
Distributed Computation of Transitive Closure

by

Christopher P. Almstrom

B.A., Simon Fraser University, 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Christopher P. Almstrom 1988

SIMON FRASER UNIVERSITY

August 1988

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Approval

Name: Christopher P. Almstrom

Degree: Master of Science

Title of Thesis: Distributed Computation of Transitive Closure

Examining Committee:

Chairman: Dr. J. Peters

4 '

Dr. ~ o s H u d ~ u k ,
Senior Supervisor

Dr. JiaWei Han \
Supervisory Committee Member

Dr. Stella Atkins,
External Committee Member

Date of Approval

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser University the r i g h t t o lend

my thesis, proJect o r extended essay (the t i t l e of which i s shown below)

t o users o f the Simon Fraser Univers i ty Llbrary, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o a request from the

l i b ra r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users, I fu r the r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scholar ly purposes may be granted

by me o r the Dean o f Graduate Studies. It i s understood t h a t copying

o r pub l lca t lon o f t h i s work f o r f i nanc ia l gain sha l l not be allowed

without my w r i t t en permission.

T i t l e of Thes i s/Project/Extended Essay

,'

0

Author:
7

(signature)

, ,ZS, 1 9 % e
'(date)

Acknowledgements

I would like especially to thank Wo Shun Luk for his invaluable guidance and support. His consistent

willingness to devote time and energy to this research was greatly appreciated.

I am grateful to Jia Wei Han for his useful suggestions, and for bringing pertinent literature to my attention.

I would also like to thank Stella Atkins for her careful reading and consuuctive criticism of the thesis.

Garnik Haftevani's explanations of the V-System's communication facilities were indispensable and much

appreciated.

I thank Sanjeev Mahajan for his enlightening discussion of the combinatorics of the join operation.

iii

Abstract

In the relational database field, a solution to the Transitive Closure (TC) problem is fundamental to

supporting recursive queries. This thesis is concerned with the Tolal Closure problem, rather than with the

more reshcted Query Closure one.

There are hvo broad classes of serial TC algorithms. The "iterative" algorithms are defined in terms of

relational operations: the solution is computed by a sequence of joins, unions and differences. The "direct"

algorithm and its variants are adapted from the matrix- based "all pairs shortest path" algorithm. All of the

distributed algorithms that I consider are adapted from serial versions falling into one or the other of these

classes. I suggest a systematic approach to classifying and enumerating the distributed alternatives. Four

algorithms are simulated, and analyzed in detail. The algorithms are written for a loosely coupled group of

workstations connected by a LAN.

Cost estimates for serial algorithms have been based mainly on disk access time. This study is based on a

main memory model - the cost components estimated are for local processing (cpu time) and communication.

A major emphasis of our work is to investigate the effects of trading increased communication for decreased

local processing. In the serial case, disk traffic can be reduced by judicious partitioning of the data. While

not directly germane to this study, some of those partitioning strategies can be used to distribute the data

between machines. Our results indicate that performance is in large part a function of the number of

duplicate tuples that an algorithm has to handle. Some partitioning strategies that work well for minimizing

disk traffic exacerbate the duplicate problem in the distributed case.

Recent work has suggested that, in the serial case, the direct algorithm outperforms even the best iterative

ones. Our work indicates that those results, based on disk access costs, do not apply to the main memory

model, especially when the algorithm is distributed.

Table of Contents

Approval
Acknowledgements
Abstract
Table of Contents
List of Figures
1. Introduction

1.1. The Transitive Closure Problem
1.2. Applications for the TC Operation
1.3. Research Environment

2. The Algorithms and their Theoretical Context
2.1. The Serial Background

2.1.1. The Iterative Algorithms
2.1.1.1. The Naive Algorithm and its Derivatives
2.1.1.2. Smart Iterative Algorithms
2.1.1.3. Delta-Wavefront Refinements

2.1.2. The Direct Algorithms
2.2. The Dismbuted Context

2.2.1. Physical Distribution
2.2.2. Control Distribution
2.2.3. Data Distribution

22.3.1. Correctness
2.2.3.2. Eliminating Uninteresting Versions
2.2.3.3. Data Dismbution for the Delta-Wavefront Algorithm
2.2.3.4. The Logarithmic Algorithm
2.2.3.5. The Direct Algorithm

3. Implementation Issues
3.1. Communication Issues
3.2. Local Processing Issues

3.2.1. Join Method
3.2.1.1. Sort-Merge
3.2.1.2. Tree-Based
3.2.1.3. Hash-Based

3.2.2. Major Data Structures
3.2.2.1. The Stream-Structured Relation

3.2.3. Hash Tables
3.2.3.1. Hash Table Operations
3.2.3.2. The Tables' Structures

3.3. Duplicate Detection
4. Analysis

4.1. Terminology and Motivation
4.1.1. Join Selectivity
4.1.2. Duplicates

ii
iii
iv
v

vii
1

2
4
5

6
7
8
8
9
9

12
14
14
14
17
18
19
20
25
29

30
30
32
33
33
33
34
34
34
34
35
38
43

45
45
46
47

4.1.3. Difference Selectivity
4.1.4. Broadcast Scalar
4.1.5. Parallelism

4.2. The step-by-step analysis
4.2.1. Communication Costs
4.2.2. Basic Local Processing Operations
4.2.3. Notation common to all algorithms
4.2.4. The Global Wavefront Algorithm
4.2.5. The Local Wavefront Algorithm
4.2.6. The Logarithmic Algorithm
4.2.7. The Direct Algorithm

4.3. Experimental Methodology
4.3.1. Cardinalities
4.3.2. Local Processing Unit Costs

4.3.2.1. Hash Table Operations
4.3.2.2. COPY
4.3.2.3. PART
4.3.2.4. How Values Were Obtained

4.3.3. Communication Costs
4.3.4. The Input Data Used

4.3.4.1. The Sample Sets Used
4.3.4.2. Variance in Cardinalities

4.4. The Results
4.4.1. Cost Comparisons

4.4.1.1. Local Processing
4.4.1.2. Communication
4.4.1.3. Combined Results

4.4.2. Speedup and Scaling

5. Conclusions, Other Results and Research Directions
5.1. Conclusions
5.2. Other Results in the Literature
5.3. Suggestions for Future Research

Appendix A. The Distributed Total Closure Algorithms
A.0.1. Algorithm 1: Global Wavefront
A.0.2. Algorithm 2: Local Wavefront
A.0.3. Algorithm 3: Logarithmic Method
A.0.4. Algorithm 4: Direct Method

Appendix B. Cardinalities
Appendix C. Local Processing Unit Costs
Appendix D. Communication Unit Costs
Appendix E. Results
Appendix F. Inter-algorithm Cost Comparisons
References

List of Figures

Figure 2-1: Hierarchy of TC Algorithms
Figure 2-2: Global Wavefront - before join
Figure 2-3: Global Wavefront - after join
Figure 2-4: Local Wavefront - initial distribution of fragments
Figure 2-5: Local Wavefront - after the initial join
Figure 2-6: Logarithmic - before 1 st join
Figure 2-7: Logarithmic - after 1st join
Figure 2-8: Logarithmic - before 2nd join
Figure 2-9: Logarithmic - after 2nd join
Figure 2-10: Direct - partitioning of successor and predecessor lists
Figure 3-1: Join Hash Table - Type A
Figure 3-2: Result Hash Table - Type B
Figure 3-3: Hybrid Hash Table - Type C
Figure 4-1: Local Processing Costs - domain size 1000 - 4 machines
Figure 4-2: Local Processing Costs - domain size 1000 - 8 machines
Figure 4-3: Local Processing Costs - domain size 5000 - 4 machines
Figure 4-4: Local Processing Costs - domain size 5000 - 8 machines
Figure 4-5: Communication Costs - domain size 1000 - 4 machines
Figure 4-6: Communication Costs - domain size 1000 - 8 machines
Figure 4-7: Communication Costs - domain size 5000 - 4 machines
Figure 4-8: Communication Costs - domain size 5000 - 8 machines
Figure 4-9: Combined Costs - domain size 1000 - 4 machines
Figure 4-10: Combined Costs - domain size 1000 - 8 machines
Figure 4-11: Combined Costs - domain size 5000 - 4 machines
Figure 4-12: Combined Costs - domain size 5000 - 8 machines

vii

List of Tables

Table B-1: Cardinalities
Table B-2: Cardinality Ranges - Global Wavefront
Table B-3: Cardinality Ranges - Local Wavefront
Table B-4: Cardinality Ranges - Logarithmic
Table B-5: Cardinality Ranges - Direct
Table C-1: Local Processing Unit Costs - Small Hash Tables
Table C-2: Local Processing Unit Costs - Large Hash Tables
Table C-3: Unit Costs - COPY
Table C-4: Unit Costs - COPY
Table C-5: Constant Local Processing Costs
Table D-1: Sun-3 V-System IPC Timing Information
Table D-2: Sun-3 V-System Communication Costs per Tuple
Table E-1: Local Processing Costs
Table E-2: Communication Costs
Table E-3: Combined Local Processing and Communication Costs
Table E-4: Costs for Serial Algorithms
Table E-5: Speedup
Table F-1: Global Wavefront vs. Local Wavefront
Table F-2: Global Wavefront vs. Logarithmic
Table F-3: Global Wavefront vs. Direct

viii

Chapter 1

Introduction

The gencral aim of this thcsis is to investigate the relative efficiency of different approaches to distributcd

computing on a local area network. More specifically, this study falls within the field of distributed

deductive relational database operations. The study proceeds from previous work done at Simon Fraser

University, on distributed sorting [l2] and on distributed join operations [l6]. The particular problem

investigated is the computation of the total transitive closure (TC) of a relation. In the relational database

context, transitive closure falls under the heading of "recursive query computation". We have developed,

simulated and analyzed four alternative distributed TC algorithms.

In the LAN environment, both local processing and communication costs are significant. The relationship

between those cost components cannot realistically be determined a priori. It will depend on the technologies

used for processing and communication. We were interested in producing finer-grained predictions than

could be had from an asymptotic analysis. Our predictions are for the expected case. While the framework

of the study is analytical, the results are obtained empirically. Time and resource limitations precluded our

actually implementing the distributed algbrithms developed. Empirical results derive from simulations of

those algorithms, and from the measurement of fundamental processing and communication costs.

The serial computation of transitive closure has been much written-about of late. Much attention has been

paid to the optimization of disk access. Since disk access is so much slower than cpu activity, the cost

estimates from such studies are dominated by disk access time. We have adopted a main memory model - all

relations handled are assumed to reside entirely within main memory. (With increasingly inexpensive

hardware, the distributed approach becomes more attractive, and the main memory model more realistic.)

Thus disk ilo costs are irrelevant to us. Our estimates are based entirely on expected cpu and communication

times. I suggest that these parameters are especially revealing of relative complexities inherent in the

structures of the algorithms studied.

We hoped that from this rather narrow study, some general principles of coarse-grained distribution would

emerge. A few such are summarized in the conclusion. Perhaps our most important contribution is

methodological. An analysis should be fine-grained enough to differentiate, but not so fine-grained that

incidental details obscure those features which dominate their complexity. When one intends the analysis lo

guide an empirical study, there is every incentive to state that analysis in tcrms of entities which can be easily

measured. A happy consequence is that the results will tend to be easy to understand!

The transitive closure problem is defined in the following section. In section 3, I discuss applications for a

TC operator in a deductive database. The hardware and software environments for the study arc described in

section 4. Chapter 2 provides the theoretical context in which our distributed algorithms can be placed. In

chapter 3, particulars of implementation are discussed. Chapter 4 is the heart of the thesis. The analytical

framework is laid down, and each algorithm analyzed according to it. Then the empirical results are applied

to those analyses, yielding expected running-time estimates for each of the algorithms. Conclusions and

suggestions for further research are offered in chapter 5. Pseudocode for the algorithms developed and

tabulations of results can be found in the appendix. A detailed cost comparison between our algorithms is

also included therein.

w .a. The Transitive Closure Problem

The TC problem has its roots in graph theory. Given a graph G = (V B , where V is the set of vertices and

E the set of edges, the solution is G' =*(v$'), where E' is defined as follows:

For each pair of vertices (i j), i j E V the edge (i j) is in E' iff there is a path from i to j in the input

graph G.

Solutions to the problem proceed from the hypothetical syllogism:

((ik) k) E' and (k J) E E') (i J) E E'

The original TC algorithm (Warshall's algorithm) works directly on the problem graph, represented by a

boolean adjacency matrix. Each iteration of the algorithm transforms that graph. It can be adapted to the

relational model by interpreting the input relation as a graph. Each (binary) tuple represents an edge, and

each element of such a tuple a vertex. The specifics are detailed in chapter 2.

The other algorithms which we consider, collectively called "iterative", proceed more directly from the

relational database model. TC can be computed on a relation, say R, that has at least two attributes of the

same domain, say A and B. The transitive closure of R would consist simply of R unioned with all the tuples

that could be derived from R by transitivity on the attributes A and B. Suppose, for instance, that R contained

the tuples (a,b) and (b,c). Those two would derive (a,c). [IS]

In a deductive database, TC queries are supported by adding TC as an operation to the database

manipulation mechanism. The problem (one could also say thc database itself) is modelled in two ways,

extensionally and intensionally.

Extensionally, TC takes as input a relation, ie. a table of values. It can be implemented as a series of joins,

projections and unions, whcrc the ih iteration takes as input the output from the i-lh. My implementation

makes use of haqh-based join techniques due to Wang [16].

The intensional modcl consists of a set of rules from which the extension of the TC can be derived. This

definition of TC is exemplified by lhc "Ancestor Relation", which we can express in Prolog-like notation as

follows:

Ancestor(x,y) :- Parent(x,y).

Ancestor(x,y) :- Parent(x,u), Ancestor(u,y).

where Parent would be the original relation, and Ancestor its transitive closure.

A TC query may be either for query closure, where selection is performed on the original relation before

TC is computed, or for total closure, where no selection is done. The same rule is used for both query types.

To get the total closure, the query is "?Ancestor(x,y)", where x and y are variables. The output from the

query will be an unordered list of pairs, of the form ((al,blVl) (al,b1,2 ... (al,blsn) (%,b2,1) ... (%,b,,)),

where each subscripted a and b is a different constant. For query closure, the input is of the form (a,y), where

a is a constant. The output will be of the form ((a,bl) ... (a,b,)). Another query type of the same intensional

form is the existence check. This query simply detects whether or not there is a path between a given pair of

vertices. Here, both the variables in the rule are replaced by constants, and the output is just "yes" or "no".

For a discussion of TC in both intensional and extensional databases, see [5] .

In this study, only the total closure problem is investigated. When "transitive closure" or "TC" are used,

they denote total closure.

1.2. Applications for the TC Operation

For most user requests involving TC, query closure or existence checking will ~uffice.~~ooking at the query

closure's output form, shown above, you will see that all pairs in the output have the same constant a$ the

first element value. This allows us to "drop" the first column not only from the answer, but from the

intermediate relations which drive the computation. This "unary" approach is computationally less expensive

than the "binary" one, which retains both columns of the relation throughout.

A unary answer to a total closure query would be meaningless - pairs are required to specify who is an

ancestor of whom. Although this makes solving the total closure problem more expensive, the extra expense

may be justifiable, even if only query closures are asked for. The query closure results are not resusable,

unless the same query is repeated. Once the total closure has been computed, any particular query closure

can simply be looked up in the result relation. (It helps if it is sorted, or stored in a hash table.) If a total

closure algorithm is used for query closure queries, thefirst query will be costly, but each subsequent one on

that relation can be implemented as a simple selection. It should, however, be kept in mind that the TC result

may be very large - unless main memory is plentiful, selection from that relation will likely involve disk

access. Another option for improving response time is to precompute the total closure.

Many of the methods used to compute total closure can also be applied to the query closure problem. The

Delta-Wavefront varieties (see chapter 2) can be used almost unchanged. Generally, however, query closure

is not a very expensive proposition. Accordingly, there is litlle point in distributing it. When the fan-out of

the underlying graph is high, though, the size of the query closure can explode. In such a case, the distributed

algorithms presented in this thesis might prove attractive. This is particularly true of the Wavefront

algorithms, since they are msily adaptable to the less costly unary form.

Transitive closure is the simplest of the recursive queries. Its computation can play an important role in the

processing of many more complicated recursive queries. [6]

i Users are more likely to want to know about the characteristics of a single entity than of every entity in a relation. I, for example, am
more interested in finding out who my ancestors are than in knowing the ancestors of everyone in my home town.

1.3. Research Environment

The experimenls were performed on a Sun3 workstation, using Sun System Release 3.0, a heavily enhanced

version of the 4.2 BSD UNIX operating system. The Sun3 has an MC68020 processor. The results shown in

the appendix assume that all participating machines are Sun3's. each with at least 4Mb of main memory.

The test relations were generated in main memory, by means of the UNIX "randorno" function.

Point-lo-point communication costs are based on tests by Ling and Wang [12], using Sun3 workstations

connected by a lOMb Ethernet local area network. They used the V-System, a distributed operating system

developed at Stanford University. Broadcast costs are based on tests by Haftevani. All of these tests were

conducted at Simon Fraser University. V supports very efficient communications operations. Our analyses

assume that the V-System is used for communication.

The V multicast operation has receivers wait a random period before acknowledging, in order to prevent

acknowledgements overrunning the originator's buffer capacity. Such overrun is unlikely to occur with

Sun3*s, since they have ample buffer space. Accordingly, we assume that the random waits have been

removed from the V-System multicast. This improves the performance of that operation by an order of

magnitude. The broadcast is used only by the Direct algorithm. Since that algorithm incurs very high

communication costs, we wished to assume as optimistic a cost estimate as was realistic.

Chapter 2

The Algorithms and their Theoretical Context

All four of the TC algorithms studied are adaptcd from well-known serial ones. Figure 2-1 depicts the

context in which our algorithms lie.

naive Q
delta-wavefront 47

(semi-naive) w
distributed

wavefront logarithmic

logarithmic '7
distributed
Warshall's

Figure 2-1: Hierarchy of TC Algorithms

Problems are indicated by circles, algorithms by ellipses, and algorithm instances by rectangles. Children

of classes are special cases; children of algorithms are refinements of their parents. The four distributed

algorithms studied are shown on the bottom level of the graph. Their serial progenitors are shown on the

next lowest level. Of course, there are TC algorithms which do not appear in figure 2-1 - only those directly

relevant to this study are showmi In the first scction of this chapter, I introduce the serial bases for our

distributed algorithms, and discuss refinements of them which may or may not be applicable to the

distributed case. The second section concerns theoretical issues particular to the distributed case. That

section offers the motivation for our choosing the distributed versions that we did, and places them in the

context of other distributed alternatives.

2.1. The Serial Background

Lu distinguishes between two classes of TC algorithms, the "iterative" and the "recursive". [l l] I have

adopted the terminology used by [I], and refer to the "recursive" class as the "directn algorithms.ii In the

latter approach, the underlying graph is represented as a boolean adjacency matrix - the problem is then

solved by finding the transitive closure of that matrix (as in the familiar dynamic programming solution to

the "all pairs shortest path" problem [8]). The central operation is bit oring. To adapt this method to the

relational database context, the graph (relation) is represented by successor lists. The effect of bit oring two

matrix rows is then captured by merging one successor list into another. Some versions also maintain a set of

predecessor lists, to facilitate finding those successor lists which have to be merged. Warshall's Algorithm,

and Warren's improvement on it [la], are instances of the direct class.

The iterative approach is based on relational algebra. The main data structures are relations (flat tables),

and the algorithms use relational operations -joins, unions and differences.

I will first discuss the iterative algorithms, then the direct ones.

bannidis and Ramakrishnan suggest a TC algorithm based on depth-first search. [lo] Raschid and Su [I41 propose a pardel TC
algorithm employing pipelining.

"Agrawal and Jagadish explain their choice of terminology thus: "Unlike iterative algorithms. such as the suni-naive and the
logarithmic algorithms, the termination of our algorithms does not depend on the length of paths in the underlying graph (hence, the
name direct algorithms)." [I]

2.1.1. The Iterative AIgorithms

2.1.1.1. The Naive Algorithm and its Derivatives

To find the transitive closure T of a database relation R, the iterative algorithms compute the least fixed

point of the following relation:

T = R u (T.2 join R.l) [l l]
'5 -4

The Naive Algorithm is as follows:

O l d T : = R;
REPEAT

T := O l d T u (O l d T join R) ;
AT := T - O l d T ;
O l d T := T

UNTIL (AT = @) 1131

where AT comprises newly-added tuples.

The form in which I have presented the Naive Algorithm is taken from [131.

During each iteration, the Naive Algorithm uses as the driving relation OldT, which comprises all tuples

found so far. Since at each iteration the Naive Algorithm uses the entire result found so far, it involves a lot

of redundant processing. It would obviously be more efficient to use only newly-generated tuples. The

Delta-Wavefront ~ l ~ o r i t h m ~ ~ ~ reduces redundant processing by using only newly-generated tuples - AT - to

drive the join on the next iteration. The difference operation that removes redundant tuples, (RA := Rg - 13,
does incur some cost. However, the Naive Algorithm must also perform a difference operation (AT := T -

OldT) in order to check for the termination condition. T in the Naive method must be at least as large as RA

in the Delta-Wavefront Algorithm. I conclude that it is improbable that the Naive Algorithm will outperform

the Delta-Wavefront. Accordingly, I will only investigate the latter. The Delta-Wavefront Algorithm is:

T := R;
RA := R;
W H I L E (RA # @)

RA := RA join R;
RA := RA - T;
T := RA U T

END WHILE

where RA consists of new tuples during the current

%lso referred to variously as the "Henshen-Naqvi", "Brute Force" or "Semi-Naive" Algorithm.

i t e r a t i o n .

This algorithm originates with Hcnshcn and Naqvi [7]. The form and notation used are from [131.

2.1.1.2. Smart Iterative Algorithms

Ioannidis has formalizcd what he calls "smart algorithms" as follows:

If the depth of the transitive closure (longest path) is n, then the Delta-Wavefront approach must iterate n

times. (Level relaxation, discussed below, may decrease this numbcr.) The smart algorithms always require

log, n iterations. I shall only test the Logarithmic Algorithm, which is the special case of smart ones, with m

= 2. It can be expressed as follows:

T := R;
RA := R;
D, := R;

WHILE (Dp # a)
RA := RA . jo in RA;
D, := T]om RA;
T := T u D, u RA

END WHILE
[I31

The algorithm is from Valduriez and Boral. [15] The particular presentation form is again from [131.

Note that RA is always R~~ - ie. a power of 2.

2.1.1.3. Delta-Wavefront Refinements

The algorithm above is really just the skeleton of the delta-wavefront method. Various optimizing

refinements have been suggested. It is not always clear whether a given refinement should be considered to

yield a new algorithm, or whether to regard it as simply an implementation detail of the refined algorithm.

Those refinements which modify the basicflow of control I consider in this chapter. By "modifying flow of

control", 1 mean that the refinement has such effects as changing the number of iterations required to

complete the computation, or changing the amount of data processed. Choices as to how particular relational

operations are implemented are discussed in the chapter 3, "Implementation Issues".

1 first discuss (see "Clustering") the effect of the physical ordering of the data on performance. Then 1

discuss two refinements which, in the serial case, scem almost guaranteed to outperform a "naive"

implementation. These are level relaxation and source reduction. Given the importance of these refinements

in the serial case, the possibility of carrying them over to the distributed versions seems well worth

investigating.

Clustering

Methods used to optimize disk traffic might also help us to optimize intermachine communication. Thc

basic thrust of such methods is to take advantage of clustering to decrease the number of page faults. The

relations are partitioned into small enough pieces so that two of them (one from each relation being joined)

can fit in main memory. After joining these partitions, the result is repartitioned and written back to disk,

and the next input partitions are read in. The clustering of data allows it to be dealt with (input and output) a

partition at a time, rather than tuple-by-tuple.iv~f course, it is just this amenability to partitioning that makes

coarse-grained load sharing possible. Where partitioning allows a serial approach to deal with large chunks

of data consecutively, it may allow a parallel one to deal with them concurrently. Since all of my distributed

versions derive from data distribution (as opposed to, say, task dismbution), all take advantage of clustering.

Level Relaxation

In the basic version, no tuple drives more than once per iteration. All new tuples found during a given

iteration are on paths of the same length (ie. they are at the same level). This scheme can be improved on

through the use of level relaxation. Newly-generated drivers which can drive tuples in the partition currently

in memory are allowed to do so. The current partition is swapped back to disk only after it has no drivers

left.

The situation is best understood by considering the graph of the relation, where each tuple is an edge, and

each distinct attribute value a node. Each partition is then that subgraph whose nodes hash into the

appropriate range. Any path which lies entirely within the subgraph corresponding to the current partition is

completely explored before the disk is written to. This saves reads as well as writes, since those tuples do not

have to be read in later. Note that tuples not in the current partition cannot drive any tuples currently in

memory, and therefore have to be written to disk - they are then read back in when their partition is

'"Serial techniques based on clustering have been widely discussed in the literature. See [5] , [3] and [15].

processed. (To some extent, "foreign" tuples can be buffered before writing to their disk partitions.)" It is

fairly easy to see hat if level relaxation is used, the serial algorithm might well finish in fewer iterations than

without it. (For an example, see [5].) This is expecially likely if there are few partitions - the fewer the

partitions , the higher the probability that a givcn path will not cross partition boundaries. In the serial casc,

level relaxation is used to reduce disk access. In the distributed case, it can reduce inter-machine

communication. The advantages gained for disk access, however, cannot all be carried over to

communication optimization. This matter is discussed further in the next section.

Source Relation Reduction

Another serial refinement, suggested by Lu [ll], is to dynamically reduce the size of the source relation

R. This may speed up subsequent join operations. But the main advantage is that less tuples have to be

written to disk when the current partition is swapped out. (Of course, there will also be less disk reads when

that partition is swapped in again.) After each iteration, tuples which can never in future be matched with

any driver are removed. How are such tuples detected? The key observation is that if a tuple is not driven

during iteration i, then it cannot be driven in any iteration j later than i either. (If a node has no children, then

it has no grandchildren either.)

Our implementations all use hash-based joins. The method involves looping through the wavefront relation

RA, hashing each tuple there into the source relation R. Of course any benefit to be had from reducing the

size of a hash table can also be had simply by decreasing its loading factor (increasing the number of

buckets). However, if the key domain is realistically large, the table will inevitably be too small to preclude

collisions. We resolve collisions by chaining. Search time can be reduced by deleting redundant links

(tuples) from the chains.

Just doing the join (without looking for redundant tuples) involves traversing a certain portion of the hash

table, implemented as linked lists (chains). If a particular bucket is not used during a given iteration, then it

will not be hashed into on any subsequent iteration either. All tuples in that bucket are redundant - there is

no need to delete them, since they will never contribute to lookup cost. In fact, any redundant tuples which

could contribute to future join (table lookup) costs can be detected without doing any more traversals than

are required for the join anyway.! When traversing a chain in the hash table, just mark those which are used

- ie. matched with a driver. Any unmarked links traversed during a subsequent iteration can be deleted.

'For further discussion of level relaxation, see [4] and [q.

Though this method of reducing the size of the source relation does not involve extending the search, it

does add to the cost of visiting any given tuple. The relative benefit of implementing the method depends, of

course, on being able to implement the marking, mark checking and deletion operations very efficiently. The

tradeoff is between these added processing costs, and the processing costs saved in subsequent table lookups.

Our results indicate that table lookup for the join operation is not an especially large component of the

algorithms' overall costs. The cost of reducing the source relation's size will most likely outweigh the

benefit.

2.1.2. The Direct Algorithms

The direct algorithms most discussed in the literature are versions either of Warshall's algorithm or of

Warren's modification of it. In describing these, I use the notation of Agrawal and Jagadish [I].

The direct algorithms were originally designed to compute the TC of graphs represented by boolean

matrices. A graph on v vertices is represented by a v x v matrix. Each element aG of the matrix is set to 1 if

the edge (i j3 is in the graph, 0 otherwise. Warshall's Algorithm is as follows:

For k = 1 to v
For i = 1 to v

For j = 1 to v

This algorithm can be adapted for relational use as follows:

Each arc in the graph is represented by a tuple (a pair). Successor lists can be determined by sorting

the relation on its first column. (In our distributed version, sorting is avoided. Successor lists are

formed by inserting the relation into a twetiered hash table, as described in chapter 3,

"Implementation Issues".) For each unique column 1 value n, fetch its successor list. Then for each

predecessor p of n, fetch p's successor list, and add to it all elements of n's successor list (removing

any duplicates). Finding the predecessors can be expedited by maintaining predecessor lists.

(Whenever an element q is added top's list, q's predecessor list must also be updated.) [ll

Warshall's algorithm scans by columns, so that it can OR by rows. This makes it very inefficient for a

paging environment - the entire matrix must be paged through during each iteration of the middle loop! If

we could scan and OR by rows, then more work could be done before paging became necessary. [181ViThis

motivates Warren's Algorithm, which is as follows:

"We can take advantage of clustering. Assuming that rows i and i+l are contiguous with each other, there is a good chance that they
will fall within the same page. After scanning row i, there is thus a good chance that row i+l will already be memory-resident.

For i = 1 t o v
For k = 1 t o i -1

For j = 1 t o v
a i j = aij OR (aik AND akj)

For i = 1 t o v
For k = i+ l t o v

For j = 1 t o v

Warren's algorithm can be adapted to the relational context in a manner very like that for Warshall's:

For every vertex, fetch its successor list. Then for every member of that list, fetch its successor list

and add it to the list for the original vertex. [I]

Two loops are required to ensure that the algorithm is complete (ie. that it finds all edges in the TC).

Our distributed direct algorithm is adapted from Warshall's algorithm. For reasons which will be discussed

in section 2 of this chapter, we have not considered a distributed version of Warren's algorithm. It is

mentioned only because it is so much discussed in the literature.

2.2. The Distributed Context

For any given serial algorithm, there will be numerous distributed versions of it, depending on the degree to

which it is distributed. It is standard to consider this "degree of dislribution" along three dimcnsions: the

interconnections of the physical elements available, the granularity of control distribution, and the granularity

of data distribution.

2.2.1. Physical Distribution

As discussed in the Introduction, under "Research Environment", the different machines are connected by a

local area network (Ethernet). This loose coupling encourages a coarse-grained approach to both control and

data distribution. The granularity of control that will be appropriate depends in large part on the granularity

of data distribution. I discuss temporal matters (eg. when or how often data are exchanged) under "control

distribution" and spatial ones (eg. sizes of messages and local fragments of the data) under "data

distribution".

2.2.2. Control Distribution

Each machine runs a copy of the same program. Individual machines proceed largely independently. I call

one of the machines the "coordinator", although this is perhaps a misnomer. All that is special about this

coordinator is that the source relation originates with it, and the result is gathered there. Data are transmitted

by either a blocking point-to-point send or a blocking broadcast. (The reasons for this are discussed in

chapter 3, "Implementation Issues".) As a result, when data are exchanged the machines are synchronized.

Thus they run in lockstep, though the steps may be very large. In the Local Wavefront Algorithm, for

example, data are shared (and synchronization thus done) only at the beginning and the end.

A decision must be made regarding when data will be shared. The options can be envisioned as lying on a

continuum between very "eager" and very "lazy" communicators. If the very eager approach is taken, each

machine will transmit each datum not in its own partition as soon as that datum is generated. The atom of

local processing is the tuple. If the very eager option were chosen, messages would consist of single tuples.

The bound on laziness is imposed by the problem. At the start of the algorithm, the source relation must be

distributed. At the end, local results must sent to the controller.

The very eager approach is not suitable for a loosely-coupled system - the cost per tuple of short messages

is too high. The grain of communication that we chose is the relation fragment. Given that data granularity,

there is still a range of options available. The degree of laziness that can be tolerated (subject to the bound

mentioned above) depends on how the data are intitially distributed. As explained in the next section,

"Methods of Distribution", the Local Wavefront algorithm provides each machine with enough state (the

entire source relation) to complete all local processing without h e exchange of intermediate results. In the

Global Wavefront method, less global state is initially replicated locally. Consequently the machines need to

exchange intermediate results. In the Logarithmic and Direct algorithms, intermediate results must always be

exchanged - possession of initial state is never sufficient to complete local processing. The Direct algorithm

is enough of a special case to warrant special consideration - see below.

In the iterative algorithms, new tuples are generated by the join operation. Thus concerns of correctness

demand only that data be exchanged once per join. There is no advantage to be gained from sending them

more often, since this will only result in more smaller messages being transmitted. This leaves virtually no

choice for the Logarithmic algorithm - data are exchanged twice per iteration (there are two joins per

iteration). For Delta-Wavefront adaptations, the viable options can be placed on a continuum between

exchanging once per iteration at the eager extreme and exchanging only for result collection at the lazy end.

Distributed Level Relaxation

What the aforementioned continuum describes is the degree of level relaxation employed. The eager

extreme, instantiated by the Global Wavefront algorithm, employs none, while the Local algorithm is as lazy

as can be. If level relaxation is employed, each machine will be allowed to continue processing for more

than one iteration between synchronization points. Only once it has exhausted all locally available drivers

will it exchange with the other machines.

In the serial case, the main benefit of level relaxation is that it reduces disk access to the current partition.

The current partition in that case corresponds to the local one in the distributed case. But avoiding

communication with the local machine is non-issue - the tuples are already there! We thus expect level

relaxation to have less of an impact on the performance of distributed versions. What use of that technique

will reduce is the amount of communication with other machines. (This is analogous to the disk i/o benefits

the serial method gains from buffering writes to foreign partitions.)

A version intermediate between the Global and Local algorithms can be obtained as follows:

The data are distributed as in the Global method. But each machine is allowed to continue local

processing until it exhausts all drivers either resident or generated there. Only then does it send to the

other machines.

I would expect this intermediate algorithm to bc especially susceptible to the sorts of statistical anomolies

in the data that lead to uneven load sharing. For example, the local presence of a single edge could result in a

much longer path's being locally traversable. While this path is being explored, the other machines may be

waiting for results from the explorer. Note also that the method does not scale well. As more machines are

used, their partitions will be small. The lengths of paths within the local partition will tend to decrease, while

the problem of uneven load sharing will be exacerbated. Allowing level relaxation will also demand a more

complicated algorithm.

A further variation would result from using the Logarithmic method locally to exhaust a machine's drivers.

We have not investigated either of these intermediate Wavefront algorithms further. I do think that the

option deserves further study.

The Local Wavefront algorithm achieves a high degree of level relaxation at the cost of increased local

processing. While the local results from the Global method can simply be concatenated, the Local method's

local results must be merged. This matter is discussed in greater detail in chapter 4, "Analysis", under

"Combined Results" (subsection 4.3).

The Direct Algorithm

Like any dynamic programming algorithm, Warshall's algorithm computes the globally optimal solution,

the TC, by successively combining locally optimal subsolutions. This approach rests on an orderly

decomposition of the problem into subproblems. The vertices of the input graph are numbered, say 1 through

n. What particular labelling scheme is used is immaterial, so long as it constitutes a well-ordering of the

~ e r t i c e s . ~ This labelling imposes what amounts to a sequential traversal of the vertices (the outer loop).

The optimal subsolution after iteration k consists of all paths running through no vertex numbered higher

thank. The globally optimal solution is the input graph's TC.-

Iteration k's solution is obtained by combining optimal subsolutions produced by iteration k-I. Only if

those particufar subsolutions are combined can iteration k's results be guaranteed optimal. In other words, if

iteration k is not fed all paths discovered previous to it, it will in turn leave those paths out of its results.

Ultimately, the algorithm may produce incomplete results. The sequential order of traversal is not, then.

some incidental property of the algorithm that can be removed by tinkering!

'%his follows from the applicability of the Principle of Optimality. Note that this allows us to "label" the vertices by the order in
which they appear in the primary chains of the hash table. ?here is no need to sort the input data

 lob lob all^" here means "belonging to the whole graph", rather than "inclusive of the states of all participating machines".

In the relational adaptation, each iteration k will involve merging k's successor list into the successor list of

each of k's currently-known predecessors. Each predecessor p of k is resident at some machine. That

machine will do the merging. It is essential that it use an up-to-date copy of k's successor list! This leaves us

with two choices. Either we can ensure that all of k's currently-known predecessors (and their successor

lists) are on the same machine as k, or we can send k's current list to each machine that has such a

predecessor. The first alternative demands that the current global state bc replicated on k's machine! This

degenerates to the serial algorithm. We adopt the second alternative, which involves broadcasting k's currenl

successor list at the beginning of each iteration k.

Warren's algorithm is one of a number of adaptations of Warshall's which are motivated by the objective of

minimizing disk access. The techniques used are like level relaxation, in that they exploit clustering. The

graph vertices are divided into partitions of close-to-adjacent vertices. By keeping processing within a

partition, the number of page faults is minimized. Within a partition, the vertices are traversed sequentially.

The partitions themselves are swapped in and processed one after the other. Indeed, these conditions must be

- fwed , h2~ause no computation can be allowed to overlook possibly optimal previous results! A

partitioning strategy that does not allow the partitions to be processed concurrently is not what exactly what

we distributors seek. In fact, Warren's algorithm is even less amenable to dismbution than is Warshall's.

Since it uses two loops in series, we would have to broadcast twice as often.

What can be done concurrently is the processing within an iteration. Each vertex's successor list is kept on

a different machine. This ensures that each list is updated only by its host When that machine receives k's

successor list in iteration k, it therefore has all the state required to merge the two together. Predecessor lists

are maintained for each vertex either resident or received. This allows the machine to find any locally

resident predecessors efficiently.ix

2.2.3. Data Distribution

Since the machines are loosely coupled, it makes sense to send fewer long messages rather than more short

ones. The level of granularity is the horizontal fragment of a relation. This is finer than the relation, and

larger than the individual tuple.

For each relation in each algorithm, two independent choices are made. The first is between redistributing

"1n essence, we must do the scanning sequentially, but can OR in parallel. This is analogous to the serial bit-ORing technique.

the relation during each iteration (distribute) and not redistributing (serial). Not redistributing does not

preclude the relation's initially being dislributcd between the various machines - ie. the serial option does not

preclude load sharing. The second choice is bctwcen horizontally fragmenting the relation (partition) and not

(replicate). Thus for each relation there are four possibilities:

s r : (ser ia l , replicated)
sp : (ser ia l , partitioned)
dr : (distributed, replicated) and
dp : (distributed, partitioned) .

If option sr is chosen, then each machine simply starts with a copy of the original relation. They proceed in

parallel, and communicate only at the end. Under option dr, the machines gossip the relation being

replicated, and each unions the incoming copies. The unit of dislribution is the tuple.

The following discussion pertains only to the iterative algorithms. The Direct algorithm is treated

separately.

A dish-ibuled algorithm would be invalid if it generated any tuples not generated by the serial algorithm.

New tuples are only generated by the join operation. Thus they can result only from a match between two

existing tuples. Thus tuples can only be generated if there is a path between their left and right members, in

the underlying graph. Fragmenting the relations does not introduce new tuples. Validity, therefore, is not

problematical.

The algorithm will be incomplete if it fails to generate all tuples in TC. This could happen if, in the global

relations, there exist matching tuples (possibly originating on different machines) which are not brought

together on some particular machine and there joined.

There are two ways to make sure that matching tuples find each other. One is to replicate the current

global state of one of the relations. Any given tuple can then find its match (if any), since:

i all of the relation t o be matched into is
present loca l ly (at each machine), and

ii) every tuple i n the global relation t o be matched
must reside i n some machine.

I will call a relation "static" if its contents do not change over the course of the algorithm, and "dynamic"

otherwise. (In the Delta-Wavefront Algorithm, R is static. All of the relations in the Logarithmic Algorithm

except for R are dynamic.) Option sr, serial and replicated, will be sufficient to guarantee completeness only

if the relation is static. Otherwise, its state has to be updated at each iteration by gossiping (dr).

The distributed join can also be guaranteed complete if we ensure that for each partition (machine), any

tuple that can be driven from that partition is available locally, and similarly that all drivers for a given

"passenger" are available. In other words, if both relations are fragmented, the fragments must bc properly

matched (I will say that the tuples have to be "synchronized".).

For completeness' sake, we must also ensure that no tuples generated, other than duplicates, are thrown

away by the unions or differences. As long as all local results are kept, the global result can be computed by

unioning them at the end of the algorithm.

2.23.2. Eliminating Uninteresting Versions

If an iterative TC algorithm uses n relations, specifying a type (sr, sp, dr or dp) for each allows us to

enumerate 4" different versions of it. The advantage of this approach is its exhaustiveness - we can be

assured that all data-distribution alternatives at the relation-fragment level of granularity have been

considered. Fortunately, almost all of these alternatives can be discarded a priori. Many are simply

incorrect. Others are either inefficient, or are not really "distributed" versions.

The work done by a machine is a function of the size of the input to its joins. Alternative load sharing

strategies thus depend on how the joins' input relations are distributed between machines. The other

relations are basically just storage bins, used to accumulate results. There is no point in communicating these

relations during processing; gathering them together at the end is sufficient. Suppose that there are n

relations in the serial algorithm, but only r of them are join inputs. The number of genuine alternatives can

now be pared down from 4" to 4r.X

The key to distribution is, as mentioned, the manner in which the join processing is shared. Suppose that

both input relations to a join are replicated at some machine. Then no speedup will be achieved for that

machine. Any advantage gained by data distribution hinges on presenting each machine with only a

fragment of the global state. This leads us to make the following assumption:

Locality assumption:
For any pair of join input relations, a t most
one of them is replicated.

The locality assumption allows us to eliminate from consideration a large number of "pseudodistributed"

'A join input relation may be composed by unioning other relations. If all of component relations are available locally, then that input
relation can be composed, and the join wiU be complete. It may be cheaper to distribute one or more of the componcnfs, rather than the
p i n input relation itself. In the Logarithmic Algorithm, for instance. DR is distributed, rather than T.

versions, along with the serial one. (In the serial case, both relations joined are of type sr. An example of a

pseudo-distributed version would be one where those relations were both of type dr. Data is distributed. But

this leads only to duplication of effort, rather than to load sharing.)

Some other versions will, depending on correctness criteria, involve redundant communication. For

instance, if (dp,sp) is a correct option for a given join operation, (dr,sp) is also correct But the latter

constitutes wasteful overkill. If a relation is static, then any version which calls for distributing it (after

initial set-up) is patently inefficient.

2.2.3.3. Data Distribution for the Delta-Wavefront Algorithm

I will test two versions of the Delta-Wavefront Algorithm.

The Delta-Wavefront Algorithm has only a single join. Thus we can immediately narrow our attention

down to the 24 = 16 versions that result from choosing for RA and R. I will specify versions by ordered pairs,

where the first element represents the choice for RA, and the second the choice for R. For example, the serial

version is (sr,sr).

Versions (sr,sp), (sr,dp), (sp,sp) and (sp,dp) can be discarded as incorrect. (The dynamic relation, RA, can

be serial only if the static one, R, is replicated. New tuples generated at a given machine may not be in that

machine's partition. To find their passengers, either those drivers must themselves be redistributed, or all

potential passengers must be available locally.) Four more options, (sr,sr), (a,&), (dr,sr) and (dr,dr) can be

rejected by the Locality Assumption. All remaining versions which involve (re)distributing R can be

eliminated as involving redundant communication - four more versions bite the dust. We are left with

(dr,sp), (dp,sp), (dp,sr) and (sp,sr). Since (dp,sp) is correct, we can eliminate (dr,sp) and (dp,sr) as involving

redundant communication. We are left with only (dp,sp) and (sp,sr). The first yields.what I call the "Global

Wavefront Algorithm", and the second the "Local Wavefront".

Figures 2-2 and 2-3 illustrate how, in the Global Wavefront algorithm, the join operation fragments the

driver relation. Figure 2-2 depicts the situation before the join. Each machine has a separate horizontal

fragment of both join input relations. The driver, RA, is partitioned on the 2nd column, the passenger, R on

the 1st. This allows all matching tuples in each partition to be found by the machine dedicated to that

partition.

Figure 2-3 shows the Global Wavefront's fragmentation pattern after the join. Since the passenger relation

machine # 1 machine # 2

machine # 3
I

machine # 4

Figure 2-2: Global Wavefront - before join

(R) is static (ie. it does not change throughout the course of the algorithm), it is still correctly partitioned.

The join output forms the driver, RA, for the next iteration. Note that the original join column(s) has been

projected away. Thus each machine can, and probably will, have new tuples belonging to other machines'

partitions. These must be sent to the appropriate hosts, so that all matching tuples are brought together for

the next join.

In the Local Wavefront algorithm, we avoid exchanging by replicating all of the source (passenger) relation

on each machine. Figure 2-4 shows the situation before the join in the first iteration.

Figure 2-5 shows the situation after the first join. As with the Global algorithm, the passenger relation is

static. The join will again produce tuples which fall outside their host machines' partitions. But now, those

tuples can find any passengers which match them, since the entire global passenger relation is present on

each machine. It is possible to maintain that condition without communication, since the passenger relation

is static.

machine # 1

i mi
machine # 3

I

machine # 2

I m
machine # 4

Figure 2-3: Global Wavefront - after join

machine # 3

machine # 2

machine # 4

Figure 2-4: Local Wavefront - initial distribution of fragments

machine # 1 machine # 2

machine # 3 machine # 4

Figure 2-5: Local Wavefront - after the initial join

2.23.4. The Logarithmic Algorithm

The Logarithmic Algorithm has three relations that are amenable to distribution, DK and two copies of RE

@ is only used for purposes of initialization, and T is just a storage bin.) In more explicit notation, line 4

would read:

RA := RA.2 join Rkl
'5.4

Those relations which are fragmented are partitioned by the hash value of their join attribute. A given tuple

in RA may hash into different partitions, depending on whc thcr it is hashed on attribute 2 (left side) or 1

(right side). Consequently, when RA is horizontally fragmented (sp or dp), it must be implemented as two

separate relations. While these will be globally identical, their local partitions will not.

Of all 64 permutations, I suggest that the following are the only versions of the distributed Logarithmic

Algorithm that are not clearly incorrect or inefficient. The option chosen for a given relation is specified in

the column under its name.

D, R e f t R&ght Comments

Since RA is r e p l i -
cated, no synchronization
is necessary. It is easy
t o see t h a t a l l t u p l e s
t h a t should be generated
by t h e first i t e r a t i o n
a re . A simple induct ive
proof demonstrates t h a t
a l l subsequent i t e r a t i o n s
a r e c o q l e t e l y
ca lcu la ted (with a l o t of
redundancy) .

This is j u s t t h e s e r i a l
algorithm.

R s g h t must be
repl ica ted , s ince DR
i s s e r i a l , and thus
cannot be synchronized.

This is t h e only version
t h a t I w i l l a c t u a l l y
implement.

Since R s g h t is
s e r i a l , t h e o the rs mus t

be replicated.

Version 2, the serial algorithm, is fine for a single machine. 1, 3 and 5 all involve gossiping. I expect that

to be a prohibitively expensive operation. Thus I will only implement version 4. I hope that the foregoing

theoretical analysis justifies my choice.

The fragmentation of the join input relations is traced in figures 2-6 through 2-9. Each iteration has two

joins. Figure 2-6 depicts the situation before the first (each iteration).

machine # 1 machine # 2

I

machine # 3 machine # 4

Figure 2-6: Logarithmic - before 1st join

Note that RA is being joined with itself. Two copies of that relation are fragmented between the machines,

one on each column. Thus the fragments resident on a given machine will in general not contain the same

tuples as each other.

Figure 2-7 shows the situation after the first join. Neither join input is static. Thus both sides (ie. two

copies of RA) have to be exchanged between machines. Once this has been done, the right-hand input for the

second join is now properly partitioned. The situation prior to the second join is shown in figure 2-8.

The output from the second join is DR, which consists of new tuples to be added to T. RA has already been

exchanged. So now, we need only exchange DR.

machine # 1 machine # 2

machine # 3 machine # 4

Figure 2-7: Logarithmic - after 1st join

I

machine # 1
I

machine # 2

I
machine # 3 machine # 4

Figure 2-8: Logarithmic - before 2nd join

Since all join input relations are dynamic, and none are replicated, all of them have to be exchanged once

per iteration.

D sub R D sub R

machine # 1 machine # 2

- - pp

machine # 3 machine # 4

Figure 2-9: Logarithmic - after 2nd join

2.23.5. The Direct Algorithm

The Direct algorithm really uses only a single relation, the set of successor lists. (The predecessor list

structure is a copy of the same relation, though it will be fragmented differently between the machines.)

Thus there are only four alternative coarse-grained data dismbution alternatives, depending on how the

successor lists are distributed. The sr alternative is just the serial algorithm - dr would exacerbate

communication problems by sending predecessor lists as well as the current successor list. The sp altcrnative

is incorrect - successor lists must be broadcast. This leaves only the dp option, whereby the input relation is

partitioned between machines, and part of it (namely the current successor list) exchanged during processing.

Figure 2-10 shows how the data fragmented between the machincs.~~~ote that the two fragments on each

are identical. The only difference is in the method of storage - one copy is stored as successor lists, the other

as predecessor lists. Since a machine will only generate new tuples that fall within its own partition, there is

no need for the exchange of intermediate results. Of course, the current successor list must still be broadcast

at the start of each iteration.

successor predecessor
lists lists

successor predecessor
lists lists

I
machine # 1 machine # 2

machine # 3 machine # 4

Figure 2-10: Direct - partitioning of successor and predecessor lists

"?his is best thought of as a partitioning of the input graph's vertices - actually just those with outedges - between the participating
machines.

Chapter 3

Implementation Issues

Each of the algorithms was simulated on a single machine. From these simulations, we were able to

determine the following important quantities:
the sizes of intermediate and result relations for the input relation and key domain sizes tested

the number of duplicate tuples generated by each algorithm, and of these, the number that could
be detected locally (by the machine generating them)

the number of iterations each algorithm takes to complete

These quantities depend on statistical characteristics of the input data - the values obtained are "expected"

values taken by averaging the results of ten runs for each sample set analyzed.

3.1. Communication Issues

We assume that communication is by means of the V-System's synchronous send and synchronous

broadcast operations. A sender is blocked until it gets an acknowledgement from the receiver. Thus each

data exchange step constitutes a synchronization point for all machines. With an asynchronous send, the

sender can proceed with its other business as soon as it has transmitted. V supports asynchronous

communication, through its datagram service. With the datagram service, however, the receiver can receive

the message only if it is receive-blocked on it. [2] So if the message arrives while the receiver is busy

processing, the message is lost. For all of our algorithms, that is intolerable. (We would need to implement

an application-level protocol for retransmission, and a large number of retransmissions would be required.)

The V-System's blocking send can be used to implement a non-blocking one. Message sending is

delegated to a server process. Although the server process is blocked, its client (the main process) can

continue.

To use this method, we have to modify the Exchange step of each algorithm, and the Distribution step (3a)

of the Direct algorithm. After a machine sends or broadcasts, it is allowed to continue processing before

receiving acknowledgements. We must, of course, be weful not to overwrite the locations containing the

message before all acknowledgements of it are received. We must also enforce a retransmission policy - the

sender retransmits if it fails to receive an acknowledgement after a timeout period.

In the analysis of chapter 4, we assume that the following method is for the exchange step:

For p participating machines, Hog 2pl - 1 iterations are used. In each iteration, mch machine is

paired off with a different partner. Thus once all iterations are finished, each machine has been paired

with each other. An iteration consists of two steps. In the first step, one partner sends to the other. In

the second step, their roles are reversed. Of course, the blocking send is used.

An asynchronous alternative method would require each machine to create a sender-process for each other

machine. The main process would fire up each of its sending servers, then wait for incoming messages.

Unlike the scheduled method above, a machine would not have to wait for a response from a particular

partner to respond. By not imposing an order on the point-to-point transmissions, the total time required for

the exchange will probably be decreased. This gain has to be weighed against the process creation and

switching costs entailed.

While the asynchronous method is worth investigating, the total time saving is unlikely to make much

difference to the overall performance of the algorithm. In deriving cost estimates for the exchange step, we

have assumed that a sender never has to wait. Any performance difference between the two exchange

methods will not, therefore, show up in our estimates.

The Local Wavefront algorithm communicates only at the beginning and end of the algorithm. At result

collection, unblocking senders saves no time, since those machines are finished processing. Thus using the

asynchronous send only allows the controller to start processing a bit sooner. The extra overhead required to

spawn sender processes and switch control to them is hard to justify.

The Global Wavefront algorithm exchanges data once per iteration (step 2dii). Since the helper processes

needed for the asynchronous send need only be created once, the relative advantage of that technique is better

than in the Local algorithm (creation cost is amortized over more exchanges). A more significant gain might

be had by allowing a machine to continue with local processing before it has received data from all the

others. This amounts to another way to achieve level relaxation. So long as a machine has any drivers, it

processes them. Late-arriving messages from iteration i can safely be processed during iteration i+l. I think

that this method is well worth investigating. It cannot be used in the context of the Logarithmic algorithm,

for the same reasons that level relaxation cannot (see chapter 2).

In the Direct algorithm, the broadcast originator never qu i res data from the other machines, at least until

the next iteration. Thus allowing it to proceed with local processing before receiving acknowledgement is

safe. Concommitant to this, though, is the fact that little advantage is gained from asynchronicity - only the

sender benefits. If it gets very far ahead of the other machines, it will ultimately have to wait for them to

catch up - it will eventually need data from them.

The V-System's broadcast unblocks the originator as soon as a single acknowledgement is received. To

retrieve the other acknowledgements, the "GetReplyO" system call must be used. This is expensive. The

following scheme allows us to avoid that system call:

The originator timestamps the message with the current iteration number. If a machine receives a

message with an out-of-order timestamp, it knows that an intervening message has been lost. It

broadcast$ an alert, with the timestamp of the missing message. Broadcasting the alert ensures that

the originator gets it. The originator can retrieve the appropriate successor list, and send it to the site

which lost it. Since elements are never deleted from successor lists, the receiving a copy that is newer

than the original will not lead to incorrect results. On first and last iterations of the algorithm, the

broadcast originator should retrieve all acknowledgements.

Note that the broadcast primitive used is synchronous!'~his primitive is more expensive than is a point-to-

point send, because the operating system keeps track of all acknowledgements, even if the application does

not retrieve them with GetReplyO. This matter is discussed in more detail in chapter 4, section 4.2.1.

3.2. Local Processing Issues

For the iterative algorithms, the most important implementation decision regarding local processing was the

choice of join method. We settled on the hash-based join, for reasons discussed in subsection 1. Hash tables

are also used for accumulating results and filtering out duplicates. In the Direct algorithm, both predecessor

and successor lists are implemented as hash tables. The design of the hash tables is thus an important

implementation concern. The other major data structure used is basically a stream-oriented implementation

of a relation.

I will first discuss the join method, then the implementation of hash tables and of the stream-structured

relation. With the amount of global state replicated locally, the Local Wavefront algorithm could actually

detect more duplicates than our implementation of it does. Our reasons for not making use of all the state

available are discussed at the end of this chapter.

h e datagram service is inappropriate, since it requires that the receivers by receive-blocked.

33.1. Join Method

Wang [I71 [I61 investigated sort-merge, hash-based and tree-based join algorithms. In the distributed

iterative algorithms (Wavefront and Logarithmic), the join operation is not itself distributed. Rather, each

participating machine does a serial join on its local input fragments. Though Wang studied distributed joins,

his results are also applicable to the serial versions. The Direct algorithm's merging process can be

interpreted as a distributed join. That interpretation is only useful for comparison with the iterative

algorithms. In this scction, implementation issues germane to the Direct algorithm are described and

discussed as merges.

I now turn to the various join methods considered.

3.2.1.1. Sort-Merge

Wang's experimental results indicate that this method is the most efficient, if the input relations are already

sorted. If not, the hash-based method is superior. [17] When a join is done during a TC computation, the join

attributes are both projected away - ie. they are removed from the result relation. The keys on which the

input relations were sorted are thus not even in the result. Thus the sort order is not preserved from one

iteration of the TC algorithm to the next. If the sort-merge algorithm were used, the wavefront relation

would have to be resorted at the beginning of each iteration, and the final result relation would still be

unsorted. I conclude that this method is unsuitable for use in TC algorithms.

3.2.1.2. Tree-Based

If tree indices already exist for both input relations, the tree-based method is the most efficient. There are

actually two such methods. One uses the indices to generate an inorder traversal of each relation then merge.

The other is more like the hash-based method - loop through one relation, and look up matches in the other.

1161 The fist approach suffers from the same deficiencies as does the sort- merge method. The second

(nested loop) approach might well be amctive in the serial case, since we would not have to build the hash

table for the source relation. (Note that in the nested loop method, it is not essential that the driver relation -
the wavefront - be traversed in sorted order.) As Wang points out, however, this advantage does not

withstand distribution, since the indices for partitions of the source would have to be rebuilt on the load

sharing machines. Consequently, this method turns out to be very similar to the hash-based one. Both

methods will involve building the same number of structures, and performing the same number of lookups.

The performance difference will be a function of the relative costs of building and using one data structure

over another. Since I am not interested in investigating data structures for their own sake, I will not

implement the tree-based method. I would in any case be surprised if it outperformed hashing.

3.2.1.3. Hash-Based

All of my algorithms use hash-based joins. The join algorithm is serial - ie. each machine does its joins

locally. One advantage of hashing is that the hash function constitutes a good value on which to partition the

data relatively evenly between machines.

3.2.2. Major Data Structures

The simulations used the same data structures that would be used in the actual algorithms.

A relation is stored in one of four structures. Three of these are hash table varieties. The other is what I

will refer to as the "stream-structured relation". I will discuss the latter first, then the hash tables.

3.2.2.1. The Stream-Structured Relation

The relation is stored as an unsorted contiguous array of "tuples". A tuple is implemented as an array of

two "tuple values". We used long integers (4 bytes) for tuple values. The array of tuples is allocated just

once - it does not grow dynamically. This facilitates fast insertion, since no storage allocation is required. A

header contains read and write pointers into the may of tuples, as well as a pointer to that array. The only

operations supported on this structure are creation, insertion and deletion.

Even a main memory model should acknowledge some practical constraints on the amount of RAM

available. I strove for a realistic implementation, ie. one that would be usable. The disadvantage to static

allocation is that the size of the result must be estimated a priori. Since this structure is quite compact (it

does not contain a lot of pointers), allocating enough storage for the theoretical limit on result size does not

impose unrealistic demands on memory.

3.2.3. Hash Tables

All of our algorithms make use of hash tables. They are used in implementing the hash-based join and the

union, and for filtering duplicates out of relations. In the Direct algorithm, they are used to store successor

and predecessor lists. Each use involves particular operations on the table - the structure of the table is

predicated on optimizing those operations.

Storage for hash table entries is allocated dynamically, using the UNIX "malloco" function. This adds

greatly to the cost of insertions. It is very difficult to estimate a priori the sizes of hash table chains. Static

storage allocation for them is therefore difficult to implement without making unrealistic demands on RAM.

(It hardly seems reasonable to allocate enough for the worst for each chain!) Maintaining a heap in user

space would be a realistic alternative, and would considerably improve performance. I doubt, though, that

this would greatly change the relative performances of the algorithms.

3.23.1. Hash Table Operations

The operations of concern in this study are list retrieval, insertion, tuple lookup and insertion with duplicate

detection.

List Retrieval

By list retrieval I mean, "Given the value of vertex vi , retrieve all known successors (or predecessors) of

vi ." This interpretation is most pertinent to the Direct algorithm, whose rationale is graph theoretic. In

relational terms, we could say, "Given a value i for the join column of the stored relation, retrieve all tuples

with a join column value of i ." This latter interpretation is perhaps more pertinent to the Wavefront and

Logarithmic algorithms.

To expedite discussion, I introduce the terms "primary value" and "secondary value". The primary value is

the value of the join column, the secondary value the value of the other column.

List retrieval is central to the hash-based join operation. For each driver tuple, we want to find all tuples in

the table which match it. (The driver tuple's join column value is the primary value. It is through the

primary value that we access the join and hybrid hash tables - types A and C. When we find its link, that link

will contain a pointer to a saucture holding the associated secondary values.) If the table is used to

implement the join, then it clearly should support efficient list retrieval.

In the Direct algorithm, the two major data structures are both adjacency list representations of the graph

(transitive closure) being generated. One represents that graph as a list of predecessor lists, the other as a list

of successor lists. Finding predecessor lists and merging successor lists are frequent operations. (In this

case, the vertex number is the primary value, and the lists are comprised of secondary values.) Both major

structures must therefore support efficient list retrieval.

List Creation

A matter that the Direct algorithm has to address is, "How are successor and predecessor lists initialized?"

We can find the successor lists by sorting the source relation on its first column; the predecessor list can be

grouped by sorting on the second column. This is expensive! The hash table implementation that we adopt

removes the n d for sorting. It does not matter in which order tuples are inserted into the A and C type

tables. Successor (or predecessor) lists will be stored together. (We had to ensure this so that we could

retrieve them.) That it removes the need for sorting strongly recommends the hash table implementation of

this algorithm's merge operation.

Insertion

I will call a structure "static" if, once initialized, it need not be modified for the duration of the algorithm.

In the Wavefront algorithms, the hash tables used for the join are static. All other tables used are "dynamic".

They must either be entirely rebuilt each iteration, or they grow as new closure tuples are found. Obviously,

efficient insertion is more important for dynamic tables than for static ones. As it turns Out, the static tables

used support very efficient insertion, since they do not have to support tuple lookup.

Tuple Lookup

By "tuple lookup", I mean the operation of either finding a tuple (ij), given the values of i and j, or

reporting that it is not in the table. This I contrast with just "lookup", which is what I call the operation of

finding the secondary structure associated with a specified primary value.%'he latter operation is essential to

list retrieval. But note that retrieving a set of tuples (b jl) ,...(b j,) not tell us whether a particular tuple, say

(b,c) is present.

The difficulty arises because the entities stored are binary, not unary. Random access on a unary value is

easy to arrange. But there may be a huge number of tuples with the same join column value. Accessing

them as a group may be easy - picking out one from among that group may be difficult.

The most efficient solution is to "foldn the primary and secondary values together. This provides a unary

index for each binary entity, thereby making random access possible. (If the hash table chains get too long,

we just decrease the loading factor by allocating more buckets.)iii Unfortunately, folding is not compatible

%ken primary value b, "lookup" would return a pointer to the set of values jk. 1 S E n such that all tuples (b jh) are in the table.

%en evaluating the mst of operations on the type B table, in chapter 4, I use the lowest cost, regardless of the expected number of
entries in the table. The assumption behind this is that if performance deteriorates, this table type can always be "tuned" (ie. buckets can
be added or removed) to bring the performance back to near optimum.

with efficient list retrieval, since the relationship between the two element values of a tuple is lost. We can

no longer ensure that all elements with a common primary value get stored together.

If we want both list retrieval and tuple lookup, we need a "two-tiered" structure. We first look up the

primary value. This gives us access to the group of associated secondary values. We then employ some

search strategy to find the particular secondary value sought. The specific structure used is discussed under

"Type C - Hybrid Table" below.

When is tuple lookup required? The iterative algorithms all use a set difference operation (though it is, in

our implementations, done "on the fly", as part of the union). Set difference clearly requires tuple lookup on

the subtracted relation - in this case the result relation. Tuple lookup is also a necessary ingredient in

insertion with duplicate detection.

Insertion With Duplicate Detection

If we insert tuples into a table without first checking that they are not already stored there, the table can

come to contain duplicates. Of course, if we can guarantee a priori that every tuple the algorithm inserts is

unique, then we do not have to check for duplicates. In the Wavefront algorithms, the join tables are static.

These are initialized with the tuples in the source relation (the input to the transitive closure operation). So as

long as the source is duplicate-free, we need not worry about duplicates getting into the join tables.

Each algorithm uses a table to store its result relation(s). The source relation and all join outputs are

unioned into this result table. A given tuple in the source relation may also be generated by some join; a

tuple may be generated more than once. As a consequence, a substantial number of duplicates will be

presented for insertion into the result table.

We filter out duplicate tuples as follows:

For each tuple (ij] t o be inserted
- look up (ij] i n table
- i f not found

insert (ij]

There are at least two good reasons for filtering out duplicates. The first is that their presence increases the

size of the table - this in turn leads to higher processing costs (eg. when communicating the relation).'"The

'"lhe extra processing cost from carrying duplicates would be especially (intolerably) high in the Direct algorithm, since that
algorithm generates so many of hem.

second, more important reason is that to be a relational operation, transitive closure must output a relation.

Since duplicates must eventually k removed anyway, we might as well filter them out at insertion time.

Note that the extra cost of duplicate detection comes from the tuple lookup. In the iterative algorithms,

duplicate detection is, as mentioned above, needed for the set difference operation. So filtered insertion

comes at a low marginal cost.

3.23.2. The Tables' Structures

The type (A, B or C) of table implemented for a particular relation depends on which operations will

commonly be done on that relation. Result tables should support insertion with duplicated detection, and join

tables must support list retrieval. A table used for both the join and result collection must support all the

operations described in the previous subsection.

Each Wavefront algorithm uses one static join table and one result table. For static join tables, neither tuple

lookup nor filtered insertion is required. Thus only list retrieval is optimized for. Here we use the type A

table. Neither result table is involved in a join, so we can optimize for tuple lookup and insertion with

duplicate detection. Here we use the type B table.

The Logarithmic algorithm uses two joins per iteration. Each needs a join table. Since all join input

relations are dynamic, both join tables must also be dynamic. This means that insertions should be efficient.

The first join (step 2dii) takes as input a single relation Ri-l, and joins it with itself. Its output Ri in iteration

i constitutes its input in iteration i+l . Two copies of that output are required for input to the next iteration's

execution of the join (step 2dii). The join output may contain duplicates. Thus once the two copies of it

(P,undQi) are assembled at the machine in whose partition they fall, they must both be filtered. One copy

has to be made into a join table. To accomodate both duplicate filtering and list retrieval, the type C table is

used. This table is a compromise - all operations are supported with "tolerable" performance, none of them

with "optimal" efficiency. The other copy, the driver, is filtered by insertion into a type B table, copying

unique tuples to a new stream-structured relation. The type B table is used here because operations on it are

cheaper. This table is used only for filtering.

For the sake of correctness alone, it is not necessary to filter the inputs to the first join. These are only

intermediate relations - the result is accumulated in the table used for the second join. As long as that table is

kept duplicate-free, the result will be correct. The decision to filter the first join's inputs came after

implementing the sirnultation. Not filtering led to a huge proliferation of duplicates, severely impairing

performance.

The Logarithmic algorithm's second join takes as input the result relation so far, and the output Ri from the

first join. We must decide which to loop through, and which to build the table for. The time complexity of

the hash-based join is a linear function of the size of the relation looped through. This suggests that we loop

through the smaller relation, which is almost certainly Ri . If we build the join table on the result relation,

though, we will need a type C table, since those operations germane to result collection must still be

supported.

Alternatively, we could build the join table on R i . (This would not be an "extra" table - the table used for

the second join in iteration i could be reused for the first join in iteration i+l .) Which choice is better will

depend on the nature of the data. In anticipation that building the join table on the result relation and looping

through Ri will usually be more efficient, I have implemented the second join table and the result table as

one, using type C.

In the Direct algorithm, a type C table used for the successor lists, since that structure must support all

operations. Any duplicates generated are detected while merging into the successor lists. The corresponding

predecessor is inserted only if it ,is not a duplicate. Thus the simpler type A table is used for predecessor lists.

(The type B table is inappropriate, since list retrieval must be supported.)

Type A -Join Table

Tables of type A are useful only for implementing the join - they are not suitable for collecting results in.

The structure is depicted in figure 3-1.

Hashing the specified join column takes us to a bucket, which is the header for a list of "primary links".

Each of these contains a unique primary value, a pointer to the next primary link, and a pointer to a

"secondary chain". Each "secondary link contains a value which is unique within its chain, and a pointer to

the next secondary link. Neither primary nor secondary chains are kept sorted. A tuple is inserted as

follows:
hash join column value into the correct bucket

search primary chain for join column value of tuple to be inserted

prepend secondary value of that tuple to head of its primary value's secondary chain

The type A table is designed to optimize the list retrieval operation. Insertion is inexpensive, since no

attempt is made to keep the chains sorted. This table is the most space-efficient of the three, since the chains

are only singly-linked. Tuple lookup is expensive, demanding a sequential search of a potentially very long

secondary chain. But none of the algorithms entails searching in this structure.

/
primary links

\

buckets secondary
structure

Figure 3-1: Join Hash Table - Type A

Type B Tables

Tables of type B are useful only for result collection - they are not suitable for implementing the join. The

structure is depicted in figure 3-2.

Folding the tuple's column 1 and column 2 values together takes us to a bucket, which is the header for a

links

\ -.Y of
buckets

Figure 3-2: Result Hash Table - Type B

list of tuple links. Each link in this chain contains both column values for a tuple, a pointer to the next link,

and a pointer to the previous link. Note that all that tuples in a given chain have in common is that their

folded value is identical. The chains are doubly-linked, and kept in sorted order. There are no secondary

structures hanging off of these tuple links.

Type B tables are designed to optimize tuple lookup and insertion with duplicate detection. Folding allows

us to dispense with secondary chains. We can make tuple chains arbitrarily short by increasing the size of the

hash (fold function) domain. List retrieval (finding all of a vertex's successors or predecessors) demands a

sequential search of the entire table. None of the algorithms attempts a list retrieval on this table type.

Type C Tables

Tables of type C can be used for both the join and result collection, though they are less than optimal for

either. The structure is depicted in figure 3-3.

The main table (array of buckets) and primary chains are identical to those for the type A table. But now

buckets

secondary /
structure

Figure 3-3: Hybrid Hash Table - Type C

the secondary values for each primary value are themselves stored in a hash table. There is one such

"secondary hash table" for each distinct primary value in the table. This involves considerable space

overhead.

For close-to-random access, we want a hash table to have about as many buckets as there are values stored

in it. We could achieve a good loading factor for the main table by allocating, say, one bucket per two tuples

expected to be in the relation. How big, then, should the secondary tables' hash domains be? If the

relation's graph consists of a connected component, then some vertices' successor lists will include every

other vertex! (Of course the average successor list will surely be smaller than the number of vertices in the

graph.) To achieve rapid access into such list, we would want as many buckets as the main table has.

Large secondary tables cause some problems, however. They consume an amount of space that, for large

relations, may be intolerable even for a "main memory" modeLVTbe list retrieval operation will involve

retrieving the entire contents of the secondary table. If we use a lot of buckets, many of them will be empty.

Traversing empty buckets will be expensive. We might chain non-empty ones together, but this will make

the table even more complicated, and will require yet more space.

Even a very small secondary table (say 10 or less buckets) will markedly improve tuple lookup. With 10

buckets, we cut the average chain length to -!- its length in the type A table. We chose to use even smaller
10

secondary tables - each has just 4 buckets. By keeping secondary chains (of which there is one per bucket in

each secondary hash table) sorted, we can again cut average search length in half. Both primary and

secondary chains doubly linked and sorted.

The type C table supports tuple lookup and insertion with duplicate detection tolerably well. List retrieval

involves traversing a small number of short secondary chains instead of one long one - the cost will be very

slightly larger.

3.3. Duplicate Detection

In the Global Wavefront and Direct algorithms, all duplicates generated can by detected and removed

locally. For these algorithms, the implementation of duplicate detection is straightforward.

Because the machines do not exchange intermediate results, the Local Wavefront algorithm cannot detect

all duplicates locally. This duplicate problem can be alleviated, if we take advantage of the fact that the

entire source relation is replicated on each machine. Duplicates are filtered out by looking them up in the

result table. If we install all of the source into each machine's result table, any tuple generated that is also in

the source can be detected locally.

Note, though, that this "optimization" is not exactly free. Firstly, it increases table setup costs. Secondly, it

increases the cost of result collection. For p machines, p-1 copies of the source end up being sent, in

sequence, to the controller. Then all of those copies are run through the merge operation, which removes

them.

Vlf we want m buckets for the main table, we'd need m2 more for the secondary tables. rn uxlld easily grow into the thousands.

The alternative is to initially insert only the local fragment of the source relation into the result table. With

this method, the question is, "How many duplicates that could be detected will go undetected?" The answer

is. "Not many." We simulated thc algorithm using both alternativcs. It turned out for all sample sets tested,

it was cheaper to suffer the presencc of a few more duplicates, and include only thc local fragment of the

source relation in the local result. In Appendix B, "Cardinalities", I tabulate the global result relation size, as

well as the number of duplicates detected. The values shown assume that each machine initializes its local

result relation just to its own fragment of the source relation.

In the Logarithmic algorithm, it is not necessary for correctness' sake to remove internal duplicates from

the join driver relation, Initially, our implementation did not do so. As it transpired, however, this

resulted in so many duplicates' being stored that the capacity of our test machine was exceeded. Each

duplicate not removed from A'' can cause the generation of more duplicates when input to the join in

iteration i+ l ! Especially when cycles are present, this causes an explosion in their number, with attendant

severe degradation of performance. Accordingly, the algorithm was implemented so as to filter all relations.

Each intermediate relation fragment exchanged is filtered after it has been collected at its host.

Analysis

In this chapter, the running times of the four algorithms are estimated, and their cost characteristics

compared. The first section introduces some terminology and offers motivation for the approach taken. The

second section includes the actual step- by-step analysis of each of the algorithms. Variables (eg. unit costs

and relation names) used in the analysis are defined in that section. Together, the first two sections constitute

the framework for the empirical study. In the third section, I explain how experimental results are applied to

the analysis of section 2, to obtain total cost estimates for each of the algorithms. I discuss the empirical

methods by which values for unit costs and relation sizes were obtained. The results are presented in the

fourth section. Local processing, communication and combined costs are presented for each algorithm. The

combined results are compared with the cost of the serial Delta-Wavefront algorithm. These results are

interpreted, and reasons for performance differences between the algorithms are discussed. Speedup over the

serial implementations, scaling to more machines, and variance in algorithms "cardinalities" are also

discussed.

4.1. Terminology and Motivation

The basic unit of data is the tuple, which is assumed to be an ordered pair of key values. (Our test data

consist of 8-byte tuples.) The molecule of data is the relation. This is the level of granularity at which the

algorithms are defined (see appendix) and at which the analysis is done. Unit costs are per tuple, allowing us

to take into account the size of the relation being operated on.

The analysis refers to "source", "intermediate" and "result" relations and subrelations. The source and

result are the input and output, respectively, of the transitive closure (TC) operation. Intermediate relations

are either partial results, or temporary relations used in generating the TC.

Clearly, complexity will be dominated by the sizes of the intermediate and result relations. An important

methodological concern is to describe the sizes of those relations in terms of the input (source) size.

Asymptotically, the size of the transitive closure of a relation R is E 0(IRl2). That bound is achieved when

the TC of R is a complete graph.

45

The engine of all the algorithms is the join - it is this operation which generates new tuples. (The Direct

algorithm is actually implemented as a series of list merge operations, but these can bc interpreted as a serics

of joins.) The semantics of the join are probably best captured by a pair of loops, one nested within the other.

If relations A and B are joined, then, the output relation size will bc i (MI @I), i 2 1 . The scalar i captures the

effects of statistical properties of the input relations. We decompose i into a, o and y, which stand for "oin

selectivity", "difference selectivity" and "internal difference selectivity", respectively. No doubt a statistical

or combinatorial investigation could predict expected values for a, o and y, with only the source relation

size, key domain size and data distribution characteristics as givens. The probabilistic or combinatorial

research required to make those predictions is, however, decidedly non-uivial. We have not taken the a

priori approach - our estimates of expected intermediate and result relation s i z s are taken from empirical

tests. Join and difference selectivity are introduced as descriptive, not predictive, notational devices. In fact,

they are never actually evaluated. The use of those terms does, however, shed some light on the growth

dynamics of the intermediate relations.

4.1.1. Join Selectivity

Join selectivity has been defined as follows:

Thus, given input relations A and B, we estimate the size of their join to be OM IBI. In the Wavefront

algorithms, relation B, the source, remains the same throughout. Only A, the wavefront relation, changes in

size. Thus it might seem more enlightening to define join selectivity simply as:
lA join BI a = -

MI '

However, this would make any comparison with the Logarithmic and Direct algorithms more obscure. In

the Log algorithm, there are two joins per iteration. For each of these, the sizes of both input relations vary

over time. If the Log method's intermediate relations grow faster, this is not so much due to a different join

selectivity, as to the different sizes of its joins' input relations. In the Direct algorithm, each iteration joins a

fragment of the "current" closure (the graph generated so far) with the entire current closure. Again, the join

input relations are both dynamic.

let pi = the probability that a given tuple a from relation A matches exactly i tuples b l , b2, ... ,bi in

relation B.

If all tuple values are equally likely to occur in A (ie. the data are uniformly distributed), then we would

expect that:

Unfortunately, estimating values for thepi's is not as easy as it might seem. It does, however, seem safe to

say that pi depends on:
the sizes of A and B

the domain size of the join column

the distribution of values within the join column

As the size of the input relations approaches the join domain sue, the probability of matches increases, and

thus so does a. In all four algorithms, tlx join input sizes will vary from iteration to iteration, while the

domain size remains constant. Thus we would expect join selectivity to vary over time. Accordingly, a is

subscripted, so that a different a exists for every iteration. Similarly, the typical input size at a given

iteration will differ from one algorithm to another. To reflect this, a is superscripted, so that a different a

exists for each algorithm.

Another difference between algorithms has to do with the distribution of join column values. If two

different relations are being joined, using a uniform random number generator will guarantee uniform tuple

distribution. But consider what happens when we join a relation with itself, as in the Log algorithm. If each

tuple is unique within its relation, then the join column of the left copy will not be independent of the join

column of the right copy. For instance, if lAl2 2, then 2 I lA join Al I 2(1~1/2)~, regardless of what

particular tuples occur in A. But if A and B are generated independently, 0 I lA join Bl I HI IBI. This

consideration again militates for the use of separate variables for the different algorithms.

4.1.2. Duplicates

The "duplicate problem", and how it is addressed, is the most important factor affecting the algorithms'

relative efficiency. All four algorithms are assumed to take the same input and, of course, produce the same

output. Their expected complexities vary a great deal, mainly because some generate more data than others.

The "extra" data either consist of duplicates, or are kept in order to facilitate their detection and removal.

I distinguish between two kinds of duplicates, "internal" and "external". If a tuple occurs more than once

within a single relation, all copies but one are internal duplicates. By a single relation, I mean a logical

relation, which may be horizontally fragmented between machines. This I call the "global relation"; each

local fragment of it is a "local relation". Similarly, a single logical operation (eg. join) may in fact be

implemented as a number of concurrent operations, each on different fragments of the input relations. Our

implementations ensure that, taken as separate relations, the local join input fragments do not contain

internal duplicates. We also assume that the source relation, whose transitive closure we are trying to

compute, is duplicate-free.

Any relational operator should produce as output a relation. By definition, a relation contains no internal

duplicates. A join cannot be prevented from generating internal duplicates. Relational purity thus demands

their removal. In practice, it is sometimes more efficient to delay duplicate removal until a later relational

operation (such as union) is applied to the join output.

While the "no internal duplicates" constraint can always be enforced on local relations (or fragments), it is

sometimes impossible to maintain with respect to global ones. The reason is that it is possible that no

machine has enough global state information to allow it to detect internal duplicates resident on other

machines.

An "external duplicate" is any tuple in the driver relation which is already in the result relation (closure).

This category is only of interest in the context of the Wavefront algorihms. Our implementations of the

Wavefront algorithms removes internal duplicates from the join output during the same operation (Union)

that removes external ones. In the Logarithmic algorithm, removal of external duplicates can lead to

incomplete results. In the Direct algorithm, all duplicates are internal to the current result relation - these are

filtered out by the merge procedure.

4.1.3. Difference Selectivity

Difference selectivity, represented by o, relates the size of a relation before duplicates (both internal and

external) are removed to its size after. Consider the Wavefront algorithms, and suppose that at iteration i, the

join produces a new wavefront relation wi, ~ e t Ci be the union of all Wj's, 0 I j c i , and Wi be Wi with

external duplicates removed. Then Wi = Wi - Ci (where the "-" operator represents relational difference).

Now we defin?:
IWJ

0 = -
IW)

The higher the percentage of duplicates found, the smaller Wi will be. We therefore expect o to decrease

with time, since lCil is monotonically non-decreasing in i. This could be reflected by including lCj in the

definition of o. In the interest of removing notational clutter, I have decided instead to individuate the

difference selectivity for each iteration by subscripting a (as was done with a).

As mentioned in the preceding subsection, "Duplicates", the concept of "external" duplicates is germane

only to the Wavefront algorithms. "Difference selectivity" (a), since it applies to external (as well as

internal) duplicates, is thus not applicable to the Logarithmic or Direct algorithms. The Logarithmic

algorithm cannot be guaranteed complete if external duplicates are removed. In the Direct algorithm, the

merge operation in effect joins the current result relation with itself. All duplicates generated are internal.

(These are filtered out as part of the merging process.) For the analysis of the Logarithmic and Direct

algorithms, I introduce "internal difference selectivity", y. This is defined in the same way as a, except that

only internal duplicates are removed.

In the Wavefront algorithm, at the start of each iteration, all tuples in a given fragment are gathered

together on the same machine - this machine can detect all duplicates (both kinds) in the logical relation.

Thus, in the context of the Global algorithm, "removing detected duplicates" means "removing all

duplicates". In the Direct algorithm as well, all duplicates can be detected. The (current) result relation is in

the form of a list of successor lists. Each vertex v(i) in the graph of the source relation is resident on exactly

one m a ~ h i n e . ~ ~ t the start of iteration i, that machine broadcasts vi's successor list to all other machines. Any

predecessor v, of v(i) resides on exactly one machine (all tuples with j as their column 1 value are on a single

machine). Thus all duplicates produced by merging vi's successor list into any particular vO's will be

generated on the same machine, and can be detected and removed on that machine during the merge.

In the Local Wavefront algorithm, machines do not communicate with each other on each iteration. The

effect is a distributed equivalent of level relaxation - as the algorithm progresses, a given machine's local

data can come to include a lot of tuples that are not in its own fragment. Meanwhile, other machines may be

generating tuples that are. If a tuple occurs twice locally, it will be detected. But if two or more different

machines produce the same tuple, none of them will know about it. In the context of the Local algorithm, the

set of detected duplicates is very likely to be a proper subset of the set of duplicates. Thus we expect its 0

values to be larger than those for the Global algorithm.

Like a, we individuate o and y by algorithm with a superscript.

%en I say that a vertex is resident on some machine. I mean that'its successor list is there resident. A vertex's number is the header
value f a its associated successor list.

4.1.4. Broadcast Scalar

On a LAN, a broadcast originator only needs to send a single message. Receivers can take that message off

the Ethernet in parallel. In this study, we assume that both the send and the broadcast are blocking.
ii Although it unblocks the originator after the first acknowledgement is received, the V-System's

synchronous broadcast collccts acknowledgements from all receivers involved. (The user process can extract

the extra ones with the "GetReplyO" system call.) Because of the extra acknowledgements involved, the

synchronous broadcast is inevitably more expensive than a point-to-point send. How much longer is a

function of the number of receivers broadcast to. In the analysis, broadcast costs are related to send costs

(both in tuples) by multiplying the former by a broadcast scalar. This I denote by "b,,", where p is the

number of machines, and b a system-dependent constant. Actually, the exact relationship between point-to-

point and broadcast costs cannot be captured simply by multiplying by a scalar. In the step-by-step analysis,

however, I wanted to avoid to fine-grained an approach. In compiling cost results, a more accurate method

of estimation is used (see section 3, "Experimental Methodology").

4.1.5. Parallelism

We assume that if one machine takes longer to complete a phase than does another, this is due to one's
...

doing more work than the ~ t h e r . ~ Since senders block, each send or broadcast constitutes a synchronization

point. I will refer to the time between two synchronization points as a "phase". No machine can go to phase

i+l until all others have finished phase i. In other words, they proceed in lockstep (although the Local

Wavefront algorithm's single step is a very long one).

In the step-by-step analysis (section 2). 1 have divided total cost of concurrent operations by the number of

machines participating. This is really only justified if the load is distributed absolutely uniformly. Even

though we assume uniform input data, we can hardly expect there to be no variance between loads from one

machine to another. The more unevenly the load is disuibuted between machines, the longer a phase will

take. I have made no attempt to quantify the effects of uneven load distribution. Further observations

concemingthose effects are offered in section 4.

 or a discussion of asynchronous options. see chapter 3. "Implementation Issues."

 or analytical purposes, we want to rule out possible causes which are independent of the algorithms under study. We do not, for
example, allow for the possibility that the machines have different cpu's, or that one is being used by five other users while the rest are
dedicated solely to this urnputation.

Local processing can obviously proceed in parallel within a phase. It is only when a synchronization point

is reached that someone must wait. So the fewer synchronization points, the more parallelism. In order of

increasing number of synchronization points, the algorithms can be listed as follows: Local Wavefront,

Logarithmic, Global Wavefront, Direct. Thus the Local Wavefront algorithm allows the greatest parallelism,

while the Direct algorithm allows the least.

In accounting for communication costs, I have also assumed linear speedup when it is theoretically possible

(eg. during exchange steps). In fact, most "communication" time is really spent doing the local processing

germane to transmission, such as copying buffers contents. This surely can proceed in parallel. But of

course ethernet collisions will occur, necessitating retransmission of messages. I assume that collisions are

not frequent enough to contribute significantly to running time. I also assume that machines have sufficient

buffer space to prevent message over-run. This assumption is appropriate for a main memory model, and is

realistic for Sun-3 workstations. memory model.

4.2. The step-by-step analysis

I begin this section with a discussion of what constitute the units of communication and local processing. I

then introduce that notation which is general to all of the algorithms. The specific algorithm analyses follow.

Notation particular to an algorithm is inrroduced at the head of the analysis of that algorithm.

4.2.1. Communication Costs

Communication is analyzed in terms both of tuples transmitted and of the number of messages sent.

Communication cost per tuple decreases markedly as the message size grows. It is important that the number

of messages sent be quantified, so that message sizes can be estimated. Broadcast costs are multiplied by a

scalar (bp) greater than 1, to reflect the cost of processing exha acknowledgements.

42.2. Basic Local Processing Operations

A relation is stored either in stream form, or in one of three varieties (A, B or C) of hash table. Operations

on tuples, then, involve searching for, inserting or retrieving them from those structures. The analysis of

local processing is defined in terms of the following basic operations:

PART Panition. A tuple is hashed on the specified column value, and copied to a subrelation
holding the appropriate horizontal fragment of the relation being partitioned (the input
relation). Note that PART includes the cost of copying the tuple, as well as computing
the hash value. It may also include the cost of retrieving the tuple from the input relation.

COPY Insert a tuple into a stream-form relation. The tuple may be copied from any of the
aforementioned structures, in which case COPY includes the cost of retrieval.
Alternatively, the tuple may be already available. (It may have been retrieved as part of a
previous operation.)

JTL Join table lookup. Look up a key value in a hash table of type A or C. Includes the cost
of retrieving the tuple from a streamform relation.

JTI Join table insertion. Insert a tuple into a hash table of type A. Includes the cost of
retrieving the tuple from a stream-form relation.

RTI Result table insertion. Insert a tuple into a hash table of type B. Includes the cost of
retrieving the tuple from a stream-form relation.

JTID Join table insertion with duplicate detection. Insert a tuple into a hash table of type
C. The JTID function informs its invoker whether or not the tuple to be inserted is
already in the table. If so, the duplicate is not inserted. Includes the cost of retrieving the
tuple from a stream-form relation.

4.2.3. Notation common to all algorithms

A source relation

C result relation (closure)

'i intermediate result accumulated after iteration i

P number of machines used
number of iterations to complete (Wavefront algorithms only)
= length of longest path in source relation

4.2.4. The Global Wavefront Algorithm

terms specific to the Global Wavefront algorithm:
A ai : join selectivity at iteration i

4 : difference selectivity at iteration i

Gi : output relation of join at iteration i

,
Gi : Gi with duplicates removed

For each major step in the algorithm (see Section ?), the total cost of that step (ie. cost of one execution of it

times the number of times it gets executed) is described. Steps 4,5,6 and 7 are executed once per iteration,

while the others are executed exactly once.

1. Distribution :

@1e tuples,

p-1 messages.

Since only the coordinator has the source relation, and each machine gets a different hgment

of it, the work of distributing it cannot be shared.

2a. Partition :
IAl

2 - partitioning
P

The factor of 2 is present because each machine takes as input one fragment of the source, and

produces two partitioned copies of it. When a cost is divided by p, this is because each of p

machines works concurrently on 1/dh of a global relation.

2b. Exchange :

4 @ 1 p tuples.
p2

4@1) messages.

We assume only a simplex connection. Thus for two machines to exchange messages with

each other involves two calls, with each machine sending once and receiving once,
IAl

consecutively. Each machine exchanges with p-1 others. Thus at least 2(p-1)-
P

communication cost is incurred to exchange a single relation. Here, each machine is sending

two copies - hence the 4. We could get away with only 2@-1) longer messages, by sending

both fragments destined for a given machine together. This, however, would involve

expensive fragmentation and reassembly.

Since the source relation (A) contains no internal duplicates, the unioning can be done just by

concatenation - this contributes negligible cost.

2c. Build Local Hash Tables :
IAl - JTI
P

IAl - RTI
P

2di. Join and Partition :

The preceding formula describes the size of the driver input relation to each join done by the
I

algorithm. Note that lGJ = 0.
Zk, lG,J

+- partitioning
P

This latter formula sums up the join output sizes, before external duplicates have been

removed. Duplicates are not removed until the Union (step iii). That is the first time at which

all of them can be detected.

Exchange :

During each iteration, the join output (partitioning from step i) is redistributed. The expected
1

size of the fragment one machine will send to another is - 1G.I.
p2

2r (p-1) messages.

Unioning the Qij3s does not add any cost At this stage, they are simply concatenated. Then

internal duplicates are removed along with external ones, as Qi is unioned into Ci (step iii).

2diii. Union :
q=, IG)

P
RTI

q=, 1.j 1 +- = - (l a - IAI) COPY
P P

Partitioning of new drivers is also done "on the fly" in the course of Unioning. If a join output

tuple is not found in the result (closure) table, it is written into Gi.

3. Result Collection :
ICI - COPY
P

At this pint, the local fragment of C is in the form of a hash table. For the sake of efficient

transmission, its contents are first copied into contiguous storage.

-- - P I ICI tuples
P

ICI
The coordinator receives (consecutively) p-1 fragments of C, each of expected size -. Since

P

the fragments are disjoint, result merging is unnecessary; concatenation suffices.

p-1 messages.

4.2.5. The Local Wavefront Algorithm

terms specific to the Local Wavefront algorithm:

a: : join selectivity at iteration i

of : difference selectivity at iteration i

cB : result relation - closure u undetected duplicates

Li : Li with duplicates removed

lcgl = 1 2 ICI

Note that the last expression is an inequality. Since not all duplicates can be detected, the sum of the sizes

of the local result relations will typically be greater than the size of the logical, global result relation.

Timing:

Step 5 is repeated r times; the formulae reflect this. Each other step is performed just once.

1. Distribution :

IAl tuples

1 message

Since every machine gets a copy of the same relation, it can be broadcast. For large messages

and few machines, the cost due to the extra acknowledgements is insignificant compared with

the cost of transmitting the message itself. That extra cost is even less significant when we

consider that just one message is involved. I have therefore not applied the broadcast scalar.

2a. Partition :
IAl - partitioning
P

2b. Exchange :

2 k 1 j 4 ' tuples
p"

2 k l) messages

Only a single copy of the relation is exchanged.

Since the source relation (A) contains no internal duplicates, the P i j y s can just be

concatenated, at negligible cost.

2c. Build Local Hash Tables :

IAl JTI

IAl - RTI
P

A join table for the entire source relation must be built on each machine. Otherwise, the

algorithm cannot be guaranteed complete.

Only the local fragment of A is inserted into the result table, Ci. If all of A were inserted into

Ci, the algorithm could detect and hence remove more duplicates. But this would also entail

adding P' tuples to each Ci at the outse~ Experiment indicates that this added cost
P

outweighs the benefit of the enhanced duplicate detection.

2d. Local Closure :
J lcel - = - JTL

P P

This is the sum of the costs of looping through the join driver relation for each iteration,

matching each of its tuples into the join table. Note that K,I = 0.

q=l q +-
P

RTI

2 L'J ,
+ - = - (lcBl - IAl) copying

P P

New tuples output by the join at iteration i are copied into the wavefront relation 6Ai for

iteration i+l . As in the Global algorithm, internal duplicates are filtered out along with the

external ones, during the Union operation.

3. Result Collection :

Each machine has part of the global closure, but these fragments cannot be assumed disjoint.

Therefore the local results cannot be just concatenated - the controller machine has to be

merge them. This is done by inserting them into a type B hash table. Once merging is

complete, the table contents must be copied into a stream-form relation structure. (The TC

algorithm takes its input in that form - the output form should conform.)

local processing:
lcBl -
P

+ g c , COPY

First, each machine prepares its local results for transmission, by copying them into stream

form. The second term gives the cost of converting the merged results to stream form.

~ C B I RTI
P

communication:

~ C B I tuples

p -- 1 messages

The controller receives the incoming local results in sequence. Hence no parallelism is

possible.

4.2.6. The Logarithmic Algorithm

terms specific to the Logarithmic algorithm:

a:' : join selectivity of the first join at iteration i

'y:' : internal difference selectivity of the first join at iteration i

& : join selectivity of the second join at iteration i

C2
yi : internal difference selectivity of the second join at iteration i

p' : the result of recursively joining the source relation A , with all internal duplicates

removed

: the result of the irh recursive join of the source relation without all internal duplicates

removed

Di : those tuples generated during iteration i whose end-points are not 2i apart from each

other. Internal duplicates generated during iteration i not yet removed.

-
Di : Di with internal duplicates removed

Cf : the result relation after the ih iteration

If we superscript the Global algorithm's closure with A, and the Log method's with C, we get:

Steps 4 through 9 each get executed I log2r I times, each other step exactly once.

1. Distribution :

p-1 messages

2a. Partition :
!A1

2 - partitioning
P

As in thc Global Wavefront algorithm, this step produces t w o output relations. Hence the

costs of steps 2 and 3 are doubled.

2b. Exchange :

4@-IF tuples
p2

4@-I) messages

For explanation, see analysis of Global Wavefront Algorithm.

2c. Initialize Hash Tables :
IAl - JTID
P

This is the cost for installing the source relation into the join table, Pi. Setting up the table for

Ci has negligible cost, since data insertion is deferred until step di.

2di. Union :
PJlog ri -2'
p r = O IA l JTID

Cost of inserting output tuples from the first join, as well as initial source relation, into closure

table. A "hybrid table (type C) is used. It supports both join and union operations fairly

efficiently. Because the relation stored (Ci) is involved in a join operation (step iv), the

simpler type B table is not appropriate.

2dii. Join and Partition :
1 llogzrCl ~i -C . p t=O I A I JTL

2 Ilog rl + E l 1~2'1 partitioning
P

Two copies (Pi and Q,) of the join output must be made. These are the inputs for the same

join at the next iteration.

2diii. Exchange :

4 (pl) l log2? I messages

The 4@1) stems from there being two relations to be exchanged, and each machine having

to both send to and receive from each other. (See analysis of Global Wavefront algorithm for

further explanation.)

2div. Build Join Table and Filter

1 llog rl + = , 2 II(I copying
P

The join output from step ii may include a large number of internal duplicates, which should

be removed before the next iteration (see chapter 2, "Implementation Issues"). (2; is filtered

by inserting it into a type B table (RTI), and copying only non-duplicates to the output

(filtered) relation.
1 Ilog rl 2: +Xid2 IA I JTID
P

The join table for the next iteration of step ii is built on Pi. If a type C table is used, then the

JTID operation removes any internal duplicates as the table is being built. Building the next

iteration's join table "on the fly", as the current join's output is produced, allows us to avoid

copying Pi twice (once to filter it, then again to install it in the table).

2dv. Join and Partition :
iz',fOgzrl JTL
p 1=1

+ p S!10g2rl s l DJ partitioning

Only one copy of this join output is required, since Di is not joined with itself.

2dvi. Exchange :

3' pz 1=1 IDJ tuples

2 (p-1) I log2r I messages

Only a single relation is exchanged. The receiving machine just concatenates the incoming

fragments of Di. Duplicates are removed by the Union in step vii.

2dvii. Union :

.J Jm
p i = l 1

3. Result Collection :
ICI - copying
P

ICI tuples
P

p-1 messages

Same as for Global Wavefront Algorithm.

4.2.7. The Direct Algorithm

terms specific to the Direct algorithm:

a: : join selectivity at iteration i

op : difference selectivity at iteration i

mi : number of distinct column 1 values that match the head of the successor list broadcast at

iteration i

dups : number of duplicate tuples generated by the algorithm

Si : output relation of join at iteration i

S; : Si with duplicates removed

Cf : result (closure) relation at the end of iteration i

w : number of distinct column 1 values in the source relation, A

vi : the vertex (1st col value) whose successor list is processed in iteration i

{succ(vi)) : vi7s successor list, at the beginning of iteration i

Note that i refers to both the label of the vertex and to the

current iteration. They coincide because each iteration

broadcasts and processes a different vertex's successor list. The

vertices are processed in the order of their labelling.

bp : broadcast scalar.

This scalar is applied to broadcast communication, to make its

cost commensurate with that of point-to-point transmission.

Since the extra cost attendant to broadcasting is a function of the

number of receivers, b is subscripted by p, the number of

machines. See subsection 1.3 of this chapter.

size ofjoin oulpul IS! mi = = -
average size of each successor list in Table A before the join (i ICf-l112

Y

ISJ = ICl + dups

The reference to a "join" should be clarified. Consider the middle loop in step 3b, "FOR EACH

vi E (pred(vi)) resident on machine h". This loop takes a single vertex vi 's successor list, and merges

it into the successor list of each of vi's predecessors. Let R be the relation consisting of all tuples

whose first element value is vi. The loop's effect is that of joining R with the current transitive

closure, and unioning the join result into that closure. Step 3b can, then, be considered a distributed

joinlunion operation.

For analytical purposes, it is useful to interpret step 3b as a join/union - this interpretation furthers

comparison with the other algorithms. The lower-level definition, in terms of lists and merges, better

reveals the structure of and motivation behind the algorithm. Thus I chose that notation for the

algorithm itself.

Timing:

1. Distribution :

IAI tuples
P

p-1 messages

2a. Partition :
IAl - partitioning
P

This is the same as in the Global Wavefront algorithm, except that only one partition output

relation is produced.

2b. Exchange :

2(p-1) messages.

Again, this is like the Global Wavefront algorithm, except that only one copy of the relation is

exchanged.

2c. Build Local Hash Tables :
IAl - JTI
P

IAl - JTID
P

Table 2, the successor list structure, is used to filter duplicates. Accordingly, a Type C table is

used. JTID, the insertion function, returns TRUE if a tuple to be inserted is a duplicate. (The

duplicate is not inserted.) Each tuple generated by the merge is first JTID'ed into Table 2

(step 3bi). Only if JTID returns FALSE is it then JTI'ed into Table 1 (step 3bii). This

procedure, along with the condition that the source relation is duplicate-free, allows us to use

the non-filtering Type A table for Table 1.

3a. Distribution :
lcfl zsl I(succ(vi))l = EL1

ICI - MI =(HI + -
2) tuples

In the Global Wavefront and Logarithmic algorithms, all machines both send and receive each

iteration. Here, only one machine is sending - all others are receiving. Thus we can

broadcasting. There are always exactly w iterations.

The successor list representation of tuples allows us to transmit them in a more compact form.

Since all tuples in a given list share the same column 1 value, that value need not be repeated

for each tuple. The actual amount of data transmitted is approximated by the following

formula.

1 ICI - IAI - (MI + -)+2w
2 2

The "2w" term accounts for the header that must be sent with each list, plus a timestamp used
ICI -MI

to detect message loss.'" It is assumed that the average successor list has MI + --Z-- elements

in i t

Each successor list is broadcast exactly once:

bp ' w messages

For small messages, a broadcast is significantly more expensive than is a point-to-point send.

Because of this, and the large number of broadcasts done by this step, the number of messages

is multiplied by the "broadcast scalar" bp. The scalar is applied to the number of messages,

since the extra cost it reflects is, for small messages, independent of message size.

Before a successor list can be transmitted, it has to be copied out of the hash table where it

resides, into contiguous storage:

CZ1 I (SUCC(V~) l COPY

3b. Join and Union :

w JTL

There are w iterations of step 3. Each iteration, each machine, in parallel, first looks up vi in

Table A, in order to find its predecessors. (middle loop of step 3b)

Each predecessor of vi (the header of the current successor list) must now be looked up in

Table B.

= ! (ICI + dups - IAl) (JTID - JTL)
P

The preceding formula describes the cost of step 3bi, merging the successor lists.
1 ' 1 + - ISii = - (ICI - MI) JTI
P P

Cost of step 3bii. updating predecessor lists.

4. Result Collection :

"~irnestam~in~ is discussed in chapter 3, "Implemmtation Issues".

ICI - copying
P

F-1 + - ICI tuples
P

+p-1 messages

As in the Global Wavefront and Logarithmic algorithms, the local result relations are disjoint,

and can simply be concatenated to form the global result.

4.3. Experimental Methodology

The empirical study is guided by the step-by-stcp analysis of the preceding section. Variables used in that

analysis can be separated into two categories, which I will call "cardinalities" and "unit costs". The formcr

denote sizes, and include such entities as ICI, C j . y ~ ~ ~ 1 , and number of iterations. Examples of unit costs

are "JTID" (for local processing) and "tuples" (for communication). Values for cardinalities and local

processing unit costs were taken from test results. Communication costs were calculated on the basis of

experimental results presented in [12]. All values used in the calculation of results are tabulated in Lhc

appendix. Cost estimates are based on averages of the cardinalities - see table B-1 in the appendix.

4.3.1. Cardinalities

In section 1, "Terminology and Motivation", I alluded to the difficulty of estimating a priori the sizes of

intermediate and result relations. I therefore resorted to experiment - the values for these variables are taken

from that empirical study.

For each of the algorithms (serial as well as distributed), cost estimates were based on average cardinalities.

By "cardinalities" I mean "number of tuples" in one of the following categories:

sums of intermediate relations

relations as of iteration 0 or the last iteration

sizes of lists (eg. successor lists) for the Direct algorithm

duplicates

number of iterations the algorithm takes to complete

Cardinalities were estimated by simulating the algorithms, counting the appropriate tuples. The values used

are averaged over ten runs. Maximum and minimum cardinalities are shown in tables B-2 through B-5 in the

appendix.

The notation used allows us to denote a given relation during a particular iteration. In general, however,

that fine a granularity is neither needed nor illuminating. The quantities which emerge as salient are of three

kinds:

Relation sizes at iteration 0, ie. the source relation.

Relation sizes during the last iteration.

Summations from iteration 0 or 1 to the last or second last.

Summations are in general treated like unanalyzed variables. In evaluating q: IL). for example, we did

not record empirical results for each L!,), but rather a single average for the entire sum. I retained the

summation notation because it reflects the variable's meaning.

Since summations referred to may or may not include the first and last interations, up to four different

summation ranges may be of interest for a given relation. The analysis of the Logarithmic algorithm, for

instance, refers to both x:z::J'-' @'I and x'Fg:J' w.1. It is only necessary to measure one of these sums. If
r = l

we know the sizes of the relation involved during the first (0") and last iterations, we can adjust the

measured sum to any of the other three, by adding or subtracting the size for the first (0') or last iteration.

Values for average (mean) relation size sums are listed in table B-1, in the appendix. (The summation

notation is not used in the table. A key beneath it relates the table variables to the notation used in the

analysis.) All values used are for long integer (4 byte) keys. A tuple therefore consists of 8 bytes.

In the analysis, all sums of Gi and Li that are mentioned run through iteration r. These algorithms

terminate when the wavefront relation is empty. Thus lG,l= IL,I = 0. Accordingly, size values for the last

iteration were not required. Those values are required, and are therefore supplied, for the Logarithmic and

Direct algorithms.

During iteration 0, all relations are either coextensional with the source relation or are empty. Sums can be

adjusted for the presence or absence of the first iteration simply by adding or subtracting the size of the

source relation.

For each relation name, there is a primed (or overlined) and an unprimed version. The primed version

results from the removal of those duplicates which can be detected locally by the algorithm concerned. (The

precise definitions are given in the preceding section, "The Step-by-step Analysis", where the notation is

introduced.) The experiments measured the sizes of the primed relation size sums and the number of

duplicates directly. The unprimed relation sums were arrived at by adding the number of duplicates to the

sums for their unprimed counterparts. The values for last iterations were measured directly.

4.3.2. Local Processing Unit Costs

The "basic" operations used in the analysis are rather abstract - they do not reflect implementation details.

Though a finer-grained analysis would be more accurate, it would also be more obscure. Rather than adopt a

lower-level model, I have adjusted the values given for the cost parameters, to reflect important contextual

influences.

43.2.1. Hash Table Operations

JTI, RTI, JTID and JTL, are operations on hash tables. As the loading factor of the table increases, these

unit costs will also increase, sometimes significantly.

To reflect this, we tested these operations under various loading conditions. Two sets of results were

obtained, one with a larger table size (number of buckets) than the other. The results are shown in tables C-1

and C-2 in the appendix. In assigning a value for one of these parameters, we first estimated the number of

entries in the table at the time of the relevant operation. The closest "table load" in the table was then

cross-indexed with the operation name, yielding the cost for that operation.

Of course, judicious tuning of the hash tables can improve performance. (For a discussion of hash table

tuning, see chapter 3.) In table C- 1, hash table types A and C have 1000 buckets, and type B has 2000. In

C-2, all table types have 5000 buckets. This allows us to assume that at least a modicum of table tuning is

done. Each cost is looked up in both tables - the lower cost is used. (The only stipulation is that whatever

size table is assumed, that assumption must be adhered to for the course of the algorithm. The number of

buckets does not magically change to suit the needs of the moment)

The JTID and RTI operations filter out duplicates - if the input tuple is already in the table, it is not

inserted. Actually inserting a tuple involves considerable overhead over merely looking it up. Storage must

be allocated for it, and it must be linked into the table. Since this cost is not incurred for duplicates, a JTID

or RTI on one will be considerably cheaper. We therefore broke JTID and RTI costs into separate costs for

duplicates and non-duplicates. Accordingly, the tables include columns headed "RTI dups" and "JTID dups".

The values under "RTI" and "JTID" are for non-duplicates.

The number of duplicates handled by each algorithm is listed in table B-1. For an iterpretation of these

values, see the key beneath that table.

The RTI operation is something of a special case. This operation uses table type B. Unlike the other tables,

type B is single-tiered. This makes it especially amenable to tuning. (For a full explanation, see chapter 3.)

Except for very small relations (very few tuples in the table), we assume that the type B table has a

4 favourable number of buckets. This allows us to use constants, .072 and .042, for RTI and RTI dups,

respectively, regardless of relation size.

4.3.2.2. COPY

The COPY operation may involve retrieving the copied relation from a hash table or from a strearn-

structure relation. Again, two tables (C-3 and C-4) are provided, offering a choice of hash table size. Values

for the latter case are listed under "from relation". In some cases, the tuples to be copied are already

available - the cost is then determined by subtracting the cost of retrieving from a stream- stuctured relation

from the "from relation" COPY cost. These results are listed under "no retr".

Looking at tables C-3 and C-4, you will see that the values under "from relation" and "no retr" are virtually

constant. For these cases, we use values of .014 and .009 throughout. These are listed in table C-5. (For

tuple retrieval, we always charge .005 ms..)

43.2.3. PART

Test results that suggest that partitioning cost is constant, regardless of the size of the relation being

partitioned. PART always includes the cost of copying the tuple to the appropriate partition.

Ref(C0NST) gives two values for PART. The higher value (.024) includes the cost of retrieving the tuple

from a stream-structure relation (not from a hash table). The lower value (.019) does not include retrieval

cost. Consider step 2a of the Global Wavefront algorithm. In this step, a single input relation is partitioned

twice. We do not want to double-charge for tuple remeval. Hence the cost for this step is calculated as
1 (.024 +.019)

loo0 seconds.

43.2.4. How Values Were Obtained

To arrive at the local processing costs listed in the appendix, each operation was performed on 100,000

tuples, and the average cost taken. Consider for example the value (.091 ms.) for JTI, with 5,000 tuples in

the table. The following test was iterated 20 times:

A new relation with 5,000 tuples in it was generated. The contents of this relation were then inserted

into an initially empty type A table.

The costs for each iteration were summed, then divided by 20. For a table with 100,000 enmes, only one

test was run. Values for RTI, RTI dups, JTID, JTID dups and JTL were obtained in the same way.

As mentioned above, COPY (from a relation), COPY (no retrieval), PART and "retrieve tuple" are treated

as constants. This decision followed from empirical results - varying the input relation size for these

operations did not appear to affect their values. Each of these constant values was obtained by averaging the

costs of at lcast 100,000 operations.

The tests from which the table values were derived were run in the dead of night I reran some of them at

different times, so as to detect any variance resulting from different load conditions on the facilities used.

Any differences between test runs were insignificant.

43.3. Communication Costs

Table D-1 lists the costs of point-to-point sends for a variety of message sizes. The costs per tuple listed in

table D-2 are derived from those message costs. Key values are assumed to be long integers - each tuple

therefore consists of 8 bytes. Note that the cost per tuple decreases markedly as message size increases.

Let

m = the number of messages sent within a given step of the algorithm

t = the average size, in tuples, of the messages sent during that step

c = the total communication cost for that step, in seconds

For message sizes under 128 tuples (1K bytes), the following cost formula was used:

c = m (2 + (t-4)(.033)) / 1000

For such small messages, the communication cost is dominated by the number of messages, rather than by

the amount of data sent. The first 4 tuples (32 bytes) in a message are "free" - this is the minimum-size
1 message. The minimum-sized message costs 2 ms.. Sending - K bytes costs an additional 2 ms.. The scalar
2

.033 ms./tuple is just 2/((512/8)-4). For a message of 128 tuples, the formula yields a cost of 6.1 ms.,

compared with the measured value of 6 ms. shown in D-1.

For larger messages (128 tuples and greater), the cost is dominated by the amount of data transmitted.

Costs for these are obtained by interpolating linearly between the costs listed in D-2.

Average message sizes are estimated simply by dividing the total amount of data transmitted within a given

algorithm step by the number of messages sent during that step.

Let

m = the number of iterations of the step

n = the total number of tuples transmitted therein

q = the number of messages sent per iteration

The average message size is then estimated by:

n/qm

The assumption here is that the size of the relation transmitted grows linearly over the course of the

algorithm (from one iteration to the next). Since this assumption is almost certainly unsound, the estimates

of communication costs are bound to be inaccurate. I trust, however, that they are reasonable approximations

of the actual costs.

Only the broadcast at the beginning of the Local Wavefront algorithm (step 1) will, in the expected case,

involve broadcasting large messages. Since that step only executes once, the cost of retrieving

acknowledgements from more than one receiver contributes very little to the total running-time of the

algorithm. Accordingly, I cost that broadcast as if it were a point-to-point send.

The broadcast in step 3a of the Direct algorithm will almost invariably transmit very small messages -

usually the minimum size. Experiments done by Garnik Haftevani at Simon Fraser University indicate that

to broadcast the minimum-sized message to 3 remote processes takes 3.9 ms, using the V-System broadcast

system call. That result is averaged over 10,000 messages, using Sun3 workstations. The broadcast cost for

small messages, with four participating machines, is then obtained from the following formula:

c = m (3.9 + (t4)(.033)) / 1000

Note that for any but minimum-sized messages, the broadcast cost is not exactly obtained by scaling the

point-to-point cost. I use a simple scalar in the step-by-step analysis in order to avoid notational clutter.

The cost to broadcast the minimum-sized message to seven machines was not available at the time of

writing. If we used a logarithmic broadcast, with a point-to-point send costing 2 ms., we would incur a cost

of 6 ms.. This figure is no doubt too high for a LAN-type multicast. (The V multicast operation scales very

well.) The cost will rise as more receivers are added, since more acknowledgements must be handled. I used

a value of 5.0 ms. for the broadcast with 8 participating machines. The formula for that case is thus:

c = m (5.0 + (t4)(.033)) / 1000

An important assumption with respect to broadcast cost is that the machines have @cient system buffer

capacity to prevent the occurrence ofoverrun. For a main memory model like ours, this assumption is surely

justified. For Sun-3 workstations, it is realistic. To prevent overrunning the originator with replies

(acknowledgements), the V broadcast has each receiver wail for a random time period before acknowledging.

With ample buffer capacity, this is no longer necessary. Our broadcast cost (3.9 ms. to broadcast32 bytes to

3 machines) is based on the assumption that those delays have been removed! Since the Direct algorithm has

the highest communication costs, I wished to estimate its costs as optimistically as was reasonable.

4.3.4. The Input Data Used

The relative efficiencies of the algorithms will depend on the computation size resulting from the particular

input data used. By "computation size", I mean the total amount of data processed. This includes input,

intermediate and result relations. Computation size depends on :
the size of the source relation

the size of the key domain

the dismbution of data values within the source relation

the mechanics of the algorithm used (eg. how many duplicates are generated, and how soon they
can be detected and removed from further processing)

Note that computation size will depend on which algorithm is used.

All key values were generated by means of the UNIX "randomow function, with uniform distribution.

Given that distribution, we generated data sets with varying computation sizes by varying the key domain

and source relation sizes. I refer to particular test runs by the ordered pair (source relation size, key domain

size). For example, a data set consisting of 750 tuples (source relation size) chosen from a key domain size

of 1000 is denoted by (750,1000).

43.4.1. The Sample Sets Used

We wished the computation sizes tested to fall within certain limits. Firstly, we wanted those sizes to be

large enough to be interesting. Below a certain size, distributing the computation is counterproductive - a

serial implementation will complete sooner. Practical considerations imposed an upper bound on the

problem sizes tested. For a given domain size d, the size of the TC for a relation on that domain is bounded

above by d 2 . Test runs indicated that with input relation sizes as low as 1.5 x d, the result relation size could

closely approach that limit. The consequent computational explosion overwhelmed the computing resources

on which the tests were conducted. In fact, this occured even when testing the Logarithmic algorithm on

input data (1250,1000). (Accordingly, values for that test are listed as "n/aW in table B-I.)

The sizes of the intermediate relations depend to a large extent on the connectivity of the problem graph.

As connectivity increases, the probability of asynchronous and cyclic data occumng will also increase. Such

data will lead to the generation of duplicates. If there is one factor which above all accounts for the different

performances of the algorithms, it is their method of handling duplicates. The choice of test data was thus

strongly motivated by a desire to test the algorithms on input graphs of varying degrees of density.

We used domain sizes of 1000 and 5000. With domain size 1000, tests were run for source relation sizes of

750, 1000 and 1250 tuples. With domain size 5000, tests were run for source relation sizes of 3750 and

5000. The particular source sizes used were chosen only after some experimentation. Source sizes less than

(750,1000) and (3750,5000) produced very sparse graphs. Input graphs denser than (1250,1000) and

(5000,5000) resulted in computational explosions.

4.3.4.2. Variance in Cardinalities

Given the source and domain sizes, the closure size can vary a great deal, depending on the particular

tuples generated for the source relation. The reason for this is best explained in graph theoretic terms.

Interpreting each tuple as an edge, and each element of a tuple as a vertex, we can refer to the "connectivity"

of the relation's graph. Minute "random" effects can hugely change the connectivity of a graph, and thus the

density of its TC. Adding a single edge, for instance, can transform a graph from one consisting of two

strongly connected components to a single component. If the size of the input relation is n, that incidental

change could increase the size of its TC by a term on the order of n2 ! For any given (source, domain) choice,

then, we expect a large variance in computation sizes. Accordingly, for each such choice, ten tests were run,

each with a different seed passed to the UNIX "randomow function. The values listed in table B-1 are

averages over ten test runs.

Tables B-2 through B-5 in the appendix show, for each distributed algorithm, maximum and minimum test

results for the relevant cardinalities. The table for the Local Wavefront algorithm assumes that four

machines are used - the results for eight machines would be very similar. For the other algorithms, the

cardinalities are not dependent on the number of participating machines. I did not calculate standard

deviation or variance. In this discussion, I will refer to the ratio of maximum to minimum values as the

"ratio" .

The values for the Global and Local Wavefront algorithms show the smallest ratio. Neither of these

algorithms generates a great many duplicates, What the mnges show is the range in output size for a given

input. It seems that as the graph gets denser, the effects of random variations in the input graph become more

pronounced. As expected. the ration of maximum to minimum is lowest for sparse graphs - (750.1000) and

(375015000). When the ration of relation to domain size is low, so is the probability of, for instance, return

edges. Since the probability of matches rises with the ratio of relation to domain s ix , we would expect the

sort of structure that results in large output size - asynchronous data, cycles, cliques, etc. - to occur more

commonly in denser graphs. For fairly dense graphs ((1000,1000) and (5000,5000)). the ratio of maximum

to minimum is a b u t 5; : 1. In fact, (1000,1000) showed the highest variance of all, for the Wavefmnt

algorithms. I am not sure if this is what we should expcct, or if it is really more probable that (1250,1000)

should show the highest ratio. It is hard to make much of the ratio for number of iterations, except that as the

output approaches being a complete graph, that ratio should fall.

The ratios are highest for the Logarithmic algorithm. This is due to the presence of large numbers of

duplicates. The effects of structures like cliques are compounded in this algorithm, since not all external

duplicates can be removed. Of course, the ratio for "iterations" is low, since that quantity is a logarithmic

function of maximum path length. What the high ratios show for this algorithm is its very high susceptibility

to minute changes in the input graph.

As graph density rises, the Direct algorithm's ratio for duplicates rises quickly. As with the Logarithmic

algorithm, minute changes in the input graph can result in the presence of those structures which lead to

duplicate explosion. The ratio for number of iterations is very low. "Iterations" is in this case just the

number of vertices with out-edges in the input graph. Since the relation sizes are fairly large, and tuple

values are generated with a random number generator, this low ratio is to be expected.

The Logarithmic and Direct algorithms have the highest average cardinalities (except for iterations in the

Logarithmic), and also the highest variation in them. Thus in the worst case, these algorithms will

significantly underperform the Wavefront methods.

Even for the Wavefront algorithms, we can expect a high variance in relation sizes, from run to run, with a

concomitant high variance in run-tirne. This, I suggest, is a product of the problem. Both join and transitive

closure are potentially quadratic in input size. The join operation seldom reaches that limit. But the presence

of graph structures like cliques exposes that underlying quadratic potential.

4.4. The Results

In the first subsection, I present comparative cost results for each of the distributed algorithms, and for the

serial Delta-Wavefront algorithm. In the second, I discuss how much speedup the distributed algorithms

achieve over their serial progenitors, and how well they scale, ie. how much improvement in performance

results from using more machines.

4.4.1. Cost Comparisons

In this subsection I present, for each algorithm, total local processing, communication and combined costs.

Two sets of graphs are presented. One set shows results when four machines participate in the computation.

The other shows the results for eight participating machines. The results for each quantity are averages over

ten test runs. As mentioned above, they can vary greatly from run to run. (This matter is discussed in the

following subsection.)

Performance differences between algorithms are explained in a fairly abstract way. A detailed comparison

of the Global Wavefront algorithm with each of the other distributed algorithms is presented in appendix F.

Cost results are presented graphically in figures 4-1 through 4-12.'' In the graphs, data points are connected

with straight lines. This was done only to make them more readable. We do not suggest that complexity in

fact grows linearly between the sample sizes tested! I will first discuss local processing costs, then

communication costs. Within each of those categories, I consider first results with domain size 1000, then

those with domain size 5000. Finally, combined costs are presented. In addition to being compared with

each other, the distributed algorithms' performances (combined costs only) are compared with that of the

serial Delta-Wavefront algorithm, indicated by "Serial" in the graphs.

4.4.1.1. Local Processing

A separate curve is drawn for each algorithm. Relation sizes are plotted on the x-axis. y-values indicate

total average local processing cost, in seconds.

Note first that for all algorithms, costs rise sharply once the source relation size exceeds the domain size.

As the density of the input graph rises, the TC tends rapidly towards a complete graph. As the result size

grows, so too will the sizes of intermediate relations. Once a complete graph is obtained, any increase in

source size will not, of course, increase the size of the TC.

"The actual values for the data points are tabulated in E-1 through E-4 in the appendix.

Legend:

v Global

- - a Local

A I - 4

- - Direct

750 1230

Figure 4-1: Local Processing Costs - domain size 1000 - 4 machines

Each of the algorithms is based on a serial progenitor. Certain of the performance differences between

them would also arise between their serial counterparts, while others are peculiar to the distributed versions.

Costs for the serial algorithms are given in table E-4 in the appendix. I will first discuss those factors which

stem from the structure of the underlying serial models, and subsequently those which are artifacts of

distribution.

Examination of table B-1 in the appendix will reveal the main reason for the differing performances of the

algorithms. In general, the higher the cost for the algorithm, the more duplicates it handles!

The Logarithmic algorithm is especially bedeviled by the duplicate problem. To understand why duplicates

Legend:

x--x Global I
I

I
I - - Local I

I
I

A A I
I
I

I - - Direct I
I

I
I

I
I
I

I
I

I
I

I
I
I

I
I

I /
I
I /
I

I /
I
I /

I
/ /

I
I /

. . . -
- - - - -

1
1o;Oo

Figure 4-2: Local Processing Costs - domain size 1000 - 8 machines

proliferate in that algorithm, consider first what happens when the relation contains a clique of size 1.

When that relation is joined with itself, in step 2dii, each edge in that clique will match each other. The join

output attributable to the clique will contain 1 tuples! Of these, 1 - 1 are duplicates. While the duplicates

are removed from A ~ ~ " , the original clique cannot be, since it is part of A ~ ~ " . Thus those duplicates will

again be generated during iteration i+I. The proliferation of duplicates feeds on itself. (In the Wavefront

algorithms, any cliques are removed by the set difference operation, and will thus not contribute further to

processing costs.)

The second join generates even more duplicates. These duplicates can be traced to various causes. One is

that this join may be fed external duplicates from the first join. When joined with the current result, these

Legend:

%---a Global

Figure 4-3: Local Processing Costs - domain size 5000 - 4 machines

will produce yet more duplicates. (Since Ci will generally be larger than nr, joining with it will generally

produce more duplicates.) Another cause has to do with the termination point of this algorithm. In the last

iteration, it generates all relations from A 2u08,r-1 I+ 1 to A~~~~~~~ inclusive. What if r is just 1 greater than a power

of 2, ie. 2'10g2' = 2r-2? Then, even after internal duplicates are removed from the join output, almost the

entire last iteration can consist of duplicates!

Note that for sparse inputs ((750,1000) and (3750,5000)), the Logarithmic algorithm compares quite

favourably with the others. If we can guarantee that the data are synchronous, this algorithm is reasonably

attractive.

Legend: - Global

- - Local

A

Figure 4-4: Local Processing Costs - domain size 5000 - 8 machines

The Direct algorithm also generates a plethora of duplicates (though considerably fewer than does the

Logarithmic algorithm). Especially during its later iterations, we would expect the successor list being

merged to contain numerous vertices already present in the lists being merged into. Note, though, that a

given successor list is processed (merged into the others) exactly once. A duplicate generated by merging list

1 may be regenerated by merging list 5. But no copy of it is cycled back into the computation - all duplicates

are removed as soon as they are detected. In the worst case, a clique of size 1 will produce 1 - 1 duplicates

over the course of the algorithm, rather than that many each iteration, as in the Logarithmic algorithm.

The Direct algorithm never actually inserts a duplicate into a hash table. It is simply searched for - when

found, it is discarded. Compared with table insertion, looking up a duplicate is an inexpensive operation. In

short, the Direct algorithm incurs very little cost per duplicate generatcd. This accounts for its surprisingly

good performance, in light of the number of duplicates it handles.

Since it generates and carries the fewest duplicates, it is not surprising that the Global Wavefront algorithm

consistently incurs less local processing cost than the other algorithms. The duplicate problem will plague

serial implemcntations of the Logarithmic and Direct algorithms as well. (Looking at table E-4 in the

appendix, you will see that the Delta-Wavefront algorithm outperforms either of the others in the serial case.)

Since the Local and Global Wavefront algorithms both derive from the same serial algorithm, any

performance difference between them results from distribution-reJated matters.

Both the Logarithmic and Direct algorithms make use of the rather complicated type C hash table. This

implementation decision springs from the need to detect duplicates. Of all the table types, the type C variety

is the most expensive to build. This will adversely affect the performance of these algorithms. (The

Wavefront algorithms can make do with the simpler type A and B tables.)

The performance of the Logarithmic algorithm is impaired by the need to rebuild the join hash table for A ~ '

during each iteration. (Note as well that can be considerably larger than IAl.) This exacerbates the

duplicate problem. Not only are cliques (and other external duplicates) retained, but they must be reinserted

in that table in each iteration! As mentioned, table insertion is an expensive proposition. In fact, it is the

dominant local processing cost in all the algorithms.

I now discuss performance factors due to distribution.

What the duplicate problem cannot entirely account for is the rather poor performance of the Local

Wavefront Algorithm. For data set (1000,1250), for instance, the Direct algorithm outperforms the Local

Wavefront. Yet for that data set, the Direct algorithm generates substantially more duplicates. The problem

with the Local Wavefront algorithm is that the local results that it generates cannot be guaranteed disjoint.

This complicates result collection. In order to eliminate duplicates from the result, the local closures have to

be merged. This merging process contributes almost half the local processing cost.

The reason that the merge is so expensive is that it is done by the controller sequentially. Merging can be

done in parallel - on the model of the multi-way merge. This method, however. results in higher costs in this

context. An efficient parallel merge can be implemented for a tightly coupled system, with a very large

number of processors. I did not attempt to adapt that parallel method to our coarse-grained environment.

The other three algorithms produce disjoint local closures. Their local results can Lhus simply be

concatenated, at negligible cost.

Of course, maintaining sharp partition boundaries throughout the algorithm is not without cost. Most of

that cost falls under the heading of communication. There may also be extra local processing costs. The

Global Wavefront algorithm must partition its driver (wavefront) relation once each iteration. The

Logarithmic algorithm pays more dearly. Two copies of A2', plus Di, must bc partioned during each

iteration. In addition, a new hash table for has to be built for each iteration. (This exacerbates the

duplicate problem, since duplicates must also be inserted into that table.) Mercifully, the Logarithmic

algorithm uses the fewest iterations. What emerges is a cost tradeoff between allowing the participating

machines to proceed independently, then paying the price at result collection time, and maintaining sharp

partition boundaries throughout the algorithm. This tradeoff will be discussed at greater length in the context

of the combined results.

Note that the Direct algorithm "automatically" keeps the local partitions disjoint. In that algorithm, a

machine will only generate tuples within its own partition. No "extra" processing is required.

4.4.1.2. Communication

Legend:

Figure 4-5: Communication Costs - domain size 1000 - 4 machines

Not surprisingly, commuication costs are consistently lowest for the Local Wavefront algorithm. In that

algorithm, only the source and result relations are communicated.

Distribution of the source and collection of results are identical for this algorithm and the Global Wavefront

method. The difference lies in the amount of data exchanged during generation. For sparse relations, the

Logarithmic algorithm incurred lower communication costs than did the Global Wavefront. This no doubt

results from its using fewer iterations. For dense graphs, the Logarithmic algorithm again shows poorly.

This can be attributed to the transmission of duplicates.

Legend:

Y Global

5---El Local

A

- - Direct

Figure 4-6: Communication Costs - domain size 1000 - 8 machines

For all data sets, the Direct algorithm's communication costs were highest. The reason is that that

algorithm takes by far the most iterations to complete - data are transmitted during each iteration. Actually,

only the Local Wavefront algorithm sends fewer tuples. The high cost results from the number of messages

sent. It is vastly cheaper to send a few large messages than miriad small ones!vi The Direct algorithm

requires an iteration for each vertex in the input graph. The number of iterations thus depends more on the

source size than on the size of the result. (TC adds only edges, not vertices.) This explains the very high

costs for sample sets (3750,5000) and (5000,5000). Corollary to this is the observation that its

communication costs are relatively independent of graph density.

v. 'Of course, a broadcast is also more expensive than is a point-to-point send. However, each iteration of the Direct algorithm uses a
single broadcast, while an exchange of intermediate results in the iterative algorithm must usep-1 sends.

Figure 4-7: Communication Costs - domain size 5000 - 4 machines

You will notice that the y-axes of the different cost graphs are not uniformly scaled. The graphs for

communication are, in effect, skewed on the y-axis. This obscures the fact that communication costs in

general rise more slowly with problem size than do local processing costs. The reason for this is that

communication costs per tuple decrease markedly as message size increases. For the Wavefront and

Logarithmic algorithms, larger closures do tend to require more iterations to compute.*~owever, the most

pronounced result of increased computation size is larger messages.

vii Note that this is not a hard-and-fast rule. If the input relation is a complete graph, those algorithms will terminate after only two
iterations.

Legend:

M Global

0---€I Local

A . . - . . . A Log .

- - Direct

Figure 4-8: Communication Costs - domain size 5000 - 8 machines

4.4.1.3. Combined Results

Figures 4-9 through 4-12 show costs not only for the distributed algorithms, but for a Serial one as well.

The serial algorithm is the Delta-Wavefront, which for all data sets outperformed either of the other serial

algorithms. This discussion is centred around the distributed algorithms. The serial Delta-Wavcfront costs

are shown on the graphs merely to put these results in context. As you can see, none of the distributed

algorithms achieves spectacular speedup over the best serial one.

The combined costs depicted in the following figures should be read under the following qualification:

they do not reflect the effects of uneven load distribution between participating machines. They are based on

the assumption of absolutely even load sharing. In practice, this condition is hardly to be expected. Since

the algorithms are synchronous (they proceed independently only within iterations), no machine may move to

the next iteration until the slowest has completed the present one. Running time will thus be dictated not by

the average load on each machine, but by the heaviest one. The less uniformly the data are distributed, the

slower the algorithms will run. All of the results shown are too optimistic (except for the Serial algorithm).

How over-optimistic they are depends on the algorithm, and on the distribution of "the real" data.

Each data exchange or distribution step constitutes a "sychronization point". The more synchronization

points an algorithm has, the more it will suffer from uneven load distribution. Each algorithm has a

synchronization point at the start, when the source relation is parcelled out, and one at the end, when results

are collected. In addition, the Global Wavefront and Direct algorithms have to synchronize once per

iteration, and the Logarithmic alogithm twice per iteration. Therefore the Local Wavefront algorithm can be

expected to be the most resilient to uneven load distribution, followed by the Logarithmic, Global Wavefront

and Direct algorithms, in that order. The Direct algorithm, with its very large number of iterations, will be

seriously affected by this problem. In interpreting the following figures, this matter should be kept in mind.

(It should also be kept in mind that the Serial algorithm - Delta-Wavefront - suffers not at all from load

imbalance. So the speedup actually achieved by the distributed algorithms will be even less than that

suggested by the graphs.)

Although the Logarithmic algorithm performs well on sparse input graphs, its cost for dense graphs is

intolerably high. As mentioned, this results mainly from that algorithm's problems with duplicates. This

problem results not from distibuting the algorithm (though the presence of duplicates adds to communication

costs), but from the nature of the underlying serial algorithm.

For the sample sets tested, the Direct algorithm consistently underperforms the Wavefront algorithms. The

Figure 4-9: Combined Costs - domain size 1000 - 4 machines

primary cause for this poor performance is the large number of messages that the Direct algorithm sends.

The state of each successor list {succ(vi)) must be known to all machines during iteration i. This entails

broadcasting the current list at the start of each iteration. With this algorithm, an inherently sequential

relationship between subsolutions from one iteration to the next inhibits distribution. This leads me to

conclude that this algorithm is poorly suited to distribution. Only with very small domain sizes will the

Direct algorithm compare favourably.

Even in the serial case, the Delta-Wavefront algorithm consistently outperforms the serial Direct one. For

dense graphs, the latter must deal with far more duplicates than must the former. But even for sparse graphs,

the Delta-Wavefront is much faster. The Delta-Wavefront inserts one copy of the source relation and one

Legend: - Global

0---€I Local . 1 I

. I
Direct I

' I
/

. I /
. # Serial I

. r /

Figure 4-10: Combined Costs - domain size 1000 - 8 machines

copy of the result relation into hash tables. Both of these tables are quite simple, and thus support efficient

insertion. The Direct algorithm inserts rwo copies of the result relation into hash tables, one for successor

lists and one for predecessor lists. One of the tables is of the complicated and hence expensive type C. In

both serial algorithms, total costs are dominated by hash table insertion.

The Direct algorithm has lately been touted as up to an order of magnitude faster than the Delta-Wavefront.

But those costs estimates are based on disk access costs. Since we have adopted the main memory model, we

ignore disk access.

Most interesting is the relative performance of the Global and Local Wavefront algorithms. It came as

something of a surprise that for all sample sets, the Global Wavefront algorithm outperformed the Local. (In

Legend:

Y Global

- - Local

A Log - - Direct

Figure 4-11: Combined Costs - domain size 5000 - 4 machines

all cases except one, the Global Wavefront had the lowest total cost. The exception is the sample set

(750,1000), for which the serial Delta-Wavefront algorithm outperformed all others.) The key factor here,

alluded to above, is the tradeoff between local processing and communication. By exchanging intermediate

results, the Global method can maintain sharp partition boundaries between the participating machines. The

Local method avoids that data exchange cost, but cannot ensure that local results are disjoint. This

complicates the result collection process, necessitating a very expensive merge. Though there are some local

processing costs attendant to synchronizing the data (eg. partitioning intermediate relations), the bulk of that

cost is directly attributable to communication. The effect of the tradeoff thus depends on the relative costs of

processing and communication. Faster connection technology would favour the Global method, while faster

processers would tend to improve the relative performance of the Local algorithm.

*A
Legend:

v Global

El---€I Local
/ A A #

a ' / .. # .* - -. Direct 0:
:

/ :
. . # Serial /

/

/

/

/
I Q

/
1,

0
0 ' @ /

fl
0

0•‹

. ,@e

- 0
0

. . (0'

- ' 0)

. #

. . ,0) . ' . 0@ . . .I

I

3750 5&

Figure 4-12: Combined Costs - domain size 5000 - 8 machines

In designing coarse-grained distributed algorithms, partitioning is a widely-applicable technique. Strict

partitioning certainly has its advantages. In the particular cases of the Global and Local Wavefront

algorithms, tested on the particular equipment that we used, the evidence favours smct partitioning. For the

Wavefront algorithm, that partitioning is quite easy to enforce. Consider, though, the case of the Logarithmic

algorithm. Here, keeping the data sychronized (ie. keeping local data within globally defined limits) is both

more complicated and more costly. Two copies of each must be exchanged, along with the very large

relation Di. (Note that this sychronization is unavoidable - if each iteration's results are not exchanged, the

algorithm may not produce complete results.) The lesson here is that one should strive for a model which

lends itself to strict data partitioning.

What the partitioning issue is symptomatic of is the need, in any distributed solution, to maintain a certain

amount of global state information. Maintaining strict partitioning amounts to enforcing a global invariant

condition. In the Global Wavefront algorithm, the support cost for maintaining that invariant consists of

exchanging just one relation. In the Logarithmic algorithm, three relations must be exchanged. The

Logarithmic algorithm exploits more complex relationships between data entities. This complexity works
. . .

against it when that algorithm is dismbutedWu A general heuristic can be gleaned from this case. A design

objective in any distributed context should, I propose, be to keep the amount of global state information

required to a minimum. If the basic structure (eg. a serial progenitor of the algorithm) involves complicated

relationships between entities, it is likely that considerable global state will have to be maintained, in order to

keep track of those entities. This consideration will tend to favour simple, "naive" models over complicated,

"sophisticated" ones.

4.4.2. Speedup and Scaling

The appropriateness of an algorithm for distribution is best indicated by its speedup. The higher the

speedup, the better that algorithm dismbutes. I define the "speedup" of a distributed algorithm over its serial

version as follows:
cost for serial algorithm

cost for distributed algorithm

Table E-5 in the appendix shows the speedup for each of the distributed algorithms. The number in

parentheses after the algorithm name indicates the number of machines participating in the computation.

The distributed version can take considerably longer than the serial one. (This is indicated in the table by a

value less than 1.) This is especially true of the Direct algorithm. Except for very dense graphs, the

communication cost incurred in distribution is not regained by the benefits of load sharing. The Local

Wavefront algorithm also shows poor speedup. This results not from communication costs, but from the cost

of the merge, which does not have to be done in the serial case.

The Global Wavefront algorithm's speedup increases as the result relation size increases (also as graph

density rises). For small outputs, the total cost of this algorithm is dominated by communication. The

benefits of load sharing are outweighed by this communication cost

For all sample sets, the Logarithmic algorithm achieves rather good speedup. From this, one might surmise

viii Note, though, that the distributed Logarithmic algorithm achieves greater speedup over its serial counterpart than is the case for
either the Delta-Wavefront or Direct algorithms. The reasons for this will be discussed in the following subsection.

that it is especially amenable to distribution. The main reason for the speedup, however, is that this

algorithm's costs are dominated by local processing - distribution allows the local processing to be done

concurrently. Local processing costs dominate because the intermediate relations are so large - they contain

a lot of duplicates. Of course, those duplicates are also communicated. But recall that communication cost

per tuple falls rapidly (up to about 8 Mbytes) as the message size increases. Thus as intermediate relations

get larger, the relative cost of communication drops.

This last observation is applicable to all of the distributed algorithms. As the computation size grows,

communication costs per tuple fall quickly, while local processing costs remain virtually constant. Thus the

benefits of load sharing come to outweigh the cost of communication.

Many of the observations regarding speedup apply to scaling as well. The main penalty paid when using

more machines is that the the data are sent in the form of more, smaller messages, rather than fewer, larger

ones. Communication costs per tuple fall very rapidly up to about 8K bytes, then level off. Against this

penalty, however, there is an advantage to exchanging data between more machines. This is that more

communication concurrency can be achieved. The cost saving due to communication concurrency rises

quadratically with the number of machines participating in the data exchange.

Let:

m = global size of intermediate relation to be exchanged

p = the number of machines

s = expected cost of exchange step

t = cost/tuple for message of size
p2

then

s = 2(p-l)t ?.!
pZ

As gets larger, the cost per tuple rises more slowly. At some point, intermediate relations will be large
8

enough that dividing them into more messages adds less to cost than is subtracted by the effects of more

concurrency.

When the intermediate relation is large enough, subdividing it between more machines does not, then,

result in higher communication costs per tuple. When the exchange step(s) sufficiently dominate the other,

more sequential communication steps (initial distribution and result collection), the total communication

costs can drop as more machines are used. This occurs with the Logarithmic algorithm, for sample sets

(3750,5000) and (5000,5000).

The Global Wavefront algorithm scales well for dense graphs. In such a case, local processing costs

dominate total processing, the exchange step dominates communication, and the intermediate relations

exchanged are large. The Local Wavefront method docs not scale well for any of our sample sets. The

reason is that the merge is more expensive for more machines. Note also that the exchange step is only

executed once for this algorithm.

Since the V-System's multicast operation scales well, we might also expect the Direct algorithm to scale

well. The basic cost for broadcasting a message (ie. the cost for the minimum-sized message) will grow quite

slowly as the number of receivers is increased. The messages will, of course, remain the same size - the

current successor list's size is independent of the number of machines. This algorithm generally scales

poorly because its cost is always, for the sample sets tested, dominated by communication. Having more

machines never decreases communication cost, skce the exchange step in only executed once, at the start of

the algorithm. For very dense graphs (eg. (1250,1000), the algorithm both distributes and scales well.

Chapter 5

Conclusions, Other Results and Research Directions

In the first section, I summarize our results in terms of a three-way interplay between distributing global

state, communication and local processing. I also suggest some geneml heuristics for coarse-giained

distributed computation. In the second section, I compare our results with results from the literature which

seem to contradict them. In the third, I suggest directions for future research.

5.1. Conclusions

This research follows work done by Wang at Simon Frascr University. [16]Wang's research focused on the

processing requirements of the join methods, as well as on the trade-off between local processing and

communication. While that trade-off is important to this research as well, we also gave considerable

attention to the design of data structures, and to the distribution of global state.

When joining and sorting are distributed, the exchange of intermediate results is relatively straightforward.

The same cannot be said of transitive closure. A machine may be unable to complete processing of its initial

data partition without receiving tuples generated by other machines - matching join inputs must be brought

t~~ether.~various solutions to this "matching" problem may be achieved, depending on how much global

state is made available locally. The need to d'ctribute global state is compounded by the fact that the

computation of transitive closure can, unlike joining or sorting, generate huge numbers of duplicates.

What emerges is a three-way interplay between local processing, communication, and availablility of

global state information. If local partitions are kept up-to-date by frequent exchange between the machines,

then more duplicates can be detected, and redundant processing thereby avoided. But communicating that

state adds to communication costs. Having more global state available will generally decrease local

processing, since less duplicates will have to be carried. It might seem that global state availablility is just an

'Compare this with a distributed merge-sort In that algorithm, a machine can at least sort whatever tuples are locally resident without
consulting the others. Communication is required only to merge local results together.

95

aspect of the processing/communication tradeoff. The following considerations, however, count against that

characterization:
Some algorithms, by the nature of their underlying structures, require more replication of global
state than do others. The Delta-Wavefront is well-suited to distribution largely becarfie it
requires a minimum of state exchange. In fact, that algorithm can be distributed in such a way
that no intermediate results need be exchanged - this is exemplified by the Local Wavefront
algorithm. The Dirwt algorithm suffers because it must communicate global state that only he
derived sequentially.

Even when global state is locally available, the cost of retrieving and using it may outweigh the
benefit. In the Local Wavefront algorithm, for instance, the entire source relation is replicated
on each machine. It is thus possible to detect any locally-generated tuples that are already in the
global source relation. To support this, however, entails extra hash-table insertions. It turned
out, for all the data sets that we tested, that the number of extra duplicates removed did not "pay
for" the cost required to detect them. Thus using global state can actually add to net local
processing costs.

While exchanging state between machines obviously requires communication, having global
state available locally can subslantially decrease cornmunication costs. Because the Local
Wavefront algorithm replicates the source relation on each machine, intermediate results need
not be exchanged.

Our most stiking discovery was the huge effect that the presence of duplicate tuples can have on

performance. This stands out clearly in the abysmal performance of the Logarithmic algorithm. As the input

graph's density increases, the number of duplicates that this algorithm must carry explodes - in one casc to

the point of overwhelming our computing resources. Both local processing and communication costs are, in

this algorithm, dominated by the presence of duplicates.

The Direct algorithm also suffers, though much less, from generating a large number of duplicates. In light

of this, its local processing costs are surprisingly low. Because it can detect and remove each duplicate very

cheaply, the duplicate problem does not prove extreme.

In the Dc !ta-Wavefront algorithm, one of the join input relations is unchanged throughout the course of the

algorithm. Because of this, any tuple which has already driven the join during a previous iteration can be

removed from subsequent join driver relations. This removal vastly reduces the number of duplicates that are

carried by the computation. Because it exchanges current (as opposed to just initial) global state, the Global

Wavefront algorithm can eliminate more duplicates than can the Local Wavefront method. While the Local

Wavefront is not optimal with respect to duplicate removal, however, it is not terribly plagued by duplicates.

The main reason for its poor performance, relative to the Global Wavefront's, is the need to merge local

results.

The performance effects of duplicates cannot be captured merely by counting them. Their presence can

considerably complicate the contruction of hash tables used to implement the join, union and difference

operations. Because they need to support duplicate detection, the tables used in the Logarithmic and Direct

algorithms are considerably more co~nplcx than are those used in the Wavefront algorithms. This complexity

adds to the overhead of hash table operations. In short, the duplicate problem is compoundd by side-effects

that appear at the implementation level of abstraction.

The poor performance of the Direct algorithm is altributable mainly to its high communicalion costs. The

fundamental structure of the algorithm imposes severe constraints on the amount of concurrency that can bc

achieved. An iteration is required for each vertex in the input graph - at the start of each iteration, a

successor list must be broadcast. Except for very small relations on small domains, this results in the sending

of a very large number of small messages. The running time of the algorithm comes to be dorninatcxl by this

message sending. Although this algorithm may be quite suitable for the serial case, especially if the data will

not fit in main memory, it is it is not very amenable to coarse-grained distribution.

Of the four algorithms tested, the Global Wavefront method emerges almost unequivocally as the winner.

In both local processing and combined cost, it is the most efficient for all data sets tested. Its serial

progenitor, the Delta-Wavefront algorithms, consistently outperforms the serial Logarithmic and Direct

algorithms. I conclude that the Global Wavefront algorithm's good performance relative to the others stems

mainly from the relative efficiency of the underlying serial algorithm on which it is based, rather than any

special amenability to distribution. That the Global outperforms the Local Wavefront algorithm is, of course,

due to its distributing more efficiently.

Not surprisingly, the Local Wavefront algorithm always sustains the lowest communication cost. The

shortcoming of this algorithm is that it produces local results which overlap with each other. Result

collection thus involves merging. The merge cost accounts for about half of total local processing costs.

From this case study emerge some heuristics which seem applicable to coarse-grained distributed

processing in general.

In the serial case, structural characteristics of the data can often be exploited to advantage. But reliance on

such structure can make it harder to distribute the algorithm. For example, the Logarithmic algorithm relies

on the fact that its join drivers are at some particular level (a power of 2). To ensure that all such tuples

which can drive each other do so, three copies of the driving relation have to be exchanged each iteration.

The Delta-Wavefront algorithm, which does not rely on such specific structural properties, can be distribuled

without the need for exchanging any inlermcdiate results. (This option is instantiated in the Local Wavcfront

algorithm.)

A related condition which proves problematic is reliance on complicated relationships bctwcen a

multiplicity of data objects. We simply have more objects to keep track of. On a scrial model, this is

relatively cheap. On a distributed one, communication between objects usually means communication

between machines.

These matters point to a more general concern. The more global slate each machine requires, the more

overhead is incurred. Complicated algorihms will generally require the maintainance of complicated state.

In distributing them, efficiency will tend to be impaired by the need to communicate that state.

Partitioning on hash values suggests itself as an attractive method of parcelling work out between

machines. (This is an example of a serial technique, used to optimize disk access, which does translate well

to the distributed environment.) Maintaining strict partition boundaries as an invariant condition yields an

important benefit - it vastly simplifies the collection of results. It is primarily for this reason that the Global

Wavefront algorithm outperforms the Local Wavefront. There is, of course, a cost to maintaining this

invariant. Intermediate results must be exchanged. In other words, more global state must be made available

to the individual participants. Comparing the Local and Global Wavefront algorithms, we see a tradeoff

between maintaining global state and local processing. This manifests itself as a tradeoff between

communication and local processing.

A rather obvious general dictum for coarse-grained distribution is that the granularity of data distribution

should indeed be coarse. Small messages are much more costly per byte than are large ones. In addition,

more messages require more synchronization points, resulting in less concurrency.

Clearly, the heuristics I suggest are not always mutually compatible. The Global Wavefront algorithm must

communicate more global state than must the Local version. The Local Wavefront's communication consists

of fewer messages, and no small ones. Yet the Global method outperforms the Local. In cases of tradeoff

between global state replication, communication and local processing, it may be difficult to estimate a priori

which choices will be best. In such cases, one resorts to experiment.

5.2. Other Results in the Literature

For the serial case, rcsults from Lu [11] indicate that the Delta-Wavefront algorithmii performs

considerably worse than the Logarithmic. This result is confirmed by Ioannidis [9]. Again for the serial

case, Agrawal and Jagadish [I] give results indicating that the Direct method (a vcrsion of Warrcn's

algorithm) substantially outperforms the Logarithmic. It would seem then that a forteriori the Direct

outperforms the Delta-Wavefront.

In view of these results, ours must seem surprising indeecl! According to our results for both the serial and

the distributed cases, versions of the Delta-Wavefront algorithm turn out to be the most efficient. The Global

Wavefront had the lowest costs for all samples tested, except for the (750,1000) sample set, where the serial

Delta-Wavefront algorithm triumphed. The second-best overall performance was achieved by the Local

Wavefront algorithm. For small computation sizes, however, the serial Delta-Wavefront algorithm actually

achieved a shorter running time. Actually, the serial Delta-Wavefront compares even better than the figures

in tables E-3 and E-2 indicate. The costs for the distributed algorithms are based on the unrealistic

assumption of perfect load balancing - load balancing is not an issue for a serial algorithm.

The main reason for the seemingly contradictory results has to do with how costs are accounted. The other

studies account for complexity either mainly or exclusively in terms of disk access costs. In terms of disk

access, it is not surprising that the Logarithmic algorithm outperforms the Delta-Wavefront method. Lu says,

"Intuitively, the source relations are only read from the disks once in one iteration. The more tuples

generated in one iteration, the fewer number of iteratios needed to complete the computation." [l l] The

Logarithmic algorithm certainly uses fewer iterations.

Lu's method of accounting does not reveal the deleterious effects of duplicates in the Logarithmic

algorithm. "Furthermore," he writes, "we assume that duplication elimination costs are the same for all three

algorithms, and they are not taken into account." [l l] If we only charge for disk access, this assumption is

perfectly sound - duplicates would not be written to disk. The cost of duplicates shows up in cpu time, which

Lu does not charge for at all. Considering that disk access costs unit costs are several orders of magnitude

higher than cpu costs, failing to account for cpu costs is justifiable, i fwe assume that main memory is scarce.

In this study, we have assumed a main memory model - we do not charge for disk access at all! This makes it

hard to compare our results with Lu's (or with Ioannidis'). What we can conclude is that cheaper memory

will favour the serial Delta-Wavefront algorithm over the Logarithmic method.

'LU calls it the Semi-Naive algorithm

Lu estimates the problcm size by counting join inpuu. The running time (cpu cost) of the Logarithmic

algorithm is, for dense graphs, dominated by join output sizes. It is because those outputs contain so many

duplicates that the algorithm fairs so poorly. (The Direct algorithm also canies suffers from this duplicate

problem, though less so.) Our simulations count both inputs and outputs.

The serial Direct algorithms suggested by Agrawal and Jagadish are very efficient in minimizing disk

access. They too estimate cost in terms of disk access - their consideration of cpu cost is very abstract.

According to our estimatcs, the Direct algorithm is slower than the Delta-Wavefront even in the serial case.

There are two reasons for this. The first is that the Direct method generates more duplicates. The second has

to do with implementation details. In the Direct algorithm, two copies of the output relation are inserted into

hash tables. In the Delta-Wavefront, one copy of the source and just one copy of the result are inserted into

tables. Hash table insertion is expensive. The cost for the Direct method is compounded by the fact that it

uses more complicated table structures.

It might seem that considerations of disk access for the serial case would carry over to communication in

the distributed case. For a variety of reasons discussed in this thesis, the cases differ. But there is a most

salient difference between disk traffic and communication that I have not mentioned. And this is the most

important difference of them all. Sending tuples across a LAN is much cheaper than writing them to (or

reading them from) a disk! Communication costs are on the same order as cpu costs. In fact, it is often

cheaper to send a tuple to another site for processing than it is to process it locally. If this were not so, the

tradeoff between local processing and communication would hardly be worth investigating. If the data will

not fit into main memory, a lot of processing can be justified to avoid disk access. In the main memory

distributed case, extra processing to avoid communication is much less attractive.

Lu suggests a "hybrid" of the Delta-Wavefiont, employing level relaxation and source relation reduction.

His results indicate that this hybrid algorithm outperforms the Logarithmic or the unmodified Delta-

Wavefront (semi-naive), at least in terms of disk access. As I mentioned in Chapter 2, level relaxation seems

well worth investigating for the distributed main memory context as well. Source relation reduction involves

quite a lot of processing overhead. If efficiency is estimated in terms of cpu time, this extra overhead will

seriously impair performance. The only processing advantage gained is that the loading factor of the join

hash table will be reduced, resulting in slightly less costly list lookups. Our tests indicate that those lookups

do not contribute a great deal to total running time - table insertions are much more costly. Accordingly, I

doubt that source relation reduction will be worth the extra processing cost. (If the join relations have to be

written to disk, reducing their size undoubtedly will significantly improve performance. Again, we note that

disk access is, relative to processing, very expensive.)

Ioannidis and Ramakrishnan have proposed a method of computing transitive closure based on a depth first

search. [lo] Their study is for the serial case. The method is very good wilh respect to dctccting and

removing duplicates. This leads me to think that for the serial case, the approach has much promise, even for

a main memory modcl. They say, "A preliminary study of the potential for parallel execution and

performance improvements through good blocking and paging heuristics shows much promise. However, as

we progress from Basic-TC to the more sophisticated algorithms, it appears that there is a mdeoff between

these factors and the benefits of a strictly depth-first search order." [lo] Any new serial algorilhm for TC

should at least be considered as a candidate for distribution. However, depth-first search does not easily lend

itself to concurrent processing. In addition, reliance on topological features of the input graph can be

expected to complicate the task of distributing the algorithm - there is more global state to keep track of. I

suggest that this depth-first approach may be more appropriate for a tightly coupled environment, where such

techniques as parallel prefix computation can be efficiently implemented.

5.3. Suggestions for Future Research

It would seem that expected join result sizes could, given input relation size, domain size, and a uniform

distribution, be easily predicted by a combinatoric or probabilistic study. The case proved resistant to my

efforts. I think that the problem is interesting enough to warrant more research.

The Global Wavefront algorithm's performance might be improved if it allowed some level relaxation. A

higher degree of level relaxation could be obtained if the exchange step employed asynchronous

communication.

While we are confident in the soundness of our methodology, it would be reassuring to do some

experiments to confirm them. We might also reanalyze the studies on joining and sorting, using this

methodology, and then to compare the analytical with the empirical results. This more general application of

the methodology is in itself an interesting research topic.

Appendix A

The Distributed Total Closure Algorithms

In this section I prcsent the distributed algorithms which we ultimately simulated. The pseudo-code used to

describe them is perhaps a bit cryptic. Specifics of irnplcmentation are discussed in the chapter 3,

"Implementation Issues". Comprehension can be abetted by reading that chapter and the motivation providcd

in chapter 2, section 2 ("The Distributed Context").

The "Exchange" step, which occurs at least once in each algorithm, includes a union operation. As it

receives fragments from other machines, each host unions them together. Sometimes simple concatenation

suffices. In other cases, two or more different fragments may include copies of the same tuple. In this case,

a true union is required. These cases are distinguished, for each exchange step of each algorithm, in chapter

4, "Analysis". How the other steps are implemented can be gleaned from in chapter 3, "Implementation

Issues".

In each algorithm, the source (input) relation is denoted by "A", and local result relations by Ci. The other

variables denote intermediate relations or relation fragments. Their meaning should be clear from context.

A.0.1. Algorithm 1: Global Wavefront

1. Distribution:

Divide A into p equal-sized subrelations, and disuibutc A; to machine i , for 1 < i 5 p .
2. FOR EACH MACHINE i, DO THE FOLLOWING:

a. Partition:

Partition Ai into p parts, i.e., Pi$ 1 I j I p , by hashing on the 1st column of Ai.

Partition A; intop parts, i.e., Q i j , 1 < j I p, by hashing on the 2nd column of Ai.

b. Exchange:

Each P i j and Q i j is sent from machine i to machine j , for 1<i j S p .

Ai = UP;,;, 1 < j < p

6Ai = u Q,,i, l 1 j < p

c. Build Local Hash Tables:

Using 6Ai from step 2a as input, build a hash table for the result relation, Ci.

Also build a hash table for the local fragment of the source relation, A;.

d. WHILE (6 4 not all null) DO THE FOLLOWING :

i. Join and Partition:

AAi = 6Ai join Ai

Implemented by looping through 6 4 , hashing each member into Ai . AAi is

partitioned into p parts, Qijl 1 r j < p , by hashing M i on its 2nd column, as in step

2a. Partitioning is done on the fly, as each join output tuple is generated.

ii. Exchange:

Each Qi is sent from machine i to machine j, as in step 2a.

Mi = u Qj,i, 1 I j I p

iii. Union and Set Difference:

6Ai = M i - Ci

Ci = Ci u 6Ai

3. Result Collection:

Each machine i, 2 1 i < p sends Ci to machine 1, the Controller, which concatenates the Ci's

together.

A.0.2. Algorithm 2: Local Wavefront

1. Distribution: Send the entire source relation A to each machinc.

2. FOR EACH MACHINE i, D3 THE FOLLOWING:

a. Partition:

Choose a segment Ai of A, 1 5 i 5 p . where p is the number of machines. Each machinc gets

a disjoint segment, and all segments are within one tuple of being equal in size. Using a

uniform hash function, partition segment Ai into p fragments,Pij, I l j l p .

b. Exchange:

Each Pij is sent from machine i to machine j .

6Ai = UP,,^, I l j , i l p .

c. Build Local Hash Tables:

Ci = &Ai

Set up a join hash table (A) and a local result collection hash table (Ci). All of the source

relation (A) is installed into A. Only the local fragment of A @Ai) is installed into Ci.

d. Local Closure:

WHILE (Mi not null), do the following:

i. Local Join:

Mi = 6Ai join A

ii. Local Union and Set Difference:

a . = M . - M .

Ci = Cu6Ai

3. Result Collection:

Each machine i , 2 1 i l p sends Ci to machine 1, the Controller. For each incoming fragment,

sequentially, the Controller merges that fmgment into the combined result C, by inserting it into a

hash table, filtering out duplicates. Once merging is complete, the contents of that table are copied

into the result relation.

A.0.3. Algorithm 3: Logarithmic Method

1. Distribution:

Divide A into p equal-sized subrelations, and disuibute Ai to machinc i , for 1 < i 5 p .

2. FOR EACH MACHINE i, DO THE FOLLOWING:

a. Partition:

Partition Ai intop parts, i.e., Pi> 1 5 jI p, by hashing on the 1st column of A;.

Partition Ai intop parts, i.e., Q . ., 1 < j I p , by hashing on the 2nd column of Ai.
' J

b. Exchange:

Each Pi j and Q i j is sent from machine i to machine j, for l l i j l p .

Pi = 1 5 j I p

Qi = u Q . . , l S j 5 p
I.'

c. Initialize Hash Tables:

Set up a hash table for Pi and for the closure relation, Ci .

FOR EACH tuple t E Pi DO THE FOLLOWING:

- insert t into table for Pi

d. REPEAT THE FOLLOWING :

i. Union:

Ci = Ci u Pi

FOR EACH tuple t E Pi DO THE FOLLOWING :

- insert t into table for Ci

ii. Join and Partition:

Ri = Pijoin Qi

Implemented by looping through Q i , hashing each member into into P i . Ri is

partitioned into two separate output relations, P i j and Q i j , 1 I i J I p . P i j is formed

by hashing Ri on its 2nd column, and Q i j by hashing it on the 1st. Partitioning and

copying are done on the fly, as each join output tuple is generated.

iii. Exchange:

Each P i j and Q i j is sent from machine i to machine j, as in step 2b.

iv. Build Join Table and Filter:

Pi = u Pii. 1 I j l p

Qi = uQjVi , 1 5 j 5 p

FOR EACH tuple t E Pi DO THE FOLLOWG:

- insert I into table for Pi

FOR EACH tuple u E Qi DO THE FOLLOWING:

- insert u inlo table for Qi

- if u not a duplicate, copy to output version of Qi

v. Join and Partition:

6Di = Ci join Qi

Implemented by looping through Qi , hashing each member into into C i . 6Di is

partitioned into p parts, GDij, 1 < j < p , by hashing 6Di on its 2nd column.

vi. Exchange:

Each 6Dij is sent from machine i to machine j.

Di = urn.., J J l s j rp

vii. Union:

Ci = Ci u D i

Implemented by looping through D i , inserting each tuple into the table for C i .

Unioning removes duplicates.

UNTIL (Di is null at all machines)

3. Result Collection:

Each machine i, 2 5 i< p sends Ci to machine 1 , the Controller, which concatenates the Ci's

together.

A.0.4. Algorithm 4: Direct Method

1. Distribution:

Divide A into p equal-sized subrelations, and distribute Ai to machine i , for 1 li l p .
2. FOR EACH MACHINE i, DO THE FOLLOWING:

a. Partition:

Partition Ai intop parts, i.e., Pi$ 1 I j < p , by hashing on the 1st column of Ai.

b. Exchange:

Each Pi is sent from machine i to machine j, for 1S.i j I p .
Ai = U P . . , 1 S j I p

I.'

c. Build Hash Tables:

Build Table 1, predecessor lists, from Ai, by hashing on the 2nd column.

Build Table 2, successor lists, from Ai, by hashing on the 1st column.

3. FOR EACH unique column 1 value vi, 1 li I v:

a. Distribution:

vi's host machine broadcasts vi and its successor list, (succ(vi)).

b. FOR EACH MACHINE h, DO IN PARALLEL:

FOR EACH v, E (pred(vi)) resident on machine h:

FOR EACH vk E (succ(vi)) :

i. (succ(v,)) = (succ(v,)) u (vk)

ii. (pred(vk)) = (pred(vk)) u (v,)

4. Result Collection:

Each machine i, 2 l i l p sends Ci to machine 1, the Controller, which concatenates the Ci's

together.

Appendix B

Cardinalities

By "cardinalities", I mean "numbers of units". The specific units denoted are detailed in the key beneath

table B-1. The key also cross-indexes the names used in the table with the corresponding ones used in the

analysis. Cardinalities referred to in the analysis which are not listed can be derived from those which are.

Those derivations can be gleaned from the equations preceding each algorithm in the step-by-step analysis

(Chapter 4). All values in this table were obtained by simulating the algorithm concerned. For each

algorithm and relation size, ten tests were run, each with different randomly-generated (uniform) data. The

values shown are averages over the ten runs.

L
0 :A2i>-sur 1021 13,434 d a 5163 60,550
G
A Di-sum 1296 22 1,052 d a 7199 1,770,597
R
I <D~>-suIT: 1245 39,745 n/a 7087 293,271
T
H ast-<A2i: 27 551 1 d a 28 26,855
M
I dups 5 1 200,832 d a 112 1,507,544
C

iterations 4 5 n/a 5 6

succ-sum 1364 3460 17,027 7063 20,769
D
I mi-sum 700 2373 1 1,978 3707 12,96 1
R
E last-succ 4 8 248 12 87
C
T du ps 29 8036 977,633 58 71,061

iterations 525 63 1 715 2635 3161

Table B-1: Cardinalities

Values for each of the variables just listed indicate number of tuples.

succ-sum ::= C", I (succ(vi)) l

A different successor list is broadcast at the start of each iteration. The formula above
sums them.

last-succ ::= I(succ(v,~)) l

Values for succ-sum and last-succ indicate the number of elements (ie. vertices) in successor lists.

mi-sum ::= zZ1 lmil

Values for mi-sum indicate the number of matches found.

iterations ::= the number of iterations that the algorithm takes to complete

dups ::= the number of duplicate tuples that the algorithm processes.

For the Global Wavefront algorithm, this is just Gi-sum - <Gi>-sum - all duplicates can
be detected locally.

For the Local Wavefront algorithm, it is Li-sum - <Gi>-sum; not all duplicates generated
can be detected locally. The number of duplicates that can be detected locally is found
by Li-sum - -sum.

For the Logarithmic algorithm, dups = (Mi-sum - <Mi>-sum) + pi-sum - <Di>-sum).
This just includes internal duplicates - even the serial version cannot remove external
duplicates. Note that <Mi>-sum + <Di>-sum > ICI. The difference is attributable to
external duplicates.

In the Direct algorithm, all duplicates generated are detected locally.

Table B-2: Cardinality Ranges - Global Wavefront

relation size
(tuples)

Gi-sum (rnin)

Gi-sum (max)

<Gi>-sum (min)

<Gi>-sum (max)

iterations (min)

iterations (max)

key domain size
1000

750

2343

3584

2330

3573

10

18

key domain size
5000

3750

13,251

21,621

13,243

21,581

13

41

5000

65,38 1

335,831

64,768

314,185

37

72

1000

7329

38,099

7205

36,121

17

47

1250

93,611

242,785

80,326

190,47 1

4 1

63

key domain size
1000

relation size
(tuples) 750 1000 1250

Li-sum (max) 1 3586 1 40,372 1 295,128

iterations (rnin) 10 17 41

iterations (max) 18 47 63

key domain size
5000

figures are for 4 participating machines

Table B-3: Cardinality Ranges - Local Wavefront

I key domain size I key domain size

relation size
(tuples)

A2i-sum (min)

Table B-4: Cardinality Ranges - Logarithmic

:Di>-sum (rnin)

:Db-sum (m a)

iterations (rnin)

terations (m a)

1000

801

2664

4

5

750

865

* 5000

3750

4609

443 1

96,126

5

6

1000

2399

5000

16,447

1250

n/a

n/a

n/a

n/a

n/a

4947

1 1,922

4

6

46,400

783,683

6

7

relation size
(tuples)

succ-sum (min)

SUCC-sum (max)

mi-sum (min)

mi-sum (m a)

dups (min)
- --

dups (max)
---- -- -

iterations (rnin)

iterations (m a)

key domain size
1000

key domain size
5000

Table B-5: Cardinality Ranges - Direct

Appendix C

Local Processing Unit Costs

1000 buckets in A and C type hash tables
2000 buckets in B type hash table

Table C-1: Local Processing Unit Costs - Small Hash Tables

Tables C-1 and I,3 show unit costs, in milliseconds/tuple, for operations on hash tablcs. Notc that those

costs can vary, dcpcnding on the rinxbw of buckers in the tab!e. "table load refers to thc maximum number

of tuples in the tabic. Fox each table load, each opi.ration wrt.: exccnad IOOfiW timcs, and the average cost

pix operation taken.

J'll o)pmtes only on iykw A ~ables, KT1 only on type H ubles, and JTID only on [~JJC C. J'iL is applied r:,

h d i .4 md C type ubles. 'T'he colurnas headed by '!K?1 dups" and "J'I'ID dups" give the cos~s for detecting

dup1icalr.s in the type B ,and C ubies, respectively. 'niese are lower tltatl the values for R1? md J'TID, since

no stmagi.. allwation is~equird - duplicates tielected by RTI arid J'1'ID cqxra~ions x e simply discarded.

5000 buckets in each hash table

table
load

1,000
5,000
10,000
25,000
50,000
1 00,000

Table C-2: Local Processing Unit Costs - Large Hash Tables

basic local processing operation

-- - ---

1000 buckets in tables A and C, 2000 in table B

JTI

.lo7

.09 1

.082

.075

.074

.070

Table C-3: Unit Costs - COPY

no
retr

.000006

.000009

.000010

.000009

.000009

.000009

table
load

1,000
5,000
10,000
25,000
50,000
100,000

Tables C-3 and C-4 give COPY costs in milliseconds/tuple. Again, each value listed was obtained by

averaging 100,000 tuple copies. Since tuples are sometimes copied from hash tables, two tabulations are

RTI

.072

.072

.076

.085

.099

.I26

JTID

.I61

.I31

.I13
- -

.097

.093

.095

RTI
dups
.037

.042

.047

.063

.088

.I40

from
relation

.000014

.000015

.000015

.000015

.000016

.000015

from
table A

.000021

.000018

.000016

.000015

.000015

.000016

JTID
dups
.047

.047

.047
- --

.049

.052

.058

from
table B

.000017

.000013

.000013

.000013

.000012

.000012

JTL

.017

.019

..

.019

.019

.020

.020

from
table C

.WOO29

.000027

.000022

.000019

.000017

.000015

5000 buckets in each table

Table C-4: Unit Costs - COPY

presented. m e cost to retrieve from a hash table depends on its loading factor, which in turn depends on the

number of buckets.) The "from relation" column lists costs for copying from a relation stored in stream form.

The "no retr" column gives costs for copying when the tuples do not have to be retrieved - ie. they are

available as separate local variables.

no
retr

.000008

.000009

.000008

.000009

.000009

.oOoolO

For the "from relation" and "no retrieval" columns, "table load" should be read as "length of (number of

tuples in) stream". Not surprisingly, unit costs under these columns do not vary significantly with input size.

In all cases, the PART operation either retrieves its input from a stream-structured relation, or does not

require retrieval. Likewise, the "retrieve from relation" cost is constant. Costs which are constant (do not

vary with the size of the input to the operation) are tabulated in C-5. Values are in msJtuple.

from
relation

.000014

.000015

.000015

.000015

.000015

.000016

table
load

1,000
5,000
10,000
25,000
50,000

100,000

from
table C

.000042

.000029

.000023

.000019

.000017

.000016

from
table A

.000032

.000020

,000018

.000016

.000015

.000016

from
table B

.000025

.000015

.000014

.000013

.000012

.000012

COPY (with retrieval) 1 .014

OPERATION

retrieve from relation

COPY (no retrieval)

PART (no retrieval) 1 -019

COST

.oO5

.009

I PART (with retrieval) 1 .024

Table C-5: Constant Local Processing Costs

Appendix D

Communication Unit Costs

Table D-1: Sun-3 V-System IPC Timing Information

message size
(bytes)

cost (ms.)

Table D-2: Sun-3 V-System Communication Costs per Tuple

Table D-1 shows, for various message sizes, the total cost of sending a message of that size. This table is

taken from [12]. From those figures, I have derived the values shown in D-2. In computing communication

costs, small messages (message size less than 1K bytes, or 128 tuples) are treated differently from larger

ones. The message cost of a small message is taken from the following formula:

cost = 2 + (message-size in tuples - 4)(.033) milliseconds.

Larger messages are charged for on a per-tuple basis. The cost per tuple is found by interpolating linearly

between the values in table D-2.

32

2

message size
(tuples)

cost
(ms. / tuple)

For broadcasting large messages, we use the same method as for point-to-point transmission (ie. we charge

the same as for a point-to-point send). For small messages, however, the cost processing more

512

4

4

SO00

1K

6

64

.0625

2K

9

128

.0469

4K

11

256

.0352

8K

16

512

.0215

16K

25 -

1024

.0156

2048

.0122

acknowledgements adds significantly to the cost per tuple. For the minimum-size message to Lhrec: receivers,

we charge 3.9 ms., and to seven receivers 5.0 ms.. Additionaly data up to 1K are charged at the normal rate

(.033 ms./tuple). The formulas for ~hrcc and seven receivers respectively are:

cost = 3.9 + (message-size in tuples - 4)(.033) milliseconds.

cost = 5.0 + (message-size in tuples - 4)(.033) milliseconds.

Appendix E

Results

The tables in this section show total costs for each algorithm, for each sample set tested. All costs are in

seconds. The values shown are averages over ten simulation runs.

relation size

Zlobal Wave (4:

Slobal Wave (8:

Local Wave (4)

Local Wave (8)

Logarithmic (4)

Logarithmic (8)

Direct (4)

Direct (8)

key domain s I key domain size
5000

Table E-1: Local Processing Costs

key domain size
1000

Global Wave (411 0.29 1 0.81

relation size
(tuples)

Global Wave (8)(0.56 1 1.20

750

Local Wave (4)

Local Wave (8)

Direct (8) 1 2.76 1 3.43 1 5.35

- --

1000

Logarithmic (4)

Logarithmic (8)

Table E-2: Communication Costs

1250

0.08

0.12

0.28

0.5 1

0.23

0.27

1.54

1.79

1.92

2.23

n/a

n/a

relation size

Global Wave (4:
--

Global Wave (8:
- - - --

Local Wave (4)

Local Wave (8)

Logarithmic (4)

Logarithmic (8)

Direct (4)

key domain size
1000

I key domain size
5000

Direct (8)
- - - -

Table E3: Combined Local Processing and Communication Costs

Table E-4: Costs for Serial Algorithms

relation size
(tuples)

ALGORITHM
Delta-Wave

Logarithmic

I Direct 1 0.73 1 3.34 1 51.35 1 2.71 1 26.34

key domain size
1000

key domain size
5000

750

0.37

0.76

3750

1.97

3.37

5000

17.28

103.71

1000

1.87

15.86

1250

16.66

d a

key domain size
1000

relation size
(tuples) 750 1000 1250

Global Wave (411 0.95 1 1.28 1 1.74

Global Wave (811 0.61 1 1.22 1 2.48

Local Wave (4) 1 0.93 1 0.95 1 1.05

Local Wave (8) 1 0.84 1 0.92 1 1.08

Logarithmic (4) 1.43 2.01 d a

Logarithmic (8) 1.19 3.02 d a

Direct (4) 0.3 1 0.86 2.82

Direct (8) 0.25 0.8 1 4.2 1

I key domain size
5000

Table E-5: Speedup

Appendix F

Inter-algorithm Cost Comparisons

Each table details the cost differences between the Global Wavefront alogorithm and one of the others. For

each basic cost parameter, the difference between the number of units charged to the Global algorithm, and

the number charged to the algorithm being compared with it, is listed. Each term is accounted for in the

appropriately-numbered comment beneath its table.

opention Global Wavefront LocalWavcfront

tuples

messages (p-1) I * + 2@1) 2- bP
1.

PART I'4 - + = I I 6.
P P

COPY ICI ' (ICI - IAI) 7. + - 8.
P P

JTI MI lo. -
P

JTL la 13. - - '@I 13.
P P

Table F-1: Global Wavefront vs. Local Wavefront

1. Initial distribution of source relation. The Global algorithm sends a different fragment to each
other machine, while the Local one broadcasts the entire source relation. b,, (Local alg.) is
applied to the number of messages broadcast (in this case l), to reflect added cost of
broadcasting over point-to-point send.

2. The Global algorithm exchanges two copies of each partition, the Local just one.

3. The total of intermediate data that the Global algorithm exchanges. The Local does not
exchange intermediate results.

4. lcBl includes duplicates that cannot be detected before result collection.

5. See point 2. above. The extra copy exchanged by the Global method is partitioned differently,
so the relation exchanged has to be partitioned twice. The Local algorithm exchanges only one
COPY.

6. This is the cost of partitioning intermediate results, preparatory to exchanging them. The total
amount of data partitioned is divided by p, since the machines can partition their local relations
concurrently.

7. Copying required to make new driver relations during processing.

8. Preparation of local results for transmission to controller - machines can work in parallel.

9. The Local algorithm merges by insertion into a hash table at the controller. We assume that
each algorithm takes as input a relation in stream form - the output should be in the same form.
Nonduplicates must be copied to the stream implementation of the result (TC) relation.

10. In the Global algorithm, each machine builds a join hash table for just its own partition. In the
Local one, that table must include the entire source relation, since data are not exchanged
during processint

11. Li will generally include more duplicates that Gi.

12. The controller merges the local results from each other machine into its own. This is done by
filtering them through a type B hash table.

13. In the join operation, each tuple in the driver (wavefront) relation is looked up in a table
containing the source relation. Each member of the local closure is included in the wavefront
relation exactly once during the entire running time of the algorithm.

opera tion Global Wavefront Logarithmic

tuples

messages

-

PART

COPY ! (ICI - MI) 3.
P

JTI

RTI

JTID 1 IlogfI (LQil
P

JTL

Table F-2: Global Wavefmnt vs. Logarithmic

1. The initial setup and result collection costs are identical for these algorithms. Each exchanges
intermediate results. The Global algorithm has only a single join per iteration. while the Log
one has two. In the Log algorithm, two copies of the fist join's output have to be exchanged,
since that relation is joined with itself. While lA2'1 and iDil tend to bc much larger than G ; , the
Log method uses only I log2r I iterations.

2. The relations to be exchanged have to be partitioned. The total amount of data to be partitioned
is divided by p, since the machines can work in parallel.

3. For each iteration > 0, each algorithm builds its driver for the next iteration.

4. The JTI operation is for inserlion into the type A hash table, which the Logarithmic algorithm
does not use.

5. This term describes the cost of initializing the result (type B) table for the Global Wavefront
algorithm. The Log algorithm collects results in a type C table.

6. This term covers the cost of inserting generated tuples into the result. Gi includes duplicates.
These are filtered out by the RTI operation.

7. n2' may contain a lot of internal duplicates. They are removed by filtering the relation through
a type B hash table.

8. Both joins use a type C table. The join table for the second join is also the result table. This
expression covers the cost of building both tables.

9. Costs of looking up drivers in join tables. The Global algorithm has one join, the Logarithmic
two. The JTL operation works on both type A and type C hash tables.

operation Global Wavefront LocalWavefront

tuples

- - -

bp Zsl I (suecc(vi)) l

b~ ICI -MI = - [(MI + 2) + 22w] 2. 2

messages

PART

COPY

JTI ' (ICI - MI) 6.
P

RTI

Table F-3: Global Wavefront vs. Direct

1. In the initial setup, the Global algorithm exchanges two copies of the the source relation, the
Direct algorithm just one. The result collection procedure is identical for both algorithms.

2. In the Global algorithm, machines exchange intermediate results. In the Direct, each iteration
involves a single machine broadcasting a successor list. bp is applied to the number of
messages (w) broadcast by the Direct algorithm, to reflect the added cost of a broadcast over a
point-to-point send.

3. JTI is the insertion operator for the type A hash table. The Global algorithm installs only the
initial source fragment - this is used in the join operation. The Direct algorithm stores the
predecessor lists in a type A table. Between the participating machines, the entire closure ends
up being stored in this structure.

4. The Global algorithm accumulates its results in a type B table.

5. Successor lists are stored in a type C table. This expression includes the cost of initializing
each machines table to include its hgment of the source relation, and of merging each
successor list broadcast into that table (one list per iteration). Note that Si includes duplicates.

6. The lookup costs for driving the join.

7. Cost of finding predecessors of each vertex (once per iteration).

8. Each iteration, the successor list of each predecessor of the "current" vertex has to be looked up
in the successor list structure (hash table type C).

9. Merging two successor lists together involves inserting one of them into the secondary structure
which contains the other. The JTID operation includes the cost of finding that secondary
structure. But when this list merging is done, the algorithm already has a pointer to it. Thus
the lookup cost has to be subtracted.

References

1. Agrawal, Rakesh and Jagadish, H.V. Direct Algorithms for Computing the Transitive Closure of
Database Relations. Proceedings of the 13th VLDB Coonference, 1987, pp. 255-266.

2. Cheriton, D.R. and Lantz, K.E., Principal Investigators. V-System 6.0 Reference Manual.
Distributed Systems Group, Stanford University, 1986.

3. DeWiu, DJ., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R. and Wood, D.
Implementation Techniques for Main Memory Database Systems. Proc. of ACM-SIGMOD
Conference on Management of Data, 1984, pp. 1-8.

4. Han, J. and Henschen, LJ. Handling Redundancy in the Processing of Recursive Database
Queries. Proceedings of ACM-SIGMOD Conference on Very Large Data Bases, 1987, pp. 73-81.

5. Han, J., Qadah, G. and Chaou, C. The Processing and Evaluation of Transitive Closure Queries.
Han - School of Computing Science, Simon Fraser University, Qadah and Chaou - Dept. of Electrical
Engineering and Computer Science, Northwestern University, 1987.

6. Han, J. and Luk, W.S. What Kinds of Recursions Can Be Processed by Transitive Closure
Strategies? To appear in Proc. of 3rd International Symposium on Methodologies for Intelligent
Systems, 1988.

7. Henschen, LJ. and Naqvi, S. "On Compiling Queries in Recursive First-Order Databases".
JACM 31 , l (1984).

8. Horowitz, E. and Sahni, S.. Fundamentals of Computer Algorithms. Computer Science Press,
1984.

9. Ioannidis, Y.E. On the Computation of the Transitive Closure of Relational Operators.
Proceedings of the 12th International VLDB Coonference, 1986, pp. 403-41 1.

10. Ioannidis, Y.E. and Rarnakrishnan, R. Efficient Transitive Closure Algorithms. Computer
Sciences Department, University of Wisconsin, 1988.

11. Lu, H. New Strategies for Computing the Transitive Closure of a Database Relation. Proc. of
the 13th International VLDB Conference, 1987, pp. 267-274.

12. Luk, W. S., Wang, Xiao and Ling, Franky. On the Communication Cost of Dismbuted Database
Processing. Proc. of the 8th International Conference on Distributed Computing Systems, 1988.

13. Lu, H., Mikkilineni, K. and Richardson, J.P. Design and Evaluation of Algorithms to Compute
the Transitive Closure of a Database Relation. Proc. of the 3rd International Data Engineering
Conference, 1987, pp. 112-1 19.

14. Raschid, L. and Su, S.Y.W. A Parallel Processing Strategy for Evaluating Recursive Queries.
Proceedings of the 12th International Conference on VLDB, 1986.

15. Valduriez, P. and Boral, H. Evaluation of Recursive Queries Using Join Indices. Proc. of the 1st
International Expert Database Systems Conference, 1986, pp. 197-208.

16. Wang, X. and Luk, W.S. Parallel Join Algorithms for a Network of Workstations. to appear in
Proc. of International Symposium on Databases in Parallel and Distributed Systems, 1988.

17. Wang. X. Query Processing for Distributed Main Memory Database Systcms. School of
Computing Science, Simon Fraser University, 1987.

18. Warren, Henry S. Jr. "A Modification of Warshall's Algorithm for the Transitive Closure of
Binary Relations". Communications of the ACM 18,4 (1975), 218-220.

19. Warshall, S. "A Theorem on Boolean Matrices". JACM 9, 1 (1962). 11-12.

