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Abstract 

The Cardinality Steiner Problem (CSP) is a generalization of the well known and easily solved shortest 

path and minimum spanning tree problems. Despite the polynomial solvability of these and other special 

cases, the CSP is NP-complete. This complexity notwithstanding, it is a problem of practical concern, 

having applications in network design, chip layout, data base queries, and phylogeny. It has been an area of 

considerable research with no less than seven algorithms advanced for its exact solution. However, 

computational experience with these exact algorithms is limited and does not allow comparative analysis. 

To provide such an examination, four exact algorithms have been implemented and executed over a wide 

variety of input which was classified according to various graph theoretic properties. Execution times were 

measured for individual problems and averages determined for the various problem classifications. 

The results obtained from this execution alter the previously accepted characterization of these algorithms. 

In particular, it is shown that the implicit enumeration technique of Shore, Foulds, and Gibbons outperforms 

the others almost universally. A characterization of those instances for which it performsOpoorly is given and 
C 

a means of overcoming this shortcoming suggested. The execution times of the remaining algorithms display 

little variance for instances of a given graph size. Although it has been stated by several researchers that the 

dynamic programming technique of Dreyfus and Wagner is more efficient than the similar approach of 

Levin, it is shown both theoretically and empirically that the opposite is true. 
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Chapter 1 

INTRODUCTION 

With the ongoing growth in computational speeds and storage ability, the mere knowledge that some 

algorithm requires exponential time or memory in the general case may well be of little practical import. To 

the unfortunate soul confronted by a problem which is known to be NP-complete, these theoretical 

generalities seem to ignore the specific nature of his or her dilemma. Of more immediate concern are such 

questions as how large a problem may be solved in how much time or memory and, given alternatives, which 

algorithm is best. For any well developed problem, a practical examination of these issues logically extends 

the theoretical underpinnings in a functionally useful manner. 

. This thesis proposes to examine one such problem area, a combinatorid optimization problem known as the 

Steiner Problem in Graphs, hereafter abbreviated as the SPG. While it includes some well known and easily 

solved special cases, in general the problem is certainly NP-complete. This complexity notwithstanding, it is 

a problem of practical concern, having applications in network design, chip layout, dabbase queries, and 

phylogeny. For this reason it has been an area of considerable research with no less than seven exact * 

algorithms appearing in the literature. Along with numerous heuristic approaches, several examinations of 

special cases, and a number of surveys, the publication list is considerable. Despite this, computational 

experience for the SPG is almost non-existent and what is available serves more to verify the correctness of 

these algorithms than provide comparative analysis. 

To provide such a empirical examination in the area of the SPG, four algorithms advanced for its exact 

solution have been implemented and executed over a wide variety of input. The metric used in this 

comparison is the amount of CPU time spent to generate a solution for the given problem instance. These 

input instances were sorted according to various graph theoretic properties and presented in large blocks, in 

order that measurements be available both for individual problems and averages over many "similar" 

problems. By organizing the testbed in this manner, it was hoped that some relation might be observed 



between a definable property of the input and the executional behaviour of the algorithm. Thus, the 

comparative analysis undertaken is not merely between the competing solution techniques, but within each 

one individually. 

Beyond this characterization of functionality, the implementation of these algorithms should prove more 

than mere exercise. Within the theoretical formalisms inherent in the written proposal of each lies the detail 

of abstraction representation, data structures, and execution sequencing. The effort of codification brings 

insight, if not hard certainty, into these issues: it may well be that improvements even at the level of efficient 

bookkeeping are of some significance. In addition, one of these proposed techniques has apparently never 

been implemented. 

These issues are presented in the following manner. Chapter 2 introduces, defines, and outlines the 

problem. Chapter 3 discusses the detail of the solution algorithms available and the implementations 

undertaken. Chapter 4 outlines the problem of input selection and the approach adopted for generation and 

sequencing. Chapter 5 provides the empirical results obtained and an analysis of the regularities or 

abnormalities revealed. Finally, chapter 6 states the immediate conclusions available and gives the areas 

most promising for further investigation and future research. 



Chapter 2 

THE STEINER PROBLEM IN GRAPHS 

In a graph G = (VJ)  with positive weights or distances provided for each edge, a basic property of interest 

is the minimal means of connecting or spanning a specified group of vertices using elements of E, the 

edgeset. If this specified group consists of only two vertices (say x and y) then this optimal connection is 

termed the shortest path between x and y , denoted SP(x,y) . If, at the other extreme, the entire vertex set is so 

specified, then a minimal spanning tree (MST) is called for. In either instance, it is natural to refer to the sum 

of the weights of the edges providing this connection as the weight or value of the structure. 

For both of these problems elegant, if not straightforward, techniques exist which provide exact solutions in 

a very efficient manner. For instance, the shortest path between a vertex and every other vertex in V may be 

found with computational labour of 0 (n2) (where n = I V I) using the single source shortest paths algorithm 

of Dijkstra [9]. Alternatively, Floyd's [l l]  all pairs shortest path algorithm is an 0 (n3) procedure which 

determines the shortest path between every pair of vertices in G. As regards the MST, Prim [30] and 
P 

Kruskal[24] have stated algorithms whose labour is 0 (n2) and 0 (e log n) (where e = I E I) respectively. 

2.1. Definition 

Despite these promising subcases, in the generalization of this problem, where the specified vertex set 

consists of an arbitrary subset of V whose cardinality lies between these bounds, the solution is somewhat 

more difficult to identify. Termed the Steiner Problem in Graphs, it is typically formulated as follows: 

Definition 1: Given an undirected graph G=(V&') with positive edge weights 
W = ( w e  I e € E )  andasubsets ofVwithISI=m (2cmcn),detemineasubgraphofG 
which spans S and is of minimal weight. 

Since this minimally weighted subgraph must surely be a tree, it is termed a Steiner minimal tree (SMT) for S 

in G and denoted T * . It is natural to refer to non-minimal trees spanning S as merely Steiner trees denoted 

Ts. Once again, by summing the weights of the edges used, the weight of these trees may be determined. 



Regarding a Steiner minimal tree, it should be immediately apparent that only vertices of S may be leaves, 

for a leaf not in S could be deleted from the uee to give a structure which still spans S and is of lower weight. 

However, the interior points may well include vertices not in S which provide shorter connecting paths than 

are possible by merely using vertices in the desired set. Thus in any Steiner tree, whether minimal or not, 

vertices may be of two types: comp Jsory points (v E S), frequently termed special vertices in the literature, 

or Steiner points (v E V\ S). 

An instance of an SPG is described by a weighted graph G and a set S, though a standard representation of 

this is to present G as an n x n weight matrix W(G) or merely W when G is understood. Since both vertices 

in G and rows and columns of W(G) may be given integer labels from 1 to n, the graphs represented are 

termed labelled graphs. Vertices may thus be conveniently referenced by labels of the form vi (1 I i I n) 

and edges represented by the labels of vertices they connect: e(ij] (equivalently eq) is incident on vertices vi 

and vj . The weight of edge el will be denoted w(iJ3 (or wq), which is defined to be infinite if el c E and 0 

if i = j. A point of note regarding these weight matrices is that, given the undirected nature of the edges, 

where e.. and eji refer to the same edge, the matrix will be symmetric and represent no more than 
Y 

n x (n-1) I 2  different edges. With W permuted to place the elements of S in the first m rows and columns, 

as is the norm in this representation, W and m together fully describe the instance. The problem size of an 

SPG instance is defined to be the pair (n,m) . 
e 

C 

Unfortunately, the dual nature of this metric describing the size of an SPG instance upsets the sense of 

ordering implied by its usage. Certainly problems on graphs having an equal number of vertices may be 

directly compared. For instance given graphs of 100 vertices, an SPG problem of sue (100,50) is "larger" 

than one of size (100,20). Where the instance graphs themselves are of different sizes, the situation regarding 

ordering is not clear at all. With two problems of size (100.20) and (80,40), the notion of which is "larger" 

can only be intuitive. Further complicating this issue is the exact relation between size and complexity. 

While it's easy enough to say that a problem of sue (100.50) is "larger" than one of (100,20), it is not 

necessarily the case that the first is more complex. For these reasons it would seem that the concept of 

problem size is of limited usefulness, giving some means of describing a single problem but, in general, no 

means of comparing two. 

An additional structure frequently referred to is the complete shortest distance matrix D(G) again of size 



n x n ,  where d(ij) (or do) contains the length of the shortest path connecting vertices vi and v, . If G 

contains no path between some pair of vertices vi and v, , the graph is disconnected and d(ij) is set to 

infinity. This matrix may be easily calculated from W(G) using Floyd's algorithm. The lengths given 

satisfy the triangle inequality, a.property inherent in the consideration of a shortest path: for any vertex pair 

(ij] there cannot be an intermediate vertex k such that dg > diA + dki . Clearly such a vertex, if existing, 

would lie on a shorter path and the value dG would be in error. Thus, for all i j,k, dq < dik + dki . 

This matrix may be used to form an approximate solution of some value. Consider the m x m submatrix 

D(S) of shortest path lengths among elements of S. Finding the MST based on these shortest paths results in 

the so-called edited MST of S in G. The weight of this eMST ( T  ) has a worst case ratio to the optimal tree 

T * of 2(1- 111 ) where 1 is the number of leaves in T * . No heuristic algorithm proposed to date offers a 

significantly better ratio than this [37]. 

2.2. Cardinality Steiner Problem 

A special case of this general SPG is the cardinality Steiner problem, abbreviated below as (CSP), where 

the weights given for edges in the graph instance are restricted to a value of one. It is now possible to 

reformulate the problem to ask for a tree spanning S which has the least number of edges or which includes 

the least number of Steiner points, since an SMT for such a graph will meet both thewriteria This by no 

means eases the difficulty of the problem and, to date, no special case algorithms have been advanced to take 

advantage of this restriction. The cardinal case remains as intractable as the general case: both are 

NP-complete [16]. 

The limitation of edge weights to a value of one does not smctly characterize the CSP, since any SPG with 

uniform edge weights (regardless of value) may trivially be viewed as a cardinality problem. More generally, 

notice that any instance of an SPG with integral edge weights may be transformed to a CSP by replacing each 

edge ei with a path of length w.. by introducing w. . -  1 pseudo-vertices. A slightly more complex 
'I 'I 

transformation is available in the case of rational weights. In either case, since it is not generally possible to 

describe these weights in terms of either e or n ,  this will not be a polynomial transformation, despite its 

intuitive clarity. 

Clearly, the range and/or distribution of edge weights will play a role in the determination of a solution to 



6 

any given problem and is an issue of note as regards its impact on any algorithm's action or effectiveness. 

However, given that none of the algorithms examined specifically exploit unit-valued edge weights and, in 

all cases, the implementations provided for these algorithms remain equally usable regardless of the weights, 

it would seem that research into this restricted area would yield not unduly restricted results. 'Ihis 

applicability of results in the CSP to the more general problem suggests that it is an area that may profitably 

be examined. Indeed, the paucity of results based on experimental observations into any form of the SPG 

casts the CSP as an attractive area for initial investigation. By concentrating on the cardinality version of the 

problem, an examination of the issue of variation and distribution of edge weights is postponed. Hopefully, 

this approach will allow such future research to be placed in a more meaningful context. 

2.3. History 

The SPG, effectively dating from 1970, has a short history which may be briefly stated. The first widely 

published mention of the problem appears to be a paper by Hakimi [19] which states the problem and its 

relation to various covering problems in graphs and offers an algorithm for its solution. The intractable 

nature of the SPG was indicated by Karp's inclusion of the problem in his seminal paper [22] wherein the 

NP-completeness of several problems was established. He formulated the SPG as a decision problem. 

Augmenting the input indicated in Definition 1 with a positive integer k ,  this variation asks for a yeslno 

response to the question "does G have a subgraph of weight I k containing the set S?" O ~ e  established it as 
* 

NP-complete by providing a polynomial reduction from the problem Exact Cover. Besides sh~wing the 

difficulty of the SPG and its close relation to the other fundamental problems presented, Karp's work clearly 

indicates the SPG as a problem of interest to theoretical computing science. 

The first major survey of results on the problem is that of Foulds and Rayward-Smith [12]. They discuss 

several applications of the SPG and appraise both exact and approximate solution methods presented in the 

literature. The four exact algorithms dealt with are only briefly outlined as to their general approach and 

theoretical time requirements. Despite some analytical shortcomings, their conclusion that any algorithm to 

determine an exact solution will require exponential execution time is well-founded given Karp's treatment 

of the related decision problem. They note that this fact has motivated research in two areas: heuristic 

approaches, yielding approximate results for the general SPG, and special cases of the problem which may 

prove solvable in polynomial time. While some advancements in these directions have been made, they 



conclude that the field is still open and state that to provide pragmatic results "testing must be done at a 

practical as well as a theoretical level". 

Recently Winter [37] has provided a more detailed treatment of the area. In addition to a survey of exact 

and heuristic algorithms, he includes useful sections on problem reduction techniques and polynomially 

solvable classes of graphs. To the four exact algorithms discussed by Foulds and Rayward-Smith he adds 

three new proposals, each of which have the characteristic of reformulating the SPG as a set-covering or 0-1 

integer linear programming problem. In reporting the computational experience offered by the various 

authors, Winter notes that "it is very difficult to say anything definite about the performance of the 

algorithms". He identifies two specific areas where these results may be criticized as to their comparative 

utility: implementational variations both in programming languages and machines used and shortcomings in 

the selection of input problem instances. Based on the published results, he concludes that "it is almost 

impossible to decide which algorithm will perform best for densefsparse networks with fewlmany" 

compulsory vertices. 

2.4. Euclidean Steiner Problem 

The SPG was apparently first advanced by Hakimi as a graph theoretic version of a problem in geometry on 

the Euclidean plane. Though it may be traced back as far as Fennat [8] ,  this problem hasbecome credited to 
* 

Jacob Steiner (1797-1863) [7] .  Briefly put, Steiner asked for a minimal system of roads to join three villages. 

The solution to this relatively simple problem depends on the maximum angle present in the triangle formed 

by the three villages. If it exceeds 120•‹, merely connect the two villages to that village at which the angle is 

maximal. If not, there is an "interior" point which, when connected by straight lines to each of the three 

villages, gives the shortest total distance. This interior point became known as a Steiner point and in the 

generalization of the problem to larger numbers of villages involving any number of Steiner points the 

solution was termed a Steiner minimal tree. 

Gilbert and Pollack [18] have provided an extensive treatment of this Euclidean Steiner Problem (ESP) 

including an algorithm advanced by Melzak [27] for its general solution. Essentially, the procedure is to 

enumerate all possible relatively minimal trees over all possible subsets of compulsory points. While his 

proposal has been refined and improved upon through the years, most notably by Cockayne [6] and 



Winter [36], it would seem that this general approach is the only one available when an exact solution is 

required. As the appeal of this algorithm is its finiteness (!), it would be hard to overstate the extreme 

difficulty of the problem. For instance, Boyce [4] has implemented an improved version of the refinement 

due Cockayne, but warns that "runs of around 10 or more [points] should be attempted with an eye on one's 

computer account". The current state of the art would appear to be Winter's algorithm, which effectively 

handles sets of up to 15 points. He claims that further improvements have the potential to take this maximum 

size up to 30. 

2.5. Rectilinear Steiner Problem 

Similar in spirit to the GSP is the Rectilinear Steiner Problem (RSP) where distances in the plane are 

measured in the rectilinear, or so-called Manhattan, metric. The RSP was advanced by Hanan [20] as a way 

of attacking the problems of providing the optimal means of wire layout for circuit boards or routing 

electrical or mechanical systems on city street networks or in buildings. Unlike the GSP, Hanan's 

formulation of this problem as occupying a rectangular grid formed by horizontal and vertical lines passing 

through each compulsory vertex casts the RSP as a special case of the SPG. Since this grid may be 

interpreted as a graph with vertices at line intersections and edges as the line segments between them, any 

algorithm for the general SPG may be used to provide a solution for the RSP. 
C 

Garey and Johnson [15] have proven this problem to be NP-complete whether viewed as a geometric or 

graph theoretic problem. Despite the regularity of this grid, no special purpose RSP algorithm has been 

advanced which exploits either this structure or special properties of the metric. It would seem that most of 

the noteworthy research into this problem has centered on the development of useful heuristics of little 

application to the general SPG. 

2.6. Special Cases of the SPG 

The identification of restricted classes of graphs for which polynomial algorithms may be developed has 

been an interesting and, at times, productive avenue of research. Though the results in many cases have been 

either trivial or negative, the existence of tractable classes of input is significant enough to warrant mention. 

Garey et a1 [14] have established that the SPG remains NP-hard when the input graph G is planar. 



However, if G is a tree it is quite easy to construct T * in linear time. This has motivated research into those 

classes of graphs which may lie between these boundaries of complexity. Wald and Colbum have been very 

active in this area, giving linear time algorithms for the SPG in outerplanar graphs [33] and series-parallel 

graphs [34] (2-trees and partial.2-trees)). Winter's survey includes a linear time algorithm he has developed 

for the class of Halin networks. Finally, White, Farber, and Pulleyblank [35] give a polynomial algorithm for 

the SPG in strongly chordal graphs and establish the NP-completeness of the cardinality version for chordal 

graphs. 



Chapter 3 

EXACT ALGORITHMS 

As indicated, seven algorithms have been advanced which provide an exact solution for the SPG. True to 

the NP-complete nature of the problem, all of these procedures perform, in the worst case, an amount of 

labour which is exponential in terms of some metric of the instance. Depending on the approach taken, this 

metric may be the cardinality of the compulsory set or the number of vertices or edges present in the instance 

graph. As this exponentiality is limited to one of these memcs, with regards to labour every algorithm 

analyzed will be exponential in some respect and polynomial in another. In terms of memory usage, some of 

these algorithms are surprisingly frugal with only two exhibiting exponential requirements. 

Each of these largely theoretical proposals may be discussed either broadly, as to their overall execution 

strategy, or narrowly, at the level of implementational detail such as data representation and structures, 

recognition and modularization of subprocesses, and executional control mechanisms. Beyond these 

individual characterizations, perhaps the key issue to impinge upon their implementatioa is the requirement 

that they certify their execution by producing both the weight and elements of T *. It is not necessarily the " 

case that these results are determined together and, in any event, the processing undertaken for their 

determination may well be distinct. Thus the effort of these algorithms may have two separable components: 

length-generation to determine the weight of T * and tree-generation to determine its edges. 

An additional point of note is that, despite restricting the examination undertaken to the cardinality version 

of the problem, in no case was the implementation so restricted. Each of these algorithms was proposed for 

the general problem; each implementation is usable for a general SPG instance. Thus, while the discussion 

of these algorithms may offer improvements possible for the special case of the CSP, these were not 

incorporated into the program representing that algorithm. Strictly speaking, this thesis will examine 

algorithms for the SPG, executed in the resmcted domain of the CSP. 

As these algorithms exploit various optimization techniques of wide application, much insight into their 



operation is possible merely by outlining the approach chosen. The first work published, Hakimi's 

enumeration algorithm, is not surprisingly the most straightforward in that its action is simply to enumerate 

the MSTs for all subgraphs of the given instance. Inelegant as it may be, this procedure is guaranteed to 

yield the correct solution despite its inability to recognize such until all subgraphs have been so considered. 

At approximately the same time the American research team of Dreyfus and Wagner and a Russian 

mathematician named Levin independently suggested a dynamic progrumming approach to "build up the 

Steiner minimal tree. This involves determining optimal subsolutions for use in later iterations where larger 

problems may be solved with relative ease given this information. As is the case with the previous approach, 

this requires the complete enumeration of every subsolution possible for the given instance to ensure the 

correct final value for the entire solution tree. A subsequent proposal by the New Zealand-based researchers 

Shore, Foulds, and Gibbons uses a branch and bound technique to implicitly evaluate solution trees and 

curtail enumeration where possible. Besides providing the potential for a faster determination of the optimal 

tree, this approach is interesting in that it generates a non-optimal solution early in the process which is 

thereafter improved upon until optimality is detected, allowing for intermediate results of some value. 

In terms of being a functional approach to solving an arbitrary instance of an SPG, these four algorithms 

represent the current state of the art. In comparison to the three remaining proposals they share a general 

applicability and straightforwardness which makes them attractive candidates for empirical examination. 
.I 

This is not to downplay the worth of these others, each of which reformulate the setting of the SPG in order A 

to exploit alternative optimization techniques. Rather, it is a reflection of inadequacies in the reformulation 

undertaken or inherent computational and implementational difficulties with the approach selected which 

require further development or refinement. In practical and personal terms, the effort required to encode 

these proposals from the available outlines does not seem warranted given their published results. 

3.1. Hakimi's Subset Enumeration Algorithm 

Hakimi's presentation of the SPG included an algorithm for its solution. It is derived from the observation 

that in any SPG instance, a solution tree is also an MST for the subgraph G * induced by the combined set of 

compulsory vertices and Steiner points. Thus, if the correct set of Steiner points is known, T * may be found 

quite readily. Hakimi formalized this as a theorem stating that over all subsets X of "candidate" Steiner 

points (elements of V\S), the MST of the subgraph induced by the vertices X u S which is of minimal 

weight is an SMT for S in G . 



From this it is possible to construct an algorithm which proceeds by selecting a subset of V\S and 

determining the MST of the subgraph induced by this subset along with the compulsory vertices. Once all 

such subsets have been enumerated and the MSTs found, the minimal value observed is the weight of the 

Steiner minimal tree sought and the associated MST, the solution tree itself. 

With the requirement that al l  2- subsets of candidate Steiner points be considered, this algorithm will be 

exponential in the cardinality of V\S. It will plainly perform very poorly when m is "much" smaller than n 

but improve as m approaches n. This algorithm has the attraction of Occam's razor: it is a very 

straightforward approach consisting of two well understood and easily implemented procedures. In addition, 

the labour per step (determining a subset and calculating the value of its MST) and memory requirement 

(storing the value and tree edges of the currently minimal MST) are quite reasonable. 

Lawler [25l outlines a version of this approach which exploits the fact that, in the case where the weights 

given for G satisfy the triangle inequality, there exists an SMT in which the number of Steiner points is no 

more than m - 2. In such a case, it would only be necessary to enumerate subsets of V\ S with cardinality 

m - 2 or less in order to identify the optimal tree. This technique will improve the performance of the 

original algorithm in its area of poorest applicability: where m < n12. 

In the special case of the CSP, an immediate improvement on the general appmach tombset construction is 

available. Recall that for any instance featuring uniform edge weights an SMT will be a tree spanning S 
" 

which contains the fewest number of Steiner points. By enumerating subsets of V\S in order of non- 

decreasing size from 0 up to n - m ,  the first such subset which allows a tree to span S is the optimal set of 

Steiner points sought. Thus the procedure need only execute until the first spanning tree is discovered. By 

removing the requirement to completely enumerate the subsets of potential Steiner points, this approach 

could, on average, be expected to significantly reduce the processing undertaken. 

3.1.1. Implementation 

The implementation of this algorithm uses none of the optimizations or refinements discussed above, 

adhering strictly to Hakimi's proposal of complete enumeration and MST determination. The program uses 

Prim's MST procedure modified slightly to accept as input a vector describing the "live" vertices to be 

included in the tree constructed. Subset enumeration is handled by a procedure due to Nijenhuis and 



Wilf [29] which generates in lexicographic order, the binary strings from 0 to 2*". Clearly any such string, 

when appended to a string of m 1's. may be interpreted as a set containing the compulsory vertices and a 

subset of Steiner points by the Prim routine. This is an extremely efficient manner of generating these subsets 

and presenting them to the MST procedure requiring constant time: on average 2 operations per subset 

amortized over all 2'- subsets. 

3.1.2. Analysis 

Using Prim's algorithm for determining the MSTs of these subgraphs, each individual step in the procedure 

may be performed in labour 0 (n2). As outlined in the implementation section, the labour to actually form 

any one subset is negligible, giving a worst case bound on the entire algorithm of 0 (2"- n2). 

3.2. Dreyfus-Wagner's Dynamic Programming Algorithm 

The exact algorithm given by Dreyfus and Wagner [l2] uses a dynamic programming approach. The 

theoretical basis for this technique is the fact that any SPG may be divided into three smaller SPGs by the 

optimal decomposition property (ODP). This property states that for any arbitrary vertex q E S, there exists 

a partition [DJ] of S\  (q) which, along with some vertex p E V, divides the Steiner minimal tree for the 

given instance into three disjoint subsets T1, T2. and T3 where 
C 

T1 is a shortest path for (qg)  

T2 is a Steiner minimal rree for (p) u D 

T3 is a Steiner minimal tree for (p) u E 

Figure 3-1: The Optimal Decomposition Property 



Since T2 and T3 are themselves amenable to such decomposition, this property provides the framework for 

reducing any SPG instance to "elemental" subproblems (2 vertex Steiner minimal trees ie. shortest paths) and 

coalescing optimal subsolutions into larger, still optimal structures. Notice that, given the ODP, any 3 vertex 

SMT trivially decomposes into a partition [ q p a  since each of D and E must be non-empty. Thus, to solve 

a problem of size (n,3) all that is required is to sum over all n possible choices of p E V the length of the 

shortest paths from p to the 3 compulsory vertices and record the minimum. 

In the general case (m > 3) exploitation of this property is complicated by the fact that subsolutions must 

be generated not simply for all partitions [D,E'l of S\ (q] . Since the coalescing stage requires the correct 

choice of p E V, each of the potential partition sets D and E must have a separate subsolution for each 

possible choice of p. This requires the determination of the weight of the SMT spanning vertex sets of the 

form (s,, . . . +,v I si E S , v E V) . This weight will be termed the lube1 of that vertex set. This necessitates 

the storing of n labels for each of the 2-' - 2 partition sets in order to solve the original problem. 

The algorithm of Dreyfus and Wagner implements this property iteratively, by generating these 

subsolutions for all subsets of S\ (q) of size 1, then 2, and so on up to m - 1. Once all these subsolutions 

are known, the generation of the label for the vertex set (sl, . . . , . Y ~ ~ J ~ )  will yield the weight of the SMT 

forS in G. 
@ 

The first iteration is quite easily handled since labels for sets of the form (s,v I s E S, v E V] are nothing 
A 

more than the length of the shortest paths for each pair of vertices (s,v). This task is best performed by 

establishing the distance matrix D(G),  which is required later in any event. Without loss of generality, the 

Ph (2 5 k5 m- 1) iteration requires the formation of (5') subsets of compulsory vertices (say 

C = (s,, . . . jk) ) and for each, as indicated above, the determination of the label of C u ( v )  for every 

V E  V. 

The Steiner minimal tree for such a set may occur in one of two ways, either as a split, where v connects 2 

disjoint subsets of C, or as a join, where v does not directly participate in Tc (the Steiner minimal tree 

spanning C) but is connected to some vertex in the tree by a shortest path. To express this in terms of the 

optimal decomposition property, for an arbitrary vertex v E V and set C, an SMT may be formed with v = p 

(a split) or v = q (a join). Thus for each possible choice of C and for each vertex v E V it is necessary to 



perform two separate types of calculations. First, a calculation which determines a value termed 

splitcost(C,v) : over all non-empty partitions [C1,C2] of C ,  the minimum sum of the labels of C ,  u ( v }  and 

C2 u ( v }  . Following this, a calculation which determines the sum dv,Y, + spLitcost(C,v 3 for each v ' E V ,  

termed a join value for v .  Notice that in the case where v ' = v ,  the join value will merely be splitcost(C,v). 

The label for C u ( v }  will be the minimum value among the n join values for v .  

Dreyfus and Wagner handle this connect phase, in which labels are generated for the given set C and each 

v E V, rather inefficiently. It begins by the calculation of a splitcost value for some vertex v .  Since both C1 

and C2 are smaller sets than C ,  the labels necessary will have been calculated previously. Thus, the 

procedure to determine the splitcost is to generate all partitions of C and check their label sums. With 

splitcost(C,v) known, the join values for each v ' E V based on it are assigned as the tentative label for 

C u ( v  '1. The connect phase then continues with the next v E V, with the new join values based on that 

vertex' splitcost assigned as tentative labels only when they improve the current value. After all n splitcosts 

are generated, and for each the n join costs checked, the labels for all v E V are guaranteed to be correct, 

though notice that they may have been set and reset a number of times. 

An unfortunate aspect of this algorithm is that, even though iteration m - 1 allows for the determination of 

the weight of T * , the actual tree edges are still not known. To obtain these edges requires a tree-generation 
C 

stage using this known weight along with the set of labels to correctly perform the optimal decompositions. 
A 

By exactly reversing the coalescing stages to find the paths inherent in the optimal substructures. implicitly 

identified, it is possible to record the edges used. This backtracking is typical of the dynamic programming 

methodology and by no means impugns the validity of the approach. The issue is not treated thoroughly by 

the authors who indicate that there are several strategies available to implement this requirement and outline 

two, which they term "pure" approaches. To quote, "the first method of tree-construction involves less 

computation while the second uses less computer storage". This would indicate that, in relation to one 

another, one approach is CPU-time efficient and the other is memory-space efficient. 

The time efficient approach is to record, during the connect phase for each set C and vertex v E V, both the 

vertex (say v ') whose splitcost lead to the labelling of C u ( v )  and the partition sets C1 and C2 which gave 

that splitcost. With this information stored it is quite straightforward to backtrack, connecting v ' and v by 

shortest path edges and recursively handling C1 and C2. This time efficiency is acquired with the trade-off 

of quadrupling the already vast memory usage of this algorithm. 



The space efficient approach is to record only the splitcost values for each C 0 ( v )  . Along with the known 

path lengths and labels, these may be used to "quickly" recompute (for the given v )  which particular v  ' gave 

rise to the label for C u ( v )  and the partitions C1 and C2 yielding this splitcost. This information is used as 

above with v  and v  ' connected .and C1 and C2 handled recursively. Dreyfus and Wagner assert that this 

latter method requires no more than lln the labour of length generation, since the n - 1 "unnecessary" 

splitcosts need not be recomputed, and advise that its implementation is the one of choice. 

To this must be added the purest of all space efficient approaches: storing nothing and recomputing 

everything. Notice that the space efficient method given above still requires double the memory needed 

smctly and unavoidably for length-generation. Clearly an approach which used no extra space would be of 

some interest given the already exponential memory requirements of storing the needed label values. While 

this could result in doubling the execution time of the algorithm in the worst case, it is worth noting that the 

recomputation of splitcosts and partition sets need not be complete. The known label gives a target value 

which may well be found before the complete regeneration of all possible substructures. 

32.1. Implementation 

Three separate versions of this algorithm are provided, each implementing a different treegeneration 

scheme: program TE using Dreyfus and Wagner's time efficient method, program S& using their space 

efficient method, and program Hybrid using the indicated complete regeneration method. Outside of the 

storing of the information required for the backtracking process, the length generation stage of these 

programs is exactly identical. Though compiled in separate modules, these programs share as much code as 

possible in order that the timing information obtained truly reflect the nuances of the backtracking 

methodologies and not an implementational idiosyncrasy. 

Obviously the central data structure involved is the massive label array. Each such array, whether 

explicitly for labels or, in the case of programs TE and SE, some vertex or set representation, is declared 

statically to be of the largest size capable of compilation. Within this array, each subset C of compulsory 

vertices is assigned a row and each v  E V a column, thus giving a unique address to each C u ( v )  "pair". By 

interpreting the set representation of C to be an m - 1 bit binary number, with each bit corresponding to a 

vertex in S\ (q) , it is quite easy to generate an integer row address for each such set. This approach also 

simplifies partition generation since, for any set C and known subset C1, the address of the partition pair C2 



is merely the difference between the addresses of C and C 1 .  Notice that this allows the TE implementation 

to function with only two extra arrays, one for the partition vertex and another for one of the partition sets. 

3.2.2. Analysis 

The labour performed by this algorithm may be determined by analyzing the effort spent by the connect 

phase in setting the required n - 2m1 labels. To determine splitcost(C,v) with I C I = k involves the 

examination of 0 (2&') partition sets. Each partition may be determined in constant time using an 

enumeration technique also due to Nijenhuis and Wilf. In addition, this enumeration may be implemented in 

such a manner as to make the effort of determining and summing the labels of the partition sets equally 

efficient. Thus, it is sufficient merely to count the number of times this 0 (2k-1) procedure is used. Each 

iteration (2 L k 5 rn - 1 ) requires (7') splitcosts for each of the n vertices of G . Putting this together gives 

m-1 m-1 m-1 m-1 an amount of labour over all splitcosts of Xk2 ( ) 2k-1 n. Since zk2 ( ) = 3-' , this value is 

The number of join costs determined at each connect phase is n2. Over all connect phases, this gives 
m-1 m-1 

Xk2 ( ) n2 such operations, which is 0 (2m n2). Including the initial determination of D(G) gives a 

total labour of 0 (3mn + 2'" n2 + n3) for the length-determination stage of this algorithm. This is 
/ 

exponential in the cardinality of S and polynomial in the cardinality of V. 

3.3. Levin's Dynamic Programming Algorithm 

At approximately the same time as Dreyfus and Wagner, Levin [26] proposed a very similar dynamic 

programming algorithm. Without doubt, translational difficulties in the available English version of his paper 

complicate both its reading and understanding. However, once worked through, it seems clear enough that 

within the methodology employed Levin's work offers significant efficiencies over that of the others. 

Unfortunately, this has never been noted in the literature where exactly the opposite has occurred. His effort 

has been given rather short shrift, it has been misanalyzed and, without exception or proof, castigated as 

being inferior to the algorithm of Dreyfus and Wagner. In relative terms, Levin's work is an elegant and well 

developed improvement, its superiority is both provable in theory and observable in application. 

To begin, Levin's presentation is certainly complete. His theoretical formulations are quite in order and 



each step of the algorithm is given in detail. The ODP, though not named as such, is provided as the 

"obvious" justification for the approach. His outline calls for the computation and storing of labels (he uses 

the term coordinates) giving the value of the SMT spanning vertex sets of the form 

[ s l ,  . . . ,sk,v I s E S , v E V )  . He proposes to generate these values iteratively, in m - 1 steps, at the k~ step 

performing (7') substeps which calculate coordinates for a k-set and each vertex v E V. He describes at 

great length and in complete detail the connect phase which assigns the n coordinates within each substep. 

He discusses the need to perform tree-generation after the computation of all coordinates and correctly 

describes how this may be accomplished by backtracking using the stored labels. Finally, he provides an 

adequate analysis of both the memory and labour requirements of the algorithm. 

The basis of Levin's efficiency is in the connect phase; indeed, in all other respects it is identical to the 

approach of Dreyfus and Wagner. Levin attains this efficiency by organizing the labelling procedure in a 

manner which exploits the limited regularity and inherent connection patterns within the sub-structures being 

formed. The regularity is due to the fact that, within any connect phase for a subset C = { s l ,  . . . ,sk) at least 

k of the choices of v E V (namely the k elements of C )  already have a known label value which may be 

assigned with no computation. Given the incremental approach of generating subsets of compulsory vertices 

and determining SMTs spanning these sets and each v E V ,  it is clear that during step k - 1 a label was 

assigned to k subsets of the form C\ [ s i )  u { s i )  ( 1  I i I k). For each of these identical representations of 
C 

the set C ,  the label is identical at both the k - IS' and steps! Thus, where Dreyfus and Wagner's A 

algorithm calculates n splitcost values, Levin's approach calculates only n - k of these. 

In considering the underlying connection pattern for the n - k vertices which are not elements of C, there 

are a number of points to note. First, a vertex v may implicitly participate as a Steiner point in Tc. In this 

case, the value determined for splitcost(C,v) will equal the known label for the k elements of C and this 

value will also be the label for C u [ v )  . Secondly, those vertices v for which the SMT spanning C u [ v )  is 

formed by joining v to some vertex v ' in the SMT spanning C ,  whether v ' is explicitly included in C or 

implicitly in Tc, may have this join value calculated by using the known label of C u ( v  ') . Rather than 

blindly considering the sum dvv , + splitcost(C,v 3 for each (v,v 3 pair in V, it is only necessary to perform 

this operation for unlabelled vertices v and labelled vertices v ' which are neighbours. Thus, the calculation 

is of the form w w r  + splitcost(C,v '). Finally, since each label is known to be the minimum value of the 

splitcost or some join cost for that vertex, it is possible to sequentially assign these labels in nondecreasing 



order. By keeping track of the optimum join value based on the current nearest labelled vertex, the minimum 

among all the splitcosts and current join costs of the unlabelled vertices will be the next label to assign and 

all vertices which have this value as one of their respective costs may be so labelled. 

To exploit these properties, Levin offers a connect phase operating in a series of stages during which the 

currently ascertained labels are assigned and those vertices eliminated from further processing. Using 

efficient data structures both to list labelled and unlabelled vertices and to sort and store intermediary cost 

values, this approach is a definite improvement on that of Dreyfus and Wagner. In the first stage the k 

elements of C are given the label previously assigned the set C\ (s ; )  u (s ,)  as described above. The next 

stage establishes a splitcost for each of the n - k unlabelled vertices, holding them in a structure termed the 

cost-heap. After these splitcosts have been sorted into non-decreasing order, it is a simple matter to label 

those vertices whose splitcost equals the label assigned in stage one and delete them from the cost-heap. At 

the conclusion of this stage top of heap represents the minimum splitcost of an unlabelled vertex. The third 

stage considers the remaining unlabelled vertices, for each finding the nearest labelled neighbour, all of 

which have the same label at this point, to determine its current best join value. These are inserted into a 

separate join-heap. Though no vertices are labelled in this stage, the two sorted lists of costs greatly simplify 

the work remaining. 

C 

Each subsequent stage labels at least one of the remaining vertices, specifically the vertex (or vertices) 
0 

corresponding to the minimal value in the two heaps. Notice that this label value may be found merely by 

comparing the topmost heap elements. At the conclusion of the label assignment for the stage it is necessary 

to update those join-heap elements for which a newly-labelled vertex creates an improved join value by being 

a nearer neighbour. Note that the labour performed in these stages will reflect the density of the graph, as the 

number of updates on the join-heap is bounded by the number of edges incident at these I n - k vertices. 

The backtracking methodology Levin proposes exactly reverses the action of the connect phase. In using 

no extra storage besides the label array, this regeneration scheme is very much like the hybrid approach 

outlined for Dreyfus and Wagner's algorithm. One feature of Levin's approach is that it considers only edges 

in W, unlike the others' use of paths in G represented by the distance matrix D. This removes the 

requirement of recovering path elements for a pair of endpoints. 



33.1. Implementation 

Given their organizational similarities, the implementation of this algorithm will be very close to that 

provided for Dreyfus and Wagner's. In fact, aside from the connect procedure, every routine required here 

was available almost directly froin one of the programs SE or Hybrid. It was also possible to use exactly the 

same data structure and addressing mechanism to store the labels. Thus the only implementational details of 

note are concerning the far more complicated connect phase required here. 

Fortunately, this complication is more comparative than real and despite its length the process is fairly 

straightforward. The major design consideration was the implementation of the two data structures used to 

hold the split and join costs. The term heap used to describe them is only half true. Once the splitcosts have 

been determined for the n - k required vertices these values will never change and, aside from the minimum 

amongst them, are of no interest. It is thus possible to implement this merely as a sorted array with a pointer 

to the minimal element, performing deletions implicitly by skipping over elements which are known to be 

labelled. The join heap does not share this characterization as knowledge of all its values is required to 

perform updates which may alter the heap order. This structure was implemented in a manner outlined by , 

Tarjan [32]. 

It is certainly noteworthy that this segment of the algorithm may be amenable to fgther optimization. 

Fredman and Tarjan [13] have proposed a data structure for implementing heaps allowing an asymptotic 

improvement for several network algorithms. These Fibonacci heaps support most operations (in particular 

insert and decrease-key) in 0 ( 1 )  amortized time. Despite this attractive property, the delete-min operation 

required frequently in this case is still an 0 (log n) task. In addition, for such small heap sizes it is unclear as 

to whether the asymptotic improvement will be noticeable. A better use of F-heaps may be in the 

organization of the edges incident at the unlabelled vertices. This issue was not addressed in the 

implementation provided here and is certainly an area open to further research. 



33.2. Analysis 

As is the case with the algorithm of Dreyfus and Wagner, the labour here is best measured in terms of 

setting the required n .2*' labels. This is still performed in m - 1 iterations, each of (7') steps. At the 

(2 S k S m -1 ) such iteration however, each step requires the calculation of only n - k splitcosts. This 

fundamental operation is identical for both algorithms, 0 (2&'). Over all  splitcosts then, the labour for 

Levin's approach is: 

Once again this is 0 (3m n).  To give some measure of the comparative efficiency of Levin's algorithm, 
C 

consider (1). The first term expresses the total number of splitcosts determined by Dreyfus and Wagner's 
A 

approach, while the second term expresses the saving attained by Levin. Dividing (1) by the first t&m gives 

the ratio of splitcost labour between the two algorithms: 

1 - ( m l )  3m-2 2m .. I-- 
n12 3m-1 3 n 

For a reasonably sized compulsory set (say m c 42)  this algorithm will offer a reduction in the number of 

splitcost calculations of up to 1/3. Notice also, that this saving will increase with m.  

Levin's labelling procedure also offers savings in the number of join operations performed at any substage. 

Though the worst case analysis is the same as the others', its method of converging on the correct label value 

should be expected to perform significantly better on average. This segment of the connect phase 



commences with the establishment of the join and cost heaps: 0 (n log n). Following this, the effort of 

updating the join heap is subsumed by the effort of checking edges. For the entire segment this will be no 

more than n2 or m ,  depending on the implementation. Therefore, the total "join" labour is 
m-1 m-1 zkz2 ( k ) (n log n + n2) which is 0 (2"' n2). The first iteration of this algorithm is handled by 

determining the shortest paths from each compulsory vertex to each v E V, 0 (rn n2). This gives a total 

labour of 0 (3m n + 2" n2) for the length-determination stage of this algorithm. 

3.4. Shore, Foulds, and Gibbons' Branch and Bound Algorithm 

An undeniably different approach to the SPG is a branch and bound algorithm given by Shore, Foulds, and 

Gibbons [3 11. Their procedure systematically constructs sets of edges spanning S in G in a sequence of steps 

which consider a single edge for inclusion in or exclusion from the tree being formed. This process generates 

a series of partial solutions for the given problem, each of which may be evaluated as to its ability to 

participate in T * . By abandoning those subsolutions whose participation is no longer feasible, this technique 

of implicit enumeration offers the potential to avoid much of the unproductive computation characteristic of a 

more explicit approach. While in its worst case this could require the examination of all 2e possible subsets 

of edges, it would seem intuitive that, on average, better performance could be observed. In any event, 

merely to discuss an algorithm's behaviour in terms such as best or average cases is of some significance, 
C 

given the unwavering exponentiality of those algorithms previously presented. 
P 

Their method of constructing these Steiner trees uses a heuristic much akin to Kruskal's MST algorithm. 

Recall that this algorithm builds a spanning tree in n - 1 "greedy" steps. Starting with each vertex in its own 

component, at each step select the edge which connects the two nearest components, that is the two 

components at which the minimal weight edge is incident, and merge the two components into one. The 

n - 1 minimal edges selected constitute an MST for G . 

To adapt this approach to generate Steiner trees, Shore, Foulds, and Gibbons' algorithm also starts with n 

components and at each step merges two of them, one of which must be an essential component (intuitively, 

one which contains a compulsory vertex). This continues until all s E S are contained in a single component. 

The heuristic rule used to select the connecting edge is to determine the largest difference in weights between 

the two cheapest edges incident at each essential component. Once the component with the largest such 



"penalty" is found, the cheapest edge incident is the edge chosen. Roughly put, this heuristic identifies the 

edge which, if not selected for inclusion, would give the largest increase in the weight of the tree being 

formed. To generate all Steiner eees spanning S using this approach, every edge so identified by the penalty 

process and included in some Ts must also be excluded from consideration in order to identify the next-best 

edge to include in the current structure. In this manner, the procedure is able to determine all subsets of 

edges which give rise to Steiner trees for S. 

The decision tree corresponding to this enumeration consists of nodes which represent partial Steiner trees. 

Each such node may be evaluated by considering the combined weight of the edges selected to that point 

along with some measure of the minimal means of connecting the remaining components. This gives a lower 

bound on the tree being formed which is compared to the currently best upper bound known for the value of 

an SMT to determine the feasibility of the current structure. If it is feasible, the edge selection process 

described above is continued. If not, a node is abandoned as every Steiner tree which includes the set of 

edges to that point is certain to be non-optimal. 

The edge selection process creates two branches for each node. One of these offspring is an Included Edge 

No& (IEN) where the identified edge is added to the set of edges in the partial solution and the set of 

components reduced by one. The other is an Excluded Edge Node (EEN) where the partial solution and set of 

components remain the same but the identified edge is removed from subsequent consid&ation. Information 
0 

regarding the sets of included and excluded edges at any node is very conveniently held in a modified weight 

mamx whose rows and columns represent components, instead of vertices, in G .  Without exception, each 

node will have its own unique version of the original matrix W(G) formed by an operation (merging or 

exclusion) on the weight matrix of its parent With edge eii (i <I] selected, at the IEN, merging is performed 

by setting elements of row and column i to the minimum of the corresponding entries in rows i and j, 

specifically set wik = wk. = min (wik,wjk) (1 I k 5 n). At the EEX, exclusion merely requires the setting of 

The authors note the storage problems which would arise if each node retained in memory its own matrix. 

An additional complication arising from such an approach would be the loss of the labels of vertices in G .  

Consider the effect of merging some component into another. Any subsequent node selecting an edge 

incident at this new super-component would have no means of determining the actual vertex labels of this 



edge other than by "unravelling" the previous merging steps to find the original labels. For these reasons it is 

impractical to form a "new" matrix at each node. They claim to handle this problem by means of a 

component vector C (1 x n )  whose entries ci record the label of the component which contains the vertex 

labelled i in G. Unfortunately, the actual use made of this vector is never stated in their explication. 

Presumably, though, given its own version of this vector, each node may "view" W(G) in its own way by 

considering all elements of C which contain the same value as a component. In this light, merging is very 

easily accomplished. To coalesce components labelled i and j, merely set those elements of C which are 

currently labelled j to i , performing no operation whatsoever on W(G) . Consider, however, the ramifications 

of this approach, specifically the difficulty this introduces into the task of determining the minimally 

weighted edge between a pair of components (say X and Y). In addition to an examination of the entire 

component vector to find the vertex labels for elements of X and Y, each of the I X I x I Y I candidate edges in 

W(G) must be checked. Recall that the penalty heuristic requires that this operation be performed to 

determine the 2 minimal edges for each component at every node. Clearly, at any step the labour of 

"unravelling" Vertex labels has been avoided at the expense of "remerging" the current components. 

Fortunately, this issue of .unravelling is rather deceiving; as discussed below the implementation provided 

avoids it altogether. 

In processing the offspring of any node, the strategy is to fathom (evaluate) the IEN before the EEN, giving 
C 

a depth-first flavour to the search undertaken. This allows the value of a feasible solution to be established 

quickly and used to aid the bounding mechanism in the search for optimality. As is typical with this 

methodology, the determination of meaningful bounds is crucial to the early elimination of non-optimal 

solutions. Complicating this truism is the trade-off almost always present between labour and precision: the 

more time spent on its generation, the tighter the bound. In this regard, Shore, Foulds, and Gibbons clearly 

favour speed above all. This philosophy seems eminently reasonable given the extreme difficulty of 

generating even near-optimal SPG solutions as evidenced in the worst case ratio available for any heuristic 

algorithm discussed previously. 

They outline this method of bounding by means of a theorem which states that the weight of any SMT can 

be no less than the minimum of two easily calculated values. In considering an SMT for some set of vertices 

S (and more generally for a set of essential components respective to S), note that it must trivially satisfy one 

of two cases: it includes Steiner points or it does not. If it does not, then T * is known to be an MST for S, 



and will contain m - 1 edges. Consider a set of m edges formed by taking the minimal edge (to another 

vertex in S )  incident at each v E S  . Notice that the minimally weighted edge among these m edges has been 

included twice: once at each vertex where it is incident. By "deleting" this extra inclusion and summing 

over the m - 1 edges chosen, a lower bound on any MST for S  is established, since no MST could do better 

than include these m - 1 edges. On the other hand, if T * does include at least one Steiner point, note that it 

will span at least m + 1 vertices and thus contain at least m edges. Now, consider a set of m edges formed by 

taking the minimal edge (to any v E V) incident at each vertex of S .  The sum of these m edges similarly 

bound the lowest value of such a T * . Clearly, the minimum of these two values represents a lower bound on 

any SMT for S .  While this bound may be arbitrarily bad, it is found quite easily, since both values may be 

established by examining n rows in W(G) giving a labour requirement of 0 (m n) . 

This technique may be employed at any node in the decision tree, where it will give a lower bound on the 

weight of the edges required to connect the essential components remaining in any partial solution being 

processed. By adding this bound value to the sum of the weights of edges already included, a lower bound 

on any Ts based on that partial solution is established. The authors mention that they determine no upper 

bound on a partial solution at a node, and thus make no attempt to implicitly recognize an easily completed 

sub-structure. F'resumably, the issue here is, again, one of utility versus labour. Since an upper bound is only 

useful as a means of fathoming in cases where it exactly equals the lower bound, the task of determining it, 
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even through some quick heuristic approximation, would, intuitively at least, be wasted labour at the majority 

of nodes. 

Upon the fathoming of a node, whether by bounding or by the generation of a new solution, backtracking 

commences. Since the search has concentrated on the IEN offspring at any node, backtracking is 

accomplished by moving "up" the decision tree, generating the unvisited EEN. Once the exclusion operation 

has established the weight matrix for the EEN, the bound is calculated and, if feasible, edge selection 

recommenced. If the node is infeasible, backtracking continues. The entire process terminates when 

backtracking from the initial node is completed. 



3.4.1. Implementation 

One of the more appealing aspects of the branch and bound methodology is the availability of a well 

established format within which any specific algorithm of its type may execute. As given by Garfinkel and 

Nemhauser [17], this format is highly modularized and requires very few design decisions of a crucial nature. 

This agreeable characterization of the general approach is particularly evident in the case of the algorithm of 

Shore, Foulds and Gibbons. Both their method of branching by edge selection and bounding are trivially 

implemented routines to search the weight matrix current at any node. Indeed, the only implementation issue 

of note is the exact means of handling the label disambiguation apparently required to determine the set of 

edges included in any partial solution and the impact of this technique on the matrix structure employed. 

As discussed above, the process of merging inherently creates many differently sized component structures 

which make the timely and efficient identification of vertex or edge labels based upon these "compressed 

matrices problematic. To explicitly identify, in terms of G , each edge included in a partial solution involves 

the labour of either unravelling the merging steps at previous nodes or maintaining the original labels from 

one node to another. It is preferable to avoid a node by node commitment to explicit edge identification. 

Such an approach is readily available within the outline given by the authors merely by taking a slightly 

different view of the exact structure required from an application of this algorithm. 
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To begin, notice that not only is edge identification costly, it is information that is required for only one of A 

the many nodes established in the enumeration: over all nodes where the component structure consists of a 

single essential component (a candidate solution) the one where the sum of the weights of the included edges 

is minimal. Furthermore, this edge information is not even required at the time this node is established, since 

all candidate solutions must be considered before this minimum is known and T * is identified. Clearly, any 

attempt to disambiguate some partial structure is nothing more than an unnecessary attempt to perform tree 

generation in tandem with length generation. 

Consider the effect of maintaining at each node, in place of a list or set of explicitly selected edges, the 

vector C which holds the current component label for each vertex in G.  While matrices and component 

vectors proliferate (plynomially), the merging and exclusion processes function quite effectively with the 

local labels available for a given matrix regardless of the compression it may embody. The bounding 

mechanism is equally satisfied with a "running total" of the weights of included edges. Finally, not only are 



candidate solutions easily recognized by scanning C, but the contents of this vector at the optimal solution 

node are themselves sufficient to describe the tree implicit in this structure! Hakimi's theorem has 

established that if the optimal component of G which includes S is known, T * may be recovered as the 

MST of this induced subgraph. . 

In this context, the effect of alterations in elements of the weight matrix and the incumbent loss of labelling 

information is completely eliminated. Rather than leading to a proliferation of these matrices, all the 

necessary processing is done within the original matrix provided for the instance. Representing each node in 

the decision tree by a data structure which contains the relatively few bookkeeping values needed, this 

procedure may be implemented quite efficiently. Merging is accomplished by reserving, at the parent node, 

the current C vector, the component labels of the edge selected (say e.. (i < j ] )  and the contents of the current 
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matrix row i .  The coalescing operation, which creates the mahix for the new IEN may now overwrite the 

contents of row i quite safely, leaving the contents of row j untouched. This component is eliminated at the 

new node by creating a new version of C where all elements of the previous vector which were j are set to i .  

Upon backtracking, the EEN is easily established by reversing this process, restoring the parent C vector and 

row i in the ma& then deleting edge eg. Additional values held in this node structure include its lower 

bound and a pair of vectors which hold the nearest component to each live component: one to the nearest 

essential component, the other to any component. These vectors significantly simplify both the bounding and 
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edge selection process. 

The depth first nature of the execution allowed the actual structure holding these nodes to be implemented 

as a last-in first-out stack. Once both successor branches are fathomed a node need never be revisited, so the 

stack of active nodes could never exceed the number of edges in the initial graph. 

3.4.2. Analysis 

The effort required at any node, whether an IEN or an EEN, is to spawn and evaluate a pair of offspring 

nodes. Though these may be created at separate times in the process, it is quite straightforward to analyze the 

labour necessary to establish the pair. The steps in the process are: 

1. determine the edge to include or exclude 

2. create adjusted weight matrix for the IEN and EEN, 

3. calculate new lower bound for each 



Step 1 requires the examination of the edges incident at each current essential component. As there can 

never be more than the initial m compulsory vertices and, for each, no more than n edges, the penalty 

operation is 0 (m n). Step 2 is performed twice, once for each offspring, and corresponds to the operations 

of merging and exclusion. For fie IEN, this involves finding the minimum value in each row for a pair of 

columns, 0 (n). At the EEN the operation is far simpler: only two matrix elements need to be reset. To 

perform step 3 in its entirety would involve the examination of no more than m columns in the weight 

matrix, thus for each node, the labour would be 0 (m n). In actual fact, given the nature of the construction 

process and the similarity of weight matrices between parent and offspring, this calculation is rarely 

performed from scratch and may be implemented in 0 (n) time. 

The number of nodes established will be no greater than the number of subsets of edges possible in the 

instance graph. Including the final MST determination, the total labour will be 0 (2e m n + n2). 

The memory requirement at each node is also minimal. There is no need to store the entire weight matrix 

associated with that node. As the implementation comments outline, it is only necessary to store the list of 

active components and the previous values in the row altered in addition to a few bookkeeping values. As 

the number of these nodes will be no more than the number of edges in the graph, the entire memory usage 

3.5. Reformulation Algorithms 

The first of these reformulation techniques to appear in the literature is Aneja's Set Covering algorithm [I]. 

Roughly put, the approach is to enumerate a series of cutsets for some partition of V and iterate using Linear 

Programming (with Relaxations) to converge on the minimally weighted selection of edges which satisfies 

the constraints inherent in forming a cover of these cutsets. At each iteration, the lower bound on the weight 

of the cover represented is established by solving the linear program associated with the set covering 

problem. Non-optimal covers have the effect of generating more cut constraints for the original formulation. 

Thus, the procedure seeks to solve a problem in the form of a matrix which has a fixed number of columns 

(e) but where the number of rows ( 0  (e) to start) increases during convergence to the point where, even if 

possible initially, they may no longer be dealt with explicitly. This unacceptable growth is handled implicitly 

by a method termed the row generation scheme. While this technique has been successfully employed for 

other problems formulated in this manner, Aneja expresses dissatisfaction with its applicability to the SPG. 



He offers a short summary of the computational experience gleaned from an implementation of the Set 

Covering algorithm. In attempting 50 problems of size 2 (30.10) he obtained 29 solutions within the 60 

CPU second time limit allowed each instance. Though never stated, it would appear that this limit was 

established to prevent problems with execution of the Linear Program. In 20 of the 21 unsolved problems, 

the first iteration did not terminate. This would appear to be the major shortcoming of the approach, as his 

final comment is that "some method other than linear programming which is able to provide good bounds at 

each iteration of the algorithm could make this approach much more efficient". As he selected that technique 

to perform this task because it is "exrremely useful from a computational point of view", it is problematic as 

to how the algorithm may in fact be improved. Aneja offers no analysis of the Set Covering algorithm, rather 

a pointless exercise given that an Linear Program solution is required at each step of the algorithm. 

One final point may be made regarding the test bed for his empirical observations. In no case does his 

input instance contain more than 11% of the possible edges for the given vertex set. Consider the effect of 

this extreme sparseness on the matrix used for the Linear Program. The initial matrix formed is known to 

have e columns and may contain up to e12 rows. By constraining e to = 10% of its potential, his testing 

strategy limits this matrix to = 1% of its potential number of elements! Even so, he reports that the Set 

Covering algorithm is unable to make any progress whatsoever in more than 40% of these instances. 

In the same Linear Programming vein as Aneja, Wong [38] has offered a Dual Ascen? algorithm for the 
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SPG. It is apparently motivated by Aneja's own obse~ation that the bottleneck of his Set Covering 

algorithm is the requirement that the Linear Program at any iteration be solved exactly to give a lower bound 

for the iteration. Wong attempts to improve upon this by considering the dual version of the Linear Program 

which, rather than being solved, is approximated by an ascent heuristic. While this procedure leads to a 

faster determination of the desired lower bound, it cannot be said to immediately yield an improved solution 

technique for the SPG. Wong's explicitly described algorithm is, in fact, a heuristic process where his dual 

ascent technique is the first phase, used to "help find a feasible solution". This solution is then processed in 

an identical manner to the edited spanning tree heuristic previously outlined. If the weight of the structure 

resulting from this operation equals the lower bound determined by the heuristic, then T * has been 

identified. If not, Wong suggests "that a branch and bound procedure should have little difficulty in 

determining an optimal solution". Clearly, this outline falls somewhat short of being algorithmic. This 

appraisal is supported by Winter, who considers Wong's proposal merely as a heuristic to provide a quicker 



lower bound for the Linear Program formulation and implies that an algorithm, such as Aneja's, which 

exploits this efficiency has yet to be developed. 

The final approach is Beasley's Lagrangean Relaration algorithm for a 0-1 Linear Program formulation of 

the problem [3]. This procedure operates in a setting much like Shore et al's branch and bound proposal, the 

main difference being that Lagrangean Relaxation algorithm devotes considerably more effort to generate the 

lower bound on any partial solution. Beasley's work is apparently the most developed of this group as it 

includes two separate methods of generating the bounds sought. In addition, Winter's survey includes an 

outline of yet another technique, giving three versions of the Lagrangean Relaxation algorithm. Whether this 

trio of bounding methods represent distinct approaches or merely evolutionary advances is difficult to 

determine, though certainly the pair presented in his original paper are discussed in competitive terms. The 

fust algorithm generates tighter bounds while the second executes faster. Winter avers that the third version 

is an improvement over the others in both areas, "even though [sic] LRA3 was implemented on a CRAY-IS 

computer". 

An analysis of the labour performed by these methods would be most informative, however Beasley 

provides none whatsoever. Consider though, that at any node in the decision tree searched the procedure 

performs 7 reduction techniques to eliminate edges and/or vertices from consideration, recalculates the 
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distance matrix for the (reduced) graph, and performs at least 5 iterations of subgradient optimization before 
P 

determining the Lagrangean multipliers. However "simple" and "easy" this process may be, the empirical 

results offered by Beasley suggest that this algorithm has a very narrow range of applicability. 

He presents timing information for his algorithm executed on 18 problems ranging in size from (50,9) to 

(100.50) for graphs whose density never exceeds 8% of the possible edges. Even for these unrealistically 

sparse instances, the first and second versions of this algorithm were unable to terminate successfully in 3 

cases. In this regard, his inclusion of problem reduction as an explicit step in the algorithm must be viewed 

with some apprehension. His results clearly indicate that for most of the problems attempted the input graphs 

were considerably reduced in size by the application of this technique at the fust node in the decision tree. 

For one problem of size (100.50) on a graph of 200 edges, the initial reduction process identified 56 edges of 

T * and eliminated 58 others from consideration. On the other hand, for the three unsolved problems, the 

effect of reduction was relatively minor: a problem of size (100,17) had only 15 SMT edges identified and 

another 30 edges rejected, leaving 155 edges for consideration. 



Whether this relationship between reducability and solvability is widespread is impossible to determine 

from only 18 samples, however Winter's summary of the results offered for the third version of the 

Lagrangean Relaxation algorithm does little to improve this situation. While the problem sizes of up to 

(500,250) are impressive, the three density values (0.5%. 0.8%, and 2%) are extremely low. Of the 12 

problems attempted, 1 1  were solved within 20 CPU minutes, with Winter noting an improvement in the 

effectiveness of the algorithm as the compulsory set becomes larger. It is worth mentioning that the 

effectiveness of the reduction process is most noticeable in sparse graphs with relatively many compulsory 

points, seemingly the exact characterization of the Lagrangean Relaxation algorithm. In the absence of 

further evidence of its general utility, this approach may be viewed as an effective technique only in the case 

of sparse graphs which are amenable to the reduction heuristic. 

3.6. Comparative Results 

Given that the presentations of these algorithms concentrate more on theoretical bona fides than 

computational experience, such results as are stated serve primarily to display their utility rather than justify 

any deeper analysis. The only comparative study of these proposals available in the literature is included in 

the work of Shore, Foulds and Gibbons. Using implementations of the algorithms of Hakimi and Dreyfus- 

Wagner along with their own, their test strategy was to provide each of the three with the same problem 
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instance and record the amount of CPU time required to generate the solution tree. The experimental testbed 
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consisted of five random instances for each of nine different problem sizes: three values of m ,  roughly 

"small" (m I 5 ) .  "medium" (m = n/2), and "large" (m 2 n - 5 ) ,  for each of three complete graphs (Klo ,  K20, 

K30). The edge weights were chosen at random, initially in the range 1 to 50. 

Clearly this organization will restrict the results obtained to displaying the effects of problem size and edge 

weights on the algorithms' execution. Though the conclusions offered are so limited, the authors mention in 

passing the opinion that, given that all the input consisted of complete graphs, they are examining "worst case 

results, the algorithms would probably perform better with sparser graphs". Despite its intuitive appeal, in 

the absence of supporting data this statement merely indicates edge density as an issue worthy of 

investigation. 

The majority of the conclusions advanced are in accordance with the theoretical analysis of the algorithms: 



when m is "close" to n (ie. 2"- < 2'9, Hakimi's algorithm outperforms the others 

when m is "small" in relation to n (ie. 2"' c 2-), Dreyfus-Wagner's is superior 

branch and bound had greater variance in times for different problems of the sarne size 

both the Hakirni and Dreyfus-Wagner algorithms provided relatively consistent times within the 
sarne problem sizes. 

In addition, they note that their branch and bound technique "appears to fill a gap left by the other two" 

algorithms as it displays the best performance when m is equal to n/2. 

In an effort to judge the impact of the specific problem instances on the observed results, a second test run 

was made with the range of random edge weights narrowed to a value of 1 or 2. Within the five similar 

instances this produced a wider fluctuation of execution times for their branch and bound technique, but only 

a slight change to the others. They suggested that it was perhaps the distribution (apparently in relation to the 

compulsory vertices) of the edge weights rather than the actual variance which affected performance. 

They end by noting the difficulty of advancing helpful conclusions h m  the results of their small testbed 

and state that "a fruitful line of future research could be to attempt to characterize the class of graphs for 

which the algorithm[s] perform well". 



Chapter 4 

TEST STRATEGY 

Such then is the state of research into the general SPG. While the literature contains a number of 

algorithms for its exact solution, there are only scattered and rudimentary experimental results available 

which serve merely to display the potential of these algorithms to provide useful answers. If the general 

utility of these solution methodologies is accepted, the next stage of development in this field is a broad and 

rigorous examination of the specific and functional aspects of these competing approaches. As has been 

noted by most of the researchers surveyed, the need for such a practical underpinning to this heretofore 

largely theoretical area is clear. 

In this regard, the work of Shore et a1 may be seen as an initial step. Though their testbed was limited both 

in size and scope, restricting their conclusions to those of a general nature, the experimental approach was 

quite sound. This thesis shall build on that approach, following their indication that an "attempt to 

characterize the class of graphs" for which these algorithms exhibit satisfactory perfohance would be of 
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value. Thus, the explicit goal here is to examine the behavior characteristics of the four major algorithms 

over a well defined testbed of input, both to provide general empirical information and to determine if some 

specific property of the input has a discernible impact on that execution. This type of investigation clearly 

requires a carefully constructed test strategy in order to examine an algorithm's behaviour over a large 

enough range of specifically characterized input as to give results amenable to a similarly specific 

characterization. 



4.1. Input Classification 

Certainly it is difficult to state with assurance exactly which graphical properties may impinge on an SPG 

algorithm's execution. Indeed, there are so many properties from which to choose that even to compile a list 

of candidates would be no small task. Perhaps the most general set of well defined properties are those 

collectively known as graph invariants. An invariant may be defined as a function whose domain is the set 

of simple, undirected graphs with no isolated nodes and whose value for a given graph is fixed regardless of 

the labelling which is applied or may be applied to that graph. Harary [21] defines a complete set of 

invariants as those which "determine a graph up to isomorphism". As no such set is known, the development 

of new invariants remains an area of active research. A comprehensive listing of many of these invariants 

and the relations between them has been offered by Brighton and Dutton [ 5 ] .  

The two most obvious properties of any graph are the number of vertices and edges: respectively its order 

and size. As the amount of labour performed by any of the algorithms to be examined is expressed in terms 

of these values, they are clearly of central importance to input classification. In particular, the influence of a 

graph's order on an algorithm's execution is so overriding and well stated by theoretical analysis as to 

preclude a useful examination of the effect of any other property. That is to say that by varying the order of 

the input the results observed would be directly attributable solely to that difference in order. Certainly there 

are issues worthy of investigation as regards the impact of the sue of the vertex set, for &ample how large is 
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too large or what executional relation may be observed between graph order and size of the compulsory set. 

However, as is the case with edge weights, it is an issue which may be conveniently isolated from 

consideration here and investigated profitably in its own right. Thus, the approach will be to fix the order of 

the input at some value and test over a range of other properties. Notice that fixing the order of the instance 

graph in this manner does not fix the size of the problem itself. By varying the size of the compulsory set, a 

useful examination of a variety of problem sizes may be performed. Indeed, this will be the major means of 

segmenting the problem space. This focuses the testing undertaken on the subtle variations which may be 

observed within comparably sized problems. 

The only criteria used to set the graph order come from implementational considerations. Clearly, given 

the potentially vast time requirements of the algorithms, the input should not be too large to be reasonably 

handled. On the other hand, it should allow a problem size which is in some sense non-trivial, so that a 



reasonable amount of effort is expended for its solution. Beyond this intuitive trade-off between too much 

and too little labour, the number of vertices must be sufficiently large as to create a suitable sample space of 

candidate graphs from which instances may be drawn. For these reasons a vertex set of order 30 was 

selected, giving a maximum e d g  count of 435 and a total sample space of 2435 labelled graphs. 

In considering the second of these most fundamental invariants: graph size, it should be apparent that an 

analogous situation does not exist. Despite the opinion offered by Shore et a1 on this matter, that complete 

graphs represent worst cases, such a characterization is not immediately observable based on theoretical 

analysis of the algorithms. Note that this is true even for their own 0 (2e) procedure which, though 

exponential in the number of edges in the worst care, is apparently not amenable to a description of the 

number of edges constituting this worst case. More importantly, the effect of edge count or density has never 

been considered in any implementational testing reported in the literature. Thus, an examination of a wide 

range of graph sizes will be of significant value. With the order fixed, this variation on the size of the 

instance graphs will be the primary means of partitioning the input, an approach giving two very agreeable 

benefits. 

Firstly, it allows for a further classification of the input based on other invariants in a manner which may 

enable a more refined analysis of the observed results. A subsequent division within a partition based on 

order and size may yield results attributable to the effect of the invariant which gave &e to that particular 
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subdivision. Conversely, merely adding this additional categorization does not complicate consideration of 

the original size-based partition. Secondly, there exists a well established theory governing the generation of 

random elements of these fixed order and size partitions which greatly eases implementation of such a 

scheme. 

As regards these further invariants, the intuitive footing seems less sure. In so clear a field, perhaps even a 

well intentioned guess would suffice as an initial foray, however it is possible to identify two characteristics 

upon which their selection may be based. Given the desire to examine these algorithms over a large amount 

of input, practical considerations require that the value of this property be readily established. This 

eliminates a number of invariants whose determination is itself NP-complete such as clique number, vertex 

covering or independence number, chromatic number, and circumference. Within those invariants 

remaining, it would seem natural to examine those which apparently influence or constrain the tree structure 



possible in a given graph. These include distribution and size of vertex degree, graph diameter and radius, 

and vertex and edge connectivity values. With the exception of the last pair, all of these invariants may be 

easily determined in one pass through the matrix given for the graph. While still a polynomial time 

procedure, setting the connectivity values is a considerably more complicated matter requiring the solution of 

a large number of network flow problems. To speculate, these properties may well represent the boundary of 

easily computed invariants. 

To summarize then, the testbed shall be organized in the following manner. Random graphs of order 30 

will be grouped by edge count into nine partitions ranging from 50 to 250 edges. These partitions will be 

composed of three to five runsets, each of 75 graphs which have an identical value for diameter, radius, and 

edge connectivity. In total the testbed consists of 35 runsets representing 2625 graphs. Depending on the 

algorithm, up to seven distinct problem sizes were actually tested, giving a total of no less than 8,000 

problem instances for each of the six implementations examined. 

4.2. Input Generation 

In order for the results of these executions to be experimentally meaningful, it is required that the instances 

selected as input be randomly representative of the partitions described. A number of methodologies have 

been utilized for the generation or construction of such a testbed of random graphs. Depending upon the 

nature of the structure desired, these have a stylistic range from ad hoc to algorithmic. Fortunately, the area 

of random graphs has been actively researched in the past few years. Palmer's [29] excellent compilation of 

theoretical results on the topic provides precisely the means of defining the sample space to be explored and 

generating structures from this space with uniform probability. 

Methods used in forming test sequences for the SPG may be quickly reviewed. Shore et a1 generated their 

random instances in a very simple manner. Given that they tested complete graphs, the only randomness 

required was in the assignment of edge weights. Aneja used a scheme, later adopted by Beasley, geared to 

construct connected graphs of arbitrary sparseness. This procedure commences with the generation of a 

random spanning tree on the desired number of vertices, ensuring connectedness. Following this, additional 

edges are generated in some random fashion and added to the tree until the desired density is reached. Once 

this process is complete random edge weights are assigned. This last procedure comes closest to constructing 

the range of graphs desired here, however a superior approach is available. 



Palmer states two probability models for viewing the sample space of undirected graphs of a given order, 

appropriately enough Models A and B. For theoreticians in the area of random graphs, these models allow for 

a probabilistic examination of the asymptotic behaviour of the number of graphs with some property of 

interest. To those who merely require a few (or many) random graphs, the value of this formalism is more 

concrete. By fully describing the set of objects desired, randomness in the construction of their elements may 

be assured merely by undertaking that construction in such a manner that each of the elements are equally 

likely to occur. Both Models A and B offer as elegant accessories exactly this means of construction. 

The sample space of Model A consists of all labelled graphs of a fixed order n where edges have an equal 

and fixed probability p (0 < p < 1 ) of being presenL With p set at 1R. each of the 2 0  possible labelled 

graphs of order n have an equal probability of being chosen. Model B offers the more restrictive sample 
(3 space of all labelled graphs with both order and size ( e )  fixed, the number of which is ( , ) . Notice that this 

model exactly defines the elements of the partitions desired for the testbed here. 

To generate, with equal probability, one of these elements, it is sufficient to choose a suitably random set of 

edges. This may be accomplished very easily by means of an algorithm of Nijenhuis and Wilf which 

generates uniformly at random a k-subset of an n -set. By establishing a labelling of the 435 edges available 

in a graph of order 30, it is possible to interpret such a random k-subset of 435 as a collection of e edges. 
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Regardless of this algorithmic rigour, it is a fact that to attain true randomness in any implementation is 

problematic. Any program of this type will function by using a routine programmed to generate a sequence 

of random numbers of some sort (real or integer) which are then processed into the random structure 

required. The difficulty lies with the inescapable reliance on the random number generator used. In a 

computer environment, the problem of ensuring that such a sequence is "uniformly at random" is well 

known [23] and clearly beyond the scope of this thesis. Instead, the-best that can be hoped for is an 

acceptable level of pseudo-randomness. In this regard the generation routine for these instances is at the 

mercy of the Sun processor upon which this program was developed. Within its standard C-library is 

contained a Random routine which generates integers in the range (0.2~' - 1) with a cyclic period > 2@. 

Statistics gathered over a large amount of output from this system function [2] indicate that it may in fact 

provide these integers uniformly at random. Hopefully, the pseudo-randomness of the structures generated 

here may be viewed with the same degree of confidence. 



The actual construction of the testbed was performed in the following manner. For a fixed number of 

edges, 2000 random graphs were generated by the means outlined above. Each was processed to determine 

the required properties and the set of 2000 sorted on the basis of diameter, radius, and edge connectivity. 

Parenthetically, it should be noted that in most cases edge and vertex connectivity values were identical: 

fewer than 50 of the 18,000 random graphs generated displayed different values. For this reason, no 

distinction between edge and vertex connectivity will be made and the generic term connectivity will refer to 

both. 

In general, the sorting process yielded no more than 10 subsets, several of which were very small (less than 

20 elements) in relation to the 3 or 4 largest. Runsets were then established by the arbitrary selection of a set 

of 75 graphs from these largest groups. In no case was a subset having at least 75 graphs not included as a 

runset. This characterizes the input selected as graphs having combinations of diameter, radius, and 

connectivity which occur in at least 3.75% of the gmphs of a fixed order and size which were randomly 

genemted. Whether this method ensures a representative collection of graphs of a fmed size is open to 

question, certainly no claim of absolute representativeness is intended. 



Chapter 5 

EMPIRICAL RESULTS 

To reiterate, the hypothesis under which these experiments were conducted was that a correlation would be 

observed between some graph theoretic property and the execution time of the algorithms tested. To this 

end, the input was segmented as previously described: by edge count and by diameter, radius, and 

connectivity. For each such unique input characterization tests were made for several sizes of compulsory 

sets in a range deemed suitable for the algorithm in question. These ranges were chosen in accordance with 

the theoretical analysis of the algorithms, the conclusions advanced by Shore, Foulds, and Gibbons as regards 

their comparative merits, and implementational considerations. Given that n ,  the number of vertices in the 

input graph, was fixed at 30, this variation in values of m was the sole difference in the problem sizes tested. 

The results reported here are in the form of the mean execution time of a runset element. This was 

determined by summing the total CPU seconds required to find the weight and elements of the Steiner 

minimal tree for each instance in the runset and dividing by the size of that runset. ~Zecution times were 
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obtained through a UNIX system function which monitors various resources utilized by active processes. 

The measurement was made for the amount of time spent in so-called "user mode", that is actual time of 

program execution in the CPU and includes no system overhead. As there was no input as such and the 

result of each individual problem was printed after the time of execution obtained, there are no I10 operations 

affecting these results in any manner. Finally, the system clock upon which these measurements are based 

functions by "ticking" every 0.02 seconds. It is to this accuracy that results are reported. 



5.1. Impact of Diameter, Radius, and Connectivity 

It is possible to quickly dispense with one of the dimensions segmenting the testbed. The results reveal no 

observable correlation whatsoever between execution time and some differentiation in the input's diameter, 

radius and connectivity values. Certainly there were variations in the timings of individual runsets, but there 

emerged no overall pattern upon which any supportable conclusion could be drawn. This was true both for 

the complete enumeration algorithms and the more volatile branch and bound routine. 

This situation is not unexpected in the case of the explicit enumeration techniques, where only Levin's 

approach may have the capacity to display a large sensitivity to subtle input variations. As the connect phase 

of the algorithm features a segment where paths of increasing length are formed, it could be the case that the 

less the graph's diameter, the quicker this process would terminate. If so, the cumulative effect should be 

more noticeable at a large problem size. 
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Table 5-1: Levin results by diameter and edge count 

Table 5- 1 summarizes the results of a range of diameter values for 5 edge counts at a compulsory set of 12. 

While there is a downward trend in times for decreasing diameters, it is very slight indeed. Notice that this 

decrease within each edge count is always exceeded by the decrease in times between edge counts at a fixed 

diameter. It would seem that in the case of Levin's algorithm any effect of diameter variation is secondary to 

that of edge count. 

The three Dreyfus-Wagner implementations did not display even the slight consistency of Levin's. The 

times could be either marginally more or less across decreasing diameter values, in no overall pattern. 

Ignoring diameter values, the impact of radius and/or connectivity was similarly inconsistent for all 

algorithms of this class. 

Turning to the algorithm of Shore et al, the effect of these properties is equally difficult to judge. While it 



displayed far greater differences in times between individual runsets, there was absolutely no correlation 

between these differences and the input characterization. As an example, the following table, showing times 

for several sizes of compulsory sets at e = 60 is typical of the fluctuations observed between different 

diameter values. 

Table 5-2: Shore, Foulds, and Gibbons results by diameter and compulsory set size 

Depending on the size of the compulsory set, each diameter value may give the lowest, middle, or highest 

execution time. Even more confusing was the fact that the 75 graphs comprising these runsets had an equally 

wide fluctuation of times. The organization used in table 5-1, fixing the size of the compulsory set and 

varying edge count, would show a lack of pattern similar to table 5-2. 

Certainly the experimental treatment given these three invariants did not allow for a broad examination of 

their impact. Criticism could be made regarding the limited range of values used and the fact that they were 

studied as a group, rather than individually. These results then, should be viewed not as a conclusive 
C 

statement, but as an indication that these properties have no impact on the algorithms in question. Besides 
L 

correcting these stated shortcomings, one means of providing a deeper consideration of these invariants could 

be to characterize not just the input instance, but to extend these notions to the set of compulsory vertices 

within the underlying graph. This intuitively generalizes these invariants in much the same way a Seiner 

tree generalizes the idea of a spanning tree. It may be of some interest to examine a testbed organized by 

these Steiner-diameter and Steiner-radius values. 

In summation, it would seem that this secondary means of input characterization provides little insight into 

the algorithms' execution patterns and may be ignored in reporting the general results. As indicated 

previously, this by no means prejudices the utility of the testbed. By coalescing the runsets into larger 

blocks, it may be viewed as 9 sets of at least 225 graphs each, representative of the most common values of 

diameter, radius, and connectivity. It is in this form that the remainder of the results will be reported. 



5.2. Dreyfus-Wagner Results 

The results obtained for the three Dreyfus-Wagner implementations support the appraisal given for the 

general algorithm in all respects. The tables below state these results by program for the three values of m 

tested (7, 10, and 12) and the nine edge counts. 

SE Hybrid TE 

Table 5-3: Dreyfus-Wagner results for m = 7 

Hybrid 

Table 5-4: Dreyfus-Wagner results for m = 10 

SE Hybrid TE 

Table 5-5: Dreyfus-Wagner results for m = 12 



In comparative terms, the average times will reflect the savings attained by the various backtracking 

approaches. Table 5-3 indicates that for a small size of compulsory set the backtracking methodology has no 

impact. The larger sizes reveal that the execution times of the programs appear to obey an ordering of TE < 

Hybrid < SE. However, the decrease between programs is so slight as to be statistically insignificant, as 

program TE offers only a 1.1 % improvement over SE and 0.9% over Hybrid for a compulsory set of size 12. 

For m = 10, these improvements are 0.9% and 0.6% respectively. 

Given the increase in memory usage required to attain these savings, it would be difficult to represent the 

time efficient approach as the method of choice for the backtracking stage of this algorithm. Between 

programs Hybrid and TE, a 200% increase in memory usage gives a speed up of less than 1%. It would seem 

that by using no extra storage, the Hybrid approach is the most reasonable technique of the three. 

It is perhaps noteworthy that Dreyfus and Wagner's stated method of choice, the space efficient 

implementation, displays the poorest performance of the three. Compared to the Hybrid approach this may 

be an unexpected result. Consider though, the action of the two programs. The Hybrid method is to 

regenerate all splitcosts and join values until the partition sets which yield the target label are identified. 

Program SE, by retaining the split vertex, performs this action only for the correct set of splitcosts. Thus, 

compared to the worst case of the Hybrid program, the SE approach could perform lln of these reverse 
.r 

splitcosts, potentially a large saving. However, notice that this saving is gained at the expense of storing 
P 

n .2*' vertex labels. Clearly, the trade off between this fixed number of assignments and the possibly large 

number of regenerations favours the latter. That is, the wasted labour of performing reverse splitcosts for the 

wrong vertices is always less than the wasted labour of storing unneeded vertex labels. 

The only other observation that may be made for these results is a slight tendency for the times to decrease 

as edge count increases. Once again, this decrease is statistically insignificant no more than 0.1% between 

e = 50 and e = 250. Though noticeable in all three programs for the larger compulsory sets, it is more 

pronounced in the SE and Hybrid programs at m = 12. Two factors may be identified as influences in this 

regard. 

First, sparse instances tend to require more Steiner points and thus have more edges. It would require more 

effort by the backtracking stage to recover these edges. Then too, this trend may be due to denser graphs 



having an increased probability that a label value is assigned through a join operation, rather than a split. 

During the backtracking stage for programs SE and Hybrid this "join edge" would be found without 

performing a reverse splitcost calculation, a saving of some note. In the case of program TE, which retains 

this information at the time of label assignment and thus performs no such calculations, this effect would 

manifest itself as a reduction in the amount of recursion required, giving a slight saving of an implementation 

dependent nature. 

5.3. Levin Results 

Table 5-6 gives the results of Levin's algorithm for the same values of m used with the Dreyfus-Wagner 

routines. For comparative purposes the Hybrid program was selected to represent the others, as its 

backtracking mechanism is identical to that of Levin's. For the two largest compulsory sets the superiority of 

Levin's algorithm is clearly evident. At m = 12 the improvement in execution time averages 33%, while at 

m = 10 the average is 15%. Interestingly enough, at m = 7 this algorithm is actually about 5% slower than 

the Hybrid program. These figures support the contention that the efficiency of this approach improves with 

an increase in the size of the compulsory set. However, this appraisal must be tempered with the knowledge 

that there is a point below which this theoretical superiority will not be realized. 

Table 5-6: Levin results by edge count and compulsory set size 

Within these results, notice that the same tendency identified in the Dreyfus-Wagner routines is present. In 

this case, however, the decrease in execution time as edge count increases is much larger than the others. 

Between the largest and smallest graph sizes, the improvement form = 12 is almost 5 seconds and represents 

a 2.2% reduction. As was the case with the previous algorithm, this may be attributed to the fact that the 

denser the graph, the more likely that a join value will label some vertex. For this algorithm and in the case 



of the CSP, the effect is much more beneficial. This is due to the manner in which these join values are 

generated and handled. 

In considering the activity of the join heap, it should be intuitive that with few edges present, unlabelled 

vertices are less likely to have a labelled neighbour. In this case they will enter the join heap with an infinite 

value. It will take a number of stages for all of these vertices to gain a labelled neighbour, though at each 

stage a few will and thus percolate upward to the top (or near top) of the heap. Compare this to the situation 

in a dense graph. With uniform edge weights and many edges, most vertices could have a labelled neighbour 

and enter the heap at or near the top, to be labelled at the beginning stage of this join segment Not only is 

this labelling done faster, but those vertices which are not labelled will have a smaller heap to percolate 

through. Thus for dense graphs, fewer such stages will be required and the labour at each will be less. 

Notice that this characterization of the algorithm is unique to the CSP. Given uniform edge weights, the 

join heap will have only two classes of elements: those about to be labelled and those with an infinite current 

join value. Any vertex which gains a labelled neighbour at some stage will definitely be labelled itself during 

the next. To put this another way, a vertex can only percolate upwards once during its time in the heap. This 

would cast the CSP as a best case for Levin's algorithm. 

Returning to the situation at m = 7, it is noticeable that the execution time at e = 250 iSvirtually the same 
P 

as the Hybrid routine. It may be the case that the overhead of the heap establishment and maintenance, as 

described above, for less dense graphs overcomes the saving in splitcost calculations. Also, the average heap 

size would tend to be larger for a smaller compulsory set, further limiting the efficiency of the method. In an 

effort to more closely characterize this algorithm in comparison to the Hybrid routine, tests were conducted 

for compulsory sets of size 8 and 9 at edge counts of 50,80, and 120. 

Hybrid Levin Hybrid Levin 
m = 8 m = 8  m = 9 m = 9 

Table 5-7: Comparison of Levin and Hybrid results for m = 8,9 

This table shows that the routine of Levin displays its efficiency at m = 9. 



5.4. Hakimi Results 

As indicated in the outline of this algorithm, it is most effective in cases where relatively few of the vertices 

are non-compulsory. For this reason, the range of sizes of the compulsory set was limited to between n/2 and 

n .  Table 5-8 gives the results obtained for values of m of 18,20, and 23. This fits the intuitive view of the 

algorithm as being in a "complementary" relation to the dynamic programming routines. Certainly, being an 

0 ( 2 " T  routine where the others are 0 ( 3 9  it should offer better performance at these symmetric sizes. 

This is observable in the results presented in table 5-8. 

Table 5-8: Hakimi results by edge count and compulsory set size 

This algorithm displays only slight variations in times for different edge counts, indeed @ it would seem that 

only for e = 50 is there a notable change. This reduction may certainly be attributed to the lack of edges, ,. 

allowing the MST program to execute somewhat faster. At an edge count of 100 or more, the times are 

virtually identical. Given the strictly enumerative approach of the algorithm, this similarity of execution 

times for similar problem sizes was an expected result. 

As these times for m = 18 were still quite low, a few problems were executed on a 70 edge graph at sizes 

of 15 and 12. These times were 322 and 2370 seconds respectively. There seems little to be drawn in the 

way of conclusions from this, though it would appear that for suitably small instances, less than 40 vertices 

perhaps, the technique should be fairly reliable within its known range of applicability. 



5.5. Shore, Foulds, and Gibbons Results 

As indicated by the comments of the authors regarding their testing of this algorithm, it could be expected 

to show a wider fluctuation of execution times than the algorithms discussed previously. This 

characterization is also forthcoming based on the theoretical appraisal and is clearly in evidence in the data 

obtained As the authors suggested that it is the method of choice when m is in the middle of its range (close 

to n12). the sizes of compulsory sets tested were 10.12, 15, 18, and 20. These results are listed in table 5-9. 

Table 5-9: Shore, Foulds, and Gibbons results by edge count and compulsory set size 

It is noteworthy that the anticipated fluctuation in times manifested itself only in the sparser instances of 

100 or fewer edges. Furthermore, the larger values in table 5-9 were due, not to consistently large times, but 
C 

to a few bad cases with which the algorithm had great difficulty. For instance, the times labelled = were 

each due to a single instance which failed to terminate after executing for over 300,000 CPU seconds. 

With this caveat in mind then, several immediate observations may be made for these averages. Notice 

that, while the execution times at e = 250 are always the lowest for each sue of compulsory set, the results 

at e = 50 are never the highest. In all cases, the times peak at some edge count between these extremes, in 

fact between 60 and 100 edges. There is also a distinct drop in times between edge counts of 100 and 120. 

This suggests that, in terms of edge count, the algorithm has a narrow band where it performs poorly, but that 

above and below that band it functions comparatively well. 

In considering the effects of problem size, it is almost always the case that times increase with an increase 

in m. For the instances of less than 100 or more than 120 edges this characterization is strictly me. Indeed, 

the times at e = 80 show an almost exponential growth. This is nearly the case at e = 100, but there is a 



sharp drop for a compulsory set of size 20. Only at e = 120 do the times decrease then increase as m 

becomes larger, with the minimum at m = 15. 

Recall the observations advanced by Shore et a1 regarding this algorithm's executional characteristics. 

While they mention that the algorithm performs well when m is near n/2, they offered no deeper analysis of 

its behaviour for various sized problems. They also remarked that complete graphs probably represent the 

worst case for this algorithm. This would suggest that the expected results would show a downward trend in 

times as edge count decreased and as m neared the middle of its range. Given the results in table 5-9, it is 

possible to make a more specific appraisal of the algorithm's characteristics in the restricted case of the CSP. 

Regarding the size of the compulsory set, the results in table 5-9 for m = 15 show a better average than 

would have been obtained from any other algorithm. In that comparative respect then, this algorithm does 

"fill the gap" left by the others when m is near n12. However, it does not appear to support an interpretation 

of that statement as suggesting that the best case for the algorithm is when m is in that range. 

In terms of edge count, though the comment of Shore et a1 was only an opinion, it is not possible to dismiss 

it out of hand merely on the results here. The only conclusion that may be drawn with certainty from table 

5-9 is that in the case of the cardinality version of this problem, given a sufficient number of edges the 

algorithm functions very well. Furthermore, it may well be that this sufficient number of ages  is relatively 
P 

low in terms of the total number of edges possible in some instance, for these results indicate that this good 

performance may be expected when = 25% of the possible edges are present. The cause of this 

characterization is the functionality of the edge selection technique employed by the branching process in the 

presence of uniform edge weights. 

In a graph where the edge weights are identical this technique rarely ever "selects" an edge. Recall that the 

heuristic operates by identifying the minimal edge incident at the essential component where the difference 

between the two minimally weighted edges is largest In the case where the weights are uniform, the only 

time an edge could be selected is when it is the only edge incident at such a component. Otherwise, the edge 

chosen is the "first" edge incident at the component labelled 1: ties are broken lexicographically! As long as 

this edge connects essential components, this choice is optimal. For instance, in a complete graph this 

approach is guaranteed to select m -  1 edges which span the compulsory set with no possibility of an 



incorrect selection. The algorithm constructs T *  in m - 1 steps in a manner identical to Prim's MST 

algorithm, as components are merged in order into the fvst component in the labelling. In less dense graphs, 

so long as a tree spanning the compulsory set using no Steiner points is possible, the same characterization 

holds: no incorrect edges are chosen. 

However, when Steiner points are required, as is more likely the case in sparser graphs, this lexicographic 

preoccupation may provide very little efficiency. There seems no possibility of choosing an edge on its 

relative merits, presumably the goal of this heuristic. Thus, the approach has the potential to degenerate to an 

explicit enumeration of structures formed by considering edges to Steiner points in the order they appear in 

the instance labelling. Depending on where the selection of the correct edge occurs in this enumeration, a 

considerable amount of unnecessary labour may be performed. Contributing to this problem is the inability 

of the bounding mechanism to identify anything more than a disconnected graph structure, too large a set of 

edges, or a candidate solution. 

Fortunately, this characterization of a possible increase in labour with a decrease in edges only holds up to a 

point. Specifically, there comes a time where the number of edges is so few that even if inefficiently 

handled, they may all be considered fairly rapidly. 

The results obtained reflect this appraisal. In no case did a problem whose solutionOvalue was m - 1 
0 

require more than 0.3 seconds. In addition, every single bad case for the algorithm required a Steiner point. 

Since merely requiring a Steiner point did not always give a large increase in time, the problem is not 

inherent in the algorithm, but in some way brought out by a property of the input. 

In order to gauge the effect of this decidedly unheuristic tie-breaking methodology, several problems with 

large execution times were selected and the rows and columns of their instance graph randomly permuted 

before resubmission to the program. This has the effect of altering the labels applied to the components and 

thus the order in which they are selected. To ensure that the actual problem not change, only the candidate 

Steiner points were so permuted. The outcome of this permutation was not encouraging in that the times 

changed only marginally. However, when this relabelling procedure was performed on the compulsory set, 

the results were very noticeable. 



initial 161.78 

best 3 17.94 
18.28 
18.48 

worst 3 141.14 
163.22 
163.24 

e=70 
m= 12 

Table 5-10: Results of compulsory set permutation 

Table 5-10 presents a summary of 25 permutations applied to three individual problems with a compulsory 

set of size 12,15, and 18 at edge counts of 60 and 70. The results list the times of the unpermuted instance 

followed by the lowest three and the highest three observed execution times. 

Clearly the labels applied to vertices in the instance graph have a major impact on the execution of this 

algorithm. From these and other, similar results it would seem that it is quite often possible to permute the 

rows and columns and fmd a labelling amenable to the algorithm's lexicographic approach. This is a result 

of some significance to the utility of this algorithm as regards the CSP. Given that it is a very effective 

technique at higher densities, the potential to attain reasonable execution times in its area of poorest 

performance would make it attractive for all classes of input. 

The number of these instances with pathological labellings was relatively few. In order to judge their 

impact on the averages in table 5-9, the results were sorted and the 5% which gave the highest execution 

times identified. This 5% figure was selected arbitrarily and totalled 15 graphs for the 50, 60, and 70 edge 

sets and 18 for 80 and 100. These instances were removed from the testbed and the averages for the 

remaining 95% recalculated. Table 5-1 1 gives the results for these best cases. 

Table 5-11: Shore, Foulds, and Gibbons results with "worst" 5% removed 



The figures clearly indicate that in regards to the overall averages, the relatively enormous times of the few 

bad cases impact noticeably on the results. For the testbed employed, most instances are handled very easily 

by the algorithm. Certainly it is not possible to characterize the routine as being effective for 95% of all 

graphs or that only 5% of the cases could be expected to be bad. The exact nature of the dismbution of these 

instances cannot be stated with certainty merely from these results. However, it is possible to suggest a 

characterization of the range of edge counts for which this algorithm exhibits poor performance. From table 

5-1 1 it would seem that the low end of this range, e = 60, contains relatively more bad cases but that their 

execution time is moderately large. For the larger edge counts, the number of these bad cases is less, but they 

require much more time to execute. For instance, notice that the 2 entries in 5-9 which were given an infinite 

"average" (m = 18 , e = 100 and m = 20 , e = 80) have shrunk to 0.24 and 0.30 seconds respectively. 

As regards the variation in times within edge counts for different sizes of compulsory sets, table 5-1 1 does 

not reveal the same patterns as 5-9. Notice the sharp drop at a compulsory set of size 20 for edge counts of 

70 or more in these best cases. Given the algorithm's efficiency in handling compulsory vertices, as opposed 

to candidate Steiner points, it may be the case that in the absence of pathological labellings, an equal number 

of each could bring out the worst behaviour in the procedure. In terms of the CSP, the combination of low 

edge count and a medium sized compulsory set seems a more likely characterization of the worse case for the 

algorithm than that provided by the authors. 
C 
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In an effort to determine the applicability of these results to larger instance graph orders, a small testbed of 

75 graphs was constructed for 40 vertices. Tested at three different edge counts (130, 200, and 400) the 

results proved remarkably consistent with the analysis offered above. 

Table 5-12: Shore, Foulds, and Gibbons results for n = 40 

Once again the highest execution times occured at a low edge count and were attributable to a few bad 

cases. The results at a compulsory set of size 20 for 130 edges were due to five bad instances, with all others 

completing in under a second. Both of the larger compulsory sets at 130 edges had a single instance which 



failed to terminate. At the next largest edge count, which was very near to 25% of the possible edges, the 

results improved significantly, exactly the characterization of the original testbed. 

In summation, this algorithm of Shore, Foulds, and Gibbons is in many respects the best available for the 

CSP. It would appear that if the problem instance is suitably dense, it outperforms any other algorithm in all 

problem sizes for which it was tested. It is unfortunate that there seems to be no means of characterizing its 

worse cases other that by broad classification of the edge counts where they are likely to occur. Despite the 

existence of these cases for which it performs poorly, they may well be sufficiently rare to warrant this 

algorithm's usage even in its known range of potentially degraded performance. An additional point 

concerning its general utility is its unique ability to function very well for the input it can handle. That is, if 

the algorithm is capable of solving a given problem, it will quite often do so immediately. This suggests that 

it may be amenable to some form of probabilistic improvement, where it could be allowed to execute for a 

faed time and if unsuccessful, abandon that execution and restart after a permutation of the input. 

Regardless of its lack of merit from a theoretical point of view, the idea seems inmguingly appealing in 

practical terms. 



Chapter 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

Based on the empirical results gathered from the execution of these algorithms, it must be concluded that 

the accepted characterization of their utility in the area of the SPG does not extend to the case of the CSP. In 

addition it is possible to further refine one aspect of their comparative worth even in the general problem 

area. 

In terms of the cardinality version of the problem, the branch and bound algorithm of Shore, Foulds, and 

Gibbons significantly outperforms all the others across a wide variety of compulsory set sizes. It will 

occasionally exhibit poor performance in a class of input which may be identified by edge count. Even 

within its relatively n m w  range of potential difficulty, it will frequently function with no degraded 

performance. No other algorithm tested can match either its domain of application in terms of problem size 

or its potential to provide a very fast solution. 
@ 

Of the other algorithms studied, Hakirni's is an effective procedure for problems where more than half the A 

vertices are compulsory. Its performance is directly linked to the number of candidate Steiner points in the 

problem and execution times for problems of the same size will show little fluctuation. Depending upon the 

operating speed of the machine used and the time available for execution, this algorithm will be impractical 

for problems where the number of candidate Steiner points is large. 

The algorithm of Levin is an effective process for problems where less than one half the vertices are 

compulsory and, as is the case with Hakirni's, has a physical limit beyond which its usage will be 

unattractive. This limit will be based upon the number of compulsory vertices in the problem and, once 

again, is machine dependent. An added requirement is the need for sufficient memory to store the necessary 

intermediate subsolutions. This algorithm has been seriously misjudged in the literature and it may be stated 

conclusively that it will outperform the algorithm of Dreyfus and Wagner significantly at larger sizes of 

compulsory sets. This characterization will extend to the case of the SPG. 



The algorithm of Dreyfus and Wagner shares the same executional characteristics as that of Levin. 

Specifically, it will show little fluctuation in times for problems of the same size, it requires a large amount 

of memory, and its usage becomes unattractive as the size of the compulsory set grows. However, it must be 

judged the poorest of the four as it displays the largest execution times and requires the most memory. 

In terms of future areas of research revealed by this study, it has already been stated that a valuable 

contribution would be to conduct an investigation of edge count in the area of the SPG. A deeper study of 

the combined effect of variable edge weights and densities would be of special interest in the case of the 

algorithm of Shore et al. This could also be performed for Levin's algorithm which has never been reported 

as having been tested for the SPG. 

In the area of the CSP there are a few issues of interest which may be identified. Fist, a version of 

Hakimi's algorithm specialized for the CSP as indicated previously and provided with an optimized MST 

subroutine may well prove surprisingly effective. Then too, the permutation heuristic advanced for the 

branch and bound routine would be an interesting exercise, though it would undoubtedly require some 

theoretical groundwork. Finally, for those seeking a real challenge, the development of a truly useful edge 

selection heuristic would immediately improve the branch and bound routine. 

In the way of new algorithms, clearly an area that has yet to be investigated is the desigh of a distributed or 

parallel algorithm for either problem. All three of the fundamental methodologies of algorithms studied here 

seem amenable to such techniques. 
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