A COMPUTER-GENERATED TRANSLITERATION SYSTEM
TO ASSIST THE TEACHING OF READING IN HEBREW

TO NATIVE SPEAKERS OF ENGLISH
by

Curtis Rice

B.A., University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE CF
MASTER OF ARTS (EDUCATION)
in the Faculty
of

Education

(:) Curtis Rice 1988

SIMON FRASER UNIVERSITY

August 1988

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

i

APPROVAL

Name: Curtis Rice
Degree: Master of Arts (Education)
Title of Project: A Computer-generated Transliteration System to

Assist the Teaching of Reading in Hebrew to
Native Speakers of English

Examining Committee:

Chairman: Jaap Tuinman

——

ﬂJ Dawson
Senior Supervisor

W4 I

738
nstougior

K. Toohey
External Examiner

Date Approved aﬁﬁwz/ 'Z, (988

PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which Is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or In response to a request from the
library of any other unlversity, or other educational Institution, on
its own behalf or for one ot its users. | further agree that permission
for multiple copying ot this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. |t is understood that copying
or publication of this work for financial gain shall not be ailowed

without my written permission.

Title of Thesis/Project/Extended Essay

A Computer-generated Transliteration System to Assist the

Teaching of Reading in Hebrew to Native Speakers of English

Author: _
(signature)

Curtis RICE

(name)

O,wqu,gz I'7, /’?%Z
— a

(date)

iii

1. Abstract

This paper examines the problems presented to speakers of
languages using the Roman alphabet when learning another
language using different alphabetic symbols. The case is taken
of native speakers of Ehglish learning Hebrew, which presents
pafticular problems in reading because Hebrew moves from right-
to-left and either does not represent most vowels or uses a
system of diacritic marks to represent them which is difficult
to read. The hypothesis is advanced that the learning-to-read
process for those literate in their first language will be
faster and more efficient if the target language is presented
together with transliteration into the Roman script in the
early stages of reading. This allows for faster reading because
the literate student can automatically decode the Roman text
and project an understanding of pronunciation onto the Hebrew.
It also allows for more extensive reading and hence the
accumulation of a larger vocabulary which is key to advanced
fuhctioning in the target language. A computer-based system and
tutorial has been designed to assist in making this possible.
The system automatically generates transliteration into Roman
of any Hebrew text while the tutorial facilitates the transfer
of decoding understanding from the Roman to the Hebrew script.
This system and tutorial are described in detail together with

suggestions for their application.

6.

iv

TABLE OF CONTENTS

Page

Title Page .ccceeeeccccocenan cecteanne Cecseessensacna i
Approval Page c e esececscerecssssessceannees .. il
Abstractcciiiiiiiiinn.. Ceeeeceecteanann ceeeen .. iii
Table of Contents e et ecscnacesseesssessanenonn . iv
List of Figures and Appendices........cceveveeenenennn v
The Problemcccieieeierceseesssoosasosasasssoaes 1
Significance of the Problemceeeeeeeeennnncas 4
Researchccciiiiiiriiiiniieeeceseoesncansassncnnass 9
Objectives e et esaan S et ececasscscesesastsssacens 17
Description of Transliteration‘System

(a) Overviewcccvvvvvunn. e esiseceseasesanan . 19

(b) The Hebrew Alphabet et eesseeeneceaceeens 22

(c) Pronunciation Rules e ccestesansaenn 27

(d) Roman Alphabets & Keyboard Layoutc..... 35

(e) Text Interchange Procedure and Table Rules 43

(f) Description of Program BITEX ceeesenens ... 48
(1) Merging Hebrew and Roman Texts 48 -
(ii) Refining Transliterationccccce... 70
(iii) Applying Cloze Procedureceeee.. 75

(iv) Summary of Error & Operating Messages .. 81

Applications and Evaluationceeveeecaceens .. 83

81

v

LIST OF FIGURES AND APPENDICES

Page
FIGURES

Figure 1 ...iiiiieerieenesccacnncncacsnsscssnncnnsssssas 91

Figure 2ccceeeieencacas

.......... ® ® & & © O & & & O O o & & 0 93
APPENDICES
1. Data Flow Diagramcc... ceeocceceecsesecescses ee. 95

2. Table of Hebrew to Roman ASCII Codes and Alphabetic
Representationsicccceneeccccns ceecevevesssees. 97
3. Table of Roman ASCII Codes and Alphabetic
Representationscceeeececteccosocccscssccsnnccccs 101

4. Table to Convert MLS Hebrew to ASCII Roman Text

6. Block Diagram for Program BITEX ceescsecsanrn 143
7. Flow Chart for Block 4 of Program BITEXe00.... 145

8. Program BITEX ...cccceeescsacacccaes ceescaanae

vi

LIST OF FIGURES AND APPENDICES (ctd)

9. Sample Output of Genesis Ch 1, vs 1 & 2.

9(a)

9(b)

9(c)

9(d)

9(e)

9(f)

9(g)

Hebrew text in Hebrew 9-point proportionally
spaced ancient alphabetc.ettieeriecenncneea
Transliteration in Roman 9-point proportionally

spaced "classical" and "classical alternative"

alphabetsciieeiereceeecccncassasascnscccsosns
Transliteration in Roman 9-point proportionally
spaced "modern” and "simplified modern"

alphabetsc000..

BITEX bi-textual output in Hebrew 9-point fixed
space ancient alphabet and Roman 9-point fixed
space "classical" alphabet R
BITEX bi—textual output in Hebrew 9-point fixed
space ancient alphabet and Roman 9-point fixed
space "classical alternative" alphabet
BITEX bi-textual output in Hebrew 9-point
proportionally spaced ancient alphabet and Roman
9-point proportionally spaced "modern" alphabet ..
BITEX bi-textual output in Hebrew 9-point
proportionally spaced ancient alphabet and

Roman 9-point proportionally spaced

"simplified modern"” alphabetcciieecieeens

165

166

167

168

169

170

9 (h)

9(i)
9(3)
9 (k)
9(1)
9(m)

9(n)

9(0)

REFERENCES.....ccc0...

vii

LIST OF FIGURES AND APPENDICES (ctd)

Page
BITEX stage-one cloze output in Hebrew "screen
size" fixed space modern alphabet and Roman
modified "screen size" fixed space "simplified
modern” alphabet cescas cecees sesecessssesses 172
BITEX stage-two cloze output as in (h) above 173

BITEX stage—-three cloze output as in (h) above ... 174
BITEX stage—-four cloze output as in (h) above 175
BITEX stage—-five cloze output as in (h) above 176
BITEX stage-six cloze output as in (h) above 177
BITEX stage-seven cloze output, Hebrew as in

(h) above, no Roman textcceiveeevecennns 178
BITEX stage-eight cloze output, Hebrew as in

(h) above, no Hebrew pointingcccecececsescesa 179

® 06 06 06060 © 2 0 00006000806 0¢ 0 60 000060000000 181

COMPUTER-GENERATED TRANSLITERATION, page 1

1. The Problem

Acquiring a second language is a formidable task to anyone
who has not grown up bilingual, regardiess of age. An
additional significant barrier, particularly to reading, has to
be overcome by native speakers of English if the second
language is represented by some other script than the Roman
alphabet. This paper looks particularly at the problem
presented to native speakers of English in learning Hebrew with
its own distinctive script which, although alphabetic, is
radically different from the Roman alphabet. The same problem
applies to native speakers of other languages using the Roman
script learning not only Hebrew but also other languages with a
totally different alphabetic non-Roman script, e.g. Arabic or
Persian. A different set of problems - not examined here - is
presented in learning languages like Chinese and Japanese whose
scripts are not alphabetic.

Although a high level of competence in a second language
can Be achieved with oral learning only, advanced competence
comparable to that of a literate native speaker can be reached
only by becoming literate oneself. Those already literate in
their first language find themselves back at the prereading
stage they experienced as young children. They have to learn to
read all over again in an unfamiliar script.

As in reading their first language, no significant
progress can be made until they achieve decoding automaticity:

the ability to instantly convert print to sound. This paper

COMPUTER-GENERATED TRANSLITERATION, page 2

addresses the problem of achieving precomprehension
automaticity in reading the non-Roman script. Once students can
instantly identify words without belaboured decoding, their
cognitive energy is freed to concentrate on the task of
comprehension.

The specific problems presented by the Hebrew script are:
1. Reading is from right to left instead of left to right.
2. The Hebrew alphabetic characters bear no resemblance to the
Roman characters and, additionally, have a right-to-left
orientation which is opposite to the left-to-right orientation
of the Roman characters.
3. Modern Hebrew is written with only two of some twelve vowel
forms represented. You have to know a word to read it. The
Hebrew alphabet does not code sound; rather, with its
consonantal letters, it structures mnemonics.
4, A system for representing vowel sounds exists. It was
developed by the Jewish scholars (Masoretes) in Tiberias around
the 4seventh or eighth century AD, in order to preserve the
sound of the sacred books of the Hebrew Bible. The Hebrew Bible
is still printed with this Tiberian vowel system which also is
used in modern Hebrew dictionaries and grammars. However, it is
a system of diacritic marks applied to the consonants (see
Section 5(b)) and bears no resemblance at all to the Roman
system of representing vowels with independent letters. It is
accordingly most difficult to read without extensive practice.

5. Modern Hebrew uses a cursive script for handwriting which

COMPUTER-GENERATED TRANSLITERATION, page 3

bears rather less resemblance to the printed characters than
Roman lower case bears to Roman upper case. This presents an
additional problem in reading handwriting: letters, notes,
instructions etc. including, when learning Hebrew, written
instructions from the teacher, both on the blackboard and on
pieces of paper. Although the transliteration system described
in this paper is applied to a printed Hebrew text, it could
equally well be applied to a "handwritten” cursive script by

developing a special font for this purpose.

COMPUTER-GENERATED TRANSLITERATION, page 4

2. Significance of the Problem

If a literate native speaker of a language using the Roman
alphabet learns a second language also using the Roman
alphabet, then that speaker starts off with the essential
precondition for reading - decoding automaticity -~already met.
He or she does not have to struggle with the basic task of
decoding visual symbols to sound: from the very beginning the
arrangements of letters convey the sounds of words to the
brain. The student is free to apply all his cognitive energy to
the essential tasks of recognizing and identifying words to
facilitate comprehension (Durkin, 1970, p 109). However, when
learning a language like Hebrew which uses an altogether
different alphabet, the student is back in Grade 1, faced with
the task of mastering basic decoding skills all over again.

This imposes a significantly lengthy delay in mastering reading
in the second language.

The question may be asked: does this really matter? After
all ﬁothing is preventing the oral learning of the language. In
second language learning today the emphasis is usually laid on
first léarning the spoken language and coming to reading and
writing later. There are two answers to this: 1) although
reading may not be emphasised, there is the assumption when
both first and second languages use the Roman alphabet that the
student of the second language can decode, i.e. understand the
shape and sound of what is written on the blackboard and

printed in texts and handouts. In learning Hebrew, this

COMPUTER-GENERATED TRANSLITERATION, page S

assumption cannot be made. 2) It is generally agreed that one
of the essential keys to mastery of a second language is the
development of as large a vocabulary as possible. Typically,
native speakers of modern Western languages will have a use-
and-recognition vocabulary of between thirty and sixty thousand
words (Mario Pei, 1952). It is, of course, many years before
the second language learner can even approach this level. His
or her first objective in learning to read in English as a
second language at the first elementary level of independence
is to acquire a recognition vocabulary of about 3,600 words
(Rivers and Temperley, 1978). From this point he can take off
on the task of building and maintaining his own vocabulary. It
is reasonable to assume a similar objective for Modern Hebrew.
The student of Hebrew, however, is handicapped in achieving
quickly this basic vocabulary level because decoding
monopolizes the best part of his early reading efforts. It is
true that he will achieve a survival level of vocabulary
without reading. Reading, however, would enable him to achieve
it quicker. Even more important, without extensive reading the
student will not advance to the level necessary to cope with
classes at university or technical school or to gain any sort
of literary appreciation of the language. The difficulties of
" the script present the main barrier to reading.

A large research literature exists on various aspects of
learning to read and improving reading performance. J. S. Chall

(1967) in her landmark book Learning to Read:the Great Debate

COMPUTER-GENERATED TRANSLITERATION, page 6

brought together the findings that indicated a division between
the tasks of decoding and comprehension with the recommendation
of an emphasis on decoding rather than on meaning for beginning
reading instruction. Chall (1983) followed up her previous work
and advanced a Piagetian-type theory of reading stages. Stage
1, Initial Reading or Decoding she characterises as "grunting
and groaning” and "barking at print”. Stage 2, Confirmation,
Fluency, Ungluing from Print is a key make~-or-break stage: its
outcome should be automaticity in decoding (see also Durkin,
1970) which marks the end of "learning to read” and the
beginning of "reading to learn”. The child who does not succeed
in this stage remains a "problem reader”. Chall comments with
great relevance to our present topic:
A tenable hypothesis would be that Stage 2 (leading to
decoding automaticity) is the main failing point of most
adult literacy campaigns. The literacy campaigns here and
in Third World countries indicate that although most
adults can get through stage 1 (initial decoding), they
begin to falter at Stage 2. Reading a newspaper ... which
requires at least Stage 3 reading (comprehension), will be
difficult or impossible for most ... After the literacy
clasgses complete their Stage 1 programs there are not
enough readable materials available, material that is
familiar in its use of language and content, for the new
literates to gain the fluency of Stage 2. Nor is there

usually a compelling need to keep on reading (pp 41,42).

COMPUTER-GENERATED TRANSLITERATION, page 7

Chall’s description applies to many immigrants to Israel who,
though literate in their first language, do not persist in
achieving the same literacy in the new language. They fall
short of decoding automaticity and remain in Stage 2.

From Stage 3 on, the emphasis moves from decoding to
comprehension. Now the acquisition of vocabulary becomes of
crucial importance. Sternberg, Powell and Kaye (1983) compare
three methods for teaching vocabulary skills: rote learning,
the keyword method and learning from context. They find that
rote learning is the least effective method; that the keyword
method has merit; but that learning from context produces the
greatest depth of long term understanding. The student can
learn from both oral and written contexts. An oral context,
however, has the disadvantage of transitoriness - the student
may of may not "get it". A reading context, on the other hand,
is permanent, always available and can be repeated as often as
necessary. Therefore reading is the royal road to the
acqui‘sition of vocabulary.

An additional problem associated with reading difficulties
is the inability to efficiently use dictionaries and reference
material in the second language. This also slows down the rate
of progress which the student could otherwise achieve and
" contributes to his or her general sense of frustration in
dealing with the written word.

All of these problems together have a significant

psychological effect. Second language learners who are used to

COMPUTER-GENERATED TRANSLITERATION, page 8

reading and using written references with ease in their first
language are faced first with frustration with their new,
unaccustomed illiteracy, and then with surprise and
discouragement upon finding just how long it takes to regain
the literacy they have for so long taken for granted. As a
result, many do not go beyrond a very basic social proficiency
in the second language and neither explore its literary depths
nor achieve the level of competence necessary for continuing
education with the second language as the language of
instruction. Even more important than this, they become
functional illiterates in the new society with all the
disadvantages that this implies, particularly in the workplace
where, more and more, literacy is a precondition for holding

down a job, and even more so for advancing in it.

COMPUTER-GENERATED TRANSLITERATION, page 9

3. Research

A study that bears directly on the problems posed by a

strange alphabetic script is reported by Lee Brooks and Amima
Miller ("A Comparison of Explicit and Implicit Knowledge of an
Alphabet” in Kolers, Wrolstad and Bouma, 1979). For this study
two lists of twelve words were used, one of which is shown in
Figure 1 (Figures are listed just before Appendices). The words
on the right are non-alphabetic: there is no correspondence
between the symbols and the sounds of the associated response
(condition 1). The words on the left are alphabetic but must be
decoded from right to left (condition 2). One of the groups of
eight McMaster undergraduates tested was told that the words
would be both alphabetic and non-alphabetic and were given
training in the six-letter alphabet used, followed by a whole
word training procedure in the actual words used. Immediately
after the training they were subjected to 160 trials, each

trial consisting of a presentation of six cards from one
condition or the other with the request to identify all six
words as rapidly as possible. Five trials were given in one
condition followed by five in the other, alternating up to a
total of eighty trials for each condition. After every ten
group trials the list of words were presented in random
sequence to the respondents individually. They were then
transferred to a similar list of twelve new words and the
whole training and testing procedure was repeated for another

thirty group trials which were interspersed in the same way

COMPUTER-GENERATED TRANSLITERATION, page 10

with individual trials. All responses were timed. The results

were surprising. Brooks and Miller report:
For both kinds of timed trials and for both lists the
words for which the underlying alphabet were known were
identified significantly less rapidly than were the non-
alphabetic words. This effect and its persistence are
remarkable for several reasons. First is the strictly
technical reason that the lists were carefully matched and
exactly the same stimuli and responses were used across
subjects in the two conditions. Second, the experiment was
carried out within subjects, and since all of the
subjects reported noticing that they performed faster on
the non-alphabetic conditions, this might have prompted
them to adopt a more efficient strategy for the alphabetic
items. Third, the training procedure would have allowed
the subjects to treat both sets of words identically ...
Finally, the effect continues into the second list, at
which point one might have expected either increasing
facility with the alphabet or a shift in strategy to have
markedly attenuated the disadvantage of the alphabetic
items (p. 394).

Brooks and Miller go on to comment that although one source of

the disadvantage for the explicit alphabet is the difficulty of

applying unfamiliar symbol-to-letter or symbol-to~sound

correspondences, there is more to it than this. All the

improvement gained progressively for the alphabetic items in

COMPUTER-GENERATED TRANSLITERATION, page 11

the first set of lists was lost when the second list was
presented. They cite another experiment using artificial
letters described in Brooks (1977) which indicates that
subjects organize their encoding around particular information
in a word even though more distinctive information may be
available. Quite striking differences between letters are not
exploited by the explicit alphabet subjects until after
considerable practice.

The key words here are "after considerable practice”.
Brooks (1977) used a glyphic alphabetic list (the letters
arranged into words in the form of a unitary pattern) and a
discrete alphabetic list presented both left to right and right
to left (see Figure 2). He also used in one experiment a
glyphic alphabetic list and and a glyphic non-alphabetic list.

Taking only six words, it took 180 practice trials before
performance on the discrete alphabetic list became
significantly faster than on the non-correspondence list.
Performance on the glyphic alphabetic list became faster than
on the discrete alphabetic list after about 60 trials but
faster than on the glyphic non-correspondence list only after
200 trials. Interestingly, in the practice trials referred to,
the explicit alphabet items were printed left to right, proving
that a reverse order was not the cause of the difficulties
experienced although, if used, it could have added to them.

The task of dealing with these trials with a six letter

alphabet and a six word vocabulary can be compared with the

]

COMPUTER-GENERATED TRANSLITERATION, page 12

task of dealing with a Hebrew alphabet of 22 letters with
almost no vowels, or with vowels organized in a different
system than the consonants, and an unlimited vbocabulary.
Clearly, the achievement of automaticity in decoding a strange
alphabet, even for a subject highly literate in his or her

first language, is not a trivial task.

The difficulties experienced in the Brooks (1977) study
are particularly significant because, as can be seen from
Figure 2 (listed just before Appendices), the letters used for
the alphabet were clear and bold and looked like "real”
letters, unlike the squiggly shapes in Figure 1. Brooks and
Miller comment: "Apparently a visual difference as robust as
the one shown in Figure 2 was not exploited by the explicit
alphabet subjects until after considerable practice” (p.397).
This observation, combined with the greater success with the
glyphic alphabet, indicates that some sort of word pattern
recognition appears to be involved in successful decoding, that
the pﬁtterns are not immediately obvious in a strange alphabet
and that they take a considerable period of time to recognize.

A recent research study has directly addressed the

question of representing Hebrew with the Roman alphabet:

Romanization to Facilitate the Teaching of Modern Hebrew to

Adult Native Speakers of English by E. P. Kellogg, Jr. (1983).

This study evaluates five research projects - one unpublished
thesis and four published papers — which address various issues

concerning the Romanization of the Hebrew alphabet. Kellogg

COMPUTER-GENERATED TRANSLITERATION, page 13

makes the point in his introduction that during the 1800’s in
Europe the Roman alphabet was used to introduce students to
Hebrew, that the Turkish dialect of Arabic was Romanized in the
time of Mustafa Kemel Ataturk and that recent movements in this
direction include the Romanization of Chinese by means of the
Pin Yin system. He speaks of the advantages of Romanization in
making Hebrew (and other languages) more accessible and more
easily included in the curriculum, and the advantage of the

left to right representation which is the norm in 'international
communications (increasingly using the computer) and also the
usual mode of representation of the language of science and
mathematics. The conclusions reached from his review of the
five studies are favourable towards Romanization and include
the following specific observations of relevance to this paper:
1. More is involved than just learning 22 new letters. The
learner has to look in different places for clues to the

meaning of a letter. The recognition techniques that work in
Englfsh do not work for reading Hebrew because the letters are
formed with a right to left orientation. Roman letters,
naturally, are formed with the opposite orientation.

2. The problem of spelling in Hebrew is complicated by the fact
that some of the written letters have lost their uniqueness
 with the result there are two letter "t’s”, two letter "k’s"

L

and two letter "s’s”". Romanization eliminates this confusion.
3. Certain words experience vowel changes or deletions in the

stem when making the transition from singular to plural. This

COMPUTER-GENERATED TRANSLITERATION, page 14

is not apparent in the Hebrew script but becomes transparent
upon Romanization (e.g. Hebrew KTN,KTN'M; Roman "katan",
"ktanim"). Kellogg has produced the Shalom Home Study Course
in Conversational Hebrew (1983) which he describes as "a
research and development product designed to demonstrate how
Romanization can be employed to facilitate the acquisition of
Modern Hebrew by the adult native speaker of English” (p. 31).
It is not clear whether or not his intention is to permanently
replace the traditional Hebrew script with the Roman alphabet
for a second language learner. Such is not the proposal of this
paper but rather to use Romanization as a bridge of easy entry
to Hebrew and then to make the transfer to the traditional
script as soon as the student has gained some facility with the
language.

This strategy is, in fact, used by Thomas O. Lambdin in

his Introduction to Biblical Hebrew (Harvard, 1971). Lambdin

comments in his preface:
The generous use of transliteration is meant to serve
three purposes: to enable the student to perceive Hebrew
as a language, and not an exercise in decipherment; to
remove the customary initial obstacle, wherein the student
was required to master innumerable pages of rather
abstract phonological and orthographic details before
learning even a sentence of the language; and to
facilitate the memorization of the paradigms, where the

essential features are, in my opinion, set in greater

COMPUTER-GENERATED TRANSLITERATION, page 15

relief than in the conventional script.
Some two thirds of the way through the book Lambdin weans the
student from transliteration and uses only the traditional
script.

Of the multi-lingual wbrd processors researched, the one
selected for the system described in Section § is Multi-Lingual
Scholar, Version 3.0 (MLS) (1987). This supports 16 languages

structured upon five alphabets: Roman, Hebrew, Cyrillic, Greek
and Arabic. Other alphabets are available and the package
includes a font generation utility for designing custom fonts.
It is possible to move from one language to another within the
same document so that a true multi-lingual text can be
processed. Section 5 is written with Multi-lingual Scholar. A
number of keyboard layouts are provided under software control
and additional keyboard layouts can be designed by the user. A
particularly valuable feature of this processor is its ability

to handle Hebrew vowel pointing by overstrike characters so
that they appear under or over the characters on screen and in
print. MLS is configured for the IBM XT and requires 512K
memory for the application described in Section 5. Another
powerful package specially designed for academics is Nota Bene
Version 3 (1987). Despite its many strengths, however, it
displays the Hebrew vowel points as separate characters on
screen although it treats them as overstrikes in printed
output. This makes it unsuitable for designing a screen

tutorial. Another candidate is Gutenberg (1985) which has

COMPUTER-GENERATED TRANSLITERATION, page 16

particularly strong text-formatting features but is only
configured for the Apple Il series of computers. A future
possibility is a multi-lingual word processor under development
for the Xerox personal computer work station called Star. This

is discussed in a Scientific American article (July 1984). The

project is an ambitious one, aiming at no less than an
integrated system for encoding, typing and rendering all the
world’s graphic systems including those which are not
alphabetically based. It will presumably be some time before a
microcomputer version is available.

Different Hebrew transliteration conventions were

researched. These are described in context in Section 5.

COMPUTER-GENERATED TRANSLITERATION, page 17

4. Objectives

Transliteration has been used for many years in teachin‘g
classical Hebrew to help students negotiate the initial problems of
the unfamiliar Hebrew script (Lambdin, 1971; Weingreen, 1939).
More recently, it has been successfully used in teaching modern
Hebrew (Kellogg, 1983). It is widely used in publications from
popular periodicals to scholarly works which quote Hebrew for
non-Hebrew speakers. Transliteration is, therefore, of proven
value. It is, however, troublesome and time-consuming to produce
extensively, which has limited its use.

What follows is the documentation of a system, using a
personal computer, that automatically generates transliteration
from any given fully-pointed Hebrew text. This system makes
possible a computer-assisted tutorial, also documented, for using
transliteration to speed and facilitate the acquisition of reading
competence in Hebrew.

The objectives in producing this system and tutorial are as
follows:

1. prove that computer-generated transliteration, using a
personal computer, is feasible;

2. provide the means of delivery of transliteration in any form
desired;

3. reduce the non-Hebrew speaking student’s long-lasting
frustration and slowness in decoding Hebrew text, which becomes a
barrier to persevering until reading competence is achieved;

4. encourage the transference of decoding automaticity from
the transliterated to the Hebrew text and thus accelerate the

acquisition of reading competence in Hebrew without

COMPUTER-GENERATED TRANSLITERATION, page 18

transliteration support;

5. indicate, by achieving success in a transliteration syétem
and tutorial for Hebrew, that the same approach is feasible for
learning to read in other non-Roman scripts.

Teaching classical Hebrew emphasises reading competence.
Teaching modern Hebrew to non-Hebrew speakers rightly
emphasises oral communicative competence. Once a survival level
is achieved, the student tends to drop his or her studies. True
communicative competence, however, depends upon substantially
enlarging vocabulary which, in turn, depends upon extensive
reading in a second language as in a first. Only with reading and an
enlarged vocabulary will students move towards the communicative
competence of the educated first language speaker. At the same
time they will move towards an understanding of the literature of
the language and towards the ability to undergo formal education
with the second language the language of instruction. The aim of a
transliteration system is to help achieve this goal by facilitating
the transfer of the student’s first language decoding automaticity
to the second language and by encouraging him or her to persevere

with reading until this takes place.

COMPUTER-GENERATED TRANSLITERATION, page 19

5. Description of Transliteration System

5(a). Overview

Purpose

The purpose of the system is to produce: 1)
computer-generated transliteration of Hebrew texts for use in the
initial teaching of both classical and modern Hebrew to native
speakers of English; and 2) a computer-assisted reading tutorial on
screen to help the student attain more quickly a mastery of
reading Hebrew script. The reading tutorial can also be supplied, if
required, as hard copy.

Process

The Hebrew source text is prepared, complete with vowel
points, using the Multi-Lingual Scholar (MLS) word processor. It is
transliterated into a Roman text file, using the MLS table-driven
Configurable Text Interchange Utility (CTIU). This requires the
design of tables of some complexity to produce transliteration that
implements the pronunciation rules for Hebrew. The Hebrew and
Roman text files are then merged by the author-designed computer
program BITEX into a bitextual file with a line of Hebrew
alternating with a line of Roman so that each Hebrew word has its
Roman counterpart immediately beneath it. The Roman text is
invariably longer than the Hebrew text. The Hebrew words are
spaced out to allow for this. Eight additional files of the merged
text are prepared, using a cloze procedure. In the first of these,
every seventh Roman word is deleted; in the second an additional
seventh \Qord is deleted; in the third an additional seventh word
again is deleted and so on until with the seventh file the Roman

text has been erased. The eighth file erases the Hebrew vowel

COMPUTER-GENERATED TRANSLITERATION, page 20

points. The cloze procedure can be implemented with a cloze
interval less or greater than seven. It is also péssible to implement
any combination of cloze stages, e.g. deleting every seventh word
starting with word 1 and 4, or with word 1, 3 and 6 etc. A teacher
may, therefore, use it as a flexible reading or writing test
instrument.

Intention of tutorial

The bitextual file is produced to enable students to decode
immediately the sound of the Hebrew word from the Roman
transliterated word irﬁmediately below it and thus read the text
without difficulty. The purpose of the series of cloze files is to
enable students to repeat the reading while gradually transferring
their understanding of the pronunciation directly to the Hebrew
text. By the time they have completed the file series they should
be reasonably comfortable with the Hebrew text without the
transliteration assist. If not, they can repeat the reading exercise
from the beginning or from any point in the middle as often as
they desire.

System components

The system has three main components: alphabets, tables and a
computer program. Four sets-of alphabets and text interchange
tables are provided to produce four alternative transliteration
modes: classical, classical alternative, modern and simplified
modern. The classical mode is that used in such classical grammars
as Lambdin (1971) and Weingreen (1939). It relies on diacritic
marks to distinguish different pronunciations of the same letter,
whether consonant or vowel, and also to indicate the underlying

Hebrew spelling. The classical alternative -and modern modes use

COMPUTER-GENERATED TRANSLITERATION, page 21

phonetic spelling of consonants rather than diacritic marks but
retain diacritic marks with the vowels. They also identify t’he
underlying Hebrew spelling. The simplified modern mode dqes not
distinguish different letters which have the same pronunciation
and avoids diacritic marks. Therefore it does not identify Hebrew
spelling. It is easiest to read but contains least information.

The computer program BITEX not only merges the Hebrew and
Roman text files and produces the cloze files but also has a module
for applying transliteration rules as required. The system relies
primarily on the CTIU tables to generate transliteration. There is,
however, one rule - short qametz in a final unaccented syllable -
which has not been put into the tables because it takes up too
many lines and causes the tables to exceed their capacity. This rule
is applied by the computer program. if other exception conditions
come to light, the computer program can be used to deal with them
if they cannot be easily accomodated by the tables.

The sections which follow describe first the Hebrew alphabet
and pronunciation rules; and then deal in turn with the three main
components of the system: the alternative Roman alphabets, the

alternative text interchange tables and the computer program.

COMPUTER-GENERATED TRANSLITERATION, page 22

S(b) Description of Transliteration System: The Hebrew Alglhabet

The Hebrew alphabet consists of 22 consonants. It was derived
in the tenth century B.C. from the Phoenician branch of the
original alphabet which was invented in the Middle East sometime
during the first half of the second millennium B.C. Originally, no

vowels at all were indicated in writing. In the pre-Exilic period,

before the Babylonian Exile in 587 B.C., the consonants * y, % w,
and 7 h, were used at the end of a word to indicate final vowels.

In the post-Exilic period, ¥ and 1 were used also to indicate

vowels inside a word. Not until the 9th and 10th centuries A.D. was
a complete system of vowel notation perfected by Jewish scholars
known as the Masoretes (traditionalists), working in Tiberias. This
system, using diacritic marks beneath and above the consonants,
was superimposed on the earlier partial system.

Hebrew is written from right to left. Consonants and vowels
are listed separately below. Alternative transliterations are

discussed in Section 5(d).

COMPUTER-GENERATED TRANSLITERATION, page 23

1. The Consohants

Form Name Transliteration Pronunciation
R "dleph ’ ‘ glottal 'stop or zero
a 2 béth b b bh v [b] as in bait [v] as in have
3 gimel g g gh(g) [gl asin go [g] as in go
T 9 dileth d d dh (d) [d] as in door [] as in this
D] hé h [h] as in house
) wiaw (viv) w (v) [w] as in wet or [v] as in vet
? zayin z [z] as in zone
n héth h [x] like the ch in Scottish loch
=) téth t [t] as in time
’ yddh y [yl as in yes
2 3 9 kaph k k kh ch [k] as in king [x] as for h&th
? limedh 1 [1] as in line
B mém m [m] as in moon
) nfin n [n] as in noon
o) samekh s [s] as in soon
¥ ‘ayin ¢ no Eng equiv; back of throat
B 2 % ps p P ph f [p] as in pay [f] as in face
X Yy tzadhe s tz [ts] as in hits
P qbph q [q]a 'k’ at back of throat
9 résh r [t] as in rope
w §in § [s] as in sing
w shin § sh [$] as in show
non taiw (tav) t t th(t) [t] as in time []as in thin

-
COMPUTER-GENERATED TRANSLITERATION, page 24

Note 1: Three forms are shown in the first column of the table:
the dagesh with a dot in the middle, the regular, and the sovfit for
the final letter of a word.

Note 2: Six letters have the dagesh form: 3 ¥ S 3 B N (bgdkop
t), known mnemonically as the "begadkepat” letters. Without the
dagesh they are soft or spirant; with the dagesh they are hard. In
modern Hebrew, three of these letters, 3 % NN, are no longer
pronounced softly. Thev take the hard pronunciation as shown in
parenthesis in the transliteration column of the table. The dagesh
can also be used with these and other letters to indicate doubling.
When used with % h, the dot is known as "mappiq” (bringing out)
and indicates that the "h" is sharply audible. These points are

discussed in Section 5(c).

Note 3: Five letters have a special form at the end of words:} | Y
9 8 (d m nptz). They do not change their pronunciation.

Note 4: Pronunciation is the same today in classical and modern

Hebrew except for the letters 9 3} N, aspirated in classical but not

in modern Hebrew; the letter Y, which is "w" in classical but "v" in

modern Hebrew; and the gutturals ¥ X whose pronunciation is

retained only by some native speakers.

COMPUTER-GENERATED TRANSLITERATION, page 25

2. The Vowels

Sign Name Transliteration Length
3 pathah a as in had short
3 seghol e as in bed short
‘3 seghél & yod & as in bed short
B3 seghdl & hé e as in bed short (final hé only)
38 short hireq i as in lid short
32 qibbitz u as in bull short
2 gimetz-hatdf o as in top short
2 gametz i as in yard long
‘3 qimetz & ydd 4 as in yard long (rare with ydd)
"3 qgimetz & hé 3as in yard long (final hé only)
8 tzerd é as in they long
'3 tzerd & yod é as in they long
N3 tzéré & he é as in they long (final h& only)

=)

‘3 long hireq as in machine long

Y shiireq fl as in flute long
¥ hélem 6 as in note long
3 holem 0 as in note long
#3 holem & ha 0 as in note long (final hé only, rare)
;: shewa, sheva € as in haven reduced
W hatef-pathah ias in abridge reduced
B hatef-seghdl é as in haven reduced
W hatef-qdmetz S as in atom reduced

‘Note 1: Lambdin (1971, p XVII) points out that there is no
consensus as to the length and quality of the Hebrew vowels in the

Masoretic system. The diacritic marks used in the above

COMPUTER-GENERATED TRANSLITERATION, page 26

transcription are designed to reflect Hebrew spelling and are not
always accurate length indicators. |

Note 2: The distinction between long and short qametz (d or o) is
discussed in Section 5(c) on special pronunciation rules.

Note 3: Syllables are either open or closed. A syllable begins with a

consonant and cannot begin with a vowel. An open syllable consists

of a consonant and a vowel, e.g. 2; a closed syllable consists of a
consonant and a. vowel followed by another consonant, e.g. 93 or

M.

Note 4: Words are stressed on the last syllable (most frequently) or
on the penultimate syllable. Only penultimate stress is marked in
this transliteration system, both in preparing source Hebrew text

files, using an overstrike accent mark, e.g. 15?‘2, and in

transliterated Roman files, using a raised period, e.g. me-lekh.

COMPUTER-GENERATED TRANSLITERATION, page 27

5(c). Description of Transliteration System: Pronunciation Rules

Pronunciation rules for Hebrew will be considered under the

following headings:
1) dagesh lene, dagesh forte and mappiq
2) mobile and quiescent sheva
3) long and short qametz
4) effect of gutturals
5) redundancies.
6) metheg
1. Dagesh Lene and Dagesh Forte
Dagesh (/39, 'piercing’) is a dot in the heart of a letter, as in

the 9% of the Hebrew word just used. It may be either Dagesh Lene
(weak) or Dagesh Forte (strong).

Dagesh lene is used with six letters only, which may have a
hard or soft pronunciation. They are N, 8, 3, %, } ,3 (b, g, d, k,
P> t), known mnemonically as the "begadkepat” letters. Without the
dot, these six letters are aspirated (bh, gh, dh, kh, ph, th). With
the dot they become hard (b, g, d, k, p, t). In modern Hebrew,
although the dagesh lene is preserved for all six letters in written
usage, it applies only to 8 ,3 ,3 (b, k, p) in speech.
Transliteration needs to reflect this. Therefore different font files
are used for classical and modern Hebrew (needed also to
distinguish vav (Y,w) in classical and vav (3, v) in modern Hebrew).

The dagesh in a begadkepat letter is dagesh lene when that
letter commences a syllable in the beginning or middle of a word,
providing that there is no vowel before that letter. This means
that the dagesh is always dagesh lene at the beginning of a word;

and in the middle of a word is dagesh lene if it follows a quiescent

COMPUTER-GENERATED TRANSLITERATION, page 28 |

sheva. Quiescent sheva closes the syllable to which it belongs,
thereby excluding the possibility of a vowel preceding the |
begadkepat letter. This rule is given effect by Roman table rules
R1 and R2 (see Section S(b)).

In all other circumstances, the dagesh in any letter, including
the begadkepat letters, is dagesh forte, which has the effect of
doubling the letter. The Hebrew Table treats all instances of
dagesh as dagesh forte. The Roman Tables change dagesh forte to
dagesh lene where required (Roman table rules R1 and R2).

The gutturals (3 ,7% ,¥ ,X) and resh (%) do not take the
dagesh. The dot in the middle of W is not a dagesh. It is called
"mappiq” (bringing out) and indicates that the "h" is sharply
audible. This occurs infrequently and always at the end of a word.

2. Mobile and Quiescent Sheva

The two points under a letter (?) are called "sheva". Sheva is

either not sounded (quiescent) or is sounded (mobile) like the
phonetic character shwa. Mobile sheva is, therefore, a reduced
vowel. It is represented by "e". Sheva is quiescent in the following
cases:

(a) At the end of a word, whether there is one sheva or two,
e.g. B3] (nept), DX (att).

(b) When it is the first of two shevaim following each other
in the middle or at the end of a word, e.g. D903 (kaspekem),
19200 (tisperd).

(c) After the short vowels (a, e, i, o, u) e.g.]U&{Z\! (Sulhian).

(d) After a long accented vowel, e.g. 3;39 (18-kna).

The Hebrew table initially identifies quiescent sheva (rules H7

to H9) and represents it by an arbitrary ASCII code. This is because

COMPUTER-GENERATED TRANSLITERATION, page 29

the Roman tables need to identify quiescent sheva fof the
application of other rules: the conversion of the default dagesh
forte from the Hebrew table to dagesh lene following quiescent
sheva (rule R1); the correction rule RS whereby a normally
quiescent sheva becomes mobile when attached to the first of two
similar letters, e.g. Q’??EDD (mitpalelim) (in this case, the sheva
would normally be quiescent because it follows a short vowel); and,
finally, identifying quiescent sheva at the end of a word where it
may have been missed by the Hebrew table (rule R7).

The Hebrew table applies one rule for mobile sheva (rule H6).
This is the case where the sheva under the first letter of a word is
mobile while, if there is a second, it is quiescent. This rule is
applied ahead of the rules for quiescent sheva. Otherwise Hebrew
table rule H7, which makes the first sheva quiescent ofvtwo
shevaim together, would incorrectly interpret the sheva under the
first letter of a word as quiescent. Hebrew rule H6 is
complemented by Roman rule R6, which makes the second sheva in
such circumstances quiescent instead of mobile.

All other shevaim are mobile by default.

3. Long and Short gametz

The vowel sign qametz (N) is pronounced either as long a (3)

or short o (0). The qametz in a closed unaccented syllable is short.
A closed syllable can be identified as one ending in a quiescent
sheva or followed by a dagesh forte or followed by the binding
hyphen, maqqef, or closed by a vowel-less letter at the end of a
word. The qametz is also short if appearing before a "furtive”
qametz (®), which is a sheva changed to half-sheva, half-qametz

under the gutturals T 7 ¥ R to assist articulation; or if

COMPUTER-GENERATED TRANSLITERATION, page 30

appearing under a guttural which precedes a letter with sheva, the
sheva under these circumstances being quiescent. |

This pronunciation rule is partly implemented by Hebrew table
rules H2 to HS5 (short qametz before maqqef (hyphen) and before a
letter with furtive qametz) and Roman table rule R3 (short qametz
before dagesh forte). The rule R3 relies upon the Hebrew table to
mark dagesh forte and upon the preceding two Roman table rules to
convert dagesh forte to dagesh lene where required so that no
illegal dagesh fortes are left.

One ambiguous case remains: the appearance of qametz before
a letter with sheva. If the sheva is mobile (sounded) then the
qametz is long as the syllable is open. If the sheva is quiescent
then the qametz is short as the syllable is closed. Only a person
with knowledge of the language can determine whether the sheva is .
mobile or quiescent and hence whether the qametz is long or short.

Weingreen (1959, page 13) gives as an example the word ﬂ?:!’

("oklah, 'food’) where the sheva is quiescent and the qametz short
and the word ﬂ?:!’ (’akelah, ’she ate’) where the sheva is mobile
and the qametz long. The ambiguity is resolved by inserting a
metheg (bridle) to indicate long qametz. The metheg is a signal to
the reader to pause thus making the syllable open so that

ﬂ?:%& will be read as 'akelah. The uses of metheg are discussed
under point 6 below.

It is therefore important when preparing the Hebrew text to
add metheg to qametz wherever the syllable with qametz is to be
read as open. This is one of the uses of metheg in the Massoretic
system. This makes it easy to _apply Hebrew table rule 8 which

automatically treats qametz as short before a letter with sheva and

COMPUTER-GENERATED TRANSLITERATION, page 31

makes the sheva quiescent. The insertion of metheg blocks this
rule in which case the qametz is long by default. |

All cases of qametz not identified as short by the table rules
are long by default.

One case of short qametz is not identified by the tables: short
qametz in the last syllable of a word closed by a letter without a
vowel. This is because an excessive number of table entries is
required which would create more table entries in total than
MLS-CTIU supports at this time. Identifying a last letter is costly
in terms of number of entries because of the number of
end-of-word signals that must be tested: space, carriage return,
period, comma, semi-colon, colon, question mark, exclamation mark
and hyphen. There are 22 letters to test against these nine
end-of-word signals which creates 198 table entries. The total
table capacity is 600 entries. This one rule would use almost one
third of the table capacity. This last syllable condition is therefore
tested in the BITEX program which merges the Hebrew and Roman
files into one bi-textual file. It should be noted that relatively
few cases of short qametz in the final syllable are encountered
because most Hebrew words carry their accent on the final syllable
and short qametz does not appear in accented syllables.

4. Effect of Gutturals

The gutturals B ,i% ,¥ ,R , being pronounced deep in the

throat, have certain peculiarities. These have two effects on table
rules:

(a) They do not take dagesh forte and are therefore not subject
to doubling. |

(b) When they are the terminal letter in circumstances where a

COMPUTER-GENERATED TRANSLITERATION, page 32

vowel normally would not follow, they attract an extra vowel,

pathah (R), which is pronounced before, not after, the guttural.

Thus 7YY (wind) is transliterated rfiah, not rfiha. This

pronunciation rule is implemented by Roman table rule R4.

(c) Instead of simple mobile (vocal) sheva they take composite
sheva, the so-called "furtive” vowels, furtive pathah, furtive
qametz and furtive seghol, i1 51 11 . A furtive qametz following a
consonant with qametz has the effect of making that qametz short
even though its syllable is not closed. This is reflected in Hebrew
table rules H3 and HS.

(d) A point in the middle of M h is called mappiq (bringing
out), not dagesh, and indicates at the end of a word that the h is
sharply audible, not silent. Although doubling is not indicated, this
usage of hé, which is infrequent, is distinguished by doubling (hh), .
following the transliteration usage recommended by the Society for
Biblical Studies.

5. Redundancies

In the earliest Hebrew inscriptions (10th cent B.C.) no voweis
at all were indicated. The need for some vowel representation was,
however, felt. In the pre-Exilic period (before the fall of

Jerusalem in 587 B.C. and the Babylonian Exile) three consonants

were used to indicate final vowels: ¥ w was used for 4, ‘' y was
used for 1, and ¥ h was used for any other final vowel. In the
post-Exilic period ' and Y were used additionally as vowel
indicators inside a word with an extension of the values
represented: now.being used for &, &, or 1 and Y for 4 or 6. The

letter 3 h continued only at the end of a word to represent any

other vowel. (Lambdin, 1971)

COMPUTER-GENERATED TRANSLITERATION, page 33

The use of } was formalized as 3 for @ and § for 6. These two
vowels therefore became directly represented in the written script.
The only problem for transliteration is to distinguish between 3 as

ft and 3 as Y with the dagesh point. This is done with MTS by

having these two vavs represented by different ASCII codes and
configured on different text entry keys. Care is required when

preparing Hebrew text to use the right keys.

The task remains in transliteration to distinguish when ‘ and

1 are used as consonants and when as vowels and therefore

redundant for transliteration purposes. Jewish scholars in Tiberias
during the 9th and 10th centuries, called the Masoretes or
Traditionalists, perfected the system of vowel notation now used.
They superimposed their system on the crude system for vowel
representation already described. This resulted in: 1) the use of

' with the points for short i and e which become lengthened (i, &)

and with the points for long e and a (&, 8); and 2) in the use of
final ¥ h with short e (e) and long e, a and o (&, i, 6). The
transliteration for classical Hebrew, following Lambdin, is designed
to not only indicate vowel length but also to reflect Hebrew

spelling. Hebrew table rules H11 to H15 distinguish between

L]

redundant Y, i.e. a vowel marker, as a consonant, which it is

when it has a vowel point under it and " as a semi-vowel at the

end of a word when it needs representing in order to indicate a
diphthongal effect. Hebrew table rule H16 eliminates redundant

7 at the end of a word. Authorities differ in transliterating
final-h. Lambdin retains it. Weingreen does not. This system
follows Lambdin and does not apply rule H16 on the girounds that

final -h is needed to indicate Hebrew spelling and, in the case of

COMPUTER-GENERATED TRANSLITERATION, page 34

the "eh” endinlg, "eh"” is clearer than "e" alone which has the
association in English of not being sounded but changing the value
of the preceding vowel.as in "rim", "rime"” or "ton", "tone".

6. Metheg

The metheg (bridle) is a short vertical stroke placed under a
consonant and to the left of the vowel sign if there is one. It
serves a number of purposes including an indication that the reader
must pause. In this way it acts as a check and causes a secondary
stress. It is, in fact, sometimes used as a stress marker. It is not a
reliable indicator of stress, however, because of other purposes
that it serves. Therefore stress is indicated in this system,
following Lambdin and Weingreen, by an independent primary
stress marker above the letter (e.g. 1‘/’15).

Other uses of the metheg are in marking anomalies, e.g. the
retention of @ and 8 two or more places before the main stress
instead of their usual replacement by ¢, as in ‘;é?jr‘;

(bérakta-ni). More important from the viewpoint of transliteration
is its use with qametz to indicate when either a long or short
reading should be retained in any doubtful position. The use of
metheg to give a long reading to qametz has been discussed under
point 3 above, taking the examples of ﬂ??§ (akelah, 'she ate’) and
ﬂ?:l,t (Coklah, 'food’). An example of metheg giving a short reading
to qametz is given by Lambdin (1971, page XXVIII): 1‘/’§§ (Cohdl4,
his tent).

Because of variabilities in the use of metheg in different
texts, its use as a marker for transliteration in this system is
avoided except in Hebrew table rule H3 where it is retaining a

short reading of qametz (see example at the end of the preceding

COMPUTER-GENERATED TRANSLITERATION, page 35

paragraph). The general rule (short gametz before a guttural
carrying a fﬁrtive gametz) is covered by Hebrew table rule HS.
This rule will not work, however, if a metheg is in the text
because metheg is not included for checking in the rule. Hence the
addition of rule H3. As qametz is read as long by default after
checking for all rules for short usage, there is no need to use
metheg as a check for long qametz in the table rules.

Metheg is not represented in the Roman text. It is converted
to a null code by the tables. It is not necessary to insert it in the
Hebrew text to get correct transliteration except in the case of
indicating a long qametz before a letter with a mobile (sounded)

sheva as discussed under point 3 above.

The following authorities have been consulted in summarising
the above pronunciation rules for Hebrew: Lambdin (1971) and
Weingreen (1939) for classical Hebrew; Livny and Kokhba (1973)
and Talmage et al (1977) for modern Hebrew. The author is solely
responsible for the table rules that implement these pronunciation

rules in the BITEX computer-generated transliteration system.

COMPUTER-GENERATED TRANSLITERATION, page 36

5(4). Déscrigtibn of Transliteration System: Roman Alphabets &
Keyboard layout |

Transliteration can be achieved either through text
interchange tables or through direct programming. This system
relies, at present, primarily on text interchange tables run in
conjunction with the MLS Configurable Text Interchange Utility
(CTIU). However, regardless of the method used for the basic
transliteration process, the ASCII codes that represent the
transliterated characters must be given specific alphabetic
expression. Here, choice must be exercised. This system offers four
alternative Roman alphabets with additional choice between fixed
and proportional spacing.

The four basic alphabets are: classical (C); classical alternative
(CA); modern (M); and simplified modern (SM). These alphabets are
shown in Appendix 2, in relation to the Hebrew alphabet and
following the order of the Hebrew ASCII codes; and in Appendix 3,
following the order of the Roman ASCII codes. The differences
between these alphabets and their common keyboard layout will be
discussed in this section.

1. Keyboard Layout

The four alphabets have a common keyboard layout. This is a
modification of the default Hebrew map file used by MLS which is,
as far as possible, a phonetic/mnemonic representation of the
Hebrew alphabet rather than the standard Hebrew typewriter
layout. Thus "a" = aleph, "b" = bet etc., while "w" = shin (&)
because it looks like shin even though the sound is different. The
policy in designing the keyboard layout for the Roman alphabets is

to configure on each key the Roman equivalent of the Hebrew

COMPUTER-GENERATED TRANSLITERATION, page 37

character assigned to that key on the MLS Hebrew keyboard. Lower
case represents normal Hebrew letters. Upper case represent.s
Hebrew letters with dagesh (point in middle of letter). The Alt
keyboard represents Hebrew sofit (final) letters. The Control
keyboard represents a few Hebrew characters that cannot be
conveniently accomodated elsewhere (see Appendices 2 and 3).

Several keys are free on the Alt and Control keyboards after
all MLS Hebrew characters have been assigned. These have been
used for special purposes in the Roman key assignments. The
Control keyboard is used for vowel assignments corresponding to
the MLS Hebrew vowels, which are assigned as overstrikes on the
function keys. The Alt keyboard is used for an overflow of vowels
and also for configuring a standard version of characters that can
change on the standard keyboard for the different alphabets, i.e.
the "begadkepat” letters plus shin, sin, tzadi and vav. This is to
provide a necessary constant required in the construction of the
text interchange tables.

2. "Classical” Alphabet

The Roman alphabet for transliterating classical Hebrew
follows the transcriptions used by Lambdin (1971) and by

Weingreen (1939). The only difference between these two is that

Lambdin provides additional transcriptions for qametz with yod, ‘3

i, and seghol with yod, ‘: 8. Our "classical” alphabet follows

Lambdin in these particulars. Its characteristics are:
(a) The aspirated form of the "begadkepat” letters is
distinguished by a line beneath or above the letter: b g d k P t.
(b) Diacritic marks are used with the vowels to both indicate

length and reflect the Hebrew spelling. For example, & and & both

COMPUTER-GENERATED TRANSLITERATION, page 38

represent the 'long form of the vowel "e” but & indicates the

spelling *3 while & indicates the spelling 3. These contrasf with &
and e which both represent the short form of the vowel "e"” with &
indicating the spelling *3 and e indicating the spelling 3.

(c) The letters shin, sin and tzadi, & @ ¥, are represented by
single characters with diacritic marks, § § s rather than the
phonetic spellings sh, s, tz. Sin, ¥ §, has the same sound as
samekh, D s, but is distinguished from it by the diacritic mark.

(d) Tet and taw (tav), @ N t t, have the same sound but are
distinguished from each other by tet carrying a diacritic mark.

(e) Het and kaf, T 3, have a similar guttural sound [x], like
the "ch” in the Scottish "loch” but are distinguished in |
transcription: het h and kaf l_c.‘

(f) The gutturals alef and ayin, ® ¥, are represented by the
light breathing ’ and the rough breathing .

Note that this transliteration reflects Hebrew spellling.

3. "Classical Alternative” Alphabet

The "classical alternative” alphabet differs from the "classical”
alphabet described above in two respects:

(a) The "begadkepat” letters are represented by the phonetic
spelling form, bh gh dh kh ph th, rather than by single consonants
with a diacritic mark

(b) Shin and tzadi are represented by the phonetic spellings sh
tz, rather than by an "s” with diacritic mark. The form tz is
chosen rather than ts because of the association of ts at the end of
a word with the English plural form.

Note that this transliteration still reflects Hebrew spelling. It

is the same as used by Cassuto (1983) except for shin and tzadi

COMPUTER-GENERATED TRANSLITERATION, page 39

which are transcribed in Cassuto as § and s.

4. "Modern" Alphabet

The "modern” alphabet differs from the "classical alternative”
in two respects:

(a) It represents the aspirated form of three only of the
"begadkepat” letters, 3 3 8 (bh kh ph).

(b) It represents vav Y as v rather than w.

Note that this transliteration still reflects Hebrew spelling.
5. "Simplified Modern” Alphabet

The "simplified modern” alphabet differs from the "modern”
alphabet in a number of repects. Its aim is to transcribe in the
simplest way possible, avoiding diacritic marks and not attempting

to indicate differences in Hebrew spelling.

(a) bet 3 is represented by v rather than bh.
(b) pé B is represented by f rather than ph.
(c) kaf 3 is represented by the more familiar ch as in Scottish

"loch” rather than by kh.

(d) het 17 is retained as h as in this case a useful distinction
in spelling can be made with a familiar character.

(e) No distinction is made between sin, & s and samekh, © s.

(f) No distinction is made between tet, ¥ t and tav, N t.

(g) The vowels are represented by a e i o u without diacritic
marks for indicating length and spelling. The form ¢ is, however,
retained as it usefully represents the reduced vowel sheva with a
familiar symbol.

This alphabet is the same as that used in Reif and Levinson
(1965) except for hét and tzadi which Reif and Levinson represent

as x and c. Provided a student knows Hebrew pronunciation, this

COMPUTER-GENERATED TRANSLITERATION, page 40

alphabet is adequate for transliteration that accompanies the
Hebrew text. |
6. Fonts

Two types of font are used: screen fonts and print fonts:
Screen Fonts
ROSTRA.S8, ROSTRB.S8, RO8TRM.S8, RO8TRS.S8
Regular Print Fonts
R82TRAFC.PFT, R82TRBFC.PFT, R82TRMFC.PFT, R82TRSFC.PFT
RO9TRAFC.PFT, RO9TRBFC.PFT, RO9TRMFC.PFT, RO9TRSFC.PFT
RO9TRAPC.PFT, RO9TRBPC.PFT, ROSTRMPC.PFT, RO9TRSPC.PFT

Special Print Fonts

RO9TRABC.PFT, RO9STRAMC.PFT, RO9TRASC.PFT

Legend

R = Roman

08 in screen font = 8 pixels wide

82 in print font = copied from 8 pixel screen font and resized by 2

09 in print font = point size

TR = transliteration font
A = classical alphabet
B (AB in special print font) = classical alternative alphabet
M (AM in special print font) = modern alphabet
S (AS in special print font) = simplified modern alphabet
F

fixed space P = proportional space

C

24 pin printer

The screen fonts are fixed-spaced, eight pixels wide. The
Roman screen fonts match the spacing of the MLS Hebrew screen
font HB8.S8. In this way, perfect registration is assured when

lining up Roman with Hebrew words on the screen.

COMPUTER-GENERATED TRANSLITERATION, page 41

The R82.... Roman print fonts have been copied from the
Roman screen fonts for printing purposes and match the Hebrew
printing fonts HB82.... which have been copied from the Hebrew
screen font. This makes it possible to print the Hebrew/Roman
text file with the Roman words lining up exactly with the Hebrew
words. This is not possible with proportionally spaced printing. The
screen font produces letters in print smaller than the same letters
on screen. Therefore, the print fonts derived in this way have been
resized to approximately the size of the 8 pixel screen fonts.

The R09 fixed space Roman print fonts, as also the H09 fixed
space Hebrew fonts, are nine-point fonts derived from the
corresponding proportionally spaced fonts. When used to print a
bi-textual file they have the advantage of emphasising the Hebrew
over the Roman in thickness of type while preserving exact line up .
of the two texts.

The R09.... proportionally spaced Roman print fonts, as also
the MLS Hebrew print fonts, HBO9ANPC (ancient or classical) and
HBO9MNPC (modern), are nine-point fonts. The Hebrew fonts are
standard MLS fonts (modified only by the addition of an overstrike
stress marker) where A or M indicates ancient or modern, N
indicates "normal”, P indicates proportionally spaced and C
indicates 24 pin printer. When used to print Hebrew from a mixed
Hebrew/Roman text, they have the advantage of emphasising the
Hebrew over the Roman in thickness of type but the disadvantage
of not registering exactly the Roman with the Hebrew words. This
lack of registration does not, however, prevent effective reading
of these printouts.

The RO9TRAB, TRAM & TRAS fonts are special printing fonts

COMPUTER-GENERATED TRANSLITERATION, page 42

for use with the MLS configuration file used with the Roman
"classical” table (RTRA.TBL). The MLS configuration file pfovides
for a 40 col screen font, an 80 col screen font, a keyboard map file
and six printing fonts, of which #1 is the default, for each of five
alphabets. Four configuration files (TRA.CNF, TRB.CNF, TRM.CNF,
TRS.CNF) have been prepared for use with the four Roman tables
which produce the transliterated text. The default printing font is
the one that matches the Roman transliteration table used:
RO9TRAPC for the "classical™ table, ROYTRBPC for the "classical
alternative” table, ROOSTRMPC for the "modern” table and ROITRSPC
for the "simplified modern” table.

In the case of the TRB, TRM & TRS configuration files, only
the default printing font will accurately express the table results,
as it works in conjunction with the table where certain single |
Hebrew characters have been converted into two Roman characters
(the "begadkepat” letters with "h" added, shin (sh), and tzadi (tz)).
However, the Roman "classical” table has only single character
conversions from the Hebrew characters which are expressed
through the RO9TRAPC "classical™ alphabet. Therefore for prihting
purposes only (not for screen where only one font is allowed), it is
possible to desigﬂ alphabets with the "classical alternative”,
"modern” and "simplified modern” two-character expressions (bh gh
dh kh ph th sh tz ch) configured as single characters. This has
been done with the RO9TRABC, TRAMC & TRASC fonts. Therefore,

when the Roman "classical” table (RTRA.TBL) is run, as well as the
default printout with the RO9TRAPC font, alternative printouts
can be run in the "classical alternative”, "modern” and "simplified

modern” styles.

COMPUTER-GENERATED TRANSLITERATION, page 43

5(e) Description of Transliteration System: Text Preparation and

Interchange Procedure and Table Rules'

1. Text Preparation and Interchange Procedure

The main driver of this transliteration system is the MLS

Configurable Text Interchange Utility (CTIU). This utility is
designed to export MLS files to any other text file format; and to
import any other text file format to MLS. The "other text file
format” most commonly used is the standard IBM ASCII
conventions described in the DOS 3.0 manual and used in this
system. CTIU has two features which make it a practical
transliteration device: 1) it will handle strings, i.e. it will convert
any string of MTS codes into any string of ASCII codes; 2) it has
an optional feature which "unbundles” the Hebrew vowels
represented by overstrikes, treating them as separate characters.

The following steps are necessary:

1. Prepare Hebrew source file by key entry to MLS.

use MLS mnemonic Hebrew keyboard map file.

avoid punctuation marks separated from words:

e.g. word - word, word, word

distinguish between dagesh vav (Sh-v) and vowel vav (Reg-v).

insert stress marker when stress is not on the last syllable
(note: this must be inserted from knowledge or in consultation
with a native speaker).

- insert metheg when required to signal long qametz before
mobile
sheva.

2. Convert MLS Hebrew file to Roman ASCII file, using CTIU

COMPUTER-GENERATED TRANSLITERATION, page 44

with: 1) the opfional feature to treat overstrikes as separate
characters (-v); and 2) tables designed to implement transliferation
rules (accessed through the configuration file). The command
format is:

CTIU (sourcefile.smp) (sourcefile.asc) (Heb config file.cnf) (-v)
3. Convert ASCII Roman file to MTS Roman file, again using tables
designed to implement transliteration rules. The command format is:

CTIU sourcefile.asc sourcefile.mls Rom config file.cnf
4. Edit Roman output file (sourcefile.mls) to enter carriage return
after CTIU language delimiter (/H/) and to check that it is parallel
to the Hebrew input file (sourcefile.smp)

The pronunciation rules described in Section 5(c) are too
complex to be implemented in their entirety in step 2. They are
therefore implemented in two stages in steps 2 and 3. The table
used in step 2 is called the Hebrew table and those used in step 3
are called the Roman tables. The rules applied by the two sets of
tables are described below. It should be noted that even if all rules
could be applied in one pass in step 2, step 3 is still necessary in
order to create an MLS readable file. In such circumstances the
table would be very simple, being confined to single character
conversions from the one code to the other without the complexity
of strings.

There is one Hebrew table and four Roman tables. One set of
special pronunciation rules (described below) apply to all four
Roman tables. The tables differ in their conversion of individual
Hebrew consonants and vowels. Each of the four Roman alphabets, |
classical, classical alternative, modern and’Simplified modern

(described in Section 5(d)), has its corresponding table of the same

COMPUTER-GENERATED TRANSLITERATION, page 45

name which converts Hebrew characters to Roman according to the

particular scheme of each alphabet. The differences between the

tables are therefore inaccordance with the differences between the

alphabets: considerable between classical and simplified modern;

small but significant between classical alternative and modern.

2. Text Interchange Table Rules

Hebrew Table

1. Special terminology - convers-
ion of abbreviations, e.g.

= adonai; and irregularly :'
pronounced words, e.g. n?!_ﬁl'\t{.f =

shtayim

2. Short gqametz before maqqef(~)

preceded by a letter with sheva.
The sheva is quiescent.

3. Short qametz before metheg
when followed by letter with

furtive qametz.

4. Short qametz before maqqef(™)

preceded by a vowel-less letter
other than aleph, he or ‘ayin.

5. Short qametz before letter

- with furtive qametz.

6. Mobile sheva under 1st letter
of word. When the sheva is first
of two together, the second is

quiescent (see Rom table rule 6)

Rogah Tables

1. Dagesh lene following

quiescent sheva

2. Dagesh lene at the beginning
of a word.

3. Short qametz before dagesh
forte.

4. Short "a" (pathah) under a
guttural at the end of a word
pronounced before, not after,
the guttural.

S. Mobile sheva under first of
two similar letters even if
otherwise it would be quiescent,
e.g. following a short vowel.

6. Quiescent sheva when second
of two together at beginning of
a word. This rule complements
Hebrew rule 6 which makes sheva
mobile under the first letter

of a word.

COMPUTER-GENERATED TRANSLITERATION, page 46

7. Quiescent sheva when the first
of two in the middle or at the
end of a word. If a dagesh letter
follows the quiescent sheva, the
dagesh is dagesh lene (see Roman
table rule 1).

8. Quiescent sheva after a short
vowel. This rule covers short
vowels a e 1 o & u. Qametz before
sheva is read as short o’ unless
accompanied by metheg.

9. Quiescent sheva after accent.
10. Redundant yod (y) before i.
11. Consonantal yod after a long
a or e when the yod is followed
by a vowel. This rule takes prec-
edence over rules 13 - 15 below
which provide for redundant yod
after these vowels.

12. Consonantal yod after qametz
at end of word.

13. Redundant yod after short i e
and long a e with metheg.

14. Redundant yod after accented
short i e and accented long a e.
15. Redundant yod after short i e

and long a e.

7. Quiescent sheva at the end

of a word.

COMPUTER-GENERATED TRANSLITERATION, page 47

16. Redundant hé (h) when the
last letter without a vowel at
end of word.

In addition to implementing these pronunciation rules, the
tables convert individual Hebrew letters as required by the
particular Roman alphabets (see Section (5d)). The Roman tables
also convert to a null character the ASCII code (233), selected to
represent quiescent sheva, to cover cases of quiescent sheva left
over after application of the specific Roman table rules.

Note that Hebrew rule 16, although frequently applied in
transliteration systems, is not applied in this system, following

Lambdin (see also Section 5(c)$5).

COMPUTER—GENERATED TRANSLITERATION, page 48

6(f). Comgutef Program Description

The computer program BITEX is written in Microsoft
Quick BASIC 4.0. It has two modules: a front end, BITEXSCR, which
allows the user to name the input and output files to be used and
to set variables for a cloze procedure; and the main program,
BITEX, which has three main functions:

1. Merging Hebrew and Roman texts into one bi-textual file

2. Refining transliterated Roman text

3. Applying a cloze procedure for a reading tutorial
These two modules and their functions will be discussed in context,
following the general logic and flow illustrated in the block
diagram attached as Appendix 6. The numbers of the blocks
described below, starting with "Block 0. Front End", correspond to
the numbers of the boxes in the block diagram. The section ends
with a listing of error messages. The detailed discussion of the
individual blocks explains the logic of the program and should be
read in conjunction with the program.

Four factors create special programming problems:

1) The right to left orientation of Hebrew text compared with

the right to left orientation of Roman. Both texts are oriented
left to right in computer file form. The difference in orientation
appears when printing to screen or hard copy. It is brought about
by information included in the MLS file structure. The orientation
is critical in the BITEX text file. The first word in a line of the
Roman text file must be put last in the Roman line of the BITEX
file in order to appear under the first Hebrew word in the Hebrew
line of the BITEX file. The Roman words must therefore be moved

into reverse order but still reading left to right.

COMPUTER-GENERATED TRANSLITERATION, page 49

2) The ML§ file structure. Each character is represented by

either two or four bytes. The first byte carries the standard ASCII
code. The second byte, together with other information, carries a
vowel marker "0" or "1" in the high order position and an alphabet
code in the four low order positions. If set to "1", the vowel
marker indicates that up to three overstrike vowel and/or accent
marks follow in the next two bytes. Thus an MLS character will be
two bytes long without overstrikes but four bytes long with
overstrikes. This structure is significant in governing several
features of the program:

(a) Counting bytes and characters for spacing the two texts
relative to each other in the BITEX file: a Hebrew character may
be two or four bytes long, a Roman character will normally be two
bytes long. |

(b) The need to use binary files as distinct from sequential or
random-access files.

(c) The need to avoid misreading the second byte: because the
alphabet number in the second byte is significant, two bytes at a
time must be read in order to positively identify characters,
including such key characters as space and carriage return. Byte 2
must not be read as a character although the combination of flags
and alphabet code will give the equivalent of a valid ASCII code.

3) Defining a word: The simple definition of a word for
purposes of the program is: "any sequence of characters ending in a
space or a carriage return”. A word will take with it any
punctuation marks at its beginning or end (including parentheses)
plus one space or carriage return at its end. A word may, of course,

be one character (plus any punctuation mark plus space or carriage

COMPUTER-GENERATED TRANSLITERATION, page 50

return). For purposes of the cloze procedure, it is necessary to
count words. A word count is taken after reading the first épacev at
the end of the word. Difficulty arises in avoiding illegal word
counts when there are leading spaces at the beginning of a line,
more than one space between words, leading spaces before a
carriage return or one or more carriage returns following a carriage
return (i.e. blank lines of text). Any of these conditions may arise
through normal paragraph indentation and line spacing between
paragraphs, or careless preparation of the source Hebrew text, or
the demands of the text itself: e.g. different spatial arrangements
for songs or poetry.

There are some possible punctuation or graphic devices that
may give rise to an illegal word count: for example, the
punctuation dash (word - word); or a series of dots or other mark
following a word and separated from it by a space (word); or
a series of dots or other mark starting a line and separated from
the first word by a space (........ word). These contingencies may
be avoided by excluding them from the Hebrew text. If they should
be included, they are likely to be so rare as not to cause a
significant problem. They will be treated as words in the cloze
procedure and so subject to blanking out. This does not prevent the
cloze procedure effectively operating. They will also cause an
inflation in the word count (probably insignificant) should this be
used for some statistical purpose. If experience indicates that the
problem is more significant than anticipated, then these
contingencies can be eliminated by additional programming.

4) Spacing text in the BITEX file: because most of the Hebrew

vowels are overstrikes, one Hebrew consonant and overstrike vowel

COMPUTER-GENERATED TRANSLITERATION, page 51

will appear as one character on screen and hard copy but will need
two Roman characters to transliterate it. In addition, some VHebrew
consonants are transliterated By two Roman consonants, as
discussed in Section 5(d), Description of Transliteration System.
Roman text, therefore, normally has a significantly larger number
of characters than the corresponding Hebrew text. This means that
the Hebrew words must be spaced out so that they appear directly

above their corresponding Roman words.

Liberal print instructions have been included in the program in
order to print out readings of ASCII codes and contents of
variables for debugging purposes when running small test files.
These instructions have been neutralised by the expedient of
converting them to comments through a single quote mark inserted .
at the beginning of the affected lines. They can therefore be
easily reactivated for test purposes on future occasions if required.

The following abbreviations are used in the discussion which
follows:

hf - Hebrew File

rf - Roman File

bf - BITEX File

ha

Hebrew Array
ra - Roman Array

ba - BITEX Array

hwb - Hebrew Word Buffer
rwb - Roman Word Buffer

COMPUTER-GENERATED TRANSLITERATION, page 52

Block 0. Front End

This front end 'is a separate module, BITEXSCR, which is
chained to the main program, BITEX. Its purpose is to enable the
user to open two input files, a Hebrew and Roman text file, and a
BITEX output file and to assign values to variables used in the
cloze procedure. An Include File, BTXCOM.BI, includes all variables
common to both BITEXSCR and BITEX. The input and output files
are opened as binary files by the user as follows, instructed by a
screen display and prompted by INPUT commands:

1) Hebrew input file: (drive: filename.heb)

2) Roman input file: (drive: filename.rom)

3) BITEX output file: (drive: filename.btx)

In addition, "LPT1" is opened for printer output.

A second screen display instructs the user, prompted by INPUT
commands, in setting values to the following cloze variables:

cloze is the variable set to blank out Roman words in the
BITEX file. It can be given any value. Seven is a characteristic
value: every seventh word is deleted. For this to happen, it is
necessary to keep track of crwc, the cumulative Roman word
counter. Blanking out can start with any word from 1 to 7
according to choice of a cumcloze variable, which is described next.

cumclozel, 2, 3, 4, 5, 6, 7 are alternative cumcloze choices

A which blank out every seventh word (or whatever vaiue is selected
for cloze) starting with the particular cumcloze digit. Thus,
cumclozel = 1 will blank out words 1, 7, 15... Cumcloze4 = 4 will
blank out words 4, 11, 18... If both cumclozel = 1 and cumcloze4 =
4, then words 1, 4, 7, 11, 15, 18... wil‘l be blanked out. If every

cumclozel - 7 = 1, then all Roman words will be blanked out. This

COMPUTER-GENERATED TRANSLITERATION, page 53

feature is req:uired for using the system as a tutorial for reading

the non-Roman script. |
clozev, if set to 1, will blank out the Hebrew vowel pointing.

This is appropri'ate as a final stage in a reading tutorial in modern

Hebrew as vowel pointing is not used in modern written Hebrew.

Block 1. Initialise variables and move header information to BITEX

file (bf)

This block (a) declares and initialises variables, (b) moves

header information and print format instructions from the MLS
Hebrew file to the MLS BITEX file and (c), skips header and print
format data and the CTIU language delimiter in the MLS Roman
file, all to make ready for reading character data.

(a) Variable§

Variables include arrays and single character variables. For
convenience, variables opened in later blocks are listed and
described here in addition to those (the majority) which are
opened in this block. The arrays described below are initialised by
the subroutine nullarray: which sets each cell to the null ASCI]
code instead of the Basic default of 1. This is done because the
default 1. can be misread as an MLS byte two with the Hebrew
alphabet code (also "1") when all other bits (flags) are set to 0.

ha = Hebrew Array, string, 200 bytes. This takes one line of

text, ending with a carriage return, from hf, the Hebrew input
file. The length is governed by the MLS file structure which can
take up to four bytes per character. The Hebrew text file should be
prepared with no more than 40 t0 45 Hebrew characters per line. If

a line is blank, then its length will be one character, represented

COMPUTER-GENERATED TRANSLITERATION, page 54

by the carriagé return.

ra = Roman Array, string, 200 bytes. This takes one line of
text, ending with a carriage return, from rf, the Roman input file.
Forty Hebrew characters can generate as many as sixty Roman
characters in transliteration. The Roman characters are normally
two bytes long.

hwb = Hebrew Word Buffer, string, 80 bytes. This takes one

Hebrew word, ending with and including one space or carriage
return, from ha, the Hebrew array. The purpose of hwb is to

delineate one word, after count of word, bytes and characters,
preparatory to moving it to ba(l), the first dimension of the
BITEX two-dimensional array.

twb = Roman Word Buffer, string, 80 bytes. This takes one

word, ending with and including one space or carriage return, from
ra, the Roman array. The purpose of rwb is to delineate one word,
after count of word, bytes and characters, preparatory to moving it
to ba(2), the second dimension of the BITEX two
dimensional-array. While the Roman word is in rwb, further
transliteration rules can be applied, if required.

ba = BITEX two-dimensional array, string, 200 bytes. This

takes one line of text up to and including carriage return from
hwb into bal and from rwb into ba(2). A spacing algorithm is
applied while moving each Hebrew and Roman word into ba to
ensure that they line up relative to each other. The purpose of ba
is to assemble the Hebrew and Roman text, one line at a time,
preparatory to writing it one line at a time to bf, the BITEX file.

bl, b2 = binary file read/write variables, string, 1 byte, for hf,

Hebrew input file.

COMPUTER-GENERATED TRANSLITERATION, page 55

b3, b4 = binary file read/write variables, string, 1 byte, for rf,
Roman input file. |

hwec, rwc = Hebrew and Roman word counters. A word includes

- one space after the last character and is counted when that space is

read.

chwe, crwe = cumulative Hebrew and Roman word counters.

These counters are required for the cloze procedure.

hbec, rbc = Hebrew and Roman byte counter. These are needed

for determining the length of words to move into the BITEX array
from the Hebrew and Roman word buffers.

hcec, recc = Hebrew and Roman character counters. These are

needed for measuring the difference in screen or print length
between a Hebrew word and its Roman counterpart for spacing
purposes in the final BITEX screen or. print output. One Hebrew
character with a vowel overstrike (four bytes) will be represented
by two Roman characters (two bytes each). In addition,
transliteration sometimes results in two Roman characters to one
Hebrew, e.g. & = sh, ®» = mm.

hapl, hap2, rapl, rap2 = Hebrew and Roman array pointers to

keep track of the position reached in arrays until the end of line
(carriage return) as characters are progressively moved to hwb and
rwb, two bytes at a time.

hpl, hp2, rpl, rp2 = Hebrew and Roman BITEX array pointers to

keep track of the position reached in the BITEX array as characters
are progressively moved from hwb and rwb, two bytes at a time,
until the end of line is reached (carriage return in ha and ra).

her, rer = Hebrew and Roman carriage return markers to

indicate whether or not a carriage return has been read.

COMPUTER-GENERATED TRANSLITERATION, page 56

heof, reof = Hebrew and Roman end-of-file markers to indicate

whether or not the end of input files has been reached.

hwordfin, rwordfin = Hebrew and Roman end-of-word markers

when moving words from ha, ra to hwb, rwb. When hwordfin,
rwordfin = 1, the end of word space has been read which triggers a
word count; when = 2, a second space has been read, which must not
trigger a word count.

hspace, rspace keep track of the number of spaces read after a
word or at the beginning of a line.

rread. When rread = 1, the first two bytes of the Roman input
file have been read in block 1 (move header). This calls for
exception action in block 2 (move hf to ha) to process these bytes

before reading the next two bytes.

bpass, rpass = Hebrew and Roman passes (iterations). When

hpass, rpass = 1 (set at the beginning of each new line cycle), the
first character of the line has been read. If, in blocks 4 or 6
(move one word from ha, ra to hwb, rwb), rpass, hpass is set to 2,
the first character of the line is a space or carriage return. This
triggers appropriate action in blocks 4 & 6 (ha to hwb and ra to
rwb) and blocks 7 & 9 (hwb to ba(l) and rwb to ba(2)).

hskipflag, rskipflag = Hebrew and Roman hpass, rpass flags.

When hpass, rpass = 2 (first character of line is space or carriage
return), appropriate action before moving the first character is
taken in the hwb to ba(l) and rwb to ba(2) processes (blocks 7 & 9)
and hskipflag, rskipflag are set to 1 to avoid duplicating this
action when word 1 is encountered. If hpass, rpass have not been
set to 2 then the first character of the line belongs to word 1 and

appropriate action is taken before moving this character to ba.

COMPUTER-GENERATED TRANSLITERATION, page 57

twc = translit word counter, tracks words processed in block 6

(refine transliteration) to prevent processing non-words (e.g.

leading spaces, blank line carriage returns).

(b) Header information and print format instructions
The first 400 bytes of an MLS file are reserved for header

information required for running on MLS. This information -
languages, link files etc. - is transferred from hf, the Hebrew
input file to bf, the BITEX output file. In addition, the print
format instructions on hf are moved to bf. Print format
instructions must start with ";" (ASCII 59) and end with a carriage

return (MLS carriage return = ASCII 128).

(c) Skip header, print format and CTIU delimiter in Roman file

(rf)

The Roman input file rf has been prepared by the Configurable

Text Interchange Utility (CTIU) belonging to the Multi-Lingual
Scholar (MLS) package. Therefore header and print format data will
be identical with what has already been transferred to the BITEX
from the Hebrew file and can therefore be skipped in the Roman
file. In addition, CTIU has transferred to the Roman file the
language delimiter used in the CTIU configuration file. This
delimiter indicates the language from which text has been derived
- in our case, Hebrew. MLS allows the user to set his own
convention in defining this delimiter. We have chosen /H/ and
further specified that /H/ must be followed by a carriage return to
mark the end of the delimiter. This delimiter is not required in

the BITEX output file and is therefore also skipped in the Roman

COMPUTER-GENERATED TRANSLITERATION, page 58

file.

(Note that if Roman text also appears in the Hebrew invput
file, e.g. a quotation or student instructions, then /R/ will appear
in the CTIU-generated Roman output file at the beginning of the
Roman text. This will be followed by /H/ when transliteration
from Hebrew resumes. These additional delimiters will be used by
the BITEX program to differentiate between Hebrew
transliteration and English text. It will convert English text to
spaces (i.e. blank it out) as there is no point in having English
comments on the Hebrew line repeated on the Roman line.)

A subroutine, Readloop:, is employed to read the print format
instructions and CTIU language delimiter in the Roman file. If a
carriage return marking the end of the instructions or delimiter is
not encountered after a given number of bytes; the program stops
with the error message: "Start of text in file #2 not found in
Readloop.”

When"the program leaves this block, the first two character
bytes of the Roman file are residing in b3 and b4. Because of this,
the "read = 1" variable is acted upon in the move rf to ra process
(box 3) to move these bytes to the Roman array.

Block 2. Move one line from Hebrew file (hf) to Hebrew array (ha)

This block reads one line of text from hf, the Hebrew file, and

moves it to the Hebrew array. The end of line is indicated by a
carriage return. In the case of a blank line, i.e. a carriage return
without text, the carriage return is read and moved as one line.

To ensure that a line is not moved without a carriage return,
an error check is run. If the array is filled without a carriage

return, the program stops with the error message "Hebrew line too

COMPUTER-GENERATED TRANSLITERATION, page 59

long". The line may be legitimate Hebrew text but its length is
such that in the BITEX screen or hard copy printout the Ro.man
line will wrap around, interfering with the line-up of Hebrew and
Roman text. The convention must be observed in preparing the
Hebrew text file to limit each Hebrew line to 40 - 45 characters

and end each line with a hard carriage return. This will prevent

Roman text wrap around.

An end-of-file check is made in this block which, if positive,
bypasses processing, goes to the next block and picks up an
end-of-file trail leading to the end of program.

Block 3. Move one line from Roman file (rf) to Roman array (ra)

This block reads one line of text from the Roman file and
moves it to the Roman array. The same carriage return conventions
apply as in the case of the Hebrew file (block 2. above). The same
error check is made so that if the Roman array is filled without a
carriage return, the program stops with the error message: "Roman
line too long".

Reference has been made to "rread” in the list of variables in
block 1 above. The first instruction in block 3 is to check if rread
= 1, which indicates that the first character of the file is being
processed. Because the first character has already been read as the
end result of skipping the Roman file header etc. described in
block 1 above, the FOR...NEXT loop is modified to start with n = 3
(bytes 3 and 4 will ;:onstitute the second character). At the same
time rread is set to "0" so that when the next line is read and the
initialising block is bypassed, the FOR...NEXT loop is restored to

start with n = 1,

Block 4. Move one word from Roman array (ra) to Roman word

COMPUTER-GENERATED TRANSLITERATION, page 60

buffer (rwb

This block moves one word from the Roﬁan array to thé Roman
word buffer, prior to moving it to the BITEX array, counts the
number of the word in the line in the Roman word counter (rwc),
counts the cumulative number of the word in the cumulative
Roman word counter (crwc), counts the number of bytes in the
word in the Roman byte counter (rbc) and the number of characters
in the word in the Roman character counter (rcc).

The end of word is marked by the space or carriage return
which immediately follows the last character (or only character, in
the case of a one-character word). A "word” includes a numeral and
any series of characters or one character only which is not a space
or carriage return. The programming in this block is complicated
by the need to provide for special action required later before the
first character of a line is moved into the BITEX array; and also to
provide for leading spaces, more than one space between words, and
a blank line (carriage return only) in which cases byte and
character counts are required but not word counts.

The strategy is 1) clear all possible exception conditions out
of the way before the regular processing of a word; 2) process the
word; 3) before exiting the block, read the next character and
check whether it is an exception condition or the first character
of the next word; 3) exit the block after setting the array
pointers to re-read the next character; 4) repeat the cycle starting
with 1) above. This strategy is largely governed by the need to
avoid illegal word counts.

Because of the complexity of this block, a flow chart is shown

in Appendix 7 to assist in the following discussion of conditions

v

COMPUTER-GENERATED TRANSLITERATION, page 61

checked, reasons for checking, and action taken.

(a) Roman carriage return marker (rer) check. If rer = 1 at this

point, the beginning of a new word cycle, then it means, because
the Roman line is being processed before the Hebrew line, that the
program has gone through the Hebrew array to Hebrew word buffer
process (block 6) without encountering a Hebrew carriage return
and has returned on a new word cycle. As the Roman line invariably
is longer than the Hebrew line, an error condition is indicated and
the program stops with the error message: "Roman line ended
before Hebrew".

(b) End-of-file check. EOF indicates that the last character of

the Roman file is in process. The last Roman word will be the first

word in the last Roman line entered in the BITEX(2) array.

Therefore a space must be inserted in the Roman word buffer at
this point to provide separation of this word from the one which
follows it in the BITEX(2) array. The Roman end-of-file flag (reof)
is set to "1" to activate later EOF instructions in the EOF trail. If
rspace, the Roman space variable, is greater than 0, then the
preceding word has already been counted. Therefore the space now
in the Roman array pointers, rapl and rap2, must be processed to
rwb (rwbproc:) but the word count procedure (rwctr:) bypassed. If
rspace is 0, then the word just read and processed has not been
counted and the program must branch to rwctr: before proceeding
to rwbproc:

(c) First pass check. The rpass variable is set to 1 at the

beginning of the program and before returning on a new line cycle.
Therefore if rpass = 1, the first character of a new line is being

processed. If this character is a space or carriage return rather

COMPUTER-GENERATED TRANSLITERATION, page 62

than a regu'lar character, then rpass is set to 2. In the routine
space check or carriage return check (see (g), (h) below), if.rpass =
2, then the space or space substituted for a carriage return will be
processed (rwbproc:) but word count (rwctr:) will be bypassed.
(Rpass = 2 also triggers action appropriate to the first character of
a line in block 6, rwb to ba(2)). After the rpass check, rpass is
neutralized to 0 so that it will be inoperative in subsequent passes.

(d) Current character second or more space after a word. If the

Roman space counter, rspace, is greater than 0 and the present
character is a space then, if a word has just been read, as indicated
by rwordfin = 1, that word must be moved from the Roman word
buffer to the BITEX(2) array before dealing with the current
character. Accordingly, rspace is set back to 0, rwordfin is set to 2
and the program exits from this block to rwbend:. It goes on to
read the corresponding Hebrew word and process both Roman and
Hebrew words to the BITEX array. The Roman array pointers, rapl,
rap2, are set back by one byte so that they will reread the present
character as a first space in the next word cycle. At the check for
first space (see (g) below), rwordfin = 2 will identify the character
as the first of an unknown number of spaces following the regular
space after a word. Whether there is one extra space after the word
or several, the one or several will be read and processed, but word
counting avoided, until the first character of a new word or a
carriage return is encountered. Then the one or several spaces will
be processed to the BITEX array before moving to the next word
cycle. |

(e) Current character carriage return after space at end of

word. Normally, a carriage return comes immediately at the end of

COMPUTER-GENERATED TRANSLITERATION, page 63

a word. If rspace is greater than 0, a word count has already been
taken. Therefore a second word count must be avoided. Also‘, as the
last word of the line plus any following spaces . will be moved to
the beginning of the BITEX(2) array line, the carriage return must
be substituted by a space. This is done, the Roman carriage return
marker, rcr, is set to 1 and rspace and rwordfin are returned to 0.
The program branches to rwbproc:, bypassing rwctr:, the word count
routine. Provided it encounters a Hebrew carriage return in the ha
to hwb block it will then exit the line cycle. If it does not
encounter a Hebrew carriage return then it will return on the next
word cycle and stop with an error message upon finding that recr =
1 (see (a) above).

(f) Current character first character of a new word after

second or more space following preceding word. If none of the

above conditions exist and rspace is greater than 0, then the
current character must be the first of a new word while the
preceding word has already been counted. Therefore the program
exits the block to rwbend: to move the contents of the Roman
word buffer to the BITEX(2) array before dealing with the current
character. Accordingly, rspace and rwordfin are set to 0 and the
Roman array pointers, rapl and rap2, are set back one byte so that
they will re-read the current character as the first of the next

word cycle.

This concludes the series of checks for when rspace is greater
than 0. The remaining possibilities are a first space or carriage
return immediately after a word, or the first character of a new

word.

COMPUTER-GENERATED TRANSLITERATION, page 64

(g) Current character first space. There are three possibilities:

1) As discussed in (c) above, if rpass = 2, then this is nbt only
a first space but also the first character.of the line. Therefore it
is processed (rwbproc:) but a wordcount bypassed. Subsequent spaces
immediately following will be processed as discussed in (d) above
until the first character of a new word or a carriage return is read.

2) As discussed in (d) above, if wordfin = 2, then it was set
when the second space after a word was read and that space is now
being read as the first space in a new cycle. Accordingly rwordfin
is returned to 0, the space is processed (rwbproc:) and the word
cycle continues. If more spaces are read they will be processed ((d)
above) until the first character of a new word or a carriage return
is read.

3) If neither of the above two conditions apply, then this is
the first space after a word. Therefore the program branches to
rwctr:, the word count routine, before processing at rwbproc:.

(h) Current character carriage return. This will be either a
first read of a carriage return immediately after the end of a word,
or a re-read of the carriage return first checked at (c) or (e)
above. It is the signal for exiting the line cycle after processing.
Therefore the Roman carriage return flag, rcr, is set to 1 (if
coming from (e) above, it is already 1 and that setting is simply
A repeated here), rwordfin is set to 0 ready for a new line cycle, and
a space is substituted for the carriage return in the Roman array
pointers rapl and rap2 (again, if coming from (e) above, where the
reason for this space is explained, this is simply a repeat). There
are now two possibilities:

1) If rpass = 2, then this carriage return is the first and only

COMPUTER-GENERATED TRANSLITERATION, page 65

character in the line. Therefore the program branches to rwbproc:,
bypassing rwctr:, the word coﬁnt routine. The space insertea
instead of carriage return prevents an unwanted Roman carriage
return being processed. A Hebrew carriage return is inserted in the
BITEX(2) array for reasons explained in block 7(b) below.

2) If rpass is not 2, then this carriage return must be a regular
carriage return immediately after a word. (If it is a carriage return
after one or more spaces, then it has been picked up in (e) above.)
Therefore a word count is required. The program branches to the
word count routine, rwctr:, and from there to rwbproc: for
processing and, provided a Hebrew carriage return is read in the ha
to hwb block, exit from the line cycle.

(i) Regular processing. If the program has reached this point
without a branch, then the current character belongs to a word.
Therefore the program branches to rwbproc: for regular processing,
avoiding the word count routine, rwctr:. Regular processing simply
moves the character - whether space or regular character of a word
- to the Roman word buffer, rwb, from the Roman array, ra, and
updates byte and character counts (rbc, rcc).

After processing, both the Roman carriage return (rcr) and
end-of-file (reof) flags are checked. If either is set to 1, then the
program goes to rwbend: and, provided the same condition is
encountered in the ha to hwb block, exits the line cycle.

(i) Check for vowel flag. The MLS file code structure has been

discussed under point 2) at the beginning of this Section (5(f)). If
the second byte of the current character has the overstrike vowel
flag (in the high order position) set to 1, then special action is

required. The second byte also contains other flags and an alphabet

I

COMPUTER-GENERATED TRANSLITERATION, page 66

code. In order to check the high order position only, the logical

operator AND is used. The Basic AND combines two values,‘bit by

bit, and produces a one only when both bits are one. Therefore if
there is a one bit in the high order position of a byte and it is
combined by AND with 128 (= binary 10000000), then the result
will equal 128 as a one is left only in the high order position in
both bytes.

If the current second byte is so identified as having the

overstrike vowel flag set to 1, then the next two bytes contain up

to three overstrike "vowels” (the term "vowel” includes any

overstrike) which must be processed and counted for bytes but not

counted for characters. The separate character count is used for

calculating spacing requirements when lining up the Hebrew with
the Roman word in the BITEX array. Therefore at this point an
exception routine implements these requirements before the
.program returns to the regular word cycle.

(This vowel flag check is crucial in the next block (moving
each word from Hebrew array (ha) to Hebrew word buffer (hwb)). In
this block (ra to rwb) it will be unused for the time being. The
Roman text is originally produced by CTIU. In pass 1 (MLS Hebrew
to Roman ASCII) CTIU has the ability to unbundle the Hebrew
overstrikes and produce regular ASCII codes for them as specified

by the tables. It does not, however, have the ability in pass 2
~(Roman ASCII to Roman MLS) to define any of those characters as
overstrikes. It would, in fact, be an advantage to be able to specify
certain characters as overstrikes. An example is the primary stress
marker which is an overstrike in the Hebrew text but has to be a

separate character in the Roman. A Roman character overstrike

COMPUTER-GENERATED TRANSLITERATION, page 67

could be accomplished only by programming back the vowel flag
into Roman byte 2 where required. The present transliteration

system works without this but it will be considered as a future
enhancement.)

(k) Word count routine (rwetr:). This routine is implemented

only upon encountering the first space, carriage return or EOF
immediately after a word. Special action is required for the first
Roman word in the line (rwc = 1). This word becomes the last word
of the Roman line in the BITEX(2) array where a special Hebrew
carriage return and hard space is inserted (for reasons explained in
block 7(b) below). The Hebrew carriage return in the Roman line
matches the Hebrew carriage return in the Hebrew line. The
Hebrew hard space, however, is extra. When the program is in the
word count routine, a space resides in the Roman array pointers
(rapl, rap2). Therefore for word 1 the program branches out of the
Roman word cycle to rwbend: without processing the space. This
compensates for the Hebrew hard space specially inserted in the
Roman line in the BITEX(2) array. Before the branch, however, the
Roman character count (rcc) is advanced by one to take account of
the Hebrew hard space in calculating the length of the word for
spacing purposes.

(1) rwbend:. This address simply marks the end of the Roman
word cycle to which the program has branched or to which it
arrives after the completion of the FOR...NEXT loop. It may reach
the end of the loop without reaching the end of a word or a
non-word series of characters, although this is unlikely. For
example, a text may have a dotted line drawn across it. This would

not be construed as a word and a word count would not be taken as

e

COMPUTER-GENERATED TRANSLITERATION, page 68

there is not a space to trigger the count. However, the Roman
word buffer may be filled. Therefore an error message is gg_j:_
produced if the Roman word cycle is terminated by the FOR...NEXT
loop as this may happen legally on occasions. The program

continues to the next block.

Block 5. Move one word from Hebrew array (ha) to Hebrew word

buffer (hwb

This block closely parallels block 4, Move one word from
Roman aray (ra) to Roman word buffer (rwb). Therefore discussion
will be restricted to only what varies compared with block 4.

(a) The Hebrew carriage return is processed in the normal way.
It is not replaced with a space as in the case of the Roman carriage
return. There is no need, therefore, to set a Hebrew carriage
return flag at this point. The Hebrew carriage return remains in
the Hebrew array pointers, hapl, hap2, and can be identified after
processing.

(b) The Hebrew word count routine (hwctr:) is not complicated
by the need to give special treatment to word 1 in the line. The
Hebrew retains its natural right-to-left orientation in the
BITEX(1) array with a regular Hebrew carriage return at the end of
the line. The Roman text, in contrast, is put into reverse word
order with the last word of the Roman array becoming the first
word in the BITEX(2) array. The Roman carriage return must
therefore be replaced with a space and the Roman line in the
BITEX(2) array given a rigﬁt—to—left orientation by enclosing it
between two Hebrew hard spaces and giving it a Hebrew carriage

return.

COMPUTER-GENERATED TRANSLITERATION, Page 69

(c) The check for the vowel flag in byte 2 is of crucial
importance in this block as almost every Hebrew word has |
overstrikes, which cause a greater number of characters in the
transliterated Roman word than in the Hebrew word. Therefore the
two vowel bytes following byte two are given a byte count but
excluded from a character count.

(d) The vowel flag in byte 2 is checked also for another reason
in this block. If clozev is set to 1 at the beginning of the
program, the intent is signified of rémoving all Hebrew overstrike
vowels from the Hebrew text as the last step in the cloze
procedure. Therefore, if clozev = 1 and the vowel flag check is
positive, then ASCII code 1 is moved into Byte 2. This eliminates
all flags and represents the Hebrew alphabet code only. The Hebrew
array pointers are advanced by two bytes to skip reading the vowel
bytes 3 and 4. Therefore the hebrew overstrikes are removed from

the text processed to the BITEX array. The program bypasses the

vowel flag check for when clozev = 0 and returns to hwbloop: to

read bytes 1 and 2 of a new character. If clozev = 0 and the vowel

flag check is positive, then the processing described in (c) above is
carried out.

It should be noted that the action taken when clozv =1
removes also underlining and strikethroughs. These are infrequent
in the Hebrew text. If, however, it is desired to accomodate them,
then an additional series of logical AND operations must be devised
for the underline flag and/or the strikethrough flag and an
appropriate ASCII code moved into byte two that retains either or
both of these flags and excludes the vowel flag.

(e) At hwbend: there is a critical error check. At this point a

COMPUTER-GENERATED TRANSLITERATION, Page 70

Roman word and its corresponding Hebrew word should have been
processed. The Hebrew word count (hwc) is compared with the
Roman word count (rwc). If they are not the same, the program
stops with the error message: "Difference between number Hebrew
and Roman words processed: check text.” This prevents the
production of a BITEX file where the Roman words are out of
synchronization with the Hebrew words. The remedy is to go back
to the Hebrew and Roman source text files and find out why, the
Roman text having been produced from the Hebrew text by CTIU,
the two texts are not parallel. The reason may be print formatting
commands inserted into either file after its production, or failure
to put a carriage return after the CTIU language delimiter in the

Roman file, or editing changes to either file after its production.

Block 6. Refine transliteration

The transliteration is done by MLS-CTIU in conjunction with
the Hebrew and Roman tables which implement the pronunciation
rules that have been discussed in Section 5(c). One part of a rule
has deliberately been excluded from the tables because of space
requirements. This is the case of a short qametz (o) in the final
syllable of a word when this is unaccented. The tables are already
close to capacity (600 entry pairs in each table). Because of the
~ number of contingencies that define the end of a word - space,
carriage return, hyphen, any punctuation mark - it takes 198 entry
pairs to implement this very simple rule through the tables.
Therefore it is implemented by programming in this block.

Because the regular Hebrew stress is on the last syllable, there

will be relatively few cases of a qametz co-inciding with an

COMPUTER-GENERATED TRANSLITERATION, Page 71

unaccented last syllable. The convention used in preparing the
Hebrew text is to show the stress marker only when this is’r_1_o_t_ on
the last syllable. Therefore, all that is necessary here is to: 1)
check the Roman word for a stress marker; and 2) if found, to
check the last syllable for a qametz. If a qametz is found, then the
default long "a" is changed to the required short "o".

Because the space after the first word in the Roman word
counter (rwc) bypassed the byte count routine (see Block 4), it is
necessary here to add the byte count that was missed so that word
one will be consistent with all other words when the ensuing
byte~controlled tests are applied.

System tests have not revealed any other pronunciation rule or
feature not picked up by the tables. Hebrew is a very regular
language. Therefore there is good reason to believe that ﬁothing
significant has been omitted from the tables. If, however, future
experience indicates particular exceptions to the rules which
cannot be convenien.tly picked up by the tables, then they can be
dealt with by programming in this block.

Every language has its own collection of odd usages which do
not conform to usual rules. They sometimes represent archaic
remnants left over from a previous historical period of the
language and sometimes simply human arbitrariness. Whatever the
reason, they exist. Hebrew is no exception although it probably has
fewer than most languages. These usages are easily accommodated
by the tables as they represent usually only one entry: in effect,
convert "abc” to "xyz". The important thing is to get these entries
at the top of the tables so that they are taken first before

applying other rules. As CTIU sorts by number of terms in an

COMPUTER-GENERATED TRANSLITERATION, Page 72

entry, and as four is the maximum number of terms in the Hebrew
table, then an exception usage requiring less than four terrﬁs may
be a problem as then it will not be taken first. The program
remains as a final point where such problems can be addressed.

A possible future alternative to the table approach to
transliteration is direct programming. In this case, only a Hebrew
text would be read. Each Hebrew word would be read into the
Hebrew word buffer and then examined for application of all the
pronunciation rules that have already been discussed. The
transliteration would be moved into the Roman word buffer.
Various checks would be applied. Then the Roman word would be
written to a Roman output file and also to the BITEX array for
reading, with the Hebrew, into tﬁe BITEX output file. This
approach offers the advantage of a one-step approach to
transliteration - one program pass rather than two CTIU table
passes plus a program pass - which may also yield the advantage of

reduced processing time.

Block 7. Move one word from Roman word buffer (rwb) to BITEX(2)

array (ba(2)) and align

The purpose of this block is to move the word sitting in the
Roman word buffer to the BITEX(2) array. In block 9 the Hebrew
word will be moved to the BITEX(1) array from the Hebrew word
buffer. After spacing adjustments and the cloze procedure, if
required, are applied, the contents of BITEX(1) and (2) will be
written to the BITEX output file. The task in the BITEX array,
therefore, is to move each line of the two texts into the exact

order required in the BITEX file: the exact text order (Hebrew

COMPUTER-GENERATED TRANSLITERATION, Page 73

first), the exact word sequence (Roman words in reverse order), and
the exact alignment (Roman words immediately beneath their
corresponding Hebrew words). This requires the following steps for
the Roman text:

(a) First character-of-line check. Two checks are required: 1)

if rpass = 2, then the character is either a space or carriage return
and is the first character of a new line; 2) if the Roman word
counter (rwc) = 1, then the character is the first character of the
word and the first character of the new line. The rpass = 2 check is
applied first. If true, then the program branches to the special
routine (ma2spec:) applied at the beginning of a new line and sets
rskipflag to 1 to avoid a duplication of the routine if a word
follows in the same line (as it will if the first one or more
characters of the line are leading spaces). Then the rwc = 1 test is
applied. If true, the branch to ma2spec: is followed only if
rskipflag has not been set to 1 (i.e. rskipflag = 0).

(b) Special routine at beginning of new line (ba2spec:). The

Roman text will be moved word by word from the Roman word
buffer and placed in the BITEX(2) array in reverse order so that
Roman word 1 will come directly under Hebrew word 1 when the
BITEX file is printed out. For this to happen, The Bitex file must
have a consistent right-to-left orientation, following the Hebrew.
This is accomplished by enclosing the Roman line between two
Hebrew hard spaces and substituting a Hebrew for a Roman carriage
return. Because the Roman text is being moved in backwards, the
last position in the line will be filled first. Before this happens
the closing Hebrew hard space and Hebrew carriage return must be

moved into the last positions of the BITEX(2) array. This

COMPUTER-GENERATED TRANSLITERATION, Page 74

constitutes the special routine at the beginning of a new line
(ma2spec:). The BITEX(2) array pointers, rpl and rp2, are then set
to move the first character of the Roman line (normally, the last
letter of the first word) immediately before the Hebrew hard space.
Note that in block 4, word one is moved from the Roman array to
the Roman word buffer without the usual space at the end of the
word because of the Hebrew hard space that ends up immediately
after it in the BITEX(2) array through this special routine.

(c) Line-up of Roman word (rlineup:). This routine is the

exception rather than the rule as normally, the Roman word being

longer than the Hebrew, it is the Hebrew word that is aligned.
However, if the number of characters in the Hebrew character
counter (hcc) is greater than those in the Roman character counter
(rcc), the requisite number of spaces to equal the difference are
move into the BITEX(2) array before the Roman word is moved.
This will ensure alignment of the two words, the Roman beneath
the Hebrew, in printouts from the BITEX file.

(d) Regular processing (regloop:). Here, "regloop:” is in contrast
to "clozeloop”. Clozeloop: is discussed in the next block. Regular
processing is accomplished in a FOR...NEXT loop where n = the
number of bytes in the Roman byte counter (rbc), which is the
number of bytes for the contents of the Roman word buffer. The
Roman characters are moved from the last backwards, filling in the
BITEX(2) array from the end of the line backwards so that the
Roman words retain their left-to-right orientation for reading

purposes but follow a right-to-left word order.

COMPUTER-GENERATED TRANSLITERATION, Page 75

Block 8. Cloze procedure

The cloze procedure is inoperative when cloze = 0 and
cumclozel to 7 = -1. The cloze procedure operates if cloze is given
a value greater than 0 and one or more of the cumcloze variables
have been given values greater than minus one. Let us assume that
cloze is given a value of seven. At the beginning of the program
cumclozel to 7 are deliberately arranged in the order 1 4 6 25 7 3
so that the Roman text is progressively blanked out to leave an
even spacing of the words remaining. First, every seventh word
starting with word 1 is blanked out; then every seventh word
starting with words 1 and 4 and so on until only every seventh
word starting with word 3 is left. Lastly, this series of words also
is blanked out, leaving only the Hebrew text. If cumcloze is given
a.value of fiQe, then only cumcloze variables 1 to 5 are defined,
using the pattern 1 4 2 5 3. Cumclioze variables 6 and 7 are left
with the default -1 which ensures that they do not operate.

If the cumulative Roman word counter (crwc) equals any of the
cumcloze variables, then clozeloop: operates. The same routine as
regloop: is performed except that 1) periods (ASCII 46) are moved
to the BITEX(2) array instead of the regular characters of the
word; and 2) two less bytes than at regloop: are moved so that the
concluding space of the word remains and is not turned into a
period. Note that any stress marks in the middle and punctuation
marks at the end of the Roman word are converted to periods.
Therefore the periods exactly equal the space the word occupies in
the undeleted text. This helps the student visuélize the missing
word as he reads the Hebrew text until finally he is comfortable

with the Hebrew text alone.

COMPUTER-GENERATED TRANSLITERATION, Page 76

An adjustment is necessary before moving the periods in place
of the regular characters of the word to be deleted. The cloée
procedure loop is two bytes less than the regular procedure loop so
that the space at the end of the word is not replaced by a period.
Therefore that space must be moved into the BITEX(2) array as
part of the cloze procedure. Again, word one is an exception
because it does not carry a concluding space (a Hebrew hard space
has already been moved into the position the regular space after
word one would occupy). This means that word one needs a loop
equal to all of its bytes, not two less. Therefore, for word one, a
period instead of a space is moved into the BITEX(2) array to
compensate for the two bytes less of the cloze loop.

The cloze procedure concludes with a new setting of the
cumcloze that has just been acted upon. For example, if the
cumulative Roman word counter (crwc) = 1 and cumclozel is
activated, then word one will be blanked out and cumclozel will be
reset to 8 (cumcloze + cloze). When word 8 is moved, it will
automatically be processed by the cloze procedure. Finally,
clozeflag is set to 1 to signal that the cloze procedure has just
been applied and to thus enable bypassing of the regular routine
which the cloze routine has just replaced.

The program moves to the next block from both the cloze

routine, when applied, and from the regular routine.

lock 9. Move one word from Hebrew word buffer (hwb) to

—

BITEX(1) array (ba(1)) and align
This block closely parallels block 7 which moves a word from

the Roman word buffer to the BITEX(2) array and aligns.

COMPUTER-GENERATED TRANSLITERATION, Page 77

Discussion wiil be restricted to where there are differences.

(a) First character-of-line check. There are no differences here

except the substitution of hpass for rpass and hskipflag for
rskipflag.
(b) Special routine at beginning of new line (balspec:). The

Roman line in the BITEX(2) array is filled from the end backwards.
The Hebrew line in the BITEX(1l) array is filled from the beginning
forwards. Therefore the special routine here deals with the first
position of the BITEX(2) array whereas the Roman line special
routine deals with the last positions of the BITEX(1l) array. A
Hebrew hardspace is moved into the first position of the BITEX(1)
array (Hebrew line) to balance the Hebrew hardspace that will be
moved to the beginning of the BITEX(2) array (Roman line) (see (e)
below). The Roman line must have a. H‘ebrew hardspace to enable
MLS to give it right to left orientation. The Hebrew line could
have a regular space. A hardspace is selected because it shows as a
raised period on screen and matches the similarly visible hardspace
at the beginning of the Roman line.

(c) Line-up of Hebrew word (hlineup:). This routine is the

same as that described in point (¢) of block 7 except that here it is
the exception while there it is the rule. The Roman word will
almost always be longer than the Hebrew because 1) each Roman
vowel is a separate character while most Hebrew vowels are
overstrikes and 2) several Hebrew consonants are transliterated by
two Roman characters. The required number of spaces are inserted
behind the Hebrew word so that the last character of the Hebrew

word is directly above the first character of the Roman word. The

COMPUTER-GENERATED TRANSLITERATION, Page 78

eye can then follow a circular movement, reading left-to-right
along the Roman word and back right—to--left along the Hebfew
word.

(d) Regular processing. Regular processing immediately follows
as there is no "clozeloop” for the Hebrew text. Only Roman words
are blanked out. The regular processing is straightforward as the
Hebrew words are moved in regular sequence forwards, not
backwards like the Roman.

(e) Hebrew carriage return and Hebrew end-of-file checks. The

Hebrew carriage return flag was set at the end of block 9 at
hwbend:. The Hebrew end-of-file marker was set at the beginning
of block 6 at hwbloop:. If either of these flags equals one, then
the program branches out of the word cycle to alignend:. A Hebrew
hard space'is moved into the first position of the Roman line in
the BITEX(2) array to complete the enclosure of the Roman text
between Hebrew hard spaces to give it right-to-left orientation.
The program then moves on to block 10 which writes the BITEX(1)
and (2) arrays to the BITEX output file. If neither the Hebrew
carriage return nor the Hebrew end-of-file markers are set to one,
then the program nulls both Roman and Hebrew word buffers and

returns to rwb: in block 4 to start a new word cycle.

Block 10. Move BITEX array (ba) to BITEX output file (bf)
(a) Move BITEX(1) array. The Hebrew line in the BITEX(1)

array is moved to the BITEX file. The end-of-line is marked by a
carriage return which sends the program to the next step, moving
the BITEX(2) array. |

(b) Move BITEX(2) array (writeba2:). Before moving the Roman

COMPUTER-GENERATED TRANSLITERATION, Page 79

line in the BITEX(Z) array to the BITEX file, a check is made to
ensure that the first character of the line is a Hebrew hardSpace as
this is critical for alignment of the Roman with the Hebrew line.
If the Hebrew hardspace is found, then the Hebrew hardspace flag
(hhsflag) is set to one to prevent the same check being made
before moving the subsequent characters in the line. The first
character of the Roman line in the BITEX(2) array (Hebrew
hardspace) is not in the first position in the array because the
Roman line is moved in word by word backwards and the array is
larger by design than the Roman line. Therefore there will be an
indeterminate number of null cells to check before the Hebrew
hard space is encountered. If the Hebrew hardspace is not found,
then the program stops with the error message: "Hebrew hardspace
not found as first character of Roma‘n line in ba(2)".

(b) Regular processing (ba2proc:). The Roman line is moved to

the BITEX file. The end-of-line is marked by a Hebrew carriage
return which sends the program to the next step (bawrend:).

(c) End of writing BITEX array to BITEX file (bawrend:). The

program makes an end-of-file check of both Hebrew and Roman
files. If both are in an end-of-file condition, then the program
ends. If only one of the files is in an end-of-file condition, then
the program stops with an error message: "EOF(1) and EOF(2) not
coincident”. Both files should end at the same time. If they do not,
then something has been added to either one or the other and this
should be checked. If the end-of-file condition has not been
reached, then all pointers, counters and flags are reset, all arrays
-and buffers are nulled and the program returns to readhf: at block

2 to repeat the line cycle.

COMPUTER-GENERATED TRANSLITERATION, Page 80

(d) Repeat run or END (closing:). A screen display tells the
user that the program run is finished and lists the input an‘d
output files used. An INPUT prompt gives the user the choice of
either ending the program or repeating another run with the same
or different input files, a new output file and the same or

different cloze settings.

COMPUTER-GENERATED TRANSLITERATION, Page 81

Summary of Error Messages

1. Block 1, if a carriage return is not read after print form#t
instructions and/or CTIU language delimiter in Roman input file:
"Start of text in file #2 not found in readloop:”
2. Block 1, if CTIU language delimiter not read in the Roman file:
"Language delimiter not found in file #2"
3. Block 2, if Hebrew array is filled without reading a carriage
treturn in the Hebrew input file:
"Hebrew line too long"
4. Block 3, if Roman array is filled without reading a carriage
teturn in the Roman input file:
"Roman line too long”
5. Block 4, if a Roman carriage return has been flagged bl{t not a
corresponding Hebrew carriage return so that a new line cycle is
started:
"Roman line ended before Hebrew: rcr, her = x, x"
6. Block 6, if Hebrew word # is not equal to Roman word #:
"Difference between # of Hebrew and Roman words processed:
check text”
7. Block 10, if upon moving the BITEX array to the BITEX output
file, a Hebrew hard space is not found as the first character of the
Roman line:
"Hebrew hardspace not found as first character in ba2”
8. Block 10, if Hebrew file has ended and Roman file has not:
"EOF(1) and EOF(2) not coincident”
9. Block 10, if Roman file has ended Qnd Hebrew file has not:

"EOF(2) énd EOF(1) not coincident”

COMPUTER-GENERATED TRANSLITERATION, Page 82

Summary of Operating Messages

The following operating messages are printed as the prdgram
runs to give the user documentation of information inputs and to
indicate the completion of key program phases:

1. Block 0, Front End: a listing of the binary input and output
files opened for the program run.

2. Block 0, Front End: a listing of the cloze variables set.

3. Block 1: Confirmation of input and output files opened and
passed to main program from front end.

4. Block 1: A message confirming successful reading of Hebrew
input file:

"Print format instructions in Hebrew file are: (;xx...) (ASC
code for carriage return).”

5. Block 1: A message confirming successful reading of Roman
input file:

"First two bytes of Roman file in b3 & b4 = (ASC codes for
bytes).”

6. Block 10: Message "Run completed.”
7. Closing Routine: "END" when user replies "no"” to the option of

rerunning the program.

COMPUTER-GENERATED TRANSLITERATION, page 83

7. Applications and Evaluation

1. Applications

The transliteration system described has two main areas of
application: 1) publishing; 2) the teaching of reading in
Hebrew to native speakers of languages using the Roman script.
A further ancillary area, with minor modifications to the
system, is 3) the teaching of Hebrew writing to native speakers
of languages using the Roman script.

1) Publishing

The main focus of this paper has been in the teaching of
reading in Hebrew. A few words on publishing are, however,
relevant as some need for a transliteration system in
publishing is apparent at the present time.

As an example, one vendor specialising in CD-ROM
applications, e.g. editions of major dictionaries on compact
disc, is currently enquiring about a transliteration system for
a project in hand for putting the Bible on compact disc both in
original Hebrew and Greek texts and transliteration. Provided
such a vendor is prepared to work within the MLS environment,
this system would, after some refinements referred to in the
course of the above discussion, be applicable. Particularly
valuable would be the BITEX file with the transliterated text
immediately beneath the Hebrew. An independent transliterated
text could also be produced and printed side by side with the
Hebrew.

Other publishers, wishing to quote Hebrew text with
transliteration or in transliteratidn alone, e.g. in biblical

commentaries or linguistic texts for English-speaking readers,

COMPUTER-GENERATED TRANSLITERATION, page 84

could find a uSe for such a system.

For such applications, the transliteration system should.
be integrated with the overall publishing system in use,
whether this is in a micro computer desk-top publishing
environment for smaller projects or a customized mini computer
orf main frame environment for larger ones.

2) Teaching reading

The application of the system for the teaching of reading

in Hebrew has been the main focus of this paper. It is intended
to be a tool for the teacher to use. The teacher decides which
texts to use, varying the texts according to the ability and
level of the individual student.

Ideally, each student has a computer terminal, either in
the classroom or in a computer lab. The BITEX files are
prepared ahead of time in readiness for the class. The students
can proceed at their own pace with the teacher available for
consultation. Once the students are used to the system and have
acquired some experience with Hebrew reading they can work on
reading assignments without the teacher being present. The
assignments can then be "homework"”, to be done after class. If
a student has an IBM compatible PC at home, then he or she can
work at home.

The type of output the students view on the computer
screen is illustrated in Appendix 9 (e) through (o). The
students’ task is to work through the series of cloze files
until they can read the Hebrew text without the aid of
transliteration. They have the freedom to return to easier

levels for review. The teacher may, at a certain point,

COMPUTER-GENERATED TRANSLITERATION, page 85

restrict the files available so that the student is forced to
work at the more difficult levels. The teacher may also use’the
cloze files for testing purposes.

It is evident from Appendix 9 that the system can be run
on hard copy if computer terminals are not available. Students
are simply handed the requisite sheets to work on. Computer
terminals have the obvious advantage of eliminating the chore
of copying, storing and handling large numbers of sheets by
both teacher and students. The computer can also be used to
advantage in timing both the reading and supervised tests.
Therefore computer terminals are recommended.

3) Teaching writing
This paper has concentrated on the problem of reading in a
non-Roman script. The system can also be modified by adding a
cloze option for the Hebrew as well as the Roman text. It could
then be used for working at the same time on writing in the
non~Roman script with the attendant problems of spelling. The
cloze procedure can then be used to block out either the Hebrew
or the Roman word or both. The Roman word blocked out directs
reading to the target script. The Hebrew word blocked out calls
for writing in the target script, either with the Roman word
present as a prompt or the Roman word absent with no prompt.
Again, this could be done as a self-study assignment or as a
supervised assignment with access limited only to certain
files.

2. Evaluation

Evaluation of the system in the teaching of reading

requires consideration of two issues: target student population

COMPUTER-GENERATED TRANSLITERATION, page 86

and hypothesis testing.

1) Target student population

The system is using the students’ decoding automaticity in
the Roman script as a bridge to reach the Hebrew script.
Students must therefore be literate in the Roman script. This
excludes automatically very young children who have not fully
mastered reading and also excludes illiterate adults. In the
case of illiterate adults, it is an interesting question
whether they should acquire literacy in their fi\rst language
before trying to acquire literacy in a second. Presumably the
answer is yes, because they would have had long exposure to
Roman script in their environment - advertisements, TV, picture
captions etc. - and could therefore be expected more easily to
"get the hang of it" in a familiar looking script than in a
totally strange one. This may not necessarily hold true if they
were moving permanently into a Hebrew speaking environment. In
such a case, they would be starting grade 1 in speaking and
reading in the new script. They would, however, need special
attention to whatever problems have caused their functional
illiteracy in their first language.

The target student population for this system is,
therefore, literate adult and high school native speakers of
English who wish to learn Modern or Classical Hebrew or both.
The system could also be extended to selected intermediate and
upper elementary students. The prerequisites for students are
literacy in the Roman script, motivation to learn Hebrew and
ability to work at a computer terminal. Typical motivations

are: intentions to emigrate to Israel, desire to communicate

COMPUTER-GENERATED TRANSLITERATION, page 87

with Hebrew-s?eaking family and friends, wish to study the
Hebrew Bible or other classical Hebrew literature, wish to fead
modern Hebrew publications and literature, and general
linguistic interests.

2) Hypothesis testing

Several hypotheses require testing:

(a) that native English speakers who cannot read Hebrew
acquire decoding automaticity in Hebrew faster with this trans-
literation system than working with the Hebrew script alone;

(b) that they learn to read Hebrew with comprehension
faster and better with this system than working with the Hebrew
script alone;

(c) that they learn to write faster and more accurately in
Hebrew with this system than working with the Hebrew script
alone (this is without explicitly using the system for writing
by modifying the cloze feature to include optionally the Hebrew
text, as discussed above, but rather to test the effect on
writing of the system’s particular attention to decoding skills
in reading);

(d) that, after the formal course of instruction, they
tend to continue to read in Hebrew more and to acquire a larger
vocabulary after learning with this system than learning with
~ the Hebrew script alone;

The following requirements are necessary to conduct this
evaluation:

(a) An environment where Hebrew is taught and spoken, e.g.
a Jewish high school with a strong Hebrew program, Hebrew

classes for adults outside Israel or Hebrew classes for adult

COMPUTER-GENERATED TRANSLITERATION, page 88

immigrants inéide Israel. Classes inside Israel would be
favoured because of the higher level of motivation induced.by
the urgency to learn. Classes for teaching Biblical Hebrew
could also be used for testing hypotheses (a), (b) and (c).

(b) A well structured course of instruction with well
designed and clearly gradable tests in reading and writing.

(c) A teacher or teachers genuinely interested in the
project and willing to co-operate in structuring their courses
appropriately and administering test instruments.

(d) An experimental and control group formed by random
selection, the size of the groups depending upon the number of
students available. Fifteen per group would be satisfactory.
Both groups should be taught by the same teacher in order to
eliminate ';he teacher difference variable. If there were enough
students, more than one experimental and control group could be
formed with additional teachers participating.

(e) Pre and post tests in the language skills of reading
and writing, the pretest being given before the course of
instruction begins and post tests after each agreed stage of
evaluation. Standard instruments for Hebrew as a second
language should be selected corresponding to those available in
English as a second language, e.g. Wilkins Definitions of
~Levels (in Trim, 1978) and others.

Careful records should be maintained of all tests
administered as the course of instruction progresses. A
possible shedule is to test all hypotheses, except hypothésis
(d), on a monthly basis for an academic year or on a weekly

basis for an intensive three or five month course. An academic

COMPUTER-GENERATED TRANSLITERATION, page 89

year or at leasf five months is preferred as calendar time may
be an important factor in consolidating learning. Hypothesié

(d), the experimental group continuing reading and vocabulary
expansion more than the control group after the class is over,
can only be tested by a longitudinal study continuing for one

or two years after the course of instruction ends.

COMPUTER-GENERATED TRANSLITERATION, page 90

This page is inserted to facilitate optional printing on both
sides of the page, each figure or appendix starting with an odd
number.

COMPUTER~-GENERATED TRANSLITERATION, page 91

FIGURE 1
2350 — —oL® X
SANE NAPE
— O3 NuUmw
TEAS SEAT
AO R oo @amwlN
PEAT SENT
2 o OA o—oMW@X
TAPE PANE
AE3oo Xuen
PENT NAPS
-0 — XxNumw
SAPS PEAS

For the list of words on the right,

there is no systematic

correspondence between the symbols and the letters or sounds of
the associated response. For the words in the left column there
is an alphabetic relation if the symnols are decoded from right
to left. (Reproduced from Lee Brooks and Amima Miller,
Knowledge of an Alphabet, in Kolers, Wrolstad & Bouma,
Processing of Visible Language, Volume 1, p. 392.)

COMPUTER-GENERATED TRANSLITERATIéN, page 92

This page is inserted to facilitate optional printing on both
sides of the page, each figure or appendix starting with an odd
number.

COMPUTER-GENERATED TRANSLITERATION, page 93

FIGURE 2

<oe- 3}
=3 o
)

o=\ NU NVAI
IVA e e=sANU
IUAI AU Aceo

Two ways of arranging the artificial letters. Both the glyphic
form, to be scanned from top to bottom, and the discrete form,
to be scanned from left to right, are composed of the same
artificial letters and consequently have the same potential for
signalling phonological values. (Reproduced from Lee Brooks and
Amima Miller, Rnowlege of an Alphabet, in Kolers, Wrolstad &
Bouma, Processing of Visible Language, Volume 1, p 396.)

COMPUTER-GENERATED TRANSLITERATION, page 94

This page is inserted to facilitate optional printing on both
sides of the page, each appendix starting with an odd number

COMPUTER-GENERATED TRANSLITERATION, page 95

APPENDIX 1
Data Flow Diagram

Data Fiow Diagram

” Hebrew/Roman "7 Manual Operation
Tables

. Software
Data Flle
— Data Storage
CD PC Screen
Koy enter DPrlnted Report
Hebrew
text
Hebrew ”7 Roman
Font File Font Files

Hebrew
Hard Copy

Hard Copy

Hebrew/Roman Hebrew/Roman
Transiiterated Transliterated
Screen Viewing Hard Copy

COMPUTER-GENERATED TRANSLITERATION, page 96

This page is included to facilitate optional printing on both
sides of the page, each appendix starting with an odd number.

COMPUTER-GENERATED TRANSLITERATION, page 97

APPENDIX 2
Table of Hebrew to Roman ASCII Codes and Alphabetic Representations
Abbreviations: C - Roman "classical” alphabet

CA - Roman "classical alternative” alphabet

M - Roman "modern” alphabet

SM - Roman "simplified modern” alphabet
Hebrew Roman Notes
Ascii Key ~ Char Ascii Key C CA M SM
001 Ctl-a » 014 Ctl-n y y alt've "y" in Mod Heb
003 Ctl-c % 003 Ctle-¢ k k k k doubled by tables
004 Ctl-d "N 022 Ctl-v v v alt’ve "v" in Mod Heb
005 Ctl-e W 023 Ctl-w § §* ¥ § dbl § or *sh from tbls
066 Sh-b 3 066 Sh-b b b b b doubled by tables
067 Sh-c 2 067 Sh-c k k k k doubled by tables
068 Sh-d % 068 Sh-d d d d d doubled by tables
069 Sh-e w069 Sh-e & § & s doubled by tables
070 Sh-f 070 Sh-f P P P p doubled by tables

080 Sh-p P p p p Heb070 on Sh-f, -p
071 Sh-g 2 0 Sh-g €8 & 8§ 8§ doubled by tables
072 Sh-h no 072 Sh-h h h h h seenote?2
073 Sh~i y 073 Sh-i ¢ © ¢ does not take dagesh
074 Sh-j B 074 Sh-j t t t t doubled by tables
076 Sh-1 S 076 Sh-l 1 1 1 1 doubled by tables
077 Sh-m n 077 S-m m m m m doubled by tables
078 Sh-n 2 078 Sh-n n n n 1 doubled by tables
081 Sh-q p 081 Sh-q q q q k doubled by tables
082 Sh-r 9 082 Sh-r r r r r does not take dagesh
083 Sh-s D 083 Sh-s s s s s doubled by tables
084 Sh-t N 084 Sh-t t t t t doubled by tables
087 Sh-w W 087 Sh-w § g § §* *sh from tables

088 Sh-x ® 088 Sh-x $ $* s* §* dblsor *tz from tbls
089 Sh-y ¥ 089 Sh-y Yy y y y doubled by tables
090 Sh-z ¥ 089 Sh-z 2z 2z 2z z doubled by tables

103
104
105
106
107

108
109
110
m

113
114
115
116
117

118

119
120
121
122

Reg-a

Reg-b
Reg—¢
Reg-d
Reg-e
Reg-f

Reg-g
Reg-h
Reg-i
Reg-j
Reg-k

Reg-1

Reg-m
Reg-n
Reg-o

Reg-q
Reg-t
Reg-s
Reg-t
Reg-u

Reg-v

Reg-w
Reg-x
Reg-y
Reg-z

A B < o U B s u

- e T 5

o 30 4

COMPUTER-GENERATED TRANSLITERATION, page 98

APPENDIX 2 (ctd)

Key
Reg-a
Sh-a
Reg-b
Reg-c
Reg-d
Reg-e
Reg-f
Reg-p
Reg-g
Reg-h
Reg-i
Reg-j
Reg-k
Sh-k
Reg-1
Reg-m
Reg-n
Reg-o
Sh-o
Reg-q
Reg-1
Reg-s
Reg-t
Reg-u
Sh-u
Reg-v
Sh-v
Reg-w
Reg-x
Reg-y
Reg-2z

c

B oAl YTl U e R OIg

N < ® = g g DIt »« » a0 o0o0Bd g = &5

CA

b - 2B - IR~ e - L O
% N =

» = .0 OB g " BB

ot
*

4 8§ PP

< <€ PP om0 00O QD

Lo« T - TR LT - N
% %

[bﬂm

B Lol - R - T

SM Notes

<

Q
*

<<ﬁﬁ"“”‘ﬂ‘00b8"-ﬁ‘-b‘ﬂ'b‘m"’i"ﬁ“@

- ¢
%* %

guttural
Heb 097 on Reg-a, Sh-a

*bh from tables
*kh or *ch from tables
*dh from tables

*ph from tables
Heb 102 on Reg-f, -p

*gh from tables
guttural
guttural

guttural
Heb 107 on Reg-k, Sh-k

Heb 111 on Reg-o, Sh-o

*th from tables
Heb 117 on Reg-u, Sh-u

Heb 118 on Reg-v, Sh-v

*sh from tables
*t2 from tables

COMPUTER-GENERATED TRANSLITERATION, page 99

APPENDIX 2 (ctd)

N\

Ascii Key Char Ascii Key C CA M SM Notes

138 Alt-p 5 138 Alt-p p p p p Heb sofit (last letter)
146 Alt-f % 146 Alt-f p p* p* f Heb sofit *ph from tbls
158 Alt-x Y 158 Alt-x 3 $* §* s* Heb sofit *tz from tbls
159 Alt-c % 159 Alt-c k k* k* c* Heb sofit *kh/ch f tbls
162 Alt-n ! 162 Alt-n n n n n Heb sofit

163 Alt-m D 163 Alt-m m m m m Heb sofit

172 F1 a 009 Ctl-1 i i i i Heb overstrike

173 F2 3 001 Ctl-a a a a a Heb overstrike

174 F3 2 019 Ctl.s 3@ 3@ 3@ a Heb overstrike

175 F4 3 018 Ctl-r &8 @& @& e Heb overstrike

176 FS 3 005 Ctl-e e e e e Heboverstrike

177 F6 a 021 Ctl-u u u ~u u Heb overstrike

178 F7 3 017 Ctl.q ¢ ¢ ¢ e Heboverstrike

179 F8 | 4 004 Ctl-d d& 4 & a Heb overstrike

180 F9 3 016 Ctl-p & & & o Heboverstrike

181 F10 3 020 Ctl-t & & & e Heb overstrike

197 Sh-F1 2 015 Ctlbo &6 & & o Hebo/strike med char
198 Sh-F2 % 015 Ctlo & & & o Heb o/strike nar char
199 Sh-F3 3 019 Ctl.s & a a8 a Heb o/strike kaf sofit
200 Sh-F4 & 015 Ctlko & & & o Hebo/strike wide char
201 Sh-F5 3 Hb o/str metheg nulled
202 Sh-F6 3 126 Sh-~ - - . . Hb o/str prim stress
203 Sh-F7 % 017 Ctl.q ® e e e Hebo/strike kaf sofit
204 Sh-F8 9 126 Sh-~ - - . . Hb o/str prim stress ?
243 Alt - - 045 Reg- - - - - maqqef or hyphen

COMPUTER-GENERATED TRANSLITERATION, page 100
APPENDIX 2 (ctd)

Note 1: Three versions of holem are provided (197, 198, 200) and two versions of
the primary stress marker (202, 204) to accomodate varying widths of Hebrew
letters.

Note 2: H& with a dot (W 072) is sharply audible at the end of a word. The dot is

called "mappiq” (bringing out), not dagesh. It is distinguished from regular ¥ h by
doubling (hh), following the transliteration usage of the Society of Biblical

Literature.

COMPUTER-GENERATED TRANSLITERATION, page 101

APPENDIX 3
Table of Roman ASCII Codes and Alphabetic Representations
Abbreviations: C - Roman "classical” alphabet
CA - Roman “classical alternative” alphabet
M - Roman "modern” alphabet
SM - Roman "simplified modern” alphabet

Ascii Key C CA M SM Notes

001 Ctl-a a a a a Heb pathah

003 Ctl-c k k k k Heb dagesh kaph sofit: tbis dbl
004 Ctl-d & & d a Heb furtive (reduced) pathah
005 Ctl-e e e e e Hebseghol

009 Ctl-i i i i i Heb hireq (short)

014 Ctl-n y y see note on Heb 001

015 Ctl-o o o o o Heb holem

016 Ctl-p & & & o Heb furtive (reduced) qametz
017 Ctl-q e e e e Hebshewa (sheva)

018 Ctl-r @ @& @& e Hebtzere

019 Ctl-s a &8 a& a Hebgqgametz

020 Ctl-t 8 & & e Heb furtive (reduced) seghol
021 Ctl-u u u u u Hebgqgibbutz

023 Ctl-w § § §* § Heb dag shin: tbls dbl 3 or *sh
025 Ctl-y i i i i Heb hireq + yodh (long, ‘3)

COMPUTER-GENERATED TRANSLITERATION, page 102

APPENDIX 3 (ctd)

Ascii Key C CA M SM Notes

065 Sh-a ’ ’ ’ ’ Hebrew ’aleph

066 Sh-b b b b b Heb dagesh beth: tables double
067 Sh-¢ k k k k Heb dagesh kaph: tables double
068 Sh-d d d d d Heb dagesh daleth: tbls double
069 Sh-e § § § 8 Heb dagesh sin: tables double
070 Sh-f P P P p Hebdagesh pe: tables double
071 Sh-g 8 8 8 8 Heb dagesh gimel: tables double
072 Sh-h h h h h Heb mappiq he: tables double
073 Sh-i ‘ ¢ ¢ ¢ Hebrew ‘ayin

074 Sh-j t t t t Heb dagesh teth: tables double
075 Sh-k h h h h Hebrew heth

076 Sh-1 | 1 1 1 Heb dag lamedh: tables double
077 Sh-m m m m m Heb dagesh mem: tables double
078 Sh-n n n n n Hebdagesh nun: tables double
079 Sh-o 6 8 & o Hebrew waw (vav) + holem
080 Sh-p P P P p Heb dagesh pe: tables double
081 Sh-q q qQ q q Heb dagesh qoph: tables double
082 Sh-r T T r r Hebrew resh

083 Sh-s S 8 8 S Heb dag samekh: tables double
084 Sh-t t t t t Heb dag taw (tav): tbls double
085 Sh-u @ @ @ u Hebrew waw (vav) + shureq
086 Sh-v w w Vv v Hebrew waw (vav)

087 Sh-w § §* & ¥ Hebrew shin: *sh from tbis
088 Sh-x $ $ $ Heb dag tzadhe: tables double
089 Sh-y y y y y Heb dag yodh: tables double
090 Sh-z z z z Heb dagesh zayin: tbls double

COMPUTER-GENERATED TRANSLITERATION, page 103

APPENDIX 3 (ctd)

Ascii Ky C CA M $M Notes
097 Reg-a ’ ’ ’ ’ Hebrew ’aleph

098 Reg-b b b* b* v Heb beth: *bh from tables
099 Reg-c k k* k* c¢* Heb kaph: *kh or ch from tbls
100 Reg-d d d d d Heb daleth: *dh from tables
101 Reg-e § & & s Hebrewsin

102 Reg-f p p* p* f Heb pe: *ph from tables

103 Reg-g g g g g Hebgimel: *gh from tables
104 reg-h h h h h Hebrew he

105 Reg-i ‘ ‘ ‘ ‘ Hebrew ‘ayin

106 Reg-j t t t t Hebrew teth

107 Reg-k h h h h Hebrew heth

108 Reg-1 1 1 1 Hebrew lamedh

109 Regem m m m m Hebrew mem

110 Reg-n n n n n Hebrew nun

111 Reg-o 6 6 6 o Hebrew waw (vav) + holem
112 Reg-p p p* p* f Hebrew pe: *ph from tables
113 Reg-q 4 q ¢q k Hebrewqoph

114 Reg-r r r r r Hebrewresh

115 Reg-s s s s s Hebrew samekh

116 Reg-t t t* t t Heb taw (tav): *th from tbls
117 Reg-u @ 4 @ u Heb waw (vav) + shureq

118 Reg-v w v v Hebrew waw (vav)

119 Reg-w § $* 3§ § Hebrew shin: *sh from tables
120 Reg~x § §* s* ¢* Hebrew tzadhe: *tz from tbls
121 Reg-y y y y y Hebrew yodh

122 Reg-2z 2 2z z z Hebrew zayin

COMPUTER-GENERATED TRANSLITERATION, page 104

APPENDIX 3 (ctd)

Ascii Key C CA M SM Notes

131 Alt-e é é é e Hebrew tzere + yodh

132 Alt-r & @ 8 e Hebrew seghol + yodh

133 Alt-t t t t t Constant t for table ref

137 Alt-o o o o o Constant o for table ref

138 Alt-p P P P p Hebdag pe sofit: tbls double
143 Alt-a § 484 & a Hebrew qametz + yodh

144 Alt-s f f f f Constant f for table ref

145 Alt-d d d d d Constant d for table ref

146 Alt-f P p* p* f Heb pe sofit: *ph from tables
147 Alt-g g8 8 8 g Constant g for table ref

149 Alt-j ¢ ¢ ¢ ¢ Constant c for table ref

150 Alt-k k k k k Constant k for table ref

158 Alt-x $ $* s$* s* Heb tzadhe sofit: *tz from tbls
159 Alt-c k k* k* ¢* Heb kaph sofit: *kh/ch fr tbls
160 Alt-v v v v v Constant v for table ref

161 Alt-b b b b b Constant b for table ref

162 Alt-n n n n n Hebrew nun sofit

163 Alt-m m m m m Hebrew mem sofit

COMPUTER-GENERATED TRANSLITERATION, page 105

APPENDIX 4
Table to Convert MLS Hebrew to ASCII Roman Text Files

The first of each pair of expressions is ASCII, the second MLS.
The Table is arranged in sorted order: from highest to lowest
number of terms in the MLS expressions.

Wn\001\y\009\163 Rule 1 - Special terminology and
W\178\n\173\y\172\163 pronunciation exceptions.
Wt\001\y\009\163 - shenayim = shnayim
W\178\t\173\y\172\163 - shetayim = shtayim
wn\018\045 ~ sheney- = shne-
W\178\n\175\y\243 - shetey- = shte-
Wwt\018\045

WA178\t\175\y\243

\001\don\001\009 - yeya = adonai
\y\178\y\174

\137\b\45 Rule 3 - Short gqametz before maqqgef
\174\b\178\243 (hyphen) which is preceded
\137\c\45 by a letter with sheva.
\174\c\178\243 The sheva is quiescent.
\137\A\45

\174\d\178\243

\137\e\45

\174\e\178\243

\137\£f\45

\174\£\178\243

\137\g\45

\174\g\178\243

\137\i\45

\174\i\178\243

\137\j\45

\174\j\178\243

\137\k\45

\174\k\178\243

\137\1\45

\174\1\178\243

\137\m\45

\174\m\178\243

\137\n\45

\174\n\178\243

\137\q\45

\174\q\178\243

\137\r\45

\174\r\178\243

\137\s\45

\174\s\178\243

\137\t\45

\174\t\178\243

\137\v\45

\174\v\178\243

\137\w\45
\174\w\178\243
\137\x\45
\174\x\178\243
\137\z\45
\174\z\178\243
\137\W\45
\174\W\178\243
\137\a\016
\174\201\a\180
\137\h\016
\174\201\h\180
\137\i\016
\174\201\i\180
\137\k\016
\174\201\k\180
\137\b\45
\174\b\ 243
\137\c\45
\174\c\243
\137\d\45
\174\d\243
\137\e\45
\174\e\243
\137\102\45
\174\102\243
\137\g\45
\174\g\243
\137\j\45
\174\j\243
\137\k\45
\174\k\243
\137\1\45
\174\1\243
\137\m\ 45
\174\m\243
\137\n\45
\174\n\243
\137\q\45
\174\q\ 243
\137\r\45
\174\r\243
\137\s\45
\174\s\243
\137\t\45
\174\t\243
\137\v\45
\174\v\243
\137\w\45
\174\w\243

COMPUTER-GENERATED TRANSLITERATION, page 106

-APPENDIX 4 (ctd)

Rule 3 - Short gametz with metheg before
furtive gametz (see also rule 7).

Rule 4 - Short gametz before maqgef
(hyphen) .

\137\x\45
\174\x\243
\137\y\45
\174\y\243
\137\z\45
\174\z\243
\137\W\45
\174\W\243
\137\a\016
\174\a\180
\137\h\016
\174\h\180
\137\i\01s6
\174\i\180
\137\k\016
\174\k\180
\32\B\17
\32\B\178
\32\C\17
\32\C\178
\32\D\17
\32\D\178
\32\e\17
\32\e\178
\32\70\17

\32\70\178

\32\G\17
\32\G\178
\32\j\17
\32\j\178
\32\k\17
\32\k\178
\32\1\17
\32\1\178
\32\m\17
\32\m\178
\32\n\17
\32\n\178
\32\q\17
\32\q\178
\32\r\17
\32\r\178
\32\s\17
\32\s\178
\32\T\17
\32\T\178
\32\v\17
\32\v\178
\32\w\17
\32\w\178

COMPUTER-GENERATED TRANSLITERATION, page 107

APPENDIX 4 (ctd)

Rule 5 - Short gametz before furtive
gametz.

Rule 6 - Mobile sheva under first letter
of a word. When this is the first
of two shevaim together, the
second sheva is quiescent (see
Roman Table Rule 8).

\32\x\17
\32\x\178
\32\z\17
\32\z\178
\32\W\17
\32\W\178
\13\10\B\17
\128\B\178
\13\10\C\17
\128\C\178
\13\10\D\17
\128\D\178
\13\10\e\l17
\128\e\178
\13\10\70\17
\128\70\178
\13\10\G\17
\128\G\178
\13\10\3j\17
\128\3j\178
\13\10\k\17
\128\k\128
\13\10\1\17
\128\1\178
\13\10\m\17
\128\m\178
\13\10\n\17
\128\n\178
\13\10\q\17
\128\gq\178
\13\10\r\17
\128\r\178
\13\10\s\17
\128\s\178
\13\10\T\17
\128\T\178
\13\10\wv\17
\128\v\178
\13\10\w\17
\128\w\178
\13\10\x\17
\128\x\178
\13\10\z\17
\128\2z\178
\13\10\W\17
\128\W\178
\45\B\17
\243\B\178
\45\C\17
\243\C\178

COMPUTER-GENERATED TRANSLITERATION, page 108

APPENDIX 4 (ctd)

\45\D\17
\243\D\178
\45\e\17
\243\e\178
\45\70\17
\243\70\178
\45\G\17
\243\G\178
\45\3j\17
\243\j\178
\45\k\17
\243\k\178
\45\1\17
\243\1\178
\45\m\17
\243\m\178
\45\n\17
\243\n\178
\45\g\17
\243\q\178
\45\r\17
\243\r\178
\45\s\17
\243\s\178
\45\T\17
\243\T\178
\45\v\17
\243\v\178
\45\w\17
\243\w\178
\45\x\17
\243\x\178
\45\z\17
\243\z\178
\45\W\17
\243\W\178
\233\b\17
\178\b\178
\233\c\17
\178\c\178
\233\d\17
\178\d\178
\233\e\17
\178\e\178
\233\102\17
\178\102\178
\233\g\17
\178\g\178
\233\i\17
\178\i\178

COMPUTER~GENERATED TRANSLITERATION, page 109

APPENDIX 4 (ctd)

Rule 7 - First of two shevaim in the middle
or at the end of a word is quies-
cent. If a dagesh letter follows
the quiescent sheva, the dagesh is
dagesh lene (see Roman Table Rules
2 & 3).

\233\3i\17
\178\j\178
\233\k\17
\178\k\178
\233\1\17
\178\1\178
\233\m\17
\178\m\178
\233\n\17
\178\n\178
\233\aq\17
\178\q\178
\233\r\17
\178\r\178
\233\s\17
\178\s\178
\233\t\17
\178\t\178
\233\v\17
\178\v\178
\233\w\17
\178\w\178
\233\x\17
\178\x\178
\233\y\17
\178\y\178
\233\2\17
\178\z\178
\233\W\17
\178\W\178
\233\B\17
\178\B\178
\233\C\17
\178\C\178
\233\D\17
\178\D\178
\233\E\17
\178\E\178
\233\70\17
\178\70\178
\233\G\17
\178\G\178
\233\J\17
\178\J\178
\233\L\17
\178\L\178
\233\M\17
\178\M\178
\233\N\17
\178\N\178

COMPUTER-GENERATED TRANSLITERATION, page 110

APPENDIX 4 (ctd)

\233\Q\17
\178\Q\178
\233\8\17
\178\s\178
\233\T\17
\178\T\178
\233\V\17
\178\V\178
\233\X\17
\178\X\178
\233\Y\17
\178\Y\178
\233\2\17
\178\2Z\178
\233\005\17

\178\005\178

\009\b\233
\172\b\178
\001\b\233
\173\b\178
\137\b\233
\174\b\178
\005\b\233
\176\b\178
\021\b\233
\177\b\178
\009\c\233
\172\c\178
\001\c\233
\173\c\178
\137\c\233
\174\c\178
\005\c\233
\176\c\178
\021\c\233
\177\c\178
\009\d\233
\172\d\178
\001\d\233
\173\d\178
\137\d\233
\174\d\178
\005\d\233
\176\d\178
\021\d\233
\177\d\178
\009\e\233
\172\e\178

- \001\e\233

\173\e\178

COMPUTER-GENERATED TRANSLITERATION, page 111

APPENDIX 4 (ctd)

Rule 8 - Quiescent sheva after short vowel.
This rule covers short vowels
a,e,i,o,and u. Qametz before
sheva is read as short "o" unless
accompanied by metheg, in which
case it is long "a" by default.

\137\e\233
\174\e\178
\005\e\233
\176\e\178
\021\e\233
\177\e\178
\009\102\233
\172\102\178
\001\102\233
\173\102\178
\137\102\233
\174\102\178
\005\102\233
\176\102\178
\021\102\233
\177\102\17¢8
\009\g\233
\172\g\178
\001\g\233
\173\g\178
\137\g\233
\174\g\178
\005\g\233
\176\g\178
\021\g\233
\177\g\178
\009\i\233
\172\i\178
\001\i\233
\173\i\178
\137\1i\233
\174\i\178
\005\i\233
\176\i\178
\021\i\233
\177\i\178
\009\j\233
\172\j\178
\001\j\233
\173\3j\178
\137\j\233
\174\j\178
\005\j\233
\176\j\178
\021\j\233
\177\3\178
\009\k\233
\172\k\178
\001\k\233
\173\k\178

COMPUTER-GENERATED TRANSLITERATION, page 112

APPENDIX 4 (ctd)

\137\k\233
\174\k\178
\005\k\233
\176\k\178
\021\k\233
\177\k\178
\009\1\233
\172\1\178
\001\1\233
\173\1\178
\137\1\233
\174\1\178
\005\1\233
\176\1\178
\021\1\233
\177\1\178
\009\m\233
\172\m\178
\001\m\233
\173\m\178
\137\m\233
\174\m\178
\005\m\233
\176\m\178
\021\m\233
\177\m\178
\009\n\233
\172\n\178
\001\n\233
\173\n\178
\137\n\233
\174\n\178
\005\n\233
\176\n\178
\021\n\233
\177\n\178
\009\q\233
\172\q\178
\001\qg\233
\173\q\178
\137\q\233
\174\q\178
\005\q\233
\176\q\178
\021\g\233
\177\q\178
\009\r\233
\172\r\178
\001\r\233
\173\r\178

COMPUTER-GENERATED TRANSLITERATiON, page 113

APPENDIX 4 (ctd)

\137\r\233
\174\r\178
\005\r\233
\176\r\178
\021\r\233
\177\r\178
\009\s\233
\172\s\178
\001\s\233
\173\s\178
\137\s\233
\174\s\178
\005\s\233
\176\s\178
\021\s\233
\177\s\178
\009\t\233
\172\t\178
\001\t\233
\173\t\178
\137\t\233
\174\t\178
\005\t\233
\176\t\178
\021\t\233
\177\t\178
\009\v\233
\172\v\178
\001\v\233
\173\v\178
\137\v\233
\174\v\178
\005\v\233
\176\v\178
\021\v\233
\177\v\178
\009\w\233
\172\w\178
\001\w\233
\173\w\178
\137\w\233
\174\w\178
\005\w\233
\176\w\178
\021\w\233
\177\w\178
\009\x\233
\172\x\178
\001\x\233
\173\x\178

COMPUTER-GENERATED TRANSLITERATION, page 114

APPENDIX 4 (ctd)

\137\x\233
\174\x\178
\005\x\233
\176\x\178
\021\x\233
\177\x\178
\009\y\233
\172\y\178
\001\y\233
\173\y\178
\137\y\233
\174\y\178
\005\y\233
\176\y\178
\021\y\233
\177\y\178
\009\2\233
\172\z\178
\001\z2\233
\173\z\178
\137\z\233
\174\z\178
\005\z\233
\176\z\178
\021\z\233
\177\z\178
\009\W\233
\172\W\178
\001\W\233
\173\W\178
\137\W\233
\174\W\178
\005\W\233
\176\W\178
\021\W\233
\177\W\178
\126\b\233
\202\b\178
\126\c\233
\202\c\178
\126\d\233
\202\d\178
\126\e\233
\202\e\178

\126\102\233
\202\102\178

\126\g\233
\202\g\178
\126\i\233
\202\i\178

COMPUTER-GENERATED TRANSLITERATION, page 115

APPENDIX 4 (ctd)

Rule 9 - Quiescent sheva after accent.

\126\j\233
\202\j\178
\126\k\233
\202\k\178
\126\1\233
\202\1\178
\126\1\233
\204\1\178
\126\m\233
\202\m\178
\126\n\233
\202\n\178
\126\g\233
\202\g\178
\126\r\233
\202\r\178
\126\s\233
\202\s\178
\126\t\233
\202\t\178
\126\v\233
\202\v\178
\126\w\233
\202\w\178
\126\x\233
\202\x\178
\126\z\233
\202\z\178
\126\W\233
\202\W\178
\001\009
\173\y\172
\131\y\09
\175\y\172
\131\y\01
\175\y\173
\131\y\19
\175\y\174
\131\y\18
\175\y\175
\131\y\05
\175\y\176
\131\y\21
\175\y\177
\131\y\17
\175\y\178
\131\y\117
\175\y\117
\131\y\111
\175\y\111

COMPUTER-GENERATED TRANSLITERATION, page 116

APPENDIX 4 (ctd)

Rule 10 - Mute yod before i (ayi --> ai).

Rule 11 - Consonantal yod after long a., e
when the yod is followed by a
vowel. This rule takes precedence
over rules 14 and 15 below, which
provide for redundant yod after
these vowels.

\143\y\09
\174\y\172
\143\y\01
\174\y\173
\143\y\19
\174\y\174
\143\y\18
\174\y\175
\143\y\05
\174\y\176
\143\y\21
\174\y\177
\143\y\17
\174\y\178
\143\y\117
\174\y\117
\143\y\111
\174\y\111
\143\y\32
\174\y\32
\143\y\.
\174\y\.
\143\y\,
\174\y\,
\143\y\;
\174\y\;
\143\y\:
\174\y\:
\143\y\?
\N174\y\?
\143\y\45
\174\y\45
\143\y\13\10
\174\y\128
\25
\172\201\y
\131
\175\201\y
\132
\176\201\y
\143
\174\201\y
\25\126
\25\202\y
\172\126
\131\202\y
\175\126
\132\202\y
\176\126
\143\202\y

COMPUTER~GENERATED TRANSLITERATION, page 117

APPENDIX 4 (ctd)

Rule 12 - consonantal yod (y) after qgametz
at end of word.

Rule 13 - Redundant yod (y) after short i,e
and long a,e with metheg

Rule 14 - Redundant yod (y) after accented
short i,e and long a,e.

COMPUTER~-GENERATED TRANSLITERATION, page 118

APPENDIX 4 (ctd)
\25 Rule 15 - Redundant yod (y) after short i,e
\172\y and long a,e.
\131
\175\y
\132
\176\y
\143
\174\y
\32
\h\32 Rule 16 - Redundant he (h) when the last
. letter, without a vowel, at end
h. of word.
' - This rule can be deleted when
h, wishing to indicate Hebrew
H spelling. Some authorities
h; show final he, others do not.
h:
?
h?
\45
\h\45
\13\10
\h\128
\13\10
\128
\32
\32
Y
\01
*

\02
\03
\03
\160
\04
WW
\05
*x

\06
*
\07
*
\08

x

\10

x

\11
*

\12

COMPUTER-GENERATED TRANSLITERATION, page 119

APPENDIX 4 (ctd)
*

\14

\22

\22

\23\23 Dagesh shin configured on Ctl-w (ASCII 23)
\23

*

\25
1
\33

\34
#
\35
$
\36
%
\37
&
\38

\39
(
\40
)
\41
*

\42
+

\43
\44
\45
\46
/
\47
0
\48
1
\49
2
\50
3
\51
4
\52

5
\53

\54
\55
\56
9

\57
\58
59
\60
\61
\62
\63

\64
BB
\66
cc
\67
DD
\68
EE
\69
FF
\70
GG -
\71

\72

\73
JJ
\74

\75
LL
\76

\77
\78

QQ
\81

COMPUTER-GENERATED TRANSLITERATION, page 120

APPENDIX 4 (ctd)

Upper case used for dagesh consonants. All

dagesh letters converted to dagesh forte

(double letters). The Roman tables identify
when the six "begadkefat" letters (b,g,d,k,
f,t) are hard (dagesh lene).

\82
SsS
\83
TT
\84
\86
\87
\88
\89
ZZ
\90
\91
\92
\92
\93
\94
\95
\96
\97
\97
\98
A28
\99
\100
\101
\102
\103
\104
\105
\106

\107

e ———— T —

COMPUTER-GENERATED TRANSLITERATION, page 121

APPENDIX 4 (ctd)

Dagesh shin configured on Ctl-w (ASCII 23).

\108
\109
\110
\111
\113
\114
\115
\116
\117
\118
\119
\120
\121
\122
\123
t

1

\124
\125
\126
%*

\134
%*

\136
\138
\138
\146
\146
%*

\151
\158
\158

\159
\159

COMPUTER~GENERATED TRANSLITERATION, page 122

APPENDIX 4 (ctd)

\162
\162
\163
\163
\09
\172
\01
\173
\19
\174
\18
\175
\05
\176
\21
\177
\17
\178
\04
\179
\16
\180
\20
\181
\15
\197
\15
\198
\19
\199
\15
\200

\201
\126
\202
\126
\204
\17

\203
\45

\243

COMPUTER-GENERATED TRANSLITERATION, page 123

APPENDIX 4 (ctd)

COMPUTER-GENERATED TRANSLITERATION, page 124

This page 1is inserted to facilitate optional printing on both
sides of the page, each appendix starting with an odd number.

[

COMPUTER-GENERATED TRANSLITERATION, page 125
APPENDIX 5 |

Table to convert ASCII Roman to MLS Hebrew Text Files

HTRA is the table used for «classical (ancient) Hebrew translit-
eration. HTRB 1is an alternative table for classical Hebrew that
uses two letters rather than one with a diacritic mark to
represent the "begadkepat" letters b,g.d.k,p and t and the
letters tzadi and shin. HTRM is a table for modern Hebrew which
aspirates only the letters b,k and p and in so doing simplifies

"bh" to "v", "ph" to "f" and "kh" to "ch". The HTRB and HTRM
variations are noted in this printout.

\b\233\BB Rule 1 - Dagesh lene following quiescent
bB sheva.
\c\233\BB
cB
\d\233\BB
dB
\e\233\BB
eB
\£\233\BB
\102\B
\g\233\BB
gB
\i\233\BB
iB
\j\233\BB
jiB .
\k\233\BB
\107\B
\1\233\BB
1B
\m\233\BB
mb
\n\233\BB
nB
\q\233\BB
qB
\r\233\BB
rB
\s\233\BB
sB
\t\233\BB
tB
\v\233\BB
vB
\w\233\BB
wB
\x\233\BB
XxB

\z\233\BB
zB
\W\233\BB
WB
\b\233\CC
bC
\c\233\ccC
cC
\d\233\c¢C
dcC ,
\e\233\cCC
eC
\f\233\cCcC
\102\C
\g\233\CC
gC
\i\233\cCC
ic
\j\233\cC
jc
\k\233\ccC
\107\C
\1\233\CC
1C
\m\233\CC
mC
\n\233\cc
nC
\q\233\CC
qC
\r\233\ccC
rcC ~
\s\233\cC
sC
\t\233\cC
tC
\v\233\CC
vC
\w\233\cCC
wC
\x\233\CC
xC
\z\233\cC
zC
\W\233\cCC
wC
\b\233\DD
bD
\c¢\233\DD
¢D

COMPUTER-GENERATED TRANSLITERATION, page-126

APPENDIX 5 (ctd)

\d\233\DD
dD
\e\233\DD
eD
\£\233\DD
\102\D
\g\233\DD
gD
\i\233\DD
iD
\j\233\DD
jD
\k\233\DD
\107\D
\1\233\DD
1D
\m\233\DD
mD
\n\233\DD
nD
\@\233\DD
gD
~\r\233\DD
rD
\s\233\DD
sD
\t\233\DD
tD
\v\233\DD
vD
\w\233\DD
wD
\x\233\DD
xD
\z\233\DD
zD
\W\233\DD
WD
\b\233\FF
\b\70
\¢c\233\FF
\¢c\70
\d\233\FF
\d\70
\e\233\FF
\e\70
\£\233\FF
\102\70
\g\233\FF
\g\70

COMPUTER-GENERATED TRANSLITERATION, page 127

APPENDIX 5 (ctd)

\i\233\FF
\i\70
\j\233\FF
\j\70
\k\233\FF
\107\70
\1\233\FF
\1\70
\m\233\FF
\m\70
\n\233\FF
\n\70
\g\233\FF
\gq\70
\r\233\FF
\r\70
\s\233\FF
\s\70
\t\233\FF
\t\70
\v\233\FF
\v\70
\w\233\FF
\w\70
\xX\233\FF
\x\70
\z\233\FF
\z\70
\W\233\FF
\W\70
\b\233\GG
bG
\c\233\GG
cG
\d\233\GG
dG
\e\233\GG
eG
\f\233\GG
\102\G
\g\233\GG
gG
\i\233\GG
iG
\j\233\GG
3jG
\k\233\GG
\107\G
\1\233\GG
1G

COMPUTER-GENERATED TRANSLITERATION, page 128

APPENDIX 5 (ctd)

\m\233\GG
nG
\n\233\GG
nG
\q\233\GG
qG
\r\233\GG
rG
\s\233\GG
sG
\t\233\GG
tG
\v\233\GG
vG
\w\233\GG
wG
\x\233\GG
xG
\z\233\GG
zG
\W\233\GG
WG '
\b\233\TT
bT
\c\233\TT
cT
\d\233\TT
dT
\e\233\TT
eT
\£\233\TT
\102\T
\g\233\TT
gT
\i\233\TT
iT
\j\233\TT
jT
\k\233\TT
\107\T
\1\233\TT
1T
m\233\TT
mT
\n\233\TT
nT
\@\233\TT
qT
\r\233\TT
rT

COMPUTER-GENERATED TRANSLITERATION, page 129

APPENDIX 5 (ctd)

\s\233\TT
sT
\E\233\TT
tT
\v\233\TT
vT
\w\233\TT
wT
\x\233\TT
xT
\2\233\TT
2T
\W\233\TT
WT

\32\BB
\32\B
\32\CC
\32\C
\32\DD
\32\D
\32\FF
\32\70
\32\GG
\32\G
\32\TT
\32\T
\13\10\BB
\128\B
\13\10\cC
\128\cC
\13\10\DD
\128\D
\13\10\FF
\128\70
\13\10\GG
\128\G
\13\10\TT
\128\T
\45\BB
\45\B
\45\CcC
\45\C
\45\DD
\45\D
\45\FF
\45\70
\45\GG
\45\G
\45\TT
\45\T

COMPUTER-GENERATED TRANSLITERATION, page 130

APPENDIX 5 (ctd)

Rule 2 - Dagesh lene at beginning of word.

\19\BB
\137\BB
\19\CC
\137\cCC
\19\DD
\137\DD
\19\EE
\137\EE
\19\FF
\137\70\70
\19\GG
\137\GG
\19\JdJ
\137\JdJd
\19\LL
\137\LL
\19\MM
\137\MM
\19\NN
\137\NN
\19\QQ
\137\QQ
\19\ss
\137\8s
\19\TT
\137\TT
\19\XX
\137\XX
\19\YY
\137\YY
\19\22
\137\z22
\19\003
\137\003
\19\138
\137\138
\k\001\32
\001\107\32
\k\0O1\.
\001\107\.
\k\001\,
\001\107\,
\k\001\:;
\001\QO7\;
\k\001\:
\001\107\:
\k\001\?
\001\107\?
\k\001\45
\001\107\45

COMPUTER-GENERATED TRANSLITERATION, page 131

APPENDIX 5 (ctd)
Rule 3 - Short qametz before dagesh forte.

Rule 4 - short "a" (pathah) under guttural
at end of a word is pronounced
before not after the guttural.

\k\001\45\10
\001\107\128
\B\001\32
\001\H\32
\H\O0O1\.
\OO1\H\.
\B\001\,
\001\H\,
\H\001\;
\001\R\;
\H\001\:
\OO01\H\:
\H\001\?
\O001\H\?
\H\001\45
\001\H\45
\H\001\13\10
\001\HK\128
\i\001\32
\001\i\32
\i\001\.
\001\i\.

\i\ 001\,
\001\i\,
\i\001\;
\0O1\i\;
\i\001\:
\001\i\:
\i\001\?
\001\i\?
\i\001\45
\001\i\45
\i\001\13\10
\001\i\128
\a\001\32
\001\a\32
\a\001\.
\001\a\.
\a\001\ ’
\001\a\,
\a\001\:;
\001\a\:;
\a\001\:
\001l\a\:
\a\001\?
\001\a\?
\a\001\45
\001\a\45
\a\001\13\10
\001\a\128

COMPUTER-GENERATED TRANSLITERATION, page 132

" APPENDIX 5 (ctd)

\b\233\b
\b\17\b
\c\233\¢c
\c\17\¢c
\d\233\d
\d\17\d
\e\233\e
\e\l7\e
\f\233\102
\102\17\102
\g\233\g
\g\17\g
\j\233\j
\F\17\jJ
\k\233\107
\107\17\107
\1\233\1
\1\17\1
\m\233\m
\m\17\m
\n\233\n
\n\17\n
\q\233\q
\g\17\q
\r\233\r
\r\17\r
\s\233\s
\s\17\s
\t\233\t
\t\17\t
\v\233\v
\v\17\v
\w\233\w
\w\17\w
\x\233\x
\x\17\x
\y\233\y
\y\17\y
\z\233\z
\z\17\z
\W\233\w
\W\17\w
\17\b\17
\17\b
\17\c\17
\17\¢c
\17\d\17
\17\d
\17\e\17
\17\e

COMPUTER-GENERATED TRANSLITERATION, page 133

APPENDIX 5 (ctd) '

Rule 5 - The sheva is mobile in the first
of two similar letters even if it
would otherwise be quiescent,
e.g. if following a short vowel.

Rule 6 - The second of two shevaim together
at the beginning of a word is
quiescent. This rule complements
Hebrew Table Rule 6 which makes
the sheva under the first letter
of a word mobile.

COMPUTER-GENERATED TRANSLITERATION, page 134

APPENDIX 5 (ctd)
\17\102\17
\17\102
\17\g\17
\17\g
\17\i\17
\17\1i
\17\3\17
\17\j
\17\k\17
\17\k
\17\1\17
\17\1
\17\m\17
\17\m
\17\n\17
\17\n
\17\q\17
\17\q
\17\r\17
\17\r
\17\s\17
\17\s
\17\t\17
\17\t
\17\v\17
\17\v
\17\w\17
\17\w
\17\x\17
\17\x
\17\z\17
\17\z
\17\W\17
\17\W
\17\13\10 Rule 7 - Quiescent sheva at end of word.
\128
\17\32
\32
\17\.
\.
\17\,
\,
\17\;
\;
\17\:
\:
\17\7?
\?
\17\!
\!

COMPUTER-GENERATED TRANSLITERATION, page 135

APPENDIX 5 (ctd)
\17\45
\45
\13\10
\128
\32
\32
\233
\
\00
\00
\01
\01
\03
\03
\04
\04
\05
\05
\06
\06
\07
\07
\08
\08
\09
\09
\10
\10
\11
\11
\12
\12
\13
\13
\14
\14
\15
\15
\16
\16
\17
\17
\18
\18
\19
\19
\20
\20
\21
\21

\22
\22
\a3

T+ R RN~ s IR P RN

\47

~
>
~

OUodbWLNMNMR R OO

COMPUTER-GENERATED TRANSLITERATION, page 136

APPENDIX 5 (ctd)

RTRS renders shin, dag. forte, as a single
"sh". RTRA, B, & M process unchanged the
double shin recd from the Hebrew table as
either "ss" (RTRA) or "shsh" (RTRB, RTRM)

page 137

COMPUTER-GENERATED TRANSLITERATION,

APPENDIX 5 (ctd)

OO0 AO re oo ox inv VI NAAEOOLLMM

o
L
vLvAMEMEK -~ VOV EHEHHPLHM

107

AAEEZ

=

COMPUTER-GENERATED TRANSLITERATION, page 138

APPENDIX 5 (ctd)

00
]
o

RTRB, M & S render shin as "sh"

RTRB, M & S render tzadi as "tz"

NN DRSSl N0 AAO00

\092

\092

]

1

a

a

b RTRB & M render b as "bh", RTRS as "v".
b

¢ (configured as k) RTRB & M render k as "kh", RTRS as "ch"
c

d RTRB renders d as "dh", RTRM & S as "4d".
d

e

e

f (configured as p) RTRB & M render p as "ph", RTRS as "f".
\102

e RTRB renders g as "gh", RTRM & S as "g"
g .

COMPUTER-GENERATED TRANSLITERATION, page 139

APPENDIX 5 (ctd)

[y
o
~

RTRB & M render p as "ph", RTRS as "f".

[y
o
[

RTRB renders t as "th", RTRﬂ & S as "t".

(configured as s) RTRB, M & S render shin as "sh".

(configured as s) RTRB, M & S render tzadi as "tz".

e e e NN XN EECCEEArUHREAQ -0 O0O0OBBHEHH - FUUpPPDTY

\129
\129
\130
\130

\131
\131
\132
\132
\133
\133
\134
\134
\135
\135
\136
\136
\137
\137
\138
\138
\143
\143
\144
\144
\145
\145
\146
\146
\147
\147
\148
\148
\149
\149
\150
\150
\151
\151
\158
\158
\159
\159
\161
\161
\162
\162
\163
\163
\172
\172
\173
\173
\174
\174

(config as p) RT
as

COMPUTER~-GENERATED TRANSLITERATION, page 140

APPENDIX 5 (ctd)

RB & M render pe sofit as "ph", RTRS
llf!l. :

(config as s) RTRB, M & S render tzadi sofit as "tz".

(config as k) RTRB & M render kaf sofit as "kh", RTRS

as

Ilchll .

\175
\175
\176
\176
\177
\177
\178
\178
\179
\179
\180
\180
\181
\181
\197
\197
\198
\198
\199
\199
\200
\200
\201
\201
\202
\202
\203
\203
\204
\204
\205
\205
\206
\206
\234
\234
\235
\235
\236
\236
\237
\237
\238
\238
\239
\239
\240
\240
\241
\241

COMPUTER-GENERATED TRANSLITERATION, page 141

APPENDIX 5 (ctd)

\242
\242
\243
\243

COMPUTER-GENERATED TRANSLITERATION, page 142

APPENDIX 5 (ctd)

COMPUTER-GENERATED TRANSLITERATION, page 143

APPENDIX 6
Block Diagram for Program BITEX

‘ BITEXSCR FrontEnd
0 [Open files

L 4

Set cloze
variables
~ BITEX Main Program
1 [Init variables
Move header
info to BF
v

2 Move 1 line

HF to HA

v L’ RA: Roman Array
Move 1 line
RF to RA

v _[RWB:
‘ o
Move 1 word Roman Worﬁ Buffer

LINE CYCLE

* RA to RWB

v
5| Move 1 word
HA to HWB

Reflne? 6‘ Reflne

Y Transliteration
N |
w| 7|Move1 word |
3] RWBtoBA2
D=
° | and alian | [BA(2) l—v
= = -
8 Cloze? 8 Cloze BITEX (2) Array - Roman
Y Procedure
9 Move 1 word
HWBto BA 1
and align
N
Carrlage
return?
10 BF:

Move :

BA to BF BglEex

N

End of file?
Y Anotherrun? BIOCk d|ag I'am fOI’

Program BITEX

COMPUTER-GENERATED TRANSLITERATION, page 144

This page is inserted to facilitate optional printing on both
sides of the page, each appendix starting with an odd number.

COMPUTER-GENERATED TRANSLITERATION, page 145

APPENDIX 7
Flow Chart for Block 4 of Program BITEX

From Block 3

rcr ERROR
=17 MESSAGE '
rspace
> 07
to
EOF? reof = 1 MOVE SPACE . Y rwbproc:
: to rapl,2
N
rpass to rwctr:
= 17? rpass = 2 Lo
rpass = 0
rspace X Ewggdfin
> 0 & N rspace = 0} ADJUST PTAS
spc? rwordfin FOR
= 0 NEXT READ_
N
to
rwbend: .
rspace = to rwbproc:
rspace + 1 :7
rspace 1
> 0 & Y rer = 1 rspace = 0} | MOVE SPACE
CR? rwordfin TO rapl,2
= 0 ’ .
N
to
rwbproc:

rspace
> 0 &
new

word ?
N

1st
spc?

CR?

COMPUTER-GENERATED TRANSLITERATION, page 146

APPENDIX 7 (ctd)

rspace = 0

ADJUST PTRS

to rwbend:

rwordfin FOR
=0 NEXT READ
rpass
= 2?
rspace = Y to rwbproc:
rscace + 1 —
rwordfin
= 2? rwordfin
=0
to .
rwbproc:
P —>
rwordfin to rwctr: |
=1
rpass
= 27?
to
rcr = 1 .} MOVE SPACE / Y rwbproc: —
rwordfin TO rapl,?2
= 0
N to
rwctr:
RWCTR:
> RWBPROC:

i

RWBEND:

COMPUTER~-GENERATED TRANSLITERATION, page 147

APPENDIX 8
Program BITEX

80 'BLOCK 0. BITEXSCR Front End to Program BITEX

90 'Program BTXEXSCR.BAS is chained to BITEX.BAS and uses Include
95 'File BTXCOM.BI. It enables the user to open two input files,
100 'a Hebrew and Roman text file, and a BITEX output file and to
105 'assign values to variables used in the cloze procedure.

110 'Read in the contents of the BTXCOM.BI file:

112 '$SINCLUDE: 'BTXCOM.BI'

204 ON ERROR GOTO errorhandler

208 IF filesw = 1 THEN GOTO filescreen 'set at end of BITEX

210 hebrew$S = "a:intext.heb" 'to repeat input files'
211 roman$ = "a:intext.rom" ‘default names for

212 bitex$ = "a:outtext.btx" ‘additional pass

214 OPEN "lptl:" FOR OUTPUT AS #6

filescreen:

216 filesw = 0

220 CLS

222 LOCATE 1, 17:

223 PRINT "PROGRAM BITEX Copyright, Curtis Rice, 1988"
230 LOCATE 3, 17

231 PRINT "This program makes an output file from two input files,"
234 LOCATE 4, 17

235 PRINT "a Hebrew and transliterated Roman text file. The output"
238 LOCATE 5, 17

239 PRINT "file displays alternating Hebrew and Roman lines, with"
240 LOCATE 6, 17

241 PRINT "each Roman word beneath its corresponding Hebrew word."
248 LOCATE 8, 17

249 PRINT "Enter input files to use and output file desired."”

252 LOCATE 9, 17

253 PRINT "to make. Enter dsk drive & file name: eg A:GENESIS.HEB."
256 LOCATE 10, 17

257 PRINT "Be sure input files are on drive. <(CR> enters file used"
260 LOCATE 11, 17

261 PRINT "on last pass if repeating run. BASIC 'redo from start'"
262 LOCATE 12, 17

263 PRINT "prompt means redo name you are on, not previous names."
274 LOCATE 14, 22

276 PRINT “1. Hebrew input file"

278 LOCATE 16, 22

280 PRINT "2. Roman input file"

282 LOCATE 18, 22

284 PRINT "3. BITEX output file"

300 LOCATE 14, 43: INPUT ; filename$

304 1IF filename$ = "" THEN filename$ = hebrew$

306 erreturn$ = hebrew$

COMPUTER-GENERATED TRANSLITERATION, page 148

APPENDIX 8 (ctd)

310 OPEN filename$ FOR INPUT AS #4 'to trap file not found error
320 CLOSE #4: OPEN filename$ FOR BINARY AS #1
321 hebrew$ = filename$ 'hebrew$ identifies file in use
322 LOCATE 14, 60: PRINT "Opened "; filename$
325 PRINT #6, "#1 BINARY filename is "; filename$;
330 LOCATE 16, 43: INPUT ; filename$
332 1IF filename$ = "" THEN filename$ = roman$
334 erreturn$ = roman$
335 OPEN filename$ FOR INPUT AS #5
345 CLOSE #5: OPEN filename$ FOR BINARY AS #2
346 roman$ = filename$
347 LOCATE 16, 60: PRINT "Opened "; filename$
350 PRINT #6, " #2 BINARY filename is "; filename$§;
352 LOCATE 18, 43: INPUT ; filename$
353 1IF filename$ = "" THEN filename$ = bitex$
355 LOCATE 21, 17: PRINT *“ "
356 PRINT " "
357 LOCATE 22, 17: PRINT " ";
358 LOCATE 20, 50: PRINT " (<CR> means Y)"
360 LOCATE 20, 12: PRINT "BITEX name "; filename$; " OK (Y/N) "
361 LOCATE 20, 47: INPUT ; reply$
372 1IF reply$ = "" THEN GOTO 380
374 1IF reply$ = "y" OR reply$ = "Y" THEN GOTO 380
376 IF reply$ = "n" OR reply$ = "N" THEN GOTO 352
380 OPEN filename$ FOR BINARY AS #3
381 bitex$ = filename$
382 LOCATE 18, 60: PRINT "Opened "; filename$
384 LOCATE 25, 17: PRINT " Press any key to continue "
385 DO
386 LOOP WHILE INKEYS = ""
388 PRINT #6, " #3 binary filename is "; filename$
390 GOTO screencloze
errorhandler:
400 CONST filenotfound = 53
405 IF ERR = filenotfound THEN
415 LOCATE 20, 17
420 PRINT "File "; UCASES$(filename$); " not found. "
425 LOCATE 21, 17
. 426 PRINT "Enter drive, a:...b...or... unless file on drive in use"
440 LOCATE 22, 17: INPUT ; "Reenter filename: ", filename$
460 1IF filename$ = "" THEN filename$ = erreturn$
470 RESUME
480 END IF

COMPUTER~-GENERATED TRANSLITERATION, page 149

APPENDIX 8 (ctd)

screencloze:

502
504
505
508
509
512

513 PRINT "You can then set cumcloze variables to delete every nth"
516 LOCATE 4, 17

517 PRINT "word. If cloze = 7 & cumcloze = 1, words 1,8,15... are"
520 LOCATE 5, 17

521 PRINT "deleted. If in addition cumcloze4 = 4, words 1,4,8,11..."
524 LOCATE 6, 17

525 PRINT "are deleted. If all cumcloze variables = the #s in their"
528 LOCATE 7, 17

529 PRINT "names, all Roman text is deleted. If clozev = 1, all"
532 LOCATE 8, 17

533 PRINT "vowel pointing is deleted from the Hebrew text. "

548 LOCATE 10, 17

549 PRINT "Run BITEX as many times as desired to create a series of"
552 LOCATE 11, 17 _

553 PRINT "files to use as a reading tutorial. The BASIC 'redo from"
556 LOCATE 12, 17

557 PRINT "start' prompt means redo only the variable you are on."
560 LOCATE 14, 17

561 PRINT "Set cloze to 7 (Y/N): (<CR> sets to 0O)"

564 LOCATE 15, 17

565 PRINT "Set cumclozel to 1 (Y/N): (<CCR> or N unsets)"

568 LOCATE 16, 17

569 PRINT "Set cumcloze2 to 2 (Y/N): (<CR> or N unsets)"

572 LOCATE 17, 17

573 PRINT "Set cumcloze3d to 3 (Y/N): (<CR> or N unsets)"

576 LOCATE 18, 17

577 PRINT "Set cumclozed to 4 (Y/N): (<CR> or N unsets)"”

580 LOCATE 19, 17

581 PRINT "Set cumcloze5 to 5 (Y/N): (<CR> or N unsets)"

584 LOCATE 20, 17

585 PRINT "Set cumclozeé6 to 6 (Y/N): (<CR> or N unsets)"

590 LOCATE 21, 17

591 PRINT "Set cumcloze7 to 7 (Y/N): (<CR> or N unsets)"

594 LOCATE 22, 17)

595 PRINT "Set clozev to 1 (Y/N): (<CCR> or N unsets)";

600 LOCATE 14, 43: INPUT ; cloze$

clozecheck:

610 IF cloze$ = "" THEN cloze = 0: GOTO cumlcheck

615 IF cloze$ = "y" THEN cloze = 7: GOTO cumlcheck

620 IF cloze$ = "Y" THEN cloze = 7: GOTO cumlcheck

630 IF cloze$ = "n" OR cloze$ = "N" THEN

635 LOCATE 14, 10

640 PRINT "cloze: enter value between 0 & 7 (<CR> sets

CLS O

LOCATE 1, 17:

PRINT "Program BITEX cloze procedure will delete as much Roman”;
LOCATE 2, 17

PRINT "text as you wish. Set cloze to any n value from 0 - 7"
LOCATE 3, 17

COMPUTER-GENERATED TRANSLITERATION, page 150

APPENDIX 8 (ctd)

645 LOCATE 14, 45: INPUT ; cloze

650 IF cloze = 0 THEN GOTO cumlcheck

655 IF cloze < 0 OR cloze > 7 THEN

660 LOCATE 14, 10

665 PRINT " cloze range 0 - 7, Reenter: (<CR> sets to

o)ll .

670 LOCATE 14, 45: INPUT ; cloze

675 GOTO 650

680 END IF

682 GOTO cumlcheck

683 END IF

685 IF cloze$ <> "y" OR cloze$ <> "Y" OR cloze$ <> "n" OR cloze$ <>

"N" THEN

690 LOCATE 14, 10

695 PRINT "cloze: enter Y(7) N(1-6) or <CR>(0): (<CR> sets to

0) ”

696 LOCATE 14, 45: INPUT ; clozeS$

697 GOTO clozecheck:

698 END IF

cumlcheck:

700 'PRINT #6, "cloze$S = "; clozeS$; " cloze = "; cloze

704 LOCATE 14, 66: PRINT "set "; cloze

708 LOCATE 15, 43: INPUT ; cloze$

712 cn = 1: a% = 15: GOSUB cumroutine:

716 cumclozel = cumclozev

718 LOCATE 15, 66: PRINT "set "; cumclozel

722 'PRINT #6, "cumclozel = "; cumclozel;

724 LOCATE 16, 43: INPUT ; cloze$

726 cn = 2: a% = 16: GOSUB cumroutine

728 cumcloze2 = cumclozev

730 LOCATE 16, 66: PRINT "set "; cumclozel

732 'PRINT #6, "cumcloze2 = "; cumcloze2;

736 LOCATE 17, 43: INPUT ; cloze$

740 cn = 3: a% = 17: GOSUB cumroutine

744 cumcloze3 = cumclozev :

748 LOCATE 17, 66: PRINT "set "; cumcloze3

752 'PRINT #6, "cumclozeld = "; cumcloze3;

756 LOCATE 18, 43: INPUT ; cloze$

760 cn = 4: a% = 18: GOSUB cumroutine

764 cumclozed = cumclozev

768 LOCATE 18, 66: PRINT "set "; cumclozed
. 772 'PRINT #6, "cumclozed = "; cumclozed;

776 LOCATE 19, 43: INPUT ; cloze$

780 cn = 5: a% = 19: GOSUB cumroutine

782 cumcloze5 = cumclozev

784 LOCATE 19, 66: PRINT "set "; cumcloze5

786 'PRINT #6, "cumclozeb = "; cumcloze5;

788 LOCATE 20, 43: INPUT cloze$

790 cn = 6: a% = 20: GOSUB cumroutine

792 cumcloze6 = cumclozev

794 LOCATE 20, 66: PRINT "set "; cumclozeé

COMPUTER-GENERATED TRANSLITERATION, page 151

APPENDIX 8 (ctd)
796 'PRINT #6, "cumcloze6 = "; cumclozeéb;
798 LOCATE 21, 43: INPUT cloze$
800 cn = 7: a% = 21: GOSUB cumroutine
802 cumcloze7 = cumclozev
804 LOCATE 21, 66: PRINT "set "; cumcloze?7
806 'PRINT #6, "cumcloze7 = "; cumcloze7;

810 LOCATE 22, 43: INPUT cloze$

clozevrtne:

814 IF cloze$ = "" THEN clozev = 0: GOTO screendone

818 IF cloze$ = "y" OR cloze$ = "Y" THEN clozev = 1l: GOTO screendone
822 IF cloze$ = "n"” OR cloze$§ = "N" THEN clozev = 0: GOTO screendone
826 IF cloze$ <> "y" OR cloze$ <> "Y" OR cloze$ <> "n" OR cloze$§ <>
"N" THEN :
830 LOCATE 22, 15

834 PRINT "clozev: enter Y, N or <CR>: (Y=1 N=0 <CR>=0) "
838 LOCATE 22, 43: INPUT cloze$

842 GOTO clozevrtne

846 END IF

cumroutine: ,

900 IF cloze$ = "" THEN cumclozev = =1l: GOTO exitcum

904 IF clozeS = "y" OR cloze$ = "Y" THEN cumclozev = cn: GOTO
exitcum

908 IF cloze$ = "n" OR cloze$§ = "N" THEN cumclozev = °'-1: GOTO
exitcum

920 IF cloze$ <> "y" OR cloze$ <> "Y" OR cloze$ <> "n" OR cloze$ <>
"N" THEN

924 LOCATE a%, 10

928 PRINT "cumcloze";

930 LOCATE a%, 18

931 - PRINT c¢cn; " ="; cn; ": Y, N or <CR>: (<CCR> or N unsets)"
932 LOCATE a%, 43: INPUT cloze$

936 GOTO cumroutine

940 END IF

exitcum:

944 RETURN

screendone:
950 LOCATE 22, 66: PRINT "set "; clozev

951 PRINT #6, "cloze settings: cloze: "; cloze; ", cumcloze: ";
952 PRINT #6, cumclozel; " "; cumcloze2; " "; cumcloze3; " ";
953 PRINT #6, cumclozed; " "; cumclozeb; " "; cumclozeé; " ";
962 PRINT #6, cumcloze7; " "; "clozev = "; clozev

990 CHAIN "BITEXTR2"
999 END

COMPUTER-GENERATED TRANSLITERATION, page 152
APPENDIX 8 (ctd)

1002 'Program BITEX.BAS is chained to BTXSCR.BAS

1004 'using Include file BTXCOM.BI

1006 'PROGRAM BITEX.BAS creates an output file from two input
1008 'files, a Hebrew text file, and a Roman text file which has
1010 'transliterated the Hebrew text. The output file displays
1012 'first a line of Hebrew and then a line of Roman with each
1014 'Roman word appearing beneath its corresponding Hebrew word.
1016 'A cloze procedure is included which progressively deletes
1018 'the Roman text until only the Hebrew is left. A block is
1022 'also included for direct transliteration of Hebrew to Roman
1024 'to supplement the MLS-CTIU tables or to act independently.

1026 'BLOCK 1. Initialise variables and move header information
1027 'to BITEX output file (bf).

1028 'Open files, declare variables and read first 400 bytes
1032 'from Hebrew File (hf,#1) to BITEX File (bf,#3)

1036 'Read in the contents of the BTXCOM.BI file

1040 ' SINCLUDE: 'BTXCOM.BI'

1100 PRINT #6, " Hebrew file = "; hebrew$ 'to confirm

1150 PRINT #6, " Roman file = "; roman$S 'opened files

1200 PRINT #6, " BITEX file = "; bitex$

1260 DIM ha(l TO 200) AS STRING * 1 ‘'Hebrew array

1270 DIM ra(l TO 200) AS STRING * 1 'Roman array

1280 DIM ba(2, 200) AS STRING * 1 'BITEX array

1300 DIM rwb(l TO 80) AS STRING * 1 'Roman word buffer
1320 DIM hwb(l TO 80) AS STRING * 1 'Hebrew word buffer

1350 DIM bl AS STRING * 1: DIM b2 AS STRING * 1 'Heb binary rd/wr
1370 DIM b3 AS STRING * 1: DIM b4 AS STRING * 1 'Rom binary rd/wr
1380 GOSUB nullarray:

1390 rwe = 0: hwe = 0: 'Rom/Heb word counters
1392 crwec = 0: chwe = 0 'cumulative word ctrs
1394 rapl = -1: hapl = -1 'Rom/Heb array pointers
1395 rpl = -1: hpl = -1 'BITEX array pointers
1396 rread = 1: rpass = 1l: hpass = 1 'first pass flags

1399 heof = 0: reof = 0: 'Heb EOF (1), Rom EOF(2)
1400 rwordfin = 0: hwordfin = 0 'end of proc'g wd flags
1401 rskipflag = 0: hskipflag = 0 'lst pass control flags
1410 twe =1 'translit word ctr Block
1440 FOR n = 0 TO 399

1450 GET #1, , bl ‘read 400 bytes 1 by 1

1500 PUT #3, , bl
1600 NEXT n

1610 'Read 2-byte prt format instructions from hf to bf
1620 GET #1, , bl: GET #1, , b2 'read 2-bytes
1630 IF bl = CHRS$(59) THEN 'if 1st byte = ;
1640 PRINT #6, "Print format instructions in hf are:"

COMPUTER-GENERATED TRANSLITERATION, page 153

APPENDIX 8 (ctd)

1650 DO
1660 PUT #3, , bl: PUT #3, , b2
1670 PRINT #6, bl; b2;
1680 GET #1, , bl: GET #1, , b2
1690 LOOP UNTIL bl = CHRS$(128) ‘continue until MLS CR
1700 PUT #3, , bl: PUT #3, , b2 'write CR and go to next
1730 PRINT #6, ASC(bl); AsSC(b2) 'block to read Heb text
1750 END IF
1800 'Skip first 400 bytes, print format instructions & CTIU
1805 'language delimiter in rf in order to position read pointer
1810 'at start of text.
1820 GET #2, 401, b3: GET #2, , b4 'skip 1st 400 bytes
1830 IF b3 = CHRS$(59) THEN 'skip prt format instr
1840 GOSUB Readloop 'starting with ";"
1850 GET #2, , b3: GET #2, , b4
1860 IF b3 = CHRS$(47) THEN 'skip lang delimiter
1870 GOSUB Readloop 'starting with "/"
1880 GET #2, , b3: GET #2, , b4
1890 ELSE
1910 PRINT #6, "Language delimiter not found in File #2."
1920 STOP
1930 END IF
1940 IF b3 = CHRS$(47) THEN 'exits from 1870 above
1950 GOSUB Readloop
1960 GET #2, , b3: GET #2, , b4 'b3 & b4 have 1lst char
1970 END IF 'or prog stops
1980 PRINT #6, "First two characters of rf in b3 & b4 =";
1985 PRINT #6, ASC(b3); ASC(b4)
1990 ra(l) = LEFTS(b3, 1)
1995 ra(2) = LEFTS$(b4, 1) ‘puts 1lst char into ra
readhf:
2100 'BLOCK 2. Move one line from Hebrew file to Hebrew array.
2150 FOR n = 1 TO 200 STEP 2
2170 n2 =n + 1
2172 IF EOF(1) THEN EXIT FOR
2200 GET #1, , bl: GET #1, , b2 'read 2-bytes
2300 ha(n) = LEFTS$(bl, 1) 'byte 1 into ha 1...
2400 ha(n2) = LEFTS$(b2, 1) 'byte 2 into ha 2...
2600 IF bl = CHR$(128) AND b2 = CHRS$(1l) THEN

- 2620 EXIT FOR '‘exit at MLS CR
2630 ELSEIF EOF(1l) THEN
2640 EXIT FOR
2650 END IF
2700 NEXT n
2750 'PRINT #6, "n = "; n; "n2 = "; n2
2760 'PRINT #6, "Ascii codes in ha up to above values of n are:"
2800 IF n >= 200 THEN _
2820 PRINT #6, "" 'error: need to check
2840 PRINT #6, "Hebrew line too long" 'text & shorten line

COMPUTER-GENERATED TRANSLITERATION, page 154

APPENDIX 8 (ctd)

2860 STOP

2900 END IF

2930 ' FOR n =1 TO 200 'print asc codes in ha

2931 ° IF ha(n) = "" THEN EXIT FOR

2932 ' PRINT #6, ASC(ha(n));

2934 ' NEXT n ,

2980 °'PRINT #6, "

2990 'PRINT #6, "End of Hebrew Array block"

readrf: _

3000 'BLOCK 3. Move one line from Roman file to Roman array.

3010 IF rread = 1 THEN 'for 1lst read only b3

3014 a% = 3: rread = 0 '& b4 moved to ra at

3016 ELSE a% = 1 1960 above.

3018 END IF

3100 FOR n = a% TO 200 STEP 2 'move char's into ra

3200 n2=n-+1 ‘up to & incl CR

3210 IF EOF(2) THEN EXIT FOR

3350 GET #2, , b3: GET #2, , b4

3400 ra(n) = LEFTS(b3, 1)

3450 ra(n2) = LEFTS(b4, 1)

3600 IF b3 = CHRS$(128) AND b4 = CHR$(0) THEN

3610 EXIT FOR

3620 ELSEIF EOF(2) THEN

3624 EXIT FOR

3630 END IF

3700 NEXT n

3720 'PRINT #6, "n = "; n; "n2 = "; n2 'print final values

3750 IF n >= 200 THEN

3754 PRINT #6, "Roman line too long"

3760 STOP

3770 END IF

3780 'PRINT #6, "Ascii codes in ra for above values of n are:"

3800 'FOR n = 1 TO 200 '‘print asc codes in ra

3820 ' IF ra(n) = "" THEN EXIT FOR

3840 ' PRINT #6, ASC(ra(n)):

3860 'NEXT n

3920 'PRINT #6, "": PRINT #6, "End of Roman Array block"

rwb:

4000 'BLOCK 4. Move one word from Roman array to Roman word buffer.

.4004 IF rcr = 1 THEN

4006 PRINT #6, "Rom 1ln ended before Heb: rcr, hcr = "; rcr; her

4008 STOP

4009 END IF

4010 rbc = 0: rcec = 0: rspace = 0: ‘Roman byte, char &

4012 n = -1 'space ctrs set to O
'rpass is flag to mark 1st

rwbloop:

4014 n = n + 2: n2 =n + 1

4018 rapl = rapl + 2: rap2 = rapl + 1

4022
4026
4030
4032
4034
4038
4039
4042
4046
4050
4052
4054
4058
4062
4064
4065
4068
4069
4072
4076
4080
4084
4088
4092
4096
4100
4104
4108

4112
4116

4118 .

4120
4124
4125
4128
4132
4136
4138
4140
4144

. 4148

4152
4156
4160
4164
4168
4172
4176
4178
4180

COMPUTER-GENERATED TRANSLITERATION, page 155

APPENDIX 8 (ctd)

IF ra(rapl) = CHR$(0) AND ra(rap2) = CHRS$(0) THEN
reof =1 'EOF flag - EOF needs
ra(rapl) = CHRS(32) 'space inserted as wd
ra(rap2) = CHRS$(0) ‘whose end it marks is
IF rspace > 0 THEN 'first not last in ma2
! PRINT #6, "rap 1,2 at spc/EOF(2), go rwbend: rspace =";
! PRINT #6, rspace
GOTO rwbend: 'keep byte ct consist
ELSE '‘for translit block
! PRINT #6, "rapl,2 at wd/EOF(2), goto rwctr: rspace =";
! PRINT #6, rspace
GOTO rwctr:
END IF
END IF
IF ra(rapl) = CHR$(32) AND rpass = 1 THEN rpass = 2
' First character space
IF ra(rapl) = CHR$(128) AND rpass = 1 THEN rpass = 2
' First character carriage return (CR)
IF rpass = 1 THEN rpass = 0
IF rspace > 0 AND ra(rapl) = CHR$(32) THEN '2nd or more spcC
IF rwordfin = 1 THEN 'real word processed
rspace = 0: rwordfin = 2 ‘'space after real word
rapl = rapl - 2: rap2 = rapl + 1 'adj for next read
GOTO rwbend: ‘read Heb & proc to ma -
END IF
rspace = rspace + 1 'init space(s) & extra
GOTO rwbproc: '‘space(s) before word
ELSEIF rspace > 0 AND ra(rapl) = CHRS$(128) THEN
'this is either CR or 1st
rcr = 1 ‘Rom CRflag marks end
ra(rapl) = CHRS$(32) ‘line ending w spaces
ra{rap2) = CHRS(0) ~ 'space substituted for
rspace = 0: rwordfin = 0 'CR for ma2
* PRINT #6, "rapl,2 on spc/CR, go rwbproc: rspace=";
' PRINT #6, rspace
GOTO rwbproc:
ELSEIF rspace > 0 THEN
' PRINT #6, “"ral,2 at new wd, go rwbend: rpass,rspace =";
' PRINT #6, rpass; rspace
rspace = 0: rwordfin = 0 'ptrs on 1lst char new wd
rapl = rapl - 2: rap2 = rapl + 1 'adj ptrs for next cycle
GOTO rwbend:
END IF
IF ra(rapl) = CHRS$(32) AND ra(rap2) = CHR$(0) THEN
rspace = rspace + 1 'first rspace
IF rpass = 2 THEN GOTO rwbproc:
IF rwordfin = 2 THEN 'space after real word
rwordfin = 0
GOTO rwbproc:
END IF ‘'signals real wd procssd
rwordfin = 1

COMPUTER-GENERATED TRANSLITERATION, page

156

APPENDIX 8 (ctd)

4182 GOTO rwctr:

4184 ELSEIF ra(rapl) = CHR$(128) AND ra(rap2) = CHR$(0) THEN
4186 rcer = 1: rwordfin = 0 'Rom CR flag

4188 ra(rapl) = CHRS$(32): ra(rap2) = CHRS(0) 'init CR

4190 IF rpass = 2 THEN

4191 PRINT #6, "ral,2 on init CR, goto rwbproc"”

4192 GOTO rwbproc:

4193 ELSE

4194 ' PRINT #6, "ral,2 on reg CR, goto rwctr, rspace =";
4195 PRINT #6, rspace

4196 GOTO rwctr: 'CR marks end ra: adv
4197 END IF 'rwc & replace w space
4198 END IF 'as this will be first
4199 GOTO rwbproc: 'word in ma2

rwctr:

4200 rwec = rwec + 1l: crwec = crwe + 1

4202 IF rwc = 1 THEN 'allows for space not
4203 rce =rcec + 1 'proc to be replaced by
4204 GOTO rwbend 'spec CR in ma2 as

4206 ELSE GOTO rwbproc: 'this is last wd in ma2
4210 END IF

rwbproc:

4230 rwb(n) = ra(rapl): rwb(n2) = ra(rap2)

4240 rbc = rbc + 2 '2 added to byte ctr
4250 rce = rece + 1 'l added to letter ctr
4260 IF rcr = 1 THEN

4264 GOTO rwbend:

4266 ELSEIF reof = 1 THEN

4267 GOTO rwbend:

4268 END IF

4300 v = ASC(ra(n2)) AND 128

4400 IF v = 128 THEN 'if vowel bit "1" then
4420 n=n+2: n2=n-+1 'next 2 bytes read and
4424 rapl = rapl + 2 'counted but character
4425 rap2 = rapl + 1 'count ignored

4430 rwb(n) = ra(rapl): rwb(n2) = ra(rap2)

4440 rbc = rbec + 2

4450 IF n < 79 THEN GOTO rwbloop: '‘go to read next 2 bytes
4460 END IF

4600 IF n < 79 THEN GOTO rwbloop: 'when n=79, bytes 79/80
rwbend: 'have just been procssd
4610 'PRINT #6, “"rpass:"; rpass; " rbec, rcc, rwec, crwe:";

4611 'PRINT #6, rbc; rcec; rwe; crwc

4612 'PRINT #6, "rcr, reof, rapl, n & contents of rwb:";

4613 'PRINT #6, rcr; reof; rapl, n

4620 'FOR n = 1 TO 80

4622 ' PRINT #6, ASC(rwb(n)):

4624 'NEXT n

4626 'PRINT #6, "": PRINT #6, ""

COMPUTER~-GENERATED TRANSLITERATION, page 157

APPENDIX 8 (ctd)

hwb:

5000 'BLOCK 5. Move one word from Hebrew array to Hebrew word
buffer.

5100 hbe = 0: hee = 0: hspace = 0 'Heb byte, char &

5110 n = -1 'space counters

hwbloop:

5120 n = n + 2: n2 = n + 1

5130 hapl = hapl + 2: hap2 = hapl + 1 'hapl,2 governs ha

5140 IF ha(hapl) = CHRS$(0) AND ha(hap2) = CHR$(0) THEN

5150 heof =1 'eof marker

5151 ha(hapl) = CHR$(128) 'CR needed to mark

5153 ha(hap2) = CHRS$(1) 'end of line

5152 IF hspace > 0 THEN

5160 ' PRINT #6, "hapl,2 on spc/EOF(l1l), go hwbend: hspace =";
5161 ' PRINT #6, hspace

5164 hwb(n) = ha(hapl): 'to process CR without
5166 hwb(n2) = ha(hap2) '‘increasing byte count
5170 GOTO hwbend: 'for byte consistency
5172 ELSE 'in translit block

5173 ° PRINT #6, "hapl,2 on wd/EOF(l), go hwctr: hspace =";
5174 PRINT #6, hspace

5175 GOTO hwcectr:

5180 END IF

5181 END IF

5182 IF ha(hapl) = CHRS$(32) AND hpass = 1 THEN hpass = 2

5183 'First character space

5184 IF ha(hapl) = CHRS$(128) AND hpass = 1 THEN hpass = 2

5185 'First character carriage return

5186 IF hpass = 1 THEN hpass = 0

5190 IF hspace > 0 AND ha(hapl) = CHR$(32) THEN

5191 ‘Second or more space

5192 IF hwordfin = 1 THEN

5194 hspace = 0: hwordfin = 2

5196 hapl = hapl - 2: hap2 = hapl + 1

5198 GOTO hwbend:

5199 END IF

5200 hspace = hspace + 1 ‘covers init & extra
5210 GOTO hwbproc: 'space(s) before word
5220 ELSEIF hspace > 0 AND ha(hapl) = CHR$(128) THEN

5224 ' PRINT #6, "hapl,2 on CR after spcs; go hwbproc: hspace =";
5225 ' PRINT #6, hspace
5228 hspace = 0: hwordfin = 0 'CR follows spaces

5232 GOTO hwbproc: 'after last word of line
5240 ELSEIF hspace > 0 THEN

5242 ' PRINT #6, "hapl,2 on new wd - to hwbend:hpass,hspace =";
5243 ' PRINT #6, hpass; hspace

5252 hspace = 0: hwordfin = 0 'must be start of new wd
5254 hapl = hapl - 2: hap2 = hapl + 1 'adj ptrs for next cycle
5256 GOTO hwbend:

5258 END IF

COMPUTER-GENERATED TRANSLITERATION, page 158

APPENDIX 8 (ctd)
5260 IF ha(hapl) = CHRS$(32) AND ha(hap2) = CHRS$(1l) THEN
5262 hspace = hspace + 1 'first space, space ct+l
5264 IF hpass = 2 THEN GOTO hwbproc:
5265 IF hwordfin = 2 THEN
5266 hwordfin = 0
6267 GOTO hwbproc: ‘avoid wd ct on init space
5268 END IF
5269 hwordfin = 1
5270 GOTO hwetr: '1st sp after wd goes w wd
5272 ELSEIF ha(hapl) = CHRS$(128) AND ha(hap2) = CHRS$(1l) THEN
5273 hwordfin = 0
5274 IF hpass = 2 THEN
5275 ' PRINT #6, "hal,2 on init CR, goto hwbproc"
5276 GOTO hwbproc:.
5278 ELSE
5279 PRINT #6, "hal,2 on reg CR, goto hwctr"
5280 GOTO hwcetr:
5281 END IF 'CR ends word & ha
5282 END IF
5283 GOTO hwbproc:
hwetr:
5284 hwec = hwe + 1: chwe = chwe + 1
hwbproc:
5330 hwb(n) = ha(hapl): hwb(n2) = ha(hap2)
5334 hbc = hbe + 2: hce = hee + 1

CHRS (1) THEN

“1II
'byte 2 (makes asc 128)

‘test for vowel bit in

'process vowel byte
'but dont adv char ctr
= ha(hap2)

CHRS (1) THEN her = 1

5343 IF ha(hapl) = CHRS$(128) AND ha(hap2) =
5346 GOTO hwbend:
5347 END IF
5348 v = (AsC(ha(hap2)) AND 128)
5350 IF v = 128 AND clozev = 1 THEN
5351 hwb(n2) = CHRS$(1)
5352 hapl = hapl + 2: hap2 = hapl + 1
5354 IF n < 79 THEN GOTO hwbloop:
5355 GOTO hwbend:
5356 END IF
5358 IF v = 128 AND clozev = 0 THEN
5364 hapl = hapl + 2: hap2 = hapl + 1
5368 n=n+2:n2=n+1
5370 hwb(n) = ha(hapl): hwb(n2)
5380 hbe = hbe + 2
5388 IF n < 79 THEN
. 5399 GOTO hwbloop:
5390 ELSE
5392 GOTO hwbend:
5394 END IF
5400 END IF
5404 IF n < 79 THEN GOTO hwbloop:
hwbend:
5450 IF ha(hapl) = CHRS$(128) AND ha(hap2) =
5451 'CR flag

COMPUTER-GENERATED TRANSLITERATION, page 159

APPENDIX 8 (ctd)
5480 IF hwc <> rwc THEN
5482 PRINT #6, "": PRINT #6, "rwc ="; rwc;:; ":;"; "hwec ="; hwc
5484 PRINT #6, "Diff between # Heb & Rom wds proc: check text"
5488 END IF

5489 PRINT #6, "hpass:"; hpass; "hbc, hcec, hwe, chwe:";
5490 PRINT #6, hbc; hcec; hwe; chwe

5491 PRINT #6, "hcr, heof, hapl, n & contents of hwb:";
5492 PRINT #6, hcr; heof; hapl; n :

5493 ' FOR n = 1 TO 80

5494 PRINT #6, ASC(hwb(n)):
5496 NEXT n
5498 PRINT #6, "": PRINT #6, ""

5499 IF hwe <> rwc THEN STOP
6000 'BLOCK 6. Refine transliteration.

6100 'Short gametz in final closed unaccented syllable.
6101 'Check for stress marker in the word. If present,
6102 'check for qametz in final syllable (unaccented).
6104 'If present, make gametz short.

6105 IF twc = rwc THEN 'to avoid processing
6107 twe = twe + 1 'non-words, e.g.leading
6109 GOTO transproc 'spaces, blank line CRs
6110 ELSE GOTO rwbtoba2 '
transproc:
6112 IF rwc = 1 THEN) 'give consistent byte
6114 rbc = rbec + 2 'count to word 1
6116 END IF
6120 FOR n = 1 TO (rbc - 7) STEP 2 'rbe-7 last
6125 IF rwb(n) = CHR$(126) THEN GOTO checklast: 'possible pos
6130 NEXT n 'for secondary
6132 GOTO exitgam: . 'stress marker
checklast:
6140 v = (ASC(hwb(hbc - 4)) AND 128) 'indic if last pos vowel
6145 IF v = 128 THEN GOTO exitqgam: ‘'syllable must be open
6150 IF rwb(rbc - 3) = CHR$(104) THEN GOTO exitqam: 'final he
6155 IF rwb(rbe - 3) = CHRS$(97) THEN GOTO exitgam: ‘fin aleph
6160 IF rwb(rbc - 3) = CHRS$(65) THEN GOTO exitqgam: 'fin aleph
6170 IF rwb(rbc - 5) = CHRS$(19) THEN 'penult char qametz
6174 rwb(rbc - 5) = CHR$(137)
6178 GOTO exitgam:

6180 END IF
exitgam:
6191 'PRINT #6, "n = "; N; "v = "; v; " rwb(rbec-5) = ";
6192 'PRINT #6, ASC(rwb(rbc - 5)):
6193 'PRINT #6, " rwb(rbc-3) = "; ASC(rwb(rbc - 3))
6194 'PRINT #6, ""
6195 IF rwc = 1 THEN 'to restore byte count
6197 rbc = rbec - 2 'to word 1

6198 END IF

COMPUTER-GENERATED TRANSLITERATION, page 160

APPENDIX 8 (CTD)
rwbtobaz2:
7000 'BLOCK 7. Move one word from Roman word buffer to BITEX2 array
7002 'and align.
7006 IF rpass = 2 THEN GOTO ba2spec:
7010 IF rwe = 1 AND rskipflag = 0 THEN
7011 GOTO ba2spec:
7012 ELSE GOTO rlineup:
7013 END IF
ba2spec:
7015 'Roman text must be enclosed between Heb hardspaces (or
7016 'other Heb characters) & end with Heb CR to align with Heb
7017 'text in bf

7020 ba(2, 199) = CHRS$(128): ba(2, 200) = CHRS$(1)

7030 ba(2, 197) = CHR$(252): ba(2, 198) = CHRS(1l)

7040 rpl = 197: rp2 = 198

7045 IF rpass = 2 THEN

7047 rpass = 0

7049 rskipflag = 1 'to avoid duplicating first pass
7050 END IF 'routine at 7010 above

rlineup:

7100 IF hecec > rcc THEN
7110 FOR n =1 TO ((hcc - rcc) * 2) STEP 2 'move spaces to Rom

7120 rpl rpl - 2: rp2 = rpl + 1 ‘line - the exceptn
7130 ba(2, rpl) = CHRS$(32) ’
7132 ba(2, rp2) = CHRS$(0) 'rp = Rom ba2 ptr

7140 NEXT n
7144 END IF

8000 'BLOCK 8. Cloze procedure.
8715 FOR i = 1 TO 7
8152 IF crwc cumclozel THEN GOTO clozeloop: 'initial cloze

8153 IF crwc = cumcloze2 THEN GOTO clozeloop: '& cumcloze
8154 IF crwec = cumcloze3 THEN GOTO clozeloop: 'set at start
8155 IF crwc = cumclozed4d THEN GOTO clozeloop: '& updated
8156 IF crwc = cumcloze5 THEN GOTO clozeloop: 'below 8171-7
8157 IF crwc = cumcloze6 THEN GOTO clozeloop:
8158 IF crwc = cumcloze7 THEN GOTO clozeloop:
8159 GOTO nexti
clozeloop:
8160 rpl = rpl - 2: rp2 = rpl + 1
8161 IF rwc = 1 THEN

- 8162 ba(2, rpl) = CHRS$(46) 'makes up for already
8163 ba(2, rp2) = CHRS$(0) '‘inserted Heb hd spc
8164 ELSE
8165 ba(2, rpl) = CHR$(32): ba(2, rp2) = CHRS$(0)
8166 END IF
8167 FOR n = 0 TO (rbc - 3) STEP 2
8168 rpl = rpl - 2: rp2 = rpl + 1
8169 ba(2, rpl) = CHR$(46): ba(2, rp2) = CHRS$(0)

8170 NEXT n

COMPUTER-GENERATED TRANSLITERATION, page 161

APPENDIX 8 (ctd)

8171 IF crwc = cumclozel THEN cumclozel = cumclozel + cloze
8172 IF crwc = cumcloze2 THEN cumcloze2 = cumcloze2 + cloze
8173 IF crwc = cumcloze3 THEN cumcloze3d = cumclozeld + cloze
8174 IF crwc = cumclozed THEN cumclozed = cumclozed + cloze
8175 IF crwc = cumcloze5 THEN cumcloze5 = cumcloze5 + cloze
8176 IF crwce = cumcloze6 THEN cumcloze6 = cumclozeé + cloze
8177 IF crwc = cumcloze7 THEN cumcloze7 = cumcloze7 + cloze
8178 clozeflag = 1

nexti:

8180 NEXT i

8181 IF clozeflag = 1 THEN

8182 clozeflag = 0

8184 GOTO hwbtobal:

8186 ELSE

8187 GOTO regloop:

8188 END IF

regloop:

7200 'Concluding BLOCK 7.

7230 FOR n = 0 TO (rbc - 1) STEP 2

7235 n2 =n + 1

7237 rpl = rpl - 2: rp2 = rpl + 1

7240 ba(2, rpl) = rwb(rbc - n2) 'move Rom words rev seq

7245 ba(2, rp2) = rwb(rbc - n)
7250 NEXT n

hwbtobal:

9500 'BLOCK 9. Move one word from Hebrew word buffer to BITEX1 array
9501 'and align.

9502 IF hpass = 2 THEN GOTO balspec:

9504 IF rwec = 1 AND hskipflag = 0 THEN

9506 GOTO balspec:

9508 ELSE GOTO hlineup:

9509 END IF

balspec:

9510 ba(l1l, 1) CHRS(124) 'Heb delimiter to c¢tl rt margin
9511 ba(l, 2) CHRS (1)

9512 hpl = 1: hp2 = 2 'set ptrs for FOR loop

9515 IF hpass = 2 THEN

9516 hpass = 0

9517 hskipflag = 1

9518 END IF

hlineup:

9520 IF rcc > hce THEN

9570 FOR n 1 TO ((rcec - hece) * 2) STEP 2 'move spaces to Heb
9580 hpl hpl + 2: hp2 = hpl + 1 ‘line - the rule
9590 ba(l, hpl) = CHR$(32): ba(l, hp2) = CHRS(1)

9600 NEXT n

9670 END IF

9680 IF heof = 1 THEN hbc = hbe + 2 'CR inserted without byte ct

COMPUTER-GENERATED TRANSLITERATION, page 162

APPENDIX 8 (ctd)
9700 FOR n = 1 TO hbc STEP 2 'when eof at hwbloop: to keep byte

9710 n2 =n + 1 'ct consist for translt blck. Byte
9720 hpl = hpl + 2: hp2 = hpl + 1 'ct now increasd to proc CR
9730 ba(l, hpl) = hwb(hbc - (hbe - n)) 'move Heb words in
9740 ba(l, hp2) = hwb(hbc - (hbec - n2)) 'regular sequence

9750 NEXT n
9752 IF her = 1 THEN
9758 GOTO alignend:

9760 ELSEIF heof = 1 THEN 'eof marker

9762 GOTO alignend:

9764 ELSE

9770 FOR n =1 TO 80

9772 rwb(n) = CHRS$(0)

9774 hwb(n) = CHRS$(0) 'set word buffers to null

9776 NEXT n
9780 GOTO rwb:
9790 END IF

alignend:

9800 'PRINT #6, "": PRINT #6, "Final value of ptrs & counters:"
9810 'PRINT #6, "hapl,2 ="; hapl; hap2; "rapl,2 ="; rapl; rap2
9820 'PRINT #6, "hbc, rbe ="; hbc; rbe: "hece, rec ="; hec; rcce;
9830 'PRINT #6, "hwe, chwe ="; hwe; chwe; "

9831 'PRINT #6, "rwc, crwc ="; rwc; crwc

9840 rpl = rpl - 2: rp2 = rpl + 1 ‘move Heb delimiter as -
9850 ba(2, rpl) = CHRS$(124) 'first char in Rom line
9851 ba(2, rp2) = CHRS$(1)

9860 'PRINT #6, "hpl, hp2 ="; hpl; hp2; "rpl, rp2 ="; rpl; rp2

9870 'PRINT #6, "Final contents of Heb bal are:"
9880 'FOR n = 1 TO 200

9890 ' PRINT #6, AsC(ba(l, n)):

9900 'NEXT n

9910 'PRINT #6, ""

9920 'PRINT #6, "Final contents of Rom ba2 are:"
9930 'FOR n =1 TO 200

9940 ' PRINT #6, ASC(ba(2, n));

9950 'NEXT n

9960 'PRINT #6, "": PRINT #6, "End of align block"

10000 'BLOCK 10. Move BITEX array to BITEX output file.
10100 FOR n = 1 TO 200 STEP 2 'write bal to CR to bf
10110 n2 =n+1

10120 PUT #3, , ba(l, n): PUT #3, , ba(l, n2)

10140 IF ba(l, n) = CHRS$(128) AND ba(l, n2) = CHRS(1) THEN
10142 GOTO writebal:

10144 END IF

10150 NEXT n

10160 IF n2 >= 200 THEN

10161 PRINT #6, "bal exceeded length, n2 ="; n2:

10162 STOP

10163 END IF

COMPUTER-GENERATED TRANSLITERATION, page 163

APPENDIX 8 (ctd)
writeba2:
10180 'PRINT #6, "n, n2 for bal ="; n; n2
10190 hhsflag = 0 'Heb hard space flag
10200 FOR n = 1 TO 200 STEP 2
10210 n2 =n + 1
10214 IF hhsflag = 1 THEN

10216 GOTO ba2proc:

10220 ELSEIF ba(2, n) = CHR$(0) AND ba(2, n2) = CHRS(0) THEN
10222 GOTO nextni:

10224 ELSEIF ba(2, n) = CHR$(124) AND ba(2, n2) = CHRS$(1l) THEN
10226 hhsflag = 1 'denotes Heb delimiter found
10228 GOTO ba2proc:

10230 ELSE

10232 PRINT #6, "Heb delimtr not found as first char of ba2"
10236 STOP

10238 END IF

ba2proc:

10250 PUT #3, , ba(2, n)

10255 PUT #3, , ba(2, n2) 'write ba2 to CR to bf

10260 IF ba(2, n) = CHRS$(128) AND ba(2, n2) = CHRS(1l) THEN
10261 GOTO bawrend:
10262 END IF

nextni:

10270 NEXT n

bawrend: ~

10300 'PRINT #6, "": PRINT #6, "n,n2 ="; n; n2; ",";
10301 'PRINT #6, "hhsflag ="; hhsflag

10310 'PRINT #6, "End of write block"
10320 IF EOF(l1) THEN
10330 IF EOF(2) THEN

10350 PRINT #6, "Run completed"

10352 GOTO closing

10404 ELSE

10405 PRINT #6, "EOF(1l) and EOF(2) not coincident"
10406 STOP: GOTO closing

10407 END IF

10410 ELSEIF EOF(2) THEN

10411 PRINT #6, "EOF(2) and EOF(l) not coincident"
10412 STOP: GOTO closing

10414 END IF

10415 hwe = 0: rwe = 0: twec =1 'reset counters, flags
10416 hpass = 1l: rpass = 1 '& pointers for next
10418 rapl = -1: hapl = -1: hpl = -1 'line

10419 rskipflag = 0: hskipflag = 0
10420 rwordfin = 0: hwordfin = 0
10421 rcr = 0: her = 0

10422 GOSUB nullarray

10430 GOTO readhf:

nullarray:

19100 FOR n = 1 TO 200

19110 ha(n) = CHRS$(0)

19120 ra(n) = CHRS$(0)

19130 ba(l, n) = CHRS$(0)

19140 NEXT n

19160 FOR n = 1 TO 80

19170 rwb(n) = CHRS$(0)

19180 hwb(n) = CHRS(0)

19190 NEXT n

19200 RETURN

Readloop:

20100 FOR n = 1 TO 50

20200 GET #2, , b3: GET #2, , b4

20300 IF b3 = CHRS$(128) THEN EXIT FOR

20400 IF n = 50 THEN

20500 PRINT #6, "Start of file #2 text not found in Readloop”
20520 PRINT #6, "b3 asc ="; ASC(b3); "b4 asc ="; ASC(b4)

20540 STOP

20560 END IF

20600 NEXT n

20700 RETURN

closing:

29000 CLS

29100 LOCATE 2, 10: PRINT "Program run complete.”

29110 LOCATE 4, 10: PRINT "Hebrew file = "; hebrew$

29120 LOCATE 5, 10: PRINT "Roman file = "; roman$

29130 LOCATE 6, 10: PRINT "Bitex file = "; bitex$

29140 LOCATE 8, 10

29141 PRINT "Do you want another run with the above input files"
29150 LOCATE 9, 10

29151 PRINT "but with a new BITEX output file and cloze settings?"
29160 LOCATE 11, 10

29161 PRINT "Answering Y returns you to the file creation and cloze"
29170 LOCATE 12, 10 '
29171 PRINT “"screens for another run. At the file creation screen”
29180 LOCATE 13, 10

29181 PRINT "pressing <CR> returns the above files."

29184 LOCATE 15, 10 :

29185 PRINT "Answering N will end the program.”

29190 LOCATE 17, 10: INPUT ; "Another program run (Y/N):", answ$

COMPUTER-GENERATED TRANSLITERATION, page 164

APPENDIX 8 (ctd)

SELECT CASE answ$
CASE "y": filesw = 1: CHAIN "BTXSCR2"
CASE "Y": filesw = 1: CHAIN "BTXSCR2"
CASE "n": PRINT #6, "END": END
CASE "N": PRINT #6, "END": END
CASE ELSE: PRINT "Response out of range"
END SELECT

COMPUTER-GENERATED TRANSLITERATION, page 165

APPENDIX 9(a)

Genesis Ch 1, vs 1 & 2: Hebrew text

in Hebrew 9-pt proportionally spaced ancient alphabet

nwR2

DROR XI3 MWK

PR DRY DR DX

Dinn 9=y W) WD Amm v
DV 970y NENTM oMY DM

Tk I 20X MR

SMRTN

317D MNRPTOAN DNOR XM

ANT P TN R DYR Y13

NP x3p WD) ob “ixy oNOR X
mx o WA 2y

COMPUTER-GENERATED TRANSLITERATION, pag.e 166

APPENDIX 9(b)

Genesis Chl, vs 1 & 2: Transliteration

in Roman 9-pt proportionally spaced "classical” alphabet (top)

and "classical alternative” alphabet (bottom)

/h/

ber&’sit

berg’$it bara’ '816him

’et ha$ama-yim we’et ha'a-res:

wehd’a-res hdyetah t5hii wabohft wehd-Sek ‘al-pend tehém
werfi-ah '816him merahe-pet ‘al-pené hami-im:
wayd-'mer 'él6him yehi ’6r

wayhi-'6r:

wayar’ 816him ‘et-ha’ér ki-tob

wayabdél ’8lohim bén ha’ér 4bén hahd-Sek:
wayiqrd’ ’816him 13’8r ydom welaho-Sek qard’ 13-ylih
wayhi-‘e-reb wayhi-bd-qer yém ’ehad:

/h/
bera’shith

‘ber&’shith bari’ ’élohim

’eth hashima-yim we’eth ha’a-retz:

weha’a-retz hdyethiah thoh@ wabhohdt wehd-shekh ‘al-pené thehém
wer{i-ah ’é16him merahe-pheth ‘al-pené hamé-im:

wayd-'mer ’8l6him yehi ’6r

wayhi-’ar:

wayar’ ’816him ’eth-ha’ér ki-tébh

wayabhdhél ’élohim bé&n ha’ér dbhén hahd-shekh:

wayiqrd’ 'él6him 13°6r ydm welahd-shekh qard’ la-ylah
wayhi-‘e-rebh wayhi-bhd-qer ydm ’ehidh:

R~

COMPUTER-GENERATED TRANSLITERATION, page 167

APPENDIX 9(c)
Genesis Chl, vs 1 & 2: Transliteration

in Roman 9-pt proportionally spaced "modern” alphabet (top)
and "simplified modern” alphabet (bottom)

/h/
beré’shit

beré’shit bara’ ’&l6him

‘et hashdma-yim ve’et ha’a-retz:

veha'd-retz hdyetah t6hé vabhohdi vehd-shekh ‘al-pené tehém
verii-ah ’€l6him merahe-phet ‘al-pené hamd-im:

vayd-'mer ’816him yehi ’6r

vayhi-’6r:

vayar’ "8l16him ’et-ha’dr ki-tébh

vayabhdél '816him bén ha’ér ibhén hahé-shekh:

vayiqrd’ ’é16him 13’6r yém velaho-shekh qara’ la-ylah
vayhi-‘e-rebh vayhi-bhé-qer yom ’ehad:

/h/ -
bere’shit

- bere’shit bara’ ’elohim

‘et hashama-yim ve’et ha’a-retz:

veha'a-retz hayetah tohu vavohu veho-shech ‘al-pene tehom
veru-ah ’elohim merahe-fet ‘al-pene hama-im:

vayo-mer ’elohim yehi ’or

vayhi-‘or:

vayar’ 'elohim ’et-ha’or ki-tov

vayavdel ’elohim ben ha’or uven haho-shech:

vayikra’ ’elohim la’or yom velaho-shech kara’ la-ylah
vayhi-‘e-rev vayhi-vo-ker yom ’ehad:

COMPUTER-GENERATED TRANSLITERATION, page 168

APPENDIX 9(d)
Genesis Ch 1, vs 1 & 2: BITEX output
in Hebrew 9-pt fixed space ancient alphabet

and Roman 9-pt fixed space "classical” alphabet

n~waz
beré’Ei;

DUAYR R nwRY2
>8lohim bara’ beré’§it
tYIRT N8} DYRYD nx
hi’d.res: we’et haS§ima-yim ‘et
pinn 39~y W) W3y IWn An'n Yvéj}
tehdom ‘al-pené weho-Sek wibohtt tShd hayetah wehi’d-res
100 "137% npRm oYaoR BT

|
i
. i
hamd-im: ‘al-pend merahe-pet '&16him werd-ah!
Wik vay oAtk pxt) !

’6r yehi '&l1ohim waydo- ‘mer!

$NIRTIANY

wayhi-"6r:|

33w INRgTAR DYBON NYYY
ki-téb ’et-ha’dér ’é8l16him wayar’ |
i

!

i

VLR R SRR N B3
haho-8ek: fibé&n ha’6r bé&n ’élohim wayabdél
n7Y9 X7p W) DI iRy oYk RPN
la.ylah qiara’ welahd-Sek yom 1a’6r '&lohim wayiqra’
LT -TRNET AL AR 3990

’ehdd: yém wayhi-bd-gqer wayhi-‘e-reb

Dimn

COMPUTER-GENERATED TRANSLITERATION, page 169

APPENDIX %e)
Genesis Ch 1, vs 1 & 2: BITEX output
in Hebrew 9-pt fixed space ancient alphabet

and Roman 9-pt fixed space "classical alternative” alphabet

n¥RI3
berd’shith

T

D'IOR X2 newRas

'$15him bara’ bera’shith
Aol o o SN "o nx
ha’a-retz: we’eth hashima-yim 'eth!

v197%y W 1773} wmp Ay 'l b :

thehém ‘al-pené weho-shekh wabhohd thoh@ hayethidh wehd’a-retz!

3N -5 v197% nomam oYavR mimy
hami-im: ‘al-pené merahe-pheth '&156him werfi-ahi

SR IRE AN -LL b S -

's1 yehi ’&18him ways-’mer
$ IR
wayhi-'6r:

3iw™v3 vixgTx RYIOR XYY

|
|
|
=
|
ki-tébh 'eth-hd'6r '&15him wayar’|
|
!
!
|
|
|

s WD 1*3% 7ixD)3 DYOR PIIN)

hahd-shekh: fibhén h3a’6r bén '&16him wayabhdhél
nerY¢ w3 WY miv Jixy DUAvR XD
la.ylah qard’ welahd-shekh yém 1a’6r '&16him wayiqra’

;I B AT 33y 0
'ehidh: yém wayhi-bh&-qer wayhi-‘e-rebh

COMPUTER-GENERATED TRANSLITERATION, page 170

APPENDIX 9(f)

Genesis Chl, vs 1 & 2: BITEX output
in Hebrew 9-pt proportionally spaced ancient alphabet

and Roman 9-pt proportionally spaced "modern” alphabet

N
berd’shit

DIO8 X2 nuiRm
’816him bara’ berd’shit

YWD e oD g
ha’a-retz: ve’et hashima-yim ‘et
pinn w9~y 1@?1‘":3 W3y Wb A vgx}m
tehdém ‘al-pené& vehd-shekh vabhohii tohi hiyetah veha’i-retz
BT N9TOy noRm onoR W

i
'
i
hamé-im: ‘al-pené merahe-phet ’816him verd.ah!
Tk v oAOR mRhy
’6r yehi ’8l6him vayd-’mer!
RN

vayhi-'ér:!

W7D NFTAR OWMOX XM
i

ki-t6bh ’et-ha’ér ’816him vayar’

) - - - b S)
haho-shekh: ibhé&n ha’ér bén ’€16him vayabhdél
nrar S I 1 v o 2ik? oaYR X
la.-ylah qard’ velahd-shekh yém 13’6r ’816him vayiqra’
MR o Wi 3y

’ehdd: yém vayhi-bhé-qer vayhi-‘e-rebh

COMPUTER-GENERATED TRANSLITERATION, page 171

APPENDIX 9(g)
Genesis Ch 1, vs 1 & 2: BITEX output

in Hebrew 9-pt proportionally spaced ancient alphabet
and Roman 9-pt proportionally spaced "simplified modern” alphabet

SokE S oI L
’elohim bara’ bere’shit

S I -0 B
ha’a-retz: ve’et hashama-yim ’et!
oD wehy i W3 WD oAMD ywm :
tehom ‘al-pene veho-shech vavohu tohu hayetah veha’a-retz!
DR WYy ngOm oRoR WM

hama-im: ‘al-pene merahe-fet ’eloh.im veru-ahi
ni o~ b S -

‘or yehi ’elohim vayo-'mer!

R !

vayhi-'or:!

iw™3 MikgTR OMOR XM

ki-tov ’et—h.a’or ‘elohim vayar’|

i -SRI R -l b F S ~ L B
i

haho-shech: uven ha’or ben ’elohim vayavdel
B R ¥ h vy oi* 9iN? 29OR X9

la-ylah kara’ velaho-shech yom la’or ’elohim vayikra
MR e I 3y

’ehad: yom vayhi-vo-ker vayhi-‘e-rev

COMPUTER-GENERATED TRANSLITERATION, page 172

APPENDIX 9(h)
Genesis Ch 1, vs 1 & 2: BITEX stage-one cloze output

in Hebrew "screen size” fixed spaced modern alphabet

and Roman modified "screen size" fixed spaced "simplified modern” alphabet

AL E R

P |

|

I

oY% N13 nUeiNdl |

‘elohim bara’ b®re’shit|

gl gy ordya ny |

ceesaseacce VeE‘@t hashama-yim ‘et |

ainy vaptby ¢ GESTNNEL N S IR 5 |
seess ‘al—-p®ne vetho-shech vavohu tohu haye¢tah veha‘a-retz!
10190 1975 npfian any nivy |

hama:im: ‘*al-p®ne m®rahe-fet ‘elohim ve¢ru-:ah]|

Tie 't oty Tanta |

‘or y®hi vayo-:‘'mer |

iwTna |

varhi-‘or: |

1iv-13 Jingtny oAty w11 |

ceeees ‘@t—ha‘or ‘elohim vayrar-‘|

<
S l"uh! 133 7iwg 13 oty ST |
haho-shech: uven ha‘or ben ‘elohim vayavdel |
£ .3 . .
nh1Yy NIp qUnh it i) oty wpry |
F: 1 rk A T S vl =
la-y¥lah kara’ ve®laho:-shech yom la‘or ‘elohim]|

tTon oit api-tang 139 |

‘ehad: yom vayhi—-vo Kers:00:0.]|

------------------------------.----..

'

COMPUTER-GENERATED TRANSLITERATION, page 173

APPENDIX 9(i)
Genesis Ch 1, vs 1 & 2: BITEX stage-two cloze output

in Hebrew "screen size” fixed spaced modern alphabet
and Roman modified "screen size" fixed spaced "simplified modern” alphabet

nyn)3 |

|

|

|

oty w22 nowNda !
ceeres. bara’ bere‘shit|

Py R0 n¥1 018y n¥ |

teseancese VE‘@t hashama'yim ‘et |

ainn vaethy uh) may o oamh aprg o pEY) |
ce:+s ‘al-p®ne veho-shech vavohu hay®tah v®ha‘a-retz|
13140 1975y npfian anhx niay

hama-im: ‘al-p®hne ‘“elohim ve€ry-ah/!

Win oy oty aet) |

‘or yehi vayo-“‘mer |

iRTN |

-

"'l"lll'l
2iv-13 7isn-ny oaYR N1 |

cesses ‘@t—ha‘or ‘elohim vayar~’ |

<
Bl"ah! 1737 2ing 73 oty b1
haho-rshech: uven ha‘or ... ‘elohim varavdel |
b & . .
ny1y NIp Uny oir Aie aonte wIpM |
£t vk W T Sl vk -
laylah kKara’ velaho+shech ... la‘or ‘elohim]|

r1ar @it apd-an 239-an |

ciesas YOMm VvAYNI—VOKEP .o usesooaensl

Dy

COMPUTER-GENERATED TRANSLITERATION, page 174

APPENDIX 9({)
Genesis Ch 1, vs 1 & 2: BITEX stage-three cloze output
in Hebrew "screen size” fixed spaced modern alphabet

and Roman meodified "screen size” fixed spaced "simplified modern” alphabet

nyNd3

!
g'nYm N33 WA ST |
csssess bara’ bere‘shit |

1yaRn nNY orjvn |
G o Wt ey v
crecsase. VEQE L. 000, ‘0t
: 2 3 ;
ainn 1318=by qum N33 amn aAn'g YIRD) |
H L - . H r T!T S 2
tetes tal-p®ne Vvavohu hav®tah veha‘a-retz|
< < <
10730 "19=%y noian oWy nivy |
csesreses tAal-p®ne2.. ‘@®@lohim veru.ahl
Vi atate aant) l
‘or Y®hil ...:.0.. Vayo-.-"mer |
in-ny |
Illlllllll'
1jv-2 vinptnw o'ty w11 |

tesess ‘@Et~ha’0OPF .L.ce02.. vayar’]|

<
R 'uh! 131 2ixg 73 ataty Y13y |
haho-shech: ha‘or ... ‘elohim vayavdel |
€ .8 . .
nYyYy SR ') ait irY ot wapM |
r:T ~?||' v o= T . S T': . -
la-ylah .,.... v®laho-shech ... la‘eor “elohim|

tTaw @it pi-tan =REARDER| |

easase Yom VaYhi—uo-Ker ...c2c¢ceeascl

- N

'

COMPUTER-GENERATED TRANSLITERATION, page 175

APPENDIX 9(k)
Genesis Ch 1, vs 1 & 2: BITEX stage-four cloze output

in Hebrew "screen size" fixed spaced modern alphabet
and Roman modified "screen size" fixed spaced "simplified modern” alphabet

AL k! I
e

|

aaby w3 nUwwlz |

teesee. bDara’ L aeeeaan |

TRt h nN1 aYawn N |
T R = r- v

R VL K42 T 2
<
ainnp 139~hy UM thES ih AnTg P8I |
: % oo T T:T vrT
ceca. *Al-P®TN@ .. caseees VAVOhU ... haY®tah ...ceaceooasl
< < <
10730 119=%y nonan aa%y niny
cecesses tAal=P®N@ec0:00 ‘@lORIM . eeea. |
o F
ik WMy oty an) l
OPF v ees neesses Vayo-‘mer |
iN-y |
--.--.----l
1iv='3 1ingTae oAty w11 |

creces ‘@t—PAa‘OF c...... vavar”’ |

<
jeng 1733 7Ry 13 oYy b713121 |
haho-shech: ha‘or ... ‘elohim]|
£ . £ . . |
nYh1h NI UnYy air 1inY oty wIpl |
LR vk W= T S vl =
la-ylah velaho-shech ... la‘oFr (.seeec saascoaasl]

rrow @it Api-aa 2997011 |

P 2 - 1. T |

COMPUTER-GENERATED TRANSLITERATION, page 176

APPENDIX 9(1)

Genesis Ch 1, vs 1 & 2: BITEX stage-five cloze output

in Hebrew "screen size” fixed spaced modern alphabet
and Roman modified "screen size" fixed spaced "simplified modern" alphabet

nrynla I
ceveenaaal
|
I

oy w2 niynaa |
esssasre DAra’ +t.ceeeoeasl
YN0 nN1 0'pYn ny |
vTT W =y-
vessessess V@t L iiiaansseacn eos)
<
ginn 13194y ¥ hER 1IN ann PN |
: o = o T T:T vTT:
cesse “ALl-PTNE® ..t cciae eseecs saas hAaX®taAh .. icei oo |
< < <
IR0 h 1975y nofian oy niny
e s s esese ssesenes aasscssese ‘@lORIM ... 0... |
N 4
Tiw Y ovaYe N I

OF st ies sssesae vVayoe ‘mer |
INRTN |
cseonensea|

3iv=13 1iNgTNy a*nﬁg N211 |

ceeres ‘@t=ha‘oOr ... sees seseeel

< .

1qwha 127 79N 1'a o'aYvN b1a13 I

yna 3 1 1 19N 7321
haho-shech: ‘@lohim ...cac..]|

g ¥ . .

nhb NP qunb s aiv in) oty NIpt [

TiT T e = T =
lasylah ... ve ticieeeenase ase 1B OF wonceeee eaansnensel

sTow @it pi-an 27811 |

csesen ¥YOM ¢ ueueocaaasns seacanannees]

e
COMPUTER-GENERATED TRANSLITERATION, page 177
APPENDIX 9(m)

Genesis Ch 1, vs 1 & 2: BITEX stage-six cloze output
in Hebrew "screen size” fixed spaced modern alphabet

and Roman modified "screen size"” fixed spaced "simplified modern” alphabet

n1YnIa !
) !
e 8 5 a s = a s '
|
|
'A%y NI3 NNz I
ciese bara’ |
YN Ny Oravn N |
TT =T
LI T T T I » s » P) " w . ---I ,
. ¥ . . j
aginn 139=hy UM 113 In AN yaNm |
: Y = o T T T G ‘
ce e sasses ee saesassaens seesse ases havetah ool
< < <
J-+h 11979y nonan ooy piny |
........ tresires 2ssase-cas ‘@lohim 10
1IN Y Aty nans) |
'Or‘ s 0 . '] . a s ¢ a v 0o 8 a I
viRTwWy |
...... I
1710773 INgTNY a'nh N1 |
. . s a2 u » ¥ s s = e = 20 " s @ a8 s s ‘
¥ .
T 1731 1iNg 1°3 o't Y1322 I
yno 3 1] 1 1IN 1312
s a s et s st e sese seeas ree ‘@lohim ..o aa. |
< <
nyy NIp WD) Biv 1INy oty wpn |
e v s eaae maeaaa cr e craee sse lAOP i insed s ennea |
tToe @it apd-nm 18- |

...... ¥OM oo visennnens sossansaesaal

COMPUTER-GENERATED TRANSLITERATION, page 178

APPENDIX %n)
Genesis Ch 1, vs 1 & 2: BITEX stage-seven cloze output

in Hebrew "screen size” fixed spaced modern alphabet
and Roman modified "screen size" fixed spaced "simplified modern™ alphabet

TpaRD n§1 00 Ny
TT T-
g .
ginp 1319~hy UM hEg 1 Antn paRa
3 = T:T TT
< < <
10147 119~%y nonan gty niang
- £
1in ' oAty aans)
HaRF b h RS |
1iv=13 ingTan oYy w11
.-‘ a 8 ® & 8 & . a 8 » & » & 9 a0 ® & 8 8 = 8 8 5 8 8 8 B
lh 1737 1ing 703 oAty T3
L e PgTeTe e eees eseeeiii e
ne1y NIR YN aiv 1ixy oWty wpM
r:T vk o= T Co L AR
ity @it Apd-an 1191713

COMPUTER-GENERATED TRANSLITERATION, page 179
APPENDIX 9(0)

Genesis Ch 1, vs 1 & 2: BITEX stage-eight cloze output
in Hebrew "screen size" fixed spaced modern alphabet

and Roman modified "screen size" fixed spaced "simplified modern” alphabet

ainn "1e~hw qum M1 N Anta ywm I

ia'nn 119-by nonan gnbw ninr |

1qunn 1733 7ixn 103 ot bTay
lllllllllll > # 8 a a ®» e = @ L e & @ w 8 8 = 8 2 & & 8 . '
nhh NP qenh it 1inby ot wpnr |
llllllllllllll e & w s & & = @ s ¢ ® ¢ 0 8 e ® s & » ¥ 8 . '

COMPUTER-GENERATED TRANSLITERATION, page 180

This page is inserted to facilitate optional printing on both
sides of the page, each figure, appendix or references starting
with an odd number.

COMPUTER-GENERATED TRANSLITERATION, page 181
REFERENCES

Becker, Joseph D. (1984, July). Multilingual word processing.
Scientific American, pp. 96-107.

Brooks, L. R. (1977). Visual pattern in fluent word
identification. In A. S. Reber & D. Scarborough (Eds.),
Toward a psychology of reading. Hillsdale, NJ: Erlbaum.

Brooks, L. & Miller, A. (1979). Rnowledge of an alphabet.
In P. A. Kolers, M. E. Wrolstad & H. Bouma (Eds.), Processing
ofvisible language: Vol. 1. New York: Plenum Press.

Cassuto, U. A commentary on the book of Exodus. Jerusalem:
Magnes Press, Hebrew University.

Chall, J. S. (1967). Learning to read: The great debate. New
York: McGraw Hill.

Chall, J. S. (1983). Stages of Reading Development. New York:
McGraw Hill.

Durkin, D. (1970). Teaching them to read. Boston: Allyn & Bacon.

Gutenberg (Computer program). Scarborough: Gutenberg Software.

Kellogg, E. P. Jr. (1983). Romanization to facilitate the
teaching of modern Hebrew to adult native speakers of English.
Walnut Creek, CA.: EHUD International Language Foundation.
(ERIC Document Reproduction Service No. ED 235 689)

Kellogg, E. P. Jr. (1983). Shalom home study course in
conversational Hebrew. Walnut Creek, CA.: EHUD International
Language Foundation.

Lambdin, T. 0. (1971). Introduction to biblical Hebrew. New
York: Charles Scribner's Sons.

Livny Y. and Kokhba M. (1973). A Hebrew Grammar for Schools and
Colleges. Jerusalem: Rubin Mass.

Pei, M. (1952). The story of English. New York: J.B.Lippincott.

Multi-lingual Scholar, Version 3.0 (computer program) (1987).
Santa Monica: Gamma Productions.

Nota Bene Version 3 (computer program) (1987) New York:
Dragonfly Software.

COMPUTER-GENERATED TRANSLITERATION, page 182
REFERENCES (CTD)

Reif, J. A. & Levinson, H. (1965). Hebrew basic course.
Washington: Foreign Service Institute, Department of State.

Rivers, W. M. & Temperley, M. S. (1978). A practical guide to
the teaching of English as a second or foreign language. New
York: Oxford University Press.

Trim, J. L. M. (1978). Developing a unit credit scheme of adult
language learning. Toronto: Pergamon Press.

Sternberg, R. J., Powell, J. S. & Kaye, D. B. (1983). Teaching
vocabulary-building skills: a contextual approach. In A. c.
Wilkinson (Ed). Classroom computers and cognitive science. New
York: Academic Press.

Talmage, F., Rabin, C. & Garshowitz L. (1977). Study guide for
sifron la-student. Toronto: University of Toronto Press.

Weingreen, J. (1939) A practical grammar for classical Hebrew.
Oxford: Oxford University Press.

