
THE USE OF SEMANTIC INFORMATION IN A

DISTRIBUTED DATA STRUCTURE

Douglas Bruce Bailey

B .Sc., University of British Columbia, 1986

THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF

THE REQUBEMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Douglas B. Bailey 1988

SIMON FRASER UNIVERSITY

August 1988

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without permission of the author

APP ROVAL

Name : Douglas Bruce Bailey

Degree : M.Sc. Computing Science

Title of Thesis : The Use of Semantic Information in a Distributed Data

Structure

Examining Committee:

Chairperson: Dr. W. S. Luk

Dr. M. S. Atkins

Senior Supervisor

Dr. A. L. Liestman

u. J. GI Peters

External Examiner

School of Computing Science

Simon Fraser University

PART I AL COPYR l GHT L l CENSE

I hereby g ran t t o Simon Fraser University the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f t he Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l not be al lowed

wi thout my w r i t t e n permission.

T i t l e of Thes i s/Project/Extended Essay

Author r

(s ignature)

(date)

ABSTRACT

page iii I

It is considered that an algorithm which solves a general class of prob-

lems will not be as efficient as an algorithm which solves a subset of

the class of problems. Similarly, generalized distributed data structures

(and their manipulative operations) are less efficient than particular

algorithms for distributing data for a specific application.

The efficiency limitation of generalized data structures can be partially

defeated by using semantic information. This thesis presents a distri-

buted data structure which makes use of information provided by the

application to implement an efficient distribution of the data. This

information typically includes which nodes in a network are going to

produce data, which nodes are going to read data, and how the data is

to be distributed and replicated. An implementation of the distributed

data structure is given, along with two examples. Analysis of these

examples demonstrates the efficiency and flexibility of the data struc-

ture.

-

page iv

Acknowledgements

I would like to thank all those who helped me with this thesis: my

supervisors, Stella Atkins and Art Lies tman, for their constant atten-

tion; Joe Peters, Ada Fu and a few others for reading and criticizing my

thesis proposal; and my wife and friends for their moral support.

Table of Contents

... ... Abstract 111 ... Acknowledgements iv
Table of Contentsv
List of Fieures ... vi "
1 . Introduction .. 1

1.1. Introduction to MOOSE .. 1
1.2. Previous Work ... A

2 . MOOSE Definition ... 10
... 2.1. MOOSE Semantics .l 0

2.2. System Model .. l2
2.3. Customization Features .. I3

2.3.1. Interface Server Update Modes ... 14
2.3.2. Interface Server Activities .. 16
2.3.3. Correctness of Operation ... 16

2.4. Summary of Customization Features ... 17
3 . Implementation ... 19

3.1. Additions to the object space - PUT ... 2l
3.2. Looking at the object space - READ ... 2l
3.3. Removing objects from the object space - GET ... 23

.. 3.4. Support Mechanisms 25
3.5. Performance Analysis ... 26

4 . An Example: Steiner Tree Problem ... 29
.. 4.1. Problem Definition W

.. 4.2. Computational Model 31
4.3. Configuring the MOOSE .. 32

5 . An Example: Bitonic Merge ... 33
5.1. Problem Definition .. 33

... 5.2. Computational Model 40
5.3. Configuring the MOOSE .. 40

6 . Alternative Methods for Improving Efficiency ... 43
6.1. Consistency Requirements .. 43
6.2. Granularity of Data Distribution ... 44

6.2.1. Limitations to the Prototype MOOSE .. 44
6.2.2. Reducing the Granularity of the Distribution of Data 45
6.2.3. Server Mapping Functions ... 46
6.2.4. Example of Server Mapping Functions ... 50

... 6.3. Exploiting Piggybacking 53
6.4. Automating Selection of Update Modes .. 5

7 . Conclusions ... 57
... 7.1. Conclusions 57

7.2. Further Research .. 57
Appendix A : Overview of the SR Programming Language ... 5!3

A.1. Operations and Invocations: .. 5!3
.. A.2. Sequential statements 61

Appendix B: MOOSE Implementation ... f3
Appendix C: Steiner Tree Example Source Code .. 92

.. References 9

List of Figures

Figure 2.1 : update modes ... 25

Figure 3.1 : Pseudocode of the GET operation ... 21

Figure 3.2 : Pseudocode of the READ operation ... 23

Figure 3.3 : Pseudocode of the PUT operation ... 24

Figure 4.1 : instance of the Steiner Tree Problem ... 29

.. Figure 4.2 : solution to the Steiner Tree Problem 3

Figure 4.3 : time required to solve the Steiner Tree Problem vs . number of worker

... processes used 37

Figure 5.1 : a comparator .. 39

Figure 5.2 : a bitonic sort network for 8 elements .. 39

Figure 6.1 : matrix decomposition for Jacobi method ... 5l

Figure 6.2 : example problem decomposition .. :: 52

List of Tables

1C__311_-

page vi

Table 3.1 : cost of MOOSE operations .. 27

Table 6.1 : server mapping function ... 53

1. Introduction

1.1. Introduction to MOOSE

The paradigm of shared memory, in which multiple active processes can access

the same physical memory concurrently, has proved to be useful in many different

fields of science. Computer systems which implement shared memory are usually

uni- or multi-processor systems because the communications overhead between

physically distributed components is very high. Consequently, shared physical

memory is not feasible in computer systems distributed across a local area network

(LAN). The obvious utility of shared memory remains, however.

One of the major research areas in computer science today is distributed
2

programming. A distributed program consists of more than one process - often

with different processes executing on different machines across a LAN - commu-
I

, nicating through an exchange of messages. The exchanged messages carry state

information and data among processes which do not necessarily share physical
I

memory. An obvious alternative to this potentially chaotic collection of processes
1

I and messages is to provide a means of logically sharing memory or (as the proposed

research will focus on) sharing the data which all processes need to access. If an effi-
I

cient shared data structure is provided, the programmer will not have to build one.
I

The resulting program will be more modular and less bug-prone than if the pro-

grammer had to build his own distributed data structure.

It is usually the case, however, that a data structure which satisfies the needs of a

great many applications does not provide an efficient service: generality leads to

inefficiency. The primary reason for this is that a programmer, in custom designing

I. Introduction page 2

a data structure, can make use of information on how the data is to be used by the

application to improve efficiency.

A generalized data structure can be made more efficient by making use of some

semantic information provided by the application. This thesis describes the design

of such a generalized data structure, a MOOSE mdif iab le Object StructurEJ, where

information provided by the application is used to determine which of several dif-

ferent algorithms should be used to distribute the data. Many applications can use a

MOOSE (almost) as efficiently as a custom designed data structure. The MOOSE sys-

tem was designed to operate on a LAN such as an Ethernet where message commu-

nication costs are significant compared with calculation costs.

The following information is provided by the application to a MOOSE at the start

of execution:

Which nodes of the network are going to produce data, and which are going

to use the data produced?

How is data to be distributed? Should a piece of data be distributed as soon

as it is produced, should the data be batched up and sent in one large block,

or should a process have to ask if a given piece of data is available?

How is the MOOSE going to be used? Is more than one process likely to at-

tempt to grab the same piece of data at the same time? Does it matter if

they both succeed, even though they should not, according to the defini-

tion of the data structure?

In effect, when the application gives this information it is agreeing that in using

the MOOSE, the application will work within certain restrictions (e.g., if the applica-

I. Introduction page 3

tion specifies that a certain network node will not produce any data, then that node

is restricted to not producing any data). If these restrictions are not met (i.e. the

information provided by the application was incorrect) then the MOOSE might

operate incorrectly. It is the programmer's task to make sure that the information

given to the MOOSE is accurate. It is also the programmer's task to make sure that

the information provided makes the program execute as efficiently as possible.

The MOOSE structure is aimed at a loosely coupled distributed system in which

several mi- or multi-processors are connected across a LAN. MOOSE has been im-

plemented in the distributed programming language SR ([Andrews and Olsson,

19871, [Olsson 19861, and [Andrews et al, 1988]), and runs on several SUN worksta-

tions running the Unix operating system connected across an Ethernet LAN. The

language SR was chosen because it provides a very high level environment for

distributed programming, along with a wide variety of communication and syn-

chronization mechanisms. In addition, SR provides a consistent and intuitive

syntax which makes the task of programming both easier and more enjoyable than

programming in lower level languages like C.

In the remainder of this section, the work of other authors towards improving

data structure efficiency by using application dependent information will be exam-

Led. In Section 2 and 3 following, the design and implementation of MOOSE will

be described in detail, and some performance figures will be given. Sections 4 and 5

each give an example on the use of a MOOSE, along with some performance analy-

sis. Section 6 discusses some alternative methods for improving efficiency through

use of semantic information. Section 7 gives a brief conclusion.

1. Introduction page 4

1.2. Previous Work

A number of different authors have examined means by which the efficiency of a

data structure can be improved in an application-dependent way. The best example

of this can be found in [Cheriton, 1985 and 19861 which deal with Cheriton's

'Troblem-Oriented Shared Memory." In these papers, Cheriton examines a number

of different distributed components of the V System, and the means by which their

data structures have been made more efficient. Generally, he is interested in impro-

ving efficiency through relaxation of consistency.

Cheriton describes the relaxation of consistency through relaxed store and

relaxed fetch operations. A relaxed store operation is not guaranteed to store the

new information. A relaxed fetch operation may return stale or incorrect data, or

might even indicate that the data is not known. He indicates several ways of deal-

ing with the inconsistencies brought about by relaxed operations:

Detection on use : the user of the data can detect that the data returned by a

relaxed fetch operation is not correct.

Sufficient Accuracy : the data returned may not be accurate or up-to-date,

but it may be sufficiently accurate for the use it is intended.

Optional Data : an application might be able to continue operation without

a requested piece of data. The application might be able to perform cor-

rectly without the data by extrapolating or substituting other data. Alter-

natively, the application could make the fetch request again on a different

machine which has the data. Cheriton refers to this as function shipping

where the execution of the function is moved, as opposed to data shipping

where the data is moved.

Discardable Updates : an application might be able to tolerate the effects of a

lost update. For example, the data might be regularly updated so that if a

1. Introduction page 5

store operation fails, the stored data is stale until another store operation

succeeds.

The first example that Cheriton gives is the V name service. In this service, a

primary copy of the information associated with a name is kept at one machine,

with caches kept at other machines. Stale or incorrect data is detected when it is

used . On a cache miss, the correct information is determined through multicast

communication, and the cache is updated.

The V time-of-day clock is an example of shared memory with sufficient accu-

racy. Each machine's local clock is periodically corrected with a message from a net-

work time server, and so the local clock never differs from the network time by

more than a small amount.

Another example of sufficient accuracy of information and detection of stale data

on use is in global scheduling across a LAN. In the V System a user can indicate that

a command is to be executed on any machine in the network cluster. Thus, the

scheduler will want up-to-date information about the resources available to differ-

ent machines in order to best schedule the job. The servers could broadcast their

current status periodically, or when there is a significant change. Other servers

would then make use of sufficiently accurate information. When a scheduler tries

to start a job on a different machine, it could include a description of the presumed

load. If this description is too inaccurate, the request can be refused - inaccurate

data is thus detected on use. These methods of global scheduling are currently being

implemented in the V System.

1. Introduction page 6

In [Ravindran 19871, "Application Driven Shared Variables" (ADSVs) are

defined. Ravindran provides a thorough definition of his ADSVs, which are simply

shared variables which only provide a weak form of consistency. He shows how his

ADSVs might be used in three examples: management of leadership in a server

group, management of the printer in a spooler group, and management of the name

space of machines in a distributed system.

Terry, in [Terry 19871 considers the problem of maintaining cache consistency in a

distributed system. He notes that maintaining full consistency is very expensive,

and a possible alternative is to loosen consistency requirements and consider cached

data as "hints" rather than accurate information. This is an acceptable alternative

for a variety of applications. For example, in the distributed mail service Grapevine,

servers cache information about mailboxes not stored locally. A server will detect

the inaccuracy of its cache when it attempts to forward mail to a mailbox which has

been moved. Then, a global registration service is consulted to update the cached

information.

The work done by Schwarz and Spector in [Schwarz and Spector, 19841 is inter-

esting but not quite as relevant to the topic under discussion. Schwarz and Spector

examine the consistency requirements of shared abstract types from a more theo-

retical point of view. The primary purpose of their paper is to study a method of

notation for dependencies between different operations on an abstract type; however

they also describe a locking technique which makes use of type-specific information

provided by the programmer to improve availability.

In all of these works, solutions have been proposed for specific problems. Effi-

aency has been improved at the expense of consistency. However, a MOOSE

I. Introduction page 7

attempts to provide a general solution to a wide variety of problems. As such, a

number of methods for increasing efficiency had to be considered which were just

taken for granted in the works described above (in implementing a specific algo-

rithm, the pattern of message passing can easily be designed so that the minimum

number of messages are required. In a generalized data structure, achieving optimal

message passing is difficult).

The work which inspired the form of the MOOSE data structure was [Carriero

and Gelernter, 19851 - "The S/Net's Linda Kernel." Linda is a distributed data

structure implemented on the S/Net multicomputer (built by AT&T Bell and based

on a fast, word-parallel bus interconnect). Rather than providing operations for

assigning values to labels and for reading the value associated with a label (such as

the standard read and write operations), Linda provides a tuple space. The Linda

tuple space is simply a replicated, shared set of tuples, where a tuple is an ordered

list of values. The tuple space is manipulated with three operations: OUT, READ, and

I N .

The OUT operation adds a tuple to the tuple space. If an OUT operation is per-

formed with a tuple already existing in the tuple space, the tuple space remains

unchanged.

READ(X) takes a "tuple template", X (an object which defines a tuples form and

optionally fills in some of the tuples values) and returns a tuple which "matches"

the template X. A tuple is said to match a template if the forms are equivalent and

any values given in the template are matched by those in the tuple. If more than

one matching tuple is available, one is chosen non-deterministically. If no match-

1. Introduction page 8

ing tuple exists in the tuple space, the READ operation blocks until such a tuple is

available.

The IN operation is similar to the READ operation, except that the IN operation

also removes the tuple from the tuple space. If two IN operations attempt to

remove the same tuple, only one will succeed and the other will be forced to try

again with a different tuple, or block until a matching tuple is available.

While the Linda data structure is quite interesting, it is not appropriate for a

loosely coupled distributed system. In the Linda implementation, a copy of the

entire tuple space is kept at each node in the network. Because of the slow message

transfer times (relative to the S/Net bus) between two Unix processes connected

over an Ethernet, such an implementation results in far too much communications

overhead to be feasible for most applications. Even if a reliable broadcast mecha-

nism is available to reduce the cost of transmitting a piece of data to every node in

the network, the cost of processing that data at each node would still be too high.

A further point of interest in [Carriero and Gelernter, 19851 concerns their

"token/worker" model of computation. In this model, a set of workers compete

over work tokens. When a worker successfully grabs a work token, the token is

removed from the data space so that no other workers will attempt to grab it. The

worker then does the work represented by the token, and goes back to grab another

token. This model is interesting for a number of reasons: it scales transparently as

more workers are added, it automatically balances the work load among the work-

ers, and it can be fairly resilient to node failure among the workers. Because the

MOOSE data structure is so similar to the Linda data structure, implementation of

the tokedworker model with a MOOSE is auite sim~le.

1. Introduction page 9

In [Cheriton and Stumm, 19871, a master-slave approach to distributed programs

is introduced and called a multi-satellite star. This structure is in fact nearly identi-

cal to the token/worker model explained above, with a star central allocating sub-

tasks to satellite modules. The purpose of their study was to examine methods of

realizing the computational potential of workstation clusters. They concluded that

their multi-satellite star configuration of a workstation cluster provides a usable

parallel machine for certain classes of problems. The master/slave approach is not

the best solution paradigm for every problem, however, and thus the multi-satellite

star is limited. A MOOSE can provide the functionality of the multi-satellite star

without the limitations present in that computation model.

2. MOOSE Definition

page 10

2.1. MOOSE Semantics

A MOOSE is logically a separate entity from the processes which use it. Processes

communicate with the MOOSE through interface servers. The interface servers

implement the basic operations on the shared objects. Ideally, one interface server

will exist on each node in the network. Interface servers can process operations

concurrently.

The basic data type is an object. The form of an object consists of a name and an

ordered list of simple types (integer, boolean and character string). The value of an

object is an ordered list of values, with types to match the form of the object. For

example, an object might have the form ('cell', integer, integer, character string). An

object of the form 'cell' might have a value (5,10,'hello').

An object template consists of a partially defined object. The form of the tem-

plate is defined fully, but some or all of the values are undefined. For example,

('cell',integer,lO,character string) is a valid object template. An object is said to

match a template if the forms are equivalent, and the all of the defined values of the

template match the corresponding values of the object. For example, the object

('ce11',5,1O,'hello') matches the template ('cell',integer,lO,character string) but not the

template ('dif',integer, 10, character string) or ('cell',lO,integer,character string).

The operations which the interface servers implement are READ, GET and PUT.

These operations correspond to Linda's READ, IN and OUT, but some of the names

were changed to avoid confusion.

2. MOOSE Definition page I1

The READ operation takes an object template for input, and returns a matching

object. If more than a single object in the object space matches the object template,

one is chosen non-deterministically to be returned. If no matching object is avail-

able, the operation blocks until one becomes available. The object space remains

unaffected by a READ operation.

The GET operation is identical to the READ operation except that when the opera-

tion has been completed, the object has been removed from the object space. Sev-

eral GET operations might be invoked with templates which match the same object

(such operations are said to be competing). If this happens, only one GET for each

object matching the template should succeed at once. The rest should block until

more objects matching the template become available. If two GET operations are

competing for one object, only one should succeed immediately while the other

blocks.

The PUT operation takes an object for a parameter and places the object into the

object space. If the object is already in the object space, it is duplicated - multiple

copies of an object are allowed (unlike in Linda).

For example, consider the piece of pseudo-code given below:

do (t r u e) ->
G E ~ (~ r n u l t i ' , i n t e g e r a , in teger b, integer c)
d := a*b*c
PUT ('product ' , d)

od

It GETS from the object space an object of the form:

(' m u l t i ' , integer, integer, in teger) .

2. MOOSE Definition page 12

It then multiplies the three integers together and places the result back into the

object space with a PUT operation. This action is repeated indefinitely. When the

object space is emptied of objects which match the GET template, the algorithm will

block on the GET.

Throughout the rest of this section, an object template will be specified for the

GET and READ operations by specifying the object name as the first parameter, and

the appropriate types or values as subsequent parameters. Values will be given

explicitly, while types will be given in the form 'type name' (such as 'int n') where

type specifies the field type, and name specifies the name of the variable to instan-

tiate with the corresponding value of the matching object. For example, the opera-

tion GET('~€!su~', 1, 5, int result) would execute the GET operation on an object with

the form ('result', int, int, int). The first and second integers of the matched object

must equal I and 5 respectively, and the value of the third integer will be returned

and assigned to the variable named result .

2.2. System Model

A program using a MOOSE consists of several processes distributed across a LAN.

Each machine which executes one of these processes also has a MOOSE interface

server executing on it. Thus each process in the program has access to a local inter-

face server. The interface servers communicate through the LAN to implement the

MOOSE. Note that if several MOOSE-using programs are executing at once, their

respective MOOSEs are completely independent - a MOOSE is associated with a

program not with a system, so several might exist at one time.

2. MOOSE Definition page 13

In a LAN, the communications costs are high but not so high as to be prohibitive

(as would be the case in a wide-area network). The total cost of messages sent

among machines (including protocol overhead and transmission time) will still

constitute the majority of the total cost of implementing a MOOSE. It is with the

goal of minimizing the number of messages sent across the LAN that the analyses

in Sections 4,5 and 6 are made.

Some assumptions are made. The most important assumption is that an under-

lying guaranteed delivery mechanism is in place so that no messages are lost: this is

reasonable for a system composed of Sun-3 workstations running Unix which have

many Ethernet interface buffers so that even unreliable datagram messages are

unlikely to be lost. It is also assumed that message costs between machines are con-

stant, regardless of the size of the message or where it is being sent. This assump-

tion is reasonable as long as no message exceeds the size of an ethernet packet (of =

1500 bytes). This will certainly not be the case in general (consider a very large

object, or just a cache update (see Section 2.3. following) of many small objects), but

should be a reasonable assumption for the examples given in Sections 4 and 5.

2.3. Customization Features

Up to this point, MOOSE has been very similar to Linda. It is through the cus-

- tomizable features of MOOSE that the two data structures differ. It is through these

- features that the application can give the MOOSE application-specific information so

that the execution of the MOOSE will be as close to optimally efficient as possible.

2. MOOSE Definition page 14

2.3.1. Interface Server Update Modes

Consider a system in which ten different computers gather data from their envi-

ronment while a single computer processes that data. With the Linda system, the

ten producer computers would not only have to send their data to all ten other

computers, they would also have to receive data from nine other data producers -
data that they do not need. All updates made to the tuple space are immediately

communicated to all Linda servers. This method will always work, but it is far from

efficient.

In this case, the overhead can be avoided by the use of the first customization

feature of a MOOSE: the update modes. Each interface server has a different "add

update mode" and a different "delete update mode" for each object form. The

modes might be 'eager', 'cached' or lazy'. Each server knows the modes of all other

servers.

When a server has an add update mode for a particular object form set to eager,

then that server is immediately informed by all other interface servers of all addi-

tions of objects of that form. Similarly, if a server has a delete update mode of eager,

all other servers immediately inform it of deletions from the object space.

Lazy update mode means that a server does not want to be informed of updates

to the object space. A server in lazy add update mode must ask other servers if a

given object is in the object space. A server in lazy delete object mode must ask

other servers if a given object is still in the object space, even if the object is still pre-

sent locally.

2. MOOSE Definition page 15

Eager and lazy update modes represent two extremes. Between the two extremes

is the cached update mode - the updates are cached by the other servers before

being sent. A cache of updates is sent when the size limit of a cache is reached or

after a certain time limit has expired (the application defines both the cache size and

the time limit). Eager update mode is equivalent to cached update mode with a

cache size of 1. Lazy update mode is equivalent to cached update mode with a cache

size and delay between sending of the cache of infinity.

Thus the update modes provide nine distinct states for each server to be in, for

each object form in use (although not every combination makes sense: if the add

update mode is lazy, using an eager delete update mode is pointless). The update

mode space is shown graphically in Figure 2.1 below.

object form

update

eager cached lazy

add update mode

Figure 2.1: there are nine update modes per object form

mode

2. MOOSE Definition page 16

2.3.2. Interface Server Activities

The update modes solve some of the inefficiencies of the Linda system, but not

all of them. The customized update modes make execution efficient in situations in

which there are a small number of data consumers (interface servers through

which at least one READ or GET is executed). On the other hand, there may be a large

number of consumers but a small number of producers (interface servers through

which at least one PUT is executed. A server can be both a consumer and a

producer). One possibility is to make all of the consumers eager with respect to

additions to the object space. This works fine if each consumer accesses most of the

data. If each consumer only accesses a small quantity of the data, however, message

exchanges are wasted in sending the data which will not be accessed.

If it is known which servers are producers, then the consumers can be lazy with

respect to additions, and poll the producers only when a piece of data is required. It

can be shown that this latter method is more efficient than giving the consumers an

eager add update mode if each consumer READS less than 1/(2M) of the data, where

M is the number of producersl. Thus an application must specify the activity of each

interface server for each object form - consumer, producer or both.

2.3.3. Correctness of Operation

As is usually the case in distributed systems, ensuring correct operation in all

contingencies requires a great deal of effort. Because of the simple semantics of a

l1f a server is eager-add with respect to a particular object form, it will receive notification of all
additions of objects of that form. If N objects are PUT, this requires N messages, regardless of how
many of those objects are eventually READ. If a objects are READ, then the cost per object READ is
N/,. If the server is lazy-add, then the PUTS do not require any messages, but each READ requires
2M messages, where M is the number of producer servers. Thus the cost per READ operation for
an eager-add server (N/,) is less than the cost per READ operation for a lazy-add server (2M) iff
(N/a > 2M), or (l/N < i.e. the proportion of objects READ is less than

2. MOOSE Definition age 17

MOOSE, the only case where correctness is difficult to ensure is when different pro-

cesses are all attempting GETS with matching templates. These situations are quite

specialized, however. There are a great many algorithms which do not present

these problems (consider a situation in which many machines collect data and place

it into the object space, and one server consumes the data and analyzes it) and these

should not have to pay the penalty for correct operation in every possible situation.

There are two 'correctness' modes which apply to an object form - safe and

risky . If an object form is safe, all GET operations are guaranteed to execute correctly.

If an object form is risky, competing GET operations might not execute correctly;

however, all non-competitive GET operations will execute correctly. Thus, if a

situation where two processes are trying to grab the same object is never going to

arise, or if correct operation in that case is not important (e.g. if each object

represents a little work to be done, and taking the chance on having a task done

more than once to save a few messages is worth while), a risky correctness mode can

be used to improve efficiency. Unlike other customization features, the correctness

mode for an object form is the same for every server in the network.

2.4. Summary of Customization Features

There are three customization features of MOOSE: update modes, server activi-

ties and correctness. The update modes and server activities apply to particular

. servers with respect to particular forms. There are two update modes: add update

mode and delete update mode. Each mode might be eager, cached or lazy. There are

two server activities: producer and consumer. Each server is assigned either or both

of the activities of producing and consuming. Correctness mode applies to a partic-

2. MOOSE Definition page 18

ular object form: all servers must implement the same level of correctness. There

are two correctness modes: safe and risky.

Thus there are 72 different possible states for a given server with respect to a par-

ticular object form. There are 3 possible add update modes, 3 possible delete update

modes, 2 possible states regarding production, and 2 possible states regarding con-

sumption. In addition, there are 2 possible correctness modes with respect to a

given object form which apply to all servers. While all combinations are permitted,

not all make sense. For example, if a server is not a consumer, sending object space

updates to that server is just a waste of resources. Thus specifying eager add or

delete update mode is pointless.

Note that each of the variables pertains to a particular object form. Each server

must know the values of the different variables for every server. Because of this, it

is necessary to explicitly create an object space (or perhaps "sub-space") for a particu-

lar object form, before an object of that form can be used. In this implementation we

assume that this initialization data is reliably distributed before the application starts

executing.

page 19

3. Implementation

As mentioned previously, MOOSE has been implemented on a group of Sun-3

workstations connected on an Ethernet LAN, running the Unix 4.2 BSD operating

system in the distributed programming language SR Because SR is a strongly typed

language, implementation of objects as described in the previous section of this

thesis would have proved to be very difficult and quite messy. Since such a task

would not have served any useful research purpose, a prototype version of an object

was implemented where an object is simply a list (of any size up to a system-defined

maximum) of integers.

For a complete listing of all of the source code for the implementation, refer to

Appendix B. For those not familiar with the SR programming language, a brief

summary of the basic features of SR is given in Appendix A.

Before a description of the algorithms for handling different operations is given,

an overview of the possible situations a MOOSE server might be in will be useful.

Remember that there are 4 pieces of application-dependent information given to the

MOOSE servers about each object form: the add-update modes of all of the MOOSE

servers; the delete-update modes of all of the MOOSE servers; which of the MOOSE

servers are producers and which are consumers; and the consistency mode of the

object form.

Of this information, only the update modes affect the accuracy and completeness

of the local database stored with each server. Each server must know its own add

and delete update modes to know how to perform the READ and GET operations cor-

rectly. Each server must know the add update modes of every other server to exe-

3. Implementation page 20

cute a PUT operation correctly. Lastly, each server must know the delete update

modes of every other server in order to correctly remove an object from the object

space (as part of the GET operation). The server activity information provided by the

application is used to optimize the operations in special cases (such as the GET

operation executed from a lazy-add server when there is only one producer, where

the operation is shipped to the producer server).

The server which PUT an object into the object space is the owner of that object.

In safe correctness mode, it is this server's responsibility to ensure that only one

attempt to delete the object succeeds. Even if the correctness mode is risky, the

owner of an object is informed immediately if that object is deleted, even if the

owner has a delete update mode of lazy or cached. Thus, the owner of an object is

the final authority in deciding whether or not a given object has been removed

from the object space.

3.1. Additions to the object space - PUT

Pseudocode for the PUT operation is given in Figure 3.1. The PUT procedure

simply calls the global - add procedure which in turn is responsible for immedi-

ately sending off the addition to all eager add update servers and for caching the

addition for all cached update server$.

2 ~ o t e that the addition is neither sent nor cached to servers which are not consumers, regardless of
their add update mode.

3. Implementation page 21

proc PUT(X)
call global-add(X)

end

proc global-add (XI
fa ({all servers S such that (eager-add (Sf X) and

consumer (S,X)) or (S=mel 1) ->
send S . local-add (X)

a f
co ((all servers S such that cached-add(S,X) and

consumer (Sf X))) ->
send cache-add (Sf X)

OC
end

process a
do (true) ->

in cache-add (Sf X) ->
{ add X t,o S's cache C I
if ({C full)) ->

call fire-of f-add (S)
f i

ni
od

end

proc fire-off-add (S)
/ * this proc is invoked on timeout or cache full conditions * /
I if S's cache not empty send it off 1

end

proc local-add (XI
{ add X to the local database 1

end

Figure 3.1 : Pseudocode of the PUT operation

3.2. Looking at the object space - READ
Pseudocode for the READ operation is given in Figure 3.2. READ^^^ the object

space considerably more complicated than putting object into the object space,

because of the various update modes that the server performing the READ might be

in. If the server is in eager add update mode, it can be sure that if the object exists, it

has it stored locally. If the server is in cached add update mode, it can be sure that if

the object exists, it has or will shortly have it in local storage. However, if the server

is in lazy add update mode, it may or may not have the object stored locally (if the

3. Implementation page 22

object was produced locally, it will be stored locally, but if it was produced elsewhere,

it will not be stored locally).

Even if an object has been found stored locally, it may not exist in the object space

- it may have been removed earlier. This is possible if the server is in lazy or

cached delete update mode.

Thus, altogether there are three different possibilities that must be handled dif-

ferently.

I. If the server performing the READ is in lazy add mode (with any delete

mode) then the object may or may not be stored locally so the reader can-

not depend on locally stored information. In the general case, the READ

request is forwarded on to all producers of the given object form. How-

ever, if a server exists in eager-add update mode (and thus has all objects

of the given form in its local store), the function is forwarded to that

server. Here, function shipping is used instead of data shipping.

2. If the server performing the READ is in eager or cached add mode and eager

delete mode, then the object, if it has ever been or ever will be produced,

will eventually be stored locally. The reader can depend on the local stores

so need not check elsewhere.

3. If the server performing the READ is in eager or cached add mode and

cached or lazy delete mode, then if the object exists or will exist, it will

eventually be stored locally. However, when a matching object is found

locally, it may be an object that has since been deleted from the object space

so the reader must check with the owner of the object to see if indeed it

still exists.

3. Implementation page 23

proc READ (X)
if (lazy-add(me)) ->

/ * operate same for all delete modes * /
if (numgroducers > 1 and 3 some server S such that

eager-add (S , X)) ->
S .BEAD (X)

[I else ->
if ({X not present locally}) ->

co ({all producers S })
call S . owner-read (X) -> exit

OC
fi

f i
return X

/ * eager or cached add mode * /
[1 eager-delete (me) ->

call checkwait (X)
return X

[I else -> / * lazy or cached delete * /
do (true) ->

checkwait (X)
if owner (X) . still-there (X) ->

return X
[I else ->

call me. local-delete (X)
c:

end

/ * the local-delete operation is described under the Get operation * /

Figure 3.2 : Pseudocode for the READ operation

3.3. Removing objects from the object space - GET

Pseudocode for the GET operation is given in Figure 3.3. GET is much simplified

by the fact that most of its action is duplicated by the READ operation. A GET is

effectively a READ followed by an attempt to delete the object once the READ has

returned. This scheme is complicated slightly by the different correctness modes

which affect the GET operation, and by the different delete update modes of the other

servers. Recall that to maintain correct operation and consistency, the owner of an

object is responsible for deleting it from the object space. In the case of risky

correctness mode, however, the server performing the GET operation also invokes

the delete operation (although it must do so in such a way as to make sure that the

I
3. Implementation page 24

object is deleted from the owner's local database immediately, even if the owner is
I
I in cached or lazy delete update mode). Thus, in risky correctness mode, it is possible

I for two servers to attempt to GET the same object at the same time and, since they do

not check with a central authority, both might succeed.

The GET operation is an example of how the server activities of producer/-

consumer can be exploited. Consider a case in which only one server produces

objects of a given form, and a different server which is in lazy add update mode per-

forms a GET operation on a object of that form. The cheapest way of performing the

GET operation (in terms of messages sent) is to forward the request on to the one

producer of that object form.

proc GET (X)
if (correct-mode = safe) ->

if (numgroducers > 1) or Iamproducer(X) ->
do (true) ->

call READ (X)
if owner (X) . owner-delete (X) ->

return X
f i

od
[I else ->

call producer (XI .GET (X)
f i

[I (correct-mode = risky) ->
if (numgroducers > 1) or Iamproducer(X) ->

call READ (X)
send owner (X) . global-delete (X)

[I else ->
call producer (X) .GET (XI

f i
f i

end

3. Implementation page 25

process a
do (true) ->

in owner-delete (X) returns success ->
if find(X) and (owner (X) = me) ->

call global-delete(X)
success = true

[I else ->
success = false

fi
ni

od
end

proc global-delete (X)
/ * delete object locally, regardless of delete update mode * /
local-delete (X)
/ * inform all eager delete servers */
fa ({all servers S such that (S !=me) and eager-delete (S, X)

and consumer (S, X) 1
send S . local-delete (X)

a f
/ * inform all cached delete servers * /
co ({all servers S such that (S!=me) and cached-delete (SIX)

and consumer (S, X) 1)
call cache-delete (S, X)

0 C

end

proc cache-delete (S, X) ->
I add delete(X) command to S1s cache 1
if ({C full)) ->

call f ire-of •’-delete (S)
f i

end

proc f ire-off-delete (S)
/ * this proc is invoked on timeout or cache full conditions * /
{ if S1s cache not empty send it off 1

end

proc local-add (X)
{ add X to the local database }

end

Figure 3.3 : Pseudocode for the GET operation

3.4. Support Mechanisms

Obviously a great deal of support mechanism is missing from this description.

However the details that are missing are primarily concerned with managing the

local databases (such as local-add and local-delete) and are not considered relevant

to the discussion. The more obscure operations are described here:

3. Implementation page 26

chec k w a i t (X) : this procedure checks the local store to see if the an object

matching the template X is present. If so, it returns the object. If not, it

waits until such an object is added and then returns it.

produce r(X) : this function is called only if there is just a single producer of

the object form of X. The capability for that producer resource is returned

by the function

owner - read(X) : this operation is present to allow a lazy add update mode

server to forward READ operations on to producer servers. If this opera-

tion is invoked on a server, it starts up a process which watches all objects

that that server adds or has added. The process replies to the original READ

operation when an object matching the template X is found. The READ

operation may thus be effectively partitioned between the producer

servers.

s t i 11 - t h e r e (X) : this operation is invoked on the server which owns X and

is used to confirm that X has not been deleted yet.

3.5. Performance Analysis

Studying this implementation allows us to derive Table 3.1 below which gives

the cost of different MOOSE operations (READ, GET, PUT) in terms of messages sent

across the LAN. An entry in the table gives the cost of the operations in a system

with 6 moose servers, all in the add update mode indicated at the top of the column,

and in the delete update mode indicated at the head of the row, and all both produc-

ing and consuming data. There are two figures given for the GET operation, indicat-

ing the cost of the operation in safe or risky correctness mode (marked 'st and 'r'

respectively). The figures given for the GET operation are based on the assumption

that the owner of the object returned by the GET operation is a different server from

the server which initiated the GET (the most common situation). For operations

3. Implementation page 27

working in a cached update mode, add-cache sizes are assumed to be C, and delete-

cache sizes are assumed to be Cd. Lastly, the figures given for GET and READ opera-

tions with cached or lazy delete mode are based on the assumption that there are no

"cache misses" - the mechanism used to select one of several objects in local

memory always manages to select one that has not been deleted yet (this will not

necessarily be the case in cached or lazy delete mode).

Table 3.1: cost of READ, GET and PUT operations with multide

producers and consumers

I PUT: 8 -1

eager delete

eager add

PUT: 8 -1

READ: 0

GET (s): 8 + 1

GET (r): 8 - I

GET (r): 3 + (6 - 2) / ~ d

cached delete

lazy delete 1 READ: 2

READ: 2

GET (s): 4 + (6-1)/Cd

I GET (s): 4

cached add

PUT: (6-

READ: 0

GET (s): 8 + 1

GET (r): 8 - 1

PUT:

READ: 2

GET (s): 4

GET (r): 3

lazy add

PUT: 0

READ: 28-2

GET (s): 28

GET (r): 3

In this efficiency analysis (and those found in the following sections), the local

processing times of the various operations (READ, GET, PUT) are ignored. The local

processing time results from maintenance of a local database. This thesis is not con-

3. Implementation page 28

cerned with issues concerning this local database, so no attempt has been made to

optimize it. Thus in the analysis, efficiency has been measured by counting the

number of messages sent between hosts in the network. In comparing this analysis

to benchmark tests, an implicit assumption is made: that the local processing time

for an operation is approximately proportional to the number of messages sent

between workstations. Without this assumption, measuring the cost of an opera-

tion by counting the number of messages is not valid. This is a reasonable assump-

tion as long as databases remain fairly small (since the underlying database mecha-

nism is a binary tree, the cost of local database operations only increases with the

log2 of the database size).

page 29

4. An Example: Steiner Tree Problem

4.1. Problem Definition

The first example presented here is the Steiner Tree Problem in Networks. The

Steiner Tree Problem is an NP-complete problem taken from graph theory. The

problem may be stated as:

GIVEN: a graph G=(V, E, c) with n vertices (I V I = n) and m edges (I E I = m)

and a cost function c (c : E + 32) and a subset of the nodes of the graph, Z

FIND: the minimum weight tree which spans Z.

The graph shown below (in Figure 4.1) contains 23 nodes. The nodes in the set Z

are shown shaded to differentiate them from the other nodes. All of the edges of

this graph are of equal weight (c=l). The solution to the Steiner Tree Problem

applied to this example is shown in Figure 4.2.

Figure 4.1 : problem instance for Steiner Tree Problem with 23 nodes.
Nodes in the set Z are shown filled.

4. An Example: Steiner Tree Problem page 30

Figure 4.2 : solution to Steiner Tree Problem applied to graph
shown in Figure 4.1.

For a survey of different solutions to the Steiner Tree Problem, see [Winter,

19871. The solution adopted in this thesis is a brute force approach: determine the

minimum weight spanning tree of every subgraph of G which contains Z. The

spanning tree with the least weight is also the least weight tree which spans Z.

Since there is an exponential number of subgraphs for which the minimum

weight spanning tree must be determined, the algorithm is exponential in nature.

The algorithm used to determine the minimum weight spanning tree of each sub-

graph of G (known as Prim's algorithm) is requires time polynomial in I V I . For

details on Prim's algorithm, consult [Horowitz and Sahni, 19781.

In order to distribute this algorithm, the set of subgraphs of G must be parti-

tioned into a number of subsets. The minimum weight spanning tree is calculated

for each graph in the subset, and the least weight of all of the trees in the subset is

4. An Example: Steiner Tree Problem page 31

offered as a tentative solution. The least weight of all of the tentative solutions is

taken as the solution to the Steiner Tree Problem.

The subsets define the granularity of the distribution - the spanning trees of

different subsets might be calculated on different machines, but the spanning trees

of two graphs within the same subset will be calculated on the same machine. Thus

each of the subsets of the set of subgraphs of G constitutes a single task to perform.

4.2. Computational Model

The token/worker model of computation will be used. For each task to perform

(i.e. for each partition of the set of subgraphs of G), a token will be placed into a

token space. The token will contain enough information to transform the original

graph G into each of the subgraphs within the partition. An arbitrary number of

worker processes will exist. Upon creation, the workers will read the data for the

original graph, and then compete for work tokens. When a work token has been

successfully grabbed by a worker, that worker will perform the task represented by

the token (i.e. compute the minimum weight spanning tree of every subgraph in

the partition and offer the least weight tree as a potential solution) and then go back

to get another token.

A single master process exists which is responsible for creating the data and

. tokens, and for gathering all of the results computed by the workers. The master

decides which of these is the least weight and thus determines the solution. Since

the number of worker processes is arbitrary, any number of workers may be used.

With more workers, the time required for a computation should decrease.

4. An Example: Steiner Tree Problem page 32

The algorithms for the master and worker processes are quite trivial:

master process:

PUT t h e o r i g i n a l m a t r i x
PUT t h e tokens
READ t h e r e s u l t s

worker wrocesses:

READ t h e i npu t graph
do (t r u e) ->

GET a t a s k token
f a (subgraphs s p e c i f i e d by t h e token) ->

b u i l d t h e subgraph from t h e o r i g i n a l graph
determine t h e minimum weight spanning tree

a f
PUT l e a s t of a l l minimum weight spanning trees

od

4.3. Configuring the MOOSE

In implementing this solution using a MOOSE, three object forms are needed: a

form for the input graph; a form for the tokens; and a form for the results (these

forms have been named 'data', 'token' and 'result', respectively). The input data

and the tokens are produced by the master process and consumed by the worker

processes. The results are produced by the workers and consumed by the master.

Using Table 3.1 and some knowledge of the algorithms given in Section 3, the best

update modes for all of the servers and all of the object forms can be determined.

Objects of the form 'data' are PUT by the master process and READ by the worker

processes. Thus the best update modes to use are eager add and eager delete for all

servers, giving a total cost of distributing the 'data' objects to o workers of o mes-

sages per object (in this example it is necessary to differentiate between the number

of worker processes, o, and the total number of processes, 6. Since only the master

process is not a worker, 6 = o+l).

4. An Example: Steiner Tree Problem page 33

The master process PUTS objects of the form 'token' while the worker processes

GET these objects. Referring to Table 3.1, it seems that the best update modes for this

object form would be cached add/lazy delete. However, Table 3.1 is based on the

assumption that several processes produce the objects, while in this case only the

master process produces the objects. By referring to the algorithms given in Section

3, one can see that the GET operation is optimized for the case where only one pro-

cess produces the data, by function shipping the GET request from a lazy add server

to the producer server. Thus the least expensive update modes are eager add/eager

delete for the master process, and lazy add/lazy delete for the worker processes.

For objects of the type 'result', the objects should be sent to the master process,

since this process will READ the objects, but not to the other worker processes. This

may be accomplished by assigning the master process an add update mode of eager

and the worker processes an add update mode of lazy. Since the objects are never

removed from the object space, the delete update modes for objects of type 'result'

do not matter, but for completeness they may arbitrarily be assigned eager delete

update mode for the master and lazy delete update mode for the workers.

object master update worker update
form contains (add /delete) (add/delete)
'data' original eager /eager eager / eager

matrix
'token' work tokens eager/eager l a z ~ / l a z ~
'result' task results eager/eager l;.izy/l=y

Since the workers compete over the task tokens, and allowing more than a single

worker to successfully grab the same token would result in wasted effort, the cor-

rectness mode for the object form 'token' must be safe. Otherwise, if the correctness

mode were risky, more than a single worker could grab the same work token, and

thus work would be wasted. Since the cost of performing the work associated with a

4. An Example: Steiner Tree Problem page 34

token is greater than the cost of grabbing the token, it is not advisable to allow extra

work to be done to improve concurrency by using a risky correctness mode. Since

neither the data nor the results need ever be deleted from the object space, the cor-

rectness mode for the forms 'data' and 'result' do not matter.

Analyzing this algorithm for efficiency is quite simple. Consider a serial algo-

rithm which solves the Steiner Tree Problem using the same brute force method.

Assume that such an algorithm requires a time period C to solve a particular prob-

lem instance. This token/worker distributed implementation of the brute force

method, using o worker processes, should then require C/o + {communication cost]

time to solve the same problem. For a problem of size n (i.e. a graph of n nodes),

C E O(2n). As long as the communications cost is small, o is reasonably small (as it

will be on a LAN), and the problem size is reasonably large (n > lo), the speedup as

workers are added should be effectively linear.

There are two components of the communications cost: the one-time event of

distributing the data, and the per token cost of assigning a task to a worker and hav-

ing the worker return the results. Assuming that the graph of n nodes is represent-

ed by its adjacency matrix (an nxn matrix), and each row of the adjacency matrix is

represented by a single object of the 'data' form, the cost of distributing the matrix to

o workers is O(n**o) in the general c a d .

Since the messages sent between MOOSE servers for the distribution of the adjacency matrix might
be larger than an Ethernet message packet, simply counting messages is not sufficient, and the cost
of a single message must be assumed to be O(n) - however, in the problem instance given in fig-
ure 4.1, each message should be small enough to fit within a single network packet and so the cost
of distributing the matrix to o workers is O(nw).

4. An Example: Steiner Tree Problem page 35

The cost of distributing the work tokens among the workers is a little more com-

plicated to determine. Recall that the master process which will PUT the tokens into

the object space is eager-add and eager-delete with respect to the 'token' object form.

The workers which will GET the tokens are lazy-add and lazy-delete with respect to

the 'token' object form. When the master process PUTS a token into the object space,

no messages are sent across the network. When a worker process GETS a token,

since the only 'token' producer is the master process, the GET operation is forwarded

to the master, hence requiring two messages (one sent to the master, and a reply

back from the master). Performing the GET at the master requires no messages, since

the master is the owner of the object, and all other MOOSE servers are lazy-delete.

Thus it costs two messages for the master to produce a token and for a worker to

grab it.

When a worker has completed the work specified by one token, the results must

be sent back to the master process. This entails a PUT of a 'result' form object. Since

the master process is eager-add but all other processes are lazy-add with respect to

the 'result' form, the PUT operation only requires a single message. When the mas-

ter READS the result, no messages are required since the master is in eager-add mode

and thus the object is already in its local memory.

Thus, the total cost of distributing z tasks among w workers, including the cost of

distributing the input graph initially, is: O(n2*o) + 32. The total cost of solving the

Steiner Tree Problem with this algorithm is thus C/o + 0(n2*w)+3z.

Appendix C gives the program for solving the Steiner Tree Problem. In this pro-

gram, graphs are represented by their adjacency matrices. The subgraphs for which

4. An Example: Steiner Tree Problem page 36

the minimum weight spanning tree must be calculated are enumerated4 (it is

assumed here that an integer is big enough to enumerate the subgraphs: in particu-

lar, I V-Z 1 1 31). Thus task tokens simply contain two integers which specify a range.

The task represented by such a token consists of computing the minimum weight

spanning tree for each subgraph within that range.

This program was run on the example shown in Figure 4.1, with 1,2,3,4 and 5

workers and z = 16 (the value z = 16 was chosen because it led to the best results for

these test runs. A different value of z might prove to be best for test runs with

different numbers of machines). The speedup with the number of workers is

plotted in Figure 4.3.

In Figure 4.3, the x's show the best results obtained from several tests run when

the system load was small (in the system on which tests were run, the system was

never completely free of other user tasks. The best results of several tests were

chosen because they best reflected the results that would be obtained from a system

running only the steiner tree program). The line drawn on the graph shows

optimal linear speedup from the time required for computation with one worker.

The timing results obtained from running the program given in Appendix C with

different numbers of workers show that the speedup is good, with the speedup

degenerating as the number of workers increases.

In order to enumerate all of the subgraphs of a graph G=(V,E) which contain a given set of nodes Z,
first order all of the nodes not contained in Z. Associate with each node not in Z a bit value: 1 if
the node is in the subgraph, 0 if it is not. Order the bits in the same order as the nodes not in Z.
These bits may be interpretted as an integer between 0 and 21V-ZI -1, with each different subgraph
being represented by a different integer. Thus the subgraphs are enumerated.

4. An Example: Steiner Tree Problem page 37

b
1 2 3 4 5

Number of Workers

Figure 4.3: Time required to solve Steiner Tree Problem shown
in Figure 4.1 vs. number of worker processes used.

One factor which breaks down the speedup is the distribution of data at the start

of the algorithm which is proportional to the number of worker processes. Thus, as

more worker processes are added and therefore the time required for the

computation decreases, the time required for distributing the data increases. As

workers are added, a point is eventually reached where the increase in cost of distri-

buting the data to another worker is more than the decrease in computation brought

by the extra workers.

Note that if a reliable broadcast mechanism were available, the cost of distributing the data would be
effectively independent of the number of workers, so the speedup would not degenerate so
significantly as workers are added.

page 38

5. An Example: Bitonic Merge

5.1. Problem Definition

As was shown in the previous section, a MOOSE can be used to achieve efficient

data sharing. A MOOSE is also quite versatile, as illustrated in this section where a

MOOSE is used to implement a simple parallel sorting algorithm using a bitonic

merge.

A list of numbers is said to be 'bitonic' if some rotation of the list may be split

into two pieces - one increasing and one decreasing. For example, the list

(4,2,1,3,5,7,8,6) is bitonic, since it may be split into two pieces - (1,3,5,7) and (8,6,4,2)

- one increasing and one decreasing.

The algorithm given below takes a bitonic list and sorts it into ascending order.

The algorithm can be generalized to handle any list of integers by first ordering the

input list into a bitonic list, but for the sake of brevity this will not be shown.

The merge algorithm is best described with a picture. Before the picture is pre-

sented, some notation used in it must be explained. The device shown in Figure 5.1

is called a 'comparatorr. It takes two inputs and swaps them if necessary so that the

second output is not less than the first.

input output

max(a,b)

Figure 5.1: a comparator

5. An Example: Bitonic Merge page 39

A set of these comparators can be used to create a network which performs a

bitonic merge for N elements, where N is a power of 2. A network for N=8 is shown

in Figure 5.2. In order to sort N elements of a list, the algorithm requires log2N

stages, with each stage consisting of N/2 parallel comparison/switch operations.

Certainly the bitonic merge algorithm is not the most efficient parallel sorting

algorithm ever devised, requiring log2N rounds and N/2 switch processes, but it

serves quite well to demonstrate the versatility of a MOOSE.

Figure 5.2: a bitonic merge network for 8 elements

The most efficient implementation of the bitonic merge using a MOOSE, in

terms of the number of messages sent, does not allow an in-place sort (an 'in-place'

sorting algorithm sorts a given list without requiring more memory than that nec-

essary to store the list - perhaps necessary if memory is a critical resource). When

the sort is completed, a copy of the list for each stage will exist at each node in the

network. Implementing an in-place sort requires deleting objects from the object

space, thus requiring considerably more messages than the algorithm which does

not conserve memory; at any time during the execution of the in-place sort, only a

single copy of the list will exist.

5. An Example: Bitonic Merge page 40

5.2. Computational Model

The data objects used in the examples have the form:

('element', integer R; integer I; integer X)

where R is the round of the sort algorithm, I is the index of the element in the list,

and X is the value of the element.

The algorithm for the sort which does not operate in-place is given below:

proc bitonic-merge (r, n,m)
if m>n ->

co (i := n to (m+n-1) /2) switch(r, i, it (m-n+l) /2)
0 C

co bitonic-merge (rtl, n,(n+m-l) /2)
/ / bitonic-merge (rtl, (n+m+l) /2,m)
OC

fi
end

proc switch(r,i, j)
READ ('element l, r, i, integer X)
READ ('element I , r, j, integer Y)
if X<Y ->

PUT ('element', r+l, i,X)
PUT ('element ' , r+l, j ,Y)

[I else -> /*X>Y * /
PUT ('element ' , r+l, i,Y)
PUT('elementl, r+l, j,X)

f i
end

Note that although it is not shown in the code above, the concurrent invocations

of swi t ch and b i t o n i c - merge should be performed on different machines. The in-

place version of this algorithm is identical to the version given above, except that

the READ operations in the swi tch proc are replaced by GET operations. Thus the

data generated in each round is removed as the data for the next round is produced.

5.3. Configuring the MOOSE

The analysis of the algorithms requires speafication of the different update

modes of the servers. First note that all of the work is done in the swi tch opera-

5. An Example: Bitonic Merge page 41

tion. The b i t o n i c - merge operation is present only to invoke the s w i t c h opera-

tions in the correct order. Also, the b i t o n i c m e r g e operation is dormant while the

switch operations it invokes are in progress - thus one of the invoked switch oper-

ations can take place on the same processor that the b i t o n i c-merge operation is

executing on, without slowing either process down. Thus, every node in the net-

work will at one point have a switch operation executing on it, and this means that

all nodes will have the same configuration regarding update modes and activities.

Furthermore, the s w i t c h operation both produces and consumes, so the configura-

tion must include both activities.

Second, note that arbitrary cached updates are out of the question, since waiting

in one round for the cached results of the previous round to propagate is not feasi-

I ble. In the in-place sort, cached deletes might be considered, except that the sort

I
\

would then not be "in-place" (if at round 12 the deletes sent out in round 6 have

still not propagated, a large amount of memory may be wasted). The application

using a MOOSE structure has control over the caching of updates, however, so

caching is not 'arbitrary'. Notice that in each round, each switch operation requires

two PUTS and two READS (GETS if the sort is in-place). If the cache sizes are set to two
1 for both cached add update mode and cached delete update mode, then we are guar-

anteed that the caches will be flushed after each switch operation.
1

i Third, note that each element of the list produced in one round is the object of

\ only one READ (GET) operation in the next round. This means that if the algorithm

I operates in lazy or cached delete mode, there can be no 'cache misses'. The object

I selected by the READ (GET) operation can not have been deleted by another server, so

a minimal amount of work is required (in the general case, an arbitrary number of

I cache misses can occur before an object still present in the object space is found).

5. An Example: Bitonic Merge page 42

Also, because of the one-to-one correspondence between PUT and GET operations in

the in-place sort, 'risky' correctness will suffice (remember that using risky

correctness saves 2 messages on each GET operation).

To determine the best settings for the update modes, refer back to Table 3.1 which

gives the cost in messages of the three operations (READ, GET and PUT) executing on

a network of 6 MOOSE servers, in each of the nine different combinations of update

modes. In this case the cache sizes C, and Cd will be 2. Note that for a list of M ele-

ments, M/2 s w i t c h operations execute concurrently. Thus if M>26, it will be neces-

sary to have MOOSE servers serve more than a single s w i t c h operation (i.e. more

than one s w i t c h operation will be executing on the same machine concurrently).

For a list of M elements, there are log2M rounds in the bitonic merge algorithm,

with each round requiring M PUTS and M READS (or GETS for an in-place sort). In

total, therefore, there are Mlog2M PUTS and Mlog2M READS (Mlog2M PUTS and

Mlog2M GETS for the in-place algorithm). Thus, the best update mode combination

for the algorithm which does not sort in-place is the cached add/eager delete combi-

nation which requires a total of (& - 1) / 2 * ~ l o g 2 ~ messages. The optimal settings for

the in-place algorithm depend on 6. If 6 > 6, then the best algorithm uses cached

add/cached delete update modes, requiring (6 + 3/2)Mlog2M messages. If 6 < 6, then

the best algorithm uses cached add/eager delete update modes, requiring (3/26 -

3/2)Mlog2M messages (note that cached add/lazy delete update mode gives the best

message count, but does not provide an in-place sort since objects are not deleted

from local memory stores from one stage to the next).

page 43

6. Alternative Methods for Improving Efficiency

6.1. Consistency Requirements

In [Cheriton, 1985 and 19861, the possibilities for improved efficiency through

relaxing consistency were discussed. In a distributed data structure, a piece of data

might be produced at one host in the network, be propagated to the other hosts, and

eventually be consulted at a different host from which it was produced. The pri-

mary way of relaxing consistency in such a system is to relax the requirements on

whatever fetch operation is used to consult the data. The strongest form of consis-

tency would require that a piece of data be locked before it is modified so that no

other host can read the data until the task of propagating the update to the other

hosts is complete.

A slightly less strict form of consistency would allow fetch operations at any

time, but would attempt to propagate updates as quickly as possible. In this situa-

tion, fetch operations performed after the update was made might return stale data,

but much improvement in efficiency is gained by not having to synchronize all data

structure update operations on all hosts.

Further relaxation of consistency could be made by allowing fetch operations at

any time, and storing up data structure updates until several have been made before

propagating the updates to other hosts. Using this propagation method, it might

take several seconds for an update to propagate to the other hosts in the network.

This method improves performance by propagating several data structure updates

to a host with a single message. If the cache of updates does not occupy more LAN

packets than a single update, then the single message used to propagate several

6. Alternative Methods for Improving Efficiency page 44

updates will not be significantly more expensive than one of the messages needed to

propagate a single update.

In the design of MOOSE, consistency was not very important because the opera-

tions used to access the MOOSE data structure do not include an in-place write oper-

ation (Cheriton's store operation). Hence consistency is easier to maintain. Loos-

ening the consistency constraints on the MOOSE operations does not result in a sig-

nificant gain in efficiency. The "correctness modes" used in MOOSE are in effect a

relaxation of consistency requirements on the GET operation. Using risky correct-

ness mode saves, at most, two message transfers per GET operation. Saving two

messages could be important in a system with a small number of producers, but if a

large number of MOOSE servers produce data, the relative savings are not signifi-

cant.

6.2. Granularity of Data Distribution

6.2.1. Limitations to the Prototype MOOSE

In the MOOSE system, the information provided by the application is primarily

used to increase efficiency through control of data distribution and replication.

While the information that an application provides to a MOOSE gives a fair degree

of flexibility concerning how data is to be distributed and replicated, the granularity

of the distribution is at the object form level - a given MOOSE server's local store

for an object form contains either all of the objects of that form in the object space, or

just those produced locally. This method of distributing data is simply too coarse

grained for some applications.

6 . Alternative Methods for Improving Efficiency page 45

For example, in the Bitonic Merge example, the control provided by the MOOSE

was not sufficient to allow a good solution. In the solution to the Bitonic Merge, all

of the data was distributed to every node in the network, despite the fact that it

would be simple for a process to algorithmically determine where the data it has just

produced will be needed. By distributing the data to all servers in the network, a

great deal of memory and communications resources are wasted.

To reduce the granularity of the distribution, if the application can provide

information as to which objects of a given form will be required at which host site,

the programmer could set up a different object form for each different server. Then,

given an object to be placed into the object space, a MOOSE server could place it into

the object form for each server which will later READ or GET the object. This is not a

reasonable solution, however - it is too complicated, especially if more than one

server will want to GET a given object.

6.2.2. Reducing the Granularity of the Distribution of Data

A better solution to reduce the granularity is to give the application more direct

control over data distribution. Rather than providing the data structure servers

with information pertaining to each other's update modes, the application could,

with each PUT operation, describe to which servers the update is to be forwarded.

This would allow the application complete control over data distribution, but would

complicate application programming and the implementation of the other opera-

tions.

Consider the work necessary to complete a READ operation if the granularity of

distribution were at the object level instead of at the object form level. Since the

application controls the data distribution, there can be no guarantees as to whether

6 . Alternative Methods for Improving Efficiency page 46

or not a given object will be stored locally. If checking the local store fails, the READ

operation would have to be forwarded to all producers of the given object form (as is

currently done with lazy add server&); forwarding the operation in this manner is

expensive if several servers produce the objects.

The application might be able to provide more information, however. The READ

and GET operations could be modified so that the application specifies whether the

operation is to search for the object locally, or to forward the search onto other serv-

ers if necessary (and to which servers the operation should be forwarded, if nec-

essary). Using a MOOSE modified in this fashion, the Bitonic Merge algorithm

could be written so that no messages or memory are wasted - all READS and GETS

could be performed locally, and the data could be forwarded only to that server

which would need it in the next round of computation.

6.2.3. Server Mapping Functions

To achieve this functionality, the application defines a function which maps an

object to the set of servers which require immediate ("eager") notification when the

object is PUT into the object space (a one-to-many relation). A different function

could be defined for each object form (although object forms are not really necessary

any longer). These functions would have to be defined locally at every server so

that they would not need to be invoked remotely (costing at least 2 messages). With

these functions available, distributing the data as it is produced is quite simple -
the functions map the object which has been PUT to all of the servers to which the

object must be sent. Performing a READ or GET is a little more complicated, but the

unless there is an eager-add server in which case the operation is optimized through function
shipping to the eager-add server.

6. Alternative Methods for Improving Efficiency page 47

same mapping function could be used; the application does not have to provide any

more information.

The READ operation would have to be implemented in a manner similar to that

shown below, where the function mapping objects to servers is named

send-to-set.

READ (XI
if me E send-to-set (X) 4

perform READ locally
[I send-to-set(X) # 0 +

choose S E send-to-set (X)
forward READ to server S

[I else + / * send-to-set (X) = 0 */
fa (S st S produces objects of X's form) -+

S. owner-read (X)
a f

f i

This suggested implementation of MOOSE operations provides increased data dis-

tribution control over the prototype implementation by giving the application

explicit control over where individual objects are sent on a PUT operation (data

shipping) and whether or not READ and GET operations are forwarded to all or some

producers (function shipping). This can lead to increased efficiency.

As with the existing MOOSE implementation, information pertaining to the dis-

tribution of data is an implicit part of the object form, defined when the form is

defined (through update modes in the prototype implementation, and through the

server mapping functions in this suggested implementation).

If several servers are producing objects of a given form, and a server performing

a READ operation is not getting immediate updates of those objects, the READ may be

forwarded to any set of servers which among the set will receive immediate notifi-

cation should an object matching the template given in the READ operation be PUT

6 . Alternative Methods for Improving Efficiency page 48

into the object space (function shipping). In the prototype, the READ is forwarded to

all of the producer servers with one crude form of this optimization: if any server is

eager-add with respect to an object form, servers which are lazy-add with respect to

that object form may ship their READ operations to the eager-add server.

While this suggested implementation brings a great deal of improvement over

the prototype MOOSE implementation, there is one major complication: the server

mapping functions map a given object to a set of servers, but the parameters to the

READ and GET operations are not necessarily fully defined objects.

Consider a sys tern consisting of mu1 tiple servers. Several servers produce objects

with the form ('data', int, int). The first server receives all of these objects with

value (1,l). The second server receives all objects with value (1,2). The third server

consumes these objects. Assume that the third server starts a READ operation:

READ (' da ta t , 1,l)

This operation may be forwarded to the first server, since the first server has a com-

plete store of all objects which match the object template of the READ operation.

However, if the READ operation were:

READ (' da ta f , 1, i n t i)

the first or the second server, or both together will not necessarily have a complete

store of all objects which match this template. The operation would have to be for-

warded to all producers. But if it were known that only objects with a '1' or a '2' as

the second value would be PUT then the command could be forwarded to just the

first and second servers. How could the application inform the MOOSE system of

that fact?

6. Alternative Methods for Improving Efficiency page 49

The server mapping functions might be considered to define the set (possibly

infinite) of objects which will be sent to a given server, if they are produced (the

object set of the mapping function). The object template also defines a set: the set of

objects which could match the template (the object set of the template). Ideally, the

READ and GET operations codd look at the mapping functions, determine the min-

imal set Y of servers such that the object set of the template is a subset of the union

of the object sets of YT, and forward the operation to the set of servers Y. This prob-

lem is certainly non-trivial, and solving it could cost more than could possibly be

saved by reducing the number of messages.

There are several solutions. The READ and GET operations codd simply not

make full use of the information provided by the mapping functions - if possible,

the operation would be performed locally, otherwise it would be forwarded to all of

the producer servers (as is done in the general case by the prototype implementa-

tion). The problem is now reduced in magnitude, although it is still necessary to

determine if the object set of the mapping function of the server executing the READ

or GET spans the object set of the object template in order to determine if the opera-

tion may be executed locally or must be forwarded to the producers of the object

form. This problem is not difficult, and the solution could be supplied by the appli-

cation (perhaps as a function similar to the mapping function). As an extension, the

same method could be used to determine if the object set of the template is spanned

by the object set of any one server, and thus determine if there is any single server to

which the operation could be forwarded.

Consider the example given above. The object set of the mapping function for

server 1 only contains the object with value (1,1), while the object set of the mapping

function for server 2 only contains the object with value (1,2). The object set of the

6. Alternative Methods for Improving Efficiency page 50

object template ('datat,l,int i) contains an infinite number of objects, such as (1,1),

(1,2), (1,3), etc. Obviously, no single server has a mapping function with an object set

which is a superset of the object set of the template, so the operation cannot be for-

warded to any one server - the operation must be shipped to all of the producer

servers.

Alternately, the mapping functions could be restricted in such a way that the

problem of finding the minimal set Y of servers would not be difficult. One way to

do this would be to restrict the mapping functions in the following manner: a server

would immediately be sent all objects with a particular value in a particular position

as they are PUT into the object space (for example, a server might receive all objects

with a 3 as the first value). With such a restriction, the problem of determining the

minimal set Y would not be difficult for a small number of servers. In this solu-

tion, each MOOSE server would need to know the details of each mapping function

(the mapping functions could not be "black boxes").

6.2.4. Example of Server Mapping Functions

For an example, consider the Jacobi method for solving the two-dimensional

Laplace's Equation. Laplace's Equation leads to a matrix manipulation problem

which the Jacobi method solves with an iterative technique. The trial value for the

ith cell of matrix cP in the kth iteration of the algorithm (denoted k") may be

obtained by taking the average of the values of the neighboring cells from the previ-

ous iteration. This may be written as follows:

6. Alternative Methods for Improving Efficiency page 51

In the Jacobi method, in a given iteration each cell can be updated independently

of all other updates. Consider partitioning the matrix 0 between processors as

shown in Figure 6.1.

Figure 6.1 : partitioning of matrix between processors. Updates of cells within
shaded regions require information from neighboring processors.

Using the problem decomposition implied by the partitioning of the matrix

shown in Figure 6.1, each processor must, at each stage of the computation, compute

the new values of the matrix cells and then send the edge values to the neighboring

processors. An optimal implementation of this algorithm will obviously send the

edge values as soon as they have been computed, and will send them only to the

processor which needs those edge values for its own computation.

6. Alternative Methods for Improving Efficiency page 52

Using the prototype MOOSE, such fine-grained distribution of the data would be

difficult to achieve. Consider instead how it would be done using server mapping

functions. Enumerate the edges of each of the regions (4 edges per region). When

an edge is PUT into the object space, attach the number of the edge to the start of the

list of values of the object. The server mapping functions would be defined so that

an edge PUT into the object space will be forwarded to the MOOSE server which

serves the process that will require that edge in the next stage of computation. For

example, assume that 4 processors are working on the problem. Assume that the

problem has been decomposed and that the processors and edges are numbered as

Figure 6.2 : example problem decomposition and nur
processors and edges.

ering of

For the decomposition and numbering shown in Figure 6.2, and assuming that the

edge number is attached to the start of the edge object, the server mapping function

6. Alternative Methods for Improving Efficiency page 53

for the edge object form is given in Table 6.1. With this server mapping function,

edges are propagated only to where they are needed.

first value of obiect
1
2
3
4
5
6
7
8
9
10
I1
12
13
14
15
16

Table 6.1 : server mapping function for a program implementing the
Jacobi method and using the problem decomposition and

processor/edge enumeration given in Figure 6.2.

Although, for the Jacobi method, a very simple server mapping function was

required (send the object to server a if the first value of the object equals P), this

form of server mapping function is quite limited. Further research on possible

restrictions to the server mapping functions is necessary.

6.3. Exploiting Piggybacking

One method of reducing communication costs is to send two or more logically

different messages in a single network packet ("piggybacking" the messages). A

MOOSE provides one way of piggybacking messages - through cached update

modes where several data structure updates are sent together in one message. The

cached update modes are a very restricted form of piggybacking, however. The diffi-

6 . Alternative Methods for Improving Efficiency page 54

culty in providing for more general piggybacking comes from a lack of information:

how is it possible to determine whether a message needs to be sent immediately or

whether it can be held and sent later? To answer this question, information on the

future actions of the application are necessary.

A restricted form of piggybacking may be provided by allowing the application to

specify whether or not a message needs to be send immediately. A distributed data

structure which provided for piggybacking messages could implement a DELAY

operation. The purpose of the DELAY operation would be to tell the data structure

server that any message generated from the next operation need not be sent imme-

diately, perhaps because another operation would follow shortly which would also

generate messages. Thus the data structure server could piggyback the messages.

Consider the worker process in the Steiner Tree example given in Section 4. The

worker executes the following loop:

do (t r u e) ->
GET a t a s k token
f a (subgraphs s p e c i f i e d by t h e token) ->

b u i l d t h e subgraph from t h e o r i g i n a l .graph
determine t h e minimum weight spanning tree

a f
PUT l e a s t of a l l minimum weight spanning trees

od

For each iteration of this loop, three messages are sent across the LAN: a message

forwarding the GET operation to the master server (the server which produced the

tokens), a message from the master server returning a token, and a message to the

master server returning the result of the computation. Of these three messages, the

two going to the master always occur one after another - the data from a computa-

tion is sent, and then a GET for another token is forwarded. If a DELAY operation

were implemented in MOOSE, then these two messages could be piggybacked,

6 . Alternative Methods for Improving Efficiency page 55

resulting in a savings of 33% of the messages generated in the work phase of the

computation!

6.4. Automating Selection of Update Modes

In order for a MOOSE to provide an efficient data structure, the various pararne-

ters must be correctly specified. While the task of determining the parameters

which give best performance is not necessarily difficult, it is certainly not trivial.

This leads one to consider the possibility of automating the process.

Presently, the application specifies which nodes in a network are going to pro-

duce data, and which are going to consume data. If the application also specified

what percentage of the data a consumer was going to consume or a producer was

going to produce, it would be very easy to determine an optimal assignment of eager

or lazy mode to the add and delete update modes of each server. It was shown

earlier that if a node consumes a fraction of the objects of an object form greater than

1/2p, where P is the number of producers, then it is more efficient to make that

server eager-add. If the server consumes less than 1/2p of the data, then it should be

made lazy-add.

The use of cached update modes complicates this simple scheme, however.

When is it appropriate to use a cache? How big should the cache be? How long

should the timeout be between flushing of the cache? These questions cannot be

answered simply. Consider the Bitonic Merge example. A cache size of two was

used because each stage of the computation caused two objects to be generated by

each worker process. This is a property of the algorithm used, and is readily appar-

ent to the programmer, but how can it be automatically determined?

6. Alternative Methods for Improving Efficiency page 56

One possibility is to collect statistics on how frequently objects are produced, and

how frequently they are consumed. If the variance of the time between consump-

tion of objects by a particular server is small, then the cache size for that server could

be set large with the timeout set equal to the mean time between object consump-

tion. This would possibly result in near optimal efficiency, but there are several

problems. The program execution must be closely observed - this is not a trivial

task in itself. The assumption must be made that statistics gathered accurately reflect

future action of the program - this is not necessarily the case. The method is only

useful for programs which demonstrate a low variance in the mean time between

object consumption - this is a rather restricted class of problems.

While automating the task of determining the update modes may be possible,

doing so would conflict with two of the basic principles of the MOOSE system: effi-

ciency and generality. The automated process would not, in most cases, be as effec-

tive in determining the optimal values for the update modes as would the pro-

grammer who builds the application. Also, the automated process would be effec-

tive only for problems which demonstrated those properties mentioned above.

page 57

7. Conclusions

7.1. Conclusions

A data structure general enough to serve a wide variety of applications, but inde-

pendent of those applications, will not provide an efficient service. In designing a

data structure for a particular application, a programmer makes use of information

specific to that application. An efficient data structure cannot be independent of the

application it serves.

In this thesis it has been shown that by using semantic information provided by

the application, a data structure can be both versatile and efficient. To demonstrate

this principle, the MOOSE data structure was designed and a prototype was imple-

mented. An application which makes use of a MOOSE must provide information

on where the data is going to be produced and consumed, and how the data is to be

replicated. The MOOSE servers make use of this information to select between a

variety of algorithms to implement the data structure, and thus an efficient service

is provided. The efficiency and versatility of the MOOSE structure was demon-

strated through two applications: a brute force approach to solving the Steiner Tree

Problem and a simple parallel sorting algorithm.

7.2. Further Research

The MOOSE data structure has proved its value in the implementation of a few

different algorithms. In particular, the token/worker model of computation is par-

ticularly easy to implement using a MOOSE. The token/worker model is applicable

to any problem in which the task as a whole may be partitioned into a large number

of independent smaller tasks. One aspect of this computational model which

7. Conclusions vacze 58

deserves a closer look is the granularity of the task partitioning. The automatic load

balancing of the token/worker model improves as the number of subtasks increases.

If the subtasks are too small, however, the communications overhead of

distributing the task will be too high. The optimal granularity for the distribution of

a problem could be determined through experimentation.

While a MOOSE succeeds in providing an efficient distributed data structure for

many applications, certain problems cannot be solved with optimal efficiency using

a MOOSE. The coarse-grained approach to data distribution and replication used by

the MOOSE system is not sufficient for some applications. More finely grained

approaches were looked at, but all led to complications of the MOOSE operations.

The most promising of these alternate means of controlling data distribution used

the server mapping functions. The problem with this approach is that the READ and

GET operations are complicated tremendously if a general mapping function is used.

An interesting course of study would be to look at restrictions to the server mapping

functions which would allow a feasible implementation of the GET and READ opera-

tions.

The most important aspect of this thesis has been the use of semantic informa-

tion to improve efficiency in a distributed data structure. The MOOSE data structure

requires that the application provide information pertaining to where the data is

going to be produced or consumed, and how the data is to be distributed. A few very
*

important questions must be raised: is there any other information that an

application could provide that would be useful in improving efficiency? If further

information could be provided, how could it be used?

page 59

Appendix A : Overview of the SR Programming Language

This appendix will describe enough of the SR programming language to help

someone unfamiliar with the language understand the code and pseudo-code given

throughout this proposal. For a complete description of the language, see [Andrews

871.

A.1. Operations and Invocations:

SR provides operations, which are generalizations of procedures. There are two

ways of implementing an operation: with a pro c or an in statement. The p r o c is

equivalent to standard procedures. Each time the proc is invoked, a new process

may be created (although some optimization is done - local invocations of procs

are implemented as standard procedure calls). An in statement is in effect an

instruction for a process to block and wait for an invocation of the named operation.

The in statement unblocks when such an invocation is received.

In the description of the implementation, in statements were used with an

enclosing infinite loop surrounding the statement. Thus the process will repeatedly

service invocations of the operation named in the in statement. With this scheme,

only one invocation can be executing at any one time. Thus in is used when, for

reasons of concurrency control, only one invocation of the operation can exist at one

time, forcing other invocations to wait. A proc is used when many invocations can

execute concurrently.

Operations may be invoked in either of two manners: the c a l l or the send

statement. The ca 11 statement provides synchronous communications - the ca 11

Appendix A: Overview of the SR Programming Language page 60

statement invokes the operation and then blocks the caller until the operation is

complete. The s e n d statement provides asynchronous communications - a mes-

sage to start the operation is sent, and then the sender continues without waiting for

the operation to complete (or necessarily even start, if the operation is implemented

with an i n statement).

The various combinations of c a l l / s e n d and p roc/ i n provide four different

mechanisms for invoking operations:

invocation

tT
call

send

send

service

proc

proc

effect

procedure call

rendezvous

dynamic process creation

message passing

The granularity of distribution in the SR language is at the resource level. Oper-

ations and data are contained within resources. A resource instance may be created

on any virtual machine in the system - virtual machines are mapped to real

machines at run time, not necessarily on a one-to-one basis. In order to invoke an

operation remotely (i.e. in a different resource), it is necessary to have the capability

for the resource instance implementing that operation. The capability may be pre-

fixed to the name of the operation in the invocation statement. For example, the

invocation:'

call cap-a.foo(. . .)

Appendix A: Overview of the SR Programming Language page 61

invokes the foo operation in the resource instance defined by the capability

variable cap - a. If no capability is specified in an invocation, the operation is

invoked in the same resource as the invoking statement.

In addition to basic communication facilities, SR provides the co statement to

invoke several different operations concurrently. The syntax of the co statement is

as follows:

co (quantifier) invocation [-> statement blockl
// (quantifier) invocation [-> statement blockl

. . .
OC

Each operation specified by the invocation parts of the statement (over the

different values of the quantifiers) are invoked concurrently with call semantics. As

each invocation returns, the statement block following the invocation portion is

executed. The co statement terminates when all invocations have returned, and all

statement blocks have finished executing.

A.2. Sequential statements

There are many different sequential mechanisms in the language used through-

out this proposal. They will only be mentioned briefly, as their semantics are quite

straightforward.

- The fa statement is a generalization of the standard "loop a fixed number of

times" mechanism (such as the for statement in pascal). The fa statement has the

form :

fa (quantifier) st (boolean expression) ->
statement block

af

Appendix A: Overview of the SR Programming Language page 62

where the statement block is executed for each value of quantifier which satisfies the

(optional) boolean expression.

The i f statement has the form:

if condition -> statement block
[I condition -> statement block

where the last condition can optionally be 'else' which is taken as the conjunction of

the negations of all the other conditions. The conditions are evaluated in a nonde-

terministic order. If one is found to be true, its statement block is executed and the

statement terminates.

The do statement has the form:

do condition -> statement block
[I condition -> statement block

Each condition is evaluated (the order is non-deterministic). If one is found to be

true, its associated statement block is executed and the operation repeats. The do

statement terminates when all conditions are false.

page 63

Appendix B: MOOSE Implementation

global types

/ * this global resource is imported to all other resources * /

/ * maximum number of values in an object * /
const max-obj-size := 30

/ * various system constants * /
const infinity := 1000
const undefined := -1
const safe := 1
const risky := 2

/ * object form name type */
type nametype = string(l0)

/ * record of information for an addition to a local database * /
type add-op = rec (

name : nametype
values[l:max-obj-size] : int
o-id : int)

/ * record of information for a deletion from a local database * /
type del-op = rec(

name : nametype
values[l:max~obj~sizel : int
o-id : int)

end

Appendix B: MOOSE Implementation page 64

resource moose

/ * this is the main resource which the application imports * /

import types

op init~moose(servers[1:*1 : cap moose; whoami : int)

op put(form:types.nametype; values[l:*l : int) returns b:bool
op get (form:types .nametype; var values [l: * I : int) returns b:bool
op read(form:types.nametype; var values[l:*l:int) returns b:bool

op def-form(f:types.nametype; s:int; c:int; pr[l:*]:bool;
con[l:*l:bool; as[l:*l : int; ad[l:*l : int; ds[l:*] : int;
dd[l:*] : int) returns b:bool

op def form-sub(f:types.nametype; s,c:int; pr[l:*l :bool;
con[l:*] :bool; as[l:*] :int; ad[l:*] :int; ds[l:*] :int;
dd[l: *I :int)

op local-add(name:types.nametype; values[l:*] :int; o-id:int)
op cache-update(c[l:*l : types.add-op)
op cache-delete (c [l : *I : types .del-op)
op owner-delete(o-id:int; name:types.nametype; values[l:*l :int)

returns ok:bool
op global-delete(f:int; o:int; n:types.nametype; v[l:*l:int)
op local-delete(name:types.nametype; v[l:*l:int; o-id:int)
op still-there (name:types .nametype; v[l: *I : int; o-id:int)

returns b:bool

op read-work(n:types.nametype; var v[l:*]:int; res o-id:int)
returns b:bool

op start-owner-read(name:types.nametype; var v[l:*l:int;
res o-id:int)

op owner-read(name:types.nametype; v[l:*]:int; r:cap moose; i:int)
returns t:int

op return-owner-read(rn:int;v[l:*]:int; o-id:int; f-index:int)
op cancel-owner-read(•’-index:int)

body moose () separate

Appendix B: MOOSE Implementation page 65

r e sou rce t i c k e r

/ * a resource which t i c k s o f f seconds ... i n o r d e r f o r t h i s resource
t o work proper ly , it must be t h e on ly resource i n a v i r t u a l
machine. Since t h e s l e e p ope ra t i on f o r c e s t h e e n t i r e un ix
process (i .e. t h e e n t i r e v i r t u a l machine) t o wai t , c r e a t i n g t h i s
resource wi th in an a c t i v e v i r t u a l machine w i l l no work p rope r ly * /

e x t e r n a l s l e e p (t : i n t)
op t i c k ()

body ticker 0

proc t i c k ()
s l e e p (1)

end

end

Appendix B: MOOSE Implementation page 66

resource timer

/ * this resource is used by the cache-handling resources to time
the waits between cache firings. This resource creates another
virtual machine on the same physical machine, and creates a
ticker resource within that virtual machine * /

import ticker

op snooze (t : int)

body timer ()

var v : cap vm
var tick-res : cap ticker

initial
v := create vm()
tick-res := create ticker() on v

end

var gen : int := 0
var nun-waiting : int := 0
op t ickmark (g : int)

/ * this process uses the ticker resource to tick off seconds, and
informs any snooze procs of the ticks through invocations of
the tickmark operation. The variable 'num-waiting' keeps a count
of how many snooze procs are waiting for ticks. The tickmark
invocations keep a generation number with them so that one
snooze process can't grab all of the tickmarks from one
clock tick * /

process t
do (true) ->

gen ++
fa i := 1 to num-waiting ->

send tickmark (gen)
a f
num-waiting := 0
tick-res .tick ()

od
end

/ * this proc acts like a C sleep function for SR processes. Since
using the C sleep function would sleep the entire virtual machine,
this proc and all of its support mechanisms had to be built * /

proc snooze (x)
var my-gen : int

my-gen := gen
do (x>O) ->

num-waiting Sf

Appendix B: MOOSE ImpIementation page 67

in tickmark(g) and g>rny-gen ->
x : = x - (g-my-gen)
my-gen := g

ni
od

end

end

Appendix B: MOOSE Implementation page 68

resource addcachehandler

/ * this resource is used to handle a cache of add operations. When
a new object form is created, each moose server creates a
different addcachehandler resource for each cached add server.
The addcachehandler resource is given the capability to the
moose server for which it is caching updates, the capability for
the local timer resource, and the size and delay of the cache
it must look after. The only operation it exports is the
cache-add operation which the moose server may call to add
an entry into the cache. When the cache is full, or the timeout
expires, the cache is automatically fired off. */

import types
import moose
import timer

body addcachehandler(mres:cap moose; tres:cap timer; size,delay:int)

/ * the cache is simply an array of type add-op * /
var cache[l:size] : types.add-op
var next-free : int := 1

op f ire-of f-cache ()

op foc 0

/ * this process implements the timeout. Every 'delay' seconds, it
causes the cache to be sent. * /

process ticker
do (true) ->

tres .snooze (delay)
send foc ()

od
end

/ * this process is responsible for handling cache-add operations,
and commands by the timer to send off the cache. It is
implemented with an in statement so that cache-add operations
can't interfere with each other or with the sending of the
cache. * /

process pl
do (true) ->

in cache-add(name,values,o-id) by 1 ->
cache[next-free1.o-id := o-id
cache [next-free] .name : = name
cache[next~free].values[l:ub(values)] := values
next-free++
if (next-free > size) ->

f ire-off-cache ()
f i

Appendix B: MOOSE Implementation page 69

11 foc0 by 2 ->
if (next-free > 1) ->

f ire-of f-cache ()
f i

ni
od

end

/ * this proc is called to send and reset the cache * /

proc fire-off-cache0
send rnres.cache~update(cache[1:next~free-11)
next-free := 1

end

end

Appendix B: MOOSE Implementation page 70

resource delcachehandler

/ * this resource looks after caches of delete operations in the same
manner that addcachehandler resources look after caches of add
operations. The two resources are in all manner parallel. * /

import types
import moose
import timer

body delcachehandler(mres:cap moose; tres:cap timer; size,delay:int)

var cache[l:sizel : types.de1-op
var next-free : int := 1

op f ire-off-cache (1
op foc0

process ticker
do (true) ->

tres. snooze (delay)
foc 0

od
end

process pl
do (true) ->

in cache-del(name,val~es,o~id) by 1 ->
cache[next-free1.o-id := 0-id
cache [next-f reel . name : = name
cache [next free] .values [1 : ub (values) 1 : = values
next-free++
if (next-f ree > size) ->

f ire-of f-cache ()
fi

[I foc0 by 2 ->
if (next-f ree > 1) ->

f ire-of f-cache ()
f i

n i
od

end

proc f ire-off-cache ()
send mres.cache-delete(cache[l:next-free-11)
next-free := 1

end

end

Appendix B: MOOSE Implementation page 71

resource formhandler

/ * each moose server creates a single formhandler resource to manage
a local database of information about object forms. Through the
formhandler resource, every form is assigned a unique integer
identifier (although different servers may assign different
identifiers due to race conditions). * /

import types

op new-form(f:types.nametype; size:int; c:int; pr[l:*]:bool;
con[l:*]:bool; as[l:*l : int; ad[l:*l : int; ds[l:*J : int;
dd[l:*l : int)

op f orm-id (name :types. nametype) returns n: int
op form-size(f-id:int) returns s:int

op eager-add(form-id:int; server-id:int) returns b:bool
op cached-add(form-id:int; server-id:int) returns b:bool
op lazy-add(form-id:int; server-id:int) returns b:bool
op eager-del(form-id:int; server-id:int) returns b:bool
op cached-del(form-id:int; server-id:int) returns b:bool
op lazy-del(form-id:int; server-id:int) returns b:bool
op producer(fom-id:int; server-id:int) returns b:bool
op consumer(form-id:int; server-id:int) returns b:bool
op correctness(form-id:int) returns c:int
op num_producers(f:int) returns n:int
op prodid(f:int) returns c:int

external gethostname (res s: string (* I ; n:int)

body formhandler(me : int; max-servers:int; max-forms:int)

type form-type = rec (
name : types.nametype
size : int
correctness : int
producers [1 :max-servers] : bool
consumers [l :max-servers] : bool
add~cache~sizes[l:max~servers] : int
add~cache~delay[l:max~servers] : int
del~cache~sizes[l:max~serversl : int
del-cache-delay[l:max-servers] : int
numgrod : int
prodid : int
)

var form[l:max-forms] : ptr form-type
var next-form :int := 1

/ * given a form name, return its identifier * /

proc f orm-id (name) returns id
id := 0
fa i:=l to next form-1 st (name=formCil ".name) -> -

id := i

Appendix B: MOOSE Implementation page 72

exit
a f

end

/ * given a f o m identifier, return the size of the tuple of values */

proc form-size (f-id) returns size
size := form[f-id] ^ . size

end

/ * return true if the specified server is eager-add with respect to
the specified object form, false otherwise. * /

proc eager-add (f orm_id, server-id) returns b
b := (f o m [f om-id] ̂ . add-cache-sizes [server-id] = 1)

end

/* return true if the specified server is cached-add with respect to
the specified object form, false otherwise. * /

proc cached-add (form-id, server-id) returns b
b : = (f orm[f om-id] ̂ . add-cache-sizes [server-id] ! = 1) and

(forrn[fom~id]^.add~cache~sizes[server~id] != types.infinity)
end

/ * return true if the specified server is lazy-add with respect to
the specified object form, false otherwise. * /

proc lazy-add (f om-id, server-id) returns b
b := (form[form_id] ̂ .add-cache-sizes [server-id] = types .infinity)

end

/ * return true if the specified server is eager-del with respect to
the specified object form, false otherwise. * /

proc eager-del (form-id, server-id) returns b
b := (fom[fom-id] A .del-cache-sizes [server-id] = 1)

end

/ * return true if the specified server is cached-del with respect to
the specified object form, false otherwise. * /

proc cached-del(form-id,server-id) returns b
b := (f om[form-id] A .del-cache-sizes [server-id] ! = 1) and

(form[fom-id] ̂ .del-cache-sizes [server-id] != types. inf inity)
end

/ * return true if the specified server is lazy-del with respect to
the specified object form, false otherwise. * /

proc lazy - del (form-id, server-id) returns b

Appendix B: MOOSE Implementation page 73

b := (form[f om-id] ̂ .del-cache-sizes [server-id] = types. infinity)
end

/ * return true if the specified server is a consumer of the specified
object form, false otherwise. * /

proc consumer (f o ~ i d , server-id) returns b
b := f orm[form-id] ̂ .consumers [server-idl

end

/ * return true if the specified server is a producer of the specified
object form, false otherwise. * /

proc producer (f orm-id, server-id) returns b
b := form [f om-id] ̂ .producers [server-id]

end

/ * return the correctness mode of the specified object form * I

proc correctness (f o x i d) returns cor
cor : = form [form-id] ̂ . correctness

end

/ * return the number of producers of the specified object form * /

proc numgroducers (•’-id) returns n
n : = f orm [f-id] ̂ . numgrod

end

/ * return the index of a moose server which produces the specified
object f orm * /

proc prodid(•’-id) returns id
id : = f om[•’-id] ̂ .prodid

end

/ * define a new object form and all of its parameters * /

proc new~form(name,size,corr,prod,con,addsize,adddelay,delsize,
deldelay)

f orm[next-form] : = new (form-type)
form [next-f o m] ̂.name : = name
form[next-form] ̂ .size := size
f orm [next-f o m] ̂ . correctness : = corr
form[next-form] ̂ .producers [l:ub (prod) 1 := prod
f orm [next-f o m] ̂ .consumers [1 :ub (con) I := con
form[next-formIA.add cache sizes[l:ub(addsize)] := addsize
f orm[next-f o m] ̂ . add~cache~delay [l :ub (adddelay) I := adddelay
form[next form] ̂ . del-cache-sizes [1 :ub (delsize)] := delsize
form[next-form]^.del cache - delay[l:ub(deldelay)l := deldelay
form [nextlorm] ̂ . n s r o d : = 0

Appendix B: MOOSE Implementation page 74

f a i := 1 t o ub(prod) s t p r o d l i l ->
f orm [next-f o m] ̂ . num9rod ++
f orm [next-f o m] A .p rodid : = i

a f
next-form := next-form + 1

end

end

Appendix B: MOOSE Implementation page 75

resource dbhandler

/ * each moose server creates a single dbhandler resource to handle
all of the local database. The local database consists of a
set of binary trees - one for each object form. A semaphore
exists for each binary tree. Before any modification can be
made to the tree, the modifying process must grab the semaphore.

A wait-on-add operation exists for each binary tree. A process
can wait for an addition to an object form by executing a receive
on the associated trees wait-on-add operation. When an addition
is made, the operation is invoked once for each process executing
the receive operation. * /

import types
import moose
import formhandler

local-add(n:types.nametype; v[l:*l:int; o:int)
local-delete(name:types.nametype; v[l:*] :int; o-id:int)
cache-update (c [l: *I : types .add-op)
cache-delete (c [l: *I :types .del-op)
checkwait(name:types.nametype; var values[l:*l:int; res o-id:int)

returns b : boo1
check(•’-id:int; var values[l:*l : int; res o-id:int)

returns b:bool
unique-check(f-id:int; v[l:*]:int; o-id:int) returns found:bool
invoke-ocw(n:types.nametype; v[l:*]:int; r:cap moose; rep:int)

returns i:int
cancel-ocw (m: int)

body &handler(fres:cap formhandler; me:int; max-forms : int)

type tnode = rec(
o-id : int
values[l:types.max-obj-size] : int
left : ptr tnode
right : ptr tnode)

op sem[l:max-forms] ()
op wait on add [1 :max-forms] (g: int)
var num~wa~t-on-add [1 : max-f o m s I : int : = ([max-f o m s I 0)
var generation[l:max-forms] : int := ([max-forms1 0)

bt-add(var n : ptr tnode; values[l:*l : int; o-id:int)
ob j-gt (vl [l : *I : int; v2 [I : *I : int returns b:bool
cw(f-id:int; var values[l:*] : int; res o-id:int; p:ptr tnode)

returns b:bool
match (vl [l : *] : int ; v2 [I: *I : int) returns b:bool
ult (vl [1: *] : int; v2 [I: *] : int) returns b:bool
ucw(v[l:*]:int; o-id:int; p:ptr tnode) returns found:bool
bt-del (var p:ptr tnode; v[l:*l :int; o-id:int)
prop-del(var p:ptr tnode)
attach (loose_p:ptr tnode; onto_p:ptr tnode)

Appendix B: MOOSE Implementation page 76

var root [l :max-f oms] : ptr tnode

initial
/ *
fa

a f
end

initialize the semaphores * /
i:=l to max-forms ->
send sem [i] ()
root [i] := null

/ * add an object to the local database */

proc local-add (name, values , 0-id)
var f-id : int

f-id := fres-form-id(name)
/ * grab the semaphore * /
receive sem [f-id] ()
/ * add the object to the binary tree *I
bt add (root [f-id] ,values , 0-id)
/*-update the generation of the binary tree * /
generation [f-id] ++
/ * release the semaphore * /
send sem[f-id] ()
/ * inform any waiting processes of the change * /
fa i:=l to num wait-on-add[f-id] ->

send wait-0;-add [f-id] (generat ion)
a f
nxwait-on-add [f-id1 := 0

end

/ * this proc is responsible for doing all of the work in adding
an object to a tree * /

proc bt-add (p, v, o-id)
if p=null ->

/ * we've found where to add it */
p := new(tnode)
pA.o-id := o-id
pA.values[l:ub(v)] := v
pn.left := null
pn . right : = null

[I else ->
/ * descend down the tree recursively * /
if ob j-gt (pn .values [l :ub (v) 1 , v) ->

/ * descend down the left branch * /
bt-add (pn . left, v, o-id)

I] else ->
/ * descend down the right branch */
bt-add (pn . right, v, o-id)

f i

Appendix B: MOOSE Implementation page 77

f i
end

/ * define a total ordering over the values of objects * /

proc ob j-gt (vl, v2) returns b
fa i:=l to ub(v1) ->

if vl [i] > v2 [i] ->
b := true
return

[] vl[i] <v2[i] ->
b := false
return

f i
a f
b := false

end

/ * receive and process a cache of add operations * /

proc cache-update (cache)
fa i:=l to ub(cache) ->

send local-add(cache [i] .nameache [il .values, cache [i] .o-id)
a f

end

/ * receive and process a cache of delete operations * /

proc cache-delete(cache)
fa i:=1 to ub (cache) ->

send local - delete (cache [i] . name,cache [i] .values ,cache [i] -0-id)
a f

end

/ * check for an object matching the specified template in the local
database. If a matching object is found, return it immediately.
Otherwise, wait until such an object is found and then return
it. * /

proc checkwait (name, values, o-id) returns b
var •’-id : int := fres.form-id(name)
var last-gen : int

if (f-id = 0) ->
b := false
return

[I else ->
b := true

f i

Appendix B: MOOSE Implementation page 78

do (true) ->
last-gen := generation[f-id]
if check (f-id, values, o-id) ->

return
[I else ->

nun-wait-on-add [•’-id] ++
in wait-on-add[f-id] (g) & g>last-gen ->

skip
ni

fi
od

end

/ * this proc starts up an operation similar to checkwait, except that
only objects produced locally (i.e. this resource is the owner of
the object) can be returned. The proc is given a capability to
a moose server to which it must return results. This proc might
receive a cancellation message before it completes (it may never
complete short of being cancelled). * /

var ocw-ctr : int := 1

proc invoke-ocw (name,values,rep-cap~rep-nun) returns i
var f id : int : = f res . fom-id (name)
var last~gen,rny~ocw~ctr,o~id : int

my-ocw-ctr := ocw-ctr
ocw-ct r++
i := my-ocw-ctr
reply

last-gen : = generation [•’-id]
do (true) ->

if check (f-id, values, o-id) ->
/ * we've found an object. Send a reply and exit * /
send rep~cap.return~owner~read(repPnunfva1ue~f~Oidfme)
exit

[I else ->
nun-wait-on-add [f-id] ++
/ * wait for either an addition to the tree or a cancellation

message
in wait-on-add[f-id] (g) & g>last-gen ->

last-gen := g
[I cancel-ocw (m) & m=my-ocw-ctr ->

nun-wait-on-add [f-id]--
exit

ni
f i

od
end

/ * check the local database for an object matching the specified

Appendix B: MOOSE Implementation page 79

object template. * /

proc check (f-id, values, o-id) returns found
found := cw (f-id,values, o-id,root [f-id])

end

/ * this proc does all of the work of the check proc - the check proc
calls this proc with a pointer to the root of a tree. This proc
recursively descends the tree. * /

proc cw (f-id, values, o-id, p) returns found

found := false
return

f i
if match (values,pA .values [l :ub (values) I) ->

found := true
values := pA.values[l:ub(values)l
o-id := pA.o-id
return

f i

/ * note that because of the possible undefined values in
the object to be searched for, it may be necessary to search
both children of the current node * /

if ult(values,pA.values) ->
found : = cw (f-id, values, o-id, pA . left)
if (found) ->

return
fi

f i
if ult (pA .values, values) ->

found := cw(fid,values,o-id,pA.right)
f i

end

/ * this proc returns true if the values of two objects match. The
values may not be fully defined, in the case of an object
template. * /

proc match (vl, v2) returns b
fa i :=1 to ub (vl) st (vl [i] ! =v2 [i] and vl [i] !=types. undef ined and

v2 [i] !=types. undefined) ->
b:=f alse
return

a f
b := true

end

/ * determine if the first set of values might be less than the second
set, based on the ordering defined by the obj-gt proc. The set

Appendix B: MOOSE Implementation page 80

of values might be partially undefined (in the case of an object
template) * /

proc ult (vl, v2) returns b
fa i:=l to ub(v1) ->

if (vl[il=types.undefined or v2[i]=types.undefined or
vl[i]<v2[i]) ->

b := true
return

fi
if vl [i] > v2 [i] ->

b := false
return

f i
a f
b := false

end

/ * this proc checks to see if the given fully defined object exists
in the tree * /

proc unique~check(f~id,values,o~id) returns found
found : = ucw (values, o-id, root [•’-id])

end

/ * this proc does all of the work for the unique-check proc. The
unique-check proc calls this proc with the root of a tree, and
this proc recursively descends the tree looking for the object * /

proc ucw (values, o-id, p) returns found
if (p=null) ->

found := false
[I else ->

if (pA .o-id = o-id) ->
found := true

[I ob j-gt (pA .values [l:ub (values) I, values) ->
found := ucw(values,o~id,p~.left)

[I else ->
found := ucw(values,o-id,pA.right)

f i
f i

end

/ * this proc removes the specified object from the local database * /

proc local-delete (name, values, o-id)
var f-id : int := fres.form_id(name)
var last-gen : int

/ * make sure the thing is there (the delete may have arrived
bef ore the add) * /

last-gen := generation[f-id1
do (not unique-check (f-id, values, o-id) ->

Appendix B: MOOSE Implementation page 81

nun-wait-on-add [f-id]++
i n wai t on-add[f-id] (g) & g>last-gen ->

l a s t I g e n := g
n i

od

r e c e i v e s e m [•’-id1 (
b t d e l (r o o t [f-id] , values , 0-id)
send s e m [f-id] ()

end

/ * t h i s p roc removes an o b j e c t from a b i n a r y tree * /

proc bt-del (p, v, o-id)
i f (p !=nul l) ->

i f

r I

[I

f i
f i

end

(pA . o-id = o-id) ->
/ * t h e o b j e c t has been found, d e l e t e t h e o b j e c t and

r e s t r u c t u r e t h e tree which was below t h e o b j e c t * /
prop-del (P I
ob j-gt (pA .va lues [l :ub (v) I , v) ->
b t d e l (pA . l e f t , v, o-id)
else ->
bt-del (pA . r i g h t , v, o-id)

/ * t h i s proc i s respons ib le f o r d e l e t i n g t h e s p e c i f i e d node from
a b ina ry tree. The tree below t h e d e l e t e d o b j e c t must be
r e s t r u c t u r e d . * /

proc prop-del (p)
v a r p l : p t r tnode := p A . l e f t
v a r p r : p t r tnode := p A . r i g h t

i f (p l != n u l l) ->
/ * t h e r e was a sub t r ee t o t h e l e f t of t h e d e l e t e d node.

Attach it where t h e d e l e t e d node was, and a t t a c h any
s u b t r e e t o t h e r i g h t of t h e d e l e t e d node t o t h i s new
s t r u c t u r e .

p := p l
i f (p r != n u l l) ->

a t t a c h (p r , p l)
f i

[I else ->
/ * t h e r e was no sub t r ee t o t h e l e f t of t h e d e l e t e d node,

s o t h e s u b t r e e t o t h e r i g h t of t h e d e l e t e d node (i f any
is a t t a c h e d i n p l a c e of t h e d e l e t e d node) * /

end

/ * t h i s p roc a t t a c h e s one s u b t r e e on to another , main ta in ing t h e

Appendix B: MOOSE Implementation page 82

c o r r e c t o rde r ing of t h e b ina ry t r e e . * /

proc a t t a c h (l o o s e g , o n t o g)
i f (onto_pA . l e f t != n u l l) ->

attach(looseg,ontogA.left)
c:
*I

o n t o g A . l e f t := l o o s e g
end

end

Appendix B: MOOSE Implementation page 83

body moose

/ * this is the body for the moose resource, responsible for
implementing all of the moose operations. When this resource
is created and initialized, it creates formhandler, dbhandler
and timer resources to serve it. * /

import addcachehandler
import delcachehandler
import formhandler
import dbhandler
import timer

const max-servers := 15
const max-forms := 25
var moose~server[l:max~serversl : cap moose
var num-servers,me : int

var formhan : cap formhandler
var dbhan : cap dbhandler
var timer-res : cap timer
type chs = rec(server[l:max-servers] : cap addcachehandler)
type dhs = rec(server[l:max-servers] : cap delcachehandler)
var addcachehan [l :max-forms] : ptr chs
var delcachehan [l :max-forms] : ptr dhs

op od-sem[l:max-forms]() / * owner-delete has to be mutually
exclusive for each form so need
to use a semaphore ... * /

initial
fa i:=l to max-forms ->

send od-sem[il ()
a f

end

proc init-moose (servers, whoami)
me := whoami
nun-servers := ub (servers) ;
fa i:=l to nun-servers ->

moose-server [i] := servers [il
a f
f ormhan : = create f ormhandler (me, nun-servers , max-f oms)
dbhan := create dbhandler (formhan,me,maxXforms)
timer-res := create timer0

end

op new-obj id() returns o-id:int {call)
op owner (orid: int) returns owner : int

I

Appendix B: MOOSE Implementation page 84

op global-add(f:int; n:types.nametype; v[l:*] : int)

/ * all of the following procs are invoked by other moose servers. They
simply forward a task on to the local dbhandler resource * /

proc local-add (name, values, 0-id)
dbhan.loca1-add(name,values,o_id)

end

proc cache-update (c)
dbhan. cache-update (c)

end

proc cache-delete (c)
dbhan . cache-delete (c)

end

proc local-delete (name, values I 0-id)
dbhan.loca1-delete(name,valuesIo-id)

end

proc still-there (name, values, o-id) returns b
b := dbhan-unique - check(formhan.form-id(name),values,o_id)

end

/ * this proc defines unique identifiers for new objects created
locally. The id of the local moose server is coded into the
object id * /

var cnt : int := 1

proc new-obj-id0 returns o-id
o-id := me*100000+cnt
cnt++

end

/ * given an object id, this proc returns the id of the moose server
which created and owns it * /

proc owner (0-id) returns owner
owner := o-id / 100000

end

/ * this proc is the application interface to the procs which
define new object forms. This proc may be called from any
moose server, and the new object form is created on all moose

Appendix B: MOOSE Implementation page 85

servers. * /

proc def-f orm(name, size, corr, c o n , p r o d , a d d s i z e ~ l s i z e ,
deldelay) returns b

/ *

if

fi
if

[I

f i
end

this conditional is set up a little funny to avoid a bug in
the compiler ... * /

(size > types.max-obj-size) ->
b := false
return

(formhan.form_id(name) != 0) ->
b := false
else ->
co (i:=l to num-servers)

moose~server[i].def~f~rm~sub(name,size,corr,con,prod,
addsize, adddelay, delsize, deldelay)

OC
b := true

/ * this is the proc which actually defines the new object form
locally, and creates any addcachehandler and delcachehandler
resources which need to be created. * /

proc de•’~•’om~sub(name,size,corrIconIprod,addsizeIadddelayIdelsizeI
deldelay)

var f-id : int

formhan.new~fom(name,size,corr,con,prod,addsize,adddelay,
delsize,deldelay)

f-id := formhan.form-id(name)
addcachehan[f-id] := new(chs) / * create the capabilities for the

new cache handlers */
/ * create the new add-cache handlers * /
fa i:=l to num-servers st

(addsize [i] ! = 1) and (addsize [i] !=infinity)
and (i!=rne) ->

addcachehan[f-idlA.server[i1 := create addcachehandler(
moose-server[i],timer-res,addsize[i],adddelay[il)

a•’
/ * create new del-cache handlers */
fa i:=l to num-servers st

(delsize [i] != 1) and (delsize [i] ! = types. in•’ inity) and
(i!=me) ->

delcachehan[f-idIA.server[i] := create delcachehandler(
moose - server[i],timer~res,delsize[i],deldelay~i]~

af
end

...
/ * this proc implements the get operation * /

Appendix B: MOOSE Implementation page 86

proc get (name,v) returns b
var o-id : int
var f-id : int := formhan. form-id (name)

f-id = 0 ->
b := false
return
else ->
if ub (v) != formhan. form-size (f-id) ->

b := false
return

f i

different actions for different correctness modes */
formhan.correctness(f_id) = types.safe ->

/ * have to make this test a little funny because of compiler
bugs * /

var Imaproducer : boo1 := formhan.producer(f-id,me)
if (f ormhan. nqroducers (f-id) > 1) or Imaproducer ->

/ * if there is more than one producer, or these objects
are produced locally, perform the operation locally * /

var values [l :ub (v) 1 : int
do (true) ->

/ * in safe correctness mode, we have to attempt to delete
the object through the object's owner, with the
owner-delete operation. If the owner-delete fails, we
have to try with a different object. * /

values := v
if (not read-work (name, values, o-id)) ->

b := false
return

f i
if moose~server[owner(o~id)].owner~delete(o~id,name,

values)
v := values
b := true
return

f i
od
else ->
/ * if there is only

server
one producer, forward the call to that

* /
moose-server [formhan .prodid 1 .get (name, v)

f i
else -> / * correctness = risky */
if (formhan .num_producers (f-id) > 1) or

(f ormhan .producer (f-id, me)) ->
if there is more than one producer, or these objects
are produced locally, perform the operation locally * /
(not read-work (name, v, o-id)) ->
b := false
return

in risky correctness mode, we do not need permission of
the owner to delete the object. * /
by causing the owner to execute a global delete, we

Appendix B: MOOSE Implementation page 87

guarantee that the object is removed from the owner's
local db, regardless of his delete update mode. This
doesn't cost-any extra messages than if we had done
it all from here, either * /

send moose~server[owner(o~id)l.global~delete(f~id,
o-id, name, v)

[I else ->
/ * if there is only one producer, forward the call to that

server
moose server [formhan-prodid (Lid) 1 .get (name, v) -

f i
fi
b := true
return

end

...
/ * this proc implements the read operation */

proc read (name, values) returns b
var o-id : int

b : = read-work (name, values , 0-id)
end

/ * this proc does all of the work for the read operation. * /

proc read-work(name,values,o-id) returns b
var f-id : int := formhan.form-id(name)

-
b := false
return

[I else ->
if ub (values) != formhan.form-size (f-id) ->

b := false
return

f i
f i

b := true
if (f ormhan. lazy-add(f-id, me)) ->

/ * lazy add and any delete mode - we ship the function to
somebody else to perform * /

var keepgoing : boo1 := true
var bestserver : int := 0

/ * determine the best server, if any, to ship the function to.
An eager add/eager delete server is best of all, followed
by any eager add server. * /

fa i := 1 to nun-servers st keepgoing ->
if f ormhan . eager-add (f-id, i 1 ->

bestserver := i
keepgoing := not formhan.eager-del(f-id,i)

Appendix B: MOOSE Implementation page 88

if (bestserver != 0) and (formhan.num_producers (f-id) > 1) ->
/ * if possible and > 1 producer, ship the function * /
m o o s e ~ s e r v e r [b e s t s e r v e r] . r e a d ~ w o r k (n a m e ~ i d ~

[I else ->
/ * otherwise, poll the producers for the answer * /
start - owner-read(name,values,o_id)

f i

[I (not f ormhan. lazy-add (f-id,me)
and formhan.eager-del(f-id,me)) ->

/ * eager delete and eager or cached add mode - we simply call
the checkwait function and wait for the object to show up
in the local database * /

b := dbhan.checkwait(name,values,o_id)

[I else ->
/ * lazy or cached delete mode and eager or cached add mode -

when the object gets produced it will be sent here, but
the deletion of the object might be delayed, so we have
to check with the owner after we find an object to make
sure that it hasn't been deleted yet. * /

var v[l:ub(values)] : int

do (true) ->
v := values
/ * find an object * /
if not dbhan. checkwait (name, v, 0-id) ->

b := false
return

f i
/ * check with the owner to see if it's still present * /
if (moose-server [owner (0-id) 1 . still-there (name, v i d) ->

/ * if it's still present, return it * /
b := true
values := v
return

[I else ->
/ * if it's been deleted from the object space, delete

it locally and try again * /
dbhan.loca1-delete(name,v,o-id)

fi
od

fi
end

...
/ * this proc implements the put operation * /

proc put (name, values) returns b
var f-id : int

/ * simply check to make sure it's a valid object, then call

Appendix B: MOOSE Implementation page 89

the global-add procedure * /
f id := formhan.form-id(name1
iT (f-id = 0) ->

b := false
return

[I else ->
if (ub (values) != formhan. form-size (f-id)) ->

b := false
return

[I else ->
b := true

fi
f i
global-add (f-id, name, values)

end

/* send the addition immediately to all eager-add servers, and place
it in the cache of all cached-add servers. Ignore any servers
which are lazy-add. Also, ignore any servers which are not
consumers, even if they are eager- or cached-add. * /

proc global add (•’-id, name, values)
var o-id-: int

o-id : = new-ob j-id ()
dbhan.loca1-add(name,values,o_id)
fa i :=1 to nun-servers st (i !=me and •’ ormhan. consumer (f-id, i)

and f ormhan . eager-add (f-id, i)) ->
send moose~server[i].local~add(name,values,o~id)

a •’
fa i:=l to num-servers st (i!=me and formhan.consumer(f-id,i)

and formhan . cached-add (G d , i)) ->
send addcachehan [f-id] ̂ .server [il . cache-add (name, values, 0-id)

a•’
end

/ * send the deletion immediately to all eager-del servers, and place
it in the cache of all cached-del servers. Ignore any servers
which are lazy-del. Also, ignore any servers which are not
consumers, even if they are eager- or cached-del. * /

proc global-delete(f-id,o-id,name,values)
dbhan.loca1-delete(name,values,o_id)
fa i :=1 to num-servers st (i !=me and f ormhan. consumer (f-id, i)

and f ormhan . eager-del (•’-id, i)) ->
send moose - server[i].local~delete(name,values,o~id)

a f
fa i:=l to num-servers st (i!=me and formhan.consumer(f-id,i)

and f ormhan . cached-del (f-id, i)) ->
send delcachehan[f~id]^.server[i].cache~del(name,values,o~id)

a f
end

Appendix B: MOOSE Implementation page 90

/ * this proc deletes an object which was produced locally if it
hasn't already been deleted. Return true if the deletion was
successful, false if the object has already been deleted.
A semaphore for each object form is used so that two owner-delete
operation trying to delete two objects of the same form will not
interfere * /

proc owner-delete (0-id, namegalues) returns ok
var f-id : int := formhan.form-id(name)

receive od-sem [f-id] ()
if dbhan . unique-check (f- id, values e d) ->

ok:= true
reply
global-delete (f-id, o-id, name, values)
send od-sem[f-id] ()

[I else ->
ok := false
send od-sem [f-id1 ()

f i
end

/ * the following procs are used for the owner-read operation. This
operation is used to forward a read operation from a lazy-add server
onto all of the servers which produce the objects of that form.
The operation is complicated by the need to cancel the processes
operating on other servers when one process returns successfully * /

var or-ctr : int := 1

/ * start up the owner-read process on all producer servers, and wait
for one to respond with success. When one returns successful,
send cancellation messages to all of the others. * /

proc start-owner-read(name,values,o-id)
var f-id : int := formhan.form-id(name)
var f-index : int
var can-ids [l :num-servers] : int
var my-ctr : int

my-ctr := or-ctr
or-ctr++

co (i:=l to nun-servers st formhan.producer(f-id,i))
can-ids [i] : = moose - server [i] . owner-read (namemlues,

myresource 0 ,my-ctr)
OC

in return-owner-read (rn, v,o,f) & rn=my-ctr ->
values := v
o-id := o

Appendix B: MOOSE Implementation page 91

f-index := f
ni

fa i:=l to nxservers st formhan.producer(f-id,i) ->
if (i != f-index) ->

send moose~server[il.cancel~owner~read(can~ids[il)
f i

a f
end

/ * this process is used to forward owner-read and cancel-ocw
invocations on to the dbhandler resource where they will be
processed. The owner-read operation in the dbhandler (started
with an invocation of invoke-ocw) will reply directly to the
start-owner-read process above. * /

process orp
do (true) ->

in owner~read(narne,values,rep~cap,rep~num) returns can-id ->
can-id := dbhan.invoke~ocw(name,values,rep_~ap,rep~n~~

[I cancel-owner-read (can-id) ->
send dbhan.cance1-ocw(can-id)

ni
od

end

end

page 92

Appendix C: Steiner Tree Example Source Code

resource stein-master

/ * this resource is the master resource in the computation. Only one
such resource will exist. It is responsible for putting the data
and tokens into the object space, and for collecting the results
once they have been computed by the workers. This resource also
times the whole process. * /

external mscounter0 returns t:int

import types
import moose

body stein~master(nun~tokens~numumnodes,nun~critical:int; ms:cap moose)

proc go0
var t [1 : nun-nodes+31 : int
var min, id : int
var max-range, range-size : int
var in-graph[l:num-nodes,l:nun-nodes] : int
var stime,etime : int

/ * read the input graph from stdin */
fa i := 1 to nun-nodes, j := 1 to nun-nodes ->

read (in-graph [if j])
a f

write ("graph size : ", num-nodes, "nodes tokens : ", nun-tokens)
write("Starting timing...")
stime := mscounter0

/ * PUT the data * /
fa i := 1 to nun-nodes ->

t[1] := i
t 12 :nun-nodes+ll := in graph [if l:num_nodesl
ms .put ("DATA", t [l :nun-zodes+l])

a f

/ * PUT the tokens - each token is an integer range * /
max-range := (1 << (nun-nodes - nun-critical)) - 1
range-size := (max-range+l) /num-tokens
fa i := 0 to nun-tokens - 1 ->

t[ll := i
t[21 := range-size * i
t [3] := range-size * (i+l) - 1
ms.put ("TOKENW,t [l:3])

a f
if (range-size*nun-tokens != max-range + 1) ->

t [1] := nun-tokens
t[2] := range-size * nun-tokens
t[31 := max-range

Appendix C: Steiner Tree Example Source Code page 93

/ * collect the results * /
min := 10000
fa i := 0 to nun-tokens-1 ->

t [l:2] := (i, types.undefined)
ms.read("~ESULT",t [l:2])
if (t [2] < min) ->

min := t[2]
id := t[ll

f i
a f

etime := mscounter ()
write("Computation completed...")
write("\n\nTotal time for computation :",etime-stime)

end

end

Appendix C: Steiner Tree Example Source Code page 94

resource stein-worker

/ * this resource is the worker resource. An arbitrary number of
resources will exist (1 or more). These resource compete over
the work tokens, performing the work specified when they
successfully grab a token. * /

import types
import moose

body stein-worker(num-nodes:int; moose-res:cap moose)

const infinity := 10000

type graph-type = rec(
adj mat[l:num_nodes,l:num_nodesl : int
present [l :nun--nodes] : bool)

op modify(ing:graph-type; n:int; res out:graph-type)
op min-span(g:graph-type; res t:graph-type) returns w:int

/ * given the input graph, modify it according to the enumerating
integer. Each bit in the integer corresponds with a node in the
input graph, with a bit value of 1 indicating that the node should
be removed for this particular subgraph. * /

proc modify(in-graph,n,out-graph)
out-graph := in-graph
fa i := 1 to nun-nodes -> :. for each bit in n ... * /

if (n%2 = 1) -> / * if the bit is set... * /
out-graph .present ii] := false / * remove the node... * /
fa 5 := 1 to num-nodes ->

out-graph.adj-mat[i,jl := infinity
out graph. ad j-mat [j , il : = in•’ inity -

a f
f i
n := n >> 1

a f
end

/ * given an input graph, apply Prim's algorithm to compute the
minimum weight spanning tree. Return the tree and its weight * /

proc min-span (g, t) returns weight
var iterations, min-weight, min-from, min-to : int

/ * initialize everything ... choose a node as the starting node
for the tree. */

t.adj-mat := ([num-nodesknum-nodes1 infinity)
t .present : = ([nun-nodes I false)
iterations := 0
fa i := 1 to nxnodes st g.present [il ->

iterations ++
a f
iterations --

Appendix C: Steiner Tree Example Source Code page 95

weight := 0
fa i := 1 to num-nodes st g.present[i] ->

t .present [il := true
exit

a f

/ * for each iteration, add the least weight arc from the current
tree to a node not in the current tree - this is the greedy
approach.

fa q := 1 to iterations ->
min-weight := infinity
fa 2 := 1 to nun-nodes st t.present[il,

j := 1 to num-nodes st (not t .present [jl) ->
if (g . adj-mat [i, j] < min-weight) ->

min-weight := g.adj-mat[i,j]
min-from := i
min-to := j

F :

if (min-weight = infinity) ->
weight := infinity
return

[I else ->
weight := weight + min-weight
t.adj~mat[min~to,min~froml := min-weight
t .ad j-mat [min-f rom, min-to] : = min-weight
t .present [min-to] : = true

f i
a f

end

/ * this is the main process executed by a worker process. It GETS
a work token, uses the previous two procs to perform the work
specified by that token, and then goes back for another. * /

var input-graph, work-graph, tree, min-tree : graph-type
var start,finish,min,weight : int
var t [1 : num_nodes+3] : int
var id : int

process main
collect the data (the input graph) * /
i := 1 to num-nodes ->
t[l] := i
t [2 :nun-nodes+l] := ([nun nodes1 types .undefined)
moose-res .read ("DATA", t [l?num_nodes+ll)
input-graph. adj-mat [it 1 :nunumnodesl := t [2 :num_nodes+ll

input-graph.present := ([nun-nodes] true)

do (true) ->
/ * grab a token ... * /
t [l:3] := ([3] types.undefined)
moose - res.get("TOK~~",t[l:31)

Appendix C: Steiner Tree Example Source Code page 96

id := t[11
start := t 121
finish := t[3]
min := infinity
/ * for each subgraph specified by the token, apply Prim's

algorithm. Take note of the least weight. * /
fa i := start to finish ->

modify(input-graph,i,work-graph)
weight := min-span(work-graph,tree)
if (weight < min) ->

min-tree := tree
min := weight

f i
a f
/ * PUT the result (i.e. the least weight) * /
t[l:2] := (id,min)
moose-res .put ("RESULT", t [1 : 2 I)

od
end

end

Appendix C: Steiner Tree Example Source Code page 97

resource steiner

/ * this is the main resource of the steiner program. This resource
is responsible for creating the virtual machines, creating and
initializing the moose servers, defining the object forms,
creating the worker and master resources, and then starting things
moving * /

import types
import moose
import stein-worker
import stein-master

external gethostname (res n : string(*) ; i:int)

body steiner ()

const max-nodes := 10

var vms [l :max-nodes-11 : cap vm
var ms[l:max-nodes] : cap moose

var nun-nodes : int
var num-tokens : int

initial
var n : string(50)

/ * the parameters to this program should consist of an integer
followed by a list of physical machine names. The integer
specifies the number of work tokens that the task will be
split into. The list of machines specifies the machines
which the worker processes will be created on. The master
resource is created on the machine from which the program
is executed. * /

if (numargs () < 2) ->
write("form: steiner <num tokens> <workerl> [<worker2> ",

" [<worker3>. . .I] ")
stop

fi
getarg (1, num-tokens)
num-nodes : = numargs ()
writes("\n\nRunning Steiner Tree problem on ",num-nodes,

" servers ... \n\nW)
gethostname (n, 40)
write (I1 locating master node on", n)
ms [11 := create moose (1
fa i := 1 to numargs()-1 ->

getarg (i+l,n)
write (" locating worker", i, "on", n)
locate (it n)
vms[il := create vm() on i
ms [i+l] := create moose () on vms [il

a f

/ * initialize moose servers */
write("1nitializing moose servers...")

Appendix C: Steiner Tree Example Source Code page 98

fa i:=l to num-nodes ->
ms [i] . init-moose (ms [l:num_nodesl, i)

a f

end

process main
var mres : cap stein-master
var wres : cap stein-worker
var graph-size,nun-critical : int

read (graph-size, num_critical)

var t [l :nun-nodes] : bool := ([nun-nodes] true)
var tf [l :nu-nodes1 : bool := (true, [num-nodes-l] false)
var ft [l :nun-nodes1 : bool := (false, [nun-nodes-11 true)
var one [1 : nun-nodes] : int : = ([num-nodes] 1)
var of [l:nun-nodes] : int := (1, [num-nodes-l] infinity)

ms[l].def~fom("D~T~",graph~~ize+l,types.safe,tf,t,one,one,
one, one)

ms [1] .def-fom("TOKEN",3,types.safe,tf,t,ofrone,of,one)
ms [1] .def- RESULT", 2, types. safe,ft, tf, of, one, ofr one)

mres := create stein-master(num-tokens,graph-size,num-critical,
ms [ll)

fa i := 1 to nun-nodes - 1 ->
wres := create stein-worker (graph-size,ms [i+l]) on vms [il

a f
mres . go ()
stop

end

end

page 99

References

Selim G. Akl, Parallel Sorting Algorithms, Academic Press Inc., Orlando Florida,
1985.

Gregory R. Andrews et al., "An Overview of the SR Language and Implementation"
in ACM Transactions on Progfamming Languages and Systems, 10 (I),
January 1988.

Gregory R. Andrews and Ronald A. Olsson, "Revised Report on the SR Program-
ming Language," University of Arizona TR 87-27, 1987.

M. Stella Atkins, "Experiments in SR with different Upcall Program Structures" in
ACM Transactions on Computer Systems, November 1988.

Philip A. Bernstein, Nathan Goodman and Ming-Yee Lai, "Analyzing Concurrency
Control Algorithms When User and System Operations Differ" in IEEE
Transactions on Software Engineering, 9 (3), 1983.

Kenneth P. Birrnan and Thomas A. Joseph, "Reliable Communication in the Pres-
ence of Failures" in ACM Transactions on Computer Systems, 5 (I), February
1987.

F. W. Burton, "Functional Programming for Concurrent and Distributed Comput-
ing" in The Computer Journal, 30 (5), 1987.

Nicholas Carriero and David Gelernter, "The S/Net's Linda Kernel" in Proceedings
of the Symposium on Operating System Principles, December 1985.

Nicholas Carriero, David Gelernter and Jerry Leichter, "Distributed Data Structures
in Linda" in Proceedings of the Principles of Programming Languages Sym-
posium, 1986.

David R. Cheriton, "Preliminary Thoughts on Problem-oriented Shared Memory: A
Decentralized Approach to Distributed Systems" in ACM Operating Systems
Review, 19 (4), October 1985.

David R Cheriton, 'Troblem-oriented Shared Memory: A Decentralized Approach
to Distributed System Design" in 6th International Conference on Distributed
Computer Systems, May 1986.

David R. Cheriton and Michael S tumm, 'The Multi-Satellite Star: Structuring Par-
allel Computations for a Workstation Cluster," to appear in Distributed
Computing, 1988.

References page 100

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker, Solving Problems
on Concurrent Processors, Prentice-Hall Inc., Englewood Cliffs New Jersey,
1988.

h e n Gabrielian and Douglas B. Tyler, "Optimal Object Allocation in Distributed
Computer Systems" in 4th International Conference on Distributed Cum-
putm Systems, May 1984

Maurice Herlihy, "Optimistic Concurrency Control for Abstract Data Types" in Pro-
ceedings of the Principles of Distributed Computing Conference, 1986.

Ellis Horowitz and Sartaj Sahni, Fundamentals of Computer Algorithms, Computer
Saence Press Inc., Rockville Maryland, 1978.

Sigurd L. Lillevik and John L. Easterday, "Throughput of multiprocessors with
replicated shared memories" in AFIPS Conference Proceedings, 1984.

Bruce G. Lindsay, Laura M. Haas, C. Mohan, Paul F. Wilms, and Robert A. Yost,
"Computation and Communication in R*: A Distributed Database Manager"
in ACM Transactions on Computer Systems, 2 (I), February 1984.

Ronald A. Olsson, "Issues in Distributed Programming Languages: the Evolution of
SR," University of Arizona TR 86-21 (Ph.D. Dissertation), 1987.

K. Ravindran, "Reliable Client-Server Communication in Distributed Programs,"
Ph.D. Dissertation, University of British Columbia, 1987.

Peter M. Schwarz and Alfred Z. Spector, "Synchronizing Shared Abstract Types" in
ACM Transactions on Computer Systems, 2 (3), August 1984.

Michael L. Scott, "Language Support for Loosely Coupled Distributed Programs" in
IEEE Transactions on Software Engineering, 13 (I), January 1987.

Douglas B. Terry, "Caching Hints in Distributed Systems" in IEEE Transactions on
Software Engineering, 13 (I), January 1987.

Arthur H. Veen, "Dataflow Machine Architecture" in ACM Computing Surveys, 18
(4), December 1986.

Scott J. Warren and Joan M. Fransaoni, "Reduction of Communication Delays in
Hypercube Programs Based on Run Time Statistics" in 6th International Con-
ference on Distributed Computing Systems, June 1988

Pawel Winter, "Steiner Problem in Networks: A Survey" in Networks, 17, 1987.

