RESOLVABLE PATH DESIGNS OF COMPLETE GRAPHS

by
Min-Li Yu
B.Sc., Fudan University, 1983

Ext. Dip., Simon Fraser University, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
 THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
 in the Department
 of
 Mathematics and Statistics

© Min-Li Yu 1987
SIMON FRASER UNIVERSITY
August 1987

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

APPROVAL

Name: Min-Li Yu
Degree: MASTER OF SCIENCE
Title of thesis: Resolvable Path Designs of complete graphs

Examining Committee:
Chairman: Dr. J. J. Sember

Dr. K. Heinrich
Senior Supervisor

Dr. B. Alspach

Dr. P. Hell

Df bermond
External Examiner
Department of Computer Science
Universite de Paris-Sud

Date Approved: Aug., 5, 1987

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay
\qquad GRAPHS
\qquad
\qquad

Author:

ABSTRACT

A resolvable path design is a decomposition of λ copies of $K_{n}\left(\lambda K_{n}\right)$ into edge-disjoint subgraphs such that each subgraph consists of n / k vertex-disjoint paths of length $k-1$, each with k vertices. We also call a resolvable path design a P_{k}-factorization of λK_{n} and each subgraph a P_{k}-factor.
J. D. Horton found necessary conditions, and conjectured that they were also sufficient for the existence of resolvable path designs of λK_{n}. He proved that for $\lambda=1$ the conditions are asymptotically sufficient (that is, for each value of k the design exists if n is sufficiently large) and that they are sufficient for any λ when $k=3$. In this thesis we prove that the conjecture is sufficient when k is even and $\lambda=1$, and for all values of k when $\lambda=2$.

In the second part of the thesis we investigate the following two questions:
(1) For given integers s and t, under what conditions can λK_{n} be decomposed into $s 1$-factors and $t P_{3}$-factors?
(2) For given integers s and t, under what conditions can λK_{n} be decomposed into $s 1$-factors and $t P_{4}$-factors?

Necessary and sufficient conditions are found for both questions.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. K. Heinrich for suggesting this topic and guidance. This work would not have been possible without her tremendous help and encouragement.

I would also like to thank Gillian Nonay and Shelly Wismath for their advice. Finally my special thanks to Mrs. Sylvia Holmes for her help during my M.Sc. studies.

The financial support provided by Simon Fraser University is also gratefully acknowledged.

To my parents and sisters

TABLE OF CONTENTS

Approval ii
Abstract iii
Acknowledgements iv
Dedication v
List of Figures vii
A. Introduction 1
B. Resolvable Path Designs 7
C. Resolvable Path Designs with mixed path lengths 29
D. References 54

LIST OF FIGURES

Figure Page
Fig. 1.1(a) 10
Fig. 1.1(b) 10
Fig. 1.2 10
Fig. 1.3 15
Fig. 1.4 16
Fig. 1.5 17
Fig. 1.6 20
Fig. 1.7 22
Fig. 1.8 24
Fig. 2.1 30
Fig. 2.2 31
Fig. 2.3 34
Fig. 2.4 38
Fig. 2.5 38
Fig. 2.6 40
Fig. 2.7 42
Fig. 2.8(a) 44
Fig. 2.8(b) 44
Fig. 2.9 51

PART A

INTRODUCTION

The complete graph on n vertices, in which each vertex is joined precisely once by an edge to each other vertex, is denoted by K_{n}. We denote by λK_{n} the graph with n vertices in which each vertex is joined by precisely λ edges to each other vertex.

A G-factorization of λK_{n} is a partition of the edges of λK_{n} into disjoint spanning subgraphs each of which is the vertex disjoint union of $n /|V(G)|$ copies of G. These spanning subgraphs are called G-factors of λK_{n}. In the special case when $G=P_{k}$, where P_{k} is a path with k vertices, we call such a partition a reso/vable path design or a P_{k}-factorization. If C_{k} denotes the cycle with length k, then we similarly define a C_{k}-factorization. When G is regular of degree r, we may also call the G-factorization (G-factor) an r-factorization (r-factor). If the graph H has a G-factorization, then we say that H is G-factorable. Factorizations are often called decompositions.

The Oberwolfach problem was formulated by G. Ringel and first mentioned in [2]. It asks: Given integers $r_{1}, r_{2}, \ldots, r_{t}$ ail at least 3 and so that $r_{1}+\ldots+r_{t}=n$ where n is odd, is it possible to find a 2-factorization of K_{n} so that each 2-factor contains a cycle of each length r_{1}, \ldots, r_{t} ? This problem has been studied for a long time and there are many papers on it (see for example [1], [4], and [7]). One of the more interesting cases of the Oberwolfach problem is when $r_{i}=r_{j}$, where $1 \leq i, j \leq t$. This has been solved in [1], where the authors also show that, provided n is even and not equal to $4 \mathrm{~m}, \mathrm{~m}$ is odd, and $\mathrm{K}_{\mathrm{n}} \backslash \boldsymbol{F}$ (the complete
graph with a 1 -factor removed) has a C_{m}-factorization whenever m divides n. The case precluded remains unsettled.
J. D. Horton [6] considered the related question for path decompositions of λK_{n}. These are resolvable path designs or path factorizations. The question is, given an integer $k \geq 2$, is it possible to find a P_{k}-factorization of λK_{n} ? The difference between this problem and the Oberwolfach problem is that Horton considered paths of the same length instead of cycles and with the complete multigraph. He made the following conjecture.

Conjecture. A resolvable path design of λK_{n} with path length k exists (or λK_{n} is P_{k}-factorable), if and only if k divides n and $n(k-1) / k$ divides $\lambda n(n-1) / 2$.

It is not difficult to see that these conditions are necessary. The first is obtained by counting the number of vertices, and the second by counting the number of edges. Some special cases of this conjecture have been known for a long time. For example, when $k=2$, it asks for a 1 -factorization and when $k=n$, for a Hamilton path decomposition. Horton also gave answers for some special cases of this conjecture. The following two theorems are the two main theorems in his paper.

Theorem. Let k be any integer greater than 1 . Then there exists a constant $c(k)$ such that if $n>c(k)$, then K_{n} is P_{k}-factorable if and only if $n \equiv k^{2}$ (modulo $\operatorname{lcm}(2 k-2, k)$), where $\operatorname{lcm}(a, b)$ denotes the lowest common multiple of a and b.

Theorem. The graph λK_{n} is P_{3}-factorable if and only if, (A) when $\lambda \equiv 1$ or $3(\bmod 4)$, then $n \equiv 9(\bmod 12)$,
(B) when $\lambda \equiv 2(\bmod 4)$, then $n \equiv 3(\bmod 6)$, and
(C) when $\lambda \equiv 0(\bmod 4)$, then $n \equiv 0(\bmod 3)$.

The proof of the first theorem is based on the fact that for all k>4, the existence of resolvable block designs is known asymptotically due to a result of D. Ray-Chaudhuri and R. Wilson [8]. When $k=2$ a resolvable block design on n vertices is simply a 1 -factorization of K_{n}, which exists if and only if n is even. When $k=3$, we have Kirkman Triple Systems which exist if and only if $n \equiv 3(m o d 6)$ [9] and when $k=4$, the resolvable designs exist if and only if $n \equiv 4(\bmod 12)$ [3]. The proof of the second theorem uses Bose's method of pure and mixed differences on the appropriate group. P. Hell and A. Rosa also used this method in [5] to construct several examples of resolvable path designs.

In this thesis, we will provide more evidences for Horton's. conjecture by proving the following two results which are the two main theorems in the first part of the thesis.

Theorem. The graph K_{n} is $P_{2 k}$-factorable if and only if $n \equiv 2 k(\bmod (2 k(2 k-1)))$.

Theorem. The graph $2 \mathrm{~K}_{\mathrm{n}}$ is P_{k}-factorable if and only if , (a) when $k=2 m, n \equiv 2 m(\bmod (2 m(2 m-1)))$ and
(b) when $k=2 m+1, n \equiv(2 m+1)(\bmod (2 m(2 m+1)))$.

In the Oberwolfach problem, one case of special interest is that when all cycles have length 3 . As we mentioned before these designs are called Kirkman Triple Systems, or C_{3}-factorizations. R. Rees [10] considered a generalization of this factorization and obtained the following theorem.

Theorem. Let $n \equiv 0(\bmod 6)$ and $n \geq 18$. The complete graph K_{n} can be decomposed into $t C_{3}$-factors and s-factors if and only if $2 t+s=n-1$.

Motivated by Rees' work, we investigated the following two questions.
(1) For given integers s and t, under what conditions can λK_{n} be decomposed into $s 1$-factors and $t P_{3}$-factors?
(2) For given integers s and t, under what conditions can λK_{n} be decomposed into $s 1$-factors and $t P_{4}$-factors?

We can think of such path decompositions as resolvable path designs with mixed path lengths. For convience, we introduce the following definition.

An $(s, t)_{k}$-factorization of λK_{n} is a partition of the edges of λK_{n} into s P_{2}-factors (also called 1 -factors) and $t P_{k}$-factors. In particular, an $(s, 0)_{k}$-factorization is a 1 -factorization and a $(0, t)_{k}$-factorization is a P_{k}-factorization. We also call λK_{n} $(s, t)_{k}$-factorable if there exists such factorizations.

The two theorems which answer the above two questions and are discussed in the second part of the thesis can be stated as follows.

Theorem. The graph λK_{n} has an $(s, t)_{3}$-factorization if and only if, either
(A) $s=0$, and
(1) $\lambda \equiv 1,3(\bmod 4), n \equiv 9(\bmod 12)$ and $t=3 \lambda(n-1) / 4$, or
(2) $\lambda \equiv 2(\bmod 4), n \equiv 3(\bmod 6)$ and $t=3 \lambda(n-1) / 4$, or
(3) $\lambda \equiv 0(\bmod 4), \mathrm{n} \equiv 0(\bmod 3)$ and $t=3 \lambda(n-1) / 4$,
(B) $t=0, n \equiv 0(\bmod 2)$ and $s=\lambda(n-1)$, or
(C) $s t \neq 0,3 s+4 t=3 \lambda(n-1)$ and $n \equiv 0(\bmod 6)$.

Theorem. The graph λK_{n} is $(s, t)_{4}$-factorable if and only if, either
(A) $s=0$, and
(1) $\lambda \equiv 0(\bmod 3), n \equiv 0(\bmod 4)$ and $t=2 \lambda(n-1) / 3$, or
(2) $\lambda \equiv 1,2(\bmod 3), n \equiv 4(\bmod 12)$ and $t=2 \lambda(n-1) / 3$,
(B) $t=0, n \equiv 0(\bmod 2)$ and $s=\lambda(n-1)$, or
(C) $s t \neq 0,2 s+3 t=2 \lambda(n-1)$ and $n \equiv 0(\bmod 4)$.

PART B

RESOLVABLE PATH DESIGNS

As mentioned in the introduction, Horton conjectured necessary and sufficient conditions for the existence of resolvable path designs. We will prove two special cases of his conjecture here. The first case is when $\lambda=1$ and the path length is odd (the path has an even number of vertices) and the second is when $\lambda=2$ and there is no restriction on the path length.

For the convenience of the proof, we introduce the following definition.

In the complete bipartite graph $K_{m, m}$, where $V\left(K_{m, m}\right)=A U B$, $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$, the 1 -factor of distance t consists of the edges $\left\{\left(a_{i}, b_{i+t}\right): 1 \leq i \leq m\right\}$, where subscript addition is modulo m and on residues $1, \ldots, m$.

Before we present the two main theorems in this chapter, some lemmas are first proved.
. Lemma 1.1. The graph $\mathrm{K}_{2 \mathrm{~m}, 2 \mathrm{~m}}$ can be decomposed into m $P_{2 m}$-factors and one 1 -factor.

Proof. Let $V\left(K_{2 m, 2 m}\right)=U U V$, where $U=\left\{u_{1}, \ldots, u_{2 m}\right\}$ and $V=\left\{v_{1}, \ldots v_{2 m}\right\}$. To find the $P_{2 m}$-factor we will use the fact that $\mathrm{K}_{2 \mathrm{~m}}$ can be decomposed into m Hamilton paths, say H_{1}, \ldots, H_{m}. Assuming that the vertex set of $K_{2 m}$ is $\{1,2 \ldots 2 m\}$ we construct a $P_{2 m}$-factor of $K_{2 m, 2 m}$ from each H_{i} as follows. If (k, j) is an edge in H_{i}, then the $P_{2 m}$ factor contains the edges $\left(u_{k}, v_{j}\right)$ and $\left(v_{k}, u_{j}\right)$. It is not difficult to see that the $P_{2 m}$-factors of $K_{2 m, 2 m}$ obtained from H_{i} and $H_{j}, i \neq j$, are edge-disjoint.

Repeating this procedure for all $H_{i}, i=1, \ldots, m$, we obtain m edge-disjoint $P_{2 m}$-factors in $K_{2 m, 2 m}$. On deleting from $K_{2 m, 2 m}$ the edges of these $P_{2 m}$-factors, what remains is a 1 -factor in $K_{2 m, 2 m}$ with distance 0 . So we are done.

Lemma 1.2. The graph $K_{m(2 m-1), m(2 m-1)}$ is $P_{2 m}$-factorable.
Proof. Let $V\left(K_{m}(2 m-1), m(2 m-1)\right)=U U V$ where $U=\left\{u_{1}, \ldots, u_{m}(2 m-1)\right\}$ and $V=\left\{v_{1}, \ldots, v_{m(2 m-1)}\right\}$. Let f_{i} be the 1 -factor of $K_{\mathrm{In}}(2 \mathrm{~m}-1), \mathrm{m}(2 \mathrm{~m}-1)$ with distance i. We claim that the set of edges obtained from the union of $2 m-1$-factors with consecutive distances $a, a+1, \ldots, a+2 m-2$ can be decomposed into $m P_{2 m}$ factors. It is not difficult to see that the union of two consecutive 1 -factors, $f_{i} \cup f_{i+1}$, forms a Hamilton cycle. We can delete $2 m-1$ independent edges on the Hamilton cycle and obtain $2 m-1$ 2m-paths, a $\mathrm{P}_{2 \mathrm{~m}}$-factor.

Now to verify the claim, we divide each of U and V into $2 m-1$ blocks so that the vertex labels in each block are consecutive; that is, the blocks are $\left\{v_{k m+i}: 1 \leq i \leq m\right\}$ and $\left\{u_{k m+i}: 1 \leq i \leq m\right\}$ where $0 \leq k \leq 2 m-1$. Now we divide the proof into two parts.
(1) $\mathrm{m}=2 \mathrm{p}+1$.

We consider the 1 -factors f_{i} of $K_{m}(2 m-1), m(2 m-1)$, where $-(m-1) \leq i \leq(m-1)$. Pairing f_{i} and f_{i+1}, where $i=1,3, \ldots, m-2$, and f_{i-1} and $f_{i}, i=-1,-3, \ldots,-(m-2)$, we obtain $m-1$ Hamilton cycles. Let $e_{i, k}^{1}=\left(u_{k m+p}-(i-1) / 2, v_{k m+p+2+(i-1) / 2}\right)$ and
$e_{i, k}^{2}=\left(u_{k m+p+1-(i+1) / 2}, v_{k m+p+(i+1) / 2}\right)$. From $f_{i} \cup f_{i+1}$,
$i=1,3, \ldots, m-2$, delete the edges of $E_{i}^{1}=\left\{e_{i, k}^{1}: 0 \leq k \leq 2 m-2\right\}$, which all have distance $i+1$. Moreover, $\left(f_{i} \cup f_{i+1}\right) \backslash E_{i}^{l}$ is a $P_{2 m}$-factor of $K_{m(2 m-1), m(2 m-1)}$.

From $f_{i} \cup f_{i-1}, i=-1,-3, \ldots,-(m-2)$, delete the edges of $E_{i}^{2}=\left\{e_{i, k}^{2}: 0 \leq k \leq 2 m-2\right\}$, which all have distance i. Moreover, $\left(f_{i} \cup f_{i-1}\right) \backslash E_{i}^{2}$ is a $P_{2 m}$-factor of $K_{m}(2 m-1), m(2 m-1)$.

Now let us study the edges in $E_{i}^{1} U E_{i}^{2}$. First we partition them into sets $E(k)$ where $E(k)=\left\{e_{i, k}^{1}: i=1,3, \ldots, m-2\right\} \cup\left\{e_{i, k}^{2}\right.$: $i=-1,-3, \ldots,-(m-2)\}, 0 \leq k \leq 2 m-2$. For example, when $m=7, E(0)$ is as shown in Figure 1.1(a).

(a)

(b)

Fig. 1.1

Fig. 1.2

It is clear that for each value of $k, E(k)$ is isomorphic to this graph and disjoint from it. Now add the edges of f_{0}. It is easy to check that $f_{0} \cup\{E(k): 0 \leq k \leq 2 m-2\}$ is a $P_{2 m}$ factor (see Figure 1.1(b)).
(2) $m=2 p$.

Let $e_{i, k}^{1}=\left(u_{k m+p-1-(i-1) / 2}, v_{k m+p+1+(i-1) / 2}\right)$ and $e_{i, k}^{2}=$ $\left(u_{k m+p-(i-1) / 2}, v_{k m+p+1+(i-1) / 2}\right)$. Consider the $1-f a c t o r s f_{i}$ where $i=-m,-(m-1), \ldots,-1,0,1, \ldots, m-3, m-2$. Pair these 1 -factors as $f_{i} \cup f_{i+1}, i=1,3, \ldots, m-3$, and $f_{i} \cup f_{i-1}, i=-1,-3, \ldots,-(m-1)$. From each of the first pairings, we respectively delete the edges in set $E_{i}^{1}=\left\{e_{i, k}^{1}: 0 \leq k \leq 2 m-2\right\}, i=1,3, \ldots, m-3$, and from the second pairings delete (respectively) $E_{i}^{2}=\left\{e_{i, k}^{2}: 0 \leq k \leq 2 m-2\right\}, i=-1,-3, \ldots,-(m-1)$. It is not difficult to check that each of $\left(f_{i} \cup f_{i+1}\right) \backslash E_{i}^{1}$, $i=1,3, \ldots m-3$, and $\left(f_{i-1} \cup f_{i}\right) \backslash E_{i}^{2}, i=-1,-3, \ldots,(m-1)$ is a $P_{2 m}$-factor. Let $E(k)=\left\{e_{i, k}^{1}: i=1,3, \ldots, m-3\right\} \cup\left\{e_{i, k}^{2}\right.$: $i=-1,-3, \ldots,-(m-1)\}$ where $0 \leq k \leq 2 m-2$. As before, it is easy to see that $f_{0} \cup\{E(k): 0 \leq k \leq 2 m-2\}$ is also a $P_{2 m}$ factor in
$K_{m}(2 m-1), m(2 m-1)$. The case $m=6$ is shown in Figure 1.2.

We have proved that the set of edges obtained from the union of 2m-1 1 -factors with consecutive distances can be decomposed into $m P_{2 m}$-factors. It is not difficult to see that the edge set of $K_{m}(2 m-1), m(2 m-1)$ is the union of m edge sets each of which is formed from 2m-1 1-factors with consecutive distances and they are all isomorphic. Therefore, the desired result follows immediately and this completes the proof.

The following lemma is an immediate result of Lemma 1.2 .

Lemma 1.3. The graph $K_{n, n}$ is $P_{2 m}$-factorable if and only if
$n \equiv 0(\bmod (m(2 m-1)))$.

Proof: Suppose that $K_{n, n}$ is $P_{2 m}$-factorable then $2 n$ is divisible by $2 m$ and n^{2} is divisible by $n(2 m-1) / m$. These two conditions imply $n \equiv 0(\bmod (m(2 m-1)))$. So we have proven the necessity.

Now we are going to prove that the conditions are sufficient.

We divide the two parts of $K_{n, n}$ into blocks of size $m(2 m-1)$. Contracting each block into one vertex, we obtain a $K_{p, p}$ where $n=m(2 m-1) p$. We know that $K_{p, p}$ has a 1 -factorization and each 1 -factor corresponds to p copies of $K_{m(2 m-1), m(2 m-1)}$ in $K_{n, n}$. By Lemma 1.2, it follows that $K_{n, n}$ is $P_{2 m}$-factorable.

Lemma 1.4. The graph $\mathrm{K}_{4 \mathrm{~m}}{ }^{2}$ is the union of a $\mathrm{K}_{2 \mathrm{~m}}$-factor and $2 m^{2} P_{2 m}$-factors.

Proof. We divide $V\left(K_{4} \mathrm{~m}^{2}\right)$ into 2 m blocks each of size 2 m . Contracting each block into one vertex we obtain a $\mathrm{K}_{2 \mathrm{~m}}$.

We know that $K_{2 m}$ has a 1 -factorization, say $f_{1}, \ldots, f_{2 m-1}$. Each f_{i} corresponds to n copies of $K_{2 m, 2 m}$. By Lemma 1.1 , $K_{2 m, 2 m}$ can be decomposed into $m P_{2 m}$-factors and one 1 -factor. We can assume that the 1 -factor left in each copy of $K_{2 m, 2 m}$ has distance 0 and all these edges forms a $\mathrm{K}_{2 \mathrm{~m}}$-factor which is $\mathrm{P}_{2 \mathrm{~m}}$-factorable. Deleting all $\mathrm{P}_{2 \mathrm{~m}}$-factors obtained in this way (total (2m-1)m $+m P_{2 m}$-factors), we are left with a $K_{2 m}$ factor of
$\mathrm{K}_{4 \mathrm{~m}}{ }^{2}$ which is the subgraphs corresponding to the blocks. This completes the proof.

Now we present the first main result of this chapter.

Theorem 1.5. The graph K_{n} is $P_{2 m}$-factorable if and only if $\mathrm{n} \equiv 2 \mathrm{~m}(\bmod (2 \mathrm{~m}(2 \mathrm{~m}-1)))$.

Proof. Suppose that K_{n} is $P_{2 m}$-factorable, then n is divisible by $2 m$ and $n(n-1)$ is divisible by $n(2 m-1) / m$. These two conditions imply $n \equiv 2 m(\bmod (2 m(2 m-1)))$.

Suppose that $n=2 m+2 m(2 m-1) p$. We will show that K_{n} is $P_{2 m}$-factorable. $T o$ do so we divide the proof into two parts depending on the parity of p.

$$
\text { If } p=2 s+1 \text {, then } n=2 m(2 m-1)(2 s+1)+2 m \text {. }
$$

We divide $\mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)$ into $2 \mathrm{~s}+2$ blocks in which $2 \mathrm{~s}+1$ of them have size $2 \mathrm{~m}(2 \mathrm{~m}-1)$ and one has size 2 m . Contracting each block into one vertex, we obtain a $\mathrm{K}_{2 \mathrm{~s}+2}$. Taking a 1 -factorization of $\mathrm{K}_{2 \mathrm{~s}+2}$ yields $2 s+1$-factors, say $f_{1}, \ldots, f_{2 s+1}$ and each f_{i} corresponds to s disjoint copies of $K_{2 m(2 m-1), 2 m(2 m-1)}$ and one copy of $K_{2 m(2 m-1), 2 m}$ in K_{n}. For each f_{i}, we take a $P_{2 m}$-factorization of the subgraph corresponding to the s copies of $K_{2 m(2 m-1), 2 m(2 m-1)}$. By Lemma 1.3, this is possible and yields $2 m^{2} P_{2 m}$-factors in that subgraph. In the graph $K_{2 m(2 m-1), 2 m}$, if we include the edges in both $K_{2 m(2 m-1)}$ and $K_{2 m}$, we have a $K_{4 m}{ }^{2}$ which , by lemma 1.4 , can be factored into $2 \mathrm{~m}^{2}$
$P_{2 m}$-factors and a $K_{2 m}$-factor one component of which corresponds to the block of size 2 m . We delete the $2 \mathrm{~m}^{2} \mathrm{P}_{2 \mathrm{~m}}$-factors obtained from the $K_{2 m(2 m-1), 2 m(2 m-1)}$ subgraphs and the $K_{4 m}{ }^{2}$. Doing this for each f_{i}, we see that we are left with a $K_{2 m}$ factor in K_{n}. But $K_{2 m}$ is $P_{2 m}$-factorable and hence K_{n} is $P_{2 m}$-factorable.

If $\mathrm{p}=2 \mathrm{~s}$, the construction is somewhat more complicated. Here $\mathrm{n}=2 \mathrm{~m}(2 \mathrm{~m}-1) 2 \mathrm{~s}+2 \mathrm{~m}=2 \mathrm{~m}(2 \mathrm{~s}(2 \mathrm{~m}-1)+1)$. We divide $\mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)$ into $2 \mathrm{~s}(2 \mathrm{~m}-1)+1$ blocks each of which has size 2 m . Contracting each block into one vertex, we obtain a $\mathrm{K}_{2 \mathrm{~s}(2 \mathrm{~m}-1)+1}$ which has a near 1 -factorization, say $f_{1}, \ldots, f(2 m-1) 2 s+1$ and each f_{i} corresponds to a $K_{2 m}$ and $s(2 m-1)$ copies of $K_{2 m, 2 m}$ in K_{n}. By Lemma 1.1, $K_{2 m, 2 m}$ can be decomposed into $m P_{2 m}$-factors and one 1 -factor. We also know that $\mathrm{K}_{2 \mathrm{~m}}$ can be decomposed into $\mathrm{m} \mathrm{P}_{2 \mathrm{~m}}$-factors. Therefore, in the subgraph corresponding to f_{i}, we delete the m $P_{2 m}$-factors so that we are left with an 1 -factor in each $K_{2 m}, 2 m$ and 2 m isolated vertices. Repeating this procedure for all the near 1 -factors, we obtain a graph in which there is only one 1-factor between each pair of blocks in K_{n}. It is important to note that in obtaining this graph, we were free to choose the 1 -factors between pairs of blocks independently.

We label the blocks from 1 to $2 s(2 m-1)+1$ and for the block i, we label its vertices from $v(i, 1)$ to $v(i, 2 m)$. Now we are going to prove that the graph as described above is $P_{2 m}$-factorable. (There will be $s(2 m-1)+s P_{2 m}$-factors.)

Consider the contracted graph $\mathrm{K}_{2 \mathrm{~s}}(2 \mathrm{~m}-1)+1$, we know that it can be decomposed into $s(2 m-1)$ Hamilton cycles. Fix one of these Hamilton cycles, say $(1,2, \ldots, 2 s(2 m-1)+1,1)$, where i is the label of the corresponding block. For each edge (i,i+1), $1 \leq i \leq 2 s(2 m-1)$, and $(2 s(2 m-1)+1,1)$ in the cycle, we choose the corresponding 1 -factor between the two blocks to be the 1 -factor with distance 1 (think of the vertices on the cycle being ordered by their positions on the cycle). If we now delete all of these edges between vertex sets $\{v(1, i), \ldots, v(2 s(2 m-1)+1, i)\}$ and $\{v(1, i+1), \ldots, v(2 s(2 m-1)+1, i+1)\}$ for fixed i, where $1 \leq i \leq 2 m$, then what remains will be a $P_{2 m}$-factor. In Figure 1.3 the case $m=2, s=1$ and $i=1$ is shown. Repeating this procedure for each of the $s(2 m-1)$ Hamilton cycles, we obtain $s(2 m-1)$ $P_{2 m}$-factors.

Fig. 1.3

Notice that the edges deleted from each Hamilton cycle are independent. Now we are going to prove that if we suitably choose the sets of independent edges for each Hamilton cycle, the union of them will form $s \mathrm{P}_{2 \mathrm{~m}}$-factors.

We divide the $s(2 m-1)$ Hamilton cycles into s groups so that each group has $2 m-1$ Hamilton cycles. We claim that in each group, the union of independent edge sets, if choosen suitably, forms a $\mathrm{P}_{2 \mathrm{~m}}$-factor. In each group, we label the Hamilton cycles from 1 to $2 \mathrm{~m}-1$ and then we choose, from the cycle labelled i, the independent edge set as the edges between $\{v(1, i), v(2, i), \ldots, v(2 s(2 m-1)+1), i)\}$ and $\{v(1, i+1), v(2, i+1), \ldots, v(2 s(2 m-1)+1, i+1)\}$. It is not difficult to check that union of the $2 \mathrm{~m}-1$ independent edge sets from the cycles in each group will form a $\mathrm{P}_{2 \mathrm{~m}}$-factor. This can be seen from Figure 1.4 in the case when $m=2$ and $s=1$. Since there are s groups, we obtain s $\mathrm{P}_{2 \mathrm{~m}}$-factors.

This completes the proof.

Fig. 1.4.

The following lemmas are used for proving Theorem 1.12, the second main result of the chapter. The idea used here is similar to that used before, but the construction is somewhat more
complicated.
Lemma 1.6. The graph $K_{2 n+1}$ can be decomposed into n edge-disjoint Hamilton paths and an one near 1 -factor.

Proof. Let $V\left(K_{2 n+1}\right)=\{0,1,2, \ldots, 2 n\}$. We arrange the vertices 1 to 2 n in a cycle with 0 as the centre and the vertices labelled is in increasing order in a clockwise dirction. Let H be the Hamilton cycle $(0,1,2,2 n, 3,2 n-1, \ldots, n, n+2, n+1,0)$. It is not difficult to see that $K_{2 n+1}$ can be obtained by, fixing the vertices of $K_{2 n+1}$ and rotating the edges of $H n-1$ times through an angle π / n about the centre vertex 0 . If we delete the edge $([(n+1) / 2]+1,2 n+2-[(n+1) / 2])$ from H we obtain a Hamilton path (where [x] denotes the largest integer which does not exceed x) Deleting the corresponding edge (under the rotation) from each of the other cycle yields n Hamilton paths and a near 1 -factor. Figure 1.5 shows the case when $n=5$.

Fig. 1.5

Lemma 1.7. The graph $2 \mathrm{~K}_{2 \mathrm{~m}+1}$ is $\mathrm{P}_{2 \mathrm{~m}+1}$-factorable.

Proof. We know that $K_{2 m+1}$ can be decomposed into m edge-disjoint Hamilton paths and one near 1 -factor (see Lemma 1.6). This near 1 -factor can be chosen arbitarily. So we take such a decomposition of each of the two copies of $K_{2 m+1}$ so that the union of the two near 1 -factors yields a Hamilton path. Hence, $2 K_{2 m+1}$ can be decomposed into $2 m+1$ Hamilton paths ($\mathrm{P}_{2 \mathrm{~m}+1}$-factors).

Lemma 1.8. The graph $2 \mathrm{~K}_{2 \mathrm{~m}+1,2 \mathrm{~m}+1}$ can be decomposed into (2m+1) $P_{2 m+1}$-factors and two 1 -factors.

Proof. By Lemma $1.7,2 \mathrm{~K}_{2 \mathrm{~m}+1}$ is $\mathrm{P}_{2 \mathrm{~m}+1}$-factorable. Therefore, we can use the same method as in the proof of Lemma 1.1 to get the desired result.

Lemma 1.9. The graph $2 \mathrm{~K}(2 \mathrm{~m}+1)^{2}$ is the union of a $2 \mathrm{~K}_{2 \mathrm{~m}+1}$-factor and $(2 \mathrm{~m}+1)^{2} \mathrm{P}_{2 \mathrm{~m}+1}$-factors.

Proof. We arrange the vertex set of $2 \mathrm{~K}(2 \mathrm{~m}+1)^{2}$ in a $(2 m+1) \times(2 m+1)$ array. The vertices of each row and column form a copy of $2 K_{2 m+1}$. We take the $2 m+1$ copies of $2 K_{2 m+1}$ defined by the columns of the array as the $2 \mathrm{~K}_{2 \mathrm{~m}+1}$-factor. Now we need to prove that the graph obtained on deleting this $2 \mathrm{~K}_{2 \mathrm{~m}+1}$-factor is $P_{2 m+1}$ factorable. Let $2 G$ be the graph obtained from deleting both the $2 K_{2 m+1}$-factor and the $2 m+1 P_{2 m+1}$ factors obtained from edges define by the $2 m+1$ rows (see Lemma 1.7). If we consider
each column as a block and contract it into a vertex, we obtain a copy of $\mathrm{K}_{2 \mathrm{~m}+1}$ which we know has m edge disjoint Hamilton cycles. It is easy to see that if we can prove that the subgraph in G corresponding to one of the Hamilton cycles is $P_{2 m+1}$-factorable, then we are done. We label the blocks on the cycle from 1 to $2 m+1$ and let the vertices in block i be $v(i, 1), \ldots, v(i, 2 m+1)$. Now we construct the $P_{2 m+1}$-factor as follows. Consider the bipartite graph formed by the edges between blocks 1 and 2. We construct the path ($\mathrm{v}(1, \mathrm{~m}+1)$, $v(2, m+2), v(1, m), v(2, m+3), \ldots v(1,2), v(2,2 m+1), v(1,1))$. (Figure $1.6(a)$ shows the case for $m=2$.) We see that each edge of this ($2 \mathrm{~m}+1$)-path has a different distance and moreover all distances $1,2, \ldots, 2 \mathrm{~m}$ occur on these edges. We take a copy of this subgraph in each bipartite subgraph corresponding to an edge of the Hamilton cycle under consideration. It is easy to check that the resulting graph is a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor (see Figure 1.6(b)). For each $i, 1 \leq i \leq 2 m$, we replace the edges
($v(a, b), v(c, d))$ of the $P_{2 m+1}$-factor by the edges ($v(a, b+i), v(c, d+i))$, where addition is modulo $2 m+1$ on the residues $1,2, \ldots, 2 m+1$, so obtaining another $2 m P_{2 m+1}$ factors. Applying this procedure to each Hamilton cycle, we get $m(2 m+1)$ $P_{2 m+1}$-factors which together constitute a $P_{2 m+1}$-factorization of G. Duplicate this to obtain the factorizatin of $2 G$. This completes the proof.

Fig. 1.6

Lemma 1.10. Let f_{i} be the 1 -factor with distance i in $K_{2 m(2 m+1), 2 m(2 m+1)}$. Then the subgraph induced by the edges of $\left\{f_{i} \mid i \in S\right\}$ where $S=\left\{0,1,(2 m+1),(2 m+1)+1, \ldots, i(2 m+1), i(2 m+1)+1, \ldots, 4 m^{2}-1,4 m^{2}\right\}$, is $\mathrm{P}_{2 \mathrm{~m}+1}$-factorable.

Proof. Let $V(K(2 m+1) 2 m,(2 m+1) 2 m)=U U V$, where $U=\left\{u_{i} \mid\right.$ $1 \leq i \leq(2 m+1) 2 m\}$ and $v=\left\{v_{i} \mid 1 \leq i \leq(2 m+1) 2 m\right\}$. Pairing the 1 -factors $\mathrm{f}_{\mathrm{i}(2 \mathrm{~m}+1)}$ and $\mathrm{f}_{\mathrm{i}(2 \mathrm{~m}+1)+1,}, 0 \leq \mathrm{i} \leq 2 \mathrm{~m}-1$, we obtain 2 m Hamilton cycles. For any Hamilton cycle we can delete 4 m independent edges so that from the remaining edges in the cycle we obtain a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor. (Each of the two 1 -factors has 2 m edges removed.) If we apply this procedure to each Hamilton cycle, we are left with $2 \mathrm{~m}(4 \mathrm{~m})$ edges which is the same as the number of edges in a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor of $\mathrm{K}_{2 \mathrm{~m}(2 \mathrm{~m}+1), 2 \mathrm{~m}(2 \mathrm{~m}+1)}$.

The question is whether we can suitably choose such sets of independent edges so that their union is a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor. We will show that the sets can be so chosen. Consider the ordered sets $S_{e}=\{0,(2 m+1)+1, \ldots, 2 i(2 m+1),(2 i+1)(2 m+1)+1, \ldots, 2(m-1)(2 m+1)$, $\left.4 m^{2}\right\}$ and $S_{0}=\{1,(2 m+1), \ldots, 2 i(2 m+1)+1,(2 i+1)(2 m+1), \ldots$, $\left.2(m-1)(2 m-1)+1,4 m^{2}-1\right\}$. It is easy to see that $S=S_{o} U S_{e}$ and $\left|S_{o}\right|=\left|S_{e}\right|=2 \mathrm{~m}$.

We now show that by suitably removing 2 m edges from each of the 1 -factors with distances in S_{e}, we can obtain $2 m$ vertex disjoint ($2 m+1$)-paths. First we choose edge (u_{1}, v_{1}) from f_{0}. Fixing v_{1} as an end vertex of the path, we extend this path at u_{1} to a ($2 m+1$)-path by using one edge from each of the 1 -factors with distances in S_{e} so that the ith edge in the path is from the 1 -factor with the ith element of S_{e} as its distance. (It will be (i-1) $(2 \mathrm{~m}+1)$ if i is odd and (i-1)(2m+1)+1 if i is even.) We call this path P. Construct $2 m$ other ($2 m+1$)-paths from P in the following way. If $\left(u_{k}, v_{t}\right)$ is an edge of P, let $\left(u_{k+(2 m+1)}, v_{t+(2 m+1) i}\right)$ be an edge of the path $P_{i}, 1 \leq i \leq 2 m$, where subscript addition is modulo $2 \mathrm{~m}(2 \mathrm{~m}+1)$ on the residues $1,2, \ldots, 2 m(2 m+1)$.

Now we need to show that these paths are indeed vertex disjoint. Suppose that each of U and v are divided into $2 m$ blocks each and each block has $2 m+1$ vertices. Let the vertices in block i of U be $u_{i+(i-1)(2 m+1)}, \ldots, u_{2 m+1+(i-1)(2 m+1)}$ and in block i of v be $v_{i+(i-1)}(2 m+1), \cdots, v_{2 m+1+(i-1)(2 m+1)}, 1 \leq i \leq 2 m$, and denote them by the 1 st, $2 n d, \ldots$, and $(2 m+1)$ th positions. As
defined before, the ith element in S_{e} is
$(i-1)(2 m+1) \equiv 0(\bmod (2 m+1))$, if i is odd and
$(i-1)(2 m+1)+1 \equiv 1(\bmod (2 m+1))$ if i is even. This implies that P is incident with vertices in different positions in each of the blocks and in each bipartitions. (Figure 1.7 shows the paths in the case $m=2$.$) Therefore, paths P_{1} P_{1}, \ldots, P_{2 m}$ are all vertex disjoint. Furthermore, we notice that these paths cover only vertices with position numbers 1 to m in the blocks of U and 1 to $m+1$ in the blocks of v.

Fig. 1.7

Now we construct another $2 \mathrm{~m}(2 \mathrm{~m}+1)$-paths, this time using edges with distances from S_{o}. We choose the first edge as (u_{m+1}, v_{m+2}) and fix u_{m+1} as an end vertex. Using the same method as before we extend it to a $(2 m+1)$-path which we call P'. As before, we obtain $2 m(2 m+1)$-paths. It can be seen that these paths are vertex disjoint. (In Figure 1.7 the bold path shows
the edges of P^{\prime} in the case $\left.m=2.\right)$

We notice that these paths cover all vertices with position numbers $\mathrm{m}+1$ to $2 \mathrm{~m}+1$ in the blocks of U and $\mathrm{m}+2$ to $2 \mathrm{~m}+1$ in the blocks of V. Thus it immediately follows that the $4 m$ ($2 \mathrm{~m}+1$)-paths form a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor. Now we only need to verify that after we delete the edges in this way, the remaining edges in each Hamilton cycle form a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor.

By the above construction we find that the ith edge in P and the ith edge in P^{\prime} belong to the same Hamilton cycle as defined what we call in the beginning of the proof. Now we define a modular graph for paths P and P^{\prime} and we call it G, where $V(G)=\operatorname{SUT}$ and $S=\left\{s_{1}, \ldots, s_{2 m+1}\right\}$ and $T=\left\{t_{1}, \ldots, t_{2 m+1}\right\}$. If ($\left.u_{k}, v_{j}\right)$ is an edge in P or P^{\prime}, then $\left(s_{a}, t_{b}\right)$ is in G where a and b are the values of k and j respectively, modulo $2 m+1$. (Here the residues are $1,2, \ldots, 2 m+1$.$) In this way, we obtain the graph G$ which is shown in Figure 1.8. It can be seen that corresponding. to P and P^{\prime}, we have vertex disjoint paths Q and Q ' in G and they all have the same length 2 m . In addition, the edges of Q and Q^{\prime} are all in the Hamilton cycle of G formed by 1 -factors with distances 0 and 1 . The ith edges of P and P^{\prime} are also the ith edges of Q and Q '. It is not difficult to find that the length of the path between the ith edges of P and P^{\prime} on the Hamilton cycle $H_{i}=f(i-1)(2 m+1) \cup f(i-1)(2 m+1)+1$ is the same as the path length between the ith edges of Q and Q ' on the Hamilton cycle formed by 1 -factors with distances 0 and 1 . (This can be seen clearly if we construct a modular graph for the
corresponding path.) Therefore, from the structure of G we see that the length of the path between the ith edges of P and P^{\prime} in H_{i} is 2 m . Since i is general, this completes the proof.

Fig. 1.8

Lemma 1.11. The graph $2 \mathrm{~K}_{2 \mathrm{~m}}(2 \mathrm{~m}+1), 2 \mathrm{~m}(2 \mathrm{~m}+1)$ is $P_{2 m+1}$-factorable.

Proof. We first consider one copy of $\mathrm{K}_{2 \mathrm{~m}(2 \mathrm{~m}+1), 2 \mathrm{~m}(2 \mathrm{~m}+1) \text {. By }, ~}^{\text {. }}$ Lemma 1.10 we know that the subgraph $G<E>$ induced by the edges of $E=\left\{f_{i}(2 m+1), f_{i}(2 m+1)+1 \mid 0 \leq i \leq 2 m-1\right\}$ can be decomposed into $2 m+1$ $P_{2 m+1}$-factors. Let $E_{j}=\left\{f_{i}(2 m+1)+2 j, f_{i(2 m+1)+2 j+1}: 0 \leq i \leq 2 m-1\right\}$, $1 \leq j \leq m-1$. It is not difficult to see that $G<E_{j}>=G<E>$ and that $K_{2 m(2 m+1), 2 m(2 m+1)}$ is the union of the subgraphs $G<E_{j}>, 1 \leq j \leq m-1$, $G<E>$ and $\{f(2 m+1) i+2 m \mid 0 \leq i \leq 2 m-1\}$. Thus $K_{2 m(2 m+1), 2 m(2 m+1)}$ can be decomposed into $m(2 m+1) P_{2 m+1}$-factors and the $2 m 1$-factors given by $\left\{f_{i}(2 m+1)-1 \mid 1 \leq i \leq 2 m\right\}$. In the second copy, we apply the same procedure except that the $2 m 1$-factors are $\left\{f_{i(2 m+1)} \mid 1 \leq i \leq 2 m\right\}$. This can be done by relabelling the graph. It is not difficult
to see that the subgraph $G\left\langle E^{\prime}\right\rangle$ induced by edge set $E^{\prime}=\left\{f_{i}(2 m+1)-1, f_{i(2 m+1)} \mid 1 \leq i \leq 2 m\right\}$ is isomorphic $G<E>$. Therefore, $2 K_{2 m(2 m+1)}, 2 m(2 m+1)$ is $P_{2 m+1}$-factorable. This completes the proof.

By using the preceeding lemmas and Theorem 1.5, we can resolve the case $\lambda=2$ in Horton's conjecture. This is Theorem 1.12 and the techniques used in its proof are similar to those used in the proof of Theorem 1.6.

Theorem 1.12. The graph $2 \mathrm{~K}_{\mathrm{n}}$ is P_{k}-factorable if and only if (a) when $k=2 m, n \equiv 2 m(\bmod (2 m(2 m-1)))$ and
(b) when $k=2 m+1, n \equiv(2 m+1)(\bmod (2 m(2 m+1)))$.

Proof. Suppose $2 \mathrm{~K}_{\mathrm{n}}$ is P_{k}-factorable. When $\mathrm{k}=2 \mathrm{~m}$, n must be divisible by $2 m$ and $n(n-1)$ must be divisible by ($2 m-1$) $n /(2 m)$. These two conditions imply $n \equiv 2 m(\bmod (2 m(2 m-1)))$. When $k=2 m+1$, n must be divisible by $2 m+1$ and $n(n-1)$ must be divisible by $2 m n /(2 m+1)$. These two conditions imply $n \equiv(2 m+1)(\bmod (2 m(2 m+1)))$. So we have proven the necessity. Now we are going to show that the conditions are also sufficient.

When $k=2 m$, the result immediately follows from Theorem 1.5.

Assume $k=2 m+1$ and $n=2 m+1+2 m(2 m+1)$ p. The proof is divided into two parts depending on the parity of p.

If $\mathrm{p}=2 \mathrm{~s}+1$, we divide $\mathrm{V}\left(2 \mathrm{~K}_{\mathrm{n}}\right)$ into $2 \mathrm{~s}+2$ blocks in which $2 \mathrm{~s}+1$ of them have size $2 m(2 m+1)$ and one has size $2 m+1$. Contracting
each block into one vertex, we obtain a copy of $\mathrm{K}_{2 \mathrm{~s}+2}$. Taking a 1-factorization of $\mathrm{K}_{2 \mathrm{~s}+2}$ yields $2 \mathrm{~s}+1$ 1-factors, say $\mathrm{f}_{1}, \ldots, \mathrm{f}_{2 \mathrm{~s}+1}$ and each f_{i} corresponds to s disjoint copies of
$2 K_{2 m}(2 m+1), 2 m(2 m+1)$ and one copy of $2 K_{2 m}(2 m+1), 2 m+1$ in $2 K_{n}$. For each f_{i}, we take a $P_{2 m+1}$-factorization of the subgraph corresponding to the s copies of $2 \mathrm{~K}_{2 \mathrm{~m}}(2 \mathrm{~m}+1), 2 \mathrm{~m}(2 \mathrm{~m}+1)$. By Lemma 1.11, this is possible and yields $(2 m+1)^{2} P_{2 m+1}$-factors in that subgraph. In the graph $2 \mathrm{~K}_{2 \mathrm{~m}}(2 \mathrm{~m}+1), 2 \mathrm{~m}+1$, if we include the edges in both $2 \mathrm{~K}_{2 \mathrm{~m}(2 \mathrm{~m}+1)}$ and $2 \mathrm{~K}_{2 \mathrm{~m}+1}$, we have a $2 \mathrm{~K}(2 \mathrm{~m}+1)^{2}$ which is the union of a $2 \mathrm{~K}_{2 \mathrm{~m}+1}$-factor and $(2 \mathrm{~m}+1)^{2} \mathrm{P}_{2 \mathrm{~m}+1}$-factors. (This is Lemma 1.9.) We delete the $(2 m+1)^{2} P_{2 m+1}$-factors obtained from all $2 \mathrm{~K}_{2 \mathrm{~m}(2 \mathrm{~m}+1), 2 \mathrm{~m}(2 \mathrm{~m}+1)}$ and the $2 \mathrm{~K}(2 \mathrm{~m}+1)^{2}$. We specify that this remaining $2 \mathrm{~K}_{2 \mathrm{~m}+1}$-factor includes the $\mathrm{K}_{2 \mathrm{~m}+1}$ which is one of the blocks. Having done this for each f_{i}, we see that we are left with a $2 \mathrm{~K}_{2 \mathrm{~m}+1}$-factor in $2 \mathrm{~K}_{\mathrm{n}}$. But $2 \mathrm{~K}_{2 \mathrm{~m}+1}$ is $\mathrm{P}_{2 \mathrm{~m}+1}$-factorable and hence $2 K_{n}$ is $P_{2 m+1}$-factorable if $n=2 m(2 m+1)(2 s+1)+2 m+1$.

If $\mathrm{p}=2 \mathrm{~s}$, the construction is somewhat more complicated. Here* $n=2 m(2 m+1) 2 s+2 m+1=(2 m+1)(4 m s+1)$. We divide $V\left(2 K_{n}\right)$ into $4 m s+1$ blocks each of which has size $2 m+1$. Contracting each block into one vertex, we obtain a copy of $\mathrm{K}_{4 \mathrm{~ms}+1}$ which has a near 1-factorization, say $f_{1}, \ldots, f_{4 m s+1}$, and each f_{i} corresponds to a $2 \mathrm{~K}_{2 \mathrm{~m}+1}$ and 2 ms copies of $2 \mathrm{~K}_{2 \mathrm{~m}+1,}, 2 \mathrm{~m}+1$ in $2 \mathrm{~K}_{\mathrm{n}}$. By Lemma 1.8 , $2 K_{2 m+1}, 2 m+1$ can be decomposed into $2 m+1 P_{2 m+1}$-factors and two 1 -factors (in fact $2 m+1$ copies of $2 K_{2}$). We also know that $2 K_{2 m+1}$ can be decomposed into $2 \mathrm{~m}+1 \mathrm{P}_{2 \mathrm{~m}+1}$-factors. Therefore, in the subgraph corresponding to f_{i}, we delete the $2 m+1 P_{2 m+1}$-factors
so that we are left with two 1 -factors in each $2 \mathrm{~K}_{2 \mathrm{~m}+1,2 \mathrm{~m}+1}$ and $2 \mathrm{~m}+1$ isolated vertices. Repeating this procedure for all the near 1 -factors, we obtain a graph in which there are only two 1-factors (as described above) between each pair of blocks in $2 \mathrm{~K}_{\mathrm{n}}$. It is important to note that in obtaining this graph, we were free to choose the 1 -factors between pairs of blocks independently. Now we are going to prove this graph is $\mathrm{P}_{2 \mathrm{~m}+1}$-factorable. We know this graph is a multigraph with multiplicity two. In the following proof we only consider a single copy of it.

We label the blocks from 1 to $4 \mathrm{~ms}+1$ and for each block i, we label its vertices from $v(i, 1)$ to $v(i, 2 m+1)$.

Consider the contracted graph $\mathrm{K}_{4 \mathrm{~ms}+1}$, we know that it can be decomposed into 2 ms Hamilton cycles. Fix one of these Hamilton cycles, say $(1,2, \ldots, 4 m s+1,1)$, where i is the label of the block. For each edge (i,i+1), $1 \leq i \leq 4 m s$, and $(4 m s+i, 1)$ in the cycle, we choose the corresponding 1 -factor between the two blocks to be the 1 -factor with distance 1 . If we now delete all of these edges between vertex $\operatorname{sets}\{v(1, j), \ldots, v(4 m s+1, j)\}$ and $\{v(1, j+1), \ldots, v(4 m s+1, j+1)\}$ for a fixed j where $1 \leq j \leq 2 m+1$, then what remains will be a $\mathrm{P}_{2 \mathrm{~m}+1}$-factor. Repeating this procedure for each of the 2 ms cycles, we obtain $2 \mathrm{~ms} \mathrm{P}_{2 \mathrm{~m}+1}$-factors.

Notice that the edges deleted from each Hamilton cycle are independent. Now we are going to prove that if we suitably choose the sets of independent edges from each Hamilton cycle,
the union of them will form $s P_{2 m+1}$ factors.

We divide the 2 ms Hamilton cycles into s groups so that each group has 2 m Hamilton cycles. We claim that in each group, the union of independent edge sets, if choosen suitably, forms a $P_{2 m+1}$-factor. In each group, we label the Hamilton cycles from 1 to 2 m and then we choose, from the cycle labelled i, the independent edge set as the edges between
$\{v(1, i), v(2, i), \ldots, v(4 m s+1, i)\}$ and $\{v(1, i+1), v(2, i+1), \ldots$, $\mathrm{v}(4 \mathrm{~ms}+1, \mathrm{i}+1)\}$. It is not difficult to check that the union of the 2 m independent edge sets from the cycles in each group will form a $P_{2 m+1}$-factor. Since there are s group, we obtain s $P_{2 m+1}$ factors. In total, we have
$(2 \mathrm{~m}+1)(4 \mathrm{~ms}+1)+2(2 \mathrm{~ms}+\mathrm{s})=(2 \mathrm{~m}+1)(4 \mathrm{~ms}+2 \mathrm{~s}+1) \mathrm{P}_{2 \mathrm{~m}+1}$-factors which is a $P_{2 m+1}$-factorization of $2 K_{n}$, where $n=(2 m+1)(4 m s+1)$.

This completes the proof.

PART C

resolvable path designs with mixed path lengiths

In this chapter, we prove necessary and sufficient conditions for the existence of ($s, t)_{3}$-factorizations and (s,t) $4^{\text {-factorizations of }} \lambda K_{n}$.

The main theorems are Theorem 2.8 and 2.18 and both are proved using recursive constructions. We begin with some lemmas.

Lemma 2.1. Let $\mathrm{V}\left(\mathrm{K}_{6,6}\right)=\mathrm{VUW}$ and $\mathrm{V}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{6}\right\}, \mathrm{W}=\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{6}\right\}$. The subgraphs $K_{6,6} \backslash\left\{f_{i}, f_{i+3}\right\}$, where $i \in\{0,1,2\}$ and $f_{i}=\left\{v_{j} w_{j+i}\right.$: $1 \leq j \leq 6\}$ with all addition modulo 6 and on residues $1, \ldots, 6$, are both P_{3}-factorable and C_{4}-factorable.

Proof. This can be done by direct construction as shown in Figure 2.1 when $i=2$. It is not difficult to see that $f_{i} \cup f_{i+3}$ is isomorphic to $f_{j} \cup f_{j+3}, i, j \in\{0,1,2\}$ and each is three 4-cycle. (Figure 2.1(a) is a P_{3}-factorization and Figure $2.1(\mathrm{~b})$ is a C_{4}-factorization.)

(a)

(b)

Fig. 2.1

Lemma 2.2. The graph K_{6} is $(s, t)_{3}$-factorable if $3 s+4 t=15$.

Proof. The non-negative integer solutions of $3 s+4 t=15$ are $(s, t)=(1,3)$ and $(5,0)$. The latter case is just a 1 -factorization which is trivial. When $(s, t)=(1,3)$, we give the following direct construction as shown in Figure 2.2.

Fig. 2.2

Lemma 2.3. The graph K_{12} is $(s, t)_{3}$-factorable if $3 s+4 t=33$.

Proof. All the possible non-negative integer solutions of $3 s+4 t=33$ are $(s, t)=(11,0),(7,3)$ and $(3,6)$. The first case is trivial. When $(s, t)=(7,3)$, we take a 1 -factorization of $K_{6,6}$ and two copies of a $(1,3)_{3}$-factorization of K_{6} as given in Lemma 2.2. When $(s, t)=(3,6)$, we take a $(2,3)_{3}$-factorization of $K_{6,6}$ and two copies of a $(1,3)_{3}$-factorization of K_{6}. By Lemmas 2.1 and 2.2, this is possible.

Hence we have the desired decompositions. This completes the proof.

Lemma 2.4. Let G be a graph. If G can be decomposed into two C_{3}-factors, then it can also be decomposed into three P_{3}-factors.

Proof. Let V_{1} and V_{2} be two C_{3}-factors. We consider each 3-cycle in V_{1} or V_{2} as a vertex of a graph in which two vertices are connected by an edge if and only if the corresponding two 3-cycles have one common vertex. So this is a 3-regular bipartite graph with V_{1} and V_{2} as the parts of the bipartition. This graph has a 1 -factorization with 1 -factors f_{1}, f_{2} and f_{3}. It is not difficult to see that each vertex in G is in the intersection of precisely two 3-cycles; one from each C_{3}-factor. Hence each vertex in G corresponds to an edge in the above bipartite graph.

Now we label the vertices of G as follows. If $x \in V(G)$ corresponds to the edge belonging to f_{i}, then we label it i. Each 3-cycle will have its vertices labelled 1,2 and 3.

We decompose each 3-cycle into one 2-path (an edge) and one 3-path. In V_{1}, we let the 2-path in each 3-cycle be (1,2). On removing these edges from V_{1}, the subgraph left over forms a P_{3}-factor in G. In V_{2}, we let the 2 -path be $(2,3)$ and again edges of V_{2} left over form another P_{3}-factor. After we delete the two P_{3}-factors, all vertices labelled 2 , still have degree 2 and the rest labelled 1 and 3 have degree 1 . It is easy to see that this graph is a P_{3}-factor. Therefore, G can be decomposed
into three P_{3}-factors.
(The ideas used in above proof are based on those of Horton in [6]. But the result proved here is slightly different from his.)

Lemma 2.5 [10]. Let $n \equiv 0(\bmod 6)$ and $n \geq 18 . K_{n}$ can be decomposed into $t C_{3}$-factors and $s 1$-factors if and only if $2 t+s=n-1$.

The following theorem is a special case of Theorem 2.8. It will simplify the proof of the Theorem 2.8 if we give it separately.

Theorem 2.6. If $s t \neq 0$, then K_{n} is ($\left.s, t\right)_{3}$-factorable if and only if $3 s+4 t=3(n-1)$ and $n=0(\bmod 6)$.

Proof. Suppose K_{n} is $(\mathrm{s}, \mathrm{t})_{3}$-factorable. Since $\mathrm{st} \neq 0$, n must be divisible by both 2 and 3. This implies that $n \equiv 0(\bmod 6)$. By counting the number of edges, it is easy to see that the given equation must be satisfied. So we have proved the necessary conditions.

Now we prove that the conditions are also sufficient.

By Lemmas 2.2 and 2.3, the result is true for $n=6,12$. Now we just consider the case for $n \geq 18$. Let (s, t) be a solution of $3 s+4 t=3(n-1)$. It is not difficult to see that $t \equiv 0(\bmod 3)$ and so we can assume $t=3 p$. Then $4(3 p)+3 s=3(n-1)$ which is $2(2 p)+s=n-1$. By Lemma 2.5, there exist a decomposition of K_{n} into 2p
C_{3}-factors and s 1 -factors. By Lemma 2.4, these $2 p C_{3}$-factors can be decomposed into $3 p P_{3}$-factors. Hence we are done.

Lemma 2.7. The graph $K_{2 n, 2 n, 2 n}$ is P_{3}-factorable.
Proof. We name the three parts of $V\left(K_{2 n}, 2 n, 2 n\right), U, V$ and W. Let $U=\left\{u_{i} \mid 1 \leq i \leq 2 n\right\}, V=\left\{v_{i} \mid 1 \leq i \leq 2 n\right\}$ and $W=\left\{w_{i} \mid 1 \leq i \leq 2 n\right\}$. Now we construct the P_{3}-factorization as follows.

Define edge sets $S_{i}=\left\{u_{j} v_{j+i}: 1 \leq j \leq 2 n\right\}, Q_{i}=\left\{v_{j} w_{j+i}: 1 \leq j \leq 2 n\right\}$ and $R_{i}=\left\{w_{j} u_{j+i}: 1 \leq j \leq 2 n\right\}$. It is not difficult to see that $S_{i} \cup Q_{i+1}, Q_{i} \cup R_{i+1}$ and $R_{i} \cup S_{i+1}$ are three P_{3}-factors of $K_{2 n, 2 n, 2 n}$. (The case $n=2$ and $i=0$ is shown in Figure 2.3) Letting $i=0,2,4, \ldots, 2 n-2$ we obtain a P_{3}-factorization.

Fig. 2.3

Actually, for the proof of Theorem 2.8 we only need the result that $K_{4,4,4}$ is P_{3}-factorable. Since the construction of the proof is easily extended to the general case that is what we have done.

Now we presented the first main theorem of this chapter.

Theorem 2.8. The graph λK_{n} is $(s, t)_{3}$-factorable if and only if one of the following holds.
(A) $s=0$, and
(1) $\lambda \equiv 1,3(\bmod 4), n \equiv 9(\bmod 12)$ and $t=3 \lambda(n-1) / 4$,
(2) $\lambda \equiv 2(\bmod 4), n \equiv 3(\bmod 6)$ and $t=3 \lambda(n-1) / 4$,
(3) $\lambda \equiv 0(\bmod 4), n \equiv 0(\bmod 3)$ and $t=3 \lambda(n-1) / 4$,
(B) $t=0, n \equiv 0(\bmod 2)$ and $s=\lambda(n-1)$,
(C) $s t \neq 0,3 s+4 t=3 \lambda(n-1)$ and $n \equiv 0(\bmod 6)$.

Proof. For the necessary conditions, (A) is shown in [6] and (B) is quite trivial. By counting the number of edges, we obtain (C) .

Now we prove that the conditions are sufficient.
(A). This was done by Horton [6].
(B). This is simply asking for a 1 -factorization and is trivial.
(C). First we give the proof for $\lambda=2,3$ and 4 . Then we shall extend them for general λ. Let M be the maximum value such that $3 N+4 M=n-1$, where N, M are non-negative integers. If (s,t) is a solution of $3 x+4 y=3 \lambda(n-1)$ and $t \leq M \lambda$, then the decomposition can be obtained easily by Theorem 2.6. We write $t=t_{1}+\ldots+t_{\lambda}, t_{i} \leq M$, and $s=s_{1}+\ldots+s_{\lambda}$ so that $\left(s_{i}, t_{i}\right)$ is a non-negative integer solution of $3 x+4 y=n-1$. Otherwise, we divide the proof into following two cases.

Case 1. $\mathrm{n} \equiv 6(\bmod 12)$.

Let $n=12 p+6$. It is not difficult to find that when $\lambda=1$, $s \equiv 1(\bmod 4), t \equiv 0(\bmod 3)$ and $M=9 p+3 . K_{n}$ is $\left.(1,9 p+3)\right)_{3}$-factorable.

For $\lambda=2,3, t$ must be no larger than $M \lambda$. The reason is that if $t>M \lambda$, then $t=M \lambda+3 k$ where k is non-negative integer. From $3 s+4 t=3 \lambda(n-1)$ we get, on substituting, $12 k+3 s=3 \lambda$ which is impossible when $k>0$. Therefore, we only need to consider $\lambda=4$. In this case, $(s, t)=(0, M \lambda+3)$ is the only solution for which we cannot combine $\lambda=1$ solutions. But this has already been dealt with in (A).

Case2. $\mathrm{n} \equiv \mathrm{O}(\bmod 12)$.

Let $n=12 \mathrm{p}$. In this case, when $\lambda=1,5 \equiv 3(\bmod 4), t \equiv(\bmod 3)$ and $M=9 p-3$. We know that K_{n} is $(3,9 p-3)_{3}$-factorable by Theorem 2.6 . It is necessary for us to know the structure of the three 1 -factors as for $\lambda>1$ we want to get P_{3}-factors by combining these 1 -factors. For this purpose, we give a specific construction of a $(3,9 p-3) 3^{\text {-factorization. We must consider }}$ separately the cases p even and p odd.

Suppose that p is even, so $p=2 m$. We divide the vertex set of $K_{24 m}$ into 2 m blocks of size twelve. By contracting each block into one vertex, we obtain a $\mathrm{K}_{2 \mathrm{~m}}$ which has a 1 -factorization, say $f_{1}, \ldots, f_{2 m-1}$. Each f_{i} corresponds to p disjoint copies of $K_{12,12}$. From Lemma 2.3 we have a P_{3}-factorization of $K_{12,12}$ and a $(3,6)_{3}$-factorization of K_{12}. Combining these we have the desired factorization of $\mathrm{K}_{24 \mathrm{~m}}$. Now we know the structure of the three 1 -factors: in the subgraphs corresponding to each block,
two 1-factors are edges of $K_{6,6}$ and the other 1 -factor has three edges in each of the K_{6} which make up the K_{12}. Note that the third 1 -factor can be as any 1 -factor in the two K_{6} subgraphs.

We now give the proof for $\lambda=2,3$ and 4 when $n=24$. In each case continue to think of $\mathrm{K}_{24 \mathrm{~m}}$ as 2 m blocks of size 12 .
(a) $\lambda=2$.

Here, if $t>2 M$, then $t=2 M+3$. So if we can show that $2 K_{n}$ is $(2,2 M+3)_{3}$-factorable, then we are done. Take a $(3, M)_{3}$-factorization of each copy of K_{n} so that in copy 1 , we choose two 1 -factors of $\mathrm{K}_{6,6}$ in each block with distances 0 and 3 and in copy 2 , we choose two 1 -factors of $k_{6,6}$ of each block with distances 1 and 4 and we know that the third 1 -factor in each copy is not important. By Lemma 2.1, we find that the graph obtained by combining these four specified 1 -factors can be decomposed into three P_{3}-factors. Therefore, $2 \mathrm{~K}_{\mathrm{n}}$ is $(2,2 M+3)_{3}$-factorable.
(b) $\lambda=3$.

Here if $t>3 M$, then $(s, t)=(5,3 M+3)$ or $(1,3 M+6)$. In both cases, we first take $a(3, M)_{3}$-factorization of each of the three copies of K_{n}. If $(s, t)=(5,3 M+3)$, then we use the same method as in (a) on two of the copies to get the desired decomposition. If $(s, t)=(1,3 M+6)$, then we choose the three 1 -factors in copy 1 as in Figure $2.4(a)$ and choose the three 1 -factors in copy 2 as in Figure 2.4(b), choose the three 1 -factors in copy 3 as in Figure
2.4(c).

Fig. 2.4

Combining these 1 -factors we obtain a graph which is the union of $K_{6,6} \backslash\left\{\mathrm{f}_{2}, \mathrm{f}_{5}\right\}$ which is P_{3}-factorable (see Figure $2.1(a))$ and the graph shown in Figure 2.5 which is $(1,3)_{3}$-factorable. Therefore, we obtain a $(1,3 M+6)_{3}$-factorization of $3 \mathrm{~K}_{24 \mathrm{~m}}$.

Fig. 2.5
(c) $\lambda=4$ 。

Here (s, t) must be one of $(8,3 M+3),(4,3 M+6)$ or $(0,3 M+9)$ as all other cases are covered by Theorem 2.6. The first two cases can be done by the same methods as in parts (a) and (b), and the third case is covered by (A).

So now suppose that p is odd, or equivalently $n \equiv 12(\bmod 24)$. Let $n=24 m+12=4(2 m+1) 3$. As before, we first give a construction for the extreme case which is a $(3, M){ }_{3}$-factorization in K_{n}.

We divide the vertex set of $\mathrm{K}_{24 \mathrm{~m}+12}$ into $3(2 \mathrm{~m}+1)$ blocks each of size four. By contracting each block into one vertex, we obtain a $K_{3}(2 m+1)$. We know there is a 2 -factorization of $\mathrm{K}_{3}(2 \mathrm{~m}+1$) in which each 2 -factor is a union of 3 -cycles (or equivalently, a Kirkman triple system on $6 \mathrm{~m}+3$ elements). The subgraph corresponding to each 3 -cycle is a $K_{4,4,4}$ in K_{n}. By Lemma 2.7, $\mathrm{K}_{4,4,4}$ is P_{3}-factorable. Deleting all P_{3}-factors obtained in this way, we find that the remaining edges consitute $3(2 p+1)$ copies of K_{4} which is $(3,0)_{3}$-factorable. Now we know the structure of the three 1 -factors. Before we prove the result for $\lambda=2,3$ and 4 , we divide $3(2 m+1) K_{4}$ into $2 m+1$ groups so that each group consists of twelve vertices. We only need to be concerned with the subgraph corresponding to each group.
(a) $\lambda=2$.

As in the case p even, all we need to find is a $(2,2 M+3){ }_{3}$-factorization. By Lemma 2.1 , we know that $K_{6,6}$ has a four regular bipartite subgraph which is not only C_{4}-factorable, but P_{3}-factorable as well. Now in each K_{12} we have two copies of
three K_{4} subgraphs (made up of the 1 -factors in the $(3, M)_{3}$-factorization). If we delete one 1 -factor from each of them, we get two copies of three 4-cycles. It is not difficult to see that we can suitably choose the vertices of the three K_{4} in each copy so that the resulting two C_{4}-factors will form the $\mathrm{K}_{6,6}$ subgraphs as described above. There are only two 1 -factors left. Therefore we are done.
(b) $\lambda=3$.

As before, we only need to find a $(1,3 M+6) 3^{\text {-factorization }}$ to be done. We wish to choose the C_{4}-factor in each of two copies as in Figure $2.1(b)$ so that the remaining 1 -factors in the three K_{4} form the 2 -regular graph shown in Figure 2.6 .

Fig. 2.6

Now we choose the third copy of the three K_{4} 's so that together with the graph in Figure 2.6, it forms the graph of Figure 2.5 which is $(1,3)_{3}$-factorable. Therefore, we have a $(1,3 M+6) 3_{3}$-factorization.
(c) $\lambda=4$.

In this case, as before, (s, t) must be one of $(8,3 M+3)$, $(4,3 M+6)$ and $(0,3 M+9)$ as all other cases are covered by Theorem 2.6. Therefore, the desired decompositions immediately follows from the previous proofs.

Up to now, we have proven only that the result is true for $\lambda=1,2,3$ and 4 . Now we give the proof for the general λ.

Let $\lambda=4 \mathrm{q}+\mathrm{i}$ where $0 \leq \mathrm{i} \leq 3$. When $\mathrm{i}=0$, it is not difficult to prove this case by induction on q. Therefore, we assume $1 \leq i \leq 3$. Now let (s, t) be a solution of $3 s+4 t=3 \lambda(n-1)$. If $t \leq 3 q(n-1)$, we only need to take an $(s-i(n-1), t)_{3}$-factorization of $4 \mathrm{qK}_{\mathrm{n}}$ and a 1-factorization of the i other copies of K_{n}. Otherwise, take a P_{3}-factorization of $4 \mathrm{qK}_{n}$ and a $(s, t-3 q(n-1))_{3}$-factorization of $i K_{n}$ to yield the desired result. Therefore, we have completed the proof.

Now we prove the necessary and sufficient conditions of for the existence of $(s, t))_{4}$-factorizations of λK_{n}. As before, we first prove some lemmas which will be used to prove the main theorem. Note that in the proof of the following lemmas, we ignore the 1 -factorization case which is trivial there.

Lemma 2.9. The graph $K_{6,6}$ is $(s, t)_{4}$-factorable if $2 s+3 t=12$.
Proof. We first find that all possible non-negative integer solutions of $2 s+3 t=12$. They are $(s, t)=(0,4)$ and $(3,2)$ (provide
$t \neq 0)$. The direct contruction proof is shown in Figure 2.7.

Fig. 2.7
Note: the union of the first (third) and second (forth) graph in the Figure 2.7 is a 3 -regular subgraphs and consequently each of them can be decomposed into three 1 -factors.

Lemma 2.10. Let $n \equiv 0(\bmod 6)$. The graph $K_{n, n}$ is $(s, t)_{4}$-factorable if $2 s+3 t=2 n$.

Proof. Let $n=6 m$. We divide each part of the vertex set into m blocks of size six. By contracting each blocks into one vertex, we obtain a $K_{m, m}$ which has a 1 -factorization, say $f_{,}, \ldots, f_{m}$ and each of them corresponds to m disjoint copies of $K_{6,6}$ in $K_{6 m, 6 m}$.

Let (s, t) be a solution of equation $2 s+3 t=2 n=12 m$. It is clear that t must be even so we let $t=2 p$. Take a P_{4}-factorization of each of the subgraphs corresponding to $f_{1}, \ldots, f^{[p / 2]}$ yields $4[p / 2] P_{4}$-factors in $K_{6 m, 6 m}$. If p is even, we complete the $(s, t)_{4}$-factorization by taking a 1 -factorization
of the remaining graph. Otherwise, we use Lemma 2.9 to take a $(3,2) 4_{4}$-factorization of the subgraph corresponding to $f[p / 2]+1$ and then 1 -factorize the remaining graph. This yields s 1 -factors and $2 \mathrm{p} \mathrm{P}_{4}$-factors.

We next construct all $(s, t)_{4}$-factorizations of K_{12} and K_{8}.

Lemma 2.11. The graph K_{12} is $(\mathrm{s}, \mathrm{t})_{4}$-factorable if and only if $2 s+3 t=22$.

Proof. The necessity follows by counting the edges.

It is easy to see that all non-negative integer solutions (provided $t \neq 0$) of $2 s+3 t=22$ are $(s, t)=(2,6),(5,4)$ and $(8,2)$. (1) $(s, t)=(2,6)$.

We divide the vertex set of K_{12} into three blocks of size four. By contracting each block into one vertex, we obtain K_{3} which has a near 1 -factorization, say f_{1}, f_{2} and f_{3}. The subgraph of K_{12} corresponding to each near 1 -factor in $K_{3}\left(K_{4,4} U_{4}\right)$ can be decomposed into two P_{4}-factors and four independent edges as shown in Figure 2.8(a). These four independent edges can be chosen in such a way that after deleting all the P_{4}-factors obtained from each $f_{i}, 1 \leq i \leq 3$, (see Figure $2.8(b)$) the remaining graph is a 2-factor made up of two 6-cycles which is 1-factorable. So we are done.

Fig. 2.8
(2) $(s, t)=(5,4)$.

By using Lemma 2.9 , we see that $K_{6,6}$ can be decomposed into four P_{4}-factors. Since K_{6} is 1 -factorable, we are done.
(3) $(s, t)=(8,2)$.

From Lemma 2.9, $K_{6,6}$ can be decomposed into two P_{4}-factors and three 1 -factors. Since K_{6} is 1 -factorable, the desired decomposition can be easily obtained.

Lemma 2.12. The graph K_{8} is $(s, t)_{4}$-factorable if and only if $2 s+3 t=14$.

Proof. The necessity follows by counting the edges.

All non-negative integer solutions (provided that $t \neq 0$) of $2 s+3 t=14$ are $(s, t)=(4,2)$ and $(1,4)$.
(1) $(s, t)=(4,2)$.

We know each K_{4} can be decomposed into two 4-paths and $\mathrm{K}_{4,4}$ is 1 -factorable. Thus we are done.
(2) $(s, t)=(1,4)$.

We know $\mathrm{K}_{4,4}$ can be decomposed into two P_{4}-factors and one 1-factor. (See Figure $2.8(a)$.$) So we can get our desired$ decomposition.

The main theorem will be proved by a series of three lemmas each of which deals with one of the residues classes of n modulo 12 where n is divisible by 4.

Lemma 2.13. Let $n \equiv 0(\bmod 12)$. The graph K_{n} is $(s, t) 4$-factorable if and only if $2 s+3 t=2(n-1)$.

Proof. The necessity follows by counting the edges.

We divide the proof into two cases. Let (s,t) be a solution. of $2 \mathrm{~s}+3 \mathrm{t}=2(\mathrm{n}-1)$. It is not difficult to see that $\mathrm{t} \equiv 0(\bmod 2)$ and $\mathrm{s} \equiv 2(\bmod 3)$.

Case1. $n=12(2 p)$

We divide $\mathrm{V}\left(\mathrm{K}_{\mathrm{n}}\right)$ into 2 p blocks each containing twelve vertices. By contracting each block into one vertex we obtain a $K_{2 p}$ which has a 1 -factorization, say $f_{1}, f_{2}, \ldots, f_{2 p-1}$. Each f_{i} corresponds to p disjoint copies of $K_{12,12}$ in K_{n}.

In this case, t can be any even number no more than $(2 n-6) / 3=16 p-2$.

If (s, t) satisfies $2 s+3 t=2(n-1)$ and $t \leq 16 p-8$, then we take a P_{4}-factorization of each of the subgraphs corresponding to f_{1}, $\mathrm{f}_{2}, \ldots, \mathrm{f}_{[\mathrm{t} / 8]}$. This yields $8[\mathrm{t} / 8] \mathrm{P}_{4}$-factors in K_{n}. Next we take a $(12-3(t-8[t / 8]) / 2, t-8[t / 8])_{4}$-factorization of the subgraph corresponding to $f_{[t / 8]+1}$ (see Lemma 2.10) and 1 -factorize both the subgraphs corresponding to $f[t / 8]+2, \ldots, f_{2 p-1}$ and the $2 p$ disjoint copies of K_{12} 。

If $16 p-8<t \leq 16 p-2$, then we take a P_{4}-factorization of each of subgraphs corresponding to $\mathrm{f}_{1}, \ldots, \mathrm{f}_{2 \mathrm{p}-1}$ and decompose the remainder of the graph (the $2 p$ disjoint copies of K_{12}) into $t-(16 p-8) P_{4}$-factors and s 1-factors.

Case2. $n=12(2 p+1)=6(4 p+2)$

As in case1, we find that t can be any even number no more than $(2 n-6) / 3=16 p+6$.

We divide $V\left(K_{n}\right)$ into ($4 \mathrm{p}+2$) blocks so that each of the blocks contains six vertices. By contracting each block into one vertex, we obtain a $K_{4 p+2}$ which has a 1 -factorization, say f_{1}, $\mathrm{f}_{2}, \ldots, \mathrm{f}_{4 \mathrm{p}+1}$. Each f_{i} corresponds to $2 \mathrm{p}+1$ disjoint copies of $K_{6,6}$ in K_{n}.

If $t \leq 16 p+4$, then we take a P_{4}-factorization of each of the subgraphs corresponding to $f_{1}, f_{2}, \ldots, f_{[t / 4]}$. This yields $4[t / 4]$ P_{4}-factors in K_{n}. Now take a
$(6-3(t-4[t / 4]) / 2, t-4[t / 4])_{4}$-factorization of the subgraph corresponding to $f[t / 4]+1$ (see Lemma 2.10) and 1 -factorize each of the subgraphs corresponding to $f[t / 4]+2, \ldots, f 4 p+1$ and each K_{6}.

If $t>16 p+4$, then $t=16 p+6$. In this situation, our construction is as follows.

Take a P_{4}-factorization of each of the subgraphs corresponding to $f_{1}, \ldots, f_{4 p}$ yielding $16 p P_{4}$-factors in K_{n}. By combining the $(4 p+2)$ disjoint copies of K_{6} and the subgraph corresponding to $f_{4 p+1}$, we obtain $(2 p+1)$ disjoint copies of K_{12}. By applying Lemma 2.11, K_{12} is $(2,6)_{4}$-factorable. Therefore, we obtain a $(2,16 p+6) 4$-factorization.

The following lemma is proved by Hanani, Ray-chandhure and R. Wilson. We are going to use it to prove Lemma 2.15.

Lemma 2.14 [3]. The graph K_{n} is K_{4}-factorable if and only if $n \equiv 4(\bmod 12)$.

Lemma 2.15. Let $n \equiv 4(\bmod 12)$. K_{n} is $(s, t) 4^{\text {-factorable if and }}$ only if $2 s+3 t=2(n-1)$.

Proof. The necessity follows by counting the edges.

Using Lemma 2.14, we can decompose K_{n} into (4p+1) K_{4}-factors if $n=12 p+4$.

Let $(s, t)=(s, 2 m)$ be a solution of $2 s+3 t=2(n-1)=2(12 p+3)$. From this we see that $s \equiv 0(\bmod 3)$ and $t \leq 2(4 p+1)$.

If $m=4 p+1$, we simply take a P_{4}-factorization of each K_{4}-factor. (Each K_{4} can be decomposed into two 4-paths). Otherwise, we choose $m(m<4 p+1) K_{4}$-factors in K_{n} and decompose them into $2 \mathrm{~m} \mathrm{P}_{4}$-factors; the remaining K_{4}-factors are 1-factorized.

Lemma 2.16. Let $n \equiv 8(\bmod 12)$. The graph K_{n} is $(s, t)_{4}$-factorable if and only if $2 s+3 t=2(n-1)$.

Proof. The necessity follows by counting the edges.

Let $n=12 p+8=6(2 p+1)+2$ and $(s, t)=(s, 2 m)$ be a solution of $2 s+3 t=2(n-1)=2(12 p+7)$. We find that $s \equiv 1(\bmod 3)$ and $t \leq 8 p+4$.

We divide $V\left(K_{n}\right)$ into $2 p+2$ blocks of which $2 p+1$ blocks have size six and one block has size two. Let the vertices in the block of size two be x and y. By contracting each block into one vertex we obtain $K_{2 p+2}$ which has a 1 -factorization, say $\mathrm{f}_{1}, \ldots, \mathrm{f}_{2 \mathrm{p}+1}$. Each f_{i} corresponds to p disjoint copies of $\mathrm{K}_{6,6}$ and one copy of $K_{6,2}$. Note that in each f_{i} the block of size six in the $\mathrm{K}_{6,2}$ is distinct.

We decompose each of the subgraph of K_{n} corresponding to the 1-factors $f_{1}, \ldots, f[m / 2]$ into four P_{4}-factors. This decomposition needs to be specified as follows. Each $K_{6,6}$ is
$(0,4)_{4}$-factorable. For the $K_{6,2}$, we include the edges in K_{2} and
K_{6} to get a K_{8}. Since K_{8} is $(1,4)_{4}$-factorable by Lemma 2. 12, there is a subgraph $G=K_{8}-f$, where f is a 1 -factor containing the edge (x, y), so that G has a P_{4}-factorization (there are four P_{4}-factors). We thus obtain $4[\mathrm{~m} / 2] \mathrm{P}_{4}$-factors and we remember that we still have a 1 -factor in each of $[\mathrm{m} / 2]$ copies of K_{6} and edge (x, y).

If $m=0(\bmod 2)$, then we only need to prove that the remaining subgraph of K_{n} is 1 -factorable. We do so as follows.

For each i, $[m / 2]+1 \leq i \leq 2 p+1$, we decompose the subgraph corresponding to f_{i} into six 1 -factors. Again the decomposition needs to be specified. Ecah $\mathrm{K}_{6,6}$ has six 1 -factors. With the $K_{6,2}$ we include the edges in K_{2} and K_{6} and obtain a K_{8} which has seven 1 -factors. But we choose only six of them and the remaining one is the one containing the edge (x, y). Doing this for each i we obtain $6(2 p-[m / 2]+1) 1$-factors. On deleting all of these 1 -factors, the resulting graph consists of the edge (x, y). and one 1 -factor in each K_{6}. This gives us another one 1 -factor. Therefore, we obtain $6(2 p-[m / 2]+1)+1 \quad 1$-factors and $4[m / 2]$ P_{4}-factors in K_{n} when m is even.

If $m=1$ (mod2), we decompose the subgraph corresponding to $\mathrm{f}[\mathrm{m} / 2]+1$ into two P_{4}-factors and three 1 -factors such that edge (x, y) belongs to one of the 1 -factors. This is possible, because K_{8} is $(4,2)_{4}$-factorable. Then by using the same method as before, we can prove that the remaining graph is 1 -factorable.

This completes the proof.

Because we need the result for $\lambda=1$ to prove the case that λ is general, we take this special case as theorem 2.17.

Theorem 2.17. The graph K_{n} is ($\left.s, t\right)_{4}$-factorable if and only if, either
(A) $s=0, n \equiv 4(\bmod 12)$ and $t=2(n-1) / 3$,
(B) $t=0, n \equiv 0(\bmod 2)$ and $s=(n-1)$,or
(C) $s t \neq 0,2 s+3 t=2(n-1)$ and $n \equiv 0(\bmod 4)$.

Proof. Both the necessary and sufficiency of conditions of this theorem follow by Lemmas 2.13, 2.15 and 2.16 .

In Theorem 2.18 we generalize Theorem 2.17 to arbitrary values for λ.

Theorem 2.18. The graph λK_{n} is ($\left.s, t\right)_{4}$-factorable if and only if, either
(A) $\mathrm{s}=0$,
and (1) $\lambda \equiv 0(\bmod 3), n \equiv 0(\bmod 4)$ and $t=2 \lambda(n-1) / 3$,
or (2) $\lambda \equiv 1,2(\bmod 3), n \equiv 4(\bmod 12)$ and $t=2 \lambda(n-1) / 3$,
(B) $t=0, n \equiv 0(\bmod 2)$ and $s=\lambda(n-1)$, or
(C) $s t \neq 0,2 s+3 t=2 \lambda(n-1)$ and $n \equiv 0(\bmod 4)$.

Proof. By counting the number of edges, it is not difficult to prove the necessity of this theorem. We only need now to show the sufficiency of these conditions.
(A) $s=0$.

We know that K_{n} is P_{4}-factorable if $n \equiv 4(\bmod 12)$. So this will be true for all value of λ. Now we are going to prove that when $n \equiv 0(\bmod 12)$ or $n \equiv 8(\bmod 12), 3 K_{n}$ is $P_{4}-f a c t o r a b l e$. Let K_{n}^{1}, K_{n}^{2} and K_{n}^{3} be the three copies of K_{n}.

First, let $\mathrm{n}=12 \mathrm{p}$. By Lemma 2.13 , K_{n} is $(2,8 \mathrm{p}-2)$ 4 $^{\text {-factorable. }}$ Moreover, in that construction (using Lemma 2.11) the union of the two 1 -factors is a 2 -factor in which each cycle has length six. Take such a $(2,8 p-2)_{4}$-factorization of K_{n}^{1}, This yields $2 p$ 6-cycles. We can think of them as pairs of 6 -cycles, say $\left(x_{1}^{i}, \ldots, x_{6}^{i}\right)$ and $\left(y_{1}^{i}, \ldots, y_{6}^{i}\right)$ where $i=1, \ldots, p$, and $v\left(K_{n}\right)=\left\{x_{j}^{i}, y_{j}^{i}\right.$: $1 \leq i \leq p, 1 \leq j \leq 6\}$. Now we take a $(2,8 p-2) 4$-factorization on K_{n}^{2} and such that one of the 1 -factors is formed by the edges (x_{1}^{i}, Y_{6}^{i}), $\left(x_{2}^{i}, y_{5}^{i}\right),\left(x_{3}^{i}, Y_{4}^{i}\right),\left(x_{6}^{i}, y_{1}^{i}\right),\left(x_{5}^{i}, Y_{2}^{i}\right)$ and $\left(x_{4}^{i}, y_{3}^{i}\right)$ where $i=1, \ldots, p$. By adding this 1 -factor to the p pairs of 6 -cycles from K_{n}^{1}, we obtain a three factor with p identical components as shown in Figure 2.9. Observe that this 3-regular subgraph is P_{4}-factorable.

Fig. 2.9

Now we take a $(2,8 p-2)_{4}$-factorization on K_{n}^{3} so that the one 1 -factor left in K_{n}^{2} and the p pairs of 6 -cycle obtained in K_{n}^{3} will again form a 3 -factor as above. Therefore, $3 \mathrm{~K}_{\mathrm{n}}$ is P_{4}-factorable if $\mathrm{n} \equiv 0(\bmod 12)$.

Suppose now that $n=12 p+8$. By Lemma 2.16, K_{n} is $(1,8 p+4) 4^{\text {-factorable. Now take a }(1,8 p+4)} 4^{\text {-factorization of each }}$ of the three copies of K_{n} so that the three 1 -factors will form a K_{4}-factor of K_{n}. This subgraph is P_{4}-factorable.

Therefore, the graph K_{n} is P_{4}-factorable if $\mathrm{n} \equiv 0(\bmod 4)$ and $\lambda \equiv 0(\bmod 3)$ and the number of P_{4}-factors is $2 \lambda(n-1) / 3$.
(B) $t=0$. This is just a 1 -factorization and so it is trivial.
(C) $s t \neq 0$.

When $\lambda=1$, this is Theorem 2.17. Suppose that $\lambda=2$. Let (s, t) be a solution of $2 s+3 t=4(n-1)$ and M be the maximum number of P_{4}-factors in K_{n}. If $t \leq 2 M$, we can obtain $M P_{4}$-factors from K_{n}^{1} and $t-M P_{4}$-factors from K_{n}^{2}, and 1 -factorize the remaining graph. By Theorem 2.17, this is possible. Otherwise, the only possibility occurs when $n=0(\bmod 12)$. The reason is that if $\mathrm{n} \equiv 4,8(\bmod 12)$, then 2 M is the maximum number of P_{4}-factors possible. Now when $n \equiv 0(\bmod 12)$, the maximum number of P_{4}-factors possible is $2 \mathrm{M}+2$. So we apply the same method as in (a) by first taking a $(2,8 p-2)_{4}$-factorization of each copy of $K_{12 p}(n=12 p)$ and then combining the four 1 -factors to obtain the two more P_{4}-factors.

Now we consider the case of general λ. For any given λ, we consider its value modulo 3. Since we know that λK_{n} is P_{4}-factorable if $\mathrm{n} \equiv \mathrm{O}(\bmod 4)$ and $\lambda \equiv 0(\bmod 3)$, and that when $\lambda=1,2$, λK_{n} is $(s, t)_{4}$-factorable if and only if $2 s+3 t=2 \lambda(n-1)$ and $\mathrm{n} \equiv 0(\bmod 4)$, Then the desired result follows immediately.

This completes the proof.

PART D
REFERENCES

1. B. Alspach, P. Schellenberg, D. Stinson and D. Wagner. The Oberwolfach problem and factors of uniform odd length cycles. Research Report No. 86-04. Dept. of Math., Simon Fraser University.
2. R.K. Guy, Unsolved combinatorial problems, in: D.j.A. Welsh, ed., combinatorial Mathematics and its Applications, Proc. Conf. Oxford 1967, Academic Press, New York, 1971, p. 121.
3. H. Hanani, D. Ray-Chaudhure and R. Wilson, On resolvable designs, Discrete Math. 3 (1972), p. 343-357.
4. P. Hell, A. Kotzig and A. Rosa, Some results on the Oberwolfach problem, Aequationes Math. 12 (1975), p. 1-5.
5. P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and banlance P-designs, Discrete Math. 2 (1972), p. 229-252.
6. J. Horton, Resolvable Path Designs, J. Combin. Theory Ser A. vol 39 (1985) p. 120-130.
7. J. Horton, B. Roy, P. Schellenberg and D. Stinson, On decomposing graphs into isomorphic uniform 2-factors, Anna/s Discrete Math. 27 (1985), p. 297-319.
8. D. Ray-Chaudhuri and R. Wilson, on the existence of resolvable balanced incomplete block designs, in "Combinatorial Structures and Their Applications," p. 331-341, Gordon \& Breach, New York, 1970.
9. D. Ray-Chaudhuri and R. Wilson, Solution of Kirkman's school-girl problem, Combinatorics in "Proceedings, Sympos. Pure Math., Vol. XIX, University of California, Los Angeles, 1968" p. 187-203, Amer. Math. Soc., Providence, R.I., 1971.
10. R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, preprint.
