
SEQUENTIAL AND PARALLEL OPTIMIZATION ALGORITHMS FOR RECURSIVE GRAPHS

by

Sanjeev Mahajan

B.Tech., Indian Institute Of Technology, Delhi; 1982

A THESIS SUBMI'ITED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

Sanjeev Mahajan 1986

SIMON FRASER UNIVERSITY

December 1986

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name : Sanjeev Mahajan

Degree : Master of Science

Title of Thesis : Sequential And Parallel Optimization Algorithms For Recursive Graphs.

Examining Committee :

Chairperson : Binay Bhattacharya

Senior Supervnor: Joseph Peters

Pavol Hell

External Examiner: Brian Alspach
Department of Mathematics
Simon Fraser University

Date Approved: Dee. 15, 1986

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Univers i ty the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o t the Simon Fraser Unlversi t y Library, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r other educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of I t s users. I f u r t he r agree t h a t permission

f o r mu l t i p l e copying of t h i s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood Phat copying

o r publication o f t h i s work fo r f inanc ia l gain sha l l not be allowed

without my wr i t t en permission.

Author:

(s ignature)

(name

(date)

ABSTRACT

In a recent paper, Bern, Lawler and Wong described a uniform theory for developing linear time algo-

rithms which find optimal subgraphs obeying certain properties called regular in certain families of graphs

called k-terminal recursive. In this thesis, the theory is generalized to non-regular properties for k-terminal

recursive graphs. Algorithms for constructing the tables on which the linear time algorithms operate are

developed for regular properties which are local. The linear time sequential algorithms are adapted to yield

O(1og n) time parallel algorithms which use O(n) processors on a CRCW (concurrent-read-concurrent-write)

PRAM.

iii

To my elder brother.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Joseph Peters, for his patience, guidance

and encouragement during the past year for preparation of this thesis, and for all the time he spent into reading

the many drafts of the thesis, giving valuable advice and corrections for both the research results and stylistic

e m s .

I would also like to thank the other member of my committee, Pavol Hell for giving me valuable sugges-

tions and for reading and correcting my thesis. My sincere thanks are also in order for Brian Alspach, my

external examiner for correcting mathematical aspects of my thesis. I would like to thank the faculty and the

staff of the school, who have contributed greatly in creating an environment akin to carrying out my research.

There are a number of friends without which this list of acknowledgements cannot be completed. I am

deeply indebted to Ada Fu who had the patience to read some parts of my thesis and to give me valuable

sugge$tions. My special thanks go to Claudia Morawetz who gave me moral support when I most needed it.

Finally, I am grateful to Simon Fraser University and the School of Computing Science for financial support.

TABLE OF CONTENTS

APPROVAL

ABSTRACT

DEDICATION

ACKNOWLEDGEMENTS

1 INTRODUCTION AND MOTIVATION

1.1 Motivation

1.2 Background

1.3 Overview

2 EXTENSIONS AND GENERALIZATIONS TO THE BLW THEORY

2.1 Introduction

2.2 Non-regular Properties

2.3 The Generalized The~iy For iu'on-Regular Properties

2.4 The Unsolvability Of Regularity

2.5 Some Properties That Are Regular For Any k-terminal recursive family

2.5.1 Regularity Of Vertex Independence For Any k-terminalrecursive family

2.5.2 Regularity Of Domination For any k-terminal recursive family

2.5.3 Regularity Of Inedundance For Any k-terminal recursive family

2.5.4 Regularity Of vertex j-independence For Any k-terminal recursive family

2.6 Local Properties And Their Regulatity

2.7 Edge-Induced Subgraph Properties

2.8 Vertex Partition Problem

2.8.1 Regularity Of Coloring With Respect To All k-terminal recursive families

2.8.2 Regularity Of Domatic Labeling For k-terminal Recursive Families

ll

iii

iv

v

2.9 Summary

3 FAST PARALLEL ALGORITHMS FOR REGULAR PROPERTIES

3.1 Introduction

3.2 Parallel Models Of Computation

3.3 Parallel Tree Contraction And Applications

3.4 The Generic Parallel Algorithm Corresponding To The BLW Theory

3.5 The Generic Parallel Algorithm For The Generalized Theory

3.6 Parallel Algorithms For Building Parse Trees For Rooted Trees

3.7 Parallel Algorithm for Finding Parse Trees For Series-Parallel Graphs

3.7.1 The Parallel Algorithm

4 CONCLUSIONS AND OPEN PROBLEMS

5 BIBLIOGRAPHY

CHAPTER 1

INTRODUCTION

1.1. Motivation

A wide variety of situations in fields such as Operations Research, Engineering and Economics can be

modeled by graphs. Some of the problems arising from these situations can be transformed into graph optimization

problems such as maximum independent set, minimum dominating set and minimum coloring (or chromatic
c-

number). For example, course and exam scheduling problems are often formulated as graph coloring problems.

The Traveling Salesperson Problem (TSP) is another example that can be modeled by graphs.

Vnfortunately, inost of ihe graph-optimization probiems that arise in practice are WP-hard for general graphs

[9]. However, many of these problems can be solved in polynomial time (and sometimes even linear time) when

restricted to certain families of graphs. Linear time algorithms have been found for such problems for families of

graphs such as trees and series parallel graphs. Until recently, most of the fast algorithms for such problems had

been solved by ad hoc techniques until Bern, Lawler and Wong developed a uniform theory for linear time graph

optimization problems in [I]. The theory applies to problems which ask for optimal subgraphs (maximum or

minimum cardinality or weight) obeying properties called regular, in families of graphs called k-terminal recursive.

We will define the terms k-terminal recursive families and regular properties in latter sections. The theory

explains why certain subgraph problems which are NP-hard for general graphs, have linear time algorithms when

. restricted to some families of graphs.

The BLW theory also predicts linear time algorithms for several thousands of other problems and provides a

methodology of constructing such algorithms. The algorithms proceed in a bottom up fashion through parse -trees

of the graphs and can be succinctly described by using either a state table or a finite set of recurrences relating an

internal node of a parse tree to the children of the node.

With the advent of a large number of parallel computers, the importance of finding parallel algorithms is

increasing. Fast parallel algorithms have been found for a variety of problems such as connectivity [3] and bicon-

nectivity [5] in graphs, and minimum spanning trees in graphs [61. Miller and Reif describe a technique called

"parallel tree contraction" in [4]. A wide variety of problems in parallel computation are amenable to tree contrac-

tion. Tree contraction can be briefly described by two operations : RAKE and COMPRESS. RAKE is the operation

of removing the leaves of the given tree in parallel. COMPRESS identifies pairs of adjacent nodes of all maximal

chains in parallel (a chain is a path in a tree in which each node has exactly one child). CONTRACT is the simul-

taneous application of RAKE and COMPRESS. In [4], it is shown that 0 (log n) CONTRACT operations are

sufficient to reduce a tree to a single node. The potential of tree contraction lies in the fact that RAKE and

COMPRESS can be thought of as abstract operations and can take different forms depending on the problem under

consideration.

Th% research forks off in two directions : On one hand, this research extends and generalizes the BLW

theory. The existence of non-regular properties is shown and a generalized theory is developed to handle non-

regular properties. The generic algorithm for the BLW theory uses a look-up table called multiplication table which

depends on the property and the family corresponding to a particular graph optimization problem. The construction

of the table is left to human ingenuity. It is shown in this research how to mechanize the construction of such tables

for certain properties which are called local. The BLW theory deals only with subgraph problems. The theory is

extended so as to encompass vertex partitioning problems such as chromatic number and domatic number problems.

These extensions and generalizations will be discussed in detail in a latter section.

It is also shown in this research how to adapt the generic linear time algorithm of the BLW theory to yield a

tree contraction based 0 (log n) time algorithm using 0 (n) processors. As the BLW theory operates on the parse

trees of the given graphs, we need to build fast parallel algorithms for finding parse trees for the family of graphs we

are dealing with. Fast algorithms for building parse trees for rooted trees and 2-terminal series parallel graphs are

also presented in this research.

1.2. Background

The BLW theory applies to k-terminal recursive families of graphs. Intuitively, a family of graphs is said to

be k-terminal recursive if every graph in the family can be generated by a finite number of applications of

predefined composition operations starting with a finite number of basis graphs. Each graph in the family has a dis-

tinguished set of vertices of fixed size k, called the terminals and the composition operations can only be applied to

b e set of terminals.

A graph G is a triple (V, E , T) where V is the set of vertices and E is the set of edges and T is a subset of V

of size k, for some fixed k .

Definition [2]: A family r of graphs is called k-terminal recursive if it can be defined according to the following

schema.

(1) Let B = { B B 2 , . . . , Bl } be a finite set of basis graphs, where each Bi is a finite graph having an ordered

set of k terminals (i.e. vertices), for some fixed integer k .

(2) Let 0 = { o 1, o 2 , . . . , 0,) be a finite set of rules of composition, whereby any two graphs Gi=(Vi, Ei , Ti)

and Gj=(Vj, E,, T,) may be combined to produce a new graph H=Gi or Gj (1 S r 5 m) . Each rule of com-

posi$on must be defined in terms of the following allowable operations:

i) identify a terminal in Ti with a terminal in Tj.

ii) add an edge between a terminal in Ti and a terminal in Ti.

iii) select k terminals for the graph H=Gi or G, from Ti u Ti.

(3) Define the family r of graphs recursively as follows:

i) Any Bi E B is in r.

ii) If H' and H" are in r and oj is any operation in 0, then the graph H =H' oj H" is also in r

Examples: An example of a k-terminal recursive family of graphs, where k = 1, is rooted trees [I]:

(1) The triple ({ x }, {I, { x }) is a rooted tree with root x.

(2) If T 1 = (V 1, E 1, r 1) and T 2 = (V 2, E 2, r 2) are rooted trees with roots r 1 and r 2 respectively, then the triple

T = (V , E , r) where

r = r l

is a rooted tree.

Figure 1.1 illustrates the composition of two rooted trees to yield a third rooted tree.

Figure 1.1 The Rooted Tree Composition Operation

We now @ve an example of a 2-terminal recursive family:

Definition [I]: The series-parallel graphs are defined in the following way:

I) The graph G = ({i , r}, { (l , r)}) is series-parallel, with left and right terminals [I, r 1.

2) If G 1 = (V 1, E and G 2 = (V2, E2) are series-parallel graphs, with left and right terminals [I 1, r 11 and

[12, r 21 respectively, then :

a) The graph obtained by identifying r 1 and 12 is a series-parallel graph, with 1 and r2 as its left and right

terminals respectively. This graph is the series composition of G 1 and G 2.

b) The graph obtained by identifying 11 and 12 and also r 1 and r2 is a series-parallel graph called the

parallel composition of G 1 and G 2. This graph has 11 (= 12) and r 1 (= r 2) as its left and right terminals

respectively.

An example of a 3-terminal recursive family is protoHalin graphs.

Definition [I]: ProtoHalin graphs are defined as follows:

1) The graph G = ({v 7,@) is a protoHalin graph; v' is its root and its left and right terminals.

2) If G 1 = (V1, E 1) and G 2 = (V2, E 2) are protoHalin graphs, with terminas (t 1, I r and (t 2, 12, r 3

respectively, then:

i) If G 1 = ({v 7,4), then G = ({v ']uVz, E 2u{(vP, t 2)f) is a protoHalin graph, with terminals (v', 1 2, r 2).

ii) If G 1 ic ({v 7 ,+), then G = (V 1 u VzB 1 u E 2 u { (t 1, t (r 1, I z)}) is a protoHalin graph with terminals

(t 1 J 19r2).

Definition: A parse tree for a graph G belonging to a k-terminal recursive family r of graphs is a tree whose

internal nodes represent composition operations of I? and the leaves represent the basis graphs to which these opera-

tions are applied to result in G . Each internal node in the parse tree can be considered as representing the graph

corresponding to the parse tree rooted at the node.

A rooted tree and its corresponding parse tree are shown in Figure 1.2.

4: \

Figure 1.2 A Rooted Tree And Its Corresponding Parse Tree

Now we are in a position to define regular properties. Let r be a k-terminal recursive family and P be a

computable predicate defined on graph x subgraph pairs. Assume for now, that r is defined by a single rule of com-

position o and that we are only interested in subgraphs as vertex subsets. In this restricted case, we can unambigu-

ously extend the definition of the operator o to graph x subgraph pairs by defining

(G 1, S 1) o (G 2, S2)=(G 1 o G 2, S 1 u S2). Let the class of all graph x subgraph pairs, where the graph belongs to T,

be denoted by Ts. Intuitively, we say that a property P is regular if Ts can be partitioned into a finite number of

classes such that, for each class, either all or none of the members satisfy P', and the class C to which

(G , s)=(G 1, S 1) o (G 2, S 2) belongs, is a binary function of the classes of (G 1, S and (G 2, S 2) respectively. Since

b e number of equivalence classes is finite, this binary function can be represented as a multiplication table on the

set of equivalence classes.

More formally, we define regularity as follows.

Definition: Let r be a k-terminal recursive family with a single composition operation o and Ts be the class of all

graph x subgraph pairs on T. Let T be a set that has a binary operation defined on it. We say that a mapping h

from Ts onto T defines a homomorphism with respect to the class T and the property P if for every (G 1, S 1) and

(G2, S2) in rs

(1) ~ (G ~ , S I) = ~ (G ~ , S ~) ~ ~ ~ ~ ~ ~ S P (G I , S I) = P (G ~ , S ~) .

(2) h ((Gi ,S i)o (G2 ,S2))=h(G1 ,S l)*h(Gz ,S2) .

We say that P is regular with respect to r if it admits of a homomorphism with a finite range. This finite

range may be identified with the set of equivalence classes and is the binary multiplication operation defined on it.

Bern, Lawler and Wong [I] showed that vertex independence in rooted trees is a regular property by giving the fol-

lowing multiplication table (Table 1.1).

Table 1.1 Multiplication Table For Independence In Rooted Trees

Intuitively, C represents the class of all graph x subgraph pairs (G, S) such that S is independent in G and

the root of G is not in S , C 2 is the class of all pairs (G , S) such that S is independent in G and the root of G is in S

and C3 is the class of all pairs (G, S) such that S is not independent in G. C 1 and C2 are initial classes, that is, the

classes characterizing graph x subgraph pairs on the basis graph. The corresponding homomorphism maps a given

graph x subgraph pair (G , S) to the class to which (G, S) belongs.

The multiplication table of a regular property is the key to the linear time optimal subgraph algorithm of the

BLW theory. We briefly outline the generic algorithm as given in El] and illustrate it by finding a maximum

independent set in a rooted tree. The algorithm works on the parse tree of the given graph. Starting with the leaves,

it finds an optimal representative for each equivalence class for the graph x subgraph'pair represented by each node

of the parse tree. At the leaves of the parse tree, an optimal representative will be an optimal primitive graph x sub-

graph pair in the class (consisting of a basis graph in that family and a subgraph of that basis graph). At each inte-

rior node v of the parse tree, an optimal representative of each equivalence class for the graph x subgraph pair

represented by v is a function of the optimal representatives of the children of v . For each equivalence class Ck, we

consider all pairs Ci , Cj such that Ck=Ci C,, and find the "best" such pair. This can be done by relating the

optimal weight in the class Ck for node v to the optimal weights in classes Ci and C j in the left and the right chil-

dren of v and then optimizing over all such i and j . This can be compactly represented by storing respectively a

vector of length I, at each node v, where 1 is the number of equivalence classes. The ith entry in the vector is the

optimal weight of a subgraph satisfying P, assuming that the graph x subgraph pair corresponding to v belongs to

class Ci. So, the vector at v is related to the corresponding vectors at its children by certain recurrence relations.

If we are interested only in the cardinality (or weight) of an optimal subgraph, we need only remember the

optimal cardinality (or weight) achieved by each equivalence class. If we are interested in recovering the optimal

subgraph itself, we also remember, for each node and each class, which pair Ci, C, achieved the optimum. The

optimal solution is the best of the optimal representatives of the accepting classes at the root of the parse tree.

We will explain this algorithm with the help of an example. Let us find a maximum independent set in the

rooted m e given in Figure 1.3a. The parse tree of the tree is shown in Figure 1.3b. At each internal node, we store a

vector of length 2 corresponding to classes C 1 and Cz. We do not need to store information about Cg because it is a

rejecting class and it is a sink class. (A sink class, when composed with any other class yields the same sink class.)

We denote the maximum cardinality of an independent set belonging to class Ci at node v by ai(v) and we denote

the left and right children of node v by vl and v, respectively. The multiplication table for the maximum indepen-

dent set problem for rooted trees yields the following recurrences:

These recurrences are propagated bottom up through the parse tree of Figure 1.3b to get the maximum independent

sets corresponding to classes C 1 and C2 in the given rooted tree. The maximum of these two gives the size of the

maximum independent set.

Figure 13 Finding Maximum Independent Sets in Rooted Trees

It is easily seen that this algorithm is linear in the size of the parse tree (The size of a parse tree is the number

of nodes in the parse tree). If the size of the parse tree is linear in the size of input and if the parse tree for the given

family of graphs can be obtained in linear time, then we have a linear time algorithm for finding optimal subgraphs

satisfying a given regular property P with respect to a given k -terminal recursive family of graphs.

Hedetneimi, Laskar and Wimer [2] have developed a theory similar to the BLW theory using a slightly dif-

ferent approach. However, our results are based on the BLW theory because of its simplicity and elegance. One of

the contributions of this thesis is an efficient parallel algorithm for the generic algorithm of the BLW theory. The

parallel algorithm is based on a technique called parallel tree contraction introduced by Miller and Reif [4].

Miller and Reif show how to use their technique to obtain fast parallel algorithms for the evaluation of arithmetic

expressions, for isomorphism in trees, and for finding canonical labelings of trees and planar graphs.

Parallel tree contraction consists of two parallel operations which are applied simultaneously. Let T = (V, E)

be a rooted tree with n nodes and root r . RAKE is the operation of removing all leaves of T in parallel. If the tree

is highly unbalanced (that is, the difference between the number of nodes in the subtrees of the root of the tree is

very large); RAKE may have to be applied 0 (n) time. This problem is overcome by introducing another operation.

A sequence of nodes v 1, v 2, . . . , vk is said to be a chain if vi+l is the only child of vi (1 I i I k) and vk has exactly

one child. COMPRESS identifies vi and vi+l for all odd i in parallel. CONTRACT is the simultaneous application

sf RMUZ and COMPRESS to the entire tree. Figure 1.4 shows an example of the CONTRACT operation.

Figure 1.4 An Example Of The Contract Operation

Theorem [a]: After rlogs14nl executions of CONTRACT, a tree with n vertices is reduced to its root.

A naive implementation of COMPRESS requires 0 (log n) parallel time. We have to determine the degree of

each node and then combine consecutive pairs of nodes. Miller and Reif [4] present constant time demm3istic ~d

randomized algorithms for COMPRESS. These algorithms for COMPRESS lead to an 0 (log n) deterministic tree

contraction algorithm which uses O(n) processors and an 0 (log n) randomized version which uses 0 (nnog n)

processors.

1.3. Overview

This thesis is arranged as follows:

1) Chapter 2 contains extensions and generalizations of the BLW theory. In particular, the existence of non-

regular properties is shown and a generalized framework is provided for finding efficient algorithms for optimal

subgraphs satisfyng non-regular properties in k-terminal recursive families of graphs. The BLW theory does not

provide a method for constructing multiplication tables or finite range homomorphisms for regular properbies. In a

sense, this process is ad hoc and depends heavily on human ingenuity. A natural question to ask is whether the pro-

cess can be mechanized. We prove that the process cannot be mechanized by showing that it is unsolvable to deter-

mine a finite range homomorphism (if it exists) for any arbitrary computable property.

If a property is infinite, then it has to be described in tern of an algorithm, and one of the main reasons which

gives rise to unsolvability of determining a finite range homomorphism for a given computable property is the arbi-

trariness of the algorithm describing the property We could insist that the algorithm for describing the property be

given in t m s of a finite range homomorphism, but a finite range homomorphism for the property is dependent both

on the property and the k -terminal recursive family being considered. Hence, for example, we would have different

finite range homomorphisms for independence in rooted trees and series parallel graphs. Therefore we cannot uni-

formly describe a property in terms of a finite range homomorphism.

This disadvantage motivates us to look for a characterization of regular properties, which is both graph-

theoretic and is uniformly defined for all graphs. Although we have not been fully successful in our venture, we

have shown in this research that properties which we call local (we will define locality in Chapter 2) possess both

the stated characteristics and are regular. We also build effectively, finite range homomorphisms for local proper-

ties for any k-terminal recursive family of graphs. In particular, we show that local properties such as indepen-

dence, doenation, irredundance and vertex j-independence (two vertices in a graph are j-independent if the

number of edges in the shortest path between them is at least j) are regular for any k-terminal recursive family of

graphs. We then extend these ideas to edge-induced subgraph properties and show that the cycle property (a graph

x subgraph pair (G, H) has the cycie property if H is a cycle in G) and maximal matching are both regular with

respect to any k -terminal recursive family of graphs.

We also extend BLW theory to encompass vertex partitioning problems. We formulate such a theory and

then furnish some examples where the theory might be used.

2) In Chapter 3, we use parallel tree contraction to adapt the generic linear time algorithm of the BLW theory

to yield an 0 (log n) time algorithm using 0 (n) processors where n is the number of nodes in the parse tree. As the

BLW generic algorithm works on the parse tree of the given graph in the given family, we need to have efficient

parallel algorithms to generate parse trees for a given family of graphs. In this research, we exhibit algorithms to

build parse trees for rooted trees in O(1og n) time using 0 (n) processors and for series-parallel graphs in

0 (log 2n + log m) time using O (m + n) processors where m is the number of edges and n the number of vertices

in the graph. He [ll, 121 has independently obtained similar results on such parallel algorithms using similar tech-

niques. We will describe his results and then compare his results with our results in Chapter 3.

Chapter 4 contains conclusions and a discussion of open problems emerging as a result of this research.

CHAPTER 2

EXTENSIONS AND GENERALIZATIONS OF THE BLW THEORY

2.1. Introduction

The BLW theory provides a strong foundation for designing linear time (sequential) algorithms for certain

graph optimization problems resmcted to k -terminal recursive families of graphs. In this chapter, we first show the

existence of non-regular properties and then generalize the BLW theory to handle such properties. Next we show

that it is unsolvable to find a finite range homomorphism, if one exists, for an arbitrary computable property (given

in terms of an arbitrary algorithm) in any k-terminal recursive family of graphs. In contrast to this unsolvability

result for arbitrary properties, we identify several regular properties for which we can effectively construct finite
c-

range homomorphisms for any k-terminal recursive family of graphs. In other words, the regularity of these proper-

ties does not depend on the particular k-terminal recursive family being dealt with. These regular properties are

vertex independence, vertex 2-independence, vertex domination, and irredundance . These fcur properties are

local in a certain sense and we prove that all local properties are regular. We also extend our results to edge-

induced subgraph problems and show that properties such as maximal matching and cycle property are regular. An

easy observation shows that the BLW theory can be modified so as to solve vertex partition problems. We describe

such a theory and then show that coloring and domatic labelings are both regular with respect to all k-terminal

recursive families of graphs.

Henceforth, we will drop the phrase 'regular with respect to a k-terminal recursive family' and instead simply

use 'regular' when the statement is true for any k-terminal recursive family. However, note that a property which is

regular with respect to one k-terminal recursive family may not be regular with respect to another. Let P be the

property defined as follows:

A pair (G, S) satisfies P if either G is a tree and S is independent in G or G is not a tree and S is f -independent

in G , where f is an integer function satisfying :

i) f (n)-f (n - 1) s 1 for a l ln .

ii) for all non-negative integers j, there exists a non-negative integer n , such that f (n) > j and

f (n b f (n-1) < 1.

f -independence will be defined more carefully in a latter section.

Then we can show that P is regular for trees but is not regular for series-parallel graphs. When we use the

term graph x subgraph pair, it is assumed that the graph belongs to the k-terminal recursive family being con-

sidered. Unless explicitly stated, we also assume that the subgraph is a vertex subset.

2.2. Non-Regular Properties

In the spirit of the pumping lemma for regular languages [7], we develop a pumping lemma for regular pro-

perties, which helps us prove that certain graph properties are not regular.

Before we proceed any further, let us choose a convenient representation for graph x subgraph pairs. We
c

represent a graph x subgraph pair (G, S) by a parse tree of G belonging to a k-terminal recursive family in which

the leaves of the parse tree which belong to S are marked. We call this representation the marked parse tree

representation. For example, if I' is the family of rooted &em5 a rooted me x s u b g q h pzk md its cccrrespo~&ng

marked parse tree representation are given in Figure 2.1.

Figure 2.1 Marked Parse Tree Representation Of A Graph x Subgraph Pair.

We will use the marked parse tree representation of graph x subgraph pairs to state and prove the lemma. A path in

a marked parse tree from node v to node u (where u is a descendent of v in the parse tree) will be denoted by

v -+ u . The length of a path v -+ u is denoted I v -+ u I . A fragment corresponding to a path v -+ u and

14

denoted by frag (v --+ u) is defined to be the marked pane tree obtained by deleting all descendents of u, all

,ces, of v , all the edges incident on the deleted nodes, and by making v the'rwt of the parse tree. An example

of a fragment is shown in Figure 2.2. The concarenation of two fragments f rag (v -+ u) and frag (x -+ w 1,

denoted f rag (v --+ u lf rag (x -+ w) is obtained by identifying u and x . f rag (v -+ u) will denote the con-

catenation of n copies off rag (v -+ u).

Figure 2.2 An Exampie Of a Fragment

Pumping Lemma : Let P be a regular property with respect to a given k -terminal recursive family of graphs r.

Then there exists a constant j, such that, for every marked parse tree satisfying P which has a path v -+ u with

Iv-+uI > j, thereexistthreepaths w-+u,x--+w andv-+x where Ix-+wI 2 1 and Ix-+uI < j

such that, if we replace f rag (v -+ u) by f rag (v -+ x)f ragn (x --+ w) f rag (w -4 u) for any n 2 0 in the

marked parse tree, the resulting marked parse tree also satisfies P .

Proof : As the property P is regular, there exists a finite range homomorphism h . Let h have j equivalence classes,

C 1, , . . . , C,. Consider a marked parse tree which satisfies P and which has a path v -+ u with I v -4 u I > j.

. Since this marked parse tree satisfies P , it must belong to some accepting class C,. Now since I v -4 u I > j, and

the number of equivalence classes is only j, there must exist two distinct nodes w and x in v -+ u (where w is a

descendent of x) such that lx -4 u 1 5 j and the class of node w is the same as that of x. Now the class of any

node of the marked parse tree (that is the class of the graph represented by v) depends only on the classes of its chil-

dren (by the homomorphism property). Hence the class of any node that is the ancestor of x remains unchanged, if

we either identify nodes w and x and eliminate f rag (x -+ w) or if we replace f rug (x -+ w) with

frug "(x --+ w) for any n 2 0 (when n =0, we just concatenate f rag (v -+ x) and f rag (w -+ u)). As the root of

the marked parse tree is an ancestor of any node, the class of the root does not change with this operation. Hence

the root of the resulting marked parse tree also belongs to Ci which is an accepting class, and the resulting marked

parse tree satisfies P .

Definition : Let f fl + N be a function computable in time linear in n . Two vertices in a graph G are said to be

f -independent if the shortest path between them has at least f (n) vertices, where n is the number of vertices in G .

A subgraph S in a graph G is said to be f -independent if every two vertices in S are f -independent.

Theorem : Let f be an integer function of n , satisfying the following conditions :

i)for alln, f (n) I n .

ii)foralln, f (n)-f (n - 1) s 1
e

iii) for all non-negative integers j , there exists an n such that f (n) > j and f (n) - f (n - 1) < 1

Then vertex f -independence is a non-regular property for rooted trees.

Before we prove this result, we need the following definition

Definition: A pendant vertex in a graph G is a vertex of degree 1 in G .

Proof: Assume to the contrary, that vertex f -independence is regular. Let us abbreviate this property as P . Then

let j be the constant of the Pumping Lemma Let n be such that f (n) > j and f (n) - f (n - 1) < 1. Such an n

existsbyhypothesis. A s f (i) - f (i - l) I l f o r a l l i , w e h a v e f (n) - f (n - k) < k f o r a l l 1 I k I n . Thisimplies

f (n - k) > f (n) - k for all 1 I k 5 n . Consider the marked parse tree, rooted tree x subgraph pair of Figure 2.3.

Figure 2.3

Here the rooted tree is a simple path of n vertices with one of the pendant vertices q being the root and the other

pendant vertex being the leaf r . The subgraph contains vertices r and s and the distance between r and s is f (n).

In the correspnding marked parse tree representation of the graph x subgraph pair, let u be r and let v be the

parent of s . Then clearly, the path v -+ u has f (n) edges in the marked parse tree. Also as f (n) > j and f (i) 5 i

for all i , hence n > j. Then the given marked parse tree satisfies the property P . Also the path v -+ u has more

tha j edges. Xow as the property P is regular and Eke given marked parse tree satisfies the hypothesis of the

Pumping Lemma, there exist nodes x and y in the path v -+ u , such that the f rag (y -+ x) can either be pumped

up or pumpeddown and ly -+uI Ij. Hencey can never be v, as Iv -+uI = f (n), j. Let ly - + X I = k

(k 2 1). Then if we pump down frag (y -+ x), the graph x subgraph pair corresponding to the resulting marked

parse tree has n - k vertices. The distance between the two marked nodes in the subgraph in the resulting marked

parse tree is f (n) - k . Hence in the corresponding graph x subgraph pair, there are two vertices that belong to the

subgraph and the distance between them is f (n) - k. For the resulting graph x subgraph pair to satisfy f -

independence, f (n) - k 2 f (n - k). This is a contradiction and hence f -independence is not a regular property.

Example : The function f such that f (n) = [log n1 for all n is a function that satisfies :

i) [log n l I n for all n .

ii)foralln, pognl - rlog(n -1)111

iii) for all j , there exists an n such that [log n l > j and flog n l = [log(n - 1)1 (or

[log n l - rlog(n - 1)l < 1). One such n is 2i+2.

rpogl-independence is a non-regular property by the theorem.

2.3. The Generalized Theory For Non-Regular Properties

We exhibited the existence of non-regular properties in the previous section. In this section, we extend the

BLW theory to develop efficient algorithms for non-regular properties. The generic algorithm for the generalized

theory is not linear for non-regular properties, but is still fast. We first present our theory and then provide an appli-

cation of the theory.

For a property P to be regular with respect to a given k -terminal recursive family of graphs r with a single

composition operation o , recall from section 1.2 that there must exist a homomorphism h which maps the class of

all graph x subgraph pairs (where the graph belongs to the family) to a finite set T with an operation defined on it.

The homomorphism satisfies the following two conditions:

~)I~~(GI,SI)=~(G~,S~)~~~~P(G~,SI)=P(G~,SZ)

2) h ((di, S 1) 0 (G 2, S 2)) = h (G 1, S 1) h (G 2, S2))

The finiteness of T is a necessary condition for regularity of P . If T is not constrained to be finite, the identity

mapping from r to T (where T is ,r! is e hcmcmcrphkm fm may ar?Atiary property. Wc will extend the EL'# theory

to non-regular properties by allowing the set T to be infinite. To get a useful extension, however, we will insist that

the set T is "sparse".

Definition : Let P be a computable property. Let rs(n) be the class of all graph x subgraph pairs where the number

of vertices in each graph is at most n . Let g f l + N be a function computable in time linear in n . Let T(n) be a set

with cardinality g (n). A generalized homomorphism for P is a collection of functions h, for all n 2 1 where each

h, is a mapping from rs(n) to a set T(n) such that the following conditions hold for each n 2 0:

i)Ifh,(Gl,Sl)= hn(G2,S2) thenP(G17S1)=P(G2,S2).

ii) h,((Gl,Sdo (Gz, S d = ~ , (G I , S I) hn(G2, S2)

We assume that, given any n, h, can be constructed in finite time.

Let P be a given non-regular property. For the generalized homomorphism to be useful, the set T(n) should

be sparse, so that it is easier to work with the set T(n) than with the class of all graph x subgraph pairs. Suppose

that h, is in the generalized homomorphism corresponding to P, and that the size of the corresponding set T(n) is

(n). ~ l s o assume that h,, T(n) and the set of accepting classes in T (n) can be found in time h (n), for any n

(where h is a function computable in time linear in n). We claim that optimal subgraphs obeying P in the graphs

belonging to the corresponding k-terminal recursive family can be found in time 0 (n g2(n) + h (n)) and in space

g2(n). Since the number of graph x subgraph pairs with each graph having at most n vertices is an exponential

function of n, this is more efficient than the brute force approach, when g (n) and h (n) are both polynomial func-

tions of n .

The generic algorithm of the BLW theory uses a fixed multiplication table. We generalize this generic algo-

rithm by creating a multiplication table each time that depends on the graph that is input (in the form of a parse

tree). We count the number of vertices of the given graph, say n , and we use the 0 (h(n)) time generalized

homomorphism construction algorithm to yield a multiplication table with g(n) classes. We then form the

recurrences depending on the given table and whether we are asked to find the minimum or maximum subgraph

obeying the property. These recurrences are obtained in a way similar to the BLW theory. Clearly, this process

could require in the worst case 0 (g 2(n)) as the size of the table is g 2(n). We now propagate these recurrences up

the parse tree to yield the optimal solution. Since the size of the parse tree is linear in n , there are 0 (n) propagation

steps and the entire algorithm requires 0 (h (n) + g2(n)) time. The only storage used in the algorithm is the multi-

plication table, so the space requirements are g 2(n).

We now use this generic algorithm to find maximum f -independent sets in rooted trees where f satisfies :

i)foralln, f (n) l n ;

ii)foralln, f (n)-f (n -1)<1;

iii) for all non-negative integers j , there exists an n such that f (n) > j and f (n) - f (n - 1) < 1.

We showed in section 2.2 that vertex f -independence for such an f is not regular, so the BLW theory cannot

be used. We first show that vertex j-independence is regular for rooted trees and build a finite range homomor-

phism for the property. This will then help us to develop a generalized homomorphism for vertex f -independence.

The multiplication table for vertex j-independence for j = 3 is shown in Table 2.1. The table has j + 1 classes, with

j accepting classes and one rejecting class. The representative of the first class, C1, is the graph x subgraph pair

where the graph is a single vertex, (the root) and the root is not included in the subgraph. The representative of the

second class, C2, is the graph x subgraph pair where the graph is a single vertex (the r a t) and the root is included in

the subgraph. For the representative of each class Ci, 3 5 i I j , we have the graph x subgraph pair in which the

graph is a simple path of i - 1 vertices and one endpoint is the root. The subgraph in this case is the vertex that is

the other endpoint of the path. The class Cj+l (or REJ) is the only rejecting class. To find CI C,,, for 1 5 I , m I j,

we just compose the corresponding representatives of the two classes using the rooted tree composition operation

and determine whether the resulting graph x subgraph pair has two vertices in the subgraph which are separated by

a distance of less than j in the graph. If so, the resulting class is Cj+l (or REJ), the only rejecting class. If not, we

find the vertex in the resulting graph x subgraph pair, which has the minimum distance to the root in the tree. If this

distance is 0, that is, if the root itself is included in the subgraph, then the resulting class is C2. If the distance is k ,

where k 5 j - 1, the resulting class is Ck+1. If the distance is j or greater, then the class is C 1. If one of the classes

being composed is the rejecting class Cj+l, then the class resulting from the composition is also Cj+l (or REJ).

Table 2.1 Multiplication Table For 3-independence In Rooted Trees

The procedure above tells us how to build the multiplication table for vertex j-independence for any j. It is

easy to see that this table does in fact represent the multiplication table for the property. It is also clear that the algo-

rithm has time complexity 0 ti2).

We can use the fact that vertex j-independence is regular for rooted trees for any j and the procedure for

building the tables for any j to get an 0 (n f 2(n)) algorithm for finding maximum vertex f -independent sets in

rooted trees. A generalized homomorphism h, :rs(n) 4 T(n) is obtained by using the homomorphism for f (n)-

independence. This yields f (n) + 1 equivalence classes. So, in this special case of the generic algorithm of the gen-

eralized theory, we have g (n) = f (n) + 1 and h (n) = (f (n) + Therefore, the complexity of finding maximum

f -independent sets in n -vertex rooted trees is 0 (n Cf (n) + + Cf (n) + 1)2) = 0 (n f 2(n)).

It should be noted that the generalized theory does not always give an optimal algorithm. For example, the

Pumping Lemma can be used to show that the property of being the center (or bicenter) of a rooted tree is not regu-

lar. The generalized theory must be used if we intend to solve the problem by parse tree techniques. The resulting

algorithm in this case cannot be linear, but there is a simple non parse tree algorithm for finding the center of a tree

in linear time.

2.4. Unsolvability Of Regularity

Consider the following problem :

[Pl] Given a fixed k-terminal recursive family of graphs, and an arbitrary computable property P on graph x sub-

graph pairs, find a finite range homomorphism for P with respect to the given family.

Theorem : PI) is unsolvable.

Proof : Without loss of generality, assume that for all n , there exists a graph on n vertices which belongs to the

family. Let P2 be the following problem:

[P2] Given a fixed k -terminal recursive family r, an arbitrary computable property P , and a finite range mapping

h on rs,determine if h is a homomorphism for P .

If P1 were solvable, we could determine a finite range homomorphism h' for P , minimize the number of

classes in both h' and h (Bern, Lawler and Wong [I] show how to minimize the number of classes in a given

homomorphism), and test if the resulting homomorphisms are isomorphic. (If both h and h' have minimum number

of classes and they represent the same property, then h and h' are unique up to isomorphism.) Therefore if P1 is

solvable, then P2 is solvable, and if P2 is unsolvable, then P1 is unsolvable. We will now show that P2 is unsolv-

able by reducing the following unsolvable problem to P2 :

P3] Given an arbitrary recursive language L over an alphabet C= {a} (whose description is given in terms of an

algorithm that always halts), determine if L = 2.

To show that P3 is unsolvable, we reduce the following known unsolvable problem 171 to P3 :

P41 Given an arbitrary recursive language L over an arbitrary finite alphabet I' (whose description is given in

terms of an algorithm that always halts), determine if L = I?.

Given an instance L of P4, given in terms of an algorithm A which accepts strings in I?, we transform A into A'

which accepts strings in a ', by recursively transforming each a n into the a smng in l-" using a function similar to

the one used by Cantor to prove that rationals are countable. Let A' represent language L'. Then it is clear that

L' = Z* iff L = T" . As the transformation from A to A' is recursive and as P4 is unsolvable, P3 is unsolvable too.

We now show that P2 is unsolvable by making the following transformation from P3 to P2 :

Given in an instance L of P3 in terms of an algorithm A which accepts as input, strings of the form a n , we

ransfom A to A' (where A' accepts as input, graph x subgraph pairs on the given k-terminal recursive family)

recursively as follows:

If a n E L, then P is true for all graph x subgraph pairs on n vertices (where the corresponding graphs belong to the

k -terminal recursive family) and P is false for all other pairs (that is pairs which have n vertices such that an is not

inL).

Also, P is true for all graph x subgraph pairs (where the corresponding graphs belong to the given family) iff

L = Z* . There is a finite range homomorphism corresponding to the property that is true for all graph x subgraph

pairs on the given family. The homomorphism has one equivalence class and the class is an accepting class. Since

P3 is unsolvable, the problem of deciding if a given computable property over a given family admits of the

homomorphismwith one equivalence class is unsolvable. Therefore the more general problem of deciding whether

P admits of a given arbitrary finite range homomorphism is also unsolvable.

2.5. Some Properties That Are Regular for Any k-terminal recursive Family

In the previous section, we showed that it is impossible to effectively build a finite range homomorphism for

an arbitrary computable property. In this section, we show how to build finite range homomorphisms for certain

regular properties which are described in terms of certain type of algorithms. In particular, we show that properties

such as independence, domination, irredundance , and vertex j-independence are regular for any k -terminal recur-

sive family and we will show how to effectively build the corresponding homomorphisms for any k-terminal recur-

sive family.

Definition: A vertex in a graph x subgraph pair (G , S) is included if it belongs to S . A vertex in a graph x sub-

. graph pair is excluded if it is not included. An internal vertex in a graph is a vertex that is not a terminal. A graph

x subgraph pair (G , S) satisfies P if S satisfies P in G .

2.5.1. Regularity Of Vertex Independence For Any k-terminal Recursive Family

~ef in i t io~: An included vertex in a graph x subgraph pair is said to be independent if none of its neighbors is

included. A vertex that is not independent is called dependent. A graph x subgraph pair (G, S) is said to be

independent if all its included vertices are independent.

Theorem : Vertex-independence is a regular property for any k -terminal recursive family of graphs I'.

Proof : We assume for now, that all the composition operations of r are uniform, in that they are defined in the

same way for every pair of graphs. The proof for non-uniform composition operations is similar. The only differ-

ence is that several extra classes are needed> This is illustrated later by an example. If (G , S) has a vertex which is

dependent, then S is not independent in G and the pair (G , S) can never yield an independent graph x subgraph pair

when involved in a composition operation. Therefore, we group all such graph x subgraph pairs into REJ which is a

rejecting class. Henceforth, we assume that all internal vertices in (G, S) are independent. Recall that, when com-
C

posing two graphs from a k -terminal recursive family, the only vertices involved in the composition are the k tenni-

nals of each graph. Hence an included, independent, internal vertex in a graph x subgraph pair remains independent

in any composition involving the pair. This means that the only information we need to know to determine the

independence properties of a graph x subgraph pair is which of its k terminals are included and whether the graph x

subgraph pair is independent. This information is enough to determine the independence properties of the pair when

it is involved in a composition operation. There are at most 2& possible ways of including or not including the k ter-

minals of a graph x subgraph pair, so there are at most 2& accepting classes. So, we need at most 2& + 1 classes in

total and we have a finite range homomorphism for independence for any k-terminal recursive family. Therefore

independence is a regular property for any k-terminal recursive family. 0

To effectively build a finite range homomorphism for independence, we first define the set T which has 2k

accepting classes and 1 rejecting class. An accepting class is represented by a length k vector of 0's and 1's. A 1 in

the i th position indicates that the ith terminal is included in any subgraph in the class and a 0 indicates that it is not

included. We now determine C, *i Cm (corresponding to the composition operation oi in the family). It is clear that

CI * i Cm = RFiJ, if o; adds an edge between any 2 of the 2k terminals of CI and C,. If such is not the case, we

know which k of the 2k terminals from CI are C, are the terminals of the new class and it is easy to find Cl *; C,.

The initial classes are the classes of all the graph x subgraph pairs on basis graphs. The procedure is best explained

with the help of an example.

Example

Recall from Chapter 1, the definition of ProtoHalin graphs:

1) The graph G = ({v 7 , $) is a protoHalin graph; v' is its root and its left and right terminals.

2) If G = (V1, E and G 2 = (VZ, E2) are protoHalin graphs, with terminals (t 1, 1 I, r and (t 2, 1 2, r2)

respectively, then:

i) If G 1 = (ivy, $), then G = ({V~UVZ, E 2u{(vf, tz)}) is a protoHalin graph, with terminals (v', 1 2, r 2).

ii) If G # ({v '} ,$), then G = (V 1 u,V& 1 u E 2 u { (t 1, t 2), (r 1,12)J) is a protoHalin graph with terminals

ProtoHalin graphs are 3-terminal recursive. There is a single operation o defined on the graphs. o is non-

uniform because it behaves differently when GI = ({v'}, $). We handle this non-uniformity by reserving two spe-

cial accepting classes, namely the class in which the graph consists of a single vertex v and v is included in the sub-

graph and the class in which the graph is a single vertex v and the subgraph is empty. These are also the initial

classes as they are the classes which we get from the basis graph ({v'}, +). We call these classes C1 and C2. II?

addition to these classes, we also have 23 = 8 accepting classes which we represent by length 3 vectors of 0's and

1's. There is one rejecting class which we call REJ. The homomorphism in the form of a multiplication table (for

independence) is shown in the Table 2.2.

Table 2.2 Multiplication Table For Independence In protoHalin Graphs

The initial classes corresponding to the basis graphs are C 1 and C 2.

2.5.2. ~ e ~ u l a r i t ~ Of Domination For Any k-terminal Recursive Family

Definition : An excluded vertex in a graph x subgraph pair is said to be dominated if at least one of its neighbors is

included.

Theorem : Domination is a regular property for any k -terminal recursive family T.

Proof : We assume, as we did for vertex independence, that all the composition operations of r are uniform. As for

vertex-independence, the regularity of domination holds for families which have non-uniform operations. It is easy

to see that an internal, excluded, undominated vertex in a graph x subgraph pair will remain undominated in any

composition operation involving the pair. Also observe that any vertex that is dominated in a graph x subgraph pair

remains dominated after an operation involving the pair because edges are never deleted in an operation. Hence, to
C

determine the domination properties of a graph x subgraph pair (i.e. how the domination properties of a graph x

subgraph pair change when it is involved in a composition operation), we only need to know if all internal vertices

are dominated and, if so, which terminals are included vertices (and therefore dominated vertices), which are

excluded dominated vertices, and which are excluded undominated vertices. There are 3k classes corresponding to

the 3k ways of classifying the k terminals when all internal nodes are dominated. Of these, the accepting classes are

the ones in which all the terminals are dominated. Hence there are 2k accepting classes and 3k - 2k rejecting

classes when all the internal vertices are dominated. The initial classes are the classes of all graph x subgraph pairs

on the basis graphs. We have already seen that if an internal node is undominated, it will remain undominated after

an operation involving the pair. Therefore, we only need one rejecting class for such pairs, which we call REJ.

This class will always yield itself when involved in a composition operation. Hence we have 3k + 1 equivalence

classes for domination in any k -terminal recursive family.

To effectively build the homomorphism for domination, we first choose a representation for the 3k classes in

which all internal nodes are dominated. We represent any of these classes by a length k vector of O's, 1's and 2's.

0's indicate excluded undominated vertices, 1's indicate excluded dominated vertices and 2's indicate included ver-

tices. The construction of the multiplication table is similar to the one for vertex independence. To illustrate the

procedure, we build homomorphism tables for domination in series-parallel graphs as defined in Chapter 1.

Definition: The series-parallel graphs are defined in the following way:

1) The graph G = ({1, rJ, {(I, r)J) is series-parallel, with left and right terminals [I, r].

2) If G 1 = (VI, E 1) and G 2 = (Vz, E2) are series-parallel graphs, with left and right terminals [I 1, r and

[12, r 21 respectively, then :

a) The graph obtained by identifying r 1 and 1 is a series-parallel graph, with 11 and r as its left and right

terminals respectively. This graph is the series composition of G 1 and G 2.

b) The graph obtained by identifying 11 and 12 and also r 1 and r2 is a series-parallel graph called the

parallel composition of G 1 and G 2. This graph has 11 (= 12) and r 1 (= r2) as its left and right terminals

respectively.

Series-parallel graphs are therefore, 2-terminal recursive and are defined by two operations s (series) and p

(parallel) The multiplication tables for s and p are shown in Tables 2.3.1 and 2.3.2 respectively. The entry '-' in the

tables indicates that the graph x subgraph pairs from the corresponding classes cannot be composed because of the

incompatibility of the terminals being identified.

Table 23.1 Multiplication Table For Series Operation For Domination In Series Parallel Graphs

Table 23.2 Multiplication Table For Parallel Operation For Domination In Series Parallel Graphs

2.5.3. Regularity Of Irredundance For Any k-terminal Recursive Family

Definition : A subset of vertices S in a graph is said to be irredundant if no proper subset of S dominates the same

set of vertices as S does. An included vertex v in a graph x subgraph pair is said to be redundant if the set of ver-

tices dominated by v can be dominated by other included vertices. A vertex which is not redundant is called

irredundant. An immune vertex in a graph is an internal vertex all of whose neighbors are internal vertices. An

internal vertex that is not immune will be termed vulnerable.

Theorem : Irredundance is a regular property for any k-terminal recursive family of graphs T. As before, we

assume that all operations in r are uniform.

Proof : It is clear that an internal included redundant vertex cannot become irredundant when involved in a compo-

sition operation because it is not connected to any new set of vertices and hence cannot dominate any new set of

vertices. The class of all graph x subgraph pairs with at least one internal included redundant vertex is the rejecting

class REJ. Henceforth, we will concentrate on pairs in which all included internal vertices are irredundant. An

immune included irredundant vertex in a graph x subgraph pair can never become redundant when involved in a

composition operation. To prove this fact, first notice that, since the given vertex v is irredundant originally, then

either v or some vertex in the neighborhood of v must not be dominated by any other included vertex. As v is

immune, both v and the vertices in the neighborhood of v are internal and therefore they do not become adjacent to

any new vertices when the pair is involved in the composition operation. In either case v still dominates some ver-

tex that cannot be dominated by any other vertex. Hence, in a graph x subgraph pair all of whose included internal

vertices are irredundant, the only vertices that are potentially redundant are the terminals and the vulnerable

vertices. Therefore, we only have to concern ourselves with terminals and vulnerable vertices. An included

idundan t vulnerable vertex (adjacent to a terminal v) that is potentially redundant can become redundant if an

included vertex becomes adjacent to v . If an included vulnerable vertex is adjacent to an excluded terminal v, and

it is the only vertex dominating v, then it could become redundant if an included vertex becomes adjacent to the v .

Let v be an excluded terminal and let u be an included vertex adjacent to v, Let u be irredundant by the vir-

tue of the fact that it is the only included vertex dominating v. If an included vertex w becomes adjacent to v, then

w can cause u to become redundant. For each excluded terminal v, we label it as follows :

i) If all vulnerable vertices adjacent to v are excluded, we label v by 0; In this case, no vertex in the neighbor-

hood of v can either become redundant or can force a vertex which becomes adjacent to v , to be redundant.

ii) If there are one or more included vertices adjacent to v, but none of these can be forced to be redundant if

a new included vertex becomes adjacent to v, then we label v by 1. In this case, a vertex u that becomes

adjacent to v can become redundant.
c

iii) If there is an included vulnerable vertex u adjacent to v, and if u is irredundant only because it is the only

vertex dominating v, then we label v by 2. In this case, u becomes redundant if an included vertex w

becomes adjacent to v .

Now, let us assume that v is an included terminal. An included vulnerable irredundant vertex u adjacent to v

cannot become redundant when another vertex w becomes adjacent to v. This is because v dominates itself, so u is

not irredundant by the virtue of the fact that it is the only vertex dominating v. Hence we do not need to record

information about vulnerable vertices adjacent to v .

v is irredundant if it is the only included vertex dominating itself or if it is the only included vertex dorninat-

ing one of the excluded vertices adjacent to it. If v is the only included vertex dominating one of the vulnerable ver-

tices adjacent to it, then it is not potentially redundant because no new vertex can become adjacent to the vulnerable

vertex. Hence an included irredundant terminal is potentially redundant if it is the only included vertex dominating

. itself or some of its excluded terminal neighbors and if the rest of the vertices in the neighborhood of v can be dom-

inated by other included vertices.

We label each included terminal v as follows :

i) If v is irredundant and is not potentially redundant, we label v by 3.

ii) If v is irredundant but potentially redundant then we label v according to what excluded terminals are

dominated by v . (In this case, we know that v is irredundant only because it is dominating some excluded

terminals). We label v by a 4 appended by a length k string of 0's and 1's where a 1 in the ith position

signifies that v is the only vertex dominating the i th terminal. As v is irredundant, the string cannot have all

0's in it and therefore there are 2k - 1 labels of this form.

iii) If v is redundant, we label v by 5.

For each terminal v, we now have 2k + 4 states which will completely determine the present and future

irredundance behavior of v and its neighboring vertices. As already shown, only the irredundance properties of ter-

minals and their neighbors are affected during a composition operation. Since there are k terminals, the total

number of equivalence classes resulting from these choices is at most (2k + 4)k = 0 (2k'). (The accepting classes are

the ones which do not have 5 in any position in their corresponding vector representation). These equivalence
6

classes characterize only those graph x subgraph pairs in which all internal included vertices are irredundant. We

have already grouped the graph x subgraph pairs which have at least one included redundant vertex into the class

REJ. Hence, the total number of equivalence classes is at most (2k + 4)k + 1, and hedundance is a regular property

for any k -terminal recursive family. 0

We now show how to effectively build a homomorphism (multiplication table) with operation *i correspond-

ing to the operation oi in the given family. We represent each of the equivalence classes (except REJ) by a length k

vector where the i th position in the vector indicates the label of the ith terminal. It is easy to see that, given a graph

x subgraph pair, we can determine its class. We first determine if all the internal included vertices in the pair are

irredundant. If not, the class of the pair is REJ. If all the internal vertices are irredundant, then we determine the

class of the pair by determining the state of each terminal. The simplest way to construct the multiplication table is

the following :

i) For each basis graph, determine the class of each graph x subgraph pair. As the number of basis graphs is

finite and each basis graph has a bounded number of vertices, this process requires only finite time. Let T be

the set of all equivalence classes. Initially T =I. These classes form the set of initial classes I. Select a pair

that is a representative of each such class.

ii) For all operations oi in the family and for all classes Cl, C, E T, determine the class C of P =PI o; P,,

where PI and P, are graph x subgraph pairs representing CI and C, respectively. Then clearly,

C = C, -; C,. Determine if C E T. If not, augment T by C and select P to be the representative of C .

iii) Repeat ii) until T cannot be augmented.

The number of equivalence classes is at most (2k + 4)k + 1, so the algorithm will halt. We have therefore

shown how to effectively build a finite range homomorphism for irredundance in any k -terminal recursive family.

We now demonstrate the above procedure on the family of rooted trees. Rooted trees are a 1-terminal recur-

sive family of graphs, so the number of equivalence classes for irredundance in rooted trees is (2l+ 4)' + 1 = 7. The

multiplication table for irredundance in rooted trees is shown in Table 2.4. Since rooted trees have only one compo-

sition operation defined on them, we only have one multiplication table. This table is the same as the table built by

ad hoc techniques in [I].

I I

4c1> 1 3 4c1> REJ 5 1 REJ REJ I REJ
1 5 1 3

1
2
3

Table 2.4 Multiplication Table For Irredundance In Rooted Trees

Here 0, 1,2, 3 and 4c1> are accepting classes; 0 and 4<1> are initial classes.

2.5.4. Regularity Of vertex j-independence For Any k-terminal Recursive Family

We have already shown that vertex independence is a regular property for any k-terminal recursive family of

graphs. We now show that a generalized version of independence, vertex j-independence, is regular for any k-

terminal recursive family of graphs. Two vertices in a graph are said to be vertex j-independent if the shortest dis-

tance (that is the number of edges) between the two vertices is at least j and vertex j-dependent otherwise. A sub-

set of vertices in a graph is said to be vertex j-independent if the vertices in the set are pairwise j-independent, and

vertex j-dependent otherwise. Observe that the ordinary independence property is z-independence. The number

of equivalence classes for 2-independence in a k -terminal recursive family was shown to be at most 2k + 1.

1
2
3

1

REJ

1
2
3

1

3

REJ

R E J R E J R E J

1
2 R E J R E J R E J R E J

REJ

Clearly, a graph x subgraph pair that is j-dependent can never become j-independent when involved in a

operation. The class of all graph x subgraph pairs that are j-dependent, will be termed REJ. We now

concentrate on graph x subgraph pairs which are j -independent. Observe that, only the vertices in the j - 2 (includ-

ing the terminals) that are j -independent can become j -dependent. For each included terminal v , we record the set

of terminals which are a distance i from v for all i I j-2. (Note that all such terminals have to be excluded because

otherwise the corresponding graph x subgraph pair is not j -independent.) This information is necessary because j -

independence of v is affected by new vertices becoming adjacent to v . So we have 20-2)(k-1) states for v which

completely determines the j-independence behavior of v . We call such states j-independence states.

If a terminal v is excluded, then it is automatically j-independent. Hence for each terminal, we record

2G-2)(k-1) + 1 states. We can record a similar information about the internal vertices, but unfortunately there could

be an arbitrary number of such vertices. However, observe that we only need to h o w whether there exists an inter-

nal vertex in a particular j-independence state and not the number of such vertices. There are 221'"w corresponding

to this information. As thererare k terminals in total, we have (2u-2)(k-1) + l)k)(22u-m) classes corresponding to j -

independence which have all the graph x subgraph pairs j-independent. We have already classified all graph x sub-

graph pairs which are j-dependent into REJ. As the number of classes is finite, j-independence is regular for any

k -terminal recursive family of graphs T. The construction of the multiplication table for vertex j -independence is

similar to the the construction of the tables for independence, domination and irredundance.

2.6. Local Properties And Their Regularity

We showed in the last section that certain properties are regular with respect to any k -terminal recursive fam-

ily. All these properties are local in a certain sense. In this section, we give a precise definition of locality of pro-

perties and then show that all local properties are regular. Let us examine independence, domination and irredun-

dance more deeply and find out in what sense they are local.

An included vertex v in a graph X subgraph pair is independent if none of the neighbors of v are included. A

graph x subgraph pair is independent if all of its included vertices are independent. So, to determine if an included

vertex is independent, we only need to check the 1-neighborhood (i.e. the immediate neighborhood) of v .

An excluded vertex v in a graph x subgraph pair is dominated if there is an included vertex w in the 1-

neighborhood of v . An included vertex is always dominated. A graph x subgraph pair is dominating if all of its

vertices are dominated. Therefore, to check if a vertex v is dominated or not, we onlyneed to check the neighbor-

An included vertex v in a graph x subgraph pair is irredundant if there is an excluded vertex w in the neigh-

borhood of v such that the only vertex that is included in the neighborhood of w is v. A graph x subgraph pair is

irredundant if all of its included vertices are irredundant. To check if an included vertex is irredundant we only

need check the 2-neighborhood of v .

The intuitive meaning of locality should now be clear. Independence and domination are 1-local properties

and irredundance is a 2-local property. We now show that it is exactly this local behavior of these properties that

makes them regular for any k-terminal recursive family. Before we show the major result of this section, we need

some notations and definitions.

We will denote the neighborhood of a vertex v, that is, the set of vertices adjacent to v by N(v). The number of

included vertices in N(v) wig be denoted inc(v) and the number of excluded vertices in N(v) will be denoted

exc (v) .
Definition : Given a graph x subgraph pair (G, S), we define a vertex property pc,s on V(G) (the set of vertices of

G). A vertex prcperty p is sgd tc be compatible with 2 subgraph propz-ty P if for a!! pairs (6 , S), P (G , S) is Tie

iff pcBs(v) is true for all vertices v E V(G). Let 1 and m be non-negative integers, where m is allowed to be w.

The interval [I, u] is the set {i :I I i I u, i is an integer}. Let each of I I, 1 2 , I 3 and I 4 be a union of a finite number

of disjoint intervals. A vertex property p is {I 1,12,13, Id 1-local if it satisfies the following condition for every

graph x subgraph pair (G , S) and every vertex v E V(G): p i , s(v) is true iff either:

v is included, inc (v) E I 1, and exc (v) E I 2 , or

v is excluded, inc (v) E I 3, and exc (v) E 1 4 .

Examples : The vertex independence property is [0, 01 [O, =I [O, w] [O, -1 1-local. The vertex domination pro-

perty is [O, w] [O, w] [I, w] [O, w] 1-local.

Definition : A vertex property p is 1-local if p is {I 1, 12, 1 3 , Id 1-local for some I I , 12, 13, 14. A subgraph pro-

perty P is 1-local if it admits of a compatible vertex property p that is 1-local.

Theorem : All 1-local subgraph properties are regular with respect to any k-terminal recursive family of graphs.

proof : Let P be a 1-local subgraph property and p be its associated compatible'vertex property. Let p be

ill, 12, 13,142 1-local. Let the least upper bound of I1 be u 1. If the least upper bound of I1 is -, redefine u to be

- 1 where q is the lower bound of the interval in I1 containing -. (As I 1 is a union of disjoint intervals, there can

only be one interval containing =). Define u 2, us and u4 likewise. Let (G , S) be a graph x subgraph pair such that

the graph belongs to a given k-terminal recursive family of graphs T. Then it is clear that all internal vertices in the

pair that satisfy p (with respect to the pair) will continue to satisfy p when the pair is involved in a composition

operation involving the family. Conversely, if an internal vertex does not satisfy p in the pair then it will never

satisfy p when the pair is involved in a composition operation. Consequently, as P is satisfied for the pair only if all

the vertices in the pair satisfy p , all pairs that have at least one vertex not satisfying p can be grouped into one class

REJ. Any pair that belongs to REJ can only yield a pair belonging to REJ.

Suppose that all internal vertices in the pair satisfy p . p is true for an included vertex v only if the number of

included neighbors of v E I I and the number of excluded neighbors of v E I 2. If the number of included neighbors

of v becomes greater than u 1,'the truth or falsehood of PG,S(V) will not be affected by any other included vertex

becoming adjacent to v . Similarly, if the number of excluded neighbors of v becomes greater than u 2, the truth or

falsehood of p ~ , ~ (v) will not be affected by any other excluded vertex becoming adjacent to v. Hence for each

included vertex we need to store the pair (i, j) where i is the number of included neighbors of v if the number of

included neighbors is at most u I and "*" otherwise and j is the number of excluded neighbors v if the number of

such neighbors is at most u2 and "*" otherwise. There are (u1+ 2)(u2 + 2) such pairs. Similar arguments can be

given when the terminal v is excluded. (We call the pair (i , j) a p-state of v since it completely determines the

p -behavior of v , that is how PG,S(V) changes when new vertices become adjacent to v). In this case, we need to

store (u 3 + 2)(u4 + 2) pairs. Hence for each terminal, we have (u 1 + 2)(u 2 + 2) + (u 3 + 2)(u4 + 2) states. As there

are k terminals, we have ((u 1 + 2)(u 2 + 2) + (u 3 + 2)(u 4 + 2))& classes. This then proves that there is a finite range

homomorphism corresponding to P. Hence P is regular. We can also effectively build the corresponding finite

range homomorphism following a similar procedure as enunciated in the proof of regularity of independence and

domination. 0

We now define recursively, a more general notion of locality.

Definition : Let j be a positive integer. Let a be a ti-1)-local vertex property and let each of I1 and I 2 be a union

of disjoint intervals. A vertex property p is said to be d112 j-local if it satisfies the following condition, for all

graph x subgraph pairs (G , S) and all vertices v E V(G), pG, d v) is satisfied iff either: '

v is included, and the number of vertices in N (v), satisfying a belongs to I 1.

v is excluded, and the number of vertices in N (v), satisfying a belongs to 12.

A vertex property p is said to be j-local if it satisfies at least one of the following conditions :

ii) p is the intersection of two j -local properties

iii) p is the complement of a j -local property.

It is clear that to determine if a given vertex in a graph x subgraph pair (G , S) satisfies a j-local property, we only

need to check N,(v).

Definition : A subgraph property P is said to be j-local if it admits of a compatible j -local vertex property.

Theorem : All 2-local properties are regular with respect to any k-terminal recursive family of graphs T.

Proof : The proof is abstraction of the proof of regularity of irredundance for any k-terminal recursive family. Let

P be a 2-local property and let p be a 2-local vertex property that is compatible with P . Let p be cll lI 2 2-local,

where a is a {Ia I4, Is, 16) 1-local vertex property. Let u 1 be the least upper bound of Il. If u 1 = -, redefine u 1 to

be q - 1, where q is the lower bound of the interval (in I containing -. If I1 is empty, define u 1 to be -2. Define

u 2, u 3,244, u 5, u 6 likewise. Let (G , S) be a graph x subgraph pair where the graph belongs to T. It is clear that any

internal vertex which satisfies a in (G, S) will continue to satisfy a when (G, S) is involved in a composition

operation and vice-versa. Also as p is 2-local, an immune vertex which satisfies p in (G , S) will continue to satisfy

p when (G, S) is involved in a composition operation and vice-versa. Hence the only vertices for which p is

affected are the terminals and the vulnerable vertices(that is the vertices in the neighborhood of the terminals), when

(G , S) is involved in a composition operation.

Let v be an included terminal in (G, S). Similar arguments hold when v is an excluded terminal. We now

determine how pG,$(v) is affected when (G , S) is involved in a composition operation. Let us record the following

information about each included terminal v :

i) the a-state of v . There are m = (u3 + 2)(u4 + 2) + (u 5 + 2)(u 6 + 2) such states. (as in the proof of regularity

of 1-local properties).

ii) i , where i is the number of internal vertices in N (v) satisfying a, if the number of such vertices is at most

u 1 and * otherwise. There are u 1 + 2 such i 's.

iii) set of terminals that are adjacent to v . There are at most 2k-1 such sets.

We record similar information about v when v is an excluded terminal (we replace u 5 by u 6 in ii). Hence, we

have (u + u 2 + 4)m 2"' states corresponding to each terminal. We call these states the p-states of v . This infor-

mation completely determines the p -behavior of a terminal v , because ii) determines the number of internal vertices

satisfying a (as a is 1-local, a for an internal vertex w does not change when new vertices become adjacent to v).

Also, as we record the a-state of each terminal (by i) and the terminals that are adjacent to v, we know completely

how the a-behavior of each of the vertices in N (v) changes, when new vertices become adjacent to the terminals in

(G , S). Thence, we know completely, the p -behavior of v .

We can record similar information about a vulnerable vertex w . (except that we do not have to record the a-

state of w because the a-behavior of w does not change during a composition operation involving (G, s)). This
i

gives us t 2k p -states (where t = u + u 2 + 4) for w . Unfortunately, there could be arbitrary number of vulnerable

vertices in (G , S). However, note that, for each of these t 2k p -states, we only need to record whether there exists a

vulnerable vertex in that state). (P is satisfied for (G , S) only if all the vertices in the pair satisfy p . Hence a single

vulnerable vertex that does not satisfy pc,s will witness the falsehood of P) . There are 2'" possible cases

corresponding to this information. We have already shown that tm2k-1 p-states are enough for a terminal. As there

are k terminals, we have equivalence classes for P . Hence P is a regular property and the multiplica-

tion table for P can be constructed in the same way as that for irredundank.

The theorem on regularity of 2-local properties does not easily generalize to j -local properties for arbitrary j .

The reason is that, for a vertex v to satisfy a j -local property p , a certain number of vertices in N (v) should satisfy

a ti-1)-local property a. Hence if j > 2, vertices which become adjacent to v not only affect p but also a of the

vertices in N (v). We think that this is but a technical problem and with a little tedium, we may be able to overcome

it.

Conjecture: All j -local properties are regular with respect to all k-terminal recursive families of graphs.

2.7. Edge-Induced Subgraph Properties

So far, in this chapter, we have only discussed subgraph properties where the subgraph is a vertex subset. The

BLW theory also extends to edge-induced subgraph properties. Before describing our results concerning edge-

induced subgraphs, we give a brief survey of the results (edge-induced subgraph properties) obtained by Bern,

Lawler and Wong [I].

Bern, Lawler and Wong [I] consider the problem of finding a minimum cardinality maximal matching in

rooted trees. The problem asks for a smallest set of edges with disjoint endpoints to which it is impossible to add

another edge without violating the disjoinmess constraint. Minimum cardinality maximal matching is NP-hard for

general and bipartite graphs [8]. Bern, Lawler and Wong show that the maximal matching property is regular with

respect to the class of rooted trees by constructing a finite range homomorphism.

Since the composition operation o for rooted trees creates a new edge, the extension of o from the class of

trees r to the set of tree x subgraph pairs TH must specify whether or not the new edge is chosen to be in the sub-

graph. This extension is accomplhhed by creating two special operations for : in o 1, the new edge is not chosen,

and in o 2, the new edge is chosen. (If an edge is chosen to be in the matching then both its endpoints must also be

chosen.)

The equivalence classes for the maximal matching property are as follows :

i) C 1 is the set of those pairs (G , H) in which the root r is unmatched and H is a maximal matching for G .

ii) C2 is the set of those pairs in which r is matched and H is a maximal matching for G .

iii) Cg is the set of those pairs in which r is unmatched H is a matching but not a maximal one and H is a

maximal matching for the subgraph of G induced by the vertices in V(G)-{r}.

iv) C4 is the set of of remaining pairs.

The multiplication tables for the operators -1 and *z corresponding to composition operations o 1 and o 2 are

given in the tables shown below.

Table 2.5 a) Multiplication Table For Maximal Matching In Rooted Trees For o 1

Table 2.5 b) Multiplication Table For Maximal Matching In Rooted Trees For o 2

The only important difference between the techniques for vertex subset properties and edge-induced subgraph

properties is in the extension of composition operators from the class of decomposable graphs r to the set of pairs

rH. To accomplish this extension for edge-induced subgraph properties, it may be necessary to replace a single

composition operation g with as many as 2' operators on rH , where 1 is the number of attachment edges created by

o. The definitions of homomorphism and regular property are unchanged except that the condition 2) in the

definition of homomorphism must hold for every one of the enlarged set of composition operations.

In the remainder of this section, we will prove that matching and cycle are regular properties for any k-

terminal recursive family of graphs. As regular properties are closed under the max operation [I], the regularity of

matching for any k -terminal recursive family implies the regularity of maximal matching for any k -terminal recur-

sive family of graphs. It follows directly from these results, that minimum cardinality maximal matching and max-

imum and minimum length cycles can be found in linear time for any k -terminal recursive family provided the input

is given in terms of the parse tree. In general graphs, the problem of finding a minimum cardinality maximal match-

ing and the problem of finding a maximum length cycle are NP-hard [9].

Theorem : Matching is a regular property for any k -terminal recursive family of graphs.

Proof : Let r be a k -terminal recursive family of graphs. Let (G , H) be graph x subgraph pair where G E r and H

is an edge-induced subgraph of G . Consider a composition operation o in the family which introduces I attachment

edges when applied to two graph x subgraph pairs. Since attachment edges can only be added between terminals,

1 I k2. We extend o to graph x subgraph pairs by replacing o by 2l composition operations one for each possible

subset of attachment edges in the subgraph. It is clear that if (G , H) has an improperly matched vertex v , v can

never become properly matched when (G, H) is involved in in one of the 2' composition operations. Hence we

group all graph x subgraph pairs which contain an improperly matched vertex into REJ. Now, if all the vertices in

(G, H) are properly matched, then a properly matched internal vertex v will remain properly matched when the

(G, H) is involved in a composition operation. Hence, we only need information about terminals to determine the

matching behavior of (G, H). For each terminal v, we need to know if the number of edges incident on v and

belonging to H is 0 or 1. If the number of such edges is 0, then we know that v is available to be matched; other-

wise it is not. As the total number of terminals is k, the number of equivalence classes is at most 2k. Given this

information, we can effectively build the 2' multiplication tables corresponding to o in a way similar to the way as

we built the tables for vertex subset properties. If I? has more than one composition operation, the construction gen-

eralizes in an obvious way. Hence we have shown that matching is a regular property for any k -terminal recursive

family of graphs. O

It is interesting to note that matching is a local property in an intuitive sense similar to the notion of locality
b

for vertex subset properties. To determine if a vertex v is properly matched, we only need to look at the edges

incident on v . If there is more than one edge in the subgraph that is incident on v, then v is not properly matched;

otherwise v is properly matched.

Definition : Let (G, H) be a graph x subgraph pair. A vertex v E V(G) is said to be cyclic if the degree of v in H

dH(v) is 2. A vertex v is said to be semicyclic if d ~ (v) = 1. A vertex v is said to be non-cyclic if dH(v) = 0 A

property P is said to be a cycle property if P(G, H) is true iff H is a cycle in G for all graph x subgraph pairs

(G, HI.

Theorem : The cycle property is regular with respect to all k -terminal recursive families of graphs.

Proof : Define G, H , r and o as in the previous proof. Let us assume that o introduces 1 edges during a composi-

tion operation. As before 1 I k2, we replace o by 2' operations when we extend o to graph x subgraph pairs. It is

clear that if there exists a vertex v E V(G) which is neither cyclic, nor sernicyclic nor non-cyclic (that is

d ~ (v) 2 3), then (G, H) can never satisfy the cycle property when involved in a composition operation. Also if an

internal vertex is semicyclic, (G, H) can never satisfy the cycle property. We group all pairs which have such ver-

tices into the class RET. Now, for all remaining pairs, all internal vertices are either cyclic or non-cyclic and all

te&al~ are cyclic, semicyclic or non-cyclic. It is easy to see that if all the vertices in (G, H) are either cyclic or

non-cy~li~, H is either a cycle or a union of disjoint cycles, or H is empty. We group all pairs of fist kind (that is,

H is a cycle) into the only accepting class ACC, group the pairs of the second kind (i.e., H is a union of cycles) into

REJ, and group the pairs of the third kind into class C. It is clear that if more edges are added to H when (G , H) E

ACC, the resulting graph x subgraph pair will belong to REJ. In graph x subgraph pairs which contain semicyclic

terminals, the semicyclic terminals occur in pairs in the sense that for every semicyclic terminal v, there exists a

semicyclic terminal w such that there is a path from v to w in H (If this is not the case, the path from v in H ends

in a semicyclic internal vertex which is a contradiction.) Two semicylic terminals which are connected by a path in

H are called mutually amicable. Among k terminals, there can be 2m semicyclic terminals where m I 1k12J. It is

easy to see that for (G , H) not in REJ, ACC or C, if we know all the amicable pairs of terminals and if we know all

the cyclic terminals (and hence all the non-cyclic terminals), then we can completely determine the cycle behavior

of (G, H). Hence, an equivalence class (except REJ or ACC or C) will be represented by the information which

determines all pairs of amicable terminals and all cyclic terminals. The number of ways in which we can choose m

k ! pairs of amicable terminals out of k terminals is (2!)m(t-2m)!m! - - k!
(2)m(k-2m)!m ! ' Of the rest k-2m termi-

nals, there are 2(k-2") ways of choosing all sets of cyclic terminals. The number of equivalence classes of all graph

! 2(k-2"). SO, the total number of x subgraph pairs which have 2m semicyclic terminals is 2m(k-2m)!m!

!)2(k-2m) + 3. Since the number of equivalence classes is finite, the cycle equivalence classes = 'y'
k-2m) !m ! m=l(2 (

property is a regular property with respect to any k-terminal recursive family of graphs.

2.8. Vertex Partition Problems

The BLW theory as presented in [I], can be applied only to subgraph problems. In this section, we show that

vertex partition problems like chromatic number can be solved by using a simple extension to the BLW theory. A

vertex partition problem has the following form:

'Given a graph G =(V, E), find a function f : V + {l, . . . , I V 1 J such that the graph labeled by f satisfies a certain

property P and cardinality of the the set f (V) is optimized (maximized or minimized). Here P is called the pro-

perty of the problem.

Definition: Let f : D + R be a function. and let S c D , then f (S) is defined to be the set { f (d):d E D }. Let

f 1: D 1 -+ R 1 and f 2: D 2 -+R 2 be functions where D 1 and D 2 are disjoint. then the union of functions f and f 2,

f 1 u f 2 has the domain D 1 u D 2 and the codomain R 1 u R 2 and is defined as follows :

f 1 u f 2 W = f l (d) i fd E D l and

f 1 u f 2 (4 = f 2(d) i fd E D2

The chromatic number problem could be stated in this form as :

Given agraph G = (V , E) , findamong all functions f : V + { l , ..., IVI} such that f (v l) # f (v 2) if there is an

edge between v 1 and v 2 in G and such that the cardinality off (V) is minimized.

Definition: Let G = (V, E) be a graph. A function f : V + {1, . . . , I V I} is a bounded labeling for G , if

1 s f (v) s 1 for all v E V , for some fixed positive integer I. A vertex partition problem restricted to bounded label-

i n g ~ is called a bounded partition problem.

Let G be a graph in a k-terminal recursive family T. Let G be labeled by a bounded labeling f . We denote

G so labeled by (G, f) and call it a graph-function pair. We extend a composition operation o in T to all pairs

(G , f) in the natural way:

(G1 , f 1 1 0 (G > f 2)=(G10 G2t f 1 u f 2).

Graph-function pairs are more general than graph x subgraph pairs, because we could think of a graph x subgraph

pair as a graph-function pair where the function labels the vertices of the graph with 0's and 1's. A vertex that is

labeled 1 is in the subgraph and a vertex that is labeled 0 is not in the subgraph. The definitions of a property and

regularity of a property for graph-function pairs are similar to the definitions for graph x subgraph pairs.

Theorem: Let l- be a k -terminal recursive family. There is a linear time algorithm that solves the bounded partition

problem for l-, if the property P of the problem is regular with respect to T and if the input to the algorithm is given

in terms of a parse tree for a graph.

Proof: Since P is regular, there is finite range homomorphism h for P . We will use a slightly modi6ed version of

the generic linear time algorithm of the BLW theory to solve the bounded partition problem for P. At each leaf of

the parse tree (which is a basis graph in T), we determine an optimal f (that is an f that optimizes f (V)) that

satisfies P . At internal nodes of the parse tree, we use the same procedure as in the BLW theory except that instead

of storing the optimal cardinality of a subgraph, we store the optimal f (V) corresponding to each equivalence class.

AS the given problem is a bounded partition problem, I f (V) 1 is bounded by a fixed constant. Hence each propaga-

tion step in the generic algorithm of the BLW theory can be done in constant time.

2.8.1. Regularity Of Coloring With Respect To All k-terminal Recursive Families Of Graphs

To check whether a given f is a proper coloring of a graph G , we can independently look at each vertex v

and determine whether it has the same color as one of its neighbors. If there is any such v in (G , f), then f is not a

proper coloring for G . Hence, in a certain sense, coloring is a local property. Although we have not &fined local-

ity for vertex partition problems, our discussiqn of locality on vertex subsets suggests that coloring is a regular pro-

perty. But before we prove the regularity result for coloring, we have to show that the minimum coloring problem

(i.e. the chromatic number problem) is a bounded partition problem for any k -terminal recursive family of graphs.

Lemma: Let 1 be the maximum of the chromatic numbers of all basis graphs in a k-terminal recursive family of

graphs T. Then the chromatic number of any G E T is at most maxil, 2).

Proof : We first show that, if all of the basis graphs in a k-terminal recursive family T are 2k-colorable, then all

graphs in T are 2kcolorable. Then, the lemma follows from this fact. Let G E T, and let o be a composition

operation in the family. The proof is by induction on the number of composition operations used to build G . Since

all the basis graphs are 2k-colorable, the basis step is true. For the induction step, observe that, if G = G 1 o G2,

and if G 1 and G 2 are 2k -colorable, then G is also 2k -colorable because edges are only added between the 2k termi-

nals of G 1 and G 2 when G is composed from G 1 and G 2.

From the above lemma, the following theorem is evident:

Theorem: Minimum coloring is a bounded partition problem.

Definition : Let (G, f) be a graph-function pair in T. Then a vertex v E V(G) is said to be properly colored if

f (v) + f (v') for each neighbor v' of v. Clearly (G , f) is properly colored iff all i t . vertices are properly colored

otherwise v is improperly colored.

Theorem: Coloring is a regular property for any k-terminal recursive family of graphs T.

Proof: Let 1 be the maximum of chromatic numbers of all the basis graphs in r and let m = rnax{l, Z}. Let (G , f)

be a graph-function pair, where G E T. A properly colored internal vertex v in (G , f) will remain properly colored

when (G , f) is involved in a composition operation. An improperly colored vertex (terminal or an internal vertex)

v remains improperly colored when (G, f) is involved in a composition operation. Hence, we group all graph-

function pairs which have at least one vertex that is improperly colored into REJ. Now consider graph-function

pairs (G, f) all of whose vertices are properly colored. Again a properly colored internal vertex remains properly

colored when (G , f) is involved in a composition operation. Therefore, we only need to know the colors assigned

to the terminals to completely determine the coloring behavior of (G, f). As G is m-colorable, there are only m

states for each terminal. Since there are k terminals, this gives mk accepting classes. Hence there are m k + 1

classes in total. We have thus proved that coloring is a regular property. It is now easy to effectively build the mul-

tiplication tables for coloring from this information.

2.8.2. Regularity Of Domatic Labeling For k-terminal Recursive Families

b

Definition : A function f : V -, {I, . . . , I V I} is called a proper domatic labeling for a graph G = (V, E), if for all

i , the set Vi = {v : f (v) = i } is a dominating set for G .

The domatic number problem can be stated as:

Given a graph G = (V, E), determine a proper domatic labeling f for G such that the cardinality of the set f (V) is

maximized. This maximum cardinality is called the domatic number of G .

It is known that the domatic number problem is NP-hard for general graphs [9]. We can see that any simple

graph in a k -terminal recursive family has 0 (n) edges where n is the number of vertices in the graph. For any mul-

tigraph in the family, the simple graph formed by suppressing all multiple edges has 0 (n) edges.

Theorem: The domatic number of a graph belonging to a k-terminal recursive family I' is at most 1 for some fixed

constant I.

Proof: Let G = (V, E) be a graph with n vertices. If G is a multigraph, the domatic number of G is same as the

domatic number of the graph constructed from G by suppressing all multiple edges. Hence, we will only consider

graphs which do not have multiple edges. The number of edges in such a graph is at most (m + k2)n, where m is

the maximum number of edges in any basis graph of the family. Let f be a proper domatic labeling for G and let

the cardinality off (V) be d. Since each vertex v has to be dominated by at least one vertex labeled by i for all

1 i I d and since v dominates itself, degree (v) 2 d-1. Therefore, the number of edges in the graph is at least

v n . Hence we have y n I (m + k ')n which implies d I 2(m + k ') + 1 = I. As f was chosen to be any

proper domatic labeling, the domatic number of G is at most I.

Corollary: The domatic number problem is a bounded partition problem.

Theorem: Proper domatic labeling is a regular property for any k -terminal recursive family of graphs T.

ProofiLetG = (V , E) E randle t f :V-+{l , . . . , 1) beaboundedlabelingonG (where1 = 2 (m + k 2) + 1 asin

the previous theorem). If (G, f) is properly domatic labeled, then f (N (v)) = f (V) for all vertices v E V. (If

(G, f) is properly domatic labeled, then each vertex v in G should be such that it is dominated by at least one ver-

tex of each label in f (V) and therefore the 1-neighborhood of v should be labeled by all the labels in f (V).) Let

IN (v) = N(v) & {v J. For an internal vertex v , f (IN(v)) does not change when (G , f) is involved in a composition

operation. We know that for any bounded domatic labeling, I f (IN(v))l I I f (V)I for all vertices v E V. Also

I f (Y) cm fiever decrease durifig a coqosldcr? opratim F.vo!vkg (G, f). (vertices are never deleted d,t;,ng a

composition operation, hence the cardinality off (V) can never decrease during a composition operation.) Hence, if

there exists an internal vertex v in (G, f) such that f (IN (v)) + f (V), (G, f) is not properly domatic labeled and

can never yield a properly domatic labeled graph-function pair. We classify the class of all such graph-function

pairs into REJ. Now consider pairs (G, f) such that is such that f (IN(v)) = f (V) for each internal vertex v. For

each such (G, f), we need to know f (V) and we need to know f (v) and f (IN(v)) for each terminal v in (G, f).

This information determines completely the domatic behavior of (G , f). As f (V) E {1, . . . ,I}, the number of such

f (V)'s is bounded by 2'. Similarly, the number off (IN(v))'s for each terminal v is bounded by 2'. The number

off (v)'s for each terminal v is bounded by 1 . Hence the total number of equivalence classes corresponding to the

property of domatic labeling is bounded by 21(121)k = Ik2'(k+1). Note that we could have done a tighter analysis for

the number of equivalence classes as f (IN(v)) G f (V) for each v. Of these classes, the classes for which

f (IN(v)) = f (V) for all terminals v are the accepting classes and the rest are rejecting classes. From this informa-

tion, it is clear how to build the multiplication table for proper domatic labeling. Hence we have proven that proper

domatic labeling is a regular property for any k-terminal recursive family of graphs.

2.9. Summary

In this chapter, we developed a generalized theory for non-regular properties, showed that it is impossible to

effectively construct multiplication tables or finite range homomorphisms for arbitrary computable properties on

graph x subgraph pairs, and demonstrated how to effectively build finite range homomorphisms for independence,

domination, irredundance and vertex j-independence. We then generalized these results to prove that all local pro-

perties are regular. We also showed that edge-induced subgraph properties such as maximal matching and cycle are

regular with respect to any k -terminal recursive family of graphs. We extended the BLW theory to vertex partition

problems and showed that coloring and proper domatic labeling are both regular with respect to all k-terminal

recursive families of graphs.

Bern, Lawler and Wong [ll show that if P and Q are regular properties with respect to a given k -terminal

recursive family, then so are P and Q ; P or Q ; max P and min P (A graph x subgraph pair satisfies max P , if it

satisfies P and no proper superset of the pair satisfies P. A graph x subgraph pair satisfies min P , if it satisfies P

and no proper subset of the pair satisfies P). Given finite range homomorphisms for P and Q , they also show how
(i

to effectively build finite range homomorphisms for the 4 properties. We have shown in this chapter how to effec-

tively build finite range homomorphisms for independence, domination and irredundance for any k-terminal recur-

sive family of graphs. Hence we can build finite range homomorphisms for various other properties.

CHAPTER 3

FAST PARALLEL ALGORITHMS FOR REGULAR PROPERTIES

3.1. Introduction

In this chapter, we show how to construct fast parallel algorithms for for finding optimal subgraphs obeying

regular properties in k -terminal recursive families of graphs. We adapt the generic linear time sequential algorithm

of the BLW theory to yield an 0 (log n) time parallel algorithm using 0 (n) processors where the input is given in

terms of a parse tree and where n is the number of nodes in the parse tree of the graph. The adapted algorithm is

also extended to handle the generalized theory of Chapter 2. He [ll] has independently obtained fast parallel algo-

rithms for finding minimum covering set (MCS), maximum independent set (MIS), maximum matching set (MMS),

and minimumh-dominating set in trees and series parallel graphs by using techniques similar to the ones used by us.

However, his results are not as general as ours, as we design a generic parallel algorithm that applies to all regular

properties.

In general, the input to the algorithm will not be given in terms of a parse tree. Hence, we need to have fast

parallel algorithms for generating parse trees for graphs belonging to a given k-terminal recursive family. Evi-

dently, the procedure for building parse trees for a given family is strongly dependent on the way the family has

been defined. So the algorithmic techniques used for generating parse trees f6r one family may not be applicable to

another family. We conclude this chapter with parallel algorithms for building parse trees for rooted trees and series

parallel graphs. We have chosen these families because both families can be very simply described and have a sim-

ple structure, and linear time sequential algorithms for building parse trees for both the families are known. He [12]

has independently designed a fast parallel algorithm for finding parse trees for series parallel graphs. However, he

uses a different approach to design such an algorithm.

3.2. Parallel Models Of Computation

We will be assuming an idealized model of parallel computation in which concurrent reads and concurrent

writes, when allowed, can be done in constant time. Communication among processors is achieved through a

shared global Shared memory models of parallel computation can be divided into the following three categories:

1) EREW (Exclusive Read Exclusive Write):

In this model, only one processor can access a particular location in global memory at any given time for read and

write operations. However, several processors can access different memory locations simultaneously.

2) CREW (Concurrent Read Exclusive Write):

In this model, concurrent reads are allowed, but concurrent writes are not allowed.

3) CRCW (Concurrent Read Concurrent Write):

In this model, both concurrent reads and writes are allowed. If different processors try to write different data into

the same memory location simultaneously, we get a write-conflict. The conflict can be resolved in one of the fol-
i

lowing ways:

(2) Let an arbitrary processor succeed.

(3) Let the lowest numbered processor succeed.

We will use the CRCW model of parallel computation because this is the most powerful of the three models. There

is another reason for using this model. Our algorithm for finding optimal subgraphs obeying regular properties in

k -terminal recursive families of graphs is based on a technique called Parallel Tree Contraction [4] which uses the

CRCW model of parallel computation.

3.3. Parallel Tree Contraction And Applications

Miller and Reif [4] describe a bottom-up technique for computation on trees called parallel tree contraction.

The basic operation in tree contraction is CONTRACT. CONTRACT is actually a simultaneous application of two

operations, RAKE and COMPRESS. RAKE is the operation of removing all of the leaves of a given tree in parallel.

If the tree is highly unbalanced, this operation could take O(n) parallel time. Hence a new operation called

COMPRESS is introduced.

Definition : Let T = (V, E) be a rooted tree with n nodes and root r . A sequence of nodes v . . . , v, is a chain if

vi + 1 is the only child of v; in T for 1 S i < m , v , has only one child, and v,'s child is not a leaf. In one parallel

step, we compress a chain by identifying vi and vi + 1 for i odd and 1 I i < m . COMPRESS is the operation on T

which compresses all maximal chains of T in one step.

Theorem [4] :

After r l o g ~ n 1 executions of CONTRACT, a tree with n vertices it is reduced to its root.

The naive implementation of COMPRESS requires 0 (log n) time since we first determine the parity of each

node on a chain by recursive doubling and then combine consecutive odd and even nodes pairwise in constant time.

Hence, to circumvent this difficulty, Miller and Reif [4] introduce a procedure called Dynamic Tree Contraction.

Let T be a rooted tree with node set V of size n and root r E V. Each node which is not a leaf can be viewed

as a function for which the children supply the arguments. For each node v with children v 1 , . . . , v,, we set aside
C

k locations 1 1 , . . . , I , in common memory. Initially each li is empty or unticked. When the value of vi becomes

known, it is assigned to li : this is denoted by tick li. Let Arg (v) denote the number of unticked l i ' s associated with

v . Initially, Arg(v) = m, the number of children of v . Let P (v) be the storage location of parent of v and let

node (P (v)) be the node associated with the storage location P (v) . The following describes one Dynamic Contrac-

tion Phase. 1) implements RAKE and 2) implements COMPRESS by recursive doubling.

Procedure Dynamic Tree Contraction

In Parallel for all v E V - { r } do

1) If Arg (v) = 0 then tick P (v) and delete v

2) If Arg (v) = Arg (node (P (v))) = 1 then P (v) c P (node (P (v)))

od

Theorem [4]: In at most rlogsl@ 1 applications of dynamic tree contraction, a tree is reduced to its root.

Observe that many nodes are not evaluated, that is, for many v , Arg (v) is never set to 0 during any stage of

Dynamic Tree Contraction. Miller and Reif [41 define a new procedure called Dynamic Tree Expansion which will

allow the evaluation of all nodes so that each node will eventually have all of its arguments after completion of the

procedure. The Dynamic Tree Contraction algorithm can be modified so that each node keeps an initially empty

push down store Store, which is used to record all previous values of P (v). The following statement is added at the

start of the block inside the do and od of Dynamic Tree Contraction :

0) Push value P (v) onto Store,.

Dynamic Tree Contraction is then applied until the root r has all its arguments. Next the procedure Dynamic Tree

Expansion is applied until all the nodes have their arguments :

Procedure Dynamic Tree Expansion

In Parallel for all v E V - { r } do

1) P (v) c Pop (Store,)

2) if Arg (v) = 0 then tick P (v) .

od

Theorem [4]: At most r logsfon 1 applications of dynamic tree contraction and r log5/& 1 applications of dynamic
6

tree expansion are needed to tick all nodes.

3.4. The Generic Parallel Algorithm Corresponding To The BLW theory

We will now describe the generic parallel algorithm corresponding to the BLW theory. We first describe the

algorithm on an example. Let us take the example of domination in rooted trees. The table for domination in rooted

trees is given below:

FEJ
2 2 2 2 REJ

REJ FEJ REJ REJ REJ

Table 3.1 Multiplication Table For Domination In Rooted Trees

The initial classes are 0 and 2 and the accepting classes are 1 and 2. Class 0 is the class of all graph x subgraph

pairs such that the root is not included in the subgraph and is also not dominated by any other vertex in the sub-

p p h . All the other vertices in these pairs are dominated. Class 1 is the class of all graph x subgraph pairs s ~ &

that the root is not included in the subgraph, but it is dominated by some vertex in the subgraph. Class 2 is the class

of all graph x subgraph pairs such that the root is included in the subgraph and all the other vertices are dominated.

Let v be a node in the parse tree and let vl and v, be its left and right children. The recurrences for minimum cadi-

nality domination are :

ao(v) = ~ O (V I) + adv,)

~ I (v) = min { ~ o (v I) + a&,), a ~ (v d + a ~ (v ,) , a dvr) + a2(vr)J

a d v) = min { a 2 (~ 1) + ao(v,), a ~ (v d + a dv,), advd +a2(vr)J.

We do not need a recurrence for REJ because it is a sink state and it is rejecting. The vector a(v) =

<a O(v), a l(v), a 2 (~)> represents the optimal cardinality of a dominating set belonging to classes 0, 1 and 2 respec-

tively, in the tree represented by node v in the parse tree.

We can think of the parse tree of a given rooted tree as an expression evaluation tree by interpreting a(v) at an

internal node v of the parse tree to be a function of two arguments a(v1) and a(v,). When parallel tree contraction is

used on this expression tree, RAKE is the operation of removing all leaves of the tree and evaluating (partially or

fully) the vector a for the parents in terms of the a vectors of its leaves. If a node v becomes a leaf after the RAKE

operation, a(v) gets fully evaluated, otherwise it gets partidy evaluated. Observe that the sizes of the expression

for a(v) in terms of the size of the expressions for a(v1) and a(v,) does not increase during RAKE.

Suppose that v 1 and vz are two nodes in a chain of the parse tree and let v 2 be the right child of v 1. Then

a(v has already been evaluated in terms of the a vector of its left child. Assume that v 1 and v get identifled dur-

ing a COMPRESS, that v 3 is the only child of v 2 in the chain, and that v 3 is the left child of v 2. This means that the

right child of v has been RAKEd and a(v 2) has been evaluated in terms of the a vector of the right child of v 2. Let

the a vector of the left child of v 1 be <i , j , k > and the a vector of the right child of v 2 be tl , m, n >. Then, we

have :

When v 1 is identified with v 2, a(v will be evaluated in terms of a(v 3). The result is :

It appears, at first, that during a COMPRESS, the size of the expression for a can be squared. However, the size of

the expressions can be reduced to constant size as follows:

Let L

r =min{i +m, i + n J

s =min{i + l , i + m , i + n , j + l , j + m , j + n J

t =min{j+m, j + n }

u =min{k + l , k +nJ

v = min{k +m, k + nJ

w =min{k + l , k + m , k +n}

Since i , j , k, 1, m , n are known; r , s , t , u , v, w can be computed in constant time. Then, we have :

a 0 (v 1) = ~ { a ~ (v 3) +i + n , al(v3) +r}.

al(vl)=min{ao(v3)+ j + n , a l (v 3) + t , a 2 (~ 3) + ~ }

a 2 (~ 1) = m i n { a 0 (~ 3) + ~ , a l (v 3) + ~ , a 2 (~ 3) + ~]

So, the expressions for a ~ (v a l(v 1) and az(v I), can be bounded by a constant, and the function composition in

COMPRESS can be implemented in constant time. Therefore, given a parse tree, we can use dynamic tree contrac-

tion to find a minimum dominating set in a rooted tree in 0 (log n) time using 0 (n) processors. The procedure for

dominating sets in rooted trees can be generalized to all regular properties in all k-terminal recursive families of

graphs.

Theorem : The cardinality or weight of optimal subsets of vertices obeying any regular property P in a graph

belonging to a k-terminal recursive families of graphs can be found in 0 (log n) parallel time using 0 (n) proces-

sors when the input to the algorithm is a parse tree of the graph.

Proof : Without loss of generality, assume that, we want to find maximum cardinality subgraphs obeying P . It is

easily seen that the size of the expressions in the recurrences corresponding to a node v in the parse tree of a given

graph does not increase during a RAKE of the children of v. Hence, to show that 0 (log n) time is sufficient for

finding optimal subgraphs obeying regular properties using 0 (n) processors, we only need to show that the size of

the expressions in the recurrences corresponding to a node v in the parse tree does not increase during a

COMPRESS. To show this fact, we use an argument similar to the one in the dominating set example.

Without loss of generality, let v 1 and v 2 be nodes in a chain of the parse tree such that v 2 is the child of v l.

Let us assume that the given regular property P has i classes and that we want to find the maximum cardinality of a

b
subset of vertices satisfying P. At each node v of the parse tree, we store a vector a(v) = <a l(v), . . . , ai(v)>,

where a,(v) represents the cardinality of the optimal subgraph satisfying P when the subgraph is restricted to the

graph represented by v. Then as vl and v2 belong to a chain in the parse tree and as v2 is the child of v v has

been evaluated in terms of its other child (which was RAKEd before). Let v3 be the child of v2. This implies that

the other child of v 2 has been RAKEd and hence a(v 2) has been evaluated in terms of its other child. In the worst

case, each a,(v 1) for 1 I j I i is a function of all a 1(v2), . . . , ai(v2) and each a,(v2) for 1 I j I i is a function of

all a l(v 3), . . . , ai(v 3). Then we have the following recurrences :

a,(v 1) = max{a ~ (v z) + u,1, . . . , ai(v2) + uiiJ for all 1 I j I i where the u,lls are constants for all 1 I j , 1 5 i

or

i
a , (v l)=m~{am +uimJ for all 1 I j I i .

m=

and

a,(v2)=max{al(vg)+tj1,. . . , ai(v3)+t,iJ for all 1 I j I i where tjl areconstants for all 1 I j , 1 5i

or

a,(v 2) = TiF{al(v 3) + t,l)J for all 1 I j I i .

When v 1 and vz are identified during a COMPRESS, a(v 1) is evaluated in terms of a(v3) and we get

i i
aj(v1) = c 2 1 d ~ = y { a ~ (~ 3) + t d J) + ujm} Or

i
Let sjl= m y { t d + uim}. Then, we have

m =

Since all of the til and ujl are known constants for all 1 < j, 1 l i , we can evaluate the expressions

i
sjl = rnyjtd + ujm} in constant time, the expressions for a (v 1) in terms of a (vg) are of the same size as the

m=

expressions for a(v 1) in terms of a(v2), and the expressions for a(v2) in terms of a(v3). Hence, we have shown that

the size of the expression for a(v), where v is any node in the parse tree, does not increase during a COMPRESS.

L

3.5. Generic Parallel Algorithm For The Generalized Theory

We can modify the generic parallel algorithm of the previous section to yield a pardie1 algorithm for the gen-

eralized theory of Chapter 2. Assume that we have a non-regular computable property P with respect to a given k -

terminal recursive family of graphs and we are asked to find maximum or minimum cardinality subset of vertices

satisfying P in a given graph G belonging to the family. Further assume that P admits of a generalized homomor-

phism h, with g (n) equivalence classes. In the generalized theory, the recurrences are derived from the generalized

homomorphism h, which must be built every time we are given a graph which has a parse tree having n nodes.

These recurrences are then propagated up the parse tree in essentially the same way as in the generic algorithm of

the BLW theory. The only difference is that the vector stored at each node of the parse tree is of length g (n) rather

than being of constant length. Assume that we can build the generalized homomorphism h, and the corresponding

- recurrences in constant parallel time using 0 (ng3(n)) processors. To each node of the parse tree we associate

g 3(n) processors. During the RAKE of a leaf node, we need g 2(n) processors to evaluate the parent of the leaf in

terms of the leaf. During a COMPRESS, in the parallel algorithm for the BLW theory, we computed the constants

r,l for 1 < j , 1 S i by finding the optimum over i expressions of constant size where i was the number of

equivalence classes. In the generalized case, the number of equivalence classes is g (n 3. Finding the maximum or

minimum over g (n) numbers can be done in 0 (log g (n)) time using 0 (g(n)) processors. As there are at most

g2(n) such constants to be evaluated, we need 0 (g3(n)) processors to do the function composition (required in

COMPRESS) in 0 (log g (n)) time. As there are n nodes in total and as the number of contract operations needed

to evaluate the root is 0 (log n), we get an 0 (log g (n)log n) time algorithm using 0 (ng 3(n)) processors.

An Example :

We illustrate the above algorithm by finding the cardinality of maximum f -independent sets. Recall from

Chapter 2 that the generalized homomorphism h, for f -independence has f (n) + 1 classes. There are f (n) accept-

ing classes and 1 rejecting class RW. Since RE3 is a sink class we do not need to store the optimal weight

corresponding to this class, so a vector of length f (n) is stored at each node of the parse tree. A representative of

the i th accepting class C, is an f -independent set in which the minimum distance of an included vertex to the root is

i - 1 , where 1 I i If (n) - 1. The representative of the f (n)th accepting class is an f -independent sets and all the

included vertices have distance 2 f (n) - 1 from the root. We can obtain the recurrences from this table in constant

time using 0 Cf2(n)) processors. Let a,(v) be the cardinality (or weight) of the optimal subgraph belonging to the

class Ci (j I f (n)). If we can find each CI and C,, such that CI C, = C, in constant time, then we can find the

recurrence corresponding to a,(v) in constant time if we are allowed to use as many processors as there are such

pairs (that is (Cl, C,)). If a tree x subgraph pair (G, S) = (G 1, S 1) o (Gz, S2), where the included vertex which is

nearest to the root is at a distance j from the root in (G 1, S 1) and the included vertex which is nearest to the root is

at a distance at least j-1 from the root in (G 2, S2), then the distance of the nearest Therefore, if j < f (n), then all

pairs (Cl, C,) such that CI = C,, and C, = Ck, for all k 2 j-1 satisfy: C, = CI C,. Similarly, if j c f (n),all

pairs (Cl, C,) such that CI = Ck for all k > j and C, = C,-1, satisfy: C, = CI C,. If j = f (n), then all pairs

(Cl, C,) such that 1 2 f (n) and m 2 f (n)-1, satisfy C, = CI C,. Hence, we can find the recurrence for a,(v) in

constant time, if we are allowed to use as many processors as there are pairs (Cl, C,) such that Cl C, = C,.

There are f 2(n) pairs (CI, C,) for all 1 I 1,m If (n). As there is a unique C, such that Cl C, = C,, we can find

all the recurrences in constant time using 0 (f2n) processors. Then, we can apply the generic parallel algorithm

described in the previous section to yield an 0 (log f (n)log n) time algorithm using 0 (nf 3(n)) processors.

Parallel Algorithms For Building Parse Trees For Rooted Trees

Recall the recursive definition of rooted trees as described in Chapter 1 :

The triple ({ x }, {I, { x }) is a rooted tree with root x.

IfT1=(V1,E1,rl)and

T2 = (V2, E 2, r 2) are rooted trees with roots r and r 2 respectively, then the triple T = (V, E , r) where

V = V 1 u V 2

E = E l u E 2 u { r l r 2 }

r = r l

is a rooted tree.

Let Parse (v) denote the parse tree rooted at vertex v .

Let T be a rooted tree with n vertices and root r . To each vertex vi, we associate a node Parse (vi) in the

parse tred. This node serves as the pointer to the root of the parse tree of the tree rooted at vi. To each leaf vertex

vi, we assign a processor and assign Parse(vi) t vi in parallel. To each vertex vi which has i, children

v 1, . . . , v,, we associate ik processon for a total of xi, = 0 (n) processors. Then in parallel using 0 (logn) time

for each vertex vi, we build a parse tree for the tree rooted at vi as shown in Figure 3.1.

Figure 3.1

3.7. Parallel Algorithm For Finding Parse Trees For Series Parallel Graphs ,

Recall the definition of series parallel graphs from Chapter 2:

Definition [I]: Series parallel graphs are defined in the following way:

1) The graph G = ({I, r } , { (I , r)}) is series-parallel, with left and right terminals [I, r I.

2) If G = (V 1, E and G 2 = (V2, E 2) are series-parallel graphs, with left and right terminals [I 1 , r and

[I 2, r 21 respectively, then :

a) The graph obtained by identifying r 1 and 12 is a series-parallel graph, with 1 1 and r 2 as its left and right

terminals respectively. This graph is the series composition of G 1 and G 2.

b) The graph obtained by identifying 1 1 and 1 2 and also r 1 and r 2 is a series-parallel graph called the paral-

lel composition of G 1 and G 2. This graph has 1 1 (= 1 2) and r (= r 2) as its left and right terminals respec-

tively.

3efo;e we describe the parallel algorithm for building parse trees for series parallel graphs, we need some

background on the structure of series parallel graphs. There is extensive literature on series parallel graphs. Valdes,

Tarjan, and Lawler [lo] define Two Terminal Series Parallel Multidigraphs (or TTSP multidigraphs) as follows :

Definition :

i) A digraph consisting of two vertices joined by a single edge is a ?TSP multidigraphs.

ii) If G 1 and G2 are TTSP multidigraphs, so is the multidigraph obtained by either of the following opera-

tions:

a) Two terminal parallel composition : identify the source of G 1 with the source of G 2 and the sink of G

with G 2.

b) Two terminal series composition : identify the sink of G 1 with the source of G 2.

. Notation : Let G = (V, E) be a TTSP multidigraph. A vertex u E V is an out-neighbor of a vertex v if vu is an

edge in G . u is an in -neighbor if uv is an edge in G . The outdegree of v is the number of outneighbors of v .

Indegree is defined similarly. Let uv be an edge in G . Then u is called the source and v the destination of uv .

The root of the parse tree of the graph which has u as its left terminal and v as its right terminal is called Parse (uv).

~t is clear from this definition that TTSP multidigraphs are merely the directed versions of series parallel

graphs. Alternately, each series parallel graph with left and right termhals 1 and r respectively can be converted

uniquely into a TTSP multidigraph with source 1 and sink r . Our algorithm for finding parse trees for series parallel

graphs will assume the TTSP multidigraph version of series parallel graphs. The sequential algorithm for building

parse trees for series parallel graphs uses the transformations for vertices of indegree 1 and outdegree 1 and for muI-

tiple edges shown in Figure 3.2.

Figure 3.2

Since there is at least 1 vertex of indegree 1 and outdegree 1 or at least one multiple edge [lo], each of these reduc-

tions reduces the number of edges by 1. If the number of edges in the series parallel graph is m , the time complex-

ity of this algorithm is 0 (m), so the algorithm is optimal.

3.7.1. The Parallel Algorithm

In this section, we design a parallel algorithm for building parse trees for TTSP multidigraphs. Observe that

the straightforward way of parallelizing the sequential algorithm does not yield a fast parallel algorithm. The naive

method would try to reduce all indegree 1 outdegree 1 vertices and multiple edges in parallel. This scheme would

work if there is an appreciable number of such vertices and edges in the graph. But as the example in Figure 3.3

illustrates, there might be only one vertex of indegree 1 and outdegree 1 or only one multiple edge.

Figure 3.3

In fact, in this example there is only one such vertex or edge after every reduction. Hence the algorithm still

requires Q(m) time. To find a faster algorithm, we need to find more "structures" in TTSP multidigraphs, which can

be easily processed. These "structures" are shown in Figure 3.4. We call such structures reducible structures,

Figure 3.4

Assume that we have a 'ITSP multidigraph with m edges and n vertices. We reduce this to a 'ITSP digraph with no

multiple edges using m processors in 0 (logm) time. We now have a TTSP digraph with 0 (n) edges.

The input to the algorithm is an adjacency list for a graph. So we have a list of the out-neighbors and in-neighbors

of each vertex. We assign a processor to each edge and a processor to each vertex. If e is an edge in G , we initial-

ize Parse (e) t e . Initially, using 0 (m) processors, we suppress all the multiple edges and build the corresponding

parse trees in 0 (log m) time. The resulting digraph has 0 (n) edges.

We now explain what happens in one step of the algorithm :

We call a vertex of indegree 1 and outdegree 1 a reducible vertex. We call a sequence of vertices v 1,. . . , v , a

chain if each of vi 1 I i I m is reducible, the in-neighbor of v 1 is not reducible, the out-neighbor of v , is not redu-

cible and vi + 1 is the out-neighbor of vi for all 1 I i I m . Figure 3.5 gives an example of a chain. A reducible ver-

tex can be eliminated by the transformation shown in Figure 3.2.

Figure 3.5

It is clear that two vertices u and v which are on a chain such that v is the out-neighbor of u cannot be simul-
C

taneously reduced. Hence we need to identify alternate vertices on each chain which are to be reduced. This can be

done by recursive doubling in 0 (log n) time using 0 (n) vertex processors. The reduction can then be done in con-

stant time. Each reduction deletes k-1 edges in a chain of length k and introduces [kt21 new edges. There could

be more than one parse trees Parse (uv) at any particular time depending on the multiplicity of the edge uv . These

parse trees will be all combined by the edge processors into one using the parallel operation p . This can be done in

0 (log k) time using k processors where k is the number of parse trees. As k is at most n , the reduction of all redu-

cible vertices can be done in 0 (logn) time using 0 (n) processors.

For each processor uv, we check for the following 3 cases :

i) If there is a reducible structure of the form shown in Figure 3.6, then outdegree (u) = 2 or 3 and v is an

out-neighbor of both u and one of the other out-neighbors of u . Let us call this other out-neighbor w . Also

indegree (w) = 1 . This case can be checked in constant time.

Figure 3.6

We then delete uw and w from the out-neighborhood of u . Deletion of uw Creates an articulation point at The

biconnected component containing v and x is a TTSP multidigraph with w as the source and v as the destination.

Hence we need to separately process the component and build its corresponding parse tree Parse (xv). To achieve

this goal, we will have to identify the component containing v and x. We store the information that v has been

created as an articulation point and w is in the biconnected component containing v and defer the identification of

the component until all edge processors have finished the procedure.

ii)If there a reducible structure of the form shown in Figure 3.7, then indegree (v) = 2 or 3 and there is an

edge from u to one of the other in-neighbors of v. Let us call this in-neighbor w . Also outdegree (w) = 1. This

case is symmetric to case 1 and is handled in a similar way.

Figure 3.7

iii) Is there a reducible structure of the form shown in Figure 3.8 ? If so, outdegree (u) = indegree (v) = 2

Let w be the out-neighbor of u and let x be the in-neighbor of v . Then indegree (w) = outdegree (x) = l . wx is an

edge. This case can be checked in constant time. We can update the parse tree Parse (uv) in terms of Parse (uw),

Parse (wx), Parse (xv) and partially evaluated Parse (uv).

Figure 3.8

We then delete uw and xv and we also delete w from the out-neighborhood of u and x from the in-neighborhood of

v . We can then process Parse (wx) disjointly from Parse (uv).

After every edge processor has executed this step, we find the biconnected components which contain the arti-

culation vertices v and the corresponding vertices w created in cases i) and ii) in the edge-processor execution. Let

: be the number of vertices and m the number of edges in the graph. The biconnected components of a general

graph can be found in 0 (logn) time using 0 (n + m) processors [5]. As m = 0 (n) in a TTSP digraph which does

not have multiple edges, we can execute the above procedure in 0 (log n) time. using 0 (n) processors.

Hence we see chat ezch step hcrp,ne~ta!!y bt_lir& a pave tree P ~ r s e (uv 1 for each edge uv of the graph. Also

we see that each step requires 0 (log n) time using 0 (n) processors. We conjecture that a TTSP digraph (that is a

graph with no multiple edges) with e = 0 (n) edges has at least e 110 structures. To support our conjecture, we have

the following evidence:

We claim that the TTSP digraphs shown in Figure 3.9 have the minimum number of reducible structures among all

TTSP digraphs with same number of edges.

The lTSP digraphs shown are obtained by recursing over level number j . Let the number of edges in these graphs

be U, and the number of reducible structures be r,. Then we have :

u, = 2 u j 4 + 5 and

rj =

withuo=5 andro= 1.

Solving these recurrences yields:

uj = lO(2J) - 5 and

2J 1 Therefore, the ratio 3 = - 2 m.
ui

The number of edges deleted by the algorithm is at least half the total number of reducible structures. SO the

number of edges can be reduced by e I20 after during each parallel step. If t (e) is the maximum number of parallel

steps for a TTSP digraph with e edges (e is 0 (n)), then

t (e) l t ((1-1120)e) + 1, so

t(e)=logsoe =O(log e)=O(log n).
m

Hence the algorithm will halt after 0 (log n) steps and the total time for the algorithm is 0 (log2n + logm) using

0 (n + m) processors. (This time bound includes the initial preprocessing time for suppressing multiple edges).

Figure 3.9

CHAPTER 4

CONCLUSIONS AND OPEN PROBLEMS

The BLW theory is a uniform theory in the sense that it provides a uniform framework for designing linear

time algorithms for certain graph optimization problems. The framework has two key ideas:k-terminal recursive

families and regular properties. However, the theory does not explain why certain properties are regular, and the

building of finite range homomorphisms (multiplication tables) is left to human ingenuity. What we have attempted

to do in this research is to address these issues. We introduced a notion of locality and showed that all local proper-

ties are regular. Hence in essence, we explain why certain properties are regular with respect to certain families of

graphs. We have also shown that non-regular properties exist and have modified the BLW theory to handle non-

regular properties. The generic algorithm for the generalized theory is not linear (as expected) but is reasonably fast

for certain non-regular properties. We also adapted the generic algorithms of the BLW theory and the generalized

theory to yield 0 (log n) time parallel algorithms using 0 (n) processors.

There is one important question that neither the BLW theory nor our research addresses in detail. The generic

algorithms for the BLW theory and for the generalized theory (introduced in this research) take as input the parse

trees of the graphs belonging to a k-terminal recursive family. Since the input to the algorithms could be given in

terms of adjacency lists or adjacency matrices of the corresponding graph instead in terms of parse trees, we need to

design fast algorithms for building parse trees for different k-terminal recursive families of graphs. Linear time

sequential algorithms for building parse trees for rooted trees and series parallel graphs [lo] are known. In this

research, we designed an 0 (log n) time parallel algorithm for building parse trees for rooted trees, using 0 (n) pro-

cessors. We also designed an 0 (log2n + log m) time parallel algorithm using 0 (m+n) processors, for building the

parse trees of series parallel graphs with m edges and n vertices. (However, we have not been able to provide the

proof of complexity, for the parallel parse tree algorithm for series parallel graphs).

A few open problems emerging as a result of this research are as follows:

1) It is clear that the notion of locality, as introduced in this research, does not completely characterize regularity.

However, it is quite possible that a more general notion of locality could completely characterize regularity. We

know that regular properties are closed under operations such as union, intersection, complementation, and max and

min operations. So any generalized notion of locality that does not satisfy all of these closure properties is clearly

not equivalent to regularity. To actually prove that all regular properties are local (in a generalized sense), requires

us to develop a stronger version of the Pumping Lemma proved in Chapter 2. The lemma should be strong enough

to prove that if a property P is not local (in the generalized sense), then it is not regular.

2) Although we have restricted ourselves to ver.tex subsets when defining locality, it is very likely that such a notion

of locality could be extended to edge-induced subgraph properties and to vertex partitioning problems.

3) It is easily seen that any graph in a k -terminal recursive family has 0 (n) edges (where n is the number of ver-

tices in the graph) unless the graph is a multigraph. The BLW theory and hence our theory, is only applicable to k-

L
terminal recursive families of graphs. A more general theory which can be applied to recursive families of graphs

which have more that 0 (n) edges will be a significant achievement in this regard. A naive approach to such a gen-

eralization would be to make the terminal set of arbitrary size. But following this approach, we could characterize

the class of all graphs by such a family. Hence this approach will not yield any useful results (Most of the graph

optimization problems we deal with are NP-hard for general graphs.) Another approach that could be followed is to

restrict the types of composition operations for a family. This approach seems to be a more promising one as we

have many ways to restrict the set of composition operations in the family.

4) The BLW theory shows that if a property P is regular with respect to a k -terminal recursive family of graphs I?,

then there is a linear time algorithm for the optimization problem (maximum or minimum cardinality or weight) for

P in T. We showed in Chapter 2 that there are properties that are not regular, but which have linear time algorithms

for solving them (e.g. the property of being a center or a bicenter of a tree). Hence regularity does not completely

characterize properties which have linear time optimization algorithms. It would therefore be interesting to investi-

gate a more generalized framework which would facilitate this characterization.

5) As we have already indicated, a uniform theory for developing efficient algorithms for building parse trees for

graphs belonging to k-terminal recursive families of graphs would be a breakthrough. The question seems quite

difficult because it requires us to determine some structure common to all k-terminal recursive families, before

finding efficient algorithms for building parse trees for such families.

BIBLIOGRAPHY

[I] M.W.Bern, ELLawler, A.L.Wong; 'Why Certain Subgraph Computations Require Only Linear Time' ,26th

Foundations Of Computer Science Symposium (1985), pp. 117-125

[2] T.V.Wimer, S.T.Hedemiemi, Laskar; "A Methodology For Constructing Linear Graph' Algorithms", to appear

[3] Y.Shiloach, U.Vishkin; "An O(log n) Parallel Connectivity algorithm", Journal Of Algorithms 3 (1982), pp.

57-67

[4] G.Miller, J.Reif; "Parallel Tree Contraction And Its Applications", 26th Foundations Of Computer Science

Symposium (1985), pp. 478-489 (1985)

[I R.E.Tarjan, U.Vishkin; "Finding Biconnected Components and Computing Tree Functions In Logarithmic

Parallel Time", 25th Foundations Of Computer Science Symposium (1984), pp. 12-20

[6] S.C.Kwan, WLXuzzo; "Adaptive Parallel Algorithms For Minimum Spanning Trees",

[71 J.E.Hopcroft, JD.Ullman; "Introduction To Automata Theory, Languages and Computation", pp. 201-203

[8] M.Yannakakis, F.Gavri1; "Edge Dominating Sets In Graphs", Unpublished Manuscript.

[93 M.R.Garey, D.SJohnson; "Computers And Intractability: A Guide To The Theory Of NP-Completeness",

W.H. Freeman and Co. (1979)

[I01 J.Valdes, R.E.Tarjan, E.L.Lawler; "The Recognition Of Series-Parallel digraph", Proc. 1 lth Annual Syrnpo-

sium On Theory Of Computing, Atlanta,Ga., 1979, pp.1-12

[I l l X. He; "Binary Tree Algebraic Computations And Parallel Algorithms For Simple Graphs", Tech. Report

(1986); Department Of Computer And Information Science, The Ohio State University.

[12] X. He; "Parallel Recognition and Decomposition Of Two Terminal Series Parallel Graphs", 24th Annual All-

erton Conference On Communication, Control, And Computing, 1986.

