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. ABSTRACT

’

oy 1

j —

The Kav equatlon f1rst derlved in 1895 by the team of v.” -

—_—

Korteweg and de Vr1es, hasfdemonstrated wider appllcablllty than’

its original purpose of describing shallow water waves. The KdV
equation is of interest not only from the standpbint of physical
description But also from the point of view of |

Mathematical-Physics.rWith the discovery in 1967 by the team of

Gardner,Greene, Kruskal, and Miuta of a connection between the

time-independent Schroedinger operator?and the KdV -equation came

the birtg of the Inverse Scattering Method,,It is through this

- method that solutions.to nonlineat initial value problems can be
found bykexecuting a seduence,ofﬁlinear operations. For the KdVv
equatiqn tﬁo distinct types of solUtions-exist, one being the
now famous soliton solutions, the otherrbe?mg the more
complicated radiation solutions. Many researchers have looked at
and discussed'theVSoiiton*solutions;~hewevery'reiativelymfewsfw

have explored the radiation solutions. The form of the radiation

solutions has been explored for the asymptotic time regime and —

for short times. Th1s thesis attempts to look at the radiation.
solut16’s for all times by use of an expans1on in terms of
harmon1c Osc1llator functlons. In terms of these Oscillator
functions a complete. solutlon has been found by first expandlng
the spectral transform 1n terms of the Osc1llator fUnctlons and
then by using th1s expre551on‘to evaluate the solution of the

Marchenko equation term by term through a Neumann series

expansion. A calculation has been carried out for specific

iii

-



1n1t1al data, up to second o:der in the Neumann series. The

results of thzs calculatlon are dlscussed

iv
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CHAPTER I

B R THE KORTEWEG DE VRIES EQUATION.

‘The Korteweg de Vr1es (R@v) equatlon was 1n1t1ally derlved
by the two Dutch scientists D. J Korteweg and G. de Vr1es‘r
_(1895)Ato model the propagataon-of long surface waves in a
treetangular.canal_.,A:very special form of these waves, now known
as solitons, was first observed and recorded by J.S: Russell? in
\ 1834. Subseguent to its initial'derivatiaﬁi;@e KdV’egnation has

@ ——t
L 9

been found to arise in other applications such as
«magnetohydrodynamic naﬁes in.a‘cold’plasma (Gardner and
‘Morikawa?), longitndinal vibrations of an anharmonic . | o
‘”discretefmass stfing,(Zabusky“, Kruskal?®), ion—aeoustic waves in
a celd-plasma (Washimi and Taniuti‘) pressure waves in
“ﬁllqu1d gas bubble mixtures (Wijngarten’), rotatlng flow down a

{

tube (Le1bov1ch°) and longltudlnal dlsper51ve waves in elastic

rods (Narlboll’) Thls wide range of physical problems is 1n~”f”"’mb

~ itself sufficient reason to justify interest in the KAV ;
equatibn, but through the discovery, in 1967, of the Inverse

Scatterlng Method (ISM). by the team of Gardner, Greene,}Kruskal

and M1ura‘° (GGKM) the equatlon generates 1nterest from the
stand point of Mathematlcal-Physlcs, as a basis for

understanding the Inverse Scattering Method.

Physically the KdV.eqguation is a description of
uni-directional long wavelength waves (where long is with

respect to some characteristic length scale of the system) in a

1
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[

"sfightlyvdisPéréi§e medium. .. 7 : .

For historical reasons the following derivation of the Kav
’equation will be‘based on a hydrod&namjcal appgbéch. To that end
 ¢onsider a level canallof.rectangular cross?section aﬁd rigid
“walls contaiﬁing a non-viscous, incompressible_fluid of depth h'7
at_the surfaceﬁof the earth. ‘Since we afe'intérestedviq;the: B
p;dpéégtion of the waves along thé canal we will igndfe any
‘va}Tétions across the width of the canal, and thus,require’ohly o
two spatial variables (x,z) to describe théwfluid‘s motion. The .
' coord}ﬁate system is choosen so that the bottom of the canal}
corresponds to the line z=-h and the still surface of the fluid

corresponds to the line z=0 (i.e. the x axis). -

The disturbed upper surface will be characterized by _the

-functions

S'(x,z,t) = 0_' : ' ' : la

or by B S(x,t) -z =0 '- 1b

which are equivalent.

In order to model the motion of;the fluid (non-viscous,
incompressible, homogenous) we appéai-tanuler's equation for

fluid motion, which can be found in any standard hfdrodynamics

%



text,

| where 3 is.the fluid's yélocity, P the intefhél‘pfessuré, p<thé
_'density, andAf the.applied force per unit mass. At the qﬁtéet igrr:a
was assumed that ihe fluid was incompressible and now we will.,
make the additional assumption thatAits'motion‘is ir;dtational,( -
: i.e;iy X 3=0.>Th¢ second of these conditions implies that the |

'velocity can be written in terms of a velocity potential

and the former implies that

which when combined-with the continuity equation'telié us that

V.v = 0, so that the velocity pdtential obeys Laplace's equaéion'




Since the fluid is in'aiconse:vative1(gravitational)'fofée“
field, the applied force can be written as a gradient of é

scalar fune¢tion

o
T = -vu. 5

Under these assumptions equation 2 becomes
Vigy + S|Ve]2 + — +au) =0 6

" With the appropriate gauge transformation on ¢ this equatidn can

be integrated to give

At the earth's surface the explicit form for the 'potential

energy' is taken to be



where the first term reflects the'ﬁniférmigravitational ﬁiéld of
the earth and the second a.well choosen cohstant that takes into
‘account the air pressure a£ the aié-fluid ihterface;-itgshbuld

~ be noted‘that,ﬁe are assuming fhat the fldctuatiohs in the air -
- pressure at the air-fluid interface afe-negligibie. On
substitution of equation 8 into equation 7 we get fhe |

- appropriate equation for non-viscous incompreséible irfotationéi'

fluid flow near or at the surface of the earth

<
o

+
[SY P
q,
’6-!
[ 8]
.

U
o |I"
+
o .
N

I
o
w0

with thé“caveat that . S Vip = 0.

The complete specifidation'of the problem requires boundary

conditions., At the lower boundary the rigid surface of the
canal's floor requires that v.n = 0, where n is the unit normal

R

to the floor, which implies that

6z = 0 at z=-h. 0



At the upper

since S' = 0.

surface it

iS'neéessarily;true that

as'
==— = Y.VYS' ¥ — =
at - V'S ot - O
_This then implies that N
¢XSX - ¢zt 2§ =0 ’ » ’ 11

ot | SN

and ‘from equation 9 we get

o ]
) ¢y *+ -2'|V¢|2 + gS = 0.

o~ » . I

Thus the specification of the full pfoplqm is givén by the foutV

eqguations

i

inside fluid

13a
¢, = 0 z=-h 13b
1 upper
+ =|Vel? + gS = 0 13c
ot 2I d g . surface



13@

9xSx * St = 9z surface -

.At this point it_becémés worthwhile to convert all of the
) quantities‘that.dccur in the above equations into dimensiénléssl
form, For the z—coofdinateva natural length is thé depth of the
‘flﬁid"h,vfor the x-coordinaté it is the/wavelehgth'i,and_for
time it is the ratio of the wavelngth and the linearizédiwave

 speed c=y/gh, giving rise to the scale transformatioﬁé}

ey
]
> Ix
e
]
>IN
“

n

|

o+

*

Since the problem is to be examined in terms of a smallness

pafameter e it is épproprﬁété to. write

S

heo , T -

‘¢'= AC ey

v

where o and y represent the normélized_ﬁutface height and

velocity potential respectively. On substituting these scaled




variables and functions into equations 13(a-d) we get

?SS + utpy = 0 . | ’p_1' :' 14a
B - Ve =0 | ) at §=—1‘ - | | 145”,"
et S -L—,wg?) +’o(=~0 S e
- | Vpop + or - #“'5 | j4d
A g

> |

where u =

In order to solve these equations in terms of a travelling

—_—

wave, a solution to Laplace's qquation (14a) of the form

\"I/ - Z(S)eikE—in . ‘: - ]5

is assumed. This will satisfy Laplace's egquation and the

boundary condition (14b) at §=-1 if

2(%) = const;cosh(ké(§+i)); 16



&

o

Thus we can assume a general,Solution'of ¥ as

T

v = %— s "F(k,r) cosh(ku(g+1)eikiqk | 17

A

where T(k,;) is some as of yet dhinown function.

The physical problem is stated such that the depth of the
flu1d 1s small in comparlson with the\wavelength hence ku,
where k .is the wave number, is even smaller. This condition
along with the assumption that f(k,r) goes to zero eufficiently
rapidly for |k|—>=, allows us to»expand‘the hyperbolic eosine;"
in a power series in ku($+1) under the 1ntegral s1gn, to obta1n

a reasonable approxlmatlon.for v. Thus

TRZER(EH1) 2

VST = = TR T + 0(u') )elkE gk .
N = 2 2 ' .
~ (1~ E“;‘) DY) g,y '8
withD = &  and O Of(E,r) = = m,;,»%(k_ JelkEqk
| Y a | E" T RIALTRL y
Similarly -
9



| u?(t+1)2?p?

o . N : Ve */“71127(/57{17)'”(/17— 3 =) f“ .
o - L ,2 V2np2 o .,::,,
' ’ '2 N2 é
vy = (1 u (S;l) D,) £,

——

! "By substituting these forms for y and its derivatives into the

equations for the upper surface (14c,d) with § = eo we get

- L
_ u?(eo+1) €
Er o 2 ger v St

1

= o | = 0(e?) + Oen?).

and

v . . e

2 . 72 . '
EEEOE + 07 - ‘eu (eot1) OEfEEE + 3(6_2) + O(ep?)

2

4

u?(eog+1)?

= ;(ea+1)f2£ + "‘"?;"“f;zgz.‘

At this stage we make the critical approximations that will
lead to the KAV eguation. We want to fetain information about
both the\wavelength;h and the amplitude S, in relation to the =

depth h. In order tb?agcomplish/this in a minimal wafrwe must

10



keep terms of order e and terms of'orde;_y2 (there are no

laweé)} As for the cross terms we note that since S<h<\ then

eu£(5h/xz).is'smaller than w? and can thﬁs'bé hE§iééE;é7a1qu
with all higher order cross;té?ms. This now defines what we>mean
by the term 'reasonable approximatith. By application: of these

restrictions to the above equations we get

¥ . -

2 .
f.r + g + s‘-fsz = 'Zu—fEET : o - 19%a .
{
and
‘ : _ ”Lz ' e .
op * fpp v elofp)y = fppgg. o 19b

To cast these equation into a more symmetric form,differentiafe

equation 19a with respect tg;i'ahdilet f£=x; to get

Xr * 0p *+ exxg = ’BxEET | 20a
and ‘ -
or + xg * elox)g = ngEE : . 20b

‘ ul | -
where § 5 ¢ o o T

1M



[ ’ . L)

From here on we need to appeal to perturbation methods by

exbréssinQVSchiq énd x in terms of perturbation‘eipénsiops in
both ¢ and §, thE'gmaIinéss parameter and tﬁéd§y5£éﬁ”§§?§ﬁ??€ff”'*."4*
In oféer to carry out this expansion a‘téchnique‘de5cribed by ;T N
Leibdvigh and A.R. Sgebas§“ as a method c¢f multi-scaling as it

applies to systems of equations was used. To start, the system -

described by equation 20 is written as a vector relationship, _

R | B : u, + (go + 521 )I—JE = 89_(,9)_ | . - . .y

where us= |°}, D(u)= l\%xffé
- TX XEEr
el el -
Now)#g;;sumgthat | | o , >
’ u=g°+eg1+6gz+bO(eé,e6,62).1\ . »' 22

AY ) . »
Since the spatial parts of equation 21 correspond to tlie three

different and distinct length scales 1,e,8 we anticipate three

time scales 7,=7, 7,=¢7, T,=0r which implies that

12.
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| 2 2
- or 070

23

By substituting equation 22 into equation 21 amd by using

equation 237and equating coefficients we get, to order e,$

The first of these e

“the

matrix Co by the transform&f{ﬁé

¥

24a
24p

_/24c

quations is easy to solve by diagonalizing |

25



where vo = Rup.
Since Cj is diagonal, by‘definition, we
equation 25 of the form

J

V(E’U1To)
0

\_7014 ’ - Vo2

26

v(t-w,7,)

t. , o
where w, and w, are the eigenvalues of C,, which in the case of
the KAV equation are 1 and -1.

If we now turn our attention to the next orders (equations

24b,c) we see that

c
-3
(=
+
no
o
] =t
ore
)
O
c
(=
see

~2Tp

+
no
(=
c
L
oo
i
o
c
(=
Ic
()
-3
L
[\
~J
o

‘Again,the’left-hand side of these equations can be diagonalized

by R, in which case we get

Vi, * CoVig = - RC\R™'Wop = Vor, 28a -




" Transforming to a moving reference frame through”

»

g'f;>i»=v£“— wTr

s o
- L3

then ' e Vir, d> Yiro - wvyy * oke),

and equations 28a,b become ' E

o {Eégéf— ©I)Vix = = RC1R™'Woy ~ Vor, 2%
Yar, ¥ (g&.’ wIlVay = RD = Vo, ) : - 2%

If we now multiply by one of the two basis vectors &; or &,,
which correspond to the two eigenvalues ofjéa, and choose w to
be one of the two eigenvalues'then the second ‘terms of the

" left-hand sides of equations 29a and 29b vanish to give

15
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N é.v1~ﬂ'o = ' é'( RC\S-izox""v Vo.r‘) : 30a

Var, = & (RD - vo, ). 7 30b

Both of these equatlons are directly’ 1ntegrable in 1o, but d01ngv’
S0 would lead to a term linear in r, wh1ch 15 Unde51rable since

Ozthe~ensu1ng serles,representatlon would be divergent forvlong
[ o :

times. ThiS‘difficulty can be circumvented by exploiting the
arbifrary natufe of the solutions v, to fequirerihe right-hand
sides of equations 30a and 30b to be zero. Thiserequiremenp

leads to the two conditions’. .

€-( RC4R"'Vvoyx * Vor,) = 0 - ~ 31a

&-(RD - vo,,) = O. 31b

_ It should be noted that inherent in this proeess is that the
choice of elgenvalue determlnes the wave veloc1ty that the

resultlng eqguations wlll reflect

With the two conditions expreséedAin equation 31 and the .

solutions of equatidn 25 we can "reconstitute” vy, by using

equation 23, i.e.

16



o eVQT‘ ?Vorz, » 32

which‘will be valid for all times of 0(1/e,1/8) and less.

Returning to the calculation at hand we.note that

% B

c. = 01
=° 10
im lies that w;=1 ‘1' nd R= - R A !
ie at w;=1,w,=-1, and _ R= == e —
P - k z = Y2 f 1) o= V2 |1 -1
Choosing to look at the @%1 solution then
v(E-71) vix)
V0= . =
- 0 0

Now by using the imposed conditions expressed in’equation 31 we

get

v. = - (,0) 101 v v 11
LR 2 1 -1 0 v 1 -1] 0
3
= - EVV»X /,

D | | B



1
3VXXX

“Vxxx

“andb N TR L
and . 5 VT,Z— B 2 ) % _1 N

<

- -

3Vxxxe

;‘Reconstituting these results by usiﬁg.equatioh 32 yields

3 ) ‘ .
v, + ‘Eivvx + Tvyxx = 0, 33

3

which is a form of the KdV equation for right running waves.
Equation 33 can bevcast into the standard forh by scaling tﬁe
spatial coordinate x by 3/(3/6) and the function v by
(4/€¢)3/(8/3) to get

In deriving equation 34 we‘explicitly considered the
hydrodynamical situation. A sligﬁtlyﬁless copvolufed derivation
of this equation, due to V.E. Zakhafov‘z, can be Obtainedrby
conﬁidering a nonlinear medium with a sound-like dispersion

relation of the form



€ .
~
1

. " . = s2k2(1+ek). - . 35
. ’ ) . e i . J‘

‘For'smail ek? we get : -

£
2

w = xsk(1+ k2 + 0(e?))
where the differgnt signs correspond to the different directions
of propagation. With this dispersion law any quantity u that .

describes the medium has an evolution equation of the form

gy * Ole?), | 36

I1f we now suppose that s depends weakly on the amplitude u

then s can be writen in terms of a perturbation expansion in

terms of u, i.e.

S = 5, + s,u *+ 0(u?). : ' T

19




‘Substituting this expression for s into equation 36 yields

r

Ut = -SoUy — Sjuuy +

e | .
Ezﬂuxxx + 0(u?) + gleu?).

5

Keeping only those terms up to order eu and u? gives

- £5o =
Uy + Spuy + s;,uuy 2 Uxxx = 0.

Transformlng thls result to a frame of reference mov1ng w1th

velocity s, reduces equatlon 37 to

Finally with the appropriate change of scale on x and ufis)get

the KAV equation in standard form

ug * 6uuy * uxxx = 0.

20
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~

Thus“in géneralfthé'xdv equation eanrbemebtained>£or—aﬂ~;w——vr~—ff
4 _mediqm,éith a sound-likebdiSpersion'law'of the form given in
equatioh 35,‘énd a bropagation speed that depends on the

amplitude of the disturbance in a linear fashion.

21



. CHAPTER I .o

THE INVERSE SCATTERING METHOD

Through a set of surprising resqlts the team ©of Gardnér?,/
Green, Kruskal, and Miura (GGKM) found a connection between the

KdV equation and the Schroedinger operator

92 | -
L = PYT] +‘u(x5t) . ‘. 1

whzre u(x,t) is the solution to the KdV. equation. The connection
that théy found céﬁ—be best expressed in terms of a qQuestion:.
given';‘linear operator L, as in the form of eduation«l, what
restrictions are there on the function u such that the spectrum

of L remains invariant with respect to continuous-changes in t?

N

It was through this question that P.D. Lax'? addressed the

.,,,,

it

gs of GGKM. As Lax pointed out, if the spectrum of7L_is
invariant with respect to changes in t then all of the L
operators belonging to the same one parameter family can be

mapped into a single operator L, by a unitary transformation U.-

S

vTe)L(t)ue) = Lo, 2

- Consequent¥ the operator .

S _

22



Lrke . "‘

where b denotes the ad;olnt is 1nvarlant~u1therespeet—tew rlf—~—xf

—_—

It is knewn, by a theorem due to MrH Stone’“, that*a**ift

un1tary operator .can. be wrltten 1n terms of an‘ant1se§j-ad301nt

‘(BTn—B) generator, and that the d1fferent1a1 equat1on relatlngfiﬁy

the generator B to,U lsrglveq¢byh
ug = BU. 3

, P : - .
1f we now differentiate equation 2 with respect to t we get

o

‘ufru + ufLgu + ufLog = o
where if we use equation 3 and note that UI=—UT§'§e see that

which is the key result that donnects the operators L and B, and

implicitly defines the differential form of the function Q‘{;tl

such that L is isospectral.

R4l



We can cast more llght,on theﬂmean1ng~e£ﬁequa%%on44 by

cons1der1ng a consequence of eguation 3 To do th1s we 1ntroduce

the idea that the eigenfunctions ¢(t) of L(t) eyolye according

et

to

(t) = U(t)p(0). s

This_can be easily seen by considering equatidﬁfﬁrand noting.
that L(0)¢(0)=k¢(0)‘to get that

— -

“ot(e)L(t)ut)e(0) = Ae(0)

. ; /
or L(£)e(t) = Ag(t).

‘Differentiating equation 5 yields

¢t = Upe(0)

but by equation 3 this becomes




Now we can, in fact, see that equation 4 is the coﬁPaifBiii??r?;

—

condition on u(x,t) that ensures that the-efgenfunctioné’of L

are also solutions to equation 6 for all time.

From the point of view of non-linear differential equations

tﬁis‘apppoach may Sseem to be backwards in that it'reqUires that

we find two as of yet unkniown operators, L and B, satisfying

Ly = [B,LJ; to characterize an‘dingle differential equation.- ,
Having to find two things from one highlights one-of the ¢
dr#wbacks of this §bpfoach to solving‘paftial differential ‘
equations. However, for thé KAV equation, and for that mafter
many other physically interesting equations, the so-called Lax

rpairs L and B have been found.

If L happens to be the Schroedinger operator’

with L¢ = ¢, and if

. B=-2(2x + u)D 4 uy 8

'y

25



Low T

Whei‘e,,,DE,,g,— ~and u=uix,t), . =
. ax ‘. -

then:, ’ 7 - [B,L] = -6uux - Uyxx

and . B Lt _=> Utb.

\__—__ o , . - . ' /
Thus the compatiblity condition, equation 4, yields the Kav -

- equation o

in standard form. This result is invessgnce the suprising
discovery made by‘GGKM{ It tells us that the spectrum of the
Schroedinger operator will remain invariant ﬁitﬁnrespect to'f,
for this choice of genefator, if the "potential" u(x,t) evolves .
accbrding to the KAV equation. One could of course choose
different generators and then find different compatibility
conditions thus leading to different-partial differential -
eqUationég | | | |
The connection between the KdV equation and the Schroedinger

operator derived in equations 7 through 9 does not in itself

define an inverse scattering framework, but it does give us a

way by which we can characterize a non-linear equation in terms

26



“of two linear operators. Tné inverse scattering method for

solving linear or non-linear partial differential equations uses

the decomposition into Lax pairs in a special sequence of three
. i ] _ » ,

linear s;eps; These step are:

1. Solve the eigenvalue problém L¢=r¢ at t=0,

2. Let the asymptotic form of ¢ evolve according to ¢,=B¢,

3. Invert L¢=X¢ at Someflater t>0 to obtain u(x,t).

The first of these steps is well understood, since it is a
standard eigenvalue periémrfrom undergraduate mathematics. In:
the case of the 5chroedihger operator it is simply the
scatterihg of wave packets off of a pqtentiél barrier or well,

wvhich is again standard problem. The second step, the evolution

of the eigenfunctions, is also well understood and becomes

simple under the assumption that thé function u(x,t) is.on
compact support, i.e. that u(x,t)=0 for ali |x1lg:eater thgn
some x.>0. Thefthird and final step, the inversioﬁ'ofgthe'L"
operatbr to restore u(x,t) is however a problem about which, in
genéral, little is known. For the Schroedinger operator this
problem was solved through the work of Gel'fandf5, Levitan'$,

=

Marchenko'®, and Faddev”d during the fifties.

Since we are dealing speciflcélly with the Kdv eqguation, the

discussion from here on will pertain solely to that equation and

the construction of the inverse scattering framework for it.

7

The direct problem:

27



- In ant1c1patlon~0f~some of - the"concepts"needed’fcr’the

1nver51on problem certain seem1ngly unnecessary results will bekﬁ;‘

der}ved here. For the sake of brevity many of the fine points.

have been_neglected. For a much fuller treatment the texts by

’

Calogero'®; Lamb'®,or Dodd et al2?° are recommended.

To contlnue w1th the problem, we seek solutions to the the

elgenvalue problem

(D? + u(x, 0))¢ = —k=¢, - 10

S

which, as was mentioned earlier, corresponds to the standard
Bpsiy
scattering problem encountered in undergraduate physics. By

assuming a solution of the form

.

6(x) = a(x)eikX + g(x)e-ikx L

and by using the technigue of variation of_parameﬁgré, wherein

we Set

axelkx + 3xe~1kx =0,

Y
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R

we find that

_ ue _-ikx
“x 2ik° "

’ . U9 _ikx
Bx 2ikc "

For scattering problems on the infinite interval it is

customary to express all the.solutions‘of the Schroedinger

equation in terms of Jost fumctions, or fundamental solutions.

2

These functions have the asymptotic forms

6, —> e ikx ‘ C x—o
¥
o 6, —> eikx  x—>me
i ~
v, —> e"ikx |  x—e
\lfz —_ eikx . #_>m.

By“using these asymptotic conditions and the results of the
variation of parameters calculation, eguations 12a,b we get

]

12a

12b .

i3a

13b

“13c¢

13d



6. = e-ikx _l_ X ,,‘7-Tk,‘ ,‘,,elkx”3wﬁ C ﬁf;ﬁuglggf
o= 0 e T weeitrey) - ST weenitray

which can be simplified to

- ] - |
61 = eTIKX — ¥ g sin(k(x-y))ay. 14a

»

By similar calculations we get

-

-

X

i 6, = eikx _ .}‘: [ ugssin(k(x-y))dy 14b
- :
@/m . o ) - |
g = e-ikx 4 if uy,sin(k(x=y))dy - 14c
. X )

) ,

v = etkx v L puysin(kix-y))ay, - 14d
X : ‘ ' B

which then form the complete set of Jost functions for the

Schroedinger eigenvalue problem for real k.
oD

These solutions can be analytically continued in complex k
L B o,

space. If we look at the first and second terms of the Neumann
series expansion for the four integral equations 14(a-d) we fThd

for ¢,, at least, that

30



_ L X . B L
61 = e'?k”"-(”i- —’—k J o u(e?ik(x=y) -1) ay), 15

P : _ .

.

the other three having similar e#pressibns. Equation 15 will be
convergent if Im(k)>0 since eZiR(X'Y)—;> 0 if k—>e Im(k)>0. |
Similariy Y, is éohvergent_if Im(k)>0 and ¢,, ¥; are convergent
if Im(k)<O0. ‘Thus - and wz have anélytical contihuations in the
upper half plane, and ¢2 and Yq in the lower half plane of k

space. This result is 1mportant for. both the direct and the

inverse problems.

Since the Schroedinger‘eigénvalué problem ig‘a second order
differentigl equation only two of the Jost funétions are needed
to form a basis fof its soiution‘space. Thus any two of the
solutions ére expregsible as—linear combinations of_the other
two solutions. From equation 12 we note that the asymptotic

behaviour of ¢; as x—>= ‘is of the form

-

¢, —> a(k)e ikx 4+ p(k)eikx X,
I1f we also note that for real k

Al

— —4,(k) = ¢,(~k) = ¢} (k)

31



ve get that . : , - R

¢ —> af(k)eik¥4f B* (k)elkx , X—>,

Using the asymptotic (x—>=) forms for y, and wzlyielgs :

6, = a(k)y, + b(k)y, |  t6a
: 62 = a*(K)y, + B*(K)y, . . 16b

which hold on all R.

If we now look at the Wronskian for ¢, and y,, which can
both be analytically continued in the upper half plane for k, we

get that
W(¢1 ,wz) = 2ika

where we have used the asymptotic forms for ¢, and ¢y, since

-
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iThlS tells us that a(k) is analytlcally continuable in the upper

half plane, 51nce both ¢, and Y, can be represented there.

‘With this result it is now possible to discuesvthepbound
etate solutions forAthe Schroedinger eguation. On physical
grounde.we,know that the bound state eigenvaluee lie.oh'the
imaginary'axis, with k=ik, (g, real), that they are.discrete andV
finite in number. From the asymptotic (x——>-m) form for ¢, we
find that ¢, is bounded 1f kn>0 and from the other asymptotlc
(x—>+=) form that a(iky) = 0. Similar analysis can be carried
out for the other‘sciutibn97*but that ie unnecessary since we —
only need the bound states for ¢,. What 'is of interest is the
fact that the discrete spectrum for ¢, lies on the upper half ef
the imaginary axis and,that;a(k)=0 at these points. It should be

mentioned that the zeros of a(k) are simple since the

i

eigenfunctions of the one dimensional Schroedinger equation are

‘non-degenerate, and that at the points of the discrete spectrum

equation 16a reduces tq

¢, = b(iKn)lpz-. 17
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. This set of results should be suff1c1ent to construct the »f‘\\;k

inverse framework, and is more than necessary for the direct
problem. For the direct problem all that we really'require are

the functional forms of a(k) and b(k).

TheLEyolution Problem:

In order te pose thls problem correctly we must 1ntroduce a
more general form for the solutlon of the Schroedinger

scattering problem. Here we let ¢ have the asymptotic behaviour

¢ —> a(t,k)e'ik3 K—>-m 18a

¢ —> B(t, ke 1kx &+ 9(t;k)elkx ‘ X—>®, 18b

ThlS slight change in the form of the solutions was introduced
1n order to 1llustrate a p01nt- we can at any time t regain the

original forms of ¢ by d1v1d1ng through by a.

Notidg that u(x,t) is on compact support we get from
equation 8 that the asymptotic form of the evolution operator B

is given by

B —> 4k?D x>,
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Then by equation 6 the eigenfunctions evolve according to -

or = 4k%¢y.

By substitution of the asymptotic form for ¢,»équations 18(a,b)

into the asymptotic evolution equation we get

a = -4ik’a ? | _ 19a
B = -4ik3g : .+ 19b
¥ = 4ik3y, - 19¢

where the dot (') indicates differentiation with respect to

time. Integrating these results leads to

alt) = a(0)e 41kt 20a
Bt) = po)e dik’t | | 20b
y(t) = y(0)edik’t, : 20&
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If we nowrinﬁroduce the reg@lﬁfupq@enclaﬁureﬂofrghe

scattering problem, with the reflection coefficient given by

¢

we find that by substitution of the time dependent forms given

in equation 20(a-c) that the reflection and transmission'

ccefficients evolve according to

r(t) = r(0)e8ik’t | 21a
t(t) = t(0). . ' 21b

The latter of these two equations .shows that the spectrum of L

remains invariant, since it implies that a(:) is invariant.
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Byrapplyingrthqisgmgrana;ysjs for thg;g} qt@;e spectrum we -
get the asymptotic forms ' t
¢ —> ap(t)ekn* ’ T x—>-e
¢ —> yp(t)e *nX | o . x—be
and from,
¢t = f4“%?x "
that
*dn = -dkiap o 0 22a
Tn = 4K37Tp. - . 22b

On integeratjon these yield

an(t) = an(0)e 4kt
1 (t) = yp(0)edrit,
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Since b(k,t), from équation 1?, is defined by b=y/a, we get that

b(ikp,t) = b(.ixn,O)ea",gt. ‘ : 23

f"
‘Therresuits given in eguations 21 and 23 fully define the
evolution problem for the eigenfunctions of L in terms of the

evolution of the reflection and transmission coefficients.

Thé Inverse Problem:

Here we reconstruct the potential u(x,t) from the scattering

data after it has evolved according to the Kdv equatioh to some

»

time t. 4 - o | - T

For the present we consider the solution ¢, and write it in

the form

-0

v, = elkx 4 ) K(x,y)éidey 24

where K(x,y) is some as of yet unknown function. From the
asymptotic (k—>e, Im(k) > 0) expansion of the actual solution

for y,, given in equation 144,
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eikx 4
>1k f udy + 0o( =)
©OX

v, = elkx 4+

9

we see that the function K(x,y) decaysfz}ponentially in this

asymptotic limit. Thus by considering a contour in the upper

half plane we find,. from equation 24 that

3 ¥

K(x,y) = 0 if y<x

and thus equation 25 can be rewritten as

v, = elkx + f K(x,y)eikydy,
I K

Moreover if we look at the asymptotic (k—>e Im(k)>0)

for equation 25 we get that

14

¥, = elkx _ Ei%tileikx + C(1/k2)

25

expansion

27 -

which was obtained by integrating by parts. Comparing, term by
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term equations 23 and 26 revealsﬂtha;iw o

(-] . ! -
J u(y)dy = -2K(x,x)
. X . i
of that

i$. u(x) = 2 g'-'R(x-,x) : 28
, , dx : :

) . v - .
which defines the relationship between the, as of yet, unknown

function K(x,x) and the scattering potential u(x). Recalling'

eQuation 16a and noting that | -

—w

v, = e”i1kx o g(x,y)e"ikygy
X :
yields

m »
¢, = a(k) (e 1kX + ¢ g(x,y)e ikygy) +
X ) ' .

b(k) (elkx + [ K(x,y)elkydy)
C X

or that



81 -ikx

< K , i 'ide +
25 ] rixpeinrey

+ r(k)(elk® + ¢ g(x,y)elkyay).
X .

By multiplying this equation by eikz /27 and integrating over k

we get
1 }o ( _ﬁl_‘_ e-ikx)eikzgy =
2n _, alk)
K(x,z) + F(x+z) + [ F(y+z)K(x,y)dy 29
B L x : . «
T / 7
with F(E)v= %; f r(k)eikéak,

bl =~ <
Since ¢, is an analytic function Mof k in the upper half:
plane, and ohserviﬁg the restriction that z>x, and noting that

a(k) has only simple poles in the upper half blgge,we get that

the integral on the left hand side of 29 is just the sum of the

residues of ’;%t—, thus

1
i

2w

#1 _ _-ikx)nikz = i, (x,iky) -KnZ
C g0y - eTtmeikz ak = a' (ing) & 1

|— 8

LY
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where n 15 the number of zeros of a(k)

By the relatlon, equatlon 17, between . and Vo at the ?
points of the discrete spectrum ‘we get that equatlon 29 can be
~rewritten in terms of y, by |

o

g, (x,ikg) -4 Z bic) o L
2: a'(ikp) e knZ ;—T:—ﬁ“wz(x,lxn) e Kn S 30}
Setting the numbers ib(ixp)/a’(iky) = -Mp, the left hand side ‘of

equation 30 becomes

¢

- E:Mn Vo (x,ikp) e *n? | » 31

Since equation 24 can be written in terms of the eigenvalues we

get that
Vo(ikn) = e"*nX + [ K(x,y)e ¥n¥dy, 32

X

and 30, finally, becomes : >

42



[- -]

- Y MneTkn¥ = Y My S K(x,y)e *n¥ay.

[N

By redefining F(S)fbyﬁ‘

F(t) —> F(E) ='F(£) + 'EZMAe'KnE
we get that equation 28'becomes

0 = K(x,z) +r§(x+z) + E(y+z)K(x,y)dy. | 33

WK g

\

fhis:is the Marchenko equation; a linear in:ggrai‘equatiob"by”/_w:W
whicﬁ.ﬁe can invert the Schroedinger operator to fihd»the )
potential*ukx;t). It should be notedﬁthat all we need to know

are the reflection cqgffiCient }(k), and the'valués df‘af(k)»and
b(kf at thé pointSfié‘the‘discrete spect;um‘of u(x,0), in order

to construct K(x,y) and by equation-28 u(x). "

Tﬁ§s°fesult,cahAﬁow be easily extpndeé to take ihtouaccoungﬁ
. the time evolution of the scétfering data C;;(k);a,b ) by
recalling the results of the evolution problem and
éorreépondiﬁgly)redefiﬁing E(E’ totbe

-~

43



) -

~ =] . . . . . R .
F( E i o ) = —1; : J‘ N ( k"'o ) elk!"'B’ﬁtltak B ﬁ; *é-ﬁﬁkﬁtf *’*”*5’4”' -
[N -co : » " - :

Since t enters as a parameter this result can nbw be;usea as the
kerne; for the MarChgnkb équafion, from which thé potential
u\g,t) can be construéted from the initial data u(x,0) afﬁer it
has evolved a éipe t. , | : |

The final results of the preceding sections défine'thg
inverse séattering fofmalisméfor‘the Kdv eq@atioﬁ, in general

terms.
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CHAPTER I1I  — =~

THE RADIATION SOLUTION

'Inéhéptér 2 we showed that the initial value problem for
the K4V eguation could, in principle, be solved by;executing the
seguence of‘lineaf steps that make up the Iq&erseFScattering
method. The’tﬁird and final step of this method invoives sblying.

the Marchenke equation; a-linear Volterra type integral

equation. The kernel of this eguation, given by

® . m ‘
F(§) = %; {m r(k)elkiak +"E; MZe~Kn$, _  1

-

was derived inwghapter'z. As is easily seen this kernel is
comprised of two distinct parts, the first'(inﬁegral) part comes
from the continuous spectrum of the Schroedinger operator, and;'
the second (sum) from the discrete spectrum. These distinct
forms physically manifest themselves in different ways. The
continuous spectrum leads to radiation solutions, i.e. solutions
that'reflect fhe dispersive nature of the Kdv equafion by
spreaaing spatially as time evolves. The discrete spéctrum }eads
to the now famous soliton solutioné,.i.e. solutions that retain
theif profile as time evolves, even under collisions with |
similar objects, indicating that the dispersion inherent to the-

KdV equation is exactly cancelled by the non-linearity of the

equation, In the case for arbitrary initial data the general

45
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solution will be some non-linear mixturefoi;tbeséwtwogtypes¥o£——éf~—f
;solutions, however as time evolves it is the'SoiifOn solutions |
" that survive asymptotically while the tédiatiéh solutidné'

disperse. It i§ the dispefsion of thérradi;tion solution that

indicates the appropriate direction for time.

It can be shown (see Appendix 1) that it is pdssible,to
const:uct‘iniﬁial‘data-such/that.nc‘sblitons\will appear.
'Phyéically this corresponds to aﬁ iniﬁial situation in which thé
fluid SQrfacebwas aepresséd{ ésAopposed to elevéted. Thisv
aéymmetry in the naiure of the solutions to the KdV ‘equation is
evident if it is noted that the eguation is not invariant under

reflection about thé~fiuid.surface (u—>-u).

If the initial data is properly constructed to exclude =
soliton solutions the kernel for the Marchenko éguation would

become simply o

F(§) = %; f ~r(k)eik5dk, : 2a

or if we include the full time dependence of the rgflection"

coefficient

F(,t) = —;—,ﬂ; r(k)elk§+Bik tgy 2b

—

By chosing the initial data for the Kdv equation;appropriately
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ue_have,decbupledrthe tupppoSsible:types,ofﬁsblutions_that
‘manifest themselves for arbitrary data.fThis allows us tQ'
concentrate on the. radiation solutions'without having;to”worry
about the interaction of the two types of solutions.’It should’
be reiterated that 1f no sol1tons exist 1n1t1ally then no
solitons will ever appear. ThlS is a consequence of the fact
that the spectrum of the 1n1t1arﬁdata is invariant as time
evolves, and thus if no imaginarf eigenvaiues exist initially

then none will magically appear at some later time.

As was mentioned earlier, relatively few peopl& have looked
at the radiation solutions of_any of the non;linear evolution
equations, much less for-the KdV equation, owing to its
complexity. However by using‘the method of stationary phase the
team of M.J. Ablowitz and H. Slegurzr1 were ‘able to extract the
temporal asymptotic. behaviour of the radiation solutions. By
considering specific initial value problems for”which‘the
Schroedinger scattering problem was explibitiy”solvable and
expanding the reflection coefficient in terms of an area—like
expansion parameter the team of R.H.Enns anéps;S. Rangnekar??
obtained the short time behaviour. In earlier papers, u51ng the
d1mens1onless area as the natural parameter they were able to
obta1n the complete temporal evolutlon of the rad1at10n
solutlons for the 3-wave problem, the sine~§ordon~and the
sinh-Gordon equatohs, the modified KAV equation, and the
non-linear.Schroedinger equatiens. The first is characterized by

the Zakharov - Manakov eigenvalue problem, the remainder by the

a
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Zakharov - Shabat eigenValue problem. It was’anticipmted that

the same procedure would g1ve the complete temporal evolut1on of
the radiation solution of the.Kav equatlon. Because of the
different inverse scattering structure, this did not turn out to
be the case, their series representatlon breaking down at some
finite time. Thus, the complete time evolution of the~rad1at1on
solution ofvthe KdV equation haﬁ‘to the best of our knowledge
not been carried out in the literature. The work of this thesis

represents an alternative approach tofsolving the problem.

Fundameutal toiboth of the previously mentioned approaches
to solving the KAV equation is the idea that the Marchenko
equation can be expanded in terms of a Neumanr ®xpansion, a
succesive approximation scheme™in which the solution is an’

iteration of the kernel,

Ko(x,y) = -F(x+yl' ) 3a

[-=}

Ky(x,y) = -F(x+y) +. [ F(x+z)F(z+y)dz 3b

X

K.(x,y) = -F(x+y) + [ F(x+z)F(z+y)dz
, X

94

F(x+w)F(w+z)F(z+y)dzdwv | ~ 3c

!
%o g

’
J
X
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etc.. _
The convergence of this seguence to the function K(x,y) has been
shown by H.Segur?3., Use of the represéntatiOn‘will be made in
"what is to follow, however this is not the point that presents a

stumbling block in trying to find analytical solutions.

[

One of the major difficulties encountered in the search for
analytical solutions is the'occurrence of the cubic term in the
time evolution of the }eflection‘data; As a conséqueﬁce of this
term, even fo:r those refleéﬁion coefficients that are exactly
solvable, the ékact analytical form of.the kernel of the
Marchenko equation is elusive in that the final integration is
difficult if not impossible to do analytically. This problem. can
be circumvented by noting that the kernel F(x,t) isla yellv “
defined’funcfion of two variables and can be expanded

: -
biorthogonally in terms of orthogonal functions in x and

-

orthogonal functions in t, i.e.

) F(X,t) l= men\pm(x)¢n(t) " . 4
where : I ¥m(x)yp(x) dx = & ’ . 5a
and . S op(x)en(x) dx = épp. 5b
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With this‘type'of ;epresentation.the spatial and tempéral ”
depéndence of F(¢,t) would be moved from under the integtal
def1n1ng F and into funct1ons whose analytlcal structure 1s more
readily accessible. However this expre351on leaves the
‘calculatlon of the expan51on coefficients f, to be done. By the
orthogonality of the sets of functions yp and ¢y the fg,'s can

be calculated by

—

fon= [ F(E,t)¥n(E)en(t)dtdt,”

or if we use .the explicit form for F,

fmn= 5= SIS0 r(k)eikE¥BIKty (p)g (tiaratak, 6

—c

where we have rearranged the order of the integration.

Given this type of expansion for the kernel F(x,t) we can

now go about the task 6f'solving’the Marchenko equation,

R(x,y;t) + P(x+y;t) + [ K(x,z;t)F(z+y;t)dz = 0. 7
X
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Defiﬁing
CR(X,¥it) = kpng¥m (%) ¥p(y)eég(t) S §a
and F(x+y;t) = fma¢m(X+Y) wa(t) , | 8b.
= fnnady(x) ¢, (y) v (t) , | e
and S K(x,z;t)F(z+y;t)dz = gppeep (x) ¢ (y) ¢ (t) . - 8d
X - .

where summation over repeated indices is assumed, and Roman
subscripts indicate an expansion spatially and Greek subscripts
- a temporal expansion. On substitution of these representations

into the Marchenko equation we get
(kmna + fmna."' gmna)¢m(x) ¢n(Y) wa(t) = 0, ) 9

Since all of the functions ¢m(x) , ¢n(y) Y aﬁézwa(t) are
linearly independent then all of the coefficients of equation 9

must be zero, i.e.
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(Kpng -* fmne * 9mna) = 0.

However the 9mna 'S are still dependent on the kpn,'s. This

10

degéndénce can be determined by returning to the definition of -/~

the g"s and noting that the right hand side of

®

Imna®n(x) ¢,(y) ¥, ()

can be written as

5 @

Formally we can define

and

and

S ¢i(2) ¢k(z)
x - _
¢f(x) Qj(x)

wa(t) wﬁ(t)

=}

[ K(x,z;t)
X

-

‘

S

“ ~.

dz =.Ijkp¢p(x) ,
= Pijk¢k(x)’,
=.Pa57w7(t)-a

52

F(z+y;t) dz

kijﬁ‘ﬁi(AX)‘ ¢J(Z) \Pﬁ(t) fkn5¢}:{(z) ¢n(y)‘ \pﬁ(t) dz

= kijpfknsd; (x) op(¥) ¥g(t) vy(t) i 95(2) ¢, (z) dz.

11a

11b

12a

12b

12¢



with these expressions equation 11b becpqeé

- gmnaémm ¢ (y) Va(t) = KijgEknyTikp Pipmpqﬁ,¢m<x) ¢n(y) v, (t)
‘ang thus

13

Imnae = Kijpfkny IjkpPipmFfya

If this expression is substituted into equation 10 for g we note

that the Marchenko equation becomes

kmna * fmna * Kijpfknylikp PipmPaye = O/

This can be written in a more compact form by letting

Aijpmna = %imd3jnd«B * fkny IjkpPipm Pgya- 15
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In this case equation 14 becomes

kijpPrijpmna™ ~ fmna- | - 16

If we define the composite indices

I = i3 | J = mna

then equation'TBTYields the simple matrix eguation

kIAIJ = -f7. . ‘ : 17

S

This can, in principle, be solved to get the expansion

coefficients of the function K(x,y,t) by assuming that the

inverse of [A] exiﬁts, and is defined by [A-'] with compongnts

A'1Ij' in which case we get that

kp = -f5 A" "'g1. '8
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‘4

This equatxon'defineSAthe problem- of*solvrng*the Marchenk E—
equatlon. To find the solution we have to find the right inverse

of the matrix [A]. This is, however, no simple task in that the
"matrix is infinite dimensionai and at best we can find the

1nverie of a truncated version of [A] and hope that the error

assoc1ated with the truncatlon is small.

In order to find a scheme for inverting the operaﬁor A, it
was noted that it is possible to set up an iteratédv
approx{mation scheme for the Marchenko equation in integral
form. To.develop similar approach for- the present representation
of the Marchenko eqﬁation, equation 17, we return to equation 14

©

and rewrite it in the form

'
kmna = “fmna - kijﬁfkn'yljkp Pipmpﬁ'ia' ‘ _19
o «
In exactly the same way that the Neumann series was generated
for the Marchenko equation, a successive appfoximation scheme
can be implemented for equation 19, by iterating, i.e.
kmna = ~fphe 20a
kmna = “fmna * fi8fkny IjkpPipmPpéa 20b
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kz

mne = “Efmna * fijpfkny TykpPipmPaya

.

frssftjelstu PruiFses fknyIjkpPipm Pysa | 20c

etc.

Introducing the compact notation I = Ijjk P = Pijjk B = P,

afy \
f = fijn and k = kija the nth approximation becomes—
KN = -f + fE£IPP - FEEIIPDRD + .....
n
= -f ) (-D™ (f1eR)™, |
y m=0 ' ‘ . . S ¢
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"In the limit that n=¥5¢”we:getj”"

s -

k@ = -f Z (-1)™ (£1PP)T. 20
% m= 0 . '

“This is Just the series repreSentation for (1+fIPP) =1 and'in‘
fact (1 + fIPP) is just- the matr1x A that was previously
" defined. From thlS we see that in the limit that n—>® the .-

suce551ve approxlmatlon scheme converges to the actual value of

k elnce_ ' ‘ X , .
k®.= -f(1+£fIPP)-' = -fA"' = k,

and as such can be used to explore the radiation solutions for
the KdV equation by looking at the behaviour of the successive

terms.

In order to obtain the explicit form of the solution to the

B

specific initial value at hand we must recall the result

a_./
u(a,t) = 2 de(x,x,t)
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 from chapter 2, where u(x t) is the solutron*to‘the*KdV*equat1on*”"*
and K(x,x, t) ‘the cgrrespondlng solutlon to the Marchenko h
equatlon._?he function K(x y.t) is to be evaluated at y=x and

then differentiated. In terms of the expanded representatlon of

K(x,y,t) these operations take on the form

d | d o
 E;K(x,x,t) = kpnav, (t) E;(¢m(X)b¢n(X) ).1, ‘ 22

>

This can be taken further by noting that there exist
differential relations between the functions that comprise the

set {¢n}, of the form
g2 (1) S=6,00) = gy (x)oy(x) + golx)e,_, (x) , 23

where we‘have assumed that the basis functions are solutions to
second order ordinary differential.equations. The functions gy,
g:, and g, are in general functions of both the indepéndent
variable x and the order of the function being differentiated.
With thisrinterrelationship between the basis ﬁunctiéns the

derivatives on the left hand side of equation 22 can be

explicitly evaluated to yield

58




u(x,t) ={2(¥941£l Qnill

gz"(x)k‘:‘m“ g (x)(kmnﬂa + km+1na)) .

o o (x) ¢ (x) wa(t"r; . / 24

L : ,;i_ |
This gives'an-ekplicit representation fof the radiation solution
to the Kav equation.
| | A »

So far we have derived these results for expansions in terms
of\arbitrarx orthogonal_funcfions ¢n and ¥y, . In order to carry
out any-explicit calculatioﬁs theSe’functiOns have to be |
def1ned As a gu1d1ng criteria for maklng the approprlate ch01ce
we note that the kernel of the Marchenko equation F(x,f) must be
defined on the entire real line R, spatially, and'on fhe

interval (0,«) temporally. .Thus the se; f¢n} must be orthogonal

on R and the set {¥n} must be orthogonal on (0,=).

Another guide for.the selectiqg of the appropriate basis
functions was the idea that the 1ntegeral defined in equatlon 6
be exp11c1tly doable. This requ1rement involved a search of
various tables of integrals; primarily the one compiled by
Gradstyen and Ryzhik?®., Two possible candidates that came to

light were the normalized oscillator functions, which are

defined by
Gm(x) = e~X%'2 Hm(x) / V2mivT, ] ‘ 25
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~ .

where the functions Hm(xd are thé"Hermifé’poIYﬁbﬁTais, and the.

Laquerre functions

Lp(x) = e X/2L_(x) - 26

where_tﬁe functionévLm(x) are the Laguerre polynomials. The’
oscillatqr functions afe'orthogonal oniﬁﬁaﬁd the Laguerre
functions are orthogonal on the interval {0,=}. Other well
explored,sgts of orthbgonal functions that satisfy the imbosed-
conditiéns may exist but this study made no attempt to search
for them once the oscillator and Laguerre functions had been

found to work.,

Since the.Laguerre poiynomials are unity at the origin for
all orders it was thought that the convergence of an expansion
over these functions in the-neighbourhood of the ofigin would be
slow, and consequently they were rejected in preference for the
oscillator functions.

For the ﬁurposes of fhis thesis we settled on the oscillator
functiong as the basis functions for both the spatial and |
temporal expansions and we formally identify the functidns”¢n(x)
and wn(t) with en(x) and Bn(t) respectively. The fact that the
oscillator functions were used to expand temporally did not
bregent a problem with respect to the domain of definition since
the temporal part of the kernel F(x,t) is well{défined fér t<0.

4
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In satisfying the requirement that both the spatial .and

temporal integrals of eguation 6 be doable we note that

iyx | - ;M | | : ' “
J e Yy 8,(x) dx = iTe_(y) , 27

il : -

from G-R sec. 7,374.’??3;_;his we can evaluate the expansion

coefficients of F(x,t) explicitly fhrough 3

/
sM+a & '
fma = .;7; I rikeg (k) e, (k) ak. 28

Similarly the components of the matrices fpp,, Ijjk, and Piik

now take on the definite form,

jm+n+a

fmne. = o= Jor(k)e (k) e, (k) 8 (k?) .4k . 29

and Tijk = S J 6;(y) e,(y) dy ,(x) dx, 29b
7 ek 'Y

and Pijk = {m ei(x) ej(x) Qk(x) ax, : 29c

and the components of I and P can be.calculated éxplicitlyh(see

Appendix 5).°

61



With the basis»functionS'chosen,and the matricesflgandfp

evaluated we can now proceed to, either calculate a truncated
version of the matrlx A and then invert it or we can evaluate

the successive terms in the iteration scheme, to find reasonable
approxlmatlons to the expan51on coefficients of K(x y,t). With 1
the expansion coefficients calculated we can use the explicit

form of equation 23, as it pertains to the Oscillator functions, -

i.e.

_(x) = -x6_(x) + 2m0__, (x) | 30

OJJDQ.-
>

with g,(x)=1, g,(x)=-x, and go=2m, to gét the radiation solution
- for the KAV equation

° em(x) en(x) Ga(t) . 31

In the following chapters it is the latter approach that 1is
- \
pursued for various initial pulses. The inversion procedure is
‘not explored due to lack of facility to carry out the

calculation to high enough order for reasonable convergence.



CHAPTER IV o

SQUARE WELL INITIAL VALUE PROBLEM

In the preceding three chapters the framework for obtaining
the radiation solutions for the KdV equation was explored. Here

those methods are applied to a concrete example.

¢ ‘ ' .
As data for the initial value (U(x,0)) problem a finite

sqﬁaré well of unit depth and arbitrary width w was chosen
bécaﬁse of the ease with which the'Séhtoedinger scattering
problem can be solved and the reflection coefficient r(k)
ﬂobtéineg. without\resorting to the integral repfesentations of
the‘solutions for the Schroedingéf’equation, see eqﬁations“2.14,
the reflection coefficient can be obtain d by the technique of
matching solutions at the boundaries de%ined by x=0 gnd x=§.
Assuming an incident wave-froﬁ the»fight (x==) of wave number k

and amplitude A, we get solutions for the three regions x<Q,

O<x<w, w<x, of the form

$, = Ae 1kX 4 peikx | W<X la
$, = Ce IVET=Tx 4 peivk7=Tx ~ O<x<w 4b
$, = e 1kx i x<0, . 1c

63



. where we have assumed, so as to be cons1stent Wlth the ISM

derivation {n chaﬁter 2, thatvthe transmitted wave has unit

amplitude. From the constraint that the solution & on R be

continuous and continuously differeht@able, we get that -
&, = &, and @Y = &) at x=w, 2a
and b, = &, .and ¢, = &} at x=0. . 2b

Ffomrthese four‘conditions we can solve fo; the unknowns
A,B,C,and b,%but since it is the reflectipn coefficient, defined
'hére by the ratio of B/A, that is requfréd in the applicétion of
the ISM, we need find A and B only. So as not to bore the
reader, the‘results of this standard calculation are guoted as

being; L ‘

k) - -isin(/K?=Tw) e~2ikw .
~ 2kyK?-Tcos(YK7=Tw) - i(2kZ-1)sin(yK?=Tw)

i - in(yE7=Tw)elo(k)-2ikw
= ig(k)-2ikw _ sin( w)el
o Rik)e (4k?(k2-1)+sin? (YKZ=Tw))'"2 ' 3b
with ¢(k)= tan;‘( 2k tan(/E7"Tw . T
_ Zk;/Ez i 27

- being the phase, and R(k) the modulus, of the reflection

coefficient.
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VAs‘is‘evident from equations 3a and—3b3~theAstruétufeﬂe%fthéf ffffffff —
reflection coefficient, even forvthisfSimple potential, is-not e
triviél. Since the functional form of the reflection coefficient
i§ not tranSparént a set of plots are shown inyfigure 4.1, wheré
v;e have plotted R(k) and ¢(k) as function of k for w7=0.1, 1.0,

and 10.0, with ¢(k) being-refleéted onto the interval

(-n/2, 3n/2).
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Figure 4.1 ; The moduli R(k) and the phase‘¢(k) of the
reflection coefficients for a) w=0.1,kb)w=1.0; and

c)w=10.0.
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As can be seen from the preced1ng f1gures the funct1on r(k)

is bounded and at least continuous and contlnuously
d1fferent1ab1e. Thus, by Parseval’'s theorem the F:ur1er .
transform of r(k) exists, It should be noted that the reflection
coefficient is not the Fourier transform of &-sduare well.‘Thus
the initial value pfoblem for the evolution of the kernel of the
Marchenko equat1on is not the same as that of the 1n1t1al value
of the KdV problem. It is also 1nterest1ng to note the changes
in the modulus of the reflection coefficient from a spike for
small initial pulse width to a square box for large initial
width. The cqmpéctness of the reflection coefficient about k=0
Suégests that the bulk Of the information about the behaviour of
the scatterlng problem comes from the long" wavelenqth

centributions, and that this region plays an 1mportant role, P

To evaluate the kernel of the Marchenko equation

FOt) = b r(oelkxBikitag

. N

through ‘the expansion technique, we recall from chapter 3 that
L

N
\\ ) .
/E\u‘,t) = Ena®p(x) G (1) . 5
N © ®
. with . “ofpe = f f Fix,t)e (x) 6 (t) dxdt
N —cn ~ D



' 1m+a * i
or tna = o L r(k)e (k) 8, (8k3) dk,

after the spatial and the temporal integrals are executed.

.As a preliminary test case an initial pclse width of unity
‘(wfl) was choscn, and the corresponding f's were'calcUIated
using the algorithms developed in Appendix 3 for the Oscillator
functions and a‘simple extended Simpson's rule used to calculate
the remaining integral over the wave number k. A short table of

LN

‘these are listed in Appendix 7. ) )

As a check on the accuracy of the élgorithms used to
calculate the fp,'s we used the fact that the function F(x, t) is
real. Thus the imaginary part of the fn,'s must tend to zero as
fhe accuracy of the numerlcal 1ntegrat{on increased. By
adjukting the range of tﬁe integratgon and the step size for the
extended Simpson's rule it was possible to impoée the reélistic
“requirement of having the imaginé}y part 10-7 smaller than the
reai part. This requirement gives a rough estimate of the
relative error in the integration as being the order of 10°7.
Since expansion coefficients are being calculated it was also
neceésary\;o know the order to which the expansion must be taken
te have reasonable convergence. To get a feel for this, the:
fma's were calculated to high' order, roughly 200, and then

inverted through eguation 5 , summed up to varying orders of m

with « held fixed at 200, to return varying approximations of
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F(x,0). These approxlmatlons were then compared with the results

of a'direct numerical calculatlon of F(x,0) to establish

convergence criteria;:Figurg 4.2 shows the various results of
this comparison., The first four blots depict the approximations
to F(x,0) aé m is increased, with a held fixed at 200, and the
last the direct numer1cal result. Flgure 4.3 shows the
comparlson of the 200 term approximation to F(x, 0) with thé

numerlcal result on a much larger scale than 1n Figure 4.2.
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From the comparison of‘the approximations of F(x,0) with
»actual result?it'is patently obvious that ailarge number of
.terms in the kxpansion of F(x,t) are required in order to
replicate F(#,ti tovany substantial degree. In retrospect‘this'
slow convergence is not entirely suprising in that the effective
range for which the Oscillator functions are non-zero is given
by |x].< /ﬁ,\approximately, with n being the order. This can be

‘'seen by asSuming that the dominant behaviour of the Oscillator

functions, for 'large' x, is given by

ey 2 . :
xNe~%x%/2 . -

where 'n is the order.” Under this approximation, simple : .
differentiation shows that the maximum value>0ccnrs at |x|="vn,
giving‘*us a crudeaapproxiuation for the radius of convergence of
the truncated series representation. This picture is not

entiref} correct in that the nigher'order terms of tneeexpansion'
also contain tne high freguency respopse of the reflection
coefficient,'and that truncation of the expansion eliminates
these contributions.’Honever, on the basis of the compactness of
the reflection coefficients the contributions of the high
freqnency_will be assnmed negligible. Moreover the gross
features of the F(x,0) profile are evident for small order

expansions as seen from the first few plots in figUre 4.2, .
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With the paraméfq;S'and’the constraints of the expansion
pfoéedure set by the éBove criteria, we can proceed uith,the o ;!_
calculation . of K(x,x;t) via the Neumann series expansion of
chapter 3;>However, it should be nofea that the reflection
coefficient contains a term of the form e"21k¥ ang that the
_kernel of the Marthenko eguation has a similar spatial term of
e?ikx; this would suggest that it is natural to expand about the
. leading edge of the wave i.e. éboutex=w as opposed fo x=0,

*Taking thig shiﬁtuinto_accounf the explicit form of the : ) .

expansion coefficients is

_ o imte sin(yK7=Tw)eio(k) .
fma = 7w fa, (8k2(k2-1)+sin2 (yKZ=Tw)) '~ 2 e,(k) ©_ (8k?) dk, 6

as per chapter 3. This result can now be integrated numerically,
up to some order in m and « and an approximation to K,(x,x;t),
the first term in the Neumann series of K(x,x;t), can be

constructed via

{

CKi(x,x;t) = “F(2x;t)= —fm&em(Zx—Zw) Ga(t)'. 7

I

This was done for the three initial pulse widths w=0.1, 1.0, and
10.0, with the sums on m and a being taken up to 200. The

results are shown in fiqures 4.4-4.6. Included in each figure,
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Y as to provide a visual check on the accuracysof~the
Oscillator expan51on method, are the correspondlng results for
K,(x, x~t) obtalned by dlrect numerlcal 1ntegrat10n of equat1on
3. The results of both calculations, Osc1llator expan51on and
dirqct numer1cal,,are shown as'sectlons ofAthé full two
dimensionsl surfaces defined by K,(x,x;t), over the ranges _
-25,0<x<10. 0 and 0<t<20 0. The (10.0,0. 0) corner be1nq\the
closest. The plots were generated on the Calcomp. plotter“at
S.F.U. using a commercially developed g:aphics package called

DISSPLA, which was developed and marketed by 1SSCO, Integrated

Systems Software'Corporationibf'CalifOrnia;
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Figure 4.4 ; First term of Neumann series expansion,
-K,(x,x;t), for w=0.1, a) Oscillator expansion, b)

Numerical.
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Figure 4.5 ; First term of Neumann series expansion,
R 4
-K,(x,x;t), for w=1.,0, a) Oscillator expansion, b)

Numerical.
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Figure 4.6 ; First term of Neumann series exbansion,
-K,(x,x;t), for w=10.0, a) Oscillator expansion, b)

Numerical.
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Visual comparison of the two plots in each figure shows that
the Oscillator expansion procedure, taken to the highrordea,éfr

m=a=200, does in fact capture the correct features of the

‘functioh*K,(x,x;t) over this portion of space~time,‘for each of

the three widths. However the comparisons also bring to light
some of the expansion method's failjngs. As is evident, the |
direct numerical plots are much smoother tﬁan the expansion
plots. The major reasoﬁ for this is the truncation of the
expansion, both temporally and spatially at 200 terms. This
truncation in effect écts as a filter to‘eliminaté\thé high
freqﬁéncy éomponents needed to smooth the sﬁrfaces. This lackkof-
high frequency components, whicﬁ leads to Gibb's phenomona, is
best seey along the T=0 curves, of the surfaces shown; in the

neighbourhood of X=0, where the expansion is trying to fit to a

discontinuity. : .

In comparingbthe'three 6scillat6r expansion plots in fiqures
4.4-4.6 it is interesting to note that out of the three cases it
is the w=0.1 case that exhibits the most noise, where as the .
w=1.0 and w=10.0 cases are-relétively smooth., This behaviour of
the expansion‘prdcedure can be explained in terms\of»the
effective range of the Oscillator functions in relation to the
width of the function K,(X,X;t) at t=0. Aé can be,Seen by(~{;

comparing the the T=0 curves for each of the surfaces, the one

corrééponding to w=0.1 (figure 4.4) has a comparativelx long

@

non-zero range, thus requiring a large number of terms from the

Oscillator expansion, which have effective range vn, ES“Ceyér



3

ThlS is supported 1n chapter 5 where ‘the ,spectra o;ithe

-~
»

expanszons are drscussed.

a s

. N
. v s . ¢
e E ;

Anothegudrawrback of the expansion procedure is*ewidéht,in
the <the sharp cuﬁoffs exhibited on the eXpansion.plots&in,the\
regions X<-20. 0 and t>20 0. This is agaln -due to.the truncatlon :

of the ser1es at. m=a= =200, and,demonstrates the rapid fall—offyln -

' the Oscillator EUnctlons due to ﬁheéGaussian weight function.,

Aside’frOm the detracting features of the Oscillator .
expansion procedure the general aggreement between”the results
generated by it and and numerlcal 1ntegrat10n fndlcates that the

method works, albe1t for 11m1tes spatlal,

a tEmporal extent.

F)
- . w 3 ) R
. A P

, Putting the expan51on procedure aside it 'is _eresting‘to
noteasome of the‘ﬂeatures ev1dent in the }owest tern of ‘the
Neumann ser1es.1 . | 1 ‘
1. For each of the w1dths the 1n1b1a1 profiles do not
correspond to the‘actuaL 1n1t1a1 condltlons 1mposed ‘in that
u(x,0) = 2dK (x x,0) /dx. In fact for the 4n1t1a1 conddtions
chosen (the square well) it turns out that K,,asymptotlcally
(|x] —> =) goes to zero, which is contrary w1th the fact L
that 2K(x x,0) = f u(x 0)dx’ ' is not asymptotlcally zero. (;
2. The initial proflle of K(x,x,;0) sw:tches from 51mp1e ”
truncated exponential behaviour, for snall initial;pulsef
width, to a long range osciliatory behaviour for large width
as the'pulse width is increased. €°
3. Ina relativelw short time the‘pUISes, for a}tlthree‘initial ‘

kS

8O



‘w1dths, demonstrate ‘modulated Alry functlon-}lke behavxour

with the crests and 'troughs mov;ng off aMéng curves,
dictated by the scaling'soiution (see chapter 5) t = cx?.

t

With the agreement between numerical and theoretical =~ - .

calculations to lowest order in the Neumann series the second
term can be calculated with confidence.rRecalling from chapter 3
that the second term of the Neumann series, fof;x(xfi;t), has

the form o

G

Kz (x,%3t) = fnafng InnpPagy®p(x): €, (t) . 8

v

Initially this was approached with the'straiéht¥£orward idea of
s1mply summing the terms of the multlple sums, howeverlseveral
failed. This failure was found to be due to the dominance .of the
compl1mentary error functlon behav1our ‘implicit in the matrlx
Imnp (see Appendix 5 equatlon 26) and conseguently in the second
~term of the Neumann series. This was in fact found to be‘the
case whén~the second termdof the Neumann series was evaluated
numerlcaifa, at t 0, and was compared to the combl1mentary error

that was scaled to have the same he1ght (see figure 4.7).
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Figure 4.7 ;

4

Comparision between second term of Neumann

series expansion and a sgaled complementary error

function (erfc(x)) for t=0 and w=1.0.
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r

~time required to do the internal sums. The maximal value for p

P

* f‘ B
Imnp = I''mnp * I %mnp =
along the lines that
. ‘= )-(z) \ - ‘
grfc(x) I manp(x) . L 9

This divigion leads to the natural form

Kz (x,%7t) = fmafng I fnpPagy®p(x) O, (1) +

k]

* fnafmp Paﬁ767(t) erfc(x). . - 1Q

for the second term‘of the Neumann expansion. These two terms
were subsequently evaluated, for the three initial widths of
w=0.1, 1.0, and 10.0 for m=n=a=ﬁ=60, and p=v=90.The particular
choice for the maximal values of the sum indices m, n;_a, B P?
and y was dictated by the limits imposed by the computing

facilities for both the available memory space and the execution

and y were further constrained by convergence considerations. By

83
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e 8 (x) 8,(x) =Ppng0u(x) ~ o

where the sum on p is‘infinite.'Howevef, to use a truncated
i()» version it was found that, as a crude-;ule of thumb, px;hould'be
o _ at leést 3/2 larger than gither‘m or n in order to get ?:
réasonéble.convergenCe. The same criteria was extended to the
. _ v ,

1y
sums on I "mnp-

#

The results oﬁkthe calcu¥ation of K, for this set of
parameters are shown in the following pair of figures. The first
T

»of these, figure 4.8, shows the behaviour of theJéOmplimentary

error function contribution to the second term of the Neumann

I‘

m

expansion, i.,e, the o , \ B o

fnafmg Pay®y () erfc(x).

part, for all three initial pulse widths, taken over the same
portion of space-time as in the previous set of;figufes,

-25.0<X<10.0 and 0«<T«<20.0.
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Figure 4.8 ; Complementary error function contribution
to the second term of the Neumann series expansion of

Kz(x;x;t):for a) w=0.1, b) w=1.0, c) w=10.0.
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S1nce ‘the spatlal depend?nce of this term is perfectly
determlned by the compllmentary,error fgng;;on,,theﬁﬂw,j;

cross-sections taken spat1all are exact in shape, but not

necessarily in height since this is determiped by the term's
temporal expansion. However,
(¥+) to the numerical results,| it was thought that the temporal.

ripple exh1b1ted on ‘these surfaces for short time is real, and

"is due tﬁ some un1dent1f1able slowly d1m1nlsh1ng long time

behaV1our.
, - i ,
Independent of- the r1pples 1t is 1nterest1ng to note that

the errror function’ contrlbutlon for ‘the two large pulses start

to d1m1nlsh from the1r 1nut1al values at t=0, where as the same

P

contrlbutlon for the smallest w1dths grows.

N

‘The steep cutofﬁ in the neighboﬁrhoedabf T=10. is due solely

to the truncation of the sum at 90 terms.

With respect to the convergence of the Neumann series, it

should be noted tBat this second order contribution is of the

same order of magnitude as the first contribution, indicating

that the convergence will be slow.

]

" The second sequence of plots, figure 4.9, in this set show

»

the Behav%gur of the remaining part of the second order. term of

<o

the Neumann series.

86
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Figure 4.9 ; Second localized contribution to second

term of the Neumann series expansion of K,(x,x;t) for a)

w=0.1, b) w=1.0, ¢) w=10.0,
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B As”é’n be seen from these plots this term is a slowly

T spreadlng locar1zed pulse, that is. statlonary in thlS reference
\ o i

V,frame.‘Th;therm acts so as to d1m1n15h the edge ofrthe error -
steep. This flattenlng of the curve man1fests 1tself phy51cally
‘as a broadening of the pulse since the plots: shown here are .

. - 1ntegrals of the solution of the kav equatlon. Again, the rlpple

- - _mentioned earlier is ev1dent here, as is the growth of the small

area pulse.

The next seguence of plots, figure 4.10-4. 12’show the'sum of
the fxrst and second. (both parts) terms of the Neumann series
calculated both through the Osc1llator expagslon and numerically
for each of the three w1dths. The plots are aga1n arranged in
pairs according to pulse width, the top one showlng the result
from the Oscillator expansion and the lower thevnumerlcal

o result.

88

function contribution as time evolVes, caUsing it to become less - -
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Figure 4.10 ; Sum of the first two terms of the Neumann
series expansion (K;+K,) for W=O.1 a) Oscillatof
expansion b) Numerical, . | |
\
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Figurfe 4.12 ; Sum of the first two terms of the Neumann
. ’—/‘A

series expansion (K}+K2) for w=10.0 a) Oscillator

expansion b) Numerical. .
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-In this set of p}ots5theffailingsfof—themesc%iiatﬁrjf?—f-~—%h—f

exbénSion are ev}dencéd by-the,abrﬁpt changpf obse;ved_atw | -
T#f0.0, aﬁdrfor X<-20.0. Thgvchéngg at T=10.0 is due'td'thé
cutoff 6f the second order coﬁtribution, énd that’for'x<%20.d-is'i
due to the cutoff of the lowest order contribution at X=-20.0.

' Howevef in the region <20.0<X<10.0 and 0<T<i0 0, we see that ther
Osc1llator expanslon procedure has captured the essentlal

features shown by~the nuqerlcal solutlons; The w=0.1 result
exhibiting the most-naise; as previously héntioned. Physidallyr
 the addltlon of the first order correction has essentlally

pulled that region.of the surface to the left of X=0 down by the
amount dlctated by the error function contribution.-The wavelike

nature of the first order term is basically unaffected by the

addition of the second term.

=

To get a beﬁéer understanding of the effect of the addition
of the second term, we isolated the T=0 curve for all three |
‘pulse widths from thé numerical plots of the first order tef@r
and the combined first and second order terms. These curves are
vghown in figure 4.13 along with the expected result, fo; the
sghafenweli‘ihifial pulse, derived from the relat;onship,
equation 2.28,_betwéen u(x,0) énd K(x,x;0). The exact result is

in essence the integral of a sqguare well.

\

92



A

Figure 4.13 ; The t=0 behaviour for the first and the
sum of the first and second terms of F(x,t) ‘for a)

w=0.1, b) 1.0, and ¢c) 10.0.
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~Aswcan+hewseenuiromvthis~set—oi~piotsatheéadditibn—o%—thea¥——4~ﬁ%

: second term of the Neumann ser1es does have the stated effect of

<~

°'two term approx1mat1on 1s a better representatlon of the actual'

behav1our than is the single term approxlmatlon.OHowever, by

kcomparlng the convergence of ‘the three cases it appears that the‘

small area case is converg1ng to the actual behav1our much more.

prapidly than do the larger area cases, aS‘isvevidencedrbypther

disparity between the expected results and the two term results.

'Note the vast difference for the -w=10.0 case, wherein many

higher order terms of the Neumann series would be needed to. fill
in-the gap, from K=-1.0 to K=-5.0, between the two term

=

approximation and the exact results.

fl

The trend of fast convergence for small'vidth to. slow-

convergence for large width, exhibited here,‘would lead to the

dependent upon the size of the 1n1t1a1 dlsturbance, with. the

‘rate of convergence diminishing rap1d1y1w1th size.
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pulling the X<0 port1on of K(x x'O) down. In‘'all three cases the’*'

conclusion that the convergence of the Neumann' series is h1ghlyirﬁmp;
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" THE ASYMPTOTIC BEHAVIOUR

@ \i

Iq chapter 4 the full b10rthogonal expan51on procedure was
used ‘n an attempt to obtain the complete behaglour of the_

/’radlaﬁion éolutions of the KdV'equatioh. However, 1t was found
' |
that by u51ng a 51ngle expan51on procedure some- 1nformat1on‘

about‘the asymptotlc behav10ur of the solution could be
RS ’ X . 3 ’
, .

-extraqted.

From the Green's function solut1on to the 11near pert}Of the

|

KdV equatlon, 1
‘1°

|

\

:.T.

: Ut * Uxxx 0}

|
V-

. b , .
' ) 1 . . . ‘ . . B
= XX 1
Ulx,t) (3t)”3 f Uly, OPAI( (Bt),,g)dy,b o

) . o
we see that a natural poordlnate for the sqlutlons of twg KdVv is

} | S --

the ratio e = (5€§77; This can. als% be.seen to hold for the
full KdV eguation if a solutlon of tWe form | -
. J ¢
' 1 X . . .
U= lz;f( EB)'- | E _ 2




K

N

\

i*”*”ff"wf'1s sought. -On-. BUbStIRUtlon of equat1on 2 1nto the KdV equatzon‘

»
- ~ we get the otd;nary aif feren ntial equat1on - =; ’ﬁ;”;tj;stf:;”:au%
R
2f  ef! L L
e == . ¢ Yo+ fU) = B :
3 3 6t’t £ z 0 ; - 3
AR C e , S e

in the variable e,é‘ ,To3, where B = 1/3 and a = 2/3. The.

ch01ces for B and a being natural for the requlrement that the

1

ensulng equat1on be ord1nary. This type of 51m1lar1ty solut1on
was f1rst suggested by A. Fokas’5 and was used by Ablow1tz and
Segur in the1r calculat1on of the asymptotlc behav1our of the L
JRav equat1on mentloned prev1ously. It 1s conjectured that the
rad1a ion solut1ons of the ‘RAv equat;on approach this form of

)
51m11ar1ty solutlon asymptotlcally.

‘*r e
el rh If thlS conjecture*;s true ‘then - the terms of - the Neumann -
series expans1on for the Marchenko eqdatlon must ‘reflect thlS'

behav1our. ‘To test th1s hypothes1s ve returned to the def1n1t1on'

— of the kernel of the Marchenko equatlon ' | =
. o 1: o -k + . 3 ¥ 7
o F(x,t). = — [ r(k) elkx + 8ik tgy * |
. AT e . 2" o L : ‘
%;'}L;tf

and cast it in the form
(-] k'

r r
axt'? {, ( 2173

F'(e,t) = ) elk e+ ik'? gyr
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’;?wby'using‘the transformations k=k'/2ff” ahd e=x/2t"’. Here we
- 'can apply a S1ngle var1able expan51on, 1n terms of the new  >
var1able e,vover the. osc1ll;tor functlons, w1th t bEIHQ taken as'“”

a parameter, and w;1te,

F'(e,t) = fn(t)e (e)

where;all‘of the tempOral dependencébof'the kernel F'(e,t) is.
shifted to the expansion coefficients. This“pfpvides a method of

~ examining the temporal behavior of the kernel through the

temporal behaviour of the expansion cdefficients.l

The explicit form of the expansion coefficients is found

through the orthogonality of the oscillator functions, i.e.

. (- -]
im

yZm2t'’? '_rm o 2t"3

() ) elk’e_ (k) dk : 4

Sinece the reflection coefficient of the square well can be
‘written as
B ,'/

s
”r(k)';-R(k)ei¢(k/2t"’) - 2ikw' o -




L - N ) S

see chapter 4, a more conven1ent way to express the expansxon is

in terms of a new varlable,

and get that

- Frlz,t) = £ (t)e (z) = fm(t)e (=2, !

and that

fm(t)

:M . . ’ . ’ ’ M
e I RO D) el00e () ek, 7

The translatlon of ¢ —> z=e¢- 2w/2t"3 corresponds to expanding

= *

~about the leading "edge" of the wave.

From the plots of R(k) given in chapter 4 (fig4.1) we see
that R(k) is eompact‘dh the interval (-1,1), as such we‘eipect

the region of support'of the function R(k/2t'’?) to expand, as

t —> =. Thus the dominant behaviéur of R( 2—t',‘.,,r in this =~ =

asymptotic limit is determined by the leading term in the Taylor
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. expansion of RTR) “about- k=0. In the case uvf the KdVv equat1oh the

leading term is unity. Asymptot;cally we;gg;hthgth

im . . R
f’.—(;:)co ) ;/T;t‘“ {m e'lkaem(k) e - 8

\

thus all the expansion coeff1c1ents ‘have the same temporal

behav1our asymptotlcally ThlS representatlon -of the expan51on‘

=}

coefficients would return a functional form of _(~_’h
o const _ .
F(z,t) = Z;ET73A1(Z)

 for the asymptotic behaviour of the Kernel of the Marchenko

R equation, with -Ai(x) being the Airy function.

v | 'By following the temporéi behaviour of several of the
expansion coefficients,’wércan estimate the time neéded for ghe
kernel of the Marchenko equation to relax to its t'’? behaviour,
and thus get an estimate of the time}needed for the radiation

‘sblution“to relax to the self-similar solution of equation 3.

- These calculations were done for the three initial pulse
widths w = 0.1,1.0, and 10.0,Jfor coefficients up to order 50,
“6ver a time range from e' <« t < e?5, The results of the

o v o,
calculation are shown in figures 5.1 to 5.3, for the first six

99 J




&

expansion ‘coefficients m=0,1, 2 3,4,<and 5, whlch vere - 7»;7 nmhE

‘ rgp:eagntatlve of the gahayinur of theAhlghermnrdertcoefflcLents

with respect to the decay time. The flrst plot of each figure is

a plot of ln(fy) verses In(t), the second is of'dln(fm)/dln(t)

verses ln(t), and the third is of d‘ln(fh)/d(ln(t))2 verses

» —

ln(t) The last two plots in each figure are 1ncluded to show,

in the case of the f1rst derivative, that the expan51on

coeff1c1ent$ do in fact exh1b1t the requ51te t1”? behaviour

asymptotically, and in the lést plot, the time takeh for the

second der1vat1ve to go to-zero, thus glv1ng an estimate of the

"relaxation t1me.
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Figure 5.1 ; Behaviour of the first six'eXpansionh N

coefficients as functiodns of t,‘for‘w=d.1, a) log;log ¢

plot of f,(t), b) first deri&ativep c) second

derivative.
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-

3

Figure 5.2 ; Behaviour ofothe first.six-eﬁpahsion‘
cogfficieqts as functions of t, for w=1.0, a) log-log
plot of fn(t), b) first derivative, c) second

derivative.
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Figure 5.3 ;aBéBaviour of the first six expansion
coefficients as functions of t, for w=10.0, a) log-log
plot of £,(t), b) first 'derivative, c) second

derivative.
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\
,geﬂ an gstlmate of.the relaxation t1me 7 in terms of the

‘éxpansidn_in oscillator fuﬁctions of Ehe order of e2°. In terms
of real time, recalling‘tbat'time has been scaled thro&gh treal
= yvh/gr, the real relaxation time is also of order e2°. Due‘tov
’the considerable length of th1s relaxat15§ time we can conclude
.that 1t would be 1mposs1ble tg observe the asymptot1c behaviour
of the radiation solutions of the KAV equation experlmentally
- Th1s concu151on is reinforced by the fact that in the derlvatlon
- of the Kdv equation viscous forces were neglected. However over
the time Talculated for'the'rélaxation of the radiation L
solutions the viscous forces acting in a real fluid'would have
damped the ﬁotion‘to zéro, which would then negate the
experimen al observation of the asymptotic behaviour of the
radiation 'solutions, A

A secondary result for ghé figqres presented is that the
small (w=0.1) pulse has a lohger relaxation time than the larger
ones w=1.0 and 10.0, which can be seen by comparing the three:
‘second derivative curves. Itxis conjectured that this behaviour
is a maniféstation of theAfact that the linear Kav equation
admits similarity solutions of all decay rates of the form
t"“/3, for n=1,2,3... where as the Kdv ééﬁation admits ohly
similarity solutions of decay rate t~1/3. Thus for small initial
pulses the non-linear aspects of the KdV’equation play a weaker
role in the evolutién of the pulse than “large initial pdlses and-

as such the smaller disturbance pulse evolves according to the

104




linear KAv. .

On a more direct level this. behaviour is due.solely to the l,%“;
comparitive width of the smaller width tefiection coefficient to
that of the larger, i.e. the width is narrower to begin with and

thus takes. longer to reach the,éSYmbtotic limit, see figure 4.1,

To get a fuller picture of how the exéansion cbefficients*
were evolving with time, we calculated them up to order 800 for
, the times tA= e"',e',ef,e',and e'°°, for the three‘initial
J;idths w=0.1,1.0,and 10.0. These sequences of spectra up to
~order 200 are shown in figures 5.4 through 5.6 The final two

plots of each sequence exhibit numerical noise, as a consequence

of the truncation of the sequence at 800 terms.

105



0.05 ; o
- | = AL In) = =1
N /7 . i )
. -~ .
“ . 0.00
~0.05 — - — . :
0 50 100 150 200
| - ' | i |
; 0.05-
(b In(t) = 1
\.—— 0.00 LELLLELLLLLL
-0.05 : - , 3
0 50 100 150 200
“-—-

I LR | 1
50 100 150 200
[

106



el

o 0-0 u' IHTRTHTTIL PSR LR Uil |||“ v‘f‘v"'l"'l - " i
-1.0=
-2.0 T I y 50
0 50 100 150 200
i

Figure 5.4 ; Osciilator expansion spectrum for w=0.1 for
orders 0-200, at a) ln(t)=-1, b) 1,'c) 5, d4) 10, and
e) 100. |

- , 107



N I I -1
50 ! - 100 - 150 200

1 Jl o
50 100 150
[

108



-0.02 +— T —T ' ~T —
, 0 50 ' 100 150 . 200
" | ' i | |
4 .
2 1o e o 7
* T In(f) = 100
B O.,O “ I‘Yll \,—'n |'l. l' ... ‘A
- .
~1.0
—-2.0 T T T 1
0 50 100 150 200
i )
. &
y Figure 5.5 ; Oscillator expansion spectrum for w=1.0 for

orders 0-200, at a) 1ln(t)=-1, b) 1, ¢) 5, d) 10, and

- N\_e) 100..
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*BleookingWat*the*fihaiwpiot*of‘eathhcf%thé‘séquentéS‘cf*f“““*

spectra it was noted that the f1nalispectra were 1dent1cal This

Qbservat;on would 1nd1cate that,;he asymptotlc form~of the
- radiation solutions was inéepéndent of the initial pﬁlse width.
This-is born out by eéaatqu 7, which is 1ndependent of the
parameters of the initial pulse, and thus the asymptotlc form of
'the solutlon must be independent of the initial parameters. From
these results it mlght be conjectured that all phy51cally
meanlngful initial pulse proflles will exhibit the same
xasymp;otlc form.
. R
/fhe beaté that appear-in the spectra plottédvare B
manifestations of the phase factor, ei(¢(k/t"3)‘+ kf); of the
'.reflection coeffﬁcienf, beating against the "waves" 6£ the -

Oscillator functions. The beating is' weaker for the‘Smalk.width
(w=0.1) pulse £han for tﬁe other two, because of the nafrdwness
of the-modulus of the feflectionwcoefficienp,limiting,the _;m,wmeﬁﬁ,
effective range of integration over the wave number. By the same

token the decay rate of the "spectral" coefficients is also

slower for the small pulse.

With the expansion coefficients ctalculated for‘ﬁhe times e’
. thréugh e'0o0 ét wa's a small matter to invert them toiregain’the
bprofile figftgé Kernel in terms of the variable z at thosé |

times. These results are plotted in figures 5.7 through 5.9 for
the three different pulse widths w= 0.1,1.0;, and 10.0 and for

800 terms of the Oscillator expansion. ' ,*
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. 0.02

and e) 100.
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The final plot of each figure shows explicitly that the

asymptotic form of thé‘}adiation‘solutions are in fact identical

\

to within the accuracy of this caLculétion. The in(t) =v107plo£5

fromvthe figuées show ;learly that large pafamétef profi1e
séttle down to the asymptotic behavior faster than tpe smaller
paramegef»profile'(w=0.1).1t'shoﬁld‘be kept‘iﬁ mind that even
thouéh there is a considerable;amount of ndise present in the
long tihe profiles the different‘éases all exhibif the same |

noise, and the same basic shape independent of the width '

parameter. ,

In a similar fashion it was possible to evaluate the first

order correction term in the Neumann series expansion, i.e.

\

- :
K(x,x,t) = -F(2x,t) + [ F(x+y)F(y+x) dy 9a
X , .

= ~En(t)8;(2) + frlt)En(t) 267 *1p,,0 (2) , 9b

where z=(2x-2w)/2t'”3, and the first order correction is the

second term on the right-hand side.

As was done in chapter 4 the matrix I can be split into two

distinct parts

+ J¢2) ,

Imnp = 1 'mnp mnp
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2
Thus the first order cprrection term becomes the sum

_ where : I %3np8p(2) = lerfc(z)épy.

En(t)En(£)26172 101000 (2) + Em(t)Ep(t)t! Serfc(z)., 10

Due to the limits of calculation time these terms were. only
calculated up to order 60 on the subscripts m and n, and order
90 on'g’as discussed in chapfer 4. Plots‘of these contributions
for the set,of times t= e",e‘,esfei°,{and_e’°° are shown in
figures 5.10 throuéh 5.12, for the initial pulse widfh w= 1.0,
which was representative of the behaviour of the other two. The

first figure 5.10 shows the time evolution of the first term of

the correction
fn(t)f(t)2e?”3 I“ﬁnpep(z) .
The second figure, 5,11 shows the second term of the correction .

Em(t) En(t)t 1 derfc(z). - e
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 “The final figure 5.12 shows the sum of the two contributions

that comprise the correction.
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_ to second term of Neumann seriés expansion for w=1.0 at

a) ln(t)=-1, b) 1, ¢) 5, d) 10, and e) 100.
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As can be:seem"fféﬁ”fhe ﬁIﬁfs*thé”fYrstcorder correction toﬁ
thé'Neuﬁannfseries is of comparable order totthejfirsthtermhof’
the series; comparerfigure:S;B with\figures 5.10-5.12. This
would suggest that the Neumann series’converges slowly, énd that
&t is'net sufficient to truncate the expensiOn'at‘the'firsth
order correct1on. This corroborates the findings for the last.
"part of chapter 4 Nevertheless we per5ued this part of the
calculation to ats logical end by calculat1ng the wave proflle
that would be obtained by reta1nlng only the first two. terms of

the Neumann series through the relatlon

~
U(x,t) = 2 Q_%},(i,_t_l' 11a
U , ‘ C:J
1?3 dKk (z,t)’ . b
t dz o »

where K'(z,t) = K(x,x,t) if z=(2x-2w)/2t'"3, The results of this
“calculation, for all three pulse widths, are shown in fighres

5.13-5.15.
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" By comparing the In(t)=5 plots of each figure we again
confirm that the large area. puises tend to settle down to the -
asyhptotlc reglme faster than the 'small area pulse as is
evidenced by the 51mllar1ty between these proflles for both

.0 and w=10 0 but not w=0.1. However, it is 1nterest1ng to
" note that the sequence of proflles for w= 0 do not undergo as
radical a change in shape with t;me, as. do the other two. Where

as for the w=1.0 apd w=10.0 profiles at t=0 we see evidence of a

short range envelope function, this is absent for the w=0.1

profile. On 2xamining the profiles for w=1.0 more closely it can
- be seen‘that the wavelengthof the envelope function gets longerﬂ
with the beat moving off to the left as time evolves. This is
not‘so‘evident>for the w=10.0 profiles, nowever{'the t:ansition

| between the ln(§)=i ang 1In(t)=5 profile,_fo: this width, would:

suggest a similar mechanism.

As a final note itkappears that the two term approximations ,
for 511 of the cases are dlsplaylng modulated Airy function-like
behaviour (see AMS 55), whzch is pointed out in the 11terature. ./
In the case of the w=10.0 pulse the 1n(t)=5 proflle is |

reminiscent of derivative Airy function-like behaviour.
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EXPERIMENTAL COMPARISON

Iﬁ.the‘previoﬁs chapters the mathematical and technicai
machinery for finding the solutions, or at least pertiaiJ
solutions,; for thefradiative nature of téfZE?V equation was
developed and explored for a specific'initial wave pfofile;.
However, no attempt was made to correlate ;heSe findings with
~actual experimentél results. This chapter looks at this

.-

correlation.

A éaper authored by the team of J.L.Hammack and H.Segur?¥,
previded,several experimentalvresults in the form of wave
profiles, depictieg‘thelevolution of shaliow watef<wave trains,
for various initial conditions. For one set of these wave
trains, £hé initial conditions used were of the same form as
those discussed in this thesis;,ghe‘square'well; These

experimental results could then provide a proving ground for the

theory.

In the Hammack and Sequr experiments, sevefal probes w;?e\\
placed in a narrow wave tank at various distances downstream
from the ini;ial disturbance.gThe profile of the;wave’was
fecorded as it travelled past lhe probes. This type of-
measurement yields a temperal crdss-section of the §a§e profile
as opposed to a spatial cross-sectioh, which is what one would.

see. In terms of the laboratory cbordihates X and T, where X is

measured along the wave tank from the trailing edge of the
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‘initiql‘pulsglf;he%p}qgurg ;hg;_yé»would éet would be;

———— - v - an - - -

AT T T e e e e r e c e m—— .- - -
N .
ekl I TR TR (P, N,

N W

. ‘ﬁ“) .

» ‘vFigureVs.f &
where the solid lines represent the leading and the trailing
"edges" of the pulse as it propagatés with speed ygh and the

dotted vertical lines represent the lines, in time, along which

the experimental wave profiles were recorded.’

in'order'to make the prdper correspondence(betweeh the
experimeﬁtal fesults and the theoretical predictibhs, it must be
kept in mind that fhe Kav equation in normal fbrm}has béen | |
transformed through scaling transformatiohs‘and ;oordinate
rotatibns. This corfespohdenqe can be established by>sfarting
with Hammack and Segur's form for the~right‘;unhing dimensional

K@V equation,

-
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.HT"'@Hx*' WHHX+Ed2@Hm= 0, : : 1

Al

where H represents the true height of the wave above the still
surface, d the depth of the still water, g the acceleration of
- gravity near the surface of the earth, and X and T laboratory

- space and time. Introduéing the coordihate and scale |

transformations,

vV = E, . o ' 2a
n } -

x‘='ém77’z'a(x—‘@ff), - 2

5

~where n = |H|max, at T=0, recovers the K4V equatidn in normal

- form, i.e.

Ve + 6VVy + Vi, = 0. 3

XXX
Through this transformation the correspondence between the

i
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e expexlmental and theetheqretz ,Lﬁguentities'is eeteblished. It

| ",should be noted that this transformatlon is not unlque and 1s 1n'
fact dlfferent from the one. glveh'*n the paper b;¢He;heck and -
Segur. The reason for this partlcular ch01ce 1s»that it

~‘normallzes the helght of the pulse to unlty, which. is con51stent
with all previous calculatlons. |

In terms of the new coordinates x and t the situation.

* - .
kS

depicted in figure 6.1 becomes,

~
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Figure 6.2 \

Y
where again the solid lines represent the leading and the-

trailing "edges" of the pulse‘és it propagates, and the dashed
lines the observation points, i.e. X=constant. In terms of x and

t, the lines X=constant become &

1 - a4 ' '
X = Ev3n723$ - ;—t. v 4
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" Noting that if X is written as_W+xo,_with W being the initial

width of the pulse, and’X, the distance from the leading edge of
. - : B

the pulse td& the probe at T=0, that the observation lines can be

written as

where w = é./w’zaw and x, = émmaxo .

From the Inverse Scattering formalism the theoretical

results for the experimental setup of Hammack and Segur can be
: N
- obtained by calculating the kernel for the Marchenko eqUQtion,

i.e,

F(x,t) = — [ r(k) eikx+8ik?t ak,

where r(k) is the reflection coefficient for the square‘wéll;

v

and then using the Neumann series‘éxpans@on to solve for the

the KAV equation through
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s - \ b
. * - “ V
. “
s .
- R I .
. .

- V(x t)_-.,,Z'K—(x'L'x—L't'L‘

o L.

. LI |

: ' \
as dicussed in chapter 2

- . “ ‘\ »

3.\’
Slnce seeklng solutlons along the observatlbn lines
the dlfferentlatlon of equatlon 6 difficult)

a

R

the ‘method. of

" \
expandlng in terms of Osc1llator functions will

ot be employed
here. "The equatlons w;ll be 1ntegrated numerlcally

From'the Neumann series solUtion of the Marche

‘ ) Yko equation
: = . . ‘ 3
K(x,x,t)

= - F(2x,t) + I“F(x+y)F(y+x)dy + i
T X
&

we get thaf

s dF(2x,t)

F2(2x,t) +
ox

The first two terms of eQuation 9 can easily be evaluated
terms of the explieit form of the kernel-F(x,t) i.e..
. [- -] ) .
___,__a‘F(Zx t) 1 f  kr(k) éZikX+8ik3t dk
ox T “o o

’ B

%9a
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and

EN

Vd"‘ ) ‘,. ) . T ‘m * F- : ’ .
F?(2x,t) = (.-2-1—r I r(k) e2ikx+8ik3t dk)?, 7 9b.
@
. %
. P
and thus V

X,t) becomes
%

'
"

. =] ! .
Vo(x,t) = - %l I kr(k) e21kx+81k3t dk
- %?( [ or(k) e2ikx+Bik’t ggyz . 10

where the subscript 2 indicates the truncation of the series

solution at the second term.

Recalling that the reflection coefficient has the form

r(k) = R(k)el(®(k)-2kw) - 1

‘and that V,(x,t) is to be evaluated along the lines given by

equation 5 we get that
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"Vz(x}t)i= -2 T Rk ei(#(K)+2kxo+8(K3-(d/n)k)t) gk
: n '_e', . ' ‘ _ T ’

.I R(k) e1(¢(k)+2kxo+8(k3 (d/n)k)t) dk)?. 'f‘12,

1
UL

This final expression was evaluated‘numepiéally for the physieai
parameters d = 5cm, n = 0.5cm (down), and pulse width W = 122cm:
with probes at X = W, W+100cm, W+900cm, and Wf20d0cm. The
results of»these calculations are.presented in figures 6.3'to
'6.5. The first plot of each figure represents the first term of
'V, from;equation 13, the second plot the negativerf the second
term of’V,, and the third plot represehts v, (both.ferms)‘ Fer
compar1son, the results of the Hammack and Segur experlment are
shown 1; the fifth plot of each figure. The fourth plot of each
rflgure shows the results of the work done by R. Enns and S.S.
Rangnekar To get these results they assumed that the reflectlon
coefficient, see chapter 4, could be represented as an expan51on

in the system parameter S= wy/5, with w being the width of the

initial pulse and § the height in dimensionless units, i.e.

-issin(VK?-8w) elikw

clk) = 2k/E7‘3cos(/E7‘3w) - 1(2k?-8)sin(VK?= ) e

el ikw ' '
151;£§:§e -S? + 0(s*%), '3b

and that the solution for the KdV eguation could be similarly

re
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expanded through

~'To lowest order in S (S?), by equation 9, withréﬁt we>get

~

) V,& = VOSZ

1— 8

ENE

« Kk

§L2£f;ik(2x-w)+8ik3t ak
and along the observation lines,

V‘ = Vosz

T iir;_*weik(zxowwai<k3—<n/d)k>t dk.
- Co : ) ' : . }

The second term cannot be evaluated in terms of this simple
approach because of the pole at k=0. However, Enns and Rangnekar
were able to renormalize the calculation to extract the second

order correction at t=0, as - N

Y

i
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 Figure 6.3 ;.Comparision of th

e theoretical results of

the exact Neumann series expansion for 'U(x,t) to two

terms with a linearized calculation and experimental

results a) first term of the Neumann series, b) second

term of the Neumann series, c) sum of the first two

terms, d) linearized result, and e) experimental

results,

all for X,

0.
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the exact Neumann series expansion for U(x,t) to two
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term of the Neumann series, c) sum of the first two

terms, d) linearized resuit, and e) experimental

results, all for X, = 100.
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By comparing the th1rd and fifth plots of each figure, i. e.

3

theoret1¢al calculation of the first two terms of the Neumann
FSeries expan31on for the solution of the KdV equation ‘and the
experimental results, we note that there is no qualitative
‘correlation between the two. Initially this lack of correlation
was thought to be due to computational error, however, onl
‘thorough inspection of the algebra involved in the theoretical,
calculation this was not the case. As a test»forjthe accuracy of -
the calculation we applied the alternate method of the single}
variable expan51on in Oscillator functions to thlS problem, and
found that the resplts were in agreement w1th the 1n1t1al
numerical 1ntegration’method. This agreement ruled out the
p0551b111ty of generating erroneous results from the methods
chosen to evaluate the terms of V.. This agreement between ,

numerical and osc1llator expansion calculations was demonstrated

in chapter 4. The only remaining source of error was the routine

developed to calculate the reflection coefficient r(k). To test-

this routine for accuracy an alternate routine'was de;elobed and"
the results»of this and the previous routine were found to
agree, thus eliminating this as an error source. Askan
additional test the linearized reflection coefficient of Enns
and -Rangnekar (equation 13b) was used in place of the full »
reflection coefficient in the algorithm used to calculate the
first term of Vz. The ensueing results agreed with those
generated by Enns and Rangnekar,hagain 1nd1cat1ng that the
method used to calculatev2 was not erroneous. Finally,ras a
Acrnde indication of accuracy, the velocity of the leading edge

,

¢
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of the EhéSfefiéél"waGé§"5§71aéﬁffEéim§ith those of the

experimental waves. , o S
K4 , ) . ' .

Since the theoretical results depicted in plots'(a'thrpugh‘
(c for figures 6.3 - 6.6 passed all of tﬁe,tests appliea, they
were considered to be faithful representétions of the theory. As .
such it waS;céncluded, from comparing theﬁe results with those
of‘the e#periment that,-to second order, the Neumaﬁn Seriesr
expansion aoes not refurn an accurate, or for that matter a
qualitative, represehtation of radiative shallow water waves,
and; by virtue of the'rélative sizes of the first and second |
terms of the expansion, that if the Neumanp series does converge
to a faithful representatioh of shallow water Qéves, that it
does so slowly.\The slow convergence of the Neumann series
indicates that it is not, in itself, a useful tool for
calculating the evolution of shallow water waves, thfough tﬁe
Kav equaLion, aﬁd that an alternate form for approximating the —

solutions of the Marchenko equation needs to be found.

o

As a starting point for this search, the quaJitatiQe'
success, for short time, of the Enns-Rangnekar expansion
procedure, as seen by compéring the foﬁrth‘and fifth plbts of
figures 6.3-6.6, should be noted; Thié expansion method acts as.
‘Qa 'filter' to deconvolute the reflection coefficient so that
qualitatively‘correct results appear in lowgst order., It can,
aiternately be thought of as a perturbation expansion about the -
solufion of the linearized KdV equation, using the correct ;

initial condjitions. Unfortunately this method breaks down as was

- . ., # .

Yy
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+ ..  _CHAPTER. VIl ___

SUMMARY AND CONCLUSIONS -

»Radiatioh solutions’of‘the KdV equation fo{JSquare well
*init%al/in?utvwere explored for three well areas via the Inverse
Scattering Method. In particuiar’thelfirst two terms of the
Neomman‘series expaHSion of thézMarchehko fqyation throogh an
expaﬁsioh procedure in termsfoijsciliator fuhctions;,'

By comparﬁﬁg theoresults of the Osciilator functionvt

expansion' s solutlon for the terms of the Neumman series with

those generated by direct numerlcal evalutlon of the same terms

of the Neumman series it was found that the Osc1llator prans1on

procedure captured the correct behaviour of the terms of the

'serles, within the effectlve range - of the expan51on. ‘The

»expan51on.procedure‘was limited by the computing facilities

available for bothnthe order to which the Neumman series could

be' calculated and, the order to which the Oscillator: expansion

could be calcolateal')a S

Examination of &£he T=0-behaviour of the successive

. &
N

contributions to the Neumman series, up to second order, lead to
the conclusion that“the convergence of .the series gets - ]

progressively worse as the initial input area is increased.

Throogh a single variable expansion procedure it was found

-

that, wlth the expan51on in Osc1llator functions, the small area

pulse approaches its asymptotlc limit slower than ‘the large area
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pgises; S1m11arly it was found ‘that the typ;cal“:elaxt;ongtlmefggggg,
for‘ihose initial pulses examlned to their asymptot1c 11m1t was. ’

of the order of e20, and that these asymptotic proflles

displayed the much cited>Airy function—like behaviour.

. o In a comparison of the two term Néumman series result for
,the radiative solut1ons of the KdV equat1on w1th the few
spec1f;c experlmental resultsavallable it was found that for the

specific set of parameters used the agraeméhf between theory and

'

experiment was poor. " - T
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 APPENDIX 1 -~ . -
The KAV equation is invariant under a ceftain:scale_ ‘
transformation that involves both of the independent variables x

and t and the dependent variable U.

As a reminder the KAV equation in standard form is

¢

N Up + 6UUy + Uyyy = O |
. - o
~ |
\
« |
LN . \‘
If the scale transformations : .

1 v
U —> V(g,r) = ;U(x,t) la
X
— = = b
X > ¢ N ]
-
t —> T = . i 1c
: are introduced then we get that the respective partial
derivatives in terms”of the new variables become
L}
oU e aV : ]
—= = = S » 2a
0x A O : o '

158 _ S



>

and ) [ §E= <

Substitution of these transformed var

- °

" yields

+Choosing

récaptures the oriéinal form of the

> |

v
v o7’

€= —1
kz
3

KAV equation,

2b

iables in the Rdvgequation



f

If A > 1 then the new tlme r and new space £ are compressed

conversely 1ka < 1 then the t1me and space are expanded

For standardlzatldn it was chosen that the maximum (m1n1mum)A
height of the 1n1t1al cond1t10ns would be normallzed to un1ty

through the use of thlS transformatlon It the real height of

!

the pulse was h then in terms of the new coordlnates thlS would

L ~

be scaled to un1ty by lett1ng A= 1/yh. Th1s in turn defined the__

transformation for the coordinates x and t by

K

il

g=vEx  Cand . reyET:. s

o

If this is applied to tH® square well {nitiér profile of

height h and width w we would get that the transformed initial

conditions would be , v - ..

IS e -

"V ={0: t<0,1:0<¢t <vhw, 0: vhw < ¢ }. R

As an aside it should be mentioned that it was this factor

oi vhw that pl%yed the role of the natural expansion parametef

-1 60- | | R




. L w e Y . .
B . -/ _ : . ;

. e

- * in the expansion procedure of -Enns and Rangnekar in their

analysis of the KdV,equation.'
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APPENDIX 2
The existence of the imaginary .eigenvalues (k?) for thg
Schroedinger operatof determines yhéEher¥orgnof ahy solitons
will arise in ﬁhe sglution‘oftthe partidulaf initial value
problem at hand. Here we will show, in pérticular; thatqit is
poséiblé to find initial conditions for which no imaginary
eigenvalues éxist, and thus'that the solution contains no

solitons.

In order to begin this discussion we will start with some of
the results derived in chpt 4 for the scattering data. From
W

—~ " equation 4.1 we see that if ¥, is to be a bounded solution for
- L 2

X > 0, with the eigenvalue k=ik, then the Eoefficient A must be
\KT;PQ7/since e”i(ik)x - okX g divergent. Implicit in this is the

féét that we are restricted to deal exclusively in the regime

that Im(k) > 0, as required by fhe contours chosen in deriving

the Marchenko equation in chapter 2. Thus all that we really

:need to find are<the zeros of the Epefficient A for 1imaginary kc
“in order to deﬁerhine the discrete spectrum of the pfdblem, If
ho zeros éxist then there are no solitons.”it can be shown Qith
é little algébraAthai the cendition A=0 for the square well
initial data implies the transcendental conditioﬁp

. o1 | . .
) . 2kyk% + 1
itan(Vk? + 1w) = \\QKZ ey k . 1
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e

=) . - .

whefe we'have'made use of the fact that we can normalize the
T 7ﬁeighf"bffzhé“pvfseﬁtomnnity;”Tf*kiié*reafftheh"this*EQUEthW‘"“f‘f““ﬂ
has nobsolu:ion, however if we let k be pufely imaginary by k=i«

we get for x < 1 the condition

e
> * * "\\_
: o 2KkVY, 7K T
tan (VT - x7w) = —, ~__ - 283
T - L
\‘
and for x > 1 the condition - SR
v : . o 2wmTm
tanh(Vk? - Tw) = . 2b
. - o 1 -2k
,

3 \

To get a feel for these conditions a plot. for w=1 is shown in

figure A3.,1. .

/ - - ___ Legend
/ ' 1 () I
o) 2/ (- 20)

/ ooyl
2.5 3 -

(&)
o
wn
(9]
~ A



From- f}gﬂre A2. 1 we see that wefw4il ge% ene~se%%%ep

correspondlng to the curves 1ntersectlon at x = 1/2 If w.is
increased more solitons w1ll occﬁr, the number of them depend:ng
on the number of branches of the tangent funct:on ‘that reside in
the interval 0 € k < 1. Physzcally th;s s:tuatlon corresponds-to'
having the water elevated initially. I1f on the othér‘handrwg

consider the case for which we push the‘water'down,‘h=~1 we get

the condition . -

/—‘7—'_;—"1'

e - tanh(Vk® + 1w) ="—2;2: T - I 3

T\

To get an understanding for what the condition implies this . was

also plotted for w=1 and is shown in figqure A2.2.

’ronh\/(k?ﬂ)
“—l
—
o .
o ~2kV I+ /(2K +)
-2 T L T T T B
o] 0.5 1 1.5 2 2.5 3
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S ‘*"Ftom*fh{swffgure"Vemsge*that‘thewtﬁo®curves*ﬁb‘nct ct

o E : o, ‘ ., ‘ ' S ‘

and conseguently there are no imaginary eigenvalues. Thuq,xg the
) = : Lo e T s = S -

fluid is initially pushed down no solitons arise, and the

solutién of.the KdV equation will be putely radiative in nature.
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~ APPENDIX 3

* 3

The numerical calculation of the expansibh coefficients

required the calculation oa the normalized oscillator functions

!

1 —y?
em(x) = e x?/2 H (x) , A

with Hm(x) being the Heﬁhite,polyhomials.’This can be
accomplished in a relati%ely simple fashion by resorting to the

explicit form of the Hermite polynomials. From AMS-55 sec.22.3

i
!

[m/2) 1

' . : - Y S m=2k
\/\3 | Hp(x) = m! Z=0 e T e 3

where [m/2] denotes the largest yﬁoie number less than or equal
to m/2. This ex@licit form can then be directly evaluated and
then multiplied by the damping factor e *?/2  However, this
method breaks down for large order when using finite arifhmetic.
In any finite arithmetic system there is a limited dyhamic range
of the numbers. For Fortran 77 that range is befween 1077 and
1077, With these limits the maximum possible factorial that can
be generated is 56! and the minimim number is the reciprocal of

56!, If the lower limit is exceeded a 0 is returned and all

information is lost and if the upper limit is exceeded an error
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occurs and all processing stops. : — — Qf

In light of theée technical problems a more” sophisticated:
method was used to generate the oscillator functions. It is well
known that the Hermite polynomfals obey a three term recurrence

relation with respect to order,

H (x) =2x Hm(x)‘- 2m Hm_1(x) . ’ 3

m+1

By iterating this .equation, starting.from'HO(x) = 1 and H,(x) =

2x successive orders of the Hermite pgolynomials can be °

generated.

This type of procedure is not without ﬁitfalls. Depending on
ﬁhe direction of iteration (increaéing Or/décreasihg br@er) the
recurrence relation may bé'éifhéf}stabié orvﬁhstéble; The 7
question of stablity arises from the fact that these threg term‘
recurrence relations are manifestations of.sééond\order |
: dif{gfgntial eqﬁations and as such admit two independent
solutibné. In finite arithmetic the.erforvgenerated‘iy
‘truncation manifests itszlf in the recurrence relation as part

£

of the second solution branch. If the second solution increases’

quicker than the first, on iteration, then the first will get

lost in the second. ' .
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In lieu of" any stanaard'theoretlcal test that can be: applled

to determlne whlch dlrectlon of 1terat10n 15 stable we s1mplv

L)

\applred the recurrence relatlonaand qompared the results with

ourhexpectatiohs;jguided by pre%joUs knowledge of the oscillator

Yoty

~ functions behaviour. As a test for the accuracy of the numerical

-

*routinefﬁe calculated the'intégfal>

- ' P/ .
[ P . \*l RS

- A 5 .
w i . N

-

{m em(x) emﬁxiadg

&

¢,

_numerically and compared the result with the expected result of
. AREE . *
» ,unity:icher‘tests for ‘accuracy were to compare the numerical
vaiueaof,the osctillator furictions at the origin with the
-

tgeoreticél value of "

8. (0) = { 0 if modd; (~1/2)™2/(m/2)! VET/VF if m even },

e
\ Y

and to- count the number of zeros of the generated functlons with

the number of expected zeros (the order of tge functlon)

Some'selected Oscillator functions (m=0,10, 25,,50 100), as

l
calculated from the iterative algorithm developed, are shown in
'f1gure A4.1. Those readers who .have had occa551on to work with

these functions can verify for themselves that the functions
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generated have the expected behaviour of the Oscillator .-

functions. E
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Figure A3.1 ; Sellected Oscillator function for a).

b) m=10, c™m=25, d) m=50, and e)m=100 .
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For reasons of

_wa= used to: generate the Osc1llator functlons is included here.

I

The basic pr1nc1pal motivating the form of the program resides.
in the fact that at each point all of the Oscilator functlons up
to some order were needed. The subroutine OSCR, listed below
returns an array 0OS of ienght,LO, with I entries calculated,r
 where the entries of OS are the values of the Oscillator .
functlon of the order of the entry s subscrlpt, calculated at z
( a real number). &hus, for example, 0S(10) corresponds to

e -
610(2) . Note that I must be smaller than or egual to LO the

global order parameter.
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SUBROUTINE OSCR(I,0S,Z,L0) - - .

lREAL*B 0S(0:LO)
. - REAL*8 Z,i,Y,OSOhdS1,0SZ;PI,AJ,A,B,OSCL
INTEGER I,J,K,L,N,M,FLAG,FLAG!
PI=3.1415926535897932D0
FLAG1=0 . s
FLAG=0 . .
1F (DABs(z)‘Lf.17,D0) THEN
0S0=DEXP(~2*Z/2.D0) /DSQRT (DSQRT(PI))
0S1=DSQRT(2.D0/DSQRT(PI) ) *Z*DEXP(-2*2/2.D0)
0S(0) =080 |
0S(1)=081
ELSE
0S0=1.D0/DSQRT(DSQRT(PI))
OS1=DSQRT(2.D0/DSQRT(PI))*Zﬁr
0S(0)=0S0*DEXP(-2*2/2.D0)
0S(1)=0S1*DEXP(-2*2/2.D0)
FLAG=1
ENDIF
IF (I.EQ.0) THEN
oéCL=oso
ELSE IF.(I.EQ.1) THEN
0OSCL=0S1

ELSE

K=J+1 -

AJ=DFLOAT(J)
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OSZ=DSQRT 3/(AJ+1, DO?)*(OS1*2*DSQRT(2'Dﬁfxai*osoi
IF (0S2.EQ.0.D0) THEN
05 (K)=0.0

ELSE .
oé(x)=psf¢n(1.Do,osz)*DExp(DLoG(DABs(osz))9 |
& DFLOAT(FLAG)*Z*Z/2.DO+DFLOAT (FLAG1)*71.DO*DLOG(10,D0))
ENDIF. - | '
IF (DABS(0S2).GT.10.D70) THEN

0S0=0S1/10.D70 -

051=052/10.D70 _

FLAG1=FLAG1+1 N

ELSE
0S0=0S1
0512082
ENDIF )

1 CONTINUE
ENDIF
RETURN

END
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, Appnnbix<§r T —— :
_ » - \ » :%

- ~Having adopted. the Oscillatorijunctions, which are defined

By . i

o (x) = Nme'_"‘_z/2 H (x) ' S

) N B »
as basis functions, where the N, 's are the normalization
' 1| - : N u .
factors, Ny = T and the Hm(x) § are the Hermite
polynomials, we can explicitly calculate the components of the -

matrices Pjjx and Ijqk.

These matrices are defined by the relationsﬁips

o

0, (x) Gj(x) = Pjjk0, (x) , A 2a
ivei(z) ej(z) dz = Ii4k0,(x) . | 2b
.

N
Byrvirtue of the orthogonality of the Oscillator functions we.

get ‘that

Pijk = {m\ei(X) ej(X) ek(X) d)(l 3a
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‘ ™ a L ' . i
and . Ijijk = {Q_ek(x% £ 8, (z) ej(z) dzdx. 3

&

=
o }

In order to evaluate these matrices we need to return to the

explicit definition of the em(x) 's, conséquently

o,

. [-
- 2
Pijk = Nif‘_’rj’f‘fkj/{,ﬁg%?'x /2 H, (x) Hj(x) H, (x) dx. 4

~

From Appendix 6 we note that the product of two Hermite °
polynomiaié can be written as a finite sum of Hermite

polynomials, i.e,

| - min(i,J) —— -
Hi(x) Hj(x) = g;o o TG i +5-2m ()

With this identity equation 4 becomes | : )

LB

pijk ='NiNij L

s min(i, j) ‘ o
’ ~ 2Mit 51 * -3x2%/2 .
L, mGmiGemr L e Hitg-om %) Hy(x) dx.
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By G-R sec. 7.374 = T SR

KN
* 2a2x?2 ‘
-2a?x =
{m e ¢ CHL(x) Hp (x)
- ay1/2 ( 1z2a% (men)/2  __(m+n)!
(n/2a%) ( 2a? ) ((m+n)/2)1
® _F,(-m,-n;{(1-m-n)/2;a?/(2a%-1)), if m*n even
else =0 ' - if m+n odd, —

where ,F, is a hypergeometric function. By identifying
m —> i+j—2m, n —> k, and 2a? = 3/2, .the integral in the

definition of Pj4jk becomes

172 (- 1y ((i+54k)/2)-m —Li*itk-2m) !
(2n/3)1/7€ (= )P RTTRAET ie3+K) /2) -m) |

e LF,(2m-i-j,-k; ((1-i-j-k)/2)+m;3/2),

and thus
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.

CURygg = N NsNE (21/3) 12 (- iegek) /2

- (-3)Mm
L AGEmiGmE

e LF.{2m-i-j,-k;((1-i=j-k)/2)+m;3/2).

A

- Pochammer symbol,

(a)g = 1, (a)y = ala+1)(a*2)...(a*+n=1) n=1,2

In terms of this symbol"

and

(im)! o= ‘é! .
EOLIET

it \

(i-2m)! =

With this notation equation 6 becomes

4

'"i“f'ﬂ’ . T (i+itk2m)t
| (((1+3+k)/2)-m) !

N

N

N

This can be written in more elegant form py_introdhcing the

-

»

7a

7b

(i+j+k)!

= NjNjNg (2m/3)1/2 (- %)(i+j+k)/2

- - min(i, j)

(cidp(-i)g  (3/2)™

L= A((1—(i+j+k))/2)m m!

178
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o LF(20-im,mks LU;I,,1—k)/2L+m43L21#,7,7f¢74L,;

If we explicitly introduce the’fgpms for Nj, er and Ny fhe

prefactor to the sum becomes

: 11172 (= Ly (i+3+k) /2 (+jR)! ‘
.(2/(3‘/?))‘ (- 2)1t7] | /"F”TTT((1+3+k ) 9

and thus - | T | | 7 o

(2/(3vT)) /2 (- %><i+i+k>/2’7'

Pijk =
L min(i,3)
. 1 (i+5+k)! (- ) (-9)m (3/2)M .
VIIJTkT ((i+j+k)/2) Lo 4(1-(1+3+k))/2 m ml
. zF1(21—i—j,-k:((1—iej?k)/2)+m;3/2)., o | 0
%
if i+j+k is even,
= 0

if i+j+k is odd. This result can be written in an even more
N A _

compact form in terms of generalized hypergeometric functions of

E% two variables. By using one of the guadratic trané}orms that the
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. . B
i

R N

——

o
-

S ,,mtype,ofﬁhypetgeometticWLUnctionﬂthqt_occutSiin4eQUatiou4lﬂiiffgh44f;;
. admits i.e.,‘ | |

-

2Fy(21-i-3,-k; (1-i-j-k)/2+m;3/2)

= (-2)K,F (-k/2, (1-k) /2; ((1-i-j-K)/2)+m;3/4), N

1

see'AMS-SS-sec. 15.,3.29, and note thelsfmmetry of the
hypefgeométric funcfions under interchénge of the first two

parameters. The non-zero components of P become

L - 172 (= 1y(i+iek) /2 =20k (i+i+k)!
Pijk = (/)12 (- 9 IT/2 e T T

min(i,j)

 i)piy - (3/2)0 S

o E: C((-(i+3+k))/2)q  mt * )
m=0 , . S
o LF,(-k/2,(1-k)/2; ((1-i-j-k)/2)+m;3/4). . . 12

The sum in this equation can be identified with the ‘third Appell
series F;, see Erdelyi vol. 2, and thus the components of P are

- - U (iedek) o (520K (i+i+R)1
Pijk = (2/(3v)1/2. (- ) (i+3+k)/2 ATITRT ((143+K)/2)1
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M»x //‘0§%é§i7'k/2;’j;(l-k)/2{41'i‘j‘k4/2%3%2$

with the condition that i+j+k is even, if i+j+k odd then'

With the componenfs of the matrix P calculated we can now‘
turn our attention to the components of the matrix I. These
compohenté, as defined by eduatidq 3b, can be written explicitly

in terms of Hermit$¥§olyn0mials by

. B ) )
' ' -x2 -y 2
Ijjk = NjNjNy {m e~X2%/2 Hk(x) i e”Y Hi(y) Hj

Using result 1 from Appendix 6 for the product of two Hermite

polynomials again the,components_of I can be written as

min(i, j)
2m
Ijjk = NjN4Ng E: (=30 @
m=0 o
o J e X/2y (x) fe ¥ H,, ., (y) dydx. 15
. X 1+3-2m
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«

The integral‘over ; has been evaluated iniggnggglﬁianppéndix 6.,

see.re5ult 6, and yields

3

o | |
—u2 e —g? B e s saal

[ e Hiyjon(y) dy = €T Hygoopy(x) ~ if i+3-2m # 0
e

= Zzerfb(x) . : B - if i+j-2m = 0.

2
N\ . ‘ o
The eomplement of the error function will occur only if i+j-2m =

0, and this can only occur if i=j due to the restriction on m

3

having a maximum value of min(i,j).

. (\ .
- Because of the various possible outcomes of these integrals

depending on the valuéskof the indices of the maEfiX’component

—

we must evaluate them case by case. Thempaftitions are, A
LRSS S | ] U

a. 1i+j+k even: .

b. 1+j+k odd
2. 1=

a. ?i+j+& eveé*

'b. i+j+k odd \
wvhere the division into odd and even caées is due to sy
éonsideratiops of the intégrand in the integral over x.

Taking the first case for i # j ,we get :

.
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min(i,j} om -
N Tijk = NiN3Ng /. ;-!-(—i)m(-j)m .
. A " m=0 T .
> ’ . .
. {m e‘3¥2/2, H, (x) Hi+j_2m_1(x)b dx. o BT

)

From the symmetry of the constituents of the integrand we see

that =
¢
Iijk= 0 . ' 17

if i+j+k is even, thus-solving case 1a.'1f, however, i1+j+k 1is
6d§ we can aéain appeal to the result from G-R, equations 5a and
5b; that were.cited in the derivation of the Pjjx's to do the

réemaining integral by letting m —> m + 1/2, i.e.

f e 3x%/2% (x) H

! k f+5-2m-1 (¥) dx = |
- = (2n/1/2 (- %)(ifj+k-1)/2 ((iixﬁ;;;).( i’)m‘
’ (<2—<i+jlk)v>/22m2vF‘;‘2"‘”;5'3'f‘k':<2-i-j-k/>/2+m;3/z>. 18
With this result | .
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Iijk = NiNij (2ﬂ/3)-1/2 (- %)(i+j+k_‘)/2 .'ﬁ
min(i,J) o

' (=1)p(=9)p ~ (3/2)M .
((2-(i+3+k))/2)p m!

(i+j+k-1)!
((i+§+k-1)/2)1

m=0

° 2F,(2m+1—i—j,—k;(Z—i—jfk)/2+m;3/2). . 7 19

~

ld

By using the same guadratic transformation as in equation 11,

oFo(2m+1-1-5,-k; (2-i-j-k) /2+m;3/2) =

= (-2)K,F,(=k/2,(1-k) /2; (2-i-j-K)/2+m; 3/4), 20

L4
on the hypergeometric function we get for equation 18,

.Iijk = NiNij (2ﬂ/3)1/2 (- %)(i+j+k_1)/2(‘2)k L | \
C min(i,3J) N .
(i+3+k=1)! ‘ (1) (-1) g (3/2)m .
((i+j+k=-1)/2)! L= ((2-(i+j+k))/2), m! .
° ~ZF,(-k/2,(1-k)/2;t?tilj-k)/2+m;3/4)., ‘ 21

Again the sum can be identified as the third Appell series and
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as such the components of I can be written

Iijk = N;NijV§w7§(— %)(i+j+k-1)/e(_2)k .

(i+34k=1)1
((1+j+k-1 /2) 1

Fa(-1i,-k/2;-3,(1-k)/2; 1+3+k)/2 3/2;3/4) 22

On introducing the explicit form of the normalization constants

we get

; ) .
. 1/2 (_ 1y (i+3+k-1)/2 _(=2) (i+g+k=-1)1!
Tigk= (1/3vT) g VITSTKT ((i+j+k-1)/2)j

. ‘fa(—i 2x/2:-7, (1-k) /2; - (i+3+k)/2;3/2; 3/4) 23

p

Thus for the cases for which i # j we have the results that

Iijk = 0 | 1f i+j+k even - 24a
“and that  Iio = (1/3m1/2 (- Ly Grivken)/2 7é£§é%= .
an at ik = m) ! c | TR
(i+j+k=1)1- ., . ' ) /
J(=i,-k/2;- 2:1-(i+j+k)/2:3/2:3/4),
(Gegek-ny /2y 2 Th k2 )/231-(143+K)/2;3/ /e
! if i+j+k odd. ' ’ '24b
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For the cases for which i=j we have from equatignmlé;and,w, ,,,,,, ]

result 6 from Appendix 6 that in general

Tijk = NiNg ®

g2 ' .

e X H21f2m—1(X) dx; m#i
|

=0 "o Vi

., |
m

« Vi Hyp e /20

i} m

ercf(x)dx; m=i., 25

2
If k is even equation 25 becomes . )
¥
’ f ‘/;m ‘ _.2/2 ‘
Ijjg = N§Ngit2l 5= f erfc(x) H (x) e "% "/“dx 26
- ® -0 ’

A

since all of the other terms in the sum contain integrals whose |
integrands are anti-symmetric. Noting that the complementary
error function can be written in terms of symmetric and

anti—symmetric parts by definition

erfc(x) = 1 - erf(x)

where | , erf(x) = -~erf(-x),

8
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- -

"the integral in equation 26 becomes

Iijk = NINjit2d %i [ H(x) e “X*/2ax, 27

-

~

By G-R sec. 7.373 we get that

f

® —y2 — k!
f Hk(ax) e X"dx = V7 W(az-ﬂk/z

-co

and thus
“‘\// -
” . k! '
.. = ¢ 1121 r _K:
Illk ﬁlNkl.z ‘/2. (k/Z)!’ ) :28

or by introducing the explicit forms of normalization constants

we get Y
: J

4

’
7

) 1/2 VET 29

! (k/2)1°

Iijg = ¢

i

If, on the other hand, k is odd the generic form of I;;yx

(equation 25) becomes
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Ty
- - Kol . .
Lk = NiNd (D172 5 ((enfe T Ly Gen/zsiom
L " m=0 ) \

(21+kj2m-151
((k-1)/2+i-m)

—,F, (2m+1-21,-Rgm+1-i-k/2;3/2) -

g2 gz f erf(x) e X?/2 H (x)-dx ¥, “  7 30

- \

wher'e we have used previous results of this appendix to evaluate
the integral in the summed term and the symmetry properties of
the complementary error function to simplify the last term. This

now leaves the integral
’ -

f erf(x)e x?/2 Hk(x) dx 31

-
o’
to be done.
The evaluation of this integral can be approached by ¢

resorting to the integral representation of the error functipp.

3

erf(x) e”Y" dy. . . | 32
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With this 31 yields

VA -x2/2 X .2 f;xz/z .
5—71 erf(x)e” Hk(x) dx = J e Y'dy e : Hk(x)\dx.
-Cn . : - 0 . ) . .
33
Interchanging.the order of the integration and using the
symmetry of the integrand the right hand side of gquatibn 33
becomes N
© \ e —x2/2 o ,
2 Je¥Y J e H, (x) dxdy. 34
_ 0 Y )

To evaluate the inner integral we use the result 5 from appendix

7. that

[k/

H (x) 2:
m=

N

| B}
ETTETEETTzk/z m H (x//f) y

0

!

and let z=x/¥y2 , which then’aﬁlows us to ‘express 34 as
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(k/2] - cJoem ) o 2 N -
2V2 L 2R 7Y e"%" H,_, (z) dzdy. 35
: =0 m! (k-2m) ! D Y32 “Tk-2m

\\\

Using . the result 6 from appendix 7 the integral' over z yields"

-y2/2 '
e Y/ Hy opoq (¥/V2)
where the complementary error fupctibn is excluded by k being

odd. With this result 35 becomes

‘ [k/2] ' - - |
4 - - 2
V2 z: 0 m'(k 2m)'2k/2 m {m e”3Y /? Hk;zm_1(Y/V7) dy, 36
m ‘ .

Pq

©

where the integral over y has been taken over to range -« to .

If we now let z=yV13725 the final integral can be done by
appealing to the previously cited result from G-R sec. 7.373,
and yields for 36 |

. " \ ' =

(k/2]

((k-1)/2—m)§'

2(2”/321/2 E: mv(k 2m)!( vé) (k=1)/2°m TREY 37 |
Te .

0
- | ,’_
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&

. which as usual can be rewritten using Pochammer symbols as.

1/2 (o &) (k=1)/2-m —__(k=1)1
2(zt/3) ﬂ 3) ‘ ((k=1)/2)!

(k/2]

. YT Ck/2)p(0-k)/2)y (3/0)™
L

-0 ((2-k)/2)p mt B

\

The sum term can be identified as a hypergeometric function

leaving the result that

%E i) erf(x)e ¥?/2 Hk(x)kdx =

= 1/2 ; 4)(k-1)/2 —(k=1)!
2(2n/3) ( 3 ((k=1)/2)!

’ e P (-k/2,(1-k)/2;1-k/2;3/4)

and that

2
Iiik = (‘5‘1)1/2 NiNp e

(2i+k-2m-1)!

i-1
: 2M 1 (k- -
o };zo((_l)mz a.!_(_ 3)(k.1)/2+1 m

o LF,(2m+1-21,-k;m+1-i-k/2;3/2) —
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38

~ 39



il o Ay (ket)/2 kDL
2it2d (- / ((k=1)/2)!

o z‘F1(-k/2,(1-l$)/2-;1.-k/2;3/{1) }. 40

—

4

However, as was done previously} the hypergeometric function.
ZFJ(2m+1—2i,-k;m+1-i—k/2;3/2) can be transformed to

(—2)k2F4(-k/2,(1-k)/2;1-k/2;3/4) by a\ahad{étic transform. In

. . \\
this case : \\\\ S
‘ ' ‘ N

«

‘ 27
Tyjp = (50 1/2 NiN e

m - . 3 - —
e Y (g Bl hkp/zsiongx AZidkemiL
m=0 ) : .

e ,F,(-k/2,(1-k)/2;m+1-i-k/2;3/4) =

IS

L iiai (o 8y (k-1)/2-1 (k=)
R ((k=1)/2) 1

o LF,(-k/2,(1-k)/2;1-k/2:3/4) }.

Noting that the term that is not under the summation sign in
. eqQuation 41 in fact corresponds to the m=i term of the sum had

'the"Sum been extended to include this possibility,/we get
: : ~




Ijik = ;(——iﬂ)i/z giNk )
“ 4

o oMy _ (2i+k-2m-1) |
- 2 £ (- Zy(k=1)/2+i-m(_oyk
(C8)n® ort= 3 PEDE e zeiemt

” i

AN

~—

. 2F‘(—k/2,?1:k)/2;m+1-i—k/2:3/4); ‘ 42

N
3
1
K

. On rearranging terms‘and introducing the explicit forms for the

normalizing factors we get

(-2)k  (2i+k-1)1
itvkt (i+(k-1)/2)!

g = (/D12 (- 9 irke1)/2

L |

- m . .

. 2: Weg) 2 (3/2)7 b (L2, (1-k) /2;me1-i-k/2;:3/8) . 43
m=0

(1-i~k/2)p m!

The sum can again be identified with the third Appell series ahd

yields

(k=1)/2 (-2)k _(2i+k-1)!
itYk! (i+(k-1)/2)!

Ijjx = (1/3vm)1/2 (- é)i+

e F,(-i,-k/2;-1i,(1-k)/2:1-i-k/2:3/2,3/4), 44

~

- _ \ 5 .
which matches the form obtained for the case that i ¥ j and

i+j+k odd, if i is taken to be equal to j.
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In summary we have e e

(-2)k (i+j4k)!
VITITRT ((i+3+k)/2)!

Y e vF;(:i:ZE/E;-j,(1-k)/2;(1-i-jfk)/z;3/z;3/4)

if i+j+k even

Pijk = (2/(vF))1/2 (- Lyliri+k)/2

Pijk = 0
if i+j+k odd ‘ \

and

T, o
.

il = 1/2 (= Ly (i+5+k-1)/2 _(=2)X ({F{+k=1)1
Iijk = (/@@ /2 (= o) (rdvke T e T

e Fy{-i,-k/2;-3,(1-k)/2;1-(1+3+k)/2;3/2,3/4),
if i+j+k odd

Iijk = 0 if i+j+k even (i # j),

(Vm/2k+1)1/2 L - if i=j and k even.

Tijk (k/2) !
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' APPENDIX 5

EN—

‘_\*
By definition the third Appell series, see Erdglyj sec. 5.7
vol.2, has the form

& B .

Fy(a,A;b,B;cix,y) =

- Ef. (a)m(A)n(b)m(B)n‘if y"

) m,n=0 (c)m+n - m! n!’_- e

: 2 (a)p(b)y xM _ o “‘

Cor = X jT?T_miTzFAA.B;cm;y)- . b
m=0 m RN "

If both of the pairs (a,b) and (A,B) Eon;ain a' negative
‘constant, as is»the‘case for the components of the matrices I
and P, calculated in Appendix 4, then the sums in thebdefinition
of the Appell series are finite s;opping when (a), and (&) are

zero, assuming that a and A are the negative integers in

question.

Frbm the initial‘deriQAtion of the components of the
matrices I and P, and from the défi ition of the Appell series
v
it is apparent that the Ealculat;on‘of the matrices' ciomponents
hinged on the ébilityxto calculate hypergéometric functions of

the form » v

2P (=1,-9;(1-(i+j))/2;2) =

) - -
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! i

S i (-1/2)p((=1)/2)5 2® ;
T ((1-(1+3))/2)g m!° - |

m=0 -
‘ \

As a first- attempt to calculate these functlons we-
approached the problem w1th the 51mplem1nded idea of addlng up
the terms of the sum that defines the hypergeometrxc function.
This approach lead to difficulties in that the dyqamic range of
. the individual terms of the sum is large, and that the sum . |
gvalternates with negative and positive parts being approximately
equal. For large orders of the parameters i or j the difference
between the'hegative\and'the.poétive gohtributions vanished for
the accuracy.of the numerical calculation. In a.partioular»tgst

case, thefindivﬁdual sums (positive and negative) were equal,

machlne acgp;acy, and of the order of 1060 taking the dlfference’

i
e

of these two numbers returned a number of the order of’ 1044 in
the 16 decimal, double prec151on finite arithmetic that was
being used. The possible error associated with this calculation

is then of the order of * 1044.

Figure A5.1 illustrates the behaviour of the sum as
successive terms'are'aoded, and fioure A5.2 demonstrates the
behaviour of the positive andzhegatfve'sums as sdceessiVe terms
are added to each of them, for the&panTCular case

.F(-50,-50;-49.5;3/2).
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-10 T T TTE T ]
0 10 20 30 40 50

ORDER

N

Figure 26.1 ; Sum of successive terms in the rumericeal

!

summatior cf the series representation of

LF,(-50,-50;-49.5;3/2). : oo
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Figure 2€.2 ; Behaviour c¢f 083 &nd even sums in :re

series representation of ,F,(-50,-50;-4G.5;3/2).
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In'SEder to resolve this problgmrwé turned to Gauss's
relat;onsvfor contngOhs'hYpergeomet:ic functions; a complete
list, of‘these beiné given in AMS-55 seé. 15.2. These relations
are in:éssence three terﬁ recurrence relations, but sligﬁtly
morebgene;alized in théﬁ they act on any pair combinéti9nAdf tﬁe

three parameters a,b,c of the hypergeometric “function

e ‘ #E‘
;Fi(a,bjcsz).
N ]
Noting that 2F,(0,bscsz) = 1 3a
2 : . ‘ b ) B )
and that 2Fy(-1,bscsz) = 1 - e 3b -
we can, if it is stable, use th;>recurrence relation
(c-a),F,(a=1,bsc;z) + (2a-c-az+bz),F,(a,bjc;z) +
+ a(z-1),F,(a+1,b;c;2) = 0 4.

to generate successively lower orders of the hypergeometric

function, by starting at the ground states given by equatiohslaa

and 3b.
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To. apply thxs metho& to the spec1f1c form of hypergeometr1c
funct1on that arlses in the calculation of the matrix components
of I and P, given in 2, we need to start the,recurren;e relatLon

4'af/ , C : ’ f o )
P (0, (1=1)/2;(1=-(1+7))/2;3/%) - 1 | S5a

| . iy G- 3 -
and ? 2E,(—1,(1-1)/?,(1 (1+3))/2;3/8) = 1 TTjTT:ETT.4' : 5§

and successively lower the leading parameter to obtain

JF (=172, (1-1)/2: (1-(i+3))/2:3/4) |

where we have assumed that 1 1s an even integer. If i is not an
even integer- we can make use of the symmetry property of the

hypergeometric function,

,F,(a,bic;z) = 231(b[a;c;z),' 6

and then apply the recurrence relation 4 to get 2

2

P ((1=1)/2,-i/2;(1-(i+§))/2;3/4).
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High;tﬁe ideas outlined above a nume:ical algarifhm qéﬁmbg”
writtenvénd executed, fo:generéte a seqﬁence of numbers, the
final onebbeinbjfhe value of the hyperggométric fun;tion
desired. Howevef}-due,to a lack of readily aQailabf; pugiished
tables for this particular fype of hypérgéometric functiony it
Qas not knownAwheEher the recurrence rélatiOn-yas stable or not,

and consequently whether or rnot the numbers calculated,

represented the hypergeometric function.

‘To test’ the validity of theée recurrence calculation the

quadratic trangformation

,F,(a,b,(a+b+1)/2,2) =

4z%-42

=’(1—22)"a2F.(a/2,(1+a)/2;(1+a+b)/2; (1-22) 2 ), 7

was employed to generate two other representations of the
desired hypergeometric function, see AMS-55 sec.15.3, i.e.

Fa(-1/2,(01-1)/2;(1-1~-3)/2;3/4) =

= 271,F,(-i,-3; (1-1-3)/2;3/2), ' 8a
and = 23R (372, (1-9) /2: (1-i-3) /25 3/4) 8b
200



Since the number of iteratio;s of the: recurrence re15£iéhs o
needed to generate the new forms is different from the number
needed_to generate tﬁe‘original one it wag surmised that a—
comparison of the 3 values obtained would either corroborate-
each other or point to regions in'ﬁaraméter space for which the
various récurreﬁce relations were unstabie, assuming that 2 out
of 3 would agree for any given set of parameters. Figure A6.3
shows the results of this coﬁparatjve test for‘the specific set
of parameters;‘jzloo and i ranging from 1 to 200. In'orde;_to

compress the information into a manageable scale.the log of the

absolute value is plotted as a function of the independent

parameter 1i.

\ 0—\
—20 - .
Legend

=40+ uo
vr
vz ____.

-60 T T T T : |

0 50 100 - 150 200 250

i
Figure' A6.3 ; Results of comparision test for the three
different iterative schemes used in calculating

2F,(1,-200;(1i-1-100)/2:3/2), NOTE tha

the results of
each of the schemes lie on the same curve indicating

agreement over this range of parameters. -
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From these tests it was felt that we had reasonable

‘assurance that the vealues calculated were in fact the values of

the function
'zF,(-i/2,(1-i)/2;(1-i-j)/2;3/4)

for the ranges of parameter space that were of interest.

From the above analysis a stable algorithm for calculating
the hypergeometric functions was written in Fortran 77. In
calculating the BYpergeometric functions the routine uses one of
;he two representations 2 or 8b depending on which of the two
parameters i and j is the laréer. If 1 is greater than’j then 8b
is used and if i is less than j then 2 is used. This was done to
both save time and to minimize the accumulated error inherent in
iterative schemes, singce in this way the program iterated‘the L

minimum possible number of times.

‘As for the oscillator functions the routine used to
calculate the hypergeométric functions is listed below, and
figure A6.3 shows the cpu time required,fbf a set of typical
calls to the routine}F21, for j=100, with 1 fanging from 0 to

200. ‘ D
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-EQNCTEON §21(1,J;z) | o
REAL*16 z,Fo,F1;F2,F21,A1,AJ,AK,A,B,C‘
/ENTEGER I,J,K,KMAX,FLAG,L,M

IF (MOD(I+J,2) .NE. 0) THEN

WRITE(5,*) 'HY?ERGEOMETRIC FUN- HAS SINGULARITY F21'
F21=0.0Q0 D

RETURN R

ENDIF

IF ((I.GT.J).AND.(J.GE.0)) THEN

L=J A » |

M=1

FLAG=1

ELSE

L=I

M=J

FLAG=0

ENDIF

IF (MOD(L,2) .EQ. 0) THEN

KMAX=L/2

A=-QFLOAT (KMAX)

B=5.Q-1+A

ELSE

KMAX=(L-1)}/2

A=-QFLOAT (KMAX)

B=A-5.0Q-1

ENDIF

C=QFLOAT(1-L-M)/2.0Q0
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FO=1.Q0 S
1F (AklEQ. 0.Q0) THEN : R
F21=F0* (~QSQRT(1.00-2) ) ** (FLAG* (M-L) )
'RETURN
ELSE IF (A .EQ. -1.00) THENg\’ 7
F21=(1.QO-B*Z/C)*(vQSQRT(1;Qo-z))**(FLAG*(M—L5)
RETURN \
ELSE
F1=1.Q0-B*2/C
DO 1 K=1,KMAX~1
AK=-QFLOAT(K) |
F2=((c—B*z;Ax)*F1—AK*(zf1.QO)*(Fo-F1))/(C—Ax)
FO=F1- |
Fl1=F2
1 CONTINUE
F21=F2*(-QSQRT(1.00-2))** (FLAG* (M-L))
RETURN | ‘ |
ENDIF _ L
RETURN : 1

END
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- APPENDIX 6

EXPANSIONS AND OTHER TECHNICAL RESULTS

Altough some of these results are quoted in diverse
literature we present the derivations here because of their

importance to this thesis.

m1n(m,ql,// 2Pm!n!

T H (X)Hp (x) = =0 p! (m~-p)! (fi=p)! Hm+n-2p{x)
o (m/2]
: _— ] _m! | ;
2. xi = : 2: 20 1 (m-2n) 1 "m-2h (%)
- n=0 _ o ‘
\_
3. xMH,(x) = ’
mint (m/2] min(%:Zk,n)f;‘ o i gl o -
2m L '/—3’=o' . kit (m=-2k=3)! (n-j)z“‘m‘“"??'(k“l)(");.
AN m | ~ : v
' ’ . n= -
- - [m/2] . o S
. , = A n : - -2
o Hn(fx) = Zn=0- 72 ~(2n)!!(m-2‘n)!(62 JRFTTER Hp-gn(x) .
6. [ eV Hy(u) du = e (@x}? g _ (ax) if m#O
aXx ' : ‘
' = %Eerfc(ax) : if m=0
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““Results 1 and 6 can be found in ErdelijVol. 2 along with a_

\

variation of result 5. Result 2 can be constructed by 1nvert1ng
the explicit form of the Hermite polynomlals glven in AMS-55

chpt., 15,
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PROOFS - - S

PROOF I min(m.n)
o MRS 2Pmin} o
(00 7 Bitmep)(np)1 Pmen-2p()
Agsume - ﬁﬁ(x)Hﬁ(x) = E: cpHp(x)»
| . P -
- » o - i ‘ .
then Sp = Toprys I €% Hp(x) Hy(x) H (x) dx

. by G-R sec. 7.375

2(m*n-p)/2p
(s-p)!(s-m)!(s-n)!

"with the condition that 2s = p+m+n.

This result is valid in the region of parameter space defined

1. s=p20—> m+n 2 p.
2. s-m 2 0 —> PN 2 m
3. s-n 2 0 —> p+m 2 n
2 and 3 imply ‘ p 2 m-n and P 2 n-m
giving : p 2 max(m-n,n-m)
“thus " max(m-n,n-m) £ p < m+n.

If now we let p=m+n-2q then
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and,

min(m,n) 2 q 2 0.

- B

it

Thus the sum can be written as

min(m,n) 2Gmint ;

Hp(x)Hp(x) = Lz q!(m-g)!(n-q)!

209
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PROOF 2 . L : e

(n/2] L
Y — (x)
* Zm n!(m-2n)! ”m'Zn
. n=0 ) _
Assume that
- xm = Z ann (X)
n .
then f N ? e~X? xM H_(x) dx.
n 2Mntyn I n
. o : . *2 gne—x?
sSince . . Hn(f) = (-1)NeX axn
hen C g 2SR T non(emx? ) gy,
then fn = Jiniyn f X, » e X.
By integration by part the evaluation of this gives .
1. if n>m 7 then ‘: fh =0
| 1.
2. ifn=m then fh = om
3. if n < m and. n+m even then '
(-1)n et gz ot neq g2
fn = o {xM D" 1(e "X%)| - g xMIp N-1g=x? 34}
N 2Mtys | Im : {m » .
- n 1 e )
..(.1_)__.{ 0+0+ . +(_1)n ~me f xl’l’l"!'le‘)(2 dX},

' T 2Dniyw (m-n)! 2,

by G-R sec, 3.461, evaluation'of the remaining integral yields

Lo m! (m—n-TTi!r
T 20n! (m-n)t 2{m=nj/2 -

£n
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Therefore

L o, , S )
A Y o 1 m! (m-n-1)11 -
. X = E: 2hnt (m-n)! 2(m-n)/2 Hn(x),

S

where the sum is taken over even m+n.

By éhanging‘fhe'sum variable such that

n = m-2k
" then by 4‘ _ ' 0 Sn<m
we get | ' m=z2 2k 2 0.

If we define the symbol [m/2] to mean the largest whole number

smaller than m/2, which is standard in moét literature, then

K

[m/2] > k > 0.

Then the sun becomes

[m/2]
<

m _ . m!
- Lﬁ=0 2M=K (m-2k) ! (2k)!

X (2k=1)!! Hp-ok(x). -

This can be simplified even more by noting that the double

factorial can be rewritten as



Thus we get the final result that

- Im/2) L ‘
L, P kimezor P2k
ar
|
-
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- PROOF 3 . £

xMH, (x) =

, 2 7 . | \
‘ h!n!~[%£2]' min(m-2k,n) . | A

———

- 2" 4F=0 5=0 k!j!(m*Zk-j)!(n-j)fm+n-2(k+j)(x?

T ow

By result 2 we get that

[m/2] .
M=) 2 K(mezny M2k ()

and by result 1 we get

| | %
1 in(m-2k,
Hp () Hy o g (%) = S R E S ST H S (kaq) (%)
n m-2k B =0 Q! (m-2k-q) ! (n-k)1 = m+n-2Z(k+q) ¥/
“Phus
xMH,(x) =
mint [m/2] min(m-2k,n) e o \ ‘
2m k!j!(m-2k-j)!(n*j)?m+“'2(k+l)(X)'

=0 J=0
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PROOF 4
m

‘ 'Hm(QEY) = };-O ;T?géijT(gx)k Hm_k(y) o v {?

By, Taylor expanding H(x+y) about x=0, we gét

¥

2 .
Hy(x+y) = Hp(y) + Ha(y) x + Hp'(y) 57 +... .

By G-R sec. 8.952‘
| | dbig(x) 2m Hp-y (x).

- dx
Then
’ n ‘ , : . .
CHal) = 2Mm(m=1) (m=2)... (m-n+1) Hy_, (x).

With this a typical term in the Taylor series becomes

m!

al(m-nyt Mmen2)-

(2x)N

y :
Since the order of the Hermite polynomials is diminishing the

sum terminates when . m=n or m-n=0, thus we get

m | :
Hp(x+y) = E;_O e (260K Hy i (y).
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PROOF 5 , ’ ' L , _
[m/2] S

m! -5
H (fx) = E: 0 -2 ('2n)!!(m—2n)!(ﬁ‘2_1)nﬁm 2% Hp-2n (%)
, n= ) .
Assume - Hp (Bx) = E; Cmk Hg (x)
then Cmk = EE&TV; 2 e X? Hy (x)H,(Bx) dx.

By G-R sec. 7.374

=0 if k>m

=0 if k+m odd
- -k)/2 —mt _ -
= 2(m-k)/ k!(m-k)!!(ﬁz 1)(é k)/2 gk m+k even. -
Therefore we get
i ~m!
- m " - .
Hp(Bx) = 2;—0 2(m-k) /2 TTTCTE (g2-1) (m=k)/2 gk Hy (x) .

\

Where the sum is taken over even m+k.

/

By letting : k = m-2n
then by \ m2k 20
we get mz22n 20

or : [m/2] 2 n 2 0.

»
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Wwith this change of sum variable we then get

(m/2]

, , m! - ‘ '
Hp(Bx) = Z;O 2 TGy (B 1 PEMT 2 Hypn (x)
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PROOF 6 ’ , B —

W
o

foe Y H_(u) du = e {ax)? g (gx) if m¥Q
m m- 1
ax - ‘
S = %ﬁerfc(ax) if m=0
dm -x?
By G-R sec. 8.950 HEp(x) = (-1) M eXx’ —faiﬁ——
* -2 ® - 2 2 gM e~u?
then S e™Y Hp(u) du= f e7U" (-1)M U e du
, aX o ax
o gn e-u? o S gm-1 g-u? .
= J (N" S—=F— du = (D" 7 =T lax
ax
m-1 ,-u? :
Since d ——a%ﬁ:T = Hp-q(u) (-1) M1 g-u?

the integral becomes

= ~e"u’ Hp-q1(u) |gx-
Since lim e~u? Hp(u) —> 0
. u->¢e ‘
the integral becomes.
celeX)? g (ax)

1f m#0.
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I1f m=0 then the integral reduces tq

T e-u? v
J e du 7
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—_— ~ APPENDIX 7

A short table of some of ‘the representativé Spectral'valués

for the,biorthogonal Osgillator expansion, w=1,0, with

ma 1 - 2 3 4 o R,

! real 0.172E+00  -0.324E+00 0.113E+00  -0.249E+00 =
imag 0.183E-15 =0.357E-15 =-0.531E-16, =-0.271E-15 L

2 -0.604E-01 . 0.951E-0T. 0.393E-01  0.965E-01

0.130E-14  -0.496E-15 0.126E-15 -0.648E-16

3 ~0.538E-01 —0.1293+oojp 0.303E-01  -0.174E+00
 -0.160E-15 —0.43?3<45 0.747E-16  -0.110E-15
4  -0.867E-02  0.156E+00 -0.431E-02  0.981E-0f

 0.612E-15 -0.703E-16  0.110E-15 -0.168E-15
5 -0.106E+00  -0.885E-01 ~~0.282E-01 -0.114E+00 -
~0.181E-15 ~0.194E-15  0.527E-16  -0.198E=15
6 0.258E-01 0.176E+00  -0.198E-01 0.103E+00
| -0.217E-16  0.465E-16 0.805E-16 -0.217E-15
7 ~0.103E+00 -0.829E-01 -0.661E-01  -0.686E-01
-0.159E-15  -0.109E-15  -0.726E-16 -0.187E-15
8 0.414E-01  0.16BE+00  -0.153E-01  0.108E+00
~0.196E-15  0.751E-16  0.497E-16 -0.603E-16 :
9 -0.792E-01  -0.846E-01 -0.838E-01 -0.420E-01

-0.105E-15 0.170E-16° -0.119E-15 -0.134E-15

®

219



;3m\a

’ 10"",0.4315—0f
~0.236E-15

11 - ‘-0.499E-01
~ 0.597E-16

12 0;364E-oi
ﬁ‘o§234a415

13 ~0.229E-01
| 0.1053415

14 0.255E-01
-0.201E-15

15 -0.132E-02
| 0.134E-15

16 0.137E-01
-0.155E-15

17 0.140E40y
| 0.139E-15

18 0.276E:62
~0.966E-16

19 0.234E-01
[ ‘0.T44E-15

20 0.616E-02
-0, 352E-16

21 0.279E-01
| 0.137E-15

0.143E+00
0.725E~16

-0.837E-01

0.771E-16
o;i1oa+oo
0.658E-16
-0.7782%01
0.113E-15
0.763E-01
0.393E-17
~0.672E-01
0.261E-15

0.453E-01 -

-0.656E-16
~0.536E-01
0.157E-15
0.196E=01
-0.754E-16
-0.388E-01
0.155E-15
-0.689E-04

~0.835E-16

-0.244E-01

.. 0.139E-15

3.

-0.153E-02

0.125E-17
-0.847E-01

-0.102E-15

0.135E-01
-0.116E-15
~0.736E-01

-0.893E-16

0.252E-01

- -0,128E-15
~ -0.554E-01
-0.689E-16

0.316E-01
-0.124E-15
-0.342E-01
' -0,462E-17
0.324E-01
-0.108E-15
—0.132E—0i
0.696E-16
0.286E-01
-0.857E-16
 0.543E-02

0.124E-15
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»0.11OE+00

0.137E-16

-0.304E-01

-0.326E-16
0.106E+00
0.837%-16 -

-0.289E-01

0.452E-16
0.956E-01
0.107E-15

- -0.325E-01

0.120E-15 -

© 0.805E-01

0.967E-16

-0.373E-01

0.169E-15
0.620E-01
0.855E~16

-0.407E-01

0.182E-15 -
0.421E-01
0.538E-16

-0.413E-01

0.190E-15
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