
An APL Subset Interpreter
for a N e w Chip Set

James Hoskin

MSc (Physics), University of Calgary

A THESIS SUBMI 1 TED IN L'ARTlAl f Ul FILLMENT OF

THE REQUIKEMENTS FOR THE DEGREE OF

MASTER OF SCIFNCE

In the School

of

Cornput~ng Sc~enre

" James Hosk~n 1987

SIMON FRASER UNIVERSITY

May 1987

All rights reserved This thesis may not be

reproduced in whole or in part. by photocopy

or other means w~thout the permission of the author

Approval

Ti t le of Thesis: An APL Subset Interpreter for a New Chip Set

Name. James D Hoskin

Degree: Master of ~ i i e n c e

Examining Committee.
Chairperson. Dr. W. S. Luk

Dr. R. F. Hobson
Senior Supervisor

Dr J& Weinkam," I/,

Dr. R. D. Cameron
External Examiner

Dr. Carl McCrosky
External Examiner

April 28, 1987

Date Approved:

PART I AL COPYR l GHT L I CENSE

I hereby g ran t t o Simon Fraser University the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from t h e

l i b r a r y o f any o ther un i ve rs i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r publication o f t h i s work f o r f i n a n c i a l ga in sha l l not be a l lowed

w i thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

-- -

Author:

(s ignature)

(da te)

Abstract

The APL language provides a powerful set of functions and operators t o handle dynamic

array data. Current APL interpreters are hampered by excessive interpretive overhead.

The Structured Architecture Machine project has produced a machine architecture (SAM)

and an intermediate language (ADEL) intended t o allow an APL interpreter to execute

almost as quickly as good compiled code for most applications

This thesis describes a microcoded interpreter for a subset of APL It differs from

earlier programs used for preliminary benchmarks 3nd architecture evaluation irl that i t

cortlains a complete memory management subsysterrr dnd d nearly complete linker and

some of the tables have been moved from dedicated hardware to segmented memory

Performance measurements show that SAM APL is two orders of magnitude fastw than

,I good m~crocornputer APL and suggest that the implementation behaves morr hke ,I

cor~ipded langudge than dn ~nterpreted one Worst-case performance is not as good as

prev~ously predicted Several approaches to increasing execution speed are discussed and i t

is expected that the ultimate performance will meet the goals of the SAM project

The mterpreter developed in this project is intended to become the nucleus of a practical

APL system The final system will require code for the primitives. operators. and data

types which were omitted in this version, an error handler, and input/output routines

tailored to the final hardware design

Back in the old days, in 1962
A feller named Ken lverson decided what to do.
He gathered all the papers he'd been writing for a spell
And put 'em in a little book and called it APL

Now, writing jots and squiggles i s a mighty pleasant task
But it doesn't answer quest~ons that a lot of people ask
Ken needed an interpreter for folks who couldn t read
So

from "APL Blossom Time"

J. C. L Guest

Acknowledgements

I gratefully acknowledge the help and support of the following good people:

0 Dr. Richard F. Hobson. my senior supervisor, who knows more about the state
of the software than is decent for a hardware specialist.

0 Ted Edwards, who initiated me into the mysteries of APL and encouraged me
throughout this project.

0 Janice Cranna. Don Gamble. John Simmons. Ron Spilsbury. and Warren Strange,
who provided much-needed assistance in keeping my part of the project in tune
with the rest of i t .

The APL mailbox group on the I. P. Sharp timesharing system, and the
Vancouver APL Users Group, for listening to my bad ideas and telling me their
good ones

M y wife, Tamarissa, who helped keep me going

This work has been partially supported by the Sc~ence Council of B C. and the S F U

Centre for Systems Science

Table of Contents

Approval

Abstract

Acknowledgements

Table of Contents

List of Tables

List of Figures

1 lntsaduction

L Z Interpreted Languages
1 2 Languages and Data Structure
1.3 Previous and Related Work

2. The SAM Architecture

2.1 The ASP Machine Model and Microcode Support Facility

2 1 1 Interpretation
2.1 2. Measurement
2 1 3 Multitasking
2.1 4 Compilation
2 1.5 Modules

2.2. The ADEL Intermediate Language

3, The Memory Manager

3 1 Background
3 2 1 The Basrc Memory Management Problem

3 1 2 Paged Memory
3 1 3 Segmented Memory
3 1 4 Fittmg Strategies

3 1 5 Buddy systems
3 2. The SAM Segmented Memory Model

3 3 The Present Model
3 4 The Production Model

3 5 rheoretit al Predictions
3 5 1 S~ngle Free Block List
3 5 2. Two Free Block Lists

3 5 3 Buddy System
3 5 4 Comparing the Systems

4. Symbol Table Management

4 1. The Linker
4.1.1 The User Interface

4.2 The Global Symbol Table
4.2.1. Symbol Table Pages
4.2.2 Literals
4.2.3 Symbol Table Garbage Collect
4.2.4. Labels

4 3 Related Environment Tables
4.3.1 The Data Access Table
4 3.2 The Contour Access Table

5. Execution

instruction Fetch
Instruction and Operand Verification
5.2.1, lnstruction Verification
5.2.2 Operand Verifitation
Instruction Execution
Function Call and Return
5.4.1. Call
5.4 2 Return
Primitives
5.5.1. Scalar Functions
5.5.2. Mixed Functions
5.5.3 Array Manipulation Functions
Derived Functions
5.6.1 Special Case Microcode
5 6.2 PMU Derived Functions
5.6 3 General Microcode

6. Performance Considerations

6 1 Control Primitives
6 2 Call/Return Mechanlsrns

6 2.1 The ICKER Function
6 3 Array Arithmet~c

6 3 1 Dragalong and Beating
6 3.2 Derived Functions
6 3 3 Storage States
6 3 4 Arithmetic Coprocessor
6 3 5 Performance Measurements for Array Arithmetic

6 4 Selection Functions
6 5 Sequences of Operations
6.6. Fine-Tuning the M~crocode
6 7 Summary of Performance Considerations

vii

7. Discussion

7.1 Hardware Feedback
7.1.1. Pipe Clear
7 1 2. Triadic Addition
7.1.3. Memory Mapping Table Size

7.2 A Minimal APL Subset
7 2.1 Arithmetic and Logical Functions

7.2.2 Array Manipulation Functions
7.2.3. Array Ranks
7 2.4. Operators

7.3. Microcode Size
7.4 Conclusions

Appcndix A. Glossary of Acronyms

Appendix B. Extensions to APL
B I Nested Arrays
B.2. Operators
B.3 File Systems
13 4 Primitives

8.4.1. New Primitives
B.4.2. Extending Existing Primitives

8.5 Strands and Syntactic Variations
B 6 New Environment Features

B.6 1 Scoping
6.6.2 Event Trapping
B.6 3 Namespace Extensions

B 7 New Data Types
B 7.1 Complex Numbers
B 7.2 Beyond Floatmg Point Numbers

B.7 3 Graphrcs
R 8 Control Structures
B 9 Arrays of Functions

References

List of Tables

Table 2-1:
Table 2-2:
Table 2-3:
Table 3-1:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 6-1:
Table 6-2:
Tabb 6-3:
Table 6-4:
Table 6-5:

Table 6-6:
Table 6-7:

ADEL Formats as of 1984
Meaning of Format Characters
Formats Implemented as of January 1987
Cost of Finding a Free Block
Syntax Checker Table
Semantic Compatibility Table
Semantic Summary Table for Types
Semantic Summary: Shape and Type
Performance of Control Primitives
Measurements of Ackermann's Function
Comparison of 3 ACKER 3 on Various Systems
Comparison of 3 ACKER 2 and 3 ICKER 2
Comparison of ACKER and ICKER on SAM and MTS for Various
Arguments
Costs of Array References. Function Calls, and Branches
Time to Add 1000 Integers

L i s t o f . Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:

Figure 6-5:

Figure 6-6:
Figure 7-1:

Figure 7-2:

Figure 7-3:

Figure B-1:
Figure 8-2:

The SJ16 Microengine
A SAMjr system
A Complete SAM System
The PLUS Microprogram
The SJMC Memory Controller
The SAM Memory Model
Streamed Segmented Memory Access
Memory Management Tables
Memory Manager - Commented Call Tree
Function Internal Form
The Linker - Commented Call Tree
Symbol Table Layout
Relationship Among interpreter Tables
Conceptual Diagram of Verification Process
Some Possible Branching Techniques
Ackermann's Function
lterative Ackermann's Function
Comparison of Recursive and lterative Performance IN SAM and
M T S APL
Cost Versus Instruction Count in Recursive and lterative Versions
of Ackermann's Function
Speeding Up List Search Microcode
Vector APL Function to do Scalar Arithmetic on an Array of
Arbitrary Rank
Vector APL Function to do Reduction on an Array of Arbitrary
Rank
Vector APL Function to do Inner Product on an Array of Arbitrary
Rank
Broad Outline of DLR Microcode
Change to DLR Microcode to Support Nested Arrays

Chapter 1

Introduction

1.1. Interpreted Languages

Program developers are traditionally faced with a clear-cut choice between using a

compiled language or an interpreted one. Languages that support dynamic data structures

are difficult t o compile. Also, i t is usually impossible t o fix and restart a compiled

program at the point where an error was detected

The major disadvantage of interpreted programs has been lack of speed. A traditional

interpreter has t o do almost as much work per line of code as a compiler would, and does

this work every time the line is executed.

One obv~ous solution is to provide both an interpreter and a compiler for the same

language, using the interpreter for development and then compiling the code for production

[Bud81 Bud84. GuW78, Per74. Sah78, Wei79. Wgg851 Both IBM [Dr086. Chi86land

STSC [PM186] have produced partial compilers for their APL systems. For practical

systems ~t may suffice to rewrite the most heavily-used code in a compilable language and

provide a good mterface to compiled modules as part of the interpreter [Wgg86].

Compilation makes sense for programs that will be run many times unchanged. There are

many cases, however, where a program may be written to solve a given problem and

discarded, or when a program is undergoing modification throughout its useful life. For

example, the interpreter developed in this project is a set of APL programs. It is being

fixed whenever bugs are discovered and extended as time becomes available t o implement

more features. It would be a serious nuisance t o face a recompilation cycle every time a

change is made.

Another approach is "incremental compilation" [Van77]. A line of code is translated into

machine code the first time i t is encountered during the execution phase, and the machine

code is retained for subsequent executions of that line. Incremental compilation introduces

a significant trade-off between speed and generality The fastest possible object code for

a given operation would include such details as the rank, shape, type, and location of the

operands explicitly This kind of code would probably be generated by a good interpreter

on any given pass through the corresponding line o f source code. The more specific the

code produced by an incremental compiler on the first execution of a given line, the

greater is the probability that, on a subsequent execution, a property of some operand will

have changed too much to allow the code t o be used.

The advent of microcoded processors suggested a completely different treatment. If the

primitives of the language are written in microcode, then the code generation phase of the

interpretive process will be unnecessary. and execution may be speeded up enough t o

compensate for the time taken by the remaining semantic checking and memory

management tasks [HLL73] and [Zak78] describe two interesting microcoded APL

interpreters The most important example of a microcoded APL is IBM's APL Assist

[HaL76] which supplements an existing APL interpreter with some microcoded routines,

giving a speedup ranging from slight t o a factor of 8. In general. improvements due t o

microcoding some or all of an interpreter on existing hardware have not given performance

approaching the speed of compiled code

Hobson [Hob82. HGT861 has chosen an architectural approach to the problem of

interpretive overhead In his functionally distributed multiprocessor, one unit handles the

interpretation and another does the actual data manipulation. Input/output and user

communication are handled by a third processor. Early benchmarks indicate that the

performance of an interpreter tailored to such a machine can be almost as good as that of

compiled code running on a single-microprocessor system.

The project of developing such an architecture is well under way This thesis deals with

the development of an appropriate interpreter for it

1.2. Languages and Data Structure

The function of a high-level computer language is to insulate the programmer from the

low-level details involved in making a lightning-idiot machine work on a practical problem.

There are two main approaches to this insulation: program structure and data structure.

A "structured" language generally has built-in mechanisms for loops and branches to spare

the programmer from the details of counting and jumping past alternatives, and some way

of preventing unrelated chunks of code from interfering with each other. More advanced

languages have ways to link separately-compiled programs. resolve forward references, and

so forth

A data structure, such as a Lisp list or a SNOBOL string, is a way of representing a

collection of data objects as a single primitive object. All practical computer languages

support some kmd of data structures, generally arrays. However, many languages, which

will here be called "scalar" languages, do not operate on these structures except in a piece-

by-piece manner The languages such as Lisp. SNOBOL, SETL, APL, and Nial which

actually can operate on data structures as data structures are often called "very high-level

languages", and have been found t o be more straightforward to use (on problems which

suit their data structures) than the scalar languages.

APL is the language chosen for this interpreter APL pioneered the use of "operators"

which apply functions t o arrays. That is. "+" is the ordinary addition function, and "/" is

the "reduction" operator such that +/ARRAY produces the sum along the rows of the

array This approach is more general than simply implementing a "sum" primitive, because

the operator can apply t o a whole set of primitives producing "rowproduct" with the

multiplication function, "rowmaximum" with the maximum function. "columnsum" when used

with the "axis" operator, and so on.

The drawbacks of APL. aside from the interpretive overhead addressed by the SAM

project, are its unusual character set, its lack of convivial ways to structure code. and its

lack of interfaces to external devices. Some approaches t o these problems are discussed in

in Appendix B.

1.3. Previous and Related Work

At the time this thesis project was begun, the Architecture Support Package (ASP)

system already existed in the form in which it was used for developing the current version

of the interpreter [Hob83]. Thornburg [Tho831 had already written a model of function call

and return using an earlier verslon of ASP. Gudaitis [Gud85] had written a body of

microcode ~mplementing various array accessing algorithms.

The call and return protocol used in the current version of the interpreter is loosely

based on Thornburg's. I t is not certain t o what extent the final set of execution

microcode will use Gudaitis' work.

Outside the SAM project, the most closely related body of work is the series of

DELtran experiments of Flynn and Hoevel [FIH83, FIH84J. Their work combines the

contour model of [Joh71] with a format-based scheme for encoding and executing

instructions The resulting code can be more compact than machine code for traditional

architectures, and corresponds more closely t o high-level source code. Recent related work

by the members of this group includes an execution architecture for Backus' FP language

[HHH86] and an extension of the format-based instruction architecture t o cover parse

subtrees (and directed acyclic subgraphs) of different depths [FJW85].

Several other groups are doing related work McCrosky [McC85, McJ861 has designed an

array-theory-based processor for the Nial language The SAM architecture is similar t o the

"decoupled" architectures described in [Hsi85 Lio85, SWP861

The DEL (Directly Executable Language) stream of computer architecture can be

compared and contrasted with DEX (Direct Execution) of source programs [Chu79. ChA811.

By working with a linearized and compact translation of the source program, a DEL

implementation gets higher speed and simpler hardware at the expense of retranslation

during program editing Hobson [Hob841 defines a DIL (Directly Interpretable Language) as

a linearized form from which the source code can be recovered

Another related field is the design of hardware architectures designed to support

functional languages [Veg84 RuM861, production systems [Qui86], and Artificial Intelligence

languages [Wah87]. The SAM architecture is not highly specialized for a particular source

language and should support implementations of any of these languages more efficiently

than conventional uniprocessor configurations. Since SAM'S memory architecture is

designed to handle arrays efficiently, an array-based A1 language like Nial

[MGJ84. JGM861 should run especially well.

Chapter 2

The SAM Architecture

The Structured Architecture Machine is based on the SJ16 microprocessor (See Figure

2-I), a microengine designed to be used as a microprogrammed high-level controller in a

multiprocessor environment. The SJ16 has fairly conventional data paths, but the

microinstructions include unique control features for high-level microprogramming. These

control, features allow several microoperations t o be specified and performed in parallel.

A SAMjr (Figure 2-2) system consists of an SJ16 with a segmented memory controller,

a segmented memory consisting of at least one megabyte of dynamic RAM, and zero or

more Special Function Units (SFUs).

A complete SAM system (Figure 2-3) consists of an Environmental Control Unit (ECU)

connected t o two or more SAMjr systems by dual-port memories. The ECU handles the

external environment, including the user interface and mass memory. One SAMjr acts as

the Program Management Unit (PMU). and is responsible for fetching instructions and

maintaining the execution environment. The other SAMjr is the Data Management Unit

(DMU) which does the actual data manipulations. There may be more than one DMU.

The SAMjr systems are connected to each other by a custom pipeline processor which

handles instruction and operand verification while queuing instructions decoded by the PMU

for execution by the DMU.

In the system currently under development, the ECU is a stand-alone microcomputer

I DECODERS

GENERAL
REGISTERS

I DECODER

BARREL
SHIFTER

COUNTER T-
STATUS

REGISTER

-

I I
A A

I
MSG

I
SELECT

V

u I
A

PUSH POP I
V LATCH

AGEN / 3

ABUS

BBUS

BUFFER
EXEC CASE

4

V V CBUS
A

v v w

I/O

I C A R R Y
SHIFTER

* - ;

SELECT NEG
SB

PADS

I L

-
STACK

ETURN I NEXT

Figure 2-1: The SJ16 Microengine

s - TOS . m
i

b

TREG MPC -B

I External SJbus w

Figure 2-2: A SAMjr system

I

Figure 2-3: A Complete SAM System

SM

workstation (a NEC Advanced Personal Computer), and the only SFU is a Weitek based

floating-point processor connected to the SAMjr which is acting as the DMU.

a * SJMC

2.1. The ASP Machine Model and Microcode Support Facility

The ASP (Architecture Support Package) system consists of a set of APL workspaces

which interpret, measure the performance of, and compile microprograms written in

"MicroAPL", a subset of APL plus a set of SAMjr hardware commands. A MicroAPL

program is both a valid APL program and a microassembler program for the SAMjr.

2.1.1. lnterpretation

lnterpretation of MicroAPL programs is handled by an ordinary APL interpreter

MicroAPL commands such as indexing, branching and assignment are simply the

corresponding APL primitives. SAMjr registers, buffers, and memories are modelled by APL

arrays. SAMjr microoperations are represented by APL functions. For example, the

function SSN operates on the data structures representing the SAMjr segmented memory,

buffers. and registers exactly the same way the compiled microprogram "Segment Source

Next" is intended to operate on the hardware devices The next value from the specified

segment is placed in the specified register, and the stream buffers are inspected to see if

a new memory read operation must be started

Operations which are to be performed in parallel on the hardware are written on the

same line of the MicroAPL function, delimited by the A symbol. The present version of

ASP does not encode parallel operations except as specifically written by the programmer,

and does not reject lines of code which cannot be run in parallel on the hardware.

2.1.2. Measurement

V ALUOUT t ABUS PLUS BBUS

[I] STROGEN
121 ALUMODE +- ARITHMETIC
[3] RESULT t ABUS + BBUS
PI ALUOUT + RESULT + ABUS SETFLAGS BBus

v

Figure 2-4: The PLUS Microprogram

The ASP interpreter can keep track of the number of microcycles used by a program.

Every model of a microoperation includes a STROGEN statement which sets some flags t o

simulate a tne level pipeline and increments a clock unless the operation is on the same

line of code ds the preceding operation (and therefore to be executed in parallel on the

hardware) The PLUS microprogram in Figure 2-4 is a good example. Here. line [I] calls

STRQGEN lme [2] sets the ALUMODE flag, line [3] mimics the hardware addition and

sets global RESULT, and line [4] calls SETFLAGS which checks the result and both buses

for hardware conditions such as overflow and carry.

This basic. clocking scheme has been augmented in various ways. Since a memory cycle

takes two machine cycles, the instructions dealing with memory access set a delay flag so

that the clock will be incremented an extra tick if the result of a read operation is used

before it would be physically available. Trace flags can be set t o print out the names and

times of functions being executed. And since the model is simply a set of APL programs.

arbitrary modifications may be made at any time. A t various times, code was added to

keep track of ADEL instructions executed, display the contents of the pipe, or suspend

execution of selected formats.

Simulation and measurement for the present version of the interpreter were deliberately

done on a version of ASP that models only the SJ16 processors, the SJMC memory

controllers, the segmented memories, and the pipe. Facilities for modelling the ECU, the

dual-port memories connecting the ECU t o the SAMjr systems, and the floating-point

processor are being developed separately.

2.1.3. Multitasking

Ideally, the ASP system should run a separate task for each processor being modelled.

An earlier version ran as consecutively loaded tasks on MTS APL, requiring manual

intervention every time control passed from one processor t o the other. Some experiments

were done using multiple tasks in Dyalog APL communicating via a UNlX pipe The

version used in this part of the project works by keeping two complete copies of the ddta

structures. When control passes from one processor t o the other, all of the data

structures pertaining to the individual processors are renamed For example, the general

register array is named R when control passes from the PMU to the DMU. R is renamed

t o PMUR and then DMUR is renamed to R. Since both processors use the pipeline and a

set of dual-port registers. the arrays modelling the pipeline and the dual-port registers are

not renamed. On every occasion when one processor must await the results of some

operation on the other, its clock is set t o the timing as of the end of the wait.

2.1.4. Compilation

Valid MicroAPL programs are compiled to SAMjr microcode by a compilation program

contamed In another APL workspace The compiler is stricter than the simulator about

. the inclusion of APL code that is not valid MicroAPL. Compilation therefore provides a

useful check on the validity of microprograms.

For reasons of flexibility, the interpreter has made heavy use of named constants, which

are not included in the current definition of MicroAPL. For example. the dual-port register

containing the stack pointer is named STKPTR, and only in a single initialization is it

mapped t o a particular integer. Therefore, the interpreter cannot be compiled in its

present form. It will be a straightforward job to transform the source code into a form

where such globals are hard-coded as integers, but this job has not yet been done.

Possibly i t will be feasible t o extend the definition of MicroAPL (and alter the compiler)

rather than add another step t o the translation process.

2.1.5. Modules

APL does not provide a simple way t o partition an application into separate chunks of

code larger than individual programs. Initially, the entire model was kept in a single APL

workspace, ASPSJ16. Now the memory manager, pipeline routines, executable microcode

for format and operation syllables, and symbol table management functions are kept in

separate workspaces.

All of these workspaces must be copied into ASPSJl6 to be executed. The only

advantage to keeping them separately is that maintenance is easier. A set of utilities had

t o be written to keep track of where functions in the combined workspace belong, and

whether they have been modified since the last time they were copied out.

2.2. The ADEL Intermediate Language

The intermediate language used by the SAM APL project is the ADEL (A Directly

. Executable Lmguage) developed by R. F Hobson [Hob82. Hob841. ADEL is a format-based

language related to the FORTRAN DEL of Flynn and Hoevel [FIH83, Fly801. An ADEL

instruction consists of a "format" syllable which specifies the valence of the function, zero

or more operand syllables. and zero or more function syllables. For example:

X + Y + Z
becomes

DLR X Y Z +
and

A + B +.x C+D
becomes

SLR C D s
D L S A B + x

APL code is translated into ADEL in a context which includes a local symbol table. If Y

is the 16th identifier used in a given function, then the operand syllable for Y would

contain the value 16. All syllables are eight-bit bytes, so a given user-defined function ' is

restricted t o using 255 identifiers, excluding comments and primitives. Note that this does

not restrict the number of global symbols. as long as no particular function uses more

than 255 o f them.

DLR
DLS
DL.R
D L S
DLER
DLES
DLMR
DL&
DLUR
D L ~ S
D:R
D:MR
DR
DUR
DFR
DMR -
-' N
-' N.
D + R
D.-S

DSR
DSS
DS.R
DS S
DSFR
DSFS
DSMR
D S ~ S
DSUR
D S ~
L:R-
L:MR -
DS
DUS
DFS
DMS -
-' R
-. R.

S + R -
S + S -

LLR
LLS
LL.R
i e . s
LLFR
L L ~ S
LLMR
LL@
LLUR
L L ~ S
S:R
S:MR -

SR
SUR
SFR
SMR
+ s
+ s :
D + + R
D + + S

SLR
SLS
SL.R
SL.S
SLFR
SLFS
SLMR
SLMS
SLUR
SLUS
D:S
D:MS -

SS
SUS
SFS
SMS -
-.
-'.

PI

SSR
SSS
SS.R
SS.S
SSFR
ssis
SSMR
ssijs
SSUR
ssijs
L:S
L:MS -

SR -
SUR -
SFR -
SMR -
V
V:
IS1

SLR -
SLS -
SL.R -
SL.S -
SLFR - -
SLFS' - -
SLMR - -
SLMS - -
SLUR - -
SLUS - -
S :S
S:MS -
SS -
SUS -
SFS -
SMS
Comm
R
SERR

Table 2-1: ADEL Formats as of 1984

(See Table 2-2 for Meanings of Characters)

Char Meaning
D Destination

L Left Arg

R Right Arg
S Stack

Product Op

S - Stack
Assignment

F
e-

Derived Fn

U .- User-Def. Fn

M - Mixed Fn

Sequence

Example
DLR A B C + means A is the
destination for the result
o f B + C
LLR A B + means A is the
left argument. Since an
"L" is in "D" position,
A is also the destination.
Similar t o Left Argument
SLR A B +...result is stacked
DSR A B +... A gets (stack)+B
DL.R A B C + x means A
gets result of B +.xC
SLR A B + assigns the -
result of A t B to the
location computed in the
preceding sequence of
array indexing instructions
DER A B +/ means A gets
the result of +/ B
SLUR - A B FOO means the
user-defined function FOO is
run with arguments A and B,
and the result is stacked

DLMR - A B C .
catenate is a mixed fn

D:R 3 A B C D E + means
A gets result of B + C + D + E
Likewise, D:MR - 3 A B C D E ,

Table 2-2: Meaning of Format Characters

The ADEL formats defined in [Hob841 are given in Table 2-1. The characters used to

describe the formats are defined in Table 2-2. Note that the set of formats is not rigid.

Several formats have been added during the development

others were added to handle data transfer and program

intended to be tailored t o f i t particular applications.

package might reserve a special format for the +.=

of the front-end translator, and

control. The set of formats is

For example, a crosstabulation

inner product, and a language

extension t o include one of the nested array systems would have different operator

formats.

Not all of the formats recognized by the translator have been implemented. Table 2-3

contains a list of implemented formats Since the formats have been implemented as APL

functions, it has been necessary t o rename them.

FORMAT
NOOP
DLR

SLR

LLR
DMR
SMR
s i i ~

SSUR
SLYS
SSUS
COMENT
DFR
D&R
DLMS
SLMR
DGETSR
DGETSS
ICTRBZ
INDAS3
SUR
BIFSTK

BRABS
DECBNZ

NlLKFN
NXTL
HALT

ADEL
NOOP
DLR

SLR

LLR
DMR
SER
SLUR -

SSUR
S L ~ S
ssus -

DFR
DLMR
DL&
SLMR -
D + R
D + S

new
new

SUR
new

-. R
new

+ N

Table 2-3:

DESCRIPTION
No operation
Dyadic Scalar Fn,
Explicit Arguments and Result
Dyadic Scalar Fn,
Explicit Args Stack Result
Explicit Args. Dest = Left
Monadic Mixed Fn
Monadic Mixed Fn, Stack Result
Dyadic User Defined Function,
Explicit Args, Stack Result
Dyadic U.D.F. Stack L.arg & Dest
Dyadic U.D.F.. Stack R.arg & Dest
Dyadic U.D.F , Stack Args & Dest
Comment
Monadic Derived Function
Dyadic Mixed Function

11 11 I 1
, Stack R.arg

II II II Stack Dest
Explicit Assignment
Assignment from Stack
Initialize Counter. Branch if Zero
D[L] + R
Monadic U.D.F.. Stack Dest
Branch to Specified Line
If Stack =/= Zero
Branch t o Specified Line
Decrement Counter and Branch to
Specified Line if =/= Zero
Niladic User-Defined Function
Branch t o next line
Stop the Simulator

Formats Implemented as of January 1987

Chapter 3

The Memory Manager

The first four months of this software project were devoted to developing the memory

management subsystem. About five percent of the subsequent work has consisted of

keeping track of the information required for the memory manager t o allocate space for

results and dear out the space used by reassigned variables, popped stack values and

expired immediate execution expressions.

Since APL. objects are dynamically sized and APL functions are recursive by definition.

the execution of an APL program involves allocating and freeing space for arrays both

during function call/ietiirn and during the execution of primitive functions. The

management of memory in the PMU is somewhat less critical, since functions are generally

created under immediate execution and are seldom erased. For the sake of consistency,

the same memory manager is used by both processors. .

3.1. Background

Memory managers are an important part of multiprogramming operating systems and

dynamic language execution environments. As such, they are the subject of a considerable

body of theoretical treatment. The descriptions of the basic problem, paged and

segmented memories, and fitt ing strategies are based on [PeS83, Dei841.

17

3.1.1. The Basic Memory Management Problem

An operating system may allow programs to be relocateable, thus allowing memory to be

partitioned among several programs. Programs can easily be swapped in and out of fixed-

sized partitions. Allowing variable partition sizes raises the basic memory management

problem of allocating space in the most efficient way. Memory may become "fragmented",

so that free memory is distributed among a set of noncontiguous blocks. It then becomes

necessary to choose which free block will be used for a given job. and it may also be

necessary to relocate existing jobs in order to merge free blocks. :

3.1.2. Paged Memory

One powerful way to deal with the allocation problem is to waive the requirement that a

program or a data object be contained in a contiguous chunk of memory. If memory is

divided into "pages", and logical addresses consist of a page number and an offset, then a

page table can be used to map page numbers into real memory addresses.

The principal differences in simple paged memory systems concern the implementation of

the page table: if kept in registers, the table is of limited size; and i f kept in main

memory, i t slows each memory access by a factor of two. The slowdown can be worse

in a pipelined machine, since the second memory access cannot be overlapped with the

first. A compromise solution is to keep a subsection of the page table in content-

addressable registers The SAM architecture keeps the entire table in high-speed static

memory

3.1.3. Segmented Memory

In a paged system, pages are of fixed size, so that large objects may occupy several

pages and several small objects may share a single page. The segmented memory scheme

partitions physical memory into variably-sized segments, wi th one object occupying one

segment While segmented memory is a more natural way t o deal wi th objects o f varying

size, it is naturally subject t o fragmentation and requires the same kind o f allocation

scheme as variably sized partitions in a job scheduler

A segmented memory may be paged, so that a segment need not be composed o f

contiguous real memory. This usually faces all memory accesses wi th t w o levels of

indirection, and must be implemented wi th registers or cache t o give reasonable

performance. A paged segmented memory can be implemented wi th a single level of

indirection by keeping physical page addresses in the segment table. This is the approach

used by the SAM memory controller. The only major drawback t o one- level paged

segmented memory is that it makes it somewhat more difficult t o implement a virtual

memory that swaps individual pages.

3.1.4. Fitting Strategies

Given a segmented memory or a variable-partition-size swapping scheme, there will be a

list of free blocks t o be considered when a new block is t o be allocated. The two best-

known methods of choosing a free block are f irst-f i t (choosing the first free block big

enough t o satisfy the request) and best-fit (searching the whole list and choosing the

smallest free block big enough t o satisfy the request).

In order t o make a best-fit strategy perform well, it may be necessary t o keep the free

block list in a structure amenable t o a binary search. If the free l ist is kept sorted in

increasing order of size, the two strategies become identical.

Since searching t ime grows wi th list size, it may be advantageous t o garbage collect

before an unfillable allocation request arrives For example, the implementers o f CDC

APL*STAR found that l imit ing the "Hole Table" t o 16 entries caused the proportion o f

garbage collects triggered by hole table overflow t o be much smaller than the proportion

triggered by memory fragmentation [Edw87]. Another approach is t o ignore freed blocks

completely unless they can be merged w i th the "one big hole". speeding up typical

allocations a t the expense o f more frequent garbage collection.

3.1.5. Buddy systems

It is possible t o eliminate the linear search o f free block lists, by keeping a set o f lists

of free blocks o f various sizes and looking only in the appropriate list for a given allocation

request Such a system was developed by Knowlton [Kno65] and has since been the

subject o f continual investigation [Pus701 and development [PaH86].

The basic idea o f these "Buddy Systems" is that only a f ixed set o f block sizes is

available. If no free block exists in the size requested, then a bigger block is split, wi th

the left-over part ("buddy") put into the appropriate free block list. When a block is

deallocated and i ts "buddy" is still free. the t w o blocks may be merged. Buddy systems

thus avoid the overhead o f list searches, at the expense o f block splits and recombinations

and of a considerable amount of memory fragmentation, both "internal" (due t o the

coarseness o f the set o f block sizes available) and "external" (since the splitting process

may leave the free memory as a set o f blocks too small t o satisfy an allocation request).

The total fragmentation of a buddy system is typically thirty or forty percent [PeN77] of

total memory Gwen a demand for quick allocation and the availability of cheap memory,

this overhead is tolerable as long as the buddy system outperforms the more memory-

efficient alternatives.

3.2. The SAM Segmented Memory Model

Any memory management scheme must reflect the hardware support available. For

instance, a demand paging system would be awkward t o implement on a machine wi th no

page fault interrupt mechanism. The memory manager developed here is based on the

paged segmented memory controller forming part o f the SJ16 architecture. (See Figure

3- 1 .)

The most important feature o f the model (See Figure 3-2) is the address translation

table called the SPT , for Segment Page Table A logical address consists o f a Segment

number and an Offset. The logical page number is found by adding the segment number

t o the integer part of (Offset + Pagesize). and the physical page is given by SPT[Logical

page] The rest o f the offset is a byte index in to the physical page. A data structure

may be d~str ibuted in widely scattered physical pages, as long as these pages are pointed

t o by a contiguous block of the SPT. While it would be possible t o keep more than one

small object in a single page o f segmented memory. "workspace full" problems in existing

APL systems are almost always caused by a small number of large objects. In the S A M

system, one thousand small arrays would use one thousand pages, leaving at least three

thousand pages for larger arrays

The result of this policy is that no program "cares" where in physical memory a given

object resides When garbage collection is necessary, it is not because physical pages are

misplaced but because there is not a large enough contiguous block o f free pointers in the

S P T and the corrective measure involves moving single pointers instead of complete pages

o f data.

While this memory scheme is in fact a paged segmented memory, the fact that all the

Logica l Address

B y t e Offset
Within Page

Page
N u m b e r
Within

Segment

Figure 3-2: The S A M Memory Model

pages o f a given segment are kept in a contiguous block o f the S P T allows memory

accesses wi th one level o f indirection instead of two, a t the expense of the page table

garbage collect described above. Keeping the page table in fast static memory would slow

each access slightly compared t o the access t ime for a "hit" where a subset o f the page

table 15 kept in registers However, in the SAMJr Memory Controller, this address

t r ans l d t~w t an be done during dynamic R A M precharge time, so no performance is lost

Th is scheme glves the performance o f a register-based page table where every access is a

"hit" w ~ t h o u t the special hardware and complex microcode required t o deal wi th "misses"

The other interesting feature of the memory model is that segmented memory is

streamed. Once a given address in segmented memory is accessed, the value stored at the

next location is read into a buffer and is available t o the processor in advance. Memory

writes are done to a buffer which is flushed into memory in parallel with other operations.

This policy accelerates string and array processing tasks. The tradeoff for any purely

array-oriented memory is that scalar accesses require more code than the corresponding

accesses on a scalar machine (See Figure 3-3)

The streaming of scalars is handled in microcode by doing the preliminary memory

control operations in parallel with other operations. This allows the system t o access

scalars efficiently without adding hardware and extending the instruction set t o include

conventional scalar operations

WDO[StridJ + R[A]

Strid SRW R[B]

SBF Strid

R[C] + SSN Strid

Figure 3-3:

Set stream "Strid" t o the
segment specified by R[A]

"Segment Read Word":
Stare stream in word mode at
offset specified by R[B]
"Segment Buffer Fill":
Fill the stream buffer for
continuous reads. For a
scalar read, this instruction
could be replaced by an IDLE.
"Segment Source Next":
R[C] gets the next word
from the specified stream

Streamed Segmented Memory Access

3.3. The Present Model

The memory manager used by the present interpreter is very nearly the simplest possible

manager using the architecture support available. The memory manager table (see Figure

3-4) consists of one doubly linked list of free blocks, with each list item containing a block

size and each allocated item containing a pointer back t o the main data access table.

Allocation begins with a first-fit search of the free block list The block is then either

shrunk (if it is more than big enough) or removed from the list (if i t is an exact fit).

' Adjacent free blocks are merged immediately at deallocation time. Garbage collection is

tedious but reasonably fast. since only SPT items must be moved. A garbage collect is

terminated as soon as a free block big enough t o satisfy the current allocation request has

been created

A commented call tree of the implemented memory management functions is given in

Figure 3-5.

It seems likely that garbage collection.. can be made to occur arbitrarily seldom, by

keeping a table somewhat bigger than the actual size of the memory. A practical

measurement of this prediction has been deferred.

3.4. The Production Model

Before the microcode was written for the current version of the memory manager, a

slightly more complicated manager was written in APL. The production memory manager

.may be based on this earlier version which used two linked lists instead of one. Free

blocks containing a single page are kept in one list, and multiple-page blocks in the other.

Since (again pending measurements) the large majority of data structures will f i t into

single pages, i t is expected that this system will outperform more complex systems such

DATA ACCESS TABLE

I I STKPTR

I NXTCG

Figure 3-4:

SEG
MEM

I ~ j d

Memory Management Tables

ALLOCATE
ALLOC-PAGES
ALLOC-WHOLE
ALLOC-PART

FREE
FREEPAGES
MERGE-ABOVE
MERGE-BELOW
MERGE-BTWN
MERGE-SOLO

GARBCOL
SETMMREGS
INITMEMM

Figure 3-5:

RESERVE N PAGES
GET PAGES FROM FREE PAGE LlST
FREE BLOCK = SIZE REQUIRED
TAKE CHUNK FROM B O T T O M OF FREE BLK
RELEASE N PAGES BEGINNING PAGE P
RETURN PAGES T O FREE PAGE LlST
BLK BELOW IN USE, BLK ABOVE FREE
BLK ABOVE IN USE, BLK BELOW FREE
BLKS ABOVE AND BELOW BOTH FREE
ADD ISOLATED BLK T O FREE LIST
MERGE ALLOC BLKS T O ENLARGE HOLE
SET UP REGS FOR M E M MGR
SET UP SJ16 SM, SPT and MM TBLS

Memory Manager Commented Call Tree

as a buddy system. Eliminating the common one-page blocks from the searches for larger"

blocks should improve search times by a factor of better than two and reduce

fragmentation

3.5. Theoretical Predictions

While a realistic appraisal of performance must await measurements made with real

programs running on a completed implementation, i t is not difficult to give a rough but

reasonable theoretical analysis of various allocation strategies. In this section, we look at

the current single-list strategy. the projected two-list strategy, and a simple binary buddy

system For the sake o f simplicity, we will consider only the costs of allocation.

Consider only requests and free blocks larger than a single page Then the number of

blocks searched for a typical request depends on the distribution of sizes in both the free

block list and the set of requests Models based on various distributions gave expected

search lengths of 3.5 t o 6.0 iterations with an infinitely long free block list and from 3 0

to 3 5 with the free block list limited to 16 elements For the sake of simplicity, an

expected search of 3.5 iterations will be assumed for the rest of this analysis.

Let Pm be the probability of an allocation request being for more than one block. The.

distribution of free block sizes may differ from the distribution of allocation request sizes

due to merges (which lead to larger blocks) and partial allocations (which give smaller free

blocks). In particular, the deallocation of a single-page object gives a single-page free block

only when neither of its neighbours are free. For the sake of simplicity. assume that this

happens about half the time, so that the proportion of multipage free blocks will be 1 -

0.5(1 Pm). or 0.5(Pm + 1)

3.5.1. Single Free Block List

Using a single ,list for all free blocks, a single-page allocation will be satisfied by the first

block on the list A rnultipage allocation will search about 3.5 multipage blocks. Since

0.5(Pm i 1) of the free blocks are multipage blocks, the allocation will search

7/(Prn -t 1) blocks Then a proportion Pm of the allocation requests require

7/(Pm I- 1) sedrch iterations, and (1-Pm) of the requests require 1 iteration, giving an

expected average of

(1 Pm) + IPni/(Prn + 1) search iterations.

3.5.2. Two Free Block Lists

Using a pair of free block lists all allocations require a block size check to determine

which list i s to be searched. Then the multipage allocation requests will search 3.5 free

blocks, glving an expected performance of 1 check and (1-Pm) + 3.5Pm or (1 + 2.5Pm)

search iterations

3.5.3. Buddy System

Assume that freed blocks are NOT merged if doing so would give an empty list for a

given block size. ' A n allocation will require (log N) checks t o choose among N different

block sizes by a binary search. (Block sizes are distributed logarithmically, so in principle

the correct list can be found by calculation. Unless the hardware supports binary

logarithms, it is quicker t o do a depth-three binary search.)

5 I

For a S A M APL .interpreter. N would be about 9, wi th the checking biased so the first
- - ,

check i s ' fo r a single block. A multipage allocation wil l take 3 additional checks t o choose

among the 8 larger block sizes. Then the average number of checks is 1 t 3Pm a t

allocation time. One additional check must be made t o ensure that the required l ist is not

empty giving 2 - t 3Pm checks.

There wi l l be a probability Pe that the list is empty. requiring a split. The list t o be

split may itself be empty. leading t o an expected number o f splits o f Pe/(l-Pe) for a

given doca t ion The value o f Pe is dependent on the recombination strategy. For the

purposes o f comparison, values o f 0.1 and 0.25 wil l be used.

3.5.4. Comparing the Systems

A search iteration requires one segment startup, t w o reads, and a comparison, taking

altogether about four cycles. (The microcode used in this search is listed in Figure 6-6)

A simple comparison requires a test and a branch, costing at least two cycles. Then the

.average cost of finding a free block t o be allocated is shown in Table 3-1 A rough pass at

microcoding a split gives about 10 cycles if all list headers are kept in registers. or 16

cycles if headers are kept in memory

System Checks Searches Splits
1-list 0 1-Pm 0

+7Pm/(Pm+l)
2-list 1 1+2.5Pm 0
Buddy 2+3Pm 0 Pe/(l- Pe)

Pm = 0.1
1-list 0 1.54 0
2-list 1 1.25 0
buddy1 2.3 0 0.11
buddy25 2.3 0 0.33

Pm = 0.2
1-list 0 1.97 0
24ist 1 1.5 0
buddy1 2.6 0 0.11
buddy25 2.6 0 0.33

Pm = 9.3
1-list 0 2.32 0
2-list 1 1.75 0
buddy1 2.9 0 0.11
buddy25 2.9 0 0.33

Note. Buddy1 is Pe = 0.1. Buddy25 i s Pe = 0.25

Table 3-1: Cost of Finding a Free Block

Cycles
18-4Pm

6+10Pm
4+6Pm
+16Pe/(l-Pe)

6.16
7
6.36
9.88

7.88
8
6.96

10.48

9.28
9
7.56
11 .C8

This s~mplified analysis suggests that the one-list model may perform as well as the

two-list version as long as the proportion of multi-page allocation requests is not more

than thirty percent. The buddy system does not outperform the linked-list systems unless

the proportion of empty lists can be kept to ten percent.

Chapter 4

Symbol Table Management

The three main management tasks of an APL interpreter are to store APL arrays, t o

provide a convenient way for executing APL code t o access arrays and functions, and to

provide a way for a user t o get arrays and functions in and out of the system. Each of

these tasks is organized around its own table: the Data Access Table for array storage.

the Contour Access Table for access by executing functions, and the Global Symbol Table

for user access

4.1. The Linker

The linker is responsible for accepting ADEL functions from the front-end system, writing

them into segmented memory, and installing the identifiers used by the functions into the

Global Symbol Table.

4.1.1. The User Interface

The user interface to SAM APL is a text editor and translator which run on the

workstat~on that serves as the ECU. T o write an APL program, a user edits the text

form and mvokes the TRANSLATE facility. This produces the ADEL code corresponding to

the APL source, plus a local symbol table and enough information to link i t .

In a complete SAM system, this internal function form (See Figure 4-1) is then written

~ n t o dual port memory by the ECU, to be accessed by the linking routine in the PMU. At

I LENGTH I CAT Size I DAT Size

LOT Line Offset Table

Reserved

Number ol
Labels I Literals

GSAT Offset

RST Offset

Reference Symbol Table

Comment Offset Table

Comment Text I v

IUumber of
Locals

Number of

TYPE

Number of
Comments I RST Entries

Max APL Line No.

COT Offset

C C
ADEI, Code

lUumber 01
Non-Locals
1Uumber 01

Local Symbol
Table

Length Unlinked I Reserved

GSAT Global S.T.
Access Table

Figure 4-1: Function Internal Form

the current stage of the model, an ADEL assembler on the computer system supporting

the ASP model is used t o create an APL variable containing the internal function form.

Some of the ADEL functions were written by hand instead of generated by translation of

source code. This was done because some of the ADEL formats developed during this

project are not yet within the scope of the translator. These include the special branching

and looping primitives and the simplified indexed assignment format.

Once the ADEL function has been created, the LlNK program places it into segmented

memory, creates symbol table entries for all of the objects in the program, and creates -
data arrays for all of the nonscalar literals in the program The Global Symbol Access

Table shown in the diagram for the internal function form is created at link time

and added t o the function segment by the linker.

To run a line of APL immediate execution (and therefore, t o start an APL program), the

assembler is used to create a dummy function which is flagged as an immediate execution

line in the "Type" field. LlNK invokes the execution manager after linking an immediate

execution "function", then purges the function from segmented memory after execution is

complete A list of the programs used by the linker is shown in Figure 4-2.

The present procedure for testing APL functions is necessary while the editor and the

rest of the model run on different computers without a convenient way of transferring

data. In the working SAM system, the front-end computer will place the translated function

into dual port memory and the LlNK program will read dual-port memory instead of taking

an argument

Changes needed to adapt the LlNK program to the finished hardware are minimal, so

performance, reliablility, and space figures for the production version of the linker are

expected to resemble those of this model very closely

LINK
BRINGINFN
RUN-SAM
STLINKFN
CHKNUMV
STLINKHDR
STLINKFNAME
FINDSTPAGE

* * *
HASH-GNRL

* * *
STENTWR

STLINKID
* * *

STLINKID
/ CHKNUMV

FTNDSTPAGE
GETCONFPG
STMATCHID

HASH-GNRL
HASH-IDL
HASHMODULO

HASH-NUML
HASHMODULO

HASH -QUOTE
HASHMODULO

SENDTODMU
STENTWR

Figure 4-2:

4.2. The Global Symbol

HALF THE SAM FRONT END
NOT uCODE.READ FN INTO PROG SEG
THE BOSS PROGRAM FOR IFETCH/IEXEC
LINK PGM IN PROG SEG TO S.T.
PROG IS AT START OF NUM LIT
BIND OBJS IN FN HDR
FN NAME UNLIKE OTHER OBJS
S.T. PAGE IS NOT EMPTY

HASH LBL , LITERAL

WRITE S.T. ENTRY
LINK 1 ID INTO S. T.

LINK 1 ID INTO S. T.
PROG IS AT START OF NUM LIT
S.T. PAGE IS NOT EMPTY
GET NEW S.T.CONFLICT PAGE
ID AT(PROG,IDOFF>=(STS~,~~)?
HASH ID, LBL, LITERAL
HASH ID OR LBL

HASH NUM LITERAL

HASH QUOTED LITERAL

SEND LITERAL TO DMU
WRITE S.T. ENTRY

The Linker - Commented Call Tree

Table

4.2.1. Symbol Table Pages

Every identifier in an internal-form function corresponds to an entry in the global symbol

table. A sample symbol table entry is shown in Figure 4-3.

The linking process for each identifier consists of hashing the identifier and checking the

corresponding symbol table entry. If it is free, the identifier is written into i t ; if it contains

CALL CHAIN HEADER CALL CHAIN OFFSET -
COLLISION CHAIN PRED COLLISION CHAIN SUC

TAGDP (Constant) ID LENGTH

FUNCTION BODY
Segment No.

ID STRING

TAG-DP 0 T A G D P 1

TAGDP 2 4

\ \ +
Figure 4-3: Symbol Table Layout

an identical identifier, linking is complete; and if it contains a different identifier, the

collision chain is followed until either an identical identifier is found or the end of the

chain IS reached If no match is found, the identifier is written into an overflow symbol

table page and the new page is linked onto the collision chain.

Once a symbol table entry has been found or created, a pointer t o i t is written in the

internal function segment.

In the usual state of affairs for linking, the system is in immediate execution with no

suspended programs. The call stack pointer in the symbol table chain will be pointing to

the DMU polnter for the global value, if any. The procedure for function call will be

discussed in the following chapter. For now i t is sufficient to mention that the linking

process is not affected by the state of the call chain. O f course, a newly linked identifier

will be tied to the DMU item containing the current value.

4.2.2. Literals

When a numeric or character literal is found in a source program, it becomes an

identifier in the ADEL code, mapping t o a symbol table entry that can not be hidden by

function call. Thus. if several programs happen t o use the value 3.6, they wil l all map t o

the same symbol table entry. When a literal is linked. i ts value is sent immediately t o the

D M U , and a D M U i tem pointer for the literal value is written immediately in to the symbol

table page.

'The exception t o this is the integer scalars 0 through 255. The first 256 DAT entries

are reserved for these values. so the DAT pointer can be written into the symbol table

page kvithout transmitt ing a value t o the DMU. A few special values like pi and e are

kept in known DAT locations for the use o f system code. and future version o f the

interpreter may recognize the equivalent APL expressions and treat them as literals.

Carrying t h ~ s idea t o i ts logical conclusion, it is possible t o execute all expressions

involvmg no variables at link t ime and l ink the results as literals. Statistics on the

frequency of execution of such "constant expressions" must be gathered before any decision

is made about implementing them as literals.

Ordinarily the symbol table page contains the character string representation of i ts

iden t~ t~er In the case o f literals, this representation may be too long t o fit in to a page.

When the string length is greater that 40 characters. the "id" section o f the symbol table

page contains a pointer back t o the local symbol table of the function owning the literal.

Therefore, if t w o separate funct~ons happen t o have identical long literals, each wil l have a

separate symbol table entry

Most identifiers are quite short, and since a symbol table page has room for a call chain

which will never exist in the case of a literal, a certain amount of space is wasted.

Future versions of the interpreter may keep short literals in smaller symbol table pages.

4.2.3. Symbol Table Garbage Collect

Except in the case of long literals, symbol table entries do not contain backpointers t o

the functions that use them This makes it difficult t o get rid of symbol table entries

when their referents no longer exist. Older APL interpreters (MTS APL is a good

example) never attempt t o clean up the symbol table: when the symbol table is full. the
/'

only recourse is t o)COPY everything into a clear workspace. An easy but slow way to

deal with a full symbol table is t o relink every function and global variable, essentially

)COPYing the workspace to itself.

Tu allow symbol table entries to be deleted efficiently, a reference counter could be

included in each symbol table page. Linking an identifier t o an existing page would

increment the reference count, and expunging a defined function would decrement the

reference counts of all of its identifiers, with a page marked as free when its reference

count drops to zero This idea will be investigated when the standard interpreter has been

completed.

The collision chain pointers in each symbol table page show the predecessor and

successor In a chain o f symbol table pages corresponding to identifiers that hash to the

same value The forward pointer is used only when linking a new identifier The back

pomter was intended to be used during symbol table garbage collection. Keeping the

collision chain as a circular list makes back pointers unnecessary, and the field may be

used for a reference count in the next version.

4.2.4. Labels

Function labels are a special case for linking and calling. Unlike ordinary identifiers. they

have values and unlike ordinary literals. they have names that may be localized by

subsequent function calls A t link time, labels are linked t o symbol pages exactly the same

way as ordinary identifiers, and their status as labels is indicated by setting the sign bit of

the symbol table page address. The item in a function segment following a negative

symbol table pointer contains the label value instead of the pointer for the next identifier.

4.3. Related Environment Tables

The environment of an executing program is partly under direct user control but

principally a function of the state of execution. In a lexically scoped language, the

environment is determined by the block structure of the main program. In a dynamically

scoped language like APL, the availability of an identifier is controlled entirely by the most

recently called function which localizes the identifier Thus, this section must be read in

conjunction with the treatment of the CALL and RETURN mechanisms in the following

chapters.

4.3.1. The Data Access Table

Data manipulation is done in the DMU. Each data item, whether or not it is available to

the current scope of the program. is represented by an entry in the Data Access Table, or

DAT, kept in DMU segmented memory. Scalars and array descriptors are contained in the

D A T entry The entire descriptor of a vector fits into the D A T entry The length fields

for the trailing axes of higher-rank arrays, and the element values of all nonempty arrays.

are kept in D M U segmented memory. each segment pointed t o by its D A T entry When

code is actually executed in the DMU, the D A T entries are used by the data manipulation

routines.

A physically distinct tag memory contains 6 b i t type and shape tags corresponding t o the

entries in the D A T

As it is currently laid out, the first 256 D A T entries are reserved for the scalar

11 11
constants 0 through 255. Then a few entries are reserved for constants like "T", e , and

pointers t o read-only segments containing the character set and the results of ~ 2 5 6 in both

index origins. The next D A T entry is a scratch location indexed by system constant

NEWDEST. used t o write the result of each primitive operation before erasing the previous

value of the identifier being assigned.

The rest of the D A T is divided into two stacks. The stack growing forward from

NEWDEST is pointed t o by NEXTCG (Next Constant or Global) and contains constants

and global values that are never erased except by explicit request The stack growing

backward from the end of the D A T is pointed to by STKPTR, and contains values on the

execution stack, iocai variabies, and the arguments and results of functions. NEXTCG and

STKPTR are kept as mailbox registers in the pipe processor because both the PMU and

the DMU must use them

4.3.2. The Contour Access Table

The Contour Access Table (CAT) for a given environment consists of a list of words

containing syntax tags (see Section 5.2.1) and D A T pointers. When ADEL code is

executing each operand syllable is used as a word index into the current segment of the

CAT

The relationship among internal function forms, the symbol table. the DAT. and the CAT

is diagrammed in Figure 4-4

Figure 4-4: Relationship Among Interpreter Tables

Chapter 5

Execution

The paradigm of user interaction with an interpreted language is the Lisp Read-Eval-Print

cycle. APL follows this cycle closely, with the important restriction that the user

interaction is built into the system instead of being a user-defined program and, as such,

modifiable.

SAM APL user interface is similar t o the paradigm. The basic cycle i s textedit-

executz-print The details of the editing and printing parts of the cycle are outside the

.;~t)pe of this thesis The execution part of the cycle begins with linking a line of code as

d e s ~ r ~ b a d in the previous chapter. The present chapter deais with the execution of ADEL

code once i t has been put into program memory and its identifiers have been put into the

Global Symbol Table

5.1. Instruction Fetch

The PMU half of program execution is done by the IFETCH routine. An instruction

f e t ~ h begms by reading the format syllable of an ADEL instruction. As a side effect, the

forrrut i s sent t o the pipeline Then the PMU EXECS the format syllable -- that is.

executes the microprogram beginning at the address given by the format table indexed by

the formdt This IS equivalent to an instruction decode operation in a standard commercial

computer In the model, this consists of executing the MicroAPL program whose name is

in the indexed row of the format table

Execution o f the format microprogram causes the operand and function syllables to be

fetched Syllables denoting primitive APL functions (and also some "hidden primitives"

such as pp and $1) are sent directly t o the pipeline. Operand syllables are used as word

indices into the Contour Access Table. The indexed words, which consist of syntax tags

and data pointers, are sent t o the pipeline. At the end of the format microprogram. the

pipe 1s released if no errors have been detected and the process is repeated as soon as a

new pipe becomes available

Syllables representing user-defined programs are not sent t o the pipeline. The PMU

microprograms for function call pass the C A T entries indexed by the argument syllables t o

the pipeline then 930 the processing necessary t o preserve state information for the current

environment and set up a new environment. The details of the CALL and RETURN

procedures are described in section 5.4.

5.2. Instruction and Operand Verification

One of the most important features of the SAM architecture is the way instruction

verification(syntax checking) and operand verification(pre1iminary semantic checking) are

handled in hardware. A conceptual view of the verification process is shown in Figure 5-1.

Each operand is represented in ADEL code as an index into a frame of the Contour

Access Table (CAT). This index is conceptually added to a frame pointer (in the current

implementation, each frame begins on a page boundary, so the addition is done by the

addressing hardware) and the resulting tag/data pointer is read from the CAT. The tags

are then used in the instruction verification process and the data pointers are sent t o the

pipe.

In the DMU, the data pointers are used t o index a Data Access Table (DAT). The

CURR
SEGMENT

DATA
SYLI,ABI,E

Figure 5-1:

CAT I I DAT

TRANSLATE T DATA
A PTRS
G AND I S I SCALARS

Conceptual Diagram of Verification Process

DAT contains data tags, and either the values (of scalars) or partial descriptors(of arrays).

The data tags are used for preliminary semantic checking. Finally, the values and/or

descriptors are used by microprograms for the format and operator syllables

5.2.1. Instruction Verification

The Instruction Verify Unit is a compatibility matrix table lookup unit built in to the

pipeline processor. The tag for each operand is a two-bit value denoting constant.

variable. function, or reserved. The table used for instruction syntax verification is shown

in Table 5-1.

DEST VARIABLE CONSTANT FUNCTION OTHER

RIGHT v c f o v c f o v c f o v c f o
ARGUMENT a o u t a o u t a o u t a o u t

r n n h r n n h r n n h r n b h

LEFT
ARGUMENT

VARIABLE 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CONSTANT 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FUNCTION O B Q Q 0 0 0 0 0 0 0 0 O Q Q O
OTHER O [f O O 0 0 0 0 0 0 0 0 0 0 0 0

Tah!e 5-1: Syntax Checker Table

When the microprogram executing a format in the P M U is ready t o release the pipe, the

output is tested. If the result shows that the instruction was syntactically invalid (the

compatibility tdble entry is a zero) an error routine is invoked and the pipe is not

released. (A t the current stage o f the interpreter, the error routines have not been

written When an invalid instruction is detected. the simulator halts and displays an error

message)

RIGHT
OPERAND NO VALUE

LEFT
OPERAND

NO VALUE 1
SCALAR 1
ARRAY 1
RESERVED 1

Table 5-2:

5.2.2. Operand Verification

The Operand Verification Unit is

SCALAR ARRAY RESERVED

Semantic Compatibility Table

driven by the pipeline processor. As each syllable is

read from the pipe, a tag describing i ts type (character, boolean, integer, real) and class

(scalar array, reserved, no value) is read from the tag memory into the appropriate tag

register

The preliminary semantic analysis process consists o f checking that both operands are

valid data types The compatibility table used is shown in Table 5-2.

T w o table-controlled semantic summary values are available from the O V U hardware in

the pipeline. but these cannot be used automatically t o accept or reject the semantics o f a

given operation because different functions have different domains Table 5-3 compares the

types of the operands and is used t o reject invalid type combinations (bearing in mind that

all pair\ of types are valid arguments for "equal" and "not-equal") and t o select the correct

"cast" procedure if the types do not match.

Table 5-4 gives the shape o f the operands and the type o f the expected result and is

used not for semantic checking but for allocating space for the result.

RIGHT
OPERAND CHARACTER BOOLEAN INTEGER FLOATING

LEFT
OPERAND

CHARACTER 0 4 4
BOOLEAN 4 0 1
INTEGER 4 5 0
FLOATING 4 6 7

Table 5-3: Semantic Summary Table for Types

5.3. Instruction Execution

The basic cycle in the D M U consists o f

(1) Read a format syllable f rom the pipe

(2) Execute the microprogram whose address is the entry
o f the D M U Format table indexed by the syllable

Each format microprogram begins by fetching the relevant number o f operand pointers

f rom the pipe and starting a stream reading the DAT at the offset given in the pointer

As a side effect, the D M U tags are read into the tag registers. When all o f the operands

have been read, the format microprogram reads zero or more operator codes from the pipe.

Next. the microprogram signals that it is ready t o release the pipe. A t this point the

semantic checking hardware verifies that both operands have values (See Table 5-2)

The format microprograms resemble one another up t o the point of pipe release. The

next stage consists of additional semantic checks where possible, casts where necessary.

and allocat~ng space for the result The D A T entry indexed by constant NXTDEST is

used t o hold a scalar destination or the descriptor for an array destination.

SCALAR RIGHT
OPERAND CHAR

LEFT
OPERAND

SCALAR
CHARACTER
BOOLEAN
INTEGER
FLOATING

ARRAY
CHARACTER
BOOLEAN
INTEGER
FLOATING

ARRAY RIGHT
SCALAR

CHARACTER
BOOLEAN
INTEGER
FLOATING

ARRAY
CHARACTER
BOOLEAN
INTEGER
FLOATING

OPERAND

46

BOOL

0001
0001
0010
0011

1001
1001
1010
1011

0101
0101
0110
0111

1101
1101
1110
1111

l NTG

0010
0010
0010
001 1

1010
1010
1010
1011

0110
0110
0110
0111

1110
1110
1110
1111

FLOAT

001 1
0011
0011
0011

1011
1011
1011
1011

0111
0111
0111
0111

1111
1111
1111
1111

Note: Each 4-Bit entry describes
Left Shape (0 = Scalar, 1 = Array)
Right Shape " I f

Result Type (00 = Character, Ol=Boolean)

(10 =, Integer. 11 = Real)

Table 5-4: Semantic Summary: Shape and Type

Next comes a CASE decision based on rank and/or type For formats that include

operator syllables, the next step is to execute the operator microprogram from the operator

EXEC table indexed by the op code read from the pipe The primitive microprogram may

be executed once or in a looping structure Some formats do not have operator syllables-

usually because the operator is implicit in the format, as in the INDAS3 format for

indexed assignment. (Many ADEL formats without operators never go through the pipe.

BRABS. NXTL. NOOP, and so on are examples.)

it. .and repeats the process.

5.4. Function Call and Return

5.4.1. Call

After a function calling format such as SLUR - or SUS has processed its operands, the -

next and final syllable of the instruction denotes the function to be called. The tag part

of the CAT entry indexed by the syllable is checked to make sure i t is really a function.

In parallel with this check, the current set of state variables is copied to the end of the

current C A T frame and a stream is opened to the segment pointed to by the pointer part

of the D A T entry.

The new function segment begins with a table of descriptors used to verify that the

function and format valence match and t o set counters for the number of objects of

various kinds in the new environment While these checks and initializations are being

done, streams are opened into the Global Symbol Access Table (GSAT) in the function

segment and into a new CAT frame For each object referenced by the called function.

the GSAT entry is used to find the corresponding Global Symbol Table page.

The first item is always the result. and is handled by pushing a "no value" onto the

D A T stack The new top-of-stack pointer is written into the CAT with type tag

"Variable". The new C A T entry is also pushed onto the call chain of the corresponding

symbol table page.

Arguments that are not already on the stack are pushed onto the stack. with their (new

or current) stack positions copied into the CAT with type "Variable". The new C A T entry

is pushed onto the call chain of the corresponding symbol table page If the arguments

were not already on the stack, the DMU microcode will make copies of the argument array

segments

The identifier of the function itself is handled by writing the segment number of the

function into the CAT with type tag "Function". Since a function name is not a local

object, nothing is done to the symbol table. (It is legal in APL to have a local variable

with the same name as the function This is sometimes done to prevent inadvertent

recurwon The resulting local variable is usually assigned a character vector containing a

message that the function is suspended and should not be rerun without remedial action.)

Local ~ d w t r t ~ e r s are listed after the right argument with the number of locals indicated

by an entry In the function descriptor table. For each local identifier. "no value" is pushed

onto the D A T stack. and the new top-of-stack pointer is catenated to the "Variable" tag

t o arrive at a value that is written into the CAT and pushed onto a symbol table call

chain APL semantics allows local functions. but at this stage of development the

interpreter assumes that all identifiers in the local list will be variables.

Since APL semantics do not include "own" or "retentive" variables, it is not necessary to

initialize local variables beyond instructing the DMU t o set their tags to "No Value" and

setting the PMU tags t o "Variable" so the first statement that assigns a value to a local

variable will be recognized as valid syntax.

The rest of the identifiers in the function are global named objects, literals, and line

labels, listed in the order that they were recognized by the translator

Labels are distinguished at link time by setting the sign bit of the corresponding entry in

the GSAT When a label is encountered during the CALL process, the sign bit is cleared

and the symbol table Is f w n d as with other identifiers. The value of the iabei is read

from the next GSAT entry. The label value is catenated with the "Constant" type tag to

get the value which is written into the CAT and pushed onto the symbol table call cham

Thus a label is effectively a "local constant".

Literals, global variables and functions are not distinguished in the CALL process. In

each case the symbol table page pointed to by the GSAT entry is consulted to find the

end of the call cham and the value there is written into the CAT. Thus the tag and

DAT pointer of each item will be the same in the new environment as in the old In

part~cular slnte literals cannot be shadowed (because there is no way to get the translator

t o accept a hteral as an argument, local variable, or label), they will retain their "Constant"

type tags and their pointers into the Global/Literal area of the DAT.

50

5.4.2. Return

Return from a user-defined function is a simpler process than calling. The DMU is told

the number of local objects (including arguments but not labels or the result) and clears

the values of that many items in the local/execution stack The process of popping the

values is completed by incrementing the stack pointer by the same number. For each

local object (including arguments, labels, and the result), the call chain in the corresponding

symbol table chain is popped.

T h e result of popping the name but not the value of labels is simply that the old values

become unshadowed. Remember that the value of labels is set at link time, not at call

time, so no new values are created by CALL.

The effect of popping the name but not the value of the result is that the old value of

the name is unshadowed, and the new object which was created by CALL and given a

value during the execution of the called function is now on top of the stack in the calling

environment. All of the currently implemented formats involving CALL return the result t o

the stack this way Implementing a format like DLUR. - which assigns the returned value

to a specific variable. would require that the "D" syllable would have to be stored during

CALL to be used during RETURN.

When the identifiers have been dealt with, the state information at CALL time is read

from the end of the C A T frame preceding the called frame. (Note that the size of this

. frame IS not known yet, so its beginning cannot be located. However, its end is right

before the begmnlng of the called frame.) This information is used to open the old CAT

frame. reset the LINENO register, and restart the stream used for executing ADEL code at

the syllable following the end of the ADEL instruction which initiated the CALL.

5.5. Primitives

An APL implementation consists of systems to accept input and control the environment,

plus the all-important programs that do the work itself. While the primitives are the first

thing anybody notices when learning or using a language, in an implementation project they

can be the last thing considered.

APL primitive functions can be divided into three groups: the scalar arithmetic and logical

functions the mixed functions, and the array-manipulation functions.

5.5.1. Scalar Functions

A scalar function like "+" applies to scalars, or t o the elements of an array. producing a

result of the same shape as its arguments. For example, the result of adding a %row. 6

column matrix of numbers to another matrix of the same shape will be a new 3-by-6

numeric matrix The principle of "Scalar Extension" allows a scalar to be added to an

array producing an array result.

Scalar functions are executed via the DLR family of formats. Arguments cannot be

rejected from inspection of the tags except in the case where character arguments are used

with a function whose domain is arithmetic The semantic checking consists of matching

ranks and shapes.

5.5.2. Mixed Functions

. The mixed functions produce results of different shape from the arguments For

example. "matrix divide" can be used to solve a system of linear equations It takes as

arguments a matrix of coefficient values and a vector of constant values, returning a

vector of variable values "Encode" and "decode" are two more mixed arithmetic functions.

24 60 60 decode hours,minutes.seconds

produces the total number of seconds represented by the three values, and

24 60 60 encode numberofseconds

breaks the number of seconds down into hours, minutes and seconds. None of the mixed

arithmetic functions have been implemented in the first pass at the interpreter.

T w o mixed functions do not deal with arithmetic. Index-Of, a dyadic function

symbohzed by L , finds the position of the elements of its right argument in the vector'

used as i ts left argument. For example

2 3 4 5 6 ~ 3 4
1 2 (in index origin 0)

Membership, vihose symbol is E , returns a boolean of the same shape as its left argument,

indicating whether or not each element is found anywhere in the right argument.

Neither membership nor index-of have been implemented yet.

5.5.3. Array Manipulation Functions

The array manipulation functions generally take a left argument describing the size and

shape of the array to be returned, and a right argument containing the array to start with

The most important functions in this group are Reshape. Take, and Index, denoted by

t.p.and (1, respectively. Only the Index function is found in most scalar languages

5 6T ARRAY

returns an array containing the first 6 columns of the first 5 rows of ARRAY, and

5 6 IJ ARRAY

returns a 5-by-6 array containing the first 30 items of ARRAY taken in row-major order.

In APL indexing can select arbitrary subarrays as well as scalar elements.

ARRAY [3 4;~4]

returns a two-by-four element matrix containing the elements in the first four columns and

rows 3 and 4 of ARRAY.

Reshape and Index have been implemented in the first version of SAM APL.

these are used with the DLMR - family of formats. Semantic checking consists of

that the "left" argument is numeric. In order t o make indexing consistent with

array selection functions, X[A] is translated as if i t were written A index X.

Both of

verifying

the other :

Indexed Assignment is complementary t o indexing, allowing a specified element (in APC.

a specified orthogonal subarray of elements) of an array to be respecified. Only indexed

assignment of a scalar element has been implemented in this version.

The other APL array-manipulation functions include Drop, Rotate, Transpose, Select (or

Replicate in most current APL implementations) and Expand. None of these have been

implemented in the first version of SAM APL.

Two more functions can be included in this group: monadic L , the index generator, and

catenation. whose symbol is the comma. (Monadic comma, or ravel, is a special case of

reshape included in APL for convenience. Its implementation will be easy enough but has

been given a lower priority than most of the other primitives.)

The expression "LN" generates a vector containing the first N integers, beginning at zero

or one depending on the current "index origin". The index generator has been implemented

in a restricted form, with a limit of 256 elements and with only origin zero. Source code

using the index generator is translated into ADEL code using the DMR - family of formats.

Semantic checking consists of verifying that the argument is numeric The operator

microcode simply generates a DAT entry with length field copied from the argument and a

pointer to a read-only segment containing ~256.

Catenation is the most important APL primitive function that has not been implemented

in this version of SAM APL. and is the first function scheduled for implementation in the

ongoing project.

It should be noted that there need not be a one-to-one correspondence between

primit~ves in the intermediate language and primitives in the source program. For example

the front-end translator is free to recognize common combinations of APL functions like XL

and prlrduce a "hidden primitive" in the intermediate program. In the opposite direction, a

different translator might accept a source program containing an unimplemented function,

say "stringwise-index", and produce ADEL code containing a caii to a user-defined function

or a sequence of ADEL instructions

5.6. Derived Functions

Derived functions in APL are formed by applying an operator to functions and data.

Examples of derived functions are plus-reduction (+/), inner product (+.x) and first-axis

times-reduction (x/[l]). In the SAM APL project, derived functions are handled in three

different ways

5.6.1. Special Case Microcode

Some derived functions (currently comprising +/ and -1) have the status of "hidden

primitives" The APL expression

x + + / Y

translates t o the single ADEL instruction

DFR Y X +/

and is executed by the DER format microcode and the PLUSRD function microcode. This

approach is useful when there is an algorithm that is more efficient than straightforward

iteration as in and/ and or/ Reduction of vectors of length greater than two is rare for

the transcendental functions and reduction by these functions will probably be handled by

general-purpose microcode or PMU derived functions

It is uncertain whether derived functions using the scan (\) operator

will be implemented with DER, since the current version of the format hard-codes the rank

reduction (i.e.. the reduction of a vector is a scalar) associated with the reduction operator.

5.6.2. PMU Derived Functions

Some primitive scalar functions will, at least initially, be implemented as system-resident

det~ned functions Derived functions which use these primitives will be implemented as

def~ned functions which incorporate calls t o the defined "primitives". The consequences of

this poky are discussed in the last chapter.

56

5.6.3. General Microcode

The product operator has a format t o itself

X + Y +.x Z

would be translated into

D L R Z Y X + x

The format microcode then sets up loops and EXECS primitive functions. The scan

operator, and some cases of reduction, will also be handled this way.

Note that it is quite possible t o implement the commonest products as special cases. It

1s also possible t o use reduction primitives where they exist instead of using only scalar

functrons In the loops.

Chapter 6

Performance Considerations

6.1. Control Primitives

Many APL programs contain loops, and the standard APL language does not contain an

efficient way to deal with them. The typical construction

..+ LOOPXL L IM IT > COUNT + C O U N T + 1

involves all of the usual overhead in checking the type of COUNT, performing the addition

and cornparison, doing whatever arithmetic is involved in the branching idiom used. and

finally transferring control.

In the SAM machine. the type checking is done in parallel with the operations, so

performance would be improved. However, the transfer of control is a PMU operation, so

time would be wasted waiting for the DMU to finish its work and send the result back to

the PMU This waste of time is especially pernicious because the PMU is intended to

keep ahead of the DMU. For this reason, SAM APL is extended to include control

primitives

The control primitives developed in the first implementation consist of a branching

primitive and a pair of loop control primitives The ADEL form of the branching primitive

is named BIFSTK (Branch IF StacK) The looping primitives consist of a counter initializer

with a zero check called INlTBZ and an increment-test-and-branch primitive called IBNZ.

The ADEL code tested had the form

SMR VEC p
INITBZ END

LOOP:
body of loop
IBNZ LOOP

END:

Stack Length
Counter Stack
-, END if Counter-0

Increment Counter
-, LOOP unless Counter-0

The corresponding APL source code would contain a dyadic system function INITCZ

(Initialize and check if zero) and a monadic INCCNZ(lncrement and check if not zero), with

the syntax

-, END INITCZp X Start Counter and
END if Counter = 0

LOOP:
body of loop
-, INCCNZ LOOP Incr Counter and
END : -t LOOP unless Counter = 0

The looping primitives were developed and tested while writing a user-defined version of

plus-reduction The measured results are shown in Table 6-1 Note that the per-element

times include the time taken for data manipulation as well as time taken by the control

primitives themselves

Coding Set-up Per Element

Microcode 423 2
Looping Primitive 1319 196
Branching Primitive
(Scalar Test) 2038 297
(Vector Test) 1397 391

Table 6-1: Performance of Control Primitives

Note that using the looping primitive allowed the per-element loop time to be reduced to

196 cycles. as compared to 297 using the branching primitive. Without the branching

primitive, the loop time would be slightly longer This measurement would have required

the standard format for computed branch, BSTACK. which has not been implemented yet.

Careful coding is still a useful way of improving speed. Omitting an extra step t o

ensure that the limit and loop counter are scalar saves 641 cycles of set-up time but

raises the per-element time to 391 cycles.

Five different branching techniques are shown in Figure 6-1. The looping primitive IBNZ

is the only one that does not require the PMU to wait for a value from the DMU.

The standard branching primitive BSTACK executes a typical APL test-and-branch as

three ADEL instructions. the test itself, the APL instruction which uses the destination

and the result of the test t o place a line number on the stack, and the branch instruction

itse!f The "Branch-frcm-Stack" primitives BRANS!? and BRANLS combine the branching

operation with the preceding operation, so that the APL expression

- (V .\: X) / LBL

can generate the ADEL code

SLR X Y < Stack + Y < X
BRANSR LBL /

The present branching primitive BIFSTK could not be generated from APL source code

without an IF keyword BRANSR and BRANLS would generate two ADEL instructions, as

BIFSTK does rather than three, as BSTACK does. Since they use an APL function such

as "/" or " X L " ~nstead of a special IF instruction. their performance should be somewhere

between BIFSTK and BSTACK. The BlFLR format is based on the realization that the

destination syllable of a branching instruction could be used t o contain the destination of

the branch itself. By condensing the test, the branch instruction, and the destination into

a single format, BlFLR would run slightly faster than BIFSTK.

All of the branching primitives discussed here will be implemented for testing purposes.

although only a subset can be kept in the finished interpreter.

Branching Technique
Looping Primitive
Branching Primitive
Branch-to-Stack
Branch-from-Stack

II

one-step Branch

ADEL Code --
IBNZ Loop
SLR X Y < : BIFSTK Loop
SLR X Y < ; SSR Loop / . BSTACK
SLR X Y < : BRANSR Loop /
SLR X Y < . BRANLS Loop X L

BlFLR X Y Loop <

Note: Semicolon is used here as an instruction Separator

Figure 6-1: Some Possible Branching Techniques

The control primitives in the final implementation may differ from the constructs

implemented in this version, which are efficient but not necessarily in keeping with the

theme of APL (In fact. they are not available as APL source but have to be hand-coded

into an ADEL assembler)

One common APL idiom that can be handled by a control structure is execution

involving a constant string. The expression

execute (Y = 3) / ' Y + X + 2 '

might be compiled to a test-and-branch equivalent t o the (illegal) APL expression

Y + X+2 + (Y=3)1NEXTLINE

6.2. Call/Return Mechanisms

Function call and return is one of the principal sources of overhead for programs in mast

languages This is particularly true o f APL, which allows applications to be built of

dozens or hundreds of independent functions, with the dynamic nature of the language

making function call expensive on conventional architectures The SAM architecture has

been designed t o address the problem of efficient function call and return. The process is

fairly similar t o DELtran practice [FIH83] and was described in detail in Section 5.4.

T o recapitulate. each identifier in a user-defined function is mapped to a symbol table

entry A t call time, each entry is inspected. and the corresponding data table pointer is

written into a Contour Access Table which corresponds exactly t o the numbers used to

encode objects (other than primitives) referenced by the user-defined function. if the item

is a local variable, the D A T pointer used is top-of-stack after a "no value" has been

pushed onto the D A T stack. If the item is a label, the corresponding line number is

written ~ n t o the CAT. For both labels and variables, the CAT entry is pushed onto the

call chain for the symbol table entry, shadowing the previously accessible value.

The arguments. if any, are currently handled by copying the D A T entries and the array

segments on function call. Array segments for arguments that are from the stack do not

have to be copied Later investigation will determine whether i t is worthwhile t o

implement a "protected-call-by-reference" mechanism to avoid the overhead of making copies

of the arguments

Function return consists of deallocating all of the local variables which have received

values and marking the corresponding tags "undefined" The corresponding symbol table

page call chains are popped, and corresponding values are popped from the D A T stack

By popping the result name (in the symbol table page) but not the result value (in the

D A T stack) on function return, the value is available as the top-of-stack in the calling

environment.

Function call overhead is still considerable compared t o that for a simple branch. Several

improvements are possible.

Implementing the formats like DLUR - which put the result of a called function
into a specific variable instead of the stack will save one pipe cycle by allowing

a sequence like SLUR followed by DGETSS t o be replaced by a single ADEL
instruction.

0 It is not necessary t o perform a symbol table access for literals. since the D A T
pointer is known at link time.

ADEL keeps literals in the same CAT as named identifiers. I t is feasible t o
keep a separate contour for literal values [FJW85] T o make this work with
the current system, new formats would be needed, so "X + X + 3 l W would
translate t o "LLC X 31 +". Note that this would require some way to handle
applications with more than 256 literals.

An edit-time check could determine whether arguments are modified. so the
D A T pointer could simply be copied for an unmodified argument, without any
need for reference counting and protection flagging in the DMU.

Special areas of the CAT and D A T could- be reserved for "leaf" functions which
do not themselves call other functions, allowing a call t o be a matter of
resetting the environment pointer.

If the ~dentifiers used by a function are listed in order of use, function
execution could be begun before the new environment is complete. More
identifiers would be set up as the PMU gets ahead of the DMU, or as they
are needed.

0 Finally, hardware could be designed to assist the calling mechanism. For
example, the CAT and D A T were kept in hardware in an earlier version of the
SAM design [HGT86]. Moving these two tables to segmented memory slows
down call/return performance by a factor of about two.

V R + X ACKER Y
111 - BIGX IF X > 0
P I R + Y + 1
PI - o
141 BIGX:

is] - BIG2 IF Y > 0

161 R + (X - 1) A C K E R 1
171 -. o
[7] BIG2:
PI R + (X - 1) ACKER X A C K E R (Y - 1)

V

Figure 6-2: Ackerrnann's .Function

DEPTH TEST-AND-BRANCH
X Y R CALLS SUCCESS FAILED COST

COST is measured clock values.
Values in parentheses are estimates.

Table 6-2: Measurements of Ackermann's Function

A good way to exercise the calling mechanism is Ackerrnann's Function, a doubly-

recursive function with the number of calls growing more than exponentially with its

arguments. The APL version of Ackermann's Function is shown in Figure 6-2 The

64

number of calls, branches. and failed branches for various arguments is shown in Table

6-2. The cost of execution is given in the final column. The simulator is too slow to

run 3 ACKER 3, but a linear regression of cost versus number of calls, successful

branches, and failed branches gives agreement t o within 0.1% for all cases up t o 2

ACKER 2, and has been used t o extrapolate t o 3 ACKER 3. The extrapolated speed is

compared with various other implementations in Table 6.3. A hardware speed of 8 MHz

is assumed.

. [HGT86] give a simulator measurement of 1.5 ms for 2' ACKER 2 on 5 MHz hardware.

This works out t o 7500 machine cycles. over twice as fast as the current simulator. Most

of the difference is due to the present implementation of the CAT and D A T in segmented

memory instead of in hardware.

LANGUAGE

SAN APL
SAM APL
C
C

STSC APL
MTS APL
MTS LISP
Franz LISP
Interpreted LISP
Compiled LISP
C

ENVIRONMENT TIME
(MILLISECONDS)

SIMULATOR 153
Tables in Hardware 80
SUN 2 50
SUN 3 13
Select AT 35,900
IBM 3081 1014
IBM 3081 110
SUN 3 2400
LMI LISP Machine 20,000
LMI LISP Machine 92
IBM 3081 8

Table 6-3: Comparison of 3 ACKER 3 on Various Systems

6.2.1. The ICKER Function

Since Ackermann's function exercises the calling mechanism of a language implementation,

it seemed that it would be interesting t o write a purely iterative version of the function.

A comparison of the performance between ACKER and ICKER (shown in Figure 6-3)

should provide a comparison between calling and branching performance of the

implementation. A table of performance measurements is shown in Table 6-4.

V R + X ICKER Y;STACK;PTR

[I] STACK + 256p-1
[21 PTR + 0
[3] TOP: -+ BIGX IF X > 0
[41 R +- Y + l
[51 -t END
[6] BIGX: -t BIG2 IF Y > 0

171 Y + 1
P I X '- X - 1
191 -+ T o p
[l o] BIG2: STACK[PTR] + X - 1

[111 PPR + P T R + l
I121 Y '-. Y-1
[I31 -, TOP
[14] END: -+ 0 IF P T R = 0

[I51 PTR + P T R - 1
[I6] Y + R
[I71 x + STACK[PTR]
PI -+ TOP

Figure 6-3: Iterative Ackermann's Function

According to the table. ACKER is more efficient than ICKER on every APL

implementation except SAM APL. The measurements for LISP and compiled C were

made later in the project and will be discussed later

M y first conjecture was that either SAM APL calls are relatively slow, or its branches

are relatively efficient. T o check whether the effect was caused by something in ACKER

APL COMPUTER
SYSTEM

SAM
Porta

I1

STSC
It

MTS
Sharp
Dyalog

Simulator
Fat Mac
Zenith 151
Zenith 151
Select AT
IBM 3081
Zenith 151
SUN 2

C SUN 3
C IBM 3081
LISP IBM 3081

CLOCK HARD-

(MHz) WARE

8 none
8 68000
4.7 8088
4.7 8088
10 80286

TIME(SEC0NDS)
ACKER ICKER RATIO

Table 6-4: Comparison of 3 ACKER 2 and 3 ICKER 2

or something in ICKER, execution timings with different sets of arguments were compared

with the timing on MTS APL. The results of this comparison are shown in Table 6-5.

---MTS APL-- ---SAM APL--- ---MTS/SAM----

X Y ACKER ICKER RATIO ACKER ICKER RATIO ACKER ICKER
0 0 0.44 0.65 1.49 0.155 0.22 1.40 2.84 2.95
1 0 0.67 0.87 1.32 0.23 0.25 1.10 2.9 3.5

Table 6-5: Comparison of ACKER and ICKER on SAM and MTS
for Various Arguments

- As seen In Table 6-5, the relative performance of SAM and MTS APL for Ackermann's

function is fairly constant. Also, the ratio between the costs of ICKER and ACKER on

MTS APL was not dependent on the arguments But ICKER on SAM APL performed

much better than ACKER with larger arguments. Figure 6-4 plots M I S and SAM costs

for ACKER and ICKER against MTS ACKER cost on a logarithmic scale.

0 MTSICK

/-
6.

lob0 1k4 I h5 1 k6
MTSACK in Microseconds

Figure 6-4: Comparison of Recursive and Iterative
Performance IN SAM and M T S APL

To test the effect of number of instructions (and to make sure that nothing in the

simulated run was compromising the integrity of the clock), the simulations were rerun

with an ADEL instruction counter added to the simulator. Clock values were plotted

against lnstruct~on counts in Figure 6-5. It is apparent that ICKER uses slightly more

lnstruct~ons thdt ACKER, but the average instruction costs less, and the graph of cost

versus instructions for ICKER does not pass through the origin. Since the instruction mix

for ICKER contains a single function call, while the proportion of calls t o other instructions

in ACKER is nearly constant, i t is evident that the performance advantage of ICKER is I
due t o replacing function calls with array references and branches.

/-I.--' . .\ -rt.. Arrows Join Com~arable

E \,ases ol nLfiEn anu ILALI~

S
1000

0

At this

40 8 0 120 160 200
ADEL Instructions

Figure 6-5: Cost Versus Instruction Count In Recursive
and Iterative Versions of Ackermann s Function

point the pressing question was why other APLs did not show the same

behdviour Either the greater number of high-level instructions executed in ICKER must

outweigh the function calls in ACKER, or the array references found in ICKER but not

ACKER must cost almost as much as function calls. A comparison of the costs of array

references, function calls, and branches is shown in Table 6-6.

-----TIME IN MICROSECONDS-------
SYSTEM TEST AND ARRAY INDEXED FUNCTION

BRANCH INDEX ASSIGN CALL

SAM
M T S

Table 6-6: Costs of Array References,
Function Calls, and Branches

Notice that on M T S APL, test-and-branch, function call, and array references all take the

~ same order of time, 50 to 80 microseconds. In SAM APL, array references are twice as

fast as test-and-branch, and function calls are more than twice as slow. This behaviour is

more typical of compiled code than interpreted, suggesting that interpretation on SAM will

resemble the execution of compiled code in detail as well as in raw performance. This is

supported by the figures for LISP and compiled C in Table 6-4. In interpreted LISP, the

list references for ICKER outweigh the function calls for ACKER, but in compiled C.

ICKER is faster than ACKER by about the same ratio as in SAM APL.

At this stage in the development of the interpreter. only a very rough guess can be

made at the ultimate performance of the call and return mechanisms.

A t a very rough guess, then, the speed of function call and return might be doubled

The microroutines in this version of the interpreter have not been fine-tuned for

performance (see Section 6.6). Implementing the CAT and D A T in hardware and tuning

up the microcode would certainly bring the performance up to the predictions in

[HGT86] which is double the current speed. Several suggestions for improving the

performance of call and return are listed earlier in this section. An interpreter using all of

these ideas and with fine-tuned microcode may be twice as fast as the current model

without hardware assistance Finally, the technology used in the 68020 chip is at least a

factor of two faster than the technology of an 8MHz SAM system. Raising hardware

speed to 16 MHz, moving all tables to hardware, using the fastest algorithms possible, and

fine-tuning every line of microcode should speed up call and return by an order of

magnitude, giving a speed for Ackermann's Function about the same as compiled C on a

68020 machine

I have drawn two tentative conclusions from the ACKER-ICKER investigation. First: the

poor performance of ICKER on other APLs is due t o inefficient array accesses. Second.

part of the advantage of ICKER over ACKER on the SAM system may be due to the fact

that function call and return are still in their initial correct-but-not-fast incarnations In the

final version of SAM APL, ICKER will run faster than ACKER, but probably by about half

of the current margin.

It should be mentioned here that the indexed assignment instruction used was special-

cased for scalar indices of vectors. (See Section 6.4 for more detail on this instruction.)

A more general indexed assignment would be slower. However, there is no reason to

suppose that the translator will have any difficulty recognizing scalar indices of vectors and

generating the appropriate ADEL instruction even when more general cases are supported.

It is unlikely that future developments will make ICKER run more slowly.

6.3. Array Arithmetic

6.3.1. Dragalong and Beating

APL often does operations that appear t o be unnecessary. For example, in the expression

A t 10 B + C, where B and C are 1000-element vectors, a naive implementation

would perform 1000 additions, then discard 990 of the results. In his PhD thesis, Abrams

[Abr70] suggested that a more sophisticated APL interpreter should "beat" the addition by

"dragging along" a temporary expression until the take operation is complete for both

arguments This approach has a few problems: for instance, suppose B and C were of

' different lengths This error could easily be caught But suppose the operation to be

beaten were division instead of addition, and C contained a zero after the 10th position.

It is not clear whether an interpreter which did not catch the domain error could be

considered to be correct.

In many cases, there is no possibility of an error being introduced by an optimization of

this kind. For example, the resu!t ~f A B f C + D is the same whether two passes

are used t o create a temporary (C + D) and then add B to i t or both additions are done

in d single pass. For vectors of length N. 6N memory references are needed for the two-

pass algorithm and 4N memory references for the one-pass algorithm. Hobson

[Hob841 points out that, given an efficient vector machine, the two vector additions will

run faster than the sequence of alternating scalar additions. The implementation of some

repeated operations is discussed in more detail in Section 6.5.

6.3.2. Derived Functions

Derived functions can be optimized using the distributive properties of the primitives

involved. For example. SCALAR +.x VECTOR is identical t o SCALAR x +/ VECTOR

but SCALAR+.+ VECTOR has no such optimization. The proportion of optimizable

cases of this kind in APL applications programs is probably too low to justify the

overhead that would be needed t o recognize them.

On the other hand, some optimizations are not dependent .on special cases. For

example, the AND reduction of a Boolean vector

X + and/ BOOL

reduces to the question of whether or not there is a zero anywhere in the result, and

efficient APL implementations do not go on testing elements of the vector past the first

zero.

6.3.3. Storage States

One interesting approach to the mixture of arithmetic and selection operations is t o use

a separate processor for each kind of operation [Sny82]. Snyder's MAPLE architecture

handles selection operations as descriptor manipulations whenever possible. This would

handle an expression like A + l o t . B[1:2] by generating three successively modified

descriptors for B The array manager would then use the final descriptor t o fetch elements

of A as needed for arithmetic and logical operations.

Using such storage states speeds up selection expressions at the expense of making data

fetches somewhat complicated A well-designed address calculating mechanism would allow

array data fetches at the same speed as ordinary fetches on a scalar machine. The kind

of streaming memory access used in the SAM project would be too complicated to justify

with current technology.

Another storage state is the arithmetic progression vector, which can be represented by

an initial value, a step size, and a length. In the absence of a combinational multiplier

built into the addressing mechanism, this representation will slow the use of its elements

in any nonsequential fashion. [HaL76] point out that arithmetic progressions are used very

heavily in array subscripting operations. It may be desirable to allow the subscripting

microcode to generate and use arithmetic progression vectors even if the rest of the

interpreter does not recognize them.

There is one place in the SAM interpreter where a storage state approach is used. The

index generating primitive saves both space and time, as LN simply generates a descriptor

with length field N, pointing to a read-only array segment containing the elements of ~256

The principal drawback of this approach is the necessity to check whether a variable is an

index vector before deallocating its old value. This problem has been handled by declaring

a set of segments to be read-only. The deallocator simply checks whether the segment

number is greater than a global READ-WRITE-BEGIN. At the present stage of the

interpreter development, this slows down all deallocations with no benefit but a speed-up of

the index generator However, now that read-only segments exist, one part of a nested-

array ~mplementation is in place

A second problem with the descriptor-only approach to the index generator is the

existence of two separate index origins. The answer to this problem will be to maintain

two separate index-vector segments, setting the pointer to the value active at execution

time

Measurements taken from actual use will be needed to decide whether this approach is

optimal.

Two other cases where multiple arithmetic operations can be 'combined are matrix

division and monadic -.x (the determinant function.) It is important that an APL

program dealing with heavily numeric operations such as eigenvectors. Fourier transforms.

and the like should be interpreted in such a way as to optimize the streaming through the

arithmetic coprocessor Probably several cycles of implementation will be necessary to get

really good mathematical performance. The transcendental APL primitives must be

implemented somehow, and it is not at all obvious that the published algorithms will be

optimal for the SAM architecture.

6.3.4. Arithmetic Coprocessor

For any application involving multiplication, division. or any floating-point operations, an

arithmetic coprocessor is necessary for good performance. John Gudaitis [Gud85] shows

that the performance of array algorithms is sensitive to the protocol used to access the

arithmetic unit(s). If the output of the coprocessor is buffered. it is possible to overlap

the bus cycle sending the next arguments with the operation time of the previous cycle.

Inner product requires an accumulation operation in its inner loop. In the general case, it

&ay or may not be faster to use two arithmetic units. The multiply-and-add sequence of

ordinary inner product is a processor primitive for the Weitek chip set used in the current

SAM implementation Consider a different inner product, say x.+. Whether or not i t is

faster to do the vector additions on a different processor than the multiplicative

accumulations depends on whether the bus cycles for the extra data transfer outweigh the

multiplication time for the processor chosen. In practice. +.x is expected to be the only

common inner product not involving a logical function. The matrix comparison products

like and.= might use the coprocessor i f floating-point numbers are involved.

6.3.5. Performance Measurements for Array Arithmetic

Problems like Ackermann's Function, with a high proportion of calls and branches to data

manipulation operations, are a worst case for an interpreter. Here we will look at the

performance of SAM APL in a simple array operation, finding the sum of 1000 integers.

In Table 6-1, the microcoded +/ primitive was shown to run with a set-up time of 423

cycles and a per-element time of 2 cycles, giving a predicted time for the addition of 2423

cycles or 0 3 milliseconds. Table 6-7 compares this with some other implementations.

LANGUAGE HARDWARE MICROSECONDS
SAM APL SIMULATOR 300
C SUN 3 3400
M T S APL I B M 3081 1800
STSC APL Select AT 35000

Table 6-7: Time to Add 1000 Integers

For this benchmark, the advantage of compilation is very much reduced. For example.

M T S APL is now twice as fast as cornpi!ed C instead nf seventy times as s!nw. SP.??!

APL is about six times as fast as M T S APL in both cases.

6.4. Selection Functions

For most applications, the set of APL functions which are used to create, select subsets

from and alter the shape and orientation of arrays are used more heavily than the array

arithmetic functions A considerable body of theory has been developed to combine the

selection functions into a set of stepper generators that are used to delay the selection

process until all of the steps in the selection have been specified

[HaL72. GuW78, TrB82, Ben841. For example,

4 5 lARRAY[2 4 3;5+~6]

can be treated by generating a "Stepper" or "Grid Selector" for the indexing operation,

apply the "Take" operation to the stepper, and finally apply the resulting stepper to the

array itself.

6.5. Sequences of Operations

The use of variable-length instructions with a specific format syllable allows an interesting

improvement t o repeated executions of the same operation in APL source code. The

example most found in application programs is repeated catenation.

RESULT + X . Y . Z

In a case like this, especially where X and Y are scalars and Z is a large array. the cost

of creating an intermediate result (Y.Z) and then catenating X to this result is much

greater than the cost of combining the operations in an intelligent way. The design of

ADEL includes formats for repeated operations of this type. The current interpreter does

not include any such formats, and their development must be given a lower priority than

the many missing features necessary to a robust and complete APL implementation.

Formats that implement repeated executions of a given function are a special case of

formats that correspond to more than two levels of a syntax analysis tree [FJW85]. As

the authors point out, the number of separate formats needed for all combinations of

functions and operands make i t impractical t o attempt t o implement a full set of formats

beyond the two-level case (a single function with its arguments and results). Often the

result of an expression is used more than once.

Example 1 above and other examples of repeated assignment can easily be special-cased.

Handling Example 2 in a single ADEL instruction would require a large set of new formats

and a redesign of the pipe hardware to handle extra values. A compromise would be to

implement a D + D instruction, so the example would be translated into the ADEL code

DLR Z W X + ; DGETSD Y

This format could be implemented easily because a copy of the last value assigned can

always be found in the NXTDEST entry o f the DAT. Thus multiple assignments are

possible without using the stack.

Example 3 is the most interesting, as an example of the kind of optimization that is '

expected from a good compiler. It would be feasible t o implement ADEL formats that

would do the job (See Section 5.5.3 for a description of the subscript function):

SLR Y Z +
D L M T W R [
SLMS x [
LSC R -

where "T" in an argument syllable means that the top element of the stack is used but

not popped. There are currently about 100 formats that use S as an operand, and a fully

general implementation of this idea would require one or more new formats for most of

these. I t would not be simple to produce a translator that could recognize that a common

subexpression is free of side effects and generate the appropriate code.

6.6. Fine-Tuning the Microcode

SAMjr microcode requires very careful attention to detail in order t o use the maximum

amount of parallel execution. For example, the microcode used for a search iteration in

the memory manager is shown in the first part of Figure 6-6. This code requires 6 cycles

per iteration and omits and IDLE instruction needed for proper timing of the memory

controller hardware. A more efficient way to microcode the search uses the "mailbox"

registers in the pipe to hold temporary results. This code takes 5 cycles the first iteration

and 4 cycles per iteration thereafter

Old Version

SEARCH:
MMSl SRW R[Pl Start stream
R[SZl + SSN MMSl Read size
SF R[SZI MINUS R[N] A R[SUCl SSN MMSl

Compare size and read su&essor
+ FOUND IF -NEG A RLPREDI +R[PI

Test-and-branch, prepare next iteration
SF ARSHIFT RISUCI End-of-list?
+ SEARCH IF -SB A R[PI + R[SUCI

Begin next iteration unless end-of-list

New Version .
SEARCH:

MMSl SR W R[P] Start stream for 1st iter
SEARCHl: IDLE

SF R[N] MINUS M[SAVE] + SSN MMSl
Read and save size, compare wi th N

-, FOUND IF NEG A SF ARSHIFT M[SUC] + SSN MMS1
Test-and-branch, read successor.check for end

-, SEARCH1 IF" SB A R[P] + M M S l SR W M[SUC]
Start stream for next iter unless end-of-list

Figure 6-6: Speeding Up List Search Microcode

This search code takes 5 cycles the f irst t ime through and 4 cycles per iteration

thereafter

The best way t o apply detailed microcode optimizing techni&es t o this interpreter will be

t o obtain some measurements and identify the bottlenecks. Certainly the search loop

shown above will be one place where a cycle saved will have a large effect on the

performance o f the interpreter as a whole.

6.7. Summary of Performance Considerations

The present interpreter gives simulated results about six times as fast as M T S APL on

an IBM mainframe and 100 times as fast as STSC APL on a 10-MHz 80286 machine.

Compared t o compiled C on a 68020 machine, speed ranges from an order of magnitude

slower (for Ackermann's Function) to an order of magnitude faster (for vector arithmetic).

Neither of these benchmarks is a realistic model of a real application. For most

applications. the performance of the completed interpreter on the present hardware design

should more than satisfy $he project goal of performance comparable t o good compiled

code.

Chapter 7

Discussion

7.1. Hardware Feedback

One of the primary purposes of this project was to provide feedback to the team

developing the SAM hardware. It would be unreasonably optimistic t o expect a hardware

designer t o anticipate all of the requirements of software. Writing software for a machine

that exists only as a simulator leads t o the opposite problem, as the software wish list

may well include items that are prohibitively difficult t o implement in hardware. By having

the hardware people inspect and pass on each request as it is made, we hope to avoid

both of these problems.

7.1.1. Pipe Clear

The simplest hardware modification to arise from a software request was a facility to

clear out the pipeline between the PMU and the DMU.

The PMU fetch-and-execute cycle puts the format syllable into a pipe as a side effect of

fetching i t . Then argument and operator syllables are put into the pipe by the format

m~crocode But several PMU format syllables, such as no-op and branch-to-next-line. do

not require any DMU action It is simple enough t o write DMU format microcode that

does nothing except release the pipe when i t encounters these formats. However, this uses

up two microcycles of DMU time, and also uses up space in the limited DMU format

table. By allowing the PMU to clear out the pipe when i t executes a format that does not

require DMU action, the DMU processing is speeded up and the extra formats become

available for operations like data transfer, which are not initiated by PMU format fetch.

7.1.2. Triadic Addition

As a contrast t o the simple and useful pipeline clear facility. I will mention the Triadic

Addit ion request. After generating a considerable quantity o f microcode, I noticed that

address calculations and the like often required three values t o be added together.

Performing t w o separate additions required t w o microcycles. Since the major t ime

requirement o f addition is carry propagation. I reasoned that three registers could be added,

via a carry-save adder in front o f the standard adder, in one microcycle.

This particular request turned out t o be neither necessary nor feasible. The microcode

format is sufficiently parallel that most extra additions can be done in tandem with other

operations. The infeasibility derives not so much f rom the added complexity o f the adder

as f rom the redesign o f the bus system that would be needed t o use it.

7.1.3. Memory Mapping Table Size

Garbage collection is required when there is no sufficiently large block o f contiguous free

pointers available in the memory mapping table. O f course, garbage collection is useless if

there are not enough pages o f free memory left t o hold the required object. Therefore, by

making the number of entries in the mapping table larger than the number o f pages in

segmented memory, garbage collection should arise very seldom

It is easy t o see that garbage collection could be required using a table less than on the

order o f the square o f the number o f memory pages, by executing a long sequence of

commands

comment N = total number of pages
comment SMALLEST = smallest page to be allocated
SIZE = SMALLEST
while there is room in memory

ALLOCATE (SIZE)
ALLOCATE (1)
FREE(first allocation o f this iteration)
INCREMENT (SIZE)

end -

Let K be the number of iterations before there is not enough room in the memory. The

next allocation will be for SMALLEST+K pages, and there will be K single pages already

allocated Then the size of table required to map all of these free and allocated blocks

without garbage collection will be (SNIALLESTxK)+(Kx(K-1))+2 and choosing the worst

possible value of N/3 for SMALLEST. we find that the mapping table is roughly ~ ~ + 6

items long.

In practice. of course. a much sma!!er memory mapping tab!e wi!! be reqr;i;ed to make

garbage collection exceedingly rare. The size of mapping table needed will be determined

by experiments that will be performed when the interpreter has been developed to the

state that it can run real APL code. The practical suggestion arising from this theoretical

consideration is that the mapping table should be twice the size needed t o map all of the

real pages of segmented memory.

7.2. A Minimal APL Subset

It IS immediately obvious that the APL language contains redundancies. For instance.

the ten dyadic logical functions found in APL can be implemented as the NAND function.

with preprocessing to translate expressions involving the other nine dyadic logical functions

A t o equivalent expressions using NAND

Some APL primitives are tempting candidates for replacement by defined APL functions.

Matrix divide is the obvious first choice. Encode and decode, grade up and grade down.

factorial/gamma and binomial coefficient. and the trigonometric functions could also be

replaced. Some derived functions could also be recognized by the preprocessor and

implemented as calls t o defined APL functions, especially if monadic -.x (determinant) is

implemented

Since i t is much easier t o write APL functions than microcode, it is of considerable

interest t o be able t o define a minimal subset of APL sufficient for implementing the rest

of APL. Some caution is needed here. since a strictly minimal subset would not include

such things as addition and negation, since (-X) = (0 - X) and (X + Y) = (0 - (0 - X)

Y) What we are after is not a provably minimal subset, but a provably sufficient

subset which is comfortable t o work with.

7.2.1. Arithmetic arid Logical Frsnctisna

The arithmetic functions consist of addition, subtraction, multiplication, and division. The

transcendental functions can all be implemented as series, especially if the values of e and

pi are available. Encode, Decode. Determinant (if i t is to be included at all), and Matrix

Divide can be implemented as user-defined functions in a straightforward way.

I simple enough to get along without most of them, i t is even simpler t o implement one,

i then make slight changes in the microcode to arrive at microcoded versions of all ten. I t

may be necessary to omit complete microcode for some of the logical functions in order t o

conserve control store.

7.2.2. Array Manipulation Functions

Since an APL interpreter can be written in a scalar language with no array facilities

except scalar indexing, it follows that all o f , the other array manipulation functions in APL

are redundant. In fact, [Zak78] implemented transpose, take, rotate, membership, index-of,

gradeup, gradedown, expand, drop, and compress as defined functions. SAM APL will

implement all of these in microcode, with the possible exceptions of membership.

gradedown. and drop, which can be implemented via the identities

X E Y + + (Y L X) < P Y (k h e r e ~ i r a v e c t o r)
GRADEDOWN X + GRADEUP (-X)
L l X +- + ((-xL)x(pX)-1 L) t X

P.2.3. Array Ranks

V R + X PLUS Y:RANKX;RANKY

[I] RANKX + 1 t X

[*I RANKY t I ? Y
[31 + RANKOK x L RANKX = RANK Y

PI -. (RANKX=O)/SCALX
[51 + (RANK Y=O)/SCAL Y
161 SIGNAL'RANKERROR'
[7] SCALX: R + (RANK Y + 1) T Y

[a] R + R . (l l X) + (R A N K Y + l) l Y
[gl + 0
[lO]SCAL Y: R + (RANKX + 1) T X

[111 R + R.(11 Y) + (R A N K X + l) l X

1121 + 0
[13]RANKOK: XSHAPE t RANKX t 1 1 X

1141 YSHAPE + RANK Y T 1 1 Y

1151 + (and / XSHAPE = YSHAPE)) SHAPEOK

[I61 SIGNAL 'LENGTHERROR'
[17]SHAPEOK: R +- (RANKX + l) T X

(181 R +- R.((RANKX + 1)1 X)+(RANK Y + 1) l Y
v

Figure 7-1: Vector APL Function to do Scalar Arithmetic on
an Array of Arbitrary Rank

The initial subset contains only scalars and vectors. This restriction requires a

demonstration that a user-defined protocol and a set of user-defined functions can mimic

all of the APL primitives and derived functions as applied t o arrays of rank 2 or higher.

The following protocol is one possibility,

The programmer is responsible for keeping track of which values are arrays of rank

greater than one. All such arrays are modelled as vectors. with the first (rank + 1)

elements containing rank and shape. For character arrays, twice as many elements are

used to encode rank and shape as 16-bit integers.

T h w all operations involving these arrays are done by defined functions instead of by

A P l primitives It is immediately obvious that this can be done, since it is equivalent t o

writing a sr~bset of an APL interpreter in vector-only APL The easiest way to establish

the feasibility is t o show a few examples of such functions. Figures 7-1. 7-2 and 7 -3

show how scalar arithmetic, reduction, and inner product can be modelled.

V R + PLUSRED X
11 RANKX + 1 f X
21 SHAPEX + RANKX t 1 1 X
31 x + (RANKX + 1) 1 x
41 SHAPER + (-1) 1 sHAPEx
51 LEN +- (- I)TSHAPEX
6l LlMl T + x/ SHAPER
71 R + (RANKX - 1) SHAPER
8 1 COUNT + 0
91 LOOP: -, (L IM IT < COUNT + C O U N T + l) / E N D
101 R + R , + / L E N T X
111 X + L E N l X

121 -. LOOP
13lEND:

v

Figure 7-2: Vector APL Function to do Reduction on
an Array of Arbitrary Rank

V R + X PLUSTIMES Y

PI 0 PlusDotTimes Innerproduct
[21 STRIP-R-S .set RANK & SHAPE
PI -. (RANKX = 0 1)ISCALX. VECX
[41 (RANK Y = o 1) l s c A L Y, v E c Y
151 COL +- -1
[GI -, LERRif (W +- 1 T SHAPE Y) # (-1)tSHAPEX

P I NRO ws + X / SHAPEX +- (-1) I SHAPEX

P I NCOLS + x / SHAPE Y +- 11 SHAPE Y
[91 R + (N R O W ~ x ~ c o L s) p loo
(101 CLOOP: - E N D i f - NCOLS 6 COL + C O L + l
[Ill R O W + - 1

[12] CVAL +- Y[COL + NCOLS x L W]
1131 KLOOP: + CLOOP if NRO WS 6 ROW + ROW + 1
1141 R[COL+NCOLS+RO W] +- +/ CVAL x X [(W x ROW) + I+ W]

~ 5 1 + RCooP
1161 SCALX: -+ SCALX if RANK Y E 0 1
[17] R +. P L U S R E ~ ~ A RANK Y.SHAPE Y.X x Y

[I81 -"+ 0
[I s] VEC'X. -+ SCALRifRANKY E 0 1

[20] X + floor -- ~ p - ~) x (p ~) t p Y
fw -+ 0. R +- PLUSREDLA RANK Y,SHAPE Y . X x Y
[22] VEC Y R +- PLUSRED RANKX,SHAPEX. X x (p X) p Y

1231 -, o
[24] SCALY: R + PLUSXED RANKX.SHAPEX. X x Y
P I + o
[26] SCALR: - 0 R + + / X x Y
[27] L E R R. errorprocessing.

[28] END: KANKR +- RANKX + RANK Y - 2
[29] K + RANKR.((-1)1 SHAPEX),(l 1 SHAPE Y). R

v

Figure 7-3: Vector APL Function to do Inner Product
on an Array of Arbitrary Rank

7.2.4. Operators

As soon as APL primitives are implemented as user-defined functions, such functions

must be included in the domain of operators. Since an APL operator is essentially a

frame which determines how a function will be applied to an array, one way to implement

an operator that will handle a user-defined function is t o write a user-defined function

(that is, an ADEL function which runs in the PMU instead of a microcode function which

runs in the DMU) which accepts a user-defined function as an argument. This leads to

ALL user-defined functions being in the domain of operators, and with a very small

additional amount of work, user-defined operators become available.

In the initial subset, reduction is implemented as hard microcode for all of the

microcoded primitives All other operators, and reduction when applied to source-level

pr~mitives, are written as APL functions,

7.3. Microcode Size

The present interpreter contains almost ail of the environment maintenance routines,

about one-thwd of the executable formats, and on the order of a tenth of the executable

operators. DMU format code has been restricted t o vectors and scalars only, and the

arithmetic operators t o integers only

Altogether, there are 2275 lines of microcode. excluding comments and headers.

distributed as follows:

PMU
Linker
Maintenance(PMU)
Executable Formats(PMU)
Pipe Control(PMU)
In~tializations(PMU)
PMU Total

DMU
Maintenance(DMU)
Executable Forrnats(DMU)
Executable Operators
Pipe Control(DMU)
In~t~a l~zat~ons(DMU)
DMU Total

Common
Memory Manager
Init~alizations(Mern Mgr.)

Since both the PMU and the DMU contain a copy of the memory manager, there are

altogether 2492 lines of microcode in the system. However, the PMU and DMU do not

share control memory, so the individual totals are more important than the combined total.

The microcode for the PMU is complete except for the executable formats. The final

version of the PMU microcode should be about 2000 instructions.

The D M U will require a complete set of formats, extended to deal with floating-point

numbers and arrays of arbitrary rank, plus code for all of the primitives that have not yet

been written Writing the entire DMU part of the interpreter in microcode would probably

require about 8000 instructions. It would be interesting to see if a sufficient subset of

APL could be squeezed into 2K DMU instructions, making possible a cheaper machine with

most of the primitives and array code written as ADEL routines.

7 A . Conclusions

The implementation of the first subset of SAM APL has raised a number of interesting

theoreticdl and practical problems. While there was no intention of implementing the

entirat, of APL in this version the need for operators acting on user-defined versions of

primit~ves made i t necessary to do much of the groundwork for important extensions. The

initial performance of some control primitives is very encouraging, whether or not they can

be expressed comfortably in traditional APL. Difficulties arising from a half-thought-out

speed-up t o the index generator led to the necessity for read-only segments, which may

prove useful in the implementation of nested arrays.

The simulated performance of SAM APL has been very satisfactory, a factor of more

than 100 faster than the fastest microcomputer APL tested. Function call and return are

still bottlenecks in SAM execution, and several feasible ways of speeding up call and return

must be investigated. Performance measurement of different ways of expressing

Ackermann's Function has apparently shown serious bottlenecks in the way other APL

implementations handle array references.

I t is worth noting that it took about one year's work before the first APL expression

X + l

could be executed Extensions and improvements have been much quicker t o define and

test given a working nucleus upon which to build I t is probably premature to guarantee

that a complete working APL interpreter will be easy t o develop from the current state of

the project but at the very least there are good grounds for optimism

Appendix A

Glossary of Acronyms

ACRONYM and EXPANSION

APL

ASP

CAT

DAT

DEL

DIL

DPM

DMU

ECU

EXEC

GSAT

A Directly
Executable
Language

A Programming
Language

Architecture
Support
Package

Contour Access
Table

Data Access
Table

Directly
Executable
Language

Directly
Interprable
Language

Dual Port
Memory

Data Management
Unit

Envi.ronment
Control Unit

Execute from
Table

Global Symbol

DEFINITION

A linearization of APL
code allowing complete
source code reconstruc-
tion. The "assembly
language" of a SAM system
The high-level computer
language that is both the
host language and the tar-
get language of this project
A software simulator to run
and measure the performance
of ADEL code
Ordered table mapping ADEL
syllables to DAT indices
Table of scalar values and
array addresses.
A linearized form of
a source program which
can be executed directly
A DEL which allows the
source code to be recovered
from the linearized code
Used to connect the PMU
and DMU to the ECU
The SAMjr system reponsible
for data manipulations
The "front-end" system
for user and 1/0 tasks
Execute a microprogram from
a table indexed by a
function or format syllable
List of pointers to Global

Access Symbol Table, kept in

HLL

PMU

SAM

SAM j r

SJMC

SFU

SPT

VHLL

Table
High
Level
Language

Program
Management
Unit

Structured
Architecture
Machine

SAM j r
Memory
Controller

Special
Function
'u'nit

Segment Page
Table

Very High
Level
Language

internal form of function.
A programming language that
does not require explicit
references to the hardware
on which a program is to be
run.
The SAMjr system responsible
for program linking,
function call/return,and
symbol table management
Two or more SAMjr systems
set up to distribute the
program and data management
tasks in executing ADEL code
A component of a SAM system
consisting of an SJ16 micro-
engine, a memory controller,
segmented memory, and zero
or more SFUs
Streaming segmented memory
controller used by SAMjr

A hardware unit (for example,
a floating-point processor),
attached to a SAMjr to
handle a special job
A table of physical page
addresses used for segmented
memory reference
A programming language which
handles data structures
directly instead of element
by element.

Appendix B

Extensions to APL

The present project has been limited t o implementing a subset o f the APL language.

wi th a single small extension in the form o f control primitives. The next step will be t o

implement the entire APL language, or a t least a sufficient set of primitives t o allow the

remainder o f the language t o be written in APL itself.

The implementation o f real extensions t o the language must be postponed unti l standard

A P L is finished. However. all existing commercial APL interpreters contain significant

extensions, and it is proper t o discuss them here, if only t o get some idea about which

shouid be considered for S A M APL.

B.1. Nested Arrays

Nested arrays are by far the most important extension t o standard APL. A standard

array consists o f a rectangular block of characters or o f numbers o f a given type. While

this is a simple and natural way t o represent financial tables and engineering matrices, it is

much less flexible than, for example, a Lisp list. Suggestions for "generalized" or "nested"

arrays where each element o f an array is (or contains) another array. have been circulating

since the f i rst useable APL implementations [Fa173, GhM731

After about a decade and a half o f discussion, three major implementations of nested

arrays were completed The first t o be released was I. P. Sharp's system. Then came the

NARS system o f STSC APL, and finally IBM's APL2 Another important nested array

APL is the Dyalog A P L available for UNlX systems.

Sharp's system differs from the other commercially available systems by being

"grounded". that is, an the enclosure of a simplei scalar object is distinguishable from the

object itself. The other systems are "floating, so that an enclosed simple scalar is identical

t o the original simple scalar.

The obvious consequence of this distinction is that "floatingw APL requires heterogeneous

arrays, since the catenation of an enclosed character and an enclosed number is identical

t o the catenation of the character and number. "Grounded" APL may permit

heterogeneous arrays (although no implementations do so), but does not require them.

A less obvious consequence is the pervasiveness of arithmetic and logical functions.

Since in a floating system there is no way t o distinguish a number from an element of a

nested array containing a number. then nested arrays are in the domain of arithmetic and

logical functions. In a grounded system, nested arrays may or may not be in the domain

of these functions In practice, a set of composition operators was defined, such that

(X+_wLh disclose Y)

means "Go through arrays X and Y element by element. For each pair of elements,

disclose them, apply the plus function, and enclose the result as an element of the result

array "

The simple provision of a nested array data type, plus the enclose and disclose

functions, is only the first step in providing a useful nested array language. Providing a

way to apply mathematical and logical functions to the contents of nested arrays is the

second step Many more functions and operators must be defined to allow the

'A "simple" scalar is an ordinary nurnbet or character, but not the scalar result of an enclose operation

manipulation of "nestedness" as simply and powerfully as standard APL operators deal with

l'arrayness'l

Writing the microcode to support nested array operations would be a large but fairly

straightforward project Consider the DMU microcode for the DLR format (Figure B-1):

DLR-D

Read Args from Pipe

Basic Semantic Check(Neither Arg Undefined) .
I

Cast if types different

Read 2 words from L and 2 words from R
!

CASE an argument ranks
I

j-(Both Scalar) EXEC the function
/-(Left Scalar) CALL 'DLR-SV'
i-(Right Scalar) CALL 'DLR-VS'
;-(Both Vector) CALL 'DLR-VV'

1

I

CALL 'CLR-WRI-DST'

Figure B-1: Broad Outline of DLR Microcode

T o handle nested arrays, assume that a floating system is t o be implemented, so that

X + Y+Z might refer t o a scalar Y and a nested array Z. Then the DLR routine in the

PMU would not have to be changed at all. In the DMU, a test would be inserted after

the basic semantic check, as in Figure (B-2). Assume that a nested array has a DMU

tag of 1100.

In Figure B-2, the additional test in DLR is shown, followed by a rough outline of the

1

IF L tag is 1100

CASE on R tag

1-1100 CALL 'DLR-NN'

/-lOxx CALL 'DLR-NV'

1-Olxx. CALL 'DLR-NS'
ELSE IF R tag is 1100

CASE on L tag
I

I
/-IOxx: CALL 'DLR-VN'

I-Olxx: CALL 'DLR-SN'
ELSE (Rest of flowchart as before)

DLR-SN
(DMU Microcode for DLR. Scalar L and Nested R)

Initialize a count for length of R

Open segment containing ptrs for R

LOOP: Read one pointer for R
CASE on tag for the pointer

1-SCALAR. EXEC the function

'-VECTOR CALL 'DLR-SV'

NESTED CALL 'DLR-SN'

Figure 8-2: Change to DLR Microcode to

Support Nested Arrays

DLR--SN microcode that would be called where the left argument is scalar and the right

argument is nested One serious problem that would have to be solved is the recursive

nature of nested arrays If an element of Z is itself a nested array, the DLR-SN

function simply calls itself. Since the nature of microcode is not recursive, a different

programming style would be needed

The shape- manipulation functions could operate on nested arrays exactly as if they were

arrays of integers In fact. there is no reason that any of the shape-manipulation code

should 'know' that its argument is a nested array. The problem of 'pad' elements for

expand and overtake would disappear if we set up the tables so the value pointed t o by 0

is the fill value for a nested array. Presently, the DAT element in position 0 is in fact

scalar zero, which is a suitable fill element.

The treatment of nested arrays in this section has necessarily been superficial, and the

fact that the examples have been simple is not meant to suggest that the implementation

would not be difficult. As the interpreter is developed. I expect to include a very

restricted set of nested array operations. possibly limited to Enclose and Disclose. Such a

limited nested array system is of little practical use, but it should at least help to prevent

implementation decisions that would interfere with a real nested array system in the future.

8.2. Operators

The use of operators t o apply functions to arrays is the keystone of APL. Standard

APL contains only four such operators: reduction, axis, scan, and product. New operators

have been suggested almost as often as new functions. In particular, new operators have

been necessary for the manipulation of nested arrays.

Recently, [IPS841 published the beginnings of a formal calculus of operators The

completion of such a calculus might allow the development of a new programming language

based upon it, as of nested array theory led to the development of Nial. Such a language

might resemble APL only loosely The extended version of APL proposed by Kenneth

lverson is based on the consistent application of operators [lve86].

The ultimate operator extension is provided in APL2. user-defined operators Together

with allowing operators t o apply t o user-defined functions, this completes the process of

using the APL operator t o create a language that is totally different in flavour from non-

operator languages.

The ADEL intermediate language developed for the SAM APL system encodes the

standard APL operators within its format syllables. A t present there are no formats for

unspecified operators. Adding new operators t o an APL implemented via translation into

ADEL would require either a new set of formats for each new operator or a set of

unspecified-operator formats. New operators could be also realized either by translating

them into nested loops during the front-end APL-to-ADEL translation phase, or by

trapping to error routines which then call APL programs which do the control operations

represented by the new operator. The implementation of operators which apply t o source-

level representations of some of the APL primitives will make this extension

straightforward

Traditional APL does not have a file system. Early implementations had no way at all of

keeping data outside of an APL workspace: everything that was entered or generated in a

glven session would be stored when the aclive workspace was saved, but that information

could not be used by non-APL tasks, and no more of i t could be retained than would f i t

in an APL workspace. Some ways of using APL workspaces as data bases are discussed

in (So0841

It was very early obvious to most APL theoreticians that the "right" way to implement

APL files was as extra-workspace nested arrays. An early feasibility study

(lve831 suggested that a practical nested array system was ten years and hundreds of

man-years away in the early 1970's. but a restricted subset could be implemented in about

a year The result of this effort was the Sharp/STSC component file system.

An APL component file a file is essentially a vector of APL arrays, kept outside of the

workspace and accessed by a set o f special file functions instead of standard APL array

manipulation functions. Component file systems make practical commercial applications

feasible, and have been very successful despite their stopgap nature.

The other approach t o files in APL was t o create a "shared variable" system, wherein a

non-APL fi le A P (Auxiliary Processor) could trade information wi th an APL task and

perform the job o f accessing various proprietary file systems and translating data into and

out of APL format. Like component file systems, AP-based file systems are commercially

practical but clumsy t o use. One very useful offshoot o f the A P file system concept has

been the shared variable facility, which can be used for inter-task communication within

and outside o f APL.

Since APL wil l be used on real computers which support other applications. some

thought should be given t o file interfacing. For example, an APL designed t o run on an

IBM PC-compatible computer should have some way o f dealing with native DOS files.

One attractive way t o get data base facilities would be t o write a useable interface t o one

of the commercial data base management systems.

B.4. Primitives

Despite the richness o f the set of operations created by applying standard APL operators

t o standard APL functions, i t is not hard t o define a problem that is most efficiently

. solved by extending the set o f primitive functions. Th is can be done either by adding

new primitives or extending the definitions o f existing primitives.

B.4.1. New Primitives

"String-Index" is one example of a function that can easily be written in standard APL

but is used heavily enough that an optimized primitive might be desirable. APL supports

character vectors, not strings, so that

' T H I S IS A SENTENCE ' L ' IS '
2 3

' T H A T WAS A SENTENCE'STRINDX ' A T '
2

A 'primitive String-Index function (and a companion String-Membership function) would

simplify and speed up text processing applications, particularly if the underlying hardware

includes string-handling facilities

Various other primitives that have been suggested from time to time include eigenvalue

and eigenvector, functions to convert back and forth between matrices and delimited

vectors an assortment of graphics primitives, and functions to handle nested arrays and

other data structures.

B.4.2 Extending Existing Primitives

Many features of contemporary APL systems are extensions of functions found in

standard APL For example the standard sorting primitives do not apply t o matrices or to

character vectors. Most contemporary APLs have extended the domain of the sorting

prirn~t~ves to matrices and higher-rank arrays, such that

RESULT + MATRIX[gradeup M A T R I X ;]

sorts MATRIX with the first column in ascending numeric order, with ties broken by the

second column and so on An optional left argument contains a collating sequence, so the

function can be used to sort a character array.

Another very common extension is the Replicate function. In classical APL.

0 1 0 1 1 / 1 2 3 4 5

returns 2 4 5. That is, elements of the right argument corresponding to 1's in the left

argument are selected. Another way t o look at i t is the number of copies of a given

element of the right argument is equal t o the corresponding element of the left argument.

either 0 or 1 Extending this second definition gives the Replicate function:

1 0 2 0 3 / 5 6 7 8 9

rehrns 5 7 7 9 9 9.

8.5. Strands and Syntactic Variations

It is convenient to be able to denote a single literal consisting of a vector of numbers in

the form

instead of

Strand rtotation extends this convenience to all APL variables instead of just numeric

constants For example

X + 5 6 7
Y + ' These are characters'
R e F 0 0 X Y

applies the function FOO to a two-element (nested) vector consisting of X as the first

element and Y as the second element More radically "strand assignment" can be used to

give a value to more than one identifier in one statement For example X Y Y X

swaps the values of X and Y All APL implementations with floating nested arrays support

strand notation Implementations with no nested arrays, or with grounded nested arrays, do

not support i t

Strand notation leads to a syntax based on "binding strength" [Bro85] The resulting

syntax is close to standard APL except for the existence of strands and such curiosities

1 2 3[2] + + 1 2 (3[2])

As imported into APL, strands are at best a mixed blessing. The Nial idnguage IS based

on array t h o r j [Mor73] with strand notation as the basic input format, and i t may turn

out that stranded dialects of APL will evolve, ~ n t o d language more like Nia! than

convent2onal APL

B,6. New Environment Features

The standard APL environment i s cramped and difficult to work with APC does not

communicate easily with other systems is not easy to interrupt, and does not provide any

easy way to run multiple environments and protect subtasks from each other Many

proposals have been made for minor and major modifications to the APL environment

B .6.1. Scoping

One very useful proposal was to extend AP.L's scoping rules [s A L ~ ~] . The standard

APL name scoplng is dynamic with default global. If a function FOO calls a function

FEE and FEE happens to have a loop counter. I which the programmer has neglected

to "locahze" by including i t in the function header then when FEE exits FOO is left with

the value of I set by FEE If FOO also happens t o use I for some variable a bug has

been created

103

Seeds et, al proposed that the rules be modified to the programmer could choose the

default scoping. and that a "strictly local" scope be added such that a local variable could

be made invisible t o both called functions and the calling function. This simple change to

APL would have eliminated about half of the serious errors in my own code over the last

seven years

8.6.2. Event Trapping

The largest extension t o the standard APL environment which has actually been

implemented on a commercial scale is Event Trapping When a condition arises which

cannot easily be handled by straightforward coding, a trapped APL allows the programmer

t o specify what action should be taken. Event Trapping has already been implemented

Sharp APL and to a lesser extent on the other timesharing systems. In the Sharp event

handler any function could have a local variable quadTRAP, which contains event codes

and APL expressions to be executed when the event arises. For example. "Workspace Full"

has event code 1, so if quadTRAP contains "1 RemoveGarbage" and a function encounters

Workspace Full, the RemoveGarbage function is invoked A companion quadSlGNAL

system function allows event codes to be raised under program control

Event trapping makes a large number of problems much easier to solve. For example. if

a user has managed to enter bad data into an application program. the program can flush

the input report the situation to the program maintenance file, give the user a more-or-

less friendly message instead of a cryptic (to the user) APL error message, and restart in

a convenient place.

Extending event trapping to handle interrupts generated from outside the APL task would

lead t o the possibility of real-time device control programs, more reliable multiple-input-task

systems. and more accurate models of computer systems A simplified version of this

idea was implemented by [ATC77] for sensor-based applications on the IBM System/7

computer.

B.6.3. Namespace Extensions

The global scoping of APL names makes it difficult t o hide and protect information in a

large system. For example, when a given problem can be solved by using sets of programs

in two separate workspaces, the two workspaces can not be copied together without

checking for name conflicts and renaming objects t o avoid conflicts. A very relevant

example is the machine model on which the ADEL interpreter is being developed. The

model encompasses two separate processors, and t o switch back and forth between them

it is necessary t o rename all of the data objects in the workspace.

The straightforward way to implement multi-namespace systems in APL is t o use an

APL which supports multiple tasks, and pass information between them using shared

variables. All of the important commercial mainframe APL interpreters (and none of the

currently available microcomputer APLs) include a full shared variable facility

M C M APL [MCMxx] included a one-level structuring system. Objects from one or two of

256 collections of programs and arrays could be accessed at any one time. Using this

system. tasks could be integrated with little programming effort, although the performance

of the diskette-based hardware was quite slow.

A more flexible system was proposed in [BeD82]. A new set of system commands is

used to create, load, and save heirarchical "segments". Whenever an executing function

encounters a name which is not in the current workspace, the segment with that name is

loaded and the reference is resolved in the new context (which means the segment name

must be identical t o the name of a new object within that segment)

The Analogic APL machine ([Ber84]) handles name partitioning by threading through

multiple "instances" of a workspace with one "prototype". Each workspace is partitioned

into "contexts". If a name in a given context is explicitly exported, it may be references in

another context, with the value being either a private copy (if the context is an instance)

or a permanent stored value (if i t is a prototype).

The most drastic namespace handling facility proposed to date is [TaW84]. All APL

objects and tasks are subsumed under "The Tree" A complete set of naming and binding

procedures is defined, after which different tasks can communicate by using qualified

names

The completed SAM APL may include a modest namespace extension suitable for

separating multiple instances of a set of programs while allowing controlled communication

between them The content of the extension will not be worked out at this time The

mechan~cs of the implementation should be fairly simple Each context would contain its

own set of symbol table pointers, so that the linker but not the execution supervisor must

distinguish between different objects with the same name The details of the extension

will require a careful look at what is most useful and easiest t o implement

8.7. New Data Types

8.7.1. Complex Numbers

The numeric domam of Sharp APL and APL2 include complex numbers It is fairly easy

to model complex numbers as arrays with an extra axis of length 2, but i t is more

convenient t o have a complex primitive data type which is in the domains of all of the

relevant primitives A further extension related to complex numbers would be quaternions,

4-tuples of real numbers encompassing complex numbers and 3-space vectors as special

cases. Although quaternions have never been implemented as primitive data types,

[Gus861 points out that they be useful for some graphics operations.

8.7.2. Beyond Floating Point Numbers

The APL scheme of booleans extending automatically t o integers which extend

automatically t o floating point numbers handles most mathematical problems conveniently.

One common extension is multiple integer types, t o increase speed and reduce storage

costs for small integers An "infinity" value can be handled by current hardware and

would be useful for catching such problems as the DOMAIN ERROR in

(arctan(Nxtan(X))) where X approaches 90 degrees. Financial applications would benefit

from a fixed decimal storage type Other possibilities are large integers, rational numbers.

and multiple floating-point types t o handle overflow/underflow from the default floating-

point type

8.7.3. Graphics

Graphics primitives will certainly be necessary in any new general-purpose language.

Efficient graphics applications may require special data types which do not map neatly into

arrays At very least. a set of more than 256 characters will be needed.

8.8. Control Structures

The operator-based approach to arrays make most ALGOL-type nested loops unnecessary

in APL However mstances requiring loops and branches are not supported by anything

but the branching and execution primitives The branch primitive suffers from both high

cost and a lack of safeguards against branching into loops. spaghetti code, and "driftwood"

(f loat~ng branches) Execution is too powerful and general a mechanism t o use for a

simple IF statement, and implementing i t efficiently requires a translation into a test-and-

branch or equivalent

The version of ADEL developed for the first SAM APL supports a BIFSTK branch and

a pair of looping primitives to initialize-and-test and increment-and-test The translator

does not recognize corresponding objects in the source code: at the current stage, they are

only available in hand-assembled programs.

The idea of introducing ALGOL-style control structures into APL has often been raised

and has never been accepted APLgol [Ke173] is the best-known such implementation.

MCM APL contained a way of editing control structures into APL programs Neither of

these implementations has convinced the mainstream of APL programmers that such

control structures are useful in APL.

The "EACH" operator found in floating nested array systems is a control structure with

an APL flavor.

FOO EACH X

applies the function FOO to each element of the array X. replacing an explicit loop with

an implicit loop. Other operators for program control are described in [Eu85A, Eu85BI.

B .9. Arrays of Functions

Once APL arrays have been generalized to contain arrays as elements, a further

generalization would be t o allow arrays t o contain functions One possible application of

arrays of functions would be as a structured environment, with sets of functions needed

for a particular purpose kept together in a particular subarray.

A branch of APL theory has developed dealing with the application of function arrays to

data arrays (Ben86. Lan861. A t first thought, this kind of operation is too far from the

original conception of APL to be integrated smoothly into the language. Arrays of

functions resemble a generalization of the Nial "Atlas" as in the following example from

[JGM86].

Average IS div[sum.tally]

As in the case of strand notation and a calculus of operators, it will probably be necessary

to develop a new language to apply arrays of functions in a general way.

References

Abrams, P.
An APL Machine.
PhD thesis. Stanford. 1970

Alfonseca, M.. Tavera, M . L.. and Casajuana, R.
An APL Interpreter ans System for a Small Computer
IBM Sys. J. 16(1):18-40, 1977.

Bergeron, J. and Dubuque, A.
A Structured APL System.
ACM Trans. Prog. Lang. Sys. 4(4):585-600. October. 1982

Benkard. J. P.
Rank vs Depth for Array Partitioning.
In APL84 Proceedings, pages 33-39. ACM, Helsinki, June, 1984

Benkard, J. P.
Analysis of Functim App!icatIon of Deep Arrays.
In APL86 Proceedings, pages 202-210. ACM, Manchester. July. 1986.

Berry, Michael J. A.
Shared Functions and Variables As an Aid to Application Design
In APL84 Proceedings, pages 57-62 ACM, Helsinki, June, 1984

Brown, J. A.
A development of APL2 Syntax.
IBM J. Res. Dev. 29(1):37-48. January, 1985

Budd. Timothy A.
An APL Compiler.
Technical Report 81-17. University of Arizona, 1981.

Budd. T A.
An APL Compiler for a Vector Processor.
ACM Trans. Prog. Lang Sys 6(3):297-313, July, 1984

Chu. Y. . and Abrams. M
Programming Languages and Direct-Execution Computer Architecture.
Computer 14(7):22-40, July, 1981

Ching. W.-M.
Program Analysis and Code Generation in an APL/370 Compiler.
I B M J Res Dev 30(6):594-602. November. 1986

Chu. Y.
Architecture of a Hardware Data Interpreter.
I E E E Trans. Comput. C28(2):101-109, February. 1979.

Dietel. Harvey M.
An Introduction t o Operating Systems
Addison-Wesley, Reading, Mass., 1984.

Driscoll. G C. and Orth, D. L.
Compiling APL: The Yorktown APL Translator.
l B M J Res. Dev. 30(6):583-593, November 1986.

Edwards. E. M.
Private Communication

Eusebi. Edward V.
Operators for Program Control.
In APL85 Proceedings, pages 181-189. ACM, Seattle. May, 1985.

Eusebi, Edward V.
Operators for Recursion.
In APL85 Proceedings, pages 190-194. AC?.?. Seatt!e, ?,/lay. 1985.

Falkoff, A . D., and Iverson, K. E.
The Design of APL.
I B M J. Res. Dev. 17(4):324-334. July. 1973

Flynn, M. J., Johnson, J D and Wakefield, S. P
On Instruction Sets and Their Formats
I E E E Trans Comput. 34(3):242-254, March, 1985.

Flynn, M. J., and Hoevel, L. W.
Execution Architecture: The DELtran Experiment.
l E E E Trans. Comput. C32(2):156-175. February. 1983.

Flynn. M. J., and Hoevel. L
Measures of Ideal Execution Architectures
IBM J Res Dev 28(4):356-369, July. 1984

Flynn. M. J.
Directions and Issues in Architecture and Language.
I E E E Trans. Comput. C13(10). October. 1980.
Secondary Reference, not yet verified.

Ghandour. Z.. and Mezei. J.
General Arrays. Operators, and Functions.
IBM J. Res. Dev. 17(4):335-352, July. 1973.

Gudaitis, John J.
Evaluation of some Distributed Function Architectures For Array Processing

Data Manipulation.
Master's thesis, Simon Fraser University. July. 1985.

Gustafsson. S
Quaternions and Homogeneous Coordinates.
In APL86 Proceedings. pages 71-77. ACM. Manchester. July. 1986

Guibas, L, J.. and Wyatt. D. K.
Compilation and Delayed ~vaiuation in APL.
In Fifth ACM Symposium on Principles of Programming Languages.

pages 1-8. ACM, 1978.

Hassitt. A , and Lyon. L. E.
Efficient Evaluation of Array Subscripts of Arrays.
IBM J. Res. Dev. 16(1):45-57. January. 1972.

Hassitt. A., and Lyon. L. E.
An APL Evaluator on System/370.
IBM Sys. J. 15(4):358-378, 1976.

Hobson, R.F.. Gudaitis. J.. and Thornburg. J.
A New Machine Model for High-Level Language Interpretation.
In Proc. 19th Ann, Hawaii lntl Conf. Sys. Sci, pages 132-139

January. 1986

Huynh, T. , Halpern. B., and Hoevel, L. W
An Execution Architecture for FP.
IBM J Res Dev 30(6):609-616, November, 1986.

Hassitt, A.. Lageschulte. J. W.. and Lyon, L. E.
Implementation of a High Level Language Machine.
Communications of the ACM 16(4):199-212. April. 1973

Hobson, Richard F.
A Directly Executable Encoding for APL.
Technical Report TR82-1. Simon Fraser University Computing Science

Dept., 1982.

Hobson, R. F.
The SAMjr Microprogramming Guide.

Hobson, R F.
A Directly Executable Encoding for APL
ACM Trans. Prog. fang. Sys. 6(3),314-332 July, 1984

Hsieh, J.-T.
Performance Evaluation o f the Pipe Computer Architecture.
PhD thesis. University of Wisconsin. 1985.

Iverson. K . E., Pesch, R., and Schueler. J. H.
An Operator Calculus.
In APL84 Proceedings, pages 213-218. ACM, Helsinki. June. 1984.

Iverson, Eric.
Private Communication.

Iverson. K . E.
A Concise Dictionary o f APL.
I . P. Sharp Associates. Toronto, 1986

Jenkins. M. A.. Glascow, J. I., and McCrosky. C.
Programming Styles in Nial.
In Proc. 19 Hawaii lnt l Conf. Sys. Sci. - Vol 11, pages 267-275.

Hawaii, January. 1986.

Johnston. J. B.
The Contour Model of Block Structured Processes.
SIGPLAN Notices 6:55-82, February. 1971.

Kelley. R. A.
APLGOL. An Experimental Structured Programming Language
I B M J. Res Dev. 17(1):69-73. January, 1973.

Knowlton, Kenneth C
A Fast Storage Allocator.
Communications o f the ACM 8(10):623-625, October, 1965

Landaeta. D J.
A Notation for Manipulating Arrays of Operations.
In APL86 Proceedings. pages 21-29. ACM, Manchester, July. 1986.

Liou, K.
Design of Pipelined Memory Systems fo r Decoupled Architectures
PhD thesis. University of Wisconsin. 1985.

McCrosky, Carl D.
ACE: The Array- Theoretic Computational Engine.
PhD thesis, Queens. 1985.

McCrosky,C.. and Jenkins. M . A
ACE, The Array-Theoretic Computational Engine
In 19th Ann. Hawaii lntl Conf. Sys Sci pages 117-123 ACM,

January. 1986.

Micro Computing Machines
M C M APL Users Manual.

McCrosky, C. D.,Glascow. J. I., and Jenkins. M A.
NIAL. A Candidate Language for F i f t h Generation Computer Systems.
Technical Report 84-159. Queens University Dept. of Computing Sci., 1984

More, T. Jr.
Axioms and Theorems for a Theory of Arrays.
I B M I. Res. Dev. 17(2):135-157, arch. 1973

Page, lvor P , and Hagins, Jeff.
Improving the Performance of Buddy Systems
IFEE Trans Comput. C35(5):441-447. May 1986

Peterson, J. L . and Norman. T A.
Buddy Systems.
Communications of the A C M 20(6):421-430 July. 1977.

Perlis, Alan J.
Steps Toward an APL Compiler.
Research Report 24, Yale University Department of Computer Science

January 1974

Peterson. J L , and Silberschatz. A.
Operating System Concepts.
Addison- Wesley. Reading Mass.. 1983.

Pesch, R H., McDonnel, E. E., lverson K E.. Bernecky Bob. and Allen
D B
Minnowbrook APL Workshop, October 1-4, 1985
APL Quote Quad 16(3), March, 1986

Purdom. P W . and Stigler, S. M .
Stat~stical Properties of the Buddy System
Journal of the A C M 17(4):683-697 October. 1970

Qulnlan J
A Comparative Analysis of Computer Architectures for Production System

Mdchines
In Proc. 19th Ann. Hawaii Intl Conf Sys. Scr. - Volume I , pages

187 193. Hawaii, January, 1986.

[RuM86]

[Sah78]

[SAL78]

[Sny821

[S0:384!

lSWP861

(Ta W 841

[Tho831

[TrB82]

[Van771

IVeg84 /

Rubinstein. D L. and Murray, W D
Evaluation of Functional Programming as a Basis for Computer

Architecture
In Proc 19th Ann Hawaii Intl Conf Sys. Sci. - Volume I , pages

53-58. Hawaii. January. 1986.

Sahl. Harry J
Considerattons in the Design of a Compiler for APL
APL Quote Quad 8(4):914. June. 1978

Seeds. G M . Arpin, A., and Labarre. M
Name Scope Control in APL Defined Functions.
APL Quote Quad 8(4).15-19. June. 1978

Snyder. Warren.
MAPLE: Multiprocessor APL machinE.
Master's thesis. SFU February, 1982.

Soop. Karl.
Can an APL Workspace be Used as a Data Base?
In APL84 Proceedings, pages 303-310 ACM Helsinki. June 1984.

Smith. J E Weiss. S., and Pang, M. Y.
A Simulation Study of Decoupled Architecture Computers.
IEEE Trans Comput 35(8).692-702. August, 1985.

Taylor S , and Whitney, A
The One Tree (Breaking Out of the Workspace).
In APL84 Proceedings ACM, Helsinki June. 1984

Thornburg. Jonathan.
Function CALL/RETURN model written as undergraduate project

Treat, J. M.. and Budd. T. A.
Extensions to Grid Selector Composition and Compilation in APL.
Technical Report 82-7. University of Arizona Dept of Computer Science,

1982.

Van Dyke, Eric J.
A Dynamic Incremental Compiler for an Interpretive Language
Hewlett-Packard Journal 28(11):17-23, July, 1977.

Vegdahl, S R
A Survey of Proposed Architectures for the Execution of Functional

Languages.
IEEE Trans Comput. 33(12),1050-1071. December. 1984

Wah B W
New Computers for Artificial Intelligence Processing
Computer 20(1):10-15. January 1987

Weidrnann, Clark.
Steps Toward an APL Compiler
In APL79 Proceedings. pages 321-328 ACM. Rochester. 1979

Weigang. Jim.
An Introduction to STSC's APL Compiler.
In APL85 Proceedings. pages 231-238 ACM. Seattle, May 1985

Weigang, J
MAchine Oriented Languages in the APL Environment.
In APL86 Proceedings, pages 125-131. ACM, Manchester July 1986

Laks. R
A Microprogrammed APL Implementation.
Sybex, Rerkely . Calif ., 1978.

