
QUEUE SCHEDULER VERIFICATION

Alison Xu
Bachelor of Applied Science in Computer Engineering

University of Waterloo 2000

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING

In the
School of Engineering Science

O Alison Xu 2005

SIMON FRASER UNIVERSITY

Spring 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Project:

Alison Xu

Master of Engineering

Queue Scheduler Verification

Examining Committee:

Chair: Dr. Albert Leung
Graduate Chair, School of Engineering Science, Simon Fraser
University

Dr. Rick Hobson
Senior Supervisor
Professor, School of Engineering Science, Simon Fraser
University

Mr. Richard Tse
Industry Supervisor
Technical Advisor, PMC-Sierra Inc.

Date DefendedApproved: AFn;t 4 , I n o 5

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

I t is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W . A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

ABSTRACT

This paper presents the complete verification process of Queue Scheduler. Queue

Scheduler is an ASIC function block within PMC-Sierra's PM7354 SIUNI DUPLEX GE,

a low cost ATM-to-Ethernet interworking chip for IP DSLAM. It is responsible for fairly

scheduling traffic from up to 600 queues, going to up to two destination interfaces. It

uses a fair queue scheduling algorithm, programmable for different applications. It is

vitally important to verify Queue Scheduler's functional correctness thoroughly, in order

to minimize the risk of doing a revision to reduce the overall development cost and to

maintain time to market. This paper starts by detailing Queue Scheduler's design

specification. After explaining the verification flow, it gives a detailed description of its

testbench and testbench components. Next, it discusses the verification test points

extracted from the design specification, and the resulting testcases. Finally, i t presents

the verification results.

DEDICATION

To my God, parents, and husband for their love and support that carried me

through the Master of Engineering program.

ACKNOWLEDGEMENTS

I would like to thank the following people for providing me with the knowledge,

education, and support that I needed to complete this degree: Dr. Marek Syrzycki for

sharing his expertise in the field of analog and digital design; Dr. Kris Iniewski for

explaining how telecommunication networks are designed and built; Dr. Ljiljana

Trajkovic for teaching how each network protocols work; Dr. Gary Robinson for

providing project management techniques; Dr. Glenn Chapman for introducing the field

of IC fabrication; Dr. John Dill for showing how data can be better presented and

visualized; and the last but not the least, Dr. Rick Hobson and Mr. Richard Tse for their

invaluable guidance throughout, without them the completion of my Masters of

Engineering Project is not possible.

TABLE OF CONTENTS

.. .. Approval 11

...
Abstract ... 111

... Dedication iv

Acknowledgements .. v

... Table of Contents vi
... List of Figures ... VIII

.. List of Tables ix

Glossary .. x

.. 1 Introduction 1

2 PM7354 SIUNI DUPLEX GE Overview ... 2

3 Queue Scheduler TSB Overview ... 6

4 Queue Scheduler TSB Functional Timing ... 12
... 4.1 Queue Status Interface 13

.. 4.2 Queue Request Interface 14
4.3 Port Selection Status Interface ... 17

.. 4.4 FIFO Status Interface 18
... 4.5 Port Polling Interface 19

5 Queue Scheduler TSB Operation .. 21
... 5.1 Scheduling Mode 21

... 5.1.1 Queue Contiguous Scheduling Mode 21
.. 5.1.2 Port Contiguous Scheduling Mode 21

... 5.1.3 Port Interleave Scheduling Mode 22
5.2 Portpriority ... 22

... 5.3 Class Selection Calendar 22
............................. 5.4 Class Selection Calendar in Conjunction with Class Priority 24

... 5.5 Class Selection Using Strict Class Priority 25
... 5.6 Class Promotion 25

... 5.7 Port Selection Calendar 26
... 5.8 Bandwidth Limiter 28

... 5.9 Queue Selection Algorithm 30

.. 5.10 ECBI 31

6 Verification Flow .. 32
... 6.1 Planning 32

.. 6.2 Design 32
6.3 Implementation .. 32
6.4 Verification ... 33

7 Testbench ... 34
7.1 ECBI-TBC .. 34

... 7.2 Clock Generator 36
.. 7.3 Queue Manager (QMGR) 36
... 7.3.1 Packet Data Structure 37

7.3.2 Queue Data Structure ... 37
7.3.3 Port Data Structure ... 38 7.3.4 Queue Activation Generator 38

... 7.3.5 Queue Request Responder 41
.. 7.3.6 Bandwidth Monitor 42

... 7.3.7 Port Poll Response Monitor 42
... 7.3.8 Queue Selection Checker 43

7.3.9 Statistics ... 48
.. 7.4 0XA3 49

7.4.1 Destination Interface FIFO ... 49
7.4.2 PortFIFO .. 51

.. 7.4.3 Port Poll Response Calendar 51

8 Testcases .. 53

9 Verification Coverage .. 57

10 Contribution .. 61

... 11 Conclusion 62

... References 63

vii

LIST OF FIGURES

Figure 1 : Modular GE Uplink DSLAM .. 4

Figure 2: Fixed Remote DSLAM ... 5

Figure 3: Ethernet to ATM Data Path ... 10

Figure 4: Queue Scheduler TSB Block Diagram .. 11

Figure 5: Queue Status Interface ... 14

Figure 6: Queue Request Interface - Scenario 1 .. 15

Figure 7: Queue Request Interface - Scenario 2 ... 16

... Figure 8: Queue Request Interface - Scenario 3 17

.. Figure 9: Port Selection Status Interface 18

... Figure 10: FIFO Status Interface 19

... Figure 1 1 : Port Polling Interface 20

Figure 12: Queue Scheduler TSB Testbench .. 35

Figure 13: QMGR Queue Selection Algorithm Checker .. 44

...
V l l l

LIST OF TABLES

... Table 1: Data Segment Format 9

Table 2: The QS TSB External Interface Signals ... 12

Table 3: Control Data .. 14

Table 4: Class Selection Calendar Configuration Example .. 23

........................... Table 5: Class Selection Calendar Servicing Opportunity Distribution 23

Table 6: Class Selection Calendar Minimum Servicing Opportunity 24

.. Table 7: Port Selection Calendar Example 1 27

... Table 8: Port Selection Calendar Example 2 -28

Table 9: Bandwidth Limiter Configuration Examples .. 30

.. Table 10: Queue Scheduler TSB Code Coverage Summary 58

GLOSSARY

Acronyms

ADSL

ASSP

ATMIN

ATMOUT

CPE

DSLAM

DUT

ECB I

ESSIN

ESSOUT

EOP

GE

GES

GEP

IFID

IP

OAM

PL2

QMGR

QoS

QS

RTL

SFP

SLA

SOP

SHIM

Description

Asymmetric Digital Subscriber Line

Application Specific Standard Product

ATM In Sub-system

ATM Out Sub-system

Customer Premise Equipment

Digital Subscriber Line Access Multiplexer

Device Under Test

Extended Common Bus Interface

Ethernet In Sub-system

Ethernet Out Sub-system

End of Packet

Gigabit Ethernet

Gigabit Ethernet Serial

Gigabit Ethernet Parallel

Interface Identification

Internet Protocol

Operation, Administration, and Maintenance

POS PHY Level 2

Queue Manager

Quality of Service

Queue Scheduler

Register Transfer Level

Small Form-Factor Pluggable

Service Level Agreement

Start of Packet

A component inserted at an interface between two other components

Acronyms Description

TB Testbench

TBC Testbench Component

TMSS Traffic Management Sub-system

TSB Telecom Standard Block

UL2 Utopia Level 2

VDSL Very High Speed Digital Subscriber Line

INTRODUCTION

The overall cost of developing a semiconductor chip is on the rise due to the ever-

increasing design complexity, technology cost, and fabrication cost. Therefore, in order

to maintain a chip's time to market, and keep the overall development cost within budget,

it is important to achieve first revision success. In order to reach that goal, it is vitally

important to verify the chip functional correctness thoroughly, before sending it for

fabrication. An RTL fix is much cheaper than a metal fix or a revision. Design

verification has become a necessity.

A complex semiconductor chip is usually divided into ASIC blocks by functions

for development. Each ASIC function block is firstly verified at the block level. This is

called block level verification. After all the ASIC function blocks are designed,

implemented and verified, they are stitched together to complete the whole chip. The

verification is then performed at the chip level. This is called chip level or top-level

verification. Queue Scheduler (QS) is such an ASIC function block, also know as

Telecom Standard Block (TSB) within PMC-Sierra. It is a block within PMC-Sierra's

PM7354 SIUNI DUPLEX GE, a low cost ATM-to-Ethernet interworking chip for

Internet Protocol (IP) Digital Subscriber Line Access Multiplexer (DSLAM). This paper

details the QS TSB's complete verification process, in the hope of offering readers a

glimpse into the real world of block level design verification.

2 PM7354 SNNI DUPLEX GE OVERVIEW

Following is a brief introduction to PM7354 SIUNI DUPLEX GE to help

explaining the QS TSB's purpose and application. PMC-Sierra's PM7354 SIUNI

DUPLEX GE is a low cost ATM-to-Ethernet interworking chip for IP DSLAMs. As the

ATM networks are migrating to Ethernet-based IP networks, service providers are

deploying DSLAMs that can interface to the ATM-based Customer Premise Equipment

(CPE) on one side and the Ethernet access network on the other. PM7354 SIUNI

DUPLEX GE implements ATM to Ethernet conversion in dedicated hardware, a function

deployed to date in expensive network processors or FPGAs. This significantly reduces

line card cost that is a major portion of the IP DSLAM bill of materials.

PM7354 SIUNI DUPLEX GE's Multiple Protocol Bus (MPB) interface can be

configured to Utopia Level 2 (UL2) interface for connection to ADSLlADSL2/ADSL2+

modems. Alternatively, MPB interface can be configured to POS PHY Level 2 (PL2)

interface for connection to VDSL modems. The MPB interface allows DSLAM vendors

to deploy PM7354 SIUNI DUPLEX GE based system with a mix-and-match of ADSL

and VDSL line cards. PM7354 SIUNI DUPLEX GE's integrated dual Gigabit Ethernet

SERDES interfaces provide redundancy and backplane driving capabilities. PM7354

SIUNI DUPLEX GE can aggregate up to 267 lines of traffic. It offers the following

attractive features: full GE line rate throughput, advanced quality of service (QoS), non-

bloclung multicast, and up to eight priority classes of service simplify end-customer

service level agreement (SLA) management and offer further upgrade flexibility for

advanced CPEs capable of providing voice, video, and data services. In addition, its user

configurable data encapsulation schemes ensure the reusability of the PM7354 S/UNI

DUPLEX GE based IP DSLAM line-cards across various geographic locations. Figure 1

shows an application of PM7354 SIUNI DUPLEX GE inside a Modular GE Uplink

DSLAM, terminating ATM traffic from a CPE on line cards, and connecting to the off-

the-shelf Ethernet switches through its GES interface. Figure 2 shows an application of

PM7354 S/UNI DUPLEX GE in Fixed Remote DSLAM, directly connected to Small

Form-Factor Pluggable (SFP) optics.

PM7354 S/UNI DUPLEX GE chip is designed in 0.13-micron CMOS technology

and packaged in a 352 ball, 27x27mm HSPBGA package. It is a highly complex device

with many features and capabilities, explaining it thoroughly is beyond the scope of this

paper. In the following sections, only chip information that is crucial to the

understanding of the QS TSB function will be presented further.

Figure 2: Fixed Remote DSLAM

72
lines

QUEUE SCHEDULER TSB OVERVIEW

QoS involves three sets of parameters: delay, cell loss, and source traffic rate [12].

There are three main types of network traffic: video, voice, and data. Different traffic

types have different QoS requirements. Typically video and voice traffic demand low

transmission latency, and high bandwidth throughput, but they can tolerate some

transmission errors. Data traffic demands small data loss rate, but it is not as demanding

as video and voice traffic on transmission delay and bandwidth throughput. Previously

there exist separate video, voice, and data network infrastructures. In recent years,

service providers are developing a single common network infrastructure where video,

voice, and data traffic share an integrated network. The QS TSB contributes to make this

convergence a reality. It is responsible for providing software configurable QoS aware

egress traffic scheduling. For example, video traffic is classified to be high priority, and

data traffic is classified to be low priority (this is not a function of the QS TSB). The QS

TSB can be configured to round robin schedule lines of video traffic whenever they

become available, and to round robin schedule data traffic in the absence of video traffic.

A user can have any type of traffic by using different port and class specifications. The

QS TSB's powerful and programmable scheduling algorithm (e.g., bandwidth limiter,

user programmable class calendar, and port calendar) can satisfy virtually any QoS

requirement of traffic in different applications.

The QS TSB function can probably be best explained by following an Ethernet

frame [9] [lo] entering PM7354 SIUNI DUPLEX GE at GE Serial 0 (GESO) ingress

interface, and exiting as an ATM Utopia Level 2 (UL2) protocol cell [l l] at Multiple

Protocol (MPB) egress interface (Figure 3). An Ethernet frame is received at GESO

ingress interface. It first goes through the Ethernet In Sub-system (ESSIN), which

consists of Enet In block and Ethernet to AALS IWF block. ESSlN extracts from the

Ethernet frame: destination interface id, port id, and class id. In the case of PM7354

S/UNI DUPLEX GE, there are three destination interfaces: GES, GE parallel (GEP), and

MPB egress interface. In this example, the destination interface id of the Ethernet frame

is MPB egress interface. ESSIN then performs AALS segmentation on the frame and

sends the resulting data segment(s) to traffic management sub-system (TMSS). TMSS'

QMGR TSB writes the received data segment(s) to external RAM for storing into the

ATM bound queue, and sends the queue status information to the QS TSB. Assuming

MPB egress interface is configured to UL2, ATM OUT Sub-system (ATMOUT) polls

the external PHY layer devices to determine if there is room in them to receive more

data. The port polling results are sent back to the QS TSB. The QS TSB makes request

for a data segment based on the following parameters:

Data availability in the QMGR TSB queues
Space availability in the destination FIFOs within ATMOUT
Port polling responses received at UL2 or other interfaces. This can be disat
Class selection
Port selection
Bandwidth limiter

The requested data segment is later taken from the ATM bound queues and sent directly

to the ATMOUT. ATMOUT re-maps the segments to UL2 protocol cell format and

sends it out on MPB egress interface.

Due to the versatile nature of PM7354 SIUNI DUPLEX GE, there are many other

data paths within. Regardless of the data paths that traffic goes through, the function that

QS performs is the same. There are three instances of the QS TSB: QS (GES), QS

(GES, GEP), and QS (ATM), altogether they schedule all the queues' traffic in PM7354

SIUNI DUPLEX GE (Figure 3). QS (GES) is responsible for scheduling traffic output

bound for GE Serial (GES) egress interface; QS (GES, GEP) is responsible for

scheduling traffic output bound for only GEP egress interface, and both GES and GEP

egress interfaces; QS (MPB) is responsible for scheduling traffic output bound for MPB

egress interface. The QS TSB is designed to satisfy the requirements of all three

scenarios.

The QS TSB is responsible for scheduling traffic for up to two destination

interfaces. Traffic is stored as data segments in queues. (In the case of PM7354 SIUNI

DUPLEX GE, data segments are stored in external SDRAM off the device.) Table 1

shows the data segment format. A segment is always 64 bytes long. Every queue is

identified by a port id, a class id, and a destination interface id (IFID). The QS TSB

maintains queue status, external interface FIFO threshold, destination port poll status

when enabled, and per port bandwidth usage when per port max bandwidth limiter is

enabled. Based on the information, along with a user programmable class scheduling

algorithm, and a user programmable port scheduling calendar, it fairly schedules among

queues of traffic. Once the QS TSB selects a queue, the selected queue sends one data

segment. Data segments do not go through the QS TSB. The QS TSB only looks at

EGRESS_DATA[4:0] when EGRESS-DSTART is logic 1. EGRESS_DATA[4:0]

carries control data bits from word 0 of a data segment: IFID[2:0], EOP, and OAM. The

QS TSB supports three configurations: 75 ports x 8 classes per port, 147 ports x 4 classes

per port, and 267 ports x 2 classes per port. Overall, it supports traffic from up to

maximum 600 queues. Figure 4 is QS top-level functional block diagram.

Table 1: Data Segment Format

word1 Bits 31 :24 I Bits 23:16 I Bits 15:8 I Bits 7:O I -
I

-
I -

I

IFlD 1 ClasslD 1 PortlDIMcGID I , I , I VALID-DATA-CNT ERR ~ F ~ F (: ~ O P Re LP

1 I Reserved I ECC I H 1 I H2 I

- - - - - - -- - - -

14 P45 I P46 I P47 I P48

15 CRC 16 (A) CRC 16 (8) I

F
ig

ur
e

4:
 Q

ue
ue

 S
ch

ed
ul

er
 T

SB
 B

lo
ck

 D
ia

gr
am

-

E
C

B
l I

nt
er

fa
ce

E

C
B

I
/
'\

m
te

rl
ac

e
an

d
re

gl
st

er
s

Fl
FO

 S
ta

tu
s

In
te

rf
ac

e
I I I

S
Y

N
C

-
i

IN
P

U
T

S

.
L

I I

I

P
ol

l R
es

po
ns

e
-+

 FIFO
 ,

t+

I

R
es

po
ns

e
Fl

FO

Q
S

-M
P

B
C

LK

I1
0

sa
m

pl
in

g

A

-

I
M

R
S

T
B

Q

ue
ue

 S
ch

ed
ul

er
 (Q

S
)

1 I

S
R

S
TB

S

Y
S

C
LK

I

M
P

B
C

LK

4 QUEUE SCHEDULER TSB FUNCTIONAL TIMING

Table 2 lists the QS TSB's main external interface signals grouped by interface.

IFID1[2:0] and IFID2[2:0] specify the two destination interfaces' id. If the QS TSB is

responsible for scheduling traffic to only one destination interface, IFID1 and IFID2

should be set to the same value. PORT-CFG[l:O] defines the QS TSB configuration:

2'bOO - 75 port x 8 classes per port

2'bO 1 - 147 port x 4 classes per port

2'blO or 2 'bl l - 267 port x 2 classes per port

The rest of the signals are described in their respective interface functional timing

section.

Table 2: The QS TSB External Interface Signals

Name I Type

I MPBCLK I ~nput

General Purpose Interface

I PORT-CFG [I :OJ I ~nput

SYSCLK

/ IFID1[2:0] I ~nput

Input

QUEUE-ACT

PORT-ID [8 :0]

IFID2[2:0]

Input

Input

Input

Input

Input

Queue Status Interface

Queue Request Interface

Name Type

QS-REQ Output

QS_REQ_PORT_ID[8:0] Output

QS_REQ_CLASS_ID[2:0] Output

QS-ACK Input

QUEUE-DEACT Input

QS-ACK-ERR Input

EGRESS-DSTART Input

EGRESS-D ATA [4: 01 Input

Port Selection Status Interface

AFULL-1 Input

FIFO Status Interface

POLL_RESP_ADDR[8:0] Input

POLL-RESP Input

Port Polling Interface

4.1 Queue Status Interface

The QS TSB receives queue activation through Queue Status Interface. Figure 5

is the functional timing diagram of this interface. QUEUKACT is set to logic 1 to notify

the QS TSB that the queue identified by port id, class id, and interface id as specified on

PORT-ID, CLASS-ID and K I D has data available. Queue activation can occur at any

time.

Figure 5: Queue Status Interface

SYSCLK

QUEUE-ACT /-\

CLASS-ID reXfrY,,+d?,,lb "$,,(

4.2 Queue Request Interface

The QS TSB schedules traffic through Queue Request Interface. Figure 6, Figure

7, and Figure 8 are the functional timing diagrams of the interface.

By setting QS-REQ to logic 1, the QS TSB issues a request for a data segment

transfer from the queue identified by port id and class id on QS-REQ-PORT-ID and

QS-REQ-CLASS-ID. The QS TSB will not issue another request until the current

request is acknowledged and the corresponding control data is received. QS-ACK is set

to logic I to acknowledge the QS TSB queue request. EGRESS-DSTART is set to logic

1 to notify the QS TSB that the control data is valid on EGRESS_DATA[4:0] (Table 3).

Table 3: Control Data

EGRESS-DATA Field I Control Data

EOP

OAM

Control data identifies whether the segment is an end of packet (EOP) segment; whether

the segment is an operation, administration, and maintenance (OAM) segment; and the

destination interface the requested segment is for. The QS TSB only looks at control data

with matching IFID, namely traffic that it is responsible for.

Figure 6: Queue Request Interface - Scenario 1

QS-ACK 5 5 ~ 55
QS-ACK-ERR 55

QUEUE-DEACT 55

If the QS TSB ever makes a request for a queue that does not have any data,

QS-ACK-ERR will be set to logic 1 at the same time as the QS-ACK is set to logic 1.

In addition, QUEUE-DEACT will be set to logic 1 indicating the queue identified by

port id and class id on QS-REQ-PORT-ID and QS-REQ-CLASS-ID is empty. Under

these circumstances, no control data will be transferred. The QS TSB can issue another

data segment transfer request immediately.

Figure 7: Queue Request Interface - Scenario 2

SYSCLK

QS-ACK

QS-ACK-ERR

QUEUE-DEACT

EGRESS-DSTART

EGRESS-DATA

If the QS TSB request results in emptying a queue, the request acknowledgement

will be accompanied by QUEUE-DEACT being set to logic 1. This indicates that the

queue identified by port id and class id on QS-REQ-PORTID and QS-REQ-CLASS-ID

has only one remaining data segment and will be empty once this request is serviced. In

this case, the QS TSB cannot make another request until it receives the control data for

the current request.

Figure 8: Queue Request Interface - Scenario 3

QUEUE-DEACT 55 55
EGRESS-DSTART 55 55

In all cases, both QS-ACK-ERR and QUEUE-DEACT are only valid when

QS-ACK is logic 1.

4.3 Port Selection Status Interface

The QS TSB receives the indication of the completion of a segment transfer

through Port Selection Status Interface. Figure 9 is the functional timing diagram of this

interface. When SEL-ADDR-VALID is logic 1, it indicates the completion of a data

segment transfer to the external interface for the port specified on SEL-ADDR. This

interface is only used when port polling is enabled. When a segment is requested and

acknowledged for a port, that port's polling response will be conditioned (forced to be

negative). The completion of the segment transfer, as indicated by this interface will

clear the polling conditioning for the port.

Figure 9: Port Selection Status Interface

SYCLK

SELADDR

4.4 FIFO Status Interface

The QS TSB receives destination interface FIFO fill level through FIFO Status

Interface. Figure 10 is the functional timing diagram of this interface. AFULL-1 (almost

full) indicates when the destination interface FIFO associated with IFID1 has reached its

programmable almost full threshold. Logic 1 indicates that the almost full threshold has

been reached or exceeded. Logic 0 indicates the almost full threshold has not been

reached. Similarly, AFULL-2 is an indication of the external interface FIFO level

associated with IFID2. There are two exceptions. Firstly, when the QS TSB input IFID1

equals IFID2, only AFULL-1 is used and AFULL-2 is ignored. Secondly, if IFID2 is set

to 'b l l 1 (both), when scheduling traffic with IFID set to ' b l l l , since the traffic goes to

both destination interfaces, i t needs to consider both AFULL-1 and AFULL2. If both

IFID1 and IFID2 are set to 'bl 1 1, then only AFULL-1 is used and AFULL-2 is ignored.

Exception case 1 takes precedence. Each AFULL flag can be completely independent of

the other. The QS TSB only makes a request for a data segment from a queue if its

destination interface FIFO AFULL flag is not logic 1.

Figure 10: FIFO Status Interface

SYCLK

4.5 Port Polling Interface

The QS TSB receives port poll response through Port Polling Interface. Figure 11

is the functional timing diagram of this interface. POLL-RESP is set to logic 1 to notify

the QS TSB that the destination port specified on POLL-RESP-ADDR has room for one

data segment. There are only positive port polling responses. The QS TSB does not

issue port poll request. The destination interface controls the polling and tells the QS

TSB which ports have returned positive polling results. This interface is used only when

polling is enabled.

When port polling is enabled, the QS TSB provides port poll response condition

per port from the time a request for a data segment transfer is made until the time the data

segment starts to be transferred on Port Selection Status Interface. During this time port

poll response for the given port is ignored. For example, the QS TSB receives a positive

port poll response for port 1, i.e. the destination interface FIFO can accept at least one

segment worth of data. The QS TSB knows that port 1 class 0 has data, so it issues a data

request. The QS TSB ignores all port poll response for port 1 until the requested segment

for port 1, class 0 arrives at Port Selection Status interface.

Figure 11: Port Polling Interface

MPBCLK ~ 5 s ~

5 QUEUE. SCHEDULER TSB OPERATION

5.1 Scheduling Mode

The QS TSB can be configured to operate in three different scheduling modes:

queue contiguous, port contiguous, and port interleave.

5.1.1 Queue Contiguous Scheduling Mode

When the QS TSB is configured to operate in queue contiguous scheduling mode,

it remains on the selected queue until the end of packet. For example, only port 0 class 0

has data available. Thus, the QS TSB selects port 0 class 0. Later data becomes

available for port 0 class 1 , port 1 class 0, port 1 class 1. The QS TSB will keep selecting

port 0 class 0, i.e. it will not select any other queues, until it sees port 0 class 0's EOP.

5.1.2 Port Contiguous Scheduling Mode

When the QS TSB is not configured to operate in queue contiguous scheduling

mode, each port can be individually configured to be either port contiguous or port

interleave. When a port is port contiguous, the selected class within the port can only

change at the end of packet boundaries, but between data segments, another port maybe

selected. For example, only port 0 class 0 has data available. Thus, the QS TSB selects

port 0 class 0. Later data becomes available for port 0 class 1, port 1 class 0, port 2 class

1. The QS TSB can select port 1 class 0 or port 2 class 1 at the next selection

opportunity. However, it cannot select port 0 class 1, until it sees port 0 class 0's EOP.

5.1.3 Port Interleave Scheduling Mode

When the QS TSB is not configured to operate in queue contiguous scheduling

mode, each port can be individually configured to be either port contiguous or port

interleave. When a port is port interleave there are no restrictions on when the selected

class within the port can change. For example, only port 0 class 0 has data available.

Thus, the QS TSB selects port 0 class 0. Later data becomes available for port 0 class I ,

port 1 class 0, port 1 class 1. The QS TSB can select any of them at the next selection

opportunity.

5.2 Port Priority

A port is configured as either a high priority port or a low priority port via ECBI

registers. The QS TSB always schedules a high priority port queue over a low priority

port queue.

5.3 Class Selection Calendar

The class selection calendar is enabled when CLASS-CALEN is set to logic 1.

The class selection calendar allows for servicing opportunity distribution among the

classes. The class selection calendar is configured via ECBI registers. The class

selection calendar contains 32 class entries. Each class selection calendar entry contains

either a valid class valued in the range of:

75 port x 8 classes per port mode - class 0 to 7
147 port x 4 classes per port mode - class 0 to 3
267 port x 2 classes per port mode - class 0 to 1

or a null class value. A null class value is any number outside the valid class value range.

The class selection calendar defines the order in which classes will be selected. The class

selection calendar can thus guarantee the minimum percentage of servicing opportunity

offered to a class. Consider the class selection calendar configuration in Table 4. Please

note that there are four null entries. Table 5 shows the resulting class servicing

opportunity distribution.

Table 4: Class Selection Calendar Configuration Example

I Entry # I Entry Value I Entry # I Entry Value I
0
1
2
3
4

Null
Null

Table 5: Class Selection Calendar Servicing Opportunity Distribution

0
2
3

Class

16
17

null
4

18
19
20

Number of Entries in the
Class Selection Calendar

null
6
5

Class Servicing
Opportunity

[Class 1 Number of Entries in the I Class Servicing

5.4 Class Selection Calendar in Conjunction with Class Priority

6

The QS TSB allows one class of traffic to supersede the class selection calendar.

When CLASS-CAL-EN and CLASS-PRI-EN are both set to logic 1, the class defined

by PRI-CLASS[2:0] will become a super class and take precedence over the class

selection calendar. In the example shown previously, note that there is no entry for class

7 in Table 4. If CLASS-PRI-EN is set to logic 1, and PRI_CLASS[2:0] is set to 7, class

7 traffic, whenever it is available, will be chosen at the next selection opportunity.

Namely, super class overrides the class selection calendar. Because of this, super class

(class 7 in this example) should not be in the class selection calendar. Moreover, with

CLASS-PRI-EN set to logic 1, the minimum servicing opportunity guaranteed to a class

via the class selection calendar will depend on the number of servicing opportunities used

by the super class. Subtract the super class' maximum bandwidth from the interface's

total, the remaining service opportunities can be used to find each class7 guaranteed

minimum servicing opportunity. Now consider the case where an interface can support

800Mpbs, and class 7 maximum bandwidth is 100Mbps. The remaining minimum

bandwidth is 7OOMpbs. Continuing the previous example, the resulting guaranteed

minimum servicing opportunity for each port is calculated and summarized in Table 6.

Table 6: Class Selection Calendar Minimum Servicing Opportunity

Class Selection Calendar
7

Opportunity
7/28 = 25%

I I Class Servicing
Opportunity

Guaranteed Minimum Servicing
Opportunity

Class

0

Class Servicing Guaranteed Minimum Servicing
Opportunity Opportunity

3.6% 3.6% x 700Mpbs = 25.2Mbps

unconstrained super class, in the
example lOOMbps

5.5 Class Selection Using Strict Class Priority

If CLASS-CAL-EN is set to logic 0, class selection calendar is disabled, class

selection is performed using strict class priority algorithm. Traffic from a certain class

will not be serviced until all available traffic from higher classes is serviced. When the

QS TSB is configured to 75 port x 8 classes per port, class 7 is the highest priority and

class 0 is the lowest priority. When the QS TSB is configured to 147 port x 4 classes per

port, class 3 is the highest priority and class 0 is the lowest priority. When the QS TSB is

configured to 267 port x 2 classes per port, class 1 is high priority and class 0 is low

priority.

5.6 Class Promotion

When a port is configured to operate in port contiguous scheduling mode with

strict priority class selection, class promotion prevents lower class traffic head-of-line

bloclung higher class traffic within the same port. Traffic from a lower priority class that

is already being serviced is promoted to a priority equal to that of the highest priority

class traffic in that port. The head-of-line bloclung issue arises because class selection is

done before port selection. It is best illustrated using an example. Only port 0 class 0 has

data available for transmission. Thus, QS selects port 0 class 0, i.e. port 0 class 0 is in

progress. Later data becomes available for port 0 class 1 and port 1 class 1. Because QS

is in port contiguous scheduling mode, port 0 class 1 cannot be serviced until port 0 class

0 sees a packet boundary. Because of strict priority class selection, port 0 class 0 cannot

be serviced until port 1 class 1 is serviced. Namely, port 0 class 0 is subjecting port 0

class 1 to head-of-line blocking. To improve the latency on servicing the higher class

data (port 0 class 1 in this example), class promotion can be enabled. Consequently, port

0 class 0 is promoted to class 1 temporarily. The QS TSB alternatively services between

port 1 class 1 and port 0 class 0. As a result, the actual higher class - port 0 class 1 can be

serviced in a more timely fashion.

Class promotion can only be enabled when the QS TSB is configured to port

contiguous scheduling mode. It should not be enabled when class selection calendar is

enabled. It is automatically disabled internally when the QS TSB is configured to queue

contiguous scheduling mode

5.7 Port Selection Calendar

The port selection calendar allows servicing opportunity to be distributed among

the ports. The port selection calendar is configured via ECBI registers. It contains 512

port entries. Each calendar entry contains either a valid port number in the range of:

75 port x 8 classes per port mode - port 0 to 74

147 port x 4 classes per port mode - port 0 to 146
267 port x 2 classes per port mode - port 0 to 266

or a null port value. A null port value is any number that is outside the valid port range.

The contents of the calendar selection entries define the order and frequency in which a

port will be selected. Consider the case where round robin selection between 75 ports is

desired. The simplest port selection calendar configuration to achieve this would be a

calendar with entries 0 through 74 programmed with port number 0 to 74, and the

remainder calendar entries programmed to null port value (Table 7).

Table 7: Port Selection Calendar Example 1

Entry Entry Entry Entry Entry Entry Entry Entry Entry
Value # Value # Value # Value #
0 0 18 18 3 6 3 6 5 4 54 7 2

Entry
Value
72

null

Now consider the case where an interface can support 800Mbps, 15 ports require

5OMbps while 5 ports require IOMbps, and each servicing opportunity enables the

transfer of a constant sized data segment. The port selection calendar configuration

shown in Table 8 will meet the above requirement. HI to H15 are 5OMbps ports. L l to

L5 are lOMbps ports. In this example, only 80 calendar entries are used. Each of the

ports requiring 5OMpbs has 4 entries. Each of the ports requires lOMpbs have 1 entry.

Therefore, if the total bandwidth of the interface is 800Mbps, port HI to H15 will each

have 800Mbps * 5/80 = 5OMbps and port L l to L5 will each have 800Mbps * 1/80 =

1OMbps.

Table 8: Port Selection Calendar Example 2

5.8 Bandwidth Limiter

There is a bandwidth limiter inside the QS TSB. When it is enabled, it limits any

port from exceeding its set maximum bandwidth usage. Once a port reaches its set

maximum bandwidth usage, the QS TSB will not schedule traffic for the port until

current bandwidth measuring period has expired.

its

The bandwidth limiter is usable only for port contiguous and port interleaved

mode of operation. It is recommended to disable bandwidth limiter for queue contiguous

mode of operation. When the QS TSB is queue contiguous, the outgoing data stream is

typically not expected to stop until after an Ethernet frame has completed. However, the

bandwidth limiter is not aware of Ethernet frame boundaries. If bandwidth limiting is

asserted for a port while it is in the midst of transferring an Ethernet frame, the data

transfer will stop. This may cause an under-run in the destination interface FIFO and

corrupt the outgoing data stream.

The bandwidth limiter performs bandwidth usage measurement over a specified

period of time (measurement period). Whenever a port requests a segment from a queue,

its usage level (TX-LVL) is incremented by one. Once the TX-LVL value is equal to

the maximum segment transmit value (MAX-LVL), traffic to that port will be stopped.

When the specified measurement period ends, the TX-LVL value is reset to zero. This

sets a hard-limit on the throughput of the port. The bandwidth limiter has the following

parameters:

BW-LIMIT-EN: User programmed. To enable bandwidth limiter set it to logic 1.
To disable bandwidth limiter set to logic 0. This one bit affects all ports in the QS
TSB.

SEGMENT-SIZE: It is a constant value of 64 bytes (Table 1). This value is
needed to calculate the actual bandwidth limit in Mbps.

UNIT-PERIOD: It is a constant value of 2136 SYSCLK cycles, which is
determined by the bandwidth limiter implementation. This value is needed to
calculate the actual bandwidth limit in Mbps.

MAX_LEVEL[4:0]: The number of segment transfers allowed in a measurement
period before traffic is stopped. Value is in units of segments. It is a constant
value of Ox 1 1 (decimal 17).

TXLVL[4:0]: Internal count value that represents usage level for a particular
port. This will be incremented for a port each time a segment is transferred for
that port.

MP_SETTING[15:0]: The user-programmed measurement period. Value is in
number of UNIT-PERIODS. This value is programmable for each port. The
configured values should be based on each port's max bandwidth. Minimum value
is 0x1. Value of Ox0 is equivalent to 0x1. Maximum value is OxFFFF.

Table 9 shows bandwidth limiter configuration examples. Assuming SYSCLK is 200

MHz, UNIT-PERIOD = 2136 SYSCLK * 5 ns = 10.68 us.

Table 9: Bandwidth Limiter Configuration Examples

MPSETTING I Maximum Bandwidth Usage

Ox000 1 (17 segments * 64 byteslsegment * 8 bitslbyte) 1 (1 * 10.68 us)

= 8 15 Mbps

0x0004 (17 segments * 64 byteslsegment * 8 bitslbyte) 1 (4 * 10.68 us)

= 204 Mbps

Ox0010

5.9 Queue Selection Algorithm

(17 segments * 64 byteslsegment * 8 bitslbyte) 1 (16 * 10.68 us)

= 5 1 Mbps

OxFFFF

The QS TSB queue selection algorithm can be summarized as follows:

(17 segments * 64 byteslsegment * 8 bitslbyte) 1 (65535 * 10.68 us)

= 0.0 125 Mbps

First, high or low port priority is selected using strict priority.
Next, a class is selected using either the class selection calendar, or strict class
priority.
Finally, a port is selected using the port selection calendar.

5.10 ECBI

All of the configurations described above except PORT-CFG, IFID1, and IFID2 are

done through writing to ECBI registers. ECBI registers are also used to monitor the

operation of the QS TSB. They are implemented in a configurable and reusable block

called Extended Common Bus Interface (ECBI).

6 VERIFICATION FLOW

Verification is a process used to demonstrate functional correctness of a design.

The verification of a design usually follows the flow synopsis below.

6.1 Planning

After the preliminary design specification is completed, the first verification

phase starts - verification planning. It consists of the following main tasks:

Verification specification extraction from the design specification
Preliminary test point list creation
Verification strategy determination

6.2 Design

The second verification phase is Design. The goal of this phase is to create

detailed paper design of testbench (TB) and testbench components (TBC).

6.3 Implementation

The third verification phase is Implementation. The goal of this phase is to

implement TB and TBCs designed during the Design Phase. This phase results in coded

TB and TBCs ready for verifying the DUT.

6.4 Verification

The final verification phase is Verification. The goal of this phase is to develop,

run and debug all testcases to cover all the test points defined in the planning phase. The

whole verification suite must be run on the final version of the RTL.

7 TESTBENCH

The QS TSB is verified following the verification flow described in section 6.

The verification testbench (Figure 12) consists of the QS TSB, which is the device under

test (DUT) and the following TBCs: ECBI-TBC, Clock Generator, Queue Manger, and

OXA3. VHDL is the chosen implementation language for the QS TSB. Specman e is the

chosen implementation language for TBCs and testcases.

7.1 ECBI-TBC

ECBI has an accompanying user configurable TBC called ECBI-TBC. A user

can write and read the QS TSB ECBI registers through it. It is a thoroughly verified

TBC. It has been used in many testbenches in verifying various TSBs with ECBI.

Figure 12: Queue Scheduler TSB Testbench . Queue Activation
Generator

Queue Request
Responder I I

Selection Response

QS - DUT

QS-ACT
PORT ID
CLASSID
IF-ID

POLL-RESP-ADDF
POLL-RESF

EGRESS-DSTART
EGRESS-DATA

MPBCLK

t

Destination
Interface Port 266 FIFO

1 SYSCLK 1 MPBCLK
Generator Generator

7.2 Clock Generator

Clock Generator is a TBC responsible for driving a clock signal. A user can

specify the following clock parameters: period, duty cycle, enable, and phase, using the

Specman e method: set(period : int, duty : int, enable : bit, phase : int). There are two

input clock signals to the QS TSB: SYSCLK running at 200MHz, and MPBCLK running

at 104MHz. Therefore, there are two Clock Generator instances, one for each clock

signal. SYSCLK is used to clock all system logic in the QS TSB. MPBCLK is used to

clock all MPB logic in the QS TSB. For example, SYSCLK can be configured as

follows:

/ / sysclk: frequency = 200 MHz, period = 5,000 ps

sysclk~drv.set(5000, 50, 1, 1000);

7.3 Queue Manager (QMGR)

Queue Manager is a TBC that maintains and provides queue status information to

the QS TSB, responds to the QS TSB queue request, and checks the QS TSB queue

selection. (It is not QMGR TSB.) It interacts with the QS TSB through all its interfaces.

QMGR is built on 3 data structures: packet, port, and queue. It provides 6 main functions

to the QS TSB:

generates queue activation
responds to queue request
monitors per port bandwidth usage
maintains port poll response
check queue selection
provides overall traffic statistics

7.3.1 Packet Data Structure

Packet is the data structure that represents traffic. It includes the following data

fields:

Packet length in segment (default: 0)
EOP (default: 0)

0 - packet is missing EOP segment
1 - packet is complete.

A list of OAM segment positions within a packet (default: null)

By configuring these three data fields, any type of packet can be created. However, a

user should never create instances of packet manually in testcases. She should call

send-pkt() or send-data-segment() to generate traffic (section 7.3.4). Packets are

dynamically created and deleted by QMGR during simulation.

7.3.2 Queue Data Structure

Queue is the building block that represents a physical queue that contains traffic.

It includes the following data fields:

A list of unscheduled packet (default : null)
Destination interface id (default : 'b000)
Poll status (default: 0)
Qualified queue status (default: 0)
Total number of packet received (default: 0)
Total number of packet transmitted (default: 0)
Total number of segments received (default: 0)
Total number of segment transmitted (default: 0)

QMGR instantiates an array of 600 queues. Any port class queue can be accessed using

its queue id as an array index. The queue id is calculated as:

queue-id = port-id * max-class_per_port + class-id.

For all the examples used throughout this paper, the QS TSB is configured as follows:

IFIDl = IFID2 = 'b000, PORT-CFG = 'boo, unless specified otherwise. For example,

port 2 class 3 queue is a QMGR queue identified by queue-id = 2 * 8 + 3 = 19.

7.3.3 Port Data Structure

Port is the basic building block that representing a collection of queues that have

the same port id. It includes the following data fields:

Port priority [high I low] (default: low)
Eligible (default: 0)
EOP (default: 1)
Class (default: 8)
Port scheduling mode [port contiguous (port interleave] (default: port interleave)
Port poll conditioning status (default: 0)

QMGR instantiates an array of 267 ports. Any port can be accessed using its port id as

an array index. A user is responsible for configuring port priority, and port scheduling

mode for each valid port, so it matches the configuration of the QS TSB. QMGR

controls data fields: eligible, EOP, class, and port poll conditioning status dynamically

during simulation.

7.3.4 Queue Activation Generator

QMGR provides two methods for a user to generate queue activation and to store

data segment(s) in QMGR queues.

send_pkt(if-id : uint (bits:3), port-id : uint
(bits:9), class-id : uint (bits:3), len : uint, oam :

bit)
send-data-segment(if-id : uint (bits:3), port-id : uint
(bits:9), class-id: uint (bits:3), eop : bit, oam:
bit)

Once send-pkt() is called, after a user constrainable random number of clock cycles

delay, QMGR sends the queue activation to the QS TSB through Queue Status Interface

compliant with the functional timing specification described in section 0. PORT-ID,

CLASS-ID, IF-ID are driven as specified by input parameter if-id, port-id, and class-id.

If if-id matches either IFID1 or IFID2, and packet is for a valid queue, the packet is

stored in a QMGR queue. If the input parameter oam is 'bl, the second last segment is

always an OAM segment; except when the packet length is 1, the first and only segment

is an OAM segment.

For example, a user wants to create a 10 segment long packet destined for port 71

and class 7 of destination interface 'b000, she calls send_pkt(O,71, 7, 10,O). Since input

parameter if-id matches both IFID1 and IFID2, and port 7 1 and class 7 is a valid queue,

QMGR sends the queue activation to the QS TSB for port 71 and class 0. Furthermore, it

stores this 10-segment long non-OAM packet in queue 71 * 8 + 7 = 575. A user can use

send-pkt() to send an invalid queue activation to the QS TSB. For example, a user wants

to verify that the QS TSB does not schedule traffic for a destination interface that it is not

responsible for, she calls send_pkt(5,0,0, 10,O). QMGR sends the queue activation to

the QS TSB. Since input parameter if-id matches neither IFID1 nor IFID2, QMGR does

not store the packet in any of its queues. If the QS TSB incorrectly makes a queue

request responding to the invalid queue activation, QMGR will detect it and assert an

error, as the invalid segment the QS TSB requested is not stored in QMGR.

Similarly, once send-data-segment() is called, after a user constrainable random

number of clock cycles delay, QMGR sends queue activation to the QS TSB through

Queue Status Interface compliant with the functional timing specification. PORT-ID,

CLASS-ID, IF-ID are driven as specified by input parameter if-id, port-id, and class-id.

If if-id matches either IFIDl or IFID2, and the segment is for a valid queue, it is stored in

a QMGR queue. If the queue is empty or the last packet in the queue is complete, a new

packet is created and appended to the packet list to store the segment; else the segment is

appended to the last incomplete packet (missing EOP). If input parameter eop is 'bl, the

packet's data field EOP is set. If input parameter oam is 1, the packet's data field list of

OAM position is updated. send-data-segment() gives a user total control in data

creation. For example, a user wants to create 3 packets: the first packet is a complete 4

segment long packet with the second and the third segment being OAM segments; the

second packet is an 1 OAM segment long packet, and the third packet is a 2 non-OAM

segment long partial packet. They are all for destination interface 'b000, port 0 and class

0. She calls send-data-segment() as follows, assuming the queue is empty initially:

/ / First complete packet

Send-data-segment (0, 0, 0, 0, 0) ; / / SOP

Send-data-segment(0, 0, 0, 0, 1); / / OAM

Send-data-segment (0, 0, 0, 0, 1) ; / / OAM

Send-data-segment(0, 0, 0, 1, 0); / / EOP

/ / Second complete packet

Send-data-segment(0, 0, 0, 1, 1); / / SOP& EOP & OAM

/ / Third incomplete packet

Send-data-segment(0, 0, 0, 0, 0); / / SOP

Send-data-segment (0, 0, 0, 0, 0) ; / / Just a segment

Traffic from a queue should go to the same destination interface. A user must not call

send-pkt() and send-data-segment() with same input parameters class-id and port-id,

but different if-id. For example, the QS TSB is configured as follows: IFIDl = 'b000,

IFID2 = ' b l l l (both), and PORT-CFG = 'boo. A user calls send_pkt(0,7,7,6,0). This

stores a six segments long, non-OAM packet in port 7 class 7 queue. This packet is

destined to go to IFID1. A user must not call send-pkt() or send-data-segment() with

input parameters: if-id = ' b l l l , port-id = 7, and class-id = 7, as that also stores data in

the same queue but destined for both IFIDl and IFID2. This is not a valid case.

7.3.5 Queue Request Responder

QMGR Queue Request Responder monitors the QS TSB Queue Request Interface. It

is automatically enabled always. Upon receiving a queue request, it checks the queue

requested for the following:

Is the queue empty?
Is there only one segment left in the queue?
Is the segment an EOP segment?
Is the segment an OAM segment?
What is the destination interface the traffic within the queue requested destined
for?

Base on the information, QMGR drives the QS TSB inputs: QS-ACK, QS-ACK-ERR,

and QUEUE-DEACT. After a user constrainable random number of clock cycles delay,

it drives the QS TSB inputs: EGRESS-DSTART and EGRESS-DATA. It responds to

the QS TSB queue request through Queue Request Interface and Port Selection Status

Interface in compliance with the protocol and timing specification described in section 0

and 4.3. There is one exception. When QMGR is enabled to inject QUEUE-DEACT

error, it will not assert QUEUE-DEACT when i t should. If the QS TSB successfully

requests a segment, QMGR removes the segment from its queue. Furthermore, to assist

the checking of the QS TSB7 queue scheduling algorithm, it records the queue id, and

whether the segment is an EOP segment. It clears the poll status of the queue requested.

It configures the data fields of the port requested as follows :

class = class requested
EOP = whether the segment is an EOP segment
port poll conditioning status = 1

The checking of the QS TSB queue selection algorithm is explained in section 7.3.8. If

the QS TSB makes a request to an empty queue, QMGR asserts an error. For example:

[24641500] qmgr-u-@3: ERROR: request data from empty por t =

0 c l a s s = 0

7.3.6 Bandwidth Monitor

The bandwidth monitor measures the QS TSB per port bandwidth usage when

enabled. A user should only enable bandwidth monitor, if the QS TSB bandwidth limiter

is also enabled. Bandwidth monitor configuration must match that of the QS TSB's

bandwidth limiter. Bandwidth monitor asserts a warning when a port exceeds its set

maximum bandwidth usage. It is based on the same design as the QS TSB's bandwidth

limiter. Bandwidth monitor has the following programmable fields: bw-monitor-en,

mp-setting[port]. For example, a user wants to enable bandwidth monitor, and set port 0

measuring period to 10 UNIT-PERIODS, she needs to do the following:

7.3.7 Port Poll Response Monitor

QMGR monitors the QS TSB Port Polling Interface. Whenever a port's poll

response is received, it checks to see if the port's poll conditioning status is set. If it is

not set, then it sets poll status for all the valid queues within the port. QMGR also

monitor the Port Selection Status Interface. Whenever a segment transfer is completed

for a port as indicated on Port Selection Status Interface, QMGR clears that port's poll

conditioning status. (Whenever the QS TSB successfully requests a segment for a port,

the poll statuses of all the queues within that port are cleared, and the port's poll

conditioning status is set. This is done by the Queue Request Responder as described

previously in section 7.3.5.)

7.3.8 Queue Selection Checker

QMGR checks the QS TSB queue selection by monitoring every queue request.

Firstly, it checks that the QS TSB does not request traffic to destination interface whose

FIFO almost full threshold has been reached or exceeded, as described in section 0.

Specifically, if AFULL-1 is logic 1, and the QS TSB issues a request for a queue with

traffic going to destination interface IFIDl or IFID2 (' b l l l - both), QMGR asserts an

error. QMGR also asserts an error, when AFULL-2 is logic 1, and IFID2 does not equal

IFIDl, and the QS TSB makes a request for a queue with traffic going to destination

interface LFID2.

Secondly, QMGR checks that the QS TSB remains on the selected queue until

the end of packet, when it is configured to queue contiguous scheduling mode.

Specifically, if the last segment requested is not an EOP segment, and the last queue

requested is not empty, but the QS TSB requests a segment from a different queue,

QMGR asserts an error. QMGR performs this check automatically always.

7.3.8.1 Queue Selection Algorithm Checker

When the QS TSB queue selection algorithm checking is enabled, upon the

receipt of a queue request, with the information that it gathers by monitoring various

interfaces, QMGR goes through the queue selection algorithm (the same as the one that

the QS TSB goes through) to pick a queue. If the queue it picks does not match the

queue that the QS TSB is requesting, it asserts a warning. It is important to investigate

each queue selection mismatch manually to determine the cause. A mismatch is not

always an error, because the checker is not a cycle accurate model of the queue selection

engine implemented inside the QS TSB. Figure 13 graphically illustrates the stages that

QMGR goes through to pick a queue.

Figure 13: QMGR Queue Selection Algorithm Checker

+ port, class

7.3.8.1.1 Queue status qualification

Stage 1: QMGR goes through all the queues to determine their queue status. If a

queue has segment(s), QMGR sets its queue status; otherwise, it clears its queue status.

Stage 2: Every queue status is further qualified by its destination interface FIFO

almost full level. Specifically, if a queue's destination interface is 'bl 1 1 (both), and

IFID2 is set to ' b l l l , and IFID2 does not equal IFID1, its status is qualified by both

AFULL-1 and AFULL2; else if a queue's destination interface is IFlD1, its queue status

is qualified by AFULL-1; else if a queue's destination interface is IFID2, its queue status

is qualified by AFULL-2.

Stage 3: If port polling is enabled, every queue's queue status is further qualified

by its port's poll status. QMGR sets qualified queue status only if it is set in the last

stage, and its port poll status is set.

Stage 4: If neither class promotion is enabled, nor class selection calendar is

enabled, for a port that is port contiguous, QMGR clears the qualified queue status of any

class higher than the class in progress within that port. For example, port 1's data fields:

class = 1, EOP = 0. It means that for port 1, class 1 is the last class that transmitted a data

segment, and the segment is not an EOP segment. In other words, port 1 class 0 is in the

middle of a packet transmission. As a result QMGR clears all the higher priority classes

(2-7) qualified queue statue. Therefore, even if those higher priority classes have data

available, they are not eligible to be requested. There is no need to clear the qualified

queue status of lower priority classes, since QMGR will pick the class in progress based

on class priority.

If class selection calendar is enabled, for a port that is port contiguous, and it has a

queue class in progress, QMGR clears the qualified queue status of all the other classes.

QMGR does this to stay port contiguous - the selected class within the port can only

change at end of packet boundaries.

Stage 5: If bandwidth monitor is enabled, and a port has reached or exceeded its

bandwidth usage, QMGR clears the qualified queue status of all the queues within the

port.

Stage 6: QMGR goes through all the valid queues, if a port has a queue with

qualified queue status set, it sets that port's data field: eligible. It indicates that the port is

eligible to be scheduled. In summary, an eligible port satisfies the following conditions:

The port is not empty.
Destination interface FIFO is below its almost full threshold.
Destination port is not busy.
Port contiguous if configured so.
Class promotion disabled if configured so.
Per port bandwidth usage limit is not exceeded.

7.3.8.1.2Port Priority Selection

QMGR goes through all the high priority ports, if any one of them is eligible (i.e.

data field: eligible is set), QMGR selects high priority ports, else it goes through all the

low priority ports, if any one of them is eligible, QMGR selects low priority ports. If

there is no eligible port, QMGR asserts an error, as this is a mismatch between QMGR

and the QS TSB queue selection. Please note in this stage, QMGR only selects the port

priority. It has selected neither a class nor a port. Class selection is next.

7.3.8.1.3 Class Selection: class priority

If class selection calendar is not enabled, class selection is based on strict class

priority. QMGR goes through all the queue of the selected port priority, and selects the

highest priority class that has its qualified queue status set.

7.3.8.1.4Class Selection: class selection calendar

If both class selection calendar and class priority are enabled, and any priority

class queue of the selected port priority has its qualified queue set, QMGR selects the

priority class. However if none of the priority class queues of the selected port priority

has its qualified queue set, QMGR goes through the class selection calendar starting from

where it left off last time it traversed it for the selected port priority. It selects the first

class with a queue of the selected port priority that has its qualified queue status set. If

after traversing the whole class selection calendar, QMGR cannot find a qualified class, it

asserts an error, as this is a mismatch between QMGR and the QS TSB queue selection.

Please note in this stage, QMGR only selects a class. It has not selected a port.

Port selection is next.

7.3.8.1.5Port Selection

QMGR goes through the port calendar starting from where it left off last time it

traversed it for the selected port priority. It selects the first port with a queue of the

selected port priority and selected class that has its qualified queue status set. If class

promotion is enabled, and the queue selected is in a port that has another class queue in

progress, QMGR selected the class in progress instead. If after traversing the whole port

calendar, QMGR cannot find a qualified port, it asserts an error, as this is a mismatch

between QMGR and the QS TSB queue selection.

Finally, QMGR has selected a port and a class. If the queue selected by QMGR

does not match the queue requested by the QS TSB, QMGR asserts a mismatch warning.

7.3.8.2 Queue Selection Algorithm Checker Weakness

Given the high complexity in the QS TSB design specification, and stringent

timing requirement, the QS TSB is implemented with pipelines, FIFO, RAMS, and other

complex logic. As a result, even though the QS TSB and QMGR monitor the same

interfaces, there are discrepancies between the time that input information reaches the QS

TSB decision logic and QMGR decision logic. For example after the QS TSB receives a

port poll response, it writes the information into a FIFO. Later the information is read out

of the FIFO and sent to the decision malung logic. This timing delay is not fixed. It is a

result of many factors. However, QMGR uses the port poll response immediately after

receiving it. Therefore, it is possible that QMGR selects a port that the QS TSB still

thinks is busy. Considering the available verification resources, the complexity of the

task, and the potential benefit, it is not deemed worthwhile to create a cycle accurate

queue selection model. However, the weakness of the queue selection checker can be

avoided by creating the stimulus carefully, or by making sure that both QMGR and the

QS TSB have the same information before being allowed to make a queue selection.

7.3.9 Statistics

QMGR has a method output-statisticso. Once called, it displays the following

information for each QMGR queue

Unscheduled data
Total number of segment received
Total number of segment transmitted
Total number of packet received
Total number of packet transmitted

This method provides a sanity check for the QS TSB. It is essential to call this method at

the end of very testcase. It verifies that the QS TSB is not tuck in an orphan state and has

stopped requesting data.

0XA3 is the TBC that drives Port Polling Interface, FIFO Status Interface, and

Port Selection Status Interface (Figure 12). It provides a user with the following four

methods to control AFULL-1 and AFULL-2:

0XA3 can also automatically control AFULL-1 and AFULL-2 if enabled, based on the

fill level of a simple destination interface FIFO. 0XA3 allows a user to set port poll

status for each port. For example:

/ / set port 0 poll status to logic 0

oxa3.port-status[O] = l'bO;

/ / set port 1 poll status to logic 1

Oxa3.port-statu[l] = l'bl;

It can also automatically set port poll status for all the ports, based on the fill level of a

simple FIFO inside each destination port.

7.4.1 Destination Interface FIFO

0XA3 observes the Queue Request Interface: EGRESS-DSTART,

EGRESS-DATA, and EGRESS-ADDR. Once it receives a valid segment's control

information, it creates a virtual segment, and writes it into the destination interface FIFO.

It increments destination interface 1 FIFO segment counter. If the segment IFID is both

('bl l l), 0XA3 also increments destination interface 2 FIFO segment counter. The

virtual segment contains port id, and a delay of random number of clock cycles. Every

MPBCLK cycle, 0XA3 decrements the delay of every segment inside the FIFO until it

reaches zero. 0XA3 reads out the segment at the head of the FIFO , once its delay has

expired. It decrements the corresponding segment counter(s). It sets

SEL-ADDR-VALID to logic 1, and puts the port id on SEL-ADDR for 1 MPBCLK

cycle on Port Selection Status Interface. If error injection on SEL-ADDR is enabled, the

LSB of SEL-ADDR is flipped. The destination interface FIFO mimics the segment

finally reaching its destination port after going through data path logic and FIFO.

Essentially, a segment's delay is the minimum number of MPBCLK cycle that it remains

in the FIFO.

If 0XA3 automatic AFULL control is enabled, and destination interface 1

segment counter exceeds its FIFO threshold, 0XA3 asserts AFULL-1. 0XA3 will not

de-assert AFULL-1 until the segment counter is below the threshold. Similarly, if

destination 2 segment counter exceeds its FIFO threshold, 0XA3 asserts AFULL-2. It

will not de-assert AFULL-2 until the segment counter is below the threshold. A user can

specify the two FIFOs' threshold, and enable automatic AFULL control as follows:

/ / destination FIFO 1 threshold is 4 [segment]

oxa3.fifol-th = 4;

/ / destination FIFO 2 threshold is 2 [segment]

oxa3.fifo2-th = 2;

/ / Enable OXA3 automatic AFULL control

oxa3.afull-auto = l'bl;

7.4.2 Port FIFO

0XA3 observes the Port Selection Status Interface. Once it receives a valid

segment, it writes the segment into the corresponding port's FIFO. A port FIFO drains

its segments at a specified drain rate. All port FIFOs have the same drain rate. For

example a user can specify the FIFO drain rate as follows:

/ / drain 1 segment every 12 MPBCLK cycles

oxa3.fifo-drain-rate = 12;

When a user enables 0XA3 to automatically set port poll status, if the number of

segments within a port FIFO exceed its threshold, its port poll status is cleared. Its port

poll status will not be set until the number of segments within it drops below the

threshold. All port FIFOs have the same threshold. For example, a user can specify port

FIFO threshold as follows:

/ / port FIFO threshold is 10 [segment]

oxa3.fifo-th = 10;

/ / Enable OXA3 automatic port poll response

oxa3.po~~~status~auto = l'bl;

7.4.3 Port Poll Response Calendar

By default, 0XA3 cycles through all the valid ports (from port 0 to port max),

outputting their port poll status. A user can customize the port poll response calendar,

specifying the length of the calendar and value of each entry. For example, a user wants

to create a short calendar outputting the port poll status of only 2 ports: port 0 and port

74:

oxa3.max-cal-idx = 1; / / 2 valid port entry

oxa3.poll~resp~cal[01 = 0; / / first entry is port 0

oxa3.poll-resp-cal[ll = 74; / / second entry is port 74

TESTCASES

Test points are extracted from the QS TSB design specification. As the design

progresses, the design specification changes. Some features are modified, some features

are added, and some features are removed. Test points are updated accordingly. Each

test point is covered in at least one testcase. Here is the list of the main test points:

Verify all the QS TSB ECBI register bits have a default value that matches the
default value specified in the design specification after the QS TSB reset. All
readable and writable bits in the QS TSB should be writeable and should hold the
value written until the QS TSB is reset or until another value is written. There is
no ECBI register address aliasing.

Verify port selection using port calendar in 75 port x 8 classes per port
configuration

Same as above except in 147 port x 4 classes per port configuration

Same as above except in 267 port x 2 classes per port configuration

Verify class selection using strict class priority in port contiguous scheduling mode
in 75 port x 8 classes per port configuration

Same as above except in 147 port x 4 classes per port configuration

Same as above except in 267 port x 2 classes per port configuration

Verify port priority (highllow) selection

Verify class promotion when class promotion is enabled in port contiguous mode

10. Verify no class promotion when class promotion is disabled in port contiguous
mode

11. Verify bandwidth limiter

12. Verify port priority selection, class selection using strict class priority, and port
selection using port calendar together in port contiguous scheduling mode

13. Same as above except in port interleave scheduling mode

14. Same as above except in queue contiguous scheduling mode

15. Verify the QS TSB is able to respond to illegal PORT-ID and CLASS-ID of
Queue Activation Interface, POLL-RESP-ADDR of Port Polling Interface, and

SEL-ADDR of Port Selection Status Interface in 75 port x 8 classes per port
configuration

16. Same as above except in 147 port x 4 classes per port configuration

17. Same as above except in 267 port x 2 classes per port configuration

18. Verify the QS TSB is able to respond to all legal PORT-ID and CLASS-ID of
Queue Activation Interface, POLL-RESP-ADDR of Port Polling Interface, and
SEL-ADDR of Port Selection Status Interface in 75 port x 8 classes per port
configuration

19. Same as above except in 147 port x 4 classes per port configuration

20. Same as above except in 267 port x 2 classes per port configuration

2 1. Verify class selection using class selection calendar in port contiguous scheduling
mode

22. Same as above except in port interleave scheduling mode

23. Same as above except in queue contiguous scheduling mode

24. Verify class selection using class selection calendar and priority class in port
contiguous mode

25. Same as above except in port interleave scheduling mode

26. Same as above except in queue contiguous scheduling mode

27. Verify QS-ACK-ERR assertion (along with QUEUE-ACK) in response to a
QS-REQ, with QS-ACK-ERR response latency from 1 clock cycle up to 6 clock
cycles in port contiguous scheduling mode.

28. Same as above except in port interleave scheduling mode

29. Same as above except in queue contiguous scheduling mode

30. Verify that the QS TSB is able to differentiate a port configured to port contiguous
scheduling mode and a port configured to port interleave scheduling mode when
queue scheduling

3 1. Verify queue contiguous scheduling mode. The QS TSB remains on the selected
queue until the end of packet, even if there are segments in a higher priority class.

32. Verify that when IFID1 and IFID2 are different and IFID2 is BOTH, the QS TSB
responds to all combinations of AFULL-1 and AFULL2. Send data with IFID
equals IFID 1 or IFID2

33. Verify the QS TSB qualifies queue status with AFULL-1 and AFULL-2 correctly,
with all combinations of IFIDl and IFID2

There are two types of testcases: directed and random. Directed testcases have

most of the input stimulus (queue activation, port poll response, FIFO status) well

controlled, as a result the simulation outcome is known. The advantages of directed

testcases are:

They are usually not very long.
They are easy to debug.
A user can be sure that a test point is covered.

Directed testcases are especially helpful in debugging the QS TSB at its earlier

development stage. Furthermore, directed testcases can be carefully setup so that QMGR

queue selection algorithm checker when enabled, does not give false alarms about the QS

TSB making queue selection incorrectly. All the test points are covered in at least one

direct testcase. The drawback of direct testcases is that it covers limited combinations of

input stimulus, and it does not stress test the QS TSB over a long period of time.

Random testcases complement directed testcases. Random testcases have input

stimulus randomly generated with constraints. They result in a greater number of input

stimulus combinations, thus provide more complete verification coverage. The drawback

is that QMGR queue selection algorithm checker may raise false alarms (section 7.3.8.2).

However, this issue can be overcome by sending queue activations to the QS TSB before

it is enabled to schedule traffic, and port poll responses and FIFO statuses do not change

dynamically during simulation. For example, in testcase 75-pc-pi-random, the QS TSB

is configured as follows:

IFID 1 = IFID2
75 ports x 8 classes per port
odd ports are low priority, even ports are high priority
port 0 - 36 are configured to port contiguous scheduling mode, port 37 - 74 are
configured to port interleave scheduling mode
class promotion is enabled

QMGR is programmed to match. 0XA3 is programmed to send positive poll response

for all valid ports. At the beginning of simulation, AFULL-1 and AFULL-2 are set high.

QMGR generates 1000 random queue activations with the following constraints:

randomly select a port from port 0 - 74,
randomly select a class with the following probability
class 0 - 25%
class 1 - 15%
class 2 - 15%
class 3 - 15%
class 4 - 15%
class 5 - 10 %
class 6 - 5%
class 7 - 5%

randomly select a packet length with the following probability
1 segment - 50%
4 to 7 segment - 50%

OAM - 50%, non-OAM - 50%

After all the queue activations are sent, AFULL-1 and AFUL1,-2 are set low. The QS

TSB starts to issue queue requests. In this testcase QMGR queue selection algorithm

checker does the checking reliably when enabled.

If a testcase is completely random: queue statuses, port poll responses, and FIFO

statuses are all changing dynamically throughout the simulation, QMGR Queue Selection

Checker should not be enabled. QMGR does do the following queue selection check

automatically:

The QS TSB does not issue a queue request for an invalid port id or an invalid
class id
The QS TSB does not issue a request for queue with traffic to a destination
interface FIFO that has reached or exceeded it almost full threshold
The QS TSB is queue contiguous when configured so
The QS TSB does not issue a queue request for a busy port

Altogether, there are over 40 directed and random testcases.

VERIFICATION COVERAGE

After all testcases have been written and run without errors, a code coverage tool

is used to get a qualitative measure of the quality of a testbench by collecting statistics of

several code coverage criteria. The code coverage tool used is VNavigator from

TransEDA. It runs on top of the VHDL - Specman simulator. The following code

coverage metrics are collected:

State coverage - measures the number of executed statements in the code
Branch coverage - measures the number of branches executed in "IF ELSIF ELSE
END IF" and "CASE" blocks. It makes sure both the "TRUE" and "FALSE"
branches have been executed.
Basic Sub-condition Coverage (BSC) - makes sure all sub-condition in a logic
statement has been toggled TRUE and FALSE.

The minimum requirement is 95% for all three code coverage metrics.

In general, the higher the code coverage result, the more confident the engineer is

about the verification. However, a code coverage tool cannot tell the engineer that she

has verified the design functionally 100%. 100% code coverage does not mean the

design is 100% bug free. It can help her to identify parts of the circuit that are not

exercised by the existing testcases.

Code coverage results are summarized in Table 10. Statement and branch

coverage results meet the requirement. However, the condition coverage result does not

meet the requirement. Below is the detailed study of the coverage results in order to

determine the cause of low condition coverage.

Table 10: Queue Scheduler TSB Code Coverage Summary

I Condition 1 7151758 1 94.3% 1

Metric

Statement

Indirect Interface is a reusable block. It has 28 of 32 sub-conditions covered. The

VNavigator found that core-handshake = '0' is never false in the two instances of the

following condition statement:

IF ((core-busy-signal = '1') OR (core-handshake = '0'))
then

lO8Ollll6

The RTL was studied. It turns out that core-handshake is an input to the module. It is

tied to logic 0 by the calling module. This accounts for the 2 sub-conditions not covered.

Coverage

96.7%

Interrupt Clear is a reusable block. It has 8 out of 10 sub-conditions covered.

VNavigator found that scanb is never logic 0 in the following 2 statements.

din <= clrint OR scanb;

rstin <= (NOT ((NOT int) AND scanb)) AND rstb;

scanb is a test signal, when set to logic 0, it puts the QS TSB in test mode. In order to put

the QS TSB in normal mode for functional verification, it must be set to logic I. This

accounts for 2 sub-conditions not covered.

2 to 4 decoder is a reusable module. It has 6 out 10 sub-conditions covered.

VNavigator found that enable is never logic 0 in the following statements:

outb(0) <= NOT(selb(1) AND selb(0) AND enable);

outb(1) <= NOT(selb(1) AND sel(0) AND enable) ;

outb(2) <= NOT(sel(1) AND selb(0) AND enable);

outb(3) <= NOT(sel(1) AND sel(0) AND enable);

Enable is an input signal to the module. The module was instantiated in 2 different

places. In both places, enable is tied to logic '1'. This accounts for 4 sub-conditions not

covered.

ECBI address decoder is a reusable module. It has 0 out of 24 sub-conditions not

covered. VNavigator found that none of the sub-condition is ever true or false in the

following statements.

IF cbi-addr-width = 1 GENERATE

regenb(0) <= addr-sel(0) OR bsb;

regenb(1) <= NOT addr-sel(0) OR bsb;

END GENERATE;

IF cbi-addr-width = 4 GENERATE

decode-enable(0) <= addr-sel(3) OR bsb;

decode-enable(1) <= NOT addr-sel(3) OR bsb;

END GENERATE;

IF cbi-addr-width = 7 GENERATE

decode-enable(0) <= addr-sel(6) OR bsb;

decode-enable(1) <= NOT addr-sel(6) OR bsb;

END GENERATE;

IF cbi-addr-width = 10 GENERATE

decode-enable(0) <= addr-sel(9);

decode-enable(1) <= not addr-sel(9);

END GENERATE;

This is because it is instantiated with cbi-addr-width set to six. As a result, none of the

statements above is actually generated. This accounts for all 24 sub-condition not

covered.

In summary there are total (2 + 4 + 24 + 2) = 32 not covered sub-conditions that

should not be taken into account when calculating condition coverage, because they are

tied to either logic 1 or logic 0 (i.e. can not toggle) for simulation or implementation

reasons. Therefore the recalculated condition coverage is:

The QS TSB verification achieves the code coverage goal.

10 CONTRIBUTION

I was not involved in the specification, design, and implementation of the QS

TSB. I was responsible for the verification of the QS TSB. It took me 6-months from

verification planning, testbench and testbench components design and implementation, to

create and execute testcases to verify the QS TSB functional correctness.

11 CONCLUSION

All the verification test points are covered in testcases. All testcases pass on the

QS TSB RTL tapeout netlist. All code coverage requirements are met. Therefore, the

QS TSB verification is complete. There are no QS TSB bugs found in top-level

verification. At the time this paper is written, PM7354 SIUNI DUPLEX GE is in a

foundry being fabricated. Whether the QS TSB works in silicon is yet to be determined

after the fabricated and packaged chip is tested in the validation lab.

Block level verification requires the block to be verified thoroughly. It covers all

the block features and all the comer cases. The requirement and approach of top-level

verification is different. Possible future work might be demonstrating the top-level

verification process through the example of a chip's top-level verification effort.

REFERENCES

1. PMC-Sierra, Inc. PMC-2040668, "QS Telecom System Block Engineering
Document". Issue 2, 2004.

2. PMC-Sierra, Inc. PMC-2040896, "Queue Scheduler Telecom System Block (QS
TSB) Register Descriptions". Issue 2, 2004.

3. PMC-Sierra, Inc. PMC ICDC, cad-dd-00377, "Specman Best Practices
Document". Issue 2,2003.

4. PMC-Sierra, Inc. PMC ICDC, cad-dd-00647, "VN-2003.12 Application Note".
Issue 1,2004.

5. Verifica LLC. "Introduction to Specman Elite Verification Methods". Rev 2004-
04-09, Portland, Oregon, 2004

6. PMC-Sierra, Inc. "PM7354 SIUNI DUPLEX GE Product Detail", retrieved on
March 19, 2005, http://www.pmc-sierra.com/products/details/pm7354/

7. PMC-Sierra, Inc. PMC-203 1884, "DUPLEX GE ASSP Device Design
Document". Issue 3,2005.

8. PMC-Sierra, Inc. "PMC-Sierra Unveils Industry-Leading Device for IP DSLAMs
To Accelerate Triple Play Services; Low Cost SIUNI DUPLEX GE Based IP
DSLAMs Enable Advanced Customer Premises Equipment", retrieved on March
19, 2005, http://phx.corporate-ir.net/phoenix.zhtml?c=74533&p=irol-
newsArticle&ID=676972

9. IEEE. 802.3-2000 IEEE Part 3:Camer sense multiple access with collision
detection (CSMAJCD) access method and physical layer specifications, 2000.

10. IEEE. 802.1Q IEEE standards for local and metropolitan area networks. Virtual
bridged local area networks, 2003.

1 1. ATM Forum. UTOPIA Level 2. Version 1 .O.af-phy-0039.000, June 19%.

12. Jean Walrand and Pravin Varaiya. High-performance Communication Networks:
2nd Edition. Morgan Kaufmann Publishers, 2000.

