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Abstract 

Snakes (active contour models) are extended to segment regions of interest on the surface 

of 3D objects. Stereo images taken with calibrated cameras are used as input. For this 

method the depth map for the whole image does not need to be computed. Instead, 3D 

external forces are designed to keep the contour on the surface of the object while moving it 

toward the desired boundaries. Color information is used to improve the ability of snakes in 

detecting the boundaries, in contrast to the majority of previous methods which are based 

on intensity information alone. 

The proposed method produces 3D contours on the surface of the object with coordinates 

in physical units, e.g. millimeters. These contours can be used to view the structure and 

dimensions of any distinguishable region on the surface of an object. Examples include oral 

lesions and skin diseases. 

The whole process requires minimal human interaction; however, user input can be used 

to improve segmentation. 
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Chapter 1 

Introduction 

In the process of recording the development of oral lesions, pictures of the diseased tissues 

are very important. This archive of images can be used to track changes in the location and 

dimensions of the lesion. This can be true also for any kind of visible lesion or skin disease. 

However, there are two big disadvantages to traditional photos as a means of recording 

objects. 

First, the images can be distorted due to physical limitations of the camera. Also there 

is no reference for measuring the dimensions in the images. Using pre-measured probes in 

the pictures can be useful for estimating the lengths in the image. However, the problems 

of distortion and perspective in the images remains to be addressed. Also, the length of the 

probe is only comparable with objects that are at the same distance from the lens of the 

camera as the probe. Second, images are 2D projections of 3D objects. Obviously during 

this transformation there will be loss of information. Curved objects may appear planar. 

Also the dimensions of different objects or even different parts of the same object may not 

be comparable after this projection. 

One of our goals when recording information about the dimensions and structure of an 

object would be having exact 3D structure data in real world metrics. In the course of this 

thesis, we will gather this information from 2D images taken from the subject. 

One of the simplest and also frequently used techniques for gathering 3D information 

from 2D images is stereo imaging. By presenting slightly different images of one scene to each 

eye, each from a different point of view, the brain is able to extract depth information from 

the images and have a 3D perception of the scene. Chapter 2 provides more information on 

how the stereo imaging techniques are used in this work to extract the information needed 
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to reconstruct the 3D structure of tissues of interest. 

Before extracting any 3D information from images, it is very important to have data 

about the characteristics of the camera used to take the pictures. This information helps 

us eliminate the undesired effects created by cameras during image acquisition. Camera 

calibration is the process of determining the geometric and optical characteristics of a cam- 

era. These characteristics have a direct effect on the way a scene is projected onto a planar 

image. Combining the information provided by the stereo vision techniques and camera 

calibration information enables us to extract precise metric information from 2D images. 

More details about camera calibration and the effects of stereo imaging on this process are 

available in Chapter 3. It will be shown that there are more characteristics that need to be 

determined during the calibration of a stereo system than a single camera. 

One of the goals of this work is the automatic segmentation of regions of interest in 

images. These regions are assumed to be visually different and distinguishable from their 

neighborhoods. The act of distinguishing objects from background is called image segmen- 

tation in computer vision literature. One of the popular approaches to this problem are 

edge-based methods, which rely on boundary detection. Classical deformable models [17] 

are in this category and they are usually implemented with incorporating the physics-based 

dynamics of flexible materials. The theory of elasticity describes deformable materials such 

as rubber and flexible metals. This theory is employed [16] to construct differential equations 

that model the dynamics of non-rigid curves as a function of time. These dynamic curves 

respond to forces from the images to embrace the regions of interest. Chapter 4 contains 

detailed information about the techniques used in elastic deformable models. Snake [9], the 

energy-minimizing spline, is the active contour model used in this work. The traditional 

snake works on intensity images, i.e. single channel images. Use of multi-channel images has 

been investigated for snakes by Sapiro[l3]. This work also makes use of color information to 

improve the performance of snakes in segmentation. This proved to be much more effective 

than simply using the intensity channel. 

We try to apply the same ideas available for 2D flat images to stereo images taken from 

objects with distinguishable regions. A curve that is not necessarily planar is fit around 

that region. Precise measurements of the dimensions of the contour as well as 3D shape of 

region's border will be provided. 

This is accomplished by performing the segmentation on both left and right images taken 

with a stereo camera and deforming the contour in 3D space under the effect of the forces 
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computed based on planar projections of the region. Minimal user interaction is required 

to initialize the contour and it is possible to make use of user input to enhance the results. 

The algorithm is presented in Chapter 5 in detail. 

The idea of merging stereo information with active contours has been explored before. 

Markovic and Gelautz in [lo] used depth maps extracted from stereo images to enhance the 

performance of snake segmentation. They still produce 2D contours though. Cham and 

Cipolla investigated "stereo coupled active contours" in [3] to enhance motion tracking in 

stereo by coupling pairs of active contours in different views. They use stereo information 

to track an object on both left and right views. 

In order to evaluate the proposed method, we applied it to both synthetic and real 

data. Measurements provided with this system are compared to actual measurements done 

with physical instruments. The 3D structure is compared as well. The results have been 

satisfactory for most cases. These experiments and results are provided in Chapter 6. 

Detailed information about the specifications of the cameras used, accuracy of measurements 

relative to image resolution and object distance, and physical properties of the implemented 

system are also provided. 

Chapter 7 concludes this work and suggests further potential improvements. Because 

of the inherent modularity that the proposed algorithm has, there are multiple choices for 

different stages of it. Each section can be replaced to use a different method to suit the 

context the algorithm is used in the most. 



Chapter 2 

St ere0 Vision 

Stereoscopic or binocular vision is the ability of both eyes to look at the same point from a 

slightly different angle. The eyes' visual fields overlap in the center, and the brain merges 

these two images to create a sense of depth important for judging distance. Humans and 

other mammals have stereoscopic vision. Birds, fish, and snakes1 have monocular vision in 

which each eye sees a separate image covering a wide area on each side of the head. The 

same idea has long been used in computer vision to extract depth information from 2D 

images [ll]. 

The main problem in stereo vision is to find the correspondence between the points on 

the two images. After finding the corresponding points the depth can be calculated from the 

disparity of the two. Because of different factors such as noise, occlusion, lighting variations 

and perspective distortions, the appearances of the corresponding point will differ in left 

and right images. This makes it hard to establish correspondence for various features of 

one image. In order to improve the process of matching the features of the left and right 

images, it is usually necessary to use additional constraints. Four commonly used ones, as 

described in [15], are 

Epipolar constraint : The matching points must lie on the corresponding epipolar lines 

of the two images. For epipolar rectified images, the matching points lie on the same 

image scanlines of a stereo pair. 

Uniqueness constraint : Matching should be unique between the two images.2 

l ~ o t  to be confused with the active contours used in this work to perform segmentation! 

 here is no one-to-one correspondence between the points on the left image and the ones on the right 
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Smoothness constraint : Local regions of the disparity map should be relatively smooth 

except for the regions with occlusion or disparity discontinuity. 

Ordering or monotonicity constraint : For points along the epipolar line in one image 

the corresponding points have to occur in the same order on the corresponding epipolar 

line in the other image. 

Section 5.1.2 has more information about the way these constraints are used in our work. 

It also provides details on how the corresponding points are found. 

After finding the corresponding points depth information can be extracted from the 

images. The basic idea is described in [19] and illustrated in Figure 2.1. This figure is very 

similar to the one shown in the cited book. 

It is easy to show 

Thus distance to a point is inversely proportional to a + P, the amount of shift of the 

point's position in one image relative to the point's position in the other. This shift is called 

disparity. Unfortunately this simple formula only works in ideal circumstances. Cameras 

have to have the same characteristics. The direction of the cameras should be parallel and 

perpendicular to the line connecting them. In real world cases none of these happen and 

we need to calibrate the cameras and the stereo system. Section 3.3 describes how this 

"back-projection" works in our system.3 

one necessarily. For example in case of occlusion or very steep surfaces more that one point on one image 
may correspond to a single or no point on the other, but generally there is one-tc-one correspondence and 
there is no more than one way of associating the points of the images. 

31t is worth mentioning that one other approach, which is often used in stereo imaging is to rectzfy the 
original images so that they appear as if they are taken with two cameras without distortion and parallel 
to each other. Details of this rectification process is out of the scope of this thesis. It is not used in our 
work, since reconstruction of the whole surface is not among our goals and performing the rectification on 
the whole images would have been unnecessary computations. 
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Figure 2.1: Geometry of the two cameras involved in stereo imaging (adopted from [19]). P 
is an arbitrary point in the space. d represents the distance of P to the cameras and f is 
the focal length. 
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Camera Calibration 

The first step in a system for 3D reconstruction of real world objects is to make sure that 

it has reasonably precise measurements of the objects. This is specially true for medical 

applications where the size of the lesions and tissues are of great importance. Thus, it is 

important to know the characteristics of the device used in measurements. 

Camera calibration in the context of computer vision is the process of determining 

geometric and optical characteristics of the camera. Camera calibration is an essential 

step in 3D reconstruction methods in order to extract measurements from the images. In 

many cases the performance and accuracy of the machine vision system strongly depends 

on precise calibration of the camera. 

Physical camera parameters are normally categorized into intrinsic and extrinsic pa- 

rameters. Intrinsic camera parameters include the focal length f ,  skew coefficient, aspect 

ratio, distortion coefficients and the image center, also called the principal point. On the 

other hand extrinsic parameters contain the information needed to transform object coor- 

dinates to a camera-centered coordinate frame. In multi-camera systems, such as stereo 

systems, the extrinsic parameters also include the relationship between the cameras. [7] 

We used the "Camera Calibration Toolbox for Matlab" [I], which is capable of perform- 

ing camera calibration, undistorting images, stereo calibration and many other features not 

used in our work. The toolbox is also capable of rectifying stereo images but due to specific 

techniques used in our algorithm, image rectification is not necessary in our work. Chapter 5 

has more information about these techniques. The camera model used in our work is the 

same as the model used in the aforementioned toolbox. 
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Figure 3.1: A checkerboard used for calibrating the cameras 

3.1 Single Camera Calibration 

Stereo calibration is calibration of two separate cameras and calculating the translation 

and rotation vectors that specify the relation between the location and direction of the two 

cameras. In order to perform the calibration, we use the method proposed in [22]. A number 

of pictures (about 10) are taken from a planar checkerboard in which the sizes of the squares 

are known (Figure 3.1). These pictures are provided to the calibration toolbox and after a 

phase of "corner extraction" intrinsic parameters of the camera are calculated. 

During the corner extraction phase, the corners of the checkerboard squares are detected 

after the user manually selects the 4 corners of the checkerboard with a pointing device such 

as a mouse. Then the system minimizes the pixel reprojection error in the least squares 

sense over the intrinsic camera parameters, and the extrinsic parameters (3D locations of the 
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grids in space). A gradient decent algorithm is employed to perform this minimization [ l ] . l  

3.1.1 Internal Camera Model 

The internal camera model used is similar to the one used in [7]. This model has four 

parameters for the camera: 

Focal length or f is the camera's focal length in pixels. The real value of f is stored in 

a 2 x 1 vector because the pixel are assumed not to have a square shape necessarily. 

So the value of f along the x axis might be different than the value of f along the y 

axis. The ratio of these two values f y /  fx is often called the "aspect ratio". This value 

is usually 1 for rectangular CCDs. 

Principal point c is the coordinates of the image center. This is the point in the image 

where the camera is "looking at". 

Skew coefficient cr defines the cosine of the angle between the x and y pixel axes. For the 

modern cameras available today we can assume cr = 0. 

Distortions are the radial and tangential image distortion coefficients stored in vectors k, 

and kt. 

For example, having a point P = (P,, Py, P,) in the camera reference frame (in 3D 

space)2 we can calculate the projection of that point on the image. Let p be the pinhole 

image projection 

Assuming r2 = p2 + pi, lens distortion is applied 

where dx is the tangential distortion vector3 

'Gradient decent is an algorithm for finding the nearest local minimum of a function. It presupposes that 
the gradient of the function can be computed. It is also called the steepest decent method. 

 he lens is at (O,O,  0) and looks along the Z axis. Y is to the top and X to the right. 

3 ~ h i s  distortion model was introduced by D.C. Brown in 121. The tangential distortion is due to "decen- 
tering" of the lens components. More details are available in Brown's original publication. 
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The final pixel coordinates c in the images are 

where KK is known as the camera matrix, and defined as 

3.1.2 Calibration by Viewing a Checkerboard 

The calibration process starts with taking a few (about 10) pictures of a checkerboard in 

which the dimensions of the squares are known precisely.4 Pictures should be taken from 

different angles. We got the best results by taking pictures from about the same distance 

the actual pictures are taken. Because the size and the shape of the checkerboard is known, 

every picture taken adds a set of equations to the system. The intrinsic parameters of 

the camera are limited. After taking enough pictures it is possible to calculate the those 

parameters as well as the exact location of the checkerboard in each camera reference frame. 

In other words we can also calculate the location and direction of the camera in each shot. 

Extra equations from the extra shots can be used to improve the accuracy of the calculations. 

Details of solving this system can be found in [22]. 

For each shot of the checkerboard, the corners' coordinates are calculated in two ways. 

First by searching the image for them and second by calculating their locations using the 

camera model and parameters. The more accurate the model and parameters are, the less 

difference there will be between the two sets of coordinates. Using a local search technique, 

the mean square error is minimized and camera parameters are calculated. 

3.2 Stereo Calibration 

Stereo calibration means calibrating the left and right cameras and finding the relation 

between the location and direction of the two. In other words in addition to intrinsic 

4Using a graphics program such as Adobe Photoshop it is possible to print a checkerboard with known 
metrics. So no physical measuring is needed. 
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parameters of each camera we want to calculate a translation and a rotation vector which 

transforms the left camera reference frame into the right camera reference frame. 

Shooting a single set of pictures from the checkerboard with the stereo system provides 

enough data to extract the information needed. The images taken with each camera can 

be used to extract the internal parameters of that camera. As we noted in Section 3.1.2, it 

is possible to calculate the location and direction of the camera in each shot with respect 

to the checkerboard. Knowing the fact that the coordinates of the cameras with respect 

to each other are constant, it is straightforward to extract the rotation vector om and the 

translation vector T. The om vector can also be represented as a rotation matrix R where 

and rodrigues is a mathematical functions that transforms a 3D rotation vector of size 3 x 1 

to a 3D rotation matrix of size 3 x 3. The result of a stereo calibration using 10 different 

shots is shown in Figure 3.2. 

3.3 Back-projecting into 3D Space 

The transformations described in 3.1.1 are not reversible. It is not possible to say which 

point in 3D space was projected into a pixel in an image. There are an infinite number of 

points in the space that can project onto a single point in an image. Usually we see only 

the closest one to the camera. However, all those points in the space lie on the line that 

goes through the point on the image and the center of the camera lens.5 Any point on that 

line could be the point that we actually see in the picture. 

Stereo imaging is about taking two shots at the same time from a single scene. Any 

particular point in the scene which is present on both left and right images has one projection 

on each image. Those two projections each specify a line through the space whose all points 

could be the actual point in the scene. Those two lines intersect in only one point.6 

For any point on one of the images ( 4 )  knowing the corresponding point on the other 

image (P,), using the technique described above we can calculate the exact location of 

 his is assuming the camera is a pinhole camera which is not an unrealistic assumption. 

61f the cameras are calibrated accurately, those two line will intersect. Small errors in calibration results 
in two lines narrowly passing each other. In order to take care of such cases, instead of intersecting the two 
lines we choose the point that has the minimum total distance from the lines. If they intersect that point is 
at the intersection, otherwise it is the best estimate. 
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Figure 3.2: Result of a stereo calibration using 10 different shots. Location of the checker- 
board in different shots and left and right cameras with respect to each other (all coordinates 

- in left camera reference frame) 
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Figure 3.3: Back-projecting into 3D space. Pl and P, are left and right projections of P. 
Cl and C, are the coordinates of the centers of the left and right cameras. The coordinates 
of Cl, Pl, C, and P, are known in the space. 

the point in the scene ( P )  that projected onto those two points in the images. Figure 3.3 

is helpful in understanding the geometry of the problem. Since the calibration data are 

available the coordinates of Cl, Pl, C, and P, are known and by intersection the lines 

passing Cl, Pl and C,, P, we can calculate the coordinates of P. 
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Deformable Models 

With the increasing role of medical imaging in the diagnosis and treatment of diseases, 

the challenging task of processing medical images using computers and extracting useful 

information has become more important. Image segmentation is to distinguish objects from 

background. There are different approaches to this task. Deformable models are among 

them. 

A deformable contour is a planar curve which has an initial position and an objec- 

tive function associated with it. A special class of deformable contours called snakes was 

introduced by Witkin, Kass and Terzopoulos [9] in which the initial position is specified 

interactively by the user and the objective function is referred to as the energy of the snake. 

The snake then moves on the image to minimize its energy. This energy depends both on 

the shape of the snake and the features of the image. 

4.1 Snakes 

Snakes or active contours are widely used in computer vision and image processing for 

segmentation purposes.They are also used in motion tracking 1181 and shape modeling [16]. 

As introduced in [9], "a snake is an energy-minimizing spline guided by external constraint 

forces and influenced by image forces that pull it toward features such as lines and edges." 

What makes snakes reliable is the effect of internal forces on the shape of the contour that 

makes it less sensitive to noise in the image and gaps in the boundaries. 

The same idea has been used in segmenting 3D volumes to yield surfaces around the 

target object. These active surfaces deform according to similar rules that exist for active 
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contours. They have internal forces that resist extreme changes in surface normal and 

position during the segmentation. 

A traditional snake is a curve x(s) = [x(s), y(s)], s E [0, 11, that moves on an image to 

minimize the energy functional 

where x' and x" are first and second derivatives of x with respect to s. There are two 

parameters in (4.1), a and P that are weighting parameters that control the snake's tension 

and rigidity, respectively. The external energy function in (4.1) Eat is designed to have 

smaller values near the features of interest such as edges. 

Given a gray level-image I (x ,  y) a typical external energy designed to push an active 

contour toward the boundaries is 

where G,(x, y) is a twedimensional Gaussian function with standard deviation of o around 

the point (x, y), V is the gradient operator and * is convolution. Assuming an edge detection 

filter has been applied to the image the formula can be simplified to1 

where Ib is a binary black-on-white edge map. 

Applying the Gaussian smoothing filter is very useful in tackling the problems caused 

by noise in the images.' Also the value of o is usually used to change the "capture range" 

of the active contour. Increasing the value of o reduces the sensitivity to small objects 

and at the same time increases the distance at which the boundary is felt by the contour. 

However, it is not possible to increase o very much because the details of the image will 

be lost. Using this approach for increasing capture range is not very successful. A sample 

force field resulting from this approach is shown in Figure 4.1. The gradient of the energy 

'using this technique, the task of detecting the edges can be separated from the design of the external 
energy function. This technique has been used in this work to make use of color information in edge detection. 
A separate module that is capable of using color information is used to calculate the edge map and that 
simple and single-channel edge map is used in calculating the external forces. Section 5.1.1 contains the 
details. 

 he gaussian smoothing filter can be applied either before the edge detector or after. In our work, we 
applied it before edge detection. The binary edge map was used directly in calculating the external forces. 
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Figure 4.1: Normalized force field resulting from traditional potential forces. The image on 
the left is taken of a white patch on a rock. More picture are available in Chapter 6. 

function (VE&) produces this field. Note that the vectors shown in the right hand side of 

the figure are normalized to have a unit length (except for zero vectors). The actual lengths 

of the vectors are larger near the edges and get smaller as we move away from them. This 

has been done to make the direction of the vectors easier to observe. 

A snake that minimizes E satisfies the Euler equation [9] 

Assuming F*t = axl'(s) - ,f3x1"'(s) and F& = -VE& this can also be viewed as a force 

balance equation 

Fint + F- = 0 

In order to find a solution to (4.4), the contour is made dynamic by making x a function 

of time as well as s. Then the partial derivative of x with respect to time is set equal to the 

left hand side of (4.4) 

After few iterations3, when the solution x(s,t) stabilizes, the term xt(s, t) disappears and 

we get a solution to (4.4). This is a gradient descent algorithm designed to find a minimum 

for E. 

3By discretizing the equation along the time axis and solving the discrete system iteratively we find a 
solution to it. 
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To add additional flexibility to external forces, more complicated fields may be used 

to push the snakes. A good example of this approach are the balloon models[4] in which 

pressure or inflation forces are applied in addition to edge map potential forces. These kind 

of extra forces are used to move the snake toward the features of interest and overcome 

the short capture range of potential forces. The other reason that necessitates use of other 

external forces in addition to potential force is the fact that convergence to concave regions 

is a problem in traditional snakes, because the contour is not made to progress into the 

concavities. 

Balloon models, even though they solve some of these problems, have their own chal- 

lenges. For example, the strength of the pressure forces may be difficult to set, since they 

must be large enough to overcome weak edges and noise, but small enough so they do not 

overwhelm legitimate boundary forces. 

4.2 Gradient Vector Flow 

One of the other methods for applying external forces to the contour is Gradient Vector 

Flow as described in [20, 211. The GVF field points toward the object boundary when very 

near to the edge, but varies smoothly over homogeneous image regions. The main advantage 

of the GVF field is that it can attract a snake from a long range and can force it into the 

concavities. 

An edge map is defined as 

f (x, Y) = -Eext(x, Y) 

having the property that it is larger near the edges. The field V f used in traditional 

snakes has vectors pointing toward the boundaries, but with a narrow capture range. Also, 

in homogeneous regions where I (x ,  y) is constant, V f is zero and there is no information 

about nearby or distant edges. These properties were noticeable in Figure 4.1. 

Xu and Prince in [20] defined the gradient vector flow field to be the vector field v(x, y) = 

(u(x, y), v(x, y)) that minimizes the energy functional 

This variational formulation follows a standard principle, that of making the 

result smooth when there is no data. In particular, we see that when lV f 1 is 

small, the energy is dominated by partial derivatives of the vector field, yielding a 
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smooth field. On the other hand, when (V  f 1 is large, the second term dominates 

the integrand, and is minimized by setting v = Vf.  The parameter p is a 
regularization parameter governing the tradeoff between the first term and the 

second term. This parameter should be set according to the amount of noise 

present in the image (more noise, increase p). 

Using the calculus of variations [5], it can be shown that (4.6) can be minimized by 

treating v and v as functions of time and solving the following equations [20] 

w(x ,  y, t) = p v 2 4 x ,  Y, t) - w, Y, t) - fx(x, Y)) . (fx(x, d2 + f y k  d 2 )  

vt(x, y, t) = pv2v(x,  y, t) - (v(x, Y ,  t) - f y  (2, Y)) . (fx(x, d2 + f y h  d 2 )  

in which v2 is the Laplacian operator. 

By replacing the potential force -VEext in (4.5) by v(x, y) we get 

xt (s, t) = axI1(s, t )  - Px'II1(s, t) + V 

which is used as the dynamic equation of G V F  snake.4 A simplified version of the Matlab 

code written by Xu and Prince that is used in GVF calculation is displayed in Program 4.1. 

As can be seen in Figure 4.2, the resulting field of solving (4.8) has a much better capture 

range and is much more tolerant to the initial contour. Note that because of the way the 

edge detection module works, the borders of the image are treated as edges. So if the snake 

gets close enough to  the border, the "gravity" of the border outperforms that of the actual 

object. This must be taken into consideration when initializing the contour. 

4.3 3D Contours 

Most of snakes work has been either on 2D deformable contours or 3D deformable surfaces, 

while the focus of this thesis is on 3D active contours. This work is on segmenting objects 

on the surface of a sub-manifold. 

One example of such objects are oral lesions. The lesion is on the surface of a 3D object 

like a tongue. Calculating the 3D contour around the lesion is very helpful for measuring 

4 ~ h i s  equation can also be solved by discretizing along the time axis and iterating. 
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function [u,vl = GVF(f, mu, ITER) 
%GVF Compute gradient vector flow. 
% [u,v]=GVF(f,mu,ITER)computesthe 
% GVF of an edge map f mu is the GVF regularization coefficient 
% and ITER is the number of iterations that will be computed. 

[m,n] = size(f); fmin = min(f(:)); fmax = max(f(:)); 
f = (f -f min) / (f max-f m i d  ; % Normalize f to the range [O, 11 

[f x , f yl = gradient (f ; % Calculate the gradient of the edge map 
u = fx; v = fy; % Initialize GVF to the gradient 
SqrMagf = f x . *f x + f y . *f y ; % Squared magnitude of the gradient field 

% Iteratively solve for the GVF u,v 
for i=l:ITER, 

% 4*de12(u) is a fhite difference approximation 
% of Laplace's differential operator applied to u 
u = u + mu*4*de12(u) - SqrMagf . * (u-fx) ; 
v = v + mu*4*de12(v) - SqrMagf.*(v-fy); 

end 

Program 4.1: Matlab code to calculate gradient vector flow 

Figure 4.2: Force field resulting from gradient vector flow 
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its dimensions. Using images taken with a calibrated camera the dimensions of the lesion 

can be measured very accurately. 
A 3D snake is a curve x ( s )  = [ x ( s )  , y ( s ) ,  z ( s ) ] ,  s  E [O, 11, that moves on the surface of an 

object to minimize the energy functional 

We will propose a method to deform such 3D contours on the surface of objects. 



Chapter 5 

Proposed Method 

The method proposed is this thesis has two phases: 

3D contour initialization 

Refinement 

The goal of the initialization phase is to place the 3D contour at a location very close 

to the optimum answer. This is done by performing the segmentation on 2D images inde- 

pendently. The two resulting contours are then matched to find the corresponding points. 

Having the correspondence between the points of the two contours it is possible to calculate 

the 3D coordinates of the actual contour. 

Without this approximation to the answer, it would be very difficult to guide the 3D 

contour in space toward the final contour. On the other hand the result of the initialization 

phase is far from perfect because of the inherent noise in the matching process. Small 

mistakes in finding the correspondences can result in large errors in the depth calculations 

[19]. As we can see in Figure 2.1 when d l  f is big, small changes in a or ,fl can result in 

big changes in d. In addition, because of imperfectness of the snakes algorithm on planar 

images and the differences of the two images, not every point from the left contour has a 

match on the right one and vice versa. All these problems yield a rough and noisy contour 

after the initialization phase, which in spite of being very close to the best answer is far 

from perfect. Figure 5.1 displays a sample output from the initialization phase. A few spikes 

along the Z axis are noticeable in the picture. These are the results of the mistakes made 
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Figure 5.1: Result of 3D contour initialization phase 

by the matching process.1 

All the problems mentioned above necessitate the existence of a second "refinement" 

phase. In this phase the resulting 3D contour of the first phase is manipulated by applying 

external and internal forces, which in addition to driving it toward the final answer, make 

it smooth as in planar snakes. Satisfying the internal constraints of the snake makes sure 

that we get a reasonably smooth contour and reduces the effects of noise and error in 2D 

segmentations phase. 

These errors might be caused by lighting variations, specularity, perspective distortion 

and other reasons. Some of these problems, particularly specularity, cause the snake to 

include unwanted areas or exclude wanted regions. Having two different views of the object 

causes the specularity effect to show up on different parts of the images. Refining the contour 

in the final stage by applying forces from both images at the same time reduces the effect 

of such factors. 

5.1 Initialization Phase 

Initializing the contour by approximating the final answer helps in stabilizing it on the 

surface of the object. Without this, it would have been very hard to drag the snake in 3D 

space toward the region of interest and to put it on the surface. 

 he^ appear mostly in the areas where the epipolar line becomes tangent to the 2D contour. For more 
information refer to Section 5.1.2. 
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The initialization phase performs a segmentation on the left and right images indepen- 

dently. Snakes and Gradient Vector Flows[20] are used to segment the regions. 

5.1.1 2D Segmentation 

Segmentation of the region of interest on the planar images is done using the traditional 2D 

GVF snakes. Therefore, it involves calculating the gradient vector flow on the left and right 

images independently and then deforming an active contour on both images to capture the 

boundaries. 

Calculating the Gradient Vector Flow 

Before calculating the gradient vector flow field, the image is smoothed out by convolving 

with the following gaussian kernel: 

The actual kernel width is truncated to 80 and it is normalized to have C C k(i, j )  = 1. 

For a > 3, the fast fourier transformation is used to accelerate the convolution. Each color 

channel is smoothed independently. It is also possible to use other color spaces such as 

CIE L*a*b*. 

After that, an edge detector filter is applied to the smoothed image. In order to make 

use of color information in the image, the Sobel filter is used on each color channel and the 

results are combined. Then a cutoff is selected using the same method used by Matlab's 

edge f ~ n c t i o n . ~  The Matlab code performing this process is shown in Program 5.1. The 

advantage of using this cutoff value is that only stronger edges stay in the image and rest 

are thrown away. Also, the rest of the process will not be sensitive to the strength of the 

edges in the original images. 

One technique that can be used in images with noisy edge maps is to perform an erosion 

followed by a dilation on the edge map. This is called morphological opening[l4] and is useful 

for removing isolated single dots in a binary image. This can be very helpful when in spite 

of smoothing the image the edge map is full of such isolated dots. This usually happens 

when the region of interest has a harsh texture. 

2~ccording to Matlab documentations, the cutoff is determined based on RMS estimate of noise. Mean 
of the magnitude squared image is a value that is roughly proportional to SNR. [12] 
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rh = conv2(r, k, 'same'); 
rv = conv2(r, k', 'same'); 
gh = conv2(g, k, 'same'); 
gv = conv2(g, k', 'same'); 
bh = conv2(b, k, 'same'); 
bv = conv2(b, k', 'same'); 

. . . take care of the image boundaries . . . 

% determine the threshold; see page 51 4 of "Digital Imaging Processing" 
% by William K. Pratt 
% Determine cutoff based on RMS estimate of noise 
% Mean of the magnitude squared image is a 
% value that's roughly proportional to SNR 
% This is the same method used by Matlab's edge function 
cutoff = 4 * mean2(E); 
E = double(E > cutoff); 
if params. erdi , % perform erosion and dilation? 

se = strel ('disk' , params. erdi , 0) ; 
E = imopen(E, se); 

end 

Program 5.1: Matlab code to detect edges in a color image 
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The problem of using (4.7) in calculating the gradient vector flow is that in high resolu- 

tion images as we get farther from the edges it takes more iterations to propagate the effect 

of the edges. This can make the process of calculating the GVF field very time consuming. 

In order to overcome this problem we used a multi-resolution technique. The GVF field is 

first calculated for a scaled down version of the image with a length of about 200 pixels.3 

This low resolution field can then be used either to interpolate the high resolution field's 

values, or to fill in the initial values of higher resolution field before performing more iter- 

ations. This makes the propagation process much faster. Our studies showed that simply 

interpolating the values for high resolution image is sufficient for getting a precise field. 

Deforming the 2D Snakes 

The 2D contours are initialized by the user roughly around the final answer. They can simply 

be circles around the region of interest. Using (4.7) and (4.8) deforming the snakes on the 

2D plane is straightforward. By discretizing the time axis and the value of s, deformation is 

performed in multiple iterations. In each iteration t ,  a Ax(s, t) is calculated for every value 

of s. The new location of each node in the contour is calculated as 

The problem that is encountered after a few iterations is that some of the nodes might 

become too far or too close. Neither case is desirable because 

0 Nodes that are too close waste computations. Having tens of nodes in one place is 

no better that having just one. Considering that we might have a limited number of 

nodes on the contour, these nodes also reduce the precision in the regions with less 

nodes. 

0 Nodes that are too far cause part of the contour to become less affected by external 

forces coming from the image. The precision of the contour is also jeopardized in the 

sparse areas. 

For this reason every few iterations, the nodes on the contour are rearranged to maintain a 

minimum and a maximum distance from each other. During this interpolation process, new 

30nly the rectangle around the area of interest (specified by user) is used in calculating GVF, not the 
whole image. The length of this rectangle is scaled down to 200 pixels, not the whole image. The original 
images used in our experiments were 5 megapixels or 1944 x 2592. 
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Figure 5.2: Snake interpolation; before (left) and after (right) 

locations on the continuous contour are selected as representative nodes and the locations of 

those nodes are interpolated from the location of the old nodes. The effect of this procedure 

is shown in Figure 5.2. 

In order to remove the nodes that are too close, the distance of each node to its next 

neighbor is calculated. Then the nodes with the distances shorter than a minimum threshold 

are eliminated. After that, new nodes are inserted between the nodes that have distances 

longer than a maximum threshold. The coordinates of these new nodes are interpolated 

based on the other nodes. The insertion procedure is repeated until there are no adjacent 

nodes with distances longer than the specified threshold. 

5.1.2 Finding the Corresponding Points 

As indicated in Chapter 2 the most challenging task of stereo vision algorithms is finding the 

correspondences between left and right images. Rectifying the images and only searching 

the epipolar line considerably enhances the performance of the matching process. 

In the case of matching the left and right contours there is no need to rectify the images. 

As displayed in Figure 5.3, any particular point on the left image such as Xl is the projection 

of a point 0 in 3D space that has to be on the line passing Xl and 01 (the location of left 

camera or the origin of the left camera reference frame). The projection of this line on the 

right image that is shown in yellow and passes C, and X,, is called the epipolar line and the 

corresponding point of Xl is constrained to lie on this line. The coordinates of this line can 
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Figure 5.3: Epipolar Geometry 

be found by projecting 2 arbitrary points of the line passing Cl and Xl on the right image. 

Figure 5.4 shows the epipolar line of the specified point on the left image as a dashed 

yellow line on the right image. The corresponding point of that particular point on the left 

image is constrained to be on this line. 

What helps us even more in matching the two contours is that we know that corre- 

sponding point to each point of one contour is somewhere in the neighborhood of the other 

contour. Intersecting this region with the epipolar line results in a very small region that 

needs to be checked to find the matching for any point. This region is shown with black 

dots around it on the right image in Figure 5.4. 

The matching function used to measure the similarity of two patches PL and pR of size 

h x w x 3 around the points p~ and p~ is defined as 

Kanade and Okutomi in [8] propose an algorithm with an adaptive window size to maximize 

the performance of stereo matching. However, for the sake of simplicity we decided to use 

a fixed window size. 

5.1.3 Removing the Irrelevant Nodes 

The resulting 3 D  nodes from the previous section form a contour with some big spikes as a 

result of noise and error. It is helpful to remove or rectify these kind of nodes before starting 

the final phase. The nodes that are known to be irrelevant beforehand can be detected using 

several techniques. One simple way of doing so is assuming the nodes are almost on a plane 
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Figure 5.4: Matching left and right contour nodes; The epipolar line on the right image is 
shown in dashed yellow. The region that is checked for finding the match for the point on 
the left image, is marked with blue stars on the right image. Images on the bottom are 
enlargements of sample SL and SR patches that have most similarity. 

. - 
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% perform a principle component analysis 
[coeff , score, latent] = princomp(xyz) ; 

% sc3 is big for "bad" xyz 's. It  's the weight of the "bad" component 
% in xyz 's. assuming xyz7s are almost on a plane. 
sc3 = score ( : ,3) ; 

% remove the ones with sc3 > avg+stddev 
xyz( : ,f ind(sc3 > (mean(sc3)+std(sc3)) 1) = [I ; 

Program 5.2: Matlab code to remove irrelevant nodes in initialization phase 

and removing the ones with enormous distance from the plane that fits to all nodes. We 

did that by performing a principle component analysis on the coordinates of all the nodes. 

The first two principle component vectors have the maximum variance and are on plane 

that best fits the nodes. The third vector is normal to this plane and if we translate the 

node coordinates to this new coordinate system, the nodes with highest third coefficients 

are the ones that are farthest from the plane. We chose the ones whose absolute value of 

coefficients where higher than mean plus standard deviation of 

The code fragment that performs this removal can be seen on Program 5.2. Figure 5.5 

shows the result of running this code on the nodes of the contour displayed in Figure 5.1. 

5.2 Refinement Phase 

After initializing the contour to a location very close to final answer, it is time to "refine" 

it to get the best result. In order to perform this refinement we define the external and 

internal forces affecting a snake in 3D space. As before [9] we have the following formula 

for computing the energy of an snake:5 

4 ~ s  we will see in Section 6.3 this approach cannot be used when the contour is not somewhat planar. 
Other approaches such as performing local PCA for each nodes neighborhood can be used in such cases. 
Because this step does not play a significant role in our work we can skip it in non-planar cases. Internal 
forces of the snakes will cancel out the negative effect of these bad initializations. 

5 ~ t  the early stages of this work, when we did not have the contour init ialization phase, we were not 
successful in absorbing the snake toward the lesion being segmented. The contour was very unstable in 
3D space when it was far from the final answer. In order to make it more stable we tried adding more 
complicated internal forces to Equation 4.1 such as a force that resisted twisting in the snake. Also our first 
approach to 3D snake was based on pressure forces (inflation) to push the snake toward the lesion. These 
forced proved to be very problematic for a 1D contour in 3D space. Later we decided to use gradient vector 
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(a) (b) 

Figure 5.5: Before (a) and after (b) cutting irrelevant nodes in initialization phase 

The difference between a 2D and a 3D snake (3D in the context of this work) is in the 

Eext factor. As previously mentioned in Chapter 4, the formula usually used as Eext is 

as introduced in [9]. Xu and Prince [20] used the generalized diffusion equations known to 

arise in such diverse fields as heat conduction, reactor physics, and fluid flow [6] to calculate 

a gradient vector flow to apply the external forces on the snake. 

These forces work perfectly well for planar snakes, but cannot be used directly when 

the snake is in 3D space and the forces are defined on planes of projected images. In order 

to apply the external forces, we need to calculate a 3D gradient vector flow. We will not 

actually calculate the vectors for all the points in 3D space, but will provide a function to 

calculate the direction and strength of the vector for any given point. In each iteration this 

function is applied on each node of the contour to calculate the external force. 

5.2.1 Applying External Forces 

In addition to internal snakes forces, external forces from the image still need to be applied 

to the contour. One obvious force needed in 3D space is a force to push the contour in a 

flows for that purpose. After adding the initialization phase, the contour was pretty stable near the final 
result and we decided not to change the original snake energy formula. 
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way that its projections move towards the edges of the region of interest on both left and 

right images. The other force needed is one that keeps the nodes on the surface of the sub- 

manifold. This force tries to make the projections of the nodes on the images correspond 

to each other. 

Image Gradient Force 

In order to move the nodes in 3D space we extended the gradient vector flow field from 2D 

images to 3D space. Before explaining the details we define the following notation: 

nL(p) and nR(p) are the projections of the 3D point p on left and right images respectively. 

II(pL,pR) is the back-projection of two corresponding points p~ and p~ into the 3D space. 

+ + 
gvfL(pL) and gvfR(pR) are unit vectors in the direction of the gradient vector flow at points 

p~ and p~ in left and right images respectively. 

+ 
For any given point p in the space we define gvf (p) as 

+ 1 
gvf (p) = , v' 

I4 

This vector field applies the 2D vector fields of the images on the projections of a 3D field 

and then back-projects the result into the 3D space. Projection of p on the left image is 
+ 

p ~ .  This point wants to move in the direction of gvfL(pL) on the left image and go to 
+ + 

p~ + g v f ~ ( p ~ ) .  Similarly, p~ on the right image wants to go to p~ + gvfR(pR). If we assume 

that the resulting points correspond to each other, back-projection of them is a point in 3D 

space that moves both projections of p on the left and right images according to their own 
+ 

GVF fields. If we push p towards the II(pL + gvfL(pL),pR + & ~ R ( ~ R ) )  we are satisfying 

both left and right potential forces. The difference between p and this new point is called 
+ 

v' and gvf(p) is defined as normalization of v'. The vector ii does not have a meaningful 

length. Only the direction of it is important, which is why we normalize it. 

Note that the direction we are choosing for gvf(p) does not necessarily maintain the 

node on the surface of the object. It merely tries to satisfy left and right potential forces 
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and may push the node off the surface. We define another external force (correspondence 

force) responsible for maintaining the nodes on the surface. Since each iteration moves the 

nodes a short distance in the space, eventually the correspondence force compensates for 

the occasional bad maneuvers of the image gradient force. 

Correspondence Force 

In order to keep the points on the surface of the sub-manifold we define an energy function 

m : W3 + W for all points in the space that is minimal on the surface and increases as we 

move farther. This function only needs to work properly near the surface as the initialization 

phase has already placed the 3D contour close to it. The matching function defined in (5.3) 

has the same properties. So we can define ml(p)  as 

To take care of the discontinuous and noisy nature of the ml function, we convolve it with 

a Gaussian filter to smooth out the noise. 

The gradient of such an energy function pushes the snake nodes towards the surface. 

In order to calculate  or(^), ml(p)  needs to be calculated not only at  p but in its 

neighboring points in 3D space as well. This enable us to perform the convolution and get 

a stable result for  or(^). 

Combined External  Force 

The two defined 3D forces (image gradient and correspondence) are added together each 

with a weighting coefficient and are used as the external force affecting the snake nodes. 
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5.2.2 Calibration Problems 

One of the problems that arises while trying to calculate and apply external forces is that in 

order to get feedback from 2D images with regard to the quality of the contour we need to 

project the 3D contour onto the two images. As we mentioned in Section 3.3 small calibration 

errors (which always occur) will result in back-projection lines missing each other. In that 

case the point with minimum total distance to the lines is chosen instead of the intersection 

point. The problem is later, when we project that 3D point onto the images, it will not map 

exactly on the same pixels that were used to calculate its coordinates. Our studies showed 

that this problem can be modeled as a shift in 2D coordinates. 

We use a translation vector for each of the left and right images to compensate for the 

effect of inaccurate calibration. Assuming nL(p) is the projection of point p on the left 

image and p~ is the point on the left image used to calculate the external force imposed on 

p from that image 

PL = ~ L ( P )  + ct 
where & is the compensating vector for the left image. For the right image a different vector 

should be used. 

PR = ~ R ( P )  + ZR 

It  is easy to see ZL % -ZR.~ Hence, assuming Z= CL 

Figure 5.6 illustrates the effect of applying the compensation vector when projecting the 

contour on left and right images. 

Calculating Zis as simple as comparing the projection of the initial contour with the 

actual 2D contours used in back-projection and subtracting node locations on the plane. It 

is shown in Program 5.3. 

After several iterations of applying external and internal forces, the 3D contour finally 

converges to a smooth and curved one that lies on the surface of the object. An example 

of such a contour is displayed in Figure 5.7 in blue together with the initial contour in red. 

All the coordinates are in millimeters in left camera reference frame. 

 h he reason is that the point selected instead of the intersection point is of equal distance to both 
lines coming from the left and right images. Furthermore, the shortest path from that point to each line is 
perpendicular to it. This results in equal amounts of shift in opposite directions on left and right projections. 
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I a '  I I I 
Contour shift after projection 

Compensation for contour shift 

Figure 5.6: Compensating for contour shift after projection 

% "xyL" and "xyR7' are the left and right contours. 
% "env" contains camera illformation. 
xyz = backproject (xyL, xyR, env) ; 
xyL2 = mapOnLef t Image (xyz , env) ; 
xyR2 = mapmight Image (xyz , env) ; 
comp = round(mean(xyR - xyR2 - xyL + xyL2) / 2) ; 

Program 5.3: Matlab code to calculate compensation vector 
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Figure 5.7: Final result after refinement in blue together with the initial contour in red 

5.3 Summary 

The method proposed in this chapter can be summarized as follows: 

1. Segment left and right images independently. (results in two 2D contours) 

2. Establish correspondence between left and right contours. 

3. Back-project matching point into 3D space. 

4. Remove obvious noise (irrelevant nodes) from the 3D contour if possible. 

5. Project the 3D contour onto the left and right images and compare with original 2D 

contours to calculate the compensation vector. 

6. Move the snake in 3D by applying internal, GVF and correspondence forces. Apply 

the compensation vector when projecting from 3D to 2D. 
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Experiments and Results 

6.1 Hardware Specifications 

We used two Sony Cyber-shot DSC-V1 cameras bound together in a specially made frame 

to make a stereo camera. Cameras were used in 5 megapixel, macro mode with high JPEG 

quality. We used a LANC Shepherd remote control to synchronize the cameras. Even 

though the shutters were synchronized it was not possible to use the flash. The cameras 

were neither synchronized enough to use a single flash nor out of sync enough to use both 

flashes. The stereo system is shown in Figure 6.1. 

The programs were run in Matlab 7.0.1 on a PC with a Pentium 4 1.7GHz CPU and 

2GB of RAM. The amount of RAM on this machine was not relevant to the measured times 

a s  the program was non memory intensive. (30MB was used for keeping the left and right 

images in memory and the rest was insignificant.) 

6.2 Plain Patch on a Smooth Rock Surface 

This was the simplest case used in writing and debugging the code. Stereo images of a rock 

with a white patch on it where taken. These two pictures are shown in Figure 6.2. Cameras 

were calibrated using a set of 12 pictures taken from a 7 x 9 checkerboard with square size 

of 3cm x 3cm. 

All the figures presented in previous chapters for illustrating the algorithms (except 

Figure 5.6) are the actual results of this case. Figure 5.1 displays the result of performing 

the initialization phase (before removing irrelevant nodes) on this case. Figure 5.4 illustrates 
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Figure 6.1: The stereo camera used in our experiments 

(L) (R) 

Figure 6.2: LeEt (L) and right (R) shots of the plain patch on smooth rock 
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I Overation I Time I Parameters 
I - 1 I I 

I Smoothing/Edge Detection I 3.6s I a = 3 

I 2D Deformation I 4.7s 1 150 iterations I 

I Contour Matching I 14.6s 1 40 x 40 Patch Size I 

p = 0.2, 80 iterations 
a = p = 0.05, rc = 0.6 

-. - 
GVF Calculation 

L I I I 

I Total Time I 26.0s I 

2.1s 

Refinement 

Table 6.1: Runtime details for plain patch case 

the matching process. Figure 5.5 demonstrates the effect of removing the irrelevant nodes. 

The final result together with initial status of the contour is also displayed in Figure 5.7. 

Table 6.1 has a summary of parameters and running times of each stage of the algorithm 

for this case. 

1 .Os 

dmi, and dm, are the parameters used in snake interpolation for adjusting minimum and 

maximum distance between the nodes. 

Epipolar Neighborhood = 5 
a = p = 0.05, rc = 0.1 
50 iterations 

Patch Size is the size of the neighborhood used for matching patches around the nodes. 

(in pixels) 

Epipolar Neighborhood specifies how far from the epipolar line we look for finding the 

best match. (in pixels) 

rc is the weight assigned to the external forces. - 

6.3 Bent Patch on Rock's Edge 

This case was designed to investigate the performance of the system on non-planar curves. 

The same rock used in 6.2 was used again, but the patch was put on the edge of the rock 

and it was bent to a great extent. As it can be seen in Figure 6.3 the difference between left 

and right shots is very small around the patch. Surprisingly the system was again successful 

in measuring the size and reconstructing the 3D shape of the patch's boundary. 
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Figure 6.3: Left (L) and right (R) shots of the bent patch on rock's edge 

Calibration was done with a smaller checkerboard with square size of lcm x lcm which 

resulted in slight inaccuracy in calibration demonstrated in Figure 5.6. 

The initialization phase as shown in Figure 6.4, was able to come up with a good estimate 

for the contour. Because of the non-planar shape of the patch, the simple method described 

in 5.1.3 for removing irrelevant nodes can no longer be used and we simply skipped that 

step. By performing more iterations in the refmement phase, the location of these nodes 

will be rectified. 

After initializing the contour the refinement phase was done. As it can be seen in 

Figure 6.4, this phase compensates for the errors made in initializing the contour. The 

initial curve is displayed in red with stars representing the nodes and the final result is in 

blue with dots as nodes. 

Table 6.2 contains the runtime details for this case. 

We also compared the size of the final contour with physical measurements we performed 

using a O.lmm vernier caliper. Two lengthes were compared; l1 and l2 as it is shown in 

Figure 6.5. 

The error, even though small, is mostly caused by the following reasons 

0 Inaccuracy of the calibration causes errors in projections and back-projections. The 

compensation vectors are helpful for reducing this error but are not successful in 

removing it completely. 

0 Inaccuracy of snakes in detecting edges causes the left and right contours not to be 

completely corresponding. 
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Figure 6.4: Final result for the bent patch in blue; together with the initial contour in red 

cu = /3 = 0.05, n = 0.6 I 2D Deformation I 4.8s I 180 iterations 

Operation 
Smoothing/Edge Detection 
GVF Calculation 

d-=l ,d , ,=3  
100 nodes 

I Contour Matching I 16.8s 1 40 x 40 Patch Size 

Time 
2.8s 
1.5s 

I Epipolar Neighborhood = 5 

Parameters 
a = 3 
,u = 0.2, 80 iterations 

1 Refinement 1 0.9s 1 a = /3 = 0.05, n = 0.1 
50 iterations 

I Total Time I 26.8s l 

Table 6.2: Runtime details for the bent patch case 
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Figure 6.5: Physical measurements performed on the contour 

Table 6.3: Calculated and measured lengths in bent patch case 

11 
12 

In order to demonstrate the benefits of stereo imaging in measuring lengths, we also 

measured the perimeter of the patch using 3 different approaches. 

Physical measurement. We wrapped a string mound the patch and then measured 

the length of the string using a vernier caliper. We tried to be as precise as possible. 

It's fair to say that we had a precision of lmm, so we rounded all the results to the 

nearest millimeters. 

Calculated 
17.0mm 
12.9mm 

3D contour measurement. We measured the length of the final contour displayed 

in Figure 6.4. Since all the coordinates were already in millimeter, this task was 

straightforward. 

2D contour measurement. We measured the length of 2D contour segmenting the 

patch in the left image in pixel. Then we divided this number by the length of the 

l 1  in the image in pixels. This ratio was then multiplied by the actual length of l1 

measure using a caliper. This was to simulate the effect of having a probe with know 

length in the image. This length is best estimate we can get from a 2D image for the 

length of the perimeter. 

Measured 
16.9mm 
12.7mm 

The results of these measurements me in Table 6.4. Whether the physical measurement is 

Difference 
%0.6 
%l.6 
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Table 6.4: Measuring the perimeter of the patch using different apwoaches 

Physical measurement 
3D contour measurement 
2D contour measurement 

Left shot (L) Right shot (R) 

Figure 6.6: Left and right shots (cropped) in the skin texture case 

56mm 
55mm 
47mm 

more accurate or the 3D contour technique is debatable, but it can be seen that the 2D 

measurement is obviously far from accurate. Without having information about the depth 

of an image, it is not possible to judge distances. In this case, the 2D measurement has a 

16% error. 

2% error 
16% error 

6.4 Skin Texture 

This case was designed to evaluate the performance of the system when the edges are not 

clear. This is usual in medical images. The region of interest is a birthmark on the forehead 

of an individual. As it can be seen in Figure 6.6, the edges are blurry and vague. Due to 

large amount of noise in the images, larger values were selected for a and /I compared to 

the previous cases. (abld = /Iold = 0.05, anew = h e w  = 0.35) 

Back-projecting the two 2D contours into 3D space results in the contour shown in 

Figure 6.7. After deforming this contour in 3D space for several iterations, we will reach 

the final result as shown in Figure 6.8. 
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Figure 6.7: Result of the initialization phase for the skin texture 
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Figure 6.8: Final result for the skin texture in blue; together with the initial contour in red 

Projecting this final contour onto the left and right images, results in 2 different 2D 

contours that are illustrated in Figure 6.9. As it can be seen, despite the poor contrast 

between the birthmark and the forehead's skin, the final result is satisfactory. 

6.5 Stereo Camera as a Measurement Device 

Observing the accuracy of our stereo system in measuring lengths, we decided to study its 

performance in doing so independent of the segmentation part. We used the stereo system 

to shoot pictures of a metal object. The pictures are displayed in Figure 6.10. In order to 

get the best results, the cameras were calibrated right before shooting the pictures. 

We measured the width of the object near its head, middle and tail using both vernier 

caliper and the stereo system. Matching points were provided to the system manually. 

Table 6.6 shows the results of our study. As it can be seen, as we get farther from the 

camera the accuracy is r e d u d .  
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Figure 6.9: Projection of the final contour on skin images 

Table 6.5: Runtime details for the textured skin case 

Operation 
Smoothing/Edge Detection 
GVF Calculation 

Table 6.6: Measurements performed at different parts of metal object on its width 

Time 
2.6s 
1.9s 

Near the tail (A) 
Near the middle (B) 

Near the head (C\ 

Parameters 
a = 3, window size: 400 x 400 
p = 0.2, 80 iterations -- 
a! = p = 0.35, K = 0.6 
180 iterations 
dd=2,d-=6 
100 nodes 
40 x 40 Patch Size 
Epipolar Neighborhood = 5 
a! = ,f3 = 0.35, /c = 0.1 
50 iterations 

2D Deformation 

Contour Matching 

bfinement 

Total Time 

Calculated 
18.3mm 
18.3mm 
18.5mm 

2.7s 

18.8s 

1.5s 

27.5s 

Measured 
18.2- 
18.2- 
18.2mm 

Difference 
%0.5 
0100.5 
%l.6 
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Left shot (L) Right shot (R) 

Figure 6.10: Left and right shots of metal object used in measurement 
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Conclusion 

We applied snakes (active contour models) on non-planar surfaces of 3D objects. We also 

used color information to improve segmentation. In addition, we used camera characteristics 

and stereo calibration data to perform physical measurements. Combining active contours 

with stereo imaging improved both techniques. 

Segmentation was improved because of the extra information available from a pair of 

images instead of one. These two images, each taken from a slightly different angle, can 

compensate for each other in the areas where noise and specularity cause problems in seg- 

mentation. 

Stereo matching was improved because of internal forces of the contour that try to 

maintain a smooth shape. When the matching process makes mistakes the internal energy 

of the contour increases and causes a resistance force which eliminates the error. 

7.1 Contributions 

Our research in this thesis covered a wide area in the subject of computer vision. Stereo 

vision, camera calibration and deformable models are each of interest in the computer vision 

field. However, our contributions in this work can be summarized into the following: 

0 Design of an effective method for initializing a contour around a region on a 3 0  

volume. We proposed a technique for initializing the active contour without recon- 

structing the depth map for the whole image. Also the need for image rectification, 

which can be a time consuming process, was eliminated. 
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Extension of snakes (active contours) from planar surfaces to non-planar surfaces of 

3 0  volumes. We designed external forces to deform the active contour in 3D space. 

Different approaches were investigated and the most robust/effective one was pro- 

posed. We also investigated more sophisticated internal forces for 3D snakes (such as 

twisting forces) and other external forces (such as inflation). 

More effective segmentation using active contours. Using complementary informa- 

tion available from stereo images we reduced the effect of noise and specularity in 

segmentation. 

Measurement i n  physical units. In addition to segmenting regions of interest we provide 

real dimension of the area of interest. This information can also be used to calculate 

the area and the perimeter of regions. We also showed that stereo imaging can be 

used as a means of measuring lengths and dimensions with relatively high precision. 

7.2 Future Work 

This work can be extended in different ways and directions. We currently have the following 

ideas that can be explored: 

Better matching i n  the 30  initialization phase. The current system tries to match left 

and right contour nodes independently (node by node). Information about neighboring 

nodes' matches can be used to improve the accuracy of search for the corresponding 

node. 

Better removal of irrelevant nodes. Currently we use a simple method for removing 

irrelevant nodes after initialization. More sophisticated algorithms can be employed to 

find these nodes. Furthermore, instead of removing such nodes, we can try to adjust 

their position based on neighborhood nodes. 

Better matching functions. More advanced matching functions can be employed to 

find the corresponding points. Edge map information can be used to improve the 

quality of this function. Also adaptive window sizes as suggested by [8] can be used 

to increase the performance and accuracy of this process. 

Applying different kinds of filters to  improve edge detection and matching. Various 

kinds of filters can be applied to the original images to increase the quality of edge 
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detection and matching functions. Also different transformations of the original images 

may be used for different purposes. (edge detection or matching) 

0 Runtime user interaction. Currently we could put marks on the original images to 

guide the snakes (even though no such marks were necessary in either of the cases 

presented in Chapter 6). These marks can emphasize the edges that are not visible to 

the program. By marking the corresponding edges on both images, we can also help 

the matching process. However, more dynamic interactions can be made possible. It 

is also possible to give the user the ability to modify the contour in 3D and see the 

projections. 

0 Color Correction. In some case, left and right images have different color themes. For 

example one picture might be generally brighter than the other or more saturated or 

more reddish. This causes problems in matching process. It also may cause initial 

left and right contours to be completely different. For example in the case of medical 

images, one contour may capture a wider range than the other. Performing a color 

correction beforehand, may reduce this sort of difficulties. 

This work can be used as a precise measuring tool. Measurements performed by our 

algorithm in cases with high contrast edges is comparable with a vernier caliper. We also 

showed that a calibrated stereo system with human interaction can be used as a tool for 

measuring lengths. This can be very helpful in cases where using tools like vernier calipers 

or micrometers is not practical. Impracticality can be either due to lack of access or for 

sanitary reasons in case of medical imaging. 
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3D reconstruction, 7 

active contours, 14 
active surfaces, 14 
adaptive window size, 27 
aspect ratio, 9 

back-projecting, 11 
back-projection, 5, 31, 33 
baloon models, 17 
bent patch case, 38 
binocular vision, 4 
birthmark, 42 

calculus of variations, 18 
calibration 

camera, 7-13 
problems, 33 
stereo, 10 

camera calibration, 2, see calibration, cam- 
era 

camera matrix, 10 
capture range, 15, 17, 18 
CCD, 9 
checkerboard, 8, 10, 36, 39 
compensating vector, 33 
concavities, 17 
cor, 32 
corner extraction, 8 
correspondence force, 32 
corresponding points, 4 
cutoff, 23 

deformable models, 2, 14-20 
dilation, 23 
disparity, 4, 5 

distortion, 1 
radial and tangential, 9 

edge detection, 15, 18, 23 
edge map, 15, 17 
epipolar constraint, 4 
epipolar line, 5, 26, 27 
erosion, 23 
Euler equation, 16 
extrinsic parameters, 7 

fast fourier transform, 23 
focal length, 9 
force balance equation, 16 

gaussian function, 15 
gaussian kernel, 23 
generalized diffusion equations, 30 
gradient, 15 
gradient descent algorithm, 16 
gradient vector flow, 17, 23, 30 
GVF, see gradient vector flow 
--f 

gvf, 31 

homogeneous regions, 17 

image gradient force, 31 
image rectification, 7, 26 
image segmentation, 2 
inflation, 17 
inflation force, 29 
initialization phase, 21, 22, 36, 39 
intensity images, 2 
interpolation, 25 

snakes, 25 
intersection point, 11, 33 
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intrinsic parameters, 7, 10 
irrelevant nodes, 27, 38, 39 

JPEG, 36 

Laplacian operator, 18 

macro mode, 36 
Matlab, 36 
megapixel, 36 
monocular vision, 4 
morphological opening, 23 
multi resolution, 25 

occlusion, 4 

Pentium 4, 36 
perspective, 1 
n, 31 
r ,  31 
pinhole projection, 9 
plain patch case, 36 
principal point, 7, 9 
principle component analysis, 29 

rectification, 5 
refinement phase, 22, 29, 39 
rigidity, 15 
rodrigues, 11 

similarity, 27 
skew coefficient, 9 
smoothness constraint, 5 
snakes, 14, 23 
sobel filter, 23 
stereo imaging, 1 
stereo matching, 27 
stereo vision, 4-5 
stereoscopic vision, 4 

tension, 15 
twisting, 29 
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variance, 29 

weighting coefficient, 15, 32 


