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ABSTRACT

A resolvable path design is a decomposition of A\ copies of
K, (kKn) into edge-disjoint subgraphs such that each subgraph
consists of n/k vertex-disjoint paths of length k-1, each with
vertices. We also call a resolvable path design a

Py -factorization of AK, and each subgraph a P -factor.

J. D. Horton found necessary conditions, and conjectured
that they were also sufficient for the existence of resolvable
path designs of AK,. He proved that for A=1 the conditions are
asymptotically sufficient (that is, for each value of k the
design exists if n is sufficientiy large) and that.they are
sufficient for any X\ when k=3. In this thesis we prove that the
conjecture is sufficient when k is even and A=1, and for all

values of k when A=2.

In the second part of the thesis we investigate the
following two questions:

(1) For given integers s and t, under what conditions can
MK, be decomposed into s 1-factors and t Pj-factors?

(2) For given integers s and t, under what conditions can

AK, be decomposed into s 1-factors and t P,-factors?

Necessary and sufficient conditions are found for both

questions.
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PART A

INTRODUCTION



The complete graph on n vertices, in which each vertex is
joined precisely once by an edge to each other vertex, is
denoted by K . We denote by MK  the graph with n vertices in
which each vertex is joined by precisely A edges to each other

vertex,

A G-factorization of MK, 1s a partition of the edges of AK, into
disjoint spanning subgraphs each of which is the vertex disjoint
union of n/|[V(G)| copies of G. These spanning subgraphs are
called G-factors of AK . In the special case when G=P,, where P,
is a path with k vertices, we call such a partition a reso/vable
path design or a P-factorization. 1f C, denotes the cycle with length
k, then we similarly define a Cy-factorization. When G is regular of
degree r, we may also call the G-factorization (G-factor) an
r-factorization (r-factor). 1f the graph H has a G-factorization, then
we say that H is G-factorable. Factorizations are often called

decompositions.,

The Oberwolfach problem was formulated by G. Ringel and
first mentioned in [2]. It asks: Given integers Ly1,Cp,eee,Fp all
at least 3 and so that ry+...4r.=n where n is odd, is it
possible to find a 2-factorization of K, so that each 2-factor
contains a cycle of each length Fireee,by? This problem has been
studied for a long time and there are many papers on it (see for
example [1], [4], and [7]). One of the more interesting cases of
the Oberwolfach problem is when ri=rj, where 1<i,j<t. This has
been solved in [1], where the authors also show that, provided n

is even and not equal to 4m, m is odd, and Kn\F (the complete



graph with a 1-factor removed) has a Cm-factorization whenever m

divides n. The case precluded remains unsettled.

J. D. Horton [6] considered the related question for path
decompositions of AK,. These are resolvable path designs or path
factorizations. The question is, given an integer k22, is it
possible to find a Pk-factorization of XK. ? The difference
between this problem and the Oberwolfach problem is that Horton
considered paths of the same length instead of cycles and with

the complete multigraph. He made the following conjecture.

Conjecture. A resolvable path design of AK, with path length k
exists (or kKn is Pk—factorable), if and only if k divides n and

n(k-1)/k divides An(n-1)/2.

It is not difficult to see that these conditions are
necessary. The first is obtained by counting the number of
vertices, and the second by counting the number of edges. Some
special cases of this conjecture have been known for a long
time. For example, when k=2, it asks for a 1-factorization and
when k=n, for a Hamilton path decomposition. Horton also gave
answers for some special cases of this conjecture. The following

two theorems are the two main theorems in his paper.

Theorem. Let k be any integer greater than 1. Then there
exists a constant c(k) such that if n>c(k), then K, is
P -factorable if and only if n=k 2 (modulo lem(2k-2,k)), where

lcm(a,b) denotes the lowest common multiple of a and b.



Theorem. The graph AK  is Py-factorable if and only if,
(A) when A=1 or 3 (mod4), then n=9 (mod12),
(B) when A=2(mod4), then n=3(mod6), and

(C) when A=0(mod4), then n=0(mod3).

The proof of the first theorem is based on the fact that for
all k>4, the existence of resolvable block designs is known
asymptotically due to a result of D. Ray-Chaudhuri and R. Wilson
[8]. When k=2 a resolvable block design on n vertices is simply
a 1-factorization of Kn; which exists if and only if n is even.
When k=3, we have Kirkman Triple Systems which exist if and only
if n=3(mod6) [9] and when k=4, the resolvable designs exist if
and only if n=4(mod12) [3]. The proof of the second theorem uses
Bose's method of pure and mixed differences on the appropriate
group. P. Hell and A. Rosa also used this method in [5] to

construct several examples of resolvable path designs.

In this thesis, we will provide more evidences for Horton's.
conjecture by proving the following two results which are the

two main theorems in the first part of the thesis.

Theorem. The graph K  is P, ~factorable if and only if

n=2k (mod(2k(2k-1))).

Theorem. The graph 2K, is P, -factorable if and only if ,
(a) when k=2m, n=2m(mod(2m(2m-1))) and

(b) when k=2m+1, n=(2m+1)(mod(2m(2m+1))).



In the Oberwolfach problem, one case of special interest is
that when all cycles have length 3. As we mentioned before these
designs are called Kirkman Triple Systems, or C3—factorizations.
R. Rees [10] considered a generalization of this factorization

and obtained the following theorem.

Theorem. Let n=0(modé) and n218. The complete graph K, can be
decomposed into t C;-factors and s 1-factors if and only if

2t+s=n-1,

Motivated by Rees' work, we investigated the following two

questions.

(1) For given integers s and t, under what conditions can

MK, be decomposed into s 1-factors and t Py-factors?

(2) For given integers s and t, under what conditions can

MK, be decomposed into s 1-factors and t p,~factors?

-

We can think of such path decompositions as resolvable path
designs with mixed path lengths. For convience, we introduce the

following definition.

An (s,t)~factorization of NK, is a partition of the edges of
MK, into s P,-factors (also called 1-factors) and t P -factors.
In particular, an (s,0),-factorization is a 1-factorization and
a (O,t)k-factorization is a Pk—factorization. We also call AKj

(s,t)~factorable if there exists such factorizations.



The two theorems which answer the above two Questions and

are discussed in the second part of the thesis can be stated as

follows,

Theorem. The graph MK, has an (s,t);-factorization if and
only if, either
(A) s=0, and

(1) A=1, 3(mod4), n=9(mod12) and t=3r(n-1)/4, or

(2) A=2(mod4), n=3(modé6) énd t=3A(n-1)/4, or

(3) A=0(mod4), n=0(mod3) and t=3x(n-1)/4,
(B) t=0, n=0(mod2) and s=A(n-1), or

(C) st#0, 3s+4t=3A(n-1) and n=0(modé6).

Theorem. The graph AK, is (s,t),-factorable if and only if,

either
(a) s=0, and
(1) A=0(mod3), n=0(mod4) and t=2A(n-1)/3, or
(2) A=t1, 2(mod3), n=4(modi12) and t=2A(n-1)/3,
(B) t=0, n=0(mod2) and s=A(n-1), or

(C) st#0, 2s+3t=2A(n-1) and n=0(mod4).



PART B

RESOLVABLE PATH DESIGNS



As mentioned in the introduction, Horton conjectured
necessary and sufficient conditions for the existence of
resolvable path designs. We will prove two special cases of his
conjecture here. The first case is when A=1 and the path length
is odd (the path has an even number of vertices) and the second

is when A=2 and there is no restriction on the path length.

For the convenience of the proof, we introduce the following

definition.

In the complete bipartite graph K where V(K  )=AUB,

m,m’
A={a1,...,am} and B={b1,...,bm}, the 1-factor of distance t
consists of the edges {(a;,b;,,): 1<i<m}, where subscript

addition is modulo m and on residues 1,...,m.

Before we present the two main theorems in this chapter,

some lemmas are first proved.

Lemma 1.1. The graph K, ., can be decomposed into m .
r

P2m—factors and one 1-factor.

Proof. Let V(KZm,Zm)=UUV' where U={u1,...,u2m} and
V={v1,...v2m}. To find the P,,~factor we will use the fact that
K2

m can be decomposed into m Hamilton paths, say Hy,...,H

m'
Assuming that the vertex set of K, is {1,2...2m} we construct a
P,,~factor of Kom, 2m from each H; as follows. If (k,j) is an
edge in H;, then the P, -factor contains the edges (uk,vj) and
(vk,uj). It is not difficult to see that the P, -factors of

K2m,2m obtained from H; and Hj' i#3, are edge-disjoint,



Repeating this procedure for all H,, i=1,...,m, we obtain m

edge-disjoint P, -factors in K2m,2m' On deleting from KZm,Zm the

edges of these P,n-factors, what remains is a 1-factor in Kom 2m
, 21

with distance 0. So we are done.

Lemma 1.2. The graph Km(Zm-1) m(2m-1) is PZm-factorable.

Proof. Let V<Km(2m—1),m(2m—1))=UUV where U={u1,...,um(2m_1)}
and V={v1,...,vm(2m_1)}. Let f; be the 1-factor of
Km(2m—1),m(2m—1),With distance i. We claim that the set of edges
obtained from the union of 2m-1 1-factors with consecutive
distances a,a+1,...,a+2m-2 can be decomposed into m P2m—factors.
It is not difficult to see that the union of two consecutive
i-factors, fiUfi+1' forms a Hamilton cycle. We can delete 2m-1

independent edges on the Hamilton cycle and obtain 2m-1

2m-paths, a P, -factor.

-

Now to verify the claim, we divide each of U and V into 2m-1
blocks so that the vertex labels in each block are consecutive;
that is, the blocks are {vp,,;: 1<ism} and {up ;i 1<ism} where

0<k<2m-1, Now we divide the proof into two parts.
(1) m=2p+1.

We consider the 1-factors fi of Km(2m—1),m(2m—1)' where

-(m-1)<i<(m-1). Pairing £, and £;4+1, where i=1,3,...,m-2, and

£;,_, and f., i=-1,-3,...,-(m-2), we obtain m-1 Hamilton cycles.

1
Let e; =(Upnip-(i-1)/27 Vkm+p+2+(i-1)/2) and



2 _
el k= (Ugmepei-(i+1)/27 Vkmep+(i+1)/2)+ From £3Uf;,,,
i=1,3,...,m-2, delete the edges of E;={e; ke 0<k<2m-~2}, which
’

all have distance i+1, Moreover, (fiufi+1)\E; is a P, ~factor of
Km(2m-1),m(2m-1)'

From f;Uf i=-1,-3,...,-(m-2), delete the edges of

i-1e
E?={e§ K: 0<k<2m-2}, which all have distance i. Moreover,

2 . -
(£;Uf;_)\E] is a Py-factor of Kp(op-1) m(2m-1)-

Now let us study the edges in E;UE%. First we partition them
into sets E(k) where E(k)={e1 K i=1,3,...,m—2}U{e% K
1 ' . r
i=-1,-3,...,-(m-2)}, 0<k$2m-2. For example, when m=7, E(0) is as

shown in Figure 1.1(a).

U V,
U, Vs
Us Vi
Ug *V,4
Us Vs
Ug Ve
Us e Vs
(a) (b)
Fig. 1.1 Fig. 1.2

It is clear that for each value of k, E(k) is isomorphic to
this graph and disjoint from it. Now add the edges of f,. It is
" easy to check that fyU{E(k): 0<k<2m-2} is a P, -factor (see

Figure 1.1(b)).



(2) m=2p.

1 _ 2 _

Let e; y=(Ugmip-1-(i-1)/27 Vkm+p+1+(i-1)/2) and ef y=
(ukm+p_(i_1)/2, Vkm+p+1+(i_1)/2)- Consider the 1-factors fi
where i=-m,-(m-1),..,-1,0,1,..,m-3,m-2. Pair these 1-factors as
£iUf34q, i=1,3,..,m-3, and f;Uf;_,, i=-1,-3,..,-(m-1). From each
of the first pairings, we respectively delete the edges in set
E1={e1'k: 0<k<2m-2}, i=1,3,..,m-3, and from the second pairings
delete (respectively) E§={e§ k: 0sk<2m-2}, i=-1,-3,..,-(m-1). It
is not difficult to check that each of (fiufi+1)\E1,
i=1,3,..m-3, and (fi-1Ufi)\E§' i==-1,-3,..,-(m-1) is a
Pon~factor. Let E(k)={e1'k: i=1,3,...,m—3}U{e§'k:
i=-1,-3,...,-(m-1)} where 0<k<2m-2. As before, it is easy to see

that fOU{E(k): 0<k<2m-2} is also a P, factor in

Km(2m-1),m(2m-1) * The case m=6 is shown in Figure 1.2.

We have proved that the set of edges obtained from the union
of 2m-1 1-factors with consecutive distances can be decémposed
into m P, -factors. It is not difficult to see that the edge set
of Km(2m—1),m(2m—1) is the union of m edge sets each of which is
formed from 2m-1 1-factors with consecutive distances and they
are all isomorphic. Therefore, the desired result follows

immediately and this completes the proof.

The following lemma is an immediate result of Lemma 1.2.

is P, ~factorable if and only if

Lemma 1.3. The graph K [
r

11



n=0(mod(m(2m-1))).

Proof: Suppose that K
2

n,n is P2m—factorable then 2n 1is

divisible by 2m and n“ is divisible by n(2m-1)/m. These two
conditions imply n=0{(mod(m(2m-1))). So we have proven the

necessity.

Now we are going to prove that the conditions are

sufficient.

We divide the two parts of K into blocks of size m(2m-1).

n,n

Contracting each block into one vertex, we obtain a Kp D where
14

n=m(2m-1)p. We know that K has a 1-factorization and each

p:p
1-factor corresponds to p copies of Km(2m-1) .m{(2m=1) in K, . By

is P2m—factorable.

Lemma 1.2, it follows that Kn n
r

Lemma 1.4. The graph Kym2 is the union of a K,q~factor and

2

2m P2m—factors. .

Proof. We divide V(K4m2) into 2m blocks each of size 2m.

Contracting each block into one vertex we obtain a Kom®

We know that K has a 1-factorization, say f,,..¢,f5 _.
2m ¥y 5y 2m-1

Bach fi corresponds to n copies of K By Lemma 1.1, K2m,2m

2m,2m*

can be decomposed into m P, -factors and one i-factor. We can

assume that the i1-factor left in each copy of K has

2m, 2m
distance 0 and all these edges forms a K, -factor which is
P,,~factorable. Deleting all P, -factors obtained in this way

(total (2m-1)m +m P2m—factors), we are left with a K, -factor of

12



Kym2 which is the subgraphs corresponding to the blocks. This

completes the proof.

Now we present the first main result of this chapter.

Theorem 1.5, The graph K  is P,n~factorable if and only if

n=2m(mod(2m(2m-1))).

Proof. Suppose that K, is P, -factorable, then n is divisible
by 2m and n(n-1) is divisible by n(2m-1)/m. These two conditions

imply n=2m(mod(2m(2m-1))).

Suppose that n=2m+2m(2m-1)p. We will show that K, is
P,h~factorable. To do so we divide the proof into two parts

depending on the parity of p.
If p=2s+1, then n=2m(2m-1)(2s+1)+2m.

We divide V(K ) into 2s+2 blocks in which 2s+1 of them have *
size 2m(2m-1) and one has size 2m. Contracting each block into
one vertex, we obtain a K,o,,. Taking a 1-factorization of K,q,,
yields 2s+1 1-factors, say £1/¢4.,f55,, and each f; corresponds
to s disjoint copies of K2m(2m—1),2m(2m-1) and one copy of
K2m(2m-1),2m in K,. For each £;, we take a sz-factorization of
the subgraph corresponding to the s copies of
K2m(2m—1),2m(2m—1)' By Lemma 1.3, this is possible and yields

2

2m® P, -factors in that subgraph. In the graph K2m(2m-1),2m' if

we include the edges in both Kom(2m-1) and K, , we have a Kam?2

which , by lemma 1.4, can be factored into 2m?

13



P2m-factors and a K,,~factor one component of which corresponds
to the block of size 2m. We delete the 2m? P2m-factors obtained
from the K2m(2m—1),2m(2m—1) subgraphs and the K, 2. Doing this
for each fi' we see that we are left with a sz-factor in K.

But Koo is sz-factorable and hence K is sz—factorable.

If p=2s, the construction is somewhat more complicated. Here
n=2m(2m-1)2s+2m=2m(2s(2m-1)+1). We divide V(K ) into 2s(2m-1)+1
blocks each of which has size 2m. Contracting each block into
one vertex, we obtain a Kog(2m-1)+1 which has a near
1-factorization, say f1""'f(2m—1)25+1 and each fi corresponds
to a Ky, and s(2m-1) copies of Kom, 2m in K,. By Lemma 1.1,
K2m,2m can be decomposed into m sz-factors and one 1-factor. We
also know that K, can be decomposed into m P, -factors.
Therefore, in the subgraph corresponding to f., we delete the m
Pon~factors so that we are left with an 1-factor in each K2m,2m
and 2m isolated vertices. Repeating this procedure for all the
near 1-factors, we obtain a graph in which there is only one
1-factor between each pair of blocks in K,. It is important to
note that in obtaining this graph, we were free to choose the

1-factors between pairs of blocks independently.

We label the blocks from 1 to 2s(2m-1)+1 and for the block
i, we label its vertices from v(i,1) to v(i,2m). Now we are
going to prove that the graph as described above is

P,n-factorable. (There will be s(2m-1)+s sz—factors.)

14



Consider the contracted graph Kog(o2m-1)+1+ ¥e know that it
can be decomposed into s(2m-1) Hamilton cycles. Fix one of these
Hamilton cycles, say (1,2,...,2s(2m~1)+1,1), where i is the
label of the corresponding block. For each edge (i,i+1),
1<i<2s(2m-1), and (2s(2m-1)+1,1) in the cycle, we choose the
corresponding 1-factor between the two blocks to be the 1-factor
with distance 1 (think of the vertices on the cycle being
ordered by their positions on the cycle). If we now delete all
of these edges between vertex sets (v(1,1i),...,v(2s(2m~-1)+1,1)}
and {v(1,i+1),...,v(2s(2m-1)+1,i+1)} for a fixed i, where
1€i<2m, then what remains will be a P, -factor. In Figure 1.3
the case m=2, s=1 and i=1 is shown. Repeating this procedure for
each of the s(2m-1) Hamilton cycles, we obtain s{(2m-1)

PZm—factors.

Fig. 1.3

Notice that the edges deleted from each Hamilton cycle are
independent. Now we are going to prove that if we suitably
choose the sets of independent edges for each Hamilton cycle,

the union of them will form s P2m—factors.

15



We divide the s(2m-1) Hamilton cycles into s groups so that
each group has 2m-1 Hamilton cycles. We claim that in each
group, the union of independent edge sets, if choosen suitably,
forms a P2m~factor. In each group, we label the Hamilton cycles
from 1 to 2m-1 and then we choose, from the cycle labelled i,
the independent edge set as the edges between
{v(1,i),v(2,i),...,v(2s(2m-1)+1),1)} and
fv(1,i+1),v(2,i+1),...,v(2s(2m=-1)+1,i+1)}. It is not difficult
to check that union of the 2m-1 independent edge sets from the
cycleslin each group will form a P, -factor. This can be seen
from Figure 1.4 in the case when m=2 and s=1. Since there are s

groups, we obtain s P, -factors.

This completes the proof.

The following lemmas are used for proving Theorem 1.12, the
second main result of the chapter. The idea used here is similar

to that used before, but the construction is somewhat more
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complicated.

Lemma 1.6. The graph K, ., can be decomposed into n

edge-disjoint Hamilton paths and an one near 1-factor.

Proof. Let V(K2n+1)={0,1,2,...,2n}. We arrange the vertices 1
to 2n in a cycle with 0 as the centre and the vertices labelled
is in increasing order in a clockwise dirction. Let H be the
Hamilton cyclé (0,1,2,2n,3,2n-1,...,n,n+2,n+1,0). It is not

difficult to see that K, can be obtained by, fixing the

n+1
vertices of K, ., and rotating the edges of H n-1 times through
an angle w/n about the centre vertex 0. If we delete the edge
([(n+1)/2]+1,2n+2-[(n+1)/2]) from H we obtain a Hamilton path
(where [x] denotes the largest integer which does not exceed x)
Deleting the corresponding edge (under the rotation) from each

of the other cycle yields n Hamilton paths and a near 1-factor.

Fiqgure 1.5 shows the case when n=5,

1 o~\\\§\\\\‘

Lemma 1.7. The graph 2K,.,; is Py, ~factorable.
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Proof, We know that Kom+1 ca@n be decomposed into m
edge-disjoint Hamilton paths and one near 1-factor (see Lemma
1.6). This near 1-factor can be chosen arbitarily. So we take
such a decomposition of each of the two copies of Kom+q SO that
the union of the two near 1-factors yields a Hamilton path.
Hence, 2K, ., can be decomposed into 2m+1 Hamilton paths

(Poq+1-factors).

Lemma 1.8. The graph 2K, ., op41 €a@n be decomposed into
r

(2m+1) Poq+q-factors and two 1-factors.

Proof. By Lemma 1.7, 2K,.,, is P, ., ~factorable. Therefore,
we can use the same method as in the proof of Lemma 1.1 to get

the desired result.

Lemma 1.9. The graph 2K(,p5,4)2 is the union of a

2K, 4y~ factor and (2m+1)?2 Pom+ 1~ factors.

Proof. We arrange the vertex set of 2K(, ,,)2 in a
(2m+1)x(2m+1) array. The vertices of each row and column form a
copy of 2K, ... We take the 2m+1 copies of 2K, ., defined by the
columns of the array as the 2K, ,,-factor. Now we need to prove
that the graph obtained on deleting this 2K, ,,-factor is
P2m+1~factorable. Let 2G be the graph obtained from deleting
both the 2K, ., ,-factor and the 2m+1 P, ,,-factors obtained from

edges define by the 2m+1 rows (see Lemma 1.7). If we consider
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each column as a block and contract it into a vertex, we obtain
a copy of K, ., which we know has m edge disjoint Hamilton
cycles, It is easy to see that if we can prove that the subgraph
in G corresponding to one of the Hamilton cycles is
Pom+1-factorable, then we are done. We label the blocks on the
cycle from 1 to 2m+1 and let the vertices in block 1 be
v(i,1),...,v(i,2m+1). Now we construct the Poq+ - factor as
follows. Consider the bipartite graph formed by the edges
between blocks 1 and 2. We construct the path (v(1,m+1),
v(2,m+2), v(1,m), v(2,m+3),... v(1,2), v(2,2m+1), v(1,1)).
(Figure 1.6(a) shows the case for m=2.) We see that each edge of
this (2m+1)-path has a different distance and moreover all
distances 1,2,...,2m occur on these edges. We take a copy of
this subgraph in each bipartite subgraph corresponding to an
edge of the Hamilton cycle under consideration. It is easy to
check that the resulting graph is a P, ., -factor (see Figure
1.6(b)). For each i, 1<i<2m, we replace the edges
(v(a,b),v(c,d)) of the P, ,,-factor by the edges
(v(a,b+i),v(c,d+i)), where addition is modulo 2m+1 on the
residues 1,2,...,2m+1, so obtaining another 2m P2m+1—factors.
Applying this procedure to each Hamilton cycle, we get m(2m+1)
Pop+q-factors which together constitute a P, ,~factorization of
G. Duplicate this to obtain the factorizatin of 2G. This

completes the proof.
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(a) (b)

Lemma 1.10. Let f; be the 1-factor with distance i in
K2m(2m+1),2m(2m+1)' Then the subgraph induced by the edges of
{f;| ieS} where
S={0,1,(2m+1),(2m+1)+1,...,i(2m+1),i(2m+1)+1,...,4m2—1, 4m2}, is

Pom+ 1~ factorable,

PrOOf. Let V(K(2m+1)zm’(2m+1)2m)=UUV, Where U={Ui|
1<i<(2m+1)2m} and v={v;| 1<i<(2m+1)2m}. Pairing the 1-factors
fi(2m+1) and fi(2m+1)+1' 0<i<2m-1, we obtain 2m Hamilton cycles.
For any Hamilton cycle we can delete 4m independent edges so
that from the remaining edges in the cycle we obtain a
Pom+q - factor. (Each of the two 1-factors has 2m edges removed. )
If we apply this procedure to each Hamilton cycle, we are left

with 2m(4m) edges which is the same as the number of edges in a

Pom+y~factor of Konontt), 2m(2m+1)°
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The question is whether we can suitably choose such sets of

independent edges so that their union is a P,y -factor. We will

m+ 1
show that the sets can be so chosen. Consider the ordered sets
Se=10, (2m+1)+1,...,2i(2m+1), (2i+1) (2m+1)+1, ..., 2(m=1)(2m+1),
an?} and S={1, (2m+1),...,2i(2m+1)+1, (2i+1)(2m+1),...,
2(m-1) (2m-1)+1, 4m?-1}, It is easy to see that S=S_US, and

1S, 1=1S,|=2m.

We now show that by suitably removing 2m edges from each of
the 1-factors with distances in Ses we can obtain 2m vertex
disjoint (2m+1)-paths. First we choose edge (u,,v,) from f£q-
Fixing v, as an end vertex of the path , we extend this path at
u, to a (2m+1)—péth by using one edge from each of the 1-factors
with distances in Se so that the ith edge in the path is from
the t-factor with the ith element of S, as its distance. (It
will be (i-1)(2m+1) if i is odd and (i-1)(2m+1)+1 if i is even.)
We call this path P. Construct 2m other (2m+1)-paths from P in
the following way. 1¢ (ug,vy) is an edge of P, let
(Ut (om+1)irVes(2m+1)i) be an edge of the path P;, 1<i<2m, where
subscript addition is modulo 2m(2m+1) on the residues

1,2,...,2m(2m+1),

Now we need to show that these paths are indeed vertex
disjoint. Suppose that each of U and V are divided into 2m
blocks each and each block has 2m+1 vertices. Let the vertices
in block 1 of U be Ujy(j-1)(2m+1)r++*rY2me1+(i-1)(2m+1) 204 in
block 1 of V.be vy (i q)(amt1)re+rVome14(i=1)(2m+1)"

and denote them by the 1st, 2nd,..., and (2m+1)th positions. As

1<i<2m,
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defined‘before, the ith element in Se is
(i-1)(2m+1)=0(mod(2m+1)), if i is odd and
(i-1)(2m+1)+1=1(mod(2m+1)) if i is even. This implies that P is
incident with vertices in different positions in each of the
blocks and in each bipartitions. (Figure 1.7 shows the paths in
the case m=2,) Therefore, paths P,P1;...,P2m are all vertex
disjoint. Furthermore, we notice that these paths cover only
vertices with position numbers 1 to m in the blocks of U and 1

to m+*+1 in the blocks of V.

posD 23fB]ls 1 @34l 20 a5 1 234 5
Vl VZ Vl V4 Vs Ve V7 Vs V9 VIO V||V|z V,; Vu Vlsvw V|7 Vw V|9Vzo

Uy U Us Ug Us Ug U; Ug Ug U Uiy Upz Uys Uy Uss Uis Uy, Uie Uis Uz
pos.® 2fBJ]a s 1 234 5 1 23 4[] @ 3H]S

Fig. 1.7

Now we construct another 2m (2m+1)-paths, this time using
edges with distances from So,- We choose the first edge as
(Up4qrVpep) and fix up,, as an end vertex. Using the same method
as before we extend it to a (2m+1)-path which we call P'. As
before, we obtain 2m (2m+1)-paths. It can be seen that these

paths are vertex disjoint. (In Figure 1.7 the bold path shows
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the edges of P' in the case m=2.)

We notice that these paths cover all vertices with position
numbers m+1 to 2m+1 in the blocks of U and m+2 to 2m+1 in the
blocks of V. Thus it immediately follows that the 4m
(2m+1)-paths form a P2m+1-factor. Now we only need to verify
that after we delete the edges in this way, the remaining edges

in each Hamilton cycle form a P,.,,~factor.

By the above construction we find that the ith edge in P and
the ith edge in P' belong to the same Hamilton cycle as defined
what we call in the beginning of the proof. Now we define a
modular graph for paths P and P' and we call it G, where
V(G)=SUT and S={s,,...,S,5,¢} and T={t ,...,top,4}. If (U, vs)
is an edge in P or P', then (sa,tb) is in G where a and b are
the values of k and j respectively, modulo 2m+1. (Here the
residues are 1,2,...,2m+1.) In this way, we obtain the graph G
which is shown in Figure 1.8. It can be seen that corresponding ,
to P and P', we have vertex disjoint paths Q and Q' in G and
they all have the same length 2m. In addition, the edges of Q
and Q' are all in the Hamilton cycle of G formed by 1-factors
with distances 0 and 1. The ith edges of P and P' are also the
ith edges of Q and Q'. It is not difficult to find that the
length of the path between the ith edges of P and P' on the
Hamilton cycle H;=f (i 1y (op+1)YE(i-1)(2m+1)+1 15 the same as the
path length between the ith edges of Q and Q' on the Hamilton
cycle formed by 1-factors with distances 0 and 1. (This can be

seen clearly if we construct a modular graph for the
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corresponding path.) Therefore, from the structure of G we see
that the length of the path between the ith edges of P and P' in

H{ is 2m, Since i is general, this completes the proof.

SEE tn1 tm et Tne2 tnes bm tome
® N ) // N |
L/// o]

35 Sy an-l Sm $n+1 Sm+2 SZm Sm+1

Fig., 1.8

Lemma 1.11. The graph 2K2m(2m+1),2m(2m+1) 1s

Pon+1 - factorable.

Proof. We first consider one copy of K2m(2m+1),2m(2m+1)' By
Lemma 1.10 we know that the subgraph G<E> induced by the edges
of E={fi(2m+1)'fi(2m+1)+1| 0<i<2m-1} can be decomposed into 2m+1
1€9<m-1. It is not difficult to see that G<Ej>=G<E> and that
K2m(2m+1),2m(2m+1) is the union of the subgraphs G<Ej>, 1<9<m-1,
G<E> and {f (yn4q1)i+2ml 0%i=2m-1}. Thus Kop(omeq),2m(2m+1) €an be
decomposed into m(2m+1) P,om+1 factors and the 2m 1-factors given
by {fi(2m+1)_1|15i52m}. In the second copy, we apply the same

procedure except that the 2m 1-factors are {fi(2m+1)‘ 1<i<2m}.

This can be done by relabelling the graph. It is not difficult
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to see that the subgraph G<E'> induced by edge set
E'={fi(2m+1)-1' fi(2m+1)| 1<£i<2m} is isomorphic G<E>. Therefore,
2K2m(2m+1),2m(2m+1) is P, 41 factorable. This completes the

proof.

By using the preceeding lemmas and Theorem 1.5, we can
resolve the case A=2 in Horton's conjecture. This is Theorem
1.12 and the techniques used in its proof are similar to those

used in the proof of Theorem 1.6.

Theorem 1.12. The graph 2K, is P,-factorable if and only if
(a) when k=2m, n=2m(mod(2m(2m-1))) and

(b) when k=2m+1, n=(2m+1)(mod(2m(2m+1))).

Proof. Suppose 2K is Pk-factorable. When k=2m, n must be
divisible by 2m and n(n-1) must be divisible by (2m-1)n/(2m).
These two conditions imply n=2m(mod(2m(2m-1))). When k=2m+1, n
must be divisible by 2m+1 and n(n-1) must be divisible by
2mn/(2m+1). These two conditions imply n=(2m+1) (mod(2m(2m+1))).
So we have proven the necessity. Now we are going to show that

the conditions are also sufficient.
When k=2m, the result immediately follows from Theorem 1.5,

Assume k=2m+1 and n=2m+1+2m(2m+1)p. The proof is divided

into two parts depending on the parity of p.

If p=2s+1, we divide V(2K,) into 2s+2 blocks in which 2s+1

of them have size 2m(2m+1) and one has size 2m+1. Contracting
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each block into one vertex, we obtain a copy of Kygtoe Taking a
1-factorization of Kog+2 yields 2s+1 1jfactors, say f1,...,f25+1
and each f; corresponds to s disjoint copies of
2Kom(2m+1),2m(2m+1) and one copy of 2Kyp(opmyq), omer in 2K,. For
each f., we take a P2m+1-factorization of the subgraph
corresponding to the s copies of 2Kom(2m+1) . 2m(2m+1)+ BY Lemma
1.11, this is possible and yields (2m+1)2 P2m+1—factors in that
subgraph. In the graph 2K2m(2m+1),2m+1' if we include the edges
in both 2K, (on+q) @and 2K,p,,, we have a 2K(,p,4)2 which is the
union of a 2K, ,,-factor and (2m+1)?2 Pop+q-factors. (This is
Lemma 1.9.) We delete the (2m+1)? Pop+q-factors obtained from
all 2K2m(2m+1),2m(2m+1) and the 2K(2m+1)2' We specify that this
remaining 2K,.,,-factor includes the K, ., which is one of the
blocks. Having done this for each f,, we see that we are left
with a 2K, . -factor in 2K . But 2Ky, is Py, -factorable and

hence 2K, is P, ,,-factorable if n=2m(2m+1)(2s+1)+2m+1,

I1f p=2s, the construction is somewhat more complicated. Here
n=2m(2m+1)2s+2m+1=(2m+1) (4ms+1). We divide V(2K ) into 4ms+1
blocks each of which has size 2m+1. Contracting each block into

one vertex, we obtain a copy of K which has a near

4ms+1
1-factorization, say f,,...,f4,44+¢, @and each f; corresponds to a
2K, 41 @nd 2ms copies of 2K2m+1,2m+1 in 2K,. By Lemma 1.8,
2K2m+1,2m+1 can be decomposed into 2m+1 P, . ,-factors and two
1-factors (in fact 2m+1 copies of 2K2). We also know that 2K, .,

can be decomposed into 2m+1 P, ,,-factors. Therefore, in the

subgraph corresponding to fi, we delete the 2m+1 P2m+1—factors
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so that we are left with two 1-factors in each 2Kom+e1, 2m+1 and
2m+1 isolated vertices. Repeating this procedure for all the
near 1-factors, we obtain a graph in which there are only two
1-factors (as described above) between each pair of blocks in
2K,. It is important to note that in obtaining this graph, we
were free to choose the 1-factors between pairs of blocks
independently. Now we are going to prove this graph is

Pon+1 factorable. We know this graph is a multigraph with

multiplicity two. In the following proof we only consider a

single copy of it.

We label the blocks from 1 to 4ms+1 and for each block 1, we

label its vertices from v(i,1) to v(i,2m+1).

Consider the contracted graph K, . ,;, we know that it can be
decomposed into 2ms Hamilton cycles. Fix one of these Hamilton
cycles, say (1,2,...,4ms+1,1), where i is the label of the
block. For each edge (i,i+1), 1<i<4ms, and (4ms+i,1) in the R
cycle, we choose the corresponding 1-factor between the two
blocks to be the 1-factor with distance 1. If we now delete all
of these edges between vertex sets {v(1,j),...,v(4ms+1,3j)} and
{v(1,3+1),...,v(4ams+1,j+1)} for a fixed j where 1<j<2m+1, then

what remains will be a Pom+q factor. Repeating this procedure

for each of the 2ms cycles, we obtain 2ms P, ., ,-factors.

Notice that the edges deleted from each Hamilton cycle are
independent. Now we are going to prove that if we suitably

choose the sets of independent edges from each Hamilton cycle,
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the union of them will form s P2m+1-factors.

We divide the 2ms Hamilton cycles into s groups so that each
group has 2m Hamilton cycles. We claim that in each group, the
union of independent edge sets, if choosen suitably, forms a
Pom+1 - factor. In each group, we label the Hamilton cycles from 1
to 2m and then we choose, from the cycle labelled i, the
independent edge set as the edges between
fv(1,i), v(2,i),...,v(4ms+1,1i)} and {v(1,i+1), v(2,i+1),...,
v(4ms+1,i+1)}. It is not difficult to check that the union of
the 2m independent edge sets from the cycles in each group will
form a P, . ,-factor. Since there are s group, we obtain s
Pop+1-factors. In total, we have
(2m+1) (4ms+1)+2(2ms+s)=(2m+1) (4ms+2s+1) P, . ,-factors which is a

Pop+1-factorization of 2K, where n=(2m+1)(4ms+1).

This completes the proof.

"
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PART C

RESOLVABLE PATH DESIGNS WITH MIXED PATH LENGTHS
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In this chapter, we prove necessary and sufficient
conditions for the existence of (s,t)3-factorizations and

(s,t)4-factorizations of K.

The main theorems are Theorem 2.8 and 2.18 and both are

proved using recursive constructions. We begin with some lemmas.

Lemma 2.1. Let V(K6'6)=VUW and V={v1,..,v6}, W={w1,..,w6}.
The subgraphs K6,6\{fi'fi+3}' where i€¢{0,1,2} and fi={vjwj+i
:1<j<6} with all addition modulo 6 and on residues 1,...,6, are

both P3—factorable and C4—factorable.

Proof. This can be done by direct construction as shown in
Figure 2.1 when i=2. It is not difficult to see that f;Uf;,3 is

isomorphic to f.Uf i,je{0,1,2} and each is three 4-cycle.

S I R
(Figure 2.1(a) is a P3y-factorization and Figure 2.1(b) is a

C4—factorization.)

V| WI i
VZ W2

Vs Ws ;
Va Wa

Vs Ws :::
Vs We ~

(a) (b)

Fig. 2.1



Lemma 2.2. The graph K, is (s,t)3-factorable if 3s+4t=15.

Proof. The non-negative integer solutions of 3s+4t=15 are
(s,t)=(1,3) and (5,0). The latter case is just a 1-factorization
which is trivial. When (s,t)=(1,3), we give the following direct

construction as shown in Figure 2.2.

Fig. 2.2

Lemma 2.3. The graph K,, is (s,t);-factorable if 3s+4t=33.

Proof. All the possible non-negative integer solutions of
3s+4t=33 are (s,t)=(11,0), (7,3) and (3,6). The first case is
trivial. When (s,t)=(7,3), we take a 1-factorization of K6,6 and
two copies of a (1,3)3-factorization of K¢ as given in Lemma
2.2. When (s,t)=(3,6), we take a (2,3)3—factorization of K6,6
and two copies of a (1,3);-factorization of Kg. By Lemmas 2.1

and 2.2, this is possible.

Hence we have the desired decompositions. This completes the

proof.
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Lemma 2.4, Let G be a graph. If G can be decomposed into two
Cy-factors, then it can also be decomposed into three

P3—factors.

Proof. Let V, and V, be two C3-factors. We consider each
3-cycle in V, or V, as a vertex of a graph in which two vertices
are connected by an edge if and only if the corresponding two
3-cycles have one common vertex. So this is a 3-regular
bipartite graph with V, and V, as the parts of the bipartition.
This graph has a 1-factorization with 1-factors f1, f2 and f3.
It is not difficult to see that each vertex in G is in the
intersection of precisely two 3-cycles; one from each Cj-factor.
Hence each vertex in G corresponds to an edge in the above

bipartite graph.

Now we label the vertices of G as follows. If xeV(G)
corresponds to the edge belonging to f;, then we label it 1.

Each 3-cycle will have its vertices labelled 1,2 and 3.

We decompose each 3-cycle into one 2-path (an edge) and one
3-path. In V,, we let the 2-path in each 3-cycle be (1,2). On
removing these edges from V,, the subgraph left over forms a
Py-factor in G. In V,, we let the 2-path be (2,3) and again
edges of V, left over form another P3—factor. After we delete
the two P3-factors, all vertices labelled 2, still have degree 2
and the rest labelled 1 and 3 have degree 1. It is easy to see

that this graph is a P3-factor. Therefore, G can be decomposed
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into three P3-factors.

(The ideas used in above proof are based on those of Horton in

[6]. But the result proved here is slightly different from his.)

Lemma 25 [10]. Let n=0(mod6) and n218. K, can be decomposed

into t Cy-factors and s 1-factors if and only if 2t+s=n-1,

The following theorem is a special case of Theorem 2.8. It
will simplify the proof of the Theorem 2.8 if we give it

separately.

Theorem 2.6. If st#0, then K, is (s,t)3-factorab1e if and only

if 3s+4t=3(n-1) and n=0(modé).

Proof. Suppose K. is (s,t)3-factorab1e. Since st#0, n must be
divisible by both 2 and 3. This implies that n=0(modé). By
counting the number of edges, it is easy to see that the given
equation must be satisfied. So we have proved the necessary

conditions.
Now we prove that the conditions are also sufficient.

By Lemmas 2.2 and 2.3, the result is true for n=6,12. Now we
just consider the case for n218. Let (s,t) be a solution of
3s+4t=3(n-1). It is not difficult to see that t=0(mod3) and so
we can assume t=3p. Then 4(3p)+3s=3(n-1) which is 2(2p)+s=n-1.

By Lemma 2.5, there exist a decomposition of K, into 2p
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C3-factors and s 1~-factors. By Lemma 2.4, these 2p C3—factors

can be decomposed into 3p Pj-factors. Hence we are done.

Lemma 2.7. The graph K, 2n,2n is Py-factorable.

Proof. We name the three parts of V(KZn,Zn,Zn)' U, V and W.
Let U={u;| 1<is2n}, V={v;| 15i<2n} and W={w;| 1<£1<2n}. Now we

construct the P3-factorization as follows,

Define edge sets Si={ujvj+i: 1£j<2n}, Qi={vjwj+i: 1£j<2n}
and Ri={wjuj+i: 1<j<2n}. It is not difficult to see that
S;UQi4+qr QjUR;j4y and RjUS;,, are three Py-factors of Ky o 2p-
(The case n=2 and i=0 is shown in Figure 2.3) Letting

i=0,2,4,...,2n-2 we obtain a P3-faCtorization.

u v w

SV Q O0U Rl RS,
Fig. 2.3

Actually, for the proof of Theorem 2.8 we only need the
result that K, , , is P3—factorable. Since the construction of
the proof is easily extended to the general case that is what we

have done.
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(A)

(B)
(C)

(B)
(c).

(p).

(B).

(C).

Now we presented the first main theorem of this chapter.

Theorem 2.8. The graph kKn is (s,t)3—factorable if and only if
of the following holds.

s=0,and

(1) A=1, 3(mod4), n=9(mod12) and t=3A(n-1)/4,

(2) A=2(mod4), n=3(mod6) and t=3A(n-1)/4,

(3) A=0(mod4), n=0(mod3) and t=3A(n-1)/4,

t=0, n=0(mod2) and s=i(n-1),

st#0, 3s+4t=3A(n-1) and n=0(modé6).

Proof. For the necessary conditions, (A) is shown in [6] and

is quite trivial. By counting the number of edges, we obtain

Now we prove that the conditions are sufficient.
This was done by Horton [6].
This is simply asking for a 1-factorization and is trivial,

First we give the proof for A=2,3 and 4. Then we shall

extend them for general A. Let M be the maximum value such that

3N+4M=n-1, where N, M are non-negative integers. If (s,t) is a

solution of 3x+4y=3A(n-1) and t<MA, then the decomposition can

be obtained easily by Theorem 2.6. We write t=t,+...+ty, t;<M,

and

1l

s=5,*...+s, so that (s;,t;) is a non-negative integer

solution of 3x+4y=n-1, Otherwise, we divide the proof into

following two cases.

Caset. n=6(modi12).
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Let n=12p+6. It is not difficult to find that when A=1,

s=1(mod4), t=0(mod3) and M=9p+3. K  is (1,9p+3);-factorable.

n

For A=2,3, t must be no larger than MA. The reason is that
if t>MA, then t=MA+3k where k is non-negative integer. From
3s+4t=3A(n-1) we get, on substituting, 12k+3s=3A which is
impossible when k>0. Therefore, we only need to consider A=4. In
this case, (s,t)=(0,MA+3) is the only solutidn for which we
cannot combine A=1 solutions. But this has already been dealt

with 1in (A).
Case2. n=0(modi12).

Let n=12p. In this case, when A=1, s=3(mod4), t=(mod3) and
M=9p-3. We know that K, is (3,9p—3)3-factorable by Theorem 2.6.
It is necessary for us to know the structure of the three
1-factors as for A>1 we want to get Pj;-factors by combining
these 1-factors. For this purpose, we give a specific
construction of a (3,9p-3);-factorization. We must consider

separately the cases p even and p odd.

Suppose that p is even, so p=2m. We divide the vertex set of
Koum into 2m blocks of size twelve. By contracting each block
into one vertex, we obtain a Kom which has a 1-factorization,
say £,,..., fo _4. Bach f; corresponds to p disjoint copies of
K12'12. From Lemma 2.3 we have a P3~factorization of K12'12 and
a (3,6)3-factorization of K,,. Combining these we have the
desired factorization of K,,, . Now we know the structure of the

three 1-factors: in the subgraphs corresponding to each block,
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two 1-factors are edges of Ke 6 and the other 1-factor has three
edges in each of the K¢ which make up the K,;,. Note that the

third 1-factor can be as any 1-factor in the two Keg subgraphs.

We now give the proof for A=2,3 and 4 when n=24m. In each

case continue to think of Kogm 23S 2m blocks of size 12,
(a) A=2.

Here, if t>2M, then t=2M+3, So if we can show that 2Kn is
(2,2M+3) ;-factorable, then we are done. Take a
(3,M)3—factorization of each copy of K, so that in copy 1, we
choose two 1-factors of K6,6 in each block with distances 0 and
3 and in copy 2, we choose two 1-factors of K6,6 of each block
with distances 1 and 4 and we know that the third 1-factor in
each copy is not important. By Lemma 2.1, we find that the graph
obtained by combining these four specified i1-factors can be
decomposed into three Py-factors. Therefore, 2K, is

(2,2M+3)3-factorable.
(b) A=3.

Here if t>3M, then (s,t)=(5,3M+3) or (1,3M+6). In both
cases, we first take a (3,M)3-factorization of each of the three
copies of K . If (s,t)=(5,3M+3), then we use the same method as
in (a) on two of the copies to get the desired decomposition. If
(s,t)=(1,3M+6), then we choose the three 1-factors in copy 1 as
in Figure 2.4(a) and choose the three 1-factors in copy 2 as in

Figure 2.4(b), choose the three 1-factors in copy 3 as in Figure
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2.4(c);

A

(a) (b) (c)

Fig. 2.4

Combining these 1-factors we obtain a graph which is the
union of K \{f,, f=} which is P,~-factorable (see Figure
6,6 2 5 3
2.1(a)) and the graph shown in Figure 2.5 which is
(1,3)3—factorable. Therefore, we obtain a

(1,3M+6)3—factorization of 3K,,m-

:"%\}
=E+. +&%+1
— U1 L

(c) w=4.
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Here (s,t) must be one of (8,3M+3),(4,3M+6) or (0,3M+9) as
all other cases are covered by Theorem 2.6. The first two cases
can be done by the same methods as in parts (a) and (b), and the

third case is covered by (A).

So now suppose that p is odd, or equivalently n=12(mod24).
Let n=24m+12=4(2m+1)3. As before, we first give a construction

for the extreme case which is a (3,M)3-factorization in K.

We divide the vertex set of K,y,..,, into 3(2m+1) blocks each
of size four. By contracting each block into one vertex, we
obtain a K3(pniq). We know there is a 2-factorization of
K3(om+1) in which each 2-factor is a union of 3-cycles (or
equivalently, a Kirkman triple system on ém+3 elements). The
subgraph corresponding to each 3-cycle is a K4’4’4 in K . By
Lemma 2.7, K4,4,4 is Py-factorable. Deleting all Ps-factors
obtained in this way, we find that the remaining edges consitute
3(2p+1) copies of K, which is (3,0);-factorable. Now we know the,
structure of the three 1-factors. Before we prove the result for
A=2,3 and 4, we divide 3(2m+1) K, into 2m+1 groups so that each
group consists of twelve vertices. We only need to be concerned

with the subgraph corresponding to each group.
(a) A=2.

As in the case p even, all we need to find is a
(2,2M+3) j-factorization. By Lemma 2.1, we know that K¢ o has a
r
four regular bipartite subgraph which is not only C,-factorable,

but P3-factorable as well. Now in each K,, we have two copies of
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three K, subgraphs (made up of the 1-factors in the
(3,M)3-factorization). If we delete one 1-factor from each of
them, we get two copies of three 4-cycles. It is not difficult
to see that we can suitably choose the vertices of the three Ky
in each copy so that the resulting two C,-factors will form the
K6,6 subgraphs as described above. There are only two 1-factors

left. Therefore we are done.
(b) A=3.

As before, we only need to find a (1,3M+6)3—factorization to
be done. We wish to choose the C,-factor in each of two copies
as in Fiqure 2.1(b) so that the remaining i-factors in the three

K, form the 2-regular graph shown in Figure 2.6.

ECECTE
OO

Fig. 2.6

Now we choose the third copy of the three K4's so that
together with the graph in Figure 2.6, it forms the graph of
Figure 2.5 which is (1,3)3-factorable. Therefore, we have a

(1,3M+6)3-factorization.

(c) A=4.
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In this case, as before, (s,t) must be one of (8,3M+3),
(4,3M+6) and (0,3M+9) as all other cases are covered by Theorem
2.6. Therefore, the desired decompositions immediately follows

from the previous proofs.

Up to now, we have proven only that the result is true for

A=1,2,3 and 4. Now we give the proof for the general A.

Let A=4g+i where 0<i<3, When i=0, it is not difficult to
prove this case by induction on g. Therefore, we assume 1<i<3,
Now let (s,t) be a solution of 3s+4t=3A(n-1)., If t<3g(n-1), we
only need to take an (s-i(n-1),t)3-factorization of 4gK, and a
1-factorization of the i other copies of K . Otherwise, take a
Py-factorization of 4gK, and a (s,t-3q(n-1))3-factorization of
iK, to yield the desired result. Therefore, we have completed

the proof.

Now we prove the necessary and sufficient conditions of for
the existence of (s,t),-factorizations of MK,. As before, we
first prove some lemmas which will be used to prove the main
theorem. Note that in the proof of the following lemmas, we

ignore the 1-factorization case which is trivial there.
Lemma 2.9. The graph K¢ . is (s,t),~factorable if 2s+3t=12.
Proof. We first find that all possible non-negative integer

solutions of 2s+3t=12. They are (s,t)=(0,4) and (3,2) (provide
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t#0). The direct contruction proof is shown in Figure 2.7.

—
— .
—

Fig.2.7

Note: the union of the first (third) and second (forth) graph in
the Figure 2.7 is a 3-reqular subgraphs and consequently each of

them can be decomposed into three i1-factors.

Lemma 2.10. Let n=0(mod6). The graph K is (s,t),-factorable

n
if 2s+3t=2n.

Proof. Let n=6m. We divide each part of the vertex set into m
blocks of size six. By contracting each blocks into one vertex,
we obtain a K m which has a t-factorization, say f1,...,fm and

r

each of them corresponds to m disjoint copies of K6,6 in Kgo eme

Let (s,t) be a solution of eguation 2s+3t=2n=12m. It is
clear that t must be even so we let t=2p. Take a
P4—factorization of each of the subgraphs corresponding to
f1,...,f[p/2] yields 4[p/2] P,-factors in Kem, 6m* If p is even,

we complete the (s,t)4~factorization by taking a 1-factorization
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of the remaining graph. Otherwise, we use Lemma 2.9 to take a
(3,2)4-factorization of the subgraph corresponding to f[p/2]+1
and then 1-factorize the remaining graph. This yields s

1-factors and 2p P4-factors.

We next construct all (s,t)4-factorizations of Ko and Kg.

Lemma 2.11. The graph K,, is (s,t)4—factorable if and only if
2s+3t=22,

Proof. The necessity follows by counting the edges.

It is easy to see that all non-negative integer solutions

(provided t#0) of 2s+3t=22 are (s,t)=(2,6), (5,4) and (8,2).
(1) (s,t)=(2,6).

We divide the vertex set of K,, into three blocks of size
four. By contracting each block into one vertex, we obtain Kg .
which has a near 1-factorization, say f,,f, and f3. The subgraph
of K, corresponding to each near 1-factor in K4 (K4,4UK4) can
be decomposed into two P,-factors and four independent edges as
shown in Figure 2.8(a). These four independent edges can be
chosen in such a way that after deleting all the p,-factors
obtained from each f;, 1<i<3, (see Figure 2.8(b)) the remaining

graph is a 2-factor made up of two 6-cycles which is

1-factorable. So we are done,
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(a) (b)
Fig. 2.8

(2) (s,t)=(5,4).

By using Lemma 2.9, we see that K, . can be decomposed into

four P4-factors. Since K6 is 1-factorable, we are done.
(3) (s,t)=(8,2).

From Lemma 2.9, K¢ ( can be decomposed into two P4-factors
’
and three 1-factors. Since Kg is 1-factorable, the desired

decomposition can be easily obtained.

Lemma 2.12. The graph Kg is (s,t),-factorable if and only if

25+3t=14,
Proof. The necessity follows by counting the edges.

All non-negative integer solutions (provided that t#0) of

25+3t=14 are (s,t)=(4,2) and (1,4).

(1) (s,t)=(4,2).

44



We know each K, can be decomposed into two 4-paths and K; ,

is . 1-factorable. Thus we are done.
(2) (s,t)=(1,4).

We know K, , can be decomposed into two P,~factors and one
1-factor. (See Figure 2.8(a).) So we can get our desired

decomposition.

The main theorem will be proved by a series of three lemmas
each of which deals with one of the residues classes of n modulo

12 where n is divisible by 4.

Lemma 2.13. Let n=0(mod12). The graph K is (s,t),-factorable

if and only if 2s+3t=2(n-1).
Proof. The necessity follows by counting the edges.

We divide the proof into two cases. Let (s,t) be a solution:
of 2s+3t=2(n-1)., It is not difficult to see that t=0(mod2) and

s=2(mod3).
Casel. n=12(2p)

We divide V(K ) into 2p blocks each containing twelve
vertices. By contracting each block into one vertex we obtain a

K, which has a 1-factorization, say f1, f2,...,f2p_1. Each fi

P
corresponds to p disjoint copies of K,, ,, in K.
r
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In this case, t can be any even number no more than

(2n-6)/3=16p-2.

1f (s,t) satisfies 2s+3t=2(n-1) and t<16p-8, then we take a
P4-factorization of each of the subgraphs corresponding to £,
f2""'f[t/8]' This yields 8[t/8] P,-factors in K . Next we take
a (12-3(t—8[t/8])/2,t-8[t/8])4—factorization of the subgraph
corresponding to Ere/87+1 (see ﬁemma 2.10) and 1-factorize both
the subgraphs corresponding to f[t/8]+2""'f2p—1 and the 2p

disjoint copies of K;,.

If 16p-8<t<16p-2, then we take a P4-factorization of each of
subgraphs corresponding to f1,...,f2p_1 and decompose the
remainder of the graph (the 2p disjoint copies of K12) into

t-(16p-8) P,-factors and s 1-factors.
Case2. n=12(2p+1)=6(4p+2)

As in casel, we find that t can be any even number no more

than (2n-6)/3=16p+6.

We divide V(K ) into (4p+2) blocks so that each of the
blocks contains six vertices. By contracting each block into one
vertex, we obtain a K4p+2 which has a 1-factorization, say £,/

f

eorf Each f, corresponds to 2pt+1 disjoint copies of

27" a4p+1°
K6,6 in Ky

If t<16p+4, then we take a P4—factorization of each of the
subgraphs corresponding to f,, f2,...,f[t/4]. This yields 4[t/4]

P4—factors in Kn. Now take a
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(6-3(t-4[t/4])/2,t-4[t/4]) ,~factorization of the subgraph
corresponding to f[, /474 (see Lemma 2.10) and f-factorize each
of the subgraphs corresponding to f[t/4]+2"""f4p+1 and each
K6-

If t>16p+4, then t=16p+6. In this situation, our

construction is as follows,

Take a P4-factorization of each of the subgraphs
corresponding to f1,...,f4p yielding 16p P,-factors in K,. By
combining the (4p+2) disjoint copies of K¢ and the subgraph
corresponding to f4p+1, we obtain (2p+1) disjoint copies of K ,.
By applying Lemma 2.11, K,, is (2,6),-factorable. Therefore, we

obtain a (2,16p+6)4-factorization.

The following lemma is proved by Hanani, Ray-chandhure and

R. Wilson. We are going to use it to prove Lemma 2.15.

Lemma 2.14 [3]. The graph K, is K,-factorable if and only if

n=4(modi2).

Lemma 2.16. Let n=4(mod12). K, is (s,t)4-factorable if and

only if 2s+3t=2(n-1).
Proof. The necessity follows by counting the edges.

Using Lemma 2.14, we can decompose K, into (4p+1) K,-factors

if n=12p+4,.
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Let (s,t)=(s,2m) be a solution of 2s+3t=2(n-1)=2(12p+3).

From this we see that s=0(mod3) and t<2(4p+1).

If m=4p+1, we simply take a P,-factorization of each
Ky-factor. (Each K, can be decomposed into two 4-paths).
Otherwise, we choose m (m<4p+1) K,~-factors in K, and decompose
them into 2m p,-factors; the remaining K,-factors are

1-factorized.

Lemma 2.16. Let n=8(modi12). The graph Kp is (s,t)4—factorable

if and only if 2s+3t=2(n-1).
Proof. The necessity follows by counting the edges.

Let n=12p+8=6(2p+1)+2 and (s,t)=(s,2m) be a solution of

2s+3t=2(n-1)=2(12p+7). We find that s=1(mod3) and t<8p+4.

We divide V(K ) into 2p+2 blocks of which 2p+1 blocks have
size six and one block has size two. Let the vertices in the .
block of size two be x and y. By contracting each block into one
vertex we obtain Kop+2 which has a 1-factorization, say
f1,...,f2p+1. Bach f., corresponds to p disjoint copies of K6,6
and one copy of Kg ,. Note that in each f; the block of size six

14
in the K is distinct.
6,2

-

We decompose each of the subgraph of K, corresponding to the
1-factors f1,...,f[m/2] into four P4-factors. This decomposition
needs to be specified as follows. Each Ke . 6 is

(0,4)4-factorable. For the K¢ ,, we include the edges in K, and
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Kg to get a Kg. Since Kg is (1,4)4—factorable by Lemma 2.12,
there is a subgraph G=Kg-f, where f is a 1-factor containing the
edge (x,y), so that G ﬁas a P,-factorization (there are four
P4~factors). We thus obtain 4[{m/2] P,~factors and we remember
that we still have a 1-factor in each of [m/2] copies of Kg and

edge (x,y).

If m=0(mod2), then we only need to prove that the remaining

subgraph of K, is 1-factorable. We do so as follows.

For each i, [m/2]+1<i<2p+1, we decompose the subgraph
corresponding to f; into six 1-factors. Again the decomposition
needs to be specified. Ecah K6,6 has six 1-factors. With the
Kg o we include the edges in K, and K¢ and obtain a Kg which has
seven 1-factors. But we choose only six of them and the
remaining one is the one containing the edge (x,y). Doing this
for each i we obtain 6(2p-[m/2]+1) 1-factors. On deleting all of
these 1-factors, the resulting graph consists of the edge (x,y) |
and one 1-factor in each Kg. This gives us another one 1-factor.
Therefore, we obtain 6(2p-[m/2]+1)+1 1-factors and 4[m/2]

P4—factors in Kn when m is even,

I1f m=1(mod2), we decompose the subgraph corresponding to
Erm/21+1 into two P,-factors and three 1-factors such that edge
(x,y) belongs to one of the 1-factors. This is possible, because
Kg is (4,2),-factorable. Then by using the same method as

before, we can prove that the remaining graph is 1-factorable.
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This completes the proof.

Because we need the result for A=1 to prove the case that A

is general, we take this special case as theorem 2.17.

Theorem 2.17. The graph K, is (s,t)4—factorable if and only
if, either

(A) s=0, n=4(mod12) and t=2(n-1)/3,

(B) t=0, n=0(mod2) and s=(n-1),or

(C) st#0, 2s+3t=2(n-1) and n=0(mod4).

Proof. Both the necessary and sufficiency of conditions of

this theorem follow by Lemmas 2.13, 2.15 and 2.16.

In Theorem 2.18 we generalize Theorem 2.17 to arbitrary
values for A.

-

Theorem 2.18. The graph AK, is (s,t),-factorable if and only
if, either
(a) s=0,

and (1) A=0(mod3), n=0(mod4) and t=2A(n-1)/3,

or (2) A=t, 2(mod3), n=4(modi12) and t=2A(n-1)/3,
(B) t=0, n=0(mod2) and s=A(n-1), or

(C) st#0, 2s+3t=2A(n-1) and n=0(mod4).

Proof. By counting the number of edges, it is not difficult to
prove the necessity of this theorem. We only need now to show

the sufficiency of these conditions.
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(A) s=0.
We know that K is P,-factorable if n=4(mod12). So this will
be true for all value of A. Now we are going to prove that when

n=0(mod12) or n=8(mod12), 3K, is P,-factorable. Let K/

ne Kg and

Kg be the three copies of K.~

First, let n=12p. By Lemma 2.13, K, is (2,8p-2),-factorable.

n
Moreover, in that construction (using Lemma 2.11) the union of
the two 1-factors is a 2-factor in which each cycle has length
six. Take such a (2,8p-2),-factorization of K;, This yields 2p
6-cycles. We can think of them as p pairs of 6-cycles, say

(x%,...,xé) and (y%,...,yé) where i=1,..,p, and V(Kn)={x;,y§:

2

n and

1<i<p, 1<j<6}. Now we take a (2,8p-2),-factorization on K
such that one of the 1-factors is formed by the edges (x%,yé),
(x%,yé), (x%,yi), (xé,y%), (x%,y%) and (xi,y%) where i=1,...,p.
By adding this 1-factor to the p pairs of 6-cycles from K;, we
obtain a three factor with p identical components as shown in

Figure 2.9. Observe that this 3-regqular subgraph is

P4—factorable.

X3 X4
X2 Xs
X X
\2 Ye
Y2 y5
y3 Y4
Fig. 2.9
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Now we take a (2,8p-2),-factorization on Kg so that the one

2 3

1-factor left in Kn n

and the p pairs of 6-cycle obtained in K
will again form a 3-factor as above. Therefore, 3K is

P,~factorable if n=0(modi12).

Suppose now that n=12p+8. By Lemma 2.16, K is
(1,8p+4)4-factorable. Now take a (1,8p+4)4-factorization of each
of the three copies of K, so that the three 1-factors will form

a Ky-factor of K,. This subgraph is Py-factorable.

Therefore, the graph K, is P4-factorable if n=0(mod4) and

A=0(mod3) and the number of P,-factors is 2A(n-1)/3.
(B) t=0. This is just a 1-factorization and so it is trivial.
(C) st#0.

When A=1, this is Theorem 2.17. Suppose that A=2. Let (s,t)
be a solution of 2s+3t=4(n-1) and M be the maximum number of

P4—factors in K If t<2M, we can obtain M P4-factors from Kg

2
nl

ne
and t-M P,-factors from K and 1-factorize the remaining graph.
By Theorem 2.17, this is possible. Otherwise, the only
possibility occurs when n=0(mod12). The reason is that if
n=4,8(mod12), then 2M is the maximum number of P4-factors
possible. Now when n=0(mod12), the maximum number of P4-factors
possible is 2M+2. So we apply the same method as in (a) by first
taking a (2,8p-2),-factorization of each copy of K12p(n=12p) and

then combining the four 1-factors to obtain the two more

P4-factors.

52



Noﬁ we consider the case of general A. For any given A, we
consider its value modulo 3. Since we know that AK, is
P,~factorable if n=0(mod4) and A=0(mod3), and that when A=1,2,
MK, is (s,t)4-factorable if and only if 2s+3t=2A(n-1) and

n=0(mod4), Then the desired result follows immediately.

This completes the proof.
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