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In this thesis we survey the typical properties of 

continuous functions defined on [O,1]. A property is typical if 

the set of functions which have this property is the complement 

of a set of first category in ~[0,1]. We begin by focusing on 

typical differentiation properties of continuous functions. We 

see that nondifferentiability is typical, not only in the 

ordinary sense but with regard to several generalized 

derivatives. We then discuss typical intersection sets of 

continuous functions with functions in several families. We look 

at these sets in terms of perfect sets and isolated points and 

in terms of porosity. We review the Banach-Mazur game and see 

how it has been applied in proofs of typical properties. Finally 

we indicate some related areas of research and some open 

questions regarding typical properties in C[O,ll. 
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CHAPTER I 

INTRODUCTION 

The first example of a continuous nowhere differentiable 

function seems to be due to Weierstrass, in about 1872. Other 

examples of "pathological" functions followed by Dini, Darboux 

and others. In the 1870's Thomae and Schwarz defined examples of 

functions of two real variables, continuous relative to each 

variable separately but not continuous. Examples of 

"pathological" functions led to the study of the properties of 

arbitrary functions. Ren6 Baire was one of those who 

investigated this area. Baire was strongly influenced by 

Cantor's set theory and made use of some new set theoretic 

notions. In 1899 Baire's Doctoral Thesis, "Sur les fonctions de 

variables r6elles1', appeared in Annali di Matematica Pura et 

Applicata. In order to characterize limits of convergent 

sequences of continuous functions (and their limits and so on) 

Baire introduced the concept of category. A subset of R is said 

to be of first category in R when it is the union of countably 

many nowhere dense sets in R. A set which is not of first 

category is said to be of second category. Baire proved the 

following results. 

(i) R is not of first category in itself. 

(ii) The set of points of discontinuity of a function in the 

first class of Baire (noncontinuous functions which are limits 

of continuous functions) is of first category. 

(iii) For every function f which belongs to a Baire class there 



is a set E of first category such that f restricted to the 

complement of E is continuous. 

The introduction of hyperspaces by Frkhet, Hausdorff and 

others, especially the introduction of R' , had great influence 

on the proofs of existence theorems. Result (i) above was 

extended to complete metric spaces in what is now called the 

Baire Category Theorem. In 1931 Mazurkiewicz and Banach 

separately used this theorem to prove the existence of 

continuous nowhere differentiable functions. 

The Baire Category Theorem has often been used to prove that 

some certain subset of a complete metric space is not empty. 

This is usually accomplished by defining a countable number of 

subsets of the space so that the desired subset is the 

complement of the union of these subsets, and then showing that 

each of these subsets is nowhere dense. Then, since a complete 

metric space is of second category the desired subset is not 

empty. Such a set, the complement of a first category set, is 

said to be residual. 

The advantage of this method of proof is that it produces a 

whole class of examples, not just one. It also often simplifies 

the problem by allowing concentration on the essential 

properties of the desired example. In principle a specific 

example can always be constructed by successive approximations, 

although this may be difficult. 



In about 1928 Mazur invented a ma.thematica1 game which can 

also be used to provide proofs of the existence of a residual 

set, all of whose elements have certain properties. The game is 

between two players, A and B. A is given an arbitrary subset A 

of a closed interval 1, c R. The complementary set, Io\A is 

given to B. Now A chooses any closed interval I, c I,; then B 

chooses a closed interval I, c I,. They continue this way, 

alternately choosing closed intervals. If the set f l  ;I, 

intersects the set A then A wins; otherwise B wins. Banach 

showed that there is a strategy by which B can always win if and 

only if A is of first category. Recently the Banach-Mazur game 

has been used by several analysts, including L. ~ajieek, to 

develop proofs that certain differentiation properties are 

typical in C[O,1]. A property is said to be typical in the 

complete metric space, C[O,1], if the set of functions in C[0,11 

which possess this property is residual. 

The main purpose of this thesis is to survey the properties 

which are typical of continuous functions in [0,1]. Chapter 2 is 

concerned with differentiation properties which are typical in 

C[0,1]. In Chapter 3 we will look at the intersection of typical 

continuous functions with various families of continuous 

functions. We will also see that these results clarify some of 

the results developed in Chapter 2. Chapter 4 surveys the 

porosity characteristics of some of these intersection sets and 

finally Chapter 5 provides some recent results and alternate 

proofs for known results by use of the ~anach-kazur game. 



~efinitions and notation - 

We now begin with a few necessary definitions and two 

elementary results relating to category. By CEO, 1 1  we mean the 

complete metric space of all continuous real valued functions 

defined on the interval [0,1] and supplied with the sup norm, 

l j f l l  = sup{IF(x)I:x€[0,1]). For convenience we will also use the 

notation C for c[O,I] when no confusion can occur. We have 

already defined category, residual sets and typical properties. 

The phrase "a typical continuous function has property P" can be 

interpreted to mean that there is a residual set of functions in 

C[0,1] which have property P. This language is perhaps a bit 

dangerous, (a function may be typical in one sense while not in 

others), but is in wide use in the literature. 

The closure of a set A will be denoted by x. The interior 
will be denoted A ' .  A set A in a topological space X is dense in 

X if is all of X. A set A is nowhere dense in X if A contains 

no nonempty open set. We will use X ( A )  to denote the Lebesgue 

measure of A. A set A has the property of Baire if it can be 

represented in the form A = GAP = (GUP)\(G~P), where G is open 

and P is of first categgory. 

THEOREM 1.1. -- The Baire Cateqory Theorem. Let X be a 

complete metric space and A a first category subset of 

X. Then the complement of A in X is dense in X. Thus X 

is of second category in itself. 



THEOREM 1.2. Any subset of a set of first category is of 

first category. The union of any countable family of 

first category sets is of first category. 



CHAPTER I 1  

DIFFERENTIATION PROPERTIES 

The existence of continuous nowhere differ 

was first proved by the category method in 1931 by 

able functions 

Mazurkiewicz 

[33] and Banach [I]. Banach's proof clearly demonstrates the use 

of the category method. 

THEOREM 2.1.1. The set of functions in C which have no 

finite right hand derivative at any point is residual in C. 

PROOF: (cf. [29] pp. 420-4211 For each natural number n let 

Nn denote the set of functions, f, in C for which there 

exists x € [0,1] such that: 

Let N = u K = ~  Nn. We will show that for each n, Nn is nowhere 
dense. To show that N, is closed, consider any sequence Ifk) 

in Nn that converges to f € C. Then there is a sequence [xk) 

in [0, 1 1  such that Ifk(xk + h) - fk(xk) ( 5 nh, 

vh € (0, 1-xk). Passing to a subsequence if necessary we may 

assume that xk + x for some x € [0,1]. Then it is easy to 

see that (f(x + h) - f(x)l I nh, Vh € (0,l-x). Thus f € Nn 

and so we see that Nn is closed. 

Now, to show that N, is nowhere dense in C it suffices 

to show that N, contains no open sphere in C. Let e>O be 



given and f € C. Then we can choose a piecewise linear 

function h such that llf - hll < e and each segment of h has a 

slope with absolute value greater than n. Then h f Nn so Nn 

contains no sphere in C. Thus Nn is nowhere dense. 

The set C \ u E = ~  Nn is residual and any function in this 

set has no finite right hand derivative at any point.1 

In 1925 Besicovich had constructed a continuous function 

with no finite or infinite one sided derivative at any point. 

The question then arose whether a category proof is available to 

prove the existence of such functions. In our terminology the 

question is whether Besicovich functions were also typical. This 

was answered in the negative by Saks in 1932 [40]. What Saks 

showed was that a typical continuous function has an infinite 

derivative on an uncountable set. Saks' proof was not 

elementary. He showed that the set of functions with a one-sided 

derivative (finite or infinite) at some point is of second 

category in every sphere of C. He went on to show (using results 

of Banach, Tarski and ~uratowski) that this set is analytic and 

so residual in C. We will see in Chapter 5 that the second part 

of Saks' proof is not needed and that the first part is an 

example of the use of the Banach-Mazur game to prove a category 

result. A simpler but still not elementary proof is attributed 

to Preiss by Bruckner [4]. In 1986 Carter [ 1 1 ]  supplied an even 

simpler proof. 



Dini Derivatives 

There are many results regarding the relationships among the 

Dini derivatives of various classes of real valued functions. 

The most famous of these is now known as the Denjoy-Young-Saks 

theorem which gives relationships among the Dini derivatives of 

an arbitrary function. 

THEOREM 2.2.1. Let f be defined on an interval, I. Then all 

~ € 1 ,  excepting at most a set of measure zero, are in one of 

the following four sets: 

{x:fl(x) exists and is finite) 

{x:~+f(x)=~.f(x) are finite, D+f(x)=-=, D-f(x)=+w) 

{x:D+f(x)=~-f(x) are finite, ~+f(x)=+=, D.f(x)=-=I 

(x:D+~(x)=D-f(x)=+=, D+~(x)=D.•’(x)=-4. 

This result was proved for continuous functions by Denjoy in 

1915, for measurable functions by Young in 1916 and for 

arbitrary functions by Saks in 1924. In 1933 Jarnik [25] proved 

results regarding the relationships among the Dini derivatives 

of a residual set of continuous functions. We shall need another 

definition before stating Jarnik's results. 

DEFINITION 2.2.2. Let f € C and x € (0,l). We say that x is 
b 

a knot point - of - f if gf(x)=-= and Ef(x)=+=. 



THEOREM 2.2.3. The set of functions f in C with the 

following properties is residual in C. 

(i) For all x€(0,1) [D.f(x),D-F(x)l U [D+f(x),D+f(x)l = 

[-=,=I. 
(ii) The set of points which are not knot points of f has 

measure zero. 

In 1970 Garg [17] strengthened Jarnik's results while 

incorporating those of Banach and Mazurkiewicz and Saks. We need 

some notation. Let f € C and let r be a real number. Then 

define: 

THEOREM 2.2.4. There exists a residual set of functions f in 

C such that each x C (0.1) is in one of the sets ~ ( • ’ 1 ,  Ei(f) 

(i=1,2,3,4) and Eir(f) (i=1,2,3,4, r€R), and 

(i)~(f) is residual in (0.1) and has measure one, 

(ii) Each of the sets Ei(f) (i=1,2,3,4) and Eir(f) 



(i=1,2,3,4, r€R) is a first category set of measure zero and 

has the power of the continuum in each subinterval of (0,1), 

and 

(iii) for each r€R the sets Elr(f)flE2r(f) and E3r(f)flE,r(f) 

are both dense in (0,l). 

Path derivatives 

The question of the differentiability of typical continuous 

functions can be extended to several generalized derivatives. 

Generalized derivatives have often been defined because complete 

differentiability is not required and some weaker property is 

sufficient for the development of the theory under 

consideration. Most of the generalized derivatives are obtained 

by a restriction of the limit of a difference quotient to 

specific classes of sets. The concept of path derivative, 

introduced by Bruckner, OIMalley and Thomson [lo] can be used to 
define several generalized derivatives. 

DEFINITION 2.3.1. Let x € R. A path leadinq - to x is a set 
Ex c R such that x € Ex and x is an accumulation point of 

Ex. Then a collection E = {E,: x € R, 

Ex a.path leading to x) is called a system - of paths. 

DEFINITION 2.3.2. Let f:R + R and let E = { Ex: x € R] be a 

system of paths. If 



is finite then f is E-differentiable - at - x and we write 
f V E  = g(x). If f is E-differentiable at every point x then f 

is E-differentiable. 

DEFINITION 2.3.3. Let A be a measurable subset of R and x € 

R. Let 

Then ~ ( A , X )  is called the upper density of A at 5 .  The lower 

density - of - A - at 5, d(A,x) is similarly defined. If ~ ( A , x )  = 

d(A,x) we call this number the density of A at 5 and denote - 
it by d(A,x). When d(A,x) = 1 we say that x is a point of 

density of A.  

DEFINITION 2.3.4. If each Ex € E has density 1 at x the 

E-derivative is called the approximate derivative. 

DEFINITION 2.3.5. If each Ex € E has upper density 1 at x 

then the E-derivative is called the essential derivative. 

DEFINITION 2.3.6. If each Ex € E has lower right and lower 

left density both greater that 1/2 at x the E-derivative is 

called the preponderant derivative. 



Of course if each E,€ E is a neighbourhood of x then we have 

the ordinary derivative. The one sided derivatives are given by 

restricting Ex to one side of x and if we replace limit in 

definition 2.3 by lim sup or lim inf we obtain the corresponding 

extreme derivatives. 

A complete analogue to the Denjoy-Young-Saks theorem holds 

for the approximate derivative (see [5] p.149). In 1934 ~arnik 

proved several properties of typical continuous functions with 

regard to these generalized derivatives. 

THEOREM 2.3.7. The set of functions f in C with the 

following properties is residual in C. 

(i)[27] The set of points which are not essential knot 

points of f has measure zero. 

(ii)[24] For each x€(0,1) at least one of =, -a is a right 

essential derived number, and at least one of a, -= is a 

left essential derived number. 

(iii)[24] For each x€(0,1) both -- and - are derived numbers 
of f at x with symmetric upper density greater than or equal 

to 1/2. 

(iv)[26] For each x€(0,1) there is one side where at least 

two of -=, 0, = are derived numbers of f at x with density 

on that side greater than or equal to 1/4. 

We can see that these results imply that the typical 

continuous function has no preponderant derivative, no finite 



approximate derivative, no finite unilateral preponderant 

derivative, and does not have both unilateral approximate 

derivatives for any x in (0,l). 

Other qeneralized derivatives 

In 1972 Kostyrko [28] showed that a typical continuous 

function is nowhere symmetrically differentiable. 

THEOREM 2.4.1. The set of functions f in C with the 

following property is residual in C: 

For each x € (0,l) 

f(x + h) - f(x - h) 
lim suph,~ = +OD, and 

2h 

lim infh,O - - -OD, 

2h 

In 1974 Evans [14] proved the analogous result for the 

approximate symmetric derivative. The selective derivative was 

introduced by OIMalley in 1977. 

DEFINITION 2.4.2. A function of two variables s(x,y) for 

which s(x,y) = s(y,x) and s(x,y) is between x and y is 

called a selection. We define the selective derivative 

S fl(x) of the function f(x) by 



In 1983 Lazarow [31] showed that all measurable functions 

have a selective derivative on a set of the cardinality of the 

continuum. She then went on to show: 

THEOREM 2.4.3. The set of functions f in C such that, for 

every selection s, sf' exists (possibly infinite) only for a 

first category set of measure zero, is residual in C. 

Universal properties 

We have seen that the typical continuous function is very 

nondifferentiable with regard to several generalized 

derivatives. But Marcinkiewicz in 1935 [32] proved that the 

typical continuous function is differentiable almost everywhere 

in a certain sense. Moreover we can choose the derivative in 

advance. 

THEOREM 2.5.1. Let {hn) be a sequence of real numbers such 

that limn,, hn = 0. The set of functions f in C(0,l) with 

the following property is residual in C(0,l): 

For each measurable function 4(x) on (0,1) there corresponds 

a subsequence {h ) such that 
"k 

almost everywhere. 

We note that if #(x) = r € R the Marcinkiewicz' theorem shows 



that r is a derived number of every typical continuous function 

almost everywhere and, in fact, is a derived number relative to 

a fixed sequence. Bruckner [3] has reported that Scholz has 

obtained a stronger result than theorems 2.8 and 2.9. 

THEOREM 2.5.2. Let t#J be an arbitrary measurable function. 

Then the set of functions f in C with the following property 

is residual in C: 

There exists a set Ef having upper density 1 at the origin 

such that 

almost everywhere. 

We note that this is a strong essential derivative in the 

sense that the same set, Ef, is used for each x € [0,1]. From 

these last results we get some idea how strongly 

nondifferentiable a typical continuous function is. 



CHAPTER I 1 1  

INTERSECTIONS 

The results mentioned in Chapter 2 show that typical 

continuous functions exhibit a great deal of pathological 

behaviour. But they also show much regularity. In this chapter 

we will see some of this regularity in the way that typical 

continuous functions intersect lines and other classes of 

functions. 

In section 2 we shall see some of the proper.ties of the 

intersection sets of straight lines with non-monotonic functions 

and then with typical continuous functions. In section 3 this 

will be extended to polynomials. Section 4 deals with the 

intersection of a typical continuous function with what will be 

called 2-parameter families. A few definitions and notations are 

needed. They are from [7, 81. 

DEFINITION 3.1 .l. For f ,g € the set {x:f (x) = g(x)) 

is called the intersection - - - -  set of f and q. For each c,X € R 

the set {x:f(x) = Xx + c) is called a level of f in the - - - - 
direction - h .  If X = 0 this set is called a horizontal level 

of f. - -  

DEFINITION 3.1.2. A function f € C is nondecreasinq at 

x € [0,1] if there exists 6>0 such that f(t) 5 f(x) for 

t € [o,I]~(x-~,x) and f(t) 2 f(x) when t 6 [0,l]n(x,x+6): A 



function f is nonincreasinq at x if -f is nondecreasing at 

X. 

A function f is monotone at x if it is either 

nonincreasing or nondecreasing at x. A function f is of 

monotonic type - at - x if there exists X € R such that 

= f(x) - Xx is monotone at x. If f is not of monotonic 

type at any point in [0,1] then it is of nonmonotonic type. 

If f is not of monotonic type in any interval then it is 

nowhere - of monotonic type. 

DEFINITION 3.1.3. Let f € C, I a subinterval of [0,1] and L 

a line given by y = Xx + c. The line L is said to support 

the graph of f in (or support f in I) from above [below] - - 
if f(x) 5 Xx + c [f(x) 2 Xx + c] for all x € I and there 

exists a point xo in I such that f(xo) = Ax, + c. Also if 

the point xo is not unique then L supports - f - at - more - than 

one point in I. - - 

Intersections with lines 

K. Garg proved in 1963 [16] two results regarding the 

horizontal levels of no~monotonic functions. First he showed 

that if f € C is nowhere monotone then the horizontal levels of 

f are non-dense for every y € R and are nonempty perfect sets 

for a set of values of y residual in the range of f. Secondly he 

showed that if f is nowhere of monotonic type then for any X € R 



there exists a residual set, HA c R such that for all c € HI the 

line y = Ax + c intersects the graph of f in a nowhere dense 

perfect set (possibly empty). Also in 1963 he showed [16] that 

every nondifferentiable function is nowhere of monotonic type. 

Since the nondifferentiable functions form a residual set in C 

he was able to show the following results. 

THEOREM 3.2.1. There is a residual set of functions in C 

such that for every X € R the level sets in the direction X 

are perfect sets of linear measure zero except for at most a 

countable set of values of c (depending on A and •’1. 

THEOREM 3.2.2. There is a residual set of functions in C 

such that for every X € R the level sets in the direction X 

have the power of the continuum for all values of c between 

the two extreme values, 

THEOREM 3.2.3. There is a dense set A of functions in C such 

that every horizontal level is perfect. 

These results raised the question of whether the set of 

functions in Theorem 3.2.3 form a residual set. Bruckner and 

Garg [7] answered this question in the negative by giving a 

description of the structure of the level sets in all directions 

for typical continuous functions. We need one more definition. 



DEFINITION 3.2.4. We denote by af x and Pf 1: 
af,X = inf{f(x) - Ax: 0 r x 5 1 1  

pf,X = sup{f(x) - hx: 0 S x i 1 1 .  

Let f € c and X € R. If there exists a countable dense set, 

Ef,h, in (af hIBf X) such that the level {x:f(x) = hx + c] 

is 

(i) a perfect set when c f Ef,h U { a f , ~ , ~ f , ~ l ,  

(ii) a single point when c = a f , ~  or c = P f , ~ ,  and 

(iii) the union of a nonempty perfect set, PI with an 

isolated point, x f P I  when c C E f , ~  (P depends on 

f, X, and c) 

then the levels of f in the direction X are said to be 

normal. 

THEOREM 3.2.5. The functions of nonmonotonic type form a 

dense Gg set in C. 

PROOF: ([7], pp. 309-311) For each natural number n let An 

denote the set of functions f C C such that there exists 

X € [-n,n] and x € [0,1] so that is nondecreasing on 

(x-l/n,x+l/n)n[O,l]. Then A =u;=,An is the set of functions 

f € C for which there exists X € R such that fh is 

nondecreasing for some x € [0,1]. We will show that each An 

is closed and nowhere dense in C. 

Let n be given and let Ifk] be a sequence of functions 

in An that converge uniformly to a function f € C. For each 



k there exists Xk € [-n.nl and xk € [0,1] such that fk -Xk 

is nondecreasing on (xk-l/n,xk+l/n)n[O,l]. Then there is a 

sequence Eki) of natural numbers such that EXk.] converges 
1 

to some X € [-n,n] and Exk.) converges to x € [0,1]. Then it 
1 

is easy to see that f , ~  is nondecreasing on 

(x-l/n,x+l/n)fl[Oll]. Thus f € An and so An is closed. 

Now it is necessary to show that An is nowhere dense. 

Let U be a nonempty open subset in C. Then there is a 

polynomial g and e>0 such that the open sphere centered at g 

with radius e l  B(g,e), is contained in U. Then a "saw-tooth" 

function f € C can be constructed with f € B(g,e) and 

f f An. This is accomplished by defining a piecewise linear 

function h with intervals of monotonicity small enough and 

slope great enough that if f = g + h then if X € [-n,n] f , ~  

is not monotonic on any interval of length 2/n. Thus An is 

nowhere dense. 

We see that A is an F ,  set of first category. Let B be 

the set of functions f in C such that there exists X € R and 

x € [0,1] with f - ~  nonincreasing at x. Then B = i-•’:•’€A] so 

B is also a first category F,. Hence C \ (AUB) is a dense Gg 

set in C.0 

Theorem 3.2.5 together with a result by Garg [181 that a 

function of nonmonotonic type has a knot point everywhere yields 

a variant of the Mazurkiewicz-Banach theorem: the set of 



functions in C which have no finite or infinite derivative at 

any point is residual in C. 

LEMMA 3.2.6. There is a residual set of functions f in C 

such that no horizontal level of f contains more than one 

point of extrema of f. 

PROOF: ([7], p.312) Let I and J be any two disjoint closed 

subintervals of [O,11 with rational endpoints. Let AIIJ be 

the set of all functions f in C such that neither the 

supremum nor the infimum of f on I equals either the 

supremum or the infimum of f on J. Let A = flAI,~, where the 

intersection is taken over all pairs of disjoint closed 

rational subintervals of [0,1]. 

Fix I and J. Let El = E ~ C C : S U ~ { ~ ( X ) : X C I ) # S U ~ E ~ ( X ) : X C J ] ]  

and let E,, E, and E, be the analogous sets obtained by 

interchanging sup with in•’ on I or J or both. Let f € E l ,  

a = sup{f(x):xC~] and P = sup{f(x):xCJ]. Then a # 0. Let 

E = la-PI > 0. Clearly B(f,r/2) c E l  so that E, is open in 

C. Also it is clear that El is dense in C and so it is 

residual. It can be shown similarly that E,, E, and E, are 

residual so that A I l ~  = u~,,E~ is residual and hence A is 

residual.O 

b 

THEOREM 3.2.7. There exists a residual set of functions in C 

whose horizontal levels are normal. 



PROOF: ([7], pp. 312-3131 Let A be the intersection of the 

two residual sets given by Theorem 3.2.5 and Lemma 3.2.6. 

Then A is residual and we will show that all functions in A 

have the required properties. 

Let f € A and a = inf{f(x):Olx~l] and 

fl = sup{f(x):Olxll). By (3.2.5) f is of nonmonotonic type, 

so for every c € R, x is an isolated point of the level 

f-'(c) if and only if x is a point of proper extremum of f. 

By (3.2.6) each horizontal level of f contains at most one 

point of extremum of f so that every extremum of f is a 

proper extremum. 

Let D be the set of extrema of f. Then since f is 

continuous and nowhere monotone and every point of D is 

proper, D must be countable and f(D) a countable dense 

subset of [a,P]. Also we have a,@ € •’(Dl. Let E = 

f(D)\{a,P]. 

Let c € R. When c f EU{a,P), f'l (c) has no isolated 

points so f-l(c) is perfect. Clearly f-'(a) and f-'(0) are 

singletons. When c € El f-l (c) contains exactly one point of 

extremum of f ,  say xo, and xo is isolated. Since f is 

continuous it satisfies the Darboux property so that 

f-I  ( c )  \ [x,] is not empty and must be perfect. Thus the 

horizontal levels of f are normal.O 



A corollary to this theorem is that given a function g € C 

there is a residual set A in C such that for every f € A, the 

horizontal levels of f - g are normal. By letting g(x) = Ax we 

see that for every sequence {Itn) in R there is a residual set of 

functions in C whose levels are normal in each of the directions 

An. But note that the set of exceptional levels does not vary 

with the function. This is not the same as Theorem 3.2.13 to 

follow for there the set of directions depends on the function. 

LEMMA 3.2.8. For every function f € C there are at most 

countably many lines that support the graph of f in 2 or 

more disjoint open subintervals of [0,1]. 

PROOF: ([7], pp. 314-3151 Let L denote the set of lines that 

support the graph of f in at least 2 disjoint open 

subintervals of [0,1]. Let I and J be two disjoint open 

subintervals of [0,1]. Then it is easy to see that there is 

at most one line which supports f from above in both I and 

J. Similarly there is at most one line which supports the 

graph of f from below in both I and J, one line that 

supports f from below in I and above in J and one line that 

supports f from above in I and from below in J. Let L I t J  

denote the set of lines that support the graph of f in both 

I and J. Then L I , ~  has at most 4 elements. Clearly 

= U ~ , ~ L ~ , ~  where the union is taken over all pairs of 

disjoint open rational subintervals in [0,1], and it follows 

that L is countable.0 



Note that this lemma concerns all continuous functions, not 

just a residual set of them. From it we obtain the following 

theorem regarding the level sets of all functions in C. 

THEOREM 3.2.9. For every function f € C there exists a 

countable set, A, in R such that for every X € R\A: 

(i) the levels {x:f(x)=hx+af,~l and {~:f(x)=Xx+@~,~l consist 

of single points, and 

(ii) there is a dense set of points, c, in (af,~,@f,h) such 

that {x:f(x)=Xx+cl contains at least one isolated point. 

PROOF: ([7], p. 315) Let f € C and let A be the set of 

slopes of lines that support the graph of f in at least two 

disjoint open subintervals of [ 0 , 1 ] .  Then A is countable by 

Lemma 3.2.8. Let X € R\A. 

Let c € R and xo = {x:f(x)=Xx+c) = {~:f,~(x)=c). Then 

y = Xx+c supports the graph of f in some neighbourhood of xo 

if and only if f-A has an extremum at xo. Since X € R\A 

there is no horizontal level of with more than one point 

of extremum of so f , ~  has only proper extrema. The 

function f , ~  attains af and Of 1 in [0,1] so 
I 

{x:f(x)=hx+afI~l and {x:f(x)=Xx+@f are single points. 

Let (a,b) be any open subinterval of ( u ~ , ~ , @ ~ , ~ ) .  Let I 

be a connected component of {~:a<f,~(x)<b). Then I is an 

open subinterval of [0,11 and is not constant on any 



subinterval of I. Now, if f,h is monotone on I then for each 

c € f-A(~) we have c € (arb) and {~:f-~(x)=c) is isolated. 

If f-h is not monotone in I it has a proper extremum at some 

point x, in I. Let c = f-h(x,). Then a<c<b and x, is 

isolated in {x:f(x)=Xx+c).O 

This lemma disproves a claim of Gillis [19] to have 

constructed a continuous real-valued periodic function f on R, 

all of the levels of which are perfect and, for f restricted to 

[0,1], are all infinite. Garg [ 1 6 ]  had used the Gillis function 

to show that there is a dense set of functions in C which have 

in each direction all but a finite number of levels perfect. 

This too is now seen to be false. 

We now need three more technical lemmas regarding lines of 

support, in order to prove the main result on level sets in all 

directions of typicai continuous functions. 

LEMMA 3.2.10. There exists a residual set of functions f in 

C such that, for every rational open interval I c [0,1] the 

slopes of the lines that support the graph of f in I from 

above at more than one point form a dense set in R. The same 

holds true for lines of support from below. 

PROOF: ([7], pp. 316-318) We shall prove the result for one 

fixed open rational interval in [0,1]. Since the set of 

rational intervals in [0,1] is countable this will prove the 



theorem. 

For each natural number n let An denote the set of 

functions f in C for which there is a line with slope in 

(-l/n,l/n) which supports f in I from above at more than one 

point. We shall show that An is residual in C. 

Let n be fixed and let U be a nonempty open, set in C 

with f € U. Then there is a nonempty open sphere, 

B(f,e) c U, centered at f and with radius e. Let u = 

sup{f(x):x€~). Then there is a nondegenerate subinterval 

J = (arb) of I such that f(x) > a - ~ / 4  for x € J. Let 6 > O  

be such that the length of J is greater than 46. We can find 

5 points, xi (i=0,1,2,3,4), such that a<x,< ... <x4<b and 
xi - = 6, (i=1,2,3,4). Define g:[O,1]+~ by 

g(x) = f(x) for x € [0,x,lU[x4,t] 

g(x,) = g(x3) = U + €/2 

g(x2) = a 

and g is linear in each interval [ X ~ - ~ , X ~ ]  and continuous on 

[0,11. 

Then it can be shown that there is a real number ?7<e/8 

such that the open sphere B(g,q) is contained in An. (The 

details are tedious.) Thus An contains a dense open subset 

of C and so is residual in C. 

Let Ern) be an enumeration of the set of rational 

numbers. For each natural number n let Bn denote the set of 

all functions f in C such that f- € An. Then Bn is 
rn 



residual in C and so the set B = nBn is also. 

Now, given (p,q), an open interval in R, we will show 

that if f € B then there is a line with slope in ( p , q )  which 

supports f in more than one point of I. Let 6 = q - p. Then' 
choose 5 points, XO,...,X~, SO that p=x,<...<x,=q and 

xi-1 -xi = 6/4 (i=0,1,2,3). Now we can find a natural number 

n such that n>4/5 and rn € (x,,x,). If f € Bn, f- € An and 
rn 

so there is a line given by y = sx + b, s € (-l/n,l/n) which 

supports f- in I from above at more than one point. Let M 
rn 

be the line given by y = (s+rn)x + b. Then M supports the 

graph of f in I from above at more than one point. Also 

s+rn 6 (plq). 

The proof for support from below is similar.0 

LEMMA 3.2.11. There exists a residual set of functions f in 

C for which there is no line that supports the graph of f in 

more than two mutually disjoint open intervals. 

PROOF: ([7], p. 318) Let A denote the set of functions f in 

C for which there exists a line which supports f in three or 

more disjoint open intervals. For each triple (I,J,K) of 

disjoint open intervals in [0,1] let AIIJIK denote the set 

of functions f in C for which there is a line which supports 

f in I ,  J and K. Then A = U I , ~ , ~  AIIJlK where the union is 

taken over all triples of disjoint rational open intervals 

in [0,1]. We will show that each AIrJIK is nowhere dense and 



so A is of first category. 

Now fix I, J and K and let E denote the set sf functions 

in A~ ,J,K for which a line supports f from above in all 

three subintervals. Let U be an open subset of C and suppose 

there exists f € UnE.  Then there is a line y = Xx + c which 

supports f in I, J and K from above and there is an open 

sphere, B(f,e), centered at f and with radius e contained in 

U. We can assume that J is between I and K. Let g € 

B(fI3e/4) such that g(x) = f(x) for x € IUK and g = f - e/2 

in J. Now let h € ~(g,r/4) and assume there is a line, L, 

which supports h from above in I and K. Then in the interval 

J, L is strictly above the line y = hx + c -e/4 and h is 

below this line. Thus L does not support the graph of h in J 

so h j? E. Then b(g,e/4) c U\E and so E is nowhere dense in 

The other seven subsets of AI , J, obtained by replacing 

above by below in one or more of I, J or K can be shown 

similarly to be nowhere dense. Then AIIJIK is nowhere dense 

and so A is of first category.0 

LEMMA 3.2.12. There exists a residual set of functions f in 

C for which there are no two distinct pa-rallel lines such 

that each of these lines supports the graph of f in 2 

disjoint open subintervals of [ 0 , 1 ] .  



The proof of this lemma follows the pattern of the previous 

one and so is omitted. We now come to the main result of this 

section. 

THEOREM 3.2.13. There exists a residual set N in C such that 

if f € N then there is a countable dense set Af in R such 

that: 

(i) the levels of f are normal in each direction X € R\A~, 

and 

(ii) if X € Af the levels are normal except for a unique 

element, cf x of Ef,h U Iaf,~,Pf,~) for which 

(x:f(x)=Xx+cf contains two isolated points. 

PROOF: ([7], pp. 319-320) Let N be the intersection of the 

residual sets determined by 3.2.5, 3.2.10, 3.2.11, and 

3.2.12. Then N is residual in C. 

Let f € N and let Af denote the set of slopes of lines 

that support f in at least two disjoint open subintervals of 

[0,1]. Then by 3.2.8 and 3.2.10 Af is a countable dense 

subset of R. Let X € R. Then for each c € R 

(x:f(x)=Xx+c) = (~:f,~(x)=c]. By 3.2.5 f - ~  is not monotone 

at any point of [0,1]. As a result a point xo in 

(~:f_~(x)=c) is isolated if and only if f-X has a proper 

extremum at xo. Also such an xo is a proper extremum of f , ~  

if and only if the line y = Xx + c supports the graph of f 

in some neighbourhood of xo. 



Let A € R\A~. Then there is no line with slope in Af 

that supports the graph of f in two disjoint open 

subintervals of [0,1]. Hence all horizontal levels of 

contain at most one point of extremum of Thus •’,A is a 

continuous nowhere monotone function with only proper 

extrema and we can follow the same arguments as in the proof 

of 3.2.7 to see that all the horizontal levels of are 

normal so that the levels of f are normal in the direction 

X. Part (i) of the theorem is proved. 

Now let X € A•’. By 3.2.11 no line supports the graph of 

f in more than two mutually disjoint open subintervals of 

[0,1]. Then no horizontal level of •’,A contains more than 

two points of extremum of so that f - ~  has only proper 

extrema. Since X € Af there is a co € R such that 

y = Xx + co supports the graph of f in at least two disjoint 

open subintervals of [0,1]. Hence {~:f,~(x)=c,) contains 

exactly two points of extremum of •’-A. By 3.2.12, for c # co 

{X:•’,~(X)=C] contains at most one point of extremum of f-X. 

Now, f , ~  is a continuous nowhere monotone function with only 

proper extrema so that we can again use the argument of 

3.2.7 to complete the proof.0 

If we remove the requirement that Af be dense we can see 

that the first part of the proof of the above theorem uses only 

the property that f is of nonmonotonic type. Thus we have the 

following theorem. 



THEOREM 3.2.14. If a function f C C is of nonmonotonic type 

then its levels are normal in all but a countable set of 

directions. 

A number of questions arise from these results. One type of 

problem arises by replacing the family of lines with polynomials 

of a given degree, or with 2-parameter families of functions. We 

will see in sections 3 and 4 the results of consideration of 

these problems. Another type of problem arises by replacing 

~[0,1] with some other complete metric space such as the space 

of Darboux functions of the first class of Baire, or 

approximately continuous functions. Many results have been 

obtained for these spaces (see [13], [15], [34], [35], [37]) but 

they are beyond the scope of this survey. 

In 1981 Ceder and Pearson [12] investigated the intersection 

sets of typical continuous functions with polynomials. The 

following corollary is an immediate consequence of Theorem 

3.2.5. 

COROLLARY 3.3.1. There is a residual set of functions f in C 

such that if p is a polynomial and x, is isolated in 

Ex:f(x)=p(x)l then p supports f in a subinterval of [0,11. 



The next lemma is a generalization of lemma 3.2.11 and the 

proof is similar. 

LEMMA 3.3.2. For any n there exists a residual set of 

functions f in C such that no polynomial of degree less than 

or equal to n supports f in more than n+l mutually disjoint 

open subintervals of [0,11. 

The next theorem states that a typical continuous function 

htersects "most" polynomials in a perfect set. This is a 

generalization of the result of Bruckner and Garg given in 

Theorem 3.2.13. 

THEOREM 3.3.3. There exists a residual set of functions f in 

C such that the following properties hold: 

(i) for n2l and jln and a fixed n-tuple, 

( a o  . . a a . . . a in Rn and a polynomial p given by 

p(x) = e aixi, the intersection set [x:f (x)=p(x)] is a 
i=O 

perfect set except for countably many values of aj. For each 

of these exceptional values of aj the intersection set is a 

perfect set union a set containing at most n+l points. 

(ii) for each n the set (ao, . . . ,an) in R ~ + ~  such that the 
n 

intersection set [x:f(x)=p(x)] where p(x) = Z aixi fails to 
i=O 

be a perfect set is a first category null set in Rn". 

PROOF: We follow [12], pp.258-259 with some modifications. 



Let M = Nn nF=o~n where N is the residual set given by 
Corollary 3.3.1 and the Nn are the residual sets given by 

Lemma 3.3.2. Then M is residual. 

By the lemma if f € M and p is a polynomial of degree n 

then {x:f(x)=p(x)) is a perfect set union a set of no more 

than n+l elements. 

Now fix jsn and an n-tuple (ao....,a~~l,a~+l,...Ian). 
n 

Let p,(x) = Z aixi where aj = a € R. Let A = {x,:x, is 
i=O 

isolated in {x:f(x)=p,(x))) Then for each x, € A there is a 

positive integer n, such that either 

Now suppose that A is uncountable. Then, without loss of 

generality there is a positive integer m such that the set 

Am = {x,€~:n,=m, f(x)cp,(x) for Oclx-x,l<l/m) is 

uncountable. Since Am is uncountable there exists xg € Am 

which is a condensation point for Am with xp#O. Choose 

x, € Am so that lx,-xpl<l/m. 

Now the polynomials p, and pp can intersect only at x=O 

so for x>O either p,<pp or p,>pp. But f(x)spg(x) for 

Ix-xplcl/m so if {x:p,(x)=f(x)) # then p,(x)<pg(x) for 

x>O. We have O<lx,-xplcl/m and f(xp) = pp(xp) > p,(xp) so 

x,f Am, a contradiction. Hence A is countable. 



To prove part (ii) choose n. Then, for a given 

a=(al, ..., an) € Rn there exist countably many values of a, 

for which the polynomial pa(x)= ! aixi fails to intersect f 
i=O 

in a perfect set. Let A denote the set of all (a,, 

... ,an) € Rn+' such that pa(x) fails to intersect f in a 

perfect set. Then, considering (ao, ..., an) as the point 
(ao(al, ..., an)) in RxRn, each horizontal section of A in 
RXR" is countable. Accordingly A will be of first category 

and measure zero if A has the property of Baire and is 

measurable [36, th.15.41. This will be so if A is an 

analytic set [29 pp.94-95, 4821. We will show now that A is 

analytic . 
Now (ao, ..., an) € A if and only if there is some x€[O,i] 

and h>O such that p,(x)=f(x) and if O<lx-zl<h then 

pa(z)#f(z). It is clear that: 

Thus A is the projection onto Rn+' of the set of 

(h,x, (ao, .-. . ,a,)) given by: 



It is easy to see that a is a Gg, P is F O  and 71 6, t ,  and q 

are G o .  Then A, PVyVGVEVp is a Gg [see 29 20.v.7bI. Thus we 

have vX vh ~(x,h,a) where B(x,h,a) is a Gg set. Then [see 29 

38.viii.41 this is an analytic set since a projection 

corresponds to a continuous function. Thus A is analytic and 

part (ii) is proved. O 

We see, then, that typical continuous functions intersect 

"most" polynomials in perfect sets. Ceder and Pearson state that 

an analogous result to theorem 3.3.3 for piecewise linear 

functions also holds. A perfect analogue does not exist. To see 

this, consider a piecewise linear function of 2 pieces. By 

Theorem 3.2.9 for any continuous function f there are countably 

many piecewise linear functions such that the intersection of 

the first piece with f has an isolated point. Now for any of 

these, no matter how we may vary the slope of the second piece 

we will not have an intersection set which is perfect. We 

provide, instead, a partial analogue. 

THEOREM 3.3.4. There is a residual set of functions f in C 

such that, for each n, if h is a piecewise linear function 

with n intervals of linearity, the set (x:f(x)=h(x)) is a 

perfect set (possibly empty) union a set of at most 3n-1 

isolated points. 



PROOF: Let N. be the residual set of functions given by 

Theorem 3.2.13. Let f € N and Ef,h, af A and of be as in 

Theorem 3.2.13. Fix n and let Hn be the set of all piecewise 

linear functions in [0,1] with n intervals of linearity. 

For each h t Hn and for i=l,. . . ,n let hi be the ith 
linear segment of h, extended linearly to all of [0,1]. Then 

hi = Ax + c for some X,c € R. If {x:hi(x)=f(x)) is perfect 

then {~:h~(x)=f(x))n~~, where Ii is the ith interval of 

linearity of h, is perfect, except possibly for isolated 

points at the endpoints of the interval. Hence if x, is 

isolated in {x:h(x)=f(x)) it is isolated in one of the sets 

{x:hi(x)=f(x)) or it is the endpoint of one of the intervals 

of linearity of h. 

By theorem 3.2.13 if c f EfIXU{af h,Bf {x:hi(x)=f(x)) 

is perfect; otherwise {x:hi(x)=f(x)) is a perfect set 

(possibly empty) union a set of at most 2 isolated points. 

Thus {x:h(x)=f(x)) is a perfect set (possibly empty) union a 

set of at most 3n-1 isolated points. 17 

This is consistent with the following conjecture put forth 

by Ceder and Pearson: for any closed nowhere dense subset N of C 

there is a residual set A of functions in C such that for each f 

in A there exists a residual subset Nf of N such that for all g 

in N, the intersection set of f with g is perfect if and only if 

g is in Nf. 



Two parameter families - 

Zygmunt Wojtowicz investigated the intersection sets of 

typical continuous functions with functions in 2-parameter 

families in 1985 [43]. 

DEFINITION 3.4.1. A family of functions H c C is called a 

2-parameter family if for all xl, x2 € [0,11 with xl # x2 

and for all y l ,  y2 € R there exists a unique function h in H 

such that h(xl) = y 1  and h(x2) = y2. 

We denote by hhlc the unique function h € H such that 

h(0) = c and h(1) - h(0) = X. We call X the increase of the 

function hXlc. Let HX denote the set of functions h € H such 

that the increase in h is h. Clearly HX1 f l  HX2 = + for 
X1 # h, and UkcR HX = H. 

Wojtowicz proved several properties of 2-parameter •’am 

These will be given without proof. 

ilies. 

LEMMA 3.4.2, If (xo,yo) € [O,~]XR and h,, h2 € HI h1 # h2 

and h,(x,) = h2(xo) = yo then either hl(x) < h2(x) for 

Olx<xo and hl(x) > h2(x) for xo<xll, or hl(x) > h2(x) for 

Olx<xo and h,(X) < h2(x) for xo<x<l. 

LEMMA 3.4.3. For every triple (xo,yo,X) € [O,l]xR~~ there 

exists a unique function h € HA such that h(xo) = yo. 



COROLLARY 3.4.4. If h,, h2 € HX and h, # h2 then 

hl(x) # h2(x) for every x € [0,11. In particular 

hl(0) > h2(0) if and only if h,(x) > h2(x) for all 

X [0,1]. 

LEMMA 3.4.5. Limn,, lh~,,~, - hhlcl = 0 if and only if 

limn,, cn = c and limn,, Xn = X. 

LEMMA 3.4.6. For each natural number n let (xn1,yn'), 

( ~ ~ ~ , y ~ " ) ~  (xl,y') and (xW,yw) be in [O,llxR with xnl # xnW 

and x' # x". Let hA . hAlc € H be such that 
nl n 

hXn,cn(Xn') = Ynlp hXn,cn(xnl') = ynWr hX,c(xl) = Y' and 

hXIc(xw) = y". Then if limn+- (xnl,yn ' )  = (xl,y') and 

limn+, (xnw ,yn ") = (xw,yw) we have limn+, ~ h x n , c n - h ~ l c ~  = 0. 

The methods used by Wojtowicz to develop the properties of 

the intersection sets of typical continuous functions with 

2-parameter families parallel those of Bruckner and Garg for 

lines. The next lemma is proved by an argument parallel to that 

of Lemma 3.2.8. 

LEMMA 3.4.7. For every function f in C there is at most a 

countable set of functions in H whose graphs support the 

graph of f in two or more disjoint open subintervals of 

[0,11. 



LEMMA 3.4.8. For every function f in C and every number X in 

R, the graphs of the functions h 
X+f , X and h X,flf,h 

the graph of f in [0,1] from below and above respectively, 

at least at one point. 

PROOF: ([43], p. 75) Let f € C and € R. Since hhIa (x) 
fIX 

f(x) for every x € [0,1] it is sufficient to show that 

{x:f (x)=h 
X+f ,x (x)) # 4. 

Assume {x:f(x)=hAra (x))=4. Then for all x € [0,1], 
f,X 

hh.af, X 
(x) - f(x) < 0. Let d = min{f(x)-h , X (x):OSxSl~. 

By Lemma 3.4.5 there is a function hXIc in the open sphere 
1 

B(hhIaf,h ,dl such that hhrCl # hxIafIX and c, > af,~. 

Clearly then hAIcl(x) < f(x) for every x € [0,1] and 

{x:f(x)=hXIc(x)) = 4 for all c € (afIX,cl). This contradicts 

the definition of af and so we have 

{x:f (x)=h 
Xraf, X 

(XI) # 4. 

Similarly {x:f(x)=h 
X,Pf,X 

(x)) # 4 and since 

h 
X,Pf,X 

(x) 2 f(x) for all x € [0,1] the lemma is proved.O 



From the above lemma we obtain the following result 

regarding the existence of isolated points in the intersection 

sets of any continuous function with functions in a 2-parameter 

family. This is a close parallel to Theorem 3.2.9. 

THEOREM 3.4.9. For every function f in C there is at most a 

countable set Af c R such that if A € R\A•’ then: 

(i) the sets {x:f(x)=hXl, (XI] and {x:f(x)=h 
f ,A A J ,  

consist of single points, and 

(ii) the set E ~ , x  of numbers c € R such that 

{x:f(x)=hXIc(x)] is not perfect, is dense in (af ~,flf A). 

PROOF: ([43], pp. 75-76) Let f € C and let Af be the set of 

increases of functions in H whose graphs support the graph 

of f in at least two disjoint open intervals of [0,1]. Then 

Af is countable by Lemma 3.4.7. Let X € R\+. Then the 

graphs of hX and hA,gf each support f at a unique 
lfff ,A I 

point and (i) is proved. 

Let (a,b) be any open subinterval of (af ~,flf A). Let I 

be a connected component of {x:hXla(x)~f(x)<hX1~(x)]. Then I 

is an open subinterval of [0,1] and for every c € (arb) 

f - hXIc # 0 in every subinterval of I. Now if for all 

c € (a,b) the set {x:f(x)=hAIc(x)]~1 consists of a single 

point, x,, then x, is an isolated point of {x:f(x)=hXIc(x)]. 

If this is not the case then there is a number c € (arb) 

such that {x:f(x)=hAIc(x)]~1 contains at least two different 



points, say x, and x2 with xl < x2. Let 

c l  = inf{cCR: {x~[xlIx2]:f(x)=hXIc(x)]#@] 

and c2 = sup{cC~: {x€[xl.x21:f(x)=hXIc~x)lf9). 

Then, as in the proof of Lemma 3.4.8, there are numbers 

x3,x4 € [xl,x21 such that f(x3) = hAIcl(x3) and 

f (x4) = hhIc2 (x4) SO c,, c2 € (arb). NOW X f Af SO there 

exists x' € (x, ,x2) such that f (x') = hhIcl (x') and 

f(x) > hh or f(x') = hhIc2 (x') and f(x) < hhrc2(x), 

for all x C (x,,x2)\{x1]. Then the graph of hhIcl or hXIc2 

supports f in (x1,x2) and x' is an isolated point of the 

intersection set. Thus c ,  € Ef,h or c2 C E f , p  This proves 

that EfIh is dense in (af h,Pf h) and SO part (ii) is 

proved.0 

The next lemma is analogous to Lemma 3.2.10. Although the 

proof is not difficult the details are tedious and we will only 

outline it here. 

LEMMA 3.4.10. There exists a residual set of functions f in 

C such that for every rational open interval I c [0,1] the 

increases of functions in H which support the graph of f 

from above at more than one point, form a dense set in R. 

The same holds true for functions in H which support f from 

below. 

PROOF: ([43], pp. 476-4761 It suffices to prove the result 



for one fixed open rational subinterval I in [0,1]. Let CAn) 

be an enumeration of the rational numbers. For each pair of 

natural numbers, (n,m) let An, denote the set of functions f 

in C for which there is a function in H with increase 

X € (An-l/m,Xn+l/m) which supports the graph of f in I from 

above at more that one point. We shall show that An,, is 

residual in C. 

Let n, m be fixed and let U be a nonempty open set. in C 

with f € U. Then there exists E > 0 such that the open 

sphere B(f,e) c U. Let an = sup{c€~:Ex€~:f(x)=h~ (XI) #4) .  
n 1 

Then by Lemma 3.4.5 there exists a function hh € H such 
n 1 

that hX € ~ ( h ~  , ,e/4) and hX cl(x) < h), a (x) for 
n 1 nl n n nl n 

all x € [0,1]. Let J be a subinterval of I such that 

> hXn,cl on J. We can find five points, xi (i=0, ..., 41, in 
J such that xo<...<x4. Then by Lemma 3.4.5 there is a 

function hA in H such that hXnrc f B(hh a , ~/2) and 
nl nr n 

hXnIc(x) > hh , (x) for all x € [0,1]. Define g:[0,1] + R 
nl n 

by: 

g(x) = f(x) for x € [0,xo]U[x4,~] 

g(x1) = hhn,c(~l)l g(x3) = hhnrc(~3), 

and g = h for some h € H in each of the intervals [ X ~ , X ~ + ~ ] ,  

(i=0,1,2,3). Then g € ~ ( f , e ) .  It can be shown that there is 

a real number q < e/8 such that B(g,q) c An. Thus A,,, 

contains a dense open subset of C and so it is residual in 

C. Hence A = nEZ1 nz=l An,m is residual in C. 



Now given (p,q) c R and f € A there exists a rational 

number Xn € (p,q) and a natural number m such that 

(1,-l/m,hn+l/m) c (p,q). f An,., SO there exists a function 

hX,c € H which supports the graph of f from above at more 

than one point and X € (An-l/m,Xn+l/m). Hence the set of 

increases of functions in H which support f from above at 

more than one point is dense in R. 

The proof of support from below is similiar.0 

We need three more technical lemmas as well as another 

definition before arriving at our main result for this section. 

The first two lemmas are proved by arguments parallel to those 

for lemmas 3.2.11 and 3.2-12. 

LEMMA 3.4.11. There exists a residual set of functions f in 

C for which there is no function in H which supports f in 

more than two points. 

LEMMA 3.4.12. There exists a residual set of functions f in 

C for which there does not exist X € R with two distinct 

functions in Hh each of which support f in 2 distinct 

points. 

DEFINITION 3.4.13. A two parameter family H of continuous 

functions is almost uniformly Lipschitz if for all c, X € R 



there exists L~,, > 0 such that for all x,, x, € [0,1] 

IhXIc(xl)-hXIc(x2) 1 S L ~ , ~ l x ~ - x ~ l  and for every rational 

number n, Mn = sup[~~,~:X, c € [-n,n]] < +=. 

The next theorem is analogous to Theorem 3.2.5 which says 

that functions of nonmonotonic type form a dense G6 set in C. 

The proof is also similar. 

THEOREM 3.4.14. Let H be a two parameter family of 

continuous functions which is almost uniformly Lipschitz. 

Then there exists a residual set of functions f in C such 

that for every h in H the function f-h is not monotone at 

any point x € [0,1]. 

PROOF: ([43], pp. 478-480) For each natural number n let An 

denote the set of functions f in C for which there exist 

numbers A, c € [-n,n] and x € [0,1] such that f-hhfc i. s 

nondecreasing on (x-l/n,x+l/n)n[O,l]. Then A = UF=~A, is the 

set of functions f in C for which there exists a function h 

in H such that f-h is nondecreasing at some point of [O, 1 1. 

We will show that each An is closed and nowhere dense. 

Let n be given and let ifk] be a sequence of functions 

in An that converges uniformly to a function f € C. Then for 

each k there exist Akf ck € [-n,n] and xk € [0,1] such that 



hk = hhkIctf the function fk-hk is nondecreasing on 

(~~-~/n,~~+i/n)n[~,l]. Moreover there is a sequence (kil of 

natural numbers such that {Ak.) converges to some 
1 

X € [-n,n], {cki) converges to some c € [-n,n] and {xk.] 
1 

converges to some x € [0,1]. By Lemma 3.4.5 the sequence 

(hk.1 converges uniformly to the function hhlc. It is easy 
1 

to see that f-hXIc is nondecreasing on (x-l/n,x+~/n)n[O,l]. 

Thus f € An and An is closed. 

Now we will show that An is nowhere dense. Let U be a 

nonempty open subset of C. Then there is a polynomial g and 

E>O such that B(g,e) c U. Then a "saw toothed" function 

f € C can be constructed with f € B(g,e) and f f An. To do 

this let O<a<e and 0 = sup{lgl(x)l:OSxll) and let 

m > max(2~~,2n,3(P+M~)/a) where Mn is as in ~efinition 

3.4.12. Define a function s by: 

S(X) = a for x=2i/m (i=O,l, ..., (m-11/21 
s(x) = 0 for x=(2i+l)/m (i=O,l, ..., (m-1)/2) 
s is linear for x € [i/m,(i+l)/m] (i=O,l, ..., m-1). 
Then s is continuous and f = g+s € ~(g,e). For x € [0,1] 

there exists an integer i such that 0 I i I (m-1)/2 and 

2i/m S x S (2i+2)/m. Let XI c € [-n,n]. Then it is easy to 

show that f-hXIc is not nondecreasing for any x € [0,1] and 

so f f An. Thus An is nowhere dense and so A is of first 

category in C. 



The set of functions f in C for which there is a 

function h € H such that f-h is nonincreasing at some point 

of [0,1] can be shown in the same way to be of first 

category. Thus the theorem is proved.0 

We now define the notion of normal in the context of 

2-parameter families. 

DEFINITION 3 . 4 - 1 5 .  Let f € C, X € R and H a 2-parameter 

family of functions hXlc in C. If there exists a countable 

dense set Ef h in (af J, Of , X) such that the set 

{x:f(x)=hXlc(x)l is: 

(i) a perfect set when c f Ef h ~ { u f l ~ l ~ f l ~ ~  

(ii) a single point when c=af or c=Pf,h1 and 

(iii) the union of a nonempty perfect set and an isolated 

point when c € Ef X. 

Then the intersection sets of f with functions in HA are 

said to be normal. 

THEOREM 3.4.16. Let H be a 2-parameter family of continuous 

functions which is almost uniformly Lipschitz. Then there 

exists a residual set of functions f in C for which there is 

a countable dense set Af c R such that: 

(i) the intersection sets of f with functions in HX is 

normal for each h € R\Af and 

(ii) for any X € Af the intersection sets of f with 



functions in H~ are normal but for a unique number 

c f , ~  € ~ ~ , ~ u { a ~ , ~ , @ f , ~ ]  for which the intersection set 

contains two isolated points in place of one. 

PROOF: ([43], pp. 480-481) Let A be the intersection of the 

residual sets determined by Lemmas 3.4.10, 3.4.11, 3.4.12 

and Theorem 3.4.14. Then A is residual in C. Let f € A and 

let Af denote the set of increases of functions h in H which 

support the graph of f in at least two disjoint open 

subintervals of [0,1]. By Lemmas 3.4.7 and 3.4.10 Af is a 

countable dense subset of R. For h € R and c € [af,~,Pf,~] 

we have {x:f(x)=hhlc(x)] = {x:f(x)-hA c(x)=O]. By theorem 

3.4.14 f-hi,, is not monotone at any point of [0,1]. Thus x 

is isolated in ~x:f(x)=hXlc(x)] if and only if f-hXlc has a 

proper extremum equal to zero at x. This is so if and only 

if %,c supports f at x. Since f-hhfc is continuous 

{x:f(x)=hX ,(x)] is a nonempty closed set for all 

c [aflXfPffhl. Let Ef,h be the set of numbers 

c € (affhfPf h) such that ~x:f(x)=hAlc(x)] is not perfect. 

By Lemma 3.4.9 EfIX is dense in (af hl/3f 
I I 

Let co € Ef,h and let xo be a point at which a proper 

maximum of f -hXf 
0 
is equal to zero. Then there is a 

rational open subinterval I c [0,1] such that xo € I and 

f(xo)=hh C o ( ~ O )  and f(x)<hXlco(x) for x € 1\{x0]. Then 

(xOfcO) is unique in I. Similarly if a proper minimum of 

f-hh,co is equal to zero at xo then there is an open 



rational subinterval J c [0,1] such that for J the pair 

(xo,co) is unique. Hence the set of pairs, (x,c) for which x 

is an isolated point of ix:f(x)=hXlc(x)] is countable so 

that Ef x is countable. 

Let X C R\A•’. Let c C [ufl~,Pf,~I. Then h supports 

the graph of f at most at one point. Hence (x:f(x)=hArC(x)] 

contains at most one isolated point. If c C 

then, by Lemma 3.4-8, (x:f(x)=hA (XI) consists of a single 
1 c 

point. If c f ( ~ f l A ~ P f , ~ ) \ E f , ~  then (x:f(x)=hXlc(x)] is a 

perfect set. Let c € Ef,x and let x, be an isolated point of 

{x:f(x)=hhIc(x)]. Since X C A•’, xo is the unique isolated 

point of this set. Clearly ~x:f(x)=hhlc(~))\{xo~#~. This 

proves part ( i) . 

Let X C A•’. By Lemma 3.4.11 if c C [ufI~,flflh] the set 

(x:f(x)=hX (XI) contains at most two isoated points. By 
1 c 

Lemma 3.4.12 there is a unique number cf € [af 
I I 1 

such that (x:f (x)=hAIc (x)) contains two isolated points. 
f IX 

For c#cf,~, (x:f(x)=hh 
fCf ,A 

(XI) contains at most one 

isolated point. The rest follows as in the proof of part 

(i1.D 

Wojtowicz extends this result to families of continuous 

functions which are homeomorphic images of 2-parameter families. 

THEOREM 3.4.17. If H is a 2-parameter family for which 



Theorem 3 . 4 . 1 6  holds and * is a homeomorphism, then Theorem 
3.4.16 holds for the family +(H). 

Conclusion 

We have seen that although typical continuous functions 

exhibit "pathological" properties such as nondifferentiability 

and nonmonotonicity there is also a great deal of regularity in 

their be'haviour. For each typical continuous function this 

regularity is exhibited in the pattern of the intersection sets 

of the function with lines, polynomials, and functions in some 

2-parameter families. There is also a regularity within the 

family of typical continuous functions in that the pattern of 

intersection sets is the same. 

Many of these results derive from the fact that a typical 

continuous function is of nonmonotonic type. This means that the 

function is not monotonic in a very strong way, much stronger 

than simple nowhere monotone. A function of nonmonotonic type is 

nowhere monotone but the converse does not necessarily hold. If 

we notice that a function of nonmonotonic type cannot cross a 

straight line in a "simple' way then we see how nonmonotonicity 

is related to the structure of the intersection sets of typical 

continuous functions with straight lines. Also since it is clear 

that functions of nonmonotonic type have - f' = +w and Tf  = += we 

see that they are nowhere differentiable. 



CHAPTER IV 

POROS I TY 

In Chapter 3 we looked at some of the geometric properties 

of typical continuous functions. One of the results of that 

chapter was that any typical continuous function intersects 

every line in a nowhere dense set. Nowhere denseness can be seen 

as a measure of the "smallnessw of a set. Other ways to measure 

smallness include Lebesgue measure and porosity. In this chapter 

we will look mostly at the porosity of intersection sets of 

typical continuous functions with certain families of functions. 

In section 2 we shall see results regarding the size of 

intersection sets of typical continuous functions with families 

of functions controlled by a modulus of continuity and with 

horizontal lines. Section 3 deals with the intersection sets of 

typical continuous functions with functions in o-compact subsets 

of C. In section 4 we look at results obtained by Haussermann 

relating the porosity of intersection sets to the modulus of 

continuity controlling the class of functions with which the 

intersections are taken. Section 5 concerns [gl-porosity and 

[gl-knot points. 

The concept of porosity was first intoduced by Denjoy in 

1941, in the form of an index. Dolzenko introduced the term 

porosity in 1967 and it is his notation that we will use. 

porosity measures the relative size of the "gaps" in a set so 

that if the porosity is high then the set is relatively "thin". 



DEFINITION 4.1.1. Let E be a subset of R and b € R with 

a<b. Then by X(E,a,b) we mean the length of the largest open 

interval of (alb) that contains no point of E. For 

convenience we will also write h(E,a,b) for b<a as well'as 

a<b. 

DEFINITION 4.1.2. Let E be a subset of R and xo € R. Then 

the right - hand porosity of E at is defined as: 

Similarly the -left hand porosity of E at k is defined as: 

and the bilateral porosity - - -  of E at k is defined as: 

DEFINITION 4.1.3. Let E be a subset of R and x, € R. Then we 

will say - -  E is porous at x, if p(E,x0)>O; porous on the right 
(left) if p+(E,x,)>O (p-(E,xo)>O); stronqly porous at if 

p(~,x,)=l; right (left, bilaterally) stronqly porous at 3 

if p+(EIxO)=l (p,(E,xo)=l, p+(~,x,)=p-(~,x~)=1 

respectively); nonporous at x, if p(~,x,)=O. We say that E 

is porous (porous 0" the right, stronqly porous, etc.) if 



for every x 6 E, E is porous (porous on the right, strongly 

porous, etc.) at x. 

We see then that a porous set is both nowhere dense and of 

measure zero. This is because porosity measures the size of the 

gaps in a set and if a set has gaps near each of its points then 

it is nowhere dense and if the gaps are large enough then no 

point can be a point of density so the set has measure zero. We 

need two more definitions. 

DEFINITION 4.1.4. Let o be a real valued function defined 

for all nonnegative real numbers such that o is increasing 

and limx,O+ o(x) = o(0) = 0. Then o is a modulus of 

continuity. 

DEFINITION 4.1.5. Let o be a modulus of continuity. Then by 

C(o) we mean the set of functions f in C such that for every 

x, y € [0,1], If(x)-f(y)l I o(lx-yl). We call C(o) the 

equicontinuous family determined & - o. 

Intersections ---- with C(o) and with horizontal lines 

In 1963 C. Goffman [20] showed that for any modulus of 

continuity o, the typical continuous function intersects every 

function in the equicontinuous class C(o) in a set of measure 



zero. To see this we first need two technical lemmas. 

LEMMA 4.2.1. Let a be a modulus of continuity. For each e ,  

i>e>O, and positive integer n there exists 6 and q where 

l/n>6>0 and q>0, and a function f € C, with Ilfllse, such that 

for each x € [0,1-l/n] and every function g with ~ ~ f - g ~ ~ < q  we 

have either: 

PROOF: ([20] pp. 741-742) Choose 6 < l/n so that 0(6) < e / 8 .  

Then there is a positive integer k such that k6 < 1 I (k+l)6 

and [O,k6] 3 [O,l-1/n]. Define a continuous function f as 

follows: f(0) = 0, for mIk, f(m6) = e if m is odd, •’(ma) = 0 

if m is even and f is linear in between such that each 

segment has slope fe/S. 

For every x € [O,k61, (y,f(y)) is on the same line 

segment of the graph of f as (x,f(x)), either for all 

[x+6/4,x+6/2]. Then for all y € [x-6/2,x-6/41 cr for all y € 

such y, 

Let q = 1/2 u(6/4) and suppose Ilf-gll < q for all x and y as 

53 



above, then: 

LEMMA 4.2.2. Let o be a modulus of continuity. For every 

positive integer n, the set En of functions f in C such that 

there exists 6 (depending on •’1 with 0<6<l/n, such that for 

all x € [0,1-l/n], If(x)-f(y)l > o(lx-yl) either for every 

y € [x-6/2,x-6/41 or for every y € [x+6/4,x+6/2], contains a 

dense open set in C. 

PROOF: ([20], pp. 742-743) Let g € C and a be such that 

O<a<l. Then there exists a polynomial, p, such that 

p € B(g,a/2). Let M = max~lpl(x)l:x€[O,ll). Let a/2 take the 

place of e in 4.2.1 and w(x) = o(x) + Mx take the place of o 

in 4.2.1. Then there exists 6 and q with 0<6<l/n and q>O and 

a continuous function h with llhll~a/2, such that if Ilk-hll<q 

then, for all x € [0,1-l/n], Ik(x)-k(y)l > w(lx-yl) either 

for every y € [x-6/2,x-6/41 or for every y € [x+6/4,x+6/2]. 

For all such x and y we have: 

I (p+k) (x)-(p+k) (y) 1 2 I k(x)-k(y) 1 - Ip(x)-p(y) 1 
> w(lx-yl) - MIX-yl 
= o()x-yp. 

Now 11g-(plh)ll 5 11g-pll + llhll < a. Thus B(g,a) contains an 

open subset of En and so En contains a dense open subset of 

c.17 



The main result of this section follows easily. 

THEOREM 4.2.3. For each modulus of continuity o the set of 

functions f in C such that for every g € C(o), the Lebesgue 

measure of {x:f(x)=g(x)) equals zero, is residual in C. 

PROOF: ([20], p.743) For each natural number n let En be the 

set defined in Lemma 4.2.2. Let E = n;=,En. Then E is 

residual in C. 

Let f € E. Then for each n there is a 6, such that 

O<Sn<l/n and for all x € [O,l/n], If(x)-f(y)l > o(lx-yl) 

either for every y € [x-6,/2,~-6~/4] or for every 

y € [x+Sn/4,x+bn/2]. Let g € C(o) and let A = {x:f(x)=g(x)). 

A is measurable and so we assume m(A)>O. Let x € (0,l)n~ 

such that the density of A at x, d(A,x), is 1. Then if 

B = { y :  If (x)-f (y) l>o( lx-yl I), d(~,x) = 0. Now choose no so 

that x < 1-1/11,. Then for n2no, B contains either the set 

[~-6~/2,x-6,/4] or the set [~+6~/4,x+6,/2] and so B has - 

relative measure of at least 1/4 on [~-6~/2,x+6~/2]. But 

lirnn,,6, = 0 so this contradicts the assertion that 

d(~,x)=O. Hence X(A)=O.D 

In 1981 B. Thomson [41] showed that the level sets of a 

typical continuous function are strongly porous on both sides. 



THEOREM 4.2.4. There is a residual set of functions in C all 

of whose horizontal levels are strongly porous on both 

sides. 

PROOF: ([41], p.189) For x €[0,1] let L,(•’) = •’-'(•’(XI). For 

each pair of rational numbers p and 6 such that b 0  and 

p € (0,1) let Ap,6 denote the set of all functions f in C 

Such that there is a point x (depending on p, 6, and f) so 

that X(Lx(f),x,x+h) S ph for O<h<6. We will show that each 

A ~ ,  6 is nowhere dense in C. 

It is easy to see that no Ap,6 contains a neighbourhood 

in C since every neighbourhood contains many functions whose 

graphs are nonhorizontal line segments and so are not in 

Ap,6 Then if Apt& is closed we see that it is nowhere 

dense. 

Let ifn] be a sequence of functions in Ap,6 which 

converges uniformly to a function g € C. Let Exn) be the 

sequence of points associated with the corresponding fn so 

that X ( ~ ~ ( f ~ ) , x ~ , x ~ + h )  I ph for O<h<b. Then, passing to a 

subsequence if necessary, ixn) converges to a point z in 

[0,1]. Suppose that X(L,(g),z,z+h) > ph for some h such that 

O<h<6. Then there is an interval J in (z,z+h) for which 

I~l>ph and JflLz(g) = 4. Then there is a closed subinterval 

[a,b] c J with b-a > ph and lg(x)-g(z)12~>0 for all 

x € [a,bl. Choose n sufficiently large so that 



[a,bl c (xn,xn+h) and lfn(t)-g(t)l<e/3 for all t f [0,1] and 

lg(z)-fn(xn)l<e/3. Then for x € [a,b] we would have 

If,( XI-fn(xn)12e/3. But this would imply that L xn (fn)n[a,bl 

= ) which gives X(Lxn(fn),xn, xn+h) 2 b-a > ph. This 

contradicts the choice of f, and xn and so we have shown 

that X(~,(g),z,z+h) 5 ph. Hence Ap,h is closed and so 

nowhere dense. 

Let A = U p , h A p , ~  Then A is of first category. The case 

for strong porosity on the left is similarly shown and so 

the theorem follows.0 

Intersections - with a-Compact Sets of Functions 

In 1985 Bruckner and Haussermann [9] generalized the results 

of Goffman and Thomson to show that for any a-compact class of 

functions F, a typical continuous function will intersect every 

function from F in a bilaterally strongly porous set. This leads 

to some new results and new proofs of known results regarding 

the differentiability of typical continuous functions. 

First we require two technical lemmas which are variants of 

Lemmas 4.2.1 and 4.2.2 given by Goffman. The proofs are similar. 

LEMMA 4.3.1. Let a be a modulus of continuity. For each E ,  



1/2>~>0 and each positive integer 1122, there exists 

6, € (O,l/n) and q>O such that: 

(i) there exists f € C with l l f  llle,such that for each 
x € Loll-l/n] and every function g € C with [If-gllcq, 

Ig(x)-g(y)l > o((x-y)) either for all y € [~+6~/2n~,x+6~/2n] 

or for all y € [~+6~/2n~+6~/n,x+6~]; and 

(ii) there exists h € C, with Ilhllle, such that for each 

x € [l/n,1] and every function g € C with l\h-gllcq, 

Ig(x)-g(y)l > o(lx-ylleither for all y € [x-6,/2n, x-hn/2n2] 

or for all y € Lx-6n,x-6n/2n2-6n/n]. 

LEMMA 4.3.2. Let o and n be as in 4.3.2 and let 

E: = {f€~:36~€(O,l/n) SO that vx€(O,l-l/n], 

If (x)-f(y) l>olx-yl either for all y€[~+6~/2n~,x+6~/2nl 

or for all ~ € [ ~ + 6 ~ / 2 n ~ + 6 ~ / n , x + 6 ~ I I  

E: = {f€C:36n€(0,1/n) so that vx€[l/n,l], 

If(x)-f(y)l>o(lx-yl) either for all 

y€[~-6,/2n,x-6~/2n~ 1 

or for all y € [ ~ - 6 ~ , ~ - 6 ~ / 2 n ~ - 6 ~ / n ] ] .  

Then E: and E: contain dense open subsets of C. 

The next lemma extends Theorem 4.2.3. 

LEMMA 4.3.3. For each modulus of continuity o the set of 

functions f in C, such that for every g € C(o), 

{x:f(x)=g(x)) is bilaterally strongly porous, is 



residual in C. 

PROOF: ([g], pp. 9-10) Let EA and E: be as in 4.3.2 and let 

El = n;=2~A and E2 = nEr2E:. Then El and E2 are residual in 

C and so is E = E1nE2. 

Let f € El, g € C(o) and H = {t:f(t)=g(t))n[0,1). We 

will show that H has right porosity equal to one at each 

point of H. Let x € HI N be a positive integer such that 

x € [O,l-1/Nl,and B = {y:lf(x)-f(y)l>o(lx-yl)). Then 

B c [O,I]\H. For n2N we have either: 

(i) [~+6~/2n~,x+6~/2nI c B for infinitely many n. Now 

( i i ) [ ~ + 6 ~ / 2 n ~ + 6 ~ / n , x + 6 ~ ]  c B for infinitely many n. Then 

p+(~,x) 2 limn+,(l-l/n-1/2n2) = 1 .  

Thus H has right porosity 1 at each of its points. Similarly 

for f € E~ and g € C(o) the set {t:f(t)=g(t))n(O,l] has left 

porosity 1 at each of its points. Hence if f € E and 

g € ~ ( o )  then {t:f(t)=g(t)) is bilaterally strongly porous.0 

Lemma 4 . 3 . 3  together with Ascoli's theorem implies the following 

theorem. 

THEOREM 4 . 3 . 4 .  Let K be a o-compact subset of C. The set of 



functions f € C such that if g € K then (x:f(x)=g(x)) is 

bilaterally strongly porous is residual in C. 

There are several interesting consequences of Theorem 4.3.4. 

THEOREM 4.3.5. Let La be the class of Lipschitz functions of 

order a on [0,1]. The set of functions f in C such that if 

g € La then (x:f(x)=g(x)) is bilaterally strongly porous, is 

residual in C. 

An immediate consequence of this theorem is that the graph 

of a typical continuous function will intersect the graph of a 

function which has a bounded derivative in a bilaterally 

strongly porous set. Bruckner and Haussermann went on to show 

that this is also true for functions with finite, rather than 

bounded, derivatives. 

THEOREM 4.3.6. The set of functions f in C such that if g is 

differentable on [0,1] then {x:f(x)=g(x)) is bilaterally 

strongly porous, is residual in C. 

This result can now be applied to obtain other results 

regarding generalized derivatives. Consider a sequence (xn3 
f(xn)-f(x) 

converging to x € [0,1] such that limn,, exists and 
m 

x,-X 
11 

is finite. Then we can construct a differentiable function g 

such that f(x,)=g(xn) for each n. Then by 4.3.6 (xn) must be 



bilaterally strongly porous at x. 

DEFINITION 4.3.7. Let E = {E,:x€R) be a system of paths. If 

each Ex is residual in some neighbourhood of x then the 

E-derivative is called the qualitative derivative. 

THEOREM 4.3.8. Let E = {E,:x€[O,ll) be a system of paths 

such that each Ex is not bilaterally strongly porous at x. 

Then there is a residual set of functions in C which are 

nowhere E-differentiable. Hence a typical continuous 

function is nowhere unilaterally preponderantly 

differentiable, nowhere qualitatively differentiable and 

nowhere unilaterally approximately differentiable. 

By looking at the porosity of the paths concerned we see how 

these results clarify results in chapter 2. In chapter 3 we saw 

that a typical continuous function intersects "most" straight 

lines in nowhere dense perfect sets. Now we have also seen that 

these sets must also be bilaterally strongly porous. 

Generalized Porosity 

We have seen several results regarding the -"smallness" of 

the intersection sets of typical continuous functions with 

continuous functions in a fixed class. The "smallness" has been 

gauged by density, Lebesgue measure or porosity. The fixed 



classes have been lines, equicontinwous families or o-compact 

subsets of C. In his doctoral thesis in 1984 Haussermann [ 2 1 ]  

asked if the idea of smallness could be strengthened and what 

the relationship is between the fixed class and how we measure 

smallness. To strengthen the idea of smallness he formulated a 

generalized porosity. To define the relationship between the 

class and the measure of smallness he used the modulus of 

continuity. We will begin with several definitions. 

DEFINITION 4.4.1. Let @ be a strictly increasing function in 

C[0,1] such that @(0)=0. Then @ is called a porosity 

function. 

A family @ = (@,:a€~] of porosity functions indexed by 

an open subinterval J of (Or-) is called a porosity family. 

DEFINITION 4.4.2. Let E be a subset of R, x, 6 R and @ a 

porosity function. Then E is ~Pporous - at x, if there is a 

sequence of intervals (1,) with each In in the complement of 

EU{X,], II,I < 1 and the distance from In to x,, d(In,xo) 

decreases to zero and for all n, d(~,,x,) < ~ ( I I ~ I ) .  ~ight, 

left and bilateral @-porosity are similarly defined. E is -- 
@-porous if E is @-porous at all of its points. If 

@ = (@,:~EJ) is a porosity family we say that E is @-porous 

at x, if there is a 469 so that E is tpporous at x,. Right, - 
left and bilateral @-porosity are similarly defined. E is -- 
stronqly @-porous at 3 if for every # € $  E is @-porous at 



x,. Right, left and bilateral strong @-porosity are 

similarly defined. We say E is @-porous if it is @-porous at 

- each of its points. 

If we take ),(XI = ax for a€(o,=) then bilateral strong 

porosity is equivalent to ordinary porosity. We see that the 

faster $(x) tends to zero with x the stronger is the resulting 

porosity. 

DEFINITION 4.4.4. Let @ = : a  be a porosity family. 

Then if for all a,p € J with a<p there is a positive number 

6 such that ),(x) < mg(x) for all x€(0,6), we say that 9 is 

ordered. The family 9 is refined if, given (tn), a strictly 

decreasing sequence converging to zero in such a manner that 

itn] is not right 4,-porous at zero for some a€J, then there 

exists pCJ such that ItZn] is not right )p-porous at zero. 

By using ordered porosity families we are assured that we 

need deal only with a countable number of porosity functions. 

This is so because for an ordered family 9 there is always a 

sequence of porosity functions (4, 3 such that if a set is 
n 

'an 
-porous for each n then it is strongly @-porous. Using 

refined porosity families ensures that the family contains 

functions of the same order of growth near zero and functions 

which are arbitrarily small near zero. 



In the remainder of this section we will require that for 

any modulus of continuity of D+o(O)>O. 

* 

DEFINITION 4.4.5. Let o be a modulus of continuity, and 

g € C. If there is a positive number, M, such that for all x 

and y in [0,1], Ig(x)-g(y)l s Mo(lx-yl) then we say g is 

Lipschitz-o and write g € ~(o). When a is the identity we 

obtain the Lipschitz functions. 

In section 3 we saw that if the porosity function is linear 

then no restriction is necessary on the modulus of continuity to 

ensure that a typical continuous function will intersect every 

function in the class C(o) in a bilaterally strongly porous set. 

Haussermann proves the reciprocal of this. 

THEOREM 4.4.6. Let @ be an ordered porosity family. Then 

there exists a residual set of functions in C which 

intersect every Lipschitz function in a bilaterally strongly 

@-porous set. 

We will now look at several conditions on o and 9 which will 

guarantee the "smallnessf1 of the intersection sets. 

THEOREM 4.4.7. Let u be a modulus of continuity and 9 a 

porosity function. For values of x near zero define 

h(x) = @-'(29-'(x)+3x) + 29-'(x) + 3x. If D+(huoh)(O) = 0 



then the set of functions in C which intersect every 

Lipschitz-o function in a bilaterally @-porous set is 

residual in C. 

The condition specified in this theorem is quite 

complicated. A much simpler condition can be given if we give up 

bilateral porosity. This is done in the next theorem. 

THEOREM 4.4.8. Let o be a concave modulus of continuity and 

@ be a porosity function. If D+(o@-')(O) = 0 then the set of 

functions in C which intersect every ~ipschitz-o function in 

a $-porous set is residual in C. 

The condition that the modulus of continuity be concave is 

not much of a restriction. For, if w is any modulus of 

continuity, let o be the concave upper boundary of the convex 

hull of w. Then o is concave and L(a)>L(w), Then if the 

conclusion of 4.4.8 is true of L(o) it will also be true of 

L(w). Haussermann goes on to show that if ~+(wt$-')(0)=0 then 

~ + ( o $ - l ) ( O ) = 0  and so the conclusion of 4.4.8 holds for o and 

hence for w as well. 

The next theorem is the main result of Haussermanns thesis. 

In it we are given conditions so that for a fixed class of 

functions and a measure of "smallness" the typical continuous 

function will intersect every function in the fixed class in a 



"small" set and we are given conditions so that no function in C 

will intersect every function in the fixed class in a "small" 

set. 

THEOREM 4.4.9. Let o be a concave modulus of continuity and 

let @ be an ordered porosity family. If D+(or#~-l)(O) = 0 for 

each # € 9 then the set of functions in C which intersect 

every function in L(o) in a strongly +porous set is 

residual in C. 

Let 9 also be refined and D+#(0) < 0 for each # € 9. 

Then if there is a # € @ such that D+(o#-l)(O) > 0, then 

there is no function in C which will intersect every 

function in L(o) in a strongly @-porous set. 

This theorem leads to several results about the 

differentiability of typical continuous functions. The first is 

stated in terms of path derivatives. 

THEOREM 4.4.10. Let be a refined and ordered porosity 

family such that D+#(O) < = for all # € 9. Then for every 

system of paths, E, such that for each x € [0,1] there is a 

# € @ so that Ex is (unilaterally) #-nonporous at x, there 

exists a residual set of functions f in C such that f is 

nowhere E-differentiable. 



We can now apply Theorem 4.4.10 to two generalized 

derivatives. The preponderant derivative we have already 

defined. It was introduced by Denjoy and is a generalization of 

the approximate derivative. In 1968 Sindalovski introduced the 

congruent derivative. 

DEFINITION 4.4.11. Let Q be a fixed set of real numbers with 

0 as a limit point. Let E be a system of paths such that for 

each x € [0,1], Ex = (x+Q)fl[0,1]. Then the E-derivative is 

called the conqruent derivative. 

THEOREM 4.4.12. The set of functions in C which are nowhere 

preponderantly differentiable is a residual subset of C. 

THEOREM 4.4.13. Let Q be a fixed set of real numbers with 0 

as a limit point.   he set of functions in C which are 
nowhere congruently differentiable (with respect to Q) is a 

residual subset of C. 

Jarnik had shown [27] that the typical continuous function 

has every extended real number as an essential derived number 

almost everywhere. Haussermann extended this result. 

THEOREM 4.4.14. The set of functions in C such that -- or = 
a 

is a right essential derived number and -= or = is a left 

essential derived number at every point of [0,1] 



is residual in C. 

Another way in which the "smallness" of a set can be 

measured is by Hausdorff dimension. We need two more 

definitions. 

DEFIN~TION 4.4.15. Let E be a subset of R and let $ be a 

porosity function. The Hausdorff $-measure of E is 

where In is an open interval such that 1 1 ~ 1 ~ 6  and E c UIn 

If $ is the identity function the Hausdorff $-measure is the 

same as the Lebesgue (outer) measure. If E is $-porous then the 

Hausdorff $-'-measure of E is zero. 

DEFINITION 4.4.16. Let E be a subset of R and let r € (0,m). 

Define $r(~) = xr. If d = infir€(O,=): the Hausdorff 

$,-measure of E is 01. Then the Hausdorff dimension of E is 

d. 

THEOREM 4.4.17. Let 0 < P I 1 .  The set of functions in C 

which intersect every Lipschitz-0 function in a set of 

Hausdorff dimension less than or equal to 1 - P is residual 

in C. 



Thus we have been able, for a fixed /? € (0,1], to give an 

upper bound on the Hausdorff dimension of the intersection set 

of a typical continuous function with any Lipschitz-/? function. 

In 1985 P. Humke and M. Laczkovich [23] continued the study 

of the porosity of intersection sets. Haussermann has shown that 

for a porosity function #, the typical continuous function 

intersects every Lipschitz function in a bilaterally strongly 

#-porous set. Humke and Laczkovich show that the class of 

Lipschitz functions can be replaced by the class of monotone 

functions. Using an argument of Bruckner they also show that 

this is not true for the class of absolutely continuous 

functions. Their proofs make use of the idea of a proper pair of 

sequences. 

DEFINITION 4 . 4 . 1 8 .  Let a = fan] and /? = IDn) be a pair of 

sequences of real numbers. If I/?,) + 0 and O<an</?, for all 

n = 1,2, ... then (a,/?) is called a proper pair of sequences. 
Let (a,/?) be a proper pair of sequences and x = {xn] be a 

sequence of real numbers that converge to x,. If an I xn-x, 

I On for n = 1,2, ... the x is an (a,/?) sequence. 

. Now if (a,/?) is a proper pair define: 

In = {f€C:g (a,/?) sequence x with f increasing on 1 

and Dn = {f€C:g (a,/?) sequence x with f decreasing on 1.  

We need two lemmas regarding proper pairs of sequences and In 

and Dn. 



LEMMA 4.4.19. I•’ (a,p) is a proper pair then both In and Dn 

are closed for all n. 

PROOF: ([23], p.245) Let N be fixed and suppose Ifk) is a 

sequence in IN which converges uniformly to f. Then for each 

k k = 1.2,. . . , fk € IN SO that there is a sequence {X,)E=~ 
converging to xb such that an 5 xi-xi I on for each n and fk 
is in~reasin'~ on {x:~;=~. Thus there is a subsequence 

ki {ki)T=l such that for each n=O,l, ... the sequence {xn 
ki ki 

converges (say to x;). Since an 5 xn -x, 5 pn we have 

a, I x,i-xh I pn. Thus the sequence x' = Ex;) is an (a,o) 

sequence. Since Ifk)+•’ uniformly and each fk is increasing 

on l x k j ~ = ~ ,  f is increasing on {x;];=~. Hence and so I, 

is closed. Since Dn = {•’:-•’€I,), Dn is also c1osed.n 

LEMMA 4.4.20. If (a,O) is a proper pair, the both In and Dn 

are nowhere dense for each n=1,2,.... 

PROOF: ([23], p. 245) It suffices to prove the result for 

In, and by Lemma 4.4.19 we need only show that In contains 

no nonempty open sphere. Let N be fixed, f € C and E > O .  We 

will show that there is a g € C\IN within e of f. 

Partition [0,1] into congruent closed intervals 

{~~:k=1,2, ..., K) so that each has length d<~/2 and the 
oscillation of f on each interval is less than ~/2. Choose 



nl, n2 2 N such that O < ~ ~ ~ < f l ~ , < ~ ~ ~ < f l ~ ~  <d. Let 6=min{an2, 

(d-Pn1)/2]. We define g on each interval as follows: 

Jk 

(ii)if f(a)Sf(b) let g(a)=f(a), g(b)=f(b) and g is linear on 

[a,a+6] and [a+6,b] and has slope of 1 on [a+6,b]. 

Then If(x)-g(x)l < E for all x € [0,1]. 

Let Cxn] be an (a,P) sequence which converges to 

xo € (0,l). Then there is a unique k such that xo € Jk but 

xo is not the right endpoint of Jk. Now let J k  = [arb]. If 

f(a)>f(b) then g is decreasing on J k  and so is eventually 

decreasing on {xn]. Suppose, on the other hand, that 

f(a)<f(b). If xo € [a+6,b) the g is decreasing on [a+6,bl 

and eventually on {xn]. If xo € [ala+6) then a+6 S a+an2 S 

x0+ffn2 Xn2 xo+Pn2 < xo+un 1 S xn 1 5 x0+Pn, < a+6+Pnl < b. 

However g is decreasing on [a+6,b] and xn 1<Xn2 

g(xn )>g(xnl). Thus g is not increasing on and so 
2 

g f In*U 

Using these two lemmas we are now able to prove easily the 

following theorem. 

THEOREM 4.4.21. Let 4 be a porosity function. Then the set 

of functions in C which intersect every monotone function in 

a bilaterally strongly @-porous set is residual in C. 



PROOF: ([23], p. 246) ~efine a proper pair of sequences 

(a,P) as follows. Let Po=l and if p, € (0,11 has been 

defined, define Pn+l by ~ < f l n + i < ~ ~ ~ l P n f .  ~/(n+l)) such that 

@(/3n-Pn+l)>nPn+l. Let an=Pn+1 for n=0,1,2,.. .. 

Then for each n let In and Dn be as given above and let 

A = (Un~n)U(Un~n). Then C\A is residual in C. By the lemmas 

if f € C\A and f is monotone on a set M c [0,11 then for 

each x € MI ~ f l [ x + a ~ ~ , x + P ~ ~ ]  = 4 for some subsequence {nil of 

natural numbers. For each natural number i let 

- 

d(x,Ji) 
for i=1,2, .... Then limi,, = 0. Strong tpporosity on 

4(lJil) 
the left is shown similarly. T ~ I S  proves that M is 
bilaterally strongly 9-porous.U 

We will show now that the class of monotone functions cannot 

be replaced by the class of absolutely continuous functions. We 

need one more lemma before proving this result. The lemma is 

essentially due to Haussermann ([22] Theorem 2.16) although 

Humke and Laczkovich have rewritten it in terms of (a,P) 

sequences. 

LEMMA 4.4.22. Let (aIP) be a proper pair of sequences and 



let o be a positive increasing function on (0,1] such that 
o(an) Pn 

limn+= - - W. ~f f € C, then for almost all x € [0,1] 
an 

there is an (a,P) sequence Eyn1 + x such that 

If(yn)-f(x)l 5 o(yn-x) for n sufficiently large. 

THEOREM 4.4.23. Given 6>0 and f € C, there is an absolutely 

continuous function g such that {x:f(x)=g(x)) is not 

bilaterally strongiy x1 +6-porous. 

PROOF: ([23], pp. 247-248) For each natural number n define 

On = (n!)-l-& and an = On+, , and let o(x) = n -1-6/2 if 

x € (antfin]. Then 

Thus by Lemma 4.4.22 for each f € C there is an x0 E [ 0 , 1 )  

and an (a,P) sequence {xn)+xo such that xn<l and 

sufficiently large, say nln,. 

Define g € C to be linear on the intervals [O,xo], 

[xnoll] and [ X ~ + ~ , X ~ ]  (n2no) and to agree with f for xn, 

(n>n,). Then 2z=ln < = and we see that g is absolutely 

continuous on [0,1]. Let H = {x:f(x)=g(x)). Then for each 

interval Jc(xo,l)\H there is an n such that 

Jc(xn+1 , X ~ ) C ( X ~ + Q ~ + ~  ,xo+Pn) Then 



[q]-porosity - and [ql-knot points 

In 1934 Jarnik proved that for a typical continuous function 

f the set of points which are not knot points of f is of first 

category and measure zero. He improved this result to show that 

for a typical continuous function f almost all points of [0,1] 

are essental knot points of f (see Chapter 2). Recently, L. . 
~ajiEek stated that Petruska has proved that for a typical 

continuous function the set of points which are not knot points 

is o-bilaterally strongly porous. ZajiEek [44]has improved this 

result with the ideas of [gl-porosity and [gl-knot points. Let G 

denote the family of positive increasing functions g on (0 ,m)  

for which g(x)>x for all x. 

DEFINITION 4.5.1. Let g € G and E c R. Then E is [q]-porous 

from the right (from the left) at a point x € R if there is -- ---- - 
a sequence of positive numbers Ehn) which decreases to 0 and 

such that g(h(~,x,x+h,)) > hn ( g(X(E,x-hn,x)) > hn ) for 

all n. E is [ql-porous if it is [gl-porous at each of its 

points. 

DEFINITION 4.5.2. For a € R and h>O a system of the form 

D = I[a+nh,a+(ri+l)h];n an integer) is called an equidistant 

division of R with norm h. - - - - -  

Let g € G and E c R. If for any E>O there exists an 

equidistant division D of R with norm less than e such that 



~IX(E,I)) > 1 1 1  (where X(E,I) is the length of the largest 

open interval in E disjoint from I) for any I € D, then we 

say that E is [g]-totally porous. 

Thus we see that the concept of [gl-totally porous is 

stronger than the concept of ordinary porosity. XajiCek 

strengthens the concept of knot points as well and then goes on 

to show that for a residual. set in C the set of non-[gl-knot 

points is [gl-totally porous. 

DEFINITION 4.5.3. Let g € G and f a real valued function on 

R. Let y be an extended real number. Then y is a right 

(left) [ql-derived number - - - -  of f at a point - x € R if there is 

a set E c R such that 

and R\E is [gl-totally porous from the right (left) at x. 

We shall say that x € R is a [g]-knot point - of f if 

every extended real number is a bilateral [gl-derived number 

In order to prove the main result of this section we shall 

need to define two constructions of functions and prove two 

lemmas. In the constructions let g € G be fixed and continuous. 



CONSTRUCTION 1:  Let h be a Lipschitz-K function on [0,1], 

c€RI n a natural number and v a real number such that 

O<v<l/n. Then we let f = f(hIcInIv) denote the function on 

[0,1] uniquely determined as follows: 

(i)f (k/n) = h(k/n) (k=O, 1,. . . ,n) 
(ii)f(x) = h(x)+c(x-k/n) for x€[k/n,(k+l)/n-v] 

(k=o,l,...,n-1) 

(iii)f is linear on the intervals [(k+l)/n-v,(k+l)/n] 

(k=O,l,,..,n-1) 

LEMMA 4.5.4, Let h,K,c,n,v,f be as in construction 1 ,  Then 
2K+ lc 1 

Ilf-hll I n 

PROOF: ([44], p. 8 )  If x € [k/n,(k+l)/n-vl for some k€iOIl, 

..., 11-11 then 

If x C [(k+l)/n-v,(k+l)/nl for some k€(O,l,..,,n-1) then 

Now Ih(x)-f((k+l)/n)l I K/n and (h(x)-f((k+l)/n-v)l I 

CONSTRUCTION 2: Let p be a polynomial and a<b be real 

numbers and 6>0 be a real number. Let c = (a+b)/2 and 

d = (b-a)/2. Then define real numbers K,n,v and e and an 

open sphere BcC as follows: Let ~=sup(~p'(x)~:x€[O,l]). 

Choose n such that (2K+lcl)/n < 6/2 and l/n < 6. Then find 



v > 0, 0 < q < v, 0 < e such that: 

(i)v < 1/(2n), g(l/n-2~) > I/n, 

(ii)g(v-q) > v, and 

(iii)e < 6/2, 2e/q < d. 

Now let B = B(a,b,p16) be the open ball with centre 

f = f(p,c,n,v) (given in construction 1 )  and radius E .  

LEMMA 4.5.5. Let the notation be as in construction 2. Then: 

(i)for any h € ~(a,b,p,G) we have llh-pll < 6, and 

PROOF: ([44] p. 9) (i) follows from Lemma 4.5.4 and 

construction 2. To prove (ii) suppose that 

x€[k/n,(k+l)/n-2v] for some 

k€[o,l, ..., 11-11. By (ii) of const ruction 2 it is sufficient 
h(y)-h(x) 

to show that (y: f [a,bll t l  [x+q,x+vI = 4. Choose 
Y-x 

y € [x+q,x+v] and consi.der f=f(p,c,n,v). Then by the 

construction of f, the definition of B(a,b,p,G) and by (iii) 

of construction 2 we have 

h(y)-h(x) 
Hence g(X((y: P [a,bll,[x,x+v])) > v. 

Y-x 



With these constructions and lemmas we are now in a position 

to prove the main result of this section. 

THEOREM 4.5.6. Let g € G. Then the set of functions f in C 

such that the set of points in [0,1] which are not [gl-knot 

points of f is o-[gl-totally porous, is residual in C. 

PROOF: ([44], p. 9-10) We can assume that g is continuous 

for if it is not then there is a continuous function g' € G 

such that g'sg. Let P = (pn);=, be a dense set of 

polynomials in C. For a<b let V(a,b) denote the set 

n;=,~;,~ B(aIbIpk, l/k) where B(a,b,pkI l/k) is given by 

construction 2. Now let V = n(~(a,b):a<b, a r b  are rational). 

Then by Lemma 4.5.5 (i) each ~ ( a , b )  is residual in C and so 

V is also. 

Let f € V. For each natural number m and each pair of 

rational numbers a and b with a<b let A(a,b,m) denote the 

set of all x€[0,1) for which 

whenever O<hSmin{l/m,l-x). Let A denote the set of all 

x€[0,1) for which there is an extended real number y which 

is not a right [g]-derived number of f at x. Then 

A c u{~(a,b,rn):m is rational, a<b are natural numbers) and 

it is sufficient to show that each ~(a,b,m) is [gl-totally 

porous (the proof for left [gl-totally porous is handled 



similarly). 

Fix a,b,m and choose e>O. Now f € ~(a,b) so we can 

choose a positive integer j such that 1/j < min{e,l/m) and 

f € B(a,b,pj,l/j). By construction 2, v < 1/n < 1/j < l/m. 

Thus from Lemma 4.5.5 (ii) we see that 

A(a.b.m)n U f;d[k/n. (k+l )/n-2v] = 4. Consequently 

g(A(~(a,b,m),[k/n,(k+l)/nl)) > l/n for kE{O,l,.. .,n-1). 

Since the norm of the division { [k/n, (k+l )/n] is 

l/n < 1/j < E, A(a,b,m) is [gl-totally porous.0 

Haussermann and Humke and Laczkovich have shown that the 

typical continuous function f has the property that the 

intersection set Ex:f(x)=h(x)l of f with a Lipschitz function or 

a monotone function, h, is bilaterally [gl-porous. ZajiEek 

proved a similar result for the class of functions, h, such that 

the set of knot points of h is o-[gl-porous. 

THEOREM 4.5.7. Let g E G. Then the set of functions f in C 

such that {x:f(x)=h(x)) is o-[gl-porous whenever the set of 

knot points of h:[O,1]+~ is o-[gl-porous. 

PROOF: ([44] pp. 11-12) Let A be the residual set given by 

Theorem 4.5.6 and let f € A. Let N(f) denote the set of 

points in [0,1] which are not [gl-knot points of f. Then 

~ ( f )  is o-[g]-totally porous and so it is easily shown that 

~ ( f )  is o-[gl-porous. Let h be a function on [0,11 such that 



~ ( h ) ,  the set of knot points of h is o-[gl-porous. Let 

M = Cx:f(x)=h(x))\(~(f)~~(h)). Then it suffices to show that 

M is [g]-porous. Let x € M. Then x P ~ ( h )  so there exists 

real numbers c and d with c<d such that the set 
h(y)-h(x) 

A = Cx)U(y: P (c,d)) is a one sided neighbourhood 
Y -x f (y)-f(x) 

of x. Also x P ~ ( f )  so that the set B = Cy: f 
Y-x 

(c,d)) is bilaterally [gl-porous at x. Then M c (M\A)UB so 

that M is (unilaterally) [gl-porous at x.D 

Conclusion 

In this chapter we have seen that the typical 

intersection sets of continuous functions with functions in 

various classes can be said to be "small" in several ways. 

Sections 2 and 3 dealt with equicontinuous classes, 

horizontal levels and o-compact sets. Section 4 generalized 

these results by the use of a generalized definition of 

porosity. The characteristics of the intersection sets led 

to several results regarding the differentiability of 

typical continuous functions. We saw that there is a 

residual set of functions which are nowhere qualitatively, 

preponderantly or congruently differentiable. In section 5 

we saw that the set of non [gl-knot points of a typical 

continuous function is o-[gl-totally porous. 

4 



CHAPTER V 

THE BANACH-MAZUR GAME 

The Banach-Mazur game was described in Chapter 1. There, 

the game was described as played on a closed interval of R. 

The game, of course, can also be played in the space C[0,1]. 

In this case the first player, A, is given an arbitrary 

subset, A, of C. A then chooses a closed sphere, S1, in C. 

The second player, B, then chooses a closed sphere, S2 c S1; 

Then A chooses a closed sphere S, c S2; and so on, A and B 

alternately choosing closed spheres. If (ny=lSi)n~ # 4 then 

A wins; otherwise B wins. 

Clearly if A is of first category there is always a way 

for B to win. Banach proved that if the second player has a 

certain strategy to win then A must be of first category in 

C. A strategy for B is a sequence ifn] of functions whose 

values are closed spheres in C, such that 

fn(S,,S2,...,S2n-1) = S2, c S2n-1. The function f, must be 

defined for all (2n-1)-tuples of closed spheres with the 

property that S13S23...3S2n-1. Then Ifn] is a winning 

strategy for B if and only if (nSi)n~ = 4 for all sequences 

ISi] of closed spheres with SixSi+l and f(SlrS2, 

.e.IS2n-l) = S2n. 

For the next theorem we follow Banach's proof (as given 

in [36]) but generalize to an arbitrary metric space. This 

result seems to be well known but we have been unable to 



find a proof in the literature. 

THEOREM 5.1.1. Let X be a arbitrary metric space. There 

exists a strategy by which the second player in the 

Banach-Mazur game is sure to win if and only if A is of 

first category in X. 

PROOF: If A=U;=,A, where An is nowhere dense, B need only 

choose S2, c S2,-,\~, for each n. Thus if A is of first 

category, B has a winning strategy, 

Conversely suppose that ifn) is a winning strategy for 

B. Given f l ,  a transfinite sequence of closed spheres {J,) 

can be defined such that the closed spheres K, = fl(J,) are 

disjoint and the union of their interiors is dense in C. 

This can be done letting S be a transfinite sequence 

consisting of all the open spheres in X. Let J1 be the first 

term of S. Then for each P let JP be the first term 

contained in C\U,,P~,. Now for each transfinite ordinal, a ,  

let IJ,,~)~ be a transfinite sequence of closed spheres 

contained in the interior of K, such that the spheres 

K'x 1 p = f,(J,,K,,J,,~) are disjoint and the union of their 

interiors is dense in K,. Then the union, U,,P~~,P is dense 

in X. 

Continuing in this way, define two families of closed 

sphe$esl JaI ,a2 , . .  . ,an and K~~,~2,...,an where n is a 



positive integer and ai is a transfinite ordinal such that 

- 
'al ra21 ..era n - f n ( J a l ~ K ~ l ~ J ~ l I a 2 ~ K a l  I a 2 ~ * * * ~ J a 1  Ia2,... n 1 
and J ~ 1 r ~ 2 1 . . . I ~ n + 1  C K0a11a21...Ia n . For each n, the 
'pheres K ~ l I ~ 2 r . . . r ~  n are disjoint and the union of their 

interiors is dense in X. 

Now consider an arbitrary sequence of ordinals, ant and 

define 

( * )  S2n-, = Ja 
an S2n'Ka1 I.. . Ianp n=l 12r .... 1 ra2 I I 

Then the sequence isn) is a possible playing of the game 

consistent with the given strategy for B. Hence (nSn)flA = 9. 

For each n define En = UalIa21...Ian KO 
~ ~ I Q z I . . . ~  

. Let 
E = nnEn. Then for each x € E there is a unique sequence 

Ian] such that x f KulIu21..eIu for every n. We now use n 
this sequence to define (*I. Then x € nSn. This shows that 

EnA = $ so that A c x\E = U,(X\E,). Each of the sets X\E, is 

nowhere dense and so A is of first category.0 

It is easy to see that there is a strategy by which the first 

player is certain to win if and only if S\A is of first category 

for some sphere ScC. 

In this chapter we shall see several applications of the 

Banach-Mazur game to prove the existence of residual sets of 

continuous functions with certain differentiation properties. 



 on-Besicovich Functions 

It was stated in Chapter 2 that Sak's proof that the set of 

non-Besicovich functions is residual in C is actually an example 

of the use of the Banach-Mazur game (although Saks did not use 

it). We now give the first part of Saks' proof [40] and indicate 

how the Banach-Mazur game is applied. 

LEMMA 5.2.1. Let f(x) be continuous in an interval (a,b) and 

let If(x)-mx+nj c (b-a)/8~ (m>O, E > O )  for all alxlb. Then 

there exists in the interval (a,(a+b)/2) a nondenumerable 

set of points c with the property that 

f(x)-f(c) 2 (m-E)(x-c) for every clxlb. 

The proof of this lemma is not difficult and so it is omitted. 

THEOREM 5.2.2. The set of functions f in C such that the 

right hand derivative of f exists and equal += in a set of 

the power of the continuum, is of second category in every 

open sphere in C. 

PROOF: ([40], pp. 215-2171 Let K be an arbitrary open sphere 

in C and let {A,) be a sequence of nowhere dense sets in C. 

We shall define a system of subintervals, 

sequence of functions, ifj] in C and a sequence of open 



spheres K in C satisfying the following conditions: j 

(ii)fj is the centre of Kj, (j=0,1, ... ) 
(iii)In I In2f ... ,njC1nl ,n2,... ,nj-lP I nl ,n2, .... fnj-l O n  

Inl ,n2 ,.. . ,nj-l 1 = 41 I1nl,n2,...,n j 1 5 l/jI (j21, nj=0,1) 

(iv) fj is linear with slope j in each interval 

Inl ,n2,... ,n j of the jth order, and 

(v) if x C Inl In2f . . . ,n and y 

(bnl,n2,. . .,nifbnl In2f ....ni+l 1, (l<i<j), then 

fj(y)-fj(x) 
> i-2. 

Y -x 

Suppose that the functions fj, the spheres Kj and the 

subintervals In1,n2,...,nj have been determined for j=1,2, 

..., r and satisfy conditions (i) to ( v ) .  The set A, is 

nowhere dense so there exists in each neighbourhood of fr a 

continuous function g in K By condition (iv) (for j=r) 

fr is linear and has slope r in each interval Inl,nfI...fnr 

of the rth order. We can choose g sufficiently close to fr 

so that by Lemma 5.2.1 there exists in each interval 

. . . I nrO such that 

We can now modify g to obtain a function h, linear and 

with slope j+l in a pair of distinct intervals, 



d ' dnl .n2,. . . ,nrl n, ,n2, . ..,nr1 in I n1rn21***1nr whose right 
endpoints are bn ,n2 , .. . ,nrO and bnl ,n2, .. . ,nrl 
respectively. We can choose these subintervals sufficiently 

small, less than l/(j+f), and h sufficiently close to g so 

Then the function fr+l is defined as h and the intervals 

Inl ,n2, ... ,nr0 and Inl ,n2 ,.. . ,nrl as the intervals dnIln2, 
...,nr and d'n1rn21 ... ,nr respectively. Now choose an open 
sphere Kr+l with centre fr+l and radius less than l/(r+l) 

-- 
such that Kr+lcKr and Kr+lnAr+I = 4. Conditions (i) to (v) 

are satisfied for j=r+l. 

Now by conditions (i) and (ii) the sequence ifj) 

converges uniformly to a continuous function, f € K\UnAn. 

For each sequence {njIl (nj=O,l) Set 

- 
xnlln21...ln~l... - Inlnlnl ,nZr n.. . n ~  n 1 ~ n 2 1 - ~ - ~ n  n.. . . Then 

j 
we have 

for every sequence ink), (nk=O,l), j>i>l, and 

bnl ,n2.. . . Ini>Y>xnl .n,, . . . .nk,.. . . It follows that 



i=1,21*** and bnl,n2,...,n i >Y'Xnlrn2r...,nk,... . ~ h u s  
f:(xn ) = +m for each xn 

I I ~ z I * * * I ~ ~ I * * *  l 1n21~*-1nkr*** . This 
set of points is clearly perfect and so has the power of the 

cont inuum.0 

Saks goes on to show that the set of functions f in C with 

right derivative equal to +a in a set of the power of the 

continuum, is analytic in C and hence has the property of Baire. 

It is thus a residual set. It is easy to see that this second 

part of the proof is not needed, for the first part can be seen 

as a winning strategy for the second player in the Banach-Mazur 

game. 

The Weak Preponderant Derivative -- 

In Chapter 2 several differentiation properties of typical 

continuous functions were presented. Recently the Banach-Mazur 

game has been used to prove several new differentiation 

properties. L. ~ajieek has proved [46] a new result regarding 

the preponderant derivative by use of the game. 

DEFINITION 5.3.1. Let E = (~,:x€[O,l]) be a system of paths. -- 

If for each E,CE there is a 6>0 such that > 1/2 for 
I1 I 

all open intervals, I, with xCI and 11 I < 6 then the E 

derivative is called a weak preponderant derivative. 



~ajiEek shows that a typical continuous function f has.a point 

x€(0,1) where the weak preponderant derivative of f is +=. The 

proof is lengthy and we will only outline it here. ~irst we need 

a lemma which has a straightforward proof which is omitted. 

LEMMA 5 . 3 . 2 .  Let fCC, x€(0,1), (an) be an increasing 

sequence converging to x and {bn) be a decreasing sequence 

converging to x, such that: 

for all natural numbers, n. Then the weak preponderant 

derivative of f is +=. 

THEOREM 5 . 3 . 3 .  There exists a residual set A of functions in 

C such that if f€A then there exists xC(0,l) so that the 

weak preponderant derivative of f at x is +=. 

PROOF: Consider the Banach-Mazur game in C. The first player 

chooses an open sphere B(g,,Sl), centered at g1 with radius 

61, then the second player chooses B(f,,el) c B(gl,Sl), and 

so on. We can suppose that all of the functions, fn and gn 

(n=1,2, ... ) ,  are piecewise linear. If the second player has 

a strategy so that n~=lB(fn,en) consists of a single 

function f for which there is a point x in (0,1) where the 

weak preponderant derivative of f is += then the theorem iso 



proved. 

The strategy is as follows. In his nth move the second 

player will construct fnCC, €,>Or O<an<bn<l so that, letting 

xn=(an+bn)/2 and zn=(bn-an)/lOO, the following conditions 

hold: 

(i) [an,bn]c(xn-l-4~n-1, xn-1+4zn-l) for n>l1 

(ii)fn is linear on [xn-5zn, xn+5zn1 and constant on 

[an,xn-5znl and [xn+5znrbnIr and 

we have 
f (x)-f (w) 

yC[ak1ak+, 1 =+ hiwC(y,x): >k3 > 1/2(x-y) and 
x-W 

(iv)and ~(f,,e,) c B(gn,6,) and En < 1/22,. 

If the second player uses this strategy then ( i )  and (iv) 

imply that n~(f,,r,) consists of one function f, and 

n[an,bnl consists of one point x .  Lemma 5.2.2 and (iii) 

imply that the weak preponderant derivative is +- at x.0 

In Chapter 2 we saw that the following properties are 

typical of continuous functions: 

(i) for each xC[0,1], max[l~+f (x) 1,  ID+^ (x) 1 and 



L. Zajieek [45] has reported that, about 6 years ago ~reiss 

used the Banach-Mazur game to extend these results. 

THEOREM 5.3.4, Let D+, D+, D - I  and D. be extended real 

numbers such that max((D+I, ID+I) = maxilD-1, ID.1) = = and 

[D. ,D-] U [D+D+] =[-m,w]. Then there is a residual set N of 

functions in C such that if f€N then there is a c-dense set 

A in (0,l) such that D+f(x)=D+, D+f(x)=~+, D.f(x)=D. and 

Dqf(x)=D. for all x€A. 

The proof of this theorem consists of devising a strategy for 

the second player in a Banach-Mazur game played in C, where the 

set given to the first player consists of all those functions 

which do not satisfy the conditions of the theorem. 

The N-Game - 
? 

1 In Saks' proof (Theorem 5.1.3) a system of subintervals of 

1 [0,1] was defined in such a way that the union of the 

I intersections of decreasing sequences in the system formed a 



perfect set. Saks also defined a sequence of functions which 

converge to a function having the required property on this set 

of points. 2ajiEek [45] has defined a game which generalizes 

this method and he has used it to prove several results 

regarding differentiation properties of typical continuous 

functions. 

DEFINITION 5.4.1. Let F be a nonempty set of the form 

[al,bl]U ... U[an,bn] where 0Salcblcazcb2< ... cbn51. Then we 
call F a figure and we define the -- norm of F, n ( ~ )  as 

maxCal,bl-al,az-bl, ..., bn-an,l-bnl. 

DEFINITION 5.4.2. Let N be a o-ideal of subsets of [0,1]. We 

define an N-game, between two players, the F-player and the 

E-player, as follows. In the first move let the E-player 

choose el>O. In the second move let the F-player choose a 

figure F 1  such that n(Fl ) )Se . In the (2n-1 )th move let the 
E-player choose en>O and in the move let the F-player 

choose a figure Fn such that n(~,)<e,. If u L ~ ~L=~F~ C N 

then the F-player wins. Otherwise the E-player wins. 

2ajiEek notes the following results of the N-game. 

(i)1f N is the system of all o-bilaterally strongly porous sets 

then the F-player has a winning strategy. 

(ii)If N is the system of all o-[gl-totally porous sets then the 

F-player has a winning strategy. 



(iii)If P is a o-finite Bore1 measure on [0,1] and N is the 

System of all b-null sets then the F-player has a winning 

strategy. 

(iv)A set ScR is superporous if SUP is porous for all porous 

sets, P. Now if N is the system of all o-superporous sets then 

the E-player has a winning strategy. 

Using the N game with the Banach-Mazur game zajizek has 

developed several new results. 

THEOREM 5.4.3, Let the F-player have a winning strategy for 

the N game. Then there is a residual set of functions f in C 

such that the set of points x€(0,1) which are not essential 

knot points of f belongs to N. 

Essential knot points can be replaced in this theorem by 

[g]-knot points. This, together with result (ii) above is 

Theorem 4.5.6. An improvement of Preiss' theorem (Theorem 5.3.4) 

is also obtained by use of the N game. 

THEOREM 5.4.4. Let the E-player have a winning strategy for 

the N game and let D+, D,, D-, and D. be extended real 

numbers such that max(lD+I, JD,~) = max1lD-1, ID.]) = = and 

[D.,D-1 U [D+D+] = [ - = , = I .  Then there is a residual set M of 

functions in C such that if f€M then there exists a set A in 

( 0 , 1 ) ,  AfN such that D+f(x)=D+, D+f(x)=D+, D.f(x)=D. and 

D-f(x)=D. for all x€A. 



It is also possible to show, using the N game that the 

following properties are typical of functions f in C. 

(i)for all x in (0,l) there exists a bilateral essential derived 

number of f at x, 

(ii)there exists a c-dense set P such that += is a weak 

preponderant derivative of f at x, for each x in PI 

(iii)there exists x€[0,1] such that f has no finite derived 

number with positive upper density. 

Conclusion 

In this chapter we have seen how the Banach-Mazur game has 

been used to prove that certain differentiation properties are 

typical of continuous functions. The introduction of the N-game 

by ~ajieek leads to a general method for determining some 

properties of sets where a typical continuous function does not 

have an essential knot point. 



CHAPTER VI 

CONCLUSION 

Nondifferentiability is a typical property of continuous 

functions. This property has often been said to be pathological 

and many of the other typical properties of continuous functions 

might also be described in this way. Despite this we have seen 

that typical continuous functions display a great deal of 

regularity. Not only are they nondifferentiable almost 

everywhere in several generalized senses but their intersection 

sets with various families of functions are similar. 

In Chapter 2 we saw several results regarding the 

differentiability of typical continuous functions. They have 

knot points and essential knot points almost everywhere. They 

are nowhere differentiable, nowhere approximately, symmetrically 

or preponderantly differentiable. On the other hand in certain 

senses they are differentiable almost everywhere and in such a 

way that we can choose the derivatives ahead of time. 

In Chapter 3 we saw how the typical continuous function 

intersects lines, polynomials and 2 parameter families of 

functions. The characteristics of these intersection sets are 

similar in all these cases. Seeing how these functions intersect 

with lines helps to clarify some of the results in Chapter 2. 

Chapter 4 continued the study of intersection sets but in 

this case in the context of porosity and generalized porosity. 



We saw that the intersection sets with various families of 

functions are "small" in the context of the various types of 

porosity and in Hausdorff dimension. This leads to several more 

differentiation results, and different proofs of some results 

from Chapter 2. 

In Chapter 5 we looked at the Banach-Mazur game and saw how 

it could be used to develop differentiation results. We saw that 

the introduction of the N-game produces some general results 

regarding knot points. 

Related results and open guestions 

Several areas of investigation arise from the known typical 

properties of continuous functions. These can be divided into 

two types: those regarding typical properties in C[0,1] and 

those regarding typical properties in other spaces. 

We begin with the second type. A great deal of work has 

recently been done regarding typical properties in the spaces of 

bounded Darboux Baire-1 (~DB,) functions, bounded approximately 

continuous ( b ~ )  functions, bounded derivatives (bA), bounded 

Baire-1 ( b ~ , )  functions and bounded functions in the Zahorski 

classes ( b ~ ~  i=l ,2,3,4,5). Some results are also known for the 

spaces of bounded upper and lower semi-continuous Darboux 

functions (bDusc, bDlsc). Summaries of many of these results 

have been given by I. Mustafa [34] and G. Petruska [37]. In 1986 

Mustafa [35] used a general approach to prove typical properties 



in the spaces bDusc, bDlsc, dAI and bMi. For these spaces he has 

been able to prove results analogous to many of those we have 

seen in Chapters 2 and 3 for continuous functions. We have found 

no results regarding the porosity of intersection sets or sets 

of non-knot points (similar to results in Chapters 4 and 5) in 

these spaces. 

Bruckner [5] has suggested the investigation of typical 

properties of intersection sets of functions of several 

variables with lines. This might lead to a greater understanding 

of the differentiablity properties of such functions. 

In Chapter 3 we cited a suggestion of Ceder and Pearson for 

the investigation of typical properties of the intersection sets 

of continuous function with functions in closed nowhere dense 

subsets of C[0,1 I. 

Haussermann has proposed a question regarding Theorem 4.4.9. 

He asks whether, for a concave modulus of continuity o and an 

ordered porosity family 9, there is a residual set of functions 

in c[O, 1 1  which will intersect every function in L(o) in a 

bilaterally strongly @-porous set. This actually is two 

questions; firstly, can we add bilateral under the hypotheses in 

part (i) of the theorem and secondly can we remove the 

requirements that 9 be refined and that D+(o$-l)(O) < = from 

part (ii). 

Bruckner stated in 1978 [5] that he had never encountered a 

function meeting the conditions in Theorem 3.2.13. We have been 



unable to find such a function, let alone one which meets the 

conditions of the other theorems cited as well. This, despite 

the "typicalness" of such functions. 
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