LANSA 1 
LANSA 4  
LANSA 3 
LANSA 0 

Table 4-2: Algorithm Ranks for p = 4  and N = 16K 

Rank Algorithm Response Time 

LANSA 4 
LANSA 2 
LANSA 3 
LANSA 1 
LANSA 0 

Table 4-3: Algorithm Ranks for p =  8 and A/= 16K 

The experimental results show that LANSA 2 is the best algorithm for 

p = 4 ,  while LANSA 4  is the best algorithm for p =  8. LANSA 3 and LANSA 4  

(distributed algorithms) perform better when run on eight processors than when 

run on four processors. LANSA 1 and LANSA 2 (parallel algorithms) perform 

better when run on four processors than when run on eight processors. The next 

subsection discusses the change of ranking from p = 4  to p = 8 .  



4.4.2. Local Processing vs Communication Costs 

Table 4-4 and table 4-5 show the local processing costs and communication 

costs for p = 4  and p=  8 respectively 

Cost Component 

Algorithm Local Processing Cost Communication Cost 

LANSA 0 13450 (92%) 10% (8%) 
LANSA 1 4252 (58%) 3035 (42%) 
LANSA 2 4386 (66%) 2281 (34%) 
LANSA 3 6800 (83%) 1440 (17%) 
LANSA 4 5050 (64%) 2802 (36%) 

Table 4-4: Cost Components for p = 4 and N = 16K 

Cost Component 

Algorithm Local Processing Cost Communication Cost 

LANSA 0 13143 (87%) 1841 (13%) 
LANSA 1 2584 (33%) 5289 (67%) 
LANSA 2 2487 (37%) 4271 (63%) 
LANSA 3 3300 (56%) 4080 (44%) 
LANSA 4 3310 (53%) 2984 (47%) 

Table 4-5: Cost Components for p = 8 and N = 16 K 

It can be seen that the local processing cost is lower for p = 8  than for 

p=4 .  The reason for this is that the size of the local file (i.e.. block size M) at 

each processor is smaller in the case of p = 8 than in the case of p=4.  so local 

processing activities such as local sorts take less time. 

The communication cost is higher for p= 8 than for p=4.  One reason for 
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this increase may be that more processors are contending for access to the 

Ethernet. This should result in more packets collisions. Packets that collide have 

to be retransmitted. and this requires additional communication resources. 

In our theoretical model. we assumed that both local processing costs and 

communication costs are important. Table 4-4 and 4-5 show that. indeed. 

communication costs and local processing costs are both important quantities and 

neither can be ignored. 

It is interesting to compare the cost components of the algorithms with 

their design principles. LANSA 1 and LANSA 2 (parallel algorithms) were 

designed to minimize local processing cost while LANSA 3 and LANSA 4 

(distributed algorithms) were designed to minimize communication cost. These 
b 

principles are reflected in tables 4-4 and 4-5. However, it should be noted that 

LANSA 3 has a large increase in communication cost from p = 4  to p = 8 .  The 

fact that i t s  total response time is reduced from p  = 4  to p = 8  is due to the 

drastic reduction in processing cost. 



4.4.3. Improvement of the Network Performance 

In this section, we extrapolate the behaviour of the LANSAs assuming that 

the performance of the network can be improved. This improvement of the 

network concerns the interprocess communication (IPC) facilities built into Sun 

UNIX. The basic building block for communication in Sun UNIX is the socket. 

A socket is an endpoint of communication. These sockets can be connected to 

form bidirectional communication streams. However, since they were designed to 

be a general-purpose robust communication mechanism, the overhead in using the 

socket facility is substantial. If we were to use an IPC design which is 

performance oriented such as the V Kernel [Che 841. the communication costs 

would decrease and this would improve the overall performance of the LANSAs. 

We are doing this extrapolation because two of the algorithms being 

considered here were designed for an environment where communication costs were 

low or negligible. We would like to compare these algorithms and predict the 

behaviour when the communication facility is much improved with respect to the 

local processing facilities. Table 4-6 and table 4-7 show the extrapolation for 

p = 4  and p = 8  respectively. The improved response time (in seconds) is obtained 

by adding the known local processing costs to the diminished communication costs. 

Table 4-6 shows that improving the network performance by 90% when 4 

processors are used will only affect the relative performances of LANSA 1 and 

LANSA 2.  The outcome is that LANSA 1 will perform better than LANSA 2. 



% lmprovement of 
Network Performance 

Proc. Comm. Response 
Algorithm Costs Costs Time 30% 60% 90% 

LANSA 0 
LANSA 1 
LANSA 2 
LANSA 3 
LANSA 4 

Table 4-6: lmproved Response Time (in seconds) for p =4 

% lmprovement of 
Network Performance 

Proc. Comm. Response 
Algorithm Costs Costs Time 30% 60 % 90 % 

LANSA 0 13.143 1.841 14.984 14.428 13.877 13.23 
LANSA 1 2.584 5.289 7.873 6.286 4.700 3.113 
LANSA 2 2.487 4.271 6.758 5.477 4.195 2.914 
LANSA 3 3.300 4.080 7.380 6.156 4.932 3.708 
LANSA 4 3.310 2.984 6.294 5.399 4.504 3.608 

Table 4-7: lmproved Response Time (in seconds) for p = 8  

Table 4-7 shows that the improvement of the network can significantly 

affect the relative performances of the LANSAs when the number of processors is 

increased. If the network performance is improved by 60%. LANSA 2 trades 

places with LANSA 4 and LANSA 1 trades places with LANSA 3. A 90% 

improvement results in LANSA 1 performing better than LANSA 4. However. in 

both the cases (60% and 90% improvement). LANSA 2 performs better than all 

the other LANSAs. 
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4.5. Four Processors vs Eight Processors 

In this section. the performance of the algorithms for p = 4  is compared to 

the performance of the algorithms for p = 8 .  with constant N(=16K). We analyze 

each algorithm. and compare the expected performance with the actual 

(experimental) performance, we describe why our results are not as anticipated. 

We are particularly interested in the amount of the communication parallelism (CP) 

that can be achieved by the different algorithms and the way the communication. 

parallelism changes as the number of processors increases. 

Experimentally, communication parallelism can occur between the point a 

transmitting processor starts to send a message and the point a receiving 

processor receives this message. Between these extreme points. a message goes 

through a packet building and buffer management process (at the transmitting ' 

end). packet transmission. and a buffer management and packet disassembly 

process (at the receiving end). During the actual packet transmission process. no 

parallelism can be attained in a broadcast network such as an Ethernet. However. 

a very small portion of the time between the two extreme points is devoted to 

the actual transmission of the packet. Thus, parallelism can be achieved during 

the packet building and buffer management processes among contending processors, 

and a user gets the illusion that packets can be transmitted through the network 

in parallel. 



46 

A LANSA achieves maximum CP if the time required to transmit all 

simultaneously initiated messages is equal to the time required to transmit a single 

message. In contrast. a LANSA achieves minimum CP when the time required to 

transmit all simultaneously initiated messages is equal to the time required to 

transmit these messages serially. The lower and upper bounds derived in Chapter 

3 are theoretical bounds on the CP possible for each LANSA. If the maximum 

degree of CP is assigned a value of 1 and the minimum degree of CP is assigned 

a value of 0, then the degree of CP for a LANSA is c. where 0 \< c < 1. In 

practice. the transmission of simultaneously initiated messages cannot be entirely 

parallel and is usually not entirely serial. 

Before investigating the CP of the algorithms, we compare two ratios for 

each algorithm. R1 is the ratio of the theoretical local processing costs for p = 8  
b 

and p = 4. and R2 is the ratio of the experimental local processing costs for p = 8  

and p = 4. We expect that R2 = R1. i.e.. the experimental results agree with the 

theoretical results. If R2= R1. then we can assume that our timing function 

used in the experiments is accurate. 

The theoretical upper and lower bounds on communication costs derived in 

Chapter 3 were expressed in terms of number of packets transmitted. Our 

experimental results, however. were measured in terms of elapsed time in 

milliseconds. Since the theoretical bounds are in different units than the 
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experimental results. we cannot directly compare them. Nonetheless, we can 

indirectly compare them as follows. 

Let t be the time in milliseconds needed to transmit one packet (including 

the packet building and disassembly times and the buffer management times a t  

both sending and receiving ends) when no packet collisions or buffer overflows 

occur. Experimentally. t was found to be 16 milliseconds. For each particular 

LANSA, let t4  and t8 be the total empirically measured time (in milliseconds) 

during which packets were transmitted for p = 4  and p = 8  respectively. Then 

a4= t q / t  and a8= t 8 / t  are the numbers of "intervals" during which packets were 

transmitted. In other words. a4 and a8 are the experimental numbers of parallel 

packet transmissions. a4 and a8 are in the same units as the theoretically 

determined lower and upper bounds. Let u4 ( I4 )  and u8 ( Ig )  be the theoretical 
C 

upper (lower) bounds for p =  4  and p =  8 respectively 

Definition 1: The degree of communication parallelism for an 
algorithm is 

where p =  4 or p  = 8 is the number of processors. 

If no packet collisions or buffer overflows occur. then Ip ,< ap 6 up and it follows 

directly that 0 < cp 6 1. As a approaches lp. c,, 
P 

approaches 1 (maximum CP) 

and as ap approaches up. cp approaches 0 (minimum CP). Although it is rarely 

the case that no packet collisions or buffer overflows occur. cp should give us a t  

least a general idea of how much communication parallelism the LANSAs exhibit. 



4.5.1. LAMSA 0 

The local processing cost is coN log N comparisons. For p = 4  or p=8.  

this evaluates to the same number of comparisons. Consequently. R1=1. The 

experimental ratio R2 evaluates to 

Thus. the theoretical ratio R l  is approximately equal to the experimental 

ratio R2 as expected. 

The lower bound for the communication cost is ~ I M / s )  packets while the 

upper bound is 2 (p -  I ) I M / ~  packets. We evaluate these expressions for 

p = 4. M = 4K and p = 8, M = 2K to give us I,,, u4 and 18. U8 respectively. The 

results are summarized in table 4-8. 

Number of  Packets 

Bound p = 4  p = 8  

Lower 32 16 
Upper % 112 

Table 4-8: LANSA 0 - Communication Costs 

Using the definition of c,,. c4 =0.43 and cs =-0.03. c4 suggests that there 

was some communication parallelism when p = 4  while c8 suggests that there was 

no communication parallelism when p = 8. We expected the amount of 

communication parallelism to be small in both cases. In LANSA 0 ,  processor PI 



receives blocks of data from P2.P3. . . . .Pp. Since these processors all try to 

send their data a t  the same time, packets are bound to collide. Furthermore. P1 

receives data from only one processor a t  a time; thus data from other processors 

is ignored. This al l  leads to retransmission of packets. After P1 has sorted the 

data. it transmits blocks back to P2.P3. . . . ,Pp. Since P1 is the only 

transmitting processor. no parallelism is possible in this part of the algorithm. 

One possible reason that c4 is higher than c8 is that fewer processors are 

contending for use of the network. so fewer collisions occur during the first phase 

when P1 is receiving blocks of data. 

4.5.2. LANSA 1 

The local processing cost is clMlog M+2Mp comparisons. If we evaluate 

this expression for p = 4 .  M =4K we get 212(12c1 + 23) comparisons while for 
b 

p = 8. M = 2K we get 211(11c1 + comparisons. Thus. the theoretical ratio R I  

24c1 + 16 

If cl = 0. then R1= 1. If cl is large. then Rl"0 .5 .  The experimental 

ratio R2 is  

2584 = 0.6 - 
4252 

which is consistent with the bounds on R1. 



The lower bound for the communication cost is 2 p l ~ / ~ l  packets while the 

upper bound is p ( p - l ) I ~ / s I  packets. Table 4-9 shows these expressions 

evaluated for p = 4 .  M = 4 K  and p = 8 .  M = 2 K  to give us 14. uq and 18. U8 

respectively. 

Number of Packets 

Bound p = 4  p = 8  

Lower 128 128 
Upper 192 448 

Table 4-9: LANSA 1 - Communication Costs 

Using the definition of c,,. c4=0.04 and c8 =0,37. c4 exhibits minimal 

communication parallelism while c8 shows that there was some communication 

parallelism. We expected the communication parallelism to be higher than this 

since processors communicate in pairs at the end of each phase. This should 
b 

have resulted in minimum packet collisions. 

4.5.3. LANSA 2 

The local processing cost is c2M(log M - 1 )  + (log p + 1 )  (log p + 2) M/2 

comparisons. If we evaluate this expression for p = 4 .  M = 4 K  we get 

212(11cl + 6) comparisons while for p = 8. M = 2K we get 211(10cl + 10) 

comparisons. Thus, the theoretical ratio R1 is 

10c2 + 10 



If c2 =0, then R1 "0 0.8. If c2 is large. then R l  " 0.5. The experimental 

ratio R2 is 

which is consistent with the bounds on R1. 

The lower bound for the communication cost is (log p) (log p + 3) l ~ / 2 5 ] / 2  

packets while the upper bound is (log p) (log p + 3) (p - ~ ) I M / ~ S ]  packets. Table 

4-10 shows these expressions evaluated for p = 4. M = 4K and p = 8. M = 2 K to 

give us 14, u4 and Is. og respectively. 

Number o f  Packets 

Bound p = 4  p=8 

Lower 40 36 

Upper 240 4% 

Table 4-10: LANSA 2  - Communication Costs 

Using the definition of cp. c4 =0.49 and c8 = 0.50. Both c4 and c8 suggest 

that some communication parallelism has occurred. 



4.5.4. LANSA 3 

The local processing cost is M(2cllog M + 1 + 1 l p  f 1  log log (FM) i ) 
1=1 

comparisons. If we evaluate this expression for p = 4 .  M = 4 K  we get 

210(%c1 + 26) comparisons while for p = 8. M = 2 K we get 28(176c1 + H2) 

comparisons. Thus. the theoretical ratio R1 is 

If cl = 0. then R1 a 1.1. If cl is large, then R l Z 0 . 5 .  The experimental 

ratio R2 is  

which is consistent with the bounds on R1. 

b 

The lower bound for the communication cost is 

2p(p - 1 )  + p l ~ / ~ d  + 2 ET' 1=1 log log (kM) packets while the upper bound is 

( p  - 1 )  (2p(p - 1 )  + p l ~ / ~ p l  + 2 z:. - log log ( F M )  ) packets. Table 4-11 shows 

these expressions evaluated for p = 4. M = 4 K  and p = 8. M = 2K to give us I,,. u4 

and 18, u8 respectively. 

Number of Packets 

Bound p=4 p = 8  

Lower 62 171 
Upper 186 1200 

Table 4-11: LANSA 3 - Communication Costs 
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Using the definition of cp. c4=0.78 and c8 =0.92. This suggests that this 

algorithm achieves high degree of communication parallelism. These figures for 

communication parallelism were a bit surprising. We expected cp to be small 

because of the nature of the selection phase. Recall that most of the 

communication costs are incurred in the selection phase where processors 

P2.P3. . . . .Pp all communicate with P i .  Since P2.P3. . . . .Pp try to 

communicate at the same time. we expected serious buffer overflow problems a t  

PI .  However. it seems that this was not the case here. 

4.5.5. LANSA 4 

The local processing cost is ( M  log p) (c3 + 1 )  + c l M  log M comparisons. If 

this expression is evaluated for p = 4 .  M = 4 K  we get 2'*(12c1+2c3+2) 

comparisons while for p = 8. M = 2K we get 21•‹(22c1 + 6 ~ 3  + 6 )  comparisons. 

Thus, the theoretical ratio R1 is 

If c1 = c3 = 0 ,  then R1 3. If both cl and c3 are equally large, then 

R1 "0 0.5. The experimental ratio R2 is 

3310 "0 0.7 - 
5050 

which is consistent with the bounds on R1. 

The lower bound for the communication cost is (log p) ( I M / ~ s ] +  2 )  packets 



while the upper bound is (log p) (2 (p  - 1 )  + P I M / ~ S I )  packets. Table 4-12 shows 

these expressions evaluated for p = 4. M = 4K and p = 8. M = 2 K  to give us 14, u4 

and 18, u8 respectively. 

Number of Packets 

Bound p = 4  p = 8  

Lower 20 18 

Upper 76 138 

Table 4-12: LANSA 4 - Communication Costs 

Using the definition of cp. c4 = -1.77 and c8 = - 0 .40  which suggests that 

the algorithm does not exhibit any communication parallelism. This is probably 

due to the congested exchange phase where all processors communicate with one 

another at the same time, thus resulting into a lot of packet collisions. 

4.5.6. Summary 

In this section, we summarize the communication parallelism attained by 

each algorithm. Table 4-13 shows the communication parallelism and the 

communication costs (in milliseconds) for each algorithm for p = 4  and p = 8. 

Algorithm ti tR - cA c8 

LANSA 0 1096 1841 0.43 -0.03 
LANSA 1 3035 5289 0.04 0.37 
LANSA 2 2281 4271 0.49 0.50 
LANSA 3 1440 4080 0.78 0.92 
LANSA 4 2802 2984 -1.77 -0.40 

Table 4-13: Communication Parallelism and Communication Costs 



Except for LANSA 0, each LANSA attained higher communication parallelism 

when the number of processors was increased. This is a surprising result. We 

expected the communication parallelism to decrease as the number of processors 

increased because more processors are contending for access to the Ethernet and 

the rate of packet interference should increase. This suggests that out theoretical 

model is incomplete. A more sophisticated model should consider packet collisions 

and buffer overflows since these two factors appear to be the source of the 

problems encountered by our algorithms. 

Table 4-13 also shows that the communication cost is not linearly related to 

the communication parallelism. 



Chapter 5 

Conclusion 

This research provides us with empirical results for selected parallel and 

distributed sorting algorithms in the local area network environment. We name 

these algorithms Local Area Network Sorting Algorithms. We adopted a cost 

model which accounted for both communication costs and local processing costs. 

The experimental results reported in this thesis confirm that our cost model is 

correct; both cost parameters -- communication costs and local processing costs. 

are important in evaluating the LANSAs. 

b 

The bulk of the results of this thesis concern the performance of the 

algorithms that we have implemented. The two main parameters that were varied 

during the experiments were N (number of keys to sort) and p (number of 

processors available for sorting). Various sizes of data sets were sorted 

successfully on four and eight processors. 

Normally. the performance of a sorting algorithm is dependent on the size 

of the data set. i.e.. the larger the data set, the longer the algorithm takes to sort 

the keys. The individual LANSAs behave normally except in the case of LANSA 
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3 for p  = 8. A possible reason for the unexpected behaviour of this algorithm is 

that the value of T (termination criterion) we used was not suitable for all values 

of N. More tests with different values for T would tell us whether the choice of 

T is causing the unexpected behaviour of this algorithm. 

We ranked the algorithms for four and eight processors assuming N is 

large. LANSA 0 is the worst algorithm of the five LANSAs for p  = 4  and p = 8 .  

This result was expected since this algorithm does not take advantage of the 

distributed nature of the local area network environment. LANSA 2 is the most 

efficient algorithm for p  = 4  while LANSA 4  is the most efficient algorithm for 

p  = 8. 

We analyzed the local processing costs and communication costs of the 

b 

LANSAs for four and eight processors assuming N is large. The local processing 

costs are lower for p  = 8 than for p = 4  because the size of the local file at each 

processor is smaller in the former case. The communication costs are higher for 

p =  8 than for p = 4 .  We think that this is because there are more processors 

contending for access to the Ethernet. so the number of packet collisions is 

greater 

We extrapolated the behaviour of the LANSAs assuming that the 

performance of the network is improved. Improvement of network performance is 

possible if we use a performance oriented interprocess communication facility such 
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as the V Kernel instead of the Sun UNlX interprocess communication facility. 

However, the V Kernel was not available at the time of the experiments. 

Nevertheless, our extrapolations suggest that if the network performance is 

improved by 90 %. LANSA 1 (LANSA 2) becomes the overall best algorithm when 

run on four (eight) processors. 

We analyzed the performance of the algorithms for p = 4  and p = 8  with 

constant N and compared the results. One reason for doing this kind of analysis 

was to find out whether the theoretical results agree with the experimental results. 

The other reason was to determine whether any kind of communication parallelism 

can be achieved by the different algorithms and to study the way that 

communication parallelism changes as the number of processors increases. We 

found that the theoretical predictions of the local processing costs were 

approximately equal to the experimental results. To determine if an algorithm 

achieves communication parallelism. we developed a framework within which the 

degree of communication parallelism can be estimated. We found that some 

parallelism is achieved during the packet building and buffer management processes. 

The parallelism is not entirely dependent on the Sun UNlX networking software. It 

also depends on the nature of the transmission phases of each algorithm. LANSA 

1 and LANSA 2 exhibit some communication parallelism while LANSA 4 exhibits 

no parallelism. LANSA 0 exhibits no parallelism for eight processors; however. 

parallelism was achieved for four processors. LANSA 3 appears to achieve a high 

degree of communication parallelism. 
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The amount of communication parallelism achieved by the different 

algorithms was not as anticipated. This is probably because our theoretical model 

does not consider packet collisions and buffer overflows. A more sophisticated 

model which accounts for packet collisions and buffer overflows should give more 

accurate predictions of communication parallelism. 



Appendix A 

Fundamental Parallel Merging Schemes 

In this Appendix. two algorithms are discussed: Odd-Even Transposition 

Sort and Stone's Bitonic Sort. These two algorithms have been generalized to 

block sorting algorithms which have been adapted to our model. 

A.1. Odd-Even Transposition Sort 

The serial Odd-Even Transposition Sort is a variation of the bubble sort. 

It requires n phases. each of which requires n/2 comparisons (n is the number of 

elements to be sorted). Odd and even phases alternate: during an odd (even) 

phase. odd (even) elements are compared with their right adjacent logical neighbor. 

i.e. the pairs (x1.x2). (x3.x4) . . . ( ( ~ 2 . ~ 3 ) .  (x4,x5) . . . ) are compared. To 

obtain a completely sorted sequence. a total of n phases is required [BDHM 84). 

This serial algorithm can easily be parallelized. Consider n processors 

P1.P2. . . . .Pn. Assume that initially xi resides in Pi for i =  1.2. . . . .n. To 

sort (xl,x2 . . . .xn) in parallel. let P1.P,.P5. . . . (P 2 .P 4 " "  ) be active 

during the odd (even) steps. and execute the odd (even) phases of the serial odd- 

even transposition sort in parallel. Thus, the parallel odd-even transposition 

algorithm sorts n numbers with n processors in n parallel comparisons and 2n 

transfers. An example is illustrated in Figure A-1 for n=4. 



Step 1 odd step I 
I 

Step 2 J, even step 

Bl?JgB 
Step 3 odd step 1 
Step 4 even step 1 

Figure A-1: Parallel Odd-Even Transposition Sort 

A.2. Stone's Bitonic Sort 

Stone's Bitonic Sort is an algorithm that utilizes an interconnection pattern 

called the perfect shuffle. A perfect shuffle of elements of a vector is similar to 

shuffling a deck of cards so that after a shuffle the elements from the two halves 

of the vector alternate. To make a sorting network fast. it is necessary to have 

a number of comparators perform comparisons in parallel. A comparator is a 

comparison-exchange module that receives two numbers on its two input lines A.B 

and outputs the minimum on its line L and the maximum on i ts  output line H 

[Sto 711. 



To sort n numbers. Stone's bitonic sort requires a total of (n/2)(logn)2 

comparators. arranged in (log n)* ranks of (@) comparators each. The network 

has (log n) stages, with each stage consisting of (log n) steps. At each step. the 

output lines are shuffled before they enter the next rank of comparators. The 

comparators in the first (log n- i )  steps do - not exchange their inputs: their only 

use is to shuffle their input. The network that realizes this algorithm is shown in 

Figure A-2 for eight input lines [BDHM 841. For sixteen input lines. the network 

connection can be found in [Knu 73). 

stage I stage 2 stoge 3 

modry) 
min(ry) 

Figure A-2: Stone's Bitonic Sort 



Appendix B 

Empirical Results 

In this Appendix. we tabulate the empirical results obtained during our 

experiments. The results are shown in tables B-1 and B-2 for p= 4 and p = 8  

respectively. These results are also plotted in figures 4-1 and 4-2 respectively 

Tables B-3 and B-4 show the breakdown of  the costs components for p = 4  and 

p = 8 respectively. 

N 
A lgo r i t hm  2K 4K 8 K  16 K  

LANSA 0 1.358 2.947 6.827 14.546 
LANSA 1 0.766 1.780 3.671 7.287 b 

LANSA 2 0.920 1.637 3.565 6.667 
LANSA 3 1.360 2.280 4.020 8.240 
LANSA 4 1 .036 2.058 3.620 7.852 

Table  6-1: Response Time (in seconds) for p=4 

LANSA 0 1.367 4.431 7.535 14.984 
LANSA 1 0.986 1 .971 4.194 7.873 
LANSA 2 1.182 1.591 3.161 6.758 
LANSA 3 5.560 5.100 6.540 7.380 
LANSA 4 1.337 2.027 3.430 6.294 

Table  6-2: Response Time (in seconds) for p = 8  



N 
Cost 2K 4K 8K 16K 

Local Proc. 1.246 2.723 6.266 13.450 
Comm. 0.112 0.224 0.561 1.096 

(a) LANSA 0 

N 
Cost 2K 4K 8K 16K 

Local Proc. 0.452 1 .035 2.014 4.252 
Comm. 0.314 0.745 1.657 3.035 

(b) LANSA 1 

N 
Cost 2K 4K 8K 16K 

Local Proc. 0.472 0.996 2.150 4.386 
Comm. 0.448 0.641 1.415 2.281 

(c) LANSA 2 

N 
Cost 2K 4K 8K 16K 

Local Proc. 0.640 1.440 3.040 6.800 
Comm. 0.720 0.840 0.980 1.440 

(d) LANSA 3 

N 
Cost 2K 4K 8K 16K 

Local Proc. 0.661 1.236 2.987 5.050 
Comm. 0.375 0.822 0.633 2.802 

(e) LANSA 4 

Table 8-3: Cost Components (in seconds) for the LANSAs for p = 4  



N 
Cost 2K 4K 8K  16 K 

Local Proc. 1.248 2.744 5.920 13.143 
Comm. 0.119 1.687 1.615 1.841 

(a) LANSA 0 

N 
Cost 2K 4K 8K  16K 

Local Proc. 0.275 0.592 1.364 2.584 
Comm. 0.711 1.379 2.830 5.289 

(b) LANSA 1 

N 
Cost 2K 4K 8K  16K 

Local Proc. 0.253 0.541 1.174 2.487 
Comm. 0.929 1 .050 1.987 4.271 

(c) LANSA 2 

N 
Cost 2K 4K 8K  16K 

Local Proc. 0.360 0.880 1.860 3.300 
Comm. 5.200 4.220 4.680 4.080 

(d) LANSA 3 

N 
Cost 2K 4K 8K 16K 

Local Proc. 0.507 0.863 2.073 3.310 
Comm. 0.830 1.164 1.357 2.984 

(e) LANSA 4 

Table 6 -4 :  Cost Components (in seconds) for the LANSAs for p = 8 
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