
Test Sequence Generation
For Network Protocols

Rajendra R. Datar

BE. University of Jabalpur, M.Tech. I.I.T. Bombay

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Rajendra R. Datar 1987

SIMON FRASER UNIVERSITY

May 1987

All rights reserved. This thesis may not be
reproduced in whole or in part. by photocopy

or other means, without the permission of the author.

Approval

Name: Rajendra R. Datar

Degree: Master of Science

Title of Thesis: Test Sequence Generation For Network Protocols

Examining Committee:
Chairperson: Dr. Joseph Peters

--

Dr. Tiko Kameda
Senior Supervisor

DL,'' ~ & h u n Luk

/
/

Dr. Son Vuong
External Examinar

May 28, 1 3 8 7

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Simon Fraser Uni vers l t y the r i g h t t o I end

my thes is , proJect o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f t he Simon Fraser Un ive rs i t y L lb rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o ther educational I n s t i t u t i o n , on

i t s own behal f o r f o r one o f i t s users, I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h l s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h l s work f o r f i n a n c i a l ga in s h a l l not be allowed

r i t h o u t my w r i t t e n permission.

T i t l e o f Thesis/-

Author:

(k ignature)

Y name

J I

(date 1

Abstract

To establish confidence in software, some kind of testing is normally carried out.

It involves presenting a set of test cases to the software and evaluating the output

generated for appropriateness. Since it is not practical to present every possible input

to the software under consideration, diffe'rent methods have been developed to reduce

the total number of test cases required for effective testing.

This thesis is concerned with testing products that implement computer

communication protocols. We investigate methods to systematically generate test cases

directly from their formal specifications in Estelle, a formal description technique.

which is based on the extended state transition model, being developed by the

International Standards Organization (ISO).

b

We first discuss the transformations used in our algorithms. We then develop a

general framework for generating different test cases. We also present another

algorithm, based on network flow theory, to obtain "optimal" test cases. Conditions

which must be satisfied for using this algorithm are discussed.

Table of Contents

Approval
Abstract
Table of Contents
List of Figures
1. Introduction

1.1. Importance of testing
1.2. Previous work
1.3. Motivation and goals of this thesis
1.4. Assumptions
1.5. Organization of the thesis

2. Background
2.1. Extended State Transition Model
2.2. Introduction to the Formal Description Technique

2.2.1. System architecture
2.2.2. Channel specification
2.2.3. Module specification

2.3. Test architecture using replacement scheme
2.4. Test architecture using derail scheme

3. NFTs and Graphical Representations
3.1. Normal Form Transitions

3.1.1. Phase I
3.1.2. Phase I1

3.2. The Control Graph
3.3. The Dual Control Graph

4. Algorithm
4.1. Parameter and value variations
4.2. Parameter and value combinations
4.3. Obtaining message instances
4.4. Overview of the algorithm
4.5. Major steps of the algorithm
4.6. Procedure New-subtour
4.7. Termination proof for New-subtour
4.8. Procedure One-transition

5. Optimal algorithm
5.1. Overview of the algorithm
5.2. Weighted Dual Control Graph
5.3. Network
5.4. Listing all the required subtours in a network

5.4.1. Analysis of the algorithm
5.5. ' Xetwork flow based algorithm
5.6. Comments
5.7. Example

6. Conclusion and Discussion
6.1. Contributions of this thesis
6.2. Comparison with Sarikaya's algorithm
6.3. Future work

6.3.1. Formal models
6.3.2. Test architectures
6.3.3. Program testing

Appendix A. Sarikaya's Algorithm
.4.1 The Data Flow Graph
A.2. Partitwning df the Data Flow Graph

A.2.1 Stage 1
A . 2 . L . Stage 2

'4.3. Sarikaya's Algorithm for generating test sequences

Appendix B. List of NFTs for Class 0 TP
Appendix C. Repetitive Executions of Self-loops

C.1. Connection establishment phase
C.2. Data transfer phase
C.3. Connection termination phase

.Appendix D. Property of IS0 Class 2 TP
D. 1. Introduction
D.2. Connection establishment in C2TP
D.3. Proof

References

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 5-1:
Figure 5-2:
Figure 5-3:

List of Figures

Test architecture using replacement scheme
Test architecture using derail scheme
A protocol entity with three modules
Control Graph CGOO
Control Graph CGl l
Control Graph CG12
Control Graph CG21
Control Graph CG22
Control Graph for IS0 Class 0 TP
Dual Control Graph for IS0 Class 0 TP
Control Graph for COTP with I/O labels

Chapter 1

Introduction

As computer networks proliferate, their protocols become diverse and complex.

Problems of

designing logically correct protocols.
specifying them precisely so they can be implemented as intended by the
designer,
testing protocol implementations for compliance with a specification or a
standard, etc..

are becoming important. For designing a logically correct protocol. there are a number

of general conditions. applicable to nearly all protocols. These include [suns 791:

8 Freedom from deadlock.
Completeness of the protocol to handle all conditions that may arise.
Stability or self synchronization. namely the ability to return to
"normal" behavior after an initial or temporary aberration [MeFa 761.
Progress, or the absence of cyclic behavior in which no useful activity
takes place,
Termination, or arrival at the desired final state.

There are a number of ways in which protocols can be specified. They include

flow charts, programming languages, state diagrams, and Petri nets. Generally, they

may be based either on the transition technique or on the programming language

technique. These techniques and their merits and demerits are discussed elsewhere

[suns 791. In any case, formal specification is preferred to informal specification

(e.g.. in natural languages) for many reasons. For instance, it facilitates precise

specification and verification of the protocol. The International Standards Organization

(ISO) is developing a hybrid technique, called the Formal Description Technique

(FDT, for short), alias Estelle. A brief description of the FDT is included in this

thesis.

In protocol testing, an actual implementation, called implementation under test

(IUT, for short). of the protocol is exercised with selected sequences of inputs (called

test sequences), for the purpose of comparing its behavior with the desired behavior

specified in the specification.

This thesis is concerned with systematically generating test sequences from a formal

specification of a protocol. It is assumed that the underlying system has a layered

architecture and protocols are specified using Estelle. Initially we perform certain

transformations on the original specification to obtain an equivalent specification which

is more convenient for generating test sequences. Then we obtain a global finite state

model with auxiliary variables. Using this model, we generate test sequences needed

to cover all representative situations.

1.1. Importance of testing

Different approaches have been and are still being investigated to verify the

correctness of computer programs. For example, efforts have been made to make

"formal proof of correctness" a viable approach to software validation. Unfortunately.

ingenuity required and the amount of work involved make this approach impractical

at the present time.

Currently, testing is the most common, widely accepted, and practical method of

establishing confidence in software. A test (or test suite) of software is defined to

be a set of test cases. A test case is an instance of presenting test data to the

software. The resulting output is then compared with the expected output. Testing

may find some flaws, but it cannot guarantee that all errors are detected. since it is

not practical to apply every possible input. For example, exhaustive testing of a

program containing two inputs, each 16 bits long, and requiring 1 millisecond to

produce the output, would require more than 13 years of CPU time. Therefore, it is

important to select a small set of test cases, capable of revealing most of the possible

errors [Chan 811.

In this thesis we first propose guidelines for selecting test cases and "cost" associated

with testing. We then propose two schemes to generate test sequences. The first

scheme is more general. but the test it generates is not very "efficient", in the sense

that it may send many redundant messages. The second scheme generates a minimum

"cost" test, but is applicable to only those protocols which satisfy some restrictive set

of assumptions.

1.2. Previous work

In this section we describe previous work on protocol testing and comment on each

method.

Early efforts on test design were all based on Finite State Machine (FSM)
models of the specification. In the testing scheme of Hanley and Rayner

[~ e ~ a 811 the objective was to "cover" each transition of the FSM
[~ a ~ s 811. A sequence of transitions that includes all the transitions of

an FSM is called a transition tour [NaTs 811. The implementation is
driven into a desired state and an input is applied and the output is
observed. Merely checking all the transitions will reveal very few errors.
In fact most current methods execute each transition with different values
(for the fields of a message) for improved fault detection capability.

2. Ural and Probert [UrPr 83, UrPr 841 first derive a grammar describing
the actions of the specification. They have written a program in Prolog
that accepts the grammar and generates test sequences. In this method,

the problem of writing a Prolog program to accept any grammar (or a
grammar derived from an arbitrary underlying FSM) to derive test
sequences remains to be investigated.

3. If a correct implementation (called reference implementation) of layer N is
available, then a method developed by Linn and Nightingale [LiNa 831 is
applicable. A 'transition tour consisting of user (i.e.. layer N+1)
interactions is generated by considering the FSM for the service
specification of layer N.

4. A variant of the above method is described by Linn and McCoy
[LiMc 831. A service specification is converted into two grammars (called

user . entity grammars) for the two peer entities. Then a composite
grammar is derived which consists of 4-tuples (requests and indications of
both entities). A test sequence is then generated starting with the initial
state and terminating when the final state is reached. In this method the
robustness of the IUT to handle the received peer level errors cannot be
checked. Therefore. some modifications are required at the test site. The
modifications to the peer level messages are carried out by an "exception
generator" which interfaces with the reference implementation. Another
problem is that some method must be devised to remove duplicate test
sequences. Typically. 1/3 of the test sequences are duplicate sequences

[LiMc 831.

5. IS0 Transport Layer Protocols (Class 0 and Class 21, initially specified in
a natural language, were subsequently converted into a formal specification
in Estelle by IS0 [ISOa 821. Sarikaya [Sari 841 developed a scheme for
test sequence generation from a specification in Estelle [see Appendix A].

Our point of departure is Sarikaya's work mentioned above.

0

1.3. Motivation and goals of this thesis

Initial work on test sequence generation for computer communication protocols was

reported in the literature as early as 1980 [Kawa 801. At that time, the

specifications were described in natural languages. With the growing complexity of

protocols. a need to formally describe them was recognized and different formal

models began to appear in the literature. IS0 took up the challenge and developed a

model. The model is still undergoing revisions, and therefore in this thesis the model

given in [ISOb 841 is used. Initial work on automatically generating test sequences

based on this model was carried out by Sarikaya [Sari 841. His method decomposes

a protocol into control and data flow functions (represented as the control graph and

the data flow graph, respectively). Test sequences are then generated using these

graphs. The major goal of this thesis is to devise a scheme which has some

advantages over Sarikaya's scheme. We will considerably simplify his method and

present two algorithms for generating test sequences.

1.4. Assumptions

In general, testing is based on certain assumptions. Some assumptions are

independent of the method used in testing. We will refer to these as common

assumptions. Additional assumptions are also made, depending on the specific method

used. We list below these two types of assumptions.

Common Assumptions :

1. The specification is logically correct.'
2. The source listing of the IUT is not available.
3. Correctness of the implementation is not dependent on the system load at

the product site.

Method-specific assumptions: All the additional assumptions are listed below. Some

technical terms in the list not defined at this point. will be defined later in this

thesis when appropriate. We invite the reader to return to this section after reading

Chapter 3.

 he task of proving a protocol logically correct is called protocol vdrdation or verification. It is an

important task, but is separate from protocol testing, which is the topic of this thesis.

1. The type of queue discipline between modules is of rendezvous type. (See
Section 2.2.3.)

2. No BEGIN block in the protocol contains loops with variable bounds. (See
section 3.1.1.)

3. The functions and the procedures in the specification are not recursive.
(See section 3.1.1.)

1 S. Organization of the thesis

In this chapter (Chapter 1). we have already described the motivation for testing

products that implement communication protocols, and presented a brief description of

the previous work carried out in this field. We have also stated assumptions that we

make in generating test sequences. In Chapter 2, the formal model to be used

throughout this thesis is introduced. Two architectures that are useful for testing are

described, and their advantages and disadvantages are compared. Chapter 3 discusses

the transformations which are applied to the original formal specification. to obtain an

equivalent specification in terms of Normal Form Transitions. The actual algorithms

for test sequence generation are described in Chapter 4 and Chapter 5. For

illustration, we apply the second algorithm to generate a set of test sequences for IS0

Class 0 Transport Protocol. In Chapter 6, we summarize the major contributions of

this thesis. We also point out those areas in test sequence generation where further

research work is needed.

In Appendix A, we present a brief description of Sarikaya's algorithm, and in

Appendix B, we list the Normal Form Transitions of IS0 Class 0 Transport Protocol.

These are used in Chapter 5 to derive test sequences. In Appendices C and D, we

prove that the algorithm presented in Chapter 4 is applicable to IS0 Class 2

Transport Protocol.

Chapter 2

Background

In order to make interconnection of (heterogeneous) computers possible and

convenient, it is necessary to provide a reliable data transportation service between

end processes and to support a meaningful communication between them. In order to

provide these services at a reasonable cost, and at the same time reduce the design

complexity, most networks are organized as a series of layers. Typically, a layer (N)

provides a layer (N) service to the (next higher) layer (IV+l) using the services of

(next lower) layer (N-1). A concrete example of such a layered architecture is the

Reference Model developed by IS0 .[Zimm 801.

To test an IUT which is the layer (N) in a product. (assuming that' lower layers

are already tested and determined to be correct), at least two interacting and co-

operating modules are required, one located at the tester site and the other located at

the product site. Placement of the testing modules at particular layers at the test

site and the product site gives rise to different test configurations or test

architectures. In this chapter, we describe the formal description technique and two

well known test architectures. The advantages and disadvantages of the two

architectures are then discussed. A detailed discussion on merits and demerits of

different architectures can be found in [Kawa 801.

2.1. Extended State Transition Model

In the past. Finite State Machine (FSM) models have been used quite successfully in

the specification of simple protocols. When applied to more complex protocols.

however, the FSM model becomes impractical because of a very large number of

states required. This is called the "state space explosionw problem [Boch 801. For

example, the use of sequence numbers introduces a different state for each possible

sequence number.

The Extended Finite State Machine (EFSM) model attempts to combine the

advantages of state transition technique and programming language technique

[Simo 821. It is called extended, since i t may contain variables (called minor

variables) in addition to a finite state machine. In a (conventional) FSM. the

occurrence of an event causes a state transition. For a transition to take place in an

EFSM. some conditions associated with minor variables must be satisfied, in addition

to the occurrence of an appropriate event. So, depending on the values of the minor

variables, different transitions could occur in response to the same event. Moreover, a

state transition may alter the values of minor variables as well as producing external

outputs. This concept of minor variables has been borrowed from programming

languages.

2.2. Introduction to the Formal Description Technique

This section briefly describes the FDT called Estelle, being developed by IS0

[ISOa 82. ISOb 841. for the specification of communication protocols and services.

The formal specification is based on an extended finite state transition model and the

Pascal programming language.

2.2.1. System architecture

A system is defined by a set of interacting modules. Interacting modules need

to be able to receive and send interactions (i.e.. inputs/outputs) from/to its
environment, and
to be interconnected to other modules to/from which they may
send/receive interactions.

The point at which a module interacts with its environment is called an interaction

point. Each interaction of the specified module with its environment can be

considered as an atomic event. The reception of an interaction (input) from the

environment produces, in general. a state transition of the specified module, which

may also give rise to other interactions (outputs).

If two modules are interconnected through a pair of interaction points (one for each

module), they may exchange only a given set of interactions. Therefore. the concept

of channel type is introduced. which defines a set of interactions to be exchanged.

The channel type also defines the role(s) (server or user) that modules using this

channel type are to play with respect to these interactions.

2.2.2. Channel specification

In the specification of a module, each interaction point of a module is characterized

by making reference to a channel type and a role within this channel type. As an

example of a channel type definition, consider a channel that connects some module to

a timer service module. A possible definition might be:

CHANNEL
t imer- interface (user , server)

BY user:
s t a r t (per iod: in teger) ;
stop;

BY server :
t ime-out ;

2.2.3. Module specification

A protocol is defined in terms of a collection of modules. The purpose of a

module specification is to define the behavior of the module as observable at the

interuction points to which it is connected.

The .notiel allows output interaction of a module to be queued before it is

' r l ecl ds an input to other module. It is possible to have queues of mfinlre

* , . I I T ~ . /em length If the queue length is zero, then the interaction 1s s a d t t he

of I-endezvous type Moreover. ~t is also poss~ble to choose d~fferent queue d t s c l p l i ~ e ~

for different lnteraction points. An interaction point may use its own INDI! I I) l 41

QI F I F, or lnteraction points may share a COMMON QUEUE. All interaction polnts

that speclfy COMMON QUEUE share the same queue.

The actions of each module are defined by the transitions of an EFSM, called a

protocol machine. The complete "state" of the protocol machine is characterized by

the values of the "major state variable". STATE, and the minor variables. The

variable STATE indicates the state of the underlying finite state machine.

Each transition is characterized by:

enabling condition: It consists of three parts. A transition is executed
only when the condition associated with each part is satisfied. The three
parts are:

The interaction specifled in the WHEN clause is received.
The underlying FSM is in one of a set of states specified by the
FROM clause.
A boolean expression specified in the PROVIDED clause and
consisting of minor variables is true.

Each part is optional and if unspecified it is assumed to be satisfied.
0 operation: It may change the values of the variables. It consists of two

parts.

'The TO clause specifies the new state of the underlying FSM (i.e.,
the value of STATE is changed).
A BEGIN block (delimited by BEGIN ... END) specifies a set of
statements in Pascal language to be executed. (These statements
change the values of the minor variables.) The BEGIN block may
also contain OUT clauses that generate interactions with the
environment.

4s an example, consider a possible description of a timer module. The timer

(1 1 dule IS connected t.o some module (that requires the service of the timer module)

by a channel "timer-mterfaceH whose description was given in section 2.2.2. Only

une trans~tion IS llsted in the specification given below.

MODULE t i m e r (s . t i m e r - i n t e r f a c e
vo r

STATE : (t imer-on
no-of- t imers, mox: i n t e g e r ;

12

(s e r v e r) INDIVIDUAL QUEUE)

, t i m e r - o f f) ;

STAT ESET
e i t h e r = [t imer-on, t i m e r - o f f] ;

IN IT IALIZE
beg i n

no-of-t imers := 0;
max := ; /* Implementa t ionDependent */
STATE TO t imer-of f ;

end

TRANS

FROM e i t h e r
TO t i me r-on
WHEN s . s t o r t
PROVIDED no-of- t imers < max

beg i n

no-of- t imers = -no-of-t imers + 1 ,

(* Some s ta tements . *)

end ;

(* Other t r a n s i t i o n s . *)

end;

Currently. Estelle is being refined jointly by IS0 and International Telegraph and

Telephone Consultative Committee (CCITT).

2.3. Test architecture using replacement scheme

Let the IUT be at layer (N). In this architecture [Rayn 811, at the tester site all

layers above layer (N-1) are removed and replaced by two modules. A module,

called an active tester (AT), that can generate not only normal protocol messages but

also abnormal messages. operates at layer (N). Another module. called a test driver

(TD), that provides the data to the AT operates at layer (Y+l) .

At the product site, all layers ctbove layer (N) are also removed. A special module,

called a test responder (TR), that co-operates with the AT and TD is implemented

and operates as layer (N+l).

This architecture is illustrated in Figure 2-1. In some implementations. functions of

the AT and TD are combined into one module and the resulting module operates as

layer N, simulating layer (N+l).

-

,ayer (N - I

Layer 1

I Physical Medium

IUT
Layer (N)

Figure 2-1: Test architecture using replacement scheme

As all layers above the IUT are absent in a product, it is possible to develop and

test one layer at a time in a bottom up fashion. This is specially important when a

product is being developed, since products are typically developed one layer at a time.

At the product site, the TR operates as layer (N+l) directly interacting with the ICT.

Thus it can initiate any interaction with the IUT. Therefore, it can easily and

efficiently generate abnormal sequences.

The advantages of this architecture are:

Abnormal sequences can be easily generated and. therefore, robustness of
the IUT can be easily checked.
It is efficient.
It is possible to use test site facilities during product development stage.

The disadvantages of this architecture are:

For each product. the TR must be reliably implemented for each layer.
It is difficult to construct a test system since

For each layer under test, a new TD must be uskd.
For each layer under test, a new AT must be used.

Concurrent testing of several layers is impossible.

2.4. Test architecture using derail scheme

In this architecture [Kawa 80, Yosh 821, there are two kinds of modules at r,w

tester s ~ t e 'Llodu les that implement normal protocol processing (called PP modules)

hence operating as normal layer implementation. and modules that generate abnormal

sequences (called derail modules) and are executed a t the (inter layer) interfaces.

This architecture is shown in Figure 2-2. We show only a few layers and the

derail modules a t the tester site. At the tester site, all communication between each

pair of adjacent layers passes through a derail module. Depending on the type of

testing, a derail module can be passive (the communication between the adjacent

layers is unaltered) or active (the communication between the adjacent layers may be

altered). Active modules could alter the communication (control information or data

being exchanged) in one of the following ways:

Insert new information (in either direction).
Delete some passing information.
Change some part of the passing information.

Prot. Proc.

Derail Logic c
Derail Logic 0

Prot. Proc.

Derail Logic

Figure 2-2: Test architecture using derail scheme

.4t the product site, no derail module is used and the TR operates as an application

layer (highest layer) entity co-operateing with the tester in testing a product.

For testing a single layer (N), the derail module between layer (N) and layer (N-1)

is made active. If several (N) connections are multiplexed into one (N-1) connection,

several derail modules (one per (N) connection) could be activated.

Since the TR cannot directly initiate interactions with the IUT, it uses the services

provided by the IUT indirectly through intervening layers. Thus it is difficult and

therefore inefficient to generate service errors. However. this scheme does not require

any particular extension (either hardware or software) in a product.

The advantages of this architecture are:

It is easy to construct a test system.
It is easy to construct the TR since i
product site.

In layer entity a ~t the

Concurrent testing of several layers is possible.

The disadvantages of this architecture are:

It is not posslble to generate all abnormal sequences.
It is less efficient compared to replacement scheme.

It may be noted that the algorithms to be described in Chapters 4 and 5 do not

assume any particular architecture. Since each architecture has certain advantages.

what really changes with the architecture is the number of messages and the number

of ways a message can be exchanged between the product and the tester. Therefore.

our algorithm will be applicable to both the architectures described above.

Chapter 3

NFTs and Graphical Representations

For testing purposes, it is useful to have a global representation of "control flow".

In this chapter we develop some transformations on specifications in Estelle. These

transformations are then used to obtain a single control graph (see Section 3.2 below).

representing the major state transitions in a given formal specification in Estelle.

3.1. Normal Form Transitions

Working with an original specification in Estelle has three major drawbacks:

.4 formal specification may contain many modules. Representing the global
state space as the cross product of the state spaces of the modules will
give rise to a large number of unnecessary global states that are never
reached.
These modules may generate local interactions, i.e., interactions that are not
received by the environment. These internal interactions are not "visible".
Therefore, the tester cannot know the specific action taken by the IUT.
The BEGIN block of a transition may contain Pascal conditional statements
(if-then, if-then-else, case). These conditional statements cause different
parts of the BEGIN block of the transition to be executed. Thus a
transition may assign different values to minor variibles depending on the
condition. Subsequent transitions may also be affected. since the
PROVIDED clause of a transition contains minor variables. These
conditional statements must somehow be removed from the BEGIN block,
if the tester must know the exact values of the minor variables.

get around the above . difficulties, we apply certain transformations to the

original specification, to obtain the normal form transitions (NFTs) [sari 841. The

advantages of the UFT are that the specification of each transition has no conditional

statement in the BEGIU block. and that only one control graph is obtained for the

entire specification.

An NFT has (optional) inputs from external interaction points and a BEGIN block

with a single control path containing one or more OUT clauses specifying outputs to

the external interaction points. All conditions appear in the PROVIDED clause.

We use the symbolic execution technique [~ i n g 76, ClRi 811 to determine all

' transition paths. In symbolic execution, symbolic values (e.g., x l , x2. ...) are

assigned to the input variables of a program, and the program is then scanned.

generating an "execution tree". Each node in the execution tree corresponds to a

statement in a program, and arcs indicate the sequence of execution. For example, a

condition. "if xl", generates two arcs labeled by "xl = 'I (true)" and "xl = F (false)"

The condition which must he satisfied for a particular path to be executed 1s

expressed as an expression using symbolic values of the input variables.

The transformations leading to NFTs are performed in two phases. .4n example is

included to illustrate how such transformations can be applied. More details are

available in [Sari 841.

3.1.1. Phase I

In phase I , two syntactic transformations are applied to constructs in Estelle. In

the first transformation given below, we create a new transition for every distinct

path in the BEGIN block of a transition and modify the PROVIDED clause to reflect

the conditions for taking these paths.

Transformation 1 : For each transition. apply symbolic execution to enumerate the

paths in the REGIN block and their associated path conditions h e . , the conditions

under which each path will be executed). Replace each procedure (function) call in

the BEGIN block by the body of the procedure (function) itself with appropriate

changes to the parameters of the procedure (function).

Transformation 2 : If the FROM clause has more than one state as the parameter.

then create a new transition for each state. These newly created transitions are

identical, except for the FROM clause, and they each have only one state in its

FROM clause.

As an example, consider a layer with three modules shown in Figure 3-1 (viz..

Module VC, Module DG and Module LL). Module VC and Module DG are connected

!o Vodule LI via two internal channels, called Int-chanl and Int-chan2. respectively

'The specifications for the transitions of the modules are given below. (Here S1. S2.

and S3 are assignment statements and A . B. C, and D are boolean expressions).

(* Module VC *)
(* * >

WHEN Chanl.CONNECT-req
FROM idle
TO connecting
PROVIDED A and (B or C)

BEG I N
i f D then S1 else S2;
OUT Int-chanl.eventVC (CONNECT-req, x+2)

END ;

Figure 3-1: A protocol entity with three modules

(* Module DG *)
(* >

WHEN Chon2.CONNECT-req
FROM i d l e
TO c o n n e c t i n g
PROVIDED A

BEGIN
OUT Int -chon2.eventDG (CONNECT-req, DGlength)

END ;

(* Module LL *)
(* 1

WHEN Int-chanl .eventVC (da ta -un i t , l eng th)
PROVIDED (da ta -un i t = CONNECT-req) and (l e n g t h <= 10)

BEGIN
S3 ;
OUT Chan3.CONNECT-indVC

END ;
WHEN Int-chan2.eventDG (da ta -un i t , l eng th)
PROVIDED (da ta -un i t = CONNECT-req) and (l e n g t h <= MAXDG)

BEGIN
OUT Chan3.CONNECT-indDG

END ;

Module LI. has only one state, hence FROM and TO clauses are missing. We apply

phase I transformations to the modules of Figure 3-1 to obtain equivalent transitions.

' h c e only Illodule VC has a conditional statement. we show only the application of

the phase I transformations to Module VC. Two transitions are generated as a rrsulr

()t her n ~ ~) d u l e s dre unaltered.

(* Module VC *)
(*

WHEN Chanl.CONNECT-req
FROM i d l e
TO connec t i ng
PROVIDED A and (B o r C) and D

BEGIN
S1;
OUT Int-chanl .eventVC (CONNECT-req, x+2)

END ;

WHEN Chanl . CONNECT-req
FROM i d l e
TO connec t i ng
PROVIDED A and (B o r C) and (not D)

BEGIN
S2 ;
OUT Int-chanl .eventVC (CONNECT-req, x+2)

END ;

The transitions resulting from phase I transformations are called the intermediate

transitions (i-trans, for short).

3.1.2. Phase I1

A module may receive input interactions and generate output interactions. If an

interaction is received or sent via an interaction point defined locally within a

specification, i.e.. if i t is an intermodule interaction, then it is called an internal

interaction. On the other hand, if an interaction is receivedlsent from/to the

environment (via an external interaction point), it is called an external interaction.

Thus depending on the type of interaction, we can classify i-trans into four different

groups.

out-out i-trans: This type of transition receives interactions from external
interaction point(s) and sends interactions to external interaction
point(s).

out - ~ n L -tram . This type of transition receives interactions from external
interaction point(s) and sends interactions to internal interactiun
point(s).

L ~ L -out ~--tr'ans This type of transition receives interactions from internal
interaction point(s) and sends interactions to external interaction

in-in i.-trans: This type of transition receives interactions from internal
interaction ~ o i n t (s) and sends interactions to internal interaction
point(s).

Those i.-trans which do not receive any interaction can be assumed to receive a

dummy external interaction. and they are called spontaneous transitions [B o b 841.

Since we are interested in test sequence generation. and since only the interactions a t

the external interaction points can be observed, the internal interactions are removed

as follows.

Each in-out i-trans is removed using in-line expansion technique2, i.e.. by

substituting its BEGIX block in all the out-in and in-in i-trans (which we call

recipients) that output the internal interactions to ' i t . This (transformations 3 and 4

given below) is repeated till the specification consists entirely of out-out i-trans.

The out-out i-trans thus obtained are called normal form transitions (or NFTs).

Transformation 3 : AND the state in the FROM clause (TO clause) of an in-out

i-trans with the state in the FROM clause (TO clause) of the recipient in-in or out-

in i-trans, and rename it suitably to represent a new combined state.

A recipient i-tran will generate k i-trans, if there are k i-trans that have the

\ame input interaction.

Transformation 4 : AND the PROVIDED clause of the recipient ~ n - i n or o u t - ~ n

I trans with the PROVIDED clause of the in-out i-trans. Merge the BEGIN block of

the tn out i-trans with the BEGIN block of the recipient in-in and out-in i-trans

L

using the in-line expansion technique. Then delete the in-out i-trans.

The effect of applying transformations 3 and 4 is that some of the in-in i-trans

become in-out i-trans and some of the out-in i-trans become out-out i-trans. Some

of the in-out i-trans are eliminated. When the transformations 3 and 4 cannot be

applied any more, all the i-trans are of type out-out.

Note that the maximum number of states generated due to transformation 3 and 4

equals the product of the numbers of the states of the modules. However, for

L ~ h i s refers to the replacement of a call to a procedure by the body of the procedure itself.

practical protocols the number of states generated is far less than the maximum

number.

The result of applying the phase I1 transformations to the above example is shown

below:

(* Module VC + Module DG + MODULE LL *)
(* >

WHEN Chan1.CONNECT-req
FROM i d l eVC
TO connec t ingVC
PROVIDED A and (0 o r C) and D and (x <= 8)

BEGIN
S 1 ;
S3 ;
OUT Chan3.CONNECT-indVC

END ;

WHEN Chanl . CONNECT-req
FROM i d l eVC
r0 connec t ingVC
PROVIDED A and (0 o r C) and n o t D and (x <= 8)

BEG I N
S2 ;
S3 ;
OUT Chan3.CONNECT-indVC

END ;

WHEN Chan2.CONNECT-req
FROM id leDG
TO connect ingDG
PROVIDED A and DGleng th <=MAXDG

BEGIN
OUT Chan3.CONNECT-indDG

END ;

The only difference between the NFTs discussed in this thesis and in [Sari 841 is

that in Sarikaya's work

the FROM clause is also removed and the PROVIDED clause is modified to
reflect this condition, and
the TO clause is also removed and in the BEGIN block an assignment
statement is added to reflect this condition.

Since we do not remove FROM and TO clauses, no extra effort is required to

construct the control graph (discussed below).

3.2. The Control Graph

Informally, the control graph (CG) [Sari 841 depicts the transitions among the

"control states". The nodes of a CG represent the values the major state variable

STATE can take. The arcs of the CG represent the NFTs. For each NFT specified.

the FROM clause gives the tail node of the arc and the TO clause gives the head

node of the arc.

It is possible to construct CG's, one for each module, from a specification in Estelle.

lfuuever, we construct a single CG for the entire collection of modules trom the

NFTs for the reasons mentioned in Section 3.1

3.3. The Dual Control Graph

I'he protocol specification, and hence the CG, specifies the action to be taken when

there is a protocol error, but does not specify how such an error could be generated.

It is possible to transform a CG into another finite state machine called the dual

control graph (DCG) [Arak 831. The DCG is a dual of the CG in the sense that it

imitates the behavior of the CG. generating an output whenever the CG expects an

input. In particular, it generates errors if the specification of the CG has provisions

for them. Therefore, a tester can make use of the DCG to communicate with an

K T , sending some errors as appropriate.

Normally, a protocol specification has transitions to handle unexpected input

messages. An unexpected input message may, for example, be received due to delayed

duplicates or the other peer entity not confirming to the protocol specification. From

the procedure that constructs the DCG corresponding to a given CG, it will be seen

that input and output symbols of the transitions are interchanged. Thus the

unexpected input message now appears as an output message of the DCG that is to be

transmitted to the IUT.

A formal procedure to obtain a DCG from a CG is given below.

The input and output symbols of the CG can be divided into two groups.

0 External Symbols : The messages sent or received between peer entities a t
different sites.
Internal Symbols : The messages that are exchanged between layers a t one
site. All internal symbols are denoted by (a common symbol) *.

Let i and o denote an external input symbol and an external output symbol,

respect~vely. The traris~tions of the CG can be classified into four types. clzyendmg

on the group their inputs/outputs belong to, namely. */*, i/*, *lo, i / o

Let a CG be denoted by (Q1, 1 1 , O1 . S1 , ol, qlo) , where

Q1 is the set of states.

0 I1 is the set of external input symbols U {*I.
O1 is the set of external output symbols U {*I.
S1 is a mapping Q1 x I1 + Q1.
wl is a mapping Q1 X I1 + O1.

0 q10 belongs to Q1 and is the initial state.

Let a DCG be denoted by (Q2, 12. 02, a2, 02, qZ0), where

Q2 is the set of states.

I2 is the set of external input symbols U I*}.
O2 is the set of external output symbols U I*}.

0 6, is a mapping Q2 x I, + Q,.

w2 is a mapping Q2 X I2 -+ 0 2 .

q20 belongs to Q2 and is the initial state.

Now, from a CG, the corresponding DCG is obtained as follows [Arak 831.

1. For each q in Q1. introduce F i n 42.
2. For each transition in the CG, say from p to q, labeled ik/ol. one or two

transitions in the DCG are obtained as follows:

a. if ik/ol is of type */* then DCG has a transition from p to q
labeled */*.

b. if ik/ol is of type i/* then DCG has a transition from p to q
labeled */ik.

c. if ik/ol is of type */o then DCG has a transition from p to

labeled ol/*.

d. if ik/ol is of type i/o then a new state. say q', is added to 42
DCG has two transitions
(i) from p to y ' labeled */ik and

-
(ii) from y ' to q labeled ol/*.

3. I'he DCG contains only those states and transitions that are obtained in
the above steps.

We note the following.

1. 'The set of input symbols (output symbols) of a CG and the set of output
symbols (input symbols) of the corresponding DCG are the same.

2. There exists a one-to-one function from the state set of a CG into the
state set of the corresponding DCG. (However, the DCG may have more
states than the CG, due to the step 2d above.)

It is noted that. in case the robustness of the protocol to errors is not being tested,

one can use the CG instead of the DCG. The example in chapter 5 shows how to

obtain the DCG from a CG. (See Figures 5.2 and 5.3.)

Chapter 4

Algorithm

In this chapter we propose a new algorithm for test sequence generation, which

makes use of the DCG (or CG) and NFTs.

Since protocol specification often uses a finite state machine (FSM) model, the testing

of sequential circuits is relevant to protocol testing. A sequential circuit can be

specified by means of a state table or transition diagram [~ o h a 781. For the purp:se

of testlng it is commonly assumed that the state table is reduced, ccmpletel?

specified. and strongly connected IGone 701. It has been claimed that if every

transition is traversed a t least once by the input test sequence, then typically more

than 90% of the errors can be detected [~ a T s 811. However, for 100% fault

detection, one must apply the distinguishing sequence [~ o h a 781 twice3 for every

state [Gone 701. Executing all the transitions is the basis of many protocol testing

strategies, including Sarikaya's [Sari 841 and ours.

In order to test a transition corresponding to an arc of the DCG, we must start

from an idle state. Let a subtour denote an executable sequence of transitions that

starts and ends in an idle state. Briefly, our objective is to select a set of subtours

such that each arc of the DCG is on at least one of the subtours. Each transition.

3~es t ing by means of just traversing each transition has reduced fault detecrion capability, mainly because
after each transition it 1s not verified if the transition terminated in a the correct state.

represented by an arc in the DCG, 1s usually caused by the reception of a message

from, or causes the transmission of a message to, the peer layer or adjacent layer.

Each message associated with a transition has several f ields, and each field can be

assigned several values (called f ie ld values). To increase the fault detection

capability of our algorithm, we exchange similar messages with different field values.

There are different types of messages. Each type of message is specified by a

particular structure of its fields. A particular set of field values for a message of

certain type is called a message instance (MI, for short).

The algorithm to be presented in this chapter does not optimize the "cost" (e.g., the

total number of transitions executed) of testing, since to do so is computationally

intractable

4.1. Parameter and value variations

CVe consider each field of a message to be of scalar da ta type [JeWi 741. In this

section, we propose guidelines as to how the contents of the fields in test messages

might be varied (parameter or value variation). Using these guidelines, a test designer

can generate MIS (in the algorithm to be presented below) or assign a weight to each

arc of a DCG (in the second algorithm to be described in Chapter 5) .

Initially, we t ry to classify the fields according to various criteria. An example is

included for each type of field. Examples pertain to ISO's transport layer protocols.

This is followed by possible variations in a boolean expression.

1. Fields are either:

Always present (e.g.. destination reference). or
May be present (e.g.. subsequence field in IS0 Class 4 Transport
Protocol).

2 . Fields are either of:

Fixed length (e.g.. length indicator field), or
Variable length (e.g., data field in a data message).

3. Content of a field may be:

0 History dependent (e.g., sequence number of the message), or
History independent (e.g.. checksum).

4. The value of a particular field may be either:

0. Fixed permanently (e.g.. c l a s s ~ o f ~ p r o t o c o l = 0 in Class 0 Protocol).
or
Fixed for this connection only (e.g., source reference).

5. The field may have:

default values (e.g.. maximum length of the TPDL'), or
no default value a t all (e.g. format of the TP, normal or extended).

ti. A field may be sent:

only once (said to be of FI type) (e.g., TPDU size field), or
more then once (said to be of Fr type) (e.g., data field in a data
message).

Now consider the PROVIDED clause of the form "a relop b8', where relnp denotes a

relational operator. which is one of <. <=. =. >=, >, < >. (Relops > and >= are

handled similarly to relops < and <= respectively.)
0

1. If relop is <. then we should t ry the following variations:

a. a < b: This should invoke normal protocol processing.
b. a = b: This should cause an error indication.
c. a > b: This should cause an error indication.

2. If relop is <=, then we should t r y the following variations:

a. a < b: This should invoke normal protocol processing.
b. a = b: This should invoke normal protocol processing.

c. a > b: This should cause an error indication.

3. If relop is =, then we should t ry the following variations:

a. a = b: This should invoke normal protocol processing.
b. a = b+l: This should cause an error indication.
c. a+l = b: This should cause an error indication.

4. If relop is < >, then we should t r y the following variations:

a. a+l = b, This should invoke normal processing.
b. a = b+l. This should invoke normal processing.
c. a = b. This should cause an error indication.

Now we will t r y to combine the various types of fields and possible variations in

relop. In the above guidelines for relop variation, we have proposed to invoke normal

processing and error indication a t least once (for any relop there are either two cases

that have normal protocol processing or two cases that involve error indication). In

general, we observe the following:

1. In NFTs there are no conditional statements. All the conditions in the
transitions of the original specification are visible in the PROVIDED clause.
Therefore, observing the PROVIDED clause can give us a fairly good idea
as to what should be varied.

2. The variables that appear in a PROVIDED clause appear to form groups.
For example, the variables that appear in the EFTS during data transfer
phase are different from the variables used in the connection establishment
phase. This is probably the reason why the PROVIDED clause is simple
and does not involve a large number of variables. So a very simple form
having a t most three variables is considered below. The form we consider
is P A Q A R, where each of P. Q and R is of the form: "var relop var"
or "[NOT] boolean variable".

It is possible that a product may not use the correct relop or logical operator. We

have already seen how to detect an error when an incorrect relop is used. Now we

consider the use of incorrect logical operator. Since the form we consider is

(P A Q A R). we have to t r y a t most eight combinations.

The question now is how does one set a boolean expression True or False? This

obviously depends on the type of the field involved in the boolean expression.

Therefore, we suggest how to assign values to different fields. The values that

should be sent may make the boolean expression either True or False. Additional

values that must also be used are indicated. These boolean values must make the

boolean expression True. In what follows we examine different types of fields and

suggest how these fields could be varied. In brackets we indicate the value of the

boolean expression. True [TI. False [F] or additional parameter or field value variations

[AV].

As stated earlier, messages contain two types of fields, F1 and Fr. Fields that are

sent only once (F l) , and those which can can be sent more than once (~ r) , usually as

many times as desired.

Consider the fields of type F1 first.

1. If they have default values, then the default values should be used a t
least once [TI.

2. If invalid values can be assigned to them at all, they should be assigned
invalid values (for error generation) [F]. Note that for some fields invalid
values cannot be assigned, for example, the field that indicates the format
of the messages (normal or extended).

3 From the ordered set of permissible values, the range of allowable values
for the product being tested should be determined (by using binary search
technique on the possible values for the field).

Consider the fields of type Fr.

1. If the value of a field is based on history, then modify it so that
unexpected values are assigned [F]. (For example, in case of a sequence
number. add 2 instead of 1.)

2. If the field can be intermittently present (ON), then select the sequence
ON-OFF-ON-OFF or OFF-ON-OFF-ON. Example of such a field is the
subsequence field in an ACK message in IS0 Class 4 Transport Protocol

[AVI.

3. If the value of a field is constant for a connection, assign some invalid
value [F].

4. If the length of a field can be varied, assign values to the field so that
field length has following values: maximum (allowed) value, minimum
value, some intermediate values, greater than maximum value and less
than minimum value.

Now consider any message. Assigning different values to the fields (of which the

message is composed) will generate different message instances. A value assinged to

an individual field could be valid or invalid, generating a valid message instance or

an invalid message instance. A valid (invalid) message instance causes normal

processing (abnormal processing).

For a message, the number of valid message instances generated equals the maximum

of the number of different valid values for any field and the number of invalid

mewage instances generated equals the sum of the numbers of invalid values for all

fields

4.2. Parameter and value combinations

Using the guidelines given above, different values should be chosen for each field of

a message. However, specific combinations of these possible field values must be used

to obtain MIS that can be exchanged in testing. In the section given above relops

indicate some field value combinations. In addition, if it is assumed that processing

of each field is independent of the others. then we can construct messages as follows:

Choose a field value which would generate an error for only one field.
For all the other fields choose values that would generate normal
processing.
Choose parameter or field values that would generate normal processing.
Clearly, the number of such messages is limited by a field which has the
maximum number of possible (normal) field values.

4.3. Obtaining message instances

In the last two sections we have presented guidelines for generating MIS for a single

message type, based on the fields the message type is composed of. We have also

discussed above how MIS can be generated that would invoke normal processing and

error processing. In addition. we have also seen how relational operators can

influence the generation of MIS. We summerize below the guidelines in terms of a

three-step algorithm for generating MIS.

Step 1 : For each message M repeat Step 2 and 3.

Step 2 : Observe the fields that message M is composed of. Obtain MIS
corresponding to M, using the guidelines presented earlier.

Step 3 : Observe the WHEN clause of each NFT. If message M is specified in its
WHEN clause, then obtain MIS, using the guidelines in Section 4.1 on
relational operators.

Note that some redundant MIS may be generated. An example of how redundant

MIS could be generated is given below.

Consider the Connection Request (CR) message of the IS0 Class 0 Transport

Protocol. The field "maximum size of the message" has a default value. Therefore.

based on the type of field. Step 2 generates MIS. One of the MIS so generated will

have this field unspecified (default value) and the others will contain some values

specified for this field.

Also this field is specified in the WHEN clause of NFTs. P3 and P4, of Class '0 TP

(listed in Appendix B). NFT P3 requires that the field value be specified and NFT

P4 requires that this field value be unspecified. Therefore. Step 3 will generate two

MIS.

Thus two identical messages will be generated by Step 2 and Step 3.

4.4. Overview of the algorithm

As stated earlier, the objective of the algorithm is to find a set of subtours such

that (1) each NFT is on some subtour, and (2) each field value to be tested appears

in a message associated with some NFT. The input to the algorithm is a matrix

indicating which NFTs (columns) can send which MIS (rows). Note that, in general.

a MI may be sent by more than one NFT, and more than one MI may be exchanged

with the same NFT (not simultaneously). Using this matrix, the algorithm will select

a set of subtours.

To rmplement the approach described above, we first obtain NFTs from the formal

specification of the protocol. Then, from the NFTs thus obtained, we con~t ruc t a two

dimensional boolean matrix called Message-Transition matrix (or M-T matrix, for

short) with columns representing the NFTs. If I instances of message type T are to

be tested, then I rows are needed for this type in the M-T matrix. To facilitate

construction, the rows are ordered as follows: All messages that establish a

connection are placed first. These are followed by the messages that transfer data.

Lastly the messages that terminate a connection are placed.

The algorithm selects all the MIS and NFTs in two stages. First it generates some

possible subtours. If some MIS and/or NFTs remain that have not been used in any

of the subtours in the first stage, it then generates additional subtours to exercise

those NFTs and MIS. The algorithms given below do not explicitly consider the

problem of terminating a partial path. The reason is that the terminating node can

be reached from every node by traversing a t most two arcs. So for every node we

can fix a terminating path. If required, this path can then be used to terminate a

path. In what follows, the starting (terminating) node of an NFT is called its

tail-node (head-node).

We introduce a column vector called the Covered Instances (CI) vector. The number

of elements in the CI vector equals the number of rows in the M-T matrix.

Initially, all the elements in the CI vector are set to False. For each MI selected. the

corresponding element in the CI vector is set to True. We also introduce a row

vector called the Covered Transitions (CT) vector. The number of elements in the CT

vector equals the number of columns in the M-T matrix. Initially, all the elements

in the CT vector are set to False. For each NFT selected. the corresponding element

In the CI vector is set to True.

4.5. Mapr steps of the algorithm

Step 1 : Obtain the NFTs from the formal protocol specification.

S tep 2 : Construct the M-T matrix (as described above). and set all elements in the
CT and CI vectors to False.

Step 3 : Call procedure New-subtour, which will return a set of subtours.

Step 4 : For each entry in CI and CT that is False (i.e.. MI and NFT not on any
subtour generated in Step 3 above) call procedure One-transition to obtain a
partial path. The partial path is completed (to obtain a subtour) by
appending the NFT (or the NFT carrying the MI under consideration) and
the terminating path from the head-node of the NFT (or the NFT carrying
the MI under consideration).

4.6. Procedure Newsubtour

'This procedure selects a set of executable subtours. Beginning a t the initial node.

we do a search on the CG by systematically examining alternate MIS and NFTs that

can be selected to' extend a path to form a subtour. The search is done depth-first.

but unlike the usual depth-first search. the same node may be visited many times.

A MI (NFT) is said to be feasible if the field values (conditions) do not contradict

the conditions associated with the partial path which has already been constructed. In

the procedure given below, at- leas tone is a boolean variable such that when it is

True, it means that the subtour being constructed contains a t least one new MI and/or

a new NFT that has not been used on any other subtour generated so far.

Step 1 :

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

Step 7 :

at.-least-one = False; Push the initial node on stack.

If stack is empty then return.

Pop a node from stack and assign it to current-node (Note that
current-node is no longer in stack.)

Choose a feasible MI and an associated feasible NFT out of the current .
node such that a t least one of them has not yet been selected (i.e., the
corresponding entry in CI/CT is False). If no such NFT exists then go to
step 7 .

at-least-one = True: Push current-node and then the head-node of the
chosen NFT on stack. Set the corresponding entry in CI and CT to True.
If this head-node is not the terminal node then go to step 2.

(One more subtour has been found that has selected some more MIS or
NFTs). Let at-leastone = False. pop a node (the terminal node) from
stack. and go to step 2.

If at-leastone = False then go to step 2 else select the terminating path
for the node to generate a new subtour. Let at-least-one = False and go
to step 2.

4.7. Termination proof for New-subtour

We first observe that whenever a node is pushed into stack, a t least one entry, in

either CI or CT matrix, is set to True. Therefore, the total number of times nodes

are pushed into stack is bounded by a constant.

We now prove that the procedure does not loop indefinitely. In the procedure there

is one loop. A new "pass" through the loop begins with the execution of Step 3. In

every "pass" the number of nodes in the stack can

(Step 5) increase.
(Step 7) decrease. or
(Step 6) remain the same.

Yote that only a fixed number of consecutive "passes" can stay in Step 6 , since

there are only so many executable h'FTs/'MIs going out of the node. Therefore. if the

procedure loops indefinitely, then either the stack size must grow without bound, or

~t must grow and shrink indefinitely. In either case, there must be, a node that is

pushed in stack an unbounded number of times, which is impossible as we argued

above.

The following procedure is needed to execute those NFTs/MIs which were not

selected in any subtours generated by procedure New-subtour.

4.8. Procedure Onetransition

This procedure will select a subtour that includes the NFT (and MI) given as the

parameter. Obviously, the simplest solution would be to generate all the possible

subtours and select a subtour that includes the given NFT and MI. Due to the

exponential number of possible subtours, this is not practical.

In order to obtain a practical algorithm we must somehow restrict the scope of

search. This is possible if some assumptions are made. Clearly. if the assumptions

are too restrictive then the algorithm will be applicable only to trivial protocols. The

IS0 Class 2 Transport Protocol (C2TP. for short) is a widely known protocol and is

considered sufficiently complex to serve as a model. Therefore, we have examined it

carefully.

The C G ~ of the IS0 C2TP is shown in Figure 4-1. It has two potential initial

nodes and two potential terminal nodes, a total of four combinations, depending on

whether a connection already exists or not. Therefore, we have constructed and

examined all the four possible CGs. These four CGs, named CG11, CG12, CG21, and

CG22, are included at the end of this chapter. At any given time, one of these will

be applicable. It is observed that of these CGs only CGll and CG21 have loopa

w h ~ c h are not self loops The algorithm can handle loops (w h ~ c h are not self-loops)

In the CG ~f the following condition IS satisfied: in any loop there exists an arc A

buch that if the arc A is deleted then there exists a path from the initial node to the

terminating node that has all the nodes of the loop in sequence. Such loops will be

called simple loops

We have also carefully examined the NFTs of IS0 Class 0 Transport Protocol

(COW, for short). These observations have led us to the following algorithm based

on the three simplifying assumptions stated below.

Our approach is to traverse the CG backward, starting from the tail-node of the

4 ~ e obtain a DCG from a given CG to test robustness of the IUT as described in Chapter 3. However,
to make the discussion that follcurs conceptually simple, we will refer to the CG instead of DCG.

h F T , t. under consideration to the initial node of the applicable CG. In other words.

we construct a path backwards from t to the initial node. Suppose we have partially

constructed such a backward path from t to an intermediate NFT, t'. We call the

tail-node of t' the current-node. We want to extend the partial path by prepending

to it an NFT, t", whose head-node is the current-node.

Note that not every NFT terminating a t the current node can be chosen as t". since

the NFTs that are already on the partial path may impose certain conditions in terms

of their PROVIDED clauses. Thus, the chosen NFT must have a PROVIDED clause

that is compatible with all of them. so that the completed path will be executable.

(Such a NFT is called a feasible NFT.) Repeating the above process, we will

eventually reach the initial node. at which point the construction completes.

Note that once a NFT, t", is chosen it cannot be deleted Therefore, we have not

iillowed arbitrary loops in the CG. Since if arbitrary loops are allowed backtracking

becomes necessary. However. we have allowed simple loops. The idea is that when

partial path is being extended the path should lead "towards" the initial node and not

"towards" the end node. In order to allow simple loops the algorithm given below

maintains a list of "visited" nodes and allows "visiting" a node only once.

To see why backward traversal is more efficient. consider any NFT that is

traversed only when call establishment is initiated by the IUT side. If forward

traversing is used, all subtours selected that correspond to connection establishment by

the tester site will have to be discarded. It is noted that in most cases there is only

one path from the NFT under consideration back to the initial node in the CG. In

cases where two paths are possible either one is acceptable.

We now clearly state our assumptions:

1. All loops of the CG other than self-loops are simple loops.
2. Repetitive executions of self-loops do not modify the conditions tested in

the PROVIDED clause of any NFT. Therefore, they need to be chosen at
most once in subtour selection.

3. -4 backward path to the initial node. and the NFTs and MIS for the path
can be chosen incrementally with available information. Therefore, the
algorithm need not b a ~ k t r a c k . ~

The assumptions stated above are satisfied by C2TP. Consider our first assumption.

For C2TP. of the four possible CGs (viz.. CG11. CG12, CG21 and CG22) only two

CGs, C G l l and CG21, have a loop (involving nodes numbered 2 and 6). The loops

in C G l l and CG21 are simple loops.

The second assumption deals with self-loops. In general, for an arbitrary CG, i r

may be necessary to repetitively execute a self-loop before another NFT, which is ncir

a self-loop, is chosen. Appendix C contains a proof that for C2TP this is not the

case.

Appendix D contains a proof that our last assumption is also satisfied by C2TP.

The actual algorithm now follows:

Step 1 : Initially, the set of conditions include only those conditions that are
associated with the MI and NFT under consideration and current-node is
set to the tail-node of the NFT. selected-nodes is a set of nodes and
initially contains only the current-node.

Step 2 : Choose self-loop arcs so that any specific condition that can be satisfied ,

only by self-loop arcs can be chosen. (Refer to the discussion of "local
variables" in NFT S in Appendix C.)

5 ~ o t e that backtracking has nothing to do with a backward path.

Step 3 :

Step 4 :

Step 5 :

Choose any feasible IVFT whose head-node is the current-node. and whose
tail-node does not belong to selected-nodes. Add the tail-node of the
chosen NET to the selected-nodes set.

Add the conditions of the chosen NFT to the existing conditions, and set
the current-node to the tail-node of the current-node.

If current-node is the initial node then stop, else go to step 2.

We now list the labels used in ' the control graphs, CGOO to CG22. that follow

Node Numbers
State Value.

NC-state-closed, state-closed.

NC.state=open, state=olosed.

NC-state-closed, state=open-in-progress-calling.

NC-state-open-in-progress,
state=open~in~progressstate=open_in_progress_calling.ca11ing.

NC-state=open, state=open-in-progress-calling.

NC-state-open, state=open,in,progress_called.

NC,state=open, state=open.

NC-state=open, state=closing.

NC-state=open, state-T-Err-sent.

NC-state-open, state=wait-before-closing.

The correspondence between the arc labels and the NFTs for C2TP is given below

(labels are as defined by Sarikaya [Sari 841).

Arc Label --
List of NFTs represented ---
PLI
PJ1
PD1, PNI
pH1
PD2, PD3
PI1
P502, PD2, PD3, PF02, PG02, PG06, PG12, PN2
P507, P508, P510, P6Ol . . . P6O4, PDI, PF06, PNI
P509, P510
PN3
P101, P102, P117, P2, P3, PEI, PE2, PR2
P505, PG09, PG15
P605, PF09
P2, P3
PF04, PG04, PG08, PG14, PN6
P6O7 . . . P6l0, PF04
PN7
P91, P92
P103, 104, 110, 112, 113, 115, 116, 118, P2, P3, P82,
P84, P93. PA2, PA3, PB1, PB2, POI, PPI, Q PR4.
PSI, PTI. PUI
P6l2
PG18, PG19
P116, P2, P3
P606. P71. PFlO
P506, PGlO. PG16
PMl, PM2
PF07, PN4
P2, P3, PR3
P4l4
PG17
PLl
P106, P109, P116, P2, P3, P407, P413, P611
P2. P3, PI08

In order to make the understanding of the CGs for the Class 2 TP easier we list

below all the NFTs and their input/output messages. We have used the same

Figure 4-1: Control Graph CGOO
0

terminology as in [sari 841 which should be very clear to any reader with exposure

to IS0 protocols. Otherwise, the reader is referred to [ISOb 841.

Figure 4-4: Control Graph CG21

Figure 4-5: Control Graph CG22

NFTs Input or output message
P101. 102, 117

Spontaneous transitions which output CR message.
P103, 104, 118

Spontaneous transitions which output CC message.
Spontaneous transitions which output DR message.
Spontaneous transition which outputs DC message.
Spontaneous transitions which output DT message.
Spontaneous transition which outputs AK message.
Spontaneous transitions which output EDT message.
Spontaneous transition which outputs EAK message.
Spontaneous transition which outputs ERR message.
Spontaneous transition which outputs N-DATA-req.
Spontaneous transitioa which outputs N-DATA-ind.
Spontaneous transitions which decode N-DATA-ind
into a CR message.
Spontaneous transitions which decode N-DATA-ind
into a CC message.
Spontaneous transitions which decode N-DATA-ind
into a DC message.
Spontaneous transitions which decode N-DATA-ind
into a DT message.
Spontaneous transitions which decode N-DATA-ind
into a AK message.
Spontaneous transitions which decode N-DATA-ind
into a EDT message.

Spontaneous transitions which decode N-DATA-ind
into a EAK message.
Spontaneous transition which decodes N-DATA-ind
into a ERR message.
Spontaneous transition which outputs
T-DISCONNECT-ind message.
Spontaneous transition that sets class and
max-PDU-size.
Received N-RESET-ind message.
Received N-DISCONNECT-ind message.
Spontaneous transition which outputs
N-CONNECT-req.
Output N-CONNECT-conf.
Received N-CONNECT-ind.
Spontaneous transition which outputs
N-DISCONNECT-req.
Received T-CONNECT-req.
Received T-CONNECT-res.

Output T-DISCONNECT-req.
Output T-DATA-req.
Spontaneous transitions which output DT message.
Spontaneous transition which outputs T-DATA-ind.
Spontaneous transitions which update R-credit.
Spontaneous transition which outputs AK message.
Output T-EX-DATA-req.
Output T-EX-D-READY-req.

Chapter 5

Optimal algorithm

In this chapter we propose another algorithm for test sequence generation. It finds

a "minimum-cost" set of test sequences. but it has a limited applicability since it

applies only to those protocols which satisfy a somewhat restrictive assumption: it

will be assumed that the value of a minor variable cannot enable or disable any

NFT, although it may affect the output associated with the NFT.

5.1. Overview of the algorithm

Fach message exchanged between the peer entities has several fields. As commented

earlier, in order to test a product. it is necessary to send the same message (traverse

the corresponding arc of the CG or DCG) with different values (vaiue combinations
b

for the fields which the message is composed of). We attach an integer weight to

each arc that indicates the number of different combinations to be tested for this arc.

Unlike in Chapter 4, we can disregard the values of the fields and only count the

number of distinct value combinations. since the values are assumed to have no effect

on which transitions are possible. The weight of an arc is thus the lower bound on

the number of times the arc must be traversed. Since an arc can be a part of many

subtours, what is required is to make sure that the total number of times an arc is

traversed by all the subtours is not less than the lower bound.

The method we present in this chapter can easily be generalized to deal with more

general "costs" to appropriately reflect the cost of processing a message, transmission

cost, etc. A possible cost function could be C = cl X 1 + c2 X n, where c l and

c2 are constants, and

2 is the length of a message in bits (to account for transmission :cost).
n is the number of fields in a message (to account for message processing
time, since each field of the received message must be processed).

For simplicity, we use the total number of times that NFTs are fired as the cost.

We make use of network flow algorithms [~ a r d 84. Tar j 831 to find a minimum cost

solution.

5.2. Weighted Dual Control Graph

In the following sections we present a brief review of network flow algorithms.

Each arc of a DCG will first be labeled to obtain a weighted digraph, where a lahel

is an integer indicating the number of times the corresponding NFT should be tested.

A weighted digraph WG is denoted by (V, A. s, w), where

(V. A) is the underlying digraph.
s E V is a distinguished node, and

0 w is a (weight) function from A to the set of nonnegative integers
(0 , 1. 2. ...I.

If a E A then, w(a) indicates the minimum number of times arc a is to be traversed.

each time with a different value combination. For a method of obtaining

combinations. see Section 4.1.

5.3. Network

A network is denoted by N = (V. A, 3 , t , w) where

t is the "sink" node (outdegree of t = 0).
s is the "source" node bindegree of s = 0) .

A WG G = (V. A, s, w) can be converted into a network N = (V'. A', s, t . w ') by

redirecting the incoming arcs of s to the new node t . Here V' = VU { t) , t does not

belong to V, and A' is obtained as follows:

For each [a , s] E A. let [a , t] E A' with w l ([a , t]) = ~ ([a , XI).

For each [a , b] E A such that b E V - Is). let [a , b] E A' with w ' ([a , b]) =

d a , b]) .

5.4. Listing all the required subtours in a network

Given a flow function p, the algorithm given below will list all subtours. It first

finds subtours by traversing an arbitrary path beginning and terminating in the initial ,

node. The flow of each arc in the subtour is reduced by 1. An arc with weight O

IS deleted to indicate that it need not be traversed any further. To account for those

arcs whose weight is non zero when the outdegree of initial ~ ? d e becomes 0 , the

algorithm finds isolated cycles, starting a t a node of each cycle.

Inpuc A network N = (V. A, s, t , f), where f is a flow function satisfying the

lower bounds.

5 4

Output: A l l the subrours of N. Each arc a E A is traversed by f(al subtours.

The algorithm is given below.

Step 1 :

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

Step 7 :

Step 8 :

Step 9 :

If A = { } then go to Step 9.

If s E V then curr-node := s and end-node := t else
end-node := currnode := V v E V.
/* A new subtour or cycle begins. */

Select any arc a E A whose tail is cur-node.

new-node := head of the arc a. Output the arc.

If f (a) = 1 then A = A - { a } else f(a) = f(a) - 1 .

If there are no outgoing arcs from the tun-node then
L' - V {curr- node}.

If new-node = end-node then go to Step 1. i* Current subtour or cycle
ends */

curr-node := new-node and go to Step 3. /* Current subtour or cycle
continues */ b

Merge the isolated cycles, if any, with any subtour beginning with s
which contains a node of the isolated cycle to obtain all the subtours of
network N.

5.4.1. Analysis of the algorithm

We observe that an arc a , with flow f (a) , will be scanned f(a) times. Thus the

complexity of the algorithm is O(Z,& f(a>>

55

5.5. Network flow based algorithm

An algorithm for generating the minimum number of subtours is presented below.

Step 1 :

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

Step 7 :

Step 8 :

Obtain the NFTs from the formal protocol specification.

Obtain the CG from the NFTs resulting from Step 1.

Obtain the DCG from the CG.

Obtain the weighted DCG (called WDCG) by assigning weight to each arc
in the DCG using the guidelines given in Section 4.1.

Obtain a network N from the WDCG using the procedure given in Section
5.3.

Set the upper bound of each arc of U to the sum of all the lower
bounds. [This upper bound ensures that a feasible flow can always be
determined [Lawl 761 (pp. 140-1 591.1

Find a minimum cost flow through N using any of the known methods
(e.g.. the out-of-kilter method a awl 761 or the method given by

[Tard 841).

Obtain all the required subtours decomposing the flow obtained in Step 7
using the procedure given in Section 5.4.

5.6. Comments

An arbitrary subtour is, in general, not executable because of the PROVIDED

clauses. As stated earlier, the above algorithm is applicable only if the CG has the

property that any arbitrary subtour is executable.

Usually it is possible to set up multiple connections. When multiple connections are

established, more than one CG is "active" a t the same time. Each "active" CG may

have different initial or terminating nodes. W e cannot apply the network flow

algorithms to obtain minimum cost flow for each CG since the arcs are shared by the

CGs.

5.7. Example

In this section we demonstrate the use of the above algorithms, to generate test

sequences for ISO's Class 0 Transport Protocol (COTP) [~ n i s 821. The formal

specification document for COTP [I s O ~ 821 does not contain any transitions to handle

messages that are not expected in a given state. To demonstrate the concept of, DCG

more effectively, we have added an extra NFT, named P20. which is fired if the

current state (of the underlying FSM) is data-transfer and a CR message is received,

sending an ERROR message and terminating the connection (the new state is idle).

The FRROR message is a new message that we have added to the formal specificatinn

for illustrdtion It indicates to the peer entity that a procedure error (i .e ,

reception/transmission of the message not expected in the given state) has occurred

and, therefore, the connection is being terminated.

All the NFTs, labeled P1 to P20, of the IS0 COTP are listed in Appendix B. The

CG for COTP is shown in Figure 5-1. Each arc in this figure represents a set of

XFTs. The forward arcs are labeled A to D, and backward and self loop arcs are

labeled a to e. The correspondence between the labels used in the CG and the NFTs

is listed below. For easy reference, we also indicate the input/output for each NFT

and, in parentheses, the type of input/output symbol (externallinternal). A set of

NFTs (e.g.. P3 and P4) having the same input/output are grouped together.

Input/Output (Type)

From the CG shown in Figure 5-1. we obtain the corresponding DCG, shown in

Figure 5-2, using the procedure given in Section 3.3. The two square states (q l and

q2) are new states. Typically. for each arc of the CG (e.g.. A), we obtain the

corresponding arc of the DCG (e.g.. A') by adding an apostrophe. (The additional

labels of the form "<m.n>", where m and n are integers will be explained later.) In

drawing the CG. we have made minor changes to the input/output symbols of the arc

d. This is purely to make things simple. The arc labels of the DCG and their

input/output symbols are listed below. We also list the correspondence between the

states of the CG and the DCG.

Figure 5-1: Control Graph for IS0 Class 0 TP

Figure 5-2: Dual Control Graph for 1SO Class 0 TP

Arc Labels -- --
A'
B'
C '
D '
a l l '
a12'
b'
c'
d l '
d2'
e l 1'
e12'
e2'

Input/output symbols
*/CR.
CC/*.
CR/*.
*/CC.
*/CR.
DR/*.
DR/*.
*/DR.
DT/*.
*/DT.
*/CR.
ERROR/*.
/.

States of CG Corresponding states of DCG
idle idle'
data-transfer data-transfer'
wait-for-T-CONNECT-res x
wait -for.-CC Y

For comparison, we present in Figure 5-3 the CG for COTP with I/O labels.

Now we have to assign a weight'to each arc of the DCG using the guidelines given

in Section 4.1. As an example, consider arc A' which outputs a CR message to the

peer entity. We will describe how a weight is assigned to the A'. Other arcs can be

handled in a similar fashion. It is assumed that the product under test has

implemented COTP only. Using the same terminology as in [h i s 821, we will

examine each field of the CR message and see in how many different ways (valid or

invalid) values can be assigned to it.

A CR message has following fields.

1. Length Indicator.

Figure 5-3: Control Graph for COTP with 1/0 labels

Number of invalid values = 1 (incorrect value), otherwise valid values
only.

2. Credit
Number of invalid values = 1 (non zero value), otherwise valid values
only (i.e.. 0).

3. Source reference
Number of invalid values = 1 (zero value), otherwise valid value only
(non zero value)

4. Class options. This field has three subfields.

a. Class of TP (0..4): Number of invalid values = 1 (< > 0). otherwise

valid value only (0).

b. Format of the message (normal or extended): nio invalid values. Both
formats to be used.

c. Two bits always zero: Number of invalid values = 1 (set either one
or both of them to I) , otherwise valid values only (both bits 0).

5. Variable part. This field has several subfields.

a. Called, calling TSAP-ID: Number of invalid values = 2 (once for
calling address and once for called address). otherwise valid values
only.

b. TPDU size: Only the following values are permitted in COTP: 128,
256. 512. 1024. 2048. Number of invalid values = 2 (>2048 and
<128). Number of valid values = 6 (default and all 5 values listed
above).

c. Acknowledge Time. Residual error rate, Priority. Transmit delay:
For all these fields let us assume that only fixed known valid
values are assigned.

6. Let us also add (say) 2 invalid values for those parameters in the variable
part that are not allowed in the COTP, e.g.. checksum.

Thus we w111 have to send 11 mvaild CR messages (indicated by a label on a l l '

and used as the lower bound lb(al1') = 11). and at least 6 valid CR messages

(lb(A'I = 6) on all valid calling TSAP-IDS. Here lb(aJ indicates the lower bound for

an arc a. Similarly we can assign weights to other remaining arcs. However, we

will not go into the same level of details for the remaining arcs as we have done

with CR message. Instead, we will assign some "reasonable" lower bounds as follows:

CC messages are sent in 4 different ways (lb(D') = 4): the IUT is forced to send CR

messages in 5 different ways (lb(C') = 5); connection is denied at least 3 times

(lb(c') = 3); 5 different data messages are sent and expected (lb(d2') = lb(d1') = 5); a

CR message is sent once in data transfer state (Lb(el1') = 1).

The meaning of additional arc labels in Figure 5-2 of the form <m.n> is as

I 1 11

follows. "m" represents the lower bound. n represents the actual flow (i.e.. the

number of times the arc will be executed), so that at every state the flow is

conserved and total input flow equals total output flow.

Once a minimum flow is computed. we obtain the different subtours using the

algorithm presented in section 5.4. A possible list of subtours using this algorithm is

given below. A sequence of arcs in parentheses with a superscript indicates that

those arcs will be executed repeatedly in sequence: the number of times it will be

repeated is indicated by the superscript.

1. (a l l ' , a 1 2 ') ~ ~
2. A'. B', d2', d l ' , e l l ' , e12'

3. A'. B', (d1'13, e2'
4. (A', B', d2'. e2'14
5. (C., c *) ~
6. C'. D', d l ' , e2'

7. (c,. D'. e274

Chapter 6

Conclusion and Discussion

In this thesis. we have proposed two algorithms for automatically generating test

sequences for products implementing a layer of layered communication protocols. In

this chapter we highlight the contributions of this thesis and indicate future

directions.

6.1. Contributions of this thesis

We

forma

broad

have proposed two algorithms for generating test sequences directly from the

1 specification in Estelle. The first method is general and can be used for a

class of protocols but does not generate optimal test sequences. The second

method is based on network flow algorithms and obtains minimum cost test

sequences. However, it cannot be used for complex protocols. Since the methods are

independent of any particular test architecture. they are widely applicable.

6.2. Comparison with Sarikaya's algorithm

We now compare the new algorithms proposed in this thesis and Sarikaya's

algorithm. described in Appendix A.3. For the definitions of the terms specific to

Sarikaya's algorithm, the reader is referred to Appendix A.

The most important difference between our approach and Sarikaya's is that in our

method the Data Flow Graph (DFG) is completely eliminated while the DFG plays the

most important role in Sarikaya's algorithm.

6 4

The procedure to construct a DFG is described in detail in Appendix A. Briefly, a

DFG depicts the flow of information (due to BEGIN blocks of NFTs) from the

vertices that represent values (of different fields) of the received messages (called I-

nodes) to the vertices that represent values (of different fields) of the message being

sent (called 0-nodes). For example, there will be an arc from vertex X to vertex Y

labeled P, if, in an NFT labeled P, there is an assignment statement that assigns the

value of a variable represented by vertex X to a variable represented by vertex

Y. For real protocols (like ISO's TP), the DFG has a rather large number of vertices

and arcs, since each variable is represented by a vertex and every assignment

statement (of the BEGIN block) generates an arc (informally -- a DFG is very

complex).

In Sarikaya's algorithm, the DFG is partitioned and each block of the DFG is tested

independently. Heuristics are used to partition a DFG. Choosing an optimal solution

is difficult, since to obtain an optimal solution. one must partition the DFG

intelligently. No algorithm is suggested for the above problems and .it is not clear

how this step can be mechanized.

In Sarikaya's algorithm, parameters are varied by assigning different values to every

node. This is achieved by assigning appropriate values to the I-nodes. Clearly, a

very large number of values must be assigned to the I-nodes, to achieve the

parameter variations as suggested by Sarikaya.

In our algorithm, for parameter variations. we observe the PROVIDED clause. Note

that all the conditional statements are visible in the PROVIDED clause. PROVIDED

clauses are completely ignored in Sarikaya's algorithm. It may also be noted that our

test executes each statement of the BEGIN block since they execute all the NFTs a t

least once. Furthermore, our first algorithm is powerful enough to handle complex

protocols and our second algorithm obtains an optimal solution in a special case.

In summary, it can be said that our algorithms have two main advantages over

Sarikaya's algorithm. They are:

0 It is easier to generate test sequences by our algorithms, since we observe
the PROVIDED clause to vary the parameters, doing away with the DFG.

0 It is easier to implement our algorithm since partitioning DFG and choosing
an executable subtour to traverse a particular arc in DFG is not required.

6.3. Future work

We expect significant research in the following areas in the near future:

Formal model for protocol specification.
Test architectures for testing protocol implementation.

0 Program testing in general.

A brief comment on each area is given below.

6.3.1. Formal models

-4 formal specification is preferred to specification in a natural language because.

since the specification becomes unambiguous, it can be verified for correctness, and it

lends itself to automatic implementation.

A standard model for protocol specification. that is accepted universally, would be

desirable. Currently only a draft version of the FDT model is available. It is not

clear how soon the IS0 will be able to standardize Estelle. The main difficulty in

standardization is that many different models are available (see chapter 1) and none

of them seems to be the best.

6.3.2. Test architectures

In chapter 2, two architectures for testing protocol implementations were described.

Unfortunately, each architecture has advantages and disadvantages. Recently, yet

another architecture has been proposed by Rafiq [~ a f i 851. This architecture is a

variant of the replacement scheme described in Section 2.3. The TR of the

replacement scheme is called an astride responder (AR) in [Rafi 851. The AR

operates a t two levels. (N) (i-e.. the same as that of IUT) and (N+1), simultaneously.

Unfortunately, the principle of hierarchical or layered architecture (which is used to

keep the overall complexity within manageable limits and) which requires building

each layer using services of the immediately lower layer, is violated. Clearly more

research leading to an architecture that combines the advantages of both the

replacement scheme and derail scheme would be highly useful.

6.3.3. Program testing

Research in this field is also vital for effectively testing communication protocols.

(In our scheme, we use it to obtain message instances and to assign integer weights to .
the arcs.) Although tremendous efforts are being made, no strategy that makes only

a few assumptions and is yet powerful enough to detect most of the errors (and

therefore acceptable to most applications) is available. Testing will continue to remain

an "art" unless some break-through is made in the program testing field.

The research presented in this thesis could be used in program testing area if

programs can be modeled as extended finite state machines.

Appendix A

Sarikaya's Algorithm

In this appendix the theory that Sarikaya's algorithm is based on and the algorithm

itself are described. The concept of Data Flow Graph (DFG) due to Sarikaya

[Sari 841 is introduced. The CG and DFG are first derived from the specification.

and the DFG is then partitioned and each block of the partition is tested

independently. To test each block. different combinations of input parameter values

must be applied and output of each combination must be verified for correctness.

A.1. The Data Flow Graph

The DFG is constructed from a specification in terms of NTFs. It models the path

of information flow in the specification. A DFG contains four types of nodes:
&

I-nodes to represent input interactions,
0 D-nodes to represent protocol variables and constants,
0 0-nodes to represent output interactions, and

F-nodes to represent certain functions on data.

The arcs in the DFG are used to represent the information flow as derived from

the actions (specified in the BEGIN blocks) of the NFTs. Simple assignment

statements7 in a BEGIN block are shown by arcs directed from source nodes to the

destination nodes. The output values directly computed from the input values are

modeled as simple assignment statements.

'.4n assignment statement in which a variable (represented by a node in a DFG) is assigned a value of
other variable is referred to as a simple assignment statement.

Each arc in a DFG is labeled with the identifier of the corresponding NFT. This

identifier represents the pre-condition of the NFT (viz. (1) boolean expression specified

in the PROVIDED clause and (2) received interaction specified in the WHEN clause)

which must be satisfied if the indicated flow of information should occur. A given

BEGIN block can contain many statements, hence there can exist more than one arc

labeled with the same identifier. Also, the same assignment used in more than one

NFT is represented as a single arc carrying more than one label.

A.2. Partitioning of the Data Flow Graph

Sarikaya [Sari 841 partitions the DFG in two stages. After the first stage, a large

number of blocks are obtained. Some of the blocks are then combined in the next

stage to obtain the final partition. The procedure is rather involved, so we briefly

outline the procedure for each stage. Complete details are given in [sari 841.

A.2.1. Stage 1

Initially all D-nodes are considered unprocessed. An unprocessed ~ I n o d e is selected
b

for processing and a new block is created for this D-node. For this D-node, all input

I-nodes. D-nodes and F-nodes and output 0-nodes are placed in the same block. These

0-nodes may have other input D-nodes. All such D-nodes are also placed in the same

block. For any input F-node, all D-nodes that represent constants and input I-nodes

are included in the same block. If all the input nodes of the F-nodes are in the

same block then the F-node is placed in the same block. When no more nodes can

be added to the block by the above procedure, some unprocessed D-node is selected

and the operations are repeated. When an 0-node is assigned a value directly by an

I-nodes (F-nodes), additional blocks are created containing only the I-nodes (F-nodes)

and the 0-node.

A.2.2. Stage 2

Using the heuristic procedure given below, some blocks are combined to form a

larger block.

Two blocks Bi and B. are combined if their 0-nodes contain parameters of
J

the same type. Examples of parameters that are of the same type are:

Source reference and destination reference.
Called address and calling address.

Two independent blocks Bi and Bj are combined if the types of all the I-

nodes of Bi are the same as those of the 0-nodes of B..
J

Two blocks Bi and B. are combined if their 0-nodes contain different but
J

related parameters of the same message. Which parameters are related is
determined by the test designer.
If block Bi contains only 0-nodes and F-nodes and if F-nodes have

incoming arcs from D-nodes of different blocks, then Bi is combined with

one of the blocks. If there are more than one block, then the particular
block 1s chosen by the test designer.
Two blocks Bi and B. are combined if they contain related D-nodes.

J
Which D-nodes are related is determined by the test designer.
If block Bi is an independent block and it has some D-nodes that are not

assigned to any other node, then Bi can be combined with some block Bj

if NFTs in B, form a subset of NFTs in Bj.

A.3. Sarikaya's Algorithm for generating test sequences

(01) From the CG, a subtour is selected. The subtour indicates the sequence of
0

input interactions to be applied.

(02) The I-nodes of the block under test that are involved in the input interactions

of Step 01 are determined.

(03) Parameters of the I-node of Step 02 that are not involved in the current

subtour are assigned suitable constant values.

(04) From the DFG, the expected parameter values of each 0-node, corresponding to

the input values of Step 03. are determined.

(05) Input interactions are applied and the Output interactions are observed.

(06) If the parameter values of the output interactions agree with the values

computed in Step 04, then Step 07 is executed, else it is inferred that there is an

error in the implementation. More details about the error are provided and the

testing procedure terminates.

(07) The subtour is repeated (Step 05) for different combinations of values for the

I- nudes.

(0 8) Steps 01 to 07 are repeated till a complete block is tested. (A subtour may

test only a part of a block.)

Appendix B

List of NFTs for Class 0 TP

In this appendix we list the NFTs of the IS0 Class 0 TP. These NFTs are given in

[Sari 841. Since there are some minor differences in ours and Sarikaya's NFTs (see

section 3.1.2). corresponding changes are reflected in the NFTs listed below. We also

use "add" for "address". "var" for "variable", and "DISCON" for "DISCONNECT". The

NFT labeled P20 is our own addition.

P1:
WHEN TSAP.T-CONNECT-req
FROM idle
PROVIDED (/Trans. entity a3le to provide required QOS /)
TO wait-for-CC
BEGIN

local-ref := ,
TPDU-size := ,
var-part-to-send := ,
CR (0. local-ref, class-0, normal,

var-part-to-send):
END

P2 :
WHEN TSAP.T-CONNECT-req
FROM idle
PROVIDED (/Trans. entity NOT able to provide required QOS /)
TO idle
BEGIN

T-DISCON-ind (TCEPI, inability-to-provide-QOS);
END

P3 :
WHEN mapping.CR
FROM idle
PROVIDED var-part.max-TPDU-size < , undefined AND

(/ able to provide QOS /)
TO wait-for-T-CONNECT-resp
BEGIN

remote-ref := source-ref;
TPDU-size := var-part.max-TPDU-size;
remote-add := var-part.calling-add;
TCEP := ;
called-add := ,
calling-add := ,
QOTS-estimate := ,
T-CONNECT-ind (TCEP, called-add, calling-add,

QOTS-estimate, normal);
END

P4 :
WHEN mapping.CR
FROM idle
PROVIDED (var-part.max-TPDU-size = undefined) and

(Trans. entity able to provide required QOS /)
TO wait-for-T-CONNECT-resp
BEGIN

remote-ref := source-ref;
TPDU-size := 128;
remote-add := var-part.calling-add;
TCEP :=
called-add := ,
calling-add := ,
QOTS-estimate := . . . ,
T-CONNECT-ind (TCEP, called-add, calling-add,

QOTS-estimate, normal);

END

P5 :
WHEN mapping.CR
FROM idle
PROVIDED NOT (iTrans. entity able to provide required QOS /)
TO idle
BEGIN

v a r - p a r t - t o - s e n d . a d d - c l e a s o n := ,
DR (source-ref, 0, connection-negotiation-failed,

var-part-to-send);
END

P6 :
WHEN mapping.CC
FROM wait-for-CC
PROVIDED var-part.max-TPDU-size c , undefined
TO data-transfer
BEGIN

remote-ref := source-ref;
TPDU-size := var-part.max-TPDU-size;
QOTS-estimate := ,
T-CONNECT-conf (TECP, QOTS-estimate, normal);
in-buffer.clear;
out-buffer.clear;
out-buffer.set-max-get-size (TPDU-size);

END

P7 :
WHEN mapping.CC
FROM waitlfor-CC
PROVIDED var-part.max-TPDU-size = undefined
TO data-transfer
BEGIN

remote-ref := source-ref;
TPDU-size := ,
QOTS-estimate := ,
T-CONNECT-conf (TECP, QOTS-estimate, normal);
in-buffer.clear;
out-buffer.clear;
out-buffer.set-max-get-size (TPDU-size);

END

Pa :
WHEN
FROM
PROVIDED
TO
BEGIN

mapping.DR
wait-for-CC
disconnect-reason = TS-user-initiated-termination
idle

disc-reason := disconnect-reason;
user-reason := var-part.additional_clear_resson;
N-DISCON-req (. . . , disc-reason);
T-DISCON-ind (TCEP, disc-reason, user-reason);

END

P9 :
WHEN
FROM
PROVIDED
TO

mapping.DR
wait-for-CC
disconnect-reason () TS-user-initiated-termination
idle

BEGIN
disc-reason := disconnect-reason;
N-DISCON-req (. . . . , disc-reason) ;
T-DISCON-ind (TCEP, disc-reason, user-reason);

END

P10:
WHEN TSAP.T-CONNECT-resp
FROM wait-for-T-CONNECT-resp
PROVIDED (:QOS requested < = QOS proposed in T-CONNECT-ind 1)
TO data-transfer *

BEGIN
local-ref :=
TPDU-size := ,
var-part-to-send.called-add := remote-add;
var-part-to-send.calling-add := ,
var-part-to-send.max-TPDU-size := TPDU-size;
CC (remote-ref, local-ref, class-0, normal,

var-part-to-send);
inbuffer.clear;
outbuffer.clear;
outbuffer.set~max~get~size (TPS~size);

END

P11:
WHEN TSAP.T-CONNECT-resp
FROM wait-for-T-CONNECT-resp
PROVIDED (/QOS requested , QOS proposed in T-CONNECT-ind /)
TO idle
BEGIN

var-part-to-send.add-clear-reason := ,
DR (remote-ref, 0, connection-negotiation-failed,

var-part-to-send);
T-DISCON-ind (TCEP,

inability-t o-provide-the-QOS) ;
END

P12:
WHEN TSAP.T-DISCON-req
FROM wait-for-T-CONNECT-resp
PROVIDED
TO idle
BEGIN

var-part-to-send.add-clear-reason := ,
DR (remote-ref, 0, TS-user-initiated-termination,

var-part-to-send);
END

P13:
WHEN TSAP.T-DATA-req
FROM data-transfer
PROVIDED (/flow control from the user is ready /)
TO data-transfer
BEGIN

END

P14 :
WHEN
FROM data-transfer
PROVIDED (/flow control to the user is ready /)
TO data-transfer
BEGIN

mapping.DT (get-next-fragment (out-buffer));
END

P15:
WHEN mapping.DT
FROM data-transfer
PROVIDED (/flow from the network layer is ready /)
TO data-transfer
BEGIN

inbuffer.append (user-data);
END

P16:
WHEN
FROM data-transfer
PROVIDED (/flow control to the user is ready /)
TO data-transfer
BEGIN

TSAP.T-DATA-ind (get-next-fragment (inbuffer));
END

Ply:
WHEN TSAP.T-DISCON-req
FROM data-transfer
PROVIDED
TO idle
BEGIN

N-DISCON-req (disconnect-reason, user-reason);
END

P18:
WHEN N-DISCON-ind
FROM data-transfer
PROVIDED
TO idle
BEGIN

disc-reason := , (Z

T-DISCON-ind (TCEP, disc-reason, user-reason);
END

P19:
WHEN mapping.network-reset
FROM data-transfer
PROVIDED
TO idle
BEGIN

disc-reason := ,
T-DISCON-ind (TCEP, disc-reason, .

END

P20 :
WHEN mapping.CR
FROM data-transfer
PROVIDED
TO idle
BEGIN

disc-reason := ,
T-DISCON-ind (TCEP, disc-reason,
ERROR ;

END

Appendix C

Repetitive Executions of Self -loops

The IS0 model, described in Chapter 2, uses the concepts of major and minor

variables. Execution of a NFT may change the values of major and/or minor

variables. The change in the major variable of course represents a state transition.

The change in minor variables may cause a change in the enabling conditions

(PROVIDED clauses) of some NFTs from TRUE to FALSE or vise versa.

In this appendix we show that repetitive executions of self-loop NFTs either do not

alter the condition in any YKOL'IDED clause or are equivalent to a single execution

(as for YFT PR3 mentioned below) with some exceptions, e.g.. NFT P84, which are

discussed at length later in this appendix.

b

.4rcs N. a, f . V. K , e and S in the control graph CGOO (shown in Chapter 4) are

self-loops. We will now briefly examine and discuss the NFTs that each of the

above arcs represents. The list of NFTs that these arcs represent is included a t the

end of Chapter 4.

We use the same terminology as in [Sari 841. which in turn conforms to

[ISOb 841. It is noted that when some messages, e.g.. ERR. DR etc.. are sent to the

IUT, there is no change in any condition since only a message is constructed (i.e.,

appropriate values are placed in various fields of the message) and the message is

"handed over" to the network layer.

Arc N represents two NFTs, i.e., P2 and P3. In fact, NFTs P2 and P3, which are

spontaneous transitions (i.e.. without WHEN clause), appear in every self-loop. These

two NFTs send/receive data messages to/from the network layer. (Recall that any

message sent to or received from the peer transport entity must be sent via the

network layer). No change in any condition is caused by these NFTs. NFTs P2 and

P3 will not be discussed again with the other remaining self-loops.

Arc a represents three NFTs. viz.. PR3. P2 and P3. NFT PR3 is used to update the

R.-credit value. No other values are changed. Repetitive executions of NFT PR3 is

equivalent to executing NFT PR3 only once with an appropriate value (so that

R-credit has the same final value). The value of R-credit variable is examined

when a data message is received. If the value is greater than 0 the received data

message is accepted (assuming other conditions e.g.. sequence number, are satisfied) and

the R-credit value is decremented by 1. However, a value of 0 indicates that remote

site has sent a data message when it should not have. This is an error and hence

the connection is terminated (see NFT P81).

Arc f represents three NFTs, viz., P108. P2 and P3. NFT PlO8 is used to send a

DR message to the IUT, after which a DC message is expected from the IUT. When

a DC message is received, the state is changed to the initial state. There is no change

in .any condition since only a DR message is sent out.

Consider the arc V now. It represents three NFTs. viz.. P I 16, P2 and P3. NFT

PI16 sends an error message (ERR message) to the IL'T. Repetitive executions of NFT

PI16 (sending ERR messages) does not change any condition.

Arc e represents eight NFTs. NFTs PI06 and PI09 send a DR message to the IUT.

NFT P116, which sends an ERR message to the IUT, was discussed above. NFT P611

is executed when a duplicate DR message is received. A DC message is sent to the

IUT in response. NFTs P407 and P413 are used to ignore previous CR messages from

the IUT. NFT P407 sets the type of message to be sent as ERR (on the same

network connection with the same destination reference). NFT P413 is very similar

to NFT P407 with only minor difference. In all of the above cases the connection is

terminated and the state is set to the initial state.

Arc K represents eight NFTs, viz.. P101, P102, P117. PE1. PE2. PR2. P2 and P3.

NFT PR2 is used to update the R-credit value only and is very similar to NFT PR3.

NFTs PE1 and PE2 are used to indicate that IS0 Class 2 Transport Protocol (Class 2

TP) will be used and set the maximum size of data messages. Repetitive executions

of \FTs PE1 and PE2 will have the same effect if the NFT is executed only once

wlth a sultable vdlue for the maxlmum size of data messages. NFTs P101, P102, and

P117 construct and send a CR message to the IUT. Note that state 5, in which arc

K can be executed, represents a state where no connection has yet. been established

with the IUT. Only one CR message is sent to the the K T .

Arc S represents 24 NFTs which are executed mainly to exchange data messages

between the peer entities. Out of the 24 NFTs which arc S represents. the following

10 NFTs send a message to the IUT and hence do not change any conditions:

P103(CC). P104(CC). P118(CC). PllO(DT). P l 2 A P113(EDT), P115(EAK),

P116(ERR). PPl(DT) and PSl(AK). The corresponding message type sent to the IUT

is indicated above in parentheses.

NFT PUl also sends an EAK message to the IUT. However, i t does set variable

EX-D-sent to FALSE. NFT PR4 only updates the R-credit value (see discussion of

the arc a given above). The remaining NFTs are executed when different data

messages and different acknowledgement messages are received from the IUT. They

also include spontaneous transitions which send messages to the network layer and the

session layer. In the table given below we list each NFT and indicate the type of

message that is received and the action taken a t the tester site. A discussion of how

the enabling conditions of NFTs are affected, due to changes in the values of the

variables by each NFT is also included.

P82 Reception of a DT message. Received data is appended to the data. buffer.

P84 Reception of a DT message. Received data is appended to the data buffer.
R c r e d i t value is decremented by 1, and the send sequence number is
incremented by 1.

P93 Reception of an AK message. The S-credit8 value is updated.

P A2 Reception of an EDT message. An ERR message is sent to the IUT. since

an EDT message is not allowed when previous EDT message is
"unacknowledgedw (i.e.. ~ ~ - D - r e c e i v e d ~ is TRUE).

PA3 Reception of an EDT message. The variable EX-D-received is set to
TRUE.

PB 1 Reception of an EAK message. Send an ERR message to the IL'T. since
the use of an expedited data message was not chosen but an E.4K message
is received from the IUT.

8 ~ h e value of S-credrt variable is examined when a data message is sent. If the value is greater than 0

the data message is sent and S-credir value is decremented by 1. However, a value of 0 indicates that a

data message cannot be sent now.

9 ~ a r i a b l e EX-D-received is set to TRUE when an EDT message is received and is set to FALSE when an
E.4K message is sent.

PB2 Reception of an EAK message. Set the variable E X - D - S ~ ~ ~ ' ~ to FALSE.

PO1 Reception of a T-DATA-req message. Append the data in the message to
the data buffer to be sent to the IUT.

pQ1 Reception of a T-DATA-ind message. Append the data in the message to
the data buffer to be 'sent to the session layer.

PT 1 Reception of an EX-DATA-req message. The expedited data message is
constructed in a buffer and the variable EX-Dsent is set to TRUE.

The variables that change due to the NFTs represented by arc S include the send

sequence number and the receive sequence number. Here we will focus our attention

on these two variables only. For EX-D-sent. EX-D-received. R-credit and S-credit

variables a similar argument applies. The sequence numbers change when data

messages (DT messages) are sent and received (see NFT P84). However, these (minor)

kariables can be considered "local" to the data transfer phase, since they do not appear

in the PROVIDED clause or BEGIN blocks of NFTs during the connection

establishment or connection termination phase.

Now we will examine both (a) the problem of partial path extension and (b) the

effect of the "local" variables on the enabling conditions of NFTs when the NFT

under consideration is in one of the three phases, i.e.. connection establishment, data

transfer and connection termination.

'O~ariable EX-D-sent is set to TRUE when a EDT message is sent and set to FALSE when a EAK
message is received.

C. 1. Connect ion establishment phase

The NFTs in the connection establishment phase do not refer to the send or receive

sequence numbers. clearly, their enabling condition is independent of the values of

the "local" variables.

C.2. Data transfer phase

If it is required that send and receive sequence numbers have specific values, then

appropriate number of data messages should be sent and received to and from th'e

K T (by the tester site).

C.3. Connection termination phase

In this phase specific value of send or receive sequence number is not required

Only a specific condition may need to be satisfied (e.g.. sending out of sequence data

message). In such a case repetitive executions of self-loop NFTs that send and receive

data messages are required.

We have examined each NFT that appears as a self-loop in the control graph CGOO.

We have also discussed the effect of minor variables, that are modified by self-loop

NFTs, on the enabling conditions of other NFTs. From the discussion above, it is

0

clear that in all the cases we can choose NFTs to extend the partial path by the

algorithm given in Chapter 4.

Appendix D

Property of IS0 Class 2 TP

D. 1. Introduction

In our algorithm (more specifically procedure One-transition presented in Chapter '

4). we made the assumption that no backtracking is necessary to find an executable

path to the start node backward from the node from which a given NFT carrying a

MI originates. By definition, all the NFTs on an executable path have PROVIDFD

clauses that are compatible or simultaneously satisfiable. In this appendix we

demonstrate that the above assumption is valid for the IS0 Class 2 Transport Protocol

f C2TP).

In what follows we consider a field of a message received by the -IUT as an input

variable if it can be assigned different values. Note that not all the fields can be

assigned different values. As an example consider the dest-reference field in C2TP.

This field is not considered as an input variable in data messages since its value is

fixed. However, in the connection-confirm messages it is an input variable.

The supported values for an input variable mean those values which are allowed

by the IUT. For example, if the IUT allows the maximum buffer size of 4096

bytes, then any value lower than 4096 for buffer size is termed as supported. Other

values will be termed as unsupported values. During backward path construction.

supported values are used by the tester, unless the conditions force us to use a

different value (E.g., to make the IUT traverse one of the NFTs represented by arc

C, we need to use an unsupported value with an NFT represented by arc A.)

In the analysis below, we will examine the PROVIDED clause of the current NFT.

It may force an input variable in a message to the IUT to have a certain value.

Those NFTs which do not require specific values for any input variables are referred

to as NSIVR (No Specific Input Value Required) NFTs.

We will also examine the BEGIIV block of each NFT and describe the possible

message instances (MIS) that are output. Then we will show that for every MI we

can extend the backward partial path. Those NFTs which can have only one MI will

be referred to as NSOMI (No Specific Output Message Instance) NFTs.

Consider the data transfer state (state 7 in the CGs) Independent. nf how state 7

is reached, the connection can be disconnected by NFTs O or P. Therefore, MIS for

YFTs 0 and P are completely independent of connection establishment parameters.

Such NFTs will be called Total ly Independent NFTs, or TINFT, for short. More

formally. a TINFT is an NFT whose output message is independent of history (i.e.,

how this state was reached and the values of input messages that led to this state).

Therefore, the MI output by a TINFT is a function only of the input message. In

general, the field values of an output message depend on both the input MI. and the

history. If some output message is independent of its history, then clearly once the

state is reached the desired MI can be sent (to the IUT) and its response (i.e.. the

output message) can be observed. All the NFTs that terminate connection in the CG

(i.e.. their to-state is the initial node) are TINFTs.

We will first show that if a given NFT t is in the connection establishment phase

then the (backward) extension of a partial path by one more NFT is always possible.

Then proof will follow by induction. The other cases will then be examined. We

will refer to the module at the IUT site that is one layer "above' the IUT as the

Co-operative module (CM). To give the reader a clear idea about the connection

establishment phase we first describe the connection establishment by the CM.

referring to the control graph CG11. (The control graphs referred to in this appendix

are shown at the end of Chapter 4). We then present the proof considering the

complete control graph CGOO.

D.2. Connection establishment in C2TP

Step 1: The CM sends a Tconn-request to the IUT. This in turn generates a CR

message (arc A). The IUT is now in state 3.

Step 2: A spontaneous NFT (no WHEN clause present in the NFT) corresponding to

arc D then sends an N-conn-request to the tester site. The IUT is now in state 4.

Step 3: At the tester site, the reception of an N-conn-request causes arc B to send

an N-conn-response to the IUT. The tester site is now in state 2.

Step 4: At the IUT site, the N-conn-response causes transition from state 4 to 5

due to arc F.

Step 5: At the IUT spontaneous arc I< causes transmission of a CR to the tester

site. No change in state.

Step 6: At the tester site, the reception of a CR causes the sending of a

T-conn-ind to the "above" layer (arc b). State changes from 2 to 6.

Step 7: At the tester site. the reception of a T-conn-res from the "above" layer

causes transition from state 6 to 7 and the transmission of a CC to the IUT (arc Y).

Step 8: At the IUT, the reception of a CC causes the sending of a T-conn-conf to

the CM (arc I). The IUT changes state from 5 to 7.

At this stage both the CGs are in state 7, i.e.. in the data transfer state and data

can be exchanged. The arcs traversed at the IUT are A. D. F. K, I and the arcs

traversed a t the tester site are B, b. Y. When the arcs are interchanged we obtain the

scenario where a call is established by the tester site.

D.3. Proof

It is noted that

1. Values can be assigned only to messages that are sent out to the IUT and
not to the messages received from the IUT.

2. NFTs that represent error conditions due to incorrect implementation of
protocol cannot be guaranteed to be traversed since the IUT may be error-
free. For example, consider NFT PG17 in state 2. To execute NFT PC17
in state 2, the remote site must send N-conn-ind immediately followed
by N-disc-ind. The reception of two (rather conflicting) messages, one
requesting connection establishment immediate1 y followed by another
requesting the termination of the connection (being established) is not
expected. We also list these IVFTs below.

3. The tester site or the CM can send any message with either supported or
unsupported values. In addition, if the CG (of the IUT, if the CM is
sending a message to the IUT. else the CG at the tester site) is in a
certain state, the execution of specific NFTs a t the IUT may always be
possible. NFTs described as "always possible" below refer to such NFTs.
It is noted that, depending on the state of the CG. the same input message
may give rise to the traversal of ,different NFTs.

We first consider the case where the CM initiates connection establishment. The

MIS for arc C are generated due to unsupported QOS (quality of service) options in

the T-conn-req message from the CM. The CM can send any values in a

T-conn-req message (arc A). So backward traversing from C is always possible.

The NFTs corresponding to arcs D and F are traversed only when supported values

are used.

Arc E is traversed when the tester sends a Tdisc - ind . Clearly, using supported

values for all other arcs and tester sending a T-disc-ind is always possible.

The MIS for arc I are due to the reception of a CC message from the tester site.

which in turn depends on the parameters of T-conn-res. Only supported values

must be used in arcs F, D and A.

The MIS for arc J arise due to the reception of a T--disc-req from the C M . which

is always possible. Arcs F. D and A can use any supported values to reach state 5.

Arcs Ci and H are traversed because either the CC message received from the tester

site has unsupported values or a DR message or N-reset-ind or N-disc-ind message

is received from tester site (always possible). -Arcs F. D and A use any supported

values to reach state 5.

Now consider the case where the tester site establishes a connection. In this case.

arcs B, c, e, b. Z, a. Y will be traversed by the IUT.

Arc c is traversed when the tester site sends an N-conn-req with supported values

followed by a N-disc-req (we cannot execute NFT PG17). which is always possible.

When an N-reset-ind is received from the tester site, arc Z is traversed. So first

an N-conn-req is sent with supported values, followed by an N-reset-ind (we

cannot execute NFT PN4). which is always possible.

The CM can send a T c o n n r e p to the K T with the IUT already in state 6 using

supported values. Clearly always possible.

-4rc a is traversed when data messages are received from the CM or R-credits are

updated. Clearly always possible with only supported values used to reach state 6.

Arc e is to ignore the messages like DT and DR received when the states of both

network and transport protocol are "closed". The messages are simply ignored since

they are not expected.

In state 7 self loop S exchanges data and expedited data messages. It also handles

delayed duplicate messages CC and CR. MIS are possible only if supported values are

used in connection establishment. Also they are not dependent on which side

established the connection.

Other arcs are TINFTs. States 8 and 9 can be reached by first reaching the data

transfer state using supported values only. Then the connection can be terminated

with NFTs in either Q. R. P or 0. Arcs Q. P, and 0 are TIYFTs. Consider arc R ,

which represents NFTs P91 and P92. They are not TIXFTs. However, they represent

an error condition. More specifically, a message received from the remote site has

invalid values for some fields. What values are invalid depends on history. For

example, a data message numbered 6 is out of sequence when only 3 data messages

have previously been sent out, but is expected when 5 data messages have previously

been sent out.

The most important point here is that the invalid values can be generated by the

tester site very easily, e.g.. by sending a data message out of sequence. This clearly

depends on the history, however, only supported values need be used to reach the

data transfer state. Therefore, arc R is always executable."

We now consider NFTs which originate from nodes 7 , 8. 9 and 10 and which

terminate on nodes 2 and 1 (note that nodes 1 and 1' are equivalent). These NFTs

terminate a connection and are independent of how the originating state (node) is

reached. Now also consider the remaining NFTs viz., f . V and N which are mainly

responsible for obtaining data messages that may be in the network before terminating

a connection. The table given below shows why a backward path is always possible

for these NFTs.

Arc - Applicable NFTs How & possible.
Label C* -.

L' CG11. CG21 PGl8-19 NSIVR and NSOMI. TINFT.

T CG12. CG22 P612 NSIVR and MIS based on 3-disc-ind. TINFTs.

W CG12. CG22 P606 NSIVR and NSOMI. TIISFT.
P7 1 NSIVR and NSOMI. TINFT.
PFlO NSIVR and NSOMI. TINFT. -

S CG11. CG21 P506 NSIVR and NSOMI. TINFT.
PGlO TINFT.
PG16 SSIVR and NSOMI. TIKFT.

M CG12, CG22 P605 NSIVR and NSOMI. TIIVFT.
PF09 NSIVR and NSOMI. TINFT.

L CGl l .CG21 P505 NSIVR and NSOMI. TINFT.
PG09 NSIVR and NSOMI. TINFT.
PG15 NSIVR and NSOMI. TINFT.

0 CGll .CG21 PF04 NSIVR. NSOMI. TINFT.
PG04 TINFT.

" ~ e c a l l that an arc is a set of NFTs. When we use an arc instead of an NFT, the description is

applicable to all NFTs that are represented by the arc.

PGOS TINFT.
PG14 TINFT.
PN6 NSIVR and NSOMI. TINFT.

P CG12, CG22 P607-610 NSIVR and NSOMI. TINFT.
PF04 NSIVR. NSOMI. TINFT.

f all

V all

N all

P2-3 Spontaneous NFTs that communicate with
network layer to send and receive data. TINFTs.
MIS due to different data message numbers.

PI08 Spontaneous NFT that sends DR. NSIVR.
MIS due to remaining data bytes. TINFT.

P2-3 Spontaneous NFTs that communicate with
network layer to send and receive data. TINFTs.
MIS due to different data message numbers.
Spontaneous NFT that sends an ERR message.
TINFT.

Spontaneous NFTs that communicate with
network layer to send and receive data. TINFTs.
MIS due to different data message numbers.

References

[Arak 831

[Boch 801

[Chan 811

[C l ~ i 811

[Gone 701

[HeRa 811

Araki T., Takada K.. Yoshitake S.
A test logic generation method for layered protocol implementations.
In Proc. of the IEEE COMPSAC. pages 356-365. IEEE, November,

1983. .

Bochmann G.
A general transition model for protocols and communication services.
IEEE Trans. on Comm. Comm-28:624-63 1. April, 1980.

Chandrasekaran B.. Radicchi S. (Editor).
Computer Program Testing.
North-Holland Publishing Company. 198 1.

Clarke L.A.. Richardson D.J.
'3vmbolic Evaluation methods for program analysis.
Prentice-Hall Soft ware Series. Program Flow Analysis Theory and

Applications.
Prentice-Hall. 1981. pages 264-301, Chapter 9.
Editors are Muchnick S. S.. Jones N.D.

Gonenec G.
A method for the design of fault detection experiments.
IEEE Trans. on computers 19(6):551-558, June. 1970.

Henley R. F. L. Rayner D.
Implementation assessment of transport and network services: An

informal description of tests for public comment..
Technical Report DNACS TM 5/81, National physical laboratory.

1981.

Bochmann G. V.
Examples of transport protocol specification.
IS0 /TC 96/ SC 16/ WG I , July. 1982.

International Organization for Standardization.
A formal description technique based on extended state transition

model.
IS0 /TC 96/ SC 16/WG I Subgroup B . March. 1984.

[King 761

[Knis 821

[Koha 781

[Lawl 761

[LihIc 831

[LiNa 831

[MeFa 761

[N ~ T S 811

[Rafi 851

Jensen K.. Wirth N.
Pascal user manual and report.
Springer-Verlag. New York, 1974.

Kawaoka T., Yoshitake S.. Morino K.
A method for verifying layered protocol products and its application

to data communication network architecture products. :

In Proc. of the ICCC, pages 379-384. IEEE. 1980.

King J.C.
Symbolic execution and program testing.
CACM 19(7):385-394. July, 1976.

Knisghtston K. G.
The transport layer.
Computer Communication Review 12(3 & 4): 14-67, July/October. 1982.
It contains entire ISO/TC 97/SC 16 N1169 document.

Kohavi Z.
McGraw-Hill Computer Science Series: Switching and finite automata

theory .
McGraw-Hill Book Company, 1978.

Lawler E.1..
Combinatorial optimization Networks and matroid~
Holt Rinehart Winston. 1976.

Linn R. J.. McCoy W. H.
Producing tests for implementations of OSI protocols.
INWG . 1983.

Linn R. J.. Nightingale S. J.
Some experience with testing tools for OSI protocol implementations.
INWG , 1983.

Merlin P.M.. Farber D.J.
Recoverability of communication protocols- Implications of a

theoretical study.
ZEEE Transactions on Communications : 1036- 1043. September, 1976.

Naito S.. Tsunoyama M.
Fault detection for sequential machines by transition tours.
Proc. of FTCS :238-243. 1981.

Rafiq 0.
Tools and methodology for testing OSI protocol entities.
In The Fifth Annual International Symposium on Fault-Tolerant

Computing. pages 184-189. IEEE Computer Society. June. 1985.

[Rayn 811

[Sari 841

[Simo 821

[Suns 791

[Tard 841

[Yosh 821

[Zimm 801

Rayner D. [~d i to r] .
Protocol implementation assessment: Philosophy and Architecture.
NPL Report DNACS 44/81. April. 1981.

Sarikaya •’I.
Test design for computer network protocols.
PhD thesis. McGill University, March. 1984.

Simon G., Kaufman D.
An extended finite state machine approach to protocol specification.
In Sunshine C. (editor). Protocol specification, testing, and verification.

pages 113-134. IFIP WG 6.1. North-Holland Publishing Company.
May, 1982.

Sunshine C.
Formal technique for protocol specification and verification.
IEEE Computer 9:20-27, September. 1979.

Tardos E.
A strongly polynomial minimum cost circulation algorithm.
Technical Report 84356 - OR. Research Institute for

Telecommunication. October, 1984.
Also in Combinatorica. May 1985.

Tarjan R. E.
Data Structures and Network Algorithms.
SIAM, Philadelphia. Pennsylvania, 1983.

Ural H., Probert R. L.
User guided test sequence generation. b

In Rudin H.. West C. H. (editor), Protocol Specification. Testing and
Verification, I I I , pages 421-436. IFIP, 1983.

Ural H.. Probert R. L.
Automated testing of protocol specifications and their

implementations.
ACM SIGCOMM :149-155, 1984.

Yoshitake S.. Mashio M., Ideguchi S., Katsumata M.
Method for testing data communication products that implement

standard Protocols.
In 3rd International Conference on Distributed Computing Systems,

pages 742-747. IEEE, 1982.

Zimmermann H.
OSI reference model - The IS0 model of architecture for open

systems interconnection.
IEEE Trans. on Communication Comm-28(4):425-432. April. 1980.

