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ABSTRACT 

The purpose of this thesis is to examine the sampling 

distribution properties of the Bayesian estimator in the context 

of models with autocorrelated errors. Bayesian estimators have 

received limited attention in studies regarding autocorrelated 

error models due to ideological controversy and computational 

complexities. 

The autoregressive [positive AR(I)] and the Moving Average 

[positive MA(1)I models are used in Monte Carlo experiments to 

compare the risk (mean square error) of the Pure Bayesian 

estimator with those of the Ordinary Least Square estimator, the 

Durbin estimator, the Maximum Likelihood estimator, the related 

'autocorrelation' pretest estimators of the Durbin and the 

Maximum Likelihood estimators, and the Bayesian pretest 

estimator. Twenty design matrices are employed, including data 

from related Monte Carlo studies and a variety of real-world 

economic time series data. 

The Pure Bayesian estimator performs better than all the 

other estimators if the disturbance terms are generated by the 

AR(1) process and the autocorrelation parameter (p) is greater 

than approximately 0.10. However, when the disturbance term 

follows the MA(1) process, the Pure Bayesian estimator only 

dominates for values of the autocorrelation parameter (6) 

greater than approximately 0.50. The Ordinary Least Squares 

estimator dominates for lower values of the autocorrelation 

parameters p and 6. 
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CHAPTER 1 

INTRODUCTION TO THE STUDY 

1.1 INTRODUCTION 

In a general linear statistical model where the disturbance 

terms corresponding to different observations are correlated, 

the Ordinary Least Squares estimator (OLS) is no longer BLUE, 

and thus an alternate estimator may be desired. The Generalized 

Least Squares estimator (GLS) is BLUE in this context but since 

the autocorrelation parameter is unknown a priori, it is 

estimated through various methods resulting in the Estimated 

Generalized Least Squares estimator (EGLS) which, unfortunately, 

does not dominate the OLS estimator over the entire range of the 

autocorrelation parameter. However the EGLS estimator is more 

efficient, in terms of variance, than the OLS estimator for 

higher values of the autocorrelation parameter [see Griliches 

and Rao(1969) and Magee et al(198711. 

Alternatively, the researcher can use traditional hypothesis 

testing procedures to examine if the classical assumption of 

uncorrelated error terms is violated or not. Depending on the 
- 

outcome of this test, the researcher chooses between the OLS 

estimator and the EGLS estimator. This estimator, which is a 

dichotomous choice of estimators, is referred to as the 

'Autocorrelation' Preliminary Test (pretest) estimator. This 

estimator has been shown to be inadmissable [see Cohen(1965) and 



~aman(1984)I because of its discontinuity property. An estimator 

is admissable if it is not dominated, over the entire space of 

the parameter, by another estimator. The inadmissability of the 

autocorrelation pretest estimator refers to continuous loss 

functions. The Stein estimator can be viewed as a way of 

avoiding the discontinuity feature of pretest estimators. It is 

weighted average of a restricted estimator and an unrestricted 

estimator with the weights given as a continuous function of the 

magnitude of the test statistic used in testing the 

restrictions. The weighting used by this estimator is a form of 

shrinkage procedure, where the unrestricted estimator is shrunk 

toward the restricted estimator. This procedure enables the 

Stein estima.tor to combine the two estimators in a continuous 

fashion instead of choosing between them, thus the Stein 

estimator is a form of 'smoothing' the pretest estimator. 

Following this Stein principle, it is a premise of this thesis 

that 'smoothing' pretest estimators for autocorrelated error 

models will result in a marked improvement in their sampling 
C 

distribution properties. 

The above mentioned estimators have been given considerable 

exposure in the existing literature while another group of 

estimators, the Bayesian alternatives, has received limited 

attention. This thesis examines the sampling properties of the 

Bayesian alternatives and compares the mean square error of the 

Bayesian alternatives to the traditional estimators used in the 

econometric literature in the context of autocorrelated error 



models. 

The ~ayesian estimators, though non-linear, are a form of 

'smoothing' the traditional pretest estimators, thus they are a 

continuous function of the data. The Pure Bayesian estimator is 

a weighted average of an infinite number of Generalised Least 

Square estimators, with the weights determined by the marginal 

posterior density of the autocorrelation parameter. Thus the 

pure Bayesian estimator can be viewed as the ultimate form of 

'smoothing' among all 'continuous' estimators of an 

autocorrelated error model. Bayesian pretest estimators are also 

a continuous function of the data. We structure the testing 

procedure such that the null hypothesis is a composite rather 

than a point hypothesis. This structure of the null hypothesis 

enables us to avoid introducing an informative prior in defining 

the weights used in the formulation of the Bayesian pretest 

estimator. The weights used are based on the posterior odds 
# 

ratio of the competing hypotheses. 

Under general conditions, Bayesian estimators are 

admissable, consistent and minimize average risk 

[~ellner(l971)]; this is supported by several small sample 

experiments [see Swamy and ~apportport(l975) and ~hornber(l974)l 

in which Bayesian estimators have performed very well. 

A Monte Carlo study is undertaken to compare the risk (mean 

square error) of the conventional estimators with their Bayesian 

competitors, for a model with autocorrelated error terms. Twenty 



different design matrices (data sets) comprising of economic 

time series data and artificial data are used to avoid the 

problem of generalisation f ~ o m  a single or few data sets. 

The general conclusion from the study is that the pure 

Bayesian estimator is uniformly superior to all the other 

estimators examined over the entire range of the autocorrelation 

parameter for the AR(1) model except for OLS where the range is 

p>0.10. For the MA(1) model, the pure Bayesian estimator is the 

best among all the estimators only for large values of the 

autocorrelation parameter (620.50), but does not perform well 

for smaller values. OLS performs well for values of the 

autocorrelation parameter close to zero for both models, but was 

the worst among all the estimators for higher values of the 

autocorrelation parameter (20.50) for both models. 



1.2 CONVENTIONAL PRE-TEST ESTIMATORS 

Econometric studies often incorporate a p r i o r i  information 

exogenous to the model being dealt with. This information could 

be some knowledge suggested by economic theory or from previous 

research about the parameters being estimated. Usually the 

validity of this extraneous information is tested, using 

conventional hypothesis testing procedures, and on the basis of 

the test, this information is either included in the estimation 

procedure or discarded. The estimators generated from this 

procedure are referred to as pretest estimators. These 

estimators usually have very complicated sampling distributions. 

A review of the existing literature reveals that such 

testing procedures are applied in a variety of circumstances. 

Griffiths and Beasley(1984) and Fomby and Guilkey(1978) used 

this procedure to test for the presence of autocorrelated errors 

and to choose between the Ordinary Least Square estimator and C 

some version of the Estimated Generalized Least Square estimator 

depending on the outcome of the test. 

Wallace(1977) and Gourieroux and Trognon(1984) investigated 

on the basis of 'F' and Hausman test respectively,'whether to 

include or exclude a subset of explanatory variables in a linear 

model. This defines the specification pretest estimator. 

Fomby et a1 (1984) looked at the choice of the polynomial 

degree in an Almon lag scheme by hypothesis testing. 



These references are by no means exhaustive, but they are a 

few cases where pretesting has played a significant role in 

studies. 

The sampling distributions of pretest estimators are very 

difficult to analyse, because they depend on a number of things: 

( 1 )  The test used in the pretesting procedure (2) the level of 

significance chosen for the test ( 3 )  The design matrix used 

(Griffiths and Beasley (1984)) ( 4 )  The nature of the hypothesis 

being tested and (5) The methods used in estimating some 

parameter values (Judge and Bock(1978)) 

Uncertainty about inclusion or exclusion of a variable or a 

choice of functional form are usually incorporated into the 

model as a form of general linear restriction or hypothesis and 

traditional testing procedures are used for choice purposes. 

Thus the conventional pretest estimator is formulated on the 

basis of a restricted estimator and an unrestricted estimator. 

A; example of a general case of pretest estimator is given in 

Judge et a1(1985), Judge and Bock(1978) and ~ennedy(l985). The 

specific pretest estimator we are interested in is the 
- 

autocorrelation pretest estimator as per Fomby and Guilkey(1978) 

and Judge and ~ock(1978) . Given the model 

the null hypothesis is of the form Ho: p=O and the alternative 



hypothesis is Ho: p#O. A ~urbin-Watson(DW) test is used to test 

for the compatibility of the sample information and the null 

hypothesis. If the null is accepted, then the Ordinary Least 

Square estimator 6 OLS is used as an estimate of 6, on the other 

hand rejecting the null implies the use of some version of the 

Estimated Generalised Least Square estimator 6 EGLS. Thus the 

estimator that results is based on a test of significance. 

Specifically, 

where I ( .  . . )  (DW) are indicator functions, which take on the 

values I (A) (DW)=' I (R) (DW) =O if DW (the test statistic) falls 

in the acceptance region and I(A)(DW) = O f  I (R) (DW)= 1 if DW falls 

in the rejection region. The acceptance and rejection regions in 

the DW test. is described fully in the next chapter. 

Thus the conventional pretest estimator is a dichotomous - 
choice between OLSand EGLS estimators. It is interesting to 

note that in the case of the autocorrelation pretest estimator, 

the OLS is the restricted estimator and the EGLS estimator is 

the unrestricted estimator as opposed to the reverse in the 

general cases discussed in the literature. 

The theoretical performance of the OLS, EGLS and the 

autocorrelation pretest estimator measured in terms of mean 

square error (MSE) is depicted in Figure 1.1. The comparison in 

the general case is fully explained in Judge et al(1985 pp 

74-76) and Kennedy(l985 pp 160-161). The vertical axis measures 



the risk associated with the use of a given estimator, while the 

horizontal measures the extent to which the null hypothesis is 

violated. Irrespective of the 'truth' or 'falsity' of the 

extraneous information, i.e, whether the errors are 

autocorrelated or not the OLS, EGLS and the autocorrelation 

pretest estimators are all unbiased asymptotically, though EGLS . 

and the pretest estimator are biased in small samples, thus 

discussion of the performance is based on the mean square error 

criterion. 



FIGURE 1.1 
RISK OF OLS,EGLS AND PRETEST ESTIMATOR 

Legend 
A OLS 

X EGLS - - 
D PRETEST 

EXTENT TO WHICH HYPOTHESIS IS FALSE 

9 



When the null hypothesis is true (at the origin), OLS is 

BLUE and thus has the least variance among all these estimators, 

but as the hypothesis becomes increasingly implausible, its 

variance increases. This behaviour could be attributed to the 

fact OLS loses its BLUE properties for large values of the 

autocorrelation parameter, thus its relative variance increases 

in relation to other estimators. Thus as we move further away 

from the origin, the risk of OLS rises as OLS consistently gets 

worse. Its risk can be shown as an upward sloping line starting 

at S. 

When the null hypothesis is true, EGLS is worse than OLS , 

because the latter incorporates the fact that p=O. Thus it has a 

risk above that of OLS at the origin. As the null hypothesis 

becomes less true, because EGLS allows p to be non-zero, it 

attains a lower variance than OLS after a point. Its risk 

function is a slightly upward sloping line starting at B. The 

risk of EGLS intersect that of OLS at a value of p-to the left 

of which OLS outperforms EGLS. This value of p is given as 

lp110.3 in Griliches and ~ao(1969), ~pitzer(l979), Magee et a1 

The,pretest estimator, which is a dichotomous choice between 

OLS and EGLS depending on the outcome of the test, has a mean 

square error between that of OLS and EGLS if the null hypothesis 

is true, because it is a combination of both the OLS and the 

EGLS estimators. If the null hypothesis is far from being 

plausible, the pretest estimator correctly identifies the 



falsity of the hypothesis and has a mean square error close to 

that of EGLS (shown by the risk of the pretest approaching that 

of EGLS as we move further from the origin). The pretest 

estimator performs quite well for 'very true' and 'very false' 

hypothesis, however in between these extremes it performs 

poorly. This behaviour is explained by the fact that, for a 

given power of test (say 60%), the pretest estimator, in 

repeated samples, does not always accept or reject the 

hypothesis. It incorrectly accepts the hypothesis 40% of the 

time and correctly rejects it 60% of the time. When it 

incorrectly accepts the hypothesis to be valid, the estimates 

produced are unbiased but inefficient, but when it correctly 

rejects the hypothesis, the estimates produced are biased and 

have a lower variance. The combination of these two estimates 

produce a pretest estimator with a higher mean square error. 

Consequently, between the two extremes, the pretest estimator 

has a mean square error above both the OLS and EGLS. The risk of 

the autocorrelation pretest estimator intersects that of OLS at 

a value of p approximately equal to 0.3 according to results 

from a Monte Carlo study done by this author. The above 

described behaviour of the OLS, EGLS and autocorrelation pretest 

estimator is confirmed by a Monte Carlo study undertaken by this 

author, a result consistent with the literature cited earlier. 

This performance of the pretest estimator stems from its 

dichotomous nature; that is, it is a dichotomous weighted 

average of the two estimators and a discontinous function of the 

data. 



Zaman(1984) argued that "under yet unknown but probably 

quite general regularity conditions, discontinous functions of 

the data are inadmissible decision rule" ~ohen(1965) also showed 

that because of the implicit discontinuity of the weights used 

in the pretest estimator, under square error loss measure, this 

estimator is inadmissable, thus showing that under the above 

criterion this estimator can be beaten. 

One other problem with the conventional pretest estimator is 

the arbitrary choice of significance level. 

Consequently an estimator which is a continous function of 

the data should be more appropriate than the conventional 

pretest estimator. Stein-like estimators and Bayesian estimators 

are examples of such estimators. 



1.3 STEIN-LIKE ESTIMATOR 

Using the orthonormal linear model, Scolve, Morris and 

~adhakrishnan(l972) showed that under square error loss 

criterion, Stein-like estimators dominate the OLS estimator over 

the entire parameter space. Even though most of the studies that 

deal with Stein-like estimators are concerned with special case 

models, the results suggest that over the entire parameter 

space, there exist some 'simple' estimators which are uniformly 

superior to the conventional least square estimator. 

Charles Stein(1955) found that if the number of parameters 

is greater than two, then it is possible to improve upon the 

performance of the conventional (least square) estimator under 

square error loss measure. 

In the traditional context, Stein-like estimators are 

formulated in terms of restricted and unrestricted,estimators. 

The Stein estimator is a weighted average of the restricted and 

unrestricted estimators, where the weights depend on the 

magnitude of the 'F' statistic used to test the restrictions. 

Stein-like estimators use a shrinkage procedure, where the 

unrestricted estimator is shrunk toward the restricted 

estimator, and the shrinkage factor is determined by the 'F' 

statistic. In the process these estimators combine the 

restricted and unrestricted estimators in a continuous fashion 

instead of choosing between them like the pretest estimator. If 

the number of parameters to be estimated is greater than two, 



then these estimators generally have a risk everywhere below 

that of the conventional least square estimator. 

Given the restrictions 

RP = r =O 

the Stein estimator is generally specified as 

where 'a' is a scalar given by (K-2)(T-K)/(K(T-K+2)), 'u' is the 

test statistic which has an IF' distribution with K and (T-K) 

degrees of freedom and pUR is the unrestricted estimator. 

Consider the possibility of formulating a Stein-like 

estimator for the autocorrelation case where the shrinkage 

procedure is such that the EGLS estimator is shrunk toward the 

OLS estimator. In this process, 'autocorrelation' Stein 

estimators combine the OLS and the EGLS estimators instead of 

choosing between them,with the shrinkage factor depending on the 

magnitude on the test statistic used to test the hypothesis of 

autocorrelated errors . Such Stein-like estimators in the 
context of autocorrelated error model (an invention of this 

author), referred to as 'autocorrelation' Stein estimators, 

could be structured as - 

OLS flas=a(~wc )pEGLS + 1-a(DWc)P ....................... 1.4b 

(note: this formulation pertains to the case where p>O so that 

DW is expected to be smaller as the autocorrelation becomes more 



severe 

where 

pas is the 'autocorrelation 'Stein estimator 

a is a scalar which depends on the design matrix 

DWc is the calculated test statistic 

pEGLS and poLS are the EGLS and the OLS estimators respectively 

~ ( D w ~ )  determines the shrinkage factor, i.e. by how much the OLS 

estimator has to be shrunk toward the EGLS estimator. This 

factor can sometimes shrink the OLS past the EGLS estimator; to 

prevent this from happening, the factor could be truncated after 

a point, and another Stein-like estimator, the 'autocorrelation' 

Stein postive-rule estimator is obtained. Fallowing the parallel 

with the traditional Stein estimator, this estimator may be 

superior on the basis of mean square error to the original 

'autocorrelation' stein estimator. 

To avoid a(DW)shrinking past 0 or 1, a will have to be 

approximately 1/2 as DW approaches 2, so that larger weights 

(close to 1 )  are placed on OLS and smaller weights(c1ose to O), 

is placed on EGLS. The opposite will be true for the case where 

DW approaches 0. The shrinkage procedure employed by Stein-like 

estimators is a form of 'smoothing' the conventional pretest 

estimator, thus they are a continous function of the data used. 

After this study had been completed, it was suggested that and 

extremely 'simple' way of 'smoothing' the traditional pretest 

estimator is to weight EGLS by F and OLS by (I-?) to obtain a 



Stein-like variant. Although the dramatic simplicity of this 

method suggest that it will be worthwile investigating, time 

constraints made this impossible. 

The sampling distributions of traditional Stein-like 

estimators are discussed in detail by several authors, e.g. 

Judge and Bock(1978, pp 169-206 1, Judge et al(1985, pp 82-89) . 
Stein-like estimators have not been formally developed for the 

autocorrelated error model, thus their sampling performance may 

or may not differ from that of the traditional Stein estimator. 

However the 'smoothed' weights used by the 'autocorrelation' 

Stein estimators make them admissable and more attractive than 

the autocorrelation pretest estimator. 

Despite the advantages of the Stein-rule estimators, they 

have a few flaws as discussed in ~ennedy(l985,pp 165) 

( 1 )  their small sample distribution (properties) are unknown. 

( 2 )  in small samples, they cannot be used for hypothesis testing 

or creating confidence intervals because of their unknown 

sampling properties. 

( 3 )  They can only dominate OLS everywhere if and only if there 

are more than two independent variables in the statistical 

model. 

(4) They assume the error terms to be normally distributed 

(5) They are non-linear. 

( 6 )  Much of the risk gains occur when the shrinkage vector is 

correct. 



1.4 BAYESIAN ESTIMATORS AND THE BAYESIAN PRE-TEST ESTIMATOR -- 

Bayesian pretest estimators use as their weighting system 

the posterior probabilities associated with a given hypothesis. 

This estimator employs the notion of posterior odds-ratio, which 

is the ratio of the posterior probabilities on each hypothesis. 

The Bayesian pretest estimator is formulated as 

pbaypt=~(~o IY) .poLS + P(H, IY) .p EGLS ................. 1.5a 

=P(H~~Y) .p OLS + [ I - P ( H ~ ~ Y ) I . ~  EGLS ............... l.5b 

Bayesian and Stein-rule estimators are continuous functions of 

the data, unlike the traditional pretest estimator. 

The Bayesian pretest estimator can be viewed as another 

'smoothed' version of the traditional pretest estimator, or 

alternatively the traditional pretest estimator could be viewed 

as a special case of the Bayesian pretest estimator- where the 

posterior probabilities associated with each hypothesis assume 

values of 0 or 1. The posterior probabilities used as weights 

are obtained by integrating the posterior density function of 

the autocorrelation coefficient within the range stipulated by 

the null hypothesis. To obtain the marginal posterior density of 

the autocorrelation coefficient, we combine the likelihood 

function 1(/3,p,ol~) with a prior density g(P,p,o) to obtain a 

joint posterior density g(P,p,olY). (The prior density could be 

non-informative (ignorance prior) or informative. Note that all 

the prior densities used in this thesis are non informative). 



Next we integrate out 0 and o to obtain g(p1~). This marginal 

posterior of p is then integrated numerically within the range 

of the null hypothesis to obtain P(H~~Y). This determines the 

weight used in our Bayesian pretest estimator. 

In this thesis, our null hypothesis is composite; i.e. it 

specifies's range of values of the autocorrelation parameter 

(rather than a single value) for which OLS outperform the EGLS 

estimator.Thus 

Ho: lp1<0.3. 

The cho'ice of this null hypothesis makes the autocorrelation 

pretest estimator a special case in this context. The nature of 

this composite hypothesis allows us to overcome the dichotomous 

choice of estimators, since the probability associated with each 

hypothesis will not always jump from 0 to 1 ,  but will be a 

continuous function of the data used. Thus our Bayesian pretest 

estimator can be formulated as 

P ( ~ P ~ < O . ~ ) ) P  EGLS . . . . . . . . .l. 5c 

The pure Bayesian estimator is a counterpart of the EGLS 

estimator much as the Bayesian pretest estimator is a 

counterpart of the conventional pretest estimator. The pure 

Bayesian estimator is a generalization of the Bayesian pretest 

estimator. It is a weighted average of different Generalized 

Least Square.estimators over the entire range of the 

autocorrelation coefficient, with the weights given by the 

marginal posterior density of the autocorrelation coefficient. 

Specifically 



* GLS 
P = J  P g(p1Y) dp .........................1.6 

The pure Bayesian estimator could be viewed as the ultimate form 

of 'smoothing', because it weights an infinite number of GLS 

estimators instead of just two estimators. A detailed discussion 

of this estimator is presented in chapter 2. 



1.5 PURPOSE OF STUDY -- 

The motivation for this thesis can be traced.to a study by 

~djibolosoo(l987). He considered a smoothed version of the 

traditional pretest estimator under a heteroskedastic model. The 

smoothed pretest estimator is a weighted average of two 

estimators (the OLS and the EGLS estimators) with the weighting 

function being a continuous function of the data rather than a 

discontinuous one. He concluded that the smoothed version 

generally had a lower mean squared error than the traditional 

pretest estimator, and is an attractive alternative to the 

conventional estimators in a model with heteroskedasticity. 

Duplicating his experiment for the autocorrelated model was 

the initial objective of this thesis, but preliminary Monte 

Carlo experiments suggested that the Bayesian estimator may be 

uniformly superior, on the basis of MSE, to all the conventional 

estimators (OLS, EGLS, traditional pretest) and th; smoothed 
C 

pretest estimator in the context of the autocorrelated error 

model. The Bayesian estimator was for some cases (design 

matrices) even better than the GLS estimator. The GLS estimator 

is BLUE in the autocorrelated error model, but the Bayesian 

estimator is a non-linear estimator, biased in small samples, 

and this, coupled with the possibility of sampling errors (600 

replications is used for this study), makes it conceivable that 

such a result could be obtained. 



Our attention was then directed to the question of why the 

Bayesian estimator is hardly ever used in econometric analysis 

of such models. Despite its computational complexities, the 

Bayesian estimator in this context is quite costless in terms of 

computation given the present advanced computer packages. 

Various authors have provided "simple" formulas for the 

computation of the Bayesian estimator under autocorrelated 

errors and for different cases, some of which are discussed in 

the next chapter. Judge et as1(1985) provided a Bayesian 

estimator for the model with an intercept term and a stationary 

AR(I) process as well as the MA(1) process. Zellner and Tiao 

(1964) suggested a formula for a model without a constant term 

and a non.-stationary AR(I) process, and Richard(l975) considered 

higher order AR processes and different prior densities. 

In this thesis we will consider both the AR(~) and the MA(1) 

models. We will compare the sampling distributions ~f the 

Bayesian estimator to the estimators generally used in models of ' 

such nature for different design matrices including cases where 

the matrices contain an intercept term . 

We will try and find out how the Bayesian estimator performs 
- 

in relation to these other estimators on the basis of mean 

square error (MSE) criterion, and also try to rationalize why 

the Bayesian estimator is seldom used in econometric analysis of 

models with autocorrelated error terms. 



The Stein estimator discussed in section 1.3 achieves its 

attractive properties through its 'smoothing' process, by using 

weights that are continuous function of the relevant test 

statistic . Its shrinking procedure is a form of 'smoothing' as 
opposed to a dichotomous choice of estimators. However, the 

Stein estimator, not unlike the traditional pretest and the 

Bayesian pretest estimators, considers only two estimators, the 

OLS and the EGLS; thus the pure Bayesian estimators ability to 

weight several GLS estimators over all values of the 

autocor'relation coefficient could be viewed as a sort of 

ultimate form of 'smoothing'. Because of this it is our prior 

belief that the pure Bayesian estimator will have equally 

attractive features and will generally have a lower MSE than its 

competitors. Thus the Bayesian estimator is likely to be 

superior to these conventional estimators and thus be an 

attractive alternative in a model with autocorrelated errors. 

- 



1.6 DESIGN OF STUDY -- 

Monte Carlo experiments will be used to compare the sampling 

properties of various estimators in an autocorrelated error 

model. We will be concerned with the stationary AR(I) and the 

invertible MA(1) models, and performance of estimators will be 

judged on the mean square error (MSE) of the various estimators 

relative to that of the GLS estimator. Thus a ratio of a given 

estimators MSE to that of GLS that is less than one Should be 

perceived as a better performance by the given estimator 

relative to the GLS estimator. For each of the models mentioned 

above, the following estimators, described in sections 2.3 and 

2.7 below, will be examined 

( 1 )  Pure Bayesian Estimator (BE) 

(2) Bayesian Pretest Estimator (BPE) 

(3) Generalized Least Squares Estimator (GLS) 

( 4 )  Traditional Pretest Estimator (PTE) 

( 5 )  Ordinary Least Squares Estimator (OLS) 

(6) Maximum Likelihood Estimator (MLE) 

(7) Durbin Estimator (DE) (for the AR(1) model) and the 

MacDonald and MacKinnon(l985) EGLS (for the MA(1) model). 

For each experiment the performance of nine estimators 

(2 traditional pretest with different EGLS components and 2 

Bayesian pretest with different EGLS components, in addition to 

the other 5 above) will be examined. 

For each model, twenty design matrices will be used with 

sample sizes ranging from 10 to 65. All the design matrices are 



described in detail in chapter 3. The design matrices consist of 

artificial data generated through the IMSL Fortran Library, data 

obtained from various studies regarding performance of 

estimators in an autocorrelated error model, and economic time 

series data obtained from Simon Fraser University data Library. 

600 replications are used to determine the performance of each 

estimator. 

For the  MA(^) model, a preliminary Monte Carlo study will be 

undertaken to obtain a range of the autocorrelation coefficient 

( 6 )  within which the OLS estimator outperforms the EGLS 

estimator. For the ~ ~ ( 1 1  process, this range is given as 

-0.31p10.3 from studies such as Griliches and Rao(1969), 

Spitzer(l979) and Mageelullah and Srivastava (1987). 

All Monte Carlo experiments are done using Fortran 77 

language, and the Fortran programs used will consist of 

subroutines written by this author and routines called from the 

IMSL and NAG Fortran Library, C 

A review of the existing literature on performance of 

estimators in serial correlated error models is presented in 

Chapter 2. Chapter 3 consists of the model, estimation 

techniques used and a detailed discussion of the Monte Carlo 

experiment undertaken. Chapter 4 contains the results of the 

experiments and Chapter 5 is conclusions and recommendations 

based on our results. 



CHAPTER 2 

ESTIMATORS IN THE AUTOCORRELATED ERROR MODELS 

(A REVIEW OF THE 'LITERATURE) 

2.1 INTRODUCTION 

In this thesis we will be concerned with the first order 

autoregressive process AR(1), and the first order moving average 

process MA(I). 

2.2 THE ~ ~ ( 1 1  MODEL 

The AR(I) model is given.by 

where Yt is a (Txl) observations on the dependent variable, Xt 

is a (TXK) design matrix and et is a (TXI) disturbance vector 

2 with E(e)=O and ~ ( e ) = o  0 and u is a random variable with mean 

zero and a constant variance o2 . p is the autocorrelation 

coefficient and for a stationary process l p l  is less than 1 



2.3 ESTIMATION UNDER THE ~ ~ ( 1 1  MODEL 
-7-- 

2 . 3 . 1  GENERALIZED LEAST SQUARES ESTIMATOR 

When the true value of p is known, this estimator is the best 

linear unbiased  estimator(^^^^). The estimation procedure 

requires multi.plying equation 2.la by p and lagging one period. 

Subtracting the resulting equation from 2.la gives 

Ordinary Least square estimation,procedure is used on 2.lc to 

obtain estimates of p .  In terms of matrices, we will have to 

find a transformation matrix P such that P'P=Q-'. Thus the 

generalized least square estimator will be 

- 1  - 1  - 1  =(X'S2 X) X'Q Y.. ...................... 2.3b 

However, if p is unknown, the we will have to estimate ;,by any 

'one of the methods described later in this chapter, and use this 

estimate in our transformation procedure. The resulting 

estimator is referred to as an Estimated Generalized Least 

Squares estimator (EGLS). 



VARIOUS ESTIMATED GENERALIZED LEAST SQUARES ESTIMATORS. 

There are various forms of this estimator, but we shall discuss 

only the ones used in this study. The choice of these estimators 

has been based on the support they gained from earlier studies. 

2. 3. 2 DURBIN (1960) ESTIMATOR: (DE) 

From equation 2.lc 

The ~urbin(l960) estimator uses a two-step procedure. First Yt 

is regressed on Yt-l, Xt, and Xt-l, and the coefficient of the 

lagged values of Y is taken as an estimate of p. Even though 

this estimate of p is biased, it is consistent and efficient. 

Second, this estimate of p is used to transform the original 

variables'as in equation 2 . 1 ~ ~  and an OLS regression is done on 

the transformed variables to obtain estimates for 0. This 

estimation procedure stops after the second stage and thus is 

not an iterative procedure. Notice that this estimator 'uses a 

(T-1)xT transformation matrix made up of 1 on its main diagonal 

and -p as its leading (left) off-diagonal. A modified version of 

this estimator which has been shown to be more efficient than 

the original version uses a TxT transformation matrix- PI, with - 
the first row consisting of dl-pZ as its first element and 0 for 

the others. This modified version is employed in this thesis. 



2. 3. 3 MAXIMUM LIKELIHOOD ESTIMATOR (MLE) 

If the disturbance error term et can be assumed to have a 

specific distribution (normal distribution in this case), then 

we can employ the technique of maximizing the log-likelihood 

function with respect to to obtain the Maximum Likelihood 

Estimator (MLE). In the case of normally distributed error 

terms, this procedure provides estimates that are asymptotically 

equivalent to most EGLS estimators. Specific algorithms for 

maximizing the log-likelihood function have been suggested by 

several authors, ~ent(1974) and Beach and Mackinnon (1978) are 

the most popular ones. The latter is a modification of the 

Cochrane-Orcutt (c-0)(1949) procedure that allows for the 

inclusion of the first observation. A summary of the algorithm 

is: 

1)Starting with a choice of ;=Or calculate the C-0 estimator of 

p including the first observation.(i.e. use PI instead of P as 

the transformation matrix) - 
A 

2)Substitute this value of /3 int0.a log likelihood function C 

which contains the Jacobian the transformation matrix PI. The 

concentrated log likelihood function is given as 

~(p,p)= const. 1/2 log(1-p2)-T/2 log((1-p2)(yl - X,p)2 + 

E t.pt - %-I - X + p) 2...............2.5 

and.maximize this function with respect to p ,  0 held fixed. 
A 

3)Substitute this estimate of p into PI and repeat steps 1 and 2 

until sucessive values of 5 are close together. The 
A 

corresponding 0 is the MLE of 0. Beach and Mackinnon developed a 



computationally efficient way of implementing this procedure. 

The solution to ( 1 )  is 2.3a using the PI transformation matrix, 

and they provided the solution to (2) by differentiating the log 

likelihood function with respect to p and setting it to zero, 

i.e. 

where 

a = - ( T - ~ ) Z A ~ A ~ - ~  / [(T-~)(ZA;-~ - A:)] ............... 2.7 
b = [(T-I)A: - T Z A ~ - ~  - ZAf] / [(T-I)(ZA;-~ - A:)] ....... 2.8 
c = TZAtAtm1 / [(T-~)(ZA;-~ - A:)] ................... 2.9 
and 

At = Yt - XtP for a given fl 

Equation 2.6 can be solved by the standard two step procedure 

for solving a cubic equation. 

a) 8 between zero and n radians 
# 

b) calculate according to 

e=cos-'((qi27) /(2pi-p H... ................ 2.10 
where 

q = c - ab/3 +2a3/27.....................2.11 

............................. p = b - a2/3 2.13 

Then the desired root of 2.6 is 



A 

This equation will be used to obtain the value of p in our 

iterative procedure. 

2. 3. 4 THE BAYESIAN ESTIMATOR (BE) 

A detailed discussion of the Bayesian estimation procedure 

under AR(I) errors is given by Zellner and Tiao(1964), 

Richard(l975) and Judge et al(1985) to mention a few. There are 

minor differences between these approaches, because they apply 

to different cases as mentioned in section 1.5. Despite these 

differences, the basic technique of estimation in the ~ayesian 

framework is applied in all cases. Judge et a11s(1985) approach 

is presented below. 

Following the discussion of Bayesian analysis in section 1.4 

above, we would have to obtain a marginal posterior distribution 

of the parameters of interest by combining 'a prior distribution 

with the likelihood function and integrating out the parameters - 
of no interest.. The likelihood function of the model under the 

assumption of normality is given as 

where 

and 



thus 

combining this likelihood function with an uninformative prior 

density given by 

yields the joint posterior density function 

* * 
where Y and X are as defined in equation 2.2. The prior 

density given in 2.16 follows Fomby and Guilkey(1978) and it is 

obtained by assuming that 0, o and p are distributed 

independently a priori and applying Jeffreys' rule to each 

parameter separately. 0 and logo are uniformly distributed over 

the ranges -=<P<= and O<o<= respectively. p has a beta density 

function with parameters (1/2, 1/2) over the range Ipl<l. The 
C 

prior for p is given as n- ( l-p2) 'I2. Combining the three 
separate priors gives 2.16. On intergrating out o in 2.17, Judge 

et al(1985) obtained a bivariate posterior density for 0 and p 

where 

* * * 
RSS = (Y - X. P) (y* - X P) 



.. 
and 0 is as defined in equation 2.3. Both RSS,and 0 depend on p. 

For a given p, the density g(Plp,Y) is a multivariate 't' 
A 

distribution with mean 0, therefore if p is known the Bayesian 

estimator is the GLS estimator, but if p is unknown, then we 

need to obtain the marginal posterior dist-ribution for 0 (the 

parameter of interest here) g(PIY), by integrating out p in 

2.18. However; this integration procedure requires the use of 

This implies that the Bayesian estimator for 0 (the mean of the 

marginal posterior distribution of P) is a weighted average of 

GLS estimators with the weights given by the marginal posterior 
# 

density for p. The density ~ ( P I Y )  is given in Judge et al(1985) 

thus we numerically integrate 2.20 to obtain the normalising 

constant, then numerically integrate 2.19 to obtain the Bayesia~n 

estimator of B (BE). If one is interested in the kth element of 



The Bayesian estimator in an AR(I) model is the weighted average 

of all the GLS estimators over the entire range of the 

autocorrelation coefficient p with the weights being the heights 

of marginal posterior density function of p. 

TESTING FOR - AUTOREGRESS I VE 

2 .  4 .  I DURBIN-WATSON (DW) TEST 

This is the most popular test for first order autoregressive 

errors, it is based on the residuals of an ordinary least square 

regression on equation 2.la and the statistic is given as: 

For hypothesis testing of no autocorrelation i.e H *p=O against 
- 0' 

the alternative Hl:pzO, the DW test rejects the null hypothesis 
* * # 

if d<d where d is the critical value for a specified 

significance level. A major drawback to this test is that the 

critical value depends on the design matrix used, thus the exact 

distribution of the d statistic is not known. Durbin and 

~atson(1950,1951,1971) overcame this problem by finding two 

limiting distributions of d, dL the lower distribution and dU 

the upper distribution. They used these two distributions to 
* * 

tabulate critical values for dL and dU for a given TI K and 

level of significance. Thus in a bounds test of no 

autocorrelation against postive autocorrelation, the decision 



* 
rule is as follows; the null is accepted if d< dL and accepted 

* * * 
if d> dU. The test is inconclusive if dL < d < dU. This 

inconclusive region is a major problem for this test, but exact 

critical values can be found by using the White(1978) Shazam 

procedure. Koerts and Abrahamse(l969) used a Fortran programming 

technique to obtain exact critical values for the DW test. Also 

Judge et al(1985) have suggested some approximations of the 

critical values which can be computed at low costs. 

2 .  4 .  2 OTHER TESTS 

The Berenblut and Webb (~~)(1973) likelihood ratio (g,) test was 

used by Judge and Bock(1978) in conjuction with the DW test. The 

~ing(1982) S(p,) test was used by King and Giles(1984) in 

addition to the BW-and DW test. The following tests are seldom 

used due to their computational complexities and cost. Theil and 

~agar(1961), ~alinvaud(l970), Henshaw(l966) and Koerts and 

2.5 THE MA(1) MODEL --- 

A detailed survey of the M A ( ~ )  model is given in Aigner(1971), 

Naylor,Seaks and ~ichern(l972),~esaran(1971) and Nicholls,Pagan 

and ~erell( 1975). 
- 



The model is given by 

where et is a normal random variable with mean zero and variance 

o2 and 161<1, i.e. we assume the process is invertible. 

2.6 ESTIMATION UNDER MA(1) ERRORS -- 

2. 6. 1 GENERALIZED LEAST SQUARES (GLS) ESTIMATOR 

This method is similar to that of the AR(~) model except for the 

transformation matrix. If 6 is known then the GLS estimator is 

given as.: 

where C2 is a TxT diagonal matrix, with the elements on the 

principal diagonal being 1+h2, on the two leading off-diagonals 
C 

6 and all other elements zero. 

However, if 6 is unknown, then a transformation matrix Q 

such that Q'Q=o-' is required. This transformation matrix is not 

unique [Shaman(1973), ~esaran(l973)~ ~alestra(l980)I. In this 

thesis we use the inverse of the matrix described above for 

our GLS estimate to avoid using an inappropriate transformation 

matrix. 



2.6.2 ESTIMATED GENERALIZED LEAST SQUARES 

MacDonald and ~ac~innon(l985) 'suggested a simple way of 

estimating the GLS estimator. Their method is to combine 

equations 2.23a and 2.23b and transform the variables as 

follows: 

define [=uo 

then 

and so on for observations 3 to T. The equation systems given 

above can be written as 
* * * 

Y = X P + Z 5 + U....................2.25 

where 

OLS regression is then performed on 2.25 to obtain EGLS 

estimates. It should be noted that all the transformed variables 

and the error term u have T+1 observations where the first 

observations are artificial. Since E is and estimate of Oo, OLS 

regression on 2.25 will still yield (T-K) degrees of freedom. 

A 

For the EGLS estimator, the 6 suggested by these authors is 

the method of moments estimator of 6 described in the next 

section below. These authors found this EGLS estimator to be 

less efficient than the Maximum Likelihood estimator, and 



sometimes less efficient than the OLS estimator. We used this 

procedure because of its simplicity. 

2. 6. 3 MAXIMUM LIKELIHOOD ESTIMATOR 

Under the assumption that the error terms are normally 

distributed, this method maximizes the log-likelihood function 

with respect to 0, holding 6 constant. This method is similar to 

the AR(~) method except for the likelihood function. In the 

MA(I) model, the likelihood function is: 

where an is given as [I-6 2T+2 / 1-621. 

Several authors have provided different algorithms for this 

method (i nt e r  a1 i a Hannan( 1969,1970), Box Jenkins( 1970), 

osborn(1976) Pagan and ~icholls(1976)~ ~esaran(l973)~ 

Balestra(l960),Godolophin and ~ooijer(l982) and Sargan and 

~hargawa(1983)~ MacDonald and ~ac~innon(l985)) A specific 

algorithm for this method suggested by. Balestra(l980) consists 
6 

of the following: 

1 )  Choose a value of 6 in the interval - 1  to 1 and transform the 
* * 

variables using Q (as above) to obtain Y X and run an ordinary 
* * 

least square regression of Y on X . Notice that this is 
equivalent to using the inverse of the D matrix to obtain GLS 

estimates. 

2) Compute the quantity B=(an) 'In SS* where an is as defined as 
* 

earlier and SS is the'sum of square residuals obtained from the 

regression in (1) above. 



3) Repeat the operation for a number of 6's from - 1  to 1 evenly 

spaced out 

4 )  Choose the 6, and the corresponding 0 that gives the minimum 

value of B. 

2. 6. 4 THE BAYESIAN ESTIMATOR (BE) 

This procedure is similar to that of the ~ ~ ( 1 1  model except for 

the posterior density functions. The main ingredient, the 

marginal posterior of 6, is given in Judge et al(1985) as: 

2.7 ESTIMATING THE MOVING AVERAGE PARAMETER (6) - 

Different estimators have been suggested in the literature but 

we discuss only the ones used in this thesis. 

2. 7. 1 THE METHOD OF MOMENTS ESTIMATOR - 
* C 

The method of moments estimator of 6 provides a consistent 

but asymptotically inefficient estimator based on the sample 

autocorrelation coefficient derived from ordinary least square 

residuals on 2.la. 

The correlation between s and et-l t is given as: 

and a consistent estimator of this correlation coefficient is 

Inverting the log likelihood function above gives: 



A 

Because r, is a consistent estimator of pl, 6 is a consistent 

estimator of 6, though inefficient. If r l  significantly exceeds 

10.501, then the M A W  process is suspect and cannot plausibly 

be employed. 

2 .  7 .  2 OTHER ESTIMATORS 

The Durbin(1959) estimator is biased and inefficient in small 
A 

samples but asymptotically as efficient as the MLE of 6. 

Anderson(l971) and ~c~lave(1973) suggested two different methods 

for correcting the small sample bias of the Durbin(1959) 

estimator. 

Another method of estimating 6, is the maximum likelihood 

method described above. # 

2.8 TEST FOR MA(1) ERRORS --- 

- 2 .  8 .  1 KING ( 1 9 8 3 )  TEST 

This test is similar to the ~ing(1982) test for the AR(I) 

process: replacing p ,  by 6,. This test is shown to be Most 

Powerful Invariant(~P1) in the neighbourhood of 6=b1 for all 

design matrices. His test statistic is: 



where 

A *  
e is the transformed generalized least square estimated 

A  

residuals obtained under the assumption that 6=h1 and e is the 

ordinary least square residuals. The null hypothesis of no 

autocorrelation is rejected if S(til) is less than the critical 
* 

value S (61). Its critical values can be calculated through 

methods similar to those used for the DW statistics. King (1983) 

has tabulated values for the 5% significance level, for both the 

lower and upper distributions of S(0.5) and S(-0.5). In an 

empirical comparison ~ing(1983) found S(0.50) to be more 

powerful than the DW test against positive ~ ~ ( 1 1  errors when 

620.30 (ti1) 

2. 8 .  2 OTHER TESTS 

~lattberg(l973) and.Smith(l976) both found the DW test to have 

good power against MA(1)errors. The Lagrange Multiplier Test can 

also be used to test MA(I) errors - 

2.9 SAMPLING PERFORMANCE - OF ESTIMATORS IN AN AUTOCORRELATED -- 
MODEL (REVIEW -- OF THE LITERATURE) 

The performance of various estimators in the context of 

autocorrelated errors have received considerable attention in 

the literature. Rao and and Griliches(l969) compared the 

~rais-~insten(~W) estimator with OLS in the AR(1) model and 

observed that for values of p close to zero, lp1<0.3, OLS 

performed better than PW, but for higher values, PW is 

recommended. Several authors have duplicated this study with 



different design matrices, but the general theme running through 

all of them is that they considered only two estimators, OLS and 

some version of the EGLS estimator. A few of these studies are 

Kadiyala( 19681, ~aeshiro( 19761, Harvey and ~c~vinchey( l978), 

~pitzer(l979)~ Kramer(l980), ~aylor(l981) and Magee, Ullah and 

~rivastava(1987). These authors differ.as to what range of 

values of p, OLS is prefered to EGLS, but they all agree that 

for p closer to zero, OLS should be used but some version of 

EGLS is recommended as p gets larger. 

The number of estimators considered were extended by various 

authors mentioned below, but none considered all the estimators 

we deal with in this thesis. 

Fomby and Guilkey(1978) examined the usual selection of 

level of significance (a) in the Durbin-Watson test and examined 

the implications of this procedure by comparing the resulting 

pretest estimator to the Bayesian alternative on the criterion 

of mean squared error. Noting that pretest estimators have 
C 

complicated probability distributions irrespective of the true 

value of the of the autocorrelation coefficient (p), they 

contended that the choice of a=0.01 or 0.05 might weight the 

pretest too heavily toward the OLS estimator, thus a more 

suitable a would have to be higher than what is conventionally 

used. Their model was along the lines of Griliches and 

~ao(1969). Given by 



where Vtis normally distributed with mean 0 and variance 1 and 

-l<A<1. They used the ~rais-Winsten (1954) esimator using the 

~urbin(l960) estimate of 5 as their EGLS estimator. This 

estimator is referred to as a modified Durbin estimator. For the 

Bayesian estimator, they assumed an ignorance prior, and used 

Zellner and ~iao's(1964) solution to the autocorrelated problem. 

The Bayesian estimator was thus 

Thus the Bayesian approach of continuously weighting the 

information about p makes it more 'attractive' than the usual 

handling of the disturbance parameter by preliminary testing, 

because there is no need in the Bayesian case to sp6cify a level 

of significance. They considered three sample sizes (15,30,45) , 

three values of h (0,0.4,0.8) and eleven values of p .  The values 

of A were used to generate nine design matrices. One thousand 

replications and thirteen significance levels 

(0 ,0 .01 ,0 .05 ,0 .1 (0 .1 ) ,1 .0 )  were used. The critical values used 

for the test were computed using Koerts and Abrahmse(l969) 

method which gives exact critical values for the DW test. To 

examine if the usual choice of 0.01 or 0.05 actually minimises 

the MSE of each estimator they calculated the level of 

significance (optimal a's) which minimized the mean squared 



error (MSE) for each design matrix and value of p,and concluded 

that the usual choices are only suitable for quite small values 

of p. Since a priori p is unknown, they suggested that an 

average of all optimum significance levels, for all design 

matrices and values of p would be a more appropriate a level. 

They found this a level to be approximately 0.5. 

Their observations were ( 1 )  that the OLS estimator 

outperformed, on the basis of MSE, both the pretest and the 

Bayesian estimator for p close to zero, but the range of better 

performance was smaller in the Bayesian case (lp150.1) compared 

to the pretest estimator (lpI~O.3). ( 2 )  For any fixed a used, 

the ~ayesian estimator was better than the pretest estimator, 

but for a choice of a=0.5, the loss from using the pretest 

instead of the Bayesian estimator was not as substantial as the 

loss incurred for smaller values of a. 

One limitation of this study is that it compares the 

conventional pretest estimator to the pure Bayesian estimator 

instead of its counterpart the Bayesian pretest. However, 

initial Monte Carlo studies that we did suggest that the 

Bayesian pretest is on the average better than the traditional 

pretest estimator on the basis of mean square error if the 

probability that the null hypothesis is true is less than 0.4. 

Fomby and Guilkey failed to compare the Bayesian estimator to 

the EGLS -estimator or the GLS estimator and the choice of a 

random design matrix may have greatly affected the results. They 

considered only one EGLS estimator 



Judge and Bock(1978) differed from Fomby and Guilkey(1978) 

in that they considered three different EGLS estimators. (The 

~urbin(l960) estimator, Cochrane-Orcutt(l949) two-stage 

estimator, and Prais-Winsten(l954) estimator which uses the 

~ochrane-0rcutt' estimate of $ )  but did not investigate the 

performance of the Bayesian estimator in their comparison. They 

used two pretests (the ~urbin-Watson(~~), and the 

~erenblutt-Webb(BW) tests). Their Monte Carlo study involved 

twenty-five observations and two hundred replications, with p 

varied by tenths from 0.0 to 0.9. In contrast to Fomby and 

~uilkey(1978) they did not study a wide range of a's. They chose 

only three a's 0.01, 0.025, 0.05. For critical levels for the 

two tests, they relied on the Durbin upper distribution. They 

did not state how their design matrix was obtained. The 

criterion used to measure estimator performance was squared 

error loss. They discovered from their experiments that, in the 

Durbin-Watson pretest risks, for small values of p the three 

pretest estimators were inferior to OLS, but significantly 

better than OLS for higher values. Of the three pretest 

estimators, the Durbin pretest was the best and the 

Cochrane-Orcutt the worst. For the BW pretest risks, the results 

were similar to the DW risks, but since the former test has been 

shown to be more powerful than the latter , it was not. 

surprising that the BW statistic provided slightly lower error 

loss for the Durbin and Prais-Winsten estimators for low values 

of p .  They noted that the relative gains of one test procedure 

over the other were quite trivial by comparing the Durbin 



pretest estimator risks under the DW and BW statistics. They 

concluded, and quite correctly, that the risk gain are highly 

dependent on the choice of estimator. Their choice was the 

Durbin estimator. 

This study was an improvement on the earlier study, but it 

was also limited in a number of ways. First, their choice of a 

might have affected the risks obtained in the study, since it 

may have put more weight on the OLS estimator in the generation 

of the pretest estimators. Second, even though they compared the 

pure EGLS estimators to each other, they did not compare these 

EGLS estimators with their corresponding pretest estimators. 

Third, like the earlier studies, they did not compare these 

estimators to the Bayesian alternatives. 

In a discussion of Fomby and ~uilkey(1978)~ Griffith and Dao 

(1980) demonstrated that there is a Bayesian counterpart to the 

class of sampling theory pretest estimators used in Fomby and 

Guilkey(1978). They pointed out that the Bayesian estimator used 

in ~ ~ ( 1 9 7 8 )  was a counterpart of the EGLS estimator; they thus 

suggested the Bayesian pretest as an appropriate counterpart to 
- 

the traditional pretest estimator. They pointed out that even 

though this class of Bayesian estimator does not require the 

setting of an arbitrary significance level, it does require the 

setting of some prior odds. Using a model similar to Fomby and 

Guilkey(1978), and a Monte Carlo experiment, they compared the 

mean square error of the Bayesian pretest estimator to the pure 

Bayesian estimator. They set a prior odds for their Bayesian 



pretest estimator based on a point null hypothesis of Ho: p=O. 

They concluded that for a large autocorrelation coefficient , 

the pure Bayesian estimator was better than the Bayesian pretest 

estimator, but the opposite was true for p close to zero. They 

noted that if the proabability associated with the null 

hypothesis of no autocorrelation is 0.4 or 0.5, the maximum 

possible loss of efficiency for using the Bayesian pretest 

instead of the pure Bayesian is quite small for small samples of 

15 and 30. Placing a high prior weight through prior odds or 

significance level on the alternative hypothesis of 

autocorrelated errors results in a gain in efficiency from using 

the Bayesian pretest instead of the conventional pretest 

estimator in small samples. 

Like the others, this experiment failed to consider other 

estimators. If the pure Bayesian estimator is a'counterpart to 

the EGLS estimator then it will be most appropriate to compare - 
these two estimators. Its biggest drawback is that they did not 

specify a rule for setting the prior odds. Their Bayesian 

pretest differs from ours in terms of the nature of the null 

hypothesis used. Secondly we establish a very objective rule for 

determining the posterior odds ratios, compared to the cavalier 

manner in which they treated the determination of the prior 

odds. 

King and Giles(1984) extended the concept to examining the 

consequences of autocorrelation pretesting on hypothesis testing 

and prediction. They had four different design matrices with 



three to six regressors, two of which were eigenvectors 

corresponding to some K values of a tri-diagonal matrix and the 

other two were economic time series data on Australia. Unlike 

Judge and Bock(1978), they used exact critical values for their 

tests, obtained by employing Koerts and Abrahmse(l969) FQUAD 

fortran rountine. They considered two EGLS estimators 

(Prais-winsten using Cochrane-Orcutt estimate of 5 ,  and the 

Maximum Likelihood estimator using Beach and MacKinnon(l978) 

algorithm), four pretests (DW, BW, and two King(1982) S(p) 

tests) They used S(0.5) and ~(0.75) on the basis of ~ing(1982) 

conclusion that these tests were more powerful than the DW and 

BW test respectively. Two significance levels (a=0.05, and 0.5) 

and two sample sizes (20,60) were used, and comparison of the 

pretest , OLS and the pure EGLS estimators was on the basis of 

risks (quadratic loss). They found out that the design matrix 

had a large impact on the results, Overall, however, they noted 

that there was not much difference between the risk ~f the pure 

EGLS estimators and'their corresponding pretest estimators. The 

pretest estimators had smaller risk than their pure EGLS 

counterparts for p=O, and slightly larger risk for larger p. The 

pretest estimators were better than the OLS overall, but in the 

proximity of zero.OLS did bet-t,er than the pretest estimators. At 

a=0.5 and for moderate to high values of p the pretest 

est'imators obtained were better than their counterparts at 

a=0.05, but the opposite was true for values of p close to zero. 

When the sample size used is large, these differences 

disappeared. Increasing a from 0.05 to 0.5 typically increased 



the risk of the pretest estimators when p was zero or small, but 

reduced it for larger values of p. Considering hypothesis 

testing after pretesting, they used a simple 't' test to 

estimate the difference between the nominal size and the actual 

size of the test, and found out that, with a few exceptions, the 

sizes of the 't' test based on OLS, EGLS, and the pretest 

estimators were larger than their nominal sizes. The a=0.05 

pretest size at p=O was closer to the nominal size than the 

a=0.5 pretest. For prediction after pretesting, they found out 

that there was not much difference between the mean squared 

error of prediction of any EGLS predictor and its corresponding 

a= 0.5 pretest predictor. For larger values of p, the pretest 

predictors were accurate especially for n=60. They favoured the 

MLE over the Prais-Winsten estimator, because the MLE was more 

efficient for low values of p. Choice of the autocorrelation 

pretest made little or no difference on the risks of the 

estimators. This study also ignored the Bayesian altsrnatives. 

Griffiths and ~eesley(1984) examined, by the use of Monte 

Carlo study, the relative efficiency (in terms of mean squared 

errors) of a number of estimators including pretest estimators 

when the errors are generated by either autoregressive (AR(i)), 

or a moving average (MA(1)) process. Their contribution was the 

incorporation of the MA(1) process which hitherto had been 

ignored. In addition to the traditional pretest estimator they 

considered a 'new' pretest estimator based on choosing between 

the three estimators OLS, EGLS(AR) and EGLS(MA). EGLS(AR1 and 



EGLS(MA) are the Maximum Likelihood estimators depending on the 

error process. Their pretest strategy was based on the 

Durbin-Watson test using the lower and upper 5% critical values 

for the test. They used two design matrices one of which was 

made up of psuedo-random numbers drawn from a normal 

distribution with a mean of 0 and a variance of 0.625. The other 

was a trended variable. Two sample sizes (20,50) and five 

hundred replications were used. p  was chosen over the span -0.98 

to 0.98 without constant variation. Their 'new' estimator was 

based on chosing between OLS, EGLS(AR) and EGLS(MA) depending on 

the outcome of a testing procedure to identify whether the error 

process was AR(1) or MA(1). They used both the DW test and the 

asymptotic test statistic d ~ r ,  where r is the Cochrane-Orcutt 

first stage estimate of the autocorrelation coefficient p. Thus 

the new estimator was of' the form 

and 

* ** 
=Po if d<d and dtd or I d ~ r  121 .645 

where 

* 
L (6) is the concentrated log likelihood for the ~ ~ ( 1 1  error - - 
model evaluated at the maximum likelihood estimate 6 and ~ ( p )  is - 
the same for the AR(1) model evaluated at the ML estimate p. 

Their conclusions were similar to the other studies with a few 

variations. For large values of I p l ,  they found that all 



estimators led to a considerable gain in efficiency relative to 

OLS. When I p l  is low, the 2 pretest estimators were better than 

the pure EGLS(AR), and EGLS(MA) estimators, but were worse than 

the AR estimator but not as bad as the incorrectly chosen MA 

estimator when l p l  is high. Consistent with the other studies, 

they found that considerable gains could be achieved by allowing 

for autocorrelation (either through AR or MA model or a pretest 

estimator) relative to ignoring autocorrelation and using OLS. 

For large values of 6, the correctly specified MA estimator was 

the best, but for small values of 6, the incorrectly specified 

AR estimator was preferable. From a relative efficiency 

standpoint, they suggested that it may be preferable to replace 

the OLS-AR pretest with the OLS-AR-MA pretest estimator because 

gains achieved when the underlying model is MA seems to outweigh 

losses incurred when the underlying model is AR. 

Even though this study made a meaningful contribution to the 
# 

literature, it had some flaws . Their choice of significance 
level was too low (0.05), and one does not know how the 

inconclusive region in the DW distribution of d was dealt with 

since they used inexact critical values. Also they excluded the 

Bayesian estimators in their study. 

As a group, these studies examined, on the basis of MSE, the 

performance of the traditional pretest estimator, OLS and pure 

EGLS estimator. They almost invariably used the DW test as their 

test statistic, even though some considered other relevant tests 

in addition to this. Generally they used the conventional choice 



of 0.01 and 0.05 as their significance level. With regards to 

their findings, they concluded, generally, that, when the 

autocorrelation coefficient was in the proximity of zero, OLS 

outperforms both the parent EGLS and its corresponding pretest 

estimators, but as p diverges from zero, the MSE of the pretest 

and its parent EGLS estimator are substantially lower than that 

of OLS. 

They noted that there was not much difference between the 

performance of the pretest estimator and its parent EGLS 

estimator for larger values of p. They agreed that the choice of 

the design matrix, the estimation procedure of the 

autocorrelation coefficient (p), the significance level used in 

the testing procedure, the test statistic used and the choice of 

the parent EGLS estimator all have substantial impact on the 

results of the experiments. Because they all differed on the 

models, tests and estimation techniques used, they did not give 

a recommendation that is appropriate for all situatLons though 
C 

some suggested their methods for problems of the nature they 

investigated. 

Other studies regarding the estimators in the autocorrelated 

error model are beyond the scope of this thesis; e.g. Giles and 

~eattie(l984) looked at a form of autocorrelation pretesting for 

a model which includes a lagged value of the dependent variable 

as a regressor. Durbin(1957), Guilkey(1974,1975), Godfrey(9176), 

~antz(1978), Smith(1978), Harvey and Philips(1980,1981), Breusch 

and ~odfrey(l981), and Owen(1981) all examined the consequences 



of testing for serial correlation in the disturbances of a 

simultaneous equation on the resulting estimators. 

In this thesis, we will consider, in addition to many of 

these estimators, the Bayesian alternatives. We will consider 20 

different design matrices with sample sizes ranging from 10 to 

65. The choice of 20 design matrices is to eliminate the problem 

of generalising from a limited sampling experiment. Two 

significance levels (0.05, 0.50) will be used in the testing 

procedure, the former to reflect common practice and the latter 

to reflect the conclusions of Fomby and Guilkey(1978). 



CHAPTER 3 

THE MODEL, ESTIMATORS AND THE STRUCTURE OF THE MONTE CARL0 

EXPERIMENTS 

3.1 INTRODUCTION 

In this chapter we discuss the theoretical models, estimators 

and a detailed structure of the Monte Carlo experiments for both 

models. The design of the experiments is along the lines of 

Judge and Bock(1978), King and ~iles(1984) and Griffiths and 

~eesley(1984) 

3.2 - THE,THEORETICAL MODEL 

We consider the linear statistical model 

............... Y t =  Po + PIXt + et 3.1 

where et is generated by two stationary autocorrelation 

processes - 
a) et=pet-1+ut...........3.2 

and 

where 

The first of these two processes is the stationary AR(1) process 

and the latter is the stationary MA(1) process. 

Because of the difficulties of conceiving of economic 

processes that generate negative AR(I) or negative  MA(^) 



disturbances, we will consider only positive autocorrelated 

errors, following Judge and ~ock(1978) and King and ~iles(1984) 

3.3 - THE DESIGN MATRICES (X'S) 

To avoid generalisation from a single or few sampling 

experiments, we used 20 design matrices with sample sizes 

ranging from 10 to 65 for both models. All the design matrices 

chosen are ( ~ x 2 )  dimension, with the first column being ones and 

the second column given by the following:  he sample sizes are 

in parentheses) 

1 )  Magee, Ullah and Srivastava's (1987) X, variable (T=10) 

2) Zellner and Tiao's (1964) rescaled investment expenditure of 

the U.S (T=15) 

3) Beach and Mackinnon's (1978) and Griffith and Beasley's 

(1984) trended X variable given by Xt = exp(0.04tj + Wt where 

~~-~(0,0.009). This variable will be generated using the IMSL 

Fortran Library (T=30) 

4) Australian Rate of Inflation (quarter to quarter percentage 

change in CPI (weighted average of six state capitals)) 1974-1 

to 1978-4 (~=20). Taken from Clement, K.W and Taylor, J.C(l987) 

'The Pattern of Financial Holding in Australia' in 

"Specification Analysis in the Linear Model", (1987) [ed. King 

and ~iles] 

5) Griliches and Rao's (1969) and Fomby and Guilkey's (1978) 

design matrix given by Xt =AXt-, + Vt. Where X=0.4 and 

v~-N(O, 1 ) .  (~=35) 



The next eight vectors are taken from the data sets presented in 

~addala(1988 pg 147-1571 

6) Unemployment rates in the United Kingdom 1920-1938 (T=19) 

7) 3-month Treasury bills interest rates in the U.S. (monthly 

data) January 1980 to September 1983 (T=45) 

8) Food Production per capita in the U.S 1922-1941 (T=20) 

9) Ratio of Disposable Income to Cost of Living Index in the U.S 

1922-1941 (T=20) 

10) Money Stock, MI (currency+demand deposits+travellers cheque 

and other chequable deposits) for the U.S 1959-1983 (T=25) 

1 1 )  Debt of Domestic Nonfinancial sector (monthly average) for 

the U.S December 1959-1983 (~=25) 

12) Quarterly estimated real interest rate for Canada 1955-1 to 

1978-2 (T=50) 

13) Quarterly data on Housing Starts in Canada 1955-1 to 1978-2 

(~=50) 

The following 7 design matrices were taken from-IMF AND IFS 
C 

tapes obtained from the SFU Data Library. 

14) Percent Per-annum Change in Money Supply (~anada) Quarterly 

data 1957-4 to 1973-4 (T=65) 

15) Direct Investments in Canada in millions of dollars. 

Quarterly data 1970-1 1984-4 (T=60) 

16) Pecent Per-annum Change in Money (Australia) Quarterly data 

1957-4 to 1973-4 (T=65) 

17)Percent Per-annum Changes in Consumer Price (Australia) 

Quarterly data 1961-4 to 1977-4(T=65) 



18) Gross Fixed Capital  orm mat ion (Australia) Quarterly data 

1961-4 to 1977-4 (T=65) 

19) Gross National Expenditure (~anada) Quarterly data 1961-1 to 

1975-4 (T=60) 

20) Percent Per-annum Changes in Consumer Prices (Canada) 

Quarterly data 1957-4 to 1974-4 (~=65). 

3.4 ESTIMATORS USED 

3 .  4 .  I THE A R ( 1 )  MODEL 

The sampling performances of the following estimators were 

examined for the AR(I) model 

1 )  Ordinary Least Squares [poLS = (x'x)-~x'Y] 

2 )  A modified version of the Durbin Estimator (0 EGLS) which uses 

the Prais-Winsten (1954) transformation rather than the 

Cochrane-Orcutt transformation, by transforming the first - 
observation on all variables by 41-z2,.where 5 is the Durbin C 

estimator of p .  The transformation matrix used is the TxT matrix 

described earlier. This estimator is included because of the 

support it gained from Rao and ~riliches(l969)~ Fomby and 

Guilkey(1978) and Judge and ~ock(1978). Using a - TxT 

transformation matrix improves the efficiency of the Durbin 

estimator.(see the above studies) 

3) Maximum Likelihood Estimator (pMLE) using the Beach and 

Mackinnon algorithm. This estimator's usual asymptotic features 

justifies its inclusion. 



4) Two autocorrelation pretest estimators (flPT which uses (2) as 

its EGLS component and MLPT which uses ( 3 )  as its EGLS 

component). These pretest estimators are based on a test of 

significance at both 0.05 and 0.50 levels. Thus we used 4 

autocorrelation pretest estimators based on significance levels 

PT PT and EGLS components. [P (a=0.05), 0 (a=O.50), 0MLPT(a=~.~5), 

and flMLPT(a=0.50) 1. 

5) Two Bayesian pretest estimators (0 with (2) as its EGLS 

component and 0 MLBPT with (3) as its EGLS component) 

6) The Pure Bayesian estimator ( 0  BAY ) 

7) The ~eneralised Least Square estimator (0 GLS ) 

Thus we used eleven estimators overall in the AR(1) model. 

3 .  4 .  2 THE M A ( 1 )  AUDEL - 
For the MA(1) model the following estimators were examined 

1 ) Ordinary Least Squares [goLS]. 

2) MacDonald and ~ac~innon's(l985) Estimated Generalised Least 

Squares Estimator (0 EGLS) which uses the method of moments 
A 

estimator of 6 coupled with equation 2.34. This estimator was 

used because of its simplicity. 

3) Maximum Likelihood Estimator (0 MLE) using the ~alestea( 1980) 

scanning procedure. 



4) Two autocorrelation pretest estimators (pPT which uses (2) as 

its EGLS component and 0 MLPT which uses (3) as its EGLS 

component). These pretest estimators are based on a test of 

significance at 0.05 . 

5) Two Bayesian pretest estimators (0 with (2) as its EGLS 

component and p MLBPT with (3) as its EGLS component) 

6) The Pure Bayesian estimator (0 BAY) 

7) The Generalised Least Square estimator (0 GLS) calculated 

using the inverse of the Sl matrice described in section 2.8 

Thus for this model, the performance of nine estimators were 

examined overall 

3.5 - THE STRUCTURE OF THE MONTE CARL0 EXPERIMENTS ---- - 
3 .  5 .  1 THE A R ( 1 )  MIDEL 

Using the AR(1) model given by 3.1 and 3.2, the ut were 

generated as pseudo-random numbers, drawn from a normal 

distribution with a mean of 0 and a variance of 0.0036 through 

the IMSLD Fortran Library with a Dseed of 123457.DO. oo.and 0, 

were both chosen to be equal to one. It is important to note 

that the values assigned to the 0 vector and o t  have no 

influence on the results (Breusch(l980)) and were thus chosen 

arbitrarily. 



For simplicity, only one explanatory variable was used 

throughout all the experiments. Even though this choice is 

restrictive, it is in line wit* many other studies. [~icholls 

and pagan( 1977) , Fomby and ~uilkey( 1978) and Griliches and 

~ao(1969)I. After generating the utls, the et were created by 

the first order autoregressive scheme given by equation 3.2 with 

p varied by tenths from 0 to 0.9. The first observation e l  was 

obtained as d(l/(l-p2)).u,. 

A 

Computationally, it was possible that p be greater than 1 
A 

for large values of p, thus we set the upper limit of p to be 

0.99999 to be able to apply the ~rais-~insten(l954) 

transformation, following Beach and Mackinnon(l978). 

Next I po I P I ,  Xt, and et were combined in the linear fashion 

given by equation 3.1 to obtain the Yt values. The X's were held 

fixed in repeated samples for all experiments. 

# 

OLS estimates of the pls in 3.1 were used to generate the 

residuals necessary for computing the test statistic. 

Significance levels of 0.05 and 0.50 were used for the 

autocorrelation pretests, the former level reflecting 

traditional practices whilst the latter reflects Fomby and 

Guilkey1s(1978) arguments for adopting larger significance 

levels. For the autocorrelation pretests, a one-sided 

~urbin-Watson(DW) test was used with Ho: p=O against HI: p>O, 

because as mentioned above, we are only interested in positive 

autocorrelation processes. For the conventional 0.05 



significance level, we used the DW upper bound distribution 

based on the suggestion by Judge et al(1985) that it'is better 

to use the upper critical bound rather than regard the 

inconclusive region as an indication of no autocorrelation. For 

the 0.50 significance level, we used exact critical values 

computed using the Shazam computer package (white (1978)). If Ho 

was rejected, the EGLS estimator was used as the pretest 

estimator and if it was accepted, then the pretest estimator was 

OLS . 
The choice of the Durbin Watson test instead of the other 

test discussed in chapter 2 was based on its simplicity, 

frequent use in studies of this nature and Dent1s(1973) argument 

that compared to DW test, the likelihood ratio test for AR(1) 

disturbances has extremely poor power against positive 

autocorrelation when the sample size is small, and even for 

large samples, the DW test has very real power advantage. Judge 

and ~ock( 1978) also showed that the difference betweek the DW 
C 

test and the other alternatives was trivial when the upper bound 

distribution is used to avoid the inconclusive region. 

Computer programmes, written by this author, using Fortran 

77 language and making use of some routines from the IMSLD and 

NAGD Fortran Libraries were employed to compute the various 

estimators following the formulas presented in chapter 2. The 

most common routines used from the Libraries were FOICDF, 

FOIAAF, FOICKF, FOlCEF,VMULFM. All experiments are done using 

the Double Prescision Fortran measurement unit. 
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To avoid the dichotomous nature of the autocorrelation 

pretest estimator, we used a composite null hypothesis to 

determine the weights for the Bayesian pretest estimator. Thus 

for the Bayesian pretest estimator Ho : pc0.3 and H,:p>0.3. We 

integrated numerically the posterior density of p over the range 

-0.3 to 0.3 to obtain the weight for the OLS estimator, and ( 1  - 

~(pc10.31) was used as the weight on the EGLS estimator. The 

posterior density of p used for the ~ayesian alternative is 

taken from Judge et a1 (1983, pg 292) rather than that given by 

Zellner and Tiao(1969) because our models contain an intercept 

term and it was more appropriate to use the former since that 

density is derived for models with constant terms. 

To calculate the Pure Bayesian estimator, we first 

numerically integrated the marginal density function of p, 

g(plY), over the'range -0.999 to 0.999 to obtain the normalising 

constant, k. Next, with intervals of 0.04995, we calculated GLS - 
estimates for values of p within the range -0.999 to 0.999 and 

C 

then weighted these GLS estimator by the marginal density of p, 

kg(plY) to obtain the heights of the marginal density of 0 for a 

given value of p. For purposes of employing the technique of 

numerical intergration, we used the formula for finding the area 

of a trapezoid to obtain the area for a given interval under the 

posterior distribution function of 0 and then sum these areas 

over all forty intervals. This technique of numerical 

intergration is known as the Trapezoidal method. It should be 

noted that the choice of the intervals and the corresponding 



number of GLS estimators was based on the author's observation 

that there was not much difference in the Pure Bayesian 

estimator when forty or higher intervals was used. 

600 replications were used for all experiments though the 

number of replication is not crucial in the experiment (Love11 

(1983)). 

The criterion used to measure the performance of each 

estimator was the mean square error of the slope coefficient 

rather than the risk (addition of Mse's of both the intercept 

and slope) in line with Griffiths and Beasley(1984). The mean 

square error criterion was also chosen due to the fact that some 

of the estimators being examined are biased in small samples as 

discussed in chapter 2. 

3 .  5 .  2 THE M A ( 1 )  MIDEL' 

Given equations 3.1 and 3.3, the choice of the utts and the 0 

vector were similar to that of the A R ( ~ )  model, sine; these 

values do not generally influence the results. Similarly, only 

one independent variable was used in this experiment for 

simplicity. 

(T+1) observations on ut were generated with mean 0 and a 

variance of 0.0036, so as to create T observations on e t 

following the first order moving average process given by 

equation 3.3. To ensure that the process was invertible, we 

restricted our moving average parameter to be less than 1, and 

only positive values of this parameter were examined. Thus b was 



A 

varied by tenths from 0 to 0.9 and 6 was restricted to have a 

maximum of 0.999999. 

  he X's were held fixed in repeated samples, and the Y 

values were obtained by combining the 0 vector, et, and Xt in a 

linear fashion given by equation 3.1. 

We used the King(1983) S(0.50) test as our test statistic 

because of King's argument that, for positive MA(1) errors, this 

test is more powerful than the Durbin-Watson test. 6=0.50 was 

chosen without reference to the data, and irrespective of the 

true value of 6, S(0.50) was calculated by taking the ratio of 

the generalised least squares residuals to the ordinary least 

squares residuals of equation 3.1, with the generalised least 

squares residuals calculated under the assumption that 6=0.50 

and u20(0.50) is the covariance matrix of the error term e. 

The 0.05 significance level is used for the autocorrelation 

pretest. King( 1983) has tabulated critical values for S(0.50) at 

the 5% level. The upper bound distribution is used, rather than 

regard the inconclusive region as a sign of no autocorrelation. 

Only the 5% level is used because this author has no knowledge 

of any existing algorithm for calculating the exact distribution 
- 

for this test. 

A one-sided (positive) test is used with Ho: 6.0 and H,:6>0, 

and Ho is rejected for small values of S(0.50). If Ho is 

rejected, the MacDonald and ~ac~innon(l985) EGLS or 

~alestra(l980) Maximum Likelihood estimator is used as the 



pretest estimator, and if accepted, OLS is used. 

To avoid the dichotomous choice of estimators present in the 

autocorrelation pretest estimator, a Monte-Carlo experiment was 

undertaken to determine the nature of the composite hypothesis 

for the Bayesian pretest estimator. This experiment revealed 

that, for values of the moving average parameter (6) less than 

approximately 0.50, the OLS estimator has a risk less than that 

of the MacDonald and MacKinnon(l985) EGLS estimator for all (20) 

the design matrices used. 

Thus for the Bayesian pretestestimator, our null and 

alternative hypotheses were H 6<0.50 and H,: 6>0.50 
0' 

respectively. We numerically integrated the posterior density of 

6 from -0.50 to 0.50 to obtain the weight for the OLS estimator 

and l-P(6<10.501) was the weight on the EGLS estimator. For this 

model, the Judge et al(1985) posterior density function for 6 is 

used to calculate the pure Bayesian estimator and t h ~  Bayesian 

pretest estimator due to the fact that it is consistent with the 

model used in this study. 

To calculate the Pure Bayesian estimator, we numerically 

integrated the marginal density of 6, g(61~1, within the range 

-0.999 to 0.999 and obtained the normalising constant, k. Next, 

we calculated forty GLS estimates at intervals of 0.04995 within 

the range -0.999 to 0.999, and weighted these GLS estimates by 

the posterior density of 6, kg(6IY) to obtain the heights of the 

marginal density of 0 for a given value of p .  For the numerical 



intergration technique, we used the Trapezoidal method described 

above under the AR(1) model. The choice of forty GLS estimators 

is based on the observation, by this author, that there was not 

much difference in the Pure ~ayesian estimator when forty or 

more GLS estimators are used. 

The number of replications used to determine the 

performances of the various estimators and the criterion of 

measuring the performances used for this model is similar to 

those of the AR(I) case. 

Similarly, Fortran programmes, written by this author, using 

subroutines from the IMSLD and NAGD Fortran Libraries were used 

to compute all the estimators following the various formulas 

given in chapter 2. The Double Prescision unit was used for this 

model as well. 

The detailed computer programme for both models is presented 

in the Appendix. 

The next chapter discusses the findings of the experiments 

for both models and Tables and Figures are presented to clarify 

these findings. 



CHAPTER 4 

PERFORMANCES OF VARIOUS ESTIMATORS 

4.1 INTRODUCTION 

In this chapter we discuss the performances of the various 

estimators in both the AR(I) and MA(1) models. The criterion for 

measuring performances is the mean square error of the slope 

coefficient following earlier studies such as Griliches and 

~ao(1969) and Griffiths and ~eesley(1984). 

For the AR(I) model, eleven estimators (including GLS) were 

examined while nine estimators (including GLS) were examined for 

the MA(1) model. Tables and figures 4.1 - 4.20 represent the 

mean square error values and analytical mean square error 

functions for the AR(1) model, and 4.21 - 4.40 represent the 

same for the MA(1) model. 

An attempt to plot the mean square errors of all -the 
C 

estimators involved for each model proved to be messy and one 

cannot decipher the performance of each estimator from the 

others as shown in Figure 4.1A. Thus only a selection of the 

results of the experiments is plotted. The estimators depicted 

in the figures have been selected based on the average increase 

in their mean square error relative to that of the GLS estimator 

over the entire range of the autocorrelation parameter [ p  for 

AR(I) and 6 for the MA(1) model]. This selection is 

representative of the various patterns that emerged-in the 



results. 

The estimators [apart from the pure Bayesian estimator 

(because it is the estimator of interest in this study) and the 

OLS (because its mean square error values rescaled the plots)] 

were categorized into groups based on the broad classification 

of estimators to which they belong. The categorization for the 

~ ~ ( 1 1  model was: 

1 )  the Durbin Estimator (0 EGLS) and the Maximum Likelihood 

Estimator (p MLE) under the broad class of EGLS estimators 

2) Traditional autocorrelation pretest estimators at 5% 

significance level: (pPT which uses 0 EGLS as its EGLS compoqent 

and pMLPT which uses /3 MLE as its EGLS component) under the 

conventional pretest estimators group. 

3) The two estimators in (2) above at the 50% significance level 

4) The Bayesian pretest estimators P with f l  EGLS 9s its EGLS 

component and p MLBPT with 0 MLE and its EGLS component under the C 

Bayesian pretest estimators category. 

For the MA(I) we had three groups: 

1 )  MacDonald and MacKinnon(l985) estimator (0 EGLS) and the 

~alestra(l980) Maximum Likelihood estimator (P MLE ) 

2) Same as (2) in the AR(I) model 

3) Same as (4) in the AR(1) model 



For the AR(1) model, pMLE pMLBPT 
I , pMLPT(0.05) and 

pMLPT(0.50) had the least average increase in mean square error 
MLE in their respective groups, whilst for the MA(I) model 0 , 

pMLBPT, pMLPT(0.05) had the least increase. For the sake of 

clarity, these estimators in addition to the pure Bayesian 

estimator were plotted for each model, however the di-scussion of 

the results is based on the full study. 

The criterion for choosing estimators to be plotted (average 

increase in-mean square error) is calculated as the percentage 

increase in a given estimators mean square error over that of 

the GLS estimator averaged over the entire range of the 

autocorrelation parameter space. 

The 'cases' refered to in the tables and figures represent 

the different design matrices enumerated in chapter three, thus 

'Case 1' refers to design matrix 1, 'Case 2' design matrix 2 and 

SO on. - 



4.2 DISSCUSSION OF THE RESULTS -- 

4 .  2 .  1 THE A R ( 1 )  M D E L  

Tables 4.1 - 4.20 contain the ratio of the mean square error of 

all the relevant estimators to that of the GLS estimator for all 

the design matrices used. The main observation from this 

experiments is 1 )  The pure Bayesian estimator has a mean square 

error that is uniformly below that of all the other estimators 

(except for OLS when plO.10 for some cases) over the entire 

range of p and for all the design matrices. This result is what 

we a priori had hoped for, because the pure Bayesian's ability 

to weight several GLS estimators with the posterior density 

function of p is an ultimate form of 'smoothing'. 

Other observations from these results are: 

2) For all design matrices, all the estimators exhibit the same 

general features, that is, their relative mean square error 
# 

increases over the entire range of the values of p considered in . 
this study. 

3) In terms of average increase in mean square error over the 

entire range of p, there seems to be a clear ranking of the 

estimators. In all cases the pure Bayesian estimator gave-the 

least average increase in mean square error and generally 

pMLPT(0.05), pPT(0.05) and OLS followed in that order, with 

poLS having the highest average increase in mean square error 

over GLS. 



4) When p is in the proximity of zero, OLS performs very well 

because of its BLUE properties, and is better than all the other 

estimators except for a few cases (1,9,11,14,17,19) where it is 

outperformed by the pure Bayesian estimator. It is interesting 

to note that for these exceptional cases mentioned above, the 

pure Bayesian estimator happens to be better than the GLS 

estimator. This observation is unusual since GLS is BLUE in an 

autocorrelated error model. However, the pure Bayesian estimator 

is a non-linear estimator and biased in small samples; and with 

the possibility of sampling error in this experiment(we used 600 

replications), this result is not impossible. 

5) When p is approximately less than or equal to 0.30, OLS 

generally outperforms /3 EGLS , oMLE and the autocorrelation 
pretest estimators confirming the findings of earlier studies 

such as Griliches and Rao, Judge and ~ock(1978), Magee et 

a1(1987), but as p increases, OLS loses its BLUE properties and - 
consistently gets worse, thus its mean square error increases 

C 

more rapidly than that of its competitors and becomes higher 

than the mean square errors of the other estimators. The mean 

square error of OLS generally crosses that of /3 EGLS pMLE and 
I 

the autocorrelation pretest estimators at a value of p 

approximately equal to 0.30 and /3 BAY (apart from the cases 

mentioned above) at p approximately equal to 0.10. This result 

is consistent with Fomby and Guilkey(1978). The mean square 

error of OLS was generally lower than that of /3 MLBPT and pBAYPT 

at p approximately equal to 0.20 



6) The behaviour of the autocorrelation pretest estimators in 

relation to their EGLS components was not unexpected. For p=O, 

the 5% autocorrelation pretest estimators correctly accepts the 

null hypothesis 95% of the time, thus more weight is placed on 

the OLS estimator than the EGLS estimator, and the risk of the 

pretest estimator is weighted towards that of the former, which 

at this value of p is the lowest among all the estimators. Thus 

the mean square error of the pretest is lower than that of its 

parent EGLS estimator for lower values of p ,  but as p increases, 

OLS gets consistently worse, and the weighting system by this 

pretest estimator causes its mean square error to be inflated 

and thus higher than the mean square error of its parent EGLS. 

The mean square error of the pretest estimator crosses that of 

its parent EGLS estimator at approximately p=0.40. The above 

argument holds for the 50% pretest estimator also, but because 

the weight placed on the EGLS and OLS are practically the same, 

(This pretest estimator correctly accepts the null hypothesis 
C 

50% of the time for-p=0 and thus chooses OLS 50% of the time) 

its mean square error for higher values of p are not as high as 

the 5% pretest estimator and thus not markedly higher than that 

of its parent EGLS estimator. For some cases, there is not much 

difference between the mean square error of the pre-test 

estimator and its EGLS component for large values of p. This 

result confirms the findings of earlier studies such as Judge 

and ~ock(1978) and King and Giles(1984). Specifically, 

pretesting has smaller risk than its parent EGLS estimator for 

p=O and slightly larger risk for larger values of p. Secondly, 



for p>0.3 pretesting is better than OLS. 

7 )  The two Bayesian pretest estimators perform quite well 

(generally next to the pure ~ayesian) for large values of p 

(~20.60)~ and for most cases outperformed OLS, pEGLS, pMLE, and 

the two 5% autocorrelation pretest estimators for these values 

of p. It is interesting to note that this behaviour did not 

exist for all the design matrices, and for the exceptional 

cases, the differences between the mean square error of the 

estimators mentioned above (except for OLS) was very small. 

8) Pretesting at the 50% level markedly improved the performance 

of the autocorrelation pretest, reducing the loss in efficiency 

of the 5% autocorrelation pretest by about 14.6%. This confirms 

the findings of Fomby and Guilkey(1978) about the advantage of 

adopting higher significance level than the traditional 0.05 

level. 

9) Except for the pure Bayesian estimator, no other estimator - 
generally dominates the other estimators over the entire range 

of p; i.e. no estimator is uniformly superior to the other 

competitors over the whole range of p, though some estimator 

such as OLS, and the autocorrelation pretest perform quite well 

for low values of p, while the Bayesian pretest estimators, 

pEGLS, and pMLE perform well for higher values of p. Generally 

none of these estimators dominated each other entirely. 

10) On the average (over all 20 design matrices) the pure 

Bayesian estimator's mean square error is approximately 94% of 

the mean square error of its closest competitior p MLBPT for 



plO.4 and 85% for p20.50, in relation to its worst rival ( P  OLS ) I 

its mean squared error is 96% for lower values and 58% for 

higher values. 

1 1 )  The choice of significance levels does not affect the 

relative ordering of the mean square errors, nor does it 

significantly change the curvature of the mean square error 

function of the pretest estimator, but a choice of higher 

significance level does decrease the absolute magnitude of the 

mean square error of the autocorrelation pretest estimator. 

Whether or not there is a significant reduction in mean square 

error through pretesting depends on the choice of estimators, 

but from this experiment, there is a significant reduction in 

the mean square error, if the maximum likelihood estimator is 

used as the EGLS component instead of the Durbin estimator. 

12) The sample size of the design matrices did not make much 

difference in the ordinal ranking of the estimators, though it - 
made a difference in the absolute ma-gnitude of the mean square C 

errors. 

13) Based on the results reported in ( 1 )  above, some researchers 

will be drawn to the Bayesian estimator, but tradition suggest 

that these researchers will employ a pretest estimator based on 

some testing procedure to choose between OLS and the pure 

Bayesian estimator. Thus we investigated the performance of such 

an estimator based on a DW 5% test. Only 8 design matrices were 

used for this experiment. We observed that this 'new' pretest 

estimator had a mean square error function everywhere above that 

7 3  



of the pure Bayesian estimator though it was better than OLS for 

p>O. This pretest estimator was also uniformly superior to the 

pretest estimator that chooses between OLS and EGLS as well as 

the pretest that chooses between OLS and MLE. 

14) However it is clear that if attention is confined to the 

Durbin-Watson test as in this experiment, then the recommended 

strategy for choice of estimators in a model with an 

autocorrelated error term is to use OLS if any available prior 

information suggest that p is small (say less than 0 . 1 ) ~  

otherwise use the pure Bayesian estimator. Using OLS within the 

range of p mentioned above leads to very minimal loss in 

efficiency and less computation cost. Another strategy is to use 

the pure Bayesian estimator anytime a model has an 

autoregressive error term, without reference to prior 

information, because the loss of efficiency using this estimator 

when p is small is insignificant, but substantial gain can be 

achieved for higher values of p. 

On the basis of these results, the pure Bayesian estimator 

has proven to be a very attractive alternative to EGLS and 
- 

related pretest estimators for estimating the P vector in a 

model with autoregressive error term. 
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FIGURE 4.18 AR(I) (CASE 18) 
RELATIVE MSE FUNCTIONS - 

Legend 
A MLE 

X BAY - - - -  
0 MLPT (0.03 - 

MLBPT ------- 
n MLPT (O.50) --..----- ---- 

RHO 



T r u e  p 

0.00 

0 .10 

0.20 

0.30 

0.40 

0.50 

0 .60 

0.70 

0.80 

0 .90 

T r u e  p 

Table 4.19 

RELATIVE USE: AR(I) (CASE 19) 
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Table 4.20 

RELATIVE MSE: A R ( ~ )  (CASE 20) 

pEGLS pMLE 
True p pBAY pBAYPT 

0.00 1 . O O O  1.059 1.084 1.01 1 1.027 

0.10 1.013 1.067 1.103 1.015 1.034 

True p 



FIGURE 4.20 AR(I) (CASE 20) 
RELATIVE MSE FUNCTIONS 
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4 .  2 .  2 THE M A ( 1 )  

Table and Figures 4.21 -4.40 represent the findings for this 

model. Except for a few deviations, the results for the M A ( 1 )  

model are similar to that of the AR(~) model. For the MA(1) 

model the main observation is : 

1 )  The pure Bayesian estimator did not perform as well as its 

competitors for 610.40. In fact it, is the second (to fl EGLS ) 

worst estimator among all the competing estimators within this 

range of 6, but as 6 increases, the increase in the mean square 

error of the pure Bayesian estimator is not as rapid as that of 

its rivals, thus leading to a mean square error that is 

generally below that of the other estimator for 620.40. 

From this model we also observed the following: 

2 )  Apart from case 3 (where 0 EGLS and pBAY have U-shaped mean - 
square error functions), the mean square error of all estimators 

increase continuously for increasing values of 6. 

3) The range of values of 6 for which OLS performs very well is 

higher than in the AR(I) model. For the ~ ~ ( 1 1  model, OLS 

generally outperformed all the estimators for 610.40, but for 

higher values of 6 (620.50), it is outperformed by its 

competitors. 

4) pEGLS is generally the worst among all the estimators for low 

values of 6 (610.40). This behaviour could be attributed to the 

method of estimating the autocorrelation parameter 6. The method 



of moments estimator of 6 is used in the estimation of 6, the 

method could have produced poor estimates of 6, thereby leading 

to a p EGLs with higher mean square error than would ordinarily 

have been the case. 

5) The behaviour of the autocorrelation pretest estimator in 

relation to their parent EGLS estimators is the same as in the 

AR(1) case. For 6=0 the 5% autocorrelation pretest estimator 

correctly accepts the null hypothesis 95% of the time and puts 

more weight on OLS, which has the least MSE among all the 

estimators at this value of 6. Thus the MSE,of the pretest 

estimator is lower than its parent EGLS but it is above that of 

OLS for smaller values of 6. As 6 increases, OLS gets 

consistently worse, thus the MSE of the pretest estimator 

exceeds that of its parent EGLS, but lies below that of OLS. 

6) Similar to the AR(1) model, no estimator dominates the others 

over the entire range of 6, and thus there did not emerge a - 
clear ordinal ranking of the estimators, though OLS, the 

autocorrelation pretest estimators and the Bayesian pretest 

estimators perform well for values of 610.50 while the pure 

Bayesian, pMLE and pEGLS did better for higher values of 6 

7) On the average, the pure Bayesian estimator's mean square 

error is about 103% of the mean square error of OLS for 610.40, 

and about 70% for higher values of 6. 

8) When the MSE is averaged over the entire 6 space, the pure 

Bayesian estimator has the least average MSE, followed by 

pMLBPT 
BAYPT MLE pEGLS pPT, and 

p ,.p I I OLS in that order. 



9) The size of the design matrix does not play a significant 

role in the relative ranking of the the estimators, However, for 

larger sample sizes (T=65), the range of better performance of 

OLS over its competitors is smaller, (approximately 610.2, while 

for smaller sample sizes the range was 610.4. 

10) Averaging the MSE over all 20 design matrices for a given 

value of 6 shows that the Pure Bayesian estimator is only worse 

than the competition for values of 610.2. For higher values of 6 

the Pure Bayesian estimator is markedly superior to its 

competitors. 

1 1 )  For this model, the choice of estimators will depend on 

one's prior knowledge of the value of 6. If 610.50, we recommend 

the use of OLS since the gains in efficiency are quite 

substantial, while for higher values of 6 the pure Bayesian is 

the obvious choice. 

# 
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FIGURE 4.21 MA(I) (CASE 1) 
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RELATIVE MSE (CASE 2 )  



FIGURE 4.22  MA(^) (CASE 2) 
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RELATIVE MSE (CASE 4 )  
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RELATIVE USE (CASE 5 ) 
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RELATIVE MSE (CASE 6 )  



FIGURE 4.26  MA(^) (CASE 6) 
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RELATIVE MSE ( CASE 7 ) 
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FIGURE 4.27  MA(^) (CASE 7) 
RELATIVE MSE FUNCTIONS 
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RELATIVE MSE (CASE 9 ) 



FIGURE 4.29  MA(^) (CASE 9) 
RELATIVE MSE FUNCTIONS 

Legend 
A MLE .- 
X BAY - - . . . - -  
Cl MLPT (0.04 --- - 
EU MLBPT -- 

DELTA 



Table 4 . 3 0    MA(^) ) 

T r u e  6 

0.00 

0.10 

0.20 

0.30 

0.40 

0 .50  

0.60 

0.70 

0.80 

0.90 

T r u e  6 

RELATIVE MSE (CASE 10 ) 



FIGURE 4.30  MA(^) (CASE 10) 
RELATIVE MSE FUNCTIONS - 

Legend 
A -"___..- MLE 

X BAY 
-I-- 

R MLPTJO.02 - - 
FiP MLBPT 

DELTA 



True 6 

0.00 

0 .10  

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

True 6 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

Table 4.31 ( ~ ~ ( 1 1  ) 

RELATIVE MSE (CASE 1 1 ) 
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RELATIVE MSE (CASE 12) 



FIGURE 4.32  MA(^) (CASE 12) 
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RELATIVE USE (CASE 13) 
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FIGURE 4.34 MA@ (CASE 14) 
RELATIVE MSE FUNCTIONS 
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RELATIVE MSE (CASE 15) 



FIGURE 4.35  MA(^) (CASE 15) 
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RELATIVE MSE (CASE 16) 
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FIGURE 4.37  MA(^) (CASE 17) 
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FIGURE 4.38 MA(I) (CASE 18) 
RELATIVE MSE FUNCTIONS 
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FIGURE 4.39  MA(^) (CASE 19) 
RELATIVE MSE FUNCTIONS 
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FIGURE 4.40  MA(^) (CASE 20) 
RELATIVE MSE FUNCTIONS 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 

This study, although limited in certain ways, has provided us 

with the conclusion that we cannot ignore the Bayesian 

alternative in our estimation of the 0 vector in a model with 

autocorrelated errors. For smaller values of the autocorrelation 

parameterrnamely pSO.1, OLS maintains its attractive properties 

but for higher values the Bayesian alternatives, especially the 

pure Bayesian estimator, leads to considerable gains in 

efficiency. For the AR(I) model, the pure Bayesian estimator 

performs very well and dominates all the other estimators 

examined over the entire range of p ,  but for the MA(I) model, it 

exhibited this behaviour generally only for values of 620.50. 

The computational complexities of the Bayesian alternatives 

have been ' simplified' by the adoption of an ignorance prior L 

leading to 'simple' formulae for this class of estimators. This 

author found that the computational cost, in - terms of computing 

time (CPU), was generally five times higher for one estimate of 

Bayesian estimators than for one estimate of the rest of the 

estimators examined. It should however be noted that this time 

was in terms of milliseconds. 

However, this drawback of the computation of the ~ayesian 

alternative should not warrant its neglect in the econometric 



1Tterature on autocorrelated error models. 

5.2 RECOMMENDED TOPICS FOR FUTURE STUDY AND RESEARCH 

Several areas for future research are suggested by this study. 

1 )  This experiment could be extended to examine higher forms of 

autocorrelation. 

2) There is an obvious need to improve on current estimates in 

the ~ ~ ( 1 1  model. 

3 )  The use of the sum of mean square errors of several parameter 

estimates as the criterion, rather than the mean square error of 

a single parameter estimate. 

4) Developing an 'autocorrelation' Stein estimator formally, and 

comparing its sampling properties with the pure Bayesian 

estimator. 

5) Consideration of negative autocorrelated errors. ~ 
6) The performance of the Bayesian estimator in a model with two - 
or more explanatory variables. C 

7 )  Examination of the robustness of the Bayesian estimator in a i 
model with non-normally distributed error terms. I 
9 )  Lastly, the suggestion of using 5 as weights on EGLS and (1 -p  

^ )  as weights on OLS could be investigated. I 
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APPENDIX A 



C***THE MAIN PROGRAMME FOR T H E ' A R ( ~ )  MODELk********* 

*ME,ME1,MLB,MLBl,BMLIBML1 

INTEGER IER,IFAIL 

DOUBLE PRECISION DSEED 

COMMON DSEED 

CALL 



DO 2 L=1,600 

CALL YGEN(x,Y,YI,P) 

CALL OLSES(X~,X~,YI,LS) 

O L S ( L , ~ ) = L S ( ~ , ~ )  

oLS(L,2)=Ls(2,1) 

CALL ERRORS(X~,Y~,LS,DW) 

CALL RHOCAL(X,Y,RHO) 

CALL FINDB(RHO,X~,Y~,PW) 

EGLS(L,I)=PW(I,I) 

EGLS(L,~)=PW(~,~) 

CALL FINDB(P,Xl,Yl,WLS) 

GLS(L,I)=WLS(I,I) 

GLS(Lf2)=WLS(2,1) 

CALL CMLE(PE,X~,Y~,BM) 

MLE(L,I)=BM(I,I) 

M L E ( L , ~ ) = B M ( ~ , ~ )  

AUTOCORRELATION PRETEST ESTIMATOR******* 



MBPTE(I,I)=BM(I,I) 

3 CONTINUE 

ELSE 

DO 5 I=1,2 

PTE(I, I )=Ls(I, I )  

MBPTE(I, I )=Ls(I, I )  

5 CONTI NUE 

END IF 

PRET(L,I)=PTE(I,I) 

PRET(L,~)=PTE(~,~) 

MBPRET(L,I)=MBPTE(I,I) 

MBPRET(L,~)=MBPTE(~,I) 

C 

CALL CONS(XI,Y~,Q) 

CALL BAYS(XI,Y~,Q,BAYSI,BAYS~) 

BAYESI(L,I)=BAYSI 

BAYES~(L,~)=BAYS~ 

CALL PROBAB(X~,Y~,Q,ALPHA) 

6 CONTI NUE 



CALL MSERRS(OLS,600,2,MOLSIMOLS1) 

CALL MSERRS(EGLS,~OO,~,MEGL,MEGLI) 

CALL MSERRS(GLS,~OO,~,MGLS,MGLS~) 

CALL MSERRS(BAYES1,600,2,MST,MST1) 

CALL MSERRS(PTBAYE,600,2,MBAY,MBAY1) 

CALL MSERRS(PRET,~OO,~,MPRET,MPRETI) 

CALL MSERRS(MLE,600,2,MLES,MLES1) 

CALL MSERRS(MBPRET,600,21~~~EIMBPE1) 

CALL MSERRS(PTMLB,~OO,~,PTM~PTM~) 

M 

WRITE(~,*)'BEACH AND MACKINNON DESIGN MATRIX' 

WRITE(~,*)'FOR OLS' 

CALL RETMSE(MOLS,MOLS~,MGLS,MGLS~~MOL~MOL~) 

WRITE(~,*)'FOR EGLS' 

CALL RETMSE(MEGL,MEGL1,MGLS,MGLSlfMEL,MELI) 

wRITE(7,*)'FOR OLD PRETEST' 

CALL RETMSE(MPRET,MPRET~,MGLS,MGLS~,MRT,MRT~) 

WRITE(7,") 'FOR PURE BAYESIAN' 

CALL RETMSE(MST,MST~,MGLS~MGLS~,M~,M~) 

WRITE(~,*)'FOR BAYESIAN PRETEST' 



CALL RETMSE(MBAY,MBAY~,MGLS,MGLS~,MBA,MBA~) 

WRITE(~,*)'FOR MAXIMUM LIKELIHOOD ESTIMATOR' 

CALL RETMSE(MLES,MLES~,MGLS,MGLS~,ME,ME~) 

WRITE(~,*)'FOR MAXIMUM LIKELIHOOD PRETEST' 

CALL RETMSE(MBPE,MBPEI,MGLS,MGLSI,MLB,MLBI) 

WRITE(~,*)'FOR MAXIMUM LIKELIHOOD BAYESIAN PRETEST' 

CALL RETMSE(PTM,PTM~,MGLS,MGLS~,BML,BML~) 

C 

1 CONTI NUE 

STOP 

END 

C**XEND OF MAIN PROGRAM******************* 

C GENERATING THE DESIGN MATRIX XI. 

C X1 IS A TX2 MATRIX W 

C COLUMN OF ONES AND A 

C OF. DATA REPRESENT1 NG 

C (BEACH AND MACKINNON 

TH A 

SECOND COLUMN 

THE VARIOUS CASES 

1978) DESIGN MATRIX 

REAL ~ ( 3 0 )  

DOUBLE PRECISION DSEED 

COMMON DSEED 

S=O. 03 

CALL GGNML(DSEED,~O,R) 



100 CONTINUE 

DO 600 K7= 

Xl(K7,1)=1 

Xl(K7,2)=~ 

600 CONTINUE 

RETURN 

END 

C GENERATING THE Y MATRIX Y1, BY 

C FIRST OBTAINING AN AUTOCORRELATED 

C ERROR TERM E THROUGH THE 

C THE AUTOREGRESSIVE PROCESS Et=PEt-1 + Ut 

C WHERE Ut IS NORMALLY DISTRIBUTED - 
C WITH A MEAN 0 AND VARIANCE 0.0036********** 

SUBROUTINE YGEN(X,Y,Yl,P) 

DOUBLE PRECISION DSEED 

COMMON DSEED 



M=O.O6 

CALL GGNML (DSEED,~O,R) 

DO 301 I=1,30 

U(I )=R(I )*M 

CONTINUE 

~(1)=~(1)/((1-(~*~))**0.5) 

DO 302 K1=2,30 

E(KI)=(P*E(KI-I))+u(KI) 

CONTI NUE 

DO 500 I=1,30 

Y(I) =B~+(BI*X(I))+E(I) 

CONTINUE 

DO 700 K7=1,30 

~1 ( ~ 7 , l  ) = Y ( K ~ )  

CONTINUE 

RETURN 

END 

C CALCULATING OLS ESTIMATES 

C 

SUBROUTINE OLSES(X~,X~,Y~,OLS) 

REAL*8 ~1(30,2),~2(30,2),~1(30,1~,0LS(2,1) 

REAL*8 X X ( ~ , ~ ) , X X I ( ~ , ~ ) , X Y ( ~ ~ ~ ) ~ W K S P ( ~ )  

INTEGER IER,IFAIL 

IFAIL=O 

CALL V M U L F M ( X ~ , X ~ , ~ ~ , ~ , ~ ~ ~ O ~ ~ O , X X ~ ~ ~ I E R )  

CALL F01AAF(XX,2,2,XXI,2,WKSPIIFAIL) 



CALL F ~ ~ C K F ( O L S , X X I , X Y , ~ , ~ , ~ , Z , ~ , ~ , I F A I L )  

RETURN 

END 

ESTIMATING THE ERROR TERMS AND 

USING THESE TO ESTIMATE THE 

DURBIN-WATSON STATISTIC 

SUBROUTINE ERRORS(X~,YI,OLS,DW) 

REAL*$ ~ 1 ( 3 0 , 2 ) , ~ ~ ( 3 0 , 1 ) , 0 ~ ~ ( 2 , 1 )  

REAL*$ Y1(30,1),EHA~(30,1) 

REAL*$ EHAT1(30),Dw 

INTEGER IFAIL 

IFAIL=O 

SUME3=O .DO 

SUME4=O .DO 

CALL F ~ ~ c K F ( x B , x ~ , o L s , ~ ~ , I , ~ ~ ~ , ~ , ~ , I F A I L )  

CALL FOlCEF(EHAT,Y1,XB,30,l,IFAIL) 

68 CONTI NUE 

s U M E ~ = S U M E ~ + ( E H A T ~ ( K ~ ) - E H A T ~ ( K ~ - ~ ) ) * * ~  

400 CONTINUE 



407 CONTINUE 

RETURN 

END 

C 

C****ESTIMATING RHO BY THE DURBIN METHOD********** 

C 

SUBROUTINE RHOCAL(X,Y,RHO) 

REAL*8 ~ ( 3 0 )  , ~ ( 3 0 )  , ~ 2 ( 2 9 )  , ~ 3 ( 2 9 )  ,~5(29,4) 

INTEGER IFAIL,IER 

C - 

DO 1 I=2,30 

Y~(I)=Y(I-1) 

x~(I)=x(I-1) 

x ~ ( I ,  1 ) = 1  .OOO 

X5(I ,2)=Y2(1) 

X ~ ( I  ,3)=X3(I) 

X ~ ( I  ,4)=X(I) 

y3(1,1)=Y(I) 

1 CONTINUE 

DO 2 KI=1,29 

DO 3 KJ=1 ,4 



x~(KI,KJ)=x~(KI,KJ) 

CONTI NUE 

CONTI NUE 

CALL V M U L F M ( X ~ , X ~ , ~ ~ , ~ , ~ ~ ~ ~ , ~ ~ ~ X X ~ ~ ~ I E R )  

CALL F ~ ~ A A F ( x x , ~ , ~ , X X I , ~ ~ W K S P ~ I F A I L )  

CALL V M U L F M ( X ~ , Y ~ , ~ ~ , ~ , ~ ~ ~ ~ ~ ~ ~ ~ X Y ~ ~ ~ I E R )  

CALL F O ~ C K F ( T O E , X X I , X Y , ~ ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

IF (RHO.GE.I.DOO)THEN 

RHO=0.99999 

ELSE 

IF (RHO.LE.(-I.DOO))THEN 

RHO=-0.99999 

ELSE 

RHO=RHO 

END IF 

END IF 

RETURN 

END 

C*******USING THE PRAIS-WINSTEIN(1954) TRANSFORMATION MATRIX TO 

SUBROUTINE OME(P,OM~~,OMEINV) 



REAL*8 0~12(30,30),~ 

INTEGER IFAIL,IER 

IFAIL=O - 

DO 100 1=1 ,30 

DO 300 J=1,30 

OMI 1 (I ,~)=0.00 

300 CONTI NUE 

100 CONTI NUE 

OMI I (I ,I-1 )=-P 

390 CONTI NUE 

. OMI~(I,J)=OMI I(I,J) 

500 CONTINUE 

400 CONTINUE 

CALL VMULFM(OM11,0M12,3013013013013010MEINV,30~1E~~ 

RETURN 

END 

C**CALCULATING EGLS ESTIMATES 

C**BY THE DURBIN METHOD****** 

C***THIS IS EQUIVALENT TO USING 

C***THE FINDB ROUTINE WHEN THE ESTIMATE 

C***OF P IS USED. 



SUBROUTINE PRWIN(X,Y,RHO,~GLS) 

INTEGER IFAIL,IER 

1 . CONTINUE 

CONTI NUE 

CALL F O ~ A A F ( X ~ O , ~ , ~ , X O X I ~ ~ ~ W K S P ~ I F A I L )  

CALL V M U L F M ( X ~ , Y ~ , ~ O , ~ , ~ , ~ O , ~ ~ , X O Y , ~ . , I E R )  



RETURN 

END 

C 

C******CALCULATING THE GLS ESTIMATE 

C******USING THE OMEGA INVERSE MATRIX**** 

C 

SUBROUTINE FINDB(P,X~,Y~,WLS) 

REALX8 Yl(30,l) ,OMEINV(~~,~O) ,wox(~,~) 

REAL*8 ~0(2,25),~0~1(2,2) 

REAL*8 WKSP(~) ,PIXI (3012) 

INTEGER IFAILIIER 

IFAIL=O 

CALL OME(P,TRMTX,OMEINV) 

CALL V M U L F M ( X I , O M E I N V , ~ ~ , ~ , ~ ~ ~ ~ O ~ ~ O ~ ~ O ~ ~ ~ I ~ ~ )  

. CALL FOlCKF(WOX,WO,X1 ,2,2,30,Z11, 1 ,IFAIL) 

CALL F O ~ A A F ( W O X , ~ , ~ , W O X I ~ ~ ~ W K S P ~ I F A I L )  - 
CALL F O I C K F ( W O Y , W O , Y ~ , ~ , ~ ~ ~ O , Z ~ ~ ~ ~ ~ I F A I L )  

RETURN 
- 

END 

C********USING BEACH AND MACKINNON 

C********ALGORITHM TO FIND MAXIMUM 

C LIKELIHOOD ESTIMATOR.************ 

C 

SUBROUTINE FINDP(Xl,Yl,SGLS,PE) 



REAL*8 X ~ ( ~ O , ~ ) , Y ~ ( ~ O , ~ ) , S G L S ( ~ ~ ~ ) ~ A , B ~ C ~ D  

REAL*8 X B ( ~ O , ~ ) , E ~ ( ~ O , ~ ) , P A ~ Q , T H E T A , P E , E ( ~ O ) ~ S ~ ~  

INTEGER T , I FA1 L 

T=30 

IFAIL=O 

SUM=O. 00 

3 CONTINUE 

1 CONTI NUE 

D=(T-I)*( SUMP  SUM^ 



SUBROUTINE CMLE(PE,XI,Y~,MLE) 

REAL*8 Y ~ ( ~ O , ~ ) , X ~ ( ~ O , ~ ) , S G L S ( ~ , ~ ) , S A V E P  

REAL*8 A,B,C,D,PA,Q,THETA,MLE(~,~),PE 

INTEGER T,IFAIL,COUNT 

PE=O . 00 
COUNT= 0 

EPS=0.00001 

CONTI NUE 

COUNT=COUNT+l 

SAVEP=PE 

CALL FINDB(SAVEP,XI,YI,SGLS) 

CALL FINDP(X~,Y~,SGLS,PE) 

IF ((ABS(PE-SAVEP).GT.EPS) .AND. (cou~T.LE.30)) GO TO 100 

IF(COUNT.GT.30) GO TO 500 - 
DO 4 I=1,2 

MLE(I, 1 )=SGLS(I, 1) 

CONTINUE 

RETURN 

END 

C*****CALCULATING THE NORMALISING CONSTANT 

C*****FOR THE DENSITY FUNCTION 

C OF THE AUTOCORRELATION PARAMETER******* 

C 



SUBROUTINE CONS(XI,Y~,Q) 

REAL*8 X ~ ( ~ ~ , ~ ) , Y ~ ( ~ ~ , ~ ) , Q ~ H ~ H ~ , H ~ , R A N G E , P ~ , P ~  

REAL*8 OM1 (30,30) ,OR1 (30,30),0M2(3OI30) 

REAL*8 ~ ~ ( 2 , 3 0 ) , ~ ~ ( 2 , 3 0 ) , ~ ~ ~ ( 2 , 2 ) , X ~ R ( 2 , 2 )  

REAL*8 X R R I ( ~ , ~ ) , X T Y ( ~ , ~ ) , X R Y ( ~ , ~ )  

REAL*8 ~ R Y ( 2 , 1 ) , ~ 1 ( 2 , 1 ) , B 2 ( 2 ~ 1 ) , ~ ~ ~ ( 3 0 , 1 )  

REAL*8 ~ ~ ~ ( 3 0 , 1 ) , ~ ~ ~ ( 3 0 , 2 ) , ~ ~ ~ ( 3 0 , 2 )  

REAL*8 X S T B ( ~ O , ~ ) , X R T B ( ~ O , ~ )  

REAL*8 SS1(30,1),~~2(30,1),RRl(30,1) 

REAL*8 ~ ~ 2 ( 3 0 , 1 ) , ~ ~ ~ 1 ( 3 0 , 2 )  

REAL*8 X R T ~ ( ~ O , ~ ) , R S S I , X P X ( ~ , ~ )  

REAL*8 XRX(~,~),RSS~,DETI,DET~ 

REAL*8 WKSP(2) 

INTEGER I FA1 L , I ER 

IFAIL=O 

T=30 

K=2 

RANGE=0.04995 

H=O .DO 

PO=-0.999 

DO 32 KO=1,40 

PI=PO+RANGE 

CALL FINDB(POIX1,Y1,B1) 

CALL OME(PO,OM~,OM~) 

CALL F O ~ C K F ( Y S T , O M ~ , Y ~ , ~ O , ~ ~ ~ O ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C K F ( X S T , O M ~ , X ~ , ~ ~ ~ ~ ~ ~ O , Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O I C K F ( X S T B , X S T , B ~ , ~ O ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  



CALL FOlCEF(SS1 ,YST,XSTBf301 1 ,IFAIL) 

DO 1 I=1,30 

ss2(1,1 )=%I (I, 1) 

XSTI (I,I)=XST(I,I) 

XST1(Ir2)=XST(1,2) 

CONTI NUE 

CALL VMULFM(SS1,SS2,30,1f11301301RSS11111ER) 

CALL V M U L F M ( X S T I , X S T , ~ ~ , ~ ~ ~ ~ ~ O ~ ~ O ~ X P X ~ ~ ~ I E R )  

D E T ~ = x P X ( ~ , ~ ) * X P X ( ~ , ~ )  - X P X ( ~ , ~ ) * X P X ( ~ , ~ )  

CALL F I N D B ( P ~ , x I , Y ~ , B ~ )  

CALL OME(PlfOR1,0R2) 

CALL F01CKF(YRT,0R1,Y1,30f1130fZf1f111FAIL) 

CALL F01CKF(XRT,0R1,X1,30f2130fZ111111~AIL) 

CALL F01CKF(XRTB,XRT,B2,3011f21Zf11111~AIL) 

CALL F O ~ C E F ( R R ~ , Y R T , X R T B ~ ~ O ~ ~ ~ I F A I L )  

DO 2 I=1,30 

RR2(1,1)=RR1 ( 1 ~ 1 )  - 
XRTI(I,I)=XRT(I,I) 

XRT1(If2)=XRT(I,2) 

CONTI NUE 

CALL V M U L F M ( R R ~ , R R ~ , ~ O , ~ ~ ~ ~ ~ O ~ ~ O ~ R S S ~ , ~ ~ I E R )  

CALL VMULFM(XRT1,XRT,30,212f30f301XRX12rIER) 

DET~=XRX(I , 1 ) * ~ ~ ~ ( 2 , 2 )  - XRX(I , 2 ) * ~ ~ ~ ( 2 , 1 )  

PO=P 1 

H~=(Rss~**((-(T-K-)/~)))*(DET~**(-1/2)) 

H~=(Rss~**((-(T-K)/~)))*(DET~**(-1/21) 

H=H + O.~*RANGE*(H~+H~) 



RETURN 

END 

C CALCULATING THE PURE BAYESIAN ESTIMATOR 

C WHICH IS A THE MEAN OF THE DENSITY OF B 

C 

SUBROUTINE BAYS(X~,YI,Q,BAYES~,BAYES~) 

REAL*8 H~,H~,BAYES~,TL~,TL~,GL(~,~),GL~ 

REALk8 G L ~ , T L ( ~ , ~ ) , H ~ , H ~ , B A Y E S ~ , X ( ~ O ) , Y ( ~ O )  

REAL*8 X1(3012)~~1(3011)lQ,H,H~H1~H21RANGEIPOIP1 

REAL*8 OM1(30,30),0~1(30,30),0~2(30,30) 

REAL*8 ~ ~ ( 2 ; 3 0 )  , ~ ~ ( 2 , 3 0 )  , x T T ( ~ , ~ )  , x R R ( ~ , ~ )  

-REAL*8 X R R I ( ~ , ~ ) , X T Y ( ~ , ~ ) , X R Y ( ~ ~ ~ )  

REAL*8 B1(2,1),~2(2,1),~S~(30,1) - 
REAL*8 Y R T ( ~ O , ~ ) , X S T ( ~ O , ~ ) , X R T ( ~ O , ~ )  

REALX8 X S T B ( ~ O , ~ ) , X R T B ( ~ O , ~ )  

REALk8 SS1(30,1),~~2(30,1),~~1(30,1) 

REAL*8 RR1(30,1),~~2(30,1)~~ST1(30,2) 

REAL*8 XRT1(3OI2),RSS1,~~~(2,2) 

REALX8 X R X ( ~ , ~ ) , R S S ~ , D E T ~ , D E T ~  

REAL*8 WKSP(2) 

INTEGER IFAIL,IER 

IFAIL=O 

T=30 



K=2 

RANGE=0.04995 

BAYES1=0.00 

BAYES2=0.00 

PO=-0.999 

DO 32 KO=1,40 

Pl=PO+RANGE 

CALL FINDB(PO,XI,YI,GL) 

GLI=GL(I,I) 

GL2=GL(2,1) 

CALL FINDB(PI,XI,YI,TL) 

TLI=TL(I,I) 

T L ~ = T L ( ~ , ~ )  

CALL OME(PO,OM~,OM~) 

CALL F ~ ~ C K F ( Y S T , O M ~ , Y ~ , ~ ~ , ~ , ~ O ~ Z ~ ~ , ~ , I F A I L )  

-CALL F O ~ C K F ( X S T , O M ~ , X ~ , ~ O ~ ~ ~ ~ O ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C K F ( X S T B , X S T , G L , ~ ~ ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  - 
CALL F O ~ C E F ( S S ~ , Y S T , X S T B , ~ O ~ ~ ~ I F A I L )  

DO 1 I=1,30 

SS2(1,1 )=SS1 (I, 1) 

XSTI (I,I)=XST(I,I 

XSTI (I ,~)=xST(I ,2) 

1 CONTINUE 

CALL V M U L F M ( S S I , S S ~ , ~ ~ , ~ , ~ ~ ~ O ~ ~ O ~ R S S ~ ~ ~ ~ I E R )  

CALL V M U L F M ( X S T ~ , X S T , ~ ~ , ~ ~ ~ ~ ~ O ~ ~ O ~ X P X ~ ~ ~ I E R )  

D E T ~ = x P X ( I , ~ ) * X P X ( ~ , ~ )  - X P X ( ~ , ~ ) * X P X ( ~ , ~ )  
CALL O M E ( P ~ , O R ~ , O R ~ )  



CALL F01CKF(YRT,0R1,Y1,3011,301Z11,111FAIL) 

CALL F01CKF(XRTB,XRT,TL,3011121ZIl11,1~~~L) 

CALL FO~CEF(RRI,YRT,XRTB,~O,~,IFAIL) 

DO 2 I=1,30 

R R ~ ( I ,  1 )=RRI (I, 1) 

2 CONTINUE 

CALL V M U L F M ( R R I , R R ~ , ~ O , ~ , ~ , ~ ~ , ~ ~ , R S S ~ , ~ , I E R )  

CALL V M U L F M ( X R T ~ , X R T , ~ O , ~ , ~ , ~ O , ~ O ~ X R X , ~ , I E R )  

32 CONTINUE 

RETURN 

END 

C CALCULATING THE WEIGHTS,TO OPERATIONALISE 

C THE BAYESIAN ESTIMATOR. i . e .  

C THE PROBABILITY THAT OLS OUTPERFORMS EGLS.. 



SUBROUTINE PROBAB(X~,YI,Q,ALPHA) 

REAL*8 X ~ ( ~ O ~ ~ ) ~ Y ~ ( ~ O ~ ~ ) ~ Q ~ H ~ H ~ ~ H ~ ~ R A N G E ~ P O ~ P ~  

REAL*8 0~1(30,30),0~1(30,30),0~2(30,30) 

REAL*8 ~ ~ ( 2 ~ 3 0 )  ,X~(2,30) , x T T ( ~ , ~ )  ,XRR(2,2) 

REAL*8 X R R I ( ~ , ~ ) , X T Y ( ~ , ~ ) , X R Y ( ~ , ~ ) ~ B ~ ( ~ , ~ )  

REAL*8 ~2(2,1),~S~(30,1) 

REAL*8 ~~~(30,1),~ST(30,2),XRT(30,2) 

REAL*8 X R T ( ~ ~ , ~ ) , X S T B ( ~ ~ , ~ ) , X R T B ( ~ ~ , ~ )  

REAL*8 SS1(30,1),~S2(30,1),RRl(30,1) 

REALk8 RR2(30,l),XST1(3OI2) 

REAL*8 X R T ~ ( ~ O , ~ ) , R S S ~ , X P X ( ~ , ~ )  

REAL*8 XRX(~,~),RSS~,DETI,DET~ 

REAL*8 WKSP(~),ALPHA 

INTEGER IFAIL,IER 

IFAIL=O 

RANGE=0.025 

ALPHA=O.OO 

PO=-0.300 

DO 32 KO=1,24 

Pl=PO+RANGE 

CALL FINDB(PO,XI,Y~,B~) 

CALL OME(PO,OM~,OM~) - 

CALL F O ~ C K F ( Y S T , O M ~ , Y ~ , ~ ~ ~ I ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL FO~CKF'(XST,OM~ ,XI ,30,2,3oI Z, 1 , 1 ,IFAIL) 

CALL F O I C K F ( X S T B , X S T , B ~ , ~ ~ , ~ , ~ ~ ~ ~ I , ~ ~ I F A I L )  

CALL F01CEF(SS1,YST,XSTB1301111FAIL) 



ss2(1,1)=SS1(1,1) 

XSTI (I,I)=XST(I,I) 

XST~ (I ,2)=XST(1 ,2) 

1 CONTI NUE 

CALL V M U L F M ( S S ~ , S S ~ , ~ O , ~ ~ ~ ~ ~ O ~ ~ O ~ R S S ~ ~ ~ ~ I E R )  

CALL V M U L F M ( X S T ~ , X S T , ~ O , ~ ~ ~ ~ ~ O ~ ~ O , X P X ~ ~ ~ I E R )  

DETI=XPX(I ,I)*XPX(~,~) - XPX(I ,2)*xpx(2,1) 

CALL FINDB(P~,X~,Y~,B~) 

CALL OME(P~,OR~,OR~) 

CALL F O ~ C K F ( Y R T , O R ~ , Y ~ , ~ O ~ ~ ~ ~ O , Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C K F ( X R T , O R ~ , X ~ , ~ O ~ ~ ~ ~ O ~ Z ~ I ~ ~ ~ I F A I L )  

CALL F O ~ C K F ( X R T B , X R T , B ~ , ~ O , ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C E F ( R R ~ , Y R T , X R T B ~ ~ O ~ ~ ~ I F A I L )  

DO 2 I=1,30 

RR~(I,I)=RR~ (I,1) 

-XRT'I (IJ )=XRT(I,I) 

XRT~ (I ,~)=xRT(I ,2) - 
2 CONTI NUE 

CALL V M U L F M ( R R ~ , R R ~ , ~ O , ~ , ~ ~ ~ O , ~ O ~ R S S ~ ~ ~ ~ I E R )  

CALL v M U L F M ( X R T ~ , X R T , ~ O , ~ ~ ~ , ~ O ~ ~ O ~ X R X ~ ~ ~ I E R )  

DET~=XRX(~ ,1 )*xRx(~,~) - XRX(~ ,2)*~~~(2,1) 

PO=P 1 

H~=Q*(Rss~**((-(T-K)/~)))*(DET~**(-I/~)) 

H~=Q*(Rss~**((-(T-K)/~)))*(DET~**(-I/~)) 

32 ALPHA=ALPHA + O.~*RANGE*(H~+H~) 

RETURN 

END 



SUBROUTINE MSERRS(BETA,N,M,MSEOIMSE1) 

REAL*8 BETA(N,M),MSEO,MSEI 

INTEGER N,M 

SUMO=O .DO 

SUM1 = O  .DO 

DO 1 I=I,N 

SUMO=SUMO+(BETA(I,I)-1.00)**2 

S UM~=SUM~+(BETA(I,~)-~.OO)**~ 

1 CONTINUE 

MSEO=SUMO/N 

MSEI=SUMI/N 

RETURN 

END 

C 

C RELATIVE MEAN SQUARE ERRORS - 
SUBROUTINE RETMSE(BETA,PHIB,CHI,DELTA,RT~,RT~) 

IMPLICIT REAL*8 (A-H,O-Z) 

REAL*8 BETA,PHIB,CHI,DELTAIRT1,RT2 

RTI=BETA/CHI 

RT~=PHI B/DELTA 

 WRITE(^,*) 'RELATIVE MEAN SQUARE ERRORS ARE' 

W R I T E ( ~ , ~ ) R T ~  , R T ~  

2 F O R M A T ( ~ X , ~ E ~ ~ . ~ )  

RETURN 

END 





C**THE MAIN PROGRAMME FOR 

REAL*8 ~(65),~1(65,2 

REAL*8 ~,~1(65,1),~(65),~~(2,1), 

*OLS(~OO),MM(~,~),EGLS(~OO), 

*WLS(~,~),GLS(~OO),DEST, 

*ALPHA,PTE(2,1),PRET(600)IQI~~~~S1(600), 

*KING,BAYPT(~,~),PTBAYE(~OO), 

*BA(~,~),MLE(~OO),MLES, 

*MOLS(~,~),MOLSI,MEGL~,MGLS, 

* M G L S I , M B A Y , M B P T E ( ~ , ~ ) ~ M ~ ~ M ~ ,  

*MBAY1,MPRET,MPRETlrMOLI 

*MOL,MOL1,MEL,MEL1,MRT,MRTIIMSTrMSTII 

*MBAIMBA1,MBPRET(600), 

*PTMLB(~OO),PEM(~OO),PTM(~OO), 

*MLES~,MBPE~,PTM~,MLBPT(~,~),MEGL(~,~), # 

*ME,ME1,MLB,MLB1,BMLIBML11D2 

REAL*8 TW(2,1),ETGL(600) 

INTEGER IER,IFAIL 

DOUBLE PRECISION DSEED 

COMMON DSEED 

IFAIL=O 

DSEED=123457.D0 

C 

CALL XGEN(X1X1,X2) 



CALL YGEN(X,Y,YI,D) 

CALL OLSES(X~,X~,Y~,LS) 

CALL 

-D2=0.50 

CALL T E S T ( D ~ , X ~ , X ~ , Y ~ , K I N G )  

CALL FINDB(D,x~,Y~,wLS) 
- 

GLS(L)=WLS(~,~) 

CALL MACMAK(DEST,X,Y,MM) 

CALL CMLE(X~ ,Y1 ,QMIN,BA) 



C*****5% AUTOCORRELATION PRETEST************ 

3 CONTI NUE 

ELSE 

5 CONTINUE 

END IF 

CALL CONS(XI,Y~,Q) 

CALL BAYS(XI,YI,Q,BAYSI) 

CALL PROBAB(XI,Y~,Q,ALPHA) 



BAYPT(I,I)=ALPHA*LS(I,I)+((I-ALPHA)*MM(IJ)) 

MLBPT(I,I)=ALPHA*LS(I,I)+((I-ALPHA)*BA(IJ)) 

6 CONTI NUE 

PTBAYE(L)=BAYPT(~,~) 

PTMLB(L)=MLBPT(~,~) 

2 CONTI NUE 

C 

C MSE' S 

CALL MSERRS(OLS,~OO,MOLS~) 

CALL MSERRS(EGLS,~OO,MEGL~) 

CALL MSERRS(GLS,600,MGLSl) 

CALL MSERRS(BAYES~,~OO,MST~) 

CALL MSERRS(PTBAYE,~OO,MBAY~) 

CALL MSERRS(PRET,~OO,MPRET~) 

CALL MSERRS(MLE1600,MLES1) 

- CALL MSERRS(MBPRET,~~~,MBPEI) 

CALL MSERRS(PTMLB,~OO,PTM~) - 
C 

WRITE(7,*)'DEBT OF NON FINANCIAL SECTOR' 

WRITE(~,*)'FOR OLS' 

CALL RETMSE(MOLS~,MGLS~,MOL~) 

- WRITE(7,*)'FOR EGLS' 

CALL RETMSE(MEGL~,MGLS~,MELI) 

WRITE(~,*)'FOR OLD PRETEST' 

CALL RETMSE(MPRET~,MGLS~,MRT~) 

WRITE(~,*)'FOR PURE BAYESIAN' 

CALL RETMSE(MST1,MGLSlfM2) 



WRITE(~,*)'FOR BAYESIAN PRETEST' 

CALL RETMSE(MBAYI,MGLSI,MBAI) 

WRITE(~,*)'FOR MAXIMUM LIKELIHOOD ESTIMATOR' 

CALL RETMSE(MLESI,MGLSI,MEI 

WRITE(~,*)'FOR MAXIMUM LIKELIHOOD PRETEST' 

CALL RETMSE(MBPE~,MGLS~,MLB~) 

WRITE(7,*)'FOR MAXIMUM LIKELIHOOD BAYESIAN PRETEST' 

CALL RETMSE(PTM~,MGLS~,BML~) 

CONTI NUE 

STOP 

END 

"READING THE DESIGN MATRIX X1 

C*****FROM AN INPUT FILE.********* 

C 

SUBROUTINE XGEN(X,XI,X~) 

REAL*8 ~(65),X1(65,2),~2(65,2) 

DOUBLE PRECISION DSEED 

COMMON DSEED 

DO 650 I=1,65 

READ(~,~~)x(I) 

34 FORMAT(F~.~) 

650 CONTINUE 

DO 600 K7=1,65 

X1(~7,1)=1.000 

~ 1 ( ~ 7 , 2 ) = ~ ( ~ 7 )  



~2(~7,1)=1.000 

X2(K7,2)=X(K7) 

600 CONTINUE 

RETURN 

END 

C 

C**** GENERATING THE Y MATRIX Y1, 

C**** BY FIRST OBTAINING AN AUTOCORRELATED 

C ERROR TERM E, THROUGH THE 

C THE MOVING AVERAGE PROCESS 

C Et=DUt-1 + Ut, WHERE Ut IS NORMALLY 

C NORMALLY DISTRIBUTED WITH A MEAN 0 AND VARIANCE 

C 0.0036.************************************8 

C 

SUBROUTINE YGEN(X,Y,Y~,D) 

- REAL*8 ~(65),~(65),~1(65,1),~(65) 

REAL*8 u(~~),D,.s,M,BO,B~ 

REAL ~ ( 1 6 )  

DOUBLE PRECI SI ON DSEED 

COMMON DSEED 

BO=1 .OO 

B1=1 .OO 

M=O. 06 

CALL GGNML (DSEED,~~,R) 

DO 301 I=1,65 

U(I )=R(I )*M 

30 1 CONTINUE 



302 CONTINUE 

500 CONTINUE 

~ 1 ( ~ 7 , 1 ) = ~ ( ~ 7 )  

700 CONTINUE 

RETURN 

END 

............................................... 

C***CALCULATING OLS ESTIMATES*************** 

INTEGER I ER , I FA1 L 

CALL V M U L F M ( X ~ , X ~ , ~ ~ , ~ , ~ , ~ ~ , ~ ~ ~ X X ~ ~ ~ I E R )  

CALL F01AAF(XX,2,2,XXI,2,WKSPI1FAIL) 

CALL VMULFM(X1,Y1,65,2,1,65,651XYf211ER) 

CALL F O I C K F ( O L S , X X I , X Y , ~ ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

RETURN 



END 

C ................................. 

C***CALCULATING THE TEST STATISTIC 

C***VIA KING'S TEST S(0.50). 

C 

SUBROUTINE TEST(D2,XI1X2,Y1,KING) 

REALk8 ~1(65,2),~2(65,2),~1(65,1) 

REAL*8 KING,B(~,~),TOP(I,I) 

REAL*8 ~ ~ ~ ~ ( 6 5 , 6 5 ) , ~ ~ ( 6 5 , 1 )  

REAL*8 RS(65,1),~S1(1,65),0S(2,1) 

REAL*8 ~ ~ ~ ( 6 5 , 1 ) , ~ ~ ~ ( 6 5 , 1 ) ~ ~ S S 1 ( 6 5 , 1 )  

REALk8 B O T ( ~ , ~ ) , D ~ , M E I N V ( ~ ~ , ~ ~ )  

INTEGER IFAIL,IER 

IFAIL=O 

CALL FINDB(D~,xI,YI,B) 

CALL OME(D~,MEGA,MEINV) - 
CALL F 0 1 C K F ( X B , X 1 , B , 6 5 , 1 1 2 1 Z , 1 1 1 , 1 ~ ~ ~ ~ )  

CALL FO~CEF(RS,Y~,XB,~~,~,IFAIL) 

CALL V M U L F M ( R S , M E I N V , ~ ~ , ~ , ~ ~ , ~ ~ , ~ ~ , R S ~ , ~ , I E R )  

CALL F O I C K F ( T O P , R S ~ , R S , ~ , ~ , ~ ~ ~ Z ~ ~ , ~ , I F A I L )  

CALL OLSES(XI,X~,YI,OS) 

CALL F O ~ C E F ( R S S , Y ~ , X B B , ~ ~ , ~ , I F A I L )  

DO 34 K=1,65 

34 CONTI NUE 



CALL V M U L F M ( R S S , R S S ~ , ~ ~ , ~ , ~ , ~ ~ , ~ ~ ~ B O T ~ ~ ~ I E R )  

KING=TOP(~,~)/BOT(~,I) 

RETURN 

END 

C 

C**OBTAINING THE OMEGA INVERSE MATRIX USING 

C THE OMEGA MATRIX******************** 

C 

SUBROUTINE OME(D,OMEGA,OMEINV) 

REAL*8 O M E G A ( ~ ~ , ~ ~ ) , O M E I N V ( ~ ~ , ~ ~ ) ~ W K S P ( ~ ~ )  

REAL*8 D,OM13(65,65) 

INTEGER I FA1 L 

IFAIL=O 

DO 100 1=1 ,65 

DO 650 J=1,65 

OMEGA(I,J)=O.OO 

650 CONTI NUE 

100 CONTINUE 

OMEGA(II1)=1+(D**2) 

OMEGA(1,2)=D 

DO 300 I=2,65 

OMEGA(I,I)=~+(D**~) 

OMEGA(I ,I+I )=D 

OMEGA(I ,I-1 )=D 

300 CONTI NUE 

DO 450 I=1,65 

DO 451 J=1,65 



OM13(IIJ)=0MEGA(I,J) 

451 CONTINUE 

450 CONTINUE 

CALL F O ~ A A F ( O M ~ ~ , ~ ~ , ~ ~ , O M E I N V , ~ ~ ~ W K S P ~ I F A I L )  

RETURN 

END 

C 

C*******USING THE METHOD OF MOMENT 

C******TO ESTIMATE THE AUTOCORRELATION 

C****** PARAMETER DELTA ************** 

C 

SUBROUTINE ERRORS(X~,Y~,LS,DEST) 

REAL*8 XI (65,2) ,Y1 (65,l) ,~S(2,l) 

REAL*8 D E S T , X B ( ~ ~ , ~ ) , E H A T ( ~ ~ , ~ )  

REAL*8 E ( ~ ~ ) , R ~ , S U M , S U M ~ , S U M ~ , S U M ~ , T  

INTEGER I FA1 L 

IFAIL=O - 
SUM=O. 00 

SUM1 =O. 00 

CALL F O ~ C K F ( X B , X I , L S , ~ , ~ , ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C E F ( E H A T , Y ~ , X B , ~ ~ , ~ , I F A I L )  

DO 1 KI=1,65 

E(KI)=EHAT(KI,I) 

1 CONTI NUE 

DO 2 I=2,65 

SUM=SUM+E(I)*E(I-1) 

SUMI=SUMI+E(I)*E(I) 



2 CONTI NUE 

DEST=-1.00 

ELSE 

ELSE 

END IF 

END IF 

RETURN 

END 

C*****CALCULTING EGLS VIA 

C*****MACDONALD AND M A C K I N N O N ( ~ ~ ~ ~ )  METHOD*" 

SUBROUTINE MAcMAK(DEST,X,Y,MM) 

INTEGER IFAIL,IER 



DO 1 I=2,16 

x~(I)=x(I-I)-DEST*X~(I-~) 

Y ~ ( I ) = Y ( I - 1 ) - D E S T * Y ~ ( I - 1 )  

Z(I )=DEST*Z(I-1) 

1 CONTINUE 

DO 2 I=1,16 

~4(1,1)=1.000 

X ~ ( I  ,2)=~3(1) 

~ 4 ( 1 , 3 ) = ~ ( 1 )  

~ 4 ( 1 , 1 ) = ~ 3 ( 1 )  

2 CONTI NUE 

DO 3 I=1,16 

DO 4 J=1,3 

X ~ ( I  ,J)=x~(I ,J) 

4 CONTINUE 

3 . CONTINUE 

CALL V M U L F M ( X ~ , X ~ , ~ ~ , ~ , ~ ~ ~ ~ ~ ~ ~ , X X , ~ ~ I E R )  - 
CALL F ~ ~ A A F ( x x , ~ , ~ , X X I , ~ ~ W K S P ~ I F A I L )  

CALL V M U L F M ( X ~ , Y ~ , ~ ~ , ~ , ~ ~ ~ ~ ~ ~ ~ ~ X Y ~ ~ ~ I E R )  

CALL F O ~ C K F ( M M , X X I , X Y , ~ , ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

RETURN 

END 

C**CALCULATING GLS ESTIMATES 

C******USING THE OMEGA INVERSE MATRIX*** 

SUBROUTINE FINDB(D,XI,Yl,WLS) 



REAL*8 XI (65,2) ,WKSP(~) 

INTEGER IFAIL,IER 

IFAIL=O 

CALL OME(D,TRMTX,OMEINV) 

CALL VMULFM(X~ , 0 ~ ~ 1 ~ ~ , 6 5 , 2 , 6 5 , 6 5 , 6 5 ~ ~ 0 ,  2, IER) 

CALL F O ~ C K F ( W O X , W O , X ~ , ~ , ~ , ~ ~ , Z , ~ , ~ , I F A I L )  

CALL F O ~ A A F ( W O X , ~ , ~ , W O X I ~ ~ ~ W K S P ~ I F A I L )  

CALL F O ~ C K F ( W L S , W O X I , W O Y ~ ~ ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

RETURN 

END 

c*****MLE CALCULATION***************************** 

SUBROUTINE CMLE(X~,Y~,QMIN,MLE) - 
REAL*8 ~1(65,1),~1(65,2),SG~S(2,1) 

REAL*8 X ~ ( ~ ~ , ~ ) , S G L S ( ~ , ~ ) , A N , T O B I  

REAL*8 X~(65,1),OM~GA(65,65) 

REAL*8 O M E I N V ( ~ ~ , ~ ~ ) , D E L T A  

REAL*8 RS1 (l,65) ,~S(65,1) 

REAL*8 SS,Q,QMIN,CVAL,C,MLE(~,~) 

INTEGER I FA1 L , I ER 

IFAIL=O 

T=65 

DELTA=-0.200 



DO 100 I=1,24 

DELTA=DELTA+0.050 

CALL FINDB(DELTA,x~,Y~,SGLS) 

CALL F O ~ C K F ( X B , X ~ , S G L S , ~ ~ ~ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL FOICEF(RS,YI,XB,~~,~,IFAIL) 

CALL OME(DELTA,OMEGA,OMEINV) 

CALL V M U L F M ( R S , O M E I N V , ~ ~ , ~ , ~ ~ ~ ~ ~ , ~ ~ , R S ~ ~ ~ ~ I E R ~  

CALL F O ~ C K F ( S S , R S ~ , R S , ~ ~ ~ , ~ ~ , Z ~ ~ ~ ~ ~ I F A I L )  

 AN=(^-(DELTA**((~*T)+~)))/(~-(DELTA*DELTA)) 

TOBI=AN**(I.O/~~.O) 

Q=TOBI *SS 

IF (I .EQ. I )THEN 

QMIN=Q 

CVAL=DELTA 

DO 44 KO=1,2 

MLE(KO,I)=SGLS(K~,~) 

44 CONTI NUE 

ELSE 

IF(Q.LT.QMIN)THEN 

QMIN=Q 

CVAL=DELTA 

DO 392 KI=1,2 

MLE(KI, I )=sGLs(KI, 1 ) 
" 

392 CONTINUE 

END IF 

END IF 

100 CONTI NUE 



RETURN 

END 

C 

C**CALCULATING THE NORMALISING CONSTANT 

C** FOR THE DENSITY FUNCTION OF DELTA 

C 

SUBROUTINE cONS(X~,Y~,Q) 

REAL*8 POIRANGEIRANGElISUM~PlIX1(65,2) 

REAL*8 ~1(65,2),Y1(65,1),XB(65,1) 

REAL*8 E(65,l ),G~(2,1 ),EP(~ ,65) 

REAL*8 RSS,XO(~,~~),XPX(~,~) 

REAL*8 ~ ~ ( 2 , 1 ) , ~ 1 ( 6 5 , 1 ) , ~ 2 ( 1 , 6 5 )  

REAL*8 DET1,CONIDENS1,BX(65,1) 

REAL*8 CON2,DENS2,DET2,QIG~~(65,65) - 

REAL*8 R S S ~ , X T ( ~ , ~ ~ ) , X X ( ~ , ~ )  

REAL*8 ~ ~ ~ ( 6 5 , 6 5 ) , ~ 1 ( 6 5 , 6 5 ) , ~ 1 ( 6 5 , 6 5 )  

INTEGER I FA1 L , I ER - 
IFAIL=O 

T=65 

K=2 
- 

PO=-0.999 

RANGE=0.04995 

SUM=O .DO 

DO 1 I=1,40 

Pl=PO+RANGE 

CALL FINDB(PO,Xl,Yl,GL) 

CALL F O ~ C K F ( X B , X ~ , G L , ~ ~ , ~ , ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  



CALL F O ~ C E F ( E , Y I , X B , ~ ~ , ~ , I F A I L )  

CALL OME(PO,QI,RRH) 

CALL V M U L F M ( E , R R H , ~ ~ , ~ , ~ ~ , ~ ~ , ~ ~ ~ E P ~ ~ ~ I E R )  

CALL F O ~ C K F ( R S S , E P , E , I , I , ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL VMULFM(X1,RRH,65,2,65,65,651XO1211ER) 

CALL F O ~ C K F ( X P X , X O , X ~ , ~ , ~ , ~ ~ ~ Z , ~ , ~ ~ I F A I L )  

D E T ~ = ( X P X ( ~ , ~ ) * X P X ( ~ , ~ ) ) - ( X P X ( ~ , ~ ) * X P X ( ~ , ~ ) )  

~0~=((1-(~~~(~0)**((2*~)+2)))/(1-(~0**2)))**(-1/2) 

DENS~=CON*(RSS**(-((T-K)/~)))*(DET~**(-1/2)) 

CALL FINDB(PIIX1,Y1,TL) 

CALL F01CKF(BX,X1,TL,65,1,2,Z111111~~~~) 

CALL FOlCEF(EI,Yl,BX,65,1,IFAIL) 

CALL OME(P~,RI,GRH) 

CALL V M U L F M ( E ~ , G R H , ~ ~ , ~ , ~ ~ , ~ ~ , ~ ~ , E ~ , ~ , I E R )  

CALL F01CKF(RSS1,E2,El,111,651Z111111FAIL) ' 

- CALL V M U L F M ( X ~ , G R H , ~ ~ , ~ , ~ ~ , ~ ~ ; ~ ~ , X T , ~ , I E R )  

CALL F01CKF(XX,XT,X1,2,21651Z111111~~IL) 

D E T ~ = ( x x ( ~ , ~ ) * x x ( ~ , ~ ) ) - ( x x ( ~ , ~ ) * x x ( ~ , ~ ) )  

~0~2=((1-(~~~(~1)**((2*~)+2)))/(1-(~1**2)))**(-1/2) 

DENS~=CON*(RSS~**(-((T-K)/~)))*(DET~**(-I/~)) 

PO=Pl 

sUM=SUM+O.~*RANGE*(DENS~+DENS~) 

1 CONTINUE 

Q= 1 /SUM 

RETURN 

END 



Ck*CALCULATING THE BAYESIAN ESTIMATOR **** 

SUBROUTINE BAYS(X~,Y~,Q,BAYES) 

REAL*8 ~1(65,2),~1(65,1),~~(65,1) 

INTEGER I FA1 L , I ER 

CALL FINDB(PO,X~,Y~,GL) 



ITI=GL(2,1) 

CALL F01CKF(XB,X1,GL,65,1121Z111111FAIL) 

CALL F O I C E F ( E , Y ~ , X B , ~ ~ , ~ , I F A I L )  

CALL OME(PO,Q~,RRH) 

CALL VMULFM(E,RRH,65,1 ,65,65,65,EPI 1 ,IER) 

CALL FO~CKF(RSS,EP,E,I, I ,65,zI 1 ,I ,IFAIL) 

CALL V M U L F M ( X ~ , R R H , ~ ~ , ~ , ~ ~ , ~ ~ ~ ~ ~ ~ X O , ~ ~ I E R )  

CALL FO~CKF(XPX,XO,X~ ,2,2,651z1111 ,IFAIL) 

DETI=(XPX(I, I )*xpx(2,2) )-(xpx(1 ,2)*x~x(2,1 ) )  

C ~ N = Q * ( ( ~ - ( A B S ( P O ) * * ( ( ~ * T ) + ~ ) ) ) / ( ~ - ( P O * * ~ ) ) ) * * ( - ~ / ~ )  

DENS~=IT~*C~N*(RSS**(-((T-K)/~)))*(DET~**(-~/~)) 

CALL FINDB(PI,XI,YI,TL) 

TTl=TL(2,1) 

CALL F O I C K F ( B X , X ~ , T L , ~ ~ , ~ , ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C E F ( E ~ , Y ~ , B X , ~ ~ , ~ , I F A I L )  

- CALL OME(P~,RI,GRH) 

CALL VMULFM(E1,GRH,65,1,65,65,65,E2,1,IER) - 
CALL F O ~ C K F ( R S S ~ , E ~ , E ~ , ~ , ~ , ~ ~ , Z , ~ ~ ~ , I F A I L )  

CALL V M U L F M ( X ~ , G R H , ~ ~ , ~ , ~ ~ , ~ ~ , ~ ~ ~ X T ~ ~ ~ I E R )  

CALL F O ~ C K F ( X X , X T , X ~ , ~ , ~ , ~ ~ ~ ~ ~ ~ , ~ ~ I F A I L )  

D E T ~ = ( x x ( ~ , ~ ) * x x ( ~ , ~ ) ) - ( x x ( ~ , ~ ) * X X ( ~ , ~ ) )  

~ 0 ~ 2 = ~ * ( ( 1 - ( ~ ~ ~ ( ~ 1 ) * * ( ( 2 * ~ ) + 2 ) ) ) / ( 1 - ( ~ 1 * * 2 ) ) ) * * ( - 1 / 2 )  

DENS~=TT~*CON~*(RSS~**(-((T-K)/~)))*(DET~**(-~/~)) 

PO=P1 

SUM=SUM+O.~*RANGE*(DENS~+DENS~) 

1 CONTI NUE 

BAYES=SUM 



RETURN 

END 

C******CALCULATING THE PROBABILITY THAT OLS OUTPERFORMS 

C****** EGLS 

C 

SUBROUTINE PROBAB(XI,Y~,Q,ALPHA) 

REAL*8 X1(65,2),~1(65,1),~~(65,1) 

REAL*8 PO,RANGE,RANGEI,SUM,Pl 

REAL*8 E(65,1),GL(2,1),~~(1,65) 

REAL*8 ALPHArRRH(65,65),Q1(65,65),Rl(65,65), 

INTEGER I FA1 L , I ER 

IFAIL=O 

T=65 

K=2 

PO=-0.500 

RANGE=0.050 

SUM= 0. DO 

DO 1 I=1,20 

Pl=PO+RANGE 

CALL FINDB(POIXI,Y1,GL) 

209 



CALL F O ~ C K F ( X B , X ~ , G L , ~ ~ , ~ ~ ~ ~ Z ~ ~ , ~ ~ I F A I L )  

CALL F O ~ C E F ( E , Y ~ , X B , ~ ~ , ~ , I F A I L )  

CALL OME(P~,QI,RRH) 

CALL VMULFM(E,RRH,65,1,65,65,65,EP11,IER) 

CALL FOICKF(RSS,EP,E,I ,I ,651zIi I i f ~ ~ ~ ~ ~ )  
' 

CALL V M U L ~ ~ ( ~ 1 , ~ ~ ~ , 6 5 , 2 , 6 5 , 6 5 , 6 5 , X 0 , 2 , 1 ~ ~ )  

DENS~=CON*(RSS**(-((T-K)/~)))*(DET~**(-~/~)) 

CALL FINDB(PI,XI,YI,TL) 

CALL F O ~ C K F ( B X , X ~ , T L , ~ ~ , ~ ~ ~ ~ Z ~ ~ ~ ~ ~ I F A I L )  

CALL F O ~ C E F ( E ~ , Y I , B X , ~ ~ , ~ , I F A I L )  

CALL OME(PI,R~,GRH) 

CALL V M U L F M ( E ~ , G R H , ~ ~ , ~ , ~ ~ , ~ ~ , ~ ~ , E ~ , ~ , I E R )  

CALL F O ~ C K F ( R S S ~ , E ~ , E I , I , ~ , ~ ~ , Z ~ ~ ~ ~  ,IFAIL) 

CALL V M U L F M ( X ~ , G R H , ~ ~ , ~ , ~ ~ , ~ ~ , ~ ~ ~ X T ~ ~ ~ I E R )  - 
CALL FOICKF(XX,XT,X~ ,2,2,65,ZI 1 I 1 ,IFAIL) 

D E T ~ = ( x x ( ~ , ~ ) * x x ( ~ , ~ ) ) - ( X X ( ~ , ~ ) * X X ( ~ J ) )  

~ 0 ~ 2 = ~ * ( ( 1 - ( ~ ~ ~ ( ~ 1 ) * * ( ( 2 * ~ ) + 2 ) ) ) / ( 1 - ( ~ 1 * * 2 ) ) ) * * ( - 1 / 2 )  

DENS~=CON~*(RSS~**(-((T-K)/~)))*(DET~**(-1/2)) 

1 CONTINUE 1 

RETURN 

END 



C*****MEAN SQUARE ERRORS * * *k * * * * * * * * * * * * * * * * * * * * *  

C 

SUBROUTINE MSERRS(BETA,N,MSEl) 

REAL*8 BETA(N),MSEI 

INTEGER N 

SUM1 = O  .DO 

DO 1 I=I,N 

SUM~=SUM~+(BETA(I)-1.00)**2 

1 CONTINUE 

MSEI=SUMI/N 

RETURN 

END 

c 

C - RELATIVE MEAN SQUARE ERRORS 

SUBROUTINE RETMSE(BETA,CHI,RT~) 

IMPLICIT REAL*8 (A-H,O-Z) 

REALk8 BETA,CHI,RTI 

RTI=BETA/CHI 

WRI TE ( 7, * ) ' RELATIVE MEAN SQUARE ERRORS ARE ' 

wRITE(~,~)RTI 

2 FORMAT(3X12E30.8) 

RETURN 

END 

SENDFI LE 


