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It is considered that an algorithm which solves a general class of prob- 

lems will not be as efficient as an algorithm which solves a subset of 

the class of problems. Similarly, generalized distributed data structures 

(and their manipulative operations) are less efficient than particular 

algorithms for distributing data for a specific application. 

The efficiency limitation of generalized data structures can be partially 

defeated by using semantic information. This thesis presents a distri- 

buted data structure which makes use of information provided by the 

application to implement an efficient distribution of the data. This 

information typically includes which nodes in a network are going to 

produce data, which nodes are going to read data, and how the data is 

to be distributed and replicated. An implementation of the distributed 

data structure is given, along with two examples. Analysis of these 

examples demonstrates the efficiency and flexibility of the data struc- 

ture. 
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1. Introduction 

1.1. Introduction to MOOSE 

The paradigm of shared memory, in which multiple active processes can access 

the same physical memory concurrently, has proved to be useful in many different 

fields of science. Computer systems which implement shared memory are usually 

uni- or multi-processor systems because the communications overhead between 

physically distributed components is very high. Consequently, shared physical 

memory is not feasible in computer systems distributed across a local area network 

(LAN). The obvious utility of shared memory remains, however. 

One of the major research areas in computer science today is distributed 
2 

programming. A distributed program consists of more than one process - often 

with different processes executing on different machines across a LAN - commu- 
I 

, nicating through an exchange of messages. The exchanged messages carry state 

information and data among processes which do not necessarily share physical 
I 

memory. An obvious alternative to this potentially chaotic collection of processes 
1 

I and messages is to provide a means of logically sharing memory or (as the proposed 

research will focus on) sharing the data which all processes need to access. If an effi- 
I 

cient shared data structure is provided, the programmer will not have to build one. 
I 

The resulting program will be more modular and less bug-prone than if the pro- 

grammer had to build his own distributed data structure. 

It is usually the case, however, that a data structure which satisfies the needs of a 

great many applications does not provide an efficient service: generality leads to 

inefficiency. The primary reason for this is that a programmer, in custom designing 
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a data structure, can make use of information on how the data is to be used by the 

application to improve efficiency. 

A generalized data structure can be made more efficient by making use of some 

semantic information provided by the application. This thesis describes the design 

of such a generalized data structure, a MOOSE mdif iab le  Object StructurEJ, where 

information provided by the application is used to determine which of several dif- 

ferent algorithms should be used to distribute the data. Many applications can use a 

MOOSE (almost) as efficiently as a custom designed data structure. The MOOSE sys- 

tem was designed to operate on a LAN such as an Ethernet where message commu- 

nication costs are significant compared with calculation costs. 

The following information is provided by the application to a MOOSE at the start 

of execution: 

Which nodes of the network are going to produce data, and which are going 

to use the data produced? 

How is data to be distributed? Should a piece of data be distributed as soon 

as it is produced, should the data be batched up and sent in one large block, 

or should a process have to ask if a given piece of data is available? 

How is the MOOSE going to be used? Is more than one process likely to at- 

tempt to grab the same piece of data at the same time? Does it matter if 

they both succeed, even though they should not, according to the defini- 

tion of the data structure? 

In effect, when the application gives this information it is agreeing that in using 

the MOOSE, the application will work within certain restrictions (e.g., if the applica- 
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tion specifies that a certain network node will not produce any data, then that node 

is restricted to not producing any data). If these restrictions are not met (i.e. the 

information provided by the application was incorrect) then the MOOSE might 

operate incorrectly. It is the programmer's task to make sure that the information 

given to the MOOSE is accurate. It is also the programmer's task to make sure that 

the information provided makes the program execute as efficiently as possible. 

The MOOSE structure is aimed at a loosely coupled distributed system in which 

several mi-  or multi-processors are connected across a LAN. MOOSE has been im- 

plemented in the distributed programming language SR ([Andrews and Olsson, 

19871, [Olsson 19861, and [Andrews et al, 1988]), and runs on several SUN worksta- 

tions running the Unix operating system connected across an Ethernet LAN. The 

language SR was chosen because it provides a very high level environment for 

distributed programming, along with a wide variety of communication and syn- 

chronization mechanisms. In addition, SR provides a consistent and intuitive 

syntax which makes the task of programming both easier and more enjoyable than 

programming in lower level languages like C. 

In the remainder of this section, the work of other authors towards improving 

data structure efficiency by using application dependent information will be exam- 

Led. In Section 2 and 3 following, the design and implementation of MOOSE will 

be described in detail, and some performance figures will be given. Sections 4 and 5 

each give an example on the use of a MOOSE, along with some performance analy- 

sis. Section 6 discusses some alternative methods for improving efficiency through 

use of semantic information. Section 7 gives a brief conclusion. 
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1.2. Previous Work 

A number of different authors have examined means by which the efficiency of a 

data structure can be improved in an application-dependent way. The best example 

of this can be found in [Cheriton, 1985 and 19861 which deal with Cheriton's 

'Troblem-Oriented Shared Memory." In these papers, Cheriton examines a number 

of different distributed components of the V System, and the means by which their 

data structures have been made more efficient. Generally, he is interested in impro- 

ving efficiency through relaxation of consistency. 

Cheriton describes the relaxation of consistency through relaxed store and 

relaxed fetch operations. A relaxed store operation is not guaranteed to store the 

new information. A relaxed fetch operation may return stale or incorrect data, or 

might even indicate that the data is not known. He indicates several ways of deal- 

ing with the inconsistencies brought about by relaxed operations: 

Detection on use : the user of the data can detect that the data returned by a 

relaxed fetch operation is not correct. 

Sufficient Accuracy : the data returned may not be accurate or up-to-date, 

but it may be sufficiently accurate for the use it is intended. 

Optional Data : an application might be able to continue operation without 

a requested piece of data. The application might be able to perform cor- 

rectly without the data by extrapolating or substituting other data. Alter- 

natively, the application could make the fetch request again on a different 

machine which has the data. Cheriton refers to this as function shipping 

where the execution of the function is moved, as opposed to data shipping 

where the data is moved. 

Discardable Updates : an application might be able to tolerate the effects of a 

lost update. For example, the data might be regularly updated so that if a 
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store operation fails, the stored data is stale until another store operation 

succeeds. 

The first example that Cheriton gives is the V name service. In this service, a 

primary copy of the information associated with a name is kept at one machine, 

with caches kept at other machines. Stale or incorrect data is detected when it is 

used . On a cache miss, the correct information is determined through multicast 

communication, and the cache is updated. 

The V time-of-day clock is an example of shared memory with sufficient accu- 

racy. Each machine's local clock is periodically corrected with a message from a net- 

work time server, and so the local clock never differs from the network time by 

more than a small amount. 

Another example of sufficient accuracy of information and detection of stale data 

on use is in global scheduling across a LAN. In the V System a user can indicate that 

a command is to be executed on any machine in the network cluster. Thus, the 

scheduler will want up-to-date information about the resources available to differ- 

ent machines in order to best schedule the job. The servers could broadcast their 

current status periodically, or when there is a significant change. Other servers 

would then make use of sufficiently accurate information. When a scheduler tries 

to start a job on a different machine, it could include a description of the presumed 

load. If this description is too inaccurate, the request can be refused - inaccurate 

data is thus detected on use. These methods of global scheduling are currently being 

implemented in the V System. 
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In [Ravindran 19871, "Application Driven Shared Variables" (ADSVs) are 

defined. Ravindran provides a thorough definition of his ADSVs, which are simply 

shared variables which only provide a weak form of consistency. He shows how his 

ADSVs might be used in three examples: management of leadership in a server 

group, management of the printer in a spooler group, and management of the name 

space of machines in a distributed system. 

Terry, in [Terry 19871 considers the problem of maintaining cache consistency in a 

distributed system. He notes that maintaining full consistency is very expensive, 

and a possible alternative is to loosen consistency requirements and consider cached 

data as "hints" rather than accurate information. This is an acceptable alternative 

for a variety of applications. For example, in the distributed mail service Grapevine, 

servers cache information about mailboxes not stored locally. A server will detect 

the inaccuracy of its cache when it attempts to forward mail to a mailbox which has 

been moved. Then, a global registration service is consulted to update the cached 

information. 

The work done by Schwarz and Spector in [Schwarz and Spector, 19841 is inter- 

esting but not quite as relevant to the topic under discussion. Schwarz and Spector 

examine the consistency requirements of shared abstract types from a more theo- 

retical point of view. The primary purpose of their paper is to study a method of 

notation for dependencies between different operations on an abstract type; however 

they also describe a locking technique which makes use of type-specific information 

provided by the programmer to improve availability. 

In all of these works, solutions have been proposed for specific problems. Effi- 

aency has been improved at the expense of consistency. However, a MOOSE 
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attempts to provide a general solution to a wide variety of problems. As such, a 

number of methods for increasing efficiency had to be considered which were just 

taken for granted in the works described above (in implementing a specific algo- 

rithm, the pattern of message passing can easily be designed so that the minimum 

number of messages are required. In a generalized data structure, achieving optimal 

message passing is difficult). 

The work which inspired the form of the MOOSE data structure was [Carriero 

and Gelernter, 19851 - "The S/Net's Linda Kernel." Linda is a distributed data 

structure implemented on the S/Net multicomputer (built by AT&T Bell and based 

on a fast, word-parallel bus interconnect). Rather than providing operations for 

assigning values to labels and for reading the value associated with a label (such as 

the standard read and write operations), Linda provides a tuple space. The Linda 

tuple space is simply a replicated, shared set of tuples, where a tuple is an ordered 

list of values. The tuple space is manipulated with three operations: OUT, READ, and 

I N .  

The OUT operation adds a tuple to the tuple space. If an OUT operation is per- 

formed with a tuple already existing in the tuple space, the tuple space remains 

unchanged. 

READ(X) takes a "tuple template", X (an object which defines a tuples form and 

optionally fills in some of the tuples values) and returns a tuple which "matches" 

the template X. A tuple is said to match a template if the forms are equivalent and 

any values given in the template are matched by those in the tuple. If more than 

one matching tuple is available, one is chosen non-deterministically. If no match- 
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ing tuple exists in the tuple space, the READ operation blocks until such a tuple is 

available. 

The IN operation is similar to the READ operation, except that the IN operation 

also removes the tuple from the tuple space. If two IN operations attempt to 

remove the same tuple, only one will succeed and the other will be forced to try 

again with a different tuple, or block until a matching tuple is available. 

While the Linda data structure is quite interesting, it is not appropriate for a 

loosely coupled distributed system. In the Linda implementation, a copy of the 

entire tuple space is kept at each node in the network. Because of the slow message 

transfer times (relative to the S/Net bus) between two Unix processes connected 

over an Ethernet, such an implementation results in far too much communications 

overhead to be feasible for most applications. Even if a reliable broadcast mecha- 

nism is available to reduce the cost of transmitting a piece of data to every node in 

the network, the cost of processing that data at each node would still be too high. 

A further point of interest in [Carriero and Gelernter, 19851 concerns their 

"token/worker" model of computation. In this model, a set of workers compete 

over work tokens. When a worker successfully grabs a work token, the token is 

removed from the data space so that no other workers will attempt to grab it. The 

worker then does the work represented by the token, and goes back to grab another 

token. This model is interesting for a number of reasons: it scales transparently as 

more workers are added, it automatically balances the work load among the work- 

ers, and it can be fairly resilient to node failure among the workers. Because the 

MOOSE data structure is so similar to the Linda data structure, implementation of 

the tokedworker model with a MOOSE is auite sim~le.  
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In [Cheriton and Stumm, 19871, a master-slave approach to distributed programs 

is introduced and called a multi-satellite star. This structure is in fact nearly identi- 

cal to the token/worker model explained above, with a star central allocating sub- 

tasks to satellite modules. The purpose of their study was to examine methods of 

realizing the computational potential of workstation clusters. They concluded that 

their multi-satellite star configuration of a workstation cluster provides a usable 

parallel machine for certain classes of problems. The master/slave approach is not 

the best solution paradigm for every problem, however, and thus the multi-satellite 

star is limited. A MOOSE can provide the functionality of the multi-satellite star 

without the limitations present in that computation model. 
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2.1. MOOSE Semantics 

A MOOSE is logically a separate entity from the processes which use it. Processes 

communicate with the MOOSE through interface servers. The interface servers 

implement the basic operations on the shared objects. Ideally, one interface server 

will exist on each node in the network. Interface servers can process operations 

concurrently. 

The basic data type is an object. The form of an object consists of a name and an 

ordered list of simple types (integer, boolean and character string). The value of an 

object is an ordered list of values, with types to match the form of the object. For 

example, an object might have the form ('cell', integer, integer, character string). An 

object of the form 'cell' might have a value (5,10,'hello'). 

An object template consists of a partially defined object. The form of the tem- 

plate is defined fully, but some or all of the values are undefined. For example, 

('cell',integer,lO,character string) is a valid object template. An object is said to 

match a template if the forms are equivalent, and the all of the defined values of the 

template match the corresponding values of the object. For example, the object 

('ce11',5,1O,'hello') matches the template ('cell',integer,lO,character string) but not the 

template ('dif',integer, 10, character string) or ('cell',lO,integer,character string). 

The operations which the interface servers implement are READ, GET and PUT. 

These operations correspond to Linda's READ, IN and OUT, but some of the names 

were changed to avoid confusion. 
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The READ operation takes an object template for input, and returns a matching 

object. If more than a single object in the object space matches the object template, 

one is chosen non-deterministically to be returned. If no matching object is avail- 

able, the operation blocks until one becomes available. The object space remains 

unaffected by a READ operation. 

The GET operation is identical to the READ operation except that when the opera- 

tion has been completed, the object has been removed from the object space. Sev- 

eral GET operations might be invoked with templates which match the same object 

(such operations are said to be competing). If this happens, only one GET for each 

object matching the template should succeed at once. The rest should block until 

more objects matching the template become available. If two GET operations are 

competing for one object, only one should succeed immediately while the other 

blocks. 

The PUT operation takes an object for a parameter and places the object into the 

object space. If the object is already in the object space, it is duplicated - multiple 

copies of an object are allowed (unlike in Linda). 

For example, consider the piece of pseudo-code given below: 

do ( t r u e )  -> 
G E ~ ( ~ r n u l t i ' , i n t e g e r  a ,  in teger  b, integer c) 
d := a*b*c 
PUT ( 'product ' , d) 

od 

It GETS from the object space an object of the form: 

( ' m u l t i '  , integer, integer, in teger)  . 
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It then multiplies the three integers together and places the result back into the 

object space with a PUT operation. This action is repeated indefinitely. When the 

object space is emptied of objects which match the GET template, the algorithm will 

block on the GET. 

Throughout the rest of this section, an object template will be specified for the 

GET and READ operations by specifying the object name as the first parameter, and 

the appropriate types or values as subsequent parameters. Values will be given 

explicitly, while types will be given in the form 'type name' (such as 'int n') where 

type specifies the field type, and name specifies the name of the variable to instan- 

tiate with the corresponding value of the matching object. For example, the opera- 

tion GET('~€!su~', 1, 5, int result) would execute the GET operation on an object with 

the form ('result', int, int, int). The first and second integers of the matched object 

must equal I and 5 respectively, and the value of the third integer will be returned 

and assigned to the variable named result . 

2.2. System Model 

A program using a MOOSE consists of several processes distributed across a LAN. 

Each machine which executes one of these processes also has a MOOSE interface 

server executing on it. Thus each process in the program has access to a local inter- 

face server. The interface servers communicate through the LAN to implement the 

MOOSE. Note that if several MOOSE-using programs are executing at once, their 

respective MOOSEs are completely independent - a MOOSE is associated with a 

program not with a system, so several might exist at one time. 
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In a LAN, the communications costs are high but not so high as to be prohibitive 

(as would be the case in a wide-area network). The total cost of messages sent 

among machines (including protocol overhead and transmission time) will still 

constitute the majority of the total cost of implementing a MOOSE. It is with the 

goal of minimizing the number of messages sent across the LAN that the analyses 

in Sections 4,5 and 6 are made. 

Some assumptions are made. The most important assumption is that an under- 

lying guaranteed delivery mechanism is in place so that no messages are lost: this is 

reasonable for a system composed of Sun-3 workstations running Unix which have 

many Ethernet interface buffers so that even unreliable datagram messages are 

unlikely to be lost. It is also assumed that message costs between machines are con- 

stant, regardless of the size of the message or where it is being sent. This assump- 

tion is reasonable as long as no message exceeds the size of an ethernet packet (of = 

1500 bytes). This will certainly not be the case in general (consider a very large 

object, or just a cache update (see Section 2.3. following) of many small objects), but 

should be a reasonable assumption for the examples given in Sections 4 and 5. 

2.3. Customization Features 

Up to this point, MOOSE has been very similar to Linda. It is through the cus- 

- tomizable features of MOOSE that the two data structures differ. It is through these 

- features that the application can give the MOOSE application-specific information so 

that the execution of the MOOSE will be as close to optimally efficient as possible. 
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2.3.1. Interface Server Update Modes 

Consider a system in which ten different computers gather data from their envi- 

ronment while a single computer processes that data. With the Linda system, the 

ten producer computers would not only have to send their data to all ten other 

computers, they would also have to receive data from nine other data producers - 
data that they do not need. All updates made to the tuple space are immediately 

communicated to all Linda servers. This method will always work, but it is far from 

efficient. 

In this case, the overhead can be avoided by the use of the first customization 

feature of a MOOSE: the update modes. Each interface server has a different "add 

update mode" and a different "delete update mode" for each object form. The 

modes might be 'eager', 'cached' or lazy'. Each server knows the modes of all other 

servers. 

When a server has an add update mode for a particular object form set to eager, 

then that server is immediately informed by all other interface servers of all addi- 

tions of objects of that form. Similarly, if a server has a delete update mode of eager, 

all other servers immediately inform it of deletions from the object space. 

Lazy update mode means that a server does not want to be informed of updates 

to the object space. A server in lazy add update mode must ask other servers if a 

given object is in the object space. A server in lazy delete object mode must ask 

other servers if a given object is still in the object space, even if the object is still pre- 

sent locally. 
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Eager and lazy update modes represent two extremes. Between the two extremes 

is the cached update mode - the updates are cached by the other servers before 

being sent. A cache of updates is sent when the size limit of a cache is reached or 

after a certain time limit has expired (the application defines both the cache size and 

the time limit). Eager update mode is equivalent to cached update mode with a 

cache size of 1. Lazy update mode is equivalent to cached update mode with a cache 

size and delay between sending of the cache of infinity. 

Thus the update modes provide nine distinct states for each server to be in, for 

each object form in use (although not every combination makes sense: if the add 

update mode is lazy, using an eager delete update mode is pointless). The update 

mode space is shown graphically in Figure 2.1 below. 

object form 

update 

eager cached lazy 

add update mode 

Figure 2.1: there are nine update modes per object form 

mode 
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2.3.2. Interface Server Activities 

The update modes solve some of the inefficiencies of the Linda system, but not 

all of them. The customized update modes make execution efficient in situations in 

which there are a small number of data consumers (interface servers through 

which at least one READ or GET is executed). On the other hand, there may be a large 

number of consumers but a small number of producers (interface servers through 

which at least one PUT is executed. A server can be both a consumer and a 

producer). One possibility is to make all of the consumers eager with respect to 

additions to the object space. This works fine if each consumer accesses most of the 

data. If each consumer only accesses a small quantity of the data, however, message 

exchanges are wasted in sending the data which will not be accessed. 

If it is known which servers are producers, then the consumers can be lazy with 

respect to additions, and poll the producers only when a piece of data is required. It 

can be shown that this latter method is more efficient than giving the consumers an 

eager add update mode if each consumer READS less than 1/(2M) of the data, where 

M is the number of producersl. Thus an application must specify the activity of each 

interface server for each object form - consumer, producer or both. 

2.3.3. Correctness of Operation 

As is usually the case in distributed systems, ensuring correct operation in all 

contingencies requires a great deal of effort. Because of the simple semantics of a 

l1f a server is eager-add with respect to a particular object form, it will receive notification of all 
additions of objects of that form. If N objects are PUT, this requires N messages, regardless of how 
many of those objects are eventually READ. If a objects are READ, then the cost per object READ is 
N/,. If the server is lazy-add, then the PUTS do not require any messages, but each READ requires 
2M messages, where M is the number of producer servers. Thus the cost per READ operation for 
an eager-add server (N/,) is less than the cost per READ operation for a lazy-add server (2M) iff 
(N/a > 2M), or (l/N < i.e. the proportion of objects READ is less than 
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MOOSE, the only case where correctness is difficult to ensure is when different pro- 

cesses are all attempting GETS with matching templates. These situations are quite 

specialized, however. There are a great many algorithms which do not present 

these problems (consider a situation in which many machines collect data and place 

it into the object space, and one server consumes the data and analyzes it) and these 

should not have to pay the penalty for correct operation in every possible situation. 

There are two 'correctness' modes which apply to an object form - safe and 

risky . If an object form is safe, all GET operations are guaranteed to execute correctly. 

If an object form is risky, competing GET operations might not execute correctly; 

however, all non-competitive GET operations will execute correctly. Thus, if a 

situation where two processes are trying to grab the same object is never going to 

arise, or if correct operation in that case is not important (e.g. if each object 

represents a little work to be done, and taking the chance on having a task done 

more than once to save a few messages is worth while), a risky correctness mode can 

be used to improve efficiency. Unlike other customization features, the correctness 

mode for an object form is the same for every server in the network. 

2.4. Summary of Customization Features 

There are three customization features of MOOSE: update modes, server activi- 

ties and correctness. The update modes and server activities apply to particular 

. servers with respect to particular forms. There are two update modes: add update 

mode and delete update mode. Each mode might be eager, cached or lazy. There are 

two server activities: producer and consumer. Each server is assigned either or both 

of the activities of producing and consuming. Correctness mode applies to a partic- 
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ular object form: all servers must implement the same level of correctness. There 

are two correctness modes: safe and risky. 

Thus there are 72 different possible states for a given server with respect to a par- 

ticular object form. There are 3 possible add update modes, 3 possible delete update 

modes, 2 possible states regarding production, and 2 possible states regarding con- 

sumption. In addition, there are 2 possible correctness modes with respect to a 

given object form which apply to all servers. While all combinations are permitted, 

not all make sense. For example, if a server is not a consumer, sending object space 

updates to that server is just a waste of resources. Thus specifying eager add or 

delete update mode is pointless. 

Note that each of the variables pertains to a particular object form. Each server 

must know the values of the different variables for every server. Because of this, it 

is necessary to explicitly create an object space (or perhaps "sub-space") for a particu- 

lar object form, before an object of that form can be used. In this implementation we 

assume that this initialization data is reliably distributed before the application starts 

executing. 
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3. Implementation 

As mentioned previously, MOOSE has been implemented on a group of Sun-3 

workstations connected on an Ethernet LAN, running the Unix 4.2 BSD operating 

system in the distributed programming language SR Because SR is a strongly typed 

language, implementation of objects as described in the previous section of this 

thesis would have proved to be very difficult and quite messy. Since such a task 

would not have served any useful research purpose, a prototype version of an object 

was implemented where an object is simply a list (of any size up to a system-defined 

maximum) of integers. 

For a complete listing of all of the source code for the implementation, refer to 

Appendix B. For those not familiar with the SR programming language, a brief 

summary of the basic features of SR is given in Appendix A. 

Before a description of the algorithms for handling different operations is given, 

an overview of the possible situations a MOOSE server might be in will be useful. 

Remember that there are 4 pieces of application-dependent information given to the 

MOOSE servers about each object form: the add-update modes of all of the MOOSE 

servers; the delete-update modes of all of the MOOSE servers; which of the MOOSE 

servers are producers and which are consumers; and the consistency mode of the 

object form. 

Of this information, only the update modes affect the accuracy and completeness 

of the local database stored with each server. Each server must know its own add 

and delete update modes to know how to perform the READ and GET operations cor- 

rectly. Each server must know the add update modes of every other server to exe- 
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cute a PUT operation correctly. Lastly, each server must know the delete update 

modes of every other server in order to correctly remove an object from the object 

space (as part of the GET operation). The server activity information provided by the 

application is used to optimize the operations in special cases (such as the GET 

operation executed from a lazy-add server when there is only one producer, where 

the operation is shipped to the producer server). 

The server which PUT an object into the object space is the owner of that object. 

In safe correctness mode, it is this server's responsibility to ensure that only one 

attempt to delete the object succeeds. Even if the correctness mode is risky, the 

owner of an object is informed immediately if that object is deleted, even if the 

owner has a delete update mode of lazy or cached. Thus, the owner of an object is 

the final authority in deciding whether or not a given object has been removed 

from the object space. 

3.1. Additions to the object space - PUT 

Pseudocode for the PUT operation is given in Figure 3.1. The PUT procedure 

simply calls the global - add procedure which in turn is responsible for immedi- 

ately sending off the addition to all eager add update servers and for caching the 

addition for all cached update server$. 

2 ~ o t e  that the addition is neither sent nor cached to servers which are not consumers, regardless of 
their add update mode. 
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proc PUT(X) 
call global-add(X) 

end 

proc global-add (XI 
fa ( {all servers S such that (eager-add (Sf X) and 

consumer (S,X) ) or (S=mel 1 ) -> 
send S . local-add (X) 

a f 
co ((all servers S such that cached-add(S,X) and 

consumer (Sf X) ) ) -> 
send cache-add (Sf X) 

OC 
end 

process a 
do (true) -> 

in cache-add (Sf X) -> 
{ add X t,o S's cache C I 
if ({C full)) -> 

call fire-of f-add (S) 
f i 

ni 
od 

end 

proc fire-off-add (S) 
/ *  this proc is invoked on timeout or cache full conditions * /  
I if S's cache not empty send it off 1 

end 

proc local-add (XI 
{ add X to the local database 1 

end 

Figure 3.1 : Pseudocode of the PUT operation 

3.2. Looking at the object space - READ 
Pseudocode for the READ operation is given in Figure 3.2.  READ^^^ the object 

space considerably more complicated than putting object into the object space, 

because of the various update modes that the server performing the READ might be 

in. If the server is in eager add update mode, it can be sure that if the object exists, it 

has it stored locally. If the server is in cached add update mode, it can be sure that if 

the object exists, it has or will shortly have it in local storage. However, if the server 

is in lazy add update mode, it may or may not have the object stored locally (if the 
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object was produced locally, it will be stored locally, but if it was produced elsewhere, 

it will not be stored locally). 

Even if an object has been found stored locally, it may not exist in the object space 

- it may have been removed earlier. This is possible if the server is in lazy or 

cached delete update mode. 

Thus, altogether there are three different possibilities that must be handled dif- 

ferently. 

I. If the server performing the READ is in lazy add mode (with any delete 

mode) then the object may or may not be stored locally so the reader can- 

not depend on locally stored information. In the general case, the READ 

request is forwarded on to all producers of the given object form. How- 

ever, if a server exists in eager-add update mode (and thus has all objects 

of the given form in its local store), the function is forwarded to that 

server. Here, function shipping is used instead of data shipping. 

2. If the server performing the READ is in eager or cached add mode and eager 

delete mode, then the object, if it has ever been or ever will be produced, 

will eventually be stored locally. The reader can depend on the local stores 

so need not check elsewhere. 

3. If the server performing the READ is in eager or cached add mode and 

cached or lazy delete mode, then if the object exists or will exist, it will 

eventually be stored locally. However, when a matching object is found 

locally, it may be an object that has since been deleted from the object space 

so the reader must check with the owner of the object to see if indeed it 

still exists. 
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proc READ (X) 
if (lazy-add(me) ) -> 

/ *  operate same for all delete modes * /  
if (numgroducers > 1 and 3 some server S such that 

eager-add (S , X) ) -> 
S .BEAD (X) 

[ I  else -> 
if ({X not present locally}) -> 

co ( {all producers S } ) 
call S . owner-read (X) -> exit 

OC 
fi 

f i 
return X 

/ *  eager or cached add mode * /  
[ 1 eager-delete (me) -> 

call checkwait (X) 
return X 

[ I  else -> / *  lazy or cached delete * /  
do (true) -> 

checkwait (X) 
if owner (X) . still-there (X) -> 

return X 
[ I  else -> 

call me. local-delete (X) 
c: 

end 

/ *  the local-delete operation is described under the Get operation * /  

Figure 3.2 : Pseudocode for the READ operation 

3.3. Removing objects from the object space - GET 

Pseudocode for the GET operation is given in Figure 3.3. GET is much simplified 

by the fact that most of its action is duplicated by the READ operation. A GET is 

effectively a READ followed by an attempt to delete the object once the READ has 

returned. This scheme is complicated slightly by the different correctness modes 

which affect the GET operation, and by the different delete update modes of the other 

servers. Recall that to maintain correct operation and consistency, the owner of an 

object is responsible for deleting it from the object space. In the case of risky 

correctness mode, however, the server performing the GET operation also invokes 

the delete operation (although it must do so in such a way as to make sure that the 
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object is deleted from the owner's local database immediately, even if the owner is 
I 
I in cached or lazy delete update mode). Thus, in risky correctness mode, it is possible 

I for two servers to attempt to GET the same object at the same time and, since they do 

not check with a central authority, both might succeed. 

The GET operation is an example of how the server activities of producer/- 

consumer can be exploited. Consider a case in which only one server produces 

objects of a given form, and a different server which is in lazy add update mode per- 

forms a GET operation on a object of that form. The cheapest way of performing the 

GET operation (in terms of messages sent) is to forward the request on to the one 

producer of that object form. 

proc GET (X) 
if (correct-mode = safe) -> 

if (numgroducers > 1) or Iamproducer(X) -> 
do (true) -> 

call READ (X) 
if owner (X) . owner-delete (X) -> 

return X 
f i 

od 
[ I  else -> 

call producer (XI .GET (X) 
f i 

[ I  (correct-mode = risky) -> 
if (numgroducers > 1) or Iamproducer(X) -> 

call READ (X) 
send owner (X) . global-delete (X) 

[ I  else -> 
call producer (X) .GET (XI 

f i 
f i 

end 
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process a 
do (true) -> 

in owner-delete (X) returns success -> 
if find(X) and (owner (X) = me) -> 

call global-delete(X) 
success = true 

[ I  else -> 
success = false 

fi 
ni 

od 
end 

proc global-delete (X) 
/ *  delete object locally, regardless of delete update mode * /  
local-delete (X) 
/ *  inform all eager delete servers */ 
fa ( {all servers S such that (S !=me) and eager-delete (S, X) 

and consumer (S, X) 1 
send S . local-delete (X) 

a f 
/ *  inform all cached delete servers * /  
co ({all servers S such that (S!=me) and cached-delete (SIX) 

and consumer (S, X) 1 ) 
call cache-delete (S, X) 

0 C 

end 

proc cache-delete (S, X) -> 
I add delete(X) command to S1s cache 1 
if ({C full)) -> 

call f ire-of •’-delete (S) 
f i 

end 

proc f ire-off-delete (S) 
/ *  this proc is invoked on timeout or cache full conditions * /  
{ if S1s cache not empty send it off 1 

end 

proc local-add (X) 
{ add X to the local database } 

end 

Figure 3.3 : Pseudocode for the GET operation 

3.4. Support Mechanisms 

Obviously a great deal of support mechanism is missing from this description. 

However the details that are missing are primarily concerned with managing the 

local databases (such as local-add and local-delete) and are not considered relevant 

to the discussion. The more obscure operations are described here: 
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chec k w a i  t (X) : this procedure checks the local store to see if the an object 

matching the template X is present. If so, it returns the object. If not, it 

waits until such an object is added and then returns it. 

produce r(X) : this function is called only if there is just a single producer of 

the object form of X. The capability for that producer resource is returned 

by the function 

owner - read(X) : this operation is present to allow a lazy add update mode 

server to forward READ operations on to producer servers. If this opera- 

tion is invoked on a server, it starts up a process which watches all objects 

that that server adds or has added. The process replies to the original READ 

operation when an object matching the template X is found. The READ 

operation may thus be effectively partitioned between the producer 

servers. 

s t  i 11 - t h e r e  (X) : this operation is invoked on the server which owns X and 

is used to confirm that X has not been deleted yet. 

3.5. Performance Analysis 

Studying this implementation allows us to derive Table 3.1 below which gives 

the cost of different MOOSE operations (READ, GET, PUT) in terms of messages sent 

across the LAN. An entry in the table gives the cost of the operations in a system 

with 6 moose servers, all in the add update mode indicated at the top of the column, 

and in the delete update mode indicated at the head of the row, and all both produc- 

ing and consuming data. There are two figures given for the GET operation, indicat- 

ing the cost of the operation in safe or risky correctness mode (marked 'st and 'r' 

respectively). The figures given for the GET operation are based on the assumption 

that the owner of the object returned by the GET operation is a different server from 

the server which initiated the GET (the most common situation). For operations 
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working in a cached update mode, add-cache sizes are assumed to be C, and delete- 

cache sizes are assumed to be Cd. Lastly, the figures given for GET and READ opera- 

tions with cached or lazy delete mode are based on the assumption that there are no 

"cache misses" - the mechanism used to select one of several objects in local 

memory always manages to select one that has not been deleted yet (this will not 

necessarily be the case in cached or lazy delete mode). 

Table 3.1: cost of READ, GET and PUT operations with multide 

producers and consumers 

I PUT: 8 -1  

eager delete 

eager add 

PUT: 8 -1  

READ: 0 

GET (s): 8 + 1 

GET (r): 8 - I 

GET (r): 3 + (6 - 2 ) / ~ d  

cached delete 

lazy delete 1 READ: 2 

READ: 2 

GET (s): 4 + (6-1)/Cd 

I GET (s): 4 

cached add 

PUT: (6- 

READ: 0 

GET (s): 8 +  1 

GET (r): 8 - 1 

PUT: 

READ: 2 

GET (s): 4 

GET (r): 3 

lazy add 

PUT: 0 

READ: 28-2 

GET (s): 28 

GET (r): 3 

In this efficiency analysis (and those found in the following sections), the local 

processing times of the various operations (READ, GET, PUT) are ignored. The local 

processing time results from maintenance of a local database. This thesis is not con- 
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cerned with issues concerning this local database, so no attempt has been made to 

optimize it. Thus in the analysis, efficiency has been measured by counting the 

number of messages sent between hosts in the network. In comparing this analysis 

to benchmark tests, an implicit assumption is made: that the local processing time 

for an operation is approximately proportional to the number of messages sent 

between workstations. Without this assumption, measuring the cost of an opera- 

tion by counting the number of messages is not valid. This is a reasonable assump- 

tion as long as databases remain fairly small (since the underlying database mecha- 

nism is a binary tree, the cost of local database operations only increases with the 

log2 of the database size). 
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4. An Example: Steiner Tree Problem 

4.1. Problem Definition 

The first example presented here is the Steiner Tree Problem in Networks. The 

Steiner Tree Problem is an NP-complete problem taken from graph theory. The 

problem may be stated as: 

GIVEN: a graph G=(V, E, c) with n vertices ( I V I = n) and m edges ( I E I = m) 

and a cost function c (c : E + 32) and a subset of the nodes of the graph, Z 

FIND: the minimum weight tree which spans Z. 

The graph shown below (in Figure 4.1) contains 23 nodes. The nodes in the set Z 

are shown shaded to differentiate them from the other nodes. All of the edges of 

this graph are of equal weight (c=l). The solution to the Steiner Tree Problem 

applied to this example is shown in Figure 4.2. 

Figure 4.1 : problem instance for Steiner Tree Problem with 23 nodes. 
Nodes in the set Z are shown filled. 
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Figure 4.2 : solution to Steiner Tree Problem applied to graph 
shown in Figure 4.1. 

For a survey of different solutions to the Steiner Tree Problem, see [Winter, 

19871. The solution adopted in this thesis is a brute force approach: determine the 

minimum weight spanning tree of every subgraph of G which contains Z. The 

spanning tree with the least weight is also the least weight tree which spans Z. 

Since there is an exponential number of subgraphs for which the minimum 

weight spanning tree must be determined, the algorithm is exponential in nature. 

The algorithm used to determine the minimum weight spanning tree of each sub- 

graph of G (known as Prim's algorithm) is requires time polynomial in I V I . For 

details on Prim's algorithm, consult [Horowitz and Sahni, 19781. 

In order to distribute this algorithm, the set of subgraphs of G must be parti- 

tioned into a number of subsets. The minimum weight spanning tree is calculated 

for each graph in the subset, and the least weight of all of the trees in the subset is 
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offered as a tentative solution. The least weight of all of the tentative solutions is 

taken as the solution to the Steiner Tree Problem. 

The subsets define the granularity of the distribution - the spanning trees of 

different subsets might be calculated on different machines, but the spanning trees 

of two graphs within the same subset will be calculated on the same machine. Thus 

each of the subsets of the set of subgraphs of G constitutes a single task to perform. 

4.2. Computational Model 

The token/worker model of computation will be used. For each task to perform 

(i.e. for each partition of the set of subgraphs of G), a token will be placed into a 

token space. The token will contain enough information to transform the original 

graph G into each of the subgraphs within the partition. An arbitrary number of 

worker processes will exist. Upon creation, the workers will read the data for the 

original graph, and then compete for work tokens. When a work token has been 

successfully grabbed by a worker, that worker will perform the task represented by 

the token (i.e. compute the minimum weight spanning tree of every subgraph in 

the partition and offer the least weight tree as a potential solution) and then go back 

to get another token. 

A single master process exists which is responsible for creating the data and 

. tokens, and for gathering all of the results computed by the workers. The master 

decides which of these is the least weight and thus determines the solution. Since 

the number of worker processes is arbitrary, any number of workers may be used. 

With more workers, the time required for a computation should decrease. 



4. An Example: Steiner Tree Problem page 32 

The algorithms for the master and worker processes are quite trivial: 

master process: 

PUT t h e  o r i g i n a l  m a t r i x  
PUT t h e  tokens  
READ t h e  r e s u l t s  

worker wrocesses: 

READ t h e  i npu t  graph 
do ( t r u e )  -> 

GET a  t a s k  token  
f a  (subgraphs s p e c i f i e d  by t h e  token)  -> 

b u i l d  t h e  subgraph from t h e  o r i g i n a l  graph 
determine t h e  minimum weight spanning tree 

a  f 
PUT l e a s t  of  a l l  minimum weight spanning trees 

od 

4.3. Configuring the MOOSE 

In implementing this solution using a MOOSE, three object forms are needed: a 

form for the input graph; a form for the tokens; and a form for the results (these 

forms have been named 'data', 'token' and 'result', respectively). The input data 

and the tokens are produced by the master process and consumed by the worker 

processes. The results are produced by the workers and consumed by the master. 

Using Table 3.1 and some knowledge of the algorithms given in Section 3, the best 

update modes for all of the servers and all of the object forms can be determined. 

Objects of the form 'data' are PUT by the master process and READ by the worker 

processes. Thus the best update modes to use are eager add and eager delete for all 

servers, giving a total cost of distributing the 'data' objects to o workers of o mes- 

sages per object (in this example it is necessary to differentiate between the number 

of worker processes, o, and the total number of processes, 6. Since only the master 

process is not a worker, 6 = o+l). 
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The master process PUTS objects of the form 'token' while the worker processes 

GET these objects. Referring to Table 3.1, it seems that the best update modes for this 

object form would be cached add/lazy delete. However, Table 3.1 is based on the 

assumption that several processes produce the objects, while in this case only the 

master process produces the objects. By referring to the algorithms given in Section 

3, one can see that the GET operation is optimized for the case where only one pro- 

cess produces the data, by function shipping the GET request from a lazy add server 

to the producer server. Thus the least expensive update modes are eager add/eager 

delete for the master process, and lazy add/lazy delete for the worker processes. 

For objects of the type 'result', the objects should be sent to the master process, 

since this process will READ the objects, but not to the other worker processes. This 

may be accomplished by assigning the master process an add update mode of eager 

and the worker processes an add update mode of lazy. Since the objects are never 

removed from the object space, the delete update modes for objects of type 'result' 

do not matter, but for completeness they may arbitrarily be assigned eager delete 

update mode for the master and lazy delete update mode for the workers. 

object master update worker update 
form contains (add /delete) (add/delete) 
'data' original eager /eager eager / eager 

matrix 
'token' work tokens eager/eager l a z ~ / l a z ~  
'result' task results eager/eager l;.izy/l=y 

Since the workers compete over the task tokens, and allowing more than a single 

worker to successfully grab the same token would result in wasted effort, the cor- 

rectness mode for the object form 'token' must be safe. Otherwise, if the correctness 

mode were risky, more than a single worker could grab the same work token, and 

thus work would be wasted. Since the cost of performing the work associated with a 
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token is greater than the cost of grabbing the token, it is not advisable to allow extra 

work to be done to improve concurrency by using a risky correctness mode. Since 

neither the data nor the results need ever be deleted from the object space, the cor- 

rectness mode for the forms 'data' and 'result' do not matter. 

Analyzing this algorithm for efficiency is quite simple. Consider a serial algo- 

rithm which solves the Steiner Tree Problem using the same brute force method. 

Assume that such an algorithm requires a time period C to solve a particular prob- 

lem instance. This token/worker distributed implementation of the brute force 

method, using o worker processes, should then require C/o + {communication cost] 

time to solve the same problem. For a problem of size n (i.e. a graph of n nodes), 

C E O(2n). As long as the communications cost is small, o is reasonably small (as it 

will be on a LAN), and the problem size is reasonably large (n > lo), the speedup as 

workers are added should be effectively linear. 

There are two components of the communications cost: the one-time event of 

distributing the data, and the per token cost of assigning a task to a worker and hav- 

ing the worker return the results. Assuming that the graph of n nodes is represent- 

ed by its adjacency matrix (an nxn matrix), and each row of the adjacency matrix is 

represented by a single object of the 'data' form, the cost of distributing the matrix to 

o workers is O(n**o) in the general c a d .  

Since the messages sent between MOOSE servers for the distribution of the adjacency matrix might 
be larger than an Ethernet message packet, simply counting messages is not sufficient, and the cost 
of a single message must be assumed to be O(n) - however, in the problem instance given in fig- 
ure 4.1, each message should be small enough to fit within a single network packet and so the cost 
of distributing the matrix to o workers is O(nw). 
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The cost of distributing the work tokens among the workers is a little more com- 

plicated to determine. Recall that the master process which will PUT the tokens into 

the object space is eager-add and eager-delete with respect to the 'token' object form. 

The workers which will GET the tokens are lazy-add and lazy-delete with respect to 

the 'token' object form. When the master process PUTS a token into the object space, 

no messages are sent across the network. When a worker process GETS a token, 

since the only 'token' producer is the master process, the GET operation is forwarded 

to the master, hence requiring two messages (one sent to the master, and a reply 

back from the master). Performing the GET at the master requires no messages, since 

the master is the owner of the object, and all other MOOSE servers are lazy-delete. 

Thus it costs two messages for the master to produce a token and for a worker to 

grab it. 

When a worker has completed the work specified by one token, the results must 

be sent back to the master process. This entails a PUT of a 'result' form object. Since 

the master process is eager-add but all other processes are lazy-add with respect to 

the 'result' form, the PUT operation only requires a single message. When the mas- 

ter READS the result, no messages are required since the master is in eager-add mode 

and thus the object is already in its local memory. 

Thus, the total cost of distributing z tasks among w workers, including the cost of 

distributing the input graph initially, is: O(n2*o) + 32. The total cost of solving the 

Steiner Tree Problem with this algorithm is thus C/o + 0(n2*w)+3z. 

Appendix C gives the program for solving the Steiner Tree Problem. In this pro- 

gram, graphs are represented by their adjacency matrices. The subgraphs for which 
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the minimum weight spanning tree must be calculated are enumerated4 (it is 

assumed here that an integer is big enough to enumerate the subgraphs: in particu- 

lar, I V-Z 1 1 31). Thus task tokens simply contain two integers which specify a range. 

The task represented by such a token consists of computing the minimum weight 

spanning tree for each subgraph within that range. 

This program was run on the example shown in Figure 4.1, with 1,2,3,4 and 5 

workers and z = 16 (the value z = 16 was chosen because it led to the best results for 

these test runs. A different value of z might prove to be best for test runs with 

different numbers of machines). The speedup with the number of workers is 

plotted in Figure 4.3. 

In Figure 4.3, the x's show the best results obtained from several tests run when 

the system load was small (in the system on which tests were run, the system was 

never completely free of other user tasks. The best results of several tests were 

chosen because they best reflected the results that would be obtained from a system 

running only the steiner tree program). The line drawn on the graph shows 

optimal linear speedup from the time required for computation with one worker. 

The timing results obtained from running the program given in Appendix C with 

different numbers of workers show that the speedup is good, with the speedup 

degenerating as the number of workers increases. 

In order to enumerate all of the subgraphs of a graph G=(V,E) which contain a given set of nodes Z, 
first order all of the nodes not contained in Z. Associate with each node not in Z a bit value: 1 if 
the node is in the subgraph, 0 if it is not. Order the bits in the same order as the nodes not in Z. 
These bits may be interpretted as an integer between 0 and 21V-ZI -1, with each different subgraph 
being represented by a different integer. Thus the subgraphs are enumerated. 
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b 
1 2 3 4 5 

Number of Workers 

Figure 4.3: Time required to solve Steiner Tree Problem shown 
in Figure 4.1 vs. number of worker processes used. 

One factor which breaks down the speedup is the distribution of data at the start 

of the algorithm which is proportional to the number of worker processes. Thus, as 

more worker processes are added and therefore the time required for the 

computation decreases, the time required for distributing the data increases. As 

workers are added, a point is eventually reached where the increase in cost of distri- 

buting the data to another worker is more than the decrease in computation brought 

by the extra workers. 

Note that if a reliable broadcast mechanism were available, the cost of distributing the data would be 
effectively independent of the number of workers, so the speedup would not degenerate so 
significantly as workers are added. 
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5. An Example: Bitonic Merge 

5.1. Problem Definition 

As was shown in the previous section, a MOOSE can be used to achieve efficient 

data sharing. A MOOSE is also quite versatile, as illustrated in this section where a 

MOOSE is used to implement a simple parallel sorting algorithm using a bitonic 

merge. 

A list of numbers is said to be 'bitonic' if some rotation of the list may be split 

into two pieces - one increasing and one decreasing. For example, the list 

(4,2,1,3,5,7,8,6) is bitonic, since it may be split into two pieces - (1,3,5,7) and (8,6,4,2) 

- one increasing and one decreasing. 

The algorithm given below takes a bitonic list and sorts it into ascending order. 

The algorithm can be generalized to handle any list of integers by first ordering the 

input list into a bitonic list, but for the sake of brevity this will not be shown. 

The merge algorithm is best described with a picture. Before the picture is pre- 

sented, some notation used in it must be explained. The device shown in Figure 5.1 

is called a 'comparatorr. It takes two inputs and swaps them if necessary so that the 

second output is not less than the first. 

input output 

max(a,b) 

Figure 5.1: a comparator 
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A set of these comparators can be used to create a network which performs a 

bitonic merge for N elements, where N is a power of 2. A network for N=8 is shown 

in Figure 5.2. In order to sort N elements of a list, the algorithm requires log2N 

stages, with each stage consisting of N/2 parallel comparison/switch operations. 

Certainly the bitonic merge algorithm is not the most efficient parallel sorting 

algorithm ever devised, requiring log2N rounds and N/2  switch processes, but it 

serves quite well to demonstrate the versatility of a MOOSE. 

Figure 5.2: a bitonic merge network for 8 elements 

The most efficient implementation of the bitonic merge using a MOOSE, in 

terms of the number of messages sent, does not allow an in-place sort (an 'in-place' 

sorting algorithm sorts a given list without requiring more memory than that nec- 

essary to store the list - perhaps necessary if memory is a critical resource). When 

the sort is completed, a copy of the list for each stage will exist at each node in the 

network. Implementing an in-place sort requires deleting objects from the object 

space, thus requiring considerably more messages than the algorithm which does 

not conserve memory; at any time during the execution of the in-place sort, only a 

single copy of the list will exist. 
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5.2. Computational Model 

The data objects used in the examples have the form: 

('element', integer R; integer I; integer X) 

where R is the round of the sort algorithm, I is the index of the element in the list, 

and X is the value of the element. 

The algorithm for the sort which does not operate in-place is given below: 

proc bitonic-merge (r, n,m) 
if m>n -> 

co (i := n to (m+n-1) /2) switch(r, i, it (m-n+l) /2) 
0 C 

co bitonic-merge (rtl, n,(n+m-l) /2) 
/ /  bitonic-merge (rtl, (n+m+l) /2,m) 
OC 

fi 
end 

proc switch(r,i, j) 
READ ( 'element l, r, i, integer X) 
READ ( 'element I ,  r, j, integer Y) 
if X<Y -> 

PUT ( 'element', r+l, i,X) 
PUT ( 'element ' , r+l, j ,Y) 

[ I  else -> /*X>Y * /  
PUT ( 'element ' , r+l, i,Y) 
PUT('elementl, r+l, j,X) 

f i 
end 

Note that although it is not shown in the code above, the concurrent invocations 

of swi t ch  and b i t o n i c  - merge should be performed on different machines. The in- 

place version of this algorithm is identical to the version given above, except that 

the READ operations in the swi tch  proc are replaced by GET operations. Thus the 

data generated in each round is removed as the data for the next round is produced. 

5.3. Configuring the MOOSE 

The analysis of the algorithms requires speafication of the different update 

modes of the servers. First note that all of the work is done in the swi tch  opera- 
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tion. The b i t  o n i c  - merge operation is present only to invoke the s w i t c h  opera- 

tions in the correct order. Also, the b i t o n i c m e r g e  operation is dormant while the 

switch operations it invokes are in progress - thus one of the invoked switch oper- 

ations can take place on the same processor that the b i t o n i  c-merge operation is 

executing on, without slowing either process down. Thus, every node in the net- 

work will at one point have a switch operation executing on it, and this means that 

all nodes will have the same configuration regarding update modes and activities. 

Furthermore, the s w i t c h  operation both produces and consumes, so the configura- 

tion must include both activities. 

Second, note that arbitrary cached updates are out of the question, since waiting 

in one round for the cached results of the previous round to propagate is not feasi- 

I ble. In the in-place sort, cached deletes might be considered, except that the sort 

I 
\ 

would then not be "in-place" (if at round 12 the deletes sent out in round 6 have 

still not propagated, a large amount of memory may be wasted). The application 

using a MOOSE structure has control over the caching of updates, however, so 

caching is not 'arbitrary'. Notice that in each round, each switch operation requires 

two PUTS and two READS (GETS if the sort is in-place). If the cache sizes are set to two 
1 for both cached add update mode and cached delete update mode, then we are guar- 

anteed that the caches will be flushed after each switch operation. 
1 

i Third, note that each element of the list produced in one round is the object of 

\ only one READ (GET) operation in the next round. This means that if the algorithm 

I operates in lazy or cached delete mode, there can be no 'cache misses'. The object 

I selected by the READ (GET) operation can not have been deleted by another server, so 

a minimal amount of work is required (in the general case, an arbitrary number of 

I cache misses can occur before an object still present in the object space is found). 
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Also, because of the one-to-one correspondence between PUT and GET operations in 

the in-place sort, 'risky' correctness will suffice (remember that using risky 

correctness saves 2 messages on each GET operation). 

To determine the best settings for the update modes, refer back to Table 3.1 which 

gives the cost in messages of the three operations (READ, GET and PUT) executing on 

a network of 6 MOOSE servers, in each of the nine different combinations of update 

modes. In this case the cache sizes C, and Cd will be 2. Note that for a list of M ele- 

ments, M/2  s w i t c h  operations execute concurrently. Thus if M>26, it will be neces- 

sary to have MOOSE servers serve more than a single s w i t c h  operation (i.e. more 

than one s w i t c h  operation will be executing on the same machine concurrently). 

For a list of M elements, there are log2M rounds in the bitonic merge algorithm, 

with each round requiring M PUTS and M READS (or GETS for an in-place sort). In 

total, therefore, there are Mlog2M PUTS and Mlog2M READS (Mlog2M PUTS and 

Mlog2M GETS for the in-place algorithm). Thus, the best update mode combination 

for the algorithm which does not sort in-place is the cached add/eager delete combi- 

nation which requires a total of ( & - 1 ) / 2 * ~ l o g 2 ~  messages. The optimal settings for 

the in-place algorithm depend on 6. If 6 > 6, then the best algorithm uses cached 

add/cached delete update modes, requiring (6 + 3/2)Mlog2M messages. If 6 < 6, then 

the best algorithm uses cached add/eager delete update modes, requiring (3/26 - 

3/2)Mlog2M messages (note that cached add/lazy delete update mode gives the best 

message count, but does not provide an in-place sort since objects are not deleted 

from local memory stores from one stage to the next). 
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6. Alternative Methods for Improving Efficiency 

6.1. Consistency Requirements 

In [Cheriton, 1985 and 19861, the possibilities for improved efficiency through 

relaxing consistency were discussed. In a distributed data structure, a piece of data 

might be produced at one host in the network, be propagated to the other hosts, and 

eventually be consulted at a different host from which it was produced. The pri- 

mary way of relaxing consistency in such a system is to relax the requirements on 

whatever fetch operation is used to consult the data. The strongest form of consis- 

tency would require that a piece of data be locked before it is modified so that no 

other host can read the data until the task of propagating the update to the other 

hosts is complete. 

A slightly less strict form of consistency would allow fetch operations at any 

time, but would attempt to propagate updates as quickly as possible. In this situa- 

tion, fetch operations performed after the update was made might return stale data, 

but much improvement in efficiency is gained by not having to synchronize all data 

structure update operations on all hosts. 

Further relaxation of consistency could be made by allowing fetch operations at 

any time, and storing up data structure updates until several have been made before 

propagating the updates to other hosts. Using this propagation method, it might 

take several seconds for an update to propagate to the other hosts in the network. 

This method improves performance by propagating several data structure updates 

to a host with a single message. If the cache of updates does not occupy more LAN 

packets than a single update, then the single message used to propagate several 
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updates will not be significantly more expensive than one of the messages needed to 

propagate a single update. 

In the design of MOOSE, consistency was not very important because the opera- 

tions used to access the MOOSE data structure do not include an in-place write oper- 

ation (Cheriton's store operation). Hence consistency is easier to maintain. Loos- 

ening the consistency constraints on the MOOSE operations does not result in a sig- 

nificant gain in efficiency. The "correctness modes" used in MOOSE are in effect a 

relaxation of consistency requirements on the GET operation. Using risky correct- 

ness mode saves, at most, two message transfers per GET operation. Saving two 

messages could be important in a system with a small number of producers, but if a 

large number of MOOSE servers produce data, the relative savings are not signifi- 

cant. 

6.2. Granularity of Data Distribution 

6.2.1. Limitations to the Prototype MOOSE 

In the MOOSE system, the information provided by the application is primarily 

used to increase efficiency through control of data distribution and replication. 

While the information that an application provides to a MOOSE gives a fair degree 

of flexibility concerning how data is to be distributed and replicated, the granularity 

of the distribution is at the object form level - a given MOOSE server's local store 

for an object form contains either all of the objects of that form in the object space, or 

just those produced locally. This method of distributing data is simply too coarse 

grained for some applications. 
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For example, in the Bitonic Merge example, the control provided by the MOOSE 

was not sufficient to allow a good solution. In the solution to the Bitonic Merge, all 

of the data was distributed to every node in the network, despite the fact that it 

would be simple for a process to algorithmically determine where the data it has just 

produced will be needed. By distributing the data to all servers in the network, a 

great deal of memory and communications resources are wasted. 

To reduce the granularity of the distribution, if the application can provide 

information as to which objects of a given form will be required at which host site, 

the programmer could set up a different object form for each different server. Then, 

given an object to be placed into the object space, a MOOSE server could place it into 

the object form for each server which will later READ or GET the object. This is not a 

reasonable solution, however - it is too complicated, especially if more than one 

server will want to GET a given object. 

6.2.2. Reducing the Granularity of the Distribution of Data 

A better solution to reduce the granularity is to give the application more direct 

control over data distribution. Rather than providing the data structure servers 

with information pertaining to each other's update modes, the application could, 

with each PUT operation, describe to which servers the update is to be forwarded. 

This would allow the application complete control over data distribution, but would 

complicate application programming and the implementation of the other opera- 

tions. 

Consider the work necessary to complete a READ operation if the granularity of 

distribution were at the object level instead of at the object form level. Since the 

application controls the data distribution, there can be no guarantees as to whether 
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or not a given object will be stored locally. If checking the local store fails, the READ 

operation would have to be forwarded to all producers of the given object form (as is 

currently done with lazy add server&); forwarding the operation in this manner is 

expensive if several servers produce the objects. 

The application might be able to provide more information, however. The READ 

and GET operations could be modified so that the application specifies whether the 

operation is to search for the object locally, or to forward the search onto other serv- 

ers if necessary (and to which servers the operation should be forwarded, if nec- 

essary). Using a MOOSE modified in this fashion, the Bitonic Merge algorithm 

could be written so that no messages or memory are wasted - all READS and GETS 

could be performed locally, and the data could be forwarded only to that server 

which would need it in the next round of computation. 

6.2.3. Server Mapping Functions 

To achieve this functionality, the application defines a function which maps an 

object to the set of servers which require immediate ("eager") notification when the 

object is PUT into the object space (a one-to-many relation). A different function 

could be defined for each object form (although object forms are not really necessary 

any longer). These functions would have to be defined locally at every server so 

that they would not need to be invoked remotely (costing at least 2 messages). With 

these functions available, distributing the data as it is produced is quite simple - 
the functions map the object which has been PUT to all of the servers to which the 

object must be sent. Performing a READ or GET is a little more complicated, but the 

unless there is an eager-add server in which case the operation is optimized through function 
shipping to the eager-add server. 
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same mapping function could be used; the application does not have to provide any 

more information. 

The READ operation would have to be implemented in a manner similar to that 

shown below, where the function mapping objects to servers is named 

send-to-set. 

READ (XI 
if me E send-to-set (X) 4 

perform READ locally 
[ I  send-to-set(X) # 0 + 

choose S E send-to-set (X) 
forward READ to server S 

[ I  else + / *  send-to-set (X) = 0 */  
fa (S st S produces objects of X's form) -+ 

S. owner-read (X) 
a f 

f i 

This suggested implementation of MOOSE operations provides increased data dis- 

tribution control over the prototype implementation by giving the application 

explicit control over where individual objects are sent on a PUT operation (data 

shipping) and whether or not READ and GET operations are forwarded to all or some 

producers (function shipping). This can lead to increased efficiency. 

As with the existing MOOSE implementation, information pertaining to the dis- 

tribution of data is an implicit part of the object form, defined when the form is 

defined (through update modes in the prototype implementation, and through the 

server mapping functions in this suggested implementation). 

If several servers are producing objects of a given form, and a server performing 

a READ operation is not getting immediate updates of those objects, the READ may be 

forwarded to any set of servers which among the set will receive immediate notifi- 

cation should an object matching the template given in the READ operation be PUT 
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into the object space (function shipping). In the prototype, the READ is forwarded to 

all of the producer servers with one crude form of this optimization: if any server is 

eager-add with respect to an object form, servers which are lazy-add with respect to 

that object form may ship their READ operations to the eager-add server. 

While this suggested implementation brings a great deal of improvement over 

the prototype MOOSE implementation, there is one major complication: the server 

mapping functions map a given object to a set of servers, but the parameters to the 

READ and GET operations are not necessarily fully defined objects. 

Consider a sys tern consisting of mu1 tiple servers. Several servers produce objects 

with the form ('data', int, int). The first server receives all of these objects with 

value (1,l). The second server receives all objects with value (1,2). The third server 

consumes these objects. Assume that the third server starts a READ operation: 

READ ( ' da ta t ,  1,l) 

This operation may be forwarded to the first server, since the first server has a com- 

plete store of all objects which match the object template of the READ operation. 

However, if the READ operation were: 

READ ( ' da ta f ,  1, i n t  i) 

the first or the second server, or both together will not necessarily have a complete 

store of all objects which match this template. The operation would have to be for- 

warded to all producers. But if it were known that only objects with a '1' or a '2' as 

the second value would be PUT then the command could be forwarded to just the 

first and second servers. How could the application inform the MOOSE system of 

that fact? 
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The server mapping functions might be considered to define the set (possibly 

infinite) of objects which will be sent to a given server, if they are produced (the 

object set of the mapping function). The object template also defines a set: the set of 

objects which could match the template (the object set of the template). Ideally, the 

READ and GET operations codd look at the mapping functions, determine the min- 

imal set Y of servers such that the object set of the template is a subset of the union 

of the object sets of YT, and forward the operation to the set of servers Y. This prob- 

lem is certainly non-trivial, and solving it could cost more than could possibly be 

saved by reducing the number of messages. 

There are several solutions. The READ and GET operations codd simply not 

make full use of the information provided by the mapping functions - if possible, 

the operation would be performed locally, otherwise it would be forwarded to all of 

the producer servers (as is done in the general case by the prototype implementa- 

tion). The problem is now reduced in magnitude, although it is still necessary to 

determine if the object set of the mapping function of the server executing the READ 

or GET spans the object set of the object template in order to determine if the opera- 

tion may be executed locally or must be forwarded to the producers of the object 

form. This problem is not difficult, and the solution could be supplied by the appli- 

cation (perhaps as a function similar to the mapping function). As an extension, the 

same method could be used to determine if the object set of the template is spanned 

by the object set of any one server, and thus determine if there is any single server to 

which the operation could be forwarded. 

Consider the example given above. The object set of the mapping function for 

server 1 only contains the object with value (1,1), while the object set of the mapping 

function for server 2 only contains the object with value (1,2). The object set of the 



6. Alternative Methods for Improving Efficiency page 50 

object template ('datat,l,int i) contains an infinite number of objects, such as (1,1), 

(1,2), (1,3), etc. Obviously, no single server has a mapping function with an object set 

which is a superset of the object set of the template, so the operation cannot be for- 

warded to any one server - the operation must be shipped to all of the producer 

servers. 

Alternately, the mapping functions could be restricted in such a way that the 

problem of finding the minimal set Y of servers would not be difficult. One way to 

do this would be to restrict the mapping functions in the following manner: a server 

would immediately be sent all objects with a particular value in a particular position 

as they are PUT into the object space (for example, a server might receive all objects 

with a 3 as the first value). With such a restriction, the problem of determining the 

minimal set Y would not be difficult for a small number of servers. In this solu- 

tion, each MOOSE server would need to know the details of each mapping function 

(the mapping functions could not be "black boxes"). 

6.2.4. Example of Server Mapping Functions 

For an example, consider the Jacobi method for solving the two-dimensional 

Laplace's Equation. Laplace's Equation leads to a matrix manipulation problem 

which the Jacobi method solves with an iterative technique. The trial value for the 

ith cell of matrix cP in the kth iteration of the algorithm (denoted k") may be 

obtained by taking the average of the values of the neighboring cells from the previ- 

ous iteration. This may be written as follows: 
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In the Jacobi method, in a given iteration each cell can be updated independently 

of all other updates. Consider partitioning the matrix 0 between processors as 

shown in Figure 6.1. 

Figure 6.1 : partitioning of matrix between processors. Updates of cells within 
shaded regions require information from neighboring processors. 

Using the problem decomposition implied by the partitioning of the matrix 

shown in Figure 6.1, each processor must, at each stage of the computation, compute 

the new values of the matrix cells and then send the edge values to the neighboring 

processors. An optimal implementation of this algorithm will obviously send the 

edge values as soon as they have been computed, and will send them only to the 

processor which needs those edge values for its own computation. 
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Using the prototype MOOSE, such fine-grained distribution of the data would be 

difficult to achieve. Consider instead how it would be done using server mapping 

functions. Enumerate the edges of each of the regions (4 edges per region). When 

an edge is PUT into the object space, attach the number of the edge to the start of the 

list of values of the object. The server mapping functions would be defined so that 

an edge PUT into the object space will be forwarded to the MOOSE server which 

serves the process that will require that edge in the next stage of computation. For 

example, assume that 4 processors are working on the problem. Assume that the 

problem has been decomposed and that the processors and edges are numbered as 

Figure 6.2 : example problem decomposition and nur 
processors and edges. 

ering of 

For the decomposition and numbering shown in Figure 6.2, and assuming that the 

edge number is attached to the start of the edge object, the server mapping function 
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for the edge object form is given in Table 6.1. With this server mapping function, 

edges are propagated only to where they are needed. 

first value of obiect 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I1 
12 
13 
14 
15 
16 

Table 6.1 : server mapping function for a program implementing the 
Jacobi method and using the problem decomposition and 

processor/edge enumeration given in Figure 6.2. 

Although, for the Jacobi method, a very simple server mapping function was 

required (send the object to server a if the first value of the object equals P), this 

form of server mapping function is quite limited. Further research on possible 

restrictions to the server mapping functions is necessary. 

6.3. Exploiting Piggybacking 

One method of reducing communication costs is to send two or more logically 

different messages in a single network packet ("piggybacking" the messages). A 

MOOSE provides one way of piggybacking messages - through cached update 

modes where several data structure updates are sent together in one message. The 

cached update modes are a very restricted form of piggybacking, however. The diffi- 
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culty in providing for more general piggybacking comes from a lack of information: 

how is it possible to determine whether a message needs to be sent immediately or 

whether it can be held and sent later? To answer this question, information on the 

future actions of the application are necessary. 

A restricted form of piggybacking may be provided by allowing the application to 

specify whether or not a message needs to be send immediately. A distributed data 

structure which provided for piggybacking messages could implement a DELAY 

operation. The purpose of the DELAY operation would be to tell the data structure 

server that any message generated from the next operation need not be sent imme- 

diately, perhaps because another operation would follow shortly which would also 

generate messages. Thus the data structure server could piggyback the messages. 

Consider the worker process in the Steiner Tree example given in Section 4. The 

worker executes the following loop: 

do ( t r u e )  -> 
GET a t a s k  token  
f a  (subgraphs s p e c i f i e d  by t h e  token)  -> 

b u i l d  t h e  subgraph from t h e  o r i g i n a l  .graph 
determine t h e  minimum weight spanning tree 

a f 
PUT l e a s t  of a l l  minimum weight spanning trees 

od 

For each iteration of this loop, three messages are sent across the LAN: a message 

forwarding the GET operation to the master server (the server which produced the 

tokens), a message from the master server returning a token, and a message to the 

master server returning the result of the computation. Of these three messages, the 

two going to the master always occur one after another - the data from a computa- 

tion is sent, and then a GET for another token is forwarded. If a DELAY operation 

were implemented in MOOSE, then these two messages could be piggybacked, 
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resulting in a savings of 33% of the messages generated in the work phase of the 

computation! 

6.4. Automating Selection of Update Modes 

In order for a MOOSE to provide an efficient data structure, the various pararne- 

ters must be correctly specified. While the task of determining the parameters 

which give best performance is not necessarily difficult, it is certainly not trivial. 

This leads one to consider the possibility of automating the process. 

Presently, the application specifies which nodes in a network are going to pro- 

duce data, and which are going to consume data. If the application also specified 

what percentage of the data a consumer was going to consume or a producer was 

going to produce, it would be very easy to determine an optimal assignment of eager 

or lazy mode to the add and delete update modes of each server. It was shown 

earlier that if a node consumes a fraction of the objects of an object form greater than 

1/2p, where P is the number of producers, then it is more efficient to make that 

server eager-add. If the server consumes less than 1/2p of the data, then it should be 

made lazy-add. 

The use of cached update modes complicates this simple scheme, however. 

When is it appropriate to use a cache? How big should the cache be? How long 

should the timeout be between flushing of the cache? These questions cannot be 

answered simply. Consider the Bitonic Merge example. A cache size of two was 

used because each stage of the computation caused two objects to be generated by 

each worker process. This is a property of the algorithm used, and is readily appar- 

ent to the programmer, but how can it be automatically determined? 
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One possibility is to collect statistics on how frequently objects are produced, and 

how frequently they are consumed. If the variance of the time between consump- 

tion of objects by a particular server is small, then the cache size for that server could 

be set large with the timeout set equal to the mean time between object consump- 

tion. This would possibly result in near optimal efficiency, but there are several 

problems. The program execution must be closely observed - this is not a trivial 

task in itself. The assumption must be made that statistics gathered accurately reflect 

future action of the program - this is not necessarily the case. The method is only 

useful for programs which demonstrate a low variance in the mean time between 

object consumption - this is a rather restricted class of problems. 

While automating the task of determining the update modes may be possible, 

doing so would conflict with two of the basic principles of the MOOSE system: effi- 

ciency and generality. The automated process would not, in most cases, be as effec- 

tive in determining the optimal values for the update modes as would the pro- 

grammer who builds the application. Also, the automated process would be effec- 

tive only for problems which demonstrated those properties mentioned above. 
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7. Conclusions 

7.1. Conclusions 

A data structure general enough to serve a wide variety of applications, but inde- 

pendent of those applications, will not provide an efficient service. In designing a 

data structure for a particular application, a programmer makes use of information 

specific to that application. An efficient data structure cannot be independent of the 

application it serves. 

In this thesis it has been shown that by using semantic information provided by 

the application, a data structure can be both versatile and efficient. To demonstrate 

this principle, the MOOSE data structure was designed and a prototype was imple- 

mented. An application which makes use of a MOOSE must provide information 

on where the data is going to be produced and consumed, and how the data is to be 

replicated. The MOOSE servers make use of this information to select between a 

variety of algorithms to implement the data structure, and thus an efficient service 

is provided. The efficiency and versatility of the MOOSE structure was demon- 

strated through two applications: a brute force approach to solving the Steiner Tree 

Problem and a simple parallel sorting algorithm. 

7.2. Further Research 

The MOOSE data structure has proved its value in the implementation of a few 

different algorithms. In particular, the token/worker model of computation is par- 

ticularly easy to implement using a MOOSE. The token/worker model is applicable 

to any problem in which the task as a whole may be partitioned into a large number 

of independent smaller tasks. One aspect of this computational model which 
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deserves a closer look is the granularity of the task partitioning. The automatic load 

balancing of the token/worker model improves as the number of subtasks increases. 

If the subtasks are too small, however, the communications overhead of 

distributing the task will be too high. The optimal granularity for the distribution of 

a problem could be determined through experimentation. 

While a MOOSE succeeds in providing an efficient distributed data structure for 

many applications, certain problems cannot be solved with optimal efficiency using 

a MOOSE. The coarse-grained approach to data distribution and replication used by 

the MOOSE system is not sufficient for some applications. More finely grained 

approaches were looked at, but all led to complications of the MOOSE operations. 

The most promising of these alternate means of controlling data distribution used 

the server mapping functions. The problem with this approach is that the READ and 

GET operations are complicated tremendously if a general mapping function is used. 

An interesting course of study would be to look at restrictions to the server mapping 

functions which would allow a feasible implementation of the GET and READ opera- 

tions. 

The most important aspect of this thesis has been the use of semantic informa- 

tion to improve efficiency in a distributed data structure. The MOOSE data structure 

requires that the application provide information pertaining to where the data is 

going to be produced or consumed, and how the data is to be distributed. A few very 
* 

important questions must be raised: is there any other information that an 

application could provide that would be useful in improving efficiency? If further 

information could be provided, how could it be used? 
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Appendix A : Overview of the SR Programming Language 

This appendix will describe enough of the SR programming language to help 

someone unfamiliar with the language understand the code and pseudo-code given 

throughout this proposal. For a complete description of the language, see [Andrews 

871. 

A.1. Operations and Invocations: 

SR provides operations, which are generalizations of procedures. There are two 

ways of implementing an operation: with a pro  c  or an in statement. The p r o  c  is 

equivalent to standard procedures. Each time the proc is invoked, a new process 

may be created (although some optimization is done - local invocations of procs 

are implemented as standard procedure calls). An in statement is in effect an 

instruction for a process to block and wait for an invocation of the named operation. 

The in statement unblocks when such an invocation is received. 

In the description of the implementation, in statements were used with an 

enclosing infinite loop surrounding the statement. Thus the process will repeatedly 

service invocations of the operation named in the in statement. With this scheme, 

only one invocation can be executing at any one time. Thus in is used when, for 

reasons of concurrency control, only one invocation of the operation can exist at one 

time, forcing other invocations to wait. A proc  is used when many invocations can 

execute concurrently. 

Operations may be invoked in either of two manners: the c a l l  or the send 

statement. The ca  11 statement provides synchronous communications - the ca  11 
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statement invokes the operation and then blocks the caller until the operation is 

complete. The s e n d  statement provides asynchronous communications - a mes- 

sage to start the operation is sent, and then the sender continues without waiting for 

the operation to complete (or necessarily even start, if the operation is implemented 

with an i n  statement). 

The various combinations of c a l l  / s e n d  and p roc/ i n  provide four different 

mechanisms for invoking operations: 

invocation 

tT 
call 

send 

send 

service 

proc 

proc 

effect 

procedure call 

rendezvous 

dynamic process creation 

message passing 

The granularity of distribution in the SR language is at the resource level. Oper- 

ations and data are contained within resources. A resource instance may be created 

on any virtual machine in the system - virtual machines are mapped to real 

machines at run time, not necessarily on a one-to-one basis. In order to invoke an 

operation remotely (i.e. in a different resource), it is necessary to have the capability 

for the resource instance implementing that operation. The capability may be pre- 

fixed to the name of the operation in the invocation statement. For example, the 

invocation:' 

call cap-a.foo(. . .) 
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invokes the foo operation in the resource instance defined by the capability 

variable cap - a. If no capability is specified in an invocation, the operation is 

invoked in the same resource as the invoking statement. 

In addition to basic communication facilities, SR provides the co statement to 

invoke several different operations concurrently. The syntax of the co statement is 

as follows: 

co (quantifier) invocation [-> statement blockl 
// (quantifier) invocation [-> statement blockl 

. . . 
OC 

Each operation specified by the invocation parts of the statement (over the 

different values of the quantifiers) are invoked concurrently with call semantics. As 

each invocation returns, the statement block following the invocation portion is 

executed. The co statement terminates when all invocations have returned, and all 

statement blocks have finished executing. 

A.2. Sequential statements 

There are many different sequential mechanisms in the language used through- 

out this proposal. They will only be mentioned briefly, as their semantics are quite 

straightforward. 

- The fa statement is a generalization of the standard "loop a fixed number of 

times" mechanism (such as the for statement in pascal). The fa statement has the 

form : 

fa (quantifier) st (boolean expression) -> 
statement block 

af 
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where the statement block is executed for each value of quantifier which satisfies the 

(optional) boolean expression. 

The i f  statement has the form: 

if condition -> statement block 
[I condition -> statement block 

where the last condition can optionally be 'else' which is taken as the conjunction of 

the negations of all the other conditions. The conditions are evaluated in a nonde- 

terministic order. If one is found to be true, its statement block is executed and the 

statement terminates. 

The do statement has the form: 

do condition -> statement block 
[I condition -> statement block 

Each condition is evaluated (the order is non-deterministic). If one is found to be 

true, its associated statement block is executed and the operation repeats. The do 

statement terminates when all conditions are false. 
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Appendix B: MOOSE Implementation 

global types 

/ *  this global resource is imported to all other resources * /  

/ *  maximum number of values in an object * /  
const max-obj-size := 30 

/ *  various system constants * /  
const infinity := 1000 
const undefined := -1 
const safe := 1 
const risky := 2 

/ *  object form name type */  
type nametype = string(l0) 

/ *  record of information for an addition to a local database * /  
type add-op = rec ( 

name : nametype 
values[l:max-obj-size] : int 
o-id : int) 

/ *  record of information for a deletion from a local database * /  
type del-op = rec( 

name : nametype 
values[l:max~obj~sizel : int 
o-id : int) 

end 
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resource moose 

/ *  this is the main resource which the application imports * /  

import types 

op init~moose(servers[1:*1 : cap moose; whoami : int) 

op put(form:types.nametype; values[l:*l : int) returns b:bool 
op get (form:types .nametype; var values [l: * I  : int) returns b:bool 
op read(form:types.nametype; var values[l:*l:int) returns b:bool 

op def-form(f:types.nametype; s:int; c:int; pr[l:*]:bool; 
con[l:*l:bool; as[l:*l : int; ad[l:*l : int; ds[l:*] : int; 
dd[l:*] : int) returns b:bool 

op def form-sub(f:types.nametype; s,c:int; pr[l:*l :bool; 
con[l:*] :bool; as[l:*] :int; ad[l:*] :int; ds[l:*] :int; 
dd[l: *I :int) 

op local-add(name:types.nametype; values[l:*] :int; o-id:int) 
op cache-update(c[l:*l : types.add-op) 
op cache-delete (c [l : *I : types .del-op) 
op owner-delete(o-id:int; name:types.nametype; values[l:*l :int) 

returns ok:bool 
op global-delete(f:int; o:int; n:types.nametype; v[l:*l:int) 
op local-delete(name:types.nametype; v[l:*l:int; o-id:int) 
op still-there (name:types .nametype; v[l: *I : int; o-id:int) 

returns b:bool 

op read-work(n:types.nametype; var v[l:*]:int; res o-id:int) 
returns b:bool 

op start-owner-read(name:types.nametype; var v[l:*l:int; 
res o-id:int) 

op owner-read(name:types.nametype; v[l:*]:int; r:cap moose; i:int) 
returns t:int 

op return-owner-read(rn:int;v[l:*]:int; o-id:int; f-index:int) 
op cancel-owner-read(•’-index:int) 

body moose ( )  separate 
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r e sou rce  t i c k e r  

/ *  a resource  which t i c k s  o f f  seconds ... i n  o r d e r  f o r  t h i s  resource  
t o  work proper ly ,  it must be  t h e  on ly  resource  i n  a v i r t u a l  
machine. Since t h e  s l e e p  ope ra t i on  f o r c e s  t h e  e n t i r e  un ix  
process  ( i .e.  t h e  e n t i r e  v i r t u a l  machine) t o  wai t ,  c r e a t i n g  t h i s  
resource  wi th in  an a c t i v e  v i r t u a l  machine w i l l  no work p rope r ly  * /  

e x t e r n a l  s l e e p  (t  : i n t )  
op t i c k  ( )  

body ticker 0 

proc  t i c k  ( )  
s l e e p  (1) 

end 

end 
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resource timer 

/ *  this resource is used by the cache-handling resources to time 
the waits between cache firings. This resource creates another 
virtual machine on the same physical machine, and creates a 
ticker resource within that virtual machine * / 

import ticker 

op snooze (t : int) 

body timer ( )  

var v : cap vm 
var tick-res : cap ticker 

initial 
v := create vm() 
tick-res := create ticker() on v 

end 

var gen : int := 0 
var nun-waiting : int := 0 
op t ickmark (g : int ) 

/ *  this process uses the ticker resource to tick off seconds, and 
informs any snooze procs of the ticks through invocations of 
the tickmark operation. The variable 'num-waiting' keeps a count 
of how many snooze procs are waiting for ticks. The tickmark 
invocations keep a generation number with them so that one 
snooze process can't grab all of the tickmarks from one 
clock tick * / 

process t 
do (true) -> 

gen ++ 
fa i := 1 to num-waiting -> 

send tickmark (gen) 
a f 
num-waiting := 0 
tick-res .tick ( )  

od 
end 

/ *  this proc acts like a C sleep function for SR processes. Since 
using the C sleep function would sleep the entire virtual machine, 
this proc and all of its support mechanisms had to be built * /  

proc snooze (x) 
var my-gen : int 

my-gen := gen 
do (x>O) -> 

num-waiting Sf 
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in tickmark(g) and g>rny-gen -> 
x : = x - (g-my-gen) 
my-gen := g 

ni 
od 

end  

end 
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resource addcachehandler 

/ *  this resource is used to handle a cache of add operations. When 
a new object form is created, each moose server creates a 
different addcachehandler resource for each cached add server. 
The addcachehandler resource is given the capability to the 
moose server for which it is caching updates, the capability for 
the local timer resource, and the size and delay of the cache 
it must look after. The only operation it exports is the 
cache-add operation which the moose server may call to add 
an entry into the cache. When the cache is full, or the timeout 
expires, the cache is automatically fired off. */ 

import types 
import moose 
import timer 

body addcachehandler(mres:cap moose; tres:cap timer; size,delay:int) 

/ *  the cache is simply an array of type add-op * /  
var cache[l:size] : types.add-op 
var next-free : int := 1 

op f ire-of f-cache ( ) 

op foc 0 

/ *  this process implements the timeout. Every 'delay' seconds, it 
causes the cache to be sent. * / 

process ticker 
do (true) -> 

tres .snooze (delay) 
send foc ( )  

od 
end 

/ *  this process is responsible for handling cache-add operations, 
and commands by the timer to send off the cache. It is 
implemented with an in statement so that cache-add operations 
can't interfere with each other or with the sending of the 
cache. * / 

process pl 
do (true) -> 

in cache-add(name,values,o-id) by 1 -> 
cache[next-free1.o-id := o-id 
cache [next-free] .name : = name 
cache[next~free].values[l:ub(values)] := values 
next-free++ 
if (next-free > size) -> 

f ire-off-cache ( ) 
f i 
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11 foc0 by 2 -> 
if (next-free > 1) -> 

f ire-of f-cache ( ) 
f i 

ni 
od 

end 

/ *  this proc is called to send and reset the cache * /  

proc fire-off-cache0 
send rnres.cache~update(cache[1:next~free-11) 
next-free := 1 

end 

end 
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resource delcachehandler 

/ *  this resource looks after caches of delete operations in the same 
manner that addcachehandler resources look after caches of add 
operations. The two resources are in all manner parallel. * / 

import types 
import moose 
import timer 

body delcachehandler(mres:cap moose; tres:cap timer; size,delay:int) 

var cache[l:sizel : types.de1-op 
var next-free : int := 1 

op f ire-off-cache ( 1  
op foc0 

process ticker 
do (true) -> 

tres. snooze (delay) 
foc 0 

od 
end 

process pl 
do (true) -> 

in cache-del(name,val~es,o~id) by 1 -> 
cache[next-free1.o-id := 0-id 
cache [next-f reel . name : = name 
cache [next free] .values [ 1 : ub (values) 1 : = values 
next-free++ 
if (next-f ree > size) -> 

f ire-of f-cache ( )  
fi 

[ I  foc0 by 2 -> 
if (next-f ree > 1) -> 

f ire-of f-cache ( ) 
f i 

n i 
od 

end 

proc f ire-off-cache ( )  
send mres.cache-delete(cache[l:next-free-11) 
next-free := 1 

end 

end 
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resource formhandler 

/ *  each moose server creates a single formhandler resource to manage 
a local database of information about object forms. Through the 
formhandler resource, every form is assigned a unique integer 
identifier (although different servers may assign different 
identifiers due to race conditions). * / 

import types 

op new-form(f:types.nametype; size:int; c:int; pr[l:*]:bool; 
con[l:*]:bool; as[l:*l : int; ad[l:*l : int; ds[l:*J : int; 
dd[l:*l : int) 

op f orm-id (name :types. nametype) returns n: int 
op form-size(f-id:int) returns s:int 

op eager-add(form-id:int; server-id:int) returns b:bool 
op cached-add(form-id:int; server-id:int) returns b:bool 
op lazy-add(form-id:int; server-id:int) returns b:bool 
op eager-del(form-id:int; server-id:int) returns b:bool 
op cached-del(form-id:int; server-id:int) returns b:bool 
op lazy-del(form-id:int; server-id:int) returns b:bool 
op producer(fom-id:int; server-id:int) returns b:bool 
op consumer(form-id:int; server-id:int) returns b:bool 
op correctness(form-id:int) returns c:int 
op num_producers(f:int) returns n:int 
op prodid(f:int) returns c:int 

external gethostname (res s: string ( * I  ; n:int) 

body formhandler(me : int; max-servers:int; max-forms:int) 

type form-type = rec ( 
name : types.nametype 
size : int 
correctness : int 
producers [ 1 :max-servers] : bool 
consumers [l :max-servers] : bool 
add~cache~sizes[l:max~servers] : int 
add~cache~delay[l:max~servers] : int 
del~cache~sizes[l:max~serversl : int 
del-cache-delay[l:max-servers] : int 
numgrod : int 
prodid : int 
) 

var form[l:max-forms] : ptr form-type 
var next-form :int := 1 

/ *  given a form name, return its identifier * /  

proc f orm-id (name) returns id 
id := 0 
fa i:=l to next form-1 st (name=formCil ".name) -> - 

id := i 
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exit 
a f 

end 

/ *  given a f o m  identifier, return the size of the tuple of values */  

proc form-size (f-id) returns size 
size := form[f-id] ^ . size 

end 

/ *  return true if the specified server is eager-add with respect to 
the specified object form, false otherwise. * / 

proc eager-add (f orm_id, server-id) returns b 
b := (f o m  [f om-id] ̂  . add-cache-sizes [server-id] = 1) 

end 

/*  return true if the specified server is cached-add with respect to 
the specified object form, false otherwise. * / 

proc cached-add (form-id, server-id) returns b 
b : = (f orm[f om-id] ̂  . add-cache-sizes [server-id] ! = 1) and 

(forrn[fom~id]^.add~cache~sizes[server~id] != types.infinity) 
end 

/ *  return true if the specified server is lazy-add with respect to 
the specified object form, false otherwise. * / 

proc lazy-add (f om-id, server-id) returns b 
b := (form[form_id] ̂ .add-cache-sizes [server-id] = types .infinity) 

end 

/ *  return true if the specified server is eager-del with respect to 
the specified object form, false otherwise. * / 

proc eager-del (form-id, server-id) returns b 
b := (fom[fom-id] A .del-cache-sizes [server-id] = 1) 

end 

/ *  return true if the specified server is cached-del with respect to 
the specified object form, false otherwise. * / 

proc cached-del(form-id,server-id) returns b 
b := (f om[form-id] A .del-cache-sizes [server-id] ! = 1) and 

(form[fom-id] ̂ .del-cache-sizes [server-id] != types. inf inity) 
end 

/ *  return true if the specified server is lazy-del with respect to 
the specified object form, false otherwise. * / 

proc lazy - del (form-id, server-id) returns b 
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b := (form[f om-id] ̂  .del-cache-sizes [server-id] = types. infinity) 
end 

/ *  return true if the specified server is a consumer of the specified 
object form, false otherwise. * / 

proc consumer ( f o ~ i d ,  server-id) returns b 
b := f orm[form-id] ̂ .consumers [server-idl 

end 

/ *  return true if the specified server is a producer of the specified 
object form, false otherwise. * / 

proc producer (f orm-id, server-id) returns b 
b := form [f om-id] ̂  .producers [server-id] 

end 

/ *  return the correctness mode of the specified object form * I  

proc correctness (f o x i d )  returns cor 
cor : = form [form-id] ̂ . correctness 

end 

/ *  return the number of producers of the specified object form * /  

proc numgroducers (•’-id) returns n 
n : = f orm [f-id] ̂  . numgrod 

end 

/ *  return the index of a moose server which produces the specified 
object f orm * /  

proc prodid(•’-id) returns id 
id : = f om[•’-id] ̂ .prodid 

end 

/ *  define a new object form and all of its parameters * /  

proc new~form(name,size,corr,prod,con,addsize,adddelay,delsize, 
deldelay) 

f orm[next-form] : = new (form-type) 
form [next-f o m ]  ̂.name : = name 
form[next-form] ̂ .size := size 
f orm [next-f o m ]  ̂ . correctness : = corr 
form[next-form] ̂  .producers [l:ub (prod) 1 := prod 
f orm [next-f o m ]  ̂ .consumers [ 1 :ub (con) I := con 
form[next-formIA.add cache sizes[l:ub(addsize)] := addsize 
f orm[next-f o m ]  ̂ . add~cache~delay [l :ub (adddelay) I := adddelay 
form[next form] ̂ . del-cache-sizes [1 :ub (delsize) ] := delsize 
form[next-form]^.del cache - delay[l:ub(deldelay)l := deldelay 
form [nextlorm] ̂ . n s r o d  : = 0 
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f a  i := 1 t o  ub(prod)  s t  p r o d l i l  -> 
f orm [next-f o m ]  ̂ .  num9rod ++ 
f orm [next-f o m ]  A .p rodid  : = i 

a f 
next-form := next-form + 1 

end 

end 



Appendix B: MOOSE Implementation page 75 

resource dbhandler 

/ *  each moose server creates a single dbhandler resource to handle 
all of the local database. The local database consists of a 
set of binary trees - one for each object form. A semaphore 
exists for each binary tree. Before any modification can be 
made to the tree, the modifying process must grab the semaphore. 

A wait-on-add operation exists for each binary tree. A process 
can wait for an addition to an object form by executing a receive 
on the associated trees wait-on-add operation. When an addition 
is made, the operation is invoked once for each process executing 
the receive operation. * / 

import types 
import moose 
import formhandler 

local-add(n:types.nametype; v[l:*l:int; o:int) 
local-delete(name:types.nametype; v[l:*] :int; o-id:int) 
cache-update (c [l: *I : types .add-op) 
cache-delete (c [l: *I :types .del-op) 
checkwait(name:types.nametype; var values[l:*l:int; res o-id:int) 

returns b : boo1 
check(•’-id:int; var values[l:*l : int; res o-id:int) 

returns b:bool 
unique-check(f-id:int; v[l:*]:int; o-id:int) returns found:bool 
invoke-ocw(n:types.nametype; v[l:*]:int; r:cap moose; rep:int) 

returns i:int 
cancel-ocw (m: int) 

body &handler(fres:cap formhandler; me:int; max-forms : int) 

type tnode = rec( 
o-id : int 
values[l:types.max-obj-size] : int 
left : ptr tnode 
right : ptr tnode) 

op sem[l:max-forms] ( )  
op wait on add [ 1 :max-forms] (g: int) 
var num~wa~t-on-add [ 1 : max-f o m s  I : int : = ( [max-f o m s  I 0 ) 
var generation[l:max-forms] : int := ([max-forms1 0) 

bt-add(var n : ptr tnode; values[l:*l : int; o-id:int) 
ob j-gt (vl [l : *I : int; v2 [I : *I : int returns b:bool 
cw(f-id:int; var values[l:*] : int; res o-id:int; p:ptr tnode) 

returns b:bool 
match (vl [l : *] : int ; v2 [I: *I : int) returns b:bool 
ult (vl [1: *] : int; v2 [I: *] : int) returns b:bool 
ucw(v[l:*]:int; o-id:int; p:ptr tnode) returns found:bool 
bt-del (var p:ptr tnode; v[l:*l :int; o-id:int) 
prop-del(var p:ptr tnode) 
attach (loose_p:ptr tnode; onto_p:ptr tnode) 
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var root [l :max-f oms] : ptr tnode 

initial 
/ * 
fa 

a f 
end 

initialize the semaphores * /  
i:=l to max-forms -> 
send sem [i] ( )  
root [i] := null 

/ *  add an object to the local database */  

proc local-add (name, values , 0-id) 
var f-id : int 

f-id := fres-form-id(name) 
/ *  grab the semaphore * /  
receive sem [ f-id] ( ) 
/ *  add the object to the binary tree *I  
bt add (root [f-id] ,values , 0-id) 
/*-update the generation of the binary tree * /  
generation [f-id] ++ 
/ *  release the semaphore * /  
send sem[f-id] ( )  
/ *  inform any waiting processes of the change * /  
fa i:=l to num wait-on-add[f-id] -> 

send wait-0;-add [ f-id] (generat ion) 
a f 
nxwait-on-add [f-id1 := 0 

end 

/ *  this proc is responsible for doing all of the work in adding 
an object to a tree * / 

proc bt-add (p, v, o-id) 
if p=null -> 

/ *  we've found where to add it */  
p := new(tnode) 
pA.o-id := o-id 
pA.values[l:ub(v)] := v 
pn.left := null 
pn . right : = null 

[I else -> 
/ *  descend down the tree recursively * /  
if ob j-gt (pn .values [l :ub (v) 1 , v) -> 

/ *  descend down the left branch * /  
bt-add (pn . left, v, o-id) 

I ]  else -> 
/ *  descend down the right branch */  
bt-add (pn . right, v, o-id) 

f i 
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f i 
end 

/ *  define a total ordering over the values of objects * /  

proc ob j-gt (vl, v2 ) returns b 
fa i:=l to ub(v1) -> 

if vl [i] > v2 [i] -> 
b := true 
return 

[ ]  vl[i] <v2[i] -> 
b := false 
return 

f i 
a f 
b := false 

end 

/ *  receive and process a cache of add operations * /  

proc cache-update (cache) 
fa i:=l to ub(cache) -> 

send local-add(cache [i] .nameache [il .values, cache [i] .o-id) 
a f 

end 

/ *  receive and process a cache of delete operations * /  

proc cache-delete(cache) 
fa i:=1 to ub (cache) -> 

send local - delete (cache [i] . name,cache [i] .values ,cache [ i] -0-id) 
a f 

end 

/ *  check for an object matching the specified template in the local 
database. If a matching object is found, return it immediately. 
Otherwise, wait until such an object is found and then return 
it. * / 

proc checkwait (name, values, o-id) returns b 
var •’-id : int := fres.form-id(name) 
var last-gen : int 

if (f-id = 0) -> 
b := false 
return 

[I else -> 
b := true 

f i 
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do (true) -> 
last-gen := generation[f-id] 
if check ( f-id, values, o-id) -> 

return 
[ I  else -> 

nun-wait-on-add [•’-id] ++ 
in wait-on-add[f-id] (g) & g>last-gen -> 

skip 
ni 

fi 
od 

end 

/ *  this proc starts up an operation similar to checkwait, except that 
only objects produced locally (i.e. this resource is the owner of 
the object) can be returned. The proc is given a capability to 
a moose server to which it must return results. This proc might 
receive a cancellation message before it completes (it may never 
complete short of being cancelled). * / 

var ocw-ctr : int := 1 

proc invoke-ocw (name,values,rep-cap~rep-nun) returns i 
var f id : int : = f res . fom-id (name) 
var last~gen,rny~ocw~ctr,o~id : int 

my-ocw-ctr := ocw-ctr 
ocw-ct r++ 
i := my-ocw-ctr 
reply 

last-gen : = generation [•’-id] 
do (true) -> 

if check (f-id, values, o-id) -> 
/ *  we've found an object. Send a reply and exit * /  
send rep~cap.return~owner~read(repPnunfva1ue~f~Oidfme) 
exit 

[I else -> 
nun-wait-on-add [ f-id] ++ 
/ *  wait for either an addition to the tree or a cancellation 

message 
in wait-on-add[f-id] (g) & g>last-gen -> 

last-gen := g 
[ I  cancel-ocw (m) & m=my-ocw-ctr -> 

nun-wait-on-add [f-id]-- 
exit 

ni 
f i 

od 
end 

/ *  check the local database for an object matching the specified 
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object template. * / 

proc check (f-id, values, o-id) returns found 
found := cw (f-id,values, o-id,root [f-id] ) 

end 

/ *  this proc does all of the work of the check proc - the check proc 
calls this proc with a pointer to the root of a tree. This proc 
recursively descends the tree. * / 

proc cw (f-id, values, o-id, p) returns found 

found := false 
return 

f i 
if match (values,pA .values [l :ub (values) I ) -> 

found := true 
values := pA.values[l:ub(values)l 
o-id := pA.o-id 
return 

f i 

/ *  note that because of the possible undefined values in 
the object to be searched for, it may be necessary to search 
both children of the current node * / 

if ult(values,pA.values) -> 
found : = cw (f-id, values, o-id, pA . left) 
if (found) -> 

return 
fi 

f i 
if ult (pA .values, values) -> 

found := cw(fid,values,o-id,pA.right) 
f i 

end 

/ *  this proc returns true if the values of two objects match. The 
values may not be fully defined, in the case of an object 
template. * / 

proc match (vl, v2) returns b 
fa i :=1 to ub (vl) st (vl [i] ! =v2 [i] and vl [i] !=types. undef ined and 

v2 [i] !=types. undefined) -> 
b:=f alse 
return 

a f 
b := true 

end 

/ *  determine if the first set of values might be less than the second 
set, based on the ordering defined by the obj-gt proc. The set 
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of values might be partially undefined (in the case of an object 
template) * / 

proc ult (vl, v2) returns b 
fa i:=l to ub(v1) -> 

if (vl[il=types.undefined or v2[i]=types.undefined or 
vl[i]<v2[i]) -> 

b := true 
return 

fi 
if vl [i] > v2 [i] -> 

b := false 
return 

f i 
a f 
b := false 

end 

/ *  this proc checks to see if the given fully defined object exists 
in the tree * / 

proc unique~check(f~id,values,o~id) returns found 
found : = ucw (values, o-id, root [•’-id] ) 

end 

/ *  this proc does all of the work for the unique-check proc. The 
unique-check proc calls this proc with the root of a tree, and 
this proc recursively descends the tree looking for the object * /  

proc ucw (values, o-id, p) returns found 
if (p=null) -> 

found := false 
[ I  else -> 

if (pA .o-id = o-id) -> 
found := true 

[ I  ob j-gt (pA .values [l:ub (values) I, values) -> 
found := ucw(values,o~id,p~.left) 

[I else -> 
found := ucw(values,o-id,pA.right) 

f i 
f i 

end 

/ *  this proc removes the specified object from the local database * /  

proc local-delete (name, values, o-id) 
var f-id : int := fres.form_id(name) 
var last-gen : int 

/ *  make sure the thing is there (the delete may have arrived 
bef ore the add) * / 

last-gen := generation[f-id1 
do (not unique-check (f-id, values, o-id) -> 
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nun-wait-on-add [ f-id]++ 
i n  wai t  on-add[f-id] (g)  & g>last-gen -> 

l a s t I g e n  := g 
n i  

od 

r e c e i v e  s e m  [ •’-id1 ( 
b t  d e l  ( r o o t  [f-id] , values  , 0-id) 
send s e m  [ f-id] ( ) 

end 

/ *  t h i s  p roc  removes an o b j e c t  from a b i n a r y  tree * /  

proc  bt-del (p, v, o-id) 
i f  (p !=nul l )  -> 

i f  

r I 

[ I  

f  i 
f i  

end 

(pA . o-id = o-id) -> 
/ *  t h e  o b j e c t  has been found, d e l e t e  t h e  o b j e c t  and 

r e s t r u c t u r e  t h e  tree which was below t h e  o b j e c t  * /  
prop-del ( P I  
ob j-gt (pA .va lues  [l :ub (v) I ,  v) -> 
b t  d e l  (pA . l e f t ,  v, o-id) 
else -> 
bt-del (pA . r i g h t ,  v, o-id) 

/ *  t h i s  proc i s  respons ib le  f o r  d e l e t i n g  t h e  s p e c i f i e d  node from 
a b ina ry  tree. The tree below t h e  d e l e t e d  o b j e c t  must be  
r e s t r u c t u r e d .  * / 

proc  prop-del (p )  
v a r  p l  : p t r  tnode := p A . l e f t  
v a r  p r  : p t r  tnode := p A . r i g h t  

i f  ( p l  != n u l l )  -> 
/ *  t h e r e  was a  sub t r ee  t o  t h e  l e f t  of t h e  d e l e t e d  node. 

Attach it where t h e  d e l e t e d  node was, and a t t a c h  any 
s u b t r e e  t o  t h e  r i g h t  of t h e  d e l e t e d  node t o  t h i s  new 
s t r u c t u r e .  

p  := p l  
i f  ( p r  != n u l l )  -> 

a t t a c h  (p r ,  p l )  
f i  

[ I  else -> 
/ *  t h e r e  was no sub t r ee  t o  t h e  l e f t  of t h e  d e l e t e d  node, 

s o  t h e  s u b t r e e  t o  t h e  r i g h t  of  t h e  d e l e t e d  node ( i f  any 
is  a t t a c h e d  i n  p l a c e  of t h e  d e l e t e d  node) * / 

end 

/ *  t h i s  p roc  a t t a c h e s  one s u b t r e e  on to  another ,  main ta in ing  t h e  
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c o r r e c t  o rde r ing  of t h e  b ina ry  t r e e .  * / 

proc a t t a c h  ( l o o s e g ,  o n t o g )  
i f  (onto_pA . l e f t  != n u l l )  -> 

attach(looseg,ontogA.left) 
c: 
*I 

o n t o g A . l e f t  := l o o s e g  
end 

end 
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body moose 

/ *  this is the body for the moose resource, responsible for 
implementing all of the moose operations. When this resource 
is created and initialized, it creates formhandler, dbhandler 
and timer resources to serve it. * / 

import addcachehandler 
import delcachehandler 
import formhandler 
import dbhandler 
import timer 

const max-servers := 15 
const max-forms := 25 
var moose~server[l:max~serversl : cap moose 
var num-servers,me : int 

var formhan : cap formhandler 
var dbhan : cap dbhandler 
var timer-res : cap timer 
type chs = rec(server[l:max-servers] : cap addcachehandler) 
type dhs = rec(server[l:max-servers] : cap delcachehandler) 
var addcachehan [l :max-forms] : ptr chs 
var delcachehan [l :max-forms] : ptr dhs 

op od-sem[l:max-forms]() / *  owner-delete has to be mutually 
exclusive for each form so need 
to use a semaphore ... * / 

initial 
fa i:=l to max-forms -> 

send od-sem[il ( )  
a f 

end 

proc init-moose (servers, whoami) 
me := whoami 
nun-servers := ub (servers) ; 
fa i:=l to nun-servers -> 

moose-server [i] := servers [il 
a f 
f ormhan : = create f ormhandler (me, nun-servers , max-f oms) 
dbhan := create dbhandler (formhan,me,maxXforms) 
timer-res := create timer0 

end 

op new-obj id() returns o-id:int {call) 
op owner (orid: int) returns owner : int 

I 
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op global-add(f:int; n:types.nametype; v[l:*] : int) 

/ *  all of the following procs are invoked by other moose servers. They 
simply forward a task on to the local dbhandler resource * / 

proc local-add (name, values, 0-id) 
dbhan.loca1-add(name,values,o_id) 

end 

proc cache-update (c) 
dbhan. cache-update (c) 

end 

proc cache-delete (c) 
dbhan . cache-delete (c) 

end 

proc local-delete (name, values I 0-id) 
dbhan.loca1-delete(name,valuesIo-id) 

end 

proc still-there (name, values, o-id) returns b 
b := dbhan-unique - check(formhan.form-id(name),values,o_id) 

end 

/ *  this proc defines unique identifiers for new objects created 
locally. The id of the local moose server is coded into the 
object id * / 

var cnt : int := 1 

proc new-obj-id0 returns o-id 
o-id := me*100000+cnt 
cnt++ 

end 

/ *  given an object id, this proc returns the id of the moose server 
which created and owns it * / 

proc owner (0-id) returns owner 
owner := o-id / 100000 

end 

/ *  this proc is the application interface to the procs which 
define new object forms. This proc may be called from any 
moose server, and the new object form is created on all moose 
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servers. * / 

proc def-f orm(name, size, corr, c o n , p r o d , a d d s i z e ~ l s i z e ,  
deldelay) returns b 

/ * 

if 

fi 
if 

[ I  

f i 
end 

this conditional is set up a little funny to avoid a bug in 
the compiler ... * / 

(size > types.max-obj-size) -> 
b := false 
return 

(formhan.form_id(name) != 0) -> 
b := false 
else -> 
co (i:=l to num-servers) 

moose~server[i].def~f~rm~sub(name,size,corr,con,prod, 
addsize, adddelay, delsize, deldelay) 

OC 
b := true 

/ *  this is the proc which actually defines the new object form 
locally, and creates any addcachehandler and delcachehandler 
resources which need to be created. * / 

proc de•’~•’om~sub(name,size,corrIconIprod,addsizeIadddelayIdelsizeI 
deldelay) 

var f-id : int 

formhan.new~fom(name,size,corr,con,prod,addsize,adddelay, 
delsize,deldelay) 

f-id := formhan.form-id(name) 
addcachehan[f-id] := new(chs) / *  create the capabilities for the 

new cache handlers */ 
/ *  create the new add-cache handlers * /  
fa i:=l to num-servers st 

(addsize [i] ! = 1) and (addsize [i] !=infinity) 
and (i!=rne) -> 

addcachehan[f-idlA.server[i1 := create addcachehandler( 
moose-server[i],timer-res,addsize[i],adddelay[il) 

a•’ 
/ *  create new del-cache handlers */  
fa i:=l to num-servers st 

(delsize [i] != 1) and (delsize [i] ! = types. in•’ inity) and 
(i!=me) -> 

delcachehan[f-idIA.server[i] := create delcachehandler( 
moose - server[i],timer~res,delsize[i],deldelay~i]~ 

af 
end 

....................................................................... 
/ *  this proc implements the get operation * / 
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proc get (name,v) returns b 
var o-id : int 
var f-id : int := formhan. form-id (name) 

f-id = 0 -> 
b := false 
return 
else -> 
if ub (v) != formhan. form-size (f-id) -> 

b := false 
return 

f i 

different actions for different correctness modes */ 
formhan.correctness(f_id) = types.safe -> 

/ *  have to make this test a little funny because of compiler 
bugs * /  

var Imaproducer : boo1 := formhan.producer(f-id,me) 
if (f ormhan. nqroducers (f-id) > 1) or Imaproducer -> 

/ *  if there is more than one producer, or these objects 
are produced locally, perform the operation locally * /  

var values [l :ub (v) 1 : int 
do (true) -> 

/ *  in safe correctness mode, we have to attempt to delete 
the object through the object's owner, with the 
owner-delete operation. If the owner-delete fails, we 
have to try with a different object. * / 

values := v 
if (not read-work (name, values, o-id) ) -> 

b := false 
return 

f i 
if moose~server[owner(o~id)].owner~delete(o~id,name, 

values) 
v := values 
b := true 
return 

f i 
od 
else -> 
/ *  if there is only 

server 
one producer, forward the call to that 

* / 
moose-server [formhan .prodid 1 .get (name, v) 

f i 
else -> / *  correctness = risky */  
if (formhan .num_producers (f-id) > 1) or 

(f ormhan .producer (f-id, me) ) -> 
if there is more than one producer, or these objects 
are produced locally, perform the operation locally * /  
(not read-work (name, v, o-id) ) -> 
b := false 
return 

in risky correctness mode, we do not need permission of 
the owner to delete the object. * / 
by causing the owner to execute a global delete, we 
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guarantee that the object is removed from the owner's 
local db, regardless of his delete update mode. This 
doesn't cost-any extra messages than if we had done 
it all from here, either * / 

send moose~server[owner(o~id)l.global~delete(f~id, 
o-id, name, v) 

[ I  else -> 
/ *  if there is only one producer, forward the call to that 

server 
moose server [formhan-prodid (Lid) 1 .get (name, v) - 

f i 
fi 
b := true 
return 

end 

....................................................................... 
/ *  this proc implements the read operation */ 

proc read (name, values) returns b 
var o-id : int 

b : = read-work (name, values , 0-id) 
end 

/ *  this proc does all of the work for the read operation. * /  

proc read-work(name,values,o-id) returns b 
var f-id : int := formhan.form-id(name) 

- 
b := false 
return 

[ I  else -> 
if ub (values) != formhan.form-size (f-id) -> 

b := false 
return 

f i 
f i 

b := true 
if (f ormhan. lazy-add(f-id, me) ) -> 

/ *  lazy add and any delete mode - we ship the function to 
somebody else to perform * / 

var keepgoing : boo1 := true 
var bestserver : int := 0 

/ *  determine the best server, if any, to ship the function to. 
An eager add/eager delete server is best of all, followed 
by any eager add server. * / 

fa i := 1 to nun-servers st keepgoing -> 
if f ormhan . eager-add ( f-id, i 1 -> 

bestserver := i 
keepgoing := not formhan.eager-del(f-id,i) 
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if (bestserver != 0) and (formhan.num_producers (f-id) > 1) -> 
/ *  if possible and > 1 producer, ship the function * /  
m o o s e ~ s e r v e r [ b e s t s e r v e r ] . r e a d ~ w o r k ( n a m e ~ i d ~  

[I else -> 
/ *  otherwise, poll the producers for the answer * /  
start - owner-read(name,values,o_id) 

f i 

[ I  (not f ormhan. lazy-add (f-id,me) 
and formhan.eager-del(f-id,me)) -> 

/ *  eager delete and eager or cached add mode - we simply call 
the checkwait function and wait for the object to show up 
in the local database * / 

b := dbhan.checkwait(name,values,o_id) 

[I else -> 
/ *  lazy or cached delete mode and eager or cached add mode - 

when the object gets produced it will be sent here, but 
the deletion of the object might be delayed, so we have 
to check with the owner after we find an object to make 
sure that it hasn't been deleted yet. * / 

var v[l:ub(values)] : int 

do (true) -> 
v := values 
/ *  find an object * /  
if not dbhan. checkwait (name, v, 0-id) -> 

b := false 
return 

f i 
/ *  check with the owner to see if it's still present * /  
if (moose-server [owner (0-id) 1 . still-there (name, v i d  ) -> 

/ *  if it's still present, return it * /  
b := true 
values := v 
return 

[I else -> 
/ *  if it's been deleted from the object space, delete 

it locally and try again * / 
dbhan.loca1-delete(name,v,o-id) 

fi 
od 

fi 
end 

....................................................................... 
/ *  this proc implements the put operation * / 

proc put (name, values) returns b 
var f-id : int 

/ *  simply check to make sure it's a valid object, then call 
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the global-add procedure * / 
f id := formhan.form-id(name1 
iT (f-id = 0) -> 

b := false 
return 

[ I  else -> 
if (ub (values) != formhan. form-size (f-id) ) -> 

b := false 
return 

[ I  else -> 
b := true 

fi 
f i 
global-add ( f-id, name, values ) 

end 

/*  send the addition immediately to all eager-add servers, and place 
it in the cache of all cached-add servers. Ignore any servers 
which are lazy-add. Also, ignore any servers which are not 
consumers, even if they are eager- or cached-add. * / 

proc global add (•’-id, name, values) 
var o-id-: int 

o-id : = new-ob j-id ( ) 
dbhan.loca1-add(name,values,o_id) 
fa i :=1 to nun-servers st (i !=me and •’ ormhan. consumer (f-id, i) 

and f ormhan . eager-add ( f-id, i) ) -> 
send moose~server[i].local~add(name,values,o~id) 

a •’ 
fa i:=l to num-servers st (i!=me and formhan.consumer(f-id,i) 

and formhan . cached-add ( G d ,  i) ) -> 
send addcachehan [f-id] ̂ .server [il . cache-add (name, values, 0-id) 

a•’ 
end 

/ *  send the deletion immediately to all eager-del servers, and place 
it in the cache of all cached-del servers. Ignore any servers 
which are lazy-del. Also, ignore any servers which are not 
consumers, even if they are eager- or cached-del. * / 

proc global-delete(f-id,o-id,name,values) 
dbhan.loca1-delete(name,values,o_id) 
fa i :=1 to num-servers st (i !=me and f ormhan. consumer (f-id, i) 

and f ormhan . eager-del (•’-id, i) ) -> 
send moose - server[i].local~delete(name,values,o~id) 

a f 
fa i:=l to num-servers st (i!=me and formhan.consumer(f-id,i) 

and f ormhan . cached-del ( f-id, i) ) -> 
send delcachehan[f~id]^.server[i].cache~del(name,values,o~id) 

a f 
end 



Appendix B: MOOSE Implementation page 90 

/ *  this proc deletes an object which was produced locally if it 
hasn't already been deleted. Return true if the deletion was 
successful, false if the object has already been deleted. 
A semaphore for each object form is used so that two owner-delete 
operation trying to delete two objects of the same form will not 
interfere * / 

proc owner-delete (0-id, namegalues) returns ok 
var f-id : int := formhan.form-id(name) 

receive od-sem [f-id] ( ) 
if dbhan . unique-check (f- id, values e d )  -> 

ok:= true 
reply 
global-delete (f-id, o-id, name, values) 
send od-sem[f-id] ( )  

[ I  else -> 
ok := false 
send od-sem [f-id1 ( ) 

f i 
end 

/ *  the following procs are used for the owner-read operation. This 
operation is used to forward a read operation from a lazy-add server 
onto all of the servers which produce the objects of that form. 
The operation is complicated by the need to cancel the processes 
operating on other servers when one process returns successfully * /  

var or-ctr : int := 1 

/ *  start up the owner-read process on all producer servers, and wait 
for one to respond with success. When one returns successful, 
send cancellation messages to all of the others. * / 

proc start-owner-read(name,values,o-id) 
var f-id : int := formhan.form-id(name) 
var f-index : int 
var can-ids [l :num-servers] : int 
var my-ctr : int 

my-ctr := or-ctr 
or-ctr++ 

co (i:=l to nun-servers st formhan.producer(f-id,i)) 
can-ids [i] : = moose - server [i] . owner-read (namemlues, 

myresource 0 ,my-ctr) 
OC 

in return-owner-read (rn, v,o,f) & rn=my-ctr -> 
values := v 
o-id := o 
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f-index := f 
ni 

fa i:=l to nxservers st formhan.producer(f-id,i) -> 
if (i != f-index) -> 

send moose~server[il.cancel~owner~read(can~ids[il) 
f i 

a f 
end 

/ *  this process is used to forward owner-read and cancel-ocw 
invocations on to the dbhandler resource where they will be 
processed. The owner-read operation in the dbhandler (started 
with an invocation of invoke-ocw) will reply directly to the 
start-owner-read process above. * / 

process orp 
do (true) -> 

in owner~read(narne,values,rep~cap,rep~num) returns can-id -> 
can-id := dbhan.invoke~ocw(name,values,rep_~ap,rep~n~~ 

[ I  cancel-owner-read (can-id) -> 
send dbhan.cance1-ocw(can-id) 

ni 
od 

end 

end 
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Appendix C: Steiner Tree Example Source Code 

resource stein-master 

/ *  this resource is the master resource in the computation. Only one 
such resource will exist. It is responsible for putting the data 
and tokens into the object space, and for collecting the results 
once they have been computed by the workers. This resource also 
times the whole process. * / 

external mscounter0 returns t:int 

import types 
import moose 

body stein~master(nun~tokens~numumnodes,nun~critical:int; ms:cap moose) 

proc go0 
var t [ 1 : nun-nodes+31 : int 
var min, id : int 
var max-range, range-size : int 
var in-graph[l:num-nodes,l:nun-nodes] : int 
var stime,etime : int 

/ *  read the input graph from stdin */ 
fa i := 1 to nun-nodes, j := 1 to nun-nodes -> 

read (in-graph [if j] ) 
a f 

write ("graph size : ", num-nodes, "nodes tokens : ", nun-tokens) 
write("Starting timing...") 
stime := mscounter0 

/ *  PUT the data * /  
fa i := 1 to nun-nodes -> 

t[1] := i 
t 12 :nun-nodes+ll := in graph [if l:num_nodesl 
ms .put ("DATA", t [l :nun-zodes+l] ) 

a f 

/ *  PUT the tokens - each token is an integer range * /  
max-range := (1 << (nun-nodes - nun-critical)) - 1 
range-size := (max-range+l) /num-tokens 
fa i := 0 to nun-tokens - 1 -> 

t[ll := i 
t[21 := range-size * i 
t [3] := range-size * (i+l) - 1 
ms.put ("TOKENW,t [l:3]) 

a f 
if (range-size*nun-tokens != max-range + 1) -> 

t [1] := nun-tokens 
t[2] := range-size * nun-tokens 
t[31 := max-range 
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/ *  collect the results * /  
min := 10000 
fa i := 0 to nun-tokens-1 -> 

t [l:2] := (i, types.undefined) 
ms.read("~ESULT",t [l:2]) 
if (t [2] < min) -> 

min := t[2] 
id := t[ll 

f i 
a f 

etime := mscounter ( )  
write("Computation completed...") 
write("\n\nTotal time for computation :",etime-stime) 

end 

end 
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resource stein-worker 

/ *  this resource is the worker resource. An arbitrary number of 
resources will exist (1 or more). These resource compete over 
the work tokens, performing the work specified when they 
successfully grab a token. * / 

import types 
import moose 

body stein-worker(num-nodes:int; moose-res:cap moose) 

const infinity := 10000 

type graph-type = rec( 
adj mat[l:num_nodes,l:num_nodesl : int 
present [l :nun--nodes] : bool) 

op modify(ing:graph-type; n:int; res out:graph-type) 
op min-span(g:graph-type; res t:graph-type) returns w:int 

/ *  given the input graph, modify it according to the enumerating 
integer. Each bit in the integer corresponds with a node in the 
input graph, with a bit value of 1 indicating that the node should 
be removed for this particular subgraph. * / 

proc modify(in-graph,n,out-graph) 
out-graph := in-graph 
fa i := 1 to nun-nodes -> :. for each bit in n ... * /  

if (n%2 = 1) -> / * if the bit is set... * /  
out-graph .present ii] := false / *  remove the node... * /  
fa 5 := 1 to num-nodes -> 

out-graph.adj-mat[i,jl := infinity 
out graph. ad j-mat [ j , il : = in•’ inity - 

a f 
f i 
n := n >> 1 

a f 
end 

/ *  given an input graph, apply Prim's algorithm to compute the 
minimum weight spanning tree. Return the tree and its weight * /  

proc min-span (g, t) returns weight 
var iterations, min-weight, min-from, min-to : int 

/ *  initialize everything ... choose a node as the starting node 
for the tree. */ 

t.adj-mat := ([num-nodesknum-nodes1 infinity) 
t .present : = ( [nun-nodes I false) 
iterations := 0 
fa i := 1 to nxnodes st g.present [il -> 

iterations ++ 
a f 
iterations -- 
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weight := 0 
fa i := 1 to num-nodes st g.present[i] -> 

t .present [il := true 
exit 

a f 

/ *  for each iteration, add the least weight arc from the current 
tree to a node not in the current tree - this is the greedy 
approach. 

fa q := 1 to iterations -> 
min-weight := infinity 
fa 2 := 1 to nun-nodes st t.present[il, 

j := 1 to num-nodes st (not t .present [ jl) -> 
if (g . adj-mat [i, j] < min-weight) -> 

min-weight := g.adj-mat[i,j] 
min-from := i 
min-to := j 

F :  

if (min-weight = infinity) -> 
weight := infinity 
return 

[I else -> 
weight := weight + min-weight 
t.adj~mat[min~to,min~froml := min-weight 
t .ad j-mat [min-f rom, min-to] : = min-weight 
t .present [min-to] : = true 

f i 
a f 

end 

/ *  this is the main process executed by a worker process. It GETS 
a work token, uses the previous two procs to perform the work 
specified by that token, and then goes back for another. * / 

var input-graph, work-graph, tree, min-tree : graph-type 
var start,finish,min,weight : int 
var t [ 1 : num_nodes+3] : int 
var id : int 

process main 
collect the data (the input graph) * /  
i := 1 to num-nodes -> 
t[l] := i 
t [2  :nun-nodes+l] := ( [nun nodes1 types .undefined) 
moose-res .read ("DATA", t [l?num_nodes+ll ) 
input-graph. adj-mat [it 1 :nunumnodesl := t [2  :num_nodes+ll 

input-graph.present := ([nun-nodes] true) 

do (true) -> 
/ *  grab a token ... * /  
t [l:3] := ( [3] types.undefined) 
moose - res.get("TOK~~",t[l:31) 



Appendix C: Steiner Tree Example Source Code page 96 

id := t[11 
start := t 121 
finish := t[3] 
min := infinity 
/ *  for each subgraph specified by the token, apply Prim's 

algorithm. Take note of the least weight. * / 
fa i := start to finish -> 

modify(input-graph,i,work-graph) 
weight := min-span(work-graph,tree) 
if (weight < min) -> 

min-tree := tree 
min := weight 

f i 
a f 
/ *  PUT the result (i.e. the least weight) * /  
t[l:2] := (id,min) 
moose-res .put ("RESULT", t [ 1 : 2 I ) 

od 
end 

end 
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resource steiner 

/ *  this is the main resource of the steiner program. This resource 
is responsible for creating the virtual machines, creating and 
initializing the moose servers, defining the object forms, 
creating the worker and master resources, and then starting things 
moving * / 

import types 
import moose 
import stein-worker 
import stein-master 

external gethostname (res n : string(*) ; i:int) 

body steiner ( )  

const max-nodes := 10 

var vms [l :max-nodes-11 : cap vm 
var ms[l:max-nodes] : cap moose 

var nun-nodes : int 
var num-tokens : int 

initial 
var n : string(50) 

/ *  the parameters to this program should consist of an integer 
followed by a list of physical machine names. The integer 
specifies the number of work tokens that the task will be 
split into. The list of machines specifies the machines 
which the worker processes will be created on. The master 
resource is created on the machine from which the program 
is executed. * / 

if (numargs ( )  < 2) -> 
write("form: steiner <num tokens> <workerl> [<worker2> ", 

" [<worker3>. . .I ] " )  
stop 

fi 
getarg (1, num-tokens) 
num-nodes : = numargs ( ) 
writes("\n\nRunning Steiner Tree problem on ",num-nodes, 

" servers ... \n\nW) 
gethostname (n, 40) 
write (I1 locating master node on", n) 
ms [ 11 := create moose ( 1  
fa i := 1 to numargs()-1 -> 

getarg (i+l,n) 
write ( "  locating worker", i, "on", n) 
locate (it n) 
vms[il := create vm() on i 
ms [i+l] := create moose ( )  on vms [il 

a f 

/ *  initialize moose servers */  
write("1nitializing moose servers...") 
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fa i:=l to num-nodes -> 
ms [i] . init-moose (ms [l:num_nodesl, i) 

a f 

end 

process main 
var mres : cap stein-master 
var wres : cap stein-worker 
var graph-size,nun-critical : int 

read (graph-size, num_critical) 

var t [l :nun-nodes] : bool := ( [nun-nodes] true) 
var tf [l :nu-nodes1 : bool := (true, [num-nodes-l] false) 
var ft [l :nun-nodes1 : bool := (false, [nun-nodes-11 true) 
var one [ 1 : nun-nodes] : int : = ( [num-nodes] 1) 
var of [l:nun-nodes] : int := (1, [num-nodes-l] infinity) 

ms[l].def~fom("D~T~",graph~~ize+l,types.safe,tf,t,one,one, 
one, one) 

ms [1] .def-fom("TOKEN",3,types.safe,tf,t,ofrone,of,one) 
ms [1] .def- RESULT", 2, types. safe,ft, tf, of, one, ofr one) 

mres := create stein-master(num-tokens,graph-size,num-critical, 
ms [ll) 

fa i := 1 to nun-nodes - 1 -> 
wres := create stein-worker (graph-size,ms [i+l] ) on vms [il 

a f 
mres . go ( ) 
stop 

end 

end 
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