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" Abstract

Current relational database languages do not provide géneral users with many reasoning facilities.
The data stored in the database has to be fully interpreted by the user before it is used. This applies

to both insertion and retrieval of data.

In this thesis we have designed SQUIREL (Structured Query UserInterfaced Relational Extended
Language) as an enhanced database language which provides the user with features like
inheritance, classification and default value assignments. A hierarchical structure is introduced to
incorporate these features. The primary bases of SQUIREL are the database language SQL and the
extended relational model RM/T. |

SQUIREL has been designed to be compatible with current SQL constructs and is also a language
specification for RM/T. We have also made a comparison between SQUIREL and two prominent

-

Al systems.
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Quotation

"Many are the plans in a man’s heart, but it is the Lord’s purpose that prevails.!

1Erom the Book of Proverbs, chapter 19, verse 21.
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Chapter 1
INTRODUCTION

1.1. Motivation

The relational model for databases [CODD 70] was presented as a tool that allowed users to
ignore physical storage representation details, hence providing them with a good conceptual aid.
Since 1970, this model has evolved to become one of the most widely used database models for
commercial database applications. Many database management systems, including
INGRES [STON 76], QBE {ZLOFF 77], DB2 {IBM DB2 ] and SQL/DS [IBM SQL/DS ] have

adopted it as their data model.

The relational model provides a level of abstraction above the physical implementation details, so
a user is able to create, access, insert and delete data from the database without having to know the
actual implementation or storage details of the relations involved. Not only does this reduce the
number of details that a user must be concemed with, but it also ensures that the user interface
remains consistent over time. For example, suppose the user wants to represent the following
information in their database:

A Person has a name, sex and age.

A Student has a name, stud# and dept.

The above information can be encoded in a relational form as follows:

PERSON (name, sex, age)
STUDENT (name, stud#, dept)

This encoding makes no reference to the physical organization of the data, so that a physical
reorganization, for example, changing from B-trees to a hash index does not change the users’
perception of the relations. He/She would still visualize the relations as shown above and would
continue to manipulate them using the same operators. Thus the relational model can help focus the

user’s attention on conceptual relations that exist between the data.

1



SQL (Structured Query Language) is a query language for relational databases. It is used both to
express the relational model as well as to query it. SQL uses an English-like syntax which allows

the user to express his/her request for data in a clear and logical manner.

Some examples of SQL are:
CREATE TABLE PERSON (name CHAR(9),SEX CHAR(6) ,AGE NUMERIC)

INSERT INTO PERSON VALUES(’John’, ’'Male’, ’'23'):;

SELECT name, sex , age
FROM PERSON;

The first SQL statement defines a PERSON relation to have three attributes, name, sex and age.
The second SQL statement inserts a value into the PERSON relation and the third queries the
database about the values in the PERSON relation. As can be seen, SQL is both easy to understand
and use. In addition, it has been proposed as the ANSI industry standard for relational database
query languages. All of this helps to explain why it is fast becoming the most widely used query

language for relational DBMS (database management systems).

The relational model has been embraced by the database community but it still has some
shortcomings as is shown in section 1.2. Therefore, we propose to add several features to the
relational model that will enhance its reasoning capabilities. These features are described as
follows: the inheritance of attributes between related conceptual relations, e.g., a student is a
person and should also have all the attributes of a person. Secondly, the classification of
conceptual relations to represent the connection(s) that exist between the conceptual relations, e.g.,
a graduate student is a student who is in tum a person. We also add a default value assignment
relation that enables default values to be assigned to attribute values of conceptual relations and a
form of object orientation? where a procedure defined in a high level programming language can be

attached and invoked by a conceptual relation.

One extended relational model, RM/T (Relational Model Tasmania) {[CODD 79] has already

2Both information about an object and the procedures appropriate to an object are grouped together into a data
structure [GERYV 87].
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proposed a form of inheritance called generalization which is similar to what we want to provide
but RM/T has no classification. RM/T also does not have a query language and to allow access to
the features we have added, we present SQUIREL (Structured Query User Interfaced Relational
Extended Language). SQUIREL is an extension of SQL and is proposed as a language
specification for RM/T. |

In the rest of this chapter we present a description of the relational model, some research on
adding semantic information to databases, a more detailed description of the RM/T model and

finally, an overview of the layout of this thesis.

1.2. The Relational Model

Relations are sets of tuples each having the same attributes and can be represented as R(A,B,C)
where A, B and C all represent attributes. The attributes themselves are taken from a collection of
domains D1, D2,..., Dn (n > 0) that contain sets of values of similar type, €.g., all possible student

numbers for a given institution or all possible courses offered in a given semester.

The cartesian product denoted X {Di: i=1,2,..., n} is the set of all n-tuples <t1, t2,..., tn> such that
ti is an element of Di for all i <= n. The n-tuples in X represent all combinations of attributes taken
from the n domains, where t1 is taken from D1, 12 is taken from D2 and so on. A relation R is of
degree n (has n attributes) and is defined on these n domains if it is a subset of this cartesian

product.

A relational database is a time varying collection of tabular relations of assorted degree, all of
which can be accessed and updated. Base relations are relations that cannot be completely derived
from other relations whereas derived relations are relations which can be completely derived from
base relations. An important class of derived relations is the view. Views are 'windows’ to a
database, in the sense that the view represents an important subset of data derived from one or more
base relations. They are virtual relations that do not physically exist but are derived from the base

relations when a view is referenced in a query. An example of a view definition in SQL is:



CREATE VIEW REAL STUDENT (name, sex, age, studi, dept)
AS SELECT name, sex, age, stud#, dept
FROM PERSON P, STUDENT S
WHERE P.name = S.name;

This view has the attributes: name, sex, age, stud# and dept taken from the base relations person
and student. Once defined, a view can be queried as if it is a relation that physically exists in the
database. All the operations that can be applied to relations can also be applied to views. Views
have proven to be an important aspect of relational database systems and are advantageous in that
they:

1. allow the same data to be seen by different users in different ways (at the same time).

2. provide automatic security on data that exists in the relations but is not included in

the view.
3. provide some logical data independence3.

In what follows, we will use the terms view and v-entity type interchangeably.

Each relation has a set of candidate keys associated with it, which is a collection of attributes that

uniquely identify a tuple in R. One candidate key is selected as the primary key for each base
relation in the database.

-

All insertions, updates, and deletions of base relations are constrained by two rules.
1. Entity Integrity: The primary key value of a base relation cannot have a null
component. .
2. Referential Integrity: Suppose we have a compound (multi-attribute) primary key, K,
of a relation R. If A is an attribute of K then for all values v of A in K, v must occur

as a value of a simple primary key in some base relation.

Relations are sets, allowing the use of relational algebraic set operators like UNION,
INTERSECTION and SET DIFFERENCE to be applied to relations in databases. In fact there are
no structural links such as pointers between relations and all associations between relations are

represented solely by values. Thus, the relational model consists of:

3This means that we are able to change some aspects of the base relations without having to redefine the view.



1. A collection of time-varying tabular relations.
2. Insert-update-delete rules.
3. A set of relational algebraic set operators.
The reader is directed to [ULL 82] and [DATE 86] for a more thorough explanation of the

relational model.

One shortcoming of relational databases is that they fail to capture some aspects of meaning
which are attached to the data in a relation. For example, given the PERSON and STUDENT
relations above, two straight-forward questions which might be asked are:

1. If I have a STUDENT, is that STUDENT a PERSON?
2. If I have a PERSON who has a student number, is that PERSON a STUDENT?

Current relational databases are unable to answer the above questions even though the answers
are quite apparent to the user. The user has to fully interpret any given data and associate
meaningful concepts to it. We find that even though the relation names are PERSON and
STUDENT, the database is unable to associate the data to these cbncepts independently and the
user has to assign data to specific relations using his/her own ideas of who or what constitutes a
STUDENT or a PERSON. This activity of associating meaning to ‘data has been called semantic
data modeling [CADIOU 76] and a great number of database researchers have been looking into
this 'problem’.

This does not imply that relational databases provides no semantic information. Domains, the
names of keys and functional dependencies (non key attributes in a relation depend on the key
attribute/s) can all help to incorporate this type of information into relational databases. Still
database researchers have long seen the need to enhance database capabilities and much research
has been done to extend the relational model to contain additional semantic knowledge, while still

preserving the independence of implementation.



1.3. Database Research

Researchers in DBMS (database management systems) are concemed with handling large
databases efficiently. Although they desire to equip DBMSs with reasoning power, the
development of these facilities cannot be made at the expense of performance. Current databases
deal with voluminous data and are mostly disk-based. The data is needed continuously and must be

accurate. Therefore robustness and efficiency are of primary concern.

Some of the main research contributions to semantic data modeling are summarized below.
1. DATA ABSTRACTION [SMITH 77] is a process where certain details are
deliberately omitted, helping users to focus their attention on the relevant details.
Smith proposes two kinds of abstraction generalization and aggregation.
Generalization is an abstraction which tums a class of objects into a generic object,
e.g., TRUCKERS, ENGINEERS, SECRETARIES can be generalized under the
heading EMPLOYEES. Aggregation is an abstraction which turns a relationship
between objects into an aggregate object, e.g., aggregatihg the attributes (Name,
Room, Date) to form the relation RESERVATION. Both of these abstractions are
based on Codd’s relational schema [CODD 70]. Smith alsol introduces a new data
type generic, which is used to represent an abstraction of a class of objects (in most
applications this would be a relation). A generic type does not represent individuals
but instead represents a class of objects like TRUCKER. Using the generic types,
Smith introduces the concept of a generic hierarchy. The hierarchy when combined
with aggregates allows a rich variety of models to be defined.
Using these concepts, databases are able to provide information more concisely. The
concept of generalization, that is, where a trucker, doctor and engineer may be
generalized to be an employee and employees are looked upon as an aggregation of
name, sex and age (the common attributes of trucker, doctor and engineer) allow
databases to be more precisely defined.

2. A proposal for incorporating ADT (Abstract Data Types) and their rules as part of the



relational database model is discussed in [STON 85]. The author considers the use of
ADTs for individual columns/attributes of a relation. The relational model is
augmented with a system relation called ADT which stores all of the abstract data
types. Every entity in the ADT defines its own functions, procedures and type.
Possible extensions to this concept include allowing ADTs to inherit the properties of
other ADTs and also allowing ADTs to have niultiple arguments. For example, an
ADT might be TIME which could have vaiues like *1300 - 1400’ and might have
procedures to move it ahead by a specific amount of time. TIME could also allow
multiple arguments like ’dinner, 1500 - 1600’ which are needed to determine the
validity of an update. For example, the TIME ADT could use the arguments 'dinner,
1500 - 1600’ to check on an update which specifies that dinner is at 1800. This
update would then be rejected.

A rule system, RAISIN (Rules from AI specified for INGRES [STON 85]) is
proposed to combine the separate existing rule systems for integrity control,
protection and views into a single special purpose programming language. Its basic
structure is a sequence of ON-THEN clauses where the action clause is triggered

whenever the condition clause is true. An example is shown below:

ON <function> TO <relation>
UPDATE <relation2>;

Here the condition clause is ON <function> TO <relation> and the action clause is
the command UPDATE <relation2>. |

3. Logical query languages for databases [ULL 85]: Queries on databases are expressed
in a subset of first order logic, Horn clauses. The clauses and predicates are
transformed to a rule/goal graph representation. Queries on the database, which may
be recursive, are evaluated by a capture rule technique:. Ullman defines backward
chaining and forward chaining“through these rules. In addition, a sideways capture

rule that allows results to be passed from one goal to another is defined.

4Backward chaining refers to a top down, goal directed approach where a goal is broken up into smaller subgoals to be
solved, which in tumn are broken up into smaller subgoals and so on. Forward chaining refers to a bottom up approach
where solutions to simple problems are combined to obtain solutions to larger, more complex problems.



The captufe rules enable a first order logical language similar to
PROLOG [CLOCKSIN & MELLISH 82] to be used in a relational database
framework. An example would be, if we have a database relation EDS(E, D, S)
representing employees, their departments and salaries. We might wish to have a
"secure” version of the EDS relation where salaries of 100 000 or more are

represented as 0. This is expressed as:

SecureEDS (e,d,s8) :- EDS(e,d,s), s < 100 000
SecureEDS(e,d,0) :- EDS(e,d,s), s >= 100 000

Other database researchers, DQL [HAN 86], PROSQL [CHANG 86], have sought to combine
PROLOG with relational databases, so as to introduce the deductive power of logic into the
database system. The hopes of this research is to enable relational databases to capture more of the
semantics of the data. However as [BROD 86] points out, there are still many problems and open

issues in this area.

1.4. INTRODUCTION TO RM/T

RM/T, one of the major extensions of the relational model is of interest to us because it includes a
form of inheritance called generalization. RM/T uses the concept of entities to capture additional
semantic information in the database. An entity like a tuple in a relation, is a distinguishable object
of some particular type. An entity type represents a relation like STUDENT or PERSON and a
particular entity may have several types, €.g., John Smith may be a PERSON as well as a
STUDENT.

Entities and their types are classified as:

1. KERNEL: Kemel entities are entities which do not describe other entities. They have
an independent existence and are 'what the database is all about’. Typically students,
persons, employees or parts will be kernel entities.

2. CHARACTERISTIC: A characteristic entity describes other entities. They arise

because of multivalued dependencies and are existence-dependent® on the entities

3 A characteristic entity cannot exist without a kernal entity.



which they ‘describe. For example, a SCHOOL_HIST entity representing the list of
schools a student has attended is existent dependent on STUDENT entities.

3. ASSOCIATIVE: Associative entities interrelate two or more entities and represents a
many to many relationship among the entities. An ABLE-TO entity representing the
courses each instructor is able to teach is an association between courses and

instructors.

The E-relation and P-relation are the building blocks of SQUIREL and the constructs and

algorithms presented later in this thesis will refer to them extensively.

1.4.1. E-Relation

A unary relation called an E-relation is created for each entity type and its sole attribute is the
E-attribute which consists of the character '?’ preceded by the relation name, e.g., student.?. The
E-attribute is a unique system assigned surrogate for each tuple (the system assigns the E-
attribute). This éurrogate is a system assigned primary key and all references inside the system to

each entity is made via this value. An example of an E-relation is given in Fig 1-1.

-

STUDENT.?

Figure 1-1: STUDENT Entity Relation

1.4.2. P-relation

The immediate (single-valued) properties of an entity type are represented as attributes of one or
more P-relations. These relations contain the properties associated with the entity. The first
attribute of each P-relation is the system surrogate and its other attributes are the properties

attached to the entity in question. An examplé of a P-relation is given in Fig 1-2.

In order to indicate which P-relations represent attributes associated with which E-relation, the
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STUDENT.? | STUD# | DEPT | STATUS | GPA |STARTDATE

Figure 1-2:  STUDENT_INFO
relation names of the P and E relations are used in the P-G (property graph) relation. This is a
binary relation made up of tuples of the form (SUpr(m), SUP:e(n))® where p(m) is the name of a

P-relation and e(n) is the name of an E-relation. An example of a P-G relation is given in Fig 1-3.

STUDENT_INFO STUDENT

Figure 1-3: Property graph relation

1.4.3. Characteristic Graph relation

The characteristic entity types that provide a description of a given kemel entity type form a strict
hierarchy called the ’characteristic tree’. In this tree, entity type p is the parent of entity type q if q
is an immediate characteristic of p (not a characteristic of a characteristic, for an example see

below). Characteristic relations are binary relations which store the multiple values for each entity.

SCHOOL_HIST.? STUDENT.?

STUD_SCHOOL

Figure 1-4: STUDENT_SCHOOL Characteristic relation
In Fig 1-4, STUD_SCHOOL is the name of the characteristic relation and SCHOOL_HIST is a
characteristic entity type. The P-relation for SCHOOL_HIST will have attributes school_name,
startdate and enddate and will enable us to obtain information about the schools a student

previously attended. A student is assumed to have attended more than one school in his lifetime.

6SUB stands for SUBORDINATE and SUP stands for SUPERORDINATE.
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We could also have a PRINCIPAL_HISTORY entity type which represents the principals which
have presided over each school. This characteristic entity type can be looked upon as a
characteristic of a characteristic of a student because it is a characteristic of schools which in tumn is

a characteristic of students. SCHOOL_PRINCIPAL would represent the characteristic relation.

The C-G (Characteristic Graph) relations represents the collection of characteristic trees and are
binary relations of (SUB:e(m),SUP:e(n)) similar to the P—G relations. Here e(m) is a characteristic
relation and is immediately subordinate to e(n) where e(n) is the name of an E-relation. In the
above example STUD_SCHOOL would be subordinate to STUDENT and SCHOOL_PRINCIPAL
would be subordinate to SCHOOL. An example of a C-G relation is given in Fig 1-5.

STUD_SCHOOL STUDENT

Figure 1-5: Characteristic Graph Relation

1.4.4. Associative Graph Relation

The A-G (Associative Graph) relation is a binary relation (SUB:e(m), SUP:e(n)) following the
two previous graph relations and e(m) belongs to the A-G relation if it participates immediately in
the definition of associative entity type e(n). This relation is used to resolve ambiguity that might

arise if similar attributes of two different associative entity types were used in another entity type.

If we wanted to set up the course offerings for the semester we would need an INSTR, COURSE

pair indicating the instructor who is to teach a particular course.

7
WANT.? ABLE.? INSTR.? (COURSE.?|

WANT ABLE INSTR COURSE

Figure 1-6: Associative and Kemel Entity types
In Fig 1-6, WANT and ABLE are associative entity types. INSTR and COURSE are kemel entity
types.
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Suppose we are given two relations, defined as:
WANT_TO (INSTR, COURSE, FACULTY)

ABLE TO (INSTR, COURSE, FACULTY)

WANT_TO represents INSTRUCTORS and the COURSES they are able to and would like to
teach. This is a subset of ABLE_TO. ABLE_TO represents INSTRUCTORS and the COURSES
they can teach. An ambiguity arises because we don’t know where to obtain the INSTR, COURSE
pair for our COURSE_OFF (course offering) relation.

The COURSE_OFF relation is represented as follows:
COURSE_OFF (INSTR, COURSE, TIMEofCLASS)

If we define COURSE_OFF(INSTR, COURSE) to come from WANT_TO( INSTR, COURSE) we
will be able to resolve the ambiguity at the type level but not at the instance level. This is because

two instructors may want to teach the same course.

By the use of associative entities the ambiguity is resolved both at the type and instance level.
We have the relations WANT_TO, ABLE_TO and COURSE_OFF represented as:
WANT TO (WANT. ?, INSTR, COURSE, FACULTY)
ABLE_TO  (ABLE.?, INSTR, COURSE, FACULTY)

COURSE_OFF (COURSE.?, WANT.?, INSTR, COURSE, TIMEofCLASS)
The entity type COURSE_OFF uses the attribute WANT.?. This resolves ambiguity at the type
level because we know that the attributes INSTR, COURSE, FACULTY are to be taken from the
entity type WANT_TO. It also resolves ambiguity at the instance level because each WANT.?
refers to specific entities in WANT_TO. An example of an A-G relation is given in Fig 1-7.

SUB SUP

WANT_TO | COURSE_OFF

Figure 1-7:  Associative Graph Relation
This indicates that the tuples to be used in COURSE_OFF are to be taken from the WANT_TO

relation.
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1.4.5. Generalization

Genéralization is an important dimension for forming larger meaningful units. There are two
aspects to generalization and they are both forms of specialization. The first is set membership
where 'John Smith’ might be an instance of the STUDENT and PERSON entity types, this is taken
care of by the E-relations and the second is set inclusion where the STUDENT entity type is a
subset of the PERSON entity type. Generalization by inclusion is supported in RM/T by the UGI
(Unconditional Generalization Inclusion) graph relation. The graph shows entity types which are
subtypes of other entity types. In the UGI relation the property inheritance rule is applicable:
Given any subtype e, all of the properties of its parent type(s) are applicable to e. The graph is
represented by a binary relation (SUB:e(m), SUP:e(n)) where e(m) is an immediate subtype of e(n).
An example of an UGI graph is shown in Fig 1-8.

Employee(Emp, ID, Name, Birthdace)

Engincer(Emp, Deogree) Secretary(Emp, TypSpecd)) Tricker(Emp, Lic#)
Figure 1-8: An Employee Database
Here engineer, secretary and trucker are subtypes of employee and will inherit all attributes

associated with the employee entity type.

1.4.6. Rules

RM/T includes a set of integrity rules so that besides the entity and referential integrity rules of

the relational model, we also have:
1. Entity integrity in RM/T: E-relations accept insertions and deletions but not updates.
2. Property integrity: If a tuple t appears in a P-relations P then the surrogate of t must
appear in the E-relation corresponding to P.
3. Characteristic integrity: A characteristic entity cannot exist unless the entity it
describes exist in the database.
4. Association integrity: An associative entity cannot exist unless each entity

participating in the association exists in the database.
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5. Designation integrity: A designative entity cannot exist in the database unless the
entity it designates is also in the database. Designations represents a many to one
relationship between entities. For example, an employee will designate some
corresponding department entity.

6. Subtype integrity: If a surrogate appears in the E-relation E, then it will also appear in

all E-relations of which E is a subtype.

1.4.7. Operators

RM/T also includes a set of operators to manipulate the entities. An example of an RM/T operator
is PROPERTY whose effect is to gather all the properties of a specified entity type regardless of
how many properties there are, how they are grouped as P-relations and of the naming conventions

used for these P-relations.

1.4.8. Other features of RM/T

RM/T also supports event precedence, aggregation and an AGI (Alternative Generalization
Inclusion) graph relation. It also has a system CATALOG which provides information about
relation names, attributes, and domain names. More details of these can be found in [CODD 791.
We see that with RM/T, Codd has attempted to deal with many of the issues in database research
concemning semantic data modeling. With RM/T, he has presented a set of objects, a set of rules

and a set of operators. However as Date has said

"...a substantial amount of definitional work must be done before they (the operators) are in any
final form..."

Hence, these operators as currently defined are only preliminary. The design of SQUIREL is also
an effort to provide a language specification for RM/T’s generalization hierarchy and one aspect of

SQUIREL is to define operators for the UGI hierarchy in some detail.
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1.5. Objective

We set out to design SQUIREL using a relational model as a starting point, it was then decided
that RM/T be taken as the basis for SQUIREL because it addresses many of the issues dealing with

semantics in databases.

The approach taken in the design of SQUIREL is from a database perspective. We are interested
in practicality, efficiency and robustness. An important point to note is that we are looking at
enhancing SQL, not at revolutionizing it. It is felt that only the minimum number of new constructs
should be added. Another important consideration is that what is currently available in SQL should

be kept and made as compatible as possible with any enhancements.

The primary purpose of our effort is to provide new higher level constructs for database
programmers, to facilitate easier access to data. Since most database users are already familiar
with SQL, we have decided to design our extension to have an SQL-like interface to decrease the
learning curve for SQUIREL. From the research point of view, enhancing an existing language
will allow the design to focus on new additional concepts without having to worry about issues that

have already been dealt with.

1.6. Thesis Organization

In this chapter, we briefly introduced the relational model, some current database research , RM/T
and the objective of this research. The rest of this thesis is organized as follows. Chapter 2
presents the features of SQUIREL. Chapter 3 describes how to use SQUIREL constructs. Chapter 4
gives details about how SQUIREL could be implemented. Chapter 5 compares SQUIREL with two
prominent Al systems. Chapter 6 provides a conclusion. Appendix A provides a detailed
description of how the constructs in SQUIREL are used. Appendix B provides details about the
algorithms of these constructs and appendix C gives the pseudo code for a procedure used by
SQUIREL.



Chapter 2
FEATURES OF SQUIREL

SQUIREL an extension to SQL, incorporates a hierarchical structure which leads to several new
features. These features facilitate the development of more reasoning and inferencing in SQUIREL.
Since efficiency in access is a primary concem, we shall also consider how these features can be

implemented efficiently.

Normal relational operators as well as RM/T primitive operators have been included in
SQUIREL. SQUIREL uses RM/T relations to store all its information and base relations are stored
as P-relations (property relations) while meta-data information is captured by SQUIREL's
hierarchical structure. |

An overview of the hierarchical concept as it applies to both traditional databases and SQUIREL

-

is presented before SQURIEL’s features are discussed.

2.1. Traditional Database’s Hierarchical Concept

Traditionally, the hierarchical model defines physical access paths for linking records together
(those records that tend to be accessed together in an application are linked). It consists of an

ordered set consisting of multiple occurrences of a single type of tree [DATE 86].

The tree type is made up of a single root record type and an ordered set of zero or more dependent
subtree types. The subtree types are also made up of a single root record type and an ordered set of
zero or more dependent subtree types. An example of this structure is given in Fig 2-1. Here each
department has a department number, the number of employees and a set of employees working in

that department.

16
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DEPT
I Dept# Hofemp I

EMP
lEMP‘ erme Yem_of_Serviuil

Figure 2-1: A Department hierarchy

Fig 2-1 is an example of a single type of tree’ since there is only one department which has many
employees. The hierarchy would have multiple occurrences of a single type of tree, if there were
many depértments stored in the database having many employees. There is no semantic
information like the names of subclasses stored in the hierarchy. It only provides physical access to
an ordered set of records and allows the user to be in a ’get next record’ type of situation. In any
given application a collection of records are linked together and the user is able to easily access the

next record in that application.

2.2. SQUIREL’s Hierarchical Concept

The hierarchical structure in SQUIREL allows information to be shared by different record types7
allowing attributes to be inherited from a common parent record type. To accomplish this, each
child record type inherits a unique set of parent attribute values. This is unlike the traditional
hierarchical model where many child record type occurrences® share one parent record type
occurrence. There is a one-to-one correspondence of parent to child record type occurrences in
SQUIREL as opposed to the one-to-many correspondence of parent to child record type

occurrences in the hierarchical structure of traditional database theory.

The hierarchy in SQUIREL uses views as its components and allows semantic information to be
stored in the views. Inheritance, classification and simple default assignments are also supported in

the hierarchy.

"Here different record types refer to different view definitions, i.e., different view schemas.

8Record type occurrence refers to an entity or tuple in a relation.
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Reasoning about the meaning of data or the concepts associated with a specific collection of data
is not dealt with in most relational database systems. For example, given (John Smith, Male , 25),
traditional hierarchies cannot answer the question "Is John Smith a Person?", since they contain
only pointers, no semantic information. However, SQUIREL can handle this type of query by
grouping a collection of views into a hierarchy where .these views represent concepts like person or
student. The hierarchy then represents a higher level structure which enables us to reason about
these concepis. As will be evident in the examples to be presented, these hierarchies are very
specialized. Each one is used to answer specific types of queries, €.g., about fees a student has to
pay or about courses a student is able to preregister for. Therefore these hierarchies are developed

based on the DBA’s (database administrator) perception of the use of the database.

2.2.1. Objective of Hierarchies

There are several objectives to incorporating a hierarchy into SQUIREL. Firstly, the hierarchy
enables us to support the property inheritance rule [CODD 79]: Given any subtype e, all of its
parent type(s) are applicable to e. This simply means that when one entity type subsumes another,

the attributes of the former will be automatically inherited by the latter.

Secondly, the hierarchy is a structure which avoids null values of certain types. Null values can

arise because of:

1. entity types have attributes which do not apply to all entities.

2. when creating entities the user may miss some attributes. -
Both of these situations should be avoided as they make management of the database more
difficult. The hierarchy leads to the elimination of null values in the first case because at each level
in the hierarchy only attributes which apply to the entity type will be represented. Thus we will not
get a situation where some attributes apply to some entities but not to other entities for the same
entity type. With the hierarchy, normalization of entity types is encouraged and connections
between entity types are implicitly represented in the hierarchy. The hierarchy also provides a
structure for the user to formally manage views because a collection of views can be accessed as

one structure, the hierarchy.



19

The features of SQUIREL's hierarchy are introduced in general terms and the details of the
hierarchy will be discussed in section 2.8. The use and an implementation plan of SQUIREL'’s

constructs which use these features is discussed in chapters 3 and 4.

2.3. Inheritance

The idea of inheritance has already been established in databases [SMITH 77] and artificial
intelligence [BRAC 79] and there are many knowledge representation systems and languages
which deal with this idea. Unfortunately the terminology of inheritance can be confusing and terms

such as "subtype", "subclass", "specialization" and "is-a" have been used to imply an ordering -
among concepts like PERSON and EMPLLOYEE.

In SQUIREL we implement a hierarchy to incorporate inheritance. The hierarchy is a
generalization hierarchy where the higher level components are generalizations of the lower level
components, €.g., both student and employees can be generalized to be persons. In the Memrchy ail
attributes of the parent are inherited by its children. If the person concept had the attributes sex and
age then these attributes would be inherited by the student and employee concepts.

2.4. Classification

Classification in rule based systems has been thought of as a subtype of analysis problems and
includes for instance situation assessment, troubleshooting and fault isolation [BROWNSTON 86].
It is well known that there are many systems which solve classiﬁcatory problems like diagnosing
medical diseases, MYCIN [BUCHANAN & SHORTLIFFE 84] or locating cable problems in
telephone networks, ACE [VESONDER 83]. From these systems we see that the ability to classify

is indeed a worthy feature to have.

SQUIREL is able to perform some form of inferencing like determining where a newly created
v-entity type or entity is to be positioned in a given hierarchy. For v-entity types, this arises when a
v-entity type is defined and inserted into a hierarchy. In SQUIREL two classification algorithms

(classifiers) facilitate this automatic inferencing.
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In order for the user to use the classification algorithms he/she would first define appropriate
v-entity types and insert them into hierarchies. The classifier will then automatically determine the

structure of the hierarchy by classifying the v-entity types entered into parent and child v-entity
types.

In SQUIREL classification is used in two ways:
1. Classifying v-entity types to determine its position in a hierarchy (a general class-
subclass classifier).
2. Classifying entities to determine which v-entity types are being represented (a more

limited class-instance classifier).

The classifier is invoked on v-entity types entered into each hierarchy. It finds other subsuming or
subsumed v-entity types and automatically places the newly entered v-entity types at their proper

position in a specified hierarchy.

The advantages of having a classifier are :
1. The user is relieved of having to know the explicit structure of the hierarchy though
he/she still has to know which hierarchy he/she is addressing. -
2. Provides a means of enforcing consistency of attributes (user will not enter data into
the wrong entity types).
3. Can provide a basis for generalized search. When attribute values are needed, the

classifier can determine the entity types where these attributes are found.

24.1. PlayBack

Associated with the classifier is a playback facility which can be used to follow the path of the
classifying algorithm. This facility is useful to the user in cases when he/she requires the logical
inferences made by the classifier. This will allow the user to visualize the reasoning done by

SQUIREL’s classifier and can help in his/her understanding of the problem at hand.
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2.5. Default Assignments in SQUIREL

Default reasoning has been well studied in Al [REITER 78a, REITER 80]. In SQUIREL we
adopt Reiter’s meaning of a default in that "If certain information cannot be deduced from the
given knowledge base, then conclude...” [REITER 78b]. Defaults correspond to the assignment of
values to attributes of individual entities in the absence of information to the contrary of this
assignment. Thus SQUIREL'’s defaults are similar to those of some knowledge representation
scheme like KRL [BOBROW 77] and KEE [FIKE 85] which also explicitly provide for the

assignment of default values to variables.

Default values add more reasoning power to closed world databases®. It allows SQUIREL to
automatically assign values to attributes if no values are given by the user. Instead of not being able
to conclude anything in the absence of information, SQUIREL will use meaningful default values
set by the user. For example, defaulting a STUDENT’s department attribute to GENERAL when
he/she first enters university and has not decided on a department is a situation where default
assignments would be practical. ‘D'efaulting values is an optional feature and the us;ar is not
compelled to specify default values for all entity type attributes. In fact there are many cases where

defaults would be inappropriate. For example, having a default for the sex of a STUDENT.

An important property of default values is that they cannot be specified for key attributes. This
follows from the concept of relational databases where the assignment of default values to key

attributes would violate the functional dependency requirement of keys in relations.

The advantage of defaults comes to light when entities are entered into the database. With the
addition of default values, the user is able to insert an entity into a hierarchy without specifying all

of its relevant attribute values.

%These are databases where the absence of information implies that the information is false.
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2.6. Management of Views

Current relational database systems only manage views to the extent that the attributes and the
entity types from which the views are derived are stored in system tables. The only use of views at

present is to form a single customized table from which to retrieve data.

In SQUIREL, views are the basic components of the hierarchy and will lead to v-entity types
being linked to each other. We will be using multiple v-entity types to form hierarchies which will
lead to the further abstraction of the available data. The user will look at several v-entity types as

one conceptual structure, the hierarchy.

2.7. Procedure Invocation

Our design philosophy is to extend SQL to incorporate new features which are simple and concise
and also still be compatible with what can be currently done. We realize that SQUIREL could be
significantly enhanced if rules were provided but still feel that SQUIREL should not contain a rule
base. Adding a full fledged rulé base to SQUIREL will not only be costly but involve a substantial
effort on ﬁsexs to learn new rule constructs. Users typically work with only a small subset of
available features and it is felt that the great amount of leaming required to effectively use rules in
a rule base would deter most users from ever using it. As will be evident from later chapters
SQUIREL'’s hierarchical structure already provides some basic functions normally defined using

rules in a system like KEE.

In addition, most SQL systems already allow an interface to a high level programming language
like PL/1, PASCAL or C. If procedures are needed in SQUIREL, this interface will be used and the
procedures will be written in a high level programming language. In Al systems/languages with a
rule base, a basic necessity is to have a mechanism which will cause the rules to fire. KEE uses a
triggering mechanism called active values to invoke rules. OPS5 [FORGY 81] needs a start or

initialize procedure to invoke rules and PROLOG needs to instantiate a predicate to trigger rules.

We see that in any rule based system some form of control to invoke rules is essential. SQUIREL
provides just such a construct called TRIGGER. This new construct can be attached to any
operation on entity types, i.e., SELECT, UPDATE, DELETE, INSERT and other operations.
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2.8. SQUIREL’s hierarchy

We will now go on to a more detailed description of SQUIREL’s hierarchy.

2.8.1. Description of Hierarchy

SQUIREL'’s hierarchy is an extension of the powerful view mechanism currently available in
relational database systems in that it is a hierarchy of views, i.e., all components in the hierarchy
are implemented as views. We develop a model for hierarchies based on RM/T’s UGI hierarchies
[CODD 79].

A hierarchy in SQUIREL is a collection of v-entity types linked together in a structure which
represents the users’ perception of how the v-entity types subsume or are subsumed by each other.
The hierarchy provides us with the ability to perform updates, insertions, and deletions of entities

without having to know the v-entity types in which these entities are stored.

Using a hierarchical structure, views can be easily managed. Connections between views are
made explicit and we now have a mechanism by which we can use views other than for retrieving

entities.

2.8.2. Categories and Partitions

Two important attributes which arise because of the hierarchical structure are category and
partition. Both of these provide information about the structure of the hierarchy, that is, subsumed
or subsuming v-entity types. The category is an attribute attached to each hierarchy and its values
are all the v-entity types in the hierarchy. It is used when a hierarchy is referenced in a query. The
partition is an attribute attached to each v-entity type (A) in a hierarchy and its values are the
v-entity types that A subsumes. It is used when a specific v-entity type is referenced in a query.
We are thus representing meta-knowledge!? about v-entity types and entities. Instead of only
getting information about attribute values, information about subsumed v-entity types or the v-

entity type where an entity is found can be accessed.

10Meta-level knowledge generally consists of creating one or more layers of knowledge above the rule base
[HARANDI 86] but in our case we are building a layer of knowledge above the database,
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The category représents the heading to be used for all v-entity types in a hierarchy. Similarly
partition represents a heading to be used for the subsumed v-entity types of a particular v-entity

type in a specific hierarchy.

2.8.3. Properties of the Hierarchy

Some of the properties which are applicable to hierarchies are that child v-entity types in a
hierarchy must have more attributes than its parent v-entity types. In this way, attributes which

apply to all v-entity types are attached to the top level v-entity type.

We do not allow another hierarchy relation name to be entered as a v-entity type of a hierarchy.
Therefore, we cannot define a hierarchy of hierarchies. Another property is that the same v-entity
type can participate in multiple hierarchies. This means that a student v-entity type could be in a
university personnel hierarchy as well as an employment hierarchy. Since v-entity types may
participate in more than one hierarchy, for each hierarchy a v-entity type participates in, a different
partition name is required. Note that the same partition name can be used among different v-entity
types in the same hierarchy. This means that if the STUDENT v-entity type had the partition name
of STATUS in the university personnel hierarchy, the NONSTUDENT v-entity type in the same
university personnel hierarchy could also have the partition name of STATUS.

Another property is that hierarchy names must be unique in the database. This allows the same
category name to be used for different hierarchies. This implies that two hierarchies can have the
same category name and the university personnel and employment hierarchy might have the

category name of TYPE.

A final property of hierarchies is that only unique subsumption links are stored in a hierarchy
relation that is if the tuple (A, B) and (B, C) are in the hierarchy relation then tuple (A, C) will not
be. It can be implicitly derived by transitivity. Here A, B and C are v-entity type names.



Chapter 3
SQUIREL CONSTRUCTS AND THEIR USE

We will base most of our examples about the use of constructs on the PERSONNEL hierarchy

/MK
STUD! A NONSTUDENT.V

UGRAD.V GRAD.V INSTRUCTOR.V ADMIN.V

shown in Fig 3-1.

Figure 3-1: Personnel UGI hierarchy

The base entity types!! and their attributes (stored in P-relations) are:

PERSON (PERSON. ?, SIN#, NAME, SEX, AGE)
STUDENT (PERSON. ?, STUD#, DEPT, GPA, STARTDATE)
NONSTUDENT (PERSON. ?, OFFICE, QUALIFICATION)
GRAD (PERSON. ?, LAST DEGREE)

UGRAD (PERSON. ?, MAJOR)

INSTRUCTOR (PERSON. ?, CURR_WORK)

ADMIN . (PERSON. ?, JOBTITLE)

All the v-entity types in the PERSONNEL hierarchy shown in Fig 3-1 are defined using the
above base entity types. An example of a definition of an entit)} type and a v-entity type follows:

UBase entity types are base relations used to form v-entity types.
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CREATE TABLE PERSON( SIN# NUMBER(9), NAME CHAR (20),
SEX CHAR (6), AGE NUMBER(3));

CREATE TABLE STUDENT (STUD# NUMBER(9), DEPT CHAR(20),
GPA NUMBER(3,2), STARTDATE DATE);

CREATE TABLE GRAD (LAST_DEGREE' CHAR(10)):;

CREATE VIEW GRAD.V

AS SELECT SIN# ,NAME, SEX,AGE, STUD{#,DEPT,
GPA , STARTDATE, LAST DEGREE
FROM PERSON, STUDENT, GRAD ;

The first command creates a base entity type person which has the attributes sin#, name, sex and
age. The second and third commands create the base entity types student and grad. Recall that
RM/T provides a surrogate for all base entity types that is why grad can be defined without a user
given key. The last command defines a v-entity type GRAD.V to have attributes sin#, name, sex,
age, dept, g.p.a, startdate and last_degree. GRAD.V is derived from the base entity types PERSON,
STUDENT and GRAD.

The database will consists of many base entity types storing unique attributes. The user with the
aid of the hierarchical structure will create windows’ of the database specialized to suit his/her
purposes. Without the hierarchical structure the user would los:a the ability to store meta-
knowledge, that is information about the hierarchy structure. In other words, the user is unable to
access information about the subsumed or subsuming v-entity types in a hierarchy. However, using
the PERSONNEL hierarchy we can obtain information abput the structure of the hierarchy using

the following query:

SELECT PERSONNEL.CATEGORY
FROM PERSONNEL.HIERARCHY;

This will return PERSON.V, NONSTUDENT.V, STUDENT.V, UGRAD.V, GRAD.V,
INSTRUCTOR.V and ADMIN.V which are the names of all the v-entity types in the personnel
hierarchy.

To obtain information about the INSTRUCTOR ’'Mike Cray’, we could make the following
query:
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SELECT * FROM PERSONNEL.HIERARCHY
WHERE Name = 'Mike Cray’:

Assuming Mike Cray is a graduate student, this query would return (765900453, Mike Cray, Male,
34, 854903211, Mathematics, 4.00, 090584, Bsc) which indicates the sin#, name, sex, age, stud#,
department, g.p.a, start date and last degree of Mike Cray. Note that we do not have to know where
Mike Cray lies in the hierarchy. The hierarchy will automatically search for the appropriate v-
entity type which contains Mike Cray and retum the required information.

3.1. Base entity types/v-entity types

We have defined the generalization hierarchy slightly differently from RM/T and use v-entity
types instead of entity types as components in the hierarchy because this facilitates a simple,
concise way in which hierarchies can be implemented. To distinguish v-entity types from entity

types, the name of a v-entity type will have a .V suffix.

When an entity type is created, a unique E-relation (storing the system surrogate) is assigned to
that eﬁtity type. "The WHERE clause in SQUIREL is a condition clause and can be either used to
specify an integrity constraint like AGE < 25 or used to join two or more entity types by directing
the system to match attributes of these entity. types, e.g, WHERE
PERSON.NAME=EMPLOYEE.NAME. When a v-entity type is created either without the
WHERE clause, as shown in the example on page 26, or if the WHERE clause references the key
attributes of two or more entity types, then SQUIREL will intemally equate the E-relations of these
base entity types. This occurs when the v-entity types are entered into a hierarchy. In the above
example, all E-relations of the different entity types are set to be the PERSON E-relation. That is,
the system surrogate for each of the entity types defined above will be the E-attribute, PERSON.?.
Appendix A.13 provides an algorithm to coalesce E-relations.

The v-entity type used in SQUIREL encompasses all the concepts of the view in relational

database systems and also includes:
¢ The storage of the names of subclasses.
e Use of defaults values.
e Use of two different classification algorithms. A general class-subclass as well as a

_class-instance classifier.
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3.2. Hierarchy Constructs

There are two levels in the hierarchical structure of SQUIREL: the TYPE level and the
INSTANCE level. The TYPE level deals with the concept of class and subclass!2. The
INSTANCE level deals with the concept of class and instances.

The following is a brief description of the constructs that have been added to SQUIREL which
are used specifically to manipulate the TYPE level of the hierarchical structure. At this level the
v-entity types are the important concepts and creating or removing a hierarchy, inserting, updating,
deleting and retrieving v-entity types from a hierarchy are the major constructs presented.
Appendix A provides a more detailed explanation of each of these constructs while the algorithms
for these constructs and for the two types of classification are given in appendix B. In the following
examples, user defined variables are denoted by lower case while the constructs are denoted by

upper case.

3.2.1. CREATION

The following is an example of creating a hierarchy using the SQUIREL CREATE construct:

CREATE HIERARCHY personnel
CATEGORY = university personnel;

-

In this example, a hierarchy relation named PERSONNEL is created. Every hierarchical relation
will have two system assigned attributes: SUB (subordinate) and SUP (superordinate) which are
used to record all the v-entity types that participate in the hierarchy. The CATEGORY attribute is
an alias for the SUB attribute so that in the above example, university_personnel can be used
whenever the keyword SUB is required. The categorization refers to v-entity types and indicates’

the general theme, idea or type of structural breakdown of the hierarchy.

12Classes are represented by v-entity types while instances are represented by entities.
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3.2.2. INSERTION

To insert into the hierarchy we would use the SQUIREL INSERT construct:
INSERT INTO personnel.hierarchy

V-ENTITY = person.v, PAR = status,
V~-ENTITY = student.v, PAR = level,
V-ENTITY = nonstudent.v, PAR = type,
V-ENTITY = grad.v,

V-ENTITY = ugrad.v,

V-ENTITY = instructor.v,

V~-ENTITY = admin.v;

The v-entity types. specified are entered into the personnel hierarchy and the type level classifier
will determine which v-entity types subsume which other v-entity types and thus determine the
structure of the hierarchy. In our example, the PERSONNEL hierarchy will be formed as shown in
Fig 3-1.

The PAR (partition) attribute is a system assigned attribute which stores the subsumed v-entity
types of a given v-entity type. The v-entity types which have PAR specified will use the user given
names to reference their subsumed v-entity types while the v-entity types without a usér given
partition name will use a default name of <hierarchy>.l_>ARTITION. In the above example, four
v-entity types (GRAD.V, UGRAD.V, INSTRUCTOR.V, ADMIN.V) will use the default partition
name (PERSONNEL.PARTITION). Using the same partition name for v-entity types will not lead
to problems when retrievals are required because in each of the v-entity types the partition name is

unique.

3.2.3. UPDATES

To update a v-entity type in a hierarchy we use the SQUIREL UPDATE construct:

UPDATE personnel.hierarchy
SET PAR = "occupation",
WHERE V-ENTITY = nonstudent.v;

The partition attribute for NONSTUDENT.V is changed to occupation and all references to
NONSTUDENT.V’s subsumed v-entity types will now be through the attribute occupation. This is
the only update operation that is allowed on the hierarchy because altering the structure of the
hierarchy can only be done by the type level classifier.
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3.2.4. DELETION |

To delete a v-entity type from a hierarchy we use the SQUIREL DELETE construct:

DELETE FROM personnel.hierarchy
WHERE V-ENTITY = grad.v;

The GRAD.V v-entity type will be removed from‘the personnel hierarchy and the type level
classifier will be invoked to restructure the hierarchy due to the deletion of a v-entity type. In our
example, the link from STUDENT.V to GRAD.V will be removed because GRAD.V is a leaf
v-entity type whose parent v-entity type is GRAD.V.

3.2.5.DROP

To remove a hierarchy from the databases we use the SQUIREL DROP construct:
DROP HIERARCHY personnel.hierarchy;

The personnel hierarchy relation is removed and will no longer exist in the database though the

v-entity types that formed the hierarchy are still in existence.

3.2.6. RETRIEVAL

»~

To retrieve information about the structure of v-entity types in a hierarchy we use the SQUIREL

SELECT construct:
SELECT university personnel FROM personnel.hierarchy;

This query will return all the v-entity types that form the hierarchy. In our example, PERSON.V,
STUDENT.V, NONSTUDENT.V, INSTRUCTOR.V, ADMIN.V, GRAD.V and UGRAD.V will

be returned.

We will also be able to query individual v-entity types about the v-entity types that it subsumes.
Given that the PERSON.V v-entity type has been given the partition name STATUS on page 29,

the following SQUIREL command is used to query PERSON.V:
SELECT status FROM person.v

This will return STUDENT.V and NONSTUDENT.V which are the two v-entity types that
PERSON.V immediately subsumes.

The database administrator is the one who most likely sets up the structure of the hierarchy while
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the database user is the one who uses the hierarchy by entering entities at the instance level. We
will now briefly describe SQUIREL constructs which are used at the INSTANCE level. At this
level the important concepts are the individual entity in a hierarchy and insertion, deletion, updates

and retrieval of entities from a hierarchy are the major constructs presented.

3.2.7. INSERTION

To insert entities into the hierarchy we have to specify the key attribute!? of the entity and then

use the SQUIREL INSERT construct:

INSERT INTO personnel.hierarchy
VALUES ( Name=' John Smith’, Office = LB 1214');

The instance level classifier is invoked to determine the v-entity type which contains the entity in
question. In the above example, this would be NONSTUDENT.V. The entity represented by John
Smith is then inserted into the base entity types of NONSTUDENT.V which are PERSON and
NONSTUDENT. Since the NONSTUDENT.V v-entity type has the attributes name, sex, age,
office and qualifications, the attribute values not specified for John Smith will be assigned as

unknown or have default values if they are specified.

A new person has been created and this person will participate in all the hierarchies that the
v-entity type PERSON.V participates in, for instance if PERSON.V is also found in the
employment hierarchy then John Smith will also be found in the employment hierarchy.

3.2.8. DELETION

To delete an entity from a hierarchy we would use the SQUIREL DELETE construct:

DELETE FROM personnel.hierarchy
WHERE ©Name = ’‘John Smith’;

The instance level classifier is used to determine the v-entity types where John Smith is found. In
our example, if John Smith is in the ADMIN.V v-entity type and is represented by the following

entity: .
(John Smith, Male, 25, LB1211, PostSecondary, Accountant)

13Key attributes are attributes which have been indexed using the INDEXED command of SQUIREL and in our
example we assume the attribute Name has been indexed.
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which tells us that John Smith is male, 25 years old, has his office at LB1211, has a post secondary
qualification and is an accountant. John Smith will then be removed from the base entity types of
ADMIN.V, namely the PERSON, NONSTUDENT and ADMIN base entity types.

3.2.9. UPDATES

To update an entity in a hierarchy, the attributes to be updated as well as the key attribute which

references this entity must be given. The SQUIREL UPDATE construct accomplishes this task:

UPDATE personnel.hierarchy
SET jobtitle = "librarian”,
WHERE Name = "John Smith’:;

The instance level classifier determines the v-entity type that contains John Smith and has the
attributes to be updated. In our example, this would be the ADMIN.V v-entity type because
ADMIN.V is the only v-entity type that has the attribute job title. The base entity type of
ADMIN.V that contains the attribute to be updated is then changed and the job title of John Smith
will be changed to librarian from accountant. By using more SETs, e.g., SET Dept = mathematics,

in the update command, any number of relevant attributes can be changed.

3.2.10. RETRIEVAL

-

To retrieve information about the entities in a hierarchy the SQUIREL SELECT constructs are

used:

SELECT university personnel FROM personnel.hierarchy
WHERE Name = "John Smith’:;

SELECT * FROM personnel.hierarchy
WHERE Name = ’'John Smith’;

SELECT status FROM person.v
WHERE Name = "John Smith’;

For the first query, all the v-entity types in the personnel hierarchy where John Smith can be found
are returned and these would be PERSON.V, NONSTUDENT.V and ADMIN.V. For the second
query, the * indicates that all attributes are required and the attribute values associated with John

Smith are retrieved which might be the following:
(John Smith, Male, 25, LB1211, PostSecondary, Accountant)

This represents the name, sex, age, office, qualification and job title of John Smith. In the third
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query, only the v-entity type directly below PERSON.V where John Smith can be found is returned
and this would be NONSTUDENT.V.

One point of interest is that for every construct used at the instance level, the user is relieved of
the need to know in which v-entity types an entity can be found. This is because the instance level
classifier is invoked for all instance level queries and will determine the needed v-entity types

required in each given query. The user is only required to query the hierarchy using key attributes.

3.3. Procedure Invocation

When procedures are written for entity types, the TRIGGER construct can be attached to any of
the above constructs. <procedures> will then be invoked when operations (SELECT, DROP etc.)
are performed on the entity types. There are three ways in which the TRIGGER construct can be

used and they are described in turn.

The first way TRIGGER is used will be in conjunction with an SQL operation as in:
<SQL operation> TRIGGER <procedure>

An example is shown below:

UPDATE personnel.hierarchy

SET PAR = "occupation"
WHERE V-ENTITY = nonstudent.v;
TRIGGER playback;

<SQL operation> : any allowable SQUIREL operation

<procedure> : must be the name of a program defined in a high level programming language
interfaced with SQUIREL, which contains rules to be invoked.

In this example, when the update is performed on NONSTUDENT.V, the playback procedure

(explained in the next section) is invoked.

Alternatively the procedure can be attached to an entity type directly in the CREATE command.
This will cause the program to be invoked whenever the entity type is referenced. The advantage of
this method for invoking procedures is that it is more practical if procedures are to be invoked

frequently or if procedures are to be invoked on all operations to a particular entity type.
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The form of TRIGGER here would be:
CREATE TABLE <entity type>

TRIGGER <procedure>;

An example is shown below:

CREATE TABLE person (name char(l2), sex char(l2), age numeric)
TRIGGER playback;

Here any time an access or reference (indirectly or directly) is made to the PERSON base entity
type, the PLAYBACK procedure is invoked. Therefore, if we had referenced PERSON directly as
in:

INSERT INTO person
VALUES (' John Smith’, 'Male’, ’'25');

or if we had referenced PERSON indirectly as in:

INSERT INTO personnel.hierarchy
VALUES ( Name=’John Smith’, Office=’/LB1211’);

the PLAYBACK procedure will be invoked.

Thirdly the TRIGGER mechanism could be used in the same way as a call or invoke in a high
level programming language. In this case, all the user is required to do is to TRIGGER a specified
procedure as shown below:

TRIGGER playback;
Here the PLAYBACK procedure is invoked directly similar to a call in a high level programming
language. '

Whenever TRIGGER is used, the <procedure> called may be given arguments and these
arguments are inserted into a special system entity type called <procedure>.ARG. There will be
one of these entity types for each procedure defined in SQUIREL. These entity types are
automatically created when a procedure is attached to a base entity type. The user can define the

type of arguments a procedure is to have by using the SETARG construct as shown below:

SETARG callme.ARG
argl CHAR(20), arg2 CHAR(20), arg3 NUMBER;
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In the above example, callme is a procedure and its first and second arguments are of type
character 20 while its third argument is a numeric value. Further details of SETARG are provided
in appendix A.12.

An example of specifying argument values for a <procedure> and invoking it follows:
INSERT INTO callme.ARG

VALUES (' John Smith’, ’'Male’, '25’);

TRIGGER callme;
In the above, callme will be able to use the three arguments John Smith, male and 25 stored in
callme.ARG. ‘

SQUIREL provides a triggering mechanism not currently available in SQL which enables

procedures written in a high level language to be invoked from within the SQL environment.

3.3.1. PlayBack procedure

A special system procedure PLAYBACK is encoded into SQUIREL. It uses the hierarchy
relation to construct the path that the classification algorithm uses. Given a hierarchy and a v-entity
type, a specific path will always be produced. This is because in any given hierarchy each v-entity

type will only have one parent. For an example of a hierarchy relation see Fig 4-1.

As seen in the previous examples, the PLAYBACK procedure can be invoked in several ways
and whenever it is invoked the path (sequence of the classification) of the currently referenced
v-entity type in the currently referenced hierarchy is given. PLAYBACK requires two arguments,
the name of the hierarchy being checked and the v-entity type whose path is required.

3.4. Use of Default Assignments

In SQUIREL, all entity inserts into a hierarchy must have corresponding attributes named in the
command and must include the key attribute. With the addition of defaults those attributes which

are not explicitly given will have default values.

Defaults are optional and the user does not have to provide defaults for all attributes. The user is

also not allowed to specify defaults for any of the key attributes (indexed attributes).
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The user will enter defaults as follows:

INSERT INTO <entity type>.default
<attribute> = <value>;

An example of this is shown below:

INSERT INTO student.default
DEPT = '"general”;

Here the default value for the department attribute of the student entity type is set to be general. If
the user inserts entities into the personnel hierarchy where the entities are students and if he/she
does not specify the student’s department attribute then the student’s department attribute will be
set to be general. The student entity type has several more attributes, Sex, Age, G.P.A and
Startdate, which will not have default values because default values were not specified for the
student.default entity type. The user can also override previous defaults by repeating the above

command and inserting new values into the default entity type as in:

INSERT INTO student.default
DEPT = "mathematics":

Given the PERSONNEL.HIERARCHY in Fig 3-1 each v-entity type will inherit the default
values assigned to the attributes of its base entity types. Assume we have the STUDENT default

relation as above and enter a new entity into the PERSONNEL hierarchy.

INSERT INTO PERSONNEL.HIERARCHY
VALUES (name='John Smith’, Sin#='865749',last_degree='Bsc’);

Recall that GRAD.V has the attributes Name, Sin#, Stud#, Dept, Last_degree, Sex, G.P.A and
Startdate. Using the instance level classifier, we find that the newly entered entity will be in
GRAD.V. The v-entity GRAD.V will have "GENERAL" as its default value for department
(inherited from the STUDENT.default entity). Thus this new entity will have "GENERAL" as his
department. We see that default assignments are used whenever inserts into entity types are

performed.
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3.5. Management of views/v-entity types in SQUIREL

From previous examples we see that some management of views has been implicitly taken care of
in that we know the entity types the view uses. This means that each view is automatically updated
if the entity types or views it uses are updated. The user does not have to specify any other control

mechanism given this feature of views.

We want to represent a hierarchy that shows the amount of fees a graduate student must pay. First
and second year students pay $429 while students who have been in the program for more than 2

years pay $179.

The following example illustrates how views can be grouped into a HIERARCHY:

CREATE VIEW FEE.V(stud#)
AS SELECT stud# FROM GRAD.V;

CREATE VIEW 1STYEARGRAD.V(name, stud#, fees)
AS SELECT name, stud#, assign(429)

FROM GRAD.V :

WHERE A= days_in program <= 365;

Here the view 1STYEARGRAD.V specifies a first year graduate student to be one who has been in
the program for less than a year. It then assigns the fee that the student is to pay into the v-entity

type.

The v-entity types 2NDYEARGRAD.V, OLDGRAD.V and the PAYMENT hierarchy are

defined as follows:
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CREATE VIEW 2NDYEARGRAD.V (name, stud#, fees)
AS SELECT name, stud#, assign(429)

FROM GRAD.V
WHERE days_in program <= 730
AND days_in program > 365;

CREATE VIEW OLDGRAD.V (name,studi, fees)
AS SELECT name, stud#, assign(179)
FROM GRAD .V
WHERE days_in program > 730;

CREATE HIERARCHY PAYMENT;

INSERT INTO PAYMENT.HIERARCHY

V-ENTITY = 'FEE.V/,
V-ENTITY = ’'1STYEARGRAD.V',
V-ENTITY = ’'2NDYEARGRAD.V',
V-ENTITY = 'OLDGRAD.V’;

We would thus have the hierarchy as shown in Fig 3-2.

FIRST_YEAR_G! .V SECOND_YEAR_GRAD.V OLD_GRAD.V

Figure 3-2: Payment.Hierarchy

-

The interesting feature to note when inserting into hierarchies is that the user need not specify the
connections between v-entity types. The view name representing a v-entity type is entered into a
hierarchy and SQUIREL’s classifier will automatically determine the v-entity types that subsume it

as well as those that it subsumes.

What we have defined above is the PAYMENT HIERARCHY which will determine how much
fees a student has to pay. Every graduate student will be represented in this hierarchy and whenever
the GRAD base entity type is updated, the PAYMENT hierarchy will also be updated. Although
every graduate student will have a tree associated with him/her in the form of a hierarchy, this is
not wasteful because the hierarchy is made up of views which are not physically stored. Default
assignments could also be used without the PAYMENT hierarchy where we set the default value of
fees a graduate student is to pay at $429. In this case the user has to explicitly override this default

with another value when a graduate student does not need to pay this amount of fees. This is unlike
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the PAYMENT hierarchy where the user does not need to know anything about the fees a graduate

student has to pay but instead allows the hierarchy to determine the fees.

A typical query of the above HIERARCHY would be:

SELECT name, fee
FROM PAYMENT .HIERARCHY
WHERE stud# = ’85300 4532';

This query might return the entity (Greg James, 429).

It should be seen that the abbve query relies on the ability to reason on the facts given in a
database. We certainly do not expect the casual user to know the conditions imposed for charging
of fees (e.g. foreign students have to pay differential fees; first and second year graduate students
pay more than graduate students who have been in the program longer). What is asked for is not a
specific v-entity type, but rather information stored in a hierarchy. The hierarchy is able to function
as a meta-rule, infer from the hierarchical structure where the information is stored and provide the

user with an answer.

This reasoning process associated with hierarchies stems from their ability to classify specific
entities (instance level) into the v-entity type where they belong and being able to classify v-entity
types into parent and child v-entity types (type level). The classifiers thus plays an important role

in reasoning.

3.5.1. Views not applicable to SQUIREL’s Hierarchy

A very important point to note is that not all user defined views or v-entity types can be used in a
hierarchy. Only in situations where different kinds of facts are to be recorded about different

members of the hierarchy do we separate these members into different v-entity types.

There can be situations where v-entity types on the same level have the same attributes but
subsuming (parent) v-entity types can never have more attributes than their subsumed (child) v-
entity type. To further illustrate this point SVQUIREL does not use hierarchies when the v-entity
types do not have unique attributes. This may happen when v-entity types are specializations of

some other v-entity types.
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Assume we define a honor student v-entity type as follows:

CREATE VIEW HON_STUDENT.V (Name, Sex, Dept, Stud#,G.P.A)
AS SELECT Name, Sex,Dept, Stud#,G.P.A

FROM STUDENT.V

WHERE G.P.A > 3;

To define a v-entity type that stores the female honor students in the computing science department

we do the following:

CREATE VIEW FEM CS_HON_STUDENT.V (Name, Stud#,G.P.A)
AS SELECT Name, Stud#,G.P.A

FROM HON_STUDENT.V
WHERE Dept = "Comp Sc’
AND Sex = ’'Female’;

To define a v-entity type that stores all the computing science students we do the following:

CREATE VIEW CS_STUDENT.V(Name, Sex, Stud#,G.P.A)
AS SELECT Name, Sex, Stud#,G.P.A
FROM STUDENT.V
WHERE Dept = 'Comp Sc’;
If we wanted to create a hierarchy we would then do:
CREATE HIERARCHY STUDENT.HIERARCHY;

INSERT INTO STUDENT.HIERARCHY

V-ENTITY = STUDENT.V,-

V-ENTITY = HONOR_STUDENT.V,

V-ENTITY = FEM_CS_HONOR_STUDENT.V,
V-ENTITY = CS_HONOR_ STUDENT.V; ’

We might visualize the hierarchy as given in Fig 3-3.

§ v

HONOR_STUDENT.V  CS_STUDENT.V

FEM_CS_HONOR_STUDENT.V

Figure 3-3: Ilegal Student Hierarchy -

At each level no unique attributes are present and the child v-entity types may in fact have fewer
attributes than their parents. This will be in direct contrast to a fundamental property of
SQUIREL'’s hierarchies. Thus the above hierarchy is invalid and cannot be formed by SQUIREL.
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3.6. Use of Constructs in the Hierarchy

In this section we will further describe with examples the use of the hierarchy in retrieval

operations.

It should be noted that there are two levels of knowledge that can be obtained from the hierarchy.
We might want to obtain information about v-entity types or we might want to obtain information

about the attribute values attached to the v-entity types.

There are two ways in which SQUIREL uses the hierarchy to obtain information:
1. It can be used like a normal relation (Explicitly).
2. SQUIREL will traverse the hierarchy relation to obtain the attributes of a v-entity
type (Implicidy).
When using a hierarchy relation explicitly we remember that the two system attributes of every

hierarchy are SUB and SUP, using these attributes we can find all the subclasses of a v-entity type
in a particular hierarchy. |

An example as to how this could be done is:

SELECT SUB FROM personnel.hierarchy -
WHERE SUP = T'student.v"; ‘

This is a query asking for the subsumed v-entity types of the STUDENT.V v-entity type and for
our example, GRAD.V and UGRAD.V will be returmed

The hierarchy is used to distinguish between different classes. We have the <category> for each
hierarchy as well as the <partition> for each v-entity type. We can partition people according to
their occupation and may create v-entity types which reflect this, e.g., create views of
ENGINEER.V and SECRETARY.V, and in this hierarchy a person’s occupation is either an
engineer or secretary. We find thai the information about a person’s occupation is *hidden’ in the
name of the v-entity type and the user is unable to obtain that information. With the hierarchy the
user can obtain this 'hidden’ knowledge with the use of the <category> of the hierarchy or the

<partition> of a v-entity type.
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In Fig 34, we have an EMPLOYEE hierarchy relation where the <category> is JOBTYPE. That
is, each of the v-entity types in the hierarchy can be seen as a JOBTYPE.

/BWIAYEE.V \
FINANCEV STEREQV ELEC_ENGINEER.Y MEC_INGINEER.V

Figure 3-4: Employee.Hierarchy

An example of querying the category is if we did the following:
SELECT JOBTYPE FROM EMPLOYEE.HIERARCHY;

Here JOBTYPE is the categorization (category name given when the hierarchy is created) of the
hierarchy. That is, the general theme/purpbse of the hierarchy is to categorize a person according to
his/her job title. When we query the hierarchy, all the v-entity type names in the hierarchy are

returned.

JOBTYPE

EMPLOYEE

ENGINEER

SECRETARY

FINANCE

MEC_ENGINEER

ELEC_ENGINEER

Figure 3-5: Jobtypes Returned

If we need information about a specific person we do the following:

SELECT JOBTYPE FROM EMPLOQYEE .HIERARCHY
WHERE Name = ‘John Smith’;

SQUIREL will determine all the v-entity types where the entity specified is found using the

instance level classifier and inform the user of the job types of John Smith. For our example,
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JOBTYPB

ELEC_ENGINNER

ENGINEER

Figure 3-6: Jobtypes Returned
SQUIREL might return the table shown in Fig 3-6. This indicates that John Smith is an electrical

engineer.

To obtain information about v-entity types we could also query the partition attribute of a v-entity

type as shown below:
SELECT OCCUPATION FROM EMPLOYEE.V;

OCCUPATION is the partition name (virtual attribute) given to the v-entity type EMPLOYEE.V
for the EMPLOYEE hierarchy that is, EMPLOYEE.V is partitioned into either ENGINEER.V or
SECRETARY.V under OCCUPATION. SQUIREL will look under the EMPLOYEE.V v-entity
type and return the names of the v-entity types that it subsumes. This is shown in Fig 3-7.

-

OCCUPATION

SECRETARY

ENGINEER

Figure 3-7: Occupations Returned

To determine the OCCUPATION of a specific EMPLOYEE we make the following query:

SELECT OCCUPATION FROM EMPLOYEE.V
WHERE name = ’'John Smith’;

This query will retumn the v-entityl type under EMPLOYEE.V where John Smith lies, which is
shown in Fig 3-8. Notice here that when we query the partition of EMPLOYEE.V only the v-entity
types directly under EMPLOYEE.V are retumed whereas when we query the category of a

hierarchy all the subsumed v-entity types at every level are returned.



OCCUPATION

ENGINEER

Figure 3-8: Occupations Returned

We see that the information required by the user might not be an actual attribute of any v-entity
type but the subsumed or subsuming v-entity types of ‘a particular entity or entity type. We can
query the database through the hierarchy or a v-entity type in a hierarchy to obtain information
about subsumed v-entity types.

Recall that v-entity types may participate in more than one hierarchy. Unique <partition> and
hierarchy names ensure that SQUIREL does not obtain the wrong subsumed v-entity types. When
a partition name or a hierarchy name is specified, SQUIREL will know which hierarchy to use in

order to obtain the necessary information.

A case in point might be if EMPLOYEE.V is also in another hierarchy, as shown in Fig 3-9.

/mvmm.v\
RV SENJOR.V -
TECHNIEALY ADMIN.V TECHNICAL.V INV

Figure 3-9: Promotion.Hierafchy
The same EMPLOYEE.V v-entity type is used but the hierarchy name is different. The <partition
name> for EMPLOYEE in the PROMOTION hierarchy would not be OCCUPATION but might be
LEVEL instead. |

We also note that if we want to know the <category> or <partition> of specific entities we must

reference the entity uniquely, as shown below:

SELECT OCCUPATION FROM EMPLOYEE.V
WHERE name = ’'Jchn Smith’;
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The following query will not reference a specific entity:

SELECT OCCUPATION FROM EMPLOYEE.V
WHERE sex = 'Male’;

If we specify a collection of entities then SQUIREL will return all v-entity type names that have at

least one instance of this collection.



| Chapter 4
IMPLEMENTATION PLAN FOR SQUIREL

To implement SQUIREL, we need to first of all evaluate current DBMSs and determine which
one would be the most appropriate to use in terms of extensibility, robustness and efficiency. Parts
of RM/T should be first implemented and the basic requirements would be to have the E-relations,
the P-relations and a procedure that assigns system surrogates to new entities. Assuming we have
all of these, we now provide a description of the stofage structures needed for SQUIREL and some

uses of SQUIREL s features.

Efficiency is a primary concem and the first issue to consider is the storage structures which are
needed to implement the hierarchy. In SQUIREL there will be at least two structures needed, the
hierarchy relation (there will be one for each hierarchy) and a system hierarchy table (SYSHIER).

4.1. Hierarchy Relation ’

A SQUIREL hierarchy is represented as a relation which has a unique hierarchy relation name
and is made up of two attribuies, SUB (Subordinate) and SUP (Superordinate). Each tuple in the
relation consists of two v-entity types (view names). The first attribute indicates the subsumed or
child v-entity type and the second attribute represents the subsuming or parent v-entity type. An
example is shown in Fig 4-1 which is the PERSONNEL hierarchy relation.

A hierarchy relation is used by the retrieval constructs (SELECT) and the classifiers (type and
instance). Since efficiency is a prirhary concem, both fields of the relation will be indexed. Thus;
knowing which v-entity types subsume which others can be accessed very efficiently. An indexing
scheme we could use would be ISAM (indexed sequential access method) where the records are
sorted and there will be a one level index to access the appropriate entities in a hierarchy relation.
The index will consists of short records (v,b) which represent a key value and a block address pair

while the main file will have a v-entity type with its parent v-entity types. This is shown in Fig 4-2.
46
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UNIVERSITY
PERSONNEL

PERSON.YV TOP

STUDENT.Y PERSON.V
NONSTUDENT.V | PERSON.V
UGRAD.Y STUDENT.V

GRAD.Y STUDENT.V

INSTRUCTOR.Y | NONSTUDENT.V

ADMIN.Y NONSTUDENT.Y

Figure 4-1: Personnel hierarchy relation

MAIN FILE
[ -—{ I GRAD.Y 1 PAYMENT l STUDENT.V | PERSONNEL I STUDENT.Y ] PERSON.Y ]
F l STUDENT.V I PAYMENT I TOP l PERSONNEL I PERSON.Y | I

e[t ] weev J1] | | [ [

INDEX FILE

INDEX BLOCK
Figure 4-2: Indexed file for hierarchy relations

As seen in the figure we also need to store the hierarchy name in the record. This is because
~ v-entity types may participate in different hierarchies and have parent or child v-entity types for
each of these hierarchies. For example, in Fig 4-2, GRAD.V’s parent v-entity type in the payment

hierarchy is STUDENT.V while its parent v-entity types in the personnel hierarchy are



48

STUDENT.V and PERSON.V. Although we require more storage to replicate some information!4
this is justified because speed and efficiency in access is a primary goal of SQUIREL and secondly
we envision the continued fall in the cost of memory. With each hierarchy relation représented by

the structure just defined we will be able to do an efficient search and access of the hierarchy.

4.1.1. System Hierarchy Table--SYSHIER

The system hierarchy table (SYSHIER) is a two attribute table that contains the names of all
hierarchy relations (Name) and the v-entity types that participate in each hierarchy (Participant).
There is a one to many mapping from hierarchy relation name to v;entity types as one hierarchy
has many v-entity types as its components. The SYSHIER is not directly accessible by the user and
is only updated when hierarchy relations are updated by any of SQUIREL’s constructs.

SYSHIER is used for indexing. Several SQUIREL constructs will need to use the SYSHIER to
find the hierarchy relations of v-entity types. Without the SYSHIER, a linear search of all hierarchy

relations would have to be performed in order to find the needed hierarchy relations.

An efficient way to implement the SYSHIER is to make it a hash table, as shown in Fig 4-3.
Using this scheme, a very fast access to the v-entity types in a hierarchy can be achieved. Recall
that v-entity types are not physically stored so the access is to the definition of these v-entity types
which are stored in system tables! Using these definitions we will be able to obtain the base entity

types of the v-entity types and perform any needed updates to the base entity types.

14STUDENT.V’s parent v-entity type for the personnel hierarchy can be found in the GRAD.YV record as well as in the
STUDENT.V record.

ISDBMSs have system tables that store v-entity type definitions, i.e., the CREATE VIEW command as shown on page
26. This gives us the structure of the v-entity type and tells us its attributes as well as its base entity types.
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PERSONNEL | cunud PERSON.V I STUDENT.V I NONSTUDENT.V I INSTRUCTOR.V I ADMIN.V |
EMPLOYER \
: [ GRAD.V I UGRAD.Y l I I ]

\‘rnsou.v lsamzrnv.v |ENGI‘N'EER.V ‘Eu.c_mommn.v ‘ I

Bucka Directory

Figure 4-3: SYSHIER relation

4.1.2, Category/Partition in Hierarchies

The partition is a virtual attribute attached to v-entity types. V-entity types can participate in
different hierarchies and for each hierarchy it is assigned a unique partition. A partition can be
looked upon as a pointer to a virtual table which stores the names of v-entity types that this v-entity
type subsumes. For example, in the PERSONNEL hierarchy the PERSON.V v-entity type might
have STATUS as its partition name, shown in Fig 4-4. This implies that a person’s STATUS is
either a STUDENT or NONSTUDENT (these are the subsumed v-entity types of PERSON.V) in
the PERSONNEL HIERARCHY (shown in Fig 4-1)

I STATUS ON.7} SIN# NAME SEX AGE
PERSON.V
STUDENT
NONSTUDENT
VIRTUAL TABLE

Figure 4-4: Implementation of PARTITION attribute

Since there is one partition for each hierarchy a v-entity type participates in, the definition of the
v-entity type will be dynamically changed every time a v-entity type is inserted into or deleted from
a hierarchy. Therefore, the system tables that store the v-entity type definitions must record these

changes.
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The partition is a virtual attribute and for any v-entity type it can be realized by the following

query:
SELECT SUB FROM <hierarchy name>.HIERARCHY
WHERE SUP = <view name>;

This query finds the subsumed v-entity types of a given v-entity type.

The category is much easier to implement because it is really an alias for the SUB attribute of a
hierarchy. Therefore, we only need to reserve an extra block of storage next to the SUB attribute in

each hierarchy relation to store the category attribute name.

The category and partition attributes are optional and the user need not give either, when defining
a hierarchy or inserting a v-entity type into a hierarchy. If no category for a hierarchy is given, a
default name of <name>.CATEGORY will be used for category. If partition is not specified for a
v-entity type when it is inserted into a hierarchy, the default name for the partition will be
<name>.PARTITION. In both of the above cases <name> is the unique hierarchy name which

refers to the hierarchy in question.

4.1.3. Procedure Table

SQUIREL requires a procedure table to store the names of procedures it uses. An interface to
control the communication between SQUIREL and the procedures is also needed. The interface
will control the use of procedures, including the automatic invocation of procedures when the base

entity types to which they are attached are referenced.

To implement procedural attachment to base entity types, the system table which stores the
definition of base entity types also includes the names of procedures attached to the base entity
types. The procedure table itself can be efficiently implemented as a base entity type while the

interface is the algorithm for the trigger construct given in appendix B.

The use of SQUIREL'’s features and other implementation issues will now be provided.
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4.2. Classification

The classifiers (type and instance) are essential to the implementation of the hierarchy because
almost all the hierarchy constructs need to use them in order to be effectively processed. Both the
type and instance level classification algorithms are given in appendix B and here we provide a

brief description of the classifiers in use.

The classifier in SQUIREL works on this principle: a v-entity type (A) subsumes another v-entity
type (B) if all of A’s attributes subsume B’s and if the v-entity types which subsume A also

subsume B.

Subsumption determines a partial order on v-entity types because of the following properties.
1. Transitive : if A subsumes B and B subsumes C then A subsumes C.
2. Reflexive : A subsumes A.

3. Anti-symmetric: if A subsumes B, B does not subsume A.

We note that the classifier can be invoked either at the type level (v-entity type, i.e. view names)
or at the instance level (entities, tuples) but for both of these the same principle mentioned above

-

applies.

4.2.1. Type Level Classification

We use the classifier to build the hierarchy. Given a set of base entity types, the user might define
several v-entity types. He/She may want to organize the v-entity types into a structure that allows
him/her to manage them easily. The structure that SQUIREL provides is the hierarchy and it can
be built either top-down or bottom-up. This implies that when we insert v-entity types into a

hierarchy no ordering, (parent or child first) is needed.

Given the following v-entity types:

STUDENT.V (name, sin#, stud#, sex, age, Dept,G.P.A,
startdate)
GRAD.V (name, sin#, stud#, sex, age,Dept,G.P.A,

startdate, Last_degree)
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UGRAD.V (name, sin#, stud#, sex, age,Dept,G.P.A,
‘startdate,Major)
PERSON.V (name, sini, sex)

SECRETARY.V (name,sin#, sex,typing_speed)
ENGINEER.V (name, sin#, sex, Degree)

ELECT_ENGIN.V(name, sini}, sex,Degree, Accreditation)
We can build a TEMP.HIERARCHY as follows:
CREATE HIERARCHY TEMP;

INSERT INTO TEMP,HIERARCHY
V-ENTITY = STUDENT.V;

The hierarchy now has only one component and is shown in Fig 4-5.
STUDENT.V

Figure 4-5: Temp.Hierarchy '

We could then insert v-entity types into the hierarchy in the following way:

INSERT INTO TEMP.HIERARCHY
V-ENTITY = GRAD.V,
V-ENTITY = UGRAD.V;

The updated hierarchy is shown in Fig 4-6.

W
GRAD.V  UGRAD.V

Figure 4-6: Temp.Hierarchy
We have been entering the v-entity types in a top-down fashion.

In order to insert v-entity types using a bottom-up method we do:
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DROP HIERARCHY TEMP;
CREATE HIERARCHY TEMP;

INSERT INTO TEMP.HIERARCHY
V-ENTITY = ELEC_ENGIN.V,
V-ENTITY = SECRETARY.V;

The new hierarchy is shown in Fig 4-7.
ELEC_ENGINEER.V SECRET ARY.V

Figure 4-7: Temp.Hierarchy

We now enter the higher level v-entity type:

INSERT INTO TEMP.HIERARCHY
V-ENTITY = PERSON.V;

The updated hierarchy is shown in Fig 4-8

PERJON.V
ELEC_ENG| v SECRETARY.V

Figure 4-8: Temp.Hierarchy

We now enter the middle v-entity type:

INSERT INTO TEMP.HIERARCHY -
V-ENTITY = ENGINEER.V ’

The updated hierarchy is shown in Fig 4-9.
PERSON.V
ENG! v SECRETARY.V

ELEC_ENGINEER.V
Figure 4-9: Temp.Hierarchy

An example of how the type level classifier works for the TEMP hierarchy, in the state as shown

in Fig 4-8 and for the insertion below follows.

INSERT INTO TEMP.HIERARCHY
V-ENTITY = ENGINEER.V;

When such a SQUIREL command is typed. The classifier will do the following:
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1. The newly entered v-enﬁty type is ENGINEER.V and the hierarchy is
TEMP.HIERARCHY.

2. Get the attributes of PERSON.V, SECRETARY.V and ELEC_ENGIN.V.

3. Compare the attributes and classify:

a. Start from the top level v-entity type in TEMP.HIERARCHY. Check the
PERSON.V v-entity type. On checking the attributes We find that it subsumes
ENGINEER.V.

b. Go down to the next level and check the ELEC_ENGIN.V v-entity type.
Again on checking the attributes we find that ENGINEER.V subsumes
ELEC_ENGIN.V.

¢. Check the SECRETARY.V v-entity type. There are contradictory attributes
(typing speed) and (degree) so no link is needed.

4. From the above the PERSON.V - ELEC_ENGIN.V link is removed and
ENGINEER.V is placed between PERSON.V and ELEC_ENGIN.V, ie.,
(PERSON.V ELEC_ENGIN.V) is removed from TEMP.HIERARCHY while
(ENGINEER.V, PERSON.V) and (ELEC_ENGIN.V, EN(I}INEER.V') are added to
the TEMP.HIERARCHY relation.

4.2.2. Instance Level Classification

The iclassifier (instance level classifier) follows the same principle as the type level classifier but
differs in its function. It is used to find out where entities are to be placed in a given hierarchy. The
iclassifier will find the v-entity type which holds the entity that is being inserted. The entity

attribute values are then inserted into the base entity types of the v-entity type found.

The iclassifier will find the subsuming v-entity types of the ones selected and discard the ones
that are subsumed by some other in the set. This will take care of the situation where the parent
(A.V) of a leaf v-entity type (E.V) is the parent of another v-entity type (B.V) and B.V also
happens to be the parent of another leaf v-entity type (C.V and D.V). This is illustrated in Fig
4-10. Only key and unique attributes are shown attached to the v-entity types. B.V, C.V, D.V and
E.V will inherit all attributes of their parents.
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C.V( D.V(a,q E.V{a, k)

Figure 4-10: EX hierarchy

Assume we perform the following insertion:

INSERT INTO EX.HIERARCHY
VALUES(a = "john’, x = ’'tall’);

Using the instance level classifier:
1. The leaf v-entity types C.V, D.V and E.V are retumed.
2.C.Vhasa,x,y,z,p.D.Vhasa, x,y,z,q. EEVhas a, x, yand k.
3. Then A.V and B.V are retumed since they are the parent v-entity types of C.V, D.V
and E.V. |
4. Find applicable v-entity types:
a. B.V is discarded because it is subsumed by A.V.
b. Now only the v-entity type A.V is left, and the entitgl will be inserted into the
base entity types of A.V.

When we are dealing with entities (instances) the iclassifier works bottom up in the hierarchy to

obtain the required v-entity type in which to place the entity.

Using our PERSONNEL hierarchy shown in Fig 4-1, an insertion which will use the iclassifier is:

INSERT INTO PERSONNEL.HIERARCHY
VALUES (Name = ’'John Smith’, Curr_Work = ’Research’)
Office = 'LB1233');

When the above SQUIREL command is issued, the iclassifier will:
1. Get all "leaf” entity types AINSTRUCTOR.V, GRAD.V, UGRAD.V, ADMIN.V).
2. Obtain the attributes of GRAD.V, INSTRUCTOR.V, UGRAD.V and ADMIN.V.
3. Only INSTRUCTOR.V is selected because it has the "Curr_Work’ attribute.
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4. Since it is the only one selected, the entity is inserted at INSTRUCTOR.V.
Note that: _ .
1. the insertion of the entity is not into the v-entity type but into the underlying P-
relations of the base entity types of the v-entity type. The underlying base entity
types can be found using system defined tables.

2. the key attribute must be given in the insert command.

4.3. Inheritance

The basic mechanism for inheritance is the view, a powerful construct in relational databases.
There is a symbiotic relation between views and hierarchies. By using views, the inheritance of
attributes which naturally proceeds through the links in a hierarchy is made trivial. Since views are

virtual relations it is easy to define views with all needed attributes specified.

An example of a hierarchy is:

AV(g x,y)

B.V(a,@a, -

Figure 4-11: An Example of a Hierarchy

-

Here AV, B.V and C.V are erntity types. Only the unique and key attributes attached to the
v-entity types are shown in Fig 4-11. The links in the hierarchy allow B.V and C.V to inherit the

attributes x and y from A.

The v-entity type B.V is created as follows:

CREATE VIEW B.V(a, x, y, d, e)
AS SELECT A.a,x,y,d,e
FROM A,B;

We see that the inheritance of attributes is encompassed in the user’s definition of a view and the

user can easily define v-entity types, all specifically suited to his/her application.
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4.4. Default Entity Types

To specify defaults in SQUIREL, a default entity type could be implemented. This will be
known as <entity.name>.default!®. The default entity type will be first created whenever a new
entity type is defined and will be updated whenever new P-relations are added to the entity type. It
gives the user the ability to express default values for most of the attributes!’ of that entity type.
We will only have one set of default values for each P-relation and if the user does not specify

attribute values when inserting entities into the database then those default values will be used.

An efficient way to implement default value assignments is to reserve the first storage block of
the P-relations of each base entity type to store the set of default values. An example is shown in
Fig 4-12.

STUDENT.? § DEPT SIN# STUD# STATUS GPA START

JGENERAL

FIRST STORAGE BLOCK RESERVED

Figure 4-12: P-relation of STUDENT entity'type
Default values are not assigned to the v-entity types but to the base entity types in which the
v-entity types are defined. V-entity types will implicitly inherit the default values from its base
entity types. Therefore the default entity type specifies defaults for the attributes of a v-entity type
indirectly through the base entity types.

In the example given, GENERAL is the department attribute given to a student whose DEPT field
is not specified. This is a reasonable default because most new students have not decided on a

major when they first enter university.

16Where entity.name is the name given to an entity type.

17K ey attributes cannot have default values.
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4.5. Procedure Construction

SQUIREL’s playback procedure is described and this will give a general idea about how any
procedure can be constructed and used. The playback procedure determines the classification path
of the type level classifier. It requires two arguments which are the hierarchy relation name and the
v-entity type whose path needs to be found. The pléyback procedure has its own entity type called
PLAYBACK.ARG. PLAYBACK.ARG has two attn'buteS, HNAME (hierarchy name) and
ETNAME (v-entity type). These attributes are updated whenever the classifier is used and
PLAYBACK.ARG will always store the name of the hierarchy and v-entity type currently
referenced. To illustrate this, if the classifier was last used to place the v-entity type (GRAD.V) in
the PERSONNEL hierarchy. The attributes in PLAYBACK.ARG would be HNAME =
PERSONNEL, ETNAME = GRAD.V.

If the user wants to know the classification path of a previously referenced v-entity type, the

PLAYBACK.ARG entity type can be updated as in:

UPDATE PLAYBACK.ARG
SET ETNAME = ' INSTRUCTOR.V’;

PLAYBACK.ARG will then contain the new v-entity type name whose path the user wishes to
know. The hierarchy to be used (HNAME) can be similarly updated. Note that as
PLAYBACK.ARG will always have only one entity (only one tuple in PLAYBACK.ARG), any
update to PLAYBACK.ARG will be performed on this entity.

Using embedded SQL statements in a PL/1 environment as given in [DATE 86], the playback

rule is shown in appendix B.13.



Chapter 5
COMPARISON WITH KEE AND CENTAUR

We will first describe the KEE system in some detail and then describe SQUIREL constructs

which provide similar capabilities.

'5.1. The KEE System

KEE (Knowledge Engineering Environment) [FIKE 85], one of the most widely used
programmihg environments for developing sophisticated expert systems is a frame based, object
oriented system developed at Intellicorp. It is a frame system combined with facilities for

production rule based reasoning.

In KEE there are subclass and member links. Membership refers to a particular instance of a
class whereas subclass refers to a smaller class (a subset). For example, given a class frame
STUDENT, a GRAD.STUDENT frame is a subclass of STUDENT while a STUDENT] frame

(name="John Doe’) is a member of STUDENT because it represents a unique student.

5.2. Description of KEE Frames

Each frame has slots which are ’attribute descriptors’ of the frame. These slots are of two typés:
1. OWN SLOTS: describes attributes of the instance or class represented by the frame,
e.g., TOPSTUDENT - representing the student with the highest G.P.A in the
STUDENT CLASS frame shown in Fig 5-1.
2. MEMBER SLOTS: describes attributes of each member of a class, e.g., NAME - an
attribute of each member of the STUDENT frame.

Own slots represent an actual attribute and contains a value specific to the frame while a member

59
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slot represents an attribute but does not contain actual values. Member slots are used to provide a
structural framework because these are the slots that are inherited along the subclass and member
links.

Attached to these slots are ’sets of properties’ called facets which provide a 'description’ of the
slots, e.g., cardinality (number of values), ValueClass (type of values) and so on. Facets contribute

to the deductive abilities of frames by restricting the number and type of values slots can take.

KEE'’s value class facet can also be a boolean combination of class descriptors, i.e., predicate

logic is used in combination with available class descriptors.

An example from [FIKE 85] is:

MEMBER SLOT: FATHER

VALUECLASS : (INTERSECTION MEN
(UNION DOCTORS LAWYERS)
(NOT.ONE.OF FRED))

Here the FATHER SLOT is designated to be a man who is a doctor or a lawyer but is not Fred.
MEN, DOCTORS and LAWYERS are class frames and FRED is an instance frame.

Examples of KEEs frame structure are given in Fig 5-1, Fig 5-2, Iéig 5-3 and Fig 5-4.

5.3. Capabilities

The KEE system is a powerful knowledge representation system and its features can be divided
into three parts.

1. Inheritance mechanism which includes cardinality/value class reasoning.
2. An object oriented approach.

3. Its rule system.
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Unit STUDENT in knowledge base SCHOOL
Superclasses: PERSON
Subclasses:

GRAD.STUDENT, UGRAD.STUDENT

Member: CLASSES.OF PHYSICAL.OBJECTS
MemberSlot: NAME fram PHYSICAL.OBJECTS
ValueClass: CHARACTER
Cardinality Min: 1
Cardinality Max: 1
Comment: 'Full Namre'
Values: Unknown
MemberSlot: CHECK from STUDENT
Inheritance: METHOD
ValueClass: METHODS
Cardinality Min: 1
Cardinality Max: 1
c ‘A method for diagnosing course problems’
Values: COURSE.PROBLEM.FUNCTION
MemberSlot: PRESENT.SCHOOL from PHYSICAL.OBJECTS
Cardinality Min: 1
Cardinality Max: 1
Values: Unknown
MemberSlot: GPA from PHYSICAL.OBJECTS
Cardinality Min: 1
Cardinality Max: 1
Values: Unknown
MemberSlot: TOTAL.CREDITS from PHYSICAL.OBJECTS
Cardinality Min: -1
Cardinality Max: 1 f
Values: Unknown
OwuSlot: TOPSTUDENT from CLASS.OF. PHYSICAL.OBJECTS
ValueQass: STUDENT
Cardinality Min: 1
Cardinality Max: 1
Comment: "The student with the highest GPA®
Values:

Unknown

Figure 5-1: STUDENT Frame

5.3.1. Inheritance

When a frame A is a subclass of another frame B, member slots of frame B will be inherited as
member slots of frame A. Thus for a hierarchy of class-subclass relations, the member slots need

only be defined at the top level frame and will then be inherited by all its subclass frames and in
tum by the subclass frames of these subclass frames.
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Uni  GRAD.STUDENT in knowledge base SCHOOL
Superclames STUDENT

Subclasses: ...

Momber:

MemberSlotPASTDEGREE fram PHYSICAL.OBJECTS
ValuoQlass:

Cardinality Min: 3
Cardinality Max: 10

Values:- Unknown _

MemberSlot: PUBLICATIONS from PHYSICAL.OBJECTS
ValueClass:

Cardinality Min: 0

AvUnits: AV.STUDENT

Figure 5-2: GRAD.STUDENT Frame

Unit  SFU.GRAD.STUDENT in knowledge base SCHOOL
Superclasses:  STUDENT, GRAD.STUDENT

Subclasses:

MemberSlo: ~ NAME FROM STUDENT B

ValueClass:

MemberSlot: PUBLICATIONS from GRAD STUDENT

ValueClass:

Cardinallity Min: 1

Figure 5-3: SFU.GRAD.STUDENT Frame

When a frame A is a member of another frame B, member slots of B will be inherited as own
slots of A. Frame A will be a paﬁicular instance of frame B and thus the member slots of B will

now be own slots of A and have specific values attached to them. Own slots are not inherited

because they represent specific attributes with corresponding values for a particular frame.
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Uni: STUDENT1 in knowledge basc SCHOOL
Momber:  GRAD.STUDENT

OwnSlot: PATHER
ValueClass: MEN (UNION DOCTORS LAWYERS)
(NOT.ONE.OF.FRED)
AGENTS
Cardinality Max: 1
Values: PAUL

OwnSlot CHECK from STUDENT
ValueClass: METHODS
Candinality Min: 1 :
Cardinality Max: ,1
C A

Pe)

hod for di ing course p

Values: COURSE PROBLEM.FUNCTION

OwnSlot: PUBLICATIONS from GRAD.STUDENT
Cardirality Min: 1
Comment: ‘Papers published’
Values: Unknown

Figure 5-4: STUDENT1 Frame

* Notice that own slots of classes, e.g., TOPSTUDENT in the class frame STUDENT, are a form of
meta-knowledge. These own slots provide information about the whole class and have to perform
some form of deduction. In the case of the TOPSTUDENT own slot for the class of students, every
student’s G.P.A has to be checked to obtain the student with the highest G.P.A.

5.3.2. Cardinality/Value Class Reasoning

When we enter values for own slots, if we enter values that do not satisfy its value class or if we
exceed/fall short of the cardinality requirements, an error is reported and the object is not be

created.

An example could be if we made the following mistakes:
1. Enter an INTEGER value instead of a CHARACTER.
2.1f CARDINALITY MIN: 2 and we only enter one value.

This is another one of KEE’s inferencing abilities. It allows the system to check on individual
values entered to ensure correctness of data. The cardinality also enables a criteria check on the

number of values a slot can take. For example, sex must have only one value so we set
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CARDINALITY.MIN:1 and CARDINALITY.MAX:1 for the slot sex. The value class facet on
slots is a restriction mechanism to ensure that the slot will contain reasonable or user controlled

values.

5.3.3. Object Oriented System

Object oriented systems are systems which have the procedures or functions applicable to an
object attached to the object. In KEE, the frame is an object and the procedures which are
applicable to that object are also stored in the frame structure as slot values. These procedures or
functions are called methods. For example, the CHECK slot in the STUDENT frame (Fig 5-1) has
the method COURSE.PROBLEM.FUNCTION. The methods are binvoked by the use of messages.

Messages can be sent directly by the user or by other frames.

5.3.4. KEE Rules

Another interesting aspect of KEE is its use of frames for the management and representation of
production rules. Rules in KEE are written in an "IF-THEN" format and provide the éystem with

the ability to reason from available facts in the system.

Rules are of the following form:

(IF <condition>
<condition>

THEN <conclusion>
<conclusion>

DO <action>
<action>

In KEE a production rule is also represented as a frame and an example of a rule class unit is
shown in Fig 6-5. Note that the STUDENT.TYPE.RULES has three rules. The OUT2.RULE one
of the rules in STUDENT.TYPE.RULE states that to be an outstanding student you must be in the
class GRAD.STUDENT, be in the class NORMAL.PROGRESS and you must have published at

least one paper.
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Unit STUDENT.TYPERULES
in knowledge bass RULESS YSTEM2

Superclassox RULES
Member: RULE.CLASSES

(Rules NORMAL.RULE
(IF ((7X 1S IN CLASS GRAD.STUDENT)
. .
((GEQ (THE NO.COURSﬁS OF 2X) #))
THEN
(7X 1S IN NORMAL PROGRESS))))

(OUT1.RULE
(IF ((?X IS IN CLASS GRAD.STUDENT)

AND

((GREATERP (THE NO.COURSES OF 7X) 3))
THEN

(?7X 1S IN OUTSTANDING.PROGRESS)))

(OUT2RULE
(TF (X 1S IN CLASS GRAD.STUDENT)
AND
(?X IS IN CLASS NORMAL PROGRESS)
AND
((GREATERP (THE PUBLICATIONS OF 1X) 0)))
THEN

(?X IS IN OUTSTANDING.STUDENT)
m g
(SEND.CONGRATS

(GET.VALUE 7X NAME)
(GET.VALUE ?X ADDRESS))))

Figure 5-5: STUDENT TYPE RULES

5.4. Use and Concepts of Rulesystem2

KEE’s Rulesystem2 knowledge base is a powerful tool and some of its main features are

elaborated upon here.
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5.4.1. Classification in KEE

KEE supports classification!®to determine which classes a given instance belongs to. In KEE, the
member slots of a frame are the necessary while the production rules are the sufficient conditions.
KEE uses a successive refinement strategy [WOODS 83] to classify instances, where each (sub)
class description include rules that indicate whether members of some superclass can be members

of the (sub) class.

For example, consider the OUT2.RULE in the STUDENT.TYPE.RULES rule class unit. The
first condition is a check for membership in GRAD.STUDENT (superclass) while succeeding
conditions (which are, taking three courses and having more than one publication) specify the local
conditions for membership in the OUTSTANDING.STUDENT frame (subclass).

5.4.2. Control Strategy

KEE provides several control strategies
1. Backward chaining.
2. Forward chaining.

3. Hypothetical reasoning: values of slots can be changed .'on the fly’ to simulate
different outcomes.
The default strategy used is backward chaining, but the user can modify this approach by using the
graphic displays or active value facets. When KEE is running it highlights the active value units
and TRUE or FALSE state of premises and conclusions. ‘The user can change the vaiue of
attributes while the sysfem is running allowing the user to modify the control strategy interactively

(hypothetical reasoning).

It also supports graphic-based interfaces, facilities for graphic-based simulations, multiple forms .
of inheritance (member, own slots) and demons. KEE provides the user with a powerful

mechanism to build and use production rules. With its graphic facilities it makes it very easy to

18This is not the same as the more difficult but general classification problem of determining where a class belongsin a
given class-subclass taxonomy.
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define, connect and change the frame structure. This leads to the user being able to develop an

initial knowledge base very quickly.

5.5. SQUIREL’s Answer

In SQUIREL we do away with the idea of own slots of classes because SQUIREL already

provides powerful constructs to obtain this needed information.

In Fig 5-1 the own slots for the class frame STUDENT is TOPSTUDENT. We assume that
STUDENT is an entity type with G.P.A as one of its attributes we would then be able to find the

TOPSTUDENT by this SQUIREL query:
SELECT NAME, MAX(G.P.A) from STUDENT;

We notice that when it comes to a frame representing an individual instance, e.g., STUDENT]1,
all the slots are own slots. STUDENT1 corresponds to an entity in an entity type. Here the

attributes of the entity type will have specific values for individual tuples (entities).

SQUIREL does incorporate most of the reasoning facilities of KEE’s frame structure which

include:
1. Inheritance of member slots.
Views (v-entity types) are used in SQUIREL to explicitly show the inheritance of
attributes. The hierarchy structures the v-entity types into a usable form.

2. Constraint Checking Procedures (ValueClass and Cardinality)

SQL already provides some constraint checking facilities corresponding to the value class facet of
KEE. Attributes in SQUIREL are stated to be of type number, character or date. They will also be
able to hold NULL values.

In terms of boolean attributes we could have MEN, DOCTORS and LAWYERS as entity types.
To find the FATHER’s name as in the example on page 60, we could have a v-entity type to check

the name of fathers defined as:
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CREATE VIEW FATHER.CHECK.V

AS SELECT Name
‘ FROM MEN, DOCTORS, LAWYERS
WHERE MEN .Name = DOCTORS.Name
AND DOCTORS .Name = LAWYERS.Name
AND MEN .Name = 'FRED’';

The v-entity type FATHER.CHECK.V would now contain all the acceptable values of FATHER
name. Though SQUIREL does not provide an explicit connection of the Name attribute to
FATHER.CHECK.V, the user can check values entercd to Name attribute of FATHER against the
FATHER.CHECK v-entity type. |

As for cardinality constraints, the RM/T structure is set up to allow entities to have only one value
for each attribute. If multiple values are required for an attribute a characteristic entity type is
formed. Though the control of this is left to the user, the structure explicitly shows the user if only

one value is needed.

It is felt that this is sufficient for the user to constrain the number of values of attributes to

individual entities.

5.5.1. Classification

-

SQUIREL supports both types of classification in its hierarchy. Member slots in CLASS frames

correspond to the relational schema of the entity types or v-entity types.

The GRAD.STUDENT frame could be defined as:

CREATE VIEW GRAD.STUDENT.V
AS SELECT Name, PastDegree,Publications,
CourinProg, LastDegree
FROM STUDENT, GRAD;

The frame STUDENT1 represents an entity in SQUIREL which would be a tuple in the
GRAD.STUDENT.V v-entity type.

An example of a SQUIREL hierarchy is given in Fig 6-6. Only key and unique attributes are
explicitly attached to the v-entity types.

In KEE when the STUDENT]1 frame is formed, the classification of which classes this item
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STUDENT.V

Fhm lmummu mmmm.lcNmﬁq
GRAD.Y
[ Name Lud)egeel

~ Figure 5-6: GRADUATE.HIERARCHY
belongs to is performed. STUDENT.TYPE.RULES is used to show that STUDENT! is in the class -
OUTSTANDING.STUDENT.

Assume we insert a new student into the GRADUATE hierarchy as follows:

INSERT INTO GRADUATE.HIERARCHY
VALUES (Name = ’'Tom’,Publications = ’2’,CourinProg = '3'); _

In SQUIREL the classifier will place this entity under the v-entity type GRAD.STUDENT.V and
enter the data into the entity types STUDENT and GRAD.

Suppose we had defined OUTSTANDING.STUDENT as:

CREATE VIEW OUTSTANDING.STUDENT.V

AS SELECT Name, PastDegree,Publications,PresentSchool
FROM STUDENT, GRAD
WHERE CourinProg = "3/
AND Publications >= ’'1/; ’

If the inserted entity satisfies the conditions on this v-entity type (which it does),
OUTSTANDING.STUDENT.V ~ will also be updated. We see that the
OUTSTANDING.STUDENT.V v-entity type in SQUIREL is performing a similar task as the
OUT2.RULE in KEE. The classification algorithm inserts the new entity into the entity types
GRAD and STUDENT while the v-entity type (OUTSTANDING.STUDENT.V) updates itself
because the new entity satisfies the conditions of being in OUTSTANDING.STUDENT.V.

The inheritance of the relational schema (member slots in KEE/ attributes in SQUIREL) is
implicitly handled when the user defines the view. We see that the attributes as well as the entity

types from which the attributes are taken are specified in the definition.
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5.5.2. SQUIREL Procedure Management

SQUIREL does not have demons. A 'pseudo’ demon (implicit in its structure) is invoked when a
new entity is entered. The classification of that entity is performed because of an insertion. We do
not have rules, although views can be looked upon as a form of rules. The integrity constraints
applied to views when they are defined, e.g, WHERE Publications >= 3, has been shown to
perform the same function as the OUT2.RULE in KEE (shown in Fig 5-4).

SQUIREL provides a construct (TRIGGER) which can be used to trigger procedures. The
procedures themselves are defined in a high level programming language like PL/1, Pascal or Ada
and it is certainly conceivable that any rule defined in KEE can be similarly defined in a high level
language. Most implementations of SQL already provide an interface with several high level
programming languages. These high level languages can easily provide the facilities for defining
procedures, and with the addition of the trigger in SQUIREL, we are able to emulate most of the
capabilities of KEE’s rule knowledge base.

We are keeping SQUIREL clean and uncluttered, only providing the user with a triggering
mechanism. We feel that the advantages that various features of SQUIREL provides to the users
outweigh the perceived overhead of having to leam the language. Most rules are implemented at a
high level by the database administrator. Normal users seldom if ever define their own rules. This
being the case, it is assumed that the database administrator will have no problem in leaming a high
level language. The use of a trigger is simple and straightforward and SQUIREL suffers little from

complication or complexity.

5.6. COMPARISON WITH CENTAUR

The second Al system to be compared with SQUIREL is CENTAUR [AIKINS 84] which is a
consultation system that produces an ‘interpretation of data and a diagnosis based on a set of test
results. It uses a knowledge representation scheme that is a combination of frames and rules

represented in a data structure called a prototype.

A prototype contains two kinds of information.
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1. COMPONENTS: domain specific information which represents characteristics of the
_ prototype.

2. SLOTS: domain independent information which specify information used in running

the system.
Components may themselves have slots associated with them, including a special RULE slot that

links the component to rules which determine values of the component.

An example of a PROTOTYPE is:
"PROTOTYPE: Obstructive Airways Disease (OAD)
COMPONENTS

TOTAL LUNG CAPACITY
Plausible Values: > 100
Importance: 4

REVERSIBILITY
Rules: 1,3,5
Importance: 0

CONTROL INFORMATION Deduce the degree of OAD
Deduce the subtype of OAD

ACTION INFORMATION Print the findings

There are four special prototype slots which are control slots used to control the consultation.



72

These are: _
1. CONTROL INFORMATION: indicatés how to proceed in order to instantiate the
prototype (asks the user for data to fill components).
2. IF-CONFIRMED and IF-DISPROVED: these slots determine what to do after the
clauses in the CONTROL slot have been filled and the prototype is either confirmed
or disproved.
3. ACTION INFORMATION: the premise in this slot is "if the system has completed
its selection of confirmed prototypes and this prototype is confirmed”. When the
premise is satisfied, the action is performed which is to generate summary statements
or print data interpretations. .
CENTAUR is specifically used in conjunction with PUFF [KUNZ 78] which is a pulmonary
disease diagnostic system, thus its associated rules deal with diseases. Rules are grouped into four
sets according to their functions. They consists of one or more premise clauses that refer to values
for comp(;nents and one or more action clauses that make conclusions about values for

components.

The sets of rules are:
1. patient rules: dealing with the patient.
2. summary rules: summarizes results of tests.
3. triggering rules: check values of components and suggest general disease categories.

4. refinement rules: refine preliminary diagnosis and prodﬁces a final diagnosis.

An example of a rule is:

RULEO13
PREMISE: ($SOR(LESSP* (VALl1 CNTXT MMF) 20)
(GREATERP* (VALl CNTXT FVC) 80))

ACTION: (CONCLUDE CNTXT DEG<-MMF SEVERE TALLY 900)

This rule states that:
IF the MMF/MMP predicted ratio is less than 20 or
the FYC/FVC predicted ratio is greater than 80

THEN there is strong suggestive evidence (.9) that the degree
of obstructive airways disease as indicated by MMF is severe.



73"
MMF - maximum midexpiratory flow
FVC - forced vital capacity
An example of a prototype network is given in Fig 5-7.

PFFF
NOEMAL OBSII'RUCTIVE AIRWAYS DISEASE

MIE) - SEVERE

ASTHMA BRONCHITIS

Figure 5-7: Prototype Network in CENTAUR

CENTAUR uses a hypothesis directed approach to problem solving. Each hypothesis is

represented by a prototype and the goal of the system is to confirm that one or more prototypes in

the network match the actual data.

The system begins by accepting data about a patient. This will trigger one or more prototypes

which are ordered by how closely they match the data. The closest matching prototype is selected

as the current prototype and the matching begins again. At any time there is only one current

prototype. When a prototype is activated, essential data is asked of the user (what to ask is
obtained from the CONTROL SLOT). The IF_CONFIRMED and IF-DISPROVED slots then

determine what to do next.

An example of how CENTAUR works follows:
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CURRENT PROTOTYPE : PUFF
1) Patient Number
097
2) Referral Diagnosis
ASTHMA
3) Total lung capacity
139
4) FVC
82
5) MMF
12

Triggered Prototypes: ASTHMA, CM 900
NORMAL, CM 500: Reason FVC 82
OAD, CM 900: Reason MMF 12

MoreSpecific Prototype Chosen: NORMAL OAD
These prototypes are filled with the data values already known. Inconsistent values lead to the CM
(certainty factor) of the prototypes being lowered. CENTAUR will continue prompting the user as
follows:

Hypothesis list: (OAD 990) (NORMAL -699)

CURRENT PROTOTYPE: OAD
1) RV/TLC Observed-predicted
25

Confirmed list: OAD PUFF
MoreSpecific Prototype chosen: SEVERE

CURRENT PROTOTYPE: SEVERE
12) FEV1
42

Confirmed list SEVERE OAD PUFF
MoreSpecific Prototype Chosen: ASTHMA

CURRENT PROTOTYPE: ASTHMA

13) CRP
20

Confirmed list :ASTHMA SEVERE OAD PUFF

- @ the user’s answers are in italics
o CM - stands for the certainty factor accorded to each prototype

o MMF - maximal midexpiratory flow
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e FVC- forced vital capacity

Q FEV1 - forced expiratory volume at one minute

e TLC - total lung capacity

e RV - residual volume

¢ CRP - change in residual predilation
CENTAUR'’s hypothesis directed approach is basically. a top down, backward chaining strategy of
classification. The CONTROL-INFORMATION slot in a prototype prompts the user for
information needed to confirm or disprove a prototype (hypothesis). The IF-CONFIRMED or IF-
DISPROVED slots guide the system to proceed further with the consultation.

Rules associated with the components of a prototype are specific to that component. This leads to
an object oriented design where specific components of a prototype will have specific rules

associated with it.

5.7. Classification in SQUIREL

SQUIREL can support a hypothesis directed classification scheme similar to CENTAUR’s in its

hierarchy mechanism. We could have a hierarchy of these v-entity types as follows:

PATIENT.V(Pno, C, FYC, MMF)

NORMAL.V(Pno, STATUS) OAD.V(Png, RV/TLC)

r

MILD.V(Poo, STATUS)  SEVERE.V{Pno, FEV1)

ASTHMA.V(Pno, CRP) BRON.V(Pno, CRP)

Figure 5-8: Air.Disease.Hierarchy

The v-entity type, ASTHMA.V is defined as follows:

CREATE VIEW ASTHMA.V

AS SELECT PNO,TLC,FVC,REV, TLCCHANGE
PATIENT, OAD, SEVERE, ASTHMA
TLC < 140 AND FVC > 5
FVC < 20 AND MMF < 15
RV/TLC > 20 AND FEV1 < 50
CRP > 10 AND CRP < 25;

FHE
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SQUIREL is able to classify a patient and diagnose the disease he/she might have. This is done
when the user gives all information required to perform an accurate diagnosis. If all information is
given, the determination of which v-entity types the new entity should be inserted info will be
performed by SQUIREL’s classifier.

An example of inserting a patient entity into the AIR. DISEASE.HIERARCHY follows:

INSERT INTO AIR.DISEASE.HIERARCHY
VALUES (PNO 792’ ,TLC r139’, EFVC

= 1827, MMF ='12/,
RV/TLC = ’25’, FEV1 = 42/, CRP

1207);

Given the above insertion, SQUIREL’s classifier will determine that the entity referenced by the
patient number being 792 will be in the v-entity type ASTHMA.V.

One shortcoming of SQUIREL is that it is only able to classify an entity when all its relevant
attributes are known. Unfortunately this does not usually occur in a consultation system which
often requires interaction. CENTAUR uses a successive refinement strategy and also gives a step
by step account of what it is doing. Reasons for choosing a prototype are also available, this being
very important for consultation systems dealing with a person"s health. CENTAUR is oriented

towards being an expert consultant.

We feel that SQUIREL can also be developed to emulate a systerr; like CENTAUR. To achieve
this, rules similar to the ones controlling CENTAUR need to be defined.
1. We would need to know what basic information is always provided, e.g., PNO, TLC.
2. Rules to prompt the user for more information will be defined.
3. SQUIREL's classifier will interactively update the entity’s status until the entity is
fully classified.
As rules in SQUIREL are implemented in a high level language and triggered by changes in the

database, we could develop rules to do a similar task as CENTAUR’s prototype network.

An outline of what is to be done follows:
e We use the SQUIREL hierarchy defined above and rules defined in PL/1 to emulate
the reasoning done in CENTAUR.

e Rules/programs are attached to each v-entity type found in the hierarchy. These



77

programs will give the present classification status of the entity in question and the
reasons as to why the classification is chosen.
oThe rules will then prompt the user for more information until the entity is fully

classified.

Assume we do the following:

CREATE OAD.V AS :

SELECT PNO, TLC, FVC, MMF, RV/TLC

FROM PATIENT, OAD |

WHERE TLC < 140 AND FVC < 90 AND MMF < 15
TRIGGER OAD.RULE; :

INSERT INTO AIR.DISEASE.HIERARCHY
VALUES (PNO=' 792’ ,TLC='139' ,FVC='82', =12');

This would cause the OAD.V v-entity type to be updated and the OAD.RULE to be invoked.
OAD.RULE is a program written in a high level programming language PL/1 and embedded SQL
statements [DATE 86]. The pseudo code for this is given in the appendix C. Assuming we use the
OAD.RULE and have the above insertion, the user will be interactively asked for more input as
follows:

The reason this patient might have an OAD
(OBSTRUCTIVE AIRWAYS DISEASE) is because
THE TLC IS , 139
THE MMF IS , 12
THE FVC IS , 82
Which makes the certainty that he has an

OAD, 80%
The possible kinds of OAD for patient 792 are:
BRONCHITIS
ASTHMA

Could you please tell me 792’s RV/TLC:

Entering the RV/TLC will trigger another rule until a concluding diagnosis such as BRONCHITIS
is given. The user can use the PLAYBACK rule to find the path used by the classification
algorithm to come up with this diagnosis.

This is done by issuing the following command:
TRIGGER PLAYBACK;
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which will return the path of the most recent classification performed. This is shown in Fig 5-9 and
tells us that we classified the inserted entity as a patient then as having an obstructive airways

disease then as having a severe case of an obstructive airways disease.

HEALTH

PATIENT.V
OADV

SEVEREYV

Figure 5-9: Classification Path for Air Disease Hierarchy

Most classification systems have the ability to give a reasoning path for their inferences. This is
especially prevalent in expert systems for diagnosis, like MYCIN. We see that SQUIREL also
provides this capability through its use of rules like OAD.RULE.

In our system, the AIR.DISEASE.HIERARCHY has the v-entity types PATIENT.V,
NORMAL.V, OAD.V, MILD.V, SEVERE.V, ASTHMA.V and BRON.V. Each of these v-entity
" types will have a rule attached to it. This rule by convention will have <v-entity type>.RULE as its

name and will be defined in a manner similar to the OAD.RULE. .

The basic function of each rule is to:

o Determine certainty factors.

o Print further possible classifications.

o Prompt the user for more information.

o Update the v-entity type and hierarchy which will lead to other rules being invoked.
It is to be noted that leaf v-entity types will not need to be further classified and thus will not
prompt the user for more information. Instead the 'leaf’ v-entity types will have rules which give a
concluding diagnosis. Thus we see that SQUIREL’s classifier with the help of rules defined in a
high level programming language can pexform tasks similar to those that CENTAUR does.
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CONCLUSION

In this research, we have defined SQUIREL, a spéciﬁcation and query language for our modified
RM/T relational database model. In the design of SQUIREL, we chose to extend the well-known
query language SQL, so that it supports:

1. INHERITANCE: The hierarchy allows subclasses to inherit all attributes of its
superclasses.

2. CLASSIFICATION: Both the general class-subclass and the more specialized class-
instance classifications are provided. |

3. DEFAULTS: Optional default assignments to base entity types allow the system to
’reason’ about these entity types based on the users’ underlying assumptions.

4. INTERNAL MANAGEMENT OF VIEWS: The hierarchy which consists of v-entity
types provides a basis for views to be combined into one st}ucmre and managed by

the system.

With SQUIREL, the user is able to define objects (v-entity types) in hierarchies allowing
semantic information to be captured within the model. These hierarchies can be viewed as data
structures and as such can be queried and modified through constructs provided by our language.
SQUIREL has been designed to help the user as much as possible. For example, it is possible to
add new entities to the hierarchy without being aware of all the existing entity types. SQUIREL
also allows the user to define procedures so as to exercise more control over both the hierarchies

and the database.

SQUIREL has been compared with KEE and has a general class-subclass classifier as well as
KEE's class-instance classifier. Inheritance in both SQUIREL and KEE proceeds through the use

79
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of hierarchies and they also both share a similar default concept. KEE has a powerful rule base and
although SQUIREL does not have a rule base, it is able to define and use procedures written in a

high level programming language.

The procedure mechanism of SQUIREL is also able to emulate CENTAUR's frame/rule
prototype method of classification. In CENTAUR, the prototype directly invokes rules attached to
its slots and in SQUIREL the trigger construct similarly invokes procedures attached to the v-
entity types of SQUIREL’s hierarchies. SQUIREL is not able to do a CENTAUR-like probability
classification so we once again reiterate that it has not been our intention to incorporate a rule base
in SQUIREL.

We have kept SQUIREL simple and have been able to retain the efficiency and robustness of
database systems. With its added constructs, SQUIREL has been shown to compare favorably with

two prominent Al systems.

6.1. Future Research

SQUIREL's design could be further extended to incorporate the concept of having a hierarchy of
hierarchies, ‘where several smaller hierarchies are combined to form a larger hierarchy. For
example, we might want to combine a university personnel hierarchy and a university buildings
hierarchy into a university hierarchy and in turn combine several university hierarchies into an
institute of higher education hierarchy. This aggregation principle might either be incorporated into
SQUIREL’s current hierarchy structure or a new SQUIREL hierarchy could be developed, the
reason being that agéregation of objects might be more suited to specialization relationships.'
Specialization relationships are used to define possible roles for higher level objects [ABITE 87].
For example, we can have the v-entity types: computing science students and honor students. These
are specializations of the v-entity student-and are possible roles taken by a student. We notice that.
the specializations are not disjoint, that is, a computing science student can also be an honor student

which is not allowed in SQUIREL’s current generalization hierarchy.

If the hierarchy is implemented based on the view facility in SQL, it might also be pertinent to

consider incorporating semantics into the view updates. This involves understanding the meaning
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and role of updateé on views. For example, suppose we have a ’computing science graduate

student’ base entity type and two v-entity types as shown in Fig 6-1.

Name | Sutus | Volleyball Namo | Volleybail] Name | Stams
John Thesis Yes John " Yes John Thesis
Mary Thesis No Joe Yes Mary Thesis
Jane Course No Tim Yes . Joe Thesis
Joo Thesis Yes
Tmn Course Yes
COMPUTING SCIENCE VOLLEYBALL GRADUATING

GRADUATE STUDENTS

Figure 6-1: Computing Science Graduate Students
The graduating v-entity type is used by the graduate program chairman and is a view of all
computing science graduate students who are completing their thesis as a final requirement for their
degree. The volleyball v-entity type is used by the volleyball captain and is a view of all computing
science graduate students who are playing in the inter-mural competition. Now consider the
situation where the volleyball captain deletes John from the volleyball v-entity type. Normally this
does not mean that John is deleted from the computing science graduate student base entity type.
On the other hand, if the graduate chairman deletes John from the graduating v-entity type it would
probably mean that John has completed his degree and should also be deleted from the computing
science graduate student base entity type. We see that deletions to different v-entity types defined
from the same base entity type should result in different operétions to be performed on the base
entity type. There are many situations where view updates are ambiguous [KEL 86a] and Keller’s

[KEL 86b] algorithm for view translation could be incorporated to deal with such issues.

Finally more research should be done on the feasibility of incorporating into SQUIREL more
. elaborate features of Al systems like version management, alternate worlds reasoning and truth

maintenance facilities.
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Appendix A
USE OF SQUIREL CONSTRUCTS

A.l. Variables

The following is a brief description of the variables used in the constructs to be presented. They

are given in alphabetical order.
<attribute> : attribute of a v-entity type or entity type

<category name>/<category> : set of characters that idcntiﬁes the category of a hierarchy

<entity type> : name of a base entity type
<key attribute> : key attribute of a v-entity type or entity type
<name> : name of a hierarchy that has been created

<partition name>/<partition> : name of a partition of a v-entity type

<unique hierarchy name>  : set of characters that identifies a hiera}chy
<value> : value attached to a attribute

<view name> : name of a v-entity type that has been created
(eeee) : optional variables are placed in brackets

Constructs used at the TYPE level will be described below.

A.2. CREATION
The form of creation would be:

CREATE HIERARCHY <unique hierarchy name>
(CATEGORY = <category name>);

Effect:
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1. A hierarchy relation having <unique hierarchy name> is created which will

- automatically have two attributes SUB and SUP. ‘

2. If CATEGORY is given it will be an alias for SUB. Otherwise <name>.CATEGORY
will be the CATEGORY name.

Note:
e Reference 10 this hierarchy is through the <unique hierarchy name> followed by
.HIERARCHY.
¢ Hierarchy names must be unique (the name is checked against those already existing in
SYSHIER).
¢ The categorization refers to v-entity types and indicates the general theme, idea or type

of structural breakdown of the hierarchy.

A.3. INSERTION

To insert into the hierarchy we do:
INSERT INTO <name>.HIERARCHY

V-ENTITY = <viewname>, (PAR(TITION)) = <partition name>)
V-ENTITY = <viewname>, (PAR = <partition name>)
V-ENTITY = <viewname>;

Effect:

1. V-entity types are inserted into the hierarchy relation spéciﬁed.

2.The SYSHIER is updated with the <name> as the Name attribute value and
<viewname> as the Participant attribute value.

3. Once a v-entity type is inserted into a hierarchy, a virtual attribute field is attached to
this v-entity type and will store the partition name. This virtual attribute will
reference a virtual table consisting of the subsumed v-entity types of the v-entity type
in the specified hiefarchy.

If PAR is given, the virtual attribute is named <partition name> otherwise it is named
<name>PARTITION. The hierarchy into which the v-entity type is entered is

known by <name>.
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Note:
e All the values entered must represent v-entity types.
e SQUIREL’s classifier is invoked on all new entries (type level). The classifier will be

able to determine all other subsumed as well as subsuming v-entity types of the new

v-entity type.

A.4. UPDATES

Updates can be performed on a hierarchy as follows:
UPDATE <name>.HIERARCHY

SET PAR = <partition name>
WHERE = V-ENTITY = <view name>;

Effect:
1. The partition (virtual attribute) name attached to the v-entity type used in the

hierarchy specified is changed.

Note:
o The user is only able to update the partition name and not the structure of the

hierarchy.

A.5. DELETION

Deletions on hierarchies follow this format:
DELETE FROM <name>.HIERARCHY

WHERE V-ENTITY = <view name>;
Effect:
1. The v-entity type referenced is deleted from the hierarchy mentioned.
2. The partition name (virtual attribute) attached to this v-entity type for the hierarchy
specified is removed.
3. The subsumed v-entity types will be relinked with the subsuming v-entity types of the
deleted v-entity type (the classifier is invdked on the subsumed and subsuming v-

entity types of the v-entity type deleted).
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4. The v-entity type is also deleted as a participant in the named hierarchy from the

SYSHIER table.

Note:
o If the top level v-entity type is deleted the hierarchy will be split into two.
o The v-entity typé itself is not deleted, it is only removed from the hierarchy. This
means that the v-entity type still exists in the database but is taken out of the specified

hierarchy.

A.6. DROP

To DROP a hierarchy in SQUIREL we do:
DROP HIERARCHY <name>, HIERARCHY;

Effect:
1. The hiérarchy relation referenced is dropped and the SYSHIER is updated. All
records having the hierarchy relation referenced in the NAME attribute is deleted.
2. For each of the v-entity types that participated in the hierarchy the <partition> used

for that hierarchy is removed.

Note:

¢ The v-entity types that participated in the hierarchy are not dropped.

A.7.RETRIEVAL

The general format of retrievals on hierarchies is:
SELECT <category> FROM <name>. HIERARCHY;

SELECT <partition> FROM <view name>;

Effect:
1. All the v-entity types in the named hierarchy are retrieved.

2. The subsumed v-entity types of the v-entity type specified are retrieved.
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All the above operations apply to v-entity types (type level) of the hierarchy. In addition, entities
themselves (individual records) may be used in hierarchy operations. Operations at the instance

level are described next.

A.8. INSERTION

To insert entities into the hierarchy we do:
INSERT INTO <name>.HIERARCHY

VALUES ( <attribute>=<value>, <attribute>=<value>,..):;
Effect:
1. For insertion of entities, an actual record is inserted into the base entity types

determined by the classifier.

Note:
¢ One of the attributes specified must be a key attribute.
e When we are inserting entities into the hierarchy, the attribute names must be given..
° qu entity insertion, the normal problems of view updates apply [BANC 81].

o SQUIREL’s classifier is invoked on all new entries (instance level).

A.9. DELETION

Corresponding to INSERTION, entities can also be directly deleted from a hierarchy:

DELETE FROM <name>.HIERARCHY
WHERE <key attribute>=<value>;

Effect:

1. The entity specified will be deleted from all entity types in which the entity is stored.
Note:

e The attribute specified must be a key attribute.
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A.10. UPDATES

Updates to entities in hierarchies are made in the following form:
UPDATE <name>.HIERARCHY

SET <attribute> = <value>
WHERE <key attribute> =
Effect:

1. The attribute value for the entity referenced in the hierarchy is changed.

Note:
e The key attribute must be given.
e Virtual attributes cannot be updated.

» The user is not able to update any of the key attributes.

A.11. RETRIEVAL

To retrieve information from a hierarchy we do:

SELECT <category name> FROM <name>.HIERARCHY
WHERE <attribute> = <value>;

SELECT <attribute>,... FROM <name>. HIERARCHY
WHERE <attribute> = <value>;

SELECT <partition name> FROM <view name>
WHERE <attribute> = <value>;
Effect:
1. The v-entity type name(s) in which the entity is found is/are returned.

2. The attribute(s) for the entity in the hierarchy is/are returned.
Note:

e The key attribute musf be given in the WHERE clause.

e The entity is found in every v-entity type that subsumes it.
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A.12. SETARG

The SETARG construct is used to define the types of the arguments used in procedures defined in

SQUIREL. The SETARG is used in the following form:

SETARG <procedure>.ARG ‘
argl CHAR(20), arg2 CHAR(3),...,argN NUMBER;

Effect:
1. The system entity type <procedure>. ARG is assigned N arguments of the type stated
in SETARG.

Note:
1. Every procedure name must be unique in SQUIREL.
2. The procedure can have any number of arguments of different types and these will be

defined in the SETARG construct.
3. There is only one entity (tuple) in each <procedure>.ARG and every time an INSERT

is performed to a <procedure>.ARG that entity will be overwritten.

A.13. Algorithm for coalescing E-relations

{This algorithm is used to coalesce the E-relations representing the v-entity types in a hierarchy.
An important point is that the E-relation names are not physically changed but rather SQUIREL is
able to internally equate two or more E-relations. This is because a v-entity type may participate in
different hierarchies causing the E-reiations of its base entity types to be known by different E-
relations. For example, a graduate student is subsumed by a student in a personnel hierarchy but it
may also be subsumed by employee in an employment hierarchy. Therefore we would not want to
physically set the E-relation GRAD.V to be the E-relation STUDENT.? when we enter GRAD.V
into the personnel hierarchy and then switch GRAD.? to EMPLOYEE.? when we enter GRAD.V
into the employment hierarchy. Instead SQUIREL should be able to internally reference GRAD.?
as either STUDENT.? or EMPLOYEE.?}

1. When the first v-entity type is entered into a hierarchy, the E-relations representing

the v-entity type is arbitrarily set ot one of the E-relations.
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2. Subsequently, when v-entity types are entered into the hierarchy. The type level

 classifier is first used to structure the v-entity types.

3. The top level v-entity type’s base entity type is chosen. The E-relation of this base
entity type is used as the connecting E-relation and all other E-relations of base ehtity
types in the hierarchy are set to this E-relation.

4.If there is more than one E-relation for a top level v-entity type, one is chosen

arbitrarily.
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Appendix B |
ALGORITHMS FOR SQUIREL CONSTRUCTS

A brief description of the constructs is given in braces {} before the algorithm is presented.

B.1. TYPE Level Classifier

{The TYPE LEVEL classification algorithm is invoked when a v-entity type is entered into a
hierarchy. It determines where the inserted v-entity type should be placed in the hierarchy by
finding out the inserted v-entity type’s parent and child v-entity types. When a hierarchy is empty,
the first v-entity type is assumed to be the top level v-entity type but as more v-entity types are
entered the classifier will make the appropriate changes.}

1. Assume the new v-entity type to be classified is named X.
2. Obtain the attributes attached to each v-entity type in the named hierarchy.
3. Check the attributes of the new v-entity type against thoée of the v-entity types
obtained and classify as follows:
¢ V-entity types which contain some of the attributes of X subsume X. In other
words v-entity types which are proper subsets of X will subsume X.
e V-entity types which have all of the attributes of X and more are subsumed by
X. In this case, X is a proper subset! of some other v-entity type in the
hierarchy.
¢ V-entity types which have exactly the attributes of X are at the same level as X.
e V-entity types that have contradictory attributes, i.e. v-entity type A has
attribute ¢ while B does not and B has attribute d while A does not, are not

linked.

19We use subset here in terms of the number of attributes a v-entity type has and a child v-entity type will have all the
attributes of its parent v-entity type as well as some attributes unique to itself. .
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4. After the new links are added to the hiérarchy relation, redundant links are removed.
For example, if we add (A, X) and (X, D) into the hierarchy relation where we
previously had (A, D), then (A, D) is removed from the hierarchy relation.

5. If there are no v-entity types that subsume X, an extra link (X, TOP) is added to the
hierarchy relation. Now if A is the present TOP v-entity type that is, (A, TOP)
currently exists, X may now subsume A and (A, X) is to be added. Thus (A, TOP) is
deleted and (X, TOP), (A, X) are added.

We see that the type level classification algorithm proceeds top-down and follows a backward

chaining?? approach in determining where a v-entity type belongs.

B.2. INSTANCE Level Classifier

{ The INSTANCE LEVEL classification algorithm is used to determine the v-entity types that an
entity is found in. It will classify an entity to the lowest level v-entity type in a hierarchy. This is
because the v-entity type at a lower level will automatically include its parent v-entity types and the
entity will be, known to be stored in the low level v-entity type as well as the parent v-entity types
of this low level v-entity type.} .

1. Obtain the "leaf" v-entity types in the hierarchy using the following query:

SELECT SUB FROM <name>.HIERARCHY
WHERE SUB not in
(SELECT SUP FROM <name>.HIERARCHY):

2. Get attributes of each of the v-entity types selected.
3. Select the v-entity types which have the attributes referenced in the query.
4. Find the applicable v-entity type by:
a. Discard the v-entity types that are subsumed by some other in the set.
b. If one v-entity type is left choose it (SUCCESS).
¢. Otherwise obtain all the v-entity types above (subsuming) the ones selected

and repeat step 2.

20Start from the top-level v-entity type, which represents a goal and then go down the hierarchy to check its subsumed
v-entity types.
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d. If no v-entity type(s) are found from step 4b and we have more than one
v-entity type left then the insertion is UNSUCCESSFUL.
5. Differences appropriate to insert or select operations.

e For insertion queries: Once the v-entity type is found, the data will be entered
into the appropriéte P-relations corresponding to the base entity types of the
v-entity type. o

o For select queries: the data will be rétrieved from the appropriate P-relations
corresponding to the base entity types of the v-entity type.

6. If no v-entity type is found then the insertion is UNSUCCESSFUL.

B.3. CREATE algorithm

{The create operator is used to create a hierarchy. It only informs the system to reserve storage

for the hierarchy but the hierarchy will contain nothing until v-entity types are inserted into it.}
1. Check the SYSHIER to determine that a unique hierarchy name is used. .
2. IF <hierarchy> is not in SYSHIER
e Update the SYSHIER to include the new hierarchy.
e Allocate storage for the new hierarchy relation with attributes SUB and SUP.
ELSE
e Inform the user that the hierarchy name given is not unique and therefore

cannot be used.

B.4. DROP algorithm

{The drop operator is used to drop a hierarchy from the database. When a hierarchy is dropped
the v-entity types are not deleted from the database as they may still be used in some other
hierarchies. }

1. The named hierarchy with all its v-entity types is removed from the SYSHIER.
2. The hierarchy relation specified is also removed and storage is freed.

3. The partition attribute of each of the v-entity types in the named hierarchy is
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removed. The system table storing the definition of the v-entity types is updated to

"~ show this.

B.5. INSERT algorithm <TYPE>

{The type insert operator is used to form the hierarchy and v-entity types which are the

components of the hierérchy are inserted here. }

1. Classify the v-entity types entered using the TYPE LEVEL classifier.

2. For each v-entity type entered, a partition attribute is attached to its structure. This
attribute will have a user defined name or a default name. The system table storing
the v-entity type definition will be updated to include this new attribute.

3. Thé SYSHIER is updated to include the new v-entity types of the hierarchy.

4. The hierarchy relation is updated to include the new v-entity types.

5. V-enﬁty types that cannot be classified by the TYPE LEVEL classifier are printed out

as Crrors.

B.6. INSERT algorithm <INSTANCE>

{The instance insert operator is used to insert entities into the hierarchy. The user need not know
the v-entity types or base entity types where the entity is to be inserted but need only know which
hierarchy to insert the entity. }

1. Classify the entity into its correct v-entity type using the INSTANCE LEVEL
classification algorithm.

2. Check is made to ensure that the entity includes a key attribute.

3. Create new system surrogate for entity named.

4, Using‘ the v-entity type found in step 1, find its base entity types.

5. Using the default entity type, map user given attribute values over the default
attributes.

6. Using the E-relation and the P-G relation insert this new entity into the appropriate

P-relations of the base entity types found in step 4.
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B.7. DELETE algorithm <TYPE>

{The type delete operator is used to delete v-entity types from a hierarchy.}

1. V-entity type specified is removed from the hierarchy relation as well as the
SYSHIER relation.

2. The partition attribute of the v-entity type that corresponds to the named hierarchy is
removed. The system table storing the v-entity type definition is updated to show
this.

3. The TYPE LEVEL classifier is invoked to restructure the hierarchy because of the

deleted v-entity type and the hierarchy relation is updated accordingly.

B.8. DELETE algorithm <INSTANCE>

, {The instance delete operator is used to delete entities from a hierarchy. Note that attributes of

entity types cannot be deleted and only attribute values can be deleted. }

1. Classify the entity into its correct v-entity type using the INSTANCE LEVEL
classification algorithm.

2. Determine the base entity types of the v-entity type found using the system table
storing the v-entity type definitions.

3. Determine the base entity types which store the attributes that are to be deleted.

4. Delete the entity specified from the E-relations and P-relations of the base entity
types that have the attributes specified.

5. At any of the above steps if a v-entity type or base entity type is not found, an error is

returned.
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B.9. RETRIEVAL algorithm <TYPE and INSTANCE>

{The type and instance select operator is used to retrieve information about the v-entity types in a
hierarchy. Information asked for are in two forms, one concerning the structure of the hierarchy,
i.e, the subsumed or subsuming v-entity types and the other concerning the attribute values of
v-entity types in a hierarchy. }

1.Ifan enti;y is spéciﬁed, find the surrogate key for that entity from its base entity type
in the specified hierarchy. |
2. Determine if attributes, partitions/categories (v-entity type names) or both is needed.
3. If attributes are needed.
e Check each ’leaf’ v-entity type in the hierarchy specified until the surrogate
found in step 1 matches.
¢ Return the needed attributes. (Remember that a leaf v-entity type inherits all
attributes of its subsuming v-entity types. Therefore all attributes are attached
to the leaf v-entity type.)
4. If category/partition is needed
.o Determine which v-entity type(s) the surrogate key found in step 1 lies.

e Return the v-entity type name(s).

B.10. UPDATE algorithm <TYPE>

{The type update is only used to update the partition attribute name of a v-entity type in a given
hierarchy.}

1. The SYSHIER is checked to determine that the v-entity type specified exists in the
named hierarchy.

2. If the v-entity type exists, the partition attribute name is changed and the system table
that stores the v-entity type definition is updated to show this.

3. An error is reported if the v-entity type does not exist.
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B.11. UPDATE algorithm <INSTANCE>

'{The instance update is used to update attribute values of v-entity types in a hierarchy. Note that
the number of attributes cannot be updated through the hierarchy but only the value of attributes
can be updated. }

1. Classify the entity into its correct v-entity type using the INSTANCE LEVEL
classification algorithm.

2. Determine the base entity types of the v-entity type found using the system table
storing the v-entity type definitions.

3. Determine the base entity types which store the attributes that are to be updated.

4. Update the P-relations of the base entity types that have the attributes specified.

5. At any of the above steps if a v-entity type or base-entity type is not found, an error is

returned.

B.12. TRIGGER algorithm

{This is also the interface procedure used in conjunction with the trigger construct. The trigger
construct can be used in three ways, in conjunction with any SQUIREL operation, used to invoke a
procedure directly or to attach a procedure to a base entity type where every time that base entity

type is accessed, the procedure will be invoked. }

1. If TRIGGER is used with a SQUIREL operation (SELECT, DELETE, etc.) or if it is
used directly like a call then the procedure table will be checked for the existence of
the procedure.

2. The procedure is invoked through an interface with a users’ program and the
arguments to the procedure are passed.

3. Errors which apply to procedures, e.g., wrong arguments are caught by the procedure.

4. If the TRIGGER is used to attach a procedure to a base entity type the procedure

table is updated to show this.
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B.13. Pseudo Code for the PLAYBACK rule

PLAYBACK: PROC OPTIONS (MAIN)
DCL PLAYBACK.ARRAY (100) CHAR (20),
I,J FIXED (3),
HOLD, NEXT, SUB, SUP, HNAME CHAR (20);
/*************************************************/
/* using embedded SQL, we first get the arguments*/
/* HNAME will hold the hierarchy name and NEXT */
/* will hold the v-entity type whose path is to */
/* be found ' */
/*************************************************/
EXEC SQL DECLARE PLAYBACK.ARG TABLE
(HNAME CHAR (20),
ETNAME CHAR(20) );

EXEC SQL SELECT HNAME, ETNAME
INTO :ENAME, :NEXT

HNAME = HNAME| |’ .HIERARCHY' ;

I=1;
/************************************************/
/* we now f£find the path using the hierarchy */
/* relation. Remember that the hierarchy */
/* relation has two arguments SUB and SUP which */
/* are the SUBORDINATE and SUPERORDINATE */
/* v-entity types respectively. The TOP level */
/* v-entity type will have a SUP of TOP - %/

PAER AR L e e e I I a2 e R L e L Ly
DO WHILE NEXT ~= 'TOP';
EXEC SQL DECLARE :HNAME TABLE
(SUB CHAR (20), SUP CHAR(20));

EXEC SQL SELECT SUP
INTO :SUP
FROM :HNAME
WHERE SUB = :NEXT;

PLAYBACK.ARRAY (I) = SUP;

NEXT = SUP;

I=1I+1;

END;
/************************************************/
/* the path is now printed out */

[REIKIKRKKKKIARKKKKIIAARKEAK KK AIARRRKK I I* KKK KKK [
DOJ=ITO 1 BY -1
PUT SKIP LIST (PLAYBACK.ARRAY(J)):
END;



END PLAYBACK;
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Appendix C
Pseudo code for the OAD rule

OAD.RULE: PROC OPTIONS (MAIN)

DCL PNO FIXED (8),
TLC FIXED (2),

FVC, MMF, RV/TLC FIXED(3);

EXEC SQL DECLARE OAD.V VIEW
(PNO NUMBER (8), TLC NUMBER (2),
FVC NUMBER (3), MMF NUMBER (3)
RV/TLC NUMBER (3))

EXEC SQL SELECT PNO, TLC, FVC, MMF, RV/TLC
INTO :PNO, :TLC, :FVC, :MMF, :RV/TLC
FROM OAD.V

/******************************************************/

/* rules to determine the certainty factors are shown */
/******************************************************/
IF TLC < 15 AND TLC > 10
THEN TLCERTAIN = 0.21

IF MMF > 15 AND TLC > 0
= 0.1

THEN MFCERTAIN 3

IF FEV1 < 20
THEN FCERTAIN = 0.1

TOTALCERTAIN = TLCERTAIN + MFCERTAIN + FCERTAIN

PRINT ’'The reason this patient might have an OAD
(OBSTRUCTIVE AIRWAYS DISEASE) is because
THE TLC IS ,'TLC’
THE MMF IS ,'MMF’
THE FVC IS ,’'FVC’
which makes the certainty that he has an
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OAD, 'TOTALCERTAIN')

/***************************************************/

/* we now cobtain the subsumed v-entity types of OAD*/

/* under the PARTITION of OAD.V which is POSSIBLE */
/***************************************************/

EXEC SQL DECLARE X CURSOR FOR
SELECT POSSIBLE
FROM OAD

PRINT 'The possible kinds of OAD for patient’, PNO,’are:’

EXEC SQL OPEN X:
DO WHILE (more records)
EXEC SQL FETCH X INTO POSSIBLE
PRINT POSSIBLE
END; -
EXEC CLOSE X;

/****************************************************/

/* the user is prompted for more information which */
/* will help in further classification */
/****************************************************/
PRINT" Could you please tell me "PNO" RV/TLC:"

’ (ENTER RV/TLC)

-

/***************************************************/

/* an update is performed on the OAD.V which will */
/* automatically update the hierarchy and lead to */

/* other rules being invoked depending on which */
/* v-entity type is updated */
/* ‘ */
/* in this particular case if RV_TLC is 25, the */

/* v-entity type SEVERE.V is updated and the rules */
/* attached to SEVERE.V (SEVERE.RULE) will be fired*/
/***************************************************/
EXEC SQL UPDATE OAD.V
SET RV/TLC = :RV_TLC
WHERE PNO = :PNO;

END;
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