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Abstract 

The APL language provides a powerful set of functions and operators t o  handle dynamic 

array data. Current APL interpreters are hampered by excessive interpretive overhead. 

The Structured Architecture Machine project has produced a machine architecture (SAM) 

and an intermediate language (ADEL) intended t o  allow an APL interpreter to execute 

almost as quickly as good compiled code for most applications 

This thesis describes a microcoded interpreter for a subset of APL It differs from 

earlier programs used for preliminary benchmarks 3nd architecture evaluation irl that i t  

cortlains a complete memory management subsysterrr dnd d nearly complete linker and 

some of the tables have been moved from dedicated hardware to  segmented memory 

Performance measurements show that SAM APL is two orders of magnitude fastw than 

,I good m~crocornputer APL and suggest that the implementation behaves morr hke ,I 

cor~ipded langudge than dn ~nterpreted one Worst-case performance is not as good as 

prev~ously predicted Several approaches to  increasing execution speed are discussed and i t  

is expected that the ultimate performance will meet the goals of the SAM project 

The mterpreter developed in this project is intended to  become the nucleus of a practical 

APL system The final system will require code for the primitives. operators. and data 

types which were omitted in this version, an error handler, and input/output routines 

tailored to the final hardware design 



Back in the old days, in 1962 
A feller named Ken lverson decided what to do. 
He gathered all the papers he'd been writing for a spell 
And put 'em in a little book and called it APL 

Now, writing jots and squiggles i s  a mighty pleasant task 
But it doesn't answer quest~ons that a lot of people ask 
Ken needed an interpreter for folks who couldn t read 
So 

from "APL Blossom Time" 

J. C. L Guest 
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Chapter 1 

Introduction 

1.1. Interpreted Languages 

Program developers are traditionally faced with a clear-cut choice between using a 

compiled language or an interpreted one. Languages that support dynamic data structures 

are difficult t o  compile. Also, i t  is usually impossible t o  fix and restart a compiled 

program at the point where an error was detected 

The major disadvantage of interpreted programs has been lack of speed. A traditional 

interpreter has t o  do almost as much work per line of code as a compiler would, and does 

this work every time the line is executed. 

One obv~ous solution is to provide both an interpreter and a compiler for the same 

language, using the interpreter for development and then compiling the code for production 

[Bud81 Bud84. GuW78, Per74. Sah78, Wei79. Wgg851 Both IBM [Dr086. Chi86land 

STSC [PM186] have produced partial compilers for their APL systems. For practical 

systems ~t may suffice to  rewrite the most heavily-used code in a compilable language and 

provide a good mterface to compiled modules as part of the interpreter [Wgg86]. 

Compilation makes sense for programs that will be run many times unchanged. There are 

many cases, however, where a program may be written to  solve a given problem and 

discarded, or when a program is undergoing modification throughout its useful life. For 



example, the interpreter developed in this project is a set of APL programs. It is being 

fixed whenever bugs are discovered and extended as time becomes available t o  implement 

more features. It would be a serious nuisance t o  face a recompilation cycle every time a 

change is made. 

Another approach is "incremental compilation" [Van77]. A line of code is translated into 

machine code the first time i t  is encountered during the execution phase, and the machine 

code is retained for subsequent executions of that line. Incremental compilation introduces 

a significant trade-off between speed and generality The fastest possible object code for 

a given operation would include such details as the rank, shape, type, and location of the 

operands explicitly This kind of code would probably be generated by a good interpreter 

on any given pass through the corresponding line o f  source code. The more specific the 

code produced by an incremental compiler on the first execution of a given line, the 

greater is the probability that, on a subsequent execution, a property of some operand will 

have changed too much to  allow the code t o  be used. 

The advent of microcoded processors suggested a completely different treatment. If the 

primitives of the language are written in microcode, then the code generation phase of the 

interpretive process will be unnecessary. and execution may be speeded up enough t o  

compensate for the time taken by the remaining semantic checking and memory 

management tasks [HLL73] and [Zak78] describe two interesting microcoded APL 

interpreters The most important example of a microcoded APL is IBM's APL Assist 

[HaL76] which supplements an existing APL interpreter with some microcoded routines, 

giving a speedup ranging from slight t o  a factor of 8. In general. improvements due t o  

microcoding some or all of an interpreter on existing hardware have not given performance 

approaching the speed of compiled code 



Hobson [Hob82. HGT861 has chosen an architectural approach to  the problem of 

interpretive overhead In his functionally distributed multiprocessor, one unit handles the 

interpretation and another does the actual data manipulation. Input/output and user 

communication are handled by a third processor. Early benchmarks indicate that the 

performance of an interpreter tailored to  such a machine can be almost as good as that of 

compiled code running on a single-microprocessor system. 

The project of developing such an architecture is well under way This thesis deals with 

the development of an appropriate interpreter for it 

1.2. Languages and Data Structure 

The function of a high-level computer language is to  insulate the programmer from the 

low-level details involved in making a lightning-idiot machine work on a practical problem. 

There are two main approaches to this insulation: program structure and data structure. 

A "structured" language generally has built-in mechanisms for loops and branches to  spare 

the programmer from the details of counting and jumping past alternatives, and some way 

of preventing unrelated chunks of code from interfering with each other. More advanced 

languages have ways to  link separately-compiled programs. resolve forward references, and 

so forth 

A data structure, such as a Lisp list or a SNOBOL string, is a way of representing a 

collection of data objects as a single primitive object. All practical computer languages 

support some kmd of data structures, generally arrays. However, many languages, which 

will here be called "scalar" languages, do not operate on these structures except in a piece- 

by-piece manner The languages such as Lisp. SNOBOL, SETL, APL, and Nial which 



actually can operate on data structures as data structures are often called "very high-level 

languages", and have been found t o  be more straightforward to  use (on problems which 

suit their data structures) than the scalar languages. 

APL is the language chosen for this interpreter APL pioneered the use of "operators" 

which apply functions t o  arrays. That  is. "+" is the ordinary addition function, and "/" is 

the "reduction" operator such that +/ARRAY produces the sum along the rows of the 

array This approach is more general than simply implementing a "sum" primitive, because 

the operator can apply t o  a whole set of primitives producing "rowproduct" with the 

multiplication function, "rowmaximum" with the maximum function. "columnsum" when used 

with the "axis" operator, and so on. 

The drawbacks of APL. aside from the interpretive overhead addressed by the SAM 

project, are its unusual character set, its lack of convivial ways to  structure code. and its 

lack of interfaces to external devices. Some approaches t o  these problems are discussed in 

in Appendix B. 

1.3. Previous and Related Work 

At  the time this thesis project was begun, the Architecture Support Package (ASP) 

system already existed in the form in which it was used for developing the current version 

of the interpreter [Hob83]. Thornburg [Tho831 had already written a model of function call 

and return using an earlier verslon of ASP. Gudaitis [Gud85] had written a body of 

microcode ~mplementing various array accessing algorithms. 

The call and return protocol used in the current version of the interpreter is loosely 

based on Thornburg's. I t  is not certain t o  what extent the final set of execution 

microcode will use Gudaitis' work. 



Outside the SAM project, the most closely related body of work is the series of 

DELtran experiments of Flynn and Hoevel [FIH83, FIH84J. Their work combines the 

contour model of [Joh71] with a format-based scheme for encoding and executing 

instructions The resulting code can be more compact than machine code for traditional 

architectures, and corresponds more closely t o  high-level source code. Recent related work 

by the members of this group includes an execution architecture for Backus' FP language 

[HHH86] and an extension of the format-based instruction architecture t o  cover parse 

subtrees (and directed acyclic subgraphs) of different depths [FJW85]. 

Several other groups are doing related work McCrosky [McC85, McJ861 has designed an 

array-theory-based processor for the Nial language The SAM architecture is similar t o  the 

"decoupled" architectures described in [Hsi85 Lio85, SWP861 

The DEL (Directly Executable Language) stream of computer architecture can be 

compared and contrasted with DEX (Direct Execution) of source programs [Chu79. ChA811. 

By working with a linearized and compact translation of the source program, a DEL 

implementation gets higher speed and simpler hardware at the expense of retranslation 

during program editing Hobson [Hob841 defines a DIL (Directly Interpretable Language) as 

a linearized form from which the source code can be recovered 

Another related field is the design of hardware architectures designed to  support 

functional languages [Veg84 RuM861, production systems [Qui86], and Artificial Intelligence 

languages [Wah87]. The SAM architecture is not highly specialized for a particular source 

language and should support implementations of any of these languages more efficiently 

than conventional uniprocessor configurations. Since SAM'S memory architecture is 

designed to  handle arrays efficiently, an array-based A1 language like Nial 

[MGJ84. JGM861 should run especially well. 



Chapter 2 

The SAM Architecture 

The Structured Architecture Machine is based on the SJ16 microprocessor (See Figure 

2-I), a microengine designed to  be used as a microprogrammed high-level controller in a 

multiprocessor environment. The SJ16 has fairly conventional data paths, but the 

microinstructions include unique control features for high-level microprogramming. These 

control, features allow several microoperations t o  be specified and performed in parallel. 

A SAMjr (Figure 2-2) system consists of an SJ16 with a segmented memory controller, 

a segmented memory consisting of at least one megabyte of dynamic RAM, and zero or 

more Special Function Units (SFUs). 

A complete SAM system (Figure 2-3) consists of an Environmental Control Unit (ECU) 

connected t o  two or more SAMjr systems by dual-port memories. The ECU handles the 

external environment, including the user interface and mass memory. One SAMjr acts as 

the Program Management Unit (PMU). and is responsible for fetching instructions and 

maintaining the execution environment. The other SAMjr is the Data Management Unit 

(DMU) which does the actual data manipulations. There may be more than one DMU. 

The SAMjr systems are connected to  each other by a custom pipeline processor which 

handles instruction and operand verification while queuing instructions decoded by the PMU 

for execution by the DMU. 

In the system currently under development, the ECU is a stand-alone microcomputer 
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2.1. The ASP Machine Model and Microcode Support Facility 

The ASP (Architecture Support Package) system consists of a set of APL workspaces 

which interpret, measure the performance of, and compile microprograms written in 

"MicroAPL", a subset of APL plus a set of SAMjr hardware commands. A MicroAPL 

program is both a valid APL program and a microassembler program for the SAMjr. 

2.1.1. lnterpretation 

lnterpretation of MicroAPL programs is handled by an ordinary APL interpreter 

MicroAPL commands such as indexing, branching and assignment are simply the 

corresponding APL primitives. SAMjr registers, buffers, and memories are modelled by APL 

arrays. SAMjr microoperations are represented by APL functions. For example, the 

function SSN operates on the data structures representing the SAMjr segmented memory, 

buffers. and registers exactly the same way the compiled microprogram "Segment Source 

Next" is intended to  operate on the hardware devices The next value from the specified 

segment is placed in the specified register, and the stream buffers are inspected to see if 

a new memory read operation must be started 

Operations which are to be performed in parallel on the hardware are written on the 

same line of the MicroAPL function, delimited by the A symbol. The present version of 

ASP does not encode parallel operations except as specifically written by the programmer, 

and does not reject lines of code which cannot be run in parallel on the hardware. 



2.1.2. Measurement 

V ALUOUT t ABUS PLUS BBUS 

[I] STROGEN 
121 ALUMODE +- ARITHMETIC 
[3] RESULT t ABUS + BBUS 
PI ALUOUT + RESULT + ABUS SETFLAGS BBus 

v 

Figure 2-4: The PLUS Microprogram 

The ASP interpreter can keep track of the number of microcycles used by a program. 

Every model of a microoperation includes a STROGEN statement which sets some flags t o  

simulate a tne level pipeline and increments a clock unless the operation is on the same 

line of code ds the preceding operation (and therefore to  be executed in parallel on the 

hardware) The PLUS microprogram in Figure 2-4 is a good example. Here. line [I] calls 

STRQGEN lme [2] sets the ALUMODE flag, line [3] mimics the hardware addition and 

sets global RESULT, and line [4] calls SETFLAGS which checks the result and both buses 

for hardware conditions such as overflow and carry. 

This basic. clocking scheme has been augmented in various ways. Since a memory cycle 

takes two machine cycles, the instructions dealing with memory access set a delay flag so 

that the clock will be incremented an extra tick if the result of a read operation is used 

before it would be physically available. Trace flags can be set t o  print out the names and 

times of functions being executed. And since the model is simply a set of APL programs. 

arbitrary modifications may be made at any time. A t  various times, code was added to  

keep track of ADEL instructions executed, display the contents of the pipe, or suspend 

execution of selected formats. 

Simulation and measurement for the present version of the interpreter were deliberately 



done on a version of ASP that models only the SJ16 processors, the SJMC memory 

controllers, the segmented memories, and the pipe. Facilities for modelling the ECU, the 

dual-port memories connecting the ECU t o  the SAMjr systems, and the floating-point 

processor are being developed separately. 

2.1.3. Multitasking 

Ideally, the ASP system should run a separate task for each processor being modelled. 

An earlier version ran as consecutively loaded tasks on MTS APL, requiring manual 

intervention every time control passed from one processor t o  the other. Some experiments 

were done using multiple tasks in Dyalog APL communicating via a UNlX pipe The 

version used in this part of the project works by keeping two complete copies of the ddta 

structures. When control passes from one processor t o  the other, all of the data 

structures pertaining to  the individual processors are renamed For example, the general 

register array is named R when control passes from the PMU to  the DMU. R is renamed 

t o  PMUR and then DMUR is renamed to  R. Since both processors use the pipeline and a 

set of dual-port registers. the arrays modelling the pipeline and the dual-port registers are 

not renamed. On every occasion when one processor must await the results of some 

operation on the other, its clock is set t o  the timing as of the end of the wait. 

2.1.4. Compilation 

Valid MicroAPL programs are compiled to  SAMjr microcode by a compilation program 

contamed In another APL workspace The compiler is stricter than the simulator about 

. the inclusion of APL code that is not valid MicroAPL. Compilation therefore provides a 

useful check on the validity of microprograms. 

For reasons of flexibility, the interpreter has made heavy use of named constants, which 



are not included in the current definition of MicroAPL. For example. the dual-port register 

containing the stack pointer is named STKPTR, and only in a single initialization is it 

mapped t o  a particular integer. Therefore, the interpreter cannot be compiled in its 

present form. It will be a straightforward job to  transform the source code into a form 

where such globals are hard-coded as integers, but this job has not yet been done. 

Possibly i t  will be feasible t o  extend the definition of MicroAPL (and alter the compiler) 

rather than add another step t o  the translation process. 

2.1.5. Modules 

APL does not provide a simple way t o  partition an application into separate chunks of 

code larger than individual programs. Initially, the entire model was kept in a single APL 

workspace, ASPSJ16. Now the memory manager, pipeline routines, executable microcode 

for format and operation syllables, and symbol table management functions are kept in 

separate workspaces. 

All of these workspaces must be copied into ASPSJl6 to  be executed. The only 

advantage to  keeping them separately is that maintenance is easier. A set of utilities had 

t o  be written to  keep track of where functions in the combined workspace belong, and 

whether they have been modified since the last time they were copied out. 

2.2. The ADEL Intermediate Language 

The intermediate language used by the SAM APL project is the ADEL (A Directly 

. Executable Lmguage) developed by R. F Hobson [Hob82. Hob841. ADEL is a format-based 

language related to  the FORTRAN DEL of Flynn and Hoevel [FIH83, Fly801. An ADEL 

instruction consists of a "format" syllable which specifies the valence of the function, zero 

or more operand syllables. and zero or more function syllables. For example: 



X +  Y + Z  
becomes 

DLR X Y Z + 
and 

A + B +.x C+D 
becomes 

SLR C D s 
D L S  A B + x 

APL code is translated into ADEL in a context which includes a local symbol table. If Y 

is the 16th identifier used in a given function, then the operand syllable for Y would 

contain the value 16. All syllables are eight-bit bytes, so a given user-defined function ' is  

restricted t o  using 255 identifiers, excluding comments and primitives. Note that this does 

not restrict the number of global symbols. as long as no particular function uses more 

than 255 o f  them. 

DLR 
DLS 
DL.R 
D L S  
DLER 
DLES 
DLMR 
DL& 
DLUR 
D L ~ S  
D:R 
D:MR 
DR 
DUR 
DFR 
DMR - 
-' N 
-' N. 
D + R  
D.-S 

DSR 
DSS 
DS.R 
DS S 
DSFR 
DSFS 
DSMR 
D S ~ S  
DSUR 
D S ~  
L:R- 
L:MR - 
DS 
DUS 
DFS 
DMS - 
-' R 
-. R. 

S + R  - 
S + S  - 

LLR 
LLS 
LL.R 
i e . s  
LLFR 
L L ~ S  
LLMR 
LL@ 
LLUR 
L L ~ S  
S:R 
S:MR - 

SR 
SUR 
SFR 
SMR 
+ s 
+ s :  
D +  + R  
D +  + S  

SLR 
SLS 
SL.R 
SL.S 
SLFR 
SLFS 
SLMR 
SLMS 
SLUR 
SLUS 
D:S 
D:MS - 

SS 
SUS 
SFS 
SMS - 
-. 
-'. 

PI 

SSR 
SSS 
SS.R 
SS.S 
SSFR 
ssis 
SSMR 
ssijs 
SSUR 
ssijs 
L:S 
L:MS - 

SR - 
SUR - 
SFR - 
SMR - 
V 
V: 
IS1 

SLR - 
SLS - 
SL.R - 
SL.S - 
SLFR - - 
SLFS' - - 
SLMR - - 
SLMS - - 
SLUR - - 
SLUS - - 
S :S 
S:MS - 
SS - 
SUS - 
SFS - 
SMS 
Comm 
R 
SERR 

Table 2-1: ADEL Formats as of 1984 

(See Table 2-2 for Meanings of Characters) 



Char Meaning 
D Destination 

L Left Arg 

R Right Arg 
S Stack 

Product Op 

S - Stack 
Assignment 

F 
e- 

Derived Fn 

U .- User-Def. Fn 

M - Mixed Fn 

Sequence 

Example 
DLR A B C + means A is the 
destination for the result 
o f B + C  
LLR A B + means A is the 
left argument. Since an 
"L" is in "D" position, 
A is also the destination. 
Similar t o  Left Argument 
SLR A B +...result is stacked 
DSR A B +... A gets (stack)+B 
DL.R A B C + x means A 
gets result of B +.xC 
SLR A B + assigns the - 
result of A t B to  the 
location computed in the 
preceding sequence of 
array indexing instructions 
DER A B +/ means A gets 
the result of +/ B 
SLUR - A B FOO means the 
user-defined function FOO is 
run with arguments A and B, 
and the result is stacked 

DLMR - A B C . 
catenate is a mixed fn 

D:R 3 A B C D E + means 
A gets result of B + C + D + E 
Likewise, D:MR - 3 A B C D E , 

Table 2-2: Meaning of Format Characters 

The ADEL formats defined in [Hob841 are given in Table 2-1. The characters used to  

describe the formats are defined in Table 2-2. Note that the set of formats is not rigid. 

Several formats have been added during the development 

others were added to  handle data transfer and program 

intended to  be tailored t o  f i t  particular applications. 

package might reserve a special format for the +.= 

of the front-end translator, and 

control. The set of formats is 

For example, a crosstabulation 

inner product, and a language 

extension t o  include one of the nested array systems would have different operator 

formats. 



Not all of the formats recognized by the translator have been implemented. Table 2-3 

contains a list of implemented formats Since the formats have been implemented as APL 

functions, it has been necessary t o  rename them. 

FORMAT 
NOOP 
DLR 

SLR 

LLR 
DMR 
SMR 
s i i ~  

SSUR 
SLYS 
SSUS 
COMENT 
DFR 
D&R 
DLMS 
SLMR 
DGETSR 
DGETSS 
ICTRBZ 
INDAS3 
SUR 
BIFSTK 

BRABS 
DECBNZ 

NlLKFN 
NXTL 
HALT 

ADEL 
NOOP 
DLR 

SLR 

LLR 
DMR 
SER 
SLUR - 

SSUR 
S L ~ S  
ssus - 

DFR 
DLMR 
DL& 
SLMR - 
D + R  
D + S  

new 
new 

SUR 
new 

-. R 
new 

+ N 

Table 2-3: 

DESCRIPTION 
No operation 
Dyadic Scalar Fn, 
Explicit Arguments and Result 
Dyadic Scalar Fn, 
Explicit Args Stack Result 
Explicit Args. Dest = Left 
Monadic Mixed Fn 
Monadic Mixed Fn, Stack Result 
Dyadic User Defined Function, 
Explicit Args, Stack Result 
Dyadic U.D.F. Stack L.arg & Dest 
Dyadic U.D.F.. Stack R.arg & Dest 
Dyadic U.D.F , Stack Args & Dest 
Comment 
Monadic Derived Function 
Dyadic Mixed Function 

11 11 I 1  
, Stack R.arg 

II II II Stack Dest 
Explicit Assignment 
Assignment from Stack 
Initialize Counter. Branch if Zero 
D[L] + R 
Monadic U.D.F.. Stack Dest 
Branch to  Specified Line 
If Stack =/= Zero 
Branch t o  Specified Line 
Decrement Counter and Branch to 
Specified Line if =/= Zero 
Niladic User-Defined Function 
Branch t o  next line 
Stop the Simulator 

Formats Implemented as of January 1987 



Chapter 3 

The Memory Manager 

The first four months of this software project were devoted to  developing the memory 

management subsystem. About five percent of the subsequent work has consisted of 

keeping track of the information required for the memory manager t o  allocate space for 

results and dear out the space used by reassigned variables, popped stack values and 

expired immediate execution expressions. 

Since APL. objects are dynamically sized and APL functions are recursive by definition. 

the execution of an APL program involves allocating and freeing space for arrays both 

during function call/ietiirn and during the execution of primitive functions. The 

management of memory in the PMU is somewhat less critical, since functions are generally 

created under immediate execution and are seldom erased. For the sake of consistency, 

the same memory manager is used by both processors. . 

3.1. Background 

Memory managers are an important part of multiprogramming operating systems and 

dynamic language execution environments. As such, they are the subject of a considerable 

body of theoretical treatment. The descriptions of the basic problem, paged and 

segmented memories, and fitt ing strategies are based on [PeS83, Dei841. 
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3.1.1. The Basic Memory Management Problem 

An operating system may allow programs to  be relocateable, thus allowing memory to  be 

partitioned among several programs. Programs can easily be swapped in and out of fixed- 

sized partitions. Allowing variable partition sizes raises the basic memory management 

problem of allocating space in the most efficient way. Memory may become "fragmented", 

so that free memory is distributed among a set of noncontiguous blocks. It then becomes 

necessary to  choose which free block will be used for a given job. and it may also be 

necessary to relocate existing jobs in order to merge free blocks. : 

3.1.2. Paged Memory 

One powerful way to deal with the allocation problem is to waive the requirement that a 

program or a data object be contained in a contiguous chunk of memory. If memory is 

divided into "pages", and logical addresses consist of a page number and an offset, then a 

page table can be used to  map page numbers into real memory addresses. 

The principal differences in simple paged memory systems concern the implementation of 

the page table: if kept in registers, the table is of limited size; and i f  kept in main 

memory, i t  slows each memory access by a factor of two. The slowdown can be worse 

in a pipelined machine, since the second memory access cannot be overlapped with the 

first. A compromise solution is to keep a subsection of the page table in content- 

addressable registers The SAM architecture keeps the entire table in high-speed static 

memory 



3.1.3. Segmented Memory 

In a paged system, pages are of fixed size, so that large objects may occupy several 

pages and several small objects may share a single page. The segmented memory scheme 

partitions physical memory into variably-sized segments, wi th  one object occupying one 

segment While segmented memory is a more natural way t o  deal wi th  objects o f  varying 

size, it is naturally subject t o  fragmentation and requires the same kind o f  allocation 

scheme as variably sized partitions in a job scheduler 

A segmented memory may be paged, so that a segment need not be composed o f  

contiguous real memory. This usually faces all memory accesses wi th  t w o  levels of  

indirection, and must be implemented wi th  registers or cache t o  give reasonable 

performance. A paged segmented memory can be implemented wi th  a single level of  

indirection by keeping physical page addresses in the segment table. This is the approach 

used by the SAM memory controller. The  only major drawback t o  one- level paged 

segmented memory is that it makes it somewhat more difficult t o  implement a virtual 

memory that swaps individual pages. 

3.1.4. Fitting Strategies 

Given a segmented memory or a variable-partition-size swapping scheme, there will be a 

list of  free blocks t o  be considered when a new block is t o  be allocated. The two  best- 

known methods of choosing a free block are f irst-f i t  (choosing the first free block big 

enough t o  satisfy the request) and best-fit (searching the whole list and choosing the 

smallest free block big enough t o  satisfy the request). 

In order t o  make a best-fit strategy perform well, it may be necessary t o  keep the free 

block list in a structure amenable t o  a binary search. If the free l ist is kept sorted in 

increasing order of  size, the two  strategies become identical. 



Since searching t ime grows wi th  list size, it may be advantageous t o  garbage collect 

before an unfillable allocation request arrives For example, the implementers o f  CDC 

APL*STAR found that  l imit ing the "Hole Table" t o  16 entries caused the proportion o f  

garbage collects triggered by hole table overflow t o  be much smaller than the proportion 

triggered by memory fragmentation [Edw87]. Another approach is t o  ignore freed blocks 

completely unless they can be merged w i th  the "one big hole". speeding up typical 

allocations a t  the expense o f  more frequent garbage collection. 

3.1.5. Buddy systems 

It is possible t o  eliminate the linear search o f  free block lists, by keeping a set o f  lists 

of  free blocks o f  various sizes and looking only in the appropriate list for a given allocation 

request Such a system was developed by Knowlton [Kno65] and has since been the 

subject o f  continual investigation [Pus701 and development [PaH86]. 

The  basic idea o f  these "Buddy Systems" is that only a f ixed set o f  block sizes is 

available. If no free block exists in the size requested, then a bigger block is split, wi th 

the left-over part ("buddy") put into the appropriate free block list. When a block is 

deallocated and i ts  "buddy" is still free. the t w o  blocks may be merged. Buddy systems 

thus avoid the overhead o f  list searches, at the expense o f  block splits and recombinations 

and of a considerable amount of  memory fragmentation, both "internal" (due t o  the 

coarseness o f  the set o f  block sizes available) and "external" (since the splitting process 

may leave the free memory as a set o f  blocks too small t o  satisfy an allocation request). 

The  total  fragmentation of a buddy system is typically thirty or forty percent [PeN77] of  

total memory Gwen a demand for quick allocation and the availability of  cheap memory, 

this overhead is tolerable as long as the buddy system outperforms the more memory- 

efficient alternatives. 



3.2. The SAM Segmented Memory Model 

Any memory management scheme must reflect the hardware support available. For 

instance, a demand paging system would be awkward t o  implement on a machine wi th  no  

page fault interrupt mechanism. The  memory manager developed here is based on the 

paged segmented memory controller forming part o f  the SJ16 architecture. (See Figure 

3- 1 .) 

The  most important feature o f  the model (See Figure 3-2) is the address translation 

table called the SPT ,  for Segment Page Table A logical address consists o f  a Segment 

number and an Offset.  The logical page number is found by adding the segment number 

t o  the integer part of  (Offset + Pagesize). and the physical page is given by SPT[Logical 

page] The rest o f  the offset is a byte index in to  the physical page. A data structure 

may be d~str ibuted in widely scattered physical pages, as long as these pages are pointed 

t o  by a contiguous block of the SPT.  While it would be possible t o  keep more than one 

small object in a single page o f  segmented memory. "workspace full" problems in existing 

APL  systems are almost always caused by a small number of  large objects. In the S A M  

system, one thousand small arrays would use one thousand pages, leaving at  least three 

thousand pages for larger arrays 

The result of  this policy is that no program "cares" where in physical memory a given 

object resides When garbage collection is necessary, it is not because physical pages are 

misplaced but because there is not a large enough contiguous block o f  free pointers in the 

S P T  and the corrective measure involves moving single pointers instead of complete pages 

o f  data. 

While this memory scheme is in fact a paged segmented memory, the fact that all the 





Logica l  Address 

B y t e  Offset 
Within Page 

Page 
N u m b e r  
Within 

Segment 

Figure 3-2: The S A M  Memory Model 

pages o f  a given segment are kept in a contiguous block o f  the S P T  allows memory 

accesses wi th  one level o f  indirection instead of two,  a t  the expense of the page table 

garbage collect described above. Keeping the page table in fast static memory would slow 

each access slightly compared t o  the access t ime for a "hit" where a subset o f  the page 

table 15 kept in registers However, in the SAMJr Memory Controller, this address 

t r ans l d t~w  t an  be done during dynamic R A M  precharge time, so no performance is lost 

Th is  scheme glves the performance o f  a register-based page table where every access is a 

"hit" w ~ t h o u t  the special hardware and complex microcode required t o  deal wi th  "misses" 



The other interesting feature of the memory model is that segmented memory is 

streamed. Once a given address in segmented memory is accessed, the value stored at the 

next location is read into a buffer and is available t o  the processor in advance. Memory 

writes are done to  a buffer which is flushed into memory in parallel with other operations. 

This policy accelerates string and array processing tasks. The tradeoff for any purely 

array-oriented memory is that scalar accesses require more code than the corresponding 

accesses on a scalar machine (See Figure 3-3) 

The streaming of scalars is handled in microcode by doing the preliminary memory 

control operations in parallel with other operations. This allows the system t o  access 

scalars efficiently without adding hardware and extending the instruction set t o  include 

conventional scalar operations 

WDO[StridJ + R[A] 

Strid SRW R[B] 

SBF Strid 

R[C] + SSN Strid 

Figure 3-3: 

Set stream "Strid" t o  the 
segment specified by R[A] 

"Segment Read Word": 
Stare stream in word mode at 
offset specified by R[B] 
"Segment Buffer Fill": 
Fill the stream buffer for 
continuous reads. For a 
scalar read, this instruction 
could be replaced by an IDLE. 
"Segment Source Next": 
R[C] gets the next word 
from the specified stream 

Streamed Segmented Memory Access 



3.3. The Present Model 

The memory manager used by the present interpreter is very nearly the simplest possible 

manager using the architecture support available. The memory manager table (see Figure 

3-4) consists of one doubly linked list of free blocks, with each list item containing a block 

size and each allocated item containing a pointer back t o  the main data access table. 

Allocation begins with a first-fit search of the free block list The block is then either 

shrunk (if it is more than big enough) or removed from the list (if i t  is an exact fit). 

' Adjacent free blocks are merged immediately at deallocation time. Garbage collection is 

tedious but reasonably fast. since only SPT items must be moved. A garbage collect is 

terminated as soon as a free block big enough t o  satisfy the current allocation request has 

been created 

A commented call tree of the implemented memory management functions is given in 

Figure 3-5. 

It seems likely that garbage collection.. can be made to  occur arbitrarily seldom, by 

keeping a table somewhat bigger than the actual size of the memory. A practical 

measurement of this prediction has been deferred. 

3.4. The Production Model 

Before the microcode was written for the current version of the memory manager, a 

slightly more complicated manager was written in APL. The production memory manager 

.may be based on this earlier version which used two linked lists instead of one. Free 

blocks containing a single page are kept in one list, and multiple-page blocks in the other. 

Since (again pending measurements) the large majority of data structures will f i t  into 

single pages, i t  is expected that this system will outperform more complex systems such 
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ALLOCATE 
ALLOC-PAGES 
ALLOC-WHOLE 
ALLOC-PART 

FREE 
FREEPAGES 
MERGE-ABOVE 
MERGE-BELOW 
MERGE-BTWN 
MERGE-SOLO 

GARBCOL 
SETMMREGS 
INITMEMM 

Figure 3-5: 

RESERVE N PAGES 
GET PAGES FROM FREE PAGE LlST 
FREE BLOCK = SIZE REQUIRED 
TAKE CHUNK FROM B O T T O M  OF FREE BLK 
RELEASE N PAGES BEGINNING PAGE P 
RETURN PAGES T O  FREE PAGE LlST 
BLK BELOW IN USE, BLK ABOVE FREE 
BLK ABOVE IN USE, BLK BELOW FREE 
BLKS ABOVE AND BELOW BOTH FREE 
ADD ISOLATED BLK T O  FREE LIST 
MERGE ALLOC BLKS T O  ENLARGE HOLE 
SET UP REGS FOR M E M  MGR 
SET UP SJ16 SM, SPT and MM TBLS 

Memory Manager Commented Call Tree 

as a buddy system. Eliminating the common one-page blocks from the searches for larger" 

blocks should improve search times by a factor of better than two and reduce 

fragmentation 

3.5. Theoretical Predictions 

While a realistic appraisal of performance must await measurements made with real 

programs running on a completed implementation, i t  is not difficult to  give a rough but 

reasonable theoretical analysis of various allocation strategies. In this section, we look at 

the current single-list strategy. the projected two-list strategy, and a simple binary buddy 

system For the sake o f  simplicity, we will consider only the costs of allocation. 

Consider only requests and free blocks larger than a single page Then the number of 

blocks searched for a typical request depends on the distribution of sizes in both the free 

block list and the set of requests Models based on various distributions gave expected 

search lengths of 3.5 t o  6.0 iterations with an infinitely long free block list and from 3 0  

to  3 5 with the free block list limited to  16 elements For the sake of simplicity, an 

expected search of 3.5 iterations will be assumed for the rest of this analysis. 



Let Pm be the probability of an allocation request being for more than one block. The. 

distribution of free block sizes may differ from the distribution of allocation request sizes 

due to  merges (which lead to  larger blocks) and partial allocations (which give smaller free 

blocks). In particular, the deallocation of a single-page object gives a single-page free block 

only when neither of its neighbours are free. For the sake of simplicity. assume that this 

happens about half the time, so that the proportion of multipage free blocks will be 1 - 

0.5(1 Pm). or 0.5(Pm + 1) 

3.5.1. Single Free Block List 

Using a single ,list for all free blocks, a single-page allocation will be satisfied by the first 

block on the list A rnultipage allocation will search about 3.5 multipage blocks. Since 

0.5(Pm i 1) of the free blocks are multipage blocks, the allocation will search 

7/(Prn -t 1) blocks Then a proportion Pm of the allocation requests require 

7/(Pm I- 1) sedrch iterations, and (1-Pm) of the requests require 1 iteration, giving an 

expected average of 

(1 Pm) + IPni/(Prn + 1) search iterations. 

3.5.2. Two Free Block Lists 

Using a pair of free block lists all allocations require a block size check to determine 

which list i s  to be searched. Then the multipage allocation requests will search 3.5 free 

blocks, glving an expected performance of 1 check and (1-Pm) + 3.5Pm or (1 + 2.5Pm) 

search iterations 



3.5.3. Buddy System 

Assume that  freed blocks are NOT merged if doing so would give an empty list for a 

given block size. ' A n  allocation will require (log N) checks t o  choose among N different 

block sizes by a binary search. (Block sizes are distributed logarithmically, so in principle 

the correct list can be found by calculation. Unless the hardware supports binary 

logarithms, it is quicker t o  do  a depth-three binary search.) 

5 I 

For a S A M  APL .interpreter. N would be about 9, wi th  the checking biased so the first 
- - ,  

check i s ' fo r  a single block. A multipage allocation wil l  take 3 additional checks t o  choose 

among the 8 larger block sizes. Then the average number of checks is 1 t 3Pm a t  

allocation time. One additional check must be made t o  ensure that the required l ist is not 

empty giving 2 - t 3Pm checks. 

There wi l l  be a probability Pe that the list is empty. requiring a split. The list t o  be 

split may itself be empty. leading t o  an expected number o f  splits o f  Pe/(l-Pe) for a 

given doca t ion  The value o f  Pe is dependent on the recombination strategy. For the 

purposes o f  comparison, values o f  0.1 and 0.25 wil l  be used. 

3.5.4. Comparing the Systems 

A search iteration requires one segment startup, t w o  reads, and a comparison, taking 

altogether about four cycles. (The microcode used in this search is listed in Figure 6-6) 

A simple comparison requires a test and a branch, costing at  least two  cycles. Then the 

.average cost of finding a free block t o  be allocated is shown in Table 3-1 A rough pass at  

microcoding a split gives about 10 cycles if all list headers are kept in registers. or 16 

cycles if headers are kept in memory 



System Checks Searches Splits 
1-list 0 1-Pm 0 

+7Pm/(Pm+l) 
2-list 1 1+2.5Pm 0 
Buddy 2+3Pm 0 Pe/(l- Pe) 

Pm = 0.1 
1-list 0 1.54 0 
2-list 1 1.25 0 
buddy1 2.3 0 0.11 
buddy25 2.3 0 0.33 

Pm = 0.2 
1-list 0 1.97 0 
24ist 1 1.5 0 
buddy1 2.6 0 0.11 
buddy25 2.6 0 0.33 

Pm = 9.3 
1-list 0 2.32 0 
2-list 1 1.75 0 
buddy1 2.9 0 0.11 
buddy25 2.9 0 0.33 

Note. Buddy1 is  Pe = 0.1. Buddy25 i s  Pe = 0.25 

Table 3-1: Cost of Finding a Free Block 

Cycles 
18-4Pm 

6+10Pm 
4+6Pm 
+16Pe/(l-Pe) 

6.16 
7 
6.36 
9.88 

7.88 
8 
6.96 

10.48 

9.28 
9 
7.56 
11 .C8 

This s~mplified analysis suggests that the one-list model may perform as well as the 

two-list version as long as the proportion of multi-page allocation requests is not more 

than thirty percent. The buddy system does not outperform the linked-list systems unless 

the proportion of empty lists can be kept to ten percent. 



Chapter 4 

Symbol Table Management 

The three main management tasks of an APL interpreter are to  store APL arrays, t o  

provide a convenient way for executing APL code t o  access arrays and functions, and to  

provide a way for a user t o  get arrays and functions in and out of the system. Each of 

these tasks is organized around its own table: the Data Access Table for array storage. 

the Contour Access Table for access by executing functions, and the Global Symbol Table 

for user access 

4.1. The Linker 

The linker is responsible for accepting ADEL functions from the front-end system, writing 

them into segmented memory, and installing the identifiers used by the functions into the 

Global Symbol Table. 

4.1.1. The User Interface 

The user interface to SAM APL is a text editor and translator which run on the 

workstat~on that serves as the ECU. T o  write an APL program, a user edits the text 

form and mvokes the TRANSLATE facility. This produces the ADEL code corresponding to  

the APL source, plus a local symbol table and enough information to  link i t .  

In a complete SAM system, this internal function form (See Figure 4-1) is then written 

~ n t o  dual port memory by the ECU, to be accessed by the linking routine in the PMU. At  
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Figure 4-1: Function Internal Form 



the current stage of the model, an ADEL assembler on the computer system supporting 

the ASP model is used t o  create an APL variable containing the internal function form. 

Some of the ADEL functions were written by hand instead of generated by translation of 

source code. This was done because some of the ADEL formats developed during this 

project are not yet within the scope of the translator. These include the special branching 

and looping primitives and the simplified indexed assignment format. 

Once the ADEL function has been created, the LlNK program places it into segmented 

memory, creates symbol table entries for all of the objects in the program, and creates - 
data arrays for all of the nonscalar literals in the program The Global Symbol Access 

Table shown in the diagram for the internal function form is created at link time 

and added t o  the function segment by the linker. 

To run a line of APL immediate execution (and therefore, t o  start an APL program), the 

assembler is used to  create a dummy function which is flagged as an immediate execution 

line in the "Type" field. LlNK invokes the execution manager after linking an immediate 

execution "function", then purges the function from segmented memory after execution is 

complete A list of the programs used by the linker is shown in Figure 4-2. 

The present procedure for testing APL functions is necessary while the editor and the 

rest of the model run on different computers without a convenient way of transferring 

data. In the working SAM system, the front-end computer will place the translated function 

into dual port memory and the LlNK program will read dual-port memory instead of taking 

an argument 

Changes needed to  adapt the LlNK program to  the finished hardware are minimal, so 

performance, reliablility, and space figures for the production version of the linker are 

expected to  resemble those of this model very closely 



LINK 
BRINGINFN 
RUN-SAM 
STLINKFN 
CHKNUMV 
STLINKHDR 
STLINKFNAME 
FINDSTPAGE 

* * *  
HASH-GNRL 

* * * 
STENTWR 

STLINKID 
* * * 

STLINKID 
/ CHKNUMV 

FTNDSTPAGE 
GETCONFPG 
STMATCHID 

HASH-GNRL 
HASH-IDL 
HASHMODULO 

HASH-NUML 
HASHMODULO 

HASH -QUOTE 
HASHMODULO 

SENDTODMU 
STENTWR 

Figure 4-2: 

4.2. The Global Symbol 

HALF THE SAM FRONT END 
NOT uCODE.READ FN INTO PROG SEG 
THE BOSS PROGRAM FOR IFETCH/IEXEC 
LINK PGM IN PROG SEG TO S.T. 
PROG IS AT START OF NUM LIT 
BIND OBJS IN FN HDR 
FN NAME UNLIKE OTHER OBJS 
S.T. PAGE IS NOT EMPTY 

HASH LBL , LITERAL 

WRITE S.T. ENTRY 
LINK 1 ID INTO S. T. 

LINK 1 ID INTO S. T. 
PROG IS AT START OF NUM LIT 
S.T. PAGE IS NOT EMPTY 
GET NEW S.T.CONFLICT PAGE 
ID AT(PROG,IDOFF>=(STS~,~~)? 
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SEND LITERAL TO DMU 
WRITE S.T. ENTRY 

The Linker - Commented Call Tree 

Table 

4.2.1. Symbol Table Pages 

Every identifier in an internal-form function corresponds to  an entry in the global symbol 

table. A sample symbol table entry is shown in Figure 4-3. 

The linking process for each identifier consists of hashing the identifier and checking the 

corresponding symbol table entry. If it is free, the identifier is written into i t ;  if it contains 
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Figure 4-3: Symbol Table Layout 

an identical identifier, linking is complete; and if it contains a different identifier, the 

collision chain is followed until either an identical identifier is found or the end of the 

chain IS reached If no match is found, the identifier is written into an overflow symbol 

table page and the new page is linked onto the collision chain. 

Once a symbol table entry has been found or created, a pointer t o  i t  is written in the 

internal function segment. 

In the usual state of affairs for linking, the system is in immediate execution with no 

suspended programs. The call stack pointer in the symbol table chain will be pointing to 

the DMU polnter for the global value, if any. The procedure for function call will be 

discussed in the following chapter. For now i t  is sufficient to mention that the linking 

process is not affected by the state of the call chain. O f  course, a newly linked identifier 

will be tied to  the DMU item containing the current value. 



4.2.2. Literals 

When a numeric or character literal is found in  a source program, it becomes an 

identifier in the ADEL code, mapping t o  a symbol table entry that can not be hidden by 

function call. Thus. if several programs happen t o  use the value 3.6, they wil l  all map t o  

the same symbol table entry. When a literal is linked. i ts value is sent immediately t o  the 

D M U ,  and a D M U  i tem pointer for the literal value is written immediately in to  the symbol 

table page. 

'The exception t o  this is the integer scalars 0 through 255. The  first 256 DAT entries 

are reserved for these values. so the DAT pointer can be written into the symbol table 

page kvithout transmitt ing a value t o  the DMU.  A few special values like pi  and e are 

kept in known DAT locations for the use o f  system code. and future version o f  the 

interpreter may recognize the equivalent APL  expressions and treat them as literals. 

Carrying t h ~ s  idea t o  i ts logical conclusion, it is possible t o  execute all expressions 

involvmg no variables at link t ime and l ink the results as literals. Statistics on the 

frequency of execution of such "constant expressions" must be gathered before any decision 

is made about implementing them as literals. 

Ordinarily the symbol table page contains the character string representation of i ts  

iden t~ t~er  In the case o f  literals, this representation may be too long t o  fit in to  a page. 

When the string length is greater that 40 characters. the "id" section o f  the symbol table 

page contains a pointer back t o  the local symbol table of  the function owning the literal. 

Therefore, if t w o  separate funct~ons happen t o  have identical long literals, each wil l  have a 

separate symbol table entry 



Most identifiers are quite short, and since a symbol table page has room for a call chain 

which will never exist in the case of a literal, a certain amount of space is wasted. 

Future versions of the interpreter may keep short literals in smaller symbol table pages. 

4.2.3. Symbol Table Garbage Collect 

Except in the case of long literals, symbol table entries do not contain backpointers t o  

the functions that use them This makes it difficult t o  get rid of symbol table entries 

when their referents no longer exist. Older APL interpreters (MTS APL is a good 

example) never attempt t o  clean up the symbol table: when the symbol table is full. the 
/' 

only recourse is t o  )COPY everything into a clear workspace. An easy but slow way to  

deal with a full symbol table is t o  relink every function and global variable, essentially 

)COPYing the workspace to  itself. 

Tu allow symbol table entries to  be deleted efficiently, a reference counter could be 

included in each symbol table page. Linking an identifier t o  an existing page would 

increment the reference count, and expunging a defined function would decrement the 

reference counts of all of its identifiers, with a page marked as free when its reference 

count drops to  zero This idea will be investigated when the standard interpreter has been 

completed. 

The collision chain pointers in each symbol table page show the predecessor and 

successor In a chain o f  symbol table pages corresponding to  identifiers that hash to  the 

same value The forward pointer is used only when linking a new identifier The back 

pomter was intended to  be used during symbol table garbage collection. Keeping the 

collision chain as a circular list makes back pointers unnecessary, and the field may be 

used for a reference count in the next version. 



4.2.4. Labels 

Function labels are a special case for linking and calling. Unlike ordinary identifiers. they 

have values and unlike ordinary literals. they have names that may be localized by 

subsequent function calls A t  link time, labels are linked t o  symbol pages exactly the same 

way as ordinary identifiers, and their status as labels is indicated by setting the sign bit of 

the symbol table page address. The item in a function segment following a negative 

symbol table pointer contains the label value instead of the pointer for the next identifier. 

4.3. Related Environment Tables 

The environment of an executing program is partly under direct user control but 

principally a function of the state of execution. In a lexically scoped language, the 

environment is determined by the block structure of the main program. In a dynamically 

scoped language like APL, the availability of an identifier is controlled entirely by the most 

recently called function which localizes the identifier Thus, this section must be read in 

conjunction with the treatment of the CALL and RETURN mechanisms in the following 

chapters. 

4.3.1. The Data Access Table 

Data manipulation is done in the DMU. Each data item, whether or not it is available to  

the current scope of the program. is represented by an entry in the Data Access Table, or 

DAT, kept in DMU segmented memory. Scalars and array descriptors are contained in the 

D A T  entry The entire descriptor of a vector fits into the D A T  entry The length fields 

for the trailing axes of higher-rank arrays, and the element values of all nonempty arrays. 

are kept in D M U  segmented memory. each segment pointed t o  by its D A T  entry When 

code is actually executed in the DMU, the D A T  entries are used by the data manipulation 

routines. 



A physically distinct tag memory contains 6 b i t  type and shape tags corresponding t o  the 

entries in the D A T  

As it is currently laid out, the first 256 D A T  entries are reserved for the scalar 

11 11 
constants 0 through 255. Then a few entries are reserved for constants like "T", e , and 

pointers t o  read-only segments containing the character set and the results of ~ 2 5 6  in both 

index origins. The next D A T  entry is a scratch location indexed by system constant 

NEWDEST. used t o  write the result of each primitive operation before erasing the previous 

value of the identifier being assigned. 

The rest of the D A T  is divided into two stacks. The stack growing forward from 

NEWDEST is pointed t o  by NEXTCG (Next Constant or Global) and contains constants 

and global values that are never erased except by explicit request The stack growing 

backward from the end of the D A T  is pointed to  by STKPTR, and contains values on the 

execution stack, iocai variabies, and the arguments and results of functions. NEXTCG and 

STKPTR are kept as mailbox registers in the pipe processor because both the PMU and 

the DMU must use them 

4.3.2. The Contour Access Table 

The Contour Access Table (CAT) for a given environment consists of a list of words 

containing syntax tags (see Section 5.2.1) and D A T  pointers. When ADEL code is 

executing each operand syllable is used as a word index into the current segment of the 

CAT 

The relationship among internal function forms, the symbol table. the DAT. and the CAT 

is diagrammed in Figure 4-4 



Figure 4-4: Relationship Among Interpreter Tables 



Chapter 5 

Execution 

The paradigm of user interaction with an interpreted language is the Lisp Read-Eval-Print 

cycle. APL follows this cycle closely, with the important restriction that the user 

interaction is built into the system instead of being a user-defined program and, as such, 

modifiable. 

SAM APL user interface is similar t o  the paradigm. The basic cycle i s  textedit- 

executz-print The details of the editing and printing parts of the cycle are outside the 

.;~t)pe of this thesis The execution part of the cycle begins with linking a line of code as 

d e s ~ r ~ b a d  in the previous chapter. The present chapter deais with the execution of ADEL 

code once i t  has been put into program memory and its identifiers have been put into the 

Global Symbol Table 

5.1. Instruction Fetch 

The PMU half of program execution is done by the IFETCH routine. An instruction 

f e t ~ h  begms by reading the format syllable of an ADEL instruction. As a side effect, the 

forrrut i s  sent t o  the pipeline Then the PMU EXECS the format syllable -- that is. 

executes the microprogram beginning at the address given by the format table indexed by 

the formdt This IS equivalent to an instruction decode operation in a standard commercial 

computer In the model, this consists of executing the MicroAPL program whose name is 

in the indexed row of the format table 



Execution o f  the format microprogram causes the operand and function syllables to  be 

fetched Syllables denoting primitive APL functions (and also some "hidden primitives" 

such as pp and $1) are sent directly t o  the pipeline. Operand syllables are used as word 

indices into the Contour Access Table. The indexed words, which consist of syntax tags 

and data pointers, are sent t o  the pipeline. At the end of the format microprogram. the 

pipe 1s released if no errors have been detected and the process is repeated as soon as a 

new pipe becomes available 

Syllables representing user-defined programs are not sent t o  the pipeline. The PMU 

microprograms for function call pass the C A T  entries indexed by the argument syllables t o  

the pipeline then 930 the processing necessary t o  preserve state information for the current 

environment and set up a new environment. The details of the CALL and RETURN 

procedures are described in section 5.4. 

5.2. Instruction and Operand Verification 

One of the most important features of the SAM architecture is the way instruction 

verification(syntax checking) and operand verification(pre1iminary semantic checking) are 

handled in hardware. A conceptual view of the verification process is shown in Figure 5-1. 

Each operand is represented in ADEL code as an index into a frame of the Contour 

Access Table (CAT). This index is conceptually added to a frame pointer (in the current 

implementation, each frame begins on a page boundary, so the addition is done by the 

addressing hardware) and the resulting tag/data pointer is read from the CAT. The tags 

are then used in the instruction verification process and the data pointers are sent t o  the 

pipe. 

In the DMU, the data pointers are used t o  index a Data Access Table (DAT). The 
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Conceptual Diagram of Verification Process 

DAT contains data tags, and either the values (of scalars) or partial descriptors(of arrays). 

The data tags are used for preliminary semantic checking. Finally, the values and/or 

descriptors are used by microprograms for the format and operator syllables 



5.2.1. Instruction Verification 

The Instruction Verify Unit is a compatibility matrix table lookup unit built in to  the 

pipeline processor. The  tag for each operand is a two-bit value denoting constant. 

variable. function, or reserved. The  table used for instruction syntax verification is shown 

in Table 5-1. 

DEST VARIABLE CONSTANT FUNCTION OTHER 

RIGHT v c f o  v c f o  v c f o  v c f  o  
ARGUMENT a  o  u  t  a o u t  a o u t  a o u t  

r n n h  r n n h  r n n h  r n b h  

LEFT 
ARGUMENT 

VARIABLE 1 1 0 0  0  0  0  0  0 0 0 0  0 0 0 0  
CONSTANT 1 1 0 0  0 0 0 0  0 0 0 0  0  0  0  0  
FUNCTION O B Q Q  0 0 0 0  0 0 0 0  O Q Q O  
OTHER O [ f O O  0 0 0 0  0 0 0 0  0  0  0  0  

Tah!e 5-1: Syntax Checker Table 

When the microprogram executing a format in the P M U  is ready t o  release the pipe, the 

output is tested. If the result shows that  the instruction was syntactically invalid (the 

compatibility tdble entry is a zero) an error routine is invoked and the pipe is not 

released. ( A t  the current stage o f  the interpreter, the error routines have not been 

written When an invalid instruction is detected. the simulator halts and displays an error 

message ) 



RIGHT 
OPERAND NO VALUE 

LEFT 
OPERAND 

NO VALUE 1 
SCALAR 1 
ARRAY 1 
RESERVED 1 

Table 5-2: 

5.2.2. Operand Verification 

The  Operand Verification Unit is 

SCALAR ARRAY RESERVED 

Semantic Compatibility Table 

driven by the pipeline processor. As each syllable is 

read from the pipe, a tag  describing i ts  type (character, boolean, integer, real) and class 

(scalar array, reserved, no value) is read from the tag memory into the appropriate tag 

register 

The  preliminary semantic analysis process consists o f  checking that both operands are 

valid data types The compatibility table used is shown in Table 5-2. 

T w o  table-controlled semantic summary values are available from the O V U  hardware in 

the pipeline. but these cannot be used automatically t o  accept or reject the semantics o f  a 

given operation because different functions have different domains Table 5-3 compares the 

types of the operands and is used t o  reject invalid type combinations (bearing in mind that 

all pair\ of types are valid arguments for "equal" and "not-equal") and t o  select the correct 

"cast" procedure if the types do not match. 

Table 5-4 gives the shape o f  the operands and the type o f  the expected result and is 

used not for semantic checking but for allocating space for the result. 



RIGHT 
OPERAND CHARACTER BOOLEAN INTEGER FLOATING 

LEFT 
OPERAND 

CHARACTER 0 4 4 
BOOLEAN 4 0 1 
INTEGER 4 5 0 
FLOATING 4 6 7 

Table 5-3: Semantic Summary Table for Types 

5.3. Instruction Execution 

The  basic cycle in the D M U  consists o f  

(1) Read a format syllable f rom the pipe 

(2) Execute the microprogram whose address is the entry 
o f  the D M U  Format table indexed by the syllable 

Each format microprogram begins by fetching the relevant number o f  operand pointers 

f rom the pipe and starting a stream reading the DAT at the offset given in the pointer 

As  a side effect, the D M U  tags are read into the tag  registers. When all o f  the operands 

have been read, the format microprogram reads zero or more operator codes from the pipe. 

Next. the microprogram signals that  it is ready t o  release the pipe. A t  this point the 

semantic checking hardware verifies that both operands have values (See Table 5-2) 

The  format microprograms resemble one another up t o  the point of  pipe release. The 

next stage consists of  additional semantic checks where possible, casts where necessary. 

and allocat~ng space for the result The  D A T  entry indexed by constant NXTDEST  is 

used t o  hold a scalar destination or the descriptor for an array destination. 



SCALAR RIGHT 
OPERAND CHAR 

LEFT 
OPERAND 

SCALAR 
CHARACTER 
BOOLEAN 
INTEGER 
FLOATING 

ARRAY 
CHARACTER 
BOOLEAN 
INTEGER 
FLOATING 

ARRAY RIGHT 
SCALAR 

CHARACTER 
BOOLEAN 
INTEGER 
FLOATING 

ARRAY 
CHARACTER 
BOOLEAN 
INTEGER 
FLOATING 

OPERAND 
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BOOL 

0001 
0001 
0010 
0011 

1001 
1001 
1010 
1011 

0101 
0101 
0110 
0111 

1101 
1101 
1110 
1111 

l NTG 

0010 
0010 
0010 
001 1 

1010 
1010 
1010 
1011 

0110 
0110 
0110 
0111 

1110 
1110 
1110 
1111 

FLOAT 

001 1 
0011 
0011 
0011 

1011 
1011 
1011 
1011 

0111 
0111 
0111 
0111 

1111 
1111 
1111 
1111 

Note: Each 4-Bit entry describes 
Left Shape (0 = Scalar, 1 = Array) 
Right Shape " I f  

Result Type (00 = Character, Ol=Boolean) 

(10 =, Integer. 11 = Real) 

Table 5-4: Semantic Summary: Shape and Type 

Next comes a CASE decision based on rank and/or type For formats that include 

operator syllables, the next step is to execute the operator microprogram from the operator 

EXEC table indexed by the op code read from the pipe The primitive microprogram may 



be executed once or in a looping structure Some formats do not have operator syllables- 

usually because the operator is implicit in the format, as in the INDAS3 format for 

indexed assignment. (Many ADEL formats without operators never go through the pipe. 

BRABS. NXTL. NOOP, and so on are examples.) 

it. .and repeats the process. 

5.4. Function Call and Return 

5.4.1. Call 

After a function calling format such as SLUR - or SUS has processed its operands, the - 

next and final syllable of the instruction denotes the function to be called. The tag part 

of the CAT entry indexed by the syllable is checked to make sure i t  is really a function. 

In parallel with this check, the current set of state variables is copied to  the end of the 

current C A T  frame and a stream is opened to the segment pointed to  by the pointer part 

of the D A T  entry. 

The new function segment begins with a table of descriptors used to  verify that the 



function and format valence match and t o  set counters for the number of objects of 

various kinds in the new environment While these checks and initializations are being 

done, streams are opened into the Global Symbol Access Table (GSAT) in the function 

segment and into a new CAT frame For each object referenced by the called function. 

the GSAT entry is used to  find the corresponding Global Symbol Table page. 

The first item is always the result. and is handled by pushing a "no value" onto the 

D A T  stack The new top-of-stack pointer is written into the CAT with type tag 

"Variable". The new C A T  entry is also pushed onto the call chain of the corresponding 

symbol table page. 

Arguments that are not already on the stack are pushed onto the stack. with their (new 

or current) stack positions copied into the CAT with type "Variable". The new C A T  entry 

is pushed onto the call chain of the corresponding symbol table page If the arguments 

were not already on the stack, the DMU microcode will make copies of the argument array 

segments 

The identifier of the function itself is handled by writing the segment number of the 

function into the CAT with type tag "Function". Since a function name is not a local 

object, nothing is done to  the symbol table. (It is legal in APL to  have a local variable 

with the same name as the function This is sometimes done to  prevent inadvertent 

recurwon The resulting local variable is usually assigned a character vector containing a 

message that the function is suspended and should not be rerun without remedial action.) 

Local ~ d w t r t ~ e r s  are listed after the right argument with the number of locals indicated 

by an entry In the function descriptor table. For each local identifier. "no value" is pushed 

onto the D A T  stack. and the new top-of-stack pointer is catenated to  the "Variable" tag 



t o  arrive at a value that is written into the CAT and pushed onto a symbol table call 

chain APL semantics allows local functions. but at this stage of development the 

interpreter assumes that all identifiers in the local list will be variables. 

Since APL semantics do not include "own" or "retentive" variables, it is not necessary to  

initialize local variables beyond instructing the DMU t o  set their tags to  "No Value" and 

setting the PMU tags t o  "Variable" so the first statement that assigns a value to  a local 

variable will be recognized as valid syntax. 

The rest of the identifiers in the function are global named objects, literals, and line 

labels, listed in the order that they were recognized by the translator 

Labels are distinguished at link time by setting the sign bit of the corresponding entry in 

the GSAT When a label is encountered during the CALL process, the sign bit is cleared 

and the symbol table Is f w n d  as with other identifiers. The value of the iabei is read 

from the next GSAT entry. The label value is catenated with the "Constant" type tag to 

get the value which is written into the CAT and pushed onto the symbol table call cham 

Thus a label is effectively a "local constant". 

Literals, global variables and functions are not distinguished in the CALL process. In 

each case the symbol table page pointed to  by the GSAT entry is consulted to find the 

end of the call cham and the value there is written into the CAT. Thus the tag and 

DAT pointer of each item will be the same in the new environment as in the old In 

part~cular slnte literals cannot be shadowed (because there is no way to  get the translator 

t o  accept a hteral as an argument, local variable, or label), they will retain their "Constant" 

type tags and their pointers into the Global/Literal area of the DAT. 
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5.4.2. Return 

Return from a user-defined function is a simpler process than calling. The DMU is told 

the number of local objects (including arguments but not labels or the result) and clears 

the values of that many items in the local/execution stack The process of popping the 

values is completed by incrementing the stack pointer by the same number. For each 

local object (including arguments, labels, and the result), the call chain in the corresponding 

symbol table chain is popped. 

T h e  result of popping the name but not the value of labels is simply that the old values 

become unshadowed. Remember that the value of labels is set at link time, not at call 

time, so no new values are created by CALL. 

The effect of popping the name but not the value of the result is that the old value of 

the name is unshadowed, and the new object which was created by CALL and given a 

value during the execution of the called function is now on top of the stack in the calling 

environment. All of the currently implemented formats involving CALL return the result t o  

the stack this way Implementing a format like DLUR. - which assigns the returned value 

to  a specific variable. would require that the "D" syllable would have to  be stored during 

CALL to be used during RETURN. 

When the identifiers have been dealt with, the state information at CALL time is read 

from the end of the C A T  frame preceding the called frame. (Note that the size of this 

. frame IS not known yet, so its beginning cannot be located. However, its end is right 

before the begmnlng of the called frame.) This information is used to  open the old CAT 

frame. reset the LINENO register, and restart the stream used for executing ADEL code at 

the syllable following the end of the ADEL instruction which initiated the CALL. 



5.5. Primitives 

An APL implementation consists of systems to  accept input and control the environment, 

plus the all-important programs that do the work itself. While the primitives are the first 

thing anybody notices when learning or using a language, in an implementation project they 

can be the last thing considered. 

APL primitive functions can be divided into three groups: the scalar arithmetic and logical 

functions the mixed functions, and the array-manipulation functions. 

5.5.1. Scalar Functions 

A scalar function like "+" applies to  scalars, or t o  the elements of an array. producing a 

result of the same shape as its arguments. For example, the result of adding a %row. 6 

column matrix of numbers to  another matrix of the same shape will be a new 3-by-6 

numeric matrix The principle of "Scalar Extension" allows a scalar to be added to  an 

array producing an array result. 

Scalar functions are executed via the DLR family of formats. Arguments cannot be 

rejected from inspection of the tags except in the case where character arguments are used 

with a function whose domain is arithmetic The semantic checking consists of matching 

ranks and shapes. 

5.5.2. Mixed Functions 

. The mixed functions produce results of different shape from the arguments For 

example. "matrix divide" can be used to solve a system of linear equations It takes as 

arguments a matrix of coefficient values and a vector of constant values, returning a 

vector of variable values "Encode" and "decode" are two more mixed arithmetic functions. 



24 60 60 decode hours,minutes.seconds 

produces the total number of seconds represented by the three values, and 

24 60 60 encode numberofseconds 

breaks the number of seconds down into hours, minutes and seconds. None of the mixed 

arithmetic functions have been implemented in the first pass at the interpreter. 

T w o  mixed functions do not deal with arithmetic. Index-Of, a dyadic function 

symbohzed by L ,  finds the position of the elements of its right argument in the vector' 

used as i ts left argument. For example 

2 3 4 5 6 ~ 3 4  
1 2 (in index origin 0) 

Membership, vihose symbol is E ,  returns a boolean of the same shape as its left argument, 

indicating whether or not each element is found anywhere in the right argument. 

Neither membership nor index-of have been implemented yet. 

5.5.3. Array Manipulation Functions 

The array manipulation functions generally take a left argument describing the size and 

shape of the array to be returned, and a right argument containing the array to  start with 

The most important functions in this group are Reshape. Take, and Index, denoted by 

t.p.and ( 1, respectively. Only the Index function is found in most scalar languages 

5 6T ARRAY 

returns an array containing the first 6 columns of the first 5 rows of ARRAY, and 

5 6 IJ ARRAY 

returns a 5-by-6 array containing the first 30 items of ARRAY taken in row-major order. 



In APL indexing can select arbitrary subarrays as well as scalar elements. 

ARRAY [3 4;~4]  

returns a two-by-four element matrix containing the elements in the first four columns and 

rows 3 and 4 of ARRAY. 

Reshape and Index have been implemented in the first version of SAM APL. 

these are used with the DLMR - family of formats. Semantic checking consists of 

that the "left" argument is numeric. In order t o  make indexing consistent with 

array selection functions, X[A] is translated as if i t  were written A index X. 

Both of 

verifying 

the other : 

Indexed Assignment is complementary t o  indexing, allowing a specified element (in APC. 

a specified orthogonal subarray of elements) of an array to  be respecified. Only indexed 

assignment of a scalar element has been implemented in this version. 

The other APL array-manipulation functions include Drop, Rotate, Transpose, Select (or 

Replicate in most current APL implementations) and Expand. None of these have been 

implemented in the first version of SAM APL. 

Two  more functions can be included in this group: monadic L ,  the index generator, and 

catenation. whose symbol is the comma. (Monadic comma, or ravel, is a special case of 

reshape included in APL for convenience. Its implementation will be easy enough but has 

been given a lower priority than most of the other primitives.) 

The expression "LN" generates a vector containing the first N integers, beginning at zero 

or one depending on the current "index origin". The index generator has been implemented 

in a restricted form, with a limit of 256 elements and with only origin zero. Source code 



using the index generator is translated into ADEL code using the DMR - family of formats. 

Semantic checking consists of verifying that the argument is numeric The operator 

microcode simply generates a DAT entry with length field copied from the argument and a 

pointer to a read-only segment containing ~256. 

Catenation is the most important APL primitive function that has not been implemented 

in this version of SAM APL. and is the first function scheduled for implementation in the 

ongoing project. 

It should be noted that there need not be a one-to-one correspondence between 

primit~ves in the intermediate language and primitives in the source program. For example 

the front-end translator is free to recognize common combinations of APL functions like XL 

and prlrduce a "hidden primitive" in the intermediate program. In the opposite direction, a 

different translator might accept a source program containing an unimplemented function, 

say "stringwise-index", and produce ADEL code containing a caii to  a user-defined function 

or a sequence of ADEL instructions 

5.6. Derived Functions 

Derived functions in APL are formed by applying an operator to  functions and data. 

Examples of derived functions are plus-reduction (+/), inner product (+.x) and first-axis 

times-reduction (x/[l]). In the SAM APL project, derived functions are handled in three 

different ways 



5.6.1. Special Case Microcode 

Some derived functions (currently comprising +/ and -1) have the status of "hidden 

primitives" The APL expression 

x + + / Y  

translates t o  the single ADEL instruction 

DFR Y X +/ 

and is executed by the DER format microcode and the PLUSRD function microcode. This 

approach is useful when there is an algorithm that is more efficient than straightforward 

iteration as in and/ and or/ Reduction of vectors of length greater than two is rare for 

the transcendental functions and reduction by these functions will probably be handled by 

general-purpose microcode or PMU derived functions 

It is uncertain whether derived functions using the scan (\) operator 

will be implemented with DER, since the current version of the format hard-codes the rank 

reduction (i.e.. the reduction of a vector is a scalar) associated with the reduction operator. 

5.6.2. PMU Derived Functions 

Some primitive scalar functions will, at least initially, be implemented as system-resident 

det~ned functions Derived functions which use these primitives will be implemented as 

def~ned functions which incorporate calls t o  the defined "primitives". The consequences of 

this poky  are discussed in the last chapter. 
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5.6.3. General Microcode 

The product operator has a format t o  itself 

X + Y +.x Z 

would be translated into 

D L R Z Y X + x  

The format microcode then sets up loops and EXECS primitive functions. The scan 

operator, and some cases of reduction, will also be handled this way. 

Note that it is quite possible t o  implement the commonest products as special cases. It 

1s also possible t o  use reduction primitives where they exist instead of using only scalar 

functrons In the loops. 



Chapter 6 

Performance Considerations 

6.1. Control Primitives 

Many APL programs contain loops, and the standard APL language does not contain an 

efficient way to  deal with them. The typical construction 

..+ LOOPXL L IM IT  > COUNT + C O U N T +  1 

involves all of the usual overhead in checking the type of COUNT, performing the addition 

and cornparison, doing whatever arithmetic is involved in the branching idiom used. and 

finally transferring control. 

In the SAM machine. the type checking is done in parallel with the operations, so 

performance would be improved. However, the transfer of control is a PMU operation, so 

time would be wasted waiting for the DMU to  finish its work and send the result back to  

the PMU This waste of time is especially pernicious because the PMU is intended to  

keep ahead of the DMU. For this reason, SAM APL is extended to  include control 

primitives 

The control primitives developed in the first implementation consist of a branching 

primitive and a pair of loop control primitives The ADEL form of the branching primitive 

is named BIFSTK (Branch IF StacK) The looping primitives consist of a counter initializer 

with a zero check called INlTBZ and an increment-test-and-branch primitive called IBNZ. 

The ADEL code tested had the form 



SMR VEC p 
INITBZ END 

LOOP: 
body of loop 
IBNZ LOOP 

END: 

Stack Length 
Counter Stack 
-, END if Counter-0 

Increment Counter 
-, LOOP unless Counter-0 

The corresponding APL source code would contain a dyadic system function INITCZ 

(Initialize and check if zero) and a monadic INCCNZ(lncrement and check if not zero), with 

the syntax 

-, END INITCZp X Start Counter and 
END if Counter = 0 

LOOP: 
body of loop 
-, INCCNZ LOOP Incr Counter and 
END : -t LOOP unless Counter = 0 

The looping primitives were developed and tested while writing a user-defined version of 

plus-reduction The measured results are shown in Table 6-1 Note that the per-element 

times include the time taken for data manipulation as well as time taken by the control 

primitives themselves 

Coding Set-up Per Element 

Microcode 423 2 
Looping Primitive 1319 196 
Branching Primitive 
(Scalar Test) 2038 297 
(Vector Test) 1397 391 

Table 6-1: Performance of Control Primitives 

Note that using the looping primitive allowed the per-element loop time to  be reduced to 



196 cycles. as compared to  297 using the branching primitive. Without the branching 

primitive, the loop time would be slightly longer This measurement would have required 

the standard format for computed branch, BSTACK. which has not been implemented yet. 

Careful coding is still a useful way of improving speed. Omitting an extra step t o  

ensure that the limit and loop counter are scalar saves 641 cycles of set-up time but 

raises the per-element time to 391 cycles. 

Five different branching techniques are shown in Figure 6-1. The looping primitive IBNZ 

is the only one that does not require the PMU to  wait for a value from the DMU. 

The standard branching primitive BSTACK executes a typical APL test-and-branch as 

three ADEL instructions. the test itself, the APL instruction which uses the destination 

and the result of the test t o  place a line number on the stack, and the branch instruction 

itse!f The "Branch-frcm-Stack" primitives BRANS!? and BRANLS combine the branching 

operation with the preceding operation, so that the APL expression 

- ( V  .\: X ) /  LBL 

can generate the ADEL code 

SLR X Y < Stack + Y < X 
BRANSR LBL / 

The present branching primitive BIFSTK could not be generated from APL source code 

without an IF keyword BRANSR and BRANLS would generate two ADEL instructions, as 

BIFSTK does rather than three, as BSTACK does. Since they use an APL function such 

as "/" or " X L "  ~nstead of a special IF instruction. their performance should be somewhere 

between BIFSTK and BSTACK. The BlFLR format is based on the realization that the 

destination syllable of a branching instruction could be used t o  contain the destination of 



the branch itself. By condensing the test, the branch instruction, and the destination into 

a single format, BlFLR would run slightly faster than BIFSTK. 

All of the branching primitives discussed here will be implemented for testing purposes. 

although only a subset can be kept in the finished interpreter. 

Branching Technique 
Looping Primitive 
Branching Primitive 
Branch-to-Stack 
Branch-from-Stack 

II 

one-step Branch 

ADEL Code -- 
IBNZ Loop 
SLR X Y < : BIFSTK Loop 
SLR X Y < ; SSR Loop / . BSTACK 
SLR X Y < : BRANSR Loop / 
SLR X Y < . BRANLS Loop X L  

BlFLR X Y Loop < 

Note: Semicolon is used here as an instruction Separator 

Figure 6-1: Some Possible Branching Techniques 

The control primitives in the final implementation may differ from the constructs 

implemented in this version, which are efficient but not necessarily in keeping with the 

theme of APL (In fact. they are not available as APL source but have to be hand-coded 

into an ADEL assembler) 

One common APL idiom that can be handled by a control structure is execution 

involving a constant string. The expression 

execute ( Y = 3) / ' Y + X + 2 ' 

might be compiled to a test-and-branch equivalent t o  the (illegal) APL expression 

Y + X+2 + (Y=3)1NEXTLINE 



6.2. Call/Return Mechanisms 

Function call and return is one of the principal sources of overhead for programs in mast 

languages This is particularly true o f  APL, which allows applications to  be built of 

dozens or hundreds of independent functions, with the dynamic nature of the language 

making function call expensive on conventional architectures The SAM architecture has 

been designed t o  address the problem of efficient function call and return. The process is 

fairly similar t o  DELtran practice [FIH83] and was described in detail in Section 5.4. 

T o  recapitulate. each identifier in a user-defined function is mapped to  a symbol table 

entry A t  call time, each entry is inspected. and the corresponding data table pointer is 

written into a Contour Access Table which corresponds exactly t o  the numbers used to  

encode objects (other than primitives) referenced by the user-defined function. if the item 

is a local variable, the D A T  pointer used is top-of-stack after a "no value" has been 

pushed onto the D A T  stack. If the item is a label, the corresponding line number is 

written ~ n t o  the CAT. For both labels and variables, the CAT entry is pushed onto the 

call chain for the symbol table entry, shadowing the previously accessible value. 

The arguments. if any, are currently handled by copying the D A T  entries and the array 

segments on function call. Array segments for arguments that are from the stack do not 

have to  be copied Later investigation will determine whether i t  is worthwhile t o  

implement a "protected-call-by-reference" mechanism to  avoid the overhead of making copies 

of the arguments 

Function return consists of deallocating all of the local variables which have received 

values and marking the corresponding tags "undefined" The corresponding symbol table 

page call chains are popped, and corresponding values are popped from the D A T  stack 



By popping the result name (in the symbol table page) but not the result value (in the 

D A T  stack) on function return, the value is available as the top-of-stack in the calling 

environment. 

Function call overhead is still considerable compared t o  that for a simple branch. Several 

improvements are possible. 

Implementing the formats like DLUR - which put the result of a called function 
into a specific variable instead of the stack will save one pipe cycle by allowing 

a sequence like SLUR followed by DGETSS t o  be replaced by a single ADEL 
instruction. 

0 It is not necessary t o  perform a symbol table access for literals. since the D A T  
pointer is known at link time. 

ADEL keeps literals in the same CAT as named identifiers. I t  is feasible t o  
keep a separate contour for literal values [FJW85] T o  make this work with 
the current system, new formats would be needed, so "X + X + 3 l W  would 
translate t o  "LLC X 31 +". Note that this would require some way to  handle 
applications with more than 256 literals. 

An edit-time check could determine whether arguments are modified. so the 
D A T  pointer could simply be copied for an unmodified argument, without any 
need for reference counting and protection flagging in the DMU. 

Special areas of the CAT and D A T  could- be reserved for "leaf" functions which 
do not themselves call other functions, allowing a call t o  be a matter of 
resetting the environment pointer. 

If the ~dentifiers used by a function are listed in order of use, function 
execution could be begun before the new environment is complete. More 
identifiers would be set up as the PMU gets ahead of the DMU, or as they 
are needed. 

0 Finally, hardware could be designed to assist the calling mechanism. For 
example, the CAT and D A T  were kept in hardware in an earlier version of the 
SAM design [HGT86]. Moving these two tables to  segmented memory slows 
down call/return performance by a factor of about two. 



V R  + X ACKER Y  
111 - BIGX IF  X > 0 
P I  R +  Y + 1  
PI - o 
141 BIGX: 

is]  - BIG2 IF  Y  > 0 

161 R +  ( X - 1 ) A C K E R  1 
171 -. o 
[7] BIG2: 
PI R  + ( X - 1 )  ACKER X A C K E R ( Y - 1 )  

V 

Figure 6-2: Ackerrnann's .Function 

DEPTH TEST-AND-BRANCH 
X Y R  CALLS SUCCESS FAILED COST 

COST is measured clock values. 
Values in parentheses are estimates. 

Table 6-2: Measurements of Ackermann's Function 

A good way to exercise the calling mechanism is Ackerrnann's Function, a doubly- 

recursive function with the number of calls growing more than exponentially with its 

arguments. The APL version of Ackermann's Function is shown in Figure 6-2 The 
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number of calls, branches. and failed branches for various arguments is shown in Table 

6-2. The cost of execution is given in the final column. The simulator is too slow to  

run 3 ACKER 3, but a linear regression of cost versus number of calls, successful 

branches, and failed branches gives agreement t o  within 0.1% for all cases up t o  2 

ACKER 2, and has been used t o  extrapolate t o  3 ACKER 3. The extrapolated speed is 

compared with various other implementations in Table 6.3. A hardware speed of 8 MHz 

is assumed. 

. [HGT86] give a simulator measurement of 1.5 ms for 2' ACKER 2 on 5 MHz hardware. 

This works out t o  7500 machine cycles. over twice as fast as the current simulator. Most 

of the difference is due to  the present implementation of the CAT and D A T  in segmented 

memory instead of in hardware. 

LANGUAGE 

SAN APL 
SAM APL 
C 
C 

STSC APL 
MTS APL 
MTS LISP 
Franz LISP 
Interpreted LISP 
Compiled LISP 
C 

ENVIRONMENT TIME 
(MILLISECONDS) 

SIMULATOR 153 
Tables in Hardware 80 
SUN 2 50 
SUN 3 13 
Select AT 35,900 
IBM 3081 1014 
IBM 3081 110 
SUN 3 2400 
LMI LISP Machine 20,000 
LMI LISP Machine 92 
IBM 3081 8 

Table 6-3: Comparison of 3 ACKER 3 on Various Systems 



6.2.1. The ICKER Function 

Since Ackermann's function exercises the calling mechanism of a language implementation, 

it seemed that it would be interesting t o  write a purely iterative version of the function. 

A comparison of the performance between ACKER and ICKER (shown in Figure 6-3) 

should provide a comparison between calling and branching performance of the 

implementation. A table of performance measurements is shown in Table 6-4. 

V R + X ICKER Y;STACK;PTR 

[I] STACK + 256p-1 
[21 PTR + 0 
[3] TOP: -+ BIGX IF  X > 0 
[41 R +- Y + l  
[51 -t END 
[6] BIGX: -t BIG2 IF  Y > 0 

171 Y + 1 
P I  X '- X - 1  
191 -+ T o p  
[ l o ]  BIG2: STACK[PTR] + X - 1 

[111 PPR + P T R + l  
I121 Y '-. Y-1  
[I31 -, TOP 
[14] END: -+ 0 IF  P T R =  0 

[I51 PTR + P T R - 1  
[I6] Y + R  
[I71 x + STACK[PTR] 
PI -+ TOP 

Figure 6-3: Iterative Ackermann's Function 

According to  the table. ACKER is more efficient than ICKER on every APL 

implementation except SAM APL. The measurements for LISP and compiled C were 

made later in the project and will be discussed later 

M y  first conjecture was that either SAM APL calls are relatively slow, or its branches 

are relatively efficient. T o  check whether the effect was caused by something in ACKER 



APL COMPUTER 
SYSTEM 

SAM 
Porta 

I1 

STSC 
It 

MTS 
Sharp 
Dyalog 

Simulator 
Fat Mac 
Zenith 151 
Zenith 151 
Select AT  
IBM 3081 
Zenith 151 
SUN 2 

C SUN 3 
C IBM 3081 
LISP IBM 3081 

CLOCK HARD- 

(MHz) WARE 

8 none 
8 68000 
4.7 8088 
4.7 8088 
10 80286 

TIME(SEC0NDS) 
ACKER ICKER RATIO 

Table 6-4: Comparison of 3 ACKER 2 and 3 ICKER 2 

or something in ICKER, execution timings with different sets of arguments were compared 

with the timing on MTS APL. The results of this comparison are shown in Table 6-5. 

---MTS APL-- ---SAM APL--- ---MTS/SAM---- 

X Y ACKER ICKER RATIO ACKER ICKER RATIO ACKER ICKER 
0 0 0.44 0.65 1.49 0.155 0.22 1.40 2.84 2.95 
1 0 0.67 0.87 1.32 0.23 0.25 1.10 2.9 3.5 

Table 6-5: Comparison of ACKER and ICKER on SAM and MTS 
for Various Arguments 

- As seen In Table 6-5, the relative performance of SAM and MTS APL for Ackermann's 

function is fairly constant. Also, the ratio between the costs of ICKER and ACKER on 

MTS APL was not dependent on the arguments But ICKER on SAM APL performed 

much better than ACKER with larger arguments. Figure 6-4 plots M I S  and SAM costs 

for ACKER and ICKER against MTS ACKER cost on a logarithmic scale. 



0 MTSICK 

/- 
6. 

lob0 1k4 I h5 1 k6 
MTSACK in Microseconds 

Figure 6-4: Comparison of Recursive and Iterative 
Performance IN SAM and M T S  APL 

To  test the effect of number of instructions (and to  make sure that nothing in the 

simulated run was compromising the integrity of the clock), the simulations were rerun 

with an ADEL instruction counter added to  the simulator. Clock values were plotted 

against lnstruct~on counts in Figure 6-5. It is apparent that ICKER uses slightly more 

lnstruct~ons thdt ACKER, but the average instruction costs less, and the graph of cost 

versus instructions for ICKER does not pass through the origin. Since the instruction mix 

for ICKER contains a single function call, while the proportion of calls t o  other instructions 



in ACKER is nearly constant, i t  is evident that the performance advantage of ICKER is I 
due t o  replacing function calls with array references and branches. 

/-I.--' . .\ -rt.. Arrows Join Com~arable 

E \,ases ol nLfiEn anu ILALI~ 

S 
1000 

0 

At this 

40 8 0 120 160 200 
ADEL Instructions 

Figure 6-5: Cost Versus Instruction Count In Recursive 
and Iterative Versions of Ackermann s Function 

point the pressing question was why other APLs did not show the same 

behdviour Either the greater number of high-level instructions executed in ICKER must 

outweigh the function calls in ACKER, or the array references found in ICKER but not 

ACKER must cost almost as much as function calls. A comparison of the costs of array 

references, function calls, and branches is shown in Table 6-6. 



-----TIME IN MICROSECONDS------- 
SYSTEM TEST AND ARRAY INDEXED FUNCTION 

BRANCH INDEX ASSIGN CALL 

SAM 
M T S  

Table 6-6: Costs of Array References, 
Function Calls, and Branches 

Notice that on M T S  APL, test-and-branch, function call, and array references all take the 

~ same order of time, 50 to  80 microseconds. In SAM APL, array references are twice as 

fast as test-and-branch, and function calls are more than twice as slow. This behaviour is 

more typical of compiled code than interpreted, suggesting that interpretation on SAM will 

resemble the execution of compiled code in detail as well as in raw performance. This is 

supported by the figures for LISP and compiled C in Table 6-4. In interpreted LISP, the 

list references for ICKER outweigh the function calls for ACKER, but in compiled C. 

ICKER is faster than ACKER by about the same ratio as in SAM APL. 

At this stage in the development of the interpreter. only a very rough guess can be 

made at the ultimate performance of the call and return mechanisms. 

A t  a very rough guess, then, the speed of function call and return might be doubled 

The microroutines in this version of the interpreter have not been fine-tuned for 

performance (see Section 6.6). Implementing the CAT and D A T  in hardware and tuning 

up the microcode would certainly bring the performance up to the predictions in 

[HGT86] which is double the current speed. Several suggestions for improving the 

performance of call and return are listed earlier in this section. An interpreter using all of 

these ideas and with fine-tuned microcode may be twice as fast as the current model 

without hardware assistance Finally, the technology used in the 68020 chip is at least a 



factor of two faster than the technology of an 8MHz SAM system. Raising hardware 

speed to  16 MHz, moving all tables to  hardware, using the fastest algorithms possible, and 

fine-tuning every line of microcode should speed up call and return by an order of 

magnitude, giving a speed for Ackermann's Function about the same as compiled C on a 

68020 machine 

I have drawn two tentative conclusions from the ACKER-ICKER investigation. First: the 

poor performance of ICKER on other APLs is due t o  inefficient array accesses. Second. 

part of the advantage of ICKER over ACKER on the SAM system may be due to  the fact 

that function call and return are still in their initial correct-but-not-fast incarnations In the 

final version of SAM APL, ICKER will run faster than ACKER, but probably by about half 

of the current margin. 

It should be mentioned here that the indexed assignment instruction used was special- 

cased for scalar indices of vectors. (See Section 6.4 for more detail on this instruction.) 

A more general indexed assignment would be slower. However, there is no reason to  

suppose that the translator will have any difficulty recognizing scalar indices of vectors and 

generating the appropriate ADEL instruction even when more general cases are supported. 

It is unlikely that future developments will make ICKER run more slowly. 

6.3. Array Arithmetic 



6.3.1. Dragalong and Beating 

APL often does operations that appear t o  be unnecessary. For example, in the expression 

A t  10 B + C, where B and C are 1000-element vectors, a naive implementation 

would perform 1000 additions, then discard 990 of the results. In his PhD thesis, Abrams 

[Abr70] suggested that a more sophisticated APL interpreter should "beat" the addition by 

"dragging along" a temporary expression until the take operation is complete for both 

arguments This approach has a few problems: for instance, suppose B and C were of 

' different lengths This error could easily be caught But suppose the operation to be 

beaten were division instead of addition, and C contained a zero after the 10th position. 

It is not clear whether an interpreter which did not catch the domain error could be 

considered to  be correct. 

In many cases, there is no possibility of an error being introduced by an optimization of 

this kind. For example, the resu!t ~f A B f C + D is the same whether two passes 

are used t o  create a temporary (C + D) and then add B to i t  or both additions are done 

in d single pass. For vectors of length N. 6N memory references are needed for the two- 

pass algorithm and 4N memory references for the one-pass algorithm. Hobson 

[Hob841 points out that, given an efficient vector machine, the two vector additions will 

run faster than the sequence of alternating scalar additions. The implementation of some 

repeated operations is discussed in more detail in Section 6.5. 



6.3.2. Derived Functions 

Derived functions can be optimized using the distributive properties of the primitives 

involved. For example. SCALAR +.x VECTOR is identical t o  SCALAR x +/ VECTOR 

but SCALAR+.+ VECTOR has no such optimization. The proportion of optimizable 

cases of this kind in APL applications programs is probably too low to  justify the 

overhead that would be needed t o  recognize them. 

On the other hand, some optimizations are not dependent .on special cases. For 

example, the AND reduction of a Boolean vector 

X + and/ BOOL 

reduces to  the question of whether or not there is a zero anywhere in the result, and 

efficient APL implementations do not go on testing elements of the vector past the first 

zero. 

6.3.3. Storage States 

One interesting approach to  the mixture of arithmetic and selection operations is t o  use 

a separate processor for each kind of operation [Sny82]. Snyder's MAPLE architecture 

handles selection operations as descriptor manipulations whenever possible. This would 

handle an expression like A + l o t .  B[1:2] by generating three successively modified 

descriptors for B The array manager would then use the final descriptor t o  fetch elements 

of A as needed for arithmetic and logical operations. 

Using such storage states speeds up selection expressions at the expense of making data 

fetches somewhat complicated A well-designed address calculating mechanism would allow 

array data fetches at the same speed as ordinary fetches on a scalar machine. The kind 

of streaming memory access used in the SAM project would be too complicated to  justify 

with current technology. 



Another storage state is the arithmetic progression vector, which can be represented by 

an initial value, a step size, and a length. In the absence of a combinational multiplier 

built into the addressing mechanism, this representation will slow the use of its elements 

in any nonsequential fashion. [HaL76] point out that arithmetic progressions are used very 

heavily in array subscripting operations. It may be desirable to allow the subscripting 

microcode to  generate and use arithmetic progression vectors even if the rest of the 

interpreter does not recognize them. 

There is one place in the SAM interpreter where a storage state approach is used. The 

index generating primitive saves both space and time, as LN simply generates a descriptor 

with length field N, pointing to a read-only array segment containing the elements of ~256  

The principal drawback of this approach is the necessity to check whether a variable is an 

index vector before deallocating its old value. This problem has been handled by declaring 

a set of segments to  be read-only. The deallocator simply checks whether the segment 

number is greater than a global READ-WRITE-BEGIN. At the present stage of the 

interpreter development, this slows down all deallocations with no benefit but a speed-up of 

the index generator However, now that read-only segments exist, one part of a nested- 

array ~mplementation is in place 

A second problem with the descriptor-only approach to the index generator is the 

existence of two separate index origins. The answer to this problem will be to maintain 

two separate index-vector segments, setting the pointer to the value active at execution 

time 

Measurements taken from actual use will be needed to  decide whether this approach is 

optimal. 



Two other cases where multiple arithmetic operations can be 'combined are matrix 

division and monadic -.x (the determinant function.) It is important that an APL 

program dealing with heavily numeric operations such as eigenvectors. Fourier transforms. 

and the like should be interpreted in such a way as to  optimize the streaming through the 

arithmetic coprocessor Probably several cycles of implementation will be necessary to get 

really good mathematical performance. The transcendental APL primitives must be 

implemented somehow, and it is not at all obvious that the published algorithms will be 

optimal for the SAM architecture. 

6.3.4. Arithmetic Coprocessor 

For any application involving multiplication, division. or any floating-point operations, an 

arithmetic coprocessor is necessary for good performance. John Gudaitis [Gud85] shows 

that the performance of array algorithms is sensitive to the protocol used to access the 

arithmetic unit(s). If the output of the coprocessor is buffered. it is possible to overlap 

the bus cycle sending the next arguments with the operation time of the previous cycle. 

Inner product requires an accumulation operation in its inner loop. In the general case, it 

&ay or may not be faster to use two arithmetic units. The multiply-and-add sequence of 

ordinary inner product is a processor primitive for the Weitek chip set used in the current 

SAM implementation Consider a different inner product, say x.+. Whether or not i t  is 

faster to do the vector additions on a different processor than the multiplicative 

accumulations depends on whether the bus cycles for the extra data transfer outweigh the 

multiplication time for the processor chosen. In practice. +.x is expected to be the only 

common inner product not involving a logical function. The matrix comparison products 

like and.= might use the coprocessor i f  floating-point numbers are involved. 



6.3.5. Performance Measurements for Array Arithmetic 

Problems like Ackermann's Function, with a high proportion of calls and branches to  data 

manipulation operations, are a worst case for an interpreter. Here we will look at the 

performance of SAM APL in a simple array operation, finding the sum of 1000 integers. 

In Table 6-1, the microcoded +/ primitive was shown to  run with a set-up time of 423 

cycles and a per-element time of 2 cycles, giving a predicted time for the addition of 2423 

cycles or 0 3 milliseconds. Table 6-7 compares this with some other implementations. 

LANGUAGE HARDWARE MICROSECONDS 
SAM APL SIMULATOR 300 
C SUN 3 3400 
M T S  APL I B M  3081 1800 
STSC APL Select AT 35000 

Table 6-7: Time to  Add 1000 Integers 

For this benchmark, the advantage of compilation is very much reduced. For example. 

M T S  APL is now twice as fast as cornpi!ed C instead nf seventy times as s!nw. SP.??! 

APL is about six times as fast as M T S  APL in both cases. 

6.4. Selection Functions 

For most applications, the set of APL functions which are used to  create, select subsets 

from and alter the shape and orientation of arrays are used more heavily than the array 

arithmetic functions A considerable body of theory has been developed to  combine the 

selection functions into a set of stepper generators that are used to delay the selection 

process until all of the steps in the selection have been specified 

[HaL72. GuW78, TrB82, Ben841. For example, 

4 5 lARRAY[2 4 3;5+~6] 

can be treated by generating a "Stepper" or "Grid Selector" for the indexing operation, 



apply the "Take" operation to the stepper, and finally apply the resulting stepper to the 

array itself. 



6.5. Sequences of Operations 

The use of variable-length instructions with a specific format syllable allows an interesting 

improvement t o  repeated executions of the same operation in APL source code. The 

example most found in application programs is repeated catenation. 

RESULT + X . Y . Z 

In a case like this, especially where X and Y are scalars and Z is a large array. the cost 

of creating an intermediate result (Y.Z) and then catenating X to  this result is much 

greater than the cost of combining the operations in an intelligent way. The design of 

ADEL includes formats for repeated operations of this type. The current interpreter does 

not include any such formats, and their development must be given a lower priority than 

the many missing features necessary to  a robust and complete APL implementation. 

Formats that implement repeated executions of a given function are a special case of 

formats that correspond to  more than two levels of a syntax analysis tree [FJW85]. As 

the authors point out, the number of separate formats needed for all combinations of 

functions and operands make i t  impractical t o  attempt t o  implement a full set of formats 

beyond the two-level case (a single function with its arguments and results). Often the 

result of an expression is used more than once. 

Example 1 above and other examples of repeated assignment can easily be special-cased. 

Handling Example 2 in a single ADEL instruction would require a large set of new formats 

and a redesign of the pipe hardware to  handle extra values. A compromise would be to  

implement a D + D instruction, so the example would be translated into the ADEL code 



DLR Z W X + ; DGETSD Y 

This format could be implemented easily because a copy of the last value assigned can 

always be found in the NXTDEST entry o f  the DAT. Thus multiple assignments are 

possible without using the stack. 

Example 3 is the most interesting, as an example of the kind of optimization that is ' 

expected from a good compiler. It would be feasible t o  implement ADEL formats that 

would do the job (See Section 5.5.3 for a description of the subscript function): 

SLR Y Z + 
D L M T  W R [ 
SLMS x [ 
LSC R - 

where "T" in an argument syllable means that the top element of the stack is used but 

not popped. There are currently about 100 formats that use S as an operand, and a fully 

general implementation of this idea would require one or more new formats for most of 

these. I t  would not be simple to  produce a translator that could recognize that a common 

subexpression is free of side effects and generate the appropriate code. 

6.6. Fine-Tuning the Microcode 

SAMjr microcode requires very careful attention to  detail in order t o  use the maximum 

amount of parallel execution. For example, the microcode used for a search iteration in 

the memory manager is shown in the first part of Figure 6-6. This code requires 6 cycles 

per iteration and omits and IDLE instruction needed for proper timing of the memory 

controller hardware. A more efficient way to  microcode the search uses the "mailbox" 

registers in the pipe to  hold temporary results. This code takes 5 cycles the first iteration 

and 4 cycles per iteration thereafter 



Old Version 

SEARCH: 
MMSl SRW R[Pl Start stream 
R[SZl + SSN MMSl Read size 
SF R[SZI MINUS R[N] A R[SUCl SSN MMSl 

Compare size and read su&essor 
+ FOUND IF -NEG A RLPREDI +R[PI 

Test-and-branch, prepare next iteration 
SF ARSHIFT RISUCI End-of-list? 
+ SEARCH IF -SB A R[PI + R[SUCI 

Begin next iteration unless end-of-list 

New Version . 
SEARCH: 

MMSl  SR W R[P] Start stream for 1st iter 
SEARCHl: IDLE 

SF R[N] MINUS M[SAVE] + SSN MMSl  
Read and save size, compare wi th  N 

-, FOUND IF NEG A SF ARSHIFT M[SUC] + SSN MMS1 
Test-and-branch, read successor.check for end 

-, SEARCH1 IF" SB A R[P] + M M S l  SR W M[SUC] 
Start stream for next iter unless end-of-list 

Figure 6-6: Speeding Up List Search Microcode 

This  search code takes 5 cycles the f irst t ime through and 4 cycles per iteration 

thereafter 

The  best way t o  apply detailed microcode optimizing techni&es t o  this interpreter will be 

t o  obtain some measurements and identify the bottlenecks. Certainly the search loop 

shown above will be one place where a cycle saved will have a large effect on the 

performance o f  the interpreter as a whole. 



6.7. Summary of Performance Considerations 

The present interpreter gives simulated results about six times as fast as M T S  APL on 

an IBM mainframe and 100 times as fast as STSC APL on a 10-MHz 80286 machine. 

Compared t o  compiled C on a 68020 machine, speed ranges from an order of magnitude 

slower (for Ackermann's Function) to an order of magnitude faster (for vector arithmetic). 

Neither of these benchmarks is a realistic model of a real application. For most 

applications. the performance of the completed interpreter on the present hardware design 

should more than satisfy $he project goal of performance comparable t o  good compiled 

code. 



Chapter 7 

Discussion 

7.1. Hardware Feedback 

One of the primary purposes of this project was to provide feedback to  the team 

developing the SAM hardware. It would be unreasonably optimistic t o  expect a hardware 

designer t o  anticipate all of the requirements of software. Writing software for a machine 

that exists only as a simulator leads t o  the opposite problem, as the software wish list 

may well include items that are prohibitively difficult t o  implement in hardware. By having 

the hardware people inspect and pass on each request as it is made, we hope to  avoid 

both of these problems. 

7.1.1. Pipe Clear 

The simplest hardware modification to  arise from a software request was a facility to 

clear out the pipeline between the PMU and the DMU. 

The PMU fetch-and-execute cycle puts the format syllable into a pipe as a side effect of 

fetching i t .  Then argument and operator syllables are put into the pipe by the format 

m~crocode But several PMU format syllables, such as no-op and branch-to-next-line. do 

not require any DMU action It is simple enough t o  write DMU format microcode that 

does nothing except release the pipe when i t  encounters these formats. However, this uses 

up two microcycles of DMU time, and also uses up space in the limited DMU format 

table. By allowing the PMU to  clear out the pipe when i t  executes a format that does not 



require DMU action, the DMU processing is speeded up and the extra formats become 

available for operations like data transfer, which are not initiated by PMU format fetch. 

7.1.2. Triadic Addition 

As a contrast t o  the simple and useful pipeline clear facility. I will mention the Triadic 

Addit ion request. After generating a considerable quantity o f  microcode, I noticed that 

address calculations and the like often required three values t o  be added together. 

Performing t w o  separate additions required t w o  microcycles. Since the major t ime 

requirement o f  addition is carry propagation. I reasoned that three registers could be added, 

via a carry-save adder in front o f  the standard adder, in one microcycle. 

This particular request turned out t o  be neither necessary nor feasible. The microcode 

format is sufficiently parallel that most extra additions can be done in tandem with other 

operations. The infeasibility derives not so much f rom the added complexity o f  the adder 

as f rom the redesign o f  the bus system that would be needed t o  use it. 

7.1.3. Memory Mapping Table Size 

Garbage collection is required when there is no sufficiently large block o f  contiguous free 

pointers available in the memory mapping table. O f  course, garbage collection is useless if 

there are not enough pages o f  free memory left t o  hold the required object. Therefore, by 

making the number of entries in the mapping table larger than the number o f  pages in 

segmented memory, garbage collection should arise very seldom 

It is easy t o  see that garbage collection could be required using a table less than on the 

order o f  the square o f  the number o f  memory pages, by executing a long sequence of 

commands 



comment N = total number of pages 
comment SMALLEST = smallest page to  be allocated 
SIZE = SMALLEST 
while there is room in memory 

ALLOCATE (SIZE) 
ALLOCATE (1) 
FREE(first allocation o f  this iteration) 
INCREMENT (SIZE) 

end - 

Let K be the number of iterations before there is not enough room in the memory. The 

next allocation will be for SMALLEST+K pages, and there will be K single pages already 

allocated Then the size of table required to  map all of these free and allocated blocks 

without garbage collection will be (SNIALLESTxK)+(Kx(K-1))+2 and choosing the worst 

possible value of N/3 for SMALLEST. we find that the mapping table is roughly ~ ~ + 6  

items long. 

In practice. of course. a much sma!!er memory mapping tab!e wi!! be reqr;i;ed to  make 

garbage collection exceedingly rare. The size of mapping table needed will be determined 

by experiments that will be performed when the interpreter has been developed to  the 

state that it can run real APL code. The practical suggestion arising from this theoretical 

consideration is that the mapping table should be twice the size needed t o  map all of the 

real pages of segmented memory. 

7.2. A Minimal APL Subset 

It IS immediately obvious that the APL language contains redundancies. For instance. 

the ten dyadic logical functions found in APL can be implemented as the NAND function. 

with preprocessing to  translate expressions involving the other nine dyadic logical functions 

A t o  equivalent expressions using NAND 



Some APL primitives are tempting candidates for replacement by defined APL functions. 

Matrix divide is the obvious first choice. Encode and decode, grade up and grade down. 

factorial/gamma and binomial coefficient. and the trigonometric functions could also be 

replaced. Some derived functions could also be recognized by the preprocessor and 

implemented as calls t o  defined APL functions, especially if monadic -.x (determinant) is 

implemented 

Since i t  is much easier t o  write APL functions than microcode, it is of considerable 

interest t o  be able t o  define a minimal subset of APL sufficient for implementing the rest 

of APL. Some caution is needed here. since a strictly minimal subset would not include 

such things as addition and negation, since (-X) = (0 - X) and (X + Y) = (0 - (0 - X) 

Y) What we are after is not a provably minimal subset, but a provably sufficient 

subset which is comfortable t o  work with. 

7.2.1. Arithmetic arid Logical Frsnctisna 

The arithmetic functions consist of addition, subtraction, multiplication, and division. The 

transcendental functions can all be implemented as series, especially if the values of e and 

pi are available. Encode, Decode. Determinant (if i t  is to be included at all), and Matrix 

Divide can be implemented as user-defined functions in a straightforward way. 

I simple enough to get along without most of them, i t  is even simpler t o  implement one, 

i then make slight changes in the microcode to  arrive at microcoded versions of all ten. I t  

may be necessary to  omit complete microcode for some of the logical functions in order t o  

conserve control store. 



7.2.2. Array Manipulation Functions 

Since an APL interpreter can be written in a scalar language with no array facilities 

except scalar indexing, it follows that all o f ,  the other array manipulation functions in APL 

are redundant. In fact, [Zak78] implemented transpose, take, rotate, membership, index-of, 

gradeup, gradedown, expand, drop, and compress as defined functions. SAM APL will 

implement all of these in microcode, with the possible exceptions of membership. 

gradedown. and drop, which can be implemented via the identities 

X E  Y + + ( Y L X ) < P Y  ( k h e r e ~ i r a v e c t o r )  
GRADEDOWN X + GRADEUP (-X) 
L l X  +- + ((-xL)x(pX)-1 L) t X  

P.2.3. Array Ranks 

V R + X PLUS Y:RANKX;RANKY 

[I] RANKX + 1 t X 

[*I RANKY t I ?  Y 
[31 + RANKOK x L RANKX = RANK Y 

PI -. (RANKX=O)/SCALX 
[51 + (RANK Y=O)/SCAL Y 
161 SIGNAL'RANKERROR' 
[7] SCALX: R + (RANK Y + 1) T Y 

[a] R + R . ( l l X ) + ( R A N K Y + l ) l  Y 
[gl + 0 
[lO]SCAL Y:  R + (RANKX + 1) T X 

[111 R + R.(11 Y ) +  ( R A N K X + l ) l X  

1121 + 0 
[13]RANKOK: XSHAPE t RANKX t 1 1  X 

1141 YSHAPE + RANK Y T 1 1  Y 

1151 + (and / XSHAPE = YSHAPE) ) SHAPEOK 

[I61 SIGNAL 'LENGTHERROR' 
[17]SHAPEOK: R +- (RANKX + l ) T  X 

(181 R +- R.((RANKX + 1)1 X)+(RANK Y + 1 ) l  Y 
v 

Figure 7-1: Vector APL Function to do Scalar Arithmetic on 
an Array of Arbitrary Rank 



The initial subset contains only scalars and vectors. This restriction requires a 

demonstration that a user-defined protocol and a set of user-defined functions can mimic 

all of the APL primitives and derived functions as applied t o  arrays of rank 2 or higher. 

The following protocol is one possibility, 

The programmer is responsible for keeping track of which values are arrays of rank 

greater than one. All such arrays are modelled as vectors. with the first (rank + 1)  

elements containing rank and shape. For character arrays, twice as many elements are 

used to  encode rank and shape as 16-bit integers. 

T h w  all operations involving these arrays are done by defined functions instead of by 

A P l  primitives It is immediately obvious that this can be done, since it is equivalent t o  

writing a sr~bset of an APL interpreter in vector-only APL The easiest way to  establish 

the feasibility is t o  show a few examples of such functions. Figures 7-1. 7-2 and 7 -3  

show how scalar arithmetic, reduction, and inner product can be modelled. 

V R +  PLUSRED X 
11 RANKX + 1 f X 
21 SHAPEX + RANKX t 1 1  X 
31 x + (RANKX + 1 )  1 x 
41 SHAPER + (-1) 1 sHAPEx 
51 LEN +- ( - I )TSHAPEX 
6l LlMl T + x/ SHAPER 
71 R + (RANKX - 1)  SHAPER 
8 1  COUNT + 0 
91 LOOP: -, (L IM IT  < COUNT + C O U N T + l ) / E N D  
101 R + R , + / L E N T X  
111 X + L E N l X  

121 -. LOOP 
13lEND: 

v 

Figure 7-2: Vector APL Function to  do Reduction on 
an Array of Arbitrary Rank 



V R + X PLUSTIMES Y 

PI 0 PlusDotTimes Innerproduct 
[21 STRIP-R-S .set RANK & SHAPE 
PI  -. (RANKX = 0 1)ISCALX. VECX 
[41 (RANK Y = o 1 ) l s c A L  Y, v E c Y  
151 COL +- -1 
[GI -, LERRif ( W +- 1 T SHAPE Y) # (-1)tSHAPEX 

P I  NRO ws + X /  SHAPEX +- (-1) I SHAPEX 

P I  NCOLS + x /  SHAPE Y +- 11 SHAPE Y 
[91 R + ( N R O W ~  x ~ c o L s )  p loo 
(101 CLOOP: - E N D i f  - NCOLS 6 COL + C O L + l  
[Ill R O W + - 1  

[12] CVAL +- Y[COL + NCOLS x L W]  
1131 KLOOP: + CLOOP if NRO WS 6 ROW + ROW + 1 
1141 R[COL+NCOLS+RO W ]  +- +/ CVAL x X [ (  W x ROW) + I+ W] 

~ 5 1  + RCooP 
1161 SCALX: -+ SCALX if RANK Y E 0 1 
[17] R +. P L U S R E ~ ~ A  RANK Y.SHAPE Y.X x Y 

[I81 -"+ 0 
[ I s ]  VEC'X. -+ SCALRifRANKY E 0 1 

[20] X +  floor -- ~ p - ~ ) x ( p ~ )  t p Y 
fw -+ 0. R +- PLUSREDLA RANK Y,SHAPE Y .  X x Y 
[22] VEC Y R +- PLUSRED RANKX,SHAPEX. X x ( p X ) p  Y 

1231 -, o 
[24] SCALY: R + PLUSXED RANKX.SHAPEX. X x Y 
P I  + o 
[26] SCALR: - 0 R + + / X x  Y 
[27] L E R R. errorprocessing. 

[28] END: KANKR +- RANKX + RANK Y - 2 
[29] K + RANKR.((-1)1 SHAPEX),( l  1 SHAPE Y). R 

v 

Figure 7-3: Vector APL Function to  do Inner Product 
on an Array of Arbitrary Rank 

7.2.4. Operators 

As soon as APL primitives are implemented as user-defined functions, such functions 

must be included in the domain of operators. Since an APL operator is essentially a 

frame which determines how a function will be applied to  an array, one way to  implement 

an operator that will handle a user-defined function is t o  write a user-defined function 



(that is, an ADEL function which runs in the PMU instead of a microcode function which 

runs in the DMU) which accepts a user-defined function as an argument. This leads to  

ALL user-defined functions being in the domain of operators, and with a very small 

additional amount of work, user-defined operators become available. 

In the initial subset, reduction is implemented as hard microcode for all of the 

microcoded primitives All other operators, and reduction when applied to source-level 

pr~mitives, are written as APL functions, 

7.3. Microcode Size 

The present interpreter contains almost ail of the environment maintenance routines, 

about one-thwd of the executable formats, and on the order of a tenth of the executable 

operators. DMU format code has been restricted t o  vectors and scalars only, and the 

arithmetic operators t o  integers only 

Altogether, there are 2275 lines of microcode. excluding comments and headers. 

distributed as follows: 

PMU 
Linker 
Maintenance(PMU) 
Executable Formats(PMU) 
Pipe Control(PMU) 
In~tializations(PMU) 
PMU Total 

DMU 
Maintenance(DMU) 
Executable Forrnats(DMU) 
Executable Operators 
Pipe Control(DMU) 
In~t~a l~zat~ons(DMU) 
DMU Total 

Common 
Memory Manager 
Init~alizations(Mern Mgr.) 



Since both the PMU and the DMU contain a copy of the memory manager, there are 

altogether 2492 lines of microcode in the system. However, the PMU and DMU do not 

share control memory, so the individual totals are more important than the combined total. 

The microcode for the PMU is complete except for the executable formats. The final 

version of the PMU microcode should be about 2000 instructions. 

The D M U  will require a complete set of formats, extended to  deal with floating-point 

numbers and arrays of arbitrary rank, plus code for all of the primitives that have not yet 

been written Writing the entire DMU part of the interpreter in microcode would probably 

require about 8000 instructions. It would be interesting to see if a sufficient subset of 

APL could be squeezed into 2K DMU instructions, making possible a cheaper machine with 

most of the primitives and array code written as ADEL routines. 

7 A .  Conclusions 

The implementation of the first subset of SAM APL has raised a number of interesting 

theoreticdl and practical problems. While there was no intention of implementing the 

entirat, of APL in  this version the need for operators acting on user-defined versions of 

primit~ves made i t  necessary to  do much of the groundwork for important extensions. The 

initial performance of some control primitives is very encouraging, whether or not they can 

be expressed comfortably in traditional APL. Difficulties arising from a half-thought-out 

speed-up t o  the index generator led to  the necessity for read-only segments, which may 

prove useful in the implementation of nested arrays. 

The simulated performance of SAM APL has been very satisfactory, a factor of more 

than 100 faster than the fastest microcomputer APL tested. Function call and return are 



still bottlenecks in SAM execution, and several feasible ways of speeding up call and return 

must be investigated. Performance measurement of different ways of expressing 

Ackermann's Function has apparently shown serious bottlenecks in the way other APL 

implementations handle array references. 

I t  is worth noting that it took about one year's work before the first APL expression 

X + l  

could be executed Extensions and improvements have been much quicker t o  define and 

test given a working nucleus upon which to  build I t  is probably premature to  guarantee 

that a complete working APL interpreter will be easy t o  develop from the current state of 

the project but at the very least there are good grounds for optimism 



Appendix A 

Glossary of Acronyms 

ACRONYM and EXPANSION 

APL 

ASP 

CAT 

DAT 

DEL 

DIL 

DPM 

DMU 

ECU 

EXEC 

GSAT 

A Directly 
Executable 
Language 

A Programming 
Language 

Architecture 
Support 
Package 

Contour Access 
Table 

Data Access 
Table 

Directly 
Executable 
Language 

Directly 
Interprable 
Language 

Dual Port 
Memory 

Data Management 
Unit 

Envi.ronment 
Control Unit 

Execute from 
Table 

Global Symbol 

DEFINITION 

A linearization of APL 
code allowing complete 
source code reconstruc- 
tion. The "assembly 
language" of a SAM system 
The high-level computer 
language that is both the 
host language and the tar- 
get language of this project 
A software simulator to run 
and measure the performance 
of ADEL code 
Ordered table mapping ADEL 
syllables to DAT indices 
Table of scalar values and 
array addresses. 
A linearized form of 
a source program which 
can be executed directly 
A DEL which allows the 
source code to be recovered 
from the linearized code 
Used to connect the PMU 
and DMU to the ECU 
The SAMjr system reponsible 
for data manipulations 
The "front-end" system 
for user and 1/0 tasks 
Execute a microprogram from 
a table indexed by a 
function or format syllable 
List of pointers to Global 

Access Symbol Table, kept in 



HLL 

PMU 

SAM 

SAM j r 

SJMC 

SFU 

SPT 

VHLL 

Table 
High 
Level 
Language 

Program 
Management 
Unit 

Structured 
Architecture 
Machine 

SAM j r 
Memory 
Controller 

Special 
Function 
'u'nit 

Segment Page 
Table 

Very High 
Level 
Language 

internal form of function. 
A programming language that 
does not require explicit 
references to the hardware 
on which a program is to be 
run. 
The SAMjr system responsible 
for program linking, 
function call/return,and 
symbol table management 
Two or more SAMjr systems 
set up to distribute the 
program and data management 
tasks in executing ADEL code 
A component of a SAM system 
consisting of an SJ16 micro- 
engine, a memory controller, 
segmented memory, and zero 
or more SFUs 
Streaming segmented memory 
controller used by SAMjr 

A hardware unit (for example, 
a floating-point processor), 
attached to a SAMjr to 
handle a special job 
A table of physical page 
addresses used for segmented 
memory reference 
A programming language which 
handles data structures 
directly instead of element 
by element. 



Appendix B 

Extensions to  APL 

The present project has been limited t o  implementing a subset o f  the APL  language. 

wi th  a single small extension in the form o f  control primitives. The next step will be t o  

implement the entire APL language, or a t  least a sufficient set of  primitives t o  allow the 

remainder o f  the language t o  be written in APL  itself. 

The implementation o f  real extensions t o  the language must be postponed unti l  standard 

A P L  is finished. However. all existing commercial APL interpreters contain significant 

extensions, and it is proper t o  discuss them here, if only t o  get some idea about which 

shouid be considered for S A M  APL. 

B.1. Nested Arrays 

Nested arrays are by far the most important extension t o  standard APL.  A standard 

array consists o f  a rectangular block of characters or o f  numbers o f  a given type. While 

this is a simple and natural way t o  represent financial tables and engineering matrices, it is 

much less flexible than, for example, a Lisp list. Suggestions for "generalized" or "nested" 

arrays where each element o f  an array is (or contains) another array. have been circulating 

since the f i rst  useable APL implementations [Fa173, GhM731 

After about a decade and a half o f  discussion, three major implementations of nested 

arrays were completed The  first t o  be released was I. P.  Sharp's system. Then came the 

NARS system o f  STSC APL,  and finally IBM's  APL2 Another important nested array 

APL  is the Dyalog A P L  available for UNlX systems. 



Sharp's system differs from the other commercially available systems by being 

"grounded". that is, an the enclosure of a simplei scalar object is distinguishable from the 

object itself. The other systems are "floating, so that an enclosed simple scalar is identical 

t o  the original simple scalar. 

The obvious consequence of this distinction is that "floatingw APL requires heterogeneous 

arrays, since the catenation of an enclosed character and an enclosed number is identical 

t o  the catenation of the character and number. "Grounded" APL may permit 

heterogeneous arrays (although no implementations do so), but does not require them. 

A less obvious consequence is the pervasiveness of arithmetic and logical functions. 

Since in a floating system there is no way t o  distinguish a number from an element of a 

nested array containing a number. then nested arrays are in the domain of arithmetic and 

logical functions. In a grounded system, nested arrays may or may not be in the domain 

of these functions In practice, a set of composition operators was defined, such that 

(X+_wLh disclose Y )  

means "Go through arrays X and Y element by element. For each pair of elements, 

disclose them, apply the plus function, and enclose the result as an element of the result 

array " 

The simple provision of a nested array data type, plus the enclose and disclose 

functions, is only the first step in providing a useful nested array language. Providing a 

way to apply mathematical and logical functions to  the contents of nested arrays is the 

second step Many more functions and operators must be defined to  allow the 

'A "simple" scalar is an ordinary nurnbet or character, but not the scalar result of an enclose operation 



manipulation of "nestedness" as simply and powerfully as standard APL operators deal with 

l'arrayness'l 

Writing the microcode to  support nested array operations would be a large but fairly 

straightforward project Consider the DMU microcode for the DLR format (Figure B-1): 

DLR-D 

Read Args from Pipe 

Basic Semantic Check(Neither Arg Undefined) . 
I 

Cast if types different 

Read 2 words from L and 2 words from R 
! 

CASE an argument ranks 
I 

j-(Both Scalar) EXEC the function 
/-(Left  Scalar) CALL 'DLR-SV' 
i-(Right Scalar) CALL 'DLR-VS' 
;-(Both Vector) CALL 'DLR-VV' 

1 

I 

CALL 'CLR-WRI-DST' 

Figure B-1: Broad Outline of DLR Microcode 

T o  handle nested arrays, assume that a floating system is t o  be implemented, so that 

X + Y+Z might refer t o  a scalar Y and a nested array Z. Then the DLR routine in the 

PMU would not have to  be changed at all. In the DMU, a test would be inserted after 

the basic semantic check, as in Figure (B-2). Assume that a nested array has a DMU 

tag of 1100. 

In Figure B-2, the additional test in DLR is shown, followed by a rough outline of the 



1 

IF L tag is 1100 

CASE on R tag 

1-1100 CALL 'DLR-NN' 

/-lOxx CALL 'DLR-NV' 

1-Olxx. CALL 'DLR-NS' 
ELSE IF R tag is 1100 

CASE on L tag 
I 

I 
/-IOxx: CALL 'DLR-VN' 

I-Olxx: CALL 'DLR-SN' 
ELSE (Rest of flowchart as before) 

DLR-SN 
(DMU Microcode for DLR. Scalar L and Nested R) 

Initialize a count for length of R 

Open segment containing ptrs for R 

LOOP: Read one pointer for R 
CASE on tag for the pointer 

1-SCALAR. EXEC the function 

'-VECTOR CALL 'DLR-SV' 

NESTED CALL 'DLR-SN' 

Figure 8-2: Change to DLR Microcode to  

Support Nested Arrays 

DLR--SN microcode that would be called where the left argument is scalar and the right 

argument is nested One serious problem that would have to  be solved is the recursive 

nature of nested arrays If an element of Z is itself a nested array, the DLR-SN 

function simply calls itself. Since the nature of microcode is not recursive, a different 

programming style would be needed 

The shape- manipulation functions could operate on nested arrays exactly as if they were 

arrays of integers In fact. there is no reason that any of the shape-manipulation code 



should 'know' that its argument is a nested array. The problem of 'pad' elements for 

expand and overtake would disappear if we set up the tables so the value pointed t o  by 0 

is the fill value for a nested array. Presently, the DAT element in position 0 is in fact 

scalar zero, which is a suitable fill element. 

The treatment of nested arrays in this section has necessarily been superficial, and the 

fact that the examples have been simple is not meant to suggest that the implementation 

would not be difficult. As the interpreter is developed. I expect to include a very 

restricted set of nested array operations. possibly limited to  Enclose and Disclose. Such a 

limited nested array system is of little practical use, but it should at least help to  prevent 

implementation decisions that would interfere with a real nested array system in the future. 

8.2. Operators 

The use of operators t o  apply functions to  arrays is the keystone of APL. Standard 

APL contains only four such operators: reduction, axis, scan, and product. New operators 

have been suggested almost as often as new functions. In particular, new operators have 

been necessary for the manipulation of nested arrays. 

Recently, [IPS841 published the beginnings of a formal calculus of operators The 

completion of such a calculus might allow the development of a new programming language 

based upon it, as of nested array theory led to  the development of Nial. Such a language 

might resemble APL only loosely The extended version of APL proposed by Kenneth 

lverson is based on the consistent application of operators [lve86]. 

The ultimate operator extension is provided in APL2. user-defined operators Together 

with allowing operators t o  apply t o  user-defined functions, this completes the process of 



using the APL operator t o  create a language that is totally different in flavour from non- 

operator languages. 

The ADEL intermediate language developed for the SAM APL system encodes the 

standard APL operators within its format syllables. A t  present there are no formats for 

unspecified operators. Adding new operators t o  an APL implemented via translation into 

ADEL would require either a new set of formats for each new operator or a set of 

unspecified-operator formats. New operators could be also realized either by translating 

them into nested loops during the front-end APL-to-ADEL translation phase, or by 

trapping to  error routines which then call APL programs which do the control operations 

represented by the new operator. The implementation of operators which apply t o  source- 

level representations of some of the APL primitives will make this extension 

straightforward 

Traditional APL does not have a file system. Early implementations had no way at all of 

keeping data outside of an APL workspace: everything that was entered or generated in a 

glven session would be stored when the aclive workspace was saved, but that information 

could not be used by non-APL tasks, and no more of i t  could be retained than would f i t  

in an APL workspace. Some ways of using APL workspaces as data bases are discussed 

in (So0841 

It was very early obvious to  most APL theoreticians that the "right" way to implement 

APL files was as extra-workspace nested arrays. An early feasibility study 

(lve831 suggested that a practical nested array system was ten years and hundreds of 

man-years away in the early 1970's. but a restricted subset could be implemented in about 

a year The result of this effort was the Sharp/STSC component file system. 



An APL  component file a file is essentially a vector of APL arrays, kept outside of the 

workspace and accessed by a set o f  special file functions instead of standard APL array 

manipulation functions. Component file systems make practical commercial applications 

feasible, and have been very successful despite their stopgap nature. 

The other approach t o  files in APL was t o  create a "shared variable" system, wherein a 

non-APL fi le A P  (Auxiliary Processor) could trade information wi th  an APL task and 

perform the job o f  accessing various proprietary file systems and translating data into and 

out of APL  format. Like component file systems, AP-based file systems are commercially 

practical but clumsy t o  use. One very useful offshoot o f  the A P  file system concept has 

been the shared variable facility, which can be used for inter-task communication within 

and outside o f  APL.  

Since APL  wil l  be used on real computers which support other applications. some 

thought should be given t o  file interfacing. For example, an APL designed t o  run on an 

IBM PC-compatible computer should have some way o f  dealing with native DOS files. 

One attractive way t o  get data base facilities would be t o  write a useable interface t o  one 

of the commercial data base management systems. 

B.4. Primitives 

Despite the richness o f  the set of  operations created by applying standard APL operators 

t o  standard APL  functions, i t  is not hard t o  define a problem that is most efficiently 

. solved by extending the set o f  primitive functions. Th is  can be done either by adding 

new primitives or extending the definitions o f  existing primitives. 



B.4.1. New Primitives 

"String-Index" is one example of a function that can easily be written in standard APL 

but is used heavily enough that an optimized primitive might be desirable. APL supports 

character vectors, not strings, so that 

' T H I S  IS A SENTENCE ' L  ' IS '  
2 3 

' T H A T  WAS A SENTENCE'STRINDX ' A T '  
2 

A 'primitive String-Index function (and a companion String-Membership function) would 

simplify and speed up text processing applications, particularly if the underlying hardware 

includes string-handling facilities 

Various other primitives that have been suggested from time to  time include eigenvalue 

and eigenvector, functions to  convert back and forth between matrices and delimited 

vectors an assortment of graphics primitives, and functions to  handle nested arrays and 

other data structures. 

B.4.2 Extending Existing Primitives 

Many features of contemporary APL systems are extensions of functions found in 

standard APL For example the standard sorting primitives do not apply t o  matrices or to 

character vectors. Most contemporary APLs have extended the domain of the sorting 

prirn~t~ves to  matrices and higher-rank arrays, such that 

RESULT + MATRIX[gradeup M A T R I X ; ]  

sorts MATRIX with the first column in ascending numeric order, with ties broken by the 

second column and so on An optional left argument contains a collating sequence, so the 

function can be used to  sort a character array. 



Another very common extension is the Replicate function. In classical APL. 

0 1 0 1 1 / 1 2 3 4 5  

returns 2 4 5. That is, elements of the right argument corresponding to  1's in the left 

argument are selected. Another way t o  look at i t  is the number of copies of a given 

element of the right argument is equal t o  the corresponding element of the left argument. 

either 0 or 1 Extending this second definition gives the Replicate function: 

1 0 2 0 3 / 5 6 7 8 9  

rehrns 5 7 7 9 9 9. 

8.5.  Strands and Syntactic Variations 

It is convenient to  be able to  denote a single literal consisting of a vector of numbers in 

the form 

instead of 

Strand rtotation extends this convenience to  all APL variables instead of just numeric 

constants For example 

X + 5  6 7 
Y + ' These are characters' 
R e  F 0 0  X Y 

applies the function FOO to a two-element (nested) vector consisting of X as the first 

element and Y as the second element More radically "strand assignment" can be used to 

give a value to  more than one identifier in one statement For example X Y Y X 

swaps the values of X and Y All APL implementations with floating nested arrays support 



strand notation Implementations with no nested arrays, or with grounded nested arrays, do 

not support i t  

Strand notation leads to  a syntax based on "binding strength" [Bro85] The resulting 

syntax is close to  standard APL except for the existence of strands and such curiosities 

1 2 3[2] + + 1 2 (3[2]) 

As imported into APL, strands are at best a mixed blessing. The Nial idnguage IS based 

on array t h o r j  [Mor73] with strand notation as the basic input format, and i t  may turn 

out that stranded dialects of APL will evolve, ~ n t o  d language more like Nia! than 

convent2onal APL 

B,6. New Environment Features 

The standard APL environment i s  cramped and difficult to work with APC does not 

communicate easily with other systems is not easy to  interrupt, and does not provide any 

easy way to  run multiple environments and protect subtasks from each other Many 

proposals have been made for minor and major modifications to  the APL environment 

B .6.1. Scoping 

One very useful proposal was to  extend AP.L's scoping rules [ s A L ~ ~ ] .  The standard 

APL name scoplng is dynamic with default global. If a function FOO calls a function 

FEE and FEE happens to  have a loop counter. I which the programmer has neglected 

to  "locahze" by including i t  in the function header then when FEE exits FOO is left with 

the value of I set by FEE If FOO also happens t o  use I for some variable a bug has 

been created 
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Seeds et, al proposed that the rules be modified to  the programmer could choose the 

default scoping. and that a "strictly local" scope be added such that a local variable could 

be made invisible t o  both called functions and the calling function. This simple change to  

APL would have eliminated about half of the serious errors in my own code over the last 

seven years 

8.6.2. Event Trapping 

The largest extension t o  the standard APL environment which has actually been 

implemented on a commercial scale is Event Trapping When a condition arises which 

cannot easily be handled by straightforward coding, a trapped APL allows the programmer 

t o  specify what action should be taken. Event Trapping has already been implemented 

Sharp APL and to  a lesser extent on the other timesharing systems. In the Sharp event 

handler any function could have a local variable quadTRAP, which contains event codes 

and APL expressions to  be executed when the event arises. For example. "Workspace Full" 

has event code 1, so if quadTRAP contains "1 RemoveGarbage" and a function encounters 

Workspace Full, the RemoveGarbage function is invoked A companion quadSlGNAL 

system function allows event codes to  be raised under program control 

Event trapping makes a large number of problems much easier to solve. For example. if 

a user has managed to  enter bad data into an application program. the program can flush 

the input report the situation to  the program maintenance file, give the user a more-or- 

less friendly message instead of a cryptic (to the user) APL error message, and restart in 

a convenient place. 

Extending event trapping to  handle interrupts generated from outside the APL task would 

lead t o  the possibility of real-time device control programs, more reliable multiple-input-task 



systems. and more accurate models of computer systems A simplified version of this 

idea was implemented by [ATC77] for sensor-based applications on the IBM System/7 

computer. 

B.6.3. Namespace Extensions 

The global scoping of APL names makes it difficult t o  hide and protect information in a 

large system. For example, when a given problem can be solved by using sets of programs 

in two separate workspaces, the two workspaces can not be copied together without 

checking for name conflicts and renaming objects t o  avoid conflicts. A very relevant 

example is the machine model on which the ADEL interpreter is being developed. The 

model encompasses two separate processors, and t o  switch back and forth between them 

it is necessary t o  rename all of the data objects in the workspace. 

The straightforward way to  implement multi-namespace systems in APL is t o  use an 

APL which supports multiple tasks, and pass information between them using shared 

variables. All of the important commercial mainframe APL interpreters (and none of the 

currently available microcomputer APLs) include a full shared variable facility 

M C M  APL [MCMxx] included a one-level structuring system. Objects from one or two of 

256 collections of programs and arrays could be accessed at any one time. Using this 

system. tasks could be integrated with little programming effort, although the performance 

of the diskette-based hardware was quite slow. 

A more flexible system was proposed in [BeD82]. A new set of system commands is 

used to  create, load, and save heirarchical "segments". Whenever an executing function 

encounters a name which is not in the current workspace, the segment with that name is 

loaded and the reference is resolved in the new context (which means the segment name 

must be identical t o  the name of a new object within that segment) 



The Analogic APL machine ( [Ber84]) handles name partitioning by threading through 

multiple "instances" of a workspace with one "prototype". Each workspace is partitioned 

into "contexts". If a name in a given context is explicitly exported, it may be references in 

another context, with the value being either a private copy (if the context is an instance) 

or a permanent stored value (if i t  is a prototype). 

The most drastic namespace handling facility proposed to  date is [TaW84]. All APL 

objects and tasks are subsumed under "The Tree" A complete set of naming and binding 

procedures is defined, after which different tasks can communicate by using qualified 

names 

The completed SAM APL may include a modest namespace extension suitable for 

separating multiple instances of a set of programs while allowing controlled communication 

between them The content of the extension will not be worked out at this time The 

mechan~cs of the implementation should be fairly simple Each context would contain its 

own set of symbol table pointers, so that the linker but not the execution supervisor must 

distinguish between different objects with the same name The details of the extension 

will require a careful look at what is most useful and easiest t o  implement 

8.7. New Data Types 

8.7.1. Complex Numbers 

The numeric domam of Sharp APL and APL2 include complex numbers It is fairly easy 

to  model complex numbers as arrays with an extra axis of length 2, but i t  is more 

convenient t o  have a complex primitive data type which is in the domains of all of the 

relevant primitives A further extension related to  complex numbers would be quaternions, 

4-tuples of real numbers encompassing complex numbers and 3-space vectors as special 



cases. Although quaternions have never been implemented as primitive data types, 

[Gus861 points out that they be useful for some graphics operations. 

8.7.2. Beyond Floating Point Numbers 

The APL scheme of booleans extending automatically t o  integers which extend 

automatically t o  floating point numbers handles most mathematical problems conveniently. 

One common extension is multiple integer types, t o  increase speed and reduce storage 

costs for small integers An "infinity" value can be handled by current hardware and 

would be useful for catching such problems as the DOMAIN ERROR in 

(arctan(Nxtan(X))) where X approaches 90 degrees. Financial applications would benefit 

from a fixed decimal storage type Other possibilities are large integers, rational numbers. 

and multiple floating-point types t o  handle overflow/underflow from the default floating- 

point type 

8.7.3. Graphics 

Graphics primitives will certainly be necessary in any new general-purpose language. 

Efficient graphics applications may require special data types which do not map neatly into 

arrays At very least. a set of more than 256 characters will be needed. 

8.8. Control Structures 

The operator-based approach to  arrays make most ALGOL-type nested loops unnecessary 

in APL However mstances requiring loops and branches are not supported by anything 

but the branching and execution primitives The branch primitive suffers from both high 

cost and a lack of safeguards against branching into loops. spaghetti code, and "driftwood" 

(f loat~ng branches) Execution is too powerful and general a mechanism t o  use for a 

simple IF statement, and implementing i t  efficiently requires a translation into a test-and- 

branch or equivalent 



The version of ADEL developed for the first SAM APL supports a BIFSTK branch and 

a pair of looping primitives to initialize-and-test and increment-and-test The translator 

does not recognize corresponding objects in the source code: at the current stage, they are 

only available in hand-assembled programs. 

The idea of introducing ALGOL-style control structures into APL has often been raised 

and has never been accepted APLgol [Ke173] is the best-known such implementation. 

MCM APL contained a way of editing control structures into APL programs Neither of 

these implementations has convinced the mainstream of APL programmers that such 

control structures are useful in APL. 

The "EACH" operator found in floating nested array systems is a control structure with 

an APL flavor. 

FOO EACH X 

applies the function FOO to  each element of the array X. replacing an explicit loop with 

an implicit loop. Other operators for program control are described in [Eu85A, Eu85BI. 

B .9. Arrays of Functions 

Once APL arrays have been generalized to  contain arrays as elements, a further 

generalization would be t o  allow arrays t o  contain functions One possible application of 

arrays of functions would be as a structured environment, with sets of functions needed 

for a particular purpose kept together in a particular subarray. 

A branch of APL theory has developed dealing with the application of function arrays to 

data arrays (Ben86. Lan861. A t  first thought, this kind of operation is too far from the 

original conception of APL to be integrated smoothly into the language. Arrays of 



functions resemble a generalization of the Nial "Atlas" as in the following example from 

[JGM86]. 

Average IS div[sum.tally] 

As in the case of strand notation and a calculus of operators, it will probably be necessary 

to develop a new language to apply arrays of functions in a general way. 
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