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1 - -- 

The KdV equation, first derived in 1895 by the team of - - - 
Korteweg &nd -- de Vries, has demonstrated wider applicability than- 

its original purpose of describing shallow water waves. The KdV 

equation is of interest not only from the standpoint of physical 

description h t  also from the point of view of 
- 

Mathematical-Physics. With the discovery in 1967 by the team of 

Gardner,Greene, Kruskal, and Miura of a connection between the 

time-independent Schroedinger operatorrand the KdV -equat?on came 
- 

the birth of the Inverse Scattering Method. It is through this 

method that solutions to nonlineat initial value problems can be - 

found by executing a sequence of linear operations. For the KdV 
v 

equation two distinct types of solutions exist, one being the 

now famous soliton solutions, the other being the moee 

complicated radiation solutions. Many researchers have looked at 

and discussed the soliton -solutions, however, re-latively few- - - 

have explored the radiation solutions. The form of the radiation 

solutions has been explored for the asymptotic time regime and- 

for short times. This thesis attempts to look at the radiation 

solutions for all times by use of an expansion in terms of 

harmonic Oscillator functions. In terms of these Oscillator 

fdnctions a complete solution has been found by first expanding 

- the  spectral transform in terms of the Oscillator •’'unctions and 
- 

then by using this expression to evaluate the solution of the 

Marchenko equation term by term through a Neumann series 

expansion. A calculation has been carried out for specific 



i n i t i a l  
- - 

r e s u l t s  

- 

data ,  up t o  second o ~ d e r  i n  the  Neumann s e r i e s .  The 

of t h i s  c a l c u l a t i o n  
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THE KORTEWEG DE VRIES EQUATION 

The Korteweg de Vries (KdV) equation w~as initially derived 

by the two Dutch scientists D.J. Korteweg and G. de Vries' -- 
(1895) to model the propagation of long surface waves in a 

tectangular canal. A very special form of these waves, now known 
t 

as solitons, was first observed and recorded by J.S. Russell2 in 
I I 

1834. Subsequent to its initial derivati~k~the KdVe equation has -- - z 
"a* -A 

been found to arise in other applicatio&s such as 

+magnetohydrodynamic waves in a cold plasma (Gardner and 

Morikawa3), longitudinal vibrations of an anharmonic . . l 

- 

discrete-mass string (Zabusky4, Kruskals), ion-acoustic waves in 

a cold plasma (Washimi and ~aniuti~), pressure waves in 

- liquid-gas bubble mixtures (wijngarten7), rotating flow down a . . 1 

- tube (LeibovichB), and longitudinal - dispersive,waves in elastic 

rods (Naribolis).   his wide range 'of physical problems is..in 

itself sufficient reason to justify inkerest in the KdV 
I 

equation, but through the discovery, in 1967, of the Inverse 

Scattering Method (ISM) by the team of Gardner, Greene, ,KL-.u~ltal, 
D .  .- 

- < .  . t i  .,; ' : ,{ >.+ - and ~ i u r a  ' (GGKM) the equation gene;ates interest, f rom-thr 

stand point of Mathematical-Physics, as a basis'for 

understanding the Inverse scattering Method. 

Physically the KdV,equation is a description of 

uni-directional long wavelength waves (where long is with 

respect to some characteristic length scale of the system) in a ' 



t' 

dightly dispersive medium. 

For historical reasons the following deribation of the,Kd!,! 
-. 

equation will be based on a hydrodynamical approach. To that end 

consider a level canal of- rectangular cross-section and rigid 

walls containing a non-viscous, incompressible fluid of' depth h '  

at.the surface of the earth. Since we are interested in the 

pr6pagition of the waves along thd canal we will ignore any 

variations across the width of the canal, and thus require only - 

two spatial variables ( x , z )  to describe the fluid's motion. The - 

coordinate system is choosen so that the bottom of the canal 

corresponds to the -line z=-h and the still surface of the fluid 

corresponds to the line z=0 (i.e. the x axis): - 
., - 

The disturbed upper surface will be characterized by L h e  

functions 

which are equivalent. 

-- 
\ In order to model the motion of the fluid (non-viscous, 

incompressible, homogenous) we appeal .to Euler's eqwtlon for - 

fluid motion, which can be found in any standard hydrodynamics . 
.. 



where C is the fluid's velocity, P the internal pressure, p the 

- w i t y ,  and f the applied force per unit mass. At the outset it 
- 

was ass'umed that the fluid was incompressible and now we will 

make the additional assumption that its motion'is irrotational, 

i.e. V x V = O .  The second of these conditions~implies that the 

velocity can be written in terms of a velocity potential . 

- 

and the former implies that 

which 
- 

V * v  = 

when combined-with the continuity 

0, so that the velocity potential 

equation tells us that 

obeys Laplace ' s quation 



< - 
Since the fluid is in ahconservative (gravitational) force 

field, the applied force can be writ-ten as a gradient of a 

scalar f unft ion 
- 

Under these assumptions equation 2 becomes 
- 

With the appropriate ga 

be integrated to give 

uge transformation on Q this eqr uation can 

At the earth's surface the expJicit form for the 'potential 

energyt is taken to be 



/ 

\ 

where the first term reflects the bniform gravitational field of 

the earth arid the second a well choosen constant that takes into 
- 

account the air pressure at the air-fluid interface. It should * 

be noted that we are assuming that the fluctuations in the air - 
pressure at the air-fluid interface are negligible. On 

substitution of equation 8 into equation 7 we get the 

- appropriate equation for non-viscous incompressible irrotational 

fluid flow near or at the surface of the earth 

with the caveat that 

The complete specification of 
- - 

conditions. At the lower boundary 

can'al's floor requires that 1.5  = 

to the floor, which implies that 

the problem requires boundary 

the rigid surface of the 

0, where 5 is the unit normal 



I 

At .the upper surf-ace 

since S '  = 0.. This then implies that 
* t 

and from equation 9 we get 

Thus the specificstion of the-full problem is given by the four . - 

equations 

1 

inside fluid 

upper 
surf ace 





variables and functions into equations 13(a-d) we get - 

h 
where cc = - 

X '  
- - 

In order to solv,e these equations in terms of a - 
wave, a solution to Laplace's equation ( 1 4 a )  of the 

travelling 

form 

- = -  

is assumed. This will satisfy Laplace's equation and the 

boundary condition (14b) at $1-1 i f  



0 
C d 

we can assume a general solution of 9 as 

where k(k,r) is some as of yet uU*known function. - 
The physical problem is stated such that the depth of the 

- 

5 
fluid is small in comparison with the wavelength, hence kr, 

where k is the wave number, is even smaller. This condition - 
along,with the assumption that f(k,r) goes to zero sufficiently 

rapidly for Ikl->=, allows us to expand the hyperbolic cosine, 

in a power series in k~($+1), under the integral sign, to obtain 
- 

a reasonable approximation&or $. ~ h u s  . 

and 

S i m i l a r l y  



'By substituting these forms for $ and its derivatives into the 

equations for the upper surface (14c,d) wjth J = e o  we get - 

a'n d 

At this stage we make tlfe critical approximations that will 

- .  lead to the KdV equation. We want to retain information about 

bdth the wavelength, X and the amplitude S ,  in relatian to Lhe 
". 

depth h. In order to a~complislrthis in a minimal way we must 



keep terms of order e and terms of orderrr2_(there are no 
- - -  - - -  

- - 
lower). As for the cross terms we note that since Sch<X then 

- - -- -- 

rp=(Sh/X2) is smaller than r2 and can thus be neglect'=d along . 
with all higher order cross-erms. This now defines what we mean 

d 

by the term 'reasonable approximation'. By apm-Ccation of these 

restrictions to the above equations we get 

and 

- 

these 

- - 

symmetric 

let f t = x ,  

To cast equation into more differentiate 

equation 19a with respect izcx and to get 

and 

M~ where 6= 1. 



+ 3 I 
-4- 

From here on we need to appeal to perturbation methods by 
- - - - -- 

expressing both o and x in terms of perturbation expansions in 
-. 

-- 
both c an6 6, the smallness parameter and t'he-system-paramc'er. - ' - - - 

In order to carry out this expansion a technique described by S,. 

Leibovich and A.R. Seebass'' as a method cf multi-scaling as it 

applies to systems of equations was used. To start, the system 

described by equation 20 is written as a vector relationship, - 

where u= - 
- 

Now we assume that 

Since the spatial parts of equation 21 correspond to the three 
d- - 

different and distinct length scales l , e , 6  we anticipate three 

time scales r 0 = 7 ,  7 , = e r ,  r 2 = 6 7  which implies that 



substituting 

equation 

I 

The 

the 

23 and 

b 

equa t ion 

equating* 

22 into equation 21 aW-bb using ' 

coefficients we get, to order r,6 

first oT-these equations is easy to solve by diagonalizing 
-- 

matrix C o  by the transformation 
E - -  \ 

This decouples the equations and gives 





moving 

w. 

reference frame through" 
I 

then 

~. 

and equations 28a,b become 

If we now multiply by one of the two basis vectors 8 ,  or 8 2 ,  

which correspond to the two eigenvalues of c , ,  and choose o to - - 
be one of the two eigenvalues then the second terms of the 

- left-hand sides of equations 29a and 29b vanish to give 



Both of these equations-are directly integrable in r , ,  but doing 
L 

so would lead to a term linear in r ,  which is undesirable since 
< - 

the ensuing series representation would be divergent for long 
I 

times. This difficulty can be circumvented by e~ploiting the 

arbi,tra,ry nature of the solutions v, to require the right-hand - 
sides of equation's 30a and 30b to be zero. This requirement 

leads to the two conditions' - 
- 

It should,be noted that inherent in this process is that, the 

choice of eigenvalue determines the wave velocity that the 

resulting equations will reflect. 

With the two conditions expressed in equation 31 and the 
E 

solutions of equation 25 we can "reconstituten vo, by 'using 

equation 23, i.e. 



which will be valid for all times of O(l/e,1/6) and less. 

Returning to the calculation at hand we,note that 

1 
implies that w,=l,w2=-1, and R= - 

d 

= 1/2 

Choosing to look at the w=l solution then 

Now by uging the imposed conditions expressed in equation 31 we 



- - - . Reconstituting these results by using equation 32 yields 

which is a form of the KdV equation for right running waves. 

Equation 33 can be cast into the standard form by scaling the 

spatial coordinate x by ' 4 ( 3 / 6 )  and the function v by 

D 

In deriving eq uation 3 4  we explici tly considered the 
c 

hydrodynamlcal situation. A slightly less convoluied derivation 

of this equation, due.to V.E. Zak.harov12, can be obtained by 

considering a nonlinear medium with a sound-like dispersion 

relation of the form 



For small ek2 we get 

\ 
- 

I 

where the different signs correspond to the different directions 

of propagation. With this dispersion law any quantity u that- 

describes the medium has an evolution equation of the form 

- ) 

If we now suppose that s depends weakly on the amplitude u 

- then s can be writen in terms of a perturbation expansion in 

terms of u, .i.e. 



' - 

Substituting this expression for s' .. i n to  equakien 36 -*Ws----- 

B 9 

Keeping only those terms up to order eu and u2 gives 

Transforming this result to a frame of reference moving with - 

velocity so reduces equation 37 to 

Finally with the appropriate change of scale on x and u 

the KdV equation in standard form 



Thus in general the KdV equakiu1.1 can Be &tained4usz+ - 

medium with a sound-like dispersion law of the form given in 
- 

equation 35, and a propagation speed that depends on the 
4 

amplitude of the disturbance in a linear fashion. - 



THE INVERSE SCATTERING METHOD 
- - 

Through a set of surprising results the team af ~ardndr ~1 , 

Green, Kruskal, and Miura (GGKM) found a connection between the 

KdV equation and the Schroedinger operator 

whfLre u(x,t) is the solution the KdV equatjon. The connection 

that they found c a e b e  best expressed in terms of e question: . 
= 

given a linear operator L, as in the form of equation 1 ,  what 

restrictions are there on the function u such that the spectrum 

of L remains invariant with respect to continuous~changes in t? 

It was through this question that P.D. Laxf3 addressed the - - 
fin 

- 
s of GGKM. As Lax pointed out, if the spectrum of L is 

invariant with respect to changes in t then all of the L . 

operators belonging to the same one parameter family can be 

mapped into a single operator Lo by a unitary transformation U. 

ConsequentB the operator 



I 

I f  we now differentiate equation 2 with respect to t we get 

where i f  we use equation 3 and note that U ~ = - U ~ F G ~  see that 

which is the key result that connects the operators L and B, and 
4 

implicitly defines the differential form of the function u(x,k) 
<- 

such that L is isospectral. 





- -- 
Now we can, in fact, see that equation 4 is the compatibilitT 

C 

condition on u(x,t) that ensures that the eigenfunctions of L 

are also solutions to equation 6 for all time. . 

From the point of view of non-linear differential equations 

this approach may seem to be backwards in that it requires that 
--- 

we find two as o•’ yet unknown operators, L and 8 ,  satisfying ' 

Lt' = [B,L], to characterize an single differential equation.. 

Havin.g to find two things from one highlights one-& the r - 
drawbacks of this ifpproach to solving partial differential 

equations. However, for the KdV equation, and for that matter - 

many other physically interesting equations, the so-called Lax 

pairs L and B have been found. 

If L happens to be the Schroedinger operator 

with L$ = Xtp, and if 



and 

Thus the compatiblity condition, equation 4, yields the KdV 

equa t ion - - 

in standard form. This result is in essence the suprising 

discovery made ~~.GGKM.' It tells us that the spectrum of the . 

- 

Schroedinger operator will remain invariant with respect to t,  

for this choke of generator, if the "potential" u(x,t) evolves 

according to the KdV equation. One could of course choose 

different generators and then find different compatibility 

conditions thus leading to different- partial differential 

equations, 

The connection between the KdV equation and the Schroedinger 

operator - - derived in equations 7 through 9 does not in itself 

define an inverse scattering framework, but it does give us a 

way by which we can characterize a non-linear equation in terms 



of two l i n e a r - d p e r = t ~ r ~ T h ~ ~ ~ i r i ~ e r s e  scattering method for 

solving linear - or non-linear partial differential equatbns__uses 

the decomposition into Lax pairs in a special sequence of three 
3 

linear steps. These' step are: 

1 .  Solve the eigenvalue problem L#=X# at t=O, 

2 .  Let the asymptotic form of # evolve according to Ot=B#, 
- 

3 .  Invert L@=X) at some,later t>O to obtain u(x,t). 

The first of these steps is well understood, since it is a 

standard eigenvalue problem from undergraduate mat-hematics. In 

the case of the Schroedinger operator it is simply the 

scattering of wave packets off of a potential barrier or wqll, 
- - 

which is again standard problem. The second step, the evolution 

of the eigenfunctions, is also well understood and bec,omes 

simple under the assumption that the function u(x,t) is on 

compact support, ia. that u(x,t)=O for all 1x1 greater than 

some x,>O. The third and final step, the inversion of the L 

operator to restore u(x,t) is however a problem about which, in 

general, little is known. For the Schroedinger operator this 

problem was solved through the work of Gel'fand15, Levitan15, 
f 

I 

Marchenko16, and Faddev17., during the fifties. 

Siqce we are dealing specifically with the KdV equation, the 
j - 

dkcussion from here on will2 pert.ain solely to that equation and 
/ 

the,construction of the inverse scattering framework for it. 

z- 

The direct problem: l - 



I n ant i e i pa t ion-&--some of the c o n c w -  rredEdffar-t h-e -- 

'< - 

inversion problem certain seemingly unnecessary results will be 
- L - , 

derived here. For the sake of brevity many of the fine points 

have been neglected. For a much fuller treatment the texts by 

~alogero'~, Lambls,or Dodd et a12* are rec~mmended. 

To continue with the problem, we seek solutions to the the 

eigenvalue problem 

which, as was mentioned earlier, corresponds to the standard 
--9 

scattering problem encountered in undergraduate physics. By 

assuming a solution of the form 

and by using the technique of variation of parame-rs, wherein 

we set 



we find that 

a For scattering problems on the infinite interval i t  is 

customary to express all the solutions of the Schroedinger 

equation in terms of Jost functions, or fundamental solutions. 
P 

These functions have the asymptotic forms 

4 2  -> e ikx I 
- x->-a 13b 

$ 2  -> e i k x  

I 

By-using these asymptotic conditions and the results of the 
- 

variation of parameters calculation, equations 12a,b we get 



- 

which can be simplified to 

4 
/ 

By similar cal-culations - w e  ge$ 

which then form the cmplete set of Jost functions for the 

Schroedinger eigenvalue problem for real k. 
* 

These solutions can be analytically-continued in complex k 

space. If we look at the iirst and second terms of the Neumannf 

series expansion for the four integral equations 14(a-d) we e n d  

for @,, at least, that 



- i 

b 

the other .three having similar expressions. Equation 15 will be 

convergent if ~m(k)>O since e 2ik(x-~)-> 0 if k->a fm(k)>0. 

Similavrly 9,,  is ;onvergent if 1m(k)>O and @ $ are convergent 

if ~m(k)<O. Thus 4 ,  and $, have analytical continuations in the 

upper half plane, and qj2 and 9 ,  in the lower half plane of k 

space. This result is important for both the direct and the 

inverse problems. 

Since the Schroedinger eigenvalue problem is a second order 
differential equation only two of the Jost functions are needed 

to form a basis for its solution space. Thus any two of the 
-- 

solutions are expressible as--linear combinations of the other 

two solutions. From equation 12 we note that the asymptotic 

behaviour of $, as X->m is of the form 

If we also note that for real k 



we get that 
- 

Using the asymptotic (x->a) forms for $, and $? yields 

which hold on all R. - - 

If we now look at the Wronskian for @ ,  and $,, which can 

both be analytically continued in the upper half plane for k, we 

get that 

wkere we have use3 the asymptotic forms for 4 ,  and G 2  since - 



? 

This tells us that q(k)-is analytically continuable in the upper - 

half plane, since both $,,and $, can be represented there. 

With this result it is now possible to discuss the bound 

state solutions for the Schroedinger equation. On physical 

grounds we know that the bound state eigenvalues lie on the 

imaginary axis, with k=iKn (F, real), that they are discrete and 

finite in number. From the asymptotic (x->-a) form for 0, wet 
1 

find that $, is bounded if Kn>O and from the other asymptotic 

(x->+=) form that a(iKn) = 0. Similar analysis can be carried 
-- 

out for the o t h e r - m n s ,  but that is unnecessary since we - 
- - only need the bound states for 6,. What is of interest is the 

fact that the discrite spectrum for @ ,  lies on the upper half of 

the imaginary axis and that a(k)=O at these points. It should be 

- mentioned that the zeros of a(k) are simple since the - - .  - e 

\ 

eigenfunctions of the one dimensional Schroedinger equation are 

non-degenerate, and that at the points of the discrete spectrum . 
equation 16a reduces tq 



- - - -- - 
This set of results should be sufficient to construct the 

inverse framework, and is more than necessary for the direct 

problem. For the direct problem all that we really require ate 
-- 

the functional forms of a(k) and b(k)-. 

The Evolution Problem: - - 

In order to pose this problem correctly we must introduce a 

more general form for the solution of the Schroedinger 

scattering problem. Here we let @ have the asymptotic behaviour 

This slight change in the form-of the solutions was introduced 

in order to illustrate =point; we can at any time t regain the 

original forms of 9 by dividing through by a. 

~oting that u(x,t) is on compact support we get from . 
equation 8 that the asymptotic form of the evolution operator B 

is given by 



Then by equation 6 the eigenfunctions evolve accordincto 

By substitution of the asymptotic form for q5, equations 18(a,b) 

into the asymptotic evolution equation we get 

where the dot ( ' 1  indicates differentiation with respect to 

time. Integrating these results leads td 
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By applying the same analysis for - spectrum we 
- - - - - - - - - - - - - - - 

get t h e  asymptotic forms 

and from 

b 

t h a t  

On integeration these yield * 





we see that,the function K(x,Y) decayse~ponentially in this 

asymptotic limit. Thus by considering a contour in the upper 

half plane we find,.from equation 24 that 

and thus equation 25 can be rewritten as 

Moreover if we look at the asymptotic (k->= Im(k)>O) expansion 

for equation 25 we get that 
t 

which was obtained by integrating by parts. Comparing, term by 



term equations 23 and 26 reveals that 

or that 

4 
which defines the relationship between the, as of yet, unknown -- 
function K(x,x) and the scattering potential u(x). Recalling 

equation 16a and noting that 

yields 

or that 



By multiplying this equation by eikz/2n and integrating over k 

we get 

1 
03 

with F ( t )  = 1;; $ r(k)eiktdk. 
-03 

-- -- 
since- d l  is an analytic function\~•’ k in the upper half 

plane, and observTni the restriction that z>x, and noting that 

a (  k) has only simple poles in the upper half plwe we get that 

the integral on the' left hand side of 29 is just the sum of the 

residues of A a(k), thus 



I 

By the relation, equation 17, be$ween $, and $ x  at the 
I .  

points of the discrete spectrum \we get' that equation 29 can .be 

rewritten in terms of $, by 

P 

Setting the numbers ib(&,),k'(i~~) = -MnI &he left hand side <of - 
equation 30 becomes 

Since equation 24 can be written in terms of the eigenvalues we 

get that 

and 30, •’inally, becomes ' 



By redefining F([) by 

we get that equation 28 becomes 

~his'is the Marchenko equation; a linear incegrai equatioh by 

which we can invert the Schroedinger- operator to find the 

potential.u(x;t). It should be noted that all we need to know 

are the reflection coefficient >(k), and the values df a' (k) and 

b ( k )  at the points -in the discrete spectrum of u(x.lO), in order 

to conitruct K(x,y) and by equation.28 u(x). 

~his'iesuLt c& how be easily extended to take into. account . 

the time evolution of the scattering data k a b  ) by 
, 

; recalling the results of the evolution problem and 
- 

correkpondingly redefining F( t )  to ,be 
? '. 

. 



Since t enters as a parameter this result can now be used as the 

kernel for the Marchenko equation, from which the potential 
- 

uJ,x,t) can-. be constructed from the initial data u(x.0) after it 

has evolved a time t. 

The final results of the preceding 'sections define the 

iriverse scattering formalism for the KdV equation, in general 

terms. 



I n t e r  2 we showed that the initial value problem for 
- .  

the KdV equation could, in principle, be solved by executing the 

sequence of linear steps that make up the Inverse Scattering 
3 

method. The third and final step of this method involves solving 
- 

the Marchenke equati-a-linear Volterra type integral 

equation. The kernel of this equation, given by 
d 

- - P 

was derived in. chapter 2. As is easily seen this kernel is 

' comprised of two distinct parts, the first (integral) part comes 

from the continuous spectrum of the Schroedinger operator, and- 

the second (sum) from the discrete spect.rum. These distinct 

forms physically manifest themselves in different ways. The 

continuous spectrum leads to radiation solutions, i.e. solutions 

that reflect the dispersive nature of the KdV equation by 

spreading spatially as time evolve3. The discrete spectrum ?cads 
-- 

to the now famous soliton solutions, i.e. solutions that retain 

their profile as time evolves, even under collisions with 

similar objects, indicating that the dispersion inherent to the . 

KdV equation is exactly cancelled by the non-linearity of the 

equat.ion. In the case for arbitrary initial data the general 
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we have deconpled the two possible types of s b l u t i o n s - t h a t  

sdnifest themselves for arbitrary data.'This allows us to 
d 

concentrate. on the radiation solutions without having to worry 

about the interaction of the two types of solutions. It should 

be reiterated that if no solitons exist initially then no 

solitons will ever appear. This is a consequence of the fact 
- - 

that the spectrum of the initial4data is invariant as time 

evolves, and thus if no imaginary eigenvaiues exist initially 

then none will magically appear at some later time. 

As was mentioned earlier, relatively few peopl& have looked 

at the radiation solutions of any of the non-linear evolution 

equations, much less for the KdV equation, owing to its 

complexity. However by using the method of stationary phase the 

team of M.J. Ablowitz and H. segur2' were'able to extract the 

temporal asymptotic behaviour of the radiation solutions.. By 

considering specific initial value probl.ems for which the 
- 

Schroedinger scattering problem was explici tiy 'solvable and 

expanding the reflection coefficient in terms of an area-like 

expansion parameter the team of R.H.Enns and S.S. Rangnekarz2 
i 

obtained the short time behaviour. In earlier papers, using the 

dimensionless area as the natural parameter they were able to 

obtain the complete temporal evolution of the radiation 

solutions for the 3-wave problem, the sine-Gordo~and the 

sinh-Gordon equatons, the modified KdV equation, and the 
- 

non-linear Schroedinger equations. The first is characterized by 

the Zakharov - Manakov eigenvalue problem, the'remainder by the 



,- 

9 

- I Zakharov - Shabat eigenvalue problem. It was-anticipated that 
the same procedure would give the complete temporal evolution of 

the radiation solution of the,KdV equation. Because of the, 

different inverse scattering structure, this did not turn out to 

be the case, their series reprebentation breaking down at some 

finite time. Thus, -the complete time evolution of the-radiat ion 
\ 

solution of the KdV equation hasb to the best of our knowledge 

not been carried out in the literature. The work of this thesis 

represents an alternative approach to solving the problem. 

Fundamental to both of the previously mentioned approaches 

to solving the KdV equation is the idea that the Marchenko 

equation can be expanded in terms of a ~ e u m m x p a n s i o n ;  a 

succesive approximation schemeain which the solution is an' 

iteration of the kernel, 



. 
etc. 

The convergence of this sequence to the function K(x,y) has been 

shown by H.Segurz3. Use of the representation will be made in 

what is to follow, however this is not the point that presents a 

stumbling block in trying to find analytical solutions. 

t 

One of the major difficulties encountered in the search for 

analytical solutions is the occurrence of the cubic term in the 

. time evolution of the keflection'data. As a consequence of this 

term, even for those reflection coefficients that are exactly 

solvable, the exact analytical form of the kernel of the 

Marchenko equation is elusive in that the final integration is 

difficult if not impossible to do analytically. This problem.can 

be circumvented by noting that the kernel F(x,t) is a well 

defined function of two variables and can be expanded 
J - 

biorthogonally iri terms of orthogonal functions in x and 
1 

orthogonal functions in t, i.e. 

where 

and % 
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I 

Def Sning 

and 

where summation over repeated indices is assumed, and Roman 

subscripts indicate an expansion spatially and Greek subscripti 

a temporal expansion. On substitution of these representations 

into the Marchenko equation we get 

Since all of the functions #,(x) , O n ( y )  , ad$a(t) are 

linearly independent t h e n  all of the coefficients of equation 9 

must be zero, i.e. 



-- -- 

(kmna-+ fmna + g m ~ a )  a O *  10 

- 

However the gmna's are still dependent on the kmnafs.  his 

de&d&e can be determined by returning to the definition of f 

the-'C's and noting that the right hand side of 

B 

can be written as 

p 
Formally we can define 



-- 

with these expressions equation Ilb becomes 

and thus 

c - 

I f  this expression 

that the Marchenko 

is substituted into equation 10 for g we note 

equation becomes 

+ kijpfknyljkp PipmPf17a = 0, mna 

or that k i  j/3(6im6jnflafi + •’kny I jWPipm Ppya) = L -  fmna- 1 4  

This can be written in a more compact form by letting 



In this case equation 14 becomes . 

If we define the composite indices 

then equation T 6  yields the simple matrix equation 
- - 

5 

This can, in principle, be solved to get the expansion 

coefficients of the function ~(x,y,t) by assuming that the r 

inverse of [ A ]  exists, and is defined by [ A - ' 1  with compo 

A - ' ~ ~ ,  in which case we get that 



- Th5 s eguet i orr M i n e s - t  he probkn- OF sah-irn-g t heepfarckmkoZ - - L -  

- .  equat"ion. To find the solution we have to find the right inverse 

of the matrix [ A ] .  This is, however, no simple task in - that the 

matrix is in•’ inite dimensional, and at best we can find' the 

inverbe of a truncated version of [ A ]  and hope that the error 

ass'ociated with the truncation is small. 

In order to find a scheme for inverting the operator A, it 

was noted that it is possible to set up an iterated 

approximation schemeafor the Marchenko equation in integral 

form. To.develop similar approach forthe present representation 

of the Marchenko equation, equation 17, we return to equation 14 

and rewrite it in the form 

w - 

In exactly the same way that the Neumann series was generated 

for the Marchenko equation, a successive approximation scheme q 

can be implemented for equation 19, by iterating, i.e. 



etc. 

Introducing the compact notation 1 = I i j k  P = P i j k  P = PaP1 

f = fi j a  and. k = k i  j a  the nth approximation becomes- 
0 



 his is just the series representation for (l+f1~P) and-in 

fact ( 1  + FIPP) is just-the matrix A that was previously 
C 

defined. From this we see that in the limit that n->a the " 

..< 

sucessive approximation scheme converges to the actual value of 

k since 

. and as such can be used to explore the radiation solutions for 

the KdV equation-by looking at the behaviour of the successive 

terms. 

In order to obtain the explicit form of the solution to the 
t 

specific initial value at hand we must recall the result 





/' ' 

This gives an explicit representation for the radiation solution 

to the KdV equation. 

\ 
So far we have derived these results for expansions in t-erms 

of arbitrary, orthogonal functions On and . In order to carry 
out amy-explicit calculations these functions have to be" . 

defined: As a guiding criteria for making the appropriate choice 
3 

we note that the kernel of the Marchenko equation ~ ( x , t )  must be 
1 

' defined on the entiie real' line k ,  spatially, and on {he 
interval ( 0 , ~ )  t&nporal:y. .Thus the set {On] must be orthogonal 

on R and the set {in] must be orthogonal on ( O r = ) .  

Another guide for the selection of the appropriate basis 
-- 

functions was the idea that the integeral defined in equation 6 

be explicitly doable. This requirement involved a search of 

various tables of integrals, primarily the one compiled by 

Gradstyenyand RyzhikZS. Two possible candidates that came to a 

light were the normalized oscillator functions, whic.h are 

defined by 



- - - - - - - -- -- -- -- 

where the functions H,(x) are the ~ermite polynomials, and thel 

Laguerre functions 

where the functions L,(x) are the Laguerre polynomials. The 
\ 

oscillator functions are orthogonal on R and the Laguerre 

functions are orthogonal on the interval {O',=). Other well 
-;r 

explored sets of orthogonal functions that satisfy the imposed 

conditions may exist but this study made no attempt to search 

for them once the oscillator and Laguerre functions had been 

found to work. 

Since the Laguerre polynomials are unity at the origin for 

all orders it was thought that the convergence of an expansion 
' 

over these functions in the neighbourhood of the origin would be 

slow, and consequently they were rejected in preference for the 

oscillator functions. 

For the purposes of this thesis we settled on the oscillator 

functions as the basis functions for both the spatial and 

temporal expansions and we formally identify the fun~tions'@~(x) 

and 3,(t) with Bn(x) and Bn(t) respectively. The fact that the 

oscillator functions were used to expand temporally did nut 

present a problem with respect to the domain of definition since 

" the temporal part of t h e  kernel F(x,t) is well defined for t cO.  



In satisfying the requirement that both the spatial nandpp pp 

temporal integrals of equation 6 be doable we note that 

/'-- 

1 

from G-R sec. 7.374. From this we can evaluate the expansion 

coefficients of ~tx,t) explicitly through 

im+u - J r(k)e,(k) BU(k3) dk. - -= 

Similarly the components of the matrices fmnul Iijk, and Pijk 

now take on-the definite form, 

and 

and 

and the components of I and P can be calculated explicitly (see 

Appendix 5). 
4 



e 

with the basis -+functions chosen and the matt ices- Land-&- -- 

evaluated we can now proceed to, either calculate a truncated 

version of the matrlx A and then invert it or we can evaluate 
@ 

the successive terms in the iteration scheme, to find reasonable 

approximations to the expansion coefficients of Kix,y,t), With 

the expansion coefficients calculated we can use the explicit 

form of equation -23, as it pertains to the Oscillator functions, 
+ I 

i .e. 

with g2(x)=l, g,(x)=-x, and g0=2m, to get the radiation solution 

for the KdV equation 

In the following chapters it is the latter approach t h q t  is 
\ 

pursued for various initial pulses. The inversion p r o ~ e d ~ r e  is 

not explored due to lack of facility to carry out the 

calculation to high enough order for reasonable convergence. 



SQUARE WELL INITIAL VALUE PROBLEM 
4 

In the preceding three chapters the framework for obtaining 

the radiation solutions for'the KdV equation was explored. Here 

those methods are applied to a concrete example. 

e 
As data for the initial value (U(x,O)) problem a finite 

square well of unit depth and arbitrary width w was chosen 

because of the ease with which the Schroedinger scattering 

problem can be solved and the reflection coefficient r(k) 

obtained. Without resorting to the integral representations of 

the solutions for the Schroedinger.equation, see equati-ons'2.14, 

0 

the reflection coefficient can be by the technique of 

matching solutions at the boundaries defined by x=O -and x=w. 

Assuming an incident wave from the right (x==) of wave number k 

an2 amplitude A ,  we get solutions for the three regions x<Q, 

O<x<w, u<x, of the form 



where we have assumed, so as to be consistent with the ISM 
- - - - - - - - 

derivation in chapter 2, that the transmitted wave has unit - 
amplitude. From the constraint that the solution O on ,R be 

\ 
continuous and continuously differentiable, we get tha* r 

- 0 

4 ,  = + 2  and ' 4 :  = *; at x=w, 

and e2 = 43 and @: = @; at x = O ,  . 

From these four conditions we can solve for the unknowns 

A,B,C,and D ,  but since it is the reflection coef f i~ient, defined 

here by the ratio of B/A, that is required in the application of 

the ISM, we need find A and B only. So as not to bore the 

reader, the results of this standard calculation are quoted as 

being: , 

with 

being the phase, and R(k) the modulus, of the reflection 

coefficient. 



/- 

As is evident f r m  equations 3a an& 3b, the s t r u c k u f e e t t h - - - -  - 

reflection coefficient, even for this simple potential, is not 
- - 

trivial. Since the functional form of the reflection coefficient 

is not transparent a set of plots are shown in figure 4.1, where 
II 

we have plotted ~ ( k )  and #(k) as function of k for w =0 .1 ,  1.0, 

and 10.0, with #(k) being reflected onto the interval 







As can be seen from the preceding figures the function r(k) 
- -- - - - 

is bounded and at least cmitinuous and continuously 

differentiable. Thus, by Parseval's theorem the Fourier 

transform of r(k) exists. It should be noted that the ieflection 

coefficient is not the Fourier transform of a w u a r e  well. Thus 

the initial value problem for the evolution of the kernel of the 

Marchenko equation is not the same as that of the initial value 

of the KdV problem. It is also interesting to note the changes 

in the modulus of the reflection coefficient from a spike for 

small initial pulse width to a square box for large initial 

width. The compactness of the reflection coefficient about k=O 

suggests that the bulk of the information about the behaviour of 
I - 

the scattering problem comes from the long'wavelenqth 

contributions,.and that this region plays an important role. -- .. 

To evaluate the kernel of the ~archenko equation i 

through the expansion technique, we recall from chapter 3 that 

with . 



- - jmfa - 
h a  - m &  r(k)B,(k) €9 a (8k3) dk, 

"C 
after the spatial and the temporal integrals are executed. 

.As a preliminary test case an initial pulse width of unity 

' ( w =  1 ) was chosen, and the corresponding fmqs were- c'alculated 

using the algorithms developed in Appendix 3 for the Oscillator 

functions and a simple extended Simpson's rule used to calculate 

the remaining integral over the wave number k. A short table of 

these are listed in Appendix 7. 

As a check on the accuracy of the algorithms used to 

calculate the f , , ' ?~  we use& the fact that the function F(x,t) is 

real. Thus the imaginary part of the fm,'s must tend to zero as 

the accuracy of the numerical integration increased. By 

adj&ting the range of the integracq{on and the step size for the 

qxtended Simpson's rule it was possible to impose the realistic 
a 

-requirement of having the imaginary part lo-' smaller than the 

real part. This requirement gives a rough estimate of the 

relative error in the integration as being the order of lo-'. 

Since expansion coefficients are being calculated it was also 
Zr 

necessary to know the order to which the expansion must be taken 

to have reasonable convergence. To get a feel for this, tbe 

fma's were calculated to high'order, roughly 200, and then 

inverted through equat'ion 5 , summed up to varying orders of m 

with a held fixed at 200, to return varying approximations of 



F(x,O). These approximations were then compared with the results 
pp- -- - - ---- 

of a direct numerical calculation of F(x,O) to establish 
-- 

convergence criteria, Figure 4.2 shows the various results of 

this comparison. The first four plots depict the approximations 

to F(x,O) as m is increased, with a held fixed at 200, and the 

last the diredt numerical result. Figure 4.3 shows the 

comparison of the 200 term approximation to F(x,O) with the 

numerica1.result on a much larger scale than in Figure 4.2. 





F i g u r e  4 . 2  ; t o  v a r y i n g  o r d e r s  of , 

m w i t h  c )  m=100, dl m=200, 

i n t e g r 7 a t i o n  



B 

. Legend . 

numerical - -  

Figure  4 . 3  ; Expa 'nded  version of F ( x , O )  p r o f i l e  
f * ,  

m=a=200 a n d  F ( x , O )  c a l c g l a t e d  numer i ca l l y .  

fo r  " -- 
0 



From the comparison of the approximations of F(x,O) with the 
- - - - -- - - - 

f actual result1 it is patently obvious that a large number of 
- 

terms in the /expansion of ~(x,t) are required in order to 
I i replicate P ( & j  to any substanrial degree. In retrospect this 

slow convergence is not entirely suprising in that the effective 

range for which the Oscillator functions are non-zero is given 

by 1x1 c 6, ,approximately, with n being the order. This can be 
/ 0 

seen by assuming that the dominant behaviour of the Oxillator 
\ 

functions, for 'large' x, is given by 

wher2 ,n is the 0rdt.r.- Under this approximation, simple 

differentiation shows that the maximum value occurs at l x l = ' f i ,  

givingbs a crude-approxiuation for the radius of convergence of 

the truncAted series representation. This picture is not 

c entirefi correct in that the higher order terms of the expansion 

also ~ontai-n the high frequency respoDse of the reflection 

coefficient, and that truncation of the expansion eliminates 

these contributions. However, on the basis of the compactness of 

the reflection coefficients the contributions of the high 
". 

b 

frequency will be agsumed negligible. Moreover the gross 

features of the F(x.0) profile are evident for small order 

expansions as seen from the first few ?lots in figure 4.2. . 



With the parameters and 'the constraints 
I" . 

pracedure set by the above criteria,\we can proceed with the 

caiculation-of K(x,x;t) via the Neumann series expansion of 

chapter 3. However, it should be noted that the reflectisn 

coefficient contains a term of the form e-2ikw and that the . 

kernel of the Marchenko equation has a similar spatial term of 
- 

e2ikxl this would suggest that it is natural to expand about the 

- . leading edge of the wave i.e. about x=w as opposed to x=O. 
a 

Taking this shift into account the explicit form of the 

expansion cqef f icients is 

im+a a" - - - sin(fi/k'-lw)eiQ(k) 
ma * (4k2(k2-1 )+sin2(fi7fw) ) ' "  Bm(k) ea(8k3) dk, 6 

d E  -= 

as per chapter 3. This result can now be integrated numerically, 

up to some order in m and a and an approximation to ~,(x,x;t), 

the first term in the Neumann series of K(x,x;t), can be 

constructed via 
/' 

This was done for the three initial pulse widths w=0.1, 1.0, and 

10.0, with the sups on m and a being taken up to 200. The 

results are shown in figures 4.4-4.6. Included in each figure, 



* so as to provide a visual check on the accuracy-of - th t - - - -  

Oscillator expansion method, are the corresponding results for 

K,(x,x;t) obtained by direct numerical integration of equation 

3. The results of both caIculations, Oscillator expansion and 

direct numerical,. are shown as sections of *e full t w o  

dimensional surfaces defined by K,(x,x;t), over the ranges. 

-25.0<x<10.0 and O<t<20.0. The (10.0,O.O) corner beinq the 
Y 

closest. The plots were generated on the Calcomp ~lot'ter at 

S.-F.U. using a commercially developed graphics package called 

DISSPLA, which was developed'and marketed by ISSCO, Integrated 

Systems Software Corporation of California. 
J 



Figure 4.4 ; First term of Neumann series expansion, 

-K,(x,x;t), for w=0.1, a) Oscillator expansion, b) 

Numerical. 













- - - - - - -- -- -- 

Visual cobparison of the two plots in each figure shows that 

the Willator expansion procedure,  take^ to the high  order of - 

m=a=200, does in fact capture the correct features of the 

function K,(x,x;~) over this portion of spsce-time, for each of 
I 

the three widths. However the comparisons also bring to light 

some of the expansion method's failings. As is evident, the , 

'direct numerical plots are much smoother than the expansion 

plots. The major reason for this is the truncation of the 

expansion, both temporally and spatially at 2 0 0 ~ i F m s . - ~ ~ i s  
\ ,  

truncation in effect acts as a filter to eliminate the high 

frequency components needed to smooth the surfaces. This lack of 

high frequency components, which leads to Gibb's phenomona, is 
/ 
along the T=O curves, of the surfaces shown, in the 

of X=O, where the expansion is trying to f i t  to a 

discontinuity. 

In comparing the three ~scillatbr expansion plots in figures 
P 

4.4-4.6 it is interesting to note that out of the three cases it 

is the w=0.1 case that, exhibits the most noi'se, w.here as the 

~ ~ 1 . 0  and w=10.0 cases are relatively smooth. This behaviour of 

the expansion procedure can be explained in terms of the 

effective range of the Oscillator functions in relation to the 

width of the function ~,(x,x;t) at t'=0. As can be-seen by<- ,- 
' 

i (- 

comparing the the T=O curves for each of the surfaces, the one 

corresponding to w=0.1 (figure 4.4) has a comparativelyq long 

non2?ero range, thus requiring a large number of terpls from the 

Oscillator expansion, which have effective range fi', t o h y 6 ~  



i t .  ,This  is supported i n  chapter  a .  5 
, 

I - 
expansions are discussed. 

d 4 .  

* .  

- - - - - - -- - -. - - - 

where t h e  , ' spec t ra '  of the  . - *  
a < 

, 

1 
$ 3 .  

Another draw-back of k h c  ekpansion .procedure is eyide-nt, i n  
0 * * .  

t he3 the  sha rp  cut 'o f fs  exh ib i t ed  on the  expansion p lo tb  i n +  thk 
I U 

regions  Xe20.0  and 0 2 0 . 0 .  This  i s  again<+due t.0 t h e  tGuncation " A 

" \ ,  
1 P  

of t h e  s e r i e s  a t .m=a=200,-  and demonstrates the  r ap id  f a l l - o f f  in - 

t h e  O s c i l l a t o r  f u n c t i o n s  due t o  the' Gaussian weight funct ion.  
' L  

Aside from t h e  d e t r q c t i n g  f e a t u r e s  of t h e  / 0 s c i l l a t w r  , 
t 

-2* 

expansion p rocedure - the  genera l  aggreement between' the r e s u l t s  

genera ted  by i t  and and ' n u m e r i c a l  i n t e g r a t i o n  . tn3dica tes  t h a t  the  -. 
* 

i 

method'works, a l b e i t  ' f d r  l i m i t e s  s p a t  

I P  

P u t t i n g  t h e  e r p a n s i d n  prbcedure a s i d e  i t  i d e r e s t i n g  t o  
, . 

n o t e  some of t h e  f e a t u r e s  ev ident  i p  .the lowesta term of .the * A 

~ e m a n n  s e r i e s .  . 

For each of t h e  widths 'the i n i b i a l  p r o f i l e s  do not 
s * 

< " 

L 
correspond t.0 -the',a=tu'al i n i t i a l  c o n d i t i o n s '  imposed,, i n '  t h a t  . 

I L o  \ . >  

u(x,O) # 2dK.,(x,x,O)/dx. 1 n  f a c t ,  f o r  t h e  . i n i t i a l  c o n f i t i o n s  , 

chosen ( t h e  square well'), i t  t u r n s  out  t h a t  K ,  ,asymptotic 'al ly - . 
I 

( 1x1 -> =) goes t o  ze ro ,  which i s  con t ra ry  w i t h  ' the .  f a c t  a , 
. I  

Q , .  9 .  

t h a t  2K(x,xIO) = J u ( x l  , 0 ) d x V ,  i s  n'ot ' asymptot ica l ly  zero.  - ,  
x ,  

The i n i t i , a l  p r o f i l e  o f  ~ ( x ~ x . 0 )  switches' frbm simple , . 
t runca ted  exponent ia l  behaviour,  fo r  small i n i t i a l f p u l s e + '  

width,  t o  a - l o n g  range o s c i l l a t o r y  behaoiovr f o r  l a r g e  w i d t h  . 

a s  t h e  pu l se  width i s  increased .  

In  a r e J a t i v e l y  s h o r t  time t h e  p b l s e s ,  fo; a l l -  t h r e e  i n i t i a l  . . 





Legend 
er f c ( x )  

- - .  \ 
I 

* ' .  
Figure 4.7 ; Cpmparision between second term of Neumann 

series expansion and a complementary error , 

function ferfc(x)) for 





where - * the sum on p is inf inite. However, to use a truncated 

6 version it was found that, as a crude rule of thumb, p should be 
- + 

at least 3/2 larger than either m or n in order to get 

reasonable convergence. The same criteria was extended to $he 
(D 

The results o&'the calcdation of K, for this set of . . 
parameters are shown in the following pair of figures. The first 

I .of these, figure 4.8, shows the behaviour of the complimentary 
- 

error function contribution to the second term of the Neumann 
Q 

expansion, i.e, the 

part, for all three initial pulse widths, taken over the same 

portion of space-time as in the previous set of figures, 

-25.OcX<10.0 and O<T<20.0. 



Figure 4.8 ; Complementary error function contribution 

to the second term of the Neumann series expansion of 

~,(x;x;t) for a) w=0.1, b) w=1.0, c )  w=10.0. 





/ 

4. , - , -- - - 

.Since t h e  spacial depend ncepof this term is perfectly 

determined by the complimentary error function, the \ 
cross-sections taken spatiallb ace exact in shape, but not 

necessarily in height since t is is determined by the term's 1 # 

temporal expansion. However, y the c~nver'~ence in lowest order 

to the pumerical results, it was thought that the temporal 
I 

' 
ripple exhibited on-these surf ces for short time is real, and I 
is due to some dnidentif iable 'slowly diminishing long time 

behaviour. 

Independent of-the ripples, it is interesting to note that 

the.errror function contribution for 'the two large pulses start 

to diminish from their initial values at t=O, where as the same 

contribution for the smallest widths grows. 
Y 

& 

~ h ;  steep cutof & in the neighbourhood of T.10. is due solely 

to the eruncation of the sum at 90 terms. 
- - 

With respect to the convergence of the Neumann series, it 

should be noted tflat this second order contribution is of the 

same order of magnitude as the first contribution, indicating 

that the convergence wilP be slow. 
0 

' The second sequence of plots, figu?e 4.9, in this set show 
1, b 

- the behaviour rn of the re~~ining part of the second order term of --. 
J .  

the Neumann series. 



4.9 ; Second contribution to second .? , Figure localized 

series expansion ofz ~,(x,x;t) for a) 
, 

w=1.0.0. 

term of the Neumann 

w=0.1, b) w=1.0, c) 





spreading. locafized pulse, that is stationary - -- - in - this -- reference - --- 
0 

_frame.  his term ~ t s  so as to diminish the edge of the error a 

i , 
function contribukion as time evolves, causing it to become less 

steep. This flattening of the curve manifests itself physically 
C 

as a broadening of the pulse since the plots shown here are 
-2 

- 

t - integrals of the solution of the kdV equati,on. Again, the ripple 
' 

mentioned earlier is eviden't here, as is the growth of the small 

area pulse. 
-* - 

The next sequence of plots, figure 4.10-4.12 show the sum of 

the first and second (both parts) terms of the Neumann series 

calculated both through the Oscillator expa sion and numerically 
- d 

1 .  

for each of the three widths. The plots are again a.rranged in 

pairs accor ing to pulse width, the top one showifig the result 

s- 

P 
from the Oscillator expansion +A and the lower the numerical 

result, 



. * 

Figure 4.10 ; S u m b f  the first two terms of the Neumann 

series expansion ( K 1 + K 2 )  for w=O.l a )  Oscillator 

expansion b) Numerical. 





of the first t w o  terms of the Nguma-pn 
-4 

I , 

Sum 

series expansion (K1 + K 2 )  for w=l .O a )  0scilla&r 

expansion b) Numerical. 





series 

4 . 1 2  ; Sum of the first two terms of the Neumann 
- -6 

expansion (K,+K,) for w=10,0 a) Qscillator 

expansion Numerical. . 





expansion are evidenced by the abrupt champs observed at 
--- - 

T=10.0, and for X<-2C.O. The change at T=10.0 is due to the 

cutoff of the second order contribution, and that for X c - 2 0 . 0  is - - 

due to the cutoff of the lowest order contribution at Xw-20.0. 

However in the regi~n -2O.O<X<10.0 and O<T<10,0, we see that the 

Oscillator expansion procedure has captured-the essent2.ial 

features shown by the numerical solutions. The ~ ~ 0 . 1  result . 
exhibiting the most noise, as previously mentioned. Physically 

the addition of the first order correction has essentially 

pulled that region of the surface to the left of X=O down by the 

amount dictated by the error function contribution.-The wavelike 

nature of the first order term is basically unaffected by the 

addition of the secoqd term. 
u 

r P  

/' 
To get a' betfter understanding of the.effect of the addition 

of the second term, we isolated the T=O curve for all three 

* pulse widths from the numerical plots of the first order term 

and the combined.first and second order terms. These curves are 

shown in figure 4.113 along with the expected result, for the 

squaree well initial pulse, derived from the relationship, 

equation 2.28, between u(x,O) and ~(x,x.;O). The exact result is 
- 

in essence the incegral of a square well. 



F i g u r e  4 .13 ; The t = O  b e h a v i o u r  f o r  t h e  f i r s t  and t h e  

sum of t h e  f i r s t  and s e c o n d  terms of  ~ ( x , t )  "for a) 

w-0.1, b) 1.0,' and c )  10.0.  





". 
' - 

s 1  

i- . 
- - 

Ascan-be seen 

second term of the 
* \ 

Neumann series does have the stated effect of 
- - - -- - 

pulling the XUO portion of K(x,x;O) down. In all three cases thce 
a 

" two term approximation is a better representation of the actual 
. - 

. behaviour than is the single term approximation.~~owever, by 
comparing the convergence of the three cases it appears that the 

small areoa case is converging to the actual behaviour much more 

rapidly than do the larger area cases, as is evidenced by the 

disparity between the expected results and the two term results. 

Note the vast difference for the=w=l0.0 case, wherein many 

higher order terms of the Neumann series would be needed to=fill 

in the gap, from K=-1.0 to K=-5.0, between the two term 

approximation and the exact results. % 

The trend of fast convergence for small w-idth to slow, 

convergence for large width, exhibited here, would lead to the 

conclusion that the cmvergence - - -  of the Neumann - -  - series is highly - 
dependent upon the size of the initial disturbance, with the 

rate of convergence diminishing rapidly with size. 
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P 
1 \ 

- - * ---,- -- -- -- 

is sought. 0*qW-wjbit ~\&on o f  equation 2 into the R ~ Y -  &Xi= 
I 

-- we get the otdinaiy differential equation 
- 

2f rf' - - -  - + 6f'f + f ( 3 )  = 0 
- 3 3 ,  

a 

X in the variable e t l c 3 I  - where p = 1/3 and a = 2/3. 
w 
The 

that the 
- - 

choices for p and a being natural-for the requirement 
\ 

ensuing equation be ordinary. This type of simila;ity 
\ 

solution 
L 

' 
first suggested by A .  ~okad" and was used by Ablowitz and - -waF 

Segur in their calculation of 'the a4ymptotic behaviour of the - - 
- .  

. KdV equation #nent ioned pre"iously. it is conjectured that the 

radiation solutions of the 'KdV equation approach this form of 
P I C < 

X 

-,similarity solution asymp,totically. , : I 

I f this conjecture js true then tbe terms of the NeumannP- - - - -  

R 
i . 

series! expansion for the ~archenko'e~rktion must reflect this 
t 

behaviour. To test thi.s hypothesis we returned to the definition 
I 

of the kernel of tip ~archenko 
1 - 

I 

1 

equa t ion 
3 

. - 
+: 

and cast it in the &rrn 
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- - 

see chapter 4, a more convenient way to express the expansion is 
'., 

in terms of a new variable, 

and get that 

and that 

The translation of c -> z=c-2~/2t'"~ corresponds to expanding 
9: 9 

about the leading "edge" of the wave. 

,' 
From the plots of R(k) given in chapter 4 (fig4.1) we see 

that.R(k) is compact on the interval ( - 1 , 1 ) ,  as such we expect 

the region of support of the function R(k/2t1") to expand, as 
' S  

t -> a. Thftrus ti& dominant &-oar of Rf 2hk in tags 
asymptotic limit is determined by the leading term in the Taylor . id: 





- - - - - - - - - -- - - + - - - -- 
expansion coefficients m=0,1,2,~3,4,-and 5 ,  which were - - 

repzcsmtaLive of the &hauinur af the Ai-ghec mdua&icients-  --- 

with respect to the decay time. The first plot of each figure is 

a plot of ln(f,) verses ln(t), the second is of dln(fm)/dIn(t) 

verses ln(t), and the third is of d21n(f,)/d(ln(t))2 verses 
F 

ln(t). The last two plots in each figure are included to show, 

in the case of the first derivative, that the expansion - 
.- -A 

coefficients do in fact exhibit the requsite t1'3 behavibu? 

-. - asymptotically, and in the last plot, the time taken for the 

second derivative to go to-zero, thus giving an estimate of the 

relaxation time. 



Figure 5'.1 ; Behaviour of the first six4expansionhd \ 

coefficients as functidris of t, .for w=d. I ,  a) log'-log e 

pldt of f,(t), b) first deriv'ative, c )  second - 

derivative. 





5 

Figure' 5.2 ; Behaviour of the first six expansion* 

co&ficients as functions of t, for w=1.0, a )  log-log 

plot of f,(t), b) first derivative, c )  second 

derivative. 





Figure 5.3 : .~ehaviour of the first six expansion 

coefficients as functions of t, for w=10.0, a )  log-log 

plot of f,(t), b) first'derivative, c )  second 

derivative. 
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linear KdV. 

On a more di-rect level this behaviow is due.soAely to tAe 

comparitive width of the smaller width reflect'ion coefficient to 

that of the larger, i.e. the width is narrower to begin with and 
' 

thus takes,longer to reach the asymptotic limit, see figure 4.1. - - 

To get a fuller picture. of how the expansion coefficients 

were evolving with time, we calculated them up to order 800 for 

.the times t= e-1,e',e5.,e'0,and elo0, for the three initial 

widths w=O.l,l.O,and 10.0. These sequences of spectra up to 
- - 

order 200 are shown in figures 5.4 through 5.6 The final two 

plots of each sequence exhibit numerical noise, as a consequence 

of the truncation of the sequence at 800 terms. 





Figure 5.4 ; Oscillator expansion spectrum for w=0.1 for 





" 
Figure 5.5 ; Oscillator expansion spectrum for w=1.0 for 

orders 0 - 2 0 0 ,  at a )  ln(t)=-1, b) 1, c )  5,  d )  10, and 





Figure 5.6 ; oscillator expansion spectrum for w=10.0 



spectra it was noted that the finakspectra were identical, This - -- --- - - -- 

observation would indicate that-the asymptotic form'of the 
1 * r 

tadiation solutions was independent of the initial pulse width. 
,* \ 

This-is born out by equatiop -7, which is independent of the 
* 

parameters of the initial pulse, and thus the asymptotic form of 

the,solution must be independent of the initial parameters. From 
-a - 

these results it might be conjectured that all physically 

meaningful initial pulse profiles will exhibit the same 

asympFotic form. 
r. B 

1 

The beats that Appear .in the spectra plotted are 

manifestations ok the phase factor, e i(#(k/t1'3) + kS), of the 

reflection coefficient, beating aqainst the "wavesn of the 

Oscillator functions. The beating is'weaker for the smal\.width 
- 

(w=0.1) pulse than for the other two, because of the narrowness 

of the-modulus of the reflection coefficient Limiting the - - - - -  

I 

effective range of integration over the wave number. By the same 

token the decay rate of the "spectral" coefficients is also 

slower for the small pulse. 

With the expansion coef.ficients calculated for the kimes el 
L 

c b  through elo0 it wa's a small matter to invert them to regain the 

profile fo he kernel in terms of the variable z at those f l  
times. These results are plotted in figures 5.7 through 5.9 for 

the three different pulse w,idths w =  0.1,1,0, and 10.0 and for 

800 terms of the Oscillator expansion. . % 
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Figure 5 , 7  ; First term contribution to Neummzn series 
< 

' expansion for w=0.1 at a )  lntt)=-1, b) 1 ,  c )  5 ,  d )  10 ,  

, and e )  100.- 





Figure 5.8 ; Fir-st term contribution t o  Neumann series 
\ 

expansion for w=1.0 at a )  ln(t)=-1, b) 1 ,  C )  5, d )  1 0 ,  

and e )  100. 





Figure 5.9 ; First term contribution t o  

expansion for w=10.0 at a )  ln(t)=-l, b) 

Neumann series 

1 ,  c )  5, d )  1 0 ,  



 he f ingl plot of each f ig~re~shows explicit-w _that__t_hee __p_pppp 

asymptotic form of the radiation solutions are in fact identical 
. - - -- 

to within the accuracy of this calculation. The ln(t) = 10 plots 
d 

from the figures show clearly that large parameter profile 

settle down to the asymptotic behavior faster than the smaller . 5 

parameter profile (w=O. 1 )  .It should be kept in mind that even 

though there is a considerable amount of noise present in the 

long time profiles the different cases all exhibit the same 

noise, and the same basic shape independent of the'width 

parameter. , 

In a similar fashion it was possible to evaluate the first 

order correction term in "the Neumann series expansion, i.e. 

where z=(2~-2w)/2tl'~, and the first order correction is the 

second term on the right-hand side. 

A s  was done in chapter 4 the matrix I can be split into two 

distinct parts 



where 

Thus the first order correction term becomes the sum 

Due to the limits of calculation time these terms were only 

calculated up to order 60 on the subscripts m and n, and order 
Q 

90 on p as discussed in chapter 4. Plots of these contributions 

for the set of times t= e-l,e1,e5;e10,~and elo0 are shown in 

figures 5.10 through 5.12, for the initial pulse width w= 1 .O, 

which was representative of the behaviour of the other two.   he 

first figure 5.10 shows the time evolution of the first term of 

the correction 

The second figure, 5,11 shows the second term of the correction 



- 

The-flnal figure 5. t2 shows-the sum-of 

-- that comprise the correction. 





Figure 5.10 ; Complimentary error function contribution - 

" to second term of Neumann series -expansion for w=l.O.at 

a) ln(t)=-I, b) 1, c )  5, d )  10, and el 103.  

\., 





a )  ln(t)=-1, b) 1, C )  5;d) 10, and e )  100. 

Figure 5.11 ; Second localized contribution to the 

second term of the Neumann series expansion for w=1.0 at 





Figure 5.12 ; Complete Second order  c o r r e c t i o n  f o r  t h e  

' Neumann s e r i e s  expansion f o r  w=1.0 a t  

c )  5 ,  d )  10, and e )  10,O. 



F 

- - - 

As can be seem From Ehe p=€sPthe Ti~rsT~o~rPT6TTScZT6tionto 

the Neumann-series is of comparable order tothe first term -- of 

the series. compare figurez 5.8' with figures 5.10-5.12.  his 

would sugsest that the Neumann series converges slowly, and that 
. 4  

it is not sufficient to 'truncate the expansion at the first - 

order correction. This corroborates the findings for the last 

part of chapter 4. Nevertheless we persued this part of the 

calculation to its logical end by calculating the wave profile 

that would be obtained by retaining only the first two terms of 

the Neumann series through the relation 

1 l a  

l l b  

where ~:(z,t) = K(x,x,t) if ~=12~-2~)/2tl'~, The results of this 

calculation, for all three pulse widths, are shown in figures 
I 





Figure 5.13 ; Profiles for u(x,t)' calculated from first 

- two-terms of the Neumann series expansion for w=0.1 at 





Figure 5.14 ; Profiles for u(x,t) calculated from first 

two terms of the Neumann series expansion for ~ ~ 1 . 0  at 

a )  lntt)=-1, b) + I ,  C )  5, and d )  10. 





Figure 5,15 ; Profiles for u(x,t) calculated from first 

two terms of the Neumann series expansion -- for w=10.0 at 

a )  ln(t)=-1, b) 1 ,  c )  5, and d )  10. 



i 

0 

- - - - - - - -- - - -- - --- - -- - - - 

By comparing the initj.5 plots of each figure we again 

confirm that the large area pulses t& te setek dew ke khe - 

e .  

asytnptotic regime faster than the.s-11 area pulse as is 
3 

evidenced by the similarity between these profiles for both 

~ ~ 1 . 0  and w=10.0 but not w=O.l..However, it 'is interesting to 

note that the sequence of profiles for w-0.1 do not undergo as 

radical a change in shape with time, as do the other two. Where 
0 

as for the w=1.0 apd wzlO.0 profiles at t=O we see evidence of a ' 

short range envelope function, this is absent for the w.0.1 
--- - 

profile. On examining the profiles for w=1.0 more closely it can 

be seen that the wavelengthof the envelope function gets longer 

with the beat moving off to the left as time evolves. w his is 

not so $evident for the w=lO.O profiles, however, the transition 

between the ln(t)=l an$ ln(t)=5 profile, for this width, would 

suggest a similar mechanism. 

As a final note it appears that the two term approximations , 

for all of the cases are displaying modulated Airy function-like 

behaviour (see AMS 5 5 ) ,  which is pointed out in the literature. 

In the case of the w=10.0 pulse the ln(t)=5 profile is 

reminiscent of derivative Airy function-like behaviour. 
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- -- initial pulse, the - picture that - - we - - would - -- - get - - would ----- be, -- A -- 

Figure 6.1 t 
* 

where the solid lines represent,the leading and the trailing 

"edges" of the pulse as it propagates with speed @ and the 

dotte* vertical lines represent the lines, in time, along which 

the experimental wave profiles were recorded.' 

In order to make the proper correspondence 'betweenkhe 

experimental results and the theoretical predictions, it must be 

kept in mind that the KdV equation in normal form has been 

transformed through scaling transformations and coordinate 

rotations. This correspondence can be established by starting 

with Hammack and Segur's form for the right running dimensional 

KdV equa t ion, 





-- - - experimental and ithe ~ h e ~ r e t  ira_l qvm~iitieris established. It 

should be noted that this transformation is not unique and is in 
- + -  

fact different from the one give): in the paper by Hamma_ckand 

Segur. The reason for this particular choice is that it 

normalizes the height of the pulse to unity, which.is consistent 

with all previous calculations. 

In terSrns of .the new coordinateb x and t the situation 

depicted in figure 6.1 becomes, 

Figure 6.2 

where 'again the solid lines represent the leading and the 

trailing "edges" of the pulse as it propagates, and the dashed 

lines the observation points, i,e. X=constant. In-terms of x and 

t ,  the lines Xsconstant become 
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EXPERIMENTAL 

w 
Figure of the theoretical results of 

the exact Neumann series expansion for'U(x,t) to two 

terms with a linearized calcuiation and experimental 

results a )  first term of the Neumann series, b) second 

term of the Neumann series, c) sum of the first two 

terms, d! linearized result, and e )  -- experimental 

results, all for 





EXPERIMENTAL 

Figure 6.4 ; Comparisidn of the theoretical results o f  

the exact Neumann series expansion for U(x,t) to two 

terms with a linearized calculation and experimental 

results a) first term of the Neumann series, b )  second 

term of the Neumann series, c )  sum of the first two 

terms, d )  linearized result, and e f  experimental 

results, all for X, = 100. 





EXPERIMENTAL 

7 

Figure 6.5 ; Comparision of the theoretical results of 
1 

the exact Neumann series expansion for U(x,t) to two 

terms with a linearized c a l c u l a t i o n  and qxperimental- 
> .  

results a )  first term of the Neumaon* series, b )  szcond a 

term of the Neumann series, c )  &of the first .two 
+I 

terms, d )  linearized result, and e )  experimental 

results, all for X, = 900 --I 





0 - 
- 

-1 - 
0 

- 2  1 1 I I 1 1 
3.5 4 4.5 5 5.5.. 6 

t 

'1 ( e  EXPERIMENTAL 

Figure 

the exact Neumann series 

the theoretical results of 

expansion for U(x,t) to two . 

terms with a linearized calculation and experimental 

results a )  first term of the Neumann series, b) second -- 
term of the N e u m n n  series, c )  sum sf the first two . 

terms, d )  linearized result, and e )  experimental 

results, a l l  for X, = 2000 



By compafing the_ third - and.fifth pp - p--p plots - - of each ppppp figure, i.e.' --- 
theoretidal calculation of the first two terms of the Neumann 

-p 

series expansion for the solution of the K ~ V  equation and the 

experimental results, we note that there is no qualitative . 
correlation between the two. Initially this lack of correlation 

was thought to be due to computational error, however, on 

thorough inspection of the algebra involved in the theoretical 

calculation this was not the case. As a test for the accuracy of 

the calculation we applied the alternate method. of the single ., 
\ 

variable expansio~ in Oscillator functions to this problem, and 

found that the resylts were in agreement with the initial 

numerical integration method. This agreement ruled out the 
> 

possibility of generating erroneous results from the methods 

chosen to evaluate the terms of V,. This agreement between 
f 

numerical and oscillator expansion calculations was demonstrated 

in chapter 4. The only remaining source of error was the routine 

developed to calculate the ref let-t ion eoef f icient r f k )  . To- test- 
Y 

this routine for accuracy an alternate routine was developed and 

the re'sults of this and the previous routine were found to 

agree, thus eliminating this as an error source. As an 

additional test the linearized reflection coefficient of EnnS 

and Rangnekar (equation 13b) was used in place of the full 

reflection coefficient in the algorithm used to calculate th.e 

first term of V,. The ensueing results agreed with those 

generated by Enns and Rangnekar,cagain indicating that the 
i 

method used to calculate V 2  was not erroneous. Finally, as a 

crude indication of accuracy, the velocity of the leading edge 



exger imental waves. 
{ ,  

Since the theoretical results depicted in plots (a  through 
* 

* (c for figures 6.3 - 6.6 passed all of, the,tests applied, they 

were considered to be faithful representations of the theory. AS 

such it was concluded, from comparing these results with those 

of the experiment that, to second order, the Neumann series 

expansion does not return an accurate, or for that matter a 
I 

qualitative, representation of, radiative shallow water waves, 

and, by virtue of the relative sizes of the first and second 

terms of the expansion, that if the N e u m q  series does converge 

to a faithful representation of shallow water waves, that it 

does so slowly. The slow convergence of the Neumann series 
I indicates that it is not, in itself, a useful tool •’of 

calculating the evolution of shallow water waves., through the 

KdV equation, and that an alternate form for approximating t h e  

solutions of the Marchenko equation needs to be found. 
e 

A s  a starting point for this search, the quaditative 

success, for short time, of the Enns-Rangnekar expansion 

procedure, as seen by comparing the fourth and fifth plots of 

figures 6.3-6.6, should be noted. This expansion method acts as. 

a 'filter' to deconvolute the reflection coefficient so that 

qualitatively correct results apgear in lowest or'der. I t  can, 

alternately be thought of as a perturbation expansion a b a &  khe 

. . solution of the linearized KdV equation, using the correct 

initial conditions. ~ n f  or.tunately this method breaks $own as was 



, meri-tioned earlier in chapter 
- -  - 





pulses. Sirnilarly.it wasefound that-the t-ypicaL-reladon time, 

for those-initial pulses examined, to their asymptotic limit was 2 

a 

of the order of e20, and that these asymptotic profiles 
L L 

displayed the much cited Airy function-like behaviour. 

In a comparison of the two term Namman. series result for . . 
the radiative solutions of the KdV equation with the few 

Y 

specific experimental resultsavailable it was found that for the 
c= 

specific set of parameters used the agreement between theory and 

experiment was poor. 



The KdV equation is invariant under a c e r t ~ i n  scale 
I 

transformation that involves both of the independent variables 5 

, aqd t and the dependent variable U. 

As a reminder the KdV equation in standard form 

9 3 

- \  

I f  the scale transformations 

are introduced then we get that the respective partial 

derivatives in termsf*of the new variables become 



and 

Substitution of these transformed variables in t h e  KdVcequation 
0 

yields 

J Choosing 

I 

recaptures the original form of the KdV equation, 
3 .- 

in terms of the new variables, 
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I - 

The existence of the imaginary .cigenvalues ( k 2  1 for the 

Schroedinger operator determines whether,,or not any solitons 
T 

will arise in the s~lution of the particular initial value ' 

* 
problem at hand. Here we will show, in particular, that it is 

possible to find initial conditions for which no imaginary 

eigenvalues exist, and thus that the solution contains no 

solitons. 

In order to begin this discussion we will start with some of 

the results derived in chpt 4 for the scattering data. From 
L 

equation 4.1 we see that if q ,  is to be a bounded solution for 
7, . % '\ ' x Y 0, with the eigenvalue k = i ~ ,  then the coefficient A must be 

b s i n c e  e i i x  = eKX is divergent. Implicit in this is the 

fact that we are restricted to deal exclusively in the regime 

that 1m(k) > 0,  as required by the contours chosen in deriving 

the Marchenko',equation in chapter 2. Thus all that we rea-llp 

need to find are the zeros ,of the ipefficient A for imaginary k < 
* in order to determine the discrete spectrum of the problem. I f  

no zeros exist then there are no solitons.'It can be shown with 

a little algebra tha,t the cendition A=O for the square well 

initial data implies the transcendental condition,, 



where we have made use that we can normalize the 

is re a& t h m - - t h i s e - g r r s t i D n -  -- 

of t h e  fact 

mi-ty f f-* of  rhe p u k e - t - o  height 

has no 

we Get 

imaginary solution, however if we let purely 

f c r  K I 1 the condition 

Z 

a n d  f o r  

, 

condition 

To get a feel for these conditions a plot. fcr w = l  is shown in 

figure A 3 . 1 .  



corresponding to the curves intersection at K a 1/2. I f  w is 
* 

increased more solitons will occur,: the number of t"hem,depe<nding 

on the number of branches of the tangen; function, that reside in 

the interval 0 S K 1; 1. Physically this situation'corresponds to 

having the water elevated initially. J f  on the other hand w$ 

consider the case for which we push the water down, h=-1 we ge t  

the condition - 

To get an understanding for what the condition implies this was 

also plotted for w = 1  and is shown in figure ~ 2 . 2 .  - 



6 
and chsequently there are no imaginary eigenvalues. 

-a 

fluid is initially pushed down no solitons arise, and the 

solution of the KdV equation will bz purely radiative in nature. 



b i - 

The numerical calculation of the expansion coefficients 

required the calculation of the normalized oscillator functions 
k 

with Hm(x) being the Hermite polynomials. This can be 

accomplished in a relatikely simple fashion by resorting to the 

explicit 'form of the Hermite polynomials. From AMS-55 5ec .22.3 

where [m/21 denotes the largest whole number less than or equal 

to m/2. This explicit form can then be directly evaluated and , 

then multiplied by the damping factor e-~'/*. However, this 

method breaks down for large order when using fin-ite arithmetic. 

In any finite arithmetic systeq there is a limited dynamic range 

of the numbers. For Fortran 77 that range is between and 

With these limits the maxidum possible factorial that can 

be generated is 56! and the minimgm number is the reciprocal of 

56!. If the lower limit is exceeded a 0 is returned and all 

.information is lost and if the upper limit is exceededzan error 



. - 
In I ight  .of these tecXnica1 problems a more- s~phis~cated 

method was used to generate the oscillator functions. It is well 

known that the Hermite obey a three term recurrence 

relation with respect to order, 

b 

By iterating.this equation, starting from Ho(x) = 1 and Hl(x) = 

2 x  successive orders of the Hermite pglynornials can be ' 

generated. 

This type of procedure is not without pitfalls. ~epending on 

the direction of iteration (increasing or decreasing order) the 

recurrence relatign-may be either stable or unstable. The 

question of stablity arises from the fact that these three term . 
recurrence relations are manifestations of second order 

differpntial equations and as such admit two independent 

solutions. In finite arithmetic the error generated by 

truncation manifests its2lf in the recurrence relation as part 
- .  ii 

of the second solution branch. If the 

quicker than the first, on iteration, 

lost in the second; 

second .solution in,~reases' 
- 

then the first will get 





2 

behaviour have t h e  

Q 

g e n e r a t e d  expected 
~. 

of the 

functions. 





4 

e A 3 . 1  ; Sellected Oscillator function f o r  a )  m = O ,  

P b )  m=10, cfBm=25,  6) m = 5 b ,  and e)m=100 . 
J 



was used to generate the Oscillator functions is included here. 
0 / 

* 

The basic principal motivating the form of the program resides - 
. 

- 
in the fact that at each point all of the Oscilator functions up 

to some order were needed. The subroutine OSCR, listed below 
e 

- 
returns an array OS of lenght LO, with I entries calculated, 

where the entries of OS are the values of the Oscillator 

funcqion of the order of the entry's subscript, calculated at Z 

( a real number). r ,  Bhus, for example, OS( 1 0 )  corresponds to 
C 

k 1 0 ( 2 )  . Note that I must be smaller than or equal to LO the 
global order parameter. 



INTEGER I,J,K,L,N,M,FLAG,FLAGl 

IF (DABS(Z),LT,~~.DO) THEN 

OSO=DEXP (-Z* Z/2 .DO ) /DSQRT(DSQRT ( PI ) ) 
- 

~SI=DSQRT(~.DO/DSQRT(PI))*Z*DEXP(-Z*Z/~,DO) 

oS(O~=oso 

os( 1 )=OS1 

ELSE 

ELSE IF?(I.EQ.l) THEN 

ELSE 



7, 

- - OS2=DSQRT LS /(AJ+~.DO~)*(OST*Z*DSQRT(-~~&~AJ~O~)----- 
I -  

IF (OS2.EQ.O.DO) THEN 
- - 

ELSE 

OS(K)=~SIGN(~.DO,OS~)*DEXP(DLOG(DABS(OS~))- - 

ENDI F 

IF (DABS(OS~) .GT. 10.~70) THEN 
= 

ELSE * 

0s 1 =OS2 

ENDI F 

1 CONTINUE 

ENDI F 

RETURN 

END 





and 

In order to'evaluate these matrices we need to return to the 

explicit definition of the B,(x) 's, consequently 
;* 

From Appendix 6 we note that the product of two ~ e r m i t e  

polynomials can be written as a finite sum of Hermite 
- 

polynomials, i.e. 

With this id$ntity equation 4 becomes 



-- 
,F, (-m,-n; ( I-m-n)/2;a2/(2a2-1 I), if m+n even 5 a 

else 

- 
"- where ,F1 is a hypergeometric function. By identifying 

C h -> i+j-2m, n -> k, and 2a2 = 3/2, .theLintegral i n  the 
- 

definition of Pijb becomes 

and thus 



Q L - 
This can be written in more elegant form by intro&cing the 

. - 
Pochammer symbol, 

. - 

I n  terms of this symbol 

and 

With this notation equation 6 becomes 





. -, 

- -L 

type oE hypergeometric function t h ~ n r r l l r  s ' - P n e  
F 

admits i.e. e A 

L 

' -e * 

2F1(21-i-j,-k;(l-i-j-k)/2+m;3/2) = 

L 1 

1 

see AMS-55 sec. 15.3.29, and note the symmetry of the 

hypergeometric functions under interchange of the first two - 4 

parameters. The non-zero components of P become 

\ 
- The sum in this equation can be identified with the third Appell 

series F,, see Erdelyi vol. 2, and thus the components of P are 
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. The integral over ) has been evaluated inegeneyal in Appendid, 
see result 6, and yields 

i 

. .  - 
" 

'if i+j-2m = 0: 

The complement of the error function will occur only if i+j-2m = 

0, and this can only occur if i=j due to the restriction on m 

having a maximum value of min(i,j). . . 
. Because of the various possible outcomes of these integrals 

depending on the values of the indices of the matrii- component 

we must evaluate them case by case. Thewpartitions are, 

a. i+j+k even. 
-. 3 

b. i+j+k odd 

b. i+j+k odd 1 

' where the division into odd and even cases is due to sy 

considerations of the intdgrand in the integral 0ver.x. 

Taking the first case for i # j ,we get - 

I 
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'the integral in equation 26 becomes .- 

"dl 

By G-R s e c .  7 . 3 7 3  we g e t  t h a t  

and t h u s  

o r  by i n t roduc ing  t h e  e x p l i c i t  forms of no rma l i za t ion  c o n s t a n t s  

we g e t  '3 

i 

i i  

I f ,  on t h e  o t h e r  hand,  k i s  odd t h e  g e n e r i c  form of I i i k  

(equation 2 5 )  becomes 



wherh we-have used previous results of this appendix to evaluate 

the integral in the summed term and the symmetry properties of 

the complementary error function to simplify the last term. This ' 

now leaves the integral 

to be done. 
1 

The evaluation of this integral can be approached by e 

resorting to the integral representation of the error functigp, - 

2 
erf (x) = - J e-Y' 

4% 0 
dy 
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which as usual can be rewritten using Pacharmer symbo-q -- 

- 

The sum term can be identified as a hypergeometric function 
, - 

leaving the result that 
i 'I 

and that 



b 

However, as was done previously, the hypergeometric function. 

2F,(2m+l-2i,-k;m+l-i-k/2;3/2) can be transformed to 
a\, 

(-2)k2~,1(-k/2,(1-k)/2:1-k/2;3/4) by a quadratic transform. In 
- - 

this .case 

Noting that the term that is not under the summation sign in 

equation 41 in fact corresponds to the in=i term of the sum had 

the wu? been extended to include this possibility, we g t * 



..On rearranging termsrand introducing the explicit forms for the 
3 

normalizing factors we get 

The sum can again be identified with the third Appell series ahd - 
yields' - 

t 
which matches the form obtained for the case that i # j and 

- 
i+j+k odd, if i is taken to be equal to j. 



I n  summary we have 

i f  i + j + k  even 

i f  i + j + k  odd 

and 

i f  i + j + , k  odd 

- 3  

I i j k  = 0 ' i f  i + j + k  even ( i  # j ) ,  46b 
a 

i f  i="j  and k  e v e n .  4 6c 



APPENDIX 5 

By definition the third Appell series, sLee Erdelpi secL 5 , 7  p- pa 

vo1.2, has the form d 

If both of the pairs (arb) and ( A , B )  contain a' negative 

constant, as is the case for the components of the matrices I 

and P I  calculated in Appendix 4, then the sums in the definition 

of the Appell series are finite stopping when (a)m and (A), are 

zero, assuming that a and A are the negative integers in 
- 

quest ion. 

From the initial deriva.tion of components of the 

matrices I and P I  and from the defi of the Appell series 

it is apparent that the kalcu1ation"of the matrices' components 

hinged on the ability to calculate hypergeometric functions of 

the form 'r 



As a first-attempt to calculate these functions we 

approached the problem with the simpleminded idea of adding up 
7 

the terms of the sum that defines the hypergeometric function; 

This approach lead to difficulties in that the dynamic range of 

the individual terms of the sum is large, and that the sum 

alternates with negative and positive parts being approximately 

equal. For large orders of the parameters i or j the difference - 
between the 'negative and'the postive contributions vanished for 

the accuracy of the numerical calculation. In a particular test 

case, the individual sums (positive and negative) were equal, to 

machine a c c p c y ,  and of the order of lo6' taking the difference 
I /--- 

of these - two numbers returned a number of the order of.1044 in 

the 16 decimal, double precision finite arithmetic that was 

being used. The possible error associ.ated with this calculation 

is then of the order of + 1 044, 
0 

Figure A5.1 _iclJuStrates the behaviour of the sum as 

successive terms aresadded, and figure A5.2 demonstrates the 

behaviour of the positive anrnegative sums as sllccessive terms 

, are added k o  each of them, for t h e \ ~ ~ ~ ~ c u l a r  case 



I -10 ; I I i a I I 
0 10 . 20 30 4 0 5 0 

ORDER 

F i ~ u r e  A . 6 . 1  ; Sum of successive terms- in the r~un le r  l c s l  

svmrnati~r cf the series representaticn of 

2 

Legend 
poslnve s c o u ~  
U E G A l l U L  SLOULHCL 

9 

0 ' 
I I I I I 

0 10 2 0 30 . r 0 5 0 

ORDER 

series representstion of , F , ( - 5 3 , - 5 0 ; - 4 5 . 5 ; 3 / S ) .  



--- - -- 

In order to resolve this problem we turned to Gauss's 

relations for contiguous hypergeometric functions, a complete 

list- of these being given in AMS-55 sec. 15.2. These relations 

are in essence three term recurrence relations, but slightly 

more generalized in that they act on any pair combination of the 
0 

three parameters a,b,c of the hypergesmetric function 

1 ~ 5 g g  that 

. . 

and that 

we can, if it is stable, use td recurrence relation 

\ I 

to generate succe%sively lower orders of the hypergeometric 
- < 

function, by starting at the ground states given by equations 3 a  

and 3b. 





* f 
- - -  

Wit-h the ideas outlined above' a numerical algorithm can be 

written &nd executed, to generate a sequence of numbers, the 
--. 

final onePbei<the value of the hypergeometric function 
s I 

P 

desired. However, due to a lack of readily availabie published - 
tables for this pariicular type of hypergeometric f unct ion7 it 

was not known whether the recurrence relation -was stable or not, 

and consequently whether or riot the numbers calculated, 
, . 

represented the hypergeometric function. 

To testothe validity of the recurrence calculation the 

was employed to generate two other representations of the % 

desired hypergeometric function, see AMS-55 sec.15.3, i.e. 



-e 

Since the number of iterations of the -recurrence relations 

needed to generate the new forms is different from the number 

needed to generate the original one it was surmised that a 

comparison of the 3 values obtained would either corroborate 

each other or point to regions in parameter space for which the 

various recurrence relations were unstable, assuming that 2 out 

of 3 would agree for any given set of parameters. Figure A 6 . 3  

shows the results of this comparative test for the specific set 

of parameters; j = l O O  and i ranging from 1 to 200. In order to 

compress the information into a manageable scale.the log of the 

absolute value is plotted as a function sf the independent 
- - 

parameter i. 

Legend 

Figure'k6.3 ; Results of cornparision test for the three 

different iterative schemes used in calculating 
dJ 

,F,(i,-200;(i-i-100)/2;3/2), NOTE results of 

each of the schemes lie on the same curve ndicating 
.\ 

agreement over this range of parameters. . /  



From these tests it was felt that we had reasonable - 

assurance that the values calculated were in fact the values of 

the function 
/ 

for the ranges-pf parameter space that were of interest. 

From the above analysis a. stable algorithm for calculating 

the hypergeometric functions was written in Fortran 77. In 

calculating the hypergeometric functions the routine uses one of 

the two representations 2 or 8b depending on which of the two 

parameters i and j is the larger. If i is greater than j then 8b 

is used and if i is less than j then 2 is used. This was done to 

both save 'time and to minimize the accumulated error inherent in 

iterative schemes, since in this way the program iterated'the 

minimum possible number of times. 

As for the oscillator functions the routine used to 

calculate the hypergeometric functions is listed below, and 

figure A6.3 shows the cpu time required for a set of typical 

calls to the routine F21, for j=100, with i ranging from 0 to 

200. \ 



IF (MOD(I+J,2) .NE. 0) THEN 

 WRITE(^,*) 'HYPERGEOMETRIC FUN HAS SINGULARITY F21' 

F2 1 = O  .QO 

RETURN 

ENDI F 
* 

IF UI.GT.J).AND.(J.GE.O)) THEN 

L=J Q 

M= I 

ELSE 

ENDI F 

IF (MOD(L,2) .EQ. 0) THEN 

ELSE 

B=A-5.Q-1 

ENDI F 

C=QFLOAT(I-L-M)/z,QO 



. 

- FO= 1 .QO -- -- 

-- 
IF ( A  .EQ. 0.Q0) THEN 

RETURN 

ELSE IF ( A  .EQ. -1.QO) THENc 

F~I=(~.QO-B*Z/C)*(-QSQRT(I.QO-Z))**(FLAG*~M-L)) 

RETURN 

ELSE 

1 CONTINUE 

F21=~2*(-Q$QRT(~.QO-Z))**(FLAG*(M-L)) 

RETURN 

END1 F 

RETURN 



Figure A 5 . 4  ; Indicatiye run time for the calculation of 

,F, in milliseconds. 



- 
\ 

APPENDIX 6 

Altowgh some of these results are quoted in diverse 

literature we gresent the derivations here because of their 
A -  

importance to this thesis. 



'\,Results 1 and 6 can be found in - Erdelyi* - - -  --- Vol. - 2 along with a 
i 

variation of result 5. Result 2 can be constructed by inverting 

the explicit form of the Hermite polynomials given in AMS-55 
1 

chpt. 15. 



Assume 

r l  

then 

by G-R sec. 7.375 

with the condition that 2 s 0 =  p+m+n. 

This result is valid in the region of parameter space defined by 

s-p r 0 -> 1 .  m+n r p 

1 

. 2 and 3 imply 

giving 
.3 

thus 

s-m 2 0 --> y+n 2 m 

s-n 2 0 -> . * p+m 2 n . 

p 2 m-n 

'. 
and p 2 n-m 

I f  now we let p=m+n-2q then ' 



lli 
and, # 

s-p = q-' 

s - m  = n-q 

s-n = m - q .  

4 

Thus the  sum c a n . b e  written a s  



Assume that 

1 
a, 

J e - ~ s 2  xm Hn(x) dx. 
2"n!r/a -, 

- 
then 

'Fin = then - 

part integration the evaluation of this g i v e s  

then if 

i f  

i f  

L 

G-R 

, 

1 + 

then f n  = 

and.'n+m .even then 

( - 1  I n  m 

i o+o+... +(-l), m! 2 

,Znn! i a  (m-nl! -- J xm-"e-x dx), 

3.461, evaluation.of the remaining integral yields 



Theref ore 

where the sum is taken 
-. 

* 

over even m+n. 

By changing the sum variable such that 

n = m-2k 

then by O S n l m  

we get m 2 2k 2 0. 

If we define the symbol [m/2] to mean the largest whole number 

smallei than m/2, which is standard in most literature, then 

4 

Then the sun becomes 

This can be simplified even more by noting that the double *. 

factorial can be rewritten as . , 



Thus we g e t  t h e  f i n a l  result t h a t  



PROOF 3 . 

By resbJt 2 we get that 

and by r e s u l t  1 we get 
ure 

'Thus 



PROOF 4 

? 
BY, ~ a ~ l o r  expanding H(x+y) about x=O, we get 

By G-R sec. 8.952 

Then 

With this a typical term in the Taylor series becomes 

Since the order of the ~ e r m i t e  polynomials is diminishing the 

sum terminates when m=n or m-n=O, thus we get 



Assume 

By G-R sec.  7 . 3 7 4  

  here fore we g e t  

Where  t h e  sum i s  t a k e n  o v e r  e v e n  m+k. 

By l e t t i n g  k = m-2n 

t h e n  by I m s k 2 0  

we g e t  

o r  



With this change of sum variable we then  get 



PROOF 6 -- 

B y  G-R sec. 8.950 . 
OD OD - 

then S e H,(u) du = e-u2 ( - l ) m e u  z dm e-u2 
durn du 

ax ax 

DD dm e - ~ 2  dm-1 e - ~ 2  
= $ (-Nm du = (-1 w 

durn I durn- ' lax ax 

Since 

the integral becomes 

- - +u2 Hm-1 (u) - 

Since 

", 
the integral becomes. 

- - ~-(ux)' H,-, ( a x )  



I f  m=O t h e n  t h e  in tegra l  reduces tg 



APPENDIX 7 

-- 

A short table of some of 'the representative spectral values 

for the biorthogonal Osaillat~r expansion, w=1.0, with 

m\a 1 2 3 4 -- - 

0.1133+00 -0.2493+00 1 real 0.1723+00 -0.3243+00 

imag 0.1833-15 -0.3573-15 -0.5313-16, -0,2713-15 
*A 

\ 

2 -0.6043-01 . 0.9513-01 0.3933-0 1 0.9653-0 1 
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