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ABSTRACT 

Estimates of wood volume in standing trees are commonly 

obtained by first constructing a taper equation that predicts 

the shape of the bole, and by integrating this equation to 

predict volume. In this study, a method for estimating wood 

volume based on a statistical model that directly relates volume 

to such quantities as diameter at breast height and total height 

is considered. This method does not require the use of taper 

curves. Both the total tree volume and volume to any 

merchantable standard of utilization expressed at top diameter 

limits are estimated using the model. Logarithmic transformation 

of the proposed volume equation leads to a linear regression 

model relating the logarithms of the variables. The proposed 

method is a feasible alternative to those based on estimating 

taper equations for situations in which the very large data sets 

required for estimating the equation cannot be collected. 
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CHAPTER I 

INTRODUCTION 

In forestry, considerable importance has been given to the 

development of estimation schemes to predict volume for each 

individual tree and for the whole stand. The main reason for 

this is economic. Forest industries and other organizations 

often need periodic inventories to determine the quantity of 

wood available for utilization. The traditional measure of such 

quantity is volume. 

It has been a practice for foresters to rely on prepared 

volume tables (~usch,et. al., 1972). These tables predict the 

volume of standing trees of given species, diameters and heights 

that would be obtained if trees where felled, bucked and scaled 

as logs. Aside from providing cubic volume for the entire main 

stem, the tables also sometimes give either the volume from 
b 

stump to a given merchantable diameter or the volume of cut 

lumber obtainable from a tree. 

There are difficulties that may arise when one depends upon 

using these prepared volume tables. Husch, - et - al. (1972) give 

the following summary of these problems: 1 )  Any individual tree 

may not have the same height, diameter, and form characteristics 

as those used in the construction of the volume table employed. 

2) Volume tables are constructed for specific units of 

measurement and utilization standards, and it is often 

impossible or unwieldy to try to change to these specifications. 



3) Any errors in the volume tables are incorporated into the 

estimate and in most cases no assessment of their magnitude is 

included. In addition to these difficulties, one must consider 

that the volume table is based on established estimation schemes 

which are in turn based on a specific model. Thus, the 

reliability of such tabulations depends upon the model selected 

as the basis for the construction. 

In modern practice, equations are generally used to predict 

tree volume rather than obtaining the values from tables (Avery 

and Burkhart, 1983). Numerous volume equations, varying in 

complexity have been proposed and used. Foresters are constantly 

searching for models that are accurate but quick and easy to 

use. These models must be simple and flexible enough to 

calculate all parameters based on only a few tree 

characteristics which are important and easy to measure such as 

diameter outside bark at breast height and . total height 

(Demaerschalk, 1972). 
b 

The traditional approach has been to make an educated guess 

of tree volume based on directly measurable characteristics such 

as total height, HT and diameter at breast height, DBH. (DBH is 

the diameter measurement at 1.3 meters from the ground). The 

educated guess is obtained by fitting a regression equation to 

sample observations relating volume to height and diameter at 

breast height. 



The more recent studies concentrate on equations that 

describe the shape of the tree or taper curve. A taper equation 

predicts the diameter at any point along the stem as a function 

of height at that point, total height and diameter at breast 

height, An estimate of total volume of wood in the merchantable 

portion of the bole can then be extracted by integrating the 

taper equation. The main reasoning behind the use of taper 

curves is that if tree profile can be accurately described, the 

volume for any merchantability limit or segment can be computed 

by integration. The use of taper curves also allows the 

determination of the height of a given diameter, the diameter at 

a given height, and the volume between two diameter limits or 

two heights. 

There are disadvantages in using taper curves. One is that 

tree profiles are highly irregular; hence taper curves are 

modelled by complex functions containing several. undetermined 

parameters. The model given by Demaerschalk and Kozak ( 1 9 7 7 )  

currently used by the British Columbia Ministry of Forests 

contains eight parameters some of which are very complicated to 

estimate. If the parameters are not estimated accurately, then 

neither is volume. Also, when a complex model is used, it 

becomes more difficult to solve the associated equation for 

height and volume for a given merchantable diameter. Another 

disadvantage of using taper curves is that whenever a taper 

curve is estimated, the parameters define an 'average' tree 

profile for the data. Trees coming from different species or 



from single species in a single stand may have different forms. 

Also in a stand of trees, dominant trees tend to be taller and 

larger in diameter and take a more conical form than the 

suppressed trees which tend to be more paraboloidal ( ~ e e d  and 

Byrne, 1985 ) .  This introduces bias for all trees having a form 

different from the average form. Several attempts have been made 

to eliminate bias. Different equations have been proposed to 

model different parts of the tree rather than using one equation 

for the whole tree bole. The dual - equation model proposed by 

Demaerschalk ad Kozak ( 1 9 7 7 )  has minimized bias but has not 

completely eliminated it. 

Foresters have argued that the simpler regression method in 

the past is flawed. Max and Burkhart ( 1 9 7 6 )  suggested that a 

more complex model is needed to adequately describe the tree 

bole. Bruce, Curtis and ~ancouvering ( 1 9 6 8 )  state, "in the past, 

the principal difficulty in developing complex taper curves was 

the computational labor involved. This handicap has been largely ' 

overcome by the electronic computer." However, a recent study by 

Martin ( 1984 )  has shown that the simple formulas based on 

regular geometric solids usually outperform formulas based on 

more complex taper curves in predicting total and merchantable 

volumes. 

The objective of this project is to look at quick and 

reliable methods for estimating tree volumes that do not use 

taper curves. Geometric considerations will motivate the 

construction of the prediction equations for: 1 )  total tree 



volume, and 2) merchantable volume for a given upper diameter 

limit. 

Total volume is defined as the volume inside bark from the 

stump to the tree top (British Columbia Forestry Handbook, 

1983). This quantity is used in determining the total stumpage 

fee that an individual or company has to pay the government when 

logging public forests (~ritish Columbia Forestry Handbook, 

1983). In British Columbia, a forest license grants the licensee 

the right to harvest a specific volume each year. As of 1983, 

the provincial government charged the licensee an annual rental 

of $0.25 per cubic meter of allowable cut of timber (British 

Columbia Forestry Handbook, 1983). 

Merchantable volume is the amount of wood between ground 

level and the terminal position of the last usable portion of 

the tree. Buyers are usually interested in the merchantable 

volume and the amount of cut lumber that can be extracted from 
b 

standing trees. 

In th-is study, the volume equation model is formulated by 

considering the geometric nature of the tree. By taking 

logarithms, the volume equation results in a linear regression 

model of the variables (throughout the project, logarithms mean 

the natural logarithm, i.e. the base used is e . This 

regression model is fitted to the data. Back transformation of 

this fitted model then gives the estimated volume equation 

formula. 



Survey - of Literature 

Tree volume equations have been in the literature for many 

years. Only a survey of popular estimation equations will be 

included. 

The following symbols will be used throughout the discussion 

of volume equations. 

V = total volume 

DBH = diameter at breast height 

HT = total tree height. 

Schumacher and Hall (1933) proposed the logarithmic volume 

equation 

log V = bo + ~ , ~ O ~ ( D B H )  + b210g(HT). 

This equation is appropriate for predicting total volume. To 

predict merchantable volume , the equation is conditioned to 

pass through an appropriate point by translating the axes. In 

1976, the British Columbia Ministry of Forest constructed volume 

tables for all commercial species in the province based on this 

equation (British Columbia Handbook of Forestry, 1983). 

Cunia (1964) and Moser and Beers (1969) advocated the use of 

weighted least squares to solve the volume equation 

v = XDBH~HT~ 

where r r a r O  are the unknown parameters. They each used a 

different weighting scheme to stabilize the variance. 



Honer (1965) proposed the transformed variable function 

DBH v =---------- 

(a + ~/HT) 

to express the volume, diameter and height relationship. A 

linear relationship between DBH'/V and I/HT was observed, 

permitting an ordinary least square solution to the equation 

DBH,/V = a +~/HT. 

Newnham (1967) tested what he referred to as a modified 

combined-variable formula for calculating the total volume of 

trees on data of 1 1  species. This formula is, 

V = a, + ~,DBH"HT~ 

where the a, and a, are regression coefficients and parameters a 

and 0 are obtained by another regression using Schumacher's and 

Hall's formula: 

LO~(V) = -y + aLoq(DBH) + PLO~(HT). 

He compared the results with that from the combined formula V =.  

a, + ~,DBH,HT proposed by Spurr (1952). The modified formula 

gave a small improvement in accuracy. This may be attributed to 

the fact that there is more freedom in the use of the two extra 

parameters a and 0. 

The search for accurate taper models began late in the 19th 

century and since then many models have been developed. (James 

and Kozak, 1984). 

Bruce, Curtis and Vancouvering (1968) used a polynomial 
. . 

regression equation for red alder, expressing the ratio of 



squared upper stem diameter inside bark(DIB) to squared diameter 

outside bark as a function of DBH, HT, and the 3/2, 3rd, 32nd, 

and 40th power of relative height. -The equation can be 

integrated to find appropriate volumes. 

Kozak, Munro and Smith (1969) proposed the parabolic 

equation for upper stem diameter d, at height h,as 

(~/DBH)~ = bo + blh/HT + b2(h/H~l2, 

The least square solution was derived by imposing the condition 

that the sum of the coefficients bo, b l I  and b, be zero. This 

was needed to ensure that when h equals HT, the estimated 

diameter is equal to zero (since bo = -b, -b,). They concluded 

that no practical improvement can be gained in volume estimation 

for any measurement of form in addition to DBH and HT 

measurements. 

Ormerod (1971) estimated the upper bole diameters of tree 

species that have a prolonged, undivided stem (i.e., that have 

an excurrent form), by the equation 

d = DBH(HT - ~/HT - k)P , p >O. 

where d is the estimated diameter, h is the height of 

estimation, and p is the unknown parameter. Due to the changes 

in form along the length, the equation may not provide an 

adequate description of the bole. The equation was modified by 

Ormerod (1973) as to be what he called a step function, 

di = (Di - Ci)(~i - h / ~ ~  - k) Pi + ci I Pi > 0 

where: Hi is the height to top of section i, Ci is the section 



diameter intercept, Di is the section measured diameter at 

height ki , and pi is the fitted exponent on the closed interval 

[h=Hi-, , h = ~ ~ ] .  The "step" function resulted in a better 

description of the bole. 

Max and Burkhart (1976) tested the use of segmented 

polynomial regression and found three submodels to be best. One 

submodel was used for the upper bole portion which was assumed 

to be a cone, another for the the middle part assumed to be 

paraboloid a and a third for the lower portion assumed to be a 

neiloid frustum (a solid more concave than the cone frustum). 

The submodels were restricted so as to produce identical 

diameters at join points and diameters that decreased 

monotonically from the base of the stem to the tip. The 

first-order derivatives were constrained to match at the join 

points. 

Demaerschalk and Kozak (1977) developed taper equations . 
consisting of two mathematical functions, one describing the 

upper bole and another, the lower bole. The two functions were 

joined at an inflection point and were continuous at that point. 

The whole system was based on height and breast-height diameter 

measurements. Bias was observed at heights near the ground 

level. 

Demaerschalk and Kozak's model was developed from a set of 

inside bark measurements. To obtain such data, trees must be 

felled, bucked, and measured - a costly undertaking. James and 



Kozak (1984) developed a system to estimate volumes from 

standing trees following Demaerschalk and Kozak's taper system. 

Aside from diameter inside bark at breast height and height 

measurements, their scheme requires only the outside bark 

diameters. The relationship of bark thickness to diameter at 

various points on the stem can be predicted from a reference 

bark thickness at breast height. All the outside bark diameters 

in the data set were then reduced by double bark thickness at 

breast height expressed as a percentage of DBH to obtain the 

corresponding inside bark diameters at other parts of the tree. 

Using Demaerschalk and Kozak's equation, volumes were then 

estimated. 

Reed and Byrne (1985) developed a volume estimation system, 

giving total as well as merchantable volume to a height or 

diameter limit. The scheme was based on Ormerod's model. The 

parameter p  however, was made to vary depending.on the tree's 
b 

total height and diameter at breast height. With low HT and DBH 

ratio (about 30:1, when expressed in common units), the tree 

form was considered to be a cone and p = 1 .  A tree with HT and DBH 

ratio about 90:1 was considered a parabola with p= 1 / 2 .  Most of 

the trees however, fell in between these two extremes. For these 

cases, p was calculated using the formula 

where HT and DBH were expressed in common units. The 

merchantable volume was estimated from the product of the total 



volume and a ratio R determined from the equation 

R = 1 - ( 1  - ~ / H T ) ~ ~ + '  
or 

R = 1 - ( 1  - 1 .~/HT) 'P+ ' (~/DBH) 2p+ 'Ip 
where h and d are the merchantable height and diameter 

respectively. The overall performance of the volume estimation 

system presented to evaluate the prediction ability varied by 

species. 

Therein and Camire (1986) proposed a model based on the 

algebraic equation 

Y = bo + blX + bzx2 + bsX3 + b4X4 + b5XS + b6x6. 

where 

Y= ~/DR Dr= reference diameter 

d=diameter to evaluate 

X= h/Hr Hr= reference height 

h = length from d to top 
b 

bi i =0,1, ..., 6 parameters to evaluate. 
Six measured diameters and corresponding heights were needed to 

obtain six equations to solve six unknown parameters for each 

tree. After the parameters were calculated, the volume was then 

obtained by integration. Since seperate equations had to be 

fitted for different trees , an increase in precision to the 

estimate was noted. 

Martin (19841, compared true log volume to the estimates 

derived using taper equations and several other volume 

equations. His purpose was to see how closely these predicted 



volumes estimate the true volume. He used the water displacement 

technique in determining true volumes of logs. Each log was 

immersed in a specially built xylometer filled with water. The 

log volume is equal to that of displaced water. The results were 

compared in precision and accuracy with the estimated volume 

using fourteen different equations. When estimates were based on 

actual measurements (heights, lengths, and diameters) Huber, and 

Newton's followed by Smalian's formula did the best jobs in 

predicting volumes; these are all based on simple geometric 

models, the volume formulas of which are given on Table 11.1 of 

the next chapter. Ormerod's taper based volume function ranked 

next in ability to predict volume accurately. Some of the 

equations showed widely different levels of performance. The 

results indicated that volume equations not based on taper 

curves gave the best overall performance in predicting total and 

merchantable volumes. 



CHAPTER I I 

DATA 

The data for this project were made available by the British 

Columbia Ministry of Forests ' (BCMF). Coastal and Interior 

Douglas Fir ( P s e u d o t  s u g a  M e n z i  e s i  i  , [Mirb] ~ranco) and White 

Spruce ( P i c e a  g l a u c a ,  [~oench] Voss) are the tree species being 

analyzed. 

The data were gathered at various locations in the province 

and from a variety of ages and sites (good, medium, and poor). 

Measurements on individual trees included among others, total 

height (HT), diameter at breast height (DBH) and bark thickness. 

Depending upon its overall height, each tree was divided into 

eight to twelve sections. For each section, measurements were 

taken for lengths, upper and lower inside bark diameters and 

bark thickness. All measurements were in meters. . 

b 

Diameter at breast height (DBH) is the diameter measurement 

outside bark at 1.3 meters above the point of germination, which 

is usually on the ground level. In the BCMF data set, DBH was 

measured using a diameter tape which was graduated to read the 

diameter of the trees to the nearest 0.1 cm when the tape was 

wrapped around the trunk. For trees of abnormal swell at the 1.3 

meter mark, an average diameter above and below the swelling was 

used. 



Total tree height HT is the vertical distance from the point 

of germination to the tree tip. Smaller trees were measured 

directly using a rod or a pole. For taller trees, a hypsometer 

was used. There are several forms and variations of this 

instrument, but the construction is based on the geometric 

principle of similar triangles. 

Two measurements of bark thickness were made at breast 

height diametrically opposite each other. These were then 

averaged. Bark thickness was determined using a gauge that was 

pushed through the bark. Diameter inside bark (DIB) was obtained 

by subtracting two times the bark thickness from DBH. 

In the calculation of volume, mensurationists often consider 

the whole bole as a composite of geometric solids. A typical 

example is shown on the Figure 11.1. 

The shape of the tip approximates a cone or a paraboloid, 
b 

the central sections resemble frusta of paraboloids, and in some 

cases frusta of cones, and the butt resembles a frustum of a 

neiloid. The stump from the ground level to .3 m in height is 

considered to be a cylinder in the calculation of volume 

(~ritish Columbia Forestry Handbook, 1983). Formulas that are 

often useful in calculating the volume of these solids are given 

in Table I I. 1 . 



Figure 11.1: 

Geometric Forms Assumed by Portions of Tree Stem 

(S~urce: Forest ~ensurations, Husch et.al., 1972) 

Tip 

logs 

- 
Stump 



Table I I. 1 

Equations to Compute Cubic Volume of Important Solids 

Geometrical 
Solid Equation for Volume, V, in Cubic Units 

Cylinder V = Abh 

Paraboloid 

Cone 

Paracone V = c ( ~ ~ h )  
5 

Neiloid 1 V = a(~bh) 

Paraboloid 
Frustum 

Cone 
Frustum 

h V = -(Ab+ A,) (Smalian's Formula) 2 
V = h(Am) (Huber's Formula) 

Neiloid, Cone or V = ~(A~+~A,+A,) f~ewton' s Formula) b 

Paraboloid Frustum 6 
............................................................... 
h = height 

Ab = cross-sectional area at base 
Am = cross-sectional area of middle 
A, = cross-sectional area of top 

(Source: Husch, et.al, 1972) 

In the calculation of volume, BCMF assumed the topmost 

section to be a paracone (a solid that is between a cone and a 

parabola) in the calculation of volume. The volume of the 

lowermost section was calculated assuming a cylinder from the 

ground to the lowest height observation. The sections in between 



were assumed to be frusta of paraboloids and were computed using 

Smalian's formula. Section volumes were automatically summed up 

to give the observed total cubic volume inside bark. Table 11.2 

on page 19, gives a summary of the dimensions and volumes of 

trees used in the analysis. 

The trees used in the analysis are very common species in 

British Columbia. Coastal Douglas Fir trees grow along the 

southern and eastern side of Vancouver Island, on the Gulf 

Islands and on the adjacent coastal mainland occupying about 

8,500 square km of forest land. The interior type, occupying 

about 48,000 square km is found in the south central third of 

British Columbia (~ritish Columbia Forestry Handbook, 1983). The 

interior tree is characterized by a cylindrical, long and 

branch-free trunk with a short, flat crown. By contrast, the 

coastal form has a short-tapering trunk and a long, limby crown 

which can grow as high as 45 to 92 meters while .the interior 

form is much stockier and seldom exceeds 43 meters (Hosie,' 

1979). 

White Spruce can be found almost everywhere in Canada and 

can grow in a variety of soils and climates. The tree has a 

pronounced, uniform, conical crown with branches that spread or 

droop slightly covering the trunk. In dense stands, where there 

is little light, it gradually sheds its lower branches. 

Douglas Fir is the one of the best known timber producing 

trees in the world market. It is used for a variety of purposes 



- for lumber, veneer, poles, pulp-and many other uses. White 

Spruce is one of the most important sources of pulpwood and 

lumber in Canada. 

Although botanists refer to both Interior and Coastal 

Douglas Fir as the same species, throughout this project, for 

convenience, we refer to them as different tree species. 

BCMF designated two age groupings, immature and mature for 

all trees in the province (British Columbia Forestry Handbook, 

1983). The immature are up to age 135, while the mature types 

are over 135. The data in this project are a collection of both 

mature and immature type trees. 





CHAPTER I 1 1  

THE MODEL 

As discussed in Chapter 1 ,  Martin's study showed a simpler 

estimation scheme giving a better result than the more complex 

taper-based equations. This was the motivation for developing a 

simple model that relates volume to field measurements of height 

and diameter. 

The model is an application of the multiple regression 

technique that predicts a function of the volume V in terms of 

functions of diameter at breast height (DBH) and height (HT) 

measurements. The development of the model is guided by 

considering the geometric nature of tree boles. A thorough 

discussion of this aspect will be given in the latter part of 

the chapter. 

First, we show an example that illustrates a problem that 

arises when multiple regression is applied without considering 

the geometry of the problem. 

In the handbook for the general statistical package MINITAB 

(Ryan, - et I a1 1976)~ a modelling procedure for tree volume is 

presented. The suggested approach is to try predicting V by 

using expressions that are increasingly complicated polynomials 

in DBH and HT until the prediction errors look like independent 

draws from a normal population with mean zero and a constant 

standard deviation. For their data set on 31 black cherry-trees 



( P r u n u s  s e r o t i n a ,  Ehrh. ) ,  the procedure yields the prediction 

equation: 

vi = a + b DBH'~ + c HTi + ei , 

where a,b,c are the estimated regression coefficients and the 

ei- terms are the prediction errors. To assess the validity of 

the regression model, the prediction errors are plotted against 

the predicted values in Figure 111.1. The plot shows error terms 

apparently satisfying the usual assumption of the regression 

mode 1. 

Figure 111.1: Residual Plot for Cherry Trees 

(Predicted Volume in Cubic ~ e e t )  



When the same model is applied to another species of trees, 

a different plot is evident. Fitting the same model to 25 black 

spruce trees ( P i  c e a  m a r i  a n a ,  [ M i  1 1  1 B .  S .  P . )  resulted in a bowl 

shaped trend with increasing variance as shown in Figure 111.2. 

Figure 111.2 :  Residual Plot for Black Spruce Trees 

Res - 
3 . 2 +  - 

(Predicted Volume in Cubic Feet) 

The two residual plots clearly indicate the flaw of the 

modelling scheme. One regression model may work well for one 

species of trees but not for another. 



111.1 Predicting Total Volume 

Considering the geometric nature of the volume prediction 

problem will help overcome the difficulties presented 

previously. Foresters have long recognized that if all trees 

were to have the same shape then the volume would be related to 

DBH and HT through the equation, (~chumacher and   all, 1933) 

where Vtot is the total tree volume, and the constant of 

proportionality, f, is called a form factor. Husch, -- et al. 

(1972) defined the form factor as the ratio of tree volume to 

the volume of some geometrical solid such as a cylinder, a cone, 

or a cone frustum, that has the same diameter and height as the 

tree. The form factor is used as a multiplier of the volume of a 

standard geometric solid to obtain the tree volume. If the 

geometric solid is chosen to be a square prism, then b 

If the correlation between the form factor with height and 

diameter is zero , then the volume increases directly as height 

and the square of DBH. But this does not seem to be the case as 

the form factor depends weakly on DBH and HT. Figures 111.3 and 

111.4 show the plot of the form factor V t o t / ( ~ ~ ~ 2 ~ ~ )  vs. HT and 

DBH respectively for the Coastal Douglas Fir, while Figures 

111.5 and 111.6 are the correponding plots in logarithmic scale. 



FIGURE 111.3 

Plot of Form Factor vs. DBH 

DBH in meters 



Plot of Form Factor vs. HEIGHT 

HEIGHT in meters 



Figure 111.5 
Plot of ~ o g ( ~ o r m  factor) vs. LO~(DBH) 



Fiqure 111.6 
Plot L O ~ ( F O ~ &  factor) VS. 



We shall use equation (3.1) as the basis for the proposed 

model but shall permit the form factor to be a function of DBH 

and HT. At this point, it is difficult to know the exact 

functional dependence of f on D B H .  and HT. We could however, 

start with the observation that the form factor is influenced by 

the overall size of the tree. Large trees are shaped more like a 

cone while small trees are shaped more like a paraboloid. This 

was indicated by Reed and Byrne (1985) when they noted that 

trees having HT and DBH ratio of 30:1 are formed like a cone 

while those having a higher ratio of 90:1 are formed like a 

paraboloid. The dependence of the form factor to tree size as 

characterized by HT and DBH is also evident in Figures 111.1 and 

111.2. It is then reasonable to assume that the functional form 

of f be given by 

b 

Substituting equation 3.2 to equation 3.1 gives the following, 

or, 

where 



Methods to fit equation 3.3 to data include non-linear 

regression on the raw results or linear regression on the 

logarithmically transf0rme.d data. The main drawback in the use 

of the least-squares method in solving the non-linear equation 

(3.3) is the non-homogeneity of variance. Cunia (1964) had shown 

that the variance is usually a function of the quantity DBH2xHT 

(see Figure 111.2). Thus, the deviation from the true regression 

function of the volume of large trees has a disproportionate 

effect on the estimation of the parameters by the method of 

least squares. Cunia suggested that the best set of weights for 

equation (3.3) is l/z, where z = CDBH~HT) in keeping with the 

Gauss-Markov theorem and the dependence of the variance on 

DBH2~T. Furthermore, the least-squares regression coefficient of 

variable Vtot/z is equivalent to the weighted least squares 

regression coefficient of Vtot. 
b 

The logarithmic transformation stabilizes such a variance 

(Draper and Smith, 1981). However, fitting a logarithmic form 

introduces bias in the predicted volume (Husch,et - 21 a1 1972). 

Bias or systematic error results from the fact that the 

transformed regression equation passes through the arithmetic 

mean of the independent and dependent variables which are the 

geometric means of the original variables (Avery and Burkhart, 

1983). The prediction bias is introduced since the arithmetic 

means are always greater than the geometric means. 



On the other hand, the simplicity of linear regression on 

transformed data makes it a more appealing method than the 

weighted least squares method. The logarithmic transformation 

simultaneously linearizes the model and stabilizes the variance. 

Despite the bias induced by the logarithmic transformation, the 

resulting prediction errors have been found to be smaller than 

the errors which resulted in using taper-based volume equations. 

This was shown by Parresol, et. al. (1985) in comparison of 

several volume equations most of them taper-based, for 

predicting total volume of Bald Cypress trees ( T a x o d i u m  

di  s t  i  c h u m  (L.) Rich.). 

Taking the logarithmic form of equation (3.3) gives 

where 7, = log(Xl). Equation 3.4 is the model used for fitting 

the data. The coefficients y,, a,, and /3, are estimated by the ' 

method of least squares. Total volume is then estimated by 

The logarithmic form of the volume equation is the same as 

the one proposed by Schumacher and Hall (1933) as discussed in 

Chapter I. However, in the estimation of merchantable volume, 

there is a difference between the prediction scheme proposed in 

this project and that proposed by Schumacher and Hall (1933). 
- 



111 .2 .  Predictinq ~erchantable Volume 

Fitting a separate regression model directly to predict 

merchantable as opposed to total volume in terms of HT and DBH 

would produce inconsistent estimates for some trees. (The 

inconsistency arises when the predicted merchantable volume is 

larger than the predicted total volume). Foresters often insist 

on obtaining consistent estimates for merchantable volume. Also 

in this approach, we need to fit new regressions every time the 

merchantability standard changes. 

To estimate the volume of the merchantable portion, we only 

need to estimate the volume of the unusable portion near the top 

of the bole. This is a relatively small volume compared to the 

total tree volume. An illustration in Figure 111.7 shows the 

plot of the percentage of the volume above the given diameter d 

to the total volume for each of the 581 Coastal Douglas Fir 

trees. If the merchantable diameter limit is set at 2 0  cm, it 

can be inferred from the same plot that the maximum top volume 

is about 10% of the total volume. Thus an error of of about 20% 

in the estimate of the top volume would induce a maximum error 

of 2% in the estimate of the total merchantable volume. 

What is needed then is a rough estimate of the shape of the 

top part of the tree. This could be approximated by a simple 

geometric solid such as a cone, parabola, or a paracone. If Dm 

is the specified merchantable diameter limit, Hm is the length 

from the top of the tree to the diameter limit, then the general 



form of the top volume Vtop of the solids is 

In the equation for top volume, the independent variable is Hm 

since Dm is set at a fixed value. Furthermore, Hm depends on HT 

and DBH. Figures 111.8 and 111.9 show the plot of Hm vs. HT and 

DBH respectively, while Figures 111.10 and 111.11 are the 

corresponding plots in logarithmic scale. If the functional 

dependence of Hm is assumed to be 

where c is the constant of proportionality, then we can then 

model Vtop as 

where A, = k x c. Transforming equation 3.6 to its logarithmic. 

form , we obtain 

where y2 = log(X2). 

The parameters of the regression equation 3.7 are also obtained 

by the method of least squares. 

The merchantable volume Vm is estimated by taking the 

difference between the predicted total and the unusable top 

volumes. 



Fiaure 111.7 
Percentage of Top-Volume To Total Volume 

Above ~iameter for Coastal Douglas Fir Given 

d.000.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 
DIAMETER ! i'n m e t ; r j )  



Figure 111.8 
Plot of hm i s .  DBH 

1.5 

DBH 



Fiaure 111.9 
Plot of hm vs. HT 



Fiaure 111.10 
Plot of ~o~chrn)  vs. Log(DBH) 



Plot VS. 



CHAPTER IV 

FITTING THE MODEL EQUATIONS 

As discussed in the previous chapter, the total tree volume 

is estimated using 

where the parameters are derived by fitting the regression model 

Similarly, the parameters for the unusable top volume equation 

are derived by fitting the regression model, 

The parameters in the regression model are estimated by the 

method of least squares. This method chooses the best fitting 

plane to be that plane which minimizes the sum of the squares of- 

the distances between the observed and those predicted by the 

fitted model (Kleinbaum,et. -- al., 1 9 7 8 ) .  

Appropriate checks are to be made to assess the adequacy of 

the regression model. To do this, we shall construct residual 

plots and consider the following measures: 

i ) Coefficient of multiple determination R 2  defined by 



and 

i i  ) Root mean square error d i@Z defined by the equation 

where 

R2 indicates the proportionate reduction of the variance in 

log(vtOt) due to using l o g ( ~ B ~ )  and log(HT) to predict 

log(Vtot). When the assumptions of the regression model are met, 

the model gives a good fit to the data if R~ is close to 1 and a 

poor fit when R2 is close to 0. When R2 is 1, all the data 

points lie on the fitted plane. In the absence of any linear 

component to the relationship between log(vtot) .with l o g ( D ~ ~ )  

and log(HT), R2 is 0. 
L 

The standardized residuals will be plotted against the 

predicted values. The standardized ith residual is ei/s where ei 

represents the difference between the actual and the predicted 

value and s is the square root of the mean square error. When 

the assumptions of the regression model hold, the plot of the 

standardized residuals is like one that is based on a random 

sample from a ~ ( 0 , l )  distribution. 



Although using studentized residual plot is better in 

analysing residual plots when the variance of each residual is 

not constant, this method was not used in this project. In this 

method, the ith residual is scaled by its standard deviation, 

where rii is the ith diagonal of the matrix R = E(1 - rii)S ) 

x(x'x)-Ix', and the X matrix contains the columns of 1 's, 

~O~(DBH) and  log(^^). In a large majority of data set however, 

the ei plot and the ei/s plot tend to reflect the same general 

features that are found in the more correct studentized residual 

plots (Draper and Smith, 1981). 

- 
Root mean square error ~ M S E  measures the accuracy of the 

estimates. I f  the is 0, the model fits the data perfectly 

and every observed point lies on the response plane. 

Since our purpose is to predict both the total and 

merchantable volumes, trees having breast height diameter 

smaller than the specified diameter limit were excluded from the. 

data set. The log volume estimates derived from the remaining 

data will not apply to trees with DBH similar to those rejected. 

Although we were truncating our data for predicting total 

volume, in a way we were simulating an actual forest setting of 

a more or less homogeneous stand of mature trees, in which the 

trees are usually of similar sizes and have large DBH. 

After the total and top volume were estimated, the 

merchantable volume was obtained by taking the difference of 

these two quantities. 



Samples of 60 trees were selected randomly from each of the 

three data sets and the logarithmic volume equation was fitted 

to these smaller samples. The sampling that was performed was 

like a double sample since the data sets were samples from a 

much larger population of trees. This was done to simulate the 

real situation where a volume formula (or table) is constructed 

using a possibly small sample from the stand in question or a 

related one. The DBH and HT are measured for a usually large 

sample of the stand whose volume is to be estimated. 

When the volume equations were constructed using the smaller 

samples, the transformed equations, 

and 

were used to estimate the total volume and top volume for each 

tree in the data set for each species. The predicted total andb 

merchantable volumes of all trees belonging to the same species 

were summed up. The deviations of these sums from the observed 

totals were calculated. 

An assumption was made that the sample trees from a 

particular species belong to the same stand of trees. In this 

project, the total stand volume V is referred to as the sum of 

total volumes of all trees in the stand, while the merchantable 

stand volume Vm is the sum of all merchantable volumes. 



The process of sample selection, constructing volume 

equations based on the sample and estimating total stand volume 

as well as merchantable stand volume was simulated 1000 times. 

The congruential uniform random number generator GGUBS in the 

IMSLS package was used in selecting the samples. 

Bias, which is the mean of the deviations of the predicted 

from the observed was computed. The root mean square error 4 s  

and the standard deviation S.D. of the deviations were also 

calculated. The formulas for these statistics are given by the 

following: 

n 
Bias = ( . C  di)/n 

1 = 1  

where 
,. 

di = V - Vi 
- 
D = bias 

v = observed stand volume 
.. 
Vi = estimated stand volume 

n = 1000 (number of simulations) 

When dealing with the deviations from the predicted 

merchantable stand volumes, Vm is substituted for V in the 

formulas for Bias, , and S.D. 



The 1000 simulations were repeated when the volume equations 

were constructed based on a larger sample of 100 trees. The 

purpose for this was to determine whether an increase in sample 

size would have a considerable decrease in the amount of bias, 

and S.D. 



CHAPTER V 

RESULTS 

The merchantable diameter limit was specified at 20 cm. 

Preliminary screening of the data sets indicated that a 

substantial number of trees had DBH smaller than 20 cm. Table 

V.l gives a summary of the original number of trees in the data 

available and the number remaining after discarding trees with 

small DBH. 

Table V.l: Summary of the Number of Trees with 

DBH Greater than 20 cm 

Number of trees Number of trees 

Tree Species in the data set with DBH > 20 cm 

------------------------------------------------------ 

Coastal D.F. 58 1 463 

Interior D.F. 1504 1000 

White Spruce 4789 3120 

...................................................... 

- 
The parameter estimates and the values of ~ M S E  and R~ that 

resulted after fitting the log-total volume equation to trees 

with DBH greater than 20 cm in each species are in Table V.3. 

The corresponding standardized residual plot for the Coastal 

Douglas Fir is in Figure V.l, for the Interior Douglas Fir in 



Figure V.2 and White Spruce in Figure V.3. As shown in Table 

V.3, the R='S are close to 100% and root mean square errors 

close to 0 for the three species. The standardized residual 

plots do not indicate any systematic trends. This means that the 

regression model for log-total volume is appropriate to the 

logarithmically transformed data. Table V.4 gives the standard 

deviations of the parameter estimates. 

The parameter estimates and the fit statistics for the 

log-top volume regression model are in Table V.5, while the 

standard deviation of the estimates are in Table V.6. The 

regression model does not seem to give as good a fit; R~ ranges 

from 72.9% to 81.0% for the three species. The residual plots in 

Figures V.4 to V.6 reveal some mild heteroscedasticity. The 

residuals corresponding to small predicted log volumes are more 

widely spread. 

Back transformation of the fitted model, i.e. taking, 

exponentials on both sides of the fitted equations, gives the 

estimated volume equations. These were then employed to estimate 

the total and merchantable volumes for each tree. The stand 

volumes were obtained by adding the estimated tree volumes. The 

observed and estimated total and merchantable stand volumes are 

summarized in Table V.2. 

The fitted equations underestimated both the total and 

merchantable stand volumes. The presence of the bias can be 

attributed to using linear regression on the transformed data 



since transformation introduces bias in the predicted volumes 

(~usch, et &, 1972). In our problem, the value of DBH and HT 

are to be measured for many trees, the volume of each is to be 

estimated, and these estimates are to be summed. Hence, a 

systematic error present in the estimate for each tree will be 

present in every single term in the total. However, despite the 

presence of the systematic errors, the overall bias for the 

predicted stand volumes are relatively small compared to the 

actual stand volume. Following the results on Table V.2, the 

bias for total stand volume was 2.0% of the observed stand 

volume for Coastal Douglas Fir, .94% for Interior Douglas Fir 

and .19% for White Spruce. The biases for the merchantable stand 

volumes were 2.09% for Coastal Douglas Fir, .91% for Interior 

Douglas Fir and .14% for White Spruce. 

The previous results were obtained by constructing the 

volume equations based on all the sample trees on.each species. 

A smaller sample of 60 trees were selected randomly to construci 

the volume equations and were applied to estimate total and 

merchantable volumes for the whole stand. This was done 1000 

times. Each time, the deviations of the estimated total and 

merchantable stand volumes were computed. The histograms of the 

deviations of the estimated total stand and merchantable volumes 

for Coastal Douglas Fir trees are given in Figure V.7, for 

Interior Douglas Fir trees in Figure V.9, and for White Spruce 
- 

in Figure V.l 1. Bias, root mean square error ( ~ M S E  1, and 

standard deviation (SD) of all the deviations are in Table V.7 



for the stand volume estimates of the three species. The overall 

bias, i.e. the mean of all the stand deviations that resulted 

after the 1000 simulations was negative. This result again 

demonstrated the presence of the systematic error and that the 

volume equations underestimated the stand volume. 

The simulations were repeated with the sample size used to 

fit the regression model increased from 60 to 100. The histogram 

of the deviations for the total and merchantable stand volume 

are in Figure V.8 for Coastal Douglas Fir, Figure V.10 for 

Interior Douglas Fir and Figure V.12 for White Spruce. The 
- 

corresponding bias, JMSE and SD are in Table V.8. An increase in 

sample size did not give any significant reduction in the amount 

of bias. However, there was a significant reduction in the 
- 

chance error as given by a smaller dMSE . 

Figures V.7 to V.12 indicate that the distribution of the 

deviations of the estimated total and merchantable stand volumes6 

are approximately symmetric. The mean or the overall bias and SD 

of each distribution are in Tables V.7 and V.8. A normal 

probability plot of the 1000 deviations was also done and 

revealed a linear pattern. The deviations approximately follow a 

normal distribution and the results indicated different means 

and variance for each species. The deviations of the 

merchantable volume estimates are more or less of the same 

magnitude and followed the same symmetric patterns as the total 

stand volume. Although there was concern about the presence of a 

mild heteroscedasticity after fitting the log-top volume in 



Figures V.4 to V.6, the overall bias in the estimate of the 

merchantable stand volume was smaller than the bias of the total 

stand volume (see Tables V.7 to V.10). This result is to be 

expected since the only difference between the top and the 

merchantable volumes is the unusable top volume. This is a small 

proportion of the overall volume. 

Table V.2: Summary of Observed and Predicted Total and 

Merchantable Stand Volumes (in cubic meters) 

Coastal Interior White 
Douglas Douglas Spruce 

Fir Fir 

Total Stand Volume 3144.8 1592 ..9 5163.5 

Predicted Stand.Volume 3081.9 1577.9 5153.6 

% Error 2.0% 0.94% 0.19% 

Merchantable Stand Volume 3101.6 1485.5 4735.7 

Predicted Merchantable Volume 3036.8 1471.9 4728.8 

% Error 2.1% 0.91% 0.15% 



- 
Table V.3: Regression Coefficients, R Z  and ~ M S E  of Logarithmic 

 quat ti on for Total Volume: 

Tree Type 

Coastal D. F .  -2.3903 1.6853 1 .2254 99.2% 0.1079 

Interior D . F .  -1.9529 1.  7880 1 .I334 98.4% 0.11 25 

White Spruce -1.81 47 1.7642 1.1269 99.0% 0.0837 

Table V.4: Standard Deviation of Estimates 

Coastal D . F .  

Interior D . F .  

White Spruce 



- 
Table V.5: Regression Coefficients, R' and ~ M S E  of Logarithmic 

Equation for Top Volume 

Tree Type 

Coastal D. F .  -6.4909 -1.1768 0.9719 72.9% 0.2161 

Interior D.F. -5.8701 -1.1267 0.8183 78.8% 0.1517 

White Spruce -5.6285 -1.0802 0.7524 81.0% 0.1145 

Table V.6: Standard Deviation of Parameter Estimates 

Coastal D.F. 

Interior D.F. 

White Spruce 



Table V.7: Fit Statistics for Total Stand Volume Estimates Based 

on Equations Constructed from 60 Sample Trees Based on 1000 

Simulations (expressed as percentages of observed stand volume) 

Tree Type Bias SD d i m 3  

Coastal D.F. -1.91% 2.18% 2.90% 

Interior D.F. -0.79% 1.95% 2.10% 

White Spruce -0.23% 1.52% 1.55% 

Table V.8: Fit Statistics for Merchantable Stand Volume 

Estimates Based on Equations Constructed from 60 Sample Trees 

Based on 1000 Simulations (expressed as percentages of observed 

merchantable stand volume) 
L 

Tree Type Bias 

Coastal D.F. 

Interior D.F. 

White Spruce 



Table V.9: Fit Statistics for Total Stand Volume ~stimates Based 

on Equations Constructed from 100 Sample Trees Based on 1000 
* 

Simulations (expressed as percentages of observed stand volume) 

Tree Type Bias SD 

Coastal D.F. 

Interior D.F. 

White Spruce 

Table V.lO: Fit Statistics for Merchantable Stand Volume 

Estimates Based on Equations Constructed from 100 Sample Trees 

Based on 1000 Simulations (expressed as percentages of observed 

merchantable stand volume) 

Tree Type Bias 

Coastal D.F. 

Interior D.F. 

White Spruce 



Plot of 
Figure V.1 

Residuals vs. Fitted Log Total Volume 
for Coastal Douglas Fir Trees 
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Figure V.4 
Top Volume Plot Residuals vs. Fitted Log 

1 

Trees for Coastal Douglas Fir 

PREDICTED VALUE 



Figure V.5 
Plot of Residuals vs. Fitted Log Top Volume 

for Interior Douglas Fir Trees 
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Fiaure V.6 
Plot of Residuals v< Fitted Log Top Volume 

White Spruce 
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CHAPTER VI 

FURTHER ANALYSES 

It is also worthwhile to examine the eff ects of sev 

factors in developing volume equations. A comparison of 

era1 

the 

three species with regard to their separate regression of log of 

total volume on l o g ( ~ B ~ )  and  log(^^) was made. To do this, all 

the data from the three species were combined and indicator 

variables were used to identify them. The regression model for 

total volume was then fitted to the combined data. (BMDP program 

P1R with species as the grouping variable was used.) The 

analysis showed the estimated equations corresponding to the 

three species are significantly different from the individual 

regressions with an F-ratio of 297.93 with 6 and 4574 degrees of 

freedom (p-value is 0.0000) .  Since the coefficients of the 

fitted regression equation are dependent on the form factor, the 

difference in the volume equations could be attributed to the 

difference in form factors for the three species. 

As mentioned in Chapter 1 1 ,  trees in the data set came from 

different site qualities (poor, medium and good). Within each 

species, a comparison was made of the regression equations 

corresponding to site quality. By using indicator variables to 

identify site index, a single regression equation was fitted to 

the data for each species. The results indicated that within 

each species, the fitted regression equations are significantly 

different for different site indices. For thb Coastal Douglas 



Fir, p-value was 0.00620, for ~nterior Douglas ~ i r  the p-value 

was .00647, and .00001 for White Spruce. 

Another comparison was made of the regression equations 

corresponding to immature and mature age categories for each 

species. Results indicated that the estimated equations were 

significantly different with the p-values, 0.0000, 0.0170, and 

0.0000 for the Coastal, ~nterior Douglas Fir, and White Spruce 

trees respectively. 

The resulting volume estimates using the proposed scheme are 

biased. As mentioned in Chapter 111, the bias is due to the 

logarithmic transformation. Since log(Vtot) is N(p,u2), Vtot is 

lognormal with expectation E ( v ~ ~ ~ )  = exp(p+u2/2). The bias can 

be reduced by multiplying the predicted total volume by 
A 

exp(u A 2  / 2), where u2 is the estimated variance. 

An attempt was made to develop an estimatjon scheme that 

predicts the amount of cut lumber that can be extracted frofi 

standing trees (the common unit for this volume is board-foot). 

The method tested was to model the volume of wood wasted due to 

shrinkage, saw-kerf, slabs and edgings. Once this wasted volume 

is estimated and subtracted from the merchantable volume, the 

volume of cut lumber is obtained. Following the International 

Log Rule, shrinkage is commonly taken to be a constant fraction 

of the total volume. The shape of the bole is irrelevant to its 

calculation. The loss due to saw-kerf is a constant fraction of 

the overall volume. Losses due to slabs and edgings are 



difficult to calculate. While saw-kerf and shrinkage deductions 

are related to total tree volume, slabs and edgings allowances 

are closely related to log diameter. The International Log Rule 

handles the slabs and edgings deductions by viewing them as a 

collar having an average thickness of 1.8 cm and is assumed to 

be the same for all logs. The total volume of such collar is 

proportional to (DBH)H,, where Hm is the length of the 

merchantable portion of the bole. Hm depends upon the fixed 

diameter limit dm, HT and DBH. Hence, the volume of this collar 

is a function of HT and DBH. 

The model equation proposed was similar to that used in 

predicting total volume and the unusable top volume, i.e. an 

equation relating the volume lost due to slabs and edgings, saw 

kerf and shrinkage to diameter at breast height and total 

height. The volume equation was transformed to its logarithmic 

form and was fitted to the sample trees. The residual plots for 

the three species revealed curvilinear trends. This indicatedb 

that the regression model was not appropriate. However, when the 

log volume was regressed directly on log(DBH) and log(Hm) where 

Hm is the m e r c h a n t a b l e  height, the residual plots behaved as if 

they were random draws from an N(0,1) distribution. Also, R' was 

close to 100% and root mean square was close to 0. This shows 

that the model works if instead of using HT in the volume 

equation, the merchantable height Hm is substituted. The 

disadvantage of this method is that every time we have to 

estimate the merchantable height for the given diameter limit 



before the regression model can be applied. To obtain an 

estimate of the merchantable height corresponding to a given 

diameter, we need to know the taper curve which in turn requires 

a lot of data to develop. A simple estimation scheme similar to 

those developed for total and merchantable volume which only 

required DBH and HT may not be applicable here. 



CHAPTER VII 

CONCLUSIONS 

Logarithmic transformation of the proposed volume equation 

resulted in an appropriate regression model that predicts log 

volume in terms of log(DBH) and  log(^^). Although there was a 

concern about bias in the volume estimates as a result of doing 

the transformation, the study revealed that this bias is often 

minimal when the constructed equation is applied to all trees in 

the stand. 

The regression model can be fitted to a smaller data set and 

a further increase in sample size only gave a slight reduction 

in the chance component of the error but no reduction in bias. 

When sampling cost is prohibitive, an estimation scheme that 

needs a large of amount of data may not be feasible to apply. 

This gives an advantage of the proposed method over the use of 
b 

taper curves. In the latter, to get more precise results, an 

enormous amount of data is needed to develop the taper equation. 

The trees providing data for each species in this study were 

of different ages and were collected from different areas in the 

province. These data do not really represent samples from a 

homogeneous stand of trees. In spite of this limitation, the 

proposed scheme for estimating stand volume remains feasible. As 

mentioned earlier, site quality and age are important factors in 

considering the volume equation. The estimate may further be 

improved when the volume equation is.constructed and applied to 



a homogeneous stand of trees. Fitting the model to a homogeneous 

stand of trees will result in a better R2. The equation 

constructed from a homogeneous stand however, will not be 

reliable when extrapolated to another stand. 

The results of this study further support Martin's findings 

that simple equations with only a few parameters involved give 

good volume estimates. The model used in this project is simple 

to apply and contains few parameters. 

The top volume prediction equations may be further improved 

by adding to the equation other terms in DBH, HT, and diameter 

and height measurements at the unusable top portion or by using 

a weighted least squares method. However, since we only need a 

rough estimate of the top volume, the use of a complicated model 

is not worth pursuing at this stage. 

The presence of bias in the volume estimates should not 

deter one from using the proposed model. Most taper-based volumec 

equations in literature are biased too (see Chapter I). As a 

consequence of the study, it is worth exploring in the future a 

method that would compensate for the bias induced using the 

estimation schemes presented in this project. 
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