
RESOLVABLE PATH DESIGNS OF COMPLETE GRAPHS 

Min-Li Yu 

B.Sc., Fudan University, 1983 

Ext. Dip., Simon Fraser University, 1985 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the Department 

o f  

Mathematics and Statist ics 

@ Min-Li Yu 1987 

SIMON FRASER UNIVERSITY 

August 1987 

A l l  r ights reserved. This work  may not be 
reproduced in  whole or in  part, b y  photocopy 

or other means, wi thout permission o f  the author. 



APPROVAL 

Name: Min-Li Yu 

Degree: MASTER OF SCIENCE 

Title of  thesis: Resolvable Path Designs of complete graphs 

Examining Committee: 

Chairman: Dr. J. J. Sernber 

Dr. K. Heinrich 
Senior Supervisor 

- 
~ r ' .  B. Alspach 

- 

Dr. P. Hell 

Department of Computer Science 
Universite de Paris-Sud 

Date Approved: Aug.. 5, 1987 

i i 



PARTIAL COPYRIGHT LlCtNSE 

I hereby grant  t o  Simon Fraser  Un ive rs i t y  t h e  r i g h t  t o  lend 

my thes i s ,  p r o j e c t  o r  extended essay ( t h e  t i t l e  o f  which i s  shown below) 

t o  users o f  the  Simon Fraser U n i v e r s i t y  L ib rary ,  and t o  make p a r t i a l  o r  

s i n g l e  copies on ly  f o r  such users o r  i n  response t o  a request from the  

l i b r a r y  o f  any o ther  u n i v e r s i t y ,  or o the r  educational i n s t i t u t i o n ,  on 

i t s  own behalf  o r  f o r  one of  i t s  users. I  f u r t h e r  agree t h a t  permiss ion 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposes may be granted 

by me o r  the  Dean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  p u b l i c a t i o n  o f  t h i s  work f o r  f i n a n c i a l  gain sha l l  not  be al lowed 

w i thout  my w r i t t e n  permission. 

T i t l e  o f  Thesis/Project/Extended Essay 

Author: 

( name 

(date)  



ABSTRACT 

A resolvable path design is a decomposition of X copies of 

Kn (hKn) into edge-disjoint subgraphs such that each subgraph 

consists of n/k vertex-disjoint paths of length k-1, each with k 

vertices. We also call a resolvable path design a 

Pk-factorization of XKn and each subgraph a Pk-factor. 

J. D. Horton found necessary conditions, and conjectured 

that they were also sufficient for the existence of resolvable 

path designs of hKn. He proved that for X=l the conditions are 

asymptotically sufficient (that is, for each value of k the 

design exists if n is sufficiently large) and that they are 

sufficient for any X when k=3. In this thesis we prove that the 

conjecture is sufficient when k is even and h=1, and for all 

values of k when X=2. 

In the second part of the thesis we investigate the 

following two questions: 

( 1 )  For given integers s and t, under what conditions can 

XKn be decomposed into s 1-factors and t P3-factors? 

(2) For given integers s and t, under what conditions can 

XKn be decomposed into s 1-factors and t P4-factors? 

Necessary and sufficient conditions are found for both 

questions. 
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PART A 

INTRODUCTION 



The complete graph on n vertices, in which each vertex is 

joined precisely once by an edge to each other vertex, is 

denoted by Kn. We denote by XKn the graph with n vertices in 

which each vertex is joined by precisely X edges to each other 

vertex. 

A G-factorization of XKn is a partition of the edges of XKn into 

disjoint spanning subgraphs each of which is the vertex disjoint 

union of n/Iv(G)I copies of G. These spanning subgraphs are 

called G-factors of XKn. In the special case when G=Pk, where Pk 

is a path with k vertices, we call such a partition a resolvable 

path design or a Pk-factorization. If Ck denotes the cycle with length 

k, then we similarly define a Ck-factorization. When G is regular of 

degree r, we may also call the G-factorization (G-factor) an 

r-factorization (r-factor) . If the graph H has a G-factorization, then 
we say that H is G-factorable. Factorizations are often called 

decompositions. 
b 

The Oberwolfach problem was formulated by G. Ringel and 

first mentioned in [ 2 ] .  It asks: Given integers r1,r2,...,rt ail 

at least 3 and so that rl+ ...+ rt=n where n is odd, is it 

possible to find a 2-factorization of Kn so that each 2-factor 

contains a cycle of each length r,,...,rt? This problem has been 

studied for a long time and there are many papers on it (see for 

example [I], [4!, and [71). One of the more interesting cases of 

the Oberwolfach problem is when ri=r where lli,jlt. This has j 
been solved in [I], where the authors also show that, provided n 

is even and not equal to 4m, m is odd, and K,\F (the complete 



graph with a 1-factor removed) has a c,-factorization whenever m 

divides n. The case precluded remains unsettled. 

J. D. Horton [6] considered the related question for path 

decompositions of XKn. These are resolvable path designs or path 

factorizations. The question is, given an integer k22, is it 

possible to find a Pk-factorization of XKn? The difference 

between this problem and the Oberwolfach problem is that Horton 

considered paths of the same length instead of cycles and with 

the complete multigraph. He made the following conjecture. 

Conjecture. A resolvable path design of XKn with path length k 

exists (or XKn is pk-factorable), if and only if k divides n and 

n(k-l)/k divides Xn(n-1)/2. 

It is not difficult to see that these conditions are 

necessary. The first is obtained by counting the number of 

vertices, and the second by counting the number of edges. Some 
b 

special cases of this conjecture have been known for a long 

time. For example, when k=2, it asks for a 1-factorization and 

when k=n, for a Hamilton path decomposition. Horton also gave 

answers for some special cases of this conjecture. The following 

two theorems are the two main theorems in his paper. 

Theorem. Let k be any integer greater than 1. Then there 

exists a constant c(k) such that if n>c(k), then Kn is 

2 Pk-factorable if and only if nlk (modulo lcm(2k-2,k)), where 

lcm(a,b) denotes the lowest common multiple of a and b. 



Theorem. The graph XKn is P3-factorable if and only i f ,  

(A) when Xrl or 3 (mod41, then nr9 (mod12), 

(B) when Xi2(mod4), then n~3(mod6), and 

(c) when kO(mod4), then niO(mod3). 

The proof of the first theorem is based on the fact that for 

all k>4, the existence of resolvable block designs is known 

asymptotically due to a result of D. Ray-Chaudhuri and R. Wilson 

181. When k=2 a resolvable block design on n vertices is simply 

a 1-factorization of Kn, wh.ich exists if and only if n is even. 

When k=3, we have Kirkman Triple Systems which exist if and only 

if nn3(mod6) [9] and when k=4, the resolvable designs exist if 

and only if nr4(mod12) [ 3 ] .  The proof of the second theorem uses 

Bose's method of pure and mixed differences on the appropriate 

group. P. Hell and A. Rosa also used this method in [ 5 1  to 

construct several examples of resolvable path designs. 

In this thesis, we will provide more evidences for Horton's. 

conjecture by proving the following two results which are the 

two main theorems in the first part of the thesis. 

Theorem. The graph Kn is P2k-factorable if and only if 

n~2k(mod(2k(2k-l))). 

Theorem. The graph 2Kn is Pk-factorable if and only if , 
(a) when k=2m, n~2m(mod(2m(2m-1))) and 

(b) when k=2m+l, na(2m+l)(mod(2m(2m+l))). 



In the Oberwolfach problem, one case of special interest is 

that when all cycles have length 3. As we mentioned before these 

designs are called Kirkman Triple Systems, or C3-factorizations. 

R. Rees [lo] considered a generalization of this factorization 

and obtained the following theorem. 

Theorem. Let n~O(mod6) and n218. The complete graph Kn can be 

decomposed into t Cg-factors and s 1-factors if and only if 

2t+s=n-1. 

Motivated by Rees' work, we investigated the following two 

questions. 

( 1 )  For given integers s and t, under what conditions can 

XKn be decomposed into s 1-factors and t P3-factors? 

(2) For given integers s and t, under what conditions can 

AKn be decomposed into s 1-factors and t P4-factors? 

We can think of such path decompositions as resolvable path 

designs with mixed path lengths. For convience, we introduce the 

following definition. 

An (~,t)~-factorization of AKn is a partition of the edges of 

hKn into s P2-factors (also called 1-factors) and t Pk-factors. 

In particular, an (s,O)k-factorization is a 1-factorization and 

a (O,t)k-factorization is a Pk-factorization. We also call hKn 

(s,t)k-factorable if there exists such factorizations. 



The two theorems which answer the above two questions and 

are discussed in the second part of the thesis can be stated as 

follows. 

Theorem. The graph XKn has an (~,t)~-factorization if and 

only if, either 

(A) s=O, and 

( 1 )  XmI, 3(mod4), nc9(modl2) and t=3X(n-1)/4, or 

(2) X~2(mod4), n~3(mod6) and t=3X(n-1)/4, or 

(3) XnO(mod4), nnO(mod3) and t=3A(n-1)/4, 

(B) t=O, n~O(mod2) and s=X(n-l), or 

(C) stzO, 3s+4t=3X(n-1) and nrO(mod6). 

Theorem. The graph AKn is (~,t)~-factorable if and only if, 

either 

(A) s=O, and 

(I) X~O(mod3), nlO(mod4) and t=2X(n-1)/3, or 

(2) X=1, 2(mod3), nz4(mod12) and t=2X(n-1)/3, 

(B) t=O, n=O(mod2) and s=X(n-11, or 

(C) stzO, 2s+3t=2X(n-1) and nmO(mod4). 



PART B 

RESOLVABLE PATH DESIGNS 



As mentioned in the introduction, Horton conjectured 

necessary and sufficient conditions for the existence of 

resolvable path designs. We will prove two special cases of his 

conjecture here. The first case is when X=l and the path length 

is odd (the path has an even number of vertices) and the second 

is when X=2 and there is no restriction on the path length. 

For the convenience of the proof, we introduce the following 

definition. 

In the complete bipartite graph KmrmI where V(KmIm)=AUB, 

~ = { a ~ ,  ..., a,) and ~={b~,...,b~], the l-factor of distance t 

consists of the edges {(ai,bi+t ) :  llilm], where subscript 

addition is modulo m and on residues l,...,m. 

Before we present the two main theorems in this chapter, 

some lemmas are first proved. 

. Lemma 1.1. The graph KZml 2m can be decomposed into m 

P2,-factors and one 1-factor. 

Proof. Let V ( K ~ ~ , ~ ~ ) = U U V ,  where ~={u~,...,u~~) and 

v={v,,...v~~]. TO find the P2m-factor we will use the fact that 

K2m can be decomposed into m Hamilton paths, say H I ,  ..., H,. 
Assuming that the vertex set of K2, is {1,2 ... 2m] we construct a 
PZm-factor of K2m,2m from each Hi as follows. If (k,j) is an 

edge in Hi, then the PZm-factor contains the edges (u v.) and k' 3 

(vkluj). It is not difficult to see that the PZm-factors of 

K2m, 2m obtained from Hi and H i#j, are edge-disjoint. 
j 



Repeating this procedure for all Hi, i=l,.. .,m, we obtain m 

edge-disjoint P2,-factors in K2m,2m. On deleting from KZmIZm the 

edges of these PZm-factors, what remains is a 1-factor in KZmr2, 

with distance 0. So we are done. 

Proof. Let V(Km(2m-1),m(2m-l))=UUV where U = ~ U ~ , . . . , U ~ ( ~ ~ - ~ )  1 

and ~ = ~ v ~ , . . . , v ~ ( ~ ~ - ~ ) ] .  Let fi be the 1-factor of 

K,(2m-l),m(2m-l) with distance i. We claim that the set of edges 

obtained from the union of 2m-1 1-factors with consecutive 

distances a,a+l,....a+2m-2 can be decomposed into m P2,-factors. 

It is not difficult to see that the union of two consecutive 

1-factors, fiUfi+l, forms a ~amilton cycle. We can delete 2m-1 

independent edges on the Hamilton cycle and'obtain 2m-1 

b 

Now to verify the claim, we divide each of U and V into 2m-1 

blocks so that the vertex labels in each block are consecutive; 

that is, the blocks are {vkm+i: llilml and {ukm+i: lSiSm] where 

OSk12m-1. Now we divide the proof into two parts. 

We consider the 1-factors fi of Km(2m-l),m(2m-1)l where 

-(m-l)si<(m-1). Pairing fi and fi+l, where i=l,3, ..., m-2, and 
'i-1 and fir i=-1,-3, ...,- (m-21, we obtain m-1 Hamilton cycles. 

1 
Let ei,k'("km+p-(i-1)/2f Vkm+p+2+(i-1)/2 ) and 



2 
ei,k' (~km+p+~-(i+l)/2' ~km+p+(i+l)/2). From fiufi+l 1 

1 1 i=1,3,. .. ,m-2, delete the edges of Ei={eilk: Oik~2m-21, which 
1 all have distance i+l. Moreover, ( f i ~ f i + l ) \ ~ i  is a PZm-factor of 

From fiUfi-l, i=-1 ,- 3, ...,- (m-2), delete the edges of 
2 2 Ei={eilk: OSkS2m-21, which all have distance i. Moreover, 

( f i ~ f i - l  )\Ef is a P2,-factor of Km(2m-l) lm(2m-l). 

1 2  Now let us study the edges in EiUEi. First we partition them 

1 2 into sets ~ ( k )  where E(k)={eiIk: i=1,3,...,m-2)~{e~,~: 

i=-.I,-3, ...,- (m-2)), OSk52m-2. For example, when m=7, ~ ( 0 )  is as 

shown in Figure l.l(a). 

Fig. 1.1 Fig. 1.2 

It is clear that •’.or each value of k, E(k) is isomorphic to 

this graph and disjoint from it. Now add the edges of fo. I t  is 

easy to check that f0u{E(k): OSk52m-2) is a P2,-factor (see 

Figure l.l(b)). 



1 
Let eilk=(ukm+p-l-(i-1)/2~ Vkm+p+l+(i-1)/2 1 

(~km+~-(i-i )/21 vkm+p+l+(i-l )/2 ) .  Consider the 

L and ei, k= 

where i=-m,-(m-l),..,-l,O,l,..,m-3,m-2. Pair these 1-factors as 

fiUfi+l, i=1,3,..,m-3, and fiUfi-l, i=-1 ,-3,..,-(m-1). From each 

of the first pairings, we respectively delete the edges in set 

1 1 Ei={eiIk: O1k12m-21, i=1,3,..,m-3, and from the second pairings 

2 2 delete (respectively) Ei={eiIk: OSkS2m-21, i=-1,-3,..,-(m-1). It 

is not difficult to check that each of (f i ~ f i + l  )\E:, 

2 i=1,3,..m-3, and (fi-lUfi)\~i, i=-1,-3,..,-(m-1) is a 

1 2 P2m-factor. Let ~ ( k ) = { e ~ , ~ :  i=1,3,...,m-3]~{e~,~: 

i=-1,-3, ...,- (m-1)) where OIk12m-2. As before, it is easy to see 
that f0u{E(k): OSk12m-21 is also a P2,-factor in 

Km(2m-1 ) ,m(2m-l)* The case m=6 is shown in Figure 1.2. 

We have proved that the set of edges obtained from the union 

of 2m-1 1-factors with consecutive distances can be decomposed ' 

into m P2,-factors. It is not difficult to see that the edge set 

of Km(2m-l)lm(2m-l~ is the union of m edge sets each of which is 

formed from 2m-1 1-factors with consecutive distances and they 

are all isomorphic. Therefore, the desired result follows 

immediately and this completes the proof. 

The following lemma is an immediate result of Lemma 1.2. 

Lemma 1.3. The graph Kn is P2m-factorable if and only if 



Proof: Suppose that Kn I n  is P2,-factorable then 2n is 

divisible by 2m and n2 is divisible by n(2m-l)/m. These two 

conditions imply n=O(mod(m(2rn-l))). So we have proven the 

necessity. 

Now we are going to prove that the conditions are 

sufficient. 

We divide the two parts of K n,n into blocks of size m(2m-1). 

Contracting each block into one vertex, we obtain a K PIP where 

n=m(2m-1)p. We know that K 
PIP has a 1-factorization and each 

I-factor corresponds to p copies of Km(2m-l)Im(2m-1) in KnIn. By 

Lemma 1.2, it follows that K is P2,-factorable. 
n,n 

Lemma 1.4. The graph K4,2 is the union of a K2,-factor and 

2m2 P2,-f ac tors. 

Proof. We divide V(K~,~) into 2m blocks each of size 2m. 

Contracting each block into one vertex we obtain a K2,. 

We know that K2, has a 1-factorization, say f l I  ..., f2,-,. 
Each fi  corresponds to n copies of KZrnIZm. By Lemma 1.1. K2m,2m 

can be decomposed into m P2,-factors and one 1-factor. We can 

assume that the 1-factor left in each copy of K2m,2m has 

distance 0 and all these edges forms a K2m-factor which is 

PZm-factorable. Deleting all P2,-factors obtained in this way 

(total (2m-l)m +m P2,-factors), we are left with a K2,-factor of 



K4m2 which is the subgraphs corresponding to the blocks. s his 

completes the proof. 

Now we present the first main result of this chapter. 

Theorem 1.5. The graph Kn is PZm-factorable if and only if 

ns2m(mod(2m(2m-l))). 

Proof. Suppose that Kn is P2,-factorable, then n is divisible 

by 2m and n(n-1) is divisible by n(2m-l)/m. These two conditions 

imply n~2m(mod(2m(2m-1))). 

Suppose that n=2m+2m(Zm-l)p. We will show that Kn is 

P2,-factorable. To do so we divide the proof into two parts 

depending on the parity of p. 

If p=2s+lI then n=2m(2m-l)(2s+1)+2m, 

We divide v(Kn) into 2s+2 blocks in which 2s+l of them have ' 

size 2m(2m-1) and one has size 2m. Contracting each block into 

one vertex, we obtain a K2s+2. Taking a l-factorization of K2s+2 

yields 2s+l 1-factors, say fl,...,f2s+1 and each fi  corresponds 

to s disjoint copies of K2m(2m-1),2m(2m-1) and one copy of 

K2m(2m-1 ) ,2m in Kn. For each f i r  we take a P2,-factorization of 

the subgraph corresponding to the s copies of 

K2m(2m-l),2m(2m-l). By Lemma 1.3, this is possible and yields 

2mL P2m-factors in that subgraph. In the graph K2m(2m-1 ) ,2mI if 

we include the edges in both K2m(2m-l) and KZm, we have a K4,2 

which , by lemma 1.4, can be factored into 2m 2 



P2,-factors and a K2,-factor one component of which corresponds 

to the block of size 2m. We delete the 2m2 P2,-factors obtained 

from the K2m(2m-1)12m(2m-1) subgraphs and the K4mZ. Doing this 

for each f i r  we see that we are left with a K2,-factor in Kn. 

But K2, is P2,-factorable and hence Kn is P2,-factorable. 

If p=2s, the construction is somewhat more complicated. Here 

n=2rn(2m-1)2s+2m=2m(25(2m-l)+1). We divide V(Kn) into 2s(2m-1)+1 

blocks each of which has size 2m. Contracting each block into 

one vertex, we obtain a K2s(2m-l)+l which has a near 

1-factorization, say f l ,  ..., f (2m-l)2s+l and each fi corresponds 
to a K2, and s(2m-1) copies of KZmIZm in Kn. By Lemma 1.1, 

K2m, 2m can be decomposed into m P2,-factors and one 1-factor. We 

also know that K2, can be decomposed into m PZm-factors. 

Therefore, in the subgraph corresponding to f i r  we delete the m 

P2m-factors so that we are left with an 1-factor in each KZmIZm 

and 2m isolated vertices. Repeating this procedure for all the 
L 

near I-factors, we obtain a graph in which there is only one 

1-factor between each pair of blocks in Kn. It is important to 

note that in obtaining this graph, we were free to choose the 

1-factors between pairs of blocks independently. 

We label the blocks from 1 to 2s(2m-1 ) + I  and for the block 

i, we label its vertices from v(i,l) to v(i,2m). Now we are 

going to prove that the graph as described above is 

P2m-factorable. (There will be s(2m-l)+s P2,-factors.) 



Consider the contracted graph K2s(2m-l)+l, we know that it 

can be decomposed into s(2m-1) Hamilton cycles. Fix one of these 

Hamilton cycles, say (1,2, ..., 2s(2m-l)+1,1), where i is the 

label of the corresponding block. For each edge (i,i+l), 

11iS2s(2m-l), and (2s(2m-l)+l,l) in the cycle, we choose the 

corresponding 1-factor between the two blocks to be the 1-factor 

with distance 1 (think of the vertices on the cycle being 

ordered by their positions on the cycle). If we now delete all 

of these edges between vertex sets :v(l,i), ..., v(2s(2m-l)+l,i)) 
and {v(l,i+l),..., v(2s(2m-l)+l,i+l)) for a fixed i, where 

11i12m, then what remains will be a P2m-factor. In Figure 1.3 

the case m=2, s=l and i=l is shown. Repeating this procedure for 

each of the s(2m-1) Hamilton cycles, we obtain s(2m-1) 

P2m-factors. 

Fig. 1.3 

Notice that the edges deleted from each Hamilton cycle are 

independent. Now we are going to prove that i f  we suitably 

choose the sets of independent edges for each Hamilton cycle, 

the union of them will form s P2m-factors. 



We divide the s(2m-1) ~amilton cycles into s groups so that 

each group has 2m-1 Hamilton cycles. We claim that in each 

group, the union of independent edge sets, if choosen suitably, 

forms a P2,-factor. In each group, we label the Hamilton cycles 

from 1 to 2m-1 and then we choose, from the cycle labelled i, 

the independent edge set as the edges between 

{v(l,i),v(2,i), ..., v(2s(2m-l)+l),i)) and 

{v(l,i+l),v(2,i+1), ..., v(2s(2m-l)+l,i+l)). It is not difficult 

to check that union of the 2m-1 independent edge sets from the 

cycles in each group will form a P2,-factor. This can be seen 

from Figure 1.4 in the case when m=2 and s=l. Since there are s 

groups, we obtain s P2m-factors. 

This completes the proof. 

Fig. 1.4. 

The following lemmas are used for proving Theorem 1.12, the 

second main result of the chapter. The idea used here is similar 

to that used before, but the construction is somewhat more 



complicated. 

Lemma 1.6. The graph K2n+l can be decomposed into n 

edge-disjoint Hamilton paths and an one near 1-factor. 

Proof. Let V(K2n+1)={0,1,2,...,2n]. We arrange the vertices 1 

to 2n in a cycle with 0 as the centre and the vertices labelled 

is in increasing order in a clockwise dirction. Let H be the 

Hamilton cycle (0,1,2,2n13,2n-1, ... ,n,n+2,n+lIO). It is not 
difficult to see that K2n+1 can be obtained by, fixing the 

vertices of K2n+1 and rotating the edges of H n-1 times through 

an angle ~ / n  about the centre vertex 0. If we delete the edge 

([(n+l)/2]+lI2n+2-[(n+1)/2]) from H we obtain a Hamilton path 

(where [x] denotes the largest integer which does not exceed x) 

Deleting the corresponding edge (under the rotation) from each 

of the other cycle yields n Hamilton paths and a near 1-factor. 

Figure 1.5 shows the case when n=5. 

6 

Fig. 1.5 

Lemma 1.7. The graph 2K2m+, is P2m+1 -factorable. 



Proof. We know that K2m+l can be decomposed into m 

edge-disjoint Hamilton paths and one near 1-factor (see Lemma 

1.6). This near 1-factor can be chosen arbitarily. So we take 

such a decomposition of each of the two copies of K2m+l so that 

the union of the two near I-factors yields a Hamilton path. 

Hence, 2K2m+1 can be decomposed into 2m+l Hamilton paths 

(P2m+ 1 -factors). 

Lemma 1.8. The graph 2K2,+ , 2m+ can be decomposed into 

(2m+l) P2,+ -factors and two 1-factors. 

Proof. By Lemma 1 .7, 2K2m+ is P2m+l -factorable. Therefore, 

we can use the same method as in the proof of Lemma 1.1 to get 

the desired result. 

Lemma 1.9. The graph 2K(2m+1 12 is the union of a 

2 2K2m+l-factor and (2m+l) P2m+1-factors. 

Proof. We arrange the vertex set of 2K(2m+1)2 in a 

(2m+l)x(2m+l) array. The vertices of each row and column form a 

copy of 2K2m+1. We take the 2m+l copies of 2K2m+1 defined by the 

columns of the array as the 2K2m+1 -factor. Now we need to prove 

that the graph obtained on deleting this 2K2,+, -factor is 

'2m+ 1 -factorable. Let 2G be the graph obtained from deleting 

both the 2K2m+1-factor and the 2m+l P2m+1-factors obtained from 

edges define by the 2m+l rows (see Lemma 1.7). If we consider 



each column as a block and contract it into a vertex, we obtain 

a COPY of K2m+1 which we know has m edge disjoint Hamilton 

cycles. It is easy to see that if we can prove that the subgraph 

in G corresponding to one of the Hamilton cycles is 

P2m+l-factorable, then we are done. We label the blocks on the 

cycle from 1 to 2m+l and let the vertices in block i be 

v(i,l),..., v(i12m+l). Now we construct the P2m+1-factor as 

follows. Consider the bipartite graph formed by the edges 

between blocks 1 and 2. We construct the path (v(l,m+l), 

v(2,m+2), v(l,m), v(2,m+3), ... v(1,2), v(2,2m+l), v(1,l)). 

(Figure 1.6(a) shows the case for m=2.) We see that each edge of 

this (2m+l)-path has a different distance and moreover all 

distances 1,2,...,2m occur on these edges. We take a copy of 

this subgraph in each bipartite subgraph corresponding to an 

edge of the Hamilton cycle under consideration. It is easy to 

check that the resulting graph is a P2m+1-factor (see Figure 

1.6(b)). For each i f  11i12mf we replace the edges 

(v(a,b),v(c,d)) of the P2m+1-factor by the edges 

(v(a,b+i),v(c,d+i)), where addition is modulo 2m+l on the 

residues 1,2,...,2m+l, so obtaining another 2m P2m+1-factors. 

Applying this procedure to each Hamilton cycle, we get m(2m+l) 

'2m+ 1 -factors which together constitute a P2m+1 -factorization of 

G. Duplicate this to obtain the factorizatin of 2G. This 

completes the proof. 



(b) 

Fig. 1.6 

Lemma 1.10. Let f i  be the 1-factor with distance i in 

K2m(2m+1) ,2m(Zm+l)' Then the subgraph induced by the edges of 

{fil i e ~ }  where 

2 ~={0,i,(2rn+i),(2m+1)+i ,..., i(2m+l),i(2m++l . 4m2-1, 4m 1 .  is 

Proof* Let V(K(2m+l)2rnl(2m+l)2m )=UUV, where u={uil b 

lSiS(2m+1)2m} and v={vil l<i<(2m+1)2m}. Pairing the 1-factors 

'i(2m+l) and fi(2m+l)+11 OSiS2m-1, we obtain 2m Hamilton cycles. 

For any Hamilton cycle we can delete 4m independent edges so 

that from the remaining edges in the cycle we obtain a 

P2m+1-factor. (Each of the two 1-factors has 2m edges removed.) 

If we apply this procedure to each Hamilton cycle, we are left 

with Zm(4m) edges which is the same as the number of edges in a 



The question is whether we can suitably choose such sets of 

independent edges so that their union is a P2m+l -factor. We will 

show that the sets can be so chosen. Consider the ordered sets 

Se=i0,(2m+1)+1,,..,2i(2m+1),(2i+1)(2m+1)+1..., 2(m-1)(2m+l), 

2 4m 1 and So=il, (2m+1), ..., 2i(2m+l)+lI (2i+1)(2m+l), ..., 
2(m-1)(2m-l)+l, 4m2-1). It is easy to see that S=SoUSe and 

ISoI=ISeI=2m. 

We now show that by suitably removing 2m edges from each of 

the 1-factors with distances in S,, we can obtain 2m vertex 

disjoint (2m+l)-paths. First we choose edge (u1.v1) from fo. 

Fixing vl as an end vertex of the path , we extend this path at 

u1 to a (2m+l)-path by using one edge from each of the 1-factors 

with distances in Se so that the ith edge in the path is from 

the 1-factor with the ith element of Se as its distance. (It 

will be (i-l)(2m+l) if i is odd and (i-l)(2m+1)+1 if i is even.) 

We call this path P. Construct 2m other (2m+l)-paths from P in 
b 

the following way. If (uk,vt) is an edge of PI let 

( u ~ + ( ~ ~ + ~  )i I~t+(2m+l ) i) be an edge of the path Pi, lSiS2m, where 

subscript addition is modulo 2m(2m+l) on the residues 

Now we need to show that these paths are indeed vertex 

disjoint. Suppose that each of U and V are divided into 2m 

blocks each and each block has 2m+l vertices. Let the vertices 

in block i of U be Ui+(i-1)(2m+l)ru*~u2m~+(i-1)(2m+l) and in 

block i of V be 2rn+l+(i-1)(2m+l)~ 11i.S2mI 

and denote them by the Ist, 2nd,..., and (2m+l)th positions. As 



defined before, the ith element in Se is 

(i-l)(2rn+l)~O(mod(2m+1)), if i is odd and 

(i-1)(2m+l)+l~l(mod(2m+l)) if i is even. This implies that P is 

incident with vertices in different positions in each of the 

blocks and in each bipartitions. (Figure 1.7 shows the paths in 

the case m=2.) Therefore, paths PIP1, ..., P2, are all vertex 

disjoint. Furthermore, we notice that these paths cover only 

vertices with position numbers 1 to m in the blocks of U and 1 

to m+l in the blocks of V. 

Fig. 1.7 

Now we construct another 2m (2m+l)-paths, this time using 

edges with distances from So. We choose the first edge as 

( u ~ + ~ , v ~ + ~ )  and fix as an end vertex. Using the same method 

as before we extend it to a (2m+l)-path which we call P'. As 

before, we obtain 2m (2m+l)-paths. It  can be seen that these 

paths are vertex disjoint. (1n Figure 1.7 the bold path shows 



the edges of P' in the case m=2.) 

We notice that these paths cover all vertices with position 

numbers m+l to 2m+l in the blocks of U and m+2 to 2m+l in the 

blocks of V. Thus it immediately follows that the 4m 

(2m+l)-paths form a P2m+,-factor. Now we only need to verify 

that after we delete the edges in this way, the remaining edges 

in each Hamilton cycle form a P2m+1-factor. 

By the above construction we find that the ith edge in P and 

the ith edge in P' belong to the same Hamilton cycle as defined 

what we call in the beginning of the proof. Now we define a 

modular graph for paths P and P' and we call it G I  where 

V(G)=SUT and ~=(s~,...,s~~+, 3 and ~ = E t ~ , . . . , t ~ ~ + ~  1 .  If (ukIvj) 

is an edge in P or P', then (sa,tb) is in G where a and b are 

the values of k and j respectively, modulo 2m+l. (Here the 

residues are 1,2,...,2m+l.) In this way, we obtain the graph G 

which is shown in Figure 1.8. It can be seen that corresponding. 

to P and P', we have vertex disjoint paths Q and Q' in G and 

they all have the same length 2m. In addition, the edges of Q 

and Q' are all in the Hamilton cycle of G formed by 1-factors 

with distances 0 and 1. The ith edges of P and P' are also the 

ith edges of Q and Q'. It is not difficult to find that the 

length of the path between the ith edges of P and P' on the 

Hamilton cycle Hizf (i-l) (zrn+1 )uf (i-l ) (zrn+l )+I is the same as the 
path length between the ith edges of Q and Q' on the Hamilton 

cycle formed by 1-factors with distances 0 and 1.  his can be 

seen clearly if we construct a modular graph for the 



corresponding path.) Therefore, from the structure of G we see 

that the length of the path between the ith edges of P and P' in 

Hi is 2m. Since i is general, this completes the proof. 

Fig. 1.8 

Proof. We first consider one copy of K2m(2m+1),2m(2m+l). By . 
Lemma 1.10 we know that the subgraph G<E> induced by the edges 

of ~ = i ~ ~ ( ~ ~ + l ) , ~ ~ ( ~ ~ + l ) + l  1 OSiS2m-1) can be decomposed into 2m+l 

P2m+l-factors. Let ~ ~ = { f ~ ( ~ ~ + ~ ) + ~ ~ , f ~ ( ~ ~ + ~ ) + ~ ~ + ~ :  OSiS2m-1). 

1SjSm-1. It is not difficult to see that G<Ej>=G<E> and that 

K2m(2rn+1 ) ,2m(2m+l) is the union of the subgraphs G<E.>, 1SjSm-1, 3 

G<E> and (f(2m + l ) i + 2 m I  0'iS2m-ll* Thus K2m(2m+1),2m(2m+l) can be 

decomposed into m(2m+l) P2m+l -factors and the 2m 1-factors given 

by ifi(2m+1)-1l 15il2m). In the second copy, we apply the same 

procedure except that the 2m 1-factors are ifi(2m+l)l 1Si12m). 

This can be done by relabelling the graph. It is not difficult 



to see that the subgraph G<E1> induced by edge set 

E'=ifi(2m+l)-lt 'i(2m+l) 1 11i12m) is isomorphic G<E>. Therefore, 

2K2m(2m+1 ) ,2m(2m+l) is P2m+1-factorable. This completes the 

proof. 

By using the preceeding lemmas and Theorem 1.5, we can 

resolve the case X-2 in Horton's conjecture. This is Theorem 

1.12 and the techniques used in its proof are similar to those 

used in the proof of Theorem 1.6. 

Theorem 1.12. The graph 2Kn is Pk-factorable if and only if 

(a) when k=2m, n~2m(mod(2m(2m-1))) and 

(b) when k=2m+l, n~(2m+l)(mod(2m(2m+l))). 

Proof. Suppose 2K., is Pk-factorable. When k=2m, n must be 

divisible by 2m and n(n-1) must be divisible by (2m-l)n/(2m). 

These two conditions imply nr2m(mod(2m(2m-l))). When k=2m+l, n 
b 

must be divisible by 2m+l and n(n-1) must be divisible by 

2mn/(2m+l). These two conditions imply n~(2m+l)(mod(2m(2m+l))). 

So we have proven the necessity. Now we are going to show that 

the conditions are also sufficient. 

When k=2m, the result immediately follows from Theorem 1.5. 

Assume k=2m+l and n=2m+1+2m(2m+l)p. The proof is divided 

into two parts depending on the parity of p. 

If p=2s+11 we divide V(2Kn) into 2s+2 blocks in which 2s+l 

of them have size 2m(2m+l) and one has size 2m+l. Contracting 



each block into one vertex, we obtain a copy of K2s+2. Taking a 

1-factorization of K2s+2 y ields 2s+l 1-factors, say fl,...,f2s+l 

and each f i  corresponds to s disjoint copies of 

2K2m(2m+1),2m(2m+l) and One 2K2m(2m+1),2m+l in 2Kn. For 

each f i r  we take a P2m+1 -factorization of the subgraph 

corresponding to the s copies of 2K2m(2m+1),2m(2m+l ) *  BY Lemma 

2 1.11, this is possible and yields (2m+l) P2m+1 -factors in that 

subgraph. In the graph 2K2m(2m+1),2m+l, if we include the edges 

in both 2K2m( 2m+ 1 ) and 2K2m+1, we have a 2K(2m+1)2 which is the 
2 union of a 2K2m+1-factor and (2m+l) P2m+l -factors. (This is 

2 Lemma 1.9.) We delete the (2m+l) P2m+l -factors obtained from 

2K2m(2m+1),2m(2m+l) and the 2K(2m+l) 2. We specify that this 

remaining 2K2m+1-factor includes the K2m+1 which is one of the 

blocks. Having done this for each f i r  we see that we are left 

with a 2K2m+1-factor in 2Kn. But 2K2m+1 is P2m+1 -factorable and 

hence 2Kn is P2m+l -factorable if n=2m(2m+1)(2~+1)+2m+l. 

If p=2s, the construction is somewhat more complicated.   ere' 
n=2m(2m+1)2~+2m+l=(2m+l)(4ms+l). We divide V(2Kn) into 4ms+l 

blocks each of which has size 2m+l. Contracting each block into 

one vertex, we obtain a copy of K4ms+1 which has a near 

1-factorization, say fl,...,fqms+l, and each fi  corresponds to a 

2K2m+ 1 and 2ms copies of 2K2m+l,2m+l in 2Kn. By Lemma 1.8, 

"2m+ 1 , 2m+ 1 can be decomposed into 2m+l P2m+l -factors and two 

1-factors (in fact 2m+l copies of 2 ~ ~ ) .  We also know that 2K2m+1 

can be decomposed into 2m+l P2m+1 -factors. Therefore, in the 

subgraph corresponding to f i r  we delete the 2m+l P2m+l -factors 



so that we are left with two 1-factors in each 2K2m+1,2m+l and 

2m+l isolated vertices. Repeating this procedure for all the 

near l-factors, we obtain a graph in which there are only two 

l-factors (as described above) between each pair of blocks in 

2Kn. It is important to note that in obtaining this graph, we 

were free to choose the l-factors between pairs of blocks 

independently. Now we are going to prove this graph is 

'2m+ 1 -factorable. We know this graph is a multigraph with 

multiplicity two. In the following proof we only consider a 

single copy of it. 

We label the blocks from 1 to 4ms+l and for each block i, we 

label its vertices from v(i,l) to v(i,2m+l). 

Consider the contracted graph K4ms+11 we know that it can be 

decomposed into 2ms Hamiiton cycles. Fix one of these Hamilton 

cycles, say (1,2, ..., 4ms+1,1), where i is the label of the 
block. For each edge (i,i+l), 11i14msI and (4ms+i,l) in the b 

cycle, we choose the corresponding 1-factor between the two 

blocks to be the 1-factor with distance 1. I f  we now delete all 

of these edges between vertex sets {v(l,j), ..., v(4ms+l,j)) and 

{v(l,j+l), ..., v(4ms+l,j+l)) for a fixed j where 11j12m+lI then 

what remains will be a P2,+1-factor. Repeating this procedure 

for each of the 2ms cycles, we obtain 2ms P2m+l-factors. 

Notice that the edges deleted from each Hamilton cycle are 

independent. Now we are going to prove that if we suitably 

choose the sets of independent edges from each Hamilton cycle, 



the union of them will form s P2m+1 -factors. 

We divide the 2ms Hamilton cycles into s groups so that each 

group has 2m Hamilton cycles. We claim that in each group, the 

union of independent edge sets, if choosen suitably, forms a 

P2m+1-factor. In each group, we label the Hamilton cycles from 1 

to 2m and then we choose, from the cycle labelled i, the 

independent edge set as the edges between 

{v(l,i), v(2,i) ,..., v(4ms+lIi)) and {v(l,i+l), v(2,i+l) ,..., 
v(4ms+l,i+l)). It is not difficult to check that the union of 

the 2m independent edge sets from the cycles in each group will 

form a P2m+l -factor. Since there are s group, we obtain s 

'2m+ 1 -factors. In total, we have 

(2m+1)(4ms+1)+2(2ms+s)=(2m+1)(4ms+2s+l) P2m+1 -factors which is a 

P2m+1-factorization of 2Kn, where n=(2m+1)(4ms+l). 

This completes the proof. 



PART C 

RESOLVABLE PATH DESIGNS WITH MIXED PATH LENGTHS 



In this chapter, we prove necessary and sufficient 

conditions for the existence of (~,t)~-factorizations and 

(s,tl4-factorizations of hKn. 

The main theorems are Theorem 2.8 and 2.18 and both are 

proved using recursive constructions. We begin with some lemmas. 

Lemma 2.1. Let v(K~,~)=vuw and ~=(v~~..,v~). W=(W~,...W~). 

The subgraphs K6, 6\(f f i+3), where io(0, 1.2) and f i={vjwj+i 

:11j16) with all addition modulo 6 and on residues 1, ...,6, are 

both P3-factorable and C4-factorable. 

Proof. This can be done by direct construction as shown in 

Figure 2.1 when i=2. It is not difficult to see that fiUfi+3 is 

isomorphic to fjUfj+3, i j 0 , 1 , 2  and each is three 4-cycle. 

(~igure 2.l(a) is a p3-factorization and Figure 2.l(b) is a 

C,-factorization.) 

Fig. 2.1 



Lemma 2 2 .  The graph K6 is (s,t)3-factorable if 3s+4t=15. 

Proof. The non-negative integer solutions of 3s+4t=15 are 

(s,t)=(1,3) and (5,O). The latter case is just a 1-factorization 

which is trivial. When (s,t)=(1,3), we give the following direct 

construction as shown in Figure 2.2. 

Fig. 2.2 

Lemma 2.3. The graph K12 is (~,t)~-factorable if 3s+4t=33. b 

Proof. All the possible non-negative integer solutions of 

3s+4t=33 are (s,t)=(ll,O), (7.3) and (3,6). The first case is 

trivial. When (s,t)=(7,3), we take a 1-factorization of K 6.6 and 

two copies of a (1~3)~-factorization of K6 as given in Lemma 

2.2. When (s,t)=(3.6), we take a (2.3)3-factorization of K 6I6 

and two copies of a (1.3)~-factorization of Kg. By Lemmas 2.1 

and 2.2, this is possible. 

Hence we have the desired decompositions. This completes the 

proof. 



Lemma 2.4. Let G be a graph. If G can be decomposed into two 

C3-factors, then it can also be decomposed into three 

Proof. Let V1 and V2 be two C3-factors. We consider each 

3-cycle in V1 or V2 as a vertex of a graph in which two vertices 

are connected by an edge if and only if the corresponding two 

3-cycles have one common vertex. So this is a 3-regular 

bipartite graph with V1 and V2 as the parts of the bipartition. 

This graph has a 1-factorization with 1-factors fl, f2 and f3. 

It is not difficult to see that each vertex in G is in the 

intersection of precisely two 3-cycles; one from each C3-factor. 

Hence each vertex in G corresponds to an edge in the above 

bipartite graph. 

Now we label the vertices of G as follows. If X~V(G) 

corresponds to the edge belonging to f i r  then we label it i. 

Each 3-cycle will have its vertices labelled 1,2 and 3. 

We decompose each 3-cycle into one 2-path (an edge) and one 

3-path. In V l ,  we let the 2-path in each 3-cycle be 1 2  On 

removing these edges from V 1 ,  the subgraph left over forms a 

P3-factor in G. In V2, we let the 2-path be (2,3) and again 

edges of V2 left over form another P3-factor. After we delete 

the two P3-factors, all vertices labelled 2, still have degree 2 

and the rest labelled 1 and 3 have degree 1. It is easy to see 

that this graph is a P3-factor. Therefore, G can be decomposed 



into three P3-factors. 

(The ideas used in above proof are based on those of Horton in 

[6]. But the result proved here is slightly different from his.) 

Lemma 2.5 [lo]. Let n~O(mod6) and 11218. Kn can be decomposed 

into t C3-factors and s 1-factors if and only if 2t+s=n-1. 

The following theorem is a special case of Theorem 2.8. It 

will simplify the proof of the Theorem 2.8 if we give it 

separately. 

Theorem 2.6. If st#O, then Kn is (s,tl3-factorable if and only 

if 3s+4t=3(n-1) and n~O(mod6). 

Proof. Suppose Kn is (s,tI3-factorable. Since stf0, n must be 

divisible by both 2 and 3. This implies that n~O(mod6). By b 

counting the number of edges, it is easy to see that the given 

equation must be satisfied. So we have proved the necessary 

conditions. 

Now we prove that the conditions are also sufficient. 

By Lemmas 2.2 and 2.3, the result is true for n=6,12. Now we 

just consider the case for 11218. Let (s,t) be a solution of 

3s+4t=3(n-1). It is not difficult to see that t~O(mod3) and so 

we can assume t=3p. Then 4(3p)+3s=3(n-1) which is 2(2p)+s=n-1. 

By Lemma 2.5, there exist a decomposition of Kn into 2p 



C3-factors and s 1-factors. By Lemma 2.4, these 2p C3-factors 

can be decomposed into 3p P3-factors. Hence we are done. 

Lemma 2.7. The graph K2n,2n,2n is P3-factorable. 

Proof. We name the three parts of V ( K ~ ~ ~ ~ ~ ~ ~ ~  1, U, V and W. 

Let u=[uil i n ,  v 1SiS2n) and w={wil l~iS2n). Now we 

construct the P3-factorization as follows. 

, + :  15jS2n], Qi={vjwj+i: lSj52n) Define edge sets Si={u.v 

and Ri={w -J .u j+i: 1SjS2n). It is not difficult to see that 

SiUQi+l, QiURi+l and RiUSi+l are three P3-factors of K2n,2n,2n. 

(The case n=2 and i=O is shown in Figure 2.3) Letting 

i=OI2,4,...,2n-2 we obtain a P3-factorization. 

Fig. 2.3 

Actually, for the proof of Theorem 2.8 we only need the 

result that K4,4,4 is P3-factorable. Since the construction of 

the proof is easily extended to the general case that is what we 

have done. 



Now we presented the first main theorem of this chapter. 

Theorem 2.8. The graph XKn is (~.t)~-factorable if and only if 

one of the following holds. 

(A) s=O,and 

( 1 )  XEI, 3(mod4), ni9(modl2) and t=3X(n-1)/4, 

( 2 )  Xi2(mod4), n~3(mod6) and t=3X(n-1)/4, 

(3) kO(mod4), n~O(mod3) and t=3X(n-1)/4, 

(B) t=O, niO(mod2) and s=X(n-l), 

(C) stzO, 3s+4t=3X(n-1) and niO(mod6). 

Proof. For the necessary conditions, (A) is shown in [6] and 

(B) is quite trivial. By counting the number of edges, we obtain 

Now we prove that the conditions are sufficient. 

(A). This was done by Horton [6]. 

(B). This is simply asking for a 1-factorization and is trivial, 

(C). First we give the proof for X=2,3 and 4. Then we shall 

extend them for general X. Let M be the maximum value such that 

3N+4M=n-1, where N, M are non-negative integers. If (s,t) is a 

solution of 3x+4y=3X(n-1) and tlMX, then the decomposition can 

be obtained easily by Theorem 2.6. We write t=tl+ ...+ tX, tilM, 

and s=s,+ ...+ sX so that (sirti) is a non-negative integer 
solution of 3x+4y=n-1. Otherwise, we divide the proof into 

following two cases. 

Casel. ni6(mod12). 



Let n=12p+6. It is not difficult to find that when X=l, 

s.1 (mod4), t.O(mod3) and M=9p+3. Kn is ( 1  r9p+3)3-factorable. 

For X=2,3, t must be no larger than MA. The reason is that 

if t>MX, then t=MA+3k where k is non-negative integer. From 

3s+4t=3X(n-1) we get, on substituting, 12k+3s=3X which is 

impossible when k>O. Therefore, we only need to consider X=4. In 

this case, (s,t)=(O,~X+3) is the only solution for which we 

cannot combine X=l solutions. But this has already been dealt 

with in ( A ) .  

Let n=12p. In this case, when X=l, sc3(mod4), tr(mod3) and 

M=9p-3. We know that Kn is (3,9p-3)3-factorable by Theorem 2.6. 

It is necessary for us to know the structure of the three 

I-factors as for h>l we want to get Pj-factors by combining 

these 1-factors. For this purpose, we give a specific 

construction of a (3,9p-3)3-factorization. We must consider 
L 

separately the cases p even and p odd. 

Suppose that p is even, so p=2m. We divide the vertex set of 

K24m into 2m blocks of size twelve. By contracting each block 

into one vertex, we obtain a K2, which has a 1-factorization, 

say fl,..., f2m-l. Each fi corresponds to p disjoint copies of 

K12,12* From Lemma 2.3 we have a P3-factorization of K12,12 and 

a (3,6)3-factorization of K12. Combining these we have the 

desired factorization of K24m. Now we know the structure of the 

three I-factors: in the subgraphs corresponding to each block, 



two 1-factors are edges of K 
6,6 

and the other 1-factor has three 

edges in each of the K6 which make up the K12. Note that the 

third 1-factor can be as any 1-factor in the two K6 subgraphs. 

We now give the proof for X=2,3 and 4 when n=24m. In each 

case continue to think of K24m as 2m blocks of size 12. 

(a) X=2. 

Here, if t>2M, then t=2M+3. So if we can show that 2Kn is 

(2,2M+3)3-factorable, then we are done. Take a 

(3.~1~-factorization of each copy of Kn so that in copy 1, we 

choose two 1-factors of K6,6 in each block with distances 0 and 

3 and in copy 2, we choose two I-factors of K 6,6 of each block 

with distances 1 and 4 and we know that the third 1-factor in 

each copy is not important. By Lemma 2.1, we find that the graph 

obtained by combining these four specified 1-factors can be 

decomposed into three P3-factors. Therefore, 2Kn is 

(2,2M+3)3-factorable. 

Here if t>3M, then (s,t)=(5,3M+3) or (1,3M+6). In both 

cases, we first take a (3,M)3-factorization of each of the three 

copies of Kn. If (s,t)=(5,3~+3), then we use the same method as 

in (a) on two of the copies to get the desired decomposition. If 

(s,t)=(1,3~+6), then we choose the three 1-factors in copy 1 as 

in Figure 2.4(a) and choose the three 1-factors in copy 2 as in 

Figure 2.4(b), choose the three 1-factors in copy 3 as in Figure 



(a) (b) 

Fig. 2.4 

Combining these 1-factors we obtain a graph which is the 

union of K \ i f q I  f5] which is P3-factorable (see Figure 
GI6 

2.l(a)) and the graph shown in Figure 2.5 which is 

(1~3)~-factorable. Therefore, we obtain a 

(1.3M+6)~-factorization of 3K24m. 

Fig. 2.5 



Here (s,t) must be one of (8,3~+3),(4,3~+6) or (0,3~+9) as 

all other cases are covered by Theorem 2.6. The first two cases 

can be done by the same methods as in parts (a) and (b), and the 

third case is covered by (A). 

So now suppose that p is odd, or equivalently nn12(mod24). 

Let n=24m+12=4(2m+1)3. As before, we first give a construction 

for the extreme case which is a (3,M)3-factorization in Kn. 

We divide the vertex set of K24,+i2 into 3(2m+l) blocks each 

of size four. By contracting each block into one vertex, we 

obtain a K3(2m+l). We know there is a 2-factorization of 

K3(2m+l ) in which each 2-factor is a union of 3-cycles (or 

equivalently, a Kirkman triple system on 6m+3 elements). The 

subgraph corresponding to each 3-cycle is a K4,4,4 in Kn. By 

Lemma 2.7, K4,4,4 is Pg-factorable. Deleting all P3-factors 

obtained in this way, we find that the remaining edges consitute 

3(2p+l) copies of K4 which is (3,0)3-factorable. Now we know the. 

structure of the three 1-factors. Before we prove the result for 

X=2,3 and 4, we divide 3(2m+l) K4 into 2m+l groups so that each 

group consists of twelve vertices. We only need to be concerned 

with the subgraph corresponding to each group. 

(a) X=2. 

As in the case p even, all we need to find is a 

(2,2~+3)~-factorization. By Lemma 2.1, we know that Ks16 has a 

four regular bipartite subgraph which is not only Cq-factorable, 

but Pj-factorable as well. Now in each K12 we have two copies of 



three K4 subgraphs (made up of the 1-factors in the 

(3,M)3-factorization). If we delete one 1-factor from each of 

them, we get two copies of three 4-cycles. It is not difficult 

to see that we can suitably choose the vertices of the three K4 

in each copy so that the resulting two C4-factors will form the 

K6,6 subgraphs as described above. There are only two 1-factors 

left. Therefore we are done. 

(b) X=3. 

As before, we only need to find a (1,3M+ 6)3-factorization to 

be done. We wish to choose the C4-factor in each of two copies 

as in Figure 2.l(b) so that the remaining 1-factors in the three 

K4 form the 2-regular graph shown in Figure 2.6. 

Fig. 2.6 

Now we choose the third copy of the three K4's so that 

together with the graph in Figure 2.6, it forms the graph of 

Figure 2.5 which is (1,3)~-factorable. Therefore, we have a 

(1,3~+6)~-factorization. 



In this case, as before, (s,t) must be one of (8,3M+3), 

(4,3~+6) and (0,3~+9) as all other cases are covered by Theorem 

2.6. Therefore, the desired decompositions immediately follows 

from the previous proofs. 

Up to now, we have proven only that the result is true for 

X=1,2,3 and 4. Now we give the proof for the general X. 

Let X=4q+i where OIi13. When i=O, it is not difficult to 

prove this case by induction on q. Therefore, we assume 11i13. 

Now let (s,t) be a solution of 3s+4t=3X(n-1). If tl3q(n-l), we 

only need to take an (s-i(n-l),t)3-factorization of 4qKn and a 

1-factorization of the i other copies of Kn. Otherwise, take a 

P3-factorization of 4qKn and a (~,t-3q(n-l))~-factorization of 

iKn to yield the desired result. Therefore, we have completed 

the proof. 

Now we prove the necessary and sufficient conditions of for 

the existence of (~,t)~-factorizations of XKn. As before, we 

first prove some lemmas which will be used to prove the main 

theorem. Note that in the proof of the following lemmas, we 

ignore the 1-factorization case which is trivial there. 

Lemma 2.9. The graph K 6,6 
is (s,t)4-factorable if 2s+3t=12. 

Proof. We first find that all possible non-negative integer 

solutions of 2s+3t=12. They are (s,t)=(0,4) and (3,2) (provide 



t+O). The direct contruction proof is shown in Figure 2.7. 

Note: the union of the first (third) and second (forth) graph in 

the Figure 2.7 is a 3-regular subgraphs and consequently each of 

them can be decomposed into three 1-factors. 

8 

if 2s+3t=2n. 
b 

Proof. Let n-6m. We divide each part of the vertex set into m 

blocks of size six. By contracting each blocks into one vertex, 

we obtain a KmIm which has a 1-factorization, say f,, ..., fm and 
each of them corresponds to m disjoint copies of Ksr6 in K6rn,6m* 

Let (s,t) be a solution of equation 2s+3t=2n=12me It is 

clear that t must be even so we let t=2p. Take a 

P4-factorization of each of the subgraphs corresponding to 

flI...,i [p/21 yields 4[p/2] p4-factors in K ~ , , ~ ~ .  I • ’  p is even, 

we complete the (s,t)4-factorization by taking a 1-factorization 



of the remaining graph. Otherwise, we use Lemma 2.9 to take a 

(3f2)4-factorization of the subgraph corresponding to f I  p/21+1 

and then 1-factorize the remaining graph. This yields s 

1-factors and 2p P4-factors. 

We next construct all (s,t)4-factorizations of K12 and K8. 

Lemma 2.11. The graph K12 is (~,t)~-factorable if and only if 

2s+3t=22. 

Proof. The necessity follows by counting the edges. 

It is easy to see that all non-negative integer solutions 

(provided t#O) of 2s+3t=22 are (s,t)=(2,6), (5,4) and (8,2). 

We divide the vertex set of K12 into three blocks of size 

four. By contracting each block into one vertex, we obtain Kg 

which has a near 1-factorization, say fl,f2 and f3. The subgraph 

of K12 corresponding to each near 1-factor in K3 (K4 , 4UK4) can 

be decomposed into two P4-factors and four independent edges as 

shown in Figure 2.8(a). These four independent edges can be 

chosen in such a way that after deleting all the P4-factors 

obtained from each fi, lSiS3, (see Figure 2.8(b)) the remaining 

graph is a 2-factor made up of two 6-cycles which is 

1-factorable. So we are done. 



(a) 

Fig. 2.8 

(2) (s.t)=(5.4). 

By using Lemma 2.9, we see that KG,6 can be decomposed into 

four P4-factors. Since K6 is 1-factorable, we are done. 

From Lemma 2.9. Ks16 can be decomposed into two Pq-factors 

and three 1-factors. Since K6 is 1-factorable, the desired 

decomposition can be easily obtained. 

Lemma 2.12. The graph K8 is (~,t)~-factorable if and only i f  

2s+3t=l4. 

Proof. The necessity follows by counting the edges. 

All non-negative integer solutions (provided that t#O) of 

2s+3t=14 are (s,t)=(4,2) and ( 1 ~ 4 ) .  



We know each K4 can be decomposed into two $-paths and K 4 14 
is.1-factorable. Thus we are done. 

We know K 414 can be decomposed into two P4-factors and one 

1-factor. (See Figure 2.8(a).) So we can get our desired 

decomposition. 

The main theorem will be proved by a series of three lemmas 

each of which deals with one of the residues classes of n modulo 

12 where n is divisible by 4. 

Lemma 2.13. Let n~O(modl2). Tho graph Kn is (~,t)~-factorable 

if and only if 2s+3t=2(n-1). 

Proof. The necessity follows by counting the edges. 

We divide the proof into two cases. Let (sit) be a solutionb 

of 2s+3t=2(n-1). It is not difficult to see that tiO(mod2) and 

s~2(mod3). 

We divide v(K,) into 2p blocks each containing twelve 

vertices. By contracting each block into one vertex we obtain a 

K 2 ~  
which has a 1-factorization, say f l l  f2,...,f2p-l. Each f i  

corresponds to p disjoint copies of K12112 in K,. 



In this case, t can be any even number no more than 

(2n-6)/3=16p-2. 

If (s,t) satisfies 2s+3t=2(n-l) and t116p-8, then we take a 

P4-factorization of each of the subgraphs corresponding to f l .  

f21...If[t/81. This yields 8[t/8] P4-factors in Kn. Next we take 

a (12-3(t-8[t/8])/2,t-8[t/8])4-factorization of the subgraph 

corresponding to f[t/8]+1 (see Lemma 2.10) and 1-factorize both 

the subgraphs corresponding to f[t/8]+21."If2p-1 and the 2p 

disjoint copies of Kl2. 

If 16p-8ctS16p-2, then we take a P4-factorization of each of 

subgraphs corresponding to fl,...If2p-l and decompose the 

remainder of the graph (the 2p disjoint copies of K12) into 

t-(16p-8) P4-factors and s I-•’,actors. 

As in casel, we find that t can be any even number no more 

than (2n-6)/3=16p+6. 

We divide V(Kn) into (4p+2) blocks so that each of the 

blocks contains six vertices. By contracting each block into one 

vertex, we obtain a K4p+2 which has a 1-factorization, say fl, 

f21...,f4p+l. Each f i  corresponds to 2p+l disjoint copies of 

K616 in Kn. 

If t116p+4, then we take a P4-factorization of each of the 

subgraphs corresponding to f l ,  f2, ..., f [t/4I0 This yields 4[t/4] 
P4-factors in Kn. Now take a 



(6-3(t-4[t/4])/2,t-4[t/4])4-factorization of the subgraph 

corresponding to f[t/41+1 (see Lemma 2.10) and 1-factorize each 

of the subgraphs corresponding to f~t/4~+2,....,f4p+l and each 

' 

If t>16p+4, then t=16p+6. In this situation, our 

construction is as follows. 

Take a P4-factorization of each of the subgraphs 

corresponding to fl, ..., 
4p yielding 16p P4-factors in K,. By 

combining the (4p+2) disjoint copies of K6 and the subgraph 

corresponding to f4p+l, we obtain (2p+l) disjoint copies of K12. 

By applying Lemma 2.11, K12 is (2,6)4-factorable. Therefore, we 

obtain a (2,16p+6)4-factorization. 

The following lemma is proved by ~anani, Ray-chandhure and 

R. Wilson. We are going to use it to prove Lemma 2.15. 
b 

Lemma 2.14 [ 3 ] .  The graph K, is K4-factorable if and only if 

ni4(mod12). 

Lemma 2.15. Let n14(mod12). Kn is (s,tI4-factorable if and 

only if 2s+3t=2(n-1). 

Proof. The necessity follows by counting the edges. 

Using Lemma 2.14, we can decompose K, into (4p+l) K4-factors 

if n=12p+4. 



Let (s,t)=(s,2m) be a solution of 2~+3t=2(n-1)=2(12~+3). 

From this we see that srO(mod3) and t12(4p+l). 

If m=4p+l, we simply take a P4-factorization of each 

K4-factor. ( ~ a c h  K4 can be decomposed into two 4-paths). 

Otherwise, we choose m (m<4p+l) K4-factors in Kn and decompose 

them into 2m P4-factors; the remaining K4-factors are 

1-factorized. 

Lemma 2.16. Let nr8(modl2). The graph Kn is (s,tI4-factorable 

if and only if 2s+3t=2(n-1). 

Proof. The necessity follows by counting the edges. 

Let n=12p+8=6(2p+1)+2 and (sIt)=(s,2m) be a solution of 

2~+3t=2(n-l)=2(12p+7). We find that s~l(mod3) and t18p+4. 

We divide V(Kn) into 2p+2 blocks of which 2p+l blocks have 

size six and one block has size two. Let the vertices in the b 

block of size two be x and y. By contracting each block into one 

vertex we obtain KZpc2 which has a 1-factorization, say 

fl,...If2p+l. Each fi corresponds to p disjoint copies of K 6,6 

and one copy of Ks12. Note that in each f i  the block of size six 

in the K 
6 I2 

is distinct. 

C 

We decompose each of the subgraph of Kn corresponding to the 

1-factors fl,...,f [m/2 I into four P4-factors. This decomposition 

needs to be specified as follows. Each Ks16 is 

(0,4)4-factorable. For the KsP2, we include the edges in K2 and 



K6 to get a K8. Since K8 is (l,4)4-factorable by Lemma 2.12. 

there is a subgraph G=K8-f, where f is a 1-factor containing the 

edge (x,y), so that G has a P4-factorization (there are four 

P4-factors). We thus obtain 4[m/2] P4-factors and we remember 

that we still have a 1-factor in each of [m/2] copies of K6 and 

edge (x,y). 

If m=O(mod2), then we only need to prove that the remaining 

subgraph of Kn is 1-factorable. We do so as follows. 

For each i, [m/2]+11i12p+l, we decompose the subgraph 

corresponding to fi into six 1-factors. Again the decomposition 

needs to be specified. Ecah KsI6 has six 1-factors. With the 

K6J we include the edges in K2 and K6 and obtain a Kg which has 

seven 1-factors. But we choose only six of them and the 

remaining one is the one containing the edge (x,y). Doing this 

for each i we obtain 6(2p-[m/2]+1) 1-factors. On deleting all of 

these 1-factors, the resulting graph consists of the edge (x,y) 

and one 1-factor in each Kg. This gives us another one 1-factor. 

Therefore, we obtain 6(2p-[m/2]+1)+1 1-factors and 4[m/2] 

P4-factors in Kn when m is even. 

If m=l(mod2), we decompose the subgraph corresponding to 

f [rn/2]+1 into two P4-factors and three 1-factors such that edge 

(x,y) belongs to one of the 1-factors. This is possible, because 

K8 is (4,2)4-factorable. Then by using the same method as 

before, we can prove that the remaining graph is 1-factorable. 



This completes the proof. 

Because we need the result for X=l to prove the case that X 

is general, we take this special case as theorem 2.17. 

Theorem 2.17. The graph Kn is (s,tl4-factorable if and only 

if, either 

( A )  s=O, nn4(mod12) and t=2(n-1)/3, 

(B) t=O, n~O(mod2) and s=(n-l),or 

(C) stz0, 2s+3t=2(n-1) and n=O(mod4). 

Proof. Both the necessary and sufficiency of conditions of 

this theorem follow by Lemmas 2.13, 2.15 and 2.16. 

In Theorem 2.18 we generalize Theorem 2.17 to arbitrary 

values for X. 

Theorem 2.18. The graph XKn is (~,t)~-factorable if and only 

if, either 

( A )  s=O, 

and ( 1  ) h~O(mod3), nrO(mod4) and t=2X(n-1 )/3, 

or (2) k l ,  2(mod3), n~4(mod12) and t=2X(n-1)/3, 

(B) t=O, nmO(mod2) and s=X(n-11, or 

( C )  st#O, 2s+3t=2X(n-1) and nnO(mod4). 

Proof. By counting the number of edges, it is not difficult to 

prove the necessity of this theorem. We only need now to show 

the sufficiency of these conditions. 



( A )  s=O. 

We know that Kn is P4-factorable if n~4(mod12). So this will 

be true for all value of A .  Now we are going to prove that when 

1 2  n.O(modl2) or n~8(modl2), 3K, is P4-factorable. Let Kn, Kn and 

3 Kn be the three copies of Kn. 

First, let n=12p. By Lemma 2.13, Kn is (2,8p-2)4-factorable. 

Moreover, in that construction (using Lemma 2.11) the union of 

the two 1-factors is a 2-factor in which each cycle has length 
1 six. Take such a (2,8p-2)4-factorization of Kn,  his yields 2p 

6-cycles. We can think of them as p pairs of 6-cycles, say 

i i i i i , (xi,. . . ,x6) and (yl, .. . ,Y6) where i=l,. ,P, and v(Kn)=Ixj,yj* 
ISiSp, l~jS6). Now we take a (218p-2)4-factorization on K: and 

i i 
such that one of the 1-factors is formed by the edges (x1,y6), 

i i i i i i 
( X ~ I Y I ~ ) I  (x3ty4)t ( X ~ I Y ,  ) I  i ,  and ( x ~ , ~ ~ )  where i=l,. . . ,p .  

1 
By adding this 1-factor to the p pairs of 6-cycles from Kn, we 

obtain a three factor with p identical components as shown in 

Figure 2.9. Observe that this 3-regular subgraph is 

P4-factorable. 

Fig. 2.9 



5 Now we take a (2,8p-2)4-factorization on Kn so that the one 

2 3 1-factor left in K, and the p pairs of 6-cycle obtained in Kn 

will again form a 3-factor as above. Therefore, 3Kn is 

P4-factorable if n~O(modl2). 

Suppose now that n=12p+8. By Lemma 2.16, Kn is 

(1,8p+4)4-factorable. Now take a (1,8p+4)4-factorization of each 

of the three copies of Kn so that the three 1-factors will form 

a K4-factor of K,. This subgraph is P4-factorable. 

Therefore, the graph Kn is P4-factorable if n~O(mod4) and 

X~O(mod3) and the number of P4-factors is 2X(n-1)/3. 

(B) t=O. This is just a 1-factorization and so it is trivial. 

When X=l, this is Theorem 2.17. Suppose that X=2. Let (s,t) 

be a solution of 2s+3t=4(n-1) and M be the maximum number of 
1 b P4-factors in Kn. If t<2M, we can obtain M P4-factors from Kn 

2 and t-M P4-factors from Kn, and 1-factorize the remaining graph. 

By Theorem 2.17, this is possible. Otherwise, the only 

possibility occurs when n~O(modl2). The reason is that if 

n~4,8(mod12), then 2M is the maximum number of P4-factors 

possible. Now when nsO(modl2), the maximum number of P4-factors 

possible is 2M+2. So we apply the same method as in (a) by first 

taking a (218p-2)4-factorization of each copy of K (n.12~) and 
1 2~ 

then combining the four 1-factors to obtain the two more 

P4-factors. 



Now we consider the case of general X. For any given A, we 

consider its value modulo 3. Since we know that XKn is 

P4-factorable if naG(mod4) and X~O(mod3), and that when X=1,2, 

XK, is (~,t)~-factorable if and only if 2s+3t=2X(n-1) and 

n~O(mod4), Then the desired result follows immediately. 

This completes the proof. 
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