
DESIGN OF DIGITAL CIRCUITS USING PROTOTYPICAL DESCRIPTIONS 

William Stephen Adolph 

B.A., Simon Fraser University, 1982 

THESIS SUBMITTED IN PARTIAL FULFIILMENT OF 

THE REQUIREMENTS FOR THE DEGREE O F  

MASTER O F  SCIENCE 

in the School 

of 

Computing Science 

@ William Stephen Adolph 1987 

SIMON FRASER UNIVERSITY 

May 1987 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author. 



APPROVAL 

Name: W. Stephen Adolph 

Degree: Master of Science 

Title of THESIS: 

Design of D i g i t a l  C i r c u i t s  Using P r o t o t y p i c a l  Descr ip t ions  

. . 
Exammmg Committee: 

Chairman: Dr. Binay Bhattacharya 

Prof. H.K. Reghbati, Senior Supervisor 

Dr. Rick ~ o b s b n  

Dr. Nick ~ e r d n e  

.% . 
Dr. ~ d e s  &lgrwande, Extefnal 

7 

Examiner 

Date Approved: A ~ ] u s t /  z d ,  1986 



PARTIAL COPYRIGHT LICENSE 

I hereby g ran t  t o  Simon Fraser Un ive rs l t y  the r i g h t  t o  lend 

my thes is ,  p r o j e c t  o r  extended essay ( t h e  t i t l e  o f  which i s  shown below) 

t o  users o f  the  Simon Fraser Un ive rs i t y  L ib rary ,  and t o  make p a r t i a l  o r  

s i n g l e  copies on ly  f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any o the r  un ive rs i t y ,  o r  o ther  educational i n s t i t u t i o n ,  on 

i t s  own behalf  o r  f o r  one o f  i t s  users. I f u r t h e r  agree t h a t  permission 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposes may be granted 

by me o r  t h e  Dean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  p u b l i c a t i o n  o f  t h i s  work f o r  f i n a n c i a l  ga in  s h a l l  not be al lowed 

wi thout  my w r i t t e n  permission. 

T i t l e  o f  Thesis/Project/Extended Essay 

Author: 



ABSTRACT 

Engineers rarely create new circuit designs from scratch. New designs are often 

composed of old designs whose specifications are similar to those of the proposed 

design. A designer may begin by comparing the specifications of a known design to 

those of the proposed design. If the specifications for both circuits are similar, then 

the existing design can be used as a prototype for the new circuit To automate this 

process, designs must be described such that the details that implement a specific set 

of specifications in a particular design can be easily identified and modified. 

This thesis develops a model of a circuit design system which designs new 

circuits by using an existing circuit as a prototype. The architecture of the prototype is 

represented by a frame. The frame is used like a language grammar production rule 

to expand a prototype circuit into its constituent components. 

The knowledge required to use a prototype as a design guide is represented 

using IF-THEN rules. These rules are used to identify the differences between the 

behavioural specifications of the prototype and the behavioural specifications of the 

proposed circuit and to modify the prototype's architecture such that it can implement 

the proposed behaviour. A dependency network is used to relate the behaviour of the 

prototype to its architecture. 
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CHAPTER 1 

INTRODUCTION 

The VLSI revolution has dramatically increased the complexity of digital circuit 

design. Technological advancement in the fabrication of VLSI systems has superseded 

the capabilities of the design technology. Even with today's advanced CAD systems, the 

lead time required to develop a new circuit is considerable. Some circuits can require 

over two years to bring to the market place. This occurs in an industry where a 

circuit may have less than an eighteen month product window in the market place. 

We would therefore like to create a set of design tool which would reduce the lead 

time required to develop a new circuit 

1.1 The Conventional A ~ ~ r o a c h  to Dealing with Design Com~lexity 

There has been significant work done in both industry and academia to provide 

the designer with better tools for coping with the complexity VLSI technology has 

imposed on digital circuit design [Gam85]. 

An example of these tools are the Mentor Graphics Corporation's IDEA 

Electronic Design System CAE tools [IDB4]. The objective of these tools is to 

shorten the time required to produce electronic components. Mentor Graphics breaks 

the desig process down into four steps: 

1. designing the component; 

2. analyzing the component; 

3. laying out of the component; and 

4. documenting the component 



The focus of this thesis will be only on the first step, however, the concepts proposed 

in this thesis could also be applied to step 3. 

The Mentor Graphic's design tools are called SYMED and NETED. SYMED is 

a component symbol editor. Once a symbol is created to represent a component, the 

user can then specify the behaviour of a component by either using the network 

editor NE'ED to create an underlying schematic, or by supplying a program that 

describes the behaviour of the component A program that is used to describe the 

behaviour of a circuit is called a behavioural model. 

If the user decides to comtNct a behavioural model of their component, then 

the user must specify an architecture that will implement the behaviour. This requires 

the user to relate the circuit's behaviour to the circuit's architecture, and for a VLSI 

system this may prove to be a rather onerous task. 

Silicon compilers have been proposed and developed as solutions to the 

complexity associated with circuit design. Examples of silicon compilers are Macpitts 

[Sou83]; Bristle Blocks [Joh79], and Capri [Anc83]. Silicon compilers permit the user 

to describe a circuit in behavioural terms with description languages similar to high 

level programming languages. The user is thus relieved of the tedious design details of 

developing a design and ultimately the layout for a circuit However, the design 

geqerated by these systems is usually inferior to the design produced by an expert 

designer. For example, a layout produced by Silicon Compilers Inc. of Los Gatos, 

California, for the Micro Vax-1 data path chip required fifteen percent more area for 

individual transistors and wiring than a regular hand crafted design [Wal84] In addition 

many compilers are optimized for a particular class of circuits. For example a compiler 

which is reasonably good at producing a layout for a microprocessor may be quite 



inferior for producing a memory array. This begs the question, why is a design 

produced by an expert designer superior to that which can be produced by automated 

synthesis tools? 

1.2 Ex~ertise and Desien 

What distinguishes the expert designer from automatic synthesis tools, such as 

silicon compilers, is that expert designers possess large bodies of knowledge which 

guide their design decisions in producing an optimal design. Development of the 

discipline of artificial intelligence makes it possible to consider consuucting systems 

which can represent and exploit such design knowledge. 

To develop a knowledge based CAD system we need to acquire and codify the 

knowledge of circuit design an expert designer possesses. We can start by asking the 

question "How do engineers design circuits?" 

A genera! mswsr to *.is q~estion is provided by Polya, in his book "How to Sohe 

It" [Po1571 

Have you seen it before? Or have you seen the same problem in a 
slightly different form? Do you know of a related problem? 

In his doctoral thesis Andrew Ressller [Res84] zpplied this principle to circuit design 

by observing that 

"...circuit designers seldom create really new topologies or use old ones in 
a novel way. Most designs are known combinations of common 
configurations tailored for the particular problem at hand". 

This would seem to be intuitively obvious; no one can afford to waste time 

inventing new circuits when an adequate design may be readily available. Often, if the 

existing circuit is inadequate for the task at hand, then it may be easier to modify 



that circuit rather than to design a new circuit from scratch. 

To support this argument Ressler developed CIROP, a system which models the 

behaviour of a designer engaged in the ordinary design of operational amplifiers. The 

objective of this thesis is to extend CIROP's model of circuit design to digital circuits. 

1.3 Thesis Conaibutions and road ma^ 

Circuit design is the process of converting a behaviourd description of a circuit 

into an architecture that will implement the behaviour. This thesis develops a model of 

a CAD system which can design circuits by using an existing circuit as a prototype. 

The prototype for a circuit consists of a representation of its behaviour and a 

representation of the architecture that implements the behaviom. A designer would 

design a new circuit by describing its behavioural characteristics to the system. The 

system would then select a prototype circuit whose behavioural characteristics are 

similar to those of &e prqosed drcllit The prototype's architemie is modified se, 

that it will correctly implement the new behaviour. Prototypes may represent abstract 

models of circuits where their subcomponents are themselves represented only as a 

behavioural description. For this reason prototypes are implemented using frames where 

the slots represent the individual subcomponents of the circuit [Ado86]. 

A set of rules are created which define the concept of circuit similarity. These 

rules are used to uansform a prototype circuit's architecture into an architecture which 

can implement the new behavioural specifications. Together, the prototype frames and 

the similarity rules make up the knowledge base of the CAD system 



Chapter two is a survey of the related work in the application of artificial 

intelligence techniques to design automation which influenced this research. Chapter 

three is an example of how the Mentor Graphics tools may be used to construct a 

simple multiplier. This example is then expanded to show how frames can be used to 

support the hierarchical design of digital circuits. The rules of circuit similarity used 

for refining a prototype design are defined in this chapter. Chapter four is a detailed 

description of the model's architecture. Chapter five demonstrates the capabilities and 

limitations of the model as presented in chapter four by describing the model's design 

of a multiplier. Chapter six concludes by suggesting how this model can be improved 

and extended. 

A preliminary account of the research efforts leading to the successful completion 

of this thesis was presented at the 23rd ACM-IEEE Design Automation Conference 

[Ado86]. 



CHAPTER 2 

RELATED WORK 

There have been several systems written which tackle the .thorny issues associated 

with the design of artifacts. Of particular note, and influence on this work were 

CIROP, MOLGEN, Redesign, and the VLSI Design Automation Assistant 

2.1 CIROP 

CIROP [Res84] served as the fundamental model for this research. CIROP is a system 

which can design operational amplifiers from a set of user supplied specifications. Input 

for CIROP consists of the specifications for the op-amp required by the user (eg. 

gain, frequency, slew rate). Output would be either a completed op-amp or an 

indication that the specifications & given cannot be simultaneously satisfied by the 

circuits CIROP knows how to design. 

CirclAt csx?onents x e  modeled as a set of abstract hierarchical objects which 

can be successively refined in order to meet user supplied specifications. Rules for 

expanding objects into their constituent components are modeled as grammar rules 

similar to those used by parsers for language compilers. For example, an operational 

amplifier can be regarded as an abstract object which can be expanded into three 

subcomponents: input stage, gain stage, and output stage. Each of these subcomponents 

could then be subsequently expanded into their constituent components with respect to 

the user .supplied constraints. An example of this expansion is shown in figure 2.1. 

Each of these components and subcomponents are represented by a grammar rule 

which states how to build that object The circuit grammar rules have two main parts, 



OP AMP l_i 

Figure 2.1 Expansion of an Operational Amplifier 

the pattern and the body. The pattern describes the main characteristics of the abstract 

object built by the rule and is used to determine if the rule is applicable when 

building an object. The pattern includes three components: 

1. the type property which specifies the generic circuit type the grammar ruie 

constructs. 

2. the has property which lists the behavioural properties the circuit can have. 

3.  and the specifications tradeoffs which list the design tradeoffs for that 

configuration. 

The body of a grammar rule is a list of assertions describing how the object is 

to be built and analyzed. There are three types of assertions in a grammar rule: 

1. The new- assertion which describes the behaviou of the 

subcomponents. 

2. The connection assertion which creates the circuit's architecture by 

connecting the internal components to each other and to the abstract 

object 

3. The constraint eqwtions which creates constraints between the components 



and the abstract object 

An example of a grammar rule is shown in figure 2.2. This rule shows how to 

consmct a Darlington Pair transistor. This rule defines an abstract object because the 

NEW-PART assertions in the body of this rule declares that this component is built 

from two other subcomponents, namely transistors q l  and q2. The connection assertions 

shows how these subcomponents are to be connected together. The constraint equations 

are used during the analysis of the design to determine if the candidate grammar rule 

can be used to implement an v a m p  that will meet the user's specifications. 

(to-make-a double-darlington-transistor-bjt . . 
9 ' 
;; Pattern to  match . . 
' 9  

(where(type virtual-bjt-transistor) 
(has sign sign))) 

~ ~ 

' 1  

;; New Parts are . . 
9 ' 
(NEW-PART q 1 ((type bjt)(has(sign sign)) 
(NEW-PART q2 ((type bjt)(has (sign sign jj . . ' I 

;; Connections are . . 
9 9 

(connect (base) (base q 1 ) 
(connect (collector) (collector q 1) (collector q2)) 
(connect (emitter) (emitter q2)) 
(connect (emitter q 1) (base q2)) . . 
9 ,  

;; Constraint Equations . . 
1' 

(= (rpi) (* 2 (beta q l )  (rpi q2))) 
(= (ro) (ro q2)) 
(= (beta)(* (beta ql)(beta q2))) 
(= (gm) (* (1 1 2) (9m q2)))) 

Figure 2.2 Grammar Rule for Building a Darlington Pair 



The rule show in figure 2.3 defines a simple NPN type transistor that could 

be used to build the Darlington Pair transistor. This is a primitive object because the 

body does not have any NEW-PART assertions and therefore it cannot be divided 

further into subcomponents. 

Search is the problem solving technique used to refine abstract objects. Once an 

abstract object is proposed, each of its NEW-PART assertions will be expanded into 

their constituent components by searching for a grammar rule which will satisfy the 

requirements associated with the NEW-PART assertion. 

The search process is a negotiation between the requirements expressed by the 

NEW-PART'S pattern and the capabilities advertised in a grammar rule's pattern. Only 

(to-make-an bjt simple-npn-bjt 
;; Pattern to  match 
(where(type bjt bjt) 

(has bjt (sign sign)) 
(terminal-device bj t ) 
(device-parameter (beta bjt)) 
(device-parameter (gm bjt)) 
(has bjt (priority 1)) 
(three-terminal-device(base bjt) 

(base bjt)  
(emitter bjt)  
(collector bjt))) 

(equation-with-variable-priority 
(= (current (collector bjt)) 

(* (beta bjt) (current (base bjt)))) 
(= (beta bjt) npn-beta) 
(= (gm bjt) (* q/kt (current (collector bjt)))) 
(= (rpi bjt) 

(// (beta bjt)  (* q/kt (current (collector bjt)))) 
(equation-with-variable-priority 
(= (ro bjt) (// 200 (current (collector bjt)))) 
(= 0 (+ current (collector bjt)) (current (base bjt)) 

(current (emitter bit))))) 

Figure 2.3 Grammar Rule for an NPN BJT 



grammar rules of the right type are even considered. Next any grammar rule which 

does not have the required specialities, the has properties, required for the particular 

part is eliminated. The remaining candidates are then sorted from simplest to most 

complex. Assuming the simplest design is the best, the simplest candidate which 

satisfies the requirements is chosen. 

2.2 MOLGEN 

MOLGEN is a knowledge based system which assists molecular geneticists in 

planning experiments. There are actually two MOLGENs, one developed by Mark 

Stefik [Ste8la] [Ste8lb] which employs a layered planning mechanism and one 

developed by Friedland [Fri79] which designs experiments by refining skeletal plans. 

The focus here will be on Friedland's planner. 

An observation made by Friedland during the development of MOLGEN was 

that scientists rarely invent the plan for an experiment from scratch. Usually they 

begin with an abstract, or skeletal plan that contains the basic steps. Then they 

instantiate each of the plan steps by a method that will work within the environment 

of the particular problem. 

MOLGEN's knowledge base consists of a selection of skeletal plans and the 

objective and procedural knowledge necessary to instantiate the plans completely. The 

two major steps in plan refinement are plan selection and plan imtantiation. 

The problem of selecting a suitable plan is finding a plan which provides a 

satisfactory solution and will require the least refinement Finding a skeletal plan can 

be reduced to a simple look up when exactly the same problem has been solved 



before, but becomes more difficult when only related problems have been solved. The 

task then becomes a decision as whether to choose a detailed plan for a related 

problem or to choose a more general plan for the class of problems. 

A search starts by looking for a skeletal plan which exactly matches the 

experimental design goal. If several matches are found,then all are med  If none 

match, then a more general goal is chosen and the search process is repeated. 

Refmement of the skeletal plan is the process of selecting an appropriate 

ground-level instantiation for each one of the steps in the abstract plan. This is a 

recursive application of the search process to the individual steps of the abstract plan. 

The strategy is to avoid re-inventing plans and to use plan outlines that have 

worked in the past on related problems. Obviously it is important to know what 

constitutes a related problem 

2.3 Redesign 

Redesign [Stein841 [Van841 was developed by L. Steinberg and T. Mitchell .at 

Rutgers as a prototype knowledge based system in which A1 techniques are used to 

interactively aid in the functional redesign of digital circuits. Redesign when provided 

with an existing circuit's functional specification and a desired change to those 

specifications, helps the user determine a change to the structure of the circuit which 

will allow it to satisfy the new specifications. Redesign was the forerunner of VEXED, 

the VLSI Expert EDitor [Mit84]. 

The process of redesigning a circuit is a analogous to defusing a bomb, one 

should know how the mechanism works before tampering with i t  It is important to 



understand both the structure of the circuit and the reasoning that went into that 

structure. 

The structure of the circuit is represented by a network of modules and data 

paths. A module represents either a single component (ie gate) or a cluster of 

components being viewed as a single functional block. Figure 2.4 is a representation of 

a code converter module. Modules are wired together by connecting their ports to the 

ports of other modules. 

A data path represents either a single wire or a group of wires. The data 

flowing on a data path is represented by a data-stream. A data-stream gives the 

entire history of a signal as an infinite sequence of data elements. The behaviour of 

a data-stream is represented by an equation formula. 

Each module description consists of a set of operating conditions and a set of 

input/mtput mappings. Operating conditions are performance specifications. Input/output 

mappings provide an equation for each feature of the output in tenns of features of 

the inputs. 

In addition to modelling the existing circuit's structure and behaviour, Redesign 

also represents the original designer's justifications for his design choices. Information of 

- - 
Q.r.c,.r. - LIIC.. - - - - - - - - - - - 

d 

71.4.. 
Sl.n.1. - J 1 

- - -  - .  
~ibre 2.4 A Code Converter Module 



a teleological nature is recorded in a data smcture' called the design plan 

The design plan is a data structure which shows how the circuit specification 

were decomposed and implemented in the circuit In addition, the design plan reveals 

the conflicts and subgoals which arose during the initial design. The design plan is a 

recording of the reasoning which went into the original design of the circuit Figure 

2.5 is an example of a design plan for the code converter module. 

The design plan can be liken to a labelled graph where the nodes represent a 

high level circuit module. Each high level node can be decomposed into a design plan 

which contains the reasoning for that moduie's internal implementation. The nodes are 

linked by two types of edges. The first type of edge (solid lines) corresponds to some 

implementation choice in the design. The second type of edge (broken lines) represents 

conflicts arising from implementation choices. A conflict can arise in a circuit for 

example, when a decision is made to use a ROM with a parallel output when a 

serial signal is required. The conflict is resolved by creating a subgoal in the design 

pian to accommodate a parallei to seriai conversion. 

Figure 2.5 Design Plan Example 

-----. 
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By examining the design plan of a circuit, Redesign can reason about the 

purposes of various circuit modules and the way the circuit specifications are 

implemented. 

The functional redesign of a circuit starts by limiting the size of the solution 

space. Redesign frrst focuses attention onto the appropriate sections of the circuit 

Redesign replays the Design Plan and compares the purpose of each new module with 

the corresponding module in the original Design Plan. If the purpose is unchanged 

then the module will be reused without change in the new design. If the new 

module has a different purpose then Redesign stops expanding this portion of the 

circuit and marks it for further redesign 

Once the appropriate section of the circuit requiring redesign has been identified 

then redesign options are generated for those sections. Options considered are: 

1. breaking the data path at the focal point and inserting a module which 

will transform values on the data path to values which will satisfy the 

new specifications. 

2. alter the module immediately up stream and make it provide the required 

signal. 

Redesign employs a set of heuristics for ranking redesign options based on 

1. the estimated difficulty of implementing the redesign option. 

2. the likely impact of the redesign option on global circuit parameters. 

3. the likelihood and severity of the side effects that might be associated 

with the redesign. 

The final step of the redesign process implements the selected redesign option 

and evaluates its side effects. 



2.4 The VLSI Design Automation Assistant 

The Design Automation Assistant (or DAA) performs data path synthesis for the 

CMU/DA [.Thorn831 It was written as a knowledge based alternative to the 

algorithmically based program EMUCS which performed the same task. 

The register nansfer level behaviour of a circuit is expressed in ISPS which is 

then compiled into a data flow like representation called the Value Trace [Snow78]. 

The DAA will take the Vaiue Trace decxription of the circuit and produce a 

functional block description of that circuit 

The DAA is a rule based production system consisting of a working memory, a 

rule memory, and a rule interpreter. The working memory describes the current design 

state of the circuit The rule memory consists of a collection of conditional statements 

which operate on the elements stored in the rule memory. Figure 2.6 is an example 

of a rule. 

Rule selection is data driven. The rule interpreter looks through the rule memory 

for a rule whose conditions are all true. If more than one rule is applicable, then the 

IF the most current active context is to  create a link 
AND the link should go from a source to a destination port 
AND the ,module of  the source port is not a mux or a bus 
AND there is a line from another module to the same destination 
AND this other module i s  not on a mux or bus 

THEN create a mux module 
AND connect the mux to  the destination 
AND connect the source port and destination to the mux. 

Figure 2.6 A Sample DAA Rule 



rule dealing with the working memory element most recently modified is selected fmt 

If there are still multiple rules applicable then the most specific rule is selected 

DAA rules are grouped into a set of temporally ordered subtasks. Synthesis 

begins by assigning hardware storage modules such as registers and memories to all 

Value Trace values declared in the ISPS description A Value Trace body is then 

selected and control steps are allocated. Next the synthesis step maps all Value Trace 

operator outputs not assigned to storage modules. Finally it maps each Value Trace 

operator to processor modules, connecting links and supplying multiplexers where 

necessary. 

The DAA has been applied to the design of circuits varying from a MCS6502 

to an IBM/370. Figure 2.7 is an example of a circuit the DAA designed to 

I 
implement the architecture of a MCS6502. 

2.5 Using Protomica1 Knowledge for Design 

The DAA, unlike CIROP and MOLGEN, does not take advantage of the very 

large pool of knowledge represented by existing designs. Systems such as MOLGEN 

and CIROP demonstrate that prototypes represented as skeletal plans or as abstract 

designs can be used to develop new plans or new circuits. Chapter three will show 

how prototypical descriptions of existing digital circuits can be used to design new 

digital circuits. 



Figure 2.7 MCS6502 Architecture as Designed by the DAA 



CHAPTER 3 

CIRCUIT DESIGN USING PROTOTYPICAL DESCRIPTIONS 

We suggested in chapter one that engineers often design circuits by recognizing 

that a circuit they have designed previously may satisfy the specifications for a new 

circuit This would require the designer be able to recognize that the behaviour of an 

existing circuit is similar to the proposed behaviour of the new circuit Specifically, the 

designer must be able to recognize which of the architechmd attributes of the existing 

circuit support behaviour that is identical to that of the new circuif and which 

support behaviour that is unique to the existing circuit The designer must then be 

able to replace those architectural features with new features that will support the 

behaviour that is unique to the new circuit 

We call this process design using prototypical descriptions. The prototypical 

description for a new circuit can be any circuit which has a behaviour that is similar 

to that of the proposed circuit 

Automation of this process requires a representation of a circuit's behaviour and 

of its architecture. There must exist a means for relating the circuit's behaviour to its 

architecture. There also must be a means for recognizing which circuits have similar 

specifications. Finally, there must be a means for resolving the differences between the 

behaviour of the existing circuit and the new circuit 

To develop a representation for digital circuits, we examine the structures a 

designer might develop to represent a design using the Mentor Graphics IDEA system. 



*; 3.1 Raresentine Protome Circuits 

The behavioural specification for a circuit is often expressed using some form of 

algorithmic description. Figure 3.1 is a PASCAL translation of a program that appears 

in John Haye's text on digital circuit design [Hay841 which describes the behaviour of 

a multiplier. 

A circuit designer will use his knowledge of circuit design to transform this 

specification into a circuit For example, a circuit designer "knows" that the storage 

and shifting requirements of the accumulator can be satisfied using a shift register. 

The circuit designer "knows" that an adder will be required and that there must be a 

data path from the multiplicand and multiplier registers to the adder. The circuit 

designer also "knows" that he will need a multiplexer to gate the sixteen bit output 

of the accumulator to the eight bit output port This is the type of knowledge the 

DAA uses to design circuits. 

The circuit designer would start the implementation of the multiplier's behaviour 

by using SYMED to create a symbol for each subcomponent of the multiplier. The 

general procedure followed in SYMED is to: 

1. draw the body of the symbol. 

2. place pins on the symbol body. 

3. add property information about the symbol body. 

4. add property information about the pins, 

5. check for correcmess. 

Figure 3.2 is the schematic symbol drawn for the multiplier's accumulator using 

SYMED. 



PROCEDURE mult$$allocate; 

VAR 
creg 
areg 
qreg 
mreg 

data-in 
data-out 
start 
stop 

PROCEDURE mult-function; 

VAR 
j 

: REGISTER; 
: REGISTER; 
: REGISTER; 
: REGISTER; 

: PORT; 
: PORT; 
: PORT; 
: PORT; 

BEGIN 
12 ( start = sim-$one) THEN 
BEGIN 
bus-in (data-in, qreg) ; 
init-reg (sp.areg, sim-$zero) ; 
init-reg (sp.creg, sim-$zero) ; 

bus-in (data-in, mreg); 

WHILE (decode-reg (creg) < 8) DO 
BEGIN 

IF (qreg.reg-val[O] = sim-$one) THEN 
add-reg ( sp.areg, 8, 15, 

sp.mreg, 0, 7, 
sp.areg, 8, 15, 
sp . carry-out ) ; 

shift-reg ( areg, 0, 15, RIGHT, carry-out); 
shift-reg ( qreg, 0, 7, RIGHT, sim-$zero); 
incrreg ( creg) ; 

END ; 

bus-out (data-out, areg, 0, 7); 
signal-out ( sp . stop, sim-$one) ; 
bus-out (data-out, areg, 8, 15) ; 

END ; 
END ; 

Figure 3.1 PASCAL Listing of Multiplier 

This schematic contains very little information about the accumulator other than 

its pin outs. Nothing is revealed about the behaviour of the subcomponent or about 

the signals carried by its pins. By attaching properties to the symbol the designer can 

describe the behaviour of the symbol and describe the signals carried by the pins. 
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Figure 3.2 Schematic Drawn with SYMED 

The behaviour of a subcomponent is described by associating 'a MODELCODE 

property with i t  The MODELCODE property is a PASCAL program which describes 

the subcomponent's behaviour. Signals are described by attaching the PINTYPE property 

to the pins. 

After the multiplier's subcomponents have been defined, the designer would use 

NETED to specify the data and control path between the individual subcomponents. 

Each of the subcomponents created using SYMED are placed on the NEED sheet 

and connected. The final result is the schematic shown in . figure 3.3. The designer 

would then use the QUICKSIM circuit simulator to verify the correctness of the O 

proposed design. 

By using the Mentor tools, the designer has expanded the original PASCAL 

description of the multiplier's behaviour into an architecture that will implement the 

behaviour. The behaviour of each subcomponent is now described by the PASCAL 



Figure 3.3 Multiplier Architecture 

program that is associated with the subcomponent's MODELCODE property. The 

multiplier's architecture is represented as a network of communicating black boxes with 

each black box having its behaviour described by a PASCAL program. 

The designer now has two options, he can either assign primitive hardware to 

the subcomponents or he can expand the PASCAL descriptions into their respective 

architectures until primitive hardware can be assigned to their subcomponents. Design is 

therefore a hierarchical process where abstract components are successively refined into 

their constituent components. 

It should be noted that design is also an iterative process where lower level design 



information about the multiplier circuit: 

The 

Circuit Architecture. If we ignore the MODELCODE properties associated 

with the subcomponents in the schematic then we obtain a list of the 

different functional blocks required to implement the circuit's behaviour and 

their interconnection 

Component junction. The MODELCODE property associated with each 

functional block reveals the intended behaviour of the module. 

architectural information contained within the schematic can be represented 

using a frame. 

3.1. I Frame Based Representation 

Frames were originally proposed by Minsky [Mix1751 as a basis for understanding 

complex behavior such as visual perception and natural language understanding, but 

have recently fcmd thek way to representing design how!edge [AbadU] [Sait81] 

[Giam85]. Frames provide a structure within which new data can be interpreted in 

terms of concepts acquired through previous experience [Ban81]. A frame could be 

loosely modelled as a template used to describe an object The template contains a 

number of slots which must be filled in for the template to be considered complete. 

Often the slots have associated with them information which will constrain the set of 

values which can be used to fill the slot Procedures can be attached to the slot in 

order to compute a value for the slot when a value is not readily available. Once the 

template is completed, it represents a specific instance of the typical object 

'(cont'd) failures may result in redesign of higher level objects. 



5 Frames are a good implementation for representing prototypes for circuit design 

because they can aggregate all the individual properties that are associated with a 

circuit design into one representation structure. Each subcomponent can be represented 

by a slot where the behaviour of the subcomponent specifies the constraints that must 

be satisfied by the object used to fill in the slot 

The feature that makes a frame a better representation for circuit designs than 

other techniques is the frame rule of inference instantiation. This rule when applied to 

a frame representing a circuit implements circuit design by topdown refinement Each 

slot in the frame represents a black box description of a subcomponent When a slot 

is filled in, the black box description of the subcomponent is replaced by an 

architecture which will implement its black box behaviour. Another frame can be used 

as a slot filler resulting in a recursive application of the design process. Instantiation 

permits a frame to be used as a production rule for constructing a digital circuit in a 

manner similar to CIROP's [Res84] circuit grammar rules. A frame can therefore be 

used to support hierarchical desip-. 

Minsky stated in his original paper that his ideas were not refined enough to 

serve as the basis for a working system and therefore a number of different frame 

based languages have been developed over the past few years. Typical of the eaxly 

frame languages was KRL developed by Bobrow and Winograd [Bob751 which provided 

constructs for describing individual entities and classes of entities. Each individual or 

class is represented as a frame. Frames can be organized into taxonomies using links 

that that represent class membership. For example, one frame can be used to represent 

the general class automobile and another frame can be used to represent the specific 

instance of the class such as Ford Mustang. The Ford Mustang will inherit the 

properties associated with the superordinate frame "automobilen. This is an example of 



We have taken a more restrictive view of the links between frames by having 

the links between frames represent subcomponent composition. For example, the shift 

register of a multiplier is not a type of multiplier, rather, it is a subcomponent or 

IS-PART-OF the multiplier. It is this relationship between a prototype circuit and its 

subcomponents that we wish to express using frames. 

We opted not to use an existing frame language because we did not want to 

obscure our concepts within the idiosyncratic syntax of any given language. Rather we 

chose to present our system as a logical model which could be adapted to a specific 

implementation. 

3.1.2 A Frame Based Representation for Digital Circuit Prototypes 

We used CIROP's circuit grammars as a model for creating a frame to represent 

digital circuits prototypes, The body of a CROP grammar rule lists assertions 

describing how the circuit is to be built Each of the NEW-PART assertions in the 

body of the grammar rule describes the behaviour a component must implement if it 

is to be used in the design of an opamp. The behavioural requirements for the 

abstract components of a digital circuit are represented by a DESIGN slot The name 

DESIGN slot is derived from this slot's usage. A DESIGN slot describes the 

behaviour a component must have if it is to be used as part of the circuit 

The CONNECTION assertions in a CIROP grammar rule specifies how the 

terminals of subcomponents are to be connected. This assertion specifies the architecture 

of the opamp. The architecture of a digital circuit is represented by a list of PLACE 

and CONNECT instructions associated with the prototype frame called the 



The grammar rule's pattern is used to describe the hc t ion  the circuit 

implements. CIROP designs circuits by matching the requirements expressed in a 

NEW-PARTS assertion to. the pattern of a grammar rule. Similarly, each frame has 

associated with it a header which describes the behaviow of the circuit it represents. 

Circuit behaviour is expressed using the PASCAL language. Like CIROP, digital circuit 

design can also be implemented as search where an attempt is made to find a 

prototype with a frame header that matches the behavioural requirements expressed in 

a DESIGN slot 

This search process requires that two algorithms be compared to each other to 

see if they are equivalent This is a computationally difficult problem if we try to 

solve it algorithmically, especially if we are not looking for exact matches. We 

therefore take a knowledge based approach to this problem because we can tailor the 

(PROTOTYPE ( 
(HEADER (algorithm describing circuit behaviour)) 
(DESIGN ( 

(COMPONENT- 1 (component- 1 algorithm)) 
(COMPONENT-2 (component-2 algorithm)) 

(COMPONENT-n (component-n algorithm))) 
(ARCHITECTURAL-PROPERITES ( 

(LAYOUT-COMMAND- 1) 
(LAYOUT-COMMAND-2) 

Figure 3.4 Model of a Prototype Frame 



search process to the comparison of algorithms describing digital circuit behaviour 

rather that trying to solve a general match problem. 

3.2 Usinn Protomes to Design Circuits 

In CIROP, the has properties specified in a NEW-PART assertion must exactly 

match the has properties in a pattern of a grammar rule before that grammar rule 

can be used to instantiate the NEW-PART. For digital circuits this match criteria is 

too restrictive. 

If it were to be required that the behavioural requirements expressed in the 

DESIGN slot must identically match the capabilities expressed in the frame header 

then the probability of finding a suitable component in the data base with which to 

fill a DESIGN slot is very low. Yet each day engineers design circuits using either 

standard ?TL components or a library of standard cells to implement their designs. 

How is it that engineers GEI assip hardwax smclures to their preiiminary designs? 

We can assume that during the process of detailed design engineers do not look 

for an exact match between the behavioural requirements of their abs~act  

subcomponents and the capabilities of the hardware they have available to them. 

Instead they look for hardware which closely matches the behavioural requirements of 

their design and then modify or re-configure the hardware such that it satisfies the 

design requirements. Consider a register whose behavioural requires that when it 

receives a load signal that it must load only its upper half word and leave the lower 

- half word intact There are few, if any, standard registers which can be controlled in 

this manner. An engineer would resolve this problem by linking two registers, each a 

half word in width, to consuuct the full word register. The upper half word will be 



It is quite clear that knowledge is required to use a prototype as a design 

guide because even the largest library of prototype circuits will not help a designer if 

he does not know how to use them. The solution proposed here is to define the 

concept of a similar circuit and to be able to use similar circuits as a prototype to 

guide the development of a new circuit 

3.2.1 Defining Cirm-t Similarity 

What characteristics of a circuit's function establish it as being different or 

similar to another circuit's function? Why, for example, can it be said that a left shift 

register is similar to a bi-directional shift register but not to a multiplier? 

One criteria which can be established for determining whether two circuits are 

similar is if the differences between the behavioural specifications of the two circuits 

can be explained by using a limited set of rules. These rules would define how 

circuits differ but yet can still be considered similar. 

For this research, four classes of rules define what differences between the 

behavioural specifications of two circuits are explainable and therefore when two circuits 

can be considered to be similar. 

1. Serial/Parallel I0 Convqsion Rules: Many circuits which implement a behaviour 

may read their operands or write their results either serially or in parallel. An 

example of this may be seen in computer families, where low end processors 

which implement the same instruction set as their high performance siblings, but 

read information from their bus byte serially, while the higher end machines will 

have increasing degrees of parallelism 



i implementing the same function receive control information from the external 

environment Control information can be fully encoded, where both the low and 

high signal on a line initiate active responses or control information may be 

decoded where only one signal state on a line will initiate an active response in 

the circuit This is analogous to the difference between the use of CASE 

statements and successive IFs in a programming language. 

3. Subset Function Rules: Some circuits may perform only a subset of the functions 

that another circuit performs. For example consider a universal shift register 

which performs bidirectional shifting and is presettable. A shift register which can 

only right shift and is presettable implements a subset of the functions of the 

universal shift register. 

4. Pre/Post Processing Rule: Some circuits implement the same function as other 

circuits however they may pre process input or post process output An example 

of this may be where a circuit inverts its inputs or outputs. 

If the differences between the behavioural specifications of two circuits can be 

explained by the repeated application of one or more rules From this set of rules, 

then the circuits are considered to be similar. 

A circuit which implements a behaviour similar to that of a circuit proposed by 

the designer, can be used as a prototype to implement the proposed circuit The 

prototype can then be modified to implement the behaviour of the new circuit 

To modify a circuit such that it will implement a new behaviour requires that 

the designer know how the existing circuit implements its behaviour. We therefore 

require a means for relating a circuit's behaviour to its architecture. 



3.3 Relatine Circuit Architecture to Circuit Behaviour 

Redesign used a circuit's Design Plan to reason about the purpose of circuit's 

components. By examining the Design Plan of a circuit, Redesign could reason about 

the purpose of various circuit components and the way the circuit specifications are 

implemented. 

We have created a comparable structure called the Dependency Network which 

shows how a circuit's architectural features implement its behaviour. Whereas the 

Design Plan recorded the designer's justifications for an implementation, the Dependency 

Network records the architectural resources, data paths, control paths, and subcomponent 

behaviour. required to implement the circuit's behaviour. For each step in the 

algorithm describing a circuit's behaviour, the dependency network will record: 

1. the steps in the algorithms describing the behaviour of the subcomponents 

that must be carried out 

2. the controi paths that are used to transport the control signals required for 

this step. 

3. the data paths that are used to transport the operands and results of the 

step. 

The information represented in the dependency network is used by the system to 

determine which architectural features of the circuit must be altered when the 

behavioural specifications of the prototype is modified. 



3.4 Com~onents of the Model 
0 

This chapter has developed the components of our model system for designing 

digital circuits using prototypical descriptions. We have used frames to represent the 

relationships between a circuit and its subcomponents and to support hierarchical design. 

We have created a set of rules to define circuit similarity. These rules permit the use 

of circuits implementing a behaviour similar to that of a proposed circuit to be used 

as prototypes for that new circuit Finally, we created the dependency network which 

relates a circuit's behaviour to its architecture. 

Chapter four provides a description of how the components of this model could 

be implemented. 



CHAPTER 4 

REPRESENTING AND USING PROTOTYPICAL DESCRIPTIONS 

This chapter will describe the detailed architecture of the components of our 

model for designing digital circuits from prototypical descriptions. The first section of 

this chapter describes our language for specifying the behaviour of a digital circuit 

The second section describes our frame implementation for representing the architecture 

of a circuit The third section describes the frame header and the dependency network 

which relates the architectural features of the circuit to its behaviour. The fourth 

section describes our representation of the knowledge required to use an existing circuit 

as a prototype for a new circuits. Finally, the last section describes the mechanisms 

used to control the implementation of design process. 

4.1 Representing Circuit Behaviour 

The behaviour of a digital circuit can be described by an algorithm written in 

some procedural language. For this research, we used Mentor Graphic's PASCAL 

language to express the behaviour of a digital circuit The basic PASCAL language was 

augmented with a subroutine library and a set of data structures to support its use as 

a hardware description language. 

4.1 .I Instructions 

The most basic unit of the language is the instruction. An instruction represents 

one primitive functional transform the circuit can perform on an operand in one clock 

cycle. There are currently thirteen instructions defined in three insuuction classes: 

1. 10-Group: These instructions read or write data into or out from the circuit 



There are six instructions in this group: 

a. SIGNAL-IN ( signal ): This operator samples the current value on the 

port specified by signal. The sampled value is not stored and is lost after 

the call. 

b. SIGNAL-OUT ( signal-port, value ): This operator drives output port 

signal-port to the value given by value. 

c. BUS-IN ( input- src, input- src- width, input- dest, input- dest- width ): This 

operator samples the port specified by input-src and stores the value into 

input-dest. The input-src- width and input-dest- width specify the address 

of the first and last bits in the port or register affected by the operation. 

d. BUS-OUT ( output- dest, output- dest- width, output- src, output- src- width ): 

This operator writes the contents of ourput-src to output-dest. 

e. GET-ARG ( input- src, input- src- width, input- dest, input- dest- width ): 

This operator is identical to BUS-IN except that the target input-dest is 

not a true register. This input operator is used when the operand is not 

to be stored within the circuit 

f. PUT-ARG ( output-dest, output-dest- width, output-src, output-src- width ): 

This operator is identical to BUS-OUT except that the source output- src is 

not a true register. This output operator is used when the output source is 

from the result of an operator and not from a storage element within the 

circuit 

2. Functional Group: These instructions perform transformations on their operands. 

There are five instructions in this group: 

a. SHIFT-REG ( shift- src, d i p  spec, shift- in- src ): This instruction shifts 

shift- src one bit to the direction specified in dir-spec with shift- in-src 

being shifted in. 



b. ADD-REG ( result, result- width, addend, addend- width, augend, 

augend- width, carry-out ): This instruction adds addend to augend to 

produce augend. All operands must be registers. The carry out is coded 

into the output signal curry out. 

c. INIT-REG ( register, value ): This instruction sets register to the 

predefined value given by value. 

d. INCR-REG ( register ): This instruction increments register. 

e. MOVE ( src- reg, src- r e g  width, dest- reg, dest- reg- width ): This 

instruction moves the contents of the src-reg to the dest-reg. Both 

operands must be registers and both operands can be masked 

Predicate Group: This group of instructions is used to test an event for flow 

control. There are two instructions in this group: 

a. EQUAL ( registerl, value ): This instruction is used to compare a register 

to a value. 

b. NOT-ZERO ( register ): This instruction returns true if the contents of 

register are zero. 

4.1.2 Operands 

An instruction operand can be either a port or a register. A port is the 

boundary through which the circuit communicates information to the external 

environment and has no storage associated with i t  A port is defined by declaring an 

identifier to be of type PORT. Figure 4.1 shows the PASCAL type definition for the 

port record. The WIDTH of the port specifies the width of the port in bits. The 

IOTYPE of a port is used to specify whether the designer intended the port to be 

part of the circuit's data path or its control network. The I 0  of a port is the 

direction of data flow through the port A port can be strictly input, output, or it can 



TYPE 
port-type 
port-dlr 
port-name-ord 
reg-name-ord 
clock-enum 

port - 
port-name 
lotype 
iodlr 
port-width 
port-val 

= RECORD 
: port-name-ord; 
: port-type; 
: port dlr; 
: I N T E ~ E R ~ ~ ;  
: ARRAY [O. ,151 OF INTEGER16; 

END ; 

Figure 4.1 PASCAL Type Record for Porn 

be an input-output port These values are set in the allocation procedure of the 

PASCAL program. 

A register defines a unit of storage within the circuit and is defined by 

declaring an identifier to be of type REGISTER. 

The values associated with registers and ports in a circuit describe h e  circuit% 

state. Non volatile storage is allocated within the PASCAL program for the ports and 

registers which describe a circuit's state. Declarations for registers which are not in the 

state record are for psuedo registers which do not contribute to the state of circuit 

and are only used for notational convenience within the PASCAL program. The 

PASCAL type record for REGISTER and an example state record is shown in figure 

4.2. The WIDTH of the port specifies the width of the register in bits. 



register - 

reg-name 
reg-width 
reg-val 

- RECORD 
: reg-name ord; 
:  INTEGER^^; 
: ~ G Y - [ o .  1151 OF INTEGER16; 

END; 

mult-state-rec = RECORD 
data-in 
data out 
star5 
stop 
clk 
areg 
creg 

: port; 
: port; 
: port; 
: port; 
: port; 
: register; 
: register; 
: register; 
: register; 
: INTEGER16; 
: clock-enum; 

END; 

Figure 4.2 PASCAL Type Record for Registers and Sample State Record 

4.1.3 Statements 

Instructions are aggregated into statements. . A  statement is a list of instructions 

that are executed concurrently. A statement has the fonnat shown in figure 4.3. 

Statements do not correspond to PASCAL grammatical constructs. They are implemented 

as comments and are used to designate groupings of instructions which can be 

exec~ied concurrently in "one clock cycle. This strucmre was created because there is 

no suitable feature within the PASCAL syntax to represent concurrent execution of 

I (statement-type, statement-number ) 
instruction-/ ist 

I (statement-type, statement-number ] 
instruction-/ ist 

Figure 4.3 Statement Format 



instructions. 

The statement-type serves as a statement separator and identifies the type of 

instructions following in the instmction-list. There are five types of statements: 

1. 

2. 

3. 

4. 

5. 

The 

clock-begin: This is always the first statement in a behavioural specification. It 

has a null instruction-list and implicitly branches to the statement physically 

succeeding i t  

clock-end: This is always the last statement in a behavioural description. It has 

a null instmction-list and terminates a description. 

clock-step: This statement is used to specify clock periods in a behavioural 

specification. It implicitly branches to the statement physically succeeding i t  

dec: This indicates that all the instructions in the instruction-list are decision 

instructions, that is, IF, WHILE, and REPEAT. The next statement for this 

statement will be determined by the execution of the individual instructions. 

act: This indicates that all the instructions in the instmction-list perform some 

action or transformation upon their operands. 

statement-number is used to uniquely identify the statement 

The instruction-list may be a list of zero or more instructions. Each instruction 

is prefixed by an instruction identifier INSTi, where i is an integer used to identify 

the instruction. Figure 4.4 shows two examples of statements. 

Statement 1 in this example is an action statement with three instructions which 

are executed in parallel. The instruction labelled INSTl moves the value at "datajnn 

to "multiplier". INST2 and INST3 set "accumulator" and "counter" to zero. The next 

statement to be executed is statement number 2 which is a clock-step. 



ACT, 1 1 
{ INSTI 1 bus-in (data-in, 0, 7, multiplier, 0, 7) ;  
1 INST2 1 init-reg (accumulator, sim-$zero); 
1 INST3 1 init-reg (counter, sim-$zero); 

{ CLOCK-STEP, 2 1 

{ INST1 1 IF (multiplier.reg-val[O]= sim$-one) THEN 
i ACT, 4 1 

Figure 4.4 Example of Decision and Action Statements 

Statement 3 in this example is a decision statement with only one insmction in 

its instruction list, INSTl tests bit 0 of "multiplier". 

After establishing a notation for specifying and describing circuit behaviour we 

need to be able to describe the architectures that can implement the behaviour. 

4.2 Reuresenting Circuit Architecture 

A circuit schematic represents a circuit's architecture as a collection of 

interconnected data processing elements and controllers. Some of these elements may be 

considered primitive because they can be immediately implemented using available 

hardware. Some elements may be abstract because they implement a complex function 

and will require more refinement before they can be implemented in hardware. A 

schematic may therefore possess a hierarchical structure because the internal structure of 

a component appearing in the top sheet may be described in the lower sheets. 



Y 
I To support the representation of both abstract and primitive components, a 

prototype frame has two representational structures, DESIGN slots and the 

ARCHITECTURAL-PROPERTIES list Absuact circuit components are represented using 

DESIGN slots which provide a black box like representation of abstract circuit 

components. The ARCHITECT'URAL-PROPERTIES list is a procedural representation of 

the circuit's schematic which lists all the circuit's components and interconnects. 

4.2.1 Representing Black Boxes: Design Slots 

Our frame model was influenced by Patrick Winston's text on LISP [Win841 

where frame slots are partitioned into facets. A DESIGN slot is partitioned into four 

facets. The facets express the properties the subcomponent must possess if it is to 

support the circuit's specified behaviour. 

The four facets of a DESIGN slot are: 

1. PORT-SYMBOLS: The port symbols define the component's interfaces to the 

externai world. These are symbols that can be referenced for component 

interconnection. 

2. REG-SYMBOLS: The register symbols are names which are internal to the 

component These symbols are defined such that they can be used in the 

algorithm to describe the behaviour of the component If the component has 

storage associated with it, then it is defined as a REG-SYMBOL. 

3. RT-TYPE: The RT-TYPE classifies the type of register-transfer operation the 

device supports. This is analogous to the 'TYPE assertion used in the pattern of 

a CIROP grammar rule. John Hayes identified four types of MSI components 

that are required to implement register-transfer operations [Hay84]: 

a. STORAGE: any device such as a register or latch which has a memory 



propem. 

b. PROCESSOR: devices which performs a functional mapping between its 

inputs or outputs. 

c. ROUTER: devices used to route data through the system. 

d. CONTROLLER: devices which are used to generate the control signals 

necessary to ensure that the desired register lransfer operation is carried 

out at the proper times and in the proper sequence. 

Many devices could be labelled as having more than one type classification. For 

example a shift register could be classified as storage device or as a processing 

device. The RT-TYPE assigned to the component therefore indicates the 

designer's intended primary function for the component 

4. FUNCTIONAL-REQUIREMENTS: This is the specification of the behaviour the 

component must implement if it is to support the circuit's behaviour. 

4.2.2 Representing Primitives: The Architectural- Properties List 

Primitive components and wires are represented procedurally within a prototype 

frame. We assumed the existence of a layout language with three keywords, EXPAND, 

PLACE and CONNECT. 

EXPAND causes the behavioural description of a component expressed in a 

DESIGN slot to be expanded into an architecture. The syntax of an EXPAIVD is 

EXPAND ( design- slot- name ). 

PLACE causes a specific instance of a primitive component to be created. The 

syntax of a PLACE is 

PLACE ( component- id, placement- name, instance- number ). 



The component-id is the name of a primitive component or the name of a DESIGN 

slot The placement- name and the instance- number are used to uniquely identify the 

placement instance of component-id in subsequent CONNECT statements. The 

instancenumber is used to support the automatic placement of multiple instances of 

the same component- id. 

CONNECT creates a conductive link between the terminals of two components. 

The syntax of a CONNECT statement is 

CONNECT ( terminal- spec- 1, terminal- spec- 2 ) 

where terminal-spec identifies the terminals of the components to be interconnected. A 

terminal- spec consists of a component's placement- name and instance- number pair, the 

name of a component port, and a number representing the bit address of a terminal 

in that p o x  Figure 4.5 is a sei of layout insimctions %hi& place adder 

register on a logical sheet and then connects them. 

These procedural descriptions of the circuit's architecture make up the 

ARCHITECTURAL-PROPERTIES list The instructions in the list must be causally 

EXPAND ( adder )D 
EXPAND ( store-reg ) 
PLACE ( adder, sysadd, 1); 
PLACE ( store-reg, augend, 1 ); 
FOR i := 1 to 7 DO 
CONNECT ( augend, 1, reg-out, 1, 
sysadd, 1, augend-in, i ) ;  

Figure 4.5 Example Layout h m c t i o n  



ordered, that is, a component must be PLACEd before it can be CONNECTed. 

We have described how the behaviour of circuits are represented using the 

PASCAL language and how the architecture of the circuit is represented using 

DESIGN slots and the ARCHITECTURAL-PROPERTIES list What must be shown 

now is the linkage between the circuit's architecture and its specified behaviour. 

4.3 Relating Circuit Architecture to Behaviour - The Frame Header and the 

Dmendencv Network 

The frame header is similar to the CIROP grammar pattern rule because both 

describe the behaviour the circuit can implement The CIROP circuit grammar pattern 

does not show how each of the subcomponents implements to the overall behaviour of 

the circuit For CIROP this was not necessary because design modification is not one 

of CIROP's design strategies. The ftame header, on the other hand, must not only 

describe the behaviour the circuit implements, but also show how the circuit's 

architecture implements the behaviour. 

The structure of the header is quite simila to that of a DESIGN slot There 

are four facets to the header, PORT-SYMBOLS, REG-SYMBOLS, RT-TYPE, and 

FUNCTIONAL-CAPABILITIES each of which corresponds to a facet of a DESIGN 

slot The FUNCTIONAL-CAPABILITIES describes the behaviour the circuit implements 

and corresponds to the FUNCTIONAL-REQUIREMENTS facet of the DESIGN slot 

Each instruction in the FUNCTIONAL-CAPABILITIES has a dependency record 

associated with i t  Each dependency record has four types of dependency pointers, the 

INSTRUCTION, IS-CARRIEPOUT-BY, CTRL, and DATA-PATH pointers. These 

pointers form the basis of the dependency network and record the architectural 



resources that are required to support a specific feature of the circuit's behaviour. 

Figure 4.6 shows the format of a dependency record. 

The INSTRUCTION pointer points to the header instruction the dependency 

record is associated with. There is only one INSTRUCTION pointer associated with a 

dependency record. An instruction in a dependency record is identified by the tuple 

( statement-number, instruction-number ). 

The I S - C A R . U T - B Y  pointer is a list of pointers which points to the 

insmctions that subcomponents must carry out to implement the behaviour specified in 

the header insmction. Each pointer is tagged with the RT-TYPE of the instruction's 

supporting component Each pointer of the carry  act- support- ptr- list is identified by 

the quadmple 

(RT- TYPE, component- id, statement-number, instruction-number ) 

The CTRL pointers point to the CONNECT statements in the 

ARC-CTLR4L-PROPmTIES !ist which geneme the coma! paths t!~at ~ U S I  be i:: 

place for each of the subcomponents supporting the instruction pointed to by the 

INSTRUCTION pointers. Each signal pointed to in the path-list is described by three 

pointers, one which points to the signal source, one which points to the signal 

destination, and one which points to the layout statement in the 

(I NSTi (( l NSTRUCTI ON header-instruction-ptr) 
(IS-CARRIED-OUT-BY carry-out-support-ptr-list) 
(CTRL path-list) 
(DATA-PATH path-list) 

Figure 4.6 Format of a Dependency Record 



ARCHITECTURAL,-PROPERTIES list that creates the path. A signal source or 

destination is identified by the triple 

(placement-name, instance-number, port-name ). 

Tne layout statement which generates the path is identified by the arbiuary name that 

is assigned to it in the ARCHITECTURAL-PROPERTIES list Figure 4.7 shows an 

example of a path- list for a CTRL pointer. 

The DATA-PATH pointer is identical to the CTRL pointer except that it points 

to the paths which must be in place for the instruction operands to be made 

available. Figure 4.8 is an example of a dependency record. 

This insmction sets a register named "areg" to zero. For this instruction to be 

wried out, a component of RT-TYPE controller must execute instruction 

(controller. ctrl, 20. INST1) 

and a component of RT-TYPE "storage" must execute instructions 

(storage, areg, 10, INST1) and (storage, areg, 20, INSTI). 

A CTRL path from the "clear" port of ctrl to the "clear" port of the "areg" 

provides the only control signal required. No data paths are required. 

((SRC ctrl, 1, shift)) 
(DEST areg,  1 ,  shift)) 
(PATH c013)) )) 

Figure 4.7 Path Lisr for a CTRL Pointer. 
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init-reg ( areg, sim-$zero ) 

(DEPENDENCY ( 
(INSTRUCTION ( 20, INST2) ) 
(IS-CARRIED-OUT-BY ((controller, ctrl, 20, INST 1 ) 

(storage, areg, 10, INST1) 
(storage, areg, 20, INSTI) )) 

((SRC ctrl, 1, clear) 
(DEST areg, 1, clear) 
(PATH c002)) )) 

(DATA-PATH nil) )) 

Figure 4.8 Example of a Dependency Record 

4.3.1 The DEPENDENCY Attribute 

The IS-CARRIED-OLT-BY, CTRL and DATA-PATH are pointers from an 

instruction describing a behavioural feature to the supporting architectural feature. The 

DEPENDENCY attribute associated with each of the supporting architectural features 

within the DESIGN slots and the ARCHITECTURAL-PROPERTIES list records how 

many of these pointers fall onto that architectural feature and thereby justify its 

existence. The number associated with the DEPENDENCY attribute indicates how many 

pointers point to that feature. During a transformation, if the DEPENDENCY number 

for a port wire, subcomponent or statement falls to zero then there is no justification 

for feature's existence and it is removed. 

One DEPENDENCY is recorded for an insuuction in the 

FUNCTIONAL-REQUIREMENTS of a DESIGN i o t  for each reference to that 

instruction that is made in an IS-CARRIDOUT-BY slot of the dependency record. 



One DEPENDENCY is recorded for a CONNECT statement which is referenced in 

the PATH attribute of a CTRL or DATA-PATH slot in the dependency record. One 

DEPENDENCY is recorded between an EXPAND statement and its associated DESIGN 

slot Finally, one DEPENDENCY is recorded for each PORT and REGISTER for each 

time it is referenced in a header instruction. 

The dependency network lists the architectural resources required to support a 

feature of a circuit's behaviour. This is the type of information that is required by 

the rules which use the prototype to design a new circuit 

4.4 Re~resentina the Knowledge Reauired to Use Protomes 

The knowledge required to use the circuit prototypes is represented as a 

collection of IF-THEN rules. IF-THEN rules are more suitable than frames because 

we wish to represent "how to" knowledge rather than knowledge about an object's 

properties. 

The rules used in the system range from very simple rules, which look for 

identical matches, to rules with complex antecedents which must make reasonably 

sophisticated modifications to a circuit prototype. The modifications which can be made 

to a circuit are restricted by the four rule classes defining a similar circuit given in 

chapter three. This restriction is imposed because we really do not want to be in a 

position where we are bashing multiplexers into counters or multipliers into adders. 



4.4.1 Rule Bcse Architecture 

Rules are organized into a production system that consists of a working memory, 

a rule base and an interpreter. A description of the interpreter is provided in the 

section on control. 

The working memory consists of three major data structures: 

1. A list of the FUNCTIONAL-REQUIREMENTS, PORT-SYMBOLS and 

REGSYMBOLS from the DESIGN slot requiring instantiation. 

2. A list of the FUNCTIONAL-CAPABILITIES, PORT-SYMBOLS and 

REG-SYMBOLS from the frame header of the candidate prototype. 

3. A symbol table which is constructed dynamically during the design process. 

The rules are an explicit declarative representation of the knowledge an engineer 

majj use to determine if the behavioural specifications for the prototype is similar to 

that of the proposed circuit The IF portion of the rule is a conjugation of 

mndificna! c h s e s  that =.lust be me: if the E E N  pbii of k e  r d e  is ig be executed. 

Figure 4.9 is an example of a rule. 

IF object-type of <port-1 is PORT 
AND object-type of <port-2 is PORT 

AND source-type of <port-1 is user-spec 
AND source-type of <port-2 is prototype 
AND width of <port-1 & <port-2 is the SAME 
AND io of <port-1 or <port-2 is input-output 
AND info-type of <port-1 & <port-2 is the SAME 
AND binding of <port-1 & <port-2 is NOT weak-bound 

THEN 
weak-bind ( <port-1, <port-2 ) 

Figure 4.9 Example Rule 



Each of the conditional clauses in the IF part or antecedent tests if a property 

of an object has a specific value or set of values. An object can be one of the 

following entities: 

1. Instructions, 

2. Statements, 

3. Ports, or 

4. Registers. 

Objects may be from either the prototype or user specification. If the object is part 

of the prototype then its name will be prefixed by "prototype" in the symbol table. 

If an object is part of the user specification then its name will be prefixed by 

"user-spec " . 

Each object has a number of properties associated with i t  All objects have at 

least three properties: 

1. name, 

2. source type (prototype or user-spec); and 

3. match type (no match, weak match, strong match). 

In addition to these properties an object may have a number of object specific 

properties. For example, registers have a width property, instructions have control-path 

and data-path properties, and ports have I 0  and INFO-TYPE properties. Instruction 

operands are considered to be properties of the instruction For example, a BUS-IN 

instruction will have an input- src property, a input- dest property, a input- src- width 

property, and a input-dest-width property. These properties can be identified in a 

rule. 

Objects can be represented by variables in a rule. The left angle bracket "<" is 

used to designate symbols in a rule that are variables. Variables are bound to values 



in the order in which they appear in a rule. The first occurrence of a variable in a 

rule will cause the system to search for an object that can have the property 

described by the conditional clause the variable occurs in. Variables are local to the 

rule in which they appear. 

If all the conditional clauses of a rule can be satisfied then the rule fires and 

executes the action items listed in the THEN or consequent portion of the rule. The 

action items of a rule consequent may: 

1. Add an object to the symbol table. 

2. Update the property attributes of an object in the symbol table. 

3. Declare a match between a user-spec and prototype objen 

4. Declare a mismatch between objects appearing in the working memory is 

explainable and modify the prototype. 

The type of action items that make up a rule's consequent divide the rules into 

three broad categories, the symbol table construction rules, the matching rules and the 

transfwmational rules. The symbol table construction rules install objects into the 

symbol table. Initially, this is a very simple task as registers and ports from both the 

prototype and user-spec are placed into the symbol table. During the application of 

other rules, a transformational rule may create new registers and ports which must be 

subsequently installed. 

The matching rules establish bindings between the objects of the working 

memory by linking them in the symbol table. The matches are used to find the 

behavioural features of the prototype that are identical to those of the user 

specification. There is some overlap between the symbol table construction rules and 

the matching rules because instructions and statements are not installed into the symbol 



table until there is a match established for them. Figure 4.10 is an example of a 

matching rule. 

There are two levels of matches defined within our system, weak and strong. A 

weak match occurs when the characteristic attributes of two objects fall into the same 

class or satisfy some predefined set of constraints. For example, the instructions 

move (a, 0, 7, b, 0, 7) 

move (x, 8, 15, y, 0, 7) 

will weak match if "a" and "x" are both registers or ports and if "b" and "y" are 

both registers or ports. These two instructions will not weak match if one of the 

sources, "a" or "x", is a port and the other is a register. A strong match occurs 

when the characteristic attributes of two objects are identical. 

The transformational rules modify the prototype's 

ARCHITECTURAL-PROPERXES and DESIGN slots such that the prototype will 

implement the behaviour specified by the user. A transformational rule may have to: 

1. Modify the prototype's header instructions. 

IF object-type of <instr-1 is INSTRUCTION 
AND object-type of <instr-2 is INSTRUCTION 
AND source-type of <instr-1 is prototype 
AND source-type of <instr-2 is user-spec 
AND binding of cinstr-1 & cinstr-2 is strong-bound 
AND binding, of operand(<instr-1) & operand(<instr-2) is 

strong-bound 
THEN 

strong-bind ( <instr- I ,  cinstr-2 ) 

Figure 4.10 Strong Instruction Matching Rule. 



2. Modify the prototype data paths supporting the instruction. 

3. Modify the prototype control net supporting the insmctioa 

4. Modify the functional requirements of the components supporting the 

header's instructions. 

Figure 4.11 is a transformational rule which detects the case whzre the difference 

between the specification for the prototype and the user-spec requirements for a shift 

register is the shift in source. 

There is a strong assumption in the transformational rules that circuits are 

designed with respect to some generally accepted principles of circuit design. The action 

items within the rules operate on an expected general organization of the circuit If a 

IF object-type o f  <instr- 1 is INSTRUCTION 
AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 
AND 

THEN 

object-type of  <instr-2 is INSTRUCTION 
source-type of  <instr- 1 is prototype 
source-type o f  <instr-2 is user-spec 
object-type of  <port-1 is PORT 
source-type of  <port-1 is prototype 
width of  <port-1 is 1 
object-type of  <reg-1 is REGISTER 
source-type of  <reg- 1 is prototype 
object-type of  <reg-2 is REGISTER 
source-type of  <reg-2 is user-spec 
operator-type of <instr-1 & cinstr-2 is SHIFTREG 
shift-in-src of  <instr- 1 is <port-1 
shift-in-src of  <instr-2 is CONSTANT 

RM-SRC ( <instr- 1, shift-in-src, <port- 1 ) 
ADD-SRC ( <instr-1, shift-in-src, CONSTANT ) 
RM-PATH ( <instr-1, shift-in-src, <port-1 ) 
ADD-PATH ( <instr-1, shift-in-src, CONSTANT ) 
RPL-INSTR-SRC ( Cinstr- 1, shift-in-src, CONSTANT ) 

Figure 4.11 Modified Shift Input Source Rule 



design is a radical departure from conventional circuit architectures then the rules will 

fail to transform the circuit properly. 

4.5 Control of the Design Process 

Control of the design process is divided between three independent mecha.nisms, 

the instantiator, the designer and the prototype manager. Communication between these 

three mechanisms is supported by a message system. 

4.5.1 Instantiator Contrd 

The instantiator's role in the design task is to expand a frame into its 

constituent components. Design progresses in the order in which the prototype's 

ARCHITECTURAL-PROPERTIES are listed. The ARCHITEC?ZTRAL-PROPERmS list 

is therefore not only a procedural description of the prototype's architecture, but is 

also an agenda that specifies when the prototype's DESIGN slots should be expanded 

and when the ARCHITECTURAL-PROPERTTES should be instantiated. 

The order in which the EXPAND commands appear within the 

ARCHITECTURAL-PROPERTIES is important. The objects of the EXPAND commands 

should be listed by decreasing difficulty. In the multiplier design for example, it is 

believed that the accumulator may be the most difficult element to find or to develop 

a satisfactory architecture for and therefore may be the design task which is most 

likely to fail. If a subcomponent cannot be designed, then the global design will fail. 

In the interests of efficiency we would like to abandon a design early if it is 

unrealizable. 



The instantiator uses stack based control. When it picks up a new prototype it 

will push the ARCHITECTURAL-PROPERTIES list onto its stack and then begin 

executing the command which appears at the top of the stack. The first element of 

the ARCHITECTURAL-PROPERTIES list will appear as the top element of the stack. 

An EXPAND command requires the instantiator to request an architecture from 

the designer. If the designer is successful, it will return an architecture that will 

implement the behaviour specified in the DESIGN slot If the architecture is not a 

primitive structure then its DESIGN slots will have to be expanded. The 

ARCHITECTURAL-PROPERTIES list from this new architecture will be pushed onto 

the instantiator's stack which results in design being carried out in a top down depth 

first fashion. 

Design is complete when the instantiator's stack is empty. 

4.5.2 Designer Control 

The designer's task is to develop an architecture that will implement the 

behaviour requested by the instantiator. 

There are two processing phases in the designer. The fust phase is a heuristic 

search carried out by the prototype manager for prototype circuits which may satisfy 

the behavioural requirements. The purpose of this search is to limit the number of 

potential circuits the designer must consider in its more computationally complex second 

stage. 

Prototypes are stored in a data base and are indexed by their RT-TYPE If the 

instantiator is requesting a design for a circuit with an RT-TYPE of "processor", then 

only circuits which have an RT-TYPE of "processor" in the data base are considered. 



Of these circuits, the data base 

requested design to those having 

manager compares the relative complexity of the 

the same RT-TYPE. The relative complexity is a 

simple minded count of the number of instructions appearing in an algorithm 

describing the circuit's behaviour. 

There are two heuristics used to limit the potential number of candidate 

prototypes. The first is that the relative complexity of the candidate cannot be less 

than 75% of the relative complexity of the FUNCTIONAL-REQUIREMENTS. There is 

no point in using a prototype that is obviously too simple to implement a circuit 

behaviour. The second pruning hueristic states that the relative complexity of a 

candidate prototype cannot exceed the relative complexity of the 

FUNCTIONAL-REQUIREMENTS by a factor of two. The remaining prototypes are 

then sorted by their relative complexity and the prototype which has the lowest 

relative complexity is chosen as the candidate prototype. The header of the frame 

representing the candidate prototype is placed into the prototype side of the system's 

working memory. 

The rule matcher works by forward chaining. Each object in the working 

memory is compared to the conditional clauses of the rules. When a rule is complete 

then it will fire and add new objects and relationships to the working memory which 

may cause other rules to fire. The rules appearing in the rule base are ordered by 
e 

priority. Those rules appearing first in the rule base have the highest priority. The 

symbol table consmction rules have the highest priority and the transformational rules 

have the lowest priority. The rule matcher steps through the rules in the rule base, 

querying each rule to see if it is ready to fire. If a rule can fire, then the action 

items listed in its consequent are applied to the working memory and then control 

renuns to the first rule. If none of the rules can fire during a cycle then either 



there is a completed match or a failure. If all the memory elements of the user-spec 

are matched then the prototype implements the behaviour of the user-spec, otherwise 

there is failure. The rule matcher follows the algorithm shown in figure 4.12. 

The algorithm given in figure 4.12 hides a bit of what happens under the 

surface of the SEARCH step. When a rule is fnst selected the designer will 

sequentially search the working memory for an object that has the properties that will 

satisfy the conditional clause. Once an object has been found the rule matcher does 

not immediately proceed to fmd a match for the next conditional clause in the rule's 

antecedent Rather, it will generate another copy of the rule and continue the search 

START : -get f i rst  rule f rom rule base 

CONT : -get f i rst  conditional clause o f  rule 
SEARCH: -search for  an. element in working memory 

which satisfies the conditional clause. 

-IF the conditional clause is satisfied THEN 
IF all rule conditions are now satisfied THEN 

-execute the rule's consequent. 
-GOTO START 

ELSE 
-get conditional clause o f  rule 
-GOTO SEARCH 

ELSE IF last rule THEN 
-GOTO HALT 

ELSE 
-get next rule 
-GOTO CONT 

HALT : -stop 

Figure 4.12 Rule Matcher Algorithm 



for a working memory object for the first conditional clause of that rule. This match 

and copy process stops when there are no more objects in the working memory which 

satisfy the first conditional clause in the rule. The algorithm then steps back to the 

SEARCH step of the algorithm with the next conditional clause of the rule. 

Satisfying the next conditional clause within the context of the match for the 

first conditional clause may prove impossible, and those instances of the rule for which 

no match can be found are deleted. If there are no instances of a rule left then 

there is no applicable case for this rule and the next rule is tried. 

When all the conditional clauses of a rule are satisfied then the rule is 

complete and the rule can fire. If there is more than one rule which can fire, then 

the first rule on the list is fired and has its consequent actions applied to the 

working memory. 

The remaining rules cannot be fired because the consequent of the rule which 

has just fired may have altered the working memory and enabled a higher priority 

rule to fire. There are two options for dealing with completed instances of unfired 

rules: 

1. Erase the unfired rule instances. This is the simplest method for dealing with 

the problem but is inefficient because the information gained in the rule 

bindings is lost. 

2. Maintain the unfired rule instances until they can be tested again. This strategy 

preserves the matches, but requires an extensive dependency network to track the 

changes to working memory objects bound to the rule's conditional clauses. 



4.5.3 Message Communications 

In order to decouple the control mechanisms, a message based communications 

system is used. There are six message types defined: 

1. DESIGN-REQUEST is sent by the instantiator to the designer when the 

instantiator requires expansion of a DESIGN slot The DESIGN-REQUEST 

message carries all the information contained in the facets of the DESIGN slot 

to the designer. The format of a DESIGN-REQUEST message is 

(DESIGN-REQUEST ( (ID ...) (PORT-SYMBOLS ...) (REG-SYMBOLS ...) 

(RT-mE)(mmoNAL-REQmREMENTS ...) )) 

2. POLL messages are sent by the designer to the prototype manager when it is 

looking for potential candidates with which to satisfy the DESIGN-REQUEST 

from the instantiator. The designer computes the relative complexity of the 

requested design and places this along with the RT-TYPE of the design into the 

POLL message. The POLL message is then sent to the prototype manager. The 

prototype manager wiii compare the reiative complexity and RT-TYPE in the 

message to the corresponding values appearing in potential candidates. The format 

of a POLL message is 

(POLL ((RT-TYPE ...) (REL-CMPLX ...))) 

3. BID messages are sent by the prototype manager in response to POLLS when 

candidate frames have been selected which meet the requirements specified in the 

POLL. 

(BID ((FRAME-ID ...) (EL-CMPL ...))) 

4. POLL-FAIL is sent by the prototype manager if no candidate designs can be 

found in the data base in response to a POLL The format of a POLL-FAIL 

message is 



(POLL-FAIL) 

5. DESIGN-COMPLETE message is sent by the designer to the instantiator if a 

successful match is found. The format of a DESIGN-COMPLETE message is 

(DESIGN-COMPLETE (FRAME-ID)) 

6. DESIGN-FAIL message is sent by the designer to the instantiator if none of 

the candidate designs could be made to satisfy the requirements. The format of 

the DESIGN-FAIL message is 

(DESIGN-FAIL) 

4.6 Revisiting the Model 

This chapter has provided a description of how the model components identified 

in chapter three could be implemented. We have shown how we use an augmented 

PASCAL to specify and represent the behaviour of digital circuits. The architecture of 

a circuit is represented by the DESIGN slots and ARCHITECTURAL-PROPERTIES list 

of a frame. The dependency network is used to relate the individual instructions that 

describe a circuit's behaviour to the architectural resources required to implement the 

behaviour. Finally, we have encoded the knowledge required to use a circuit as a 

design prototype in a set of IF-THEN rules. 

The next chapter is an example of how a circuit may be designed using this 

model. 



CHAPTER 5 

THE DESIGN OF AN UNSIGNED MULTIPLIER 

A design begins with the user writing a PASCAL program to specify the 

behaviour of the proposed circuit For this example we will design a circuit which 

implements the behaviour described by the program given in figure 5.1. 

The design process is started by pushing on the instantiator's stack the command 

EXPAND (multiplier). 

The instantiator begins its design cycle by popping the top of its stack and executing 

the command The EXPAND command tells the instantiator to format a 

DESIGN-REQUEST message and mail it to the designer. 

The designer preprocesses the DESIGN-REQUEST by counting the number of 

instructions appearing in the FUNCTIONAL-REQUIREMENTS to obtain the relative 

complexity of the requested circuit The relative complexity of the circuit in this 

example is thirteen The designer then formats the RT-TYPE of the circuit and its 

relative complexity into a POLL message and sends the message to the prototype 

manager. 

When the prototype manager receives a POLL message, it searches for all 

prototypes having the same RT-TYPE as the the requested design. In our assumed 

data base there are four prototypes which have an RT-TYPE of processor as required 

by this design. They are RDIV, a restoring divider, UMULT, an unsigned multiplier, 

AND, an and gate, and OR, an or gate. The prototype manager then compares the 

relative complexity of the candidates to that of the request RDIV has a relative 

complexity of 20 which does not exceed the complexity cutoff limit and UMULT has 



BEGIN 

WITH aimbaae-Sinatance trA:i DO 
atategtr : - i. uaer-&-arm r 

 WIT^ atategtr-:ap DO 
BEGIN 

( DEC, 1 )  
( INST1 ) I? (signal-in (ap.atart) - aim-$one) THEN 

BEGIN 
( A m .  2 ) 
( INST1 ) bus in (ap.datagort, 0, 7, ep.multiplier, 0, 7); 
( INST2 ) iniE reg (ap.accumulator aim Szaro); 
( INST3 ) init-reg (ap.counter, a& $zaFo); 
[ I N S T I )  bua~n(ap.dategort,8,13,ap.multicend,o,7)i 

ap.Elock-cycla 8 -  clockir 
END 

ELSE CASE ap.clock-cycle OF 

( CLOCK-STEP, 3 ) 

clocki: BEGIN 
( DEC. 4 
( INSTl ) IF (decode-reg (ap.counter1 < 8) THEN 

BEGIN 
I DEC. 5 ) 
( INSTl ) IF (ap.multiplier.req-val[O] - aim-Sane) THEN 
( ACT. 6 ) 
( INSTl ) add-reg ( sp.accumulator, 8, 15, 

ap.multicand, 0, 7, 
ap.aCcumUlator, 8, 15, 
ap.carry out ) ; 

ep.clock-cycle :- cloZk2i ; 
END 

ELSE 
ap.clock-cycle :- clockn~ 

END; 

{ :NST2 ) shift-reg ( ap.rultiplier, 0, 7, RIGHT, aim-$zero) ; 
: -NST3 ) incr reg ( ap. counter) ; 

ap.clock~cycla :- clocki; 
END: 

( CLOCK-STEP, 9 ) 

clockn: BEGIN 
( ACT, 10 ) 
( TNSTl ) signal out (ap.atop, sin $one); 
( INST1 ) bus-ouf (ap.datagort, 0; 15, ap.accumulator, 0, 15); 

END ; 

END; 

( CLOCK-END, 11 ) 

END; 

Figure 5.1 Specification for an Unsigned Multiplier 

a relative complexity of 14. Both prototypes are chosen as potential candidates with 

which to satisfy the DESIGN-REQUEST. AND and OR both have a relative 

complexity of 1 which cuts them off from further consideration. Appendix one is a 

listing for the multiplier frame used as the prototype in this chapter. Appendix two is 



a partial description of a possible prototype for a restoring divider. 

Tne prototype manager formats two BID messages, one for each candidate 

prototype and then mails them to the designer. 

When the designer receives the BID messages, it sorts the responses by their 

relative complexity. The prototype with the lowest relative complexity is used. The 

designer uses the FRAME-ID in the BID message to access the data base for the 

candidate prototype and then copies the prototype's f~ame header into the prototype's 

side of the working memory. The REG-SYMBOLS, PORT-SYMBOLS and 

FUNCTIONAL-REQUIREMENTS appearing in the DESIGN-REQUEST message are 

copied into the user-spec side of the working memory. 

5.1 An Overview of the Multi~lier Desim Process 

The flowcharts shown in figure 5.2 represent the structures of the algorithms 

used to describe the behaviour of the prototype multiplier and the user-spec multiplier. 

Each node in the graph represents one instruction (bubbles are used to represent the 

clock-step statements) and crosses appearing on the arcs connecting the nodes indicate 

statement boundaries. All instruction nodes between the boundaries are members of one 

statement This graphical representation of behaviour will be used to illustrate the 
0 

design process in this chapter. 

Inspection of the two flowcharts show that the behaviour of these two circuit's 

is almost identical except for the input and output of data. The prototype multiplier 

reads and writes data half word serially while the user-spec multiplier reads and writes 

data word parallel. If this difference between the behaviour of the prototype and the 



Figure 5.2 Ccnparative s t q x h m  of the prototype and user-spec algorithm 



user-spec can be resolved then the architecture of the prototype can be used to 

implement the user-spec. 

This is the task of the designer, to resolve the differences between the 

behaviour of the prototype and of the user-spec, and to return to the instantiator an 

architecture that will implement the user-spec. The designer will start by installing the 

register and port symbols from the prototype and user-spec into the symbol table. Any 

bindings that can be made between the ports of the prototype and the ports of the 

user-spec will be established. 

When non of the symbol table constructor rules can fire, then the designer will 

poll the matching rules to see if they are ready to fire. Bindings will be established 

between the instructions and statements of the prototype and the user-spec. These 

bindings may also result in bindings being established between the registers of the 

prototype and the registers of the user-spec. 

These matches and their resultant bindings identify those portions of the 

prototype's behaviour that are the same as the user-spec's. This implies that the 

architectural features of the prototype that implement the matched behavioural features 

can be directly used to implement the behaviour of the user-spec. 

Some of the behavioural features of user-spec cannot be matched to the 

behavioural features of the prototype. This is the case between the input-output 

behaviour of the prototype and the user-spec. The transformational rules are then used 

to modify the behaviour of the prototype and the architecture that supports its 

behaviour. The transformational rules will be applied until the behaviour of prototype 

can be matched to the user-spec or until non of the transformational rules can 

explain the differences. This latter case is a design failure and indicates that the 
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designer does not know enough to use the prototype as a design guide for this case. 

5.2 Matchine the Prototme MultioIier to the User-Soec Multiolier 

5.2.1 Building the Symbd Table 

The first rules to fire are the symbol table construction rules. The repeated 

application of these rules eventually leads to the construction of the symbol table 

shown in figure 5.3. 

(OBJECT=port, NAME=data-in, SOURCE-TYPE=prototype, WIDTH=*n, 
IO=input-output, INFO-TYPE=data) 

(OBJECT=port, NAME=data-out, SOURCE-TYPE=user-spec, WIDTH=%, 
IO=output. INFO-TYPE=data) 

(OBJECT=port, NAME=start, SOURCE-TYPE=prototype, WIDTH- 1, 
IO=input, INFO-TYPE=ctrl) 

(OBJECT=port, NAME=stop, SOURCE-TYPE=prototype, WIDTH= 1, 
IO=output, INFO-TYPE=ctrl) 

(OBJECT=port, NAME=data-port, SOURCE-TYPE=user-spec, WIDTH= 16, 
IO=input. INFO-TYPE=data) 

(OBJECT=port, NAME=start, SOURCE-TYPE=user-spec, WIDTH= 1, 
IO=input, INFO-TYPE=ctrl) 

(OBJECT=port, NAME=stop, SOURCE-TYPE=user-spec, WIDTH= 1, 
IO=output, INFO-TYPE=ctrl) 

(OBJECT=register, NAME=qreg, SOURCE-TYPE=prototype, WIDTH=%) 
(OBJECT=register, NAME=mreg, SOURCE-TYPE=prototype, WIDTH=%) 
(OBJECT=register, NAME=areg, SOURCE-TYPE=prototype, WIDTH=*2n) 
(OBJECT=register, NAME=creg, SOURCE-TYPE=prototype, WIDTH=*m) 
(OBJECT=register, NAME=rnultiplier, SOURCE-TYPE=user-spec, WIDTH=8) 
(OBJECT=register, NAME=multicand, SOURCE-TYPE=user-spec, WIDTH-8) 
(OBJECT-register, NAME=accumulator, SOURCE-TYPE=user-spec, WIDTH= 16) 
(OBJECT=register, NAMEzcounter, SOURCE-TYPE=user-spec, WIDTH=4) 

Figure 5.3 Initial Symbol Table Configuration 



It can be observed that the width of data paths in the prototype are 

parameterized. During the matching process these parameters will be bound to values. 

The next rule which becomes enabled after the symbol table is constructed is 

the Strong-Port-Match rule. The prototype ports "Start" and "Stop", and the user-spec 

ports "Start" and "Stop " respectively have identical attributes. There is strong evidence 

then that there may be a one to one correspondence between "Start" and "Stop" in 

the user-spec and "Start" and "Stop" in the prototype. This correspondence is tagged 

as a STRONG binding. Only ports and registers that have identical attributes are 

assigned a strong binding. 

A weak binding can be established between the "datagort" port appearing in 

the user-spec and the "data-in" and "data-out" ports in the prototype. The 

Weak-Port-Match rule fires because the input-output specification of user-spec port 

"datagort" can matched to both the input-only and output-only properties of 

"data-in" and "data-out". The bit width of the "datagort" por: still remains 

parametric however. After the application of these rules the symbol table appears as 

shown in figure 5.4. 

5.2.2 Matching Behaviour 

The next rule which can fire is the ClockBegin-Match rule. The first statement 

in a user-spec is the Clock-Begin statement This match is obtained for free because 

the designer knows every algorithm must start with CLOCK-BEGIN and end with 

CLOCK-END. 

Th next match is between user-spec INSTl of statement 1, 

1 INSTl I IF (signal-in (sp.Start = sim$-one)) THEN 



(OBJECT=port, NAME=data-port, SOURCE-TYPE=user-spec, WIDTH= 16, 
IO=input-output, INFO-TYPE=data, 
BINDING=(WEAK data-in, data-out)) 

(OBJECT=port, NAME=start, SOURCE-TYPE=user-spec, WIDTH= 1 ,  
I0= input, INFO-TYPE=ctrl, 
BINDING=(STRONG start))  

(OBJECT=port, NAME=stop-sig, SOURCE-TYPE=user-spec, WIDTH=I, 
IO=output, INFO-TYPE=ctrl, 
BINDING=(STRONG s top) )  

(OBJECT=port, NAME=data-in, SOURCE-TYPE=prototype, WIDTH=%, 
IO=input, INFO-TYPE=data, 
BINDING=(WEAK data-port)) 

(OBJECT=port, NAME=data-out, SOURCE-TYPE=prototype, WIDTH= 9, 
IO=output, INFO-TYPE=data, 
BINDING=(WEAK data-port)) 

(OBJECT=port, NAME=start, SOURCE-TYPE=prototype, WIDTH= 1 ,  
IO=input, INFO-TYPE=ctrl, 
BINDING=(STRONG start))  

(OBJECT=port, NAME=stop, SOURCE-TYPE=prototype, WIDTH= 1,  
IO=output, INFO-TYPE=ctrl 
BINDING=(STRONG, s top) )  

Figure 5.4 Symbol Table after Application of Port Matching Rules 

grid nTctct)n;e statement ? INST?, Y"Y ,a* 

1 INSTl 1 IF (signal-in (sp.Start = sim$-one)) THEN 

These two instructions are matched by the Strong-Instruction-Match Rule. A sarong 

match occurs here because the formats of the instructions are identical. Both 

instructions apply the same operator to operands which are strongly bound. Figure 5.5 

shows the entries which are recorded in the symbol table from this match. 

This instruction match triggers another rule. Both of these instructions occur in 

statements where they are the only instruction appearing in that statement If all the 

instructions appearing in a statement in the user-spec are bound to all of the 

instructions appearing in a prototype statement then the Weak-Statement-Match Rule 

establishes a weak binding between the two statements. This weak binding implies the 



instruction, NAME=(l, INSTI), SOURCE-TYPE=user-spec, 
BINDING=(STRONG (10, INSTI)) 

instruction. NAME=(lO, INSTI), SOURCE-TYPE=prototype, 
BINDING=(STRONG (1, INSTI)) 

Figure 5 5  Symbol Table Entries Made after Instruction Match 

two statements are considered to be identical when considered on their own 

Before two statements can be considered to be strongly matched, their preceding 

statement must be strongly matched and their succeeding statements must be at least 

weakly matched. A preceding statement is the fmt statement encountered which will 

branch to the current statement and not necessarily the physically preceding statement 

The succeeding statement is the statement the current statement may branch to. For 

decision statements all possible branch targets must be at least weakly matched for the 

decision statement to be considered strongly matched. 

No special processing for loop structures is required because only one predecessor 

must be matched for a strong statement match to be declared. The matching of a 

loop structure will start with the matching of the entry test (for DO-WHILE type 

loops) and then attempt to strong match the individual statements within the loop. If 

the branch target of the last statement in the loop is the strongly matched loop entry 

in both the user-spec and prototype, then the loop is matched. If there is no match 

between the branch targets of the prototype statement and user-spec statement then 

there cannot be a strong match. 

The rule strategy -is to find matches tentatively and progressively. Matches are 

first made between ports and registers and then between instructions. Matches are then 



found between. groups of instructions appearing in statements. Finally, the 

Strong-Statement-Match rule is used to match to the program structure. 

The next possible match candidate is between INSTl of statement 2 in the 

user-spec 

I INSTl I BUS-IN (sp.datagort, 0, 7, sp.multiplier, 0, 7); 

and INSTl of statement 20 in the prototype 

i INST1 I BUS-IN (sp.data-in, (*dfst, *dlst), sp.qreg, (*qfst, *qlst)); 

These two instructions weak match because both have the same general format for 

BUS-IN insuuction. They cannot suong match because the ports are only weak 

matched and because there are no matchings established for the registers. These 

statements can also only weak match because their specific formats are different The 

user-spec port source only reads from half of the port, whereas the prototype 

statement reads from the full width of the port 

After firing a rule, the designer goes back to the top of the rule list and starts 

sampling the rules over again because the application of the last rule will have altered 

contents of the working memory. This application of the Weak-Instruction-Match rule 

alters more than just the working memory's symbol table. An attempt is made to 

establish a binding between the registers in the instruction. A part of the action items 

of the Weak-Instruction-Match rule would recognize that the width of the "qreg" 

register referred to in the prototype is still parametrically defined, 

(OBJECT=register narne=qreg, width=(*qfst, *qlst)) 

and therefore cannot be bound to my of the user-spec registers. The target register in 

the user-spec instruction has WIDTH of 8 bits. Therefore, it is tentatively asserted 

that the value of parameter *qfst shodd be 0 and the value of parameter *qlst 

should be 7. The general strategy of the designer is if bindings for ports or registers 



cannot be immediately established by matching their attributes, then matchings can be 

determined by their usage. 

The bindings that have been established between the prototype and the user-spec 

are summarized in figure 5.6 

5.2.3 Establishing Bindings for Registers and Ports 

The application of the Weak-Instruction-Match rule made an assertion that the 

width of the prototypes's "qreg" register was eight bits. The prototype defines the 

"qreg", "mreg", and the "areg" registers to be multiples of each other. This permits 

the matcher to infer the width of the "mreg" register to be eight bits, and the width 

of the "areg" register to be sixteen bits. These assertions will preempt any further 

weak bindings between instructions because the Strong-Register-Match rule has a higher 

priority than the Weak-Instruction-Match rule. 

The next five design cycles will result in the following 

the user-spec "multiplier" register is strongly bound 

register. 

the user-spec "multiplier" register is strongly bound 

register. 

the user-spec "multicand" register is strongly bound 

register. 

the user-spec "multicand" register is strongly bound 

register. 

bindings: 

to the prototype "qreg" 

to the prototype "mreg" 

to the prototype "qreg" 

to the prototype "mreg" 

the user-spec "accumulator" register is strongly bound to the prototype "areg" 

register. 

There are also potential weak bindings between the user-spec "accumulator" register 
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and the prototype "qreg" and "mreg" registers because they satisfy the criteria of a 

weak match. However, a strong match will lock out a weak match. The registers' 

symbol table entries are shown in figure 5.7. There is some ambiguity with& the 

bindings because there are multiple bindings between the user-spec registers and the 

prototype's registers. User spec registers "multicand" and "multiplier" have both been 

strong bound to prototype registers "mreg" and "qreg". There are three possible 

outcomes for multiple strong bindings: 

1. Each register or port in the user-spec will have a unique binding to a register 

or port in the prototype. This is the most desirable outcome. 

2. One or more of the user-spec register or ports will not strong bind to a 

prototype register or port. This is regarded as a match failure and the proposed 

design cannot be used to implement the user-spec. 

3. One or more of the user-spec register or ports will have multiple bindings. This 

implies that each of the alternative bindings remained equally consistent during 

and the matching process and therefore it really does not make any difference 

how the user-spec register or ports are mapped to the prototype register or 

(OBJECT=register, NAME=qreg, SOURCE-TYPE=prototype, WIDTH=8, 
BINDING=(STRONG multiplier, rnulticand)) 

(OBJECT=register, NAME=mreg, SOURCE-TYPE=prototype, WIDTH=8, 
BINDING=(STRONG multiplier, rnulticand)) 

(OBJECT=register, NAME=areg, SOURCE-TYPE=prototype, WIDTH= 16, 
BINDING=(STRONG srccumulator)) 

Figure 5.7 Symbol Table after Initial Register Binding 
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ports because the register or ports have the same operations performed on them. 

This would be the case for example for individual register in a register file. 

The resolution of these ambiguites will be left to the strong matching rules which will 

determine register 'or port mapping by usage. 

The next design cycle finds that INST2 of user-spec statement 2 

I INST2 I INIT-REG (sp.amulator, sim-$zero) 

strong binds to INST2 of prototype statement 20 

I INST2 1 INl'T-REG (spaeg, sim-$zero). 

It might seem that the user-spec may also bind to INST3 of prototype statement 20 

i INST3 1 INIT-REG (spcreg, sim-$zero). 

This will not occur because there is only one strong binding for register "accumulator" 

and that is to prototype register "areg". In addition, the width of the prototype 

register "creg" has not been established yet The best match that could be hoped for 

here would be a weak match, and a weak matches will only be made if there are 

no strong matches which can be made first 

The next match to occur is a strong instruction match between INSTl of 

prototype statement 70 

IF (sp.qreg.reg-val[O] = sim-$one ) THEN 

and INSTl of user-spec statement 5 

IF (sp.multiplier.reg-va1[0] = sim-$one ) THEN. 

This match will be followed by a weak statement match between prototype statement 

70 and user-spec statement 5. 

The next match to occur is a strong instruction match between INSTl of 

user-spec statement 



i INST1 - 1 ADD-REG (sp.accumulator, 8, 15, 
sp.multicand, 0, 7 
sp.accumulator, 8, 15, 
carry-out) 

and INSTl of prototype statement 80 

i INST1 1 ADD-REG (sp.areg, 8, 15, 
sp.nueg, 0, 7 
sp.areg. 8, 15, 
carry-out 

We can note here that the matching can only be achieved when the prototype register 

name "rnreg" is substituted for references to the "multicand" register in the user-spec. 

If a register or a port has multiple suong bindings, then when that register or port 

is referenced in the user-spec instruction during a match attemp4 each one of the 

prototype names will be substituted for the user-spec name. If a match cannot be 

found for that substitution then the assertion that the prototype name and the 

user-spec name are strongly bound is dropped. There are no statements of the form 

i. INST1 1 add-reg (spareg, 8, 15, 
sp.qreg, 0, 7 
sp.areg, 8, 15, 
carry-out 

appearing in the prototype. Therefore, the only consistent binding for the user-spec 

register "multicand" is the prototype register "mreg". 

The bindings that have been established between the prototype and user-spec are 

summarized in figure 5.8. 



Figure 5.8 sum~lry of bindings between the prototype and user-spec 



5.2.4 Establishing Matches between Statements 

The next design cycle will weak match these statements because all the 

instructions of user--spec statement 6 are strong matched to all the instructions 

appearing in prototype statement 80. 

The next three design cycles will produce strong instructions matches between 

The first instruction, INSTl, of user-spec statement 8 

1 INST1 1 SHUT-REG (sp.accurnulator, 0, 15, RIGHT, carry-out ) 

and the first instruction, INST1, of prototype statement 100 

I INST1 I SHIFT-REG (sp.areg, 0, 15, RIGHT, carry-out ) 

The second instruction, INST2, of user-spec statement 8 

I INST2 1 SHIFT-REG (sp.multiplier, 0,7, RIGHT, sirn-$zero) 

and the second instruction, INST2, of prototype statement 100 

I INST2 I SHIFT-REG (sp.qreg, 0, 7, RIGHT, sim-$zero) 

The second instruction, INST2, of user-spec statement 10 

I INST2 I SIGNAL-OUT (sp.stop-sig, sim-$one) 

and the second instruction. INST2, of prototype statement 120 

I INST2 1 SIGNAL-OUT (sp.end-sig, sim-$one). 

No more strong matches are possible with the current state of working memory. 

The next design cycle will weak match instruction INSTl of user-spec statement 

2 

I INSTl I BUS-IN (sp.datagort, 8, 15, sp.multiplier, 0, 7) 

to instruction INSTl of prototype statement 40 

{ INST1 1 BUSJN (spdata-in, 0. 7, sp.mreg, 0, 7). 

This may seem to be a bit silly considering that bindings between the user-spec 
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"multiplier" register and the prototype "mreg" register have been definitely ruled out 

However, it must be remembered that weak instruction matches are based on the 

format or structure of the instruction or statement and not the actual objects 

manipulated by the instruction or statement The match here is based strictly on the 

fact that there is a transfer from a port to a register. 

The next weak match is between the third instruction, INST3, of user-spec 

statement 2 

I INST3 I INIT-REG (sp.counter, sim-$zero) 

and the third instruction, INST3, of prototype statement 20 

I INST3 I INIT-REG (specreg, sim-$zero). 

Again the action items in the rule recognize that the prototype register "creg" is 

parametrized and binds the bit width of the user-spec "counter" register to the 

prototype "cregW register. This touches off another round of strong bindings. 

On the next design cycle the Strong-Register-Match rule will fue establishing a 

strong binding between the user-spec "counter" register and the prototype "cregw 

register. 

The next rule which will fire will be the Strong-Insmction-Match which will 

establish a strong binding between the third insuuction, INST3, of user-spec statement 

2 and the third insuuction, INST3, of prototype statement 20. 

The next rule which fires will be the Strong-Instruction-Match rule which will 

strongly match INSTl of user-spec statement 4 

I INST1 I IF ( decode-reg (spcounter) < 8 ) THEN 

to INSTl of prototype statement 60 

I INSTl 1 IF ( decode-reg (sp.creg) c 'MAX-VAL) THEN. 



The value of OMAX-VAL is automatically bound to 8. The strong binding of these 

instructions causes the statements to be weakly bound on the next design cycle. 

The next rule to fire will strongly bind INST3 of user-spec statement 8 

1 INST3 I INCR-REG (sp.counter) 

to INST3 of prototype statement 100 

i INST3 1 INCR-REG (spxreg). 

Because all three instructions of user-spec statement 8 are strongly bound to all three 

instruction of prototype statement 100, the two statements are declared to be weakly 

bound by the Weak-Statment-Match rule on the next design cycle. 

There are four more weak matches that are established 

1. The fourth instruction, INST4 of user-spec statement 2 

I INST4 1 BUS-IN (sp.datagort, 0, 7, sp.multicand, 0. 7)) 

and the first instruction, INST1, of prototype statement 20 

i INSTl 1 BUS-IN (sp.data-in, 0, 7, sp.qreg, 0, 7) 

2. The fourth instruction, INST4, of user-spec statement 2 

I INST4 1 BUS-IN (sp.datagort, 0, 7, multicand, 0, 7) 

and the first instruction. INST1, of prototype statement 40 

I INST1 I BUS-IN (sp.datagort, 0, 7, mreg, 0, 7) 

3. The first instruction, INST1, of user-spec statement 10 

and the first instruction, INST1, of prototype statement 120 

I INST1 I BUS-OUT (sp.data-out, 0, 7, sp.areg, 0, 7) 

4. The first instruction, INSTI, of user-spec statement 10 

I INSTl 1 BUS-OUT (sp.datagort, 0, 15, sp.accumulator, 0, 15) 

and the first instruction, INSTl, of prototype statement 140 



I INSTl 1 BUS-OUT @.data-out, 0, 7, sp.areg, 8, 15) 

The bindings that have been established between the prototype and user-spec are 

summarized in figure 5.9. 

5.2.5 Match Exhaustion 

With the current state of working memory there are no more possible matches, 

weak or strong. If we were expecting exact matches between the prototype and the 

user's specifications then we would have to reject the prototype even though its 

behaviour is quite similar to that requested by the user. The application of the 

transformational rules breaks this deadlock. No more matching rules can fire because 

there are differences between the behaviour the prototype implements and the 

behaviour requested by the user. Having identified these differences, it is now the task 

of the designer to determine if the differences are explainable. That is, can the 

transformational rules modify the circuit architecture such that it will implement the 

user's requested behaviour? 

5.3 Transforming the Protome Multi~lier 

5.3.1 Overview 

The prototype 

for output Reading 

circuit has two 8 bit ports, "datajn" for input and "data-out" 

the multiplier and the multicand operands requires two clock cycles 

and writing the result requires two clock cycle. The "qreg" and "rnreg" register are 

tied directly to the "datajn" port and the "areg" writes its result to the "data-out" 

port through a multiplexer. Figure 5.10 is a schematic of the circuit generated by the 

prototype Frame which implements the behaviour described in the header. 
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Figure 5.10 Schematic for Prototype Circuit 

What the user wishes to create is a circuit which will read two 8 bit operands, 

the "multiplier" and the "multicand", in one clock cycle and write the 16 bit result 

in one clock cycle. To implement this, the user has specified that the multiplier 

should have a 16 bit wide input/output port and a 16 bit internal bus off of which 
0 

the "multiplier" and "multicand" registers accept their input and to which the 

"accumulator" register will dump its contents. Figure 5.11 is a schematic of a circuit 

which couid implement the user's behaviour. 

To make the circuit of figure 5.10 implement the user's behaviour, the designer 

would replace the data path from the "data-in" port to the "rnreg" and "qreg" 



Figure 5.11 Schematic of a Possible Solution Circuit 

registers with a 16 bit data path. The output of the "areg" could be tied directly to 

this new port eliminating the requirements for the multiplexer. Naturally, with the 

"qreg" and "rnreg" register reading from a port that is also used as an output port it 

is important that the output of the "areg" be tri-stated. The rest of this chapter 

shows how this transformation of the multiplier circuit is carried out 



5.3.2 A New Port 

One of the most highly visible differences between the behaviour of the 

prototype and of the behaviour of the user-spec is that the user-spec circuit reads its 

operands and and writes its results to one port and the prototype circuit has two 

ports, one for reading the operands and one for writing its results to. These ports are 

somewhat similar and have been weak matched. However, a strong match is not 

possible because the ports have different attributes. 

The Input-Output-Port-Merge rule recognizes this situation and fires. Its 

preconditions state there must be two ports in the prototype, an input and an output, 

and one input-output port in the user-spec which is the sum of the bit widths of 

the prototype ports. When the rule fires it will add a new port to the prototype 

design which will strong match with the user-spec port 

There is only one action item in the consequent of the Input-Output-Port-Merge 

rule. The action item 

MAKE-PORT (NAME= cp-name-1, WIDTH=width of <port-3 
IO=input-output, INFO-TYPE=infwtype of cport-3 

creates a new prototype port with its name and attributes taken from the user-spec 

port cport-3. This rule does not install the new port into the symbol table. Rather, 

after this rule completes the next rule to fire will be the Install-Port rule which will 

place the new port into the symbol table. This will cause the Strong-Port-Match rule 

to fire which will create a strong binding between the newly created port and the 

"datagort" port in the user-spec. This match satisfies all of the conditional clauses of 

the Half-Word-to-Word-Input rule and causes it to fire. 



5.3.3 Converting a Half Word Input to a Word Input 

The user-spec "multicand" and "multiplier" registers are both eight bits wide and 

read from a sixteen bit bus in one clock cycle. In the prototype, the registers which 

are strongly bound to "multicand" and "multipiier", are "mreg" and "qreg" which are 

also eight bits wide but read from an eight bit bus in two successive clock cycles. 

This difference can be resolved by replacing the eight bit bus in the prototype with a 

16 bit bus. 

The action items RM-SRC and RM-PATH modify the dependency records that 

are associated with the protorype instructions bomd to 4nstr-1 and unstr-3 in the 

rule mtecedent INSTl cf statement 20 is bound to unstr-1 and INSTl of statement 

40 is bound to <instr-3. The dependency record for INST1 of statement 20 is shown 

in figure 5.12. 

{ INST1 1 bus-in (data-in, O 1  7, multiplier, O r  7) 

(DEPENDENCY ( 
(INSTRUCTION ( 20, INST1 ) ) 

(IS-CARRIED-OUT-BY ((controller ctrl, 20, INST2) ) 
(storage qreg, 10, INST1) 
(storage qreg, 20, INST1) )) 

(CTRL ( 
((SRC ctrl, 1, loadq) 

(DEST qreg, 1, loadq) 
(PATH c001)) )) 

(DATA-PATH ( 
((SRC mutt, 1, data-in) 

(DEST qreg, 1, reg-in) 
(PATH do01 1) )) )) 

Figure 5.12 Prototype Statement 20, INSTl and Dependency Record. 



These action item remove the SRC and PATH dependency pointers from the 

data path. The instruction will no longer have DEPENDENCY pointers to the port 

"data-in" and the CONNECT statements in the ARCHITECTURAL-PROPERTIES 

labelled "dOOln. This, however does not necessarily mean that these elements have 

been deleted, just that this instruction no longer requires these features. 

No circuit feature is ever deleted outright because other entities within the 

circuit may depend on that feature. Therefore, the method used here to minimize the 

side effects of a modification is to remove the DEPENDENCY pointers as 

requirements for a feature are removed. Only when the DEPENDENCY attribute of a 

feature is zero is that feature actually deleted from the circuit. In this case the 

DEPENDENCY attribute for CONNECT statement dOOl is zero and it is deleted. The 

DEPENDENCY count for the "data-inn port is not zero because some other 

instruction requires this circuit feature. 

The register destination identified in this instruction, the "qreg" register, is 

connected to the new input source. The ADD-SRC transform identifies the newly 

created prototype port as the input source to be inserted into the SRC of the 

DATA-PATH. The next transform is ADD-PATH which adds a new layout command 

to the ARCHITECTURAL-PROPERTIES to create a link between the output ports of 

the "qreg" register and the new input port The problem here becomes knowing which 

half of the input port to connect the "qreg" register to. This is easy to resolve since 

we can obtain this information from the instruction which uses the user-spec register 

which is strongly bound to the "qreg" register. The new layout command generated by 

the ADD-PATH action item is shown in figure 5.13. The action items that have been 

applied to the BUS-IN instruction of prototype statement 20 are also applied to the 

BUS-IN instruction of prototype statement 40. 



D$00 1 (DEPENDENCY 1)) 

FOR i := 0 to 7 DO 
CONNECT (mult, 1 ,  data-port, i ,  

multiplier, 1 ,  reg-in, i); 

Figure 5.13 Entry Added to the ARCHITECTURAL-PROPERTIES list by ADD-PATH 
Action Item 

These changes to the input source must be reflected in the instruction itself. The 

RPL-INST-SRC transform replaces "data-in" as the source operand for the bus jn  

instruction with a masked source from the new port The transformed instruction 

appears as shown in figure 5.14. 

The t~ansformations applied to the prototype by the Haif-Word-to-Word-Input 

rule are summarized in figure 5.15. 

{ INST1 j bus-in ( d a t a j o r t ,  0 ,  7, qreg, 0, 7) 

(DEPENDENCY ( 
(INSTRUCTION ( 20, INST1 ) ) 

(IS-CARRIED-OUT-BY ((controller ctrl, 20, INST2) ) 
(storage qreg. 10, INST1) 
(storage qreg, 20, INST1) )) 

(CTRL ( 
((SRC ctrl, 1 ,  loadq) 

(DEST qreg, 1, loadq) 
(PATH c001)) )) 

(DATA-PATH ( 
((SRC mult, 1, data-port) 

(DEST qreg, 1 ,  reg-in) 
(PATH d$001)) )) )) 

Figure 5.14 Prototype Statement 20, INSTl after Transformation. 





The application of the Half-Word-to-Word-Input rule sets up the 

Strong-Instr-Match rule which declares a strong match between prototype INSTl of 

statement 20 

i INSTl I BUSJN (sp.datagort, 0, 7, sp.qreg, 0, 7) 

and INSTl of user-spec statement 2 

i INST1 I BUS-IN (sp.datagort, 0, 7, multiplier, 0, 7) 

A strong instruction match is also established between prototype statement 40 INSTl 

I INST1 I BUS-IN (sp.datagort, 8, 15, spmreg, 0, 7) 

and user-spec statement 2 INST4 

i INSTl I BUS-IN (sp.datagort, 8, 15, sp.multicand, '0, 7) 

The bindings established by the application of these rules are summarized in 

figure 5.16. 

The application of the Half-Word-to-Word-Input rule does not appear to have 

purchased much for us. Only two more strong instruction matches have been declared 

which means some of the differences between the user-spec and prototype have been 

reduced, however there are still sufficient differences between the two circuits to inhibit 

a full match. For example, while the prototype "qreg" and "mreg" registers have had 

their data paths reconstructed so as to resemble those of the user-spec, their control 

paths are different The user-spec reads in its operands in parallel while the prototype 
e 

reads in its operands sequentially. This difference in the control signals satisfies the 

conditional clauses of the Serial-Parallel-Input rule. 



Figure 5.16 bindings established by design process 
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5.3.4 Increasing Pnrallelism in the Design 

If two or more operations in a circuit are always performed together in the 

same clock cycle, then the components carrying out those operations can share the 

same control signal. The basis of the Serial-Parallel-Input rule is that serial operations 

can become parallel operations by having subcomponents share control signals. 

The prototype registers "qreg" and "mreg" are loaded in two successive clock 

cycles because there was a space conflict for the input port "data-in" before the 

application of the Half-Word-to-Word-Input rule. To accommodate sequential operation, 

the "qreg" and "mreg" registers utilize different control signals. By merging the control 

signals we can force the registers to load in the same clock cycle. 

The action item RM-CTRL-SRC, removes the "mreg" register's DEPENDENCY 

for the "loadn" port of "ctrl". The transform RM-CTRL-PATH, removes the 

DEPENDECY for layout command c006 which generated the path from the "loadm" 

port of "ctrl" to the "loadm" port of the "mreg" register. 

After removing the "mreg" register's tie to the "loadm" signal from "ctrl", the 

next step is to link the "rnreg" register to the "qreg" register's load signal, which is 

"loadq" from "ctrl". To rebuild the control path to the "mreg" register we must first 

obtain information about the "qreg" register's control path. 

The action item ADD-CTRL-SRC takes the SRC identified in the CTRL path 

list for the prototype statement 20 INSTl and makes it the SRC also for the CTRL 

path of prototype statement 40 INST1. The transform ADD-CTRL-PATH adds a new 

layout command to the ARCHITECTURAL-PROPERTIES list for connecting the 

"loadq" output of "ctrl" to the "load" input of the "mreg" register. Both the "qreg" 



and "mreg" registers now load off of the same control signal. 

This modification of the circuit's architecture implies a need to alter the 

behaviour of supporting subcomponents such as "ctrl". The dependency pointers tagged 

as "conuoller" of the IS-CARRIED-OUT-BY pointer lists for both statement 20 INSTl 

and statement 40 INSTl identify the controller operations this instruction is dependent 

upon. The "controller" of the IS-CARRIED-OUT-BY pointer list slot shows that "ctrl" 

INSTl of statement 60 

I INST1 1 signal-out (loadrn, sim-$one ) 

must be executed in order for this instruction to be carried out This is no longer 

true because the "mreg" register loads off of the "loadq" signal which is generated by 

"ctrl" INST2 of statement 20. The RM-CTRL-INST action item removes prototype 

statement 40 INSTl's DEPENDENCY for "ctrl" statement 60 INST1. The 

ADD-CTRL-mTST action item then adds a new "controller" pointer to statement 40 

INSTl's IS-CARRIED-OUT-BY pointer list which is the same as the "controller" 

pointer from the IS-CARRIDOUT-BY pointer list of statement 20 INST1. The 

modified prototype instruction INSTl of statement 40 and its dependency record is 

shown in figure 5.17. 

Since prototype INSTl of statement 40 will execute in parallel with INSTl of 

statement 20, it is move from statement 40 to statement 20. The transform 

MOVE-INST simply removes INSTl from the instruction list of statement 40 and 

appends it to the INSTRUCTION list of statement 20 and is renumbered as INST4. 

MOVE-INST also adjusts the symbol table name of the instruction so any bindings to 

the instruction are not lost The transformations applied to the prototype by the 

Serial-Parallel rule are summarized in figure 5.18. 



I INST1 1 bus-in (datagort, 8, 15, mreg, 0, 7) 

(DEPENDENCY ( 
(INSTRUCTION ( 20, INST1 ) ) 

(IS-CARRIED-OUT-BY ((controller ctrl, 20, INSTZ) ) 
(storage mreg, 10, INSTI) 
(storage mreg, 20, INST1) )) 

(CTRL ( 
((SRC ctrl, 1, loadq) 

(DEST mreg, 1, load) 
(PATH ~$001) )  )) 

(DATA-PATH ( 
((SRC mult, 1, datagort) 

(DEST qreg, 1, reg-in) 
(PATH d$001)) )) )) 

Figure 5.17 Statement 40, INSTl after Modification of the Controller. 

5.3.5 Matching the New input Structure 

This adjustment of the input paths in the multiplier permits several new bindings 

to take place. The first is a weak statement match between user-spec statement 2 and 

the newly modified statement 20. The matching of these two statements now enables 

the strong matching of the user-spec statement 1 to prototype statement 10. 

The strong statement match rule binds user-spec statement 1 to prototype 

statement 10. This rule fues because the preceding statement is strongly bound (by the 

Clock-Begin-Match rule) and all of the outcomes of the decision are at least weakly 

matched. In this case we have the clock-end statement as one outcome which has 

already been matched by the Clock-End-Match rule and statement 2 which we just 



Figure 5.18 srnrrary of the transfmtims appLied by the serial-parallel rule 



weakly matched. The new bindings that have been established between the user-spec 

and the prototype are summarized in figure 5.19. 

Again, no more matches are possible because the prototype circuit writes its 

outputs halfword serially over two clock cycles and the user-spec writes its output 

word parallel in one clock cycle. The Half-Word-to-Word-Output rule recognizes this 

situation and fires. 

5.3.6 Deserializing Output 

The design represented by the prototype requires two clock cycles to write a 16 

bit result The behavioural requirements of the user-spec call for a design which can 

write a 16 bit result in one clock cycle. The width of the data that can be written 

out by the prototype in one clock cycle is constrained by the width of the output 

port "data-out". If a 16 bit output port was available within the prototype, then that 

port could be used to meet the behavioural requirements of the user-spec. 

The prototype could take advantage of the 16 bit input-output port added to the 

prototype by the Input-Output-Port-Merge rule. The accumulator would then be able 

to write its 16 bit output in one clock cycle. The output of the accumulator should 

be tri-state such that it will not interfere with the "qreg" and "rnreg" registers when 

they read their inputs from this port The solution used here is to install a latch 
e 

which has a tri-state capability between the "areg" and the "datagort" input-output 

The first action item of the Half-Word-to-Word-Output rule is RM-INSTR 

which removes INSTl of statement 140. This is a BUS-OUT instruction 

BUS-OUT ( sp.data-out, 0, 7, sp.areg, 8, 15 ) 



Figure 5.19 sumary of the bindings established between the prototype and user-spec 
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which writes out the upper half of "areg". The removal of this instruction also causes 

its dependency record to be deleted from the dependency network. This removes the 

requirement this instruction had for the output multiplexer. 

The second action item is the RM-DEST instruction which removes the 

destination dependency from the dependency record for INSTl of statement 120. This 

is a BUS-OUT instruction 

BUS-OUT ( sp.data-ouf 0, 7, sp.areg, 0, 7 ) 

which writes out the lower half of "areg". This causes the DEPENDENCY attribute 

for the multiplexer to fall to zero and therefore causes it to be removed from the 

architecture of the prototype multiplier. 

The next action item is the RM-SRC instruction item which removes the source 

dependency from the dependency record of INSTl of statement 120. The following 

action item is ADD-SRC which re-installs the "aregW's reg-out output as the source 

for this instruction. This removes the old source dependency for bits 0 through 7 of 

the "aregW's reg-out output and replaces it with a dependency for the full output 

width of reg-out 

The next two action items are RPL-INSTR-SRC and RPL-INSTR-DEST which 

replace the source and destination operands of the instruction itself. After the 

application of these two action items, INSTRl of statement 120 will appear as 

BUS-OUT ( sp.datagort, 0, 15, spaeg, 0, 15) 

where "datagort" was the port that was added by the Input-Output-Port-Merge rule. 

The remainder of this rule adds statements to the 

ARCHITECTURAL-DEPENDENCIES list for the path from the "areg" register to the 

"datagort" input-output port. A check is made in this rule to determine what are 



the requirements for the output path. If the destination port is a dedicated output port 

then a simple conductor path is created to tie the "areg" to the "datagort". 

However, as in this case, if the port is shared between input and output operations, 

then a tri-state buffer latch is inserted between the output source, the "areg", and 

output destination, the "datagort". The the path elements of the dependency record 

for this instruction will be updated by first linking the "areg" to the tri-state buffer 

latch, and then linking the latch to the "datagort". 

The ADD-COMPONENT action item adds the requirements for the tri-state 

buffer latch to the prototype by creating a new DESIGN slot in the prototype frame 

to describe the behavioural requirements of the m-state buffer latch. This new slot is 

called "buff" and is shown in figure 5.20. The latche's existence is justified by adding 

a ROUTER entry into the IS-CARRIED-OUT-BY list of the dependency record for 

INSTl of statement 120. 

The next five action items add the latch to the DATA-PATH for INSTl of 

statement 120. The action item ADD-DEST creates an entry in the dependency record 

that sets the latche's "buff-in" port as the output destination of the "areg" register's 

"reg-out" port The next two action items are ADD-SRC and ADD-DEST which sets 

the "buff-out" port of the latch as the output source for the "datagort" port. The 

two ADD-PATH action items add two layout commands to the 

ARCHITECWFUL-PROPERTIES list to create the paths linking the "areg" register to 

the latch and the latch to the "datagort" port These new layout commands are 

shown in figure 5.21. 

The latch requires an "out-enable" signal to pass the output of the "areg" 

register to the "datagort". This requires a signal from the controller to support the 
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Figure 5.20 Buffer Latch Created for Multiplier. 

behaviour of this instruction. The action item ADl3CTRL-SRC adds a SRC 
0 

dependency to the CTRL list in the dependency record and adds that source to the 

behavioural requirements of the controller. The action item ADD-CTRL-DEST makes 

the latche's "out-enable" port the DEST of the CTRL list in the dependency record. 

The next action item ADD-CTRL-PATH adds a layout command to the 

ARCHITECTURAL-PROPERTIES list which links the control output of the controller 



CONNECT (ctrl, out-enable, 1, buff, 1, out-enable, 1 ) ;  

FOR i := 0 t o  15 DO 
CONNECT (ares, 1, reg-out, i, buff, 1 ,  buff-in, i); 

FOR i := 0 t o  15 DO 
CONNECT (buff, 1, buff-out, i ,  mutt, 1 ,  data-port, i); 

Figure 5.21 Layout ~ommands for Data Path of Statement 120, INST1. 

to the latch. 

The final action item is ADD-CTRL-INSTR which adds an instruction to the 

behavioural requirements of the controller to drive the newly created signal path 

between the controller and the latch. The instruction 

signal-out ( out-enable, sim-$one ) 

is added to statement 120 in the controller. A controller entry is also added to the 

IS-CARRIED-OUT-BY list of the dependency record showing the requirement for this 

controller instruction. The new dependency record is shown in figure 5.22. Figure 5.23 

summarizes the transformations that were applied to the prototype by the 

Half-Word-to-Word-Output rule and figure 5.24 shows a schematic for the modified 

architecture of the prototype. 

5.3.7 Completing the Multiplier Design 

On the next design cycle after the transformations the Port-Install rule fires and 

piaces the port symbol "datagort" into the symbol table. This causes the 

Strong-Port-Match rule to fire on the next cycle which strongly binds the user-spec 

"datagort" port to the prototype "datagort" port The rules now fire in the 

foliowing sequence: 

1. The Strong-Statement-Match Rule strongly binds user-spec statement 4 to 



(DEPENDENCY ( 
(INSTRUCTION ( 120. INSTI) 
(IS-CARRIED-OUT-BY ((controller ctrl, 130, INST2) 

(controller ctrl. 130. INST3) 
(controller ctrl. 30. INSTI) 
(controller ctrl. 50. INSTI) 
(controller ctrl. 130, INST4) 
(controller counter, 30, INSTI) 
(controller counter. 40. INST1) 
(controller counter, 50, INST1) 
(storage areg. 80. INST1) 
(router buff, 10, INSTl) 
(router buff, 20, INSTI) 
(router buff, 30, INST1) )) 

(CTRL ( 
((SRC ctrl, 1, outenable) 

(DEST buff, 1, outenable) 
(PATH ~ $ 0 2 1 )  ) )) 

(DATA-PATH ( 
((SRC areg, 1, regout) 

@EST buff, 1, buffin) 
(PATH dS008)) 

((SRC buff, 1, buffout) 
(DEST mult. 1, dataout) 
(PATH dS007)) )) )) 

Figure 5.22 New Dependency Record for INSTl of Statement 120. 

prototype statement 60. 
- 

2. n?e Srrong-Statement-Match rule strongly binds user-spec statement 5 to 

prototpe statement 70. Note here that all clock-step statements are automatically 

assumed to be weakly bound. 

3. The Strong-Statement-Match Rule strongly binds user-spec statement 6 to 

prototype statement 80. 

4. The Strong-Statment-Match rule strongly binds user-spec clock-step statement 7 

to prototype clock-step statement 90. 

5. The Strong-Statement-Match rule stongly binds user-spec statement 8 to prototype 

statement 100. 

6. The Strong-Statement-Match rule suongly binds user-spec clock-step statement 9 

to prototype clock-step statement 110. 

7. The Strong-hsuuction-Match Rule strongly binds INSTl of user-spec statement 

10 
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Figure 5.24 New Structure of Multiplier Circuit after Transforms 

BUS-OUT (sp.datagort, 0, 15, sp.accumulator, 0, 15) 

to INSTl of prototype statement 120 

BUS-OUT (sp.datagort, 0, 15, sp.areg, 0, 15) 

8. The Weak-Statement-Match Rule Weakly binds user-spec statement 10 to 

prototype statement 120. 

9. The Strong-Statement-Match rule stongly binds user-spec statement 10 to 



prototype statement 120. 

With the firing of the last rule the two algorithms have been matched and we have 

a design which can implement the circuit desired by the user. The next pattern 

matcher cycle will find that no rule can be fired and that all user-spec statements are 

strongly matched and therefore a success is declared. 

5.4 Ex~anding the Protome 

When the instantiator receives the DESIGN-COMPLETE message from the 

designer, it pushes the ARCHITECTUR4L-PROPERTIES list of the design onto its 

stack and begins another design cycle. 

This process will be repeated for each abstract component of the multiplier. This 

is how the frame inference mechanism of instantiation is used to support the top 

down design of digital circuits. This is how CROP'S [Res84] expansion of non 

tenninais is impiemented in this modei. 

5.5 An Examole of a Designer Failure 

If we were to assume that the prototype UMULT was unavailable then the 

designer would have used RDIV, a restoring divider, as a prototype. The schematic for 

RDIV as shown in figure 5.25 for the design of this circuit reveals a somewhat 

similar architecture to that of the unsigned multiplier. There are divider components 

which correspond to components in the unsigned multiplier. This correspondence is in 

fact born out by the behaviour of this circuit All of the statements, port symbols and 

register symbols of the multiplier can be weak matched to the divider. This means 
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that the divider does provide features similar to those required to implement the 

multiplier. The divider reads values into registers from pons or writes values from 

registers to ports. The divider cycle is controlled by a counter and the divider also 

performs &-I accumulation function. 

However few of these matches can be refined into strong matches and there 

does not exist within the rule base sufficient knowledge to modify the divider's design 

Figure 5.25 Schematic for a Restoring Divider: 



such that it can satisfy the requirements 

circuits are not similar enough for the 

between the circuits. 

of the unsigned multiplier. In 

rules to be able to explain 

short, the two 

the differences 

While our model cannot use this prototype to develop a design for the 

multiplier, it is interesting to note that an exercise appearing in Haye's [Hay841 

textbook requires the student to develop a design for the divider using the multiplier 

as a prototype. 

This example with the divider shows how the uansformational rules can limit 

the capability of the proposed system. The transformational rules permit the system to 

use a similar circuit as prototype for a new circuit If the rules are not powerful 

enough to recognize the similarities between the user-spec and the prototype then the 

design will fail, as was the case in this example with the divider. 

The multiplier example given in this chapter uses the rule base defined in 

appendix three which was defined specifically to support this exampie. The ruie base 

can be enhanced by adding more transformational rules to it such that it could be 

used to design of the multiplier using the divider as a prototype. 

While adding 

with more options 

system. More rules 

more transformational rules to the rule base provides the system 

for modifying circuits, it will also increase the complexity of the 

in the rule base means more rules that have to be tested by the 

system before a suitable rule can be fired. 

The addition of more uansformational rules to the rule base would also permit 

the system to design new circuits from prototypes which would not normally be 

considered as being similar to the requested circuit Taken to an extreme, with a large 



enough rule base the system could create micro conuollers from shift registers. This 

would violate the principle of using similar circuits as prototypes for the design of 

new circuits. 

There is a limit on the number of uansformational rules that can be added to 

the design system If we regard the transformational rules as representing a unit of 

the fundemental knowledge of circuit design that a human circuit designer would 

possess, then this limit is intrinsic to the principle of using similar circuits as 

prototypes to guide new designs. If a human designer cannot recognize a set of circuit 

requirements as being similar to something that he has designed or has seen before, 

then the designer must draw more extensively on his fundemental knowledge of circuit 

design. However, if the designer knows of a similar circuit, then the knowledge the 

designer has of that circuit can be used to guide the design of the new circuit and 

reduce the designer's reliance on his fundemental knowledge of circuit design. 



CHAPTER 6 

SUMMARY AND CONCLUSION 

This thesis has described a model system which can use existing circuits as 

prototypes to design new circuits. Prototypes were represented using frame structures 

which listed the necessary subcomponents, subcomponent behaviour, and interconnections 

required to implement a circuit behaviour. The frames are used as a production to 

build the circuit A dependency network showed how each subcomponent and 

interconnection contributed to the circuit's behaviour. 

Circuits are designed by first specifying an algorithm that describes the behaviour 

the circuit is required to implement A search is made of the data base for a 

prototype which can implement behaviou~. If an exact match is found then a circuit is 

considered to be an off the shelf part and the design is complete. The probability of 

this happening is low and most likely all that will be found in the data base will be 

prototypes that implement a similar behaviour. Therefore, the system has rules which 

can transform the behaviour of a similar prototype into one .that can exactly 

implement the proposed behaviour. 

Design proceeds in a top down depth first manner. Most prototypes represent 

abstract circuits which must themselves be refined into their constituent subcomponents. 

Design is complete when the algorithms specifying circuit behaviour are bound to 

primitive components. 

The objective in this research was to show how the techniques used in CIROP 

might be used to design digital circuits. The assumption made was that digital circuits 

can have a more complicated behavioural description than that of operational-amplifiers 



and therefore, maintaining the requirement of CIROP's pattern matcher that the 

capabilities of a candidate circuit must exactly match the requirements was too strong. 

This requirement was relaxed by permitting the use of similar circuits as design 

solutions. To support this, we created a set of rules which define a similar circuit and 

which could transform the behaviour of a circuit To transform the behaviour of a 

circuit it was necessary to know how the behaviour was implemented by the circuit's 

architecture. This information was recorded in the dependency network. 

Only part of a CIROP like system has been modelled in this thesis. The 

current model only views a circuit as an entity that implements a behaviour. There 

are no considerations made for technology and performance constraints. 

6.1 Re~resentina Technolom Constraints 

When technology constraints are added to a design then a designer is looking at 

the circuit from a different viewpoint Throughout this thesis we have looked at a 

circuit as an architecture which implements a behaviour. We could also have modelled 

a circuit by using a timing diagram or by specifying its electrical requirements. We 

can therefore have multiple viewpoints of the same circuit. 

Adopting a multiple viewpoint representation of a circuit opens up a Pandora's 

box of problems for the designer. Previously, the only prototype selection criteria used 

during the design of the multiplier was if the prototype implemented a behaviour that 

was similar to the required behaviour. Multiple viewpoints would require that a 

prototype be able to implement a behaviour subject to the constraints imposed by the 

other viewpoints. This would require a more sophisticated prototype selection mechanism 

than the one modelled here because the designer would have to deal with tradeoffs 



between different features of the prototype. 

A selection heuristic used by CIROP takes the form of the specification tradeoff. 

The differences between operational amplifiers are based on tradeoffs between their 

specifications. The priority of specifications for operational amplifiers will vary with the 

requirements for the operational amplifier. In some cases input bias will be of high 

importance while slew rate is not The tradeoff made between input bias and slew 

rate will result in different operational amplifiers. 

Similar tradeoffs can be made for digital circuits. For example, a fundamental 

tradeoff in any circuit design is the one between time and area. In general, faster 

circuits can be made at the expense of surface area Another tradeoff occurs between 

time and power consumption. 

A design process could start with the initial selection of prototypes which can 

implement the required behaviour. This selection phase is then followed by an analysis 

phase which uses the tradeoff specifications of the prototypes to determine if the 

circuit can meet the performance criteria. The transformational rules will become much 

more complicated because modifications to the circuit's behaviour by the removal or 

addition of a subcomponent will affect the circuit's performance. 

The addition of performance criteria however can also shrink the size of the 

possible solution space. In the same way that the relative complexity is used to 

eliminate circuits which cannot obviously implement the required behaviour, heuristics 

could be used to eliminate circuits which obviously cannot meet the proposed circuit's 

performance requirements. 



In the current system model, when a design cannot be found in the data base 

the system has only two alternatives: 

1. If the component which failed is a subcomponent of a higher level component 

then it may be possible to retract the design of that higher level component 

and see if there is an alternative design to the higher level component which 

does not require the subcomponent which cannot be designed. 

2. If there is no higher level component then the design is declared a failure. 

The first alternative is not realistic alternative because in a well designed data base all 

of the higher level component's subcomponents will be in the data base. The second 

alternative is not really an alternative. 

In Peter Friedland's version of MOLGEN when the system failed to find a 

suitable plan for an experiment it looked for a closely related plan. Our system model 

already does this by loolung for a prototype which can implement a behaviour similar 

to that of the proposed circuit A second alternative proposed by Friedland was to 

look for a more general plan which could be refined into a specific plan. 

In the current data base, the prototypes are at one level of abstraction. The 

only trace of a hierarchy comes in the form of the RT-TYPE which classifies circuits 

according to the specific register transfer behaviour they implement Four RT-TYPES, 

processor, storage, router, and controller were defined in this thesis because according 

to Hayes these constitute the minimal set of operations required to implement register 

transfer level circuits. These RT-TYPES could be expanded into frames which could 

describe the typicd behaviacr of a circuit of that RT-TYPE. Then each of the 

RT-TYPES could be expanded into the different abstract subclasses. For example, 



processor could be expanded into arithmetic-processor, stored-program-processor, 

logical-processor, etc. Each of these subclasses would be represented by a frame 

describing the typical characteristics of an element in that class. The descendants of 

these classes would then be the frame types discussed in this thesis representing 

individual circuits. 

If during design a prototype could not be found, the system could travel up to 

the next higher level of abstraction to find a more abstract prototype. The system 

would now require a library of refinement rules which could compare and refine the 

characteristics of the more abstract circuit to those of the requested circuit 

Such s system would require a more powerful planner because it would have to 

develop a circuit design strategy, knowing when to design a circuit using a similar 

circuit and when to use a more abstract design 

6.3 Side Effects of Transformations 

Side effects which could be caused by the deletion of circuit subcomponents or 

interconnection is controlled by the DEPENDENCY network. No circuit feature is ever 

deleted outright until there is no more support for it within the DEPENDENCY 

network. The modification of existing subcomponents, interconnections, or subcomponent 
P 

functions can lead to undesirable side effects if there is more than one 

DEPENDENCY for that circuit feature. 

Consider the following example, during the transformation of the design of the 

unsigned multiplier, it was necessary add a ai-state output requirement to the 

accumulator. The solution implemented by the transformational rule was to install a 



latch which had a tri-state capability between the accumulator and input-output port 

This was only one possible solution to this design problem. An alternative solution 

would be to add a tri-state requirement to the FUNCTIONAL-REQUIREMENTS of 

the accumulator. The problem here, however, was that there is no efficient mechanism 

for determining the side effects caused by modifying a circuit function feature. 

The frame representation for circuits presented in this thesis does not handle 

multiple dependencies well. For each instruction in the header of a frame, the 

subcomponent features and their interconnections that support the instruction are 

recorded. However, this is only a one way binding, the subcomponents do not know 

who uses them. For dealing with the side effects of a modification to a supporting 

feature, each supporting feature could have a pointers back to the header instruction 

which requires that features support This again would require a more sophisticated 

planner than that presented here. 

The planner would have to be capable of examining several alternate 

transformational rules and evaluating them within the context of their side effects. One 

model for this could be the Redesign system which generates a number of design 

modification alternatives and then evaluates the impact each alternative will have on 

the global circuit function. Redesign has a number of hueristics it uses to generate 

and select design alternatives. 

6.4 Rule Design 

The transformational rules demonstrated in this thesis often perform similar sets 

of functions on similar circuit structures. This results in many almost redundant 

transformational rules. This is particularly obvious between the 



Half-Word-to-Word-Input 

was that it was required 

left in a consistent state, 

and Half-Word-to-W ord-Output 

that when a rule transformed a 

rule. The reason for this 

circuit, the circuit must be 

that is, the header must still reflect the function the circuit 

structure implements. After a transformational rule is applied to a circuit, the circuit 

must still work, there cannot be any dead subcomponents or loose intercomections. 

These criteria for rule design are too restrictive, and result in large coarse rules 

with many redundancies. Ideally we would like much more fine grained rules, which 

are more specific in their focus. The fmer grain rules would have to leave state 

variables behind after their application such that they would forward chain in a 

consistent and useful manner. 

Narrowing the focus of rules appears to improve the structure of the rule base. 

Early in this research very large coarse rules were tried for transforming designs with 

the results of the system becoming totally unwieldy. As the rules were refined, they 

became much more flexible. At some point there will be a minimum limit to how 

much knowledge must incorporated into a rule for that rule to be useful. 

6.5 Notation 

PASCAL was used to characterize this work because it was the language 

available under the Mentor Graphics design tools. The problem with using PASCAL to 

describe hardware behaviour is that it forces the user to combine the description of 

circuit's controller and data paths into one notation. This results in a description which 

is highly sensitive to the user's writing style. A data flow representation much like 

Snow's VT-diagrams would be more appropriate for representing the circuit data paths. 

Representation for control would remain a problem because of the necessity to assign 



operations to specific clock periods. 

6.6 The Final Word 

It is very difficult to know when an expert type system is complete. In fact 

there is probably no satisfactory way in which any expert system can ever be declared 

complete. There is no theory which can prove the worst case complexity of the ill 

structured problems the system is designed to tackle. There is only the prospect that 

everytime the designers review their system they will find some feature that can be 

refined and improved. The system can never really be perfect But then, like the 

personna from which it takes its name, it is not suppose to be, after all, it is an 

expen 



APPENDIX ONE - THE PROTOTYPE MULTIPLIER 

This appendix lists the set of behavioural models that were created to represent the 

prototype multiplier. These models have been organized into a prototype frame by 

augmenting them with an architectural properties list and a dependency network. 

The contents of this appendix for the prototype multiplier are: 

Also 

The Frame Header which includes the schematic for the multiplier and the 

program that describes the behaviour of the multiplier. The behaviour of 

h i s  circuit is shown by the simulator traces included with i t  The 

simulator traces are not part of the header. 

The Frame Body Design Slots are the set of component models used to 

implement the multiplier behaviour described by the header. Each design 

slot consists of a component symbol and a listing of the program that 

implements the behaviour of the component 

The Architectural-Properties List includes the network schematic for the 

multiplier and the set of EXPAND, PLACE, and CONNECT commands 

which generate the network schematic. A simulator trace of the multiplier 

network is also included. The simulator traces are not part of the 

Architectural-Properties list 

The Dependency Network which shows how the architectural elements of 

the Design Slots and the Architectural-Properties list implement the 

multiplier behaviour described by the header. 

included in this appendix are the elements of the multiplier frame that 

were modified to satisfy the user specifications given in the example of chapter five. 



1. A new schematic symbol for the multiplier. 

2. The modified program describing the behaviour of the multiplier. 

3. A simulator trace of the multiplier. 

4. The modified design slot for the CTRL component 

5. The design slot that was added for the m state buffer latch. 

6. The modified network schematic for the multiplier. 

7. A simulator trace of the modified multiplier network. 



schematic for prototype multiplier 



ultS&llou;e. 
VAR 

s t a t e j t r  : U I ~  sta tegt r - type;  
: INlECERI6; 

BEGIN 

Behavioural &el for user-spec rr iul t ipl ier  



( F(MCT1WL-CAPLBILITIES ) 
WOCEDVRE ult - funct tm:  

VAR 

WIM at0..e-Slnstnce t e  7 DO 
s t a t e g t r  :. I .user-&&: 

WIM stategtr t :sp DO 
( CLW: BEGIN. 0 ) 
ncr B% 

un 20 , --'.' 1 1 tus 1. \w.aata-tn, 0 7 sv r e g .  0, 7 ) .  
r n ~ ?  reg ( a p . a r q  a h - h e r o  
m t - r e g  ( m . c r q S  st. szarojj 

S", 
w.cTaa-cycle :. 61ocr'l; 

( c~oa-sr"$ 110 1 
1 2 g l ~ l :  BEGIN 

; tus-Out (so.*ta Out. 0. 7 .  s a r q .  0. 7); 
stma1 out (sv.r€op s t m - ~ s P ~  
SP.CI&-CWI~ :. clockn; 

WD; 

( CLOCK-STEP 130 
c l k n :  s h  

ACT 140 ) I  INS^^ --out <so.*ta-Out. 0. 7.  s w a r q .  8,  15); 



. data-in 
data-out 
start 

Set Mouse : Puck : Touchpad 
Basic Operations 
Froduction 
Connand Card 
HELP 

User t ine scale = 
. . . - - . - . . . - . 

FORCe data-in f f  0 
FORCe data In  O 50 
RUN 420- -- 
HdRDcopy 

I Note: Screen Inage plotted to //ORION/SYS/PRINT/LRSER. V. ADOLPH. WlRDCOW (fron Idea/Spoo 1) 

trace output for prototype dtiplier 



User t lne scale = 1.0 Nsec, lnput radix = Hex 
. . . - - - . - . . . I 

FORCe s ta r t  1 5 
FORCe star t  0 25 
FORCe data-~n ff 0 
FORCe data in  0 50 - 
RUN 420 











1 "'3 ( DEPWENX 1) 
RT-T E c m t r o l l e r  j 

PROCUYHlE C t r l L U l l o u t e ;  
VAR 

s t a t e s t r  : c t r l  s ta test r - type;  
1 : INlEEER16. 

BEGIN 

sim-Smessa~~ ( ' a l l oca t im  f o r  control ler 
:;;~Y;:y~~;f$t;~rw-size. s t a t e s t r  

BEGlN 
REG-SYIBOLS ) 1 PORT-SYrnOLS , 

WITH s sh i f t  w 
sff irR 

wrt-IU r. sh i f t  r i g ;  
lotype :. c t r l g o r f .  
imir :. w t w t 9 o i t ;  

& r t - W l d t h  :. 1; 

WITH a .aaa W 
0ffilR 

p o r t - n m  :- add r i g ;  
l o t m a  :- c t r l a t ;  
imir := w t w t s t ;  

s t - W i d t h  :. 1; 
WITH s w t - s e l r t  w BEGIR. 

Port-- :- OUt-s#Iact-sig; 
i o t m  :. c t r l m t ;  
loair :- eutwt-part; 

& r t - w i d t n  :- I; 

WITH OUt-na1e W 
BEG%. 

port IU :* O U t - ~ l e - s i C ;  
tot+ :. c t r l s a r t ;  
imlr :- wtwtgort; 

Eygprt-ridth :. 1; 

WITH 8 s ta r t  W BEGIR. 
port IU :- s ta r t  sig; 
i o t p  ;- c t r l f o r f ; ;  
IW r .. inp.19at 

&yt_Width :. 1; 
WITH s .stOD W BEGIR 

p o r t - I U  :- StOD s1g; 
~ o t m  :- c t r l d t ;  
imir :. wtwtgort; 

E c t - w i d t h  :- 1; 

WITH s .elk DO 
effi~R 

' i s  Star t  
' ) ;  



Em. 
{ NOU-STEP 120 

ii: s d l w  

1 :kl? ' s ~ m a l - o u t  (sp.st . s ~ r  lorn). 
( D ~ E ~ E U C Y  1 1 

( I M T 2  ) simal-out ( s o . w t  m a a l e  '$1. Mc): 
( DEPEIOENCC. 1 T 

1 I S 1 3  ! s f p l - a r t  (%.out select st- I r c r o ) :  
( DEPErnEIOI. 1 T 

( INS14 J s i m a l - w t  (so. lncr r i a  S o w ) .  
( D E P ~ E N C Y .  1 ) 

18. BEGIN 

I :%tll:O ) s3Qla1-wt 

( INST2 ) S l w I - W t  

(SO.Wt maole .  SI.  Sow) ;  
( D E P E W E W .  1 T 

( s p . ~ t  select.  s t m  M e ) ;  
{ DEPEIOEHCY. 1 T 

E m :  
E m  

( CLOCK-Em. 160 ) 
E m .  

E t a .  
E r n .  





.".. 
s t a t e g t r  : m n t e r  s t a t e g t r - t m ;  
1 : lNEGER76; 

BEGIN 

si . -saessa~ ( 'a l locat ion  far m t c r  i s  s tar t ing .  .... ' . 4 5 ) ;  
~ ; ~ s ~ ~ ~ ~ ~ ~ r ~ f ~ ; t ; I r e c e c s i x e .  s t a t e g t r ) .  

BEGIN 
( REGSMOLS ) 

WITH s a t - r e g  DO BVIIR. 

-- 
WITH 

VAR 
s t a t e g t r  : c u m t a r - s t a t e g t r - t m ;  

BEGlN 
WITH si-e-S1tytancegtrS:t DO 

s t a t e ~ t r  '- :.YSW s a t ~ a r t a :  
r u n  s t a t e g t r * : ~  DO- 

BEGIN 
CLOO: BEGIN. 0 ) 
DEC 70 ) 
l6il ) I F  ( s i m a l - t n  tsp .c lear )  - s i n  lone) THEN 

( D E P W E k T .  1) 

I %12! ) init -reg t s ~ . c w n t  r st. I zero  ; 

DEC 30 ) 
7 ~ P W E R C Y .  11 

I wstl ) I F  t s i m a l - i n  (sD.inc)- r i m  lone) THEN 
( DEPEEDWCY. 7 )  

I %t14P ) incr-reg (sp.count-r 
(TL~WENCY. 7) 

I ACT SO ) 
 INS^ ) nus-wt ( s ~ . m t - w t  0 4 cwnt-reg, 0. 4 ) ;  

( D~PW&Y. 7) 





( WEG ) ( OEPENDWC~ I ) 
PROCWRE Y e g l S a l l o u i e ;  

VAR 
s t a t e g t r  
I 

BEGIN 

s i m - I Y J s . ~ e  ( ' a l l m a t l m  l s  s tart lng  ..... ' ,29): 
s1m Sallocate (State rec-$I*. s t a t e g t r ) :  
w l r R  s t a t e g t r t : s p  OU 

BEGIN 
( REG-SYLBOLS ) 

WITH s m reg Do .me- - 







( NKTIONAL-RLOVIREYErn ) 
PROCWRE O r a t u n c t i o n ;  

V U I  
s t a t e s t r  

BEGIN 





( W X )  (DEPENEH?I.  1 )  
PROCWRE mxSUlloute;  

v Aa 
stategtr I ;uw;&:ytr-tm: 
I 

BEGIN 





BEGIN 

S I S _ ~ . . ~ S ~ .  ( ' a l l o u t i o n  for  th. - lator IS s t a r t m a  
SIS S a l l a a t e  (s ta te  rec-SIZE. s t a t e g t r ) .  
WrrR s t a t e g t r * : t p  00 

BEGIN 
( R E G - S W L S  ) 

i o t ~  :- c m t r o l m r t :  
iod1r :- i n p u t m r t ;  

a r t - w i d t h  : I: 



ELSE 
BEGIN 

j %i131) ) IF (st-,-tn ( r p . a )  = st. -) THW 
( MPENDLNCY,  1 ) 

BEGIN 

i $tl4P ) sp.,r,-ln :. ,,,I +, (s 
( D E P ~ ~ ~  1 ) 

( I)(STZ ) m - r n  ( s ~ . r ~ t ; . & & - ; q .  0. 7 ) :  



r'. 

Netwwk -tic for prototype multiplier 



dW2 : FOR r :. 0 TO 7 DO 
C W C l  ( r s p .  1. r .e in ,  1. ult. 1, d a t l t n  1 ) .  

~MPE~OF)(CY. 1) 

COQ : COWECT ( EOO~H. 1. clear. 1. c t r l .  1. clear. 1); (DEPWENCY. 1) 

c W 6 :  CM*(ECT ( MO. 1. load. 1, c t r l .  1. loam. 1); ( D E P W E I C I .  I )  

cOO7 : FOR i := 0 TO 3 W 
wMC?Cl ( counter. 1, cant-cut 1. 

c t r l .  1, c a n t - ~ n ,  i ) ;  (DEPwWCI. 1) 

6006 : FOR i :. 0 TO 7 DO 
WrUECT ( adder, 1. sum-wt, i, a r q ,  1, r a i r  i.7); c d & u w r r .  1) 

cOI3 : COMlECl ( arcg. 1, sh i f t .  1, c t r l .  1, sh i f t  ); (DEPEKHNCI. 1) 

~ 0 1 4 :  C D H R C T ( q r e 9 ,  I ,  sh i f t .  1. c t r l .  1, s h i f t  ): ( D E P W .  1) 

cD15 : C W E C l  ( counter, 1. imr. 1, c t r l .  1. Inc ): ( M P E I O W C r .  1) 

do07 : FOR 1 :. O T O  7 DO 

CUWECT ( u x .  1, ux-cut. 1, ult. 1, data-cut. I ) ;  ( D E P D O U C I .  2) 

~ 0 1 7  : COmECT ( u x .  1. select.  1. c t r l .  1, wt-select. I ) :  (MPE)(DEHCI. 1) 

~01.9 : C O W  ( c t r l .  1. s t w .  1. ult. I, s t w .  I); (MPWm. 1) 

aoo8 : FOR 1 :. o TO 7 DO 
C O W K 3  ( a r 4 .  I. rsewt. i.7. u x .  I. t n l .  I ) ;  (DEPWOENCI. 1) 

6m . FCR : r " 7" 9 "" 
C O ~ N E & ' ~  ;r&. 1, r e e w t .  I ,  u x .  I. 702. 1 ) ;  (DEPWENCY. 1) 

c D Z l  : COIIlECT ( U x .  1. enable. 1. C t r l .  1, c u t - n ~ l e .  I ) ;  (DEPEK)EWCY. 1) 

~ 0 2 2  : COmECT ( c t r l .  I. star t .  1, ult. 1, s tar t .  1); (DEPEIowcY. 1) 

dOIO . COMECT ( amcr ,  1, Co. I. area. I. cc. 1); (OEPEIOENCY. 1) 



Wace output for network scheroatic of prototype multiplier 
. . 



(DEPEWENCY ( 
INSTRUCTION (10 INSTI) ) 
IS-CARRIEPMIT-BY ( ( a m t r o l l e r .  c t r l .  10. INSTI ) ) )  

((SRC u l t  I s t a r t  
(DEST c t r ~ ,  I. s t a r t 1  
(PATH ~ 0 2 2 ) ) ) )  

(DATA-PATH n i l )  ) )  

(DEPWENX ( 

I INSTRUCTION ( 20 INST2 ) ) 
IS-CARRIED-WT-0) ( a m t r o l l e r  c t r l  20. INSTI) I storaoa a r m  l b  r m r l  

(CTRL ( 
storago a r m :  20: INSTI! ) )  

(DATA-PATH n i l )  ) )  

(CTRL ( 
( r to rapc  r e g .  20. I h W I )  ) )  

((SRC c t r l .  I, I&) 

{FEE r a ) ) l ) ) l a )  
(DATA-PATH ( 

(DEPENDEICI ( 
(INSTRUCTION ( 70 INSTI ) )  

(IS-CARRIED-OUT-BY ( ( c o n t r o l l e r  c t r l .  80 INS11 
( s t o n *  g r w .  50. I ~ T I )  ) I  

(CTRL ( 
((SRC o r  1 m v a l l o ] )  $;,I; qoY 

(DATA-PATH n i l  ) ) j ) 

depndmcy network for prototype multiplier 



(DATA 
(PATH C O W )  1) 

-PATH ( 

(DEPENOENCY ( 
(INSTRUCTION ( 
(IS-CARRIED-OUT 

\"...- 

(DATA 

(DEPEMENCI ( 
IMTRUCTIDN ( 120 1 6 1 2 ) )  

~ I S - C I R R I E D - O U T - B Y ' ( ( ~ ~ ~ ~ ~ O ~ ~ ~ ~  c t r l ,  1-30. IN ST^)) 
(CTRL ( 

( SFZ c t r l  1 s t  ) 
~OEST u l t ' l . ' s t a  
(PATH c018))  ) )  

(DATA-PATH n i l )  ) )  

, INSTI))  
( ( c o n t r o l l e r  c t r l  I 4 0  I S 1 1  

(cont ro l le r  c t r ~ .  150' IHSTZI 
r w t e r  NX, t o . ' r w ~ i  
rwter m a  40 INS11 
router m a '  50' INST1 
router u x :  60: I W T I  





I 

SChgMtic for user-spec rrultiplier 



I H?% processor ) 
PROCWRE m l t s a l l c a t e :  

VbR 
s t a t r s t r  : m l t  stategtr-type; 
1 INlGERl6; 

r e g - n a  :- c r e e r w ;  
r-riath :- 6: 

C Y I  . 

Behavioural model describing multipliez. behaviour 
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( FUNCTIOWL-CAPLBILITIES ) 
PROCWRE ult-function: 

VAR 

&!€-USE 8P.clOCk-cyCle OF 
i CLOU-SIEP. 3 

clostt: h I N  
DEC 4 ) I ~ N s t l  > I F  - r.0 (*P.CM*.r) ' (I) m 
DEC 5 ) 

&IN - 
j !%tie), IF ( t l ) . u l t t D l i w . - n l f o ~  - 1ta--) 



4 - 1  f ,elk 
FCFF r X arm* + datagort  

1 start  

- . . . ." . . . -. . - 
dumping resul tsh 
starting nult cycle 
 dun^ ina resul tsh 
HARDCO~Y 
Note: Screen image plotted to //ORION/SYS/PRINT/LRSER. V. ADOLPH. WRDCOPY (from Idea/Spoo I )  

!I'race output for user-spec multiplier 



. -. ." . .- - . .# . . - 
dunping resul tsh 
starting nult cycle 
dumping resul tsh 
starting nu1 t cycle 
dump 1 ng resu l tsh 





( CTRL ) ( D E P E W W .  1 ) 
PROCWRE c t r l W a l l o u t e :  

V N I  
s t a t e g t r  : c t r l  s t a t e g t r - t w ;  
I : INTEGERIS; 

BEGIN 

-. 
p o r t - n u  :- uxnt- in-r ig;  



PROCEDURE c t r  I f  unction; 
VAR 

s t a t e j t r  : c t r l  s t r t e g t r - t y p e ;  
carry : IHIffiER16: 

BEGIN 
WITH s 1 ~ e - S 1 n s t a n c e  t r t .  1 00 

s ta te -p t r  := I .user -&ta -ka ;  
WITH s t a t e 9 t r t : s p  00 

BEGIN 
CLOCK BEGIN. 0 ) 
OEC. TO ) 
INSTI ) IF (s ipml - in (sp .s tar t )  = stm-Sme) THEN 

( DEPEMEWCI. 1) 





I %%E'r%P-' ) 
PROCUURE buffSSalloute; 

V U I  
s t a t e g t r  : M f  s t a t e g t r - t m ;  
J : IWEGUIIB; 

BEGIN 

s t a t e g t r  
BEGIN : M f - s t a t e g t r - t m :  



Neck schematic for user-spec d t i p l i e r  
. . . - -- - 



Trace output for network schanatic of user-spec multiplier 





APPENDIX TWO - THE DIVIDER CIRCUIT 

This appendix is a listing of the program that describes the behaviour of the 

restoring divider. This is an untested model and is included only to support the 

comparison between it and the prototype multiplier. 



( RDlV ) 
PROCEDURE a l v s s a l l o c a t e :  

VAR 
s t d t e j t r  dlv s t a t e j t r - t ~ ~ e .  

INTEGER16. 

BEGIN 

sin-$message ( ' a l l o c a t ~ o n  f o r  divrder I S  s ta r  
;;;Rs:;:y;:r:s:;t;ErecCsizee S t a t e D t r ) .  

BEGIN 
SO.Clcck-CyCle .. CIcck l :  

( REG-SYLBOLS ) 
WITH s c w n t e r  00 

BEG& 
r e g - n a u  . =  counter-rep. 
r eg - r l a th  .= 5 .  

END. 
WITH s . accumla to r  DO 

= accuml r to r - rep :  
r a n d t h  :. 16; 

E t a :  

WITH s s t a r t  DO BEGIR. 
w t - n a n c  . s ta r t - s ip ;  
1 o t ~ e  1: c t r l p o r t : ;  
l o a l r  inw gort 

E ~ t - ~ ~ a t n  .. 1; 

E K t - w i O t n  -. 1; 

E ~ y t - r ~ d t n  :=  1; 

END; 



I FUNCTIONAL-CAPABILITIES ) 
PROCEWRE d l v - f u n c r ~ o n  

f VAR 

J state-prr  
K 

CLOCS&N. o ) 
DEC 70 ) 
INSCI ) IF \ swmal - ln  (sD.s ta r t )  = s~m-sme)  THEN 

BEGlh 
ACT 20 i 

; ;  DUS-ln l s ~ . d d t a _ ~ r t .  0, 7, s ~ . a c m ~ l a t o r .  8 ,  151. 
m r t  reg (SD.wot len t  stm_Srero). 

INST3 r n l t - r e g  LSD. counter.  ' s  rm-SzKo). 
sp.cTock-cycle . -  c l o c k l ,  

c.m 

( c~ocx-S~?P. s o  ) 
Clock? 1. BEGIN 

1 %i l7P ' IF I--reg (rp.-tcr) < 8 )  T m  

ACT 80 , 1 1 ""t-r'. so--r 0 E LER s t - s z e r o ) ,  
s h l f t - r q (  s ~ . w ~ t ~ m t .  0: 7 :  L ~ R .  sim-&em): 

E L S i  

1 -  ' nus-out (so data-,;, 0. 7. 
Ern. 

END 
( CLOCK END. 200 ) 

EN6 
END. 



APPENDIX THREE - THE RULE BASE 

This appendix lists the rules that were developed to support the example design 

task of chapter five. 





iF ob ec t - t yw  of <statment-1 1s STATEMENT ~d object-tym of <statement-? ts STATEMENT 
AM) source-ty~e of <statement-1 IS DrototvOe 
A N D  source-type of <s ta te~cnt -2  1s user-s 
1 ~ )  stat-t-type of <s ta teem-1  Is C&%EGI~  
AN@ statement-type of <statment-2 rs CLOCK-BEGIN 

TYCU ..,&.. 
strong-bind icstatumt-1, statement-2) 

.................................................................................................. 
I . .  

i .  c lock-~na watch Rule 
! : ..................................................... 

-- - - ~  ~ ~ - - -  

/. 

! : Strong S t a t a n t  watch R U I ~  ....................................................... 

,"r." 
strong-bind (<statrant-1, statement-2) 

i s  strong-bound 

/".~'..'.'.........I""'..'.'."..'.."."'...'.'...'.""...'.'...'."".........'..*., 

beak S t a t a n t  mtm Rule /".........."..'.."..'........."'."*.* 
IF Ob eCt tm Of <Statement-1 1s STATENNT ~d O&-tMC Of (Statement-2 1% STATEMENT 

Affl swrce-t iwe of <statement-1 i s  prototype 
AW s w r c e - t y x  of <statement-2 I s  user-s~ec 
AND Dindlng of cstatement-1 6 <statement-: l a   hi^ 
AND blnalng of tns t r (<r ta tnent -1)  b t ns t r (<s ta temt -2 )  1s strong-bouna 

nJ=L ,,,-.. 
eak-bind (<sta tc lmt- I ,  <statement-ZJ 

; : Strong ins t ruc t ion watch Rule 



I.... ""...~..""*..I"""""""""'"""'.."""""'I"""""""""'"""'.."""""'.I"""""""""'"""'.."""""'..I"""""""""'"""'.."""""'I"""""""""'"""'.."""""'...I"""""""""'"""'.."""""'....I"""""""""'"""'.."""""'....~.........*. 

I. : I .  weat 1nstruc;lon Match Rule .................................................... 

i $: cmnpe s h i f t - ~ n  Sc~urce  F r a  Port  t o  ca ts tan t  Rule ,"'.......'..'.'....."""..'..................................*.............. 
I 

DESCRIPTION: 

rff i  s h ~ f t - ~ n - s i i  of  <lnsir-~ I S  wit-li - 
AND sn i f t - in -s rc  of C lns t r -2  1s CONSTINT 

6TR-SRC ( <tns t r -1  sn i f t - in -s rc .  CONSTANT 1 



;- 

;: Sample 811 f r m  4 r 0  Outwt Rule /".""..".."".'"'......................................................* 
DESCRIPTION Tnls IS anotner s i w l e  t ransfor ra t iona l  r u l e  I t  congares t y  

o u t w t  Dl1 .lath 01 t.0 registers tstorape or s n l f t  r e g x t e r s  
I' tne wrath of tne prototype reo ls ter  s output Port IS greater 
than one teg rora  p a r a l l e l  w t w t  b ana tne r l a t n  of the w t w t  

e 07' cf the user-spec 3s m e  a r t  tnen 1hlS r u l e  r,ll f ~ r e  
h l s  r u l e  btolns Dy creat lno a m e  01' output o r t  ana t h m  

replaces I t  f o r  tne D~TA-PATH O e s t ~ n a i ~ o n  of tR prototype s 
bYs_out tnstruct lon r l t n  a ~ l t  DOr: I t  then cnalges t N  source 
for  the DATA-OATH to  m l y  tne D?: r tnch IS referencea an the 
user-spec A neb a th  IS t h m  created t o  cmduct t h i s  stgna, to  
the w t w t  port ?ne s w r c e  ,n tne ws-out mstruct,, 1s men 
In0elea t o  select tne W r o p r t a t e  D l1  r l t h l n  the w t a u t  word 

Am 
A M  
UO 
UO 
bND 
AHD 
Am 
Am 
A N )  
Am 

TYCU 

........ .... 
ObJeCt-type Of <PW-1 I S  REGISTER 
s w r c e - t m  of v e g - 1  1s ro to t  
mmt-tva of veg-2  3s RE GIST^ 
source-tva of veq-2  i s  user-smc 
a n r a t o r - t m  of < ~ n s t r - I  6 <insrr-2 IS BUS 
wtout -s rc  of g tns t r -1  IS v e g - 1  
w t w t - s r c  of <tnsrr-2 IS <peg-2 
b t n a w  of v w -  1 6 v e q 2  i s  strong-~ounc 
w t w t - * s t  of < lns t r -1  IS -1-1 
wtwt -Oest  of <lnstr-Z i s  <+art-2 ,..-. 

LI-PORT ( NAME.SnergOrt. VIDTH.1. IO*wtput INFO-TWE.6atal 
RM-DEST ( < lnr t r -1 ,  outwt--st.  -+on-I I 
ADD-DEST I <instr-1 w t w t - m s t  S n e r g  r t '  
RPL-SRC <tnstr-I :  wtwt-art: <reg- l? lHD~x l  ) 

F~.t;;k I <instr-1, w t w t - * s t .  %rt-! ) )  

w~-lNsTR-$??~~~~it?~?&%~~~?~<~~! l [  INDEX] 1 

. I.. ........................................................................ 
I I :  l n w t  Outwt P w t  I*rpe Rule ......................................... 1 ;:.. .............................. 
I DESCRIPTION This IS anOtMr s c w l e  t r a n s f o r u t t m a l  ru le .  I t  rccopnlres the 

s??uat'nn Y" ?be ~ r c ? c t y c e  *as %?C a-   put port an* s- 

Y r t .  @ut the user-spec c a l l s  f o r  a s ing le  1nwtiOutDut port 
h i s  r u l e  M s  only one act ion ?tern. ana t M t  15 t o  create tne 

new por t  

I F  OD ect type of W r t - 1  1s PORT  AN^ source-type of <por t - i  IS prototype 
AND 10 of w r t -  l 1s output 
AND oDject-type of < w r t - 2  1% PORT 
AND source-type of Wor t -2  i s  Drototype 
AND 10 Of W r t - 2  IS ?"put 
AND m l e c t - t w  of Caort-3 IS PORT 
AND t o k e - t y p e  o i  Wor t -3  1s user-spec 
AN0 I0  of W r t - 3  IS in t od tw '  
Ah3 Dtnalng of V o - ? - l  r & r t - 2 ' l s  weak 
AN3 0u:wt-aes: of < ? n s t r - '  rs W o r t -  
AN3 OUIW:-OCS~ O' <?nsr r -2  IS w r t - 2  

*"C., 



: - 

;: Half word to word l n w t  Rule 

Thls ru le  cxamrnes tne ~ n w t  structure of the pro to tym to 
to derermlnc $1 the prototy nas two registers connected to 
the l n w t  swrce and ~f m t r o f  tmse PegISterS nave tne same 
b l tw lo tn  as the ~ n w t  source Tnen the I n w t  structure of tne 
user-smc IS examined t o  see ~f there are two reglsters m l c n  
are Cmnectea to a port w s e  D l t r l d t h  IS the sum of tne 1.0 
reg1sterS I f  the prototyDe reglsters and the user-spec reglsters 
Iaent l f led ?n th ls  r u l e  are strongly matcnCd tnen this ru le  
f l r es  The actton l t s s  of t n i s  r u l e  n 11 cmnect the P r o t o t m  
reglsters to a port d l c n  ts the sum of the l r  r ld ths  Often 
the new m r t  "111 nave bccn created ov tne l n w t  Outwt Port 
Merge Rule 

I F  OD ect type of W r t - l  i s  PORT 
~ t d  so&-tyw of ~ r t - i  IS prototype 
A H b  10 of W r t - 1  IS t n w t  

AND mject-type of <reg-l IS register 
*LD swrce-type of v e p - I  i s  p r o t o t y p  
AM mject-type of uep-2 i s  rep is ter  
U(C s w r c e - t w  of vep-2 i s  w o t o t w  
Ut Wject-type of <reg-3 i s  register 
UO s w r c t t w  of veq-3 rs user-SDCC 
A H ,  object-type of <rep-4 IS register 
UO swrce-type of - 4 - 4  1s u s e r - s m  
AHC Omding of (<reg-l 6 Sreg-31 OR ( veg -1  b vcgl 
M Dlndlng of (<reg-2 6 +ag-3) OR cvcg-2 h 'reg4 
A H )  mject - type of < tnst r - l  i s  i ns t r uc t im  
*HD s w r c e - t w  of < tnst r - I  !s protot 
UO mera to r - t yp  of Clnstr- IS ~ u ~ - r [ l c  
UO tnwt -src  of c l ns t r - l  i s  W r t - 1  
UO Incut--St of c rns t r - l  i s  Vep-1 OR *w-2 
A H )  obmc t - t yp  of c lns t r -2  i s  I ns t r uc t lm  
UO s w r c e - t y p  of <lnstr-2 7s user-spec 
M mera to r - t yp  of <~ns t r - 2  1s BUS-IN 
A H )  incut-src of <lnstr-2 1s W r t - 2  
AM tnwt-dast of sinstr-2 IS - 4 -3  OR veg-4 
AND object-~YDC of C lmtr -3  IS ?nstruct?on 
A I O  s w r c e - t y p  of <lnstr-3 i s  protot 
UO merator-type of Stnstr-3 IS  BUS-^^ 
AND l m t - s r c  of <lnstr-3 ?s Wrt-l 
A H ,  lnwt -cast  0' <~ns t r - 3  i s  <reg-l OR <reg-2 
*N) o b j e c t - t w  of glnstr-4 rs ins t ruc t?on 

s t r m g - m n a  
strong-owna 

UO Swrce-type of <tnstr-4 i s  user-SDCC 
UY) -rator-type of crnstr-r 1s Bus-IN 
A H )  ~ n w t - s r c  of <:nrtr-4 jr < w r l - 2  
A m  1nw:-ocst of < i i s t r - 4  i s  6eg-3 OR 'reg-r 
A H )  tnnalng of (<instr-1 6 <lnr t r -Z)  OR F i n s t r - 1  h ctnstr-41 

IS strmp-OWM 
A H )  Otnding of (Crnstr-3 6 <lnstr-2) OR (< ins t r -3  h <instr-4) 

i s  s t r m g - w n d  



I' 
/ ' Serial t o  Paral lel  Input Rule 
i :  ................ . ......... * ...........................-...* =.............. 

DESCRIPTION Tnns ru l e  IS c losely related t o  tne Half wora t o  wora ru le  
mere tne Half w r a  t o  wora ru le  modlfiec the m w t  structure 
The Half 4 r d  to 4 r o  ru le  m o c ~ f ~ e o  tne c i r c u i t  s arcnlrecture 
sum tnat two reglsters no Ionoer M a  tc  contenaed for  tne same 
b i t s  of an l n w t  port Tnls r u l e  conoletes tne nodlf icarron bv 
cna l rng  m t n  r q l s t e r s  t o  read tne m w t  Port durlng tne sane 
clock cycle Thts r u l e  works by oeterm?nlng t f  tne user-roe: 
10atY.s 1 4  r ls ters  m r l n p  the saw  clock cycle fron a snared 
r n w t  port ?f t~ Protot De nas two reg ls tcrs  sluran the same 
I n w t  yt. w t  rcaaln tXetr ~ n w !  over successive cPo:~ cycles 
then t 1s ru l e  f l r es  9ne cmonent  ?oent>f  ?eO as the cont ro l le r  
1s modifled sum tnat botn InDut reglsters recc?rca tne l r  load 
s i pm ls  avrlnp tM same clock cycle 

I F  OD ect type of -+art-1 IS PORT rd sdrce-type of -+art-I rs prototype 
AND 10 of -+art-> IS l w t  
AND 0D~ect-type of -+art-2 I S  PORT 
AND source-type of W r t - 2  IS user-spec 
AND 10 of w r t - 2  IS I n  t or ~nw t -ou tpu t  
AND bmdlng of w t - 1  !"-+art-2 1s s t rong-wnd 
AN3 w~ec t - t ype  of <reg-l IS reg ls tcr  
IW) source-type of veg-1 IS Prototype 
A M  w m t - t y p e  of Yeg-2 IS rcp ls ter  
AM) swrce-type of 'reg-2 IS PrototyDe 
A M  M~ec t - t ype  of v q - 3  IS r q t s t e r  
A t 0  swrce-type of <reg-3 IS user-spec 
AND WJect-type of grq-4  IS reglster 
AM) source-type of (reg-4 1s user-SWE 
A M  brndinp of (<rag-I & veg-3)  OR I*--1 6 <r+l 
AND blnding of (<reg-2 L vag-3)  OR l < rw -2  6 <rep4. 
UO w ~ o c t - t y p e  of c tns t r - i  1s i n s t r u c t ~ m  
A m  source-type of c i ns t r - i  IS protot 
AM) operator-type of c t ns t r - i  rs WS-r 
AND 1 w t - s r c  of ( ~ n s t r - l  IS w r t - l  
AND input -dnt  of < l ns t r - l  i s  <reg-1 OR veg-2 
AND 30~ect-type of <instr-2 i s  l ns t r uc t lm  
A N 3  s w r c e - t m  of clnstr-2 IS user-spec 
AM) werator-type of <tnstr-2 1s BUS-IN 
A m  i nw t - s r c  of <instr-2 i s  W r t - 2  
AND t w t - W s t  of <lnstr-2 IS <reg-3 OR <reg-4 
AND Wject-type of <instr-3 IS I ns t r uc t?m 
AM) swrce-type o f  <instr-3 IS protot 
AM) operator-type of qtnstr-3 IS BUS-r 
A W  IWI-src of <mstr-3 i s  rgor t -1  
A m  i n w t - o a t  of <tnstr-3 1s v e p - i  OR veg-2 
AND M~ec t - t ype  of cinstr-4 i s  l ns t r uc t rm  
4N3 source-type of <tnstr-4 1; user-SDCC 
AND operator-type of <tnstr-r IS BUSJN 
A W  rnwt-src  of <rnstr-4 IS w r t - 2  

s t r ong -wnd  
strong-cmuna 

IXD i nw t -Ws t  of <~ns t r - 4  i s  -09-3 OR v e  4 
ua *,act-type c t  < s t a t m n t - i  >s stat-?- 
AM) swrce-type of <statesent-1 IS prototyue 
AN3 I n l t r u c t l m  of < s t a t a n t - 1  1s <rnst r - l  
AN2 MJact-type of <statement-2 IS statement 
AND swrce-~YDC of <s tac r rn t - 2  IS protot e 
AND Instruction of <statesent-2 IS <tnstr% 
A m  ob~ect-type of <statement-3 IS statement 
AND source-type of <statement-3 i s  user-soec 
A M  lns t ruc t lon of cstarencnt-3 IS ( <~ns t r - 2  & <lnstr-4> i 

AND swrce-typC of <statement-4 ri orcSt6t- e 
AND statement-t e of <statement-4 1s c log-s tep 
AND successor oP'cstatemnt- 1 1s <statement-4 
AND successor of (statement-4 IS <statement-2 
AH5 DlnOlno 0' (<rnstr-3 & 'lnstr-21 OR i< lns t r -3  b < l n s t r - d l  

7s strong-bound 
AND blnding of (Clnstr-J & <lnstr-21 OR ,<?nstr-3 & <?nstr-4, - .- rs s t r ong -~und  

l "Dll 
RY-CTRL-SRt ( <~nst.-?. inout-oes:. LOAD-ENABLE i 
RY-CTRL-PATH Crnstr-a. input-*st. LOAD-ENABLE i 
ADD-CTRL-SRC clnstr-3. ~nout-oest 

GET-CTRL-SRC ( < ~ n s t + - ~  mwt-aest  LOAD-ENABLE, 
g$R&P::; i(<;;::::;f. ,I#tB;;,  AD-ENABLE ' 
ADD-CTRL-INSTRl Ctnstr-5. LOAD-ENABLE. 

GET-CTRL-INSTR ( < l n s t r ~ l .  LOAD-ENABLE ) I 
MOVE-INSTR ( ' ~ns t r - 3 .  % ta tea~n t -1  , 



i ' 
1 .  Half wore to wore o u i ~ u t  Rule ;: ...................................................................... *.-. 

DESCRIPTION Tnls r u l e  examines tne w t w t  structure of tne 0-clorvoe to 
to determtne ~f tne prxotypc NS 1 r e g ~ s t e r  m s e  conten3 
7s se r i a l l y  pa tw  t o  aa output port over successive clock 
cycles Tnen tne wtput  arcnltecrure of tne use--sDK 3s 
esas'ned t o  see 11 tne corresponding req?sters IS ou tw t  15 
w w e o  to tne w t p ~ t  pore rn one clock cycle I f  th ls  as tne 
case then toas rule f ur;s Tne action r t n s  01 th ls  r u l e  - 1 1 '  

connect the pro to tym regtster t o  an w tpu t  port to *lcP * 

can write i t s  wtput  an one CIOC* zycle  his ru le  also nas 
a COnSlStenCy cneck ~n I !  ~f tne destlnatlon lo:' I S  an 
i n p l l - w t w t  port,  tm a t r l - s t a te  Iarcn IS ins,alled 

t - t y m  of +rt-1 IS PORT 
I F O D r  UI source - t y m  of ~ r t - I  i s  prototyoc 

AND 10 of W r t - 1  I s  w t w t  
AND m j u t - t y p c  of W r t - 2  IS PORT 
~ h )  source-tyoc of W r t - 2  1s user-sw 

A N D  10 of ~ r t - 2  IS w t w t  
AND OLIIKL':-tVDC Of Wort-3 IS POUT 

IW) 
AW 
ua 
M 
AND 
A m  
AN) 
AND 
AND 

TYLY 

l n s t r u c t m  of Q t a t m t - 2  rs '~nst r -3  
D b ~ u t - ~ Y P C  of (s ta tcnnt -3  i s  s t a tnen t  
source-twm of <statem:-3 IS user-spcc 
i n s t r u c t l a  of B t a t n c n t - 3  1s <>nstr-3 
D b m t - t y m  of <statement-4 I S  statenmt 
source-typa of Qtatcnnt -4  IS p r c t o t y p  
:p2z:;-:Rs::t%;-:-&;:t&::::t- 
successor of ~ a t a ~ n t - 4  IS ~ t a t c l m t - 2  . . .-, 

RM-INSTR ( cinstr-2 ! 
RM-DEST ( ginstr-1. outwt-=st. %on-1 ) 
RY-PATH ' lnstr-1 w t w t - * s t .  'mn-1 I 
RY-SRC 1 'tnstr-1: w t w t - s r c  <reg- I I INDEXI  I 
ADD-SRC ( <rnstr-!, w t w t - s r c :  <reg-1 ! 

1: : 10-TYPE of W r t - 3  ;s ~nput-output) THEN 
BEGIN 

ADD-COYPONENT ( TRl-STPTE-LATCH I 
AM-DEST 1 <tnstr-1. output-*st, 1WUT-OF ( TRI-STATE-LATCH 
ADD-DEST <inst?- I ,  wtput -aes i .  %art-3 ! 
Am-PATH ( <tnstr-1. output-src, INPUT OF 1 TRI-STITE-LATCH I 
ADD-PATH ( Clnstr-: .  wtvut -aest .  OUTPOT-OF ( TRI-STATE-LATP 
UID-CTRL-SRC ( < m t r - l .  output-oes:. 

GET-CTRL-INSTR (<?nStr-1 LOAD-ENABLE ) 
ADD-CTRL-DEST ( c l n s t ~ - I  outwt-dest. TR!-STATE-LATCH,) I 
ADD-CTRL-PATH ( Ctnstr-I ,  w13ut-dest FUNCTION-ENA8LE , 
~ - C T R L - I N S T R  (< lns t r - I .  FUNCTION-ENABLE. -s igna l -wt -1  i 

; ut 
ELHT 

BEGIN 
Am-DEST ( ~ ~ n s t r - 1 ,  outout-dest, W r t - 3  
~\DD-PATH ( <rnstr-1. output-src. w t w t - * s t  r 

VQ 



GLOSSARY 

Architectural A procedural representation of a circuit's architecture. The 
Properties List Architectural Properties List is a list of CONNECT, EXPAND. 

and PLACE statements which are used to produce the schematic 
for a circuit. The Architectural Properties List also serves as a 
program to the Instantiator which controls the design of a 
circuit 

ClockBegin 

Clock-End 

Clock-Step 

CONNECT 

Dependency 
Attribute 

Dependency 
Network 

Designer . 

Design Slot 

EXPAND 

Frame Body 

Statement type which is used to begin a behavioural specification. 

Statement type which is used to end a behavioural specification. 

Statement type which is used to specify clock periods in a 
behavioural specification. 

A layout statement which is used to create a conductive link 
between the terminals of two components. 

A count of the number of behavioural features in the frame 
header that depend on a specific architectural feature. 

A network of pointers which is used to show which architectural 
features of a circuit are required to implement its behavioural 
features. 

The rule based portion of the proposed design system which is 
used to compare circuit behaviour and modify circuit architecture. 

A slot in the prototype frame that is used to represent the 
behaviour of a component that is required to implement the 
circuit behaviour described by the frame header. 

A layout statement which is used to instruct the Instantiator to 
develop an architecture for a component that will implement the 
behaviour specified by its Design Slot 

The portion of a prototype fraine that describes the components 
required to implement the behaviour described by the frame 
header (the design slots) and how those components are to be 
interconnected ( the architectural properties list ). 

Frame Header The portion of a prototype frame that describes the behaviour of 
the circuit the frame rep, resents. 

Instantiator The stacked based portion of the proposed design system which 
controls the design process. The Instantiator follows the layout 
statements given in an Architectural Properties List 



Instruction 

Matching Rule 

Object 

Port 

Port Symbols 

Property 

Prototype 

Prototype Frame 

Prototype Manager 

Register 

Reg Symbols 

RT-TYPE 

Source Type 

Statement 

The basic unit of the augmented PASCAL language used to 
represent circuit behaviour. An instruction represents one primitive 
functional transform that the circuit can perform on a set of 
operands in one clock cycle. 

The set of rules which are used to find matches between the 
behavioural features of a prototype and user-spec. The matched 
features are bound by linking them in the symbol table. 

An entity which has properties that can be tested by the system 
rule base. An object can be an instruction, statement, port or 
register. 

The boundary through which a circuit can exchange information 
with the external world. A port has no storage associated with 
i t  

The list of declarations for the ports of a circuit within the 
program that describes the behavior of the circuit 

An attribute of an object The properties that can be possessed 
by an object depend on the type of the object 

Term used to designate the source type of the objects that were 
obtained from the prototype frame during the application of the 
matching and transformation rules. 

A structure used to represent how a circuit's behaviour is 
implemented by the circuit's architecture. 

The portion of the proposed circuit design system which manages 
the data base of prototype frames. 

A storage element within a circuit 

The list of declarations for the registers of a circuit within the 
program that describes the behaviour of the circuit 

Classifies the type of register transfer operations a circuit 
performs. 

Specifies whether an object is part of the user-spec or is part 
of the prototype frame. 

An aggregation of insmctions that can be executed concurrently. 



Statement Type A classification of statement by function. Statements whose 
instructions consist of predicate instructions are classified as 
DECISION statements. Statements whose instructions consist of I 0  
group or Functional group instructions are classified as ACTION 
statements. Statements used to specify timing intervals are 
classified as CLOCK-STEPS. 

Strong Match A strong match is declared when there is an exact match 
between the properties of a user-spec object and a prototype 
object 

Symbol Table A table in which all objects from the behavioural descriptions 
for the prototype - and user-spec are stored. Bindings established 
by the rules are recorded in the symbol table. 

Transformational A rule which can be used to transform the behaviour of the 
Rule prototype such that it can implement the user-spec behaviour. 

User Spec Term used to designate the source type of the objects that were 
obtained from the program that specifies the behaviour of a new 
circuit 

Weak Match A weak match is declared when the properties of a user-spec 
and prototype object satisfy a set of constraints defined in a 
matching rule. 
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