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W e  

the 

Abstract 

size and power of small sample inferences using estimated regression coefficients in 

presence of heteroskedastic errors are examined by means of Monte Carlo 

simulations. Six possible procedures are examined under a variety of heteroskedasticity 

generating processes. 

Inferences using ordinary least squares (OLS) coefficients are computed using two 

possible estimators for the variance-covariance matrix: the jackknife estimate, and an 

estimate based on a functional form estimate of the error variance matrix. Estimated 

generalized least squares (EGLS) inferences are made by transforming the data using a 

variety of conventional functional forms to estimate the standard deviations of the 

errors. Simulations of EGLS inferences are initially based on the assumption that the 

heteroskedasticity generating function is known. Further- simulations examine cases 

where the heteroskedasticity generating function is assumed to be unknown. Finally, the 

inferences arisingJfrom two pre-test estimators are examined: the Goldfeld-Quandt test 

Js used to choose between OLS and EGLS estimates of the regression coefficients and the 

White test is used as a pre-test to select either the standard OLS variance-covariance 

matrix estimator OP the jackknife estimator of the variance. 

The, results show no major differences in empirical size among the methods examined, 

and empirical sizes of tests were usually found' to be not significantly different from 

nominal sizes. EGLS techniques were found to yield inferences of higher power than all 

of the other techniques when the funcfional form of the heteroskedasticity was assumed 

,known. When an incorrect functional was used to obtain EGLS estimates the power of 

inferences based on EGLS techniques was reduced substantially, but in many cases EGLS 

inferences still yielded the inferences of highest power. lnferences based on the 

jackknife estimate were of superior power only in cases where the functional form 

chosen for EGLS was very different from the heteroskedasticity generating function. 

The major recommendation to researchers indicated by these sirnutations is to make 

inferences using EGLS estimates after some preliminary diagnostic work on the OLS 

residuals whenever there is empirical evidence or a theoretical basis to relate the 
' 

variances of the errors to an exogenous variable. 



............................................................................. Approval ..:. ..... .ii 

....................................................................................................... Abstract .iii , . 

List of Tables .................................................................................................. v 

................................................................................................... Introduction 1 

Literature 

Design of 

Review ................................................................................... 6 

the Monte Carlo Study .................................................................. 13 

........................................................................................................ Results. ..24 

................................ Conclusions .................... .............................................. ..46 
I - 

.................................................................. Bibliography .................. , ....... :.. :49 



UST OF TABLES 

Table 1 : Empirical Size of Inferences .............................................................. 30 

.............................................................. Table 2: Empirical Size of Inferences 31 

Table 3; Empirical Size of Inferences ........................................................... .. 32 

Table 4: Empirical Size of Inferences .............................................................. 33 
. U '- 
Table 5: Empirical Power of Inferences .......................................................... 34 

Table 6: Empirical Power of Inferences ........................................................ ! . 35 

......................................... Table 7: Empirical Power of inferences i. ............... 36 

W p i r i c a l  Power of Inferences ....................................................... 4 :-37 

.... Table 9: Empirical Power of Inferences ; ................................................... 38 
r ' 
CI F Pa 

'3 ........................... Table 10: ~ m p i r i c a l ~ ~ i z e  of Inferences ; .............................. 39 

Table 11 : Empirical q z e  of Inferences ............................................................ 40 

............................................................ Table 12: Empirical Size of Inferences 41 
.. 

- .. . . 
Table 13: EmpiricarSTz'e of Inferences ............................................................ 42 

Table 14: Empirical Power of Inferences ........................................................ 43 

Table 15: Empirical Power of Inferences ..................... ................................ 44 

Table 16: Empirical Power of Inferences ................................ ....................... 45 



- - - 

Much of the research concerning heteroskedasticity has been 
directed toward the detection of heteroskedasticity and subsequent 
estimation of regression coefficients with improved efficiency. 
Relatively little research has been done on inference-with respect to 
the regression coefficients in the presence of heteroskedasticity. 
The consequences of heteroskedasticity for ordinary least squares 
(OLS) estimation are- well known: the estimates of the regression 
coefficients are inefficient but unbiased, while the estimates of the 
variance-covariance matrix are biased. The conventional treatment 
for heteroskedasticity, where the variances of the error terms are 
not known to a constant of proportionality, is to estimate the 
regression coefficients using estimated generalized least squares 
(EGLS). While the .improvement in efficiency and mean squared error 
for the EGLS estimates of the _regression coefficents has been well 
established over a wide range of cases, the researcher wishing to 
make inferences concerning the regression coefficients is forced to 
rely upon the asymptotic properties of the EGLS estimates. The 
usual t-test statistic will only be asymptotically distributed as a t 
distribution, therefore the nominal size of the test may be incorrect 
in small samples. Furthermore, the EGLS timates as well as the 
small sample properties of their distributi J w i l l  depend upon the 
assumptions the researcher makes about the functional form of the 
heteroskedasticity. If an incorrect functional form is chosen to 
estimate the variances of the errors, the estimates of the variances 
as well as the estimate of the variance-covariance matrix may be 
biased asymptotically. The existing Iiteraturs offers little 
reassuranc that the inferences arising from EGLS do in fact have 
the prope 4 es of size and power suggested by the asmptotic theory, 
and there has heen no research at all on the properties of inferences 
based on incorrect functional forms. 

Recent research by White (1980), and MacKinnon and White (1985) 
has suggested that inferences can be obtained using -the OLS 



estimates along with a consistent estimator of the OLS uariance- 
covariance estimator. This technique is attractive in that no 
assumptions concerning the functional form of the 
heteroskedasticity are required, hence eliminating the potential for 
choosing the wrong functional form. Although the inferences still 
depend upon asymptotic properties, the Monte Carlo studies by 
MacKinnon and White show that for sample sizes as small as 30 the 
size of the statistic approximates the nominal critical value .rather 
well. 

A disadvantage of  innon on and White's technique of inference 
based on OLS estimates lies in the potential for reduced power of 
the tests. MacKinnon and White do not examine the power of their 
tests, nor do they compare their results with EGLS techniques; 
however, since power increases as the variance of a statistic 
decreases, and EGLS estimates are known to have lower variances 
than OLS estimates over a wide range af heteroskedasticity 
generating processes, it is reasonable to suspect that the cost of 
eliminating assumptions concerning the functional form of the 
heteroskedasticity is a reduction in power. 

This study will investigate statistical inference concerning 
regression coefficients in the presence of heteroskedastic errors 
using Monte Carlo methods. Several possible procedures for model 
estimation are examined: 

1. EGLS 

Estimates of the coefficients are obtained by assuming a functional 
form for the variance of the error. The data are .transformed by 
dividing each observation through by an estimate of the standard 
deviation of the error, and OLS is computed using the transformed 
data. Inferences are obtained by computing a t-statistic from the 
results of OLS computed on the transformed data. Following the 
terminology of MacKinnon and White, this t-statistic is referred to 
as a 'quasi t-statistic'. 



2: OLS 

The problem ik ebtainingL i n h n c e s  from t b  OtS estimates in the 
presence of hete'r~skedasticit'y\ is in estimating the variance- 

\ 
\ covariance matrix. Tw approaches are examined. First, a variation 

on whVite's heteroske ticity-consistent variance-covariance 
estimator known as the 'jackknife' is used. Second, the matrix of the 
variances of the errors is estimated using a functional form. This 
estimate is then substituted into the general formula for the 
variance-covariance matrix of the coefficient estimates when 
errors are non-spherical. '\ 

3. Pre-test Estimators 

The procedures in 1. and 2. above assume that heteroskedasticity is 
known to exist a priori. In practice, the choice of the estimation 
technique for either the regression coefficients or the variance- 
covariance matrix may depend upon a pre-test for homoskedasticity. 
Two pre-test estimators are examined: 

The Goldfeld-Quandt test detects heteroskedasticity related to some 
exogenous variable. Coefficients are then estimated by EGLS or OLS 
depending upon the outcome of the test, and inferences are made 
using the EGLS estimate of the variance-covariance matrix, or the 
simple OLS variance-covariance estimator as derived from the 
assumption of homoskedasticity. In the context of inference, both 
the numerator and denominator of the quasi t-statistic a re  pre-test 
estimators. - 

The White test detects .heteroskedasticity only if it is of a form 
which biases the simple OLS variance-covariance estimator. 
Therefore when inferences are to be made using OtS cosfficierrt 
estimates as in 2. above, 9 natural pre-test estimator for the 
variance-covariance estimator is the estimator which selects either 
the heteroskedasticity-consistent variance-covariance estimatoj 
when the White ' t e s t  rejects the nul l  hypothesis of 
homosked~sticity, or the simple OLS variance-covariance matrix 

3 



estimate when the White 'test does mt repet t k  hypothesis eF- 
homoskedasticity. 

inferences arising from each of the above EGLS, OLS and pre-test 
procedures - are made using a variety of heteroskedasticity 
generating processes, and a range of sample sizes. Results are 
presented to suggest C O ~ I C ~ U S ~ O ~ S  on a number of .  questions of 
practical interest to researchers: 

* 

1. How c l o s e a o  the sizes of inferences approximate their nominal 
sizes using several different critical values, and is there a tendency 
for the empirical sizes of tests to underestimate or overestimate 
the nominal size the researcher has selected? 

, 

2. A; what sample size do 'the asymptotic properties take effect 
with regard to the inferences? For example, although Monte Carlo 
studies (Goldfeld and Quandt, 1974) have found EGLS coefficient 
estimates to be nearly unbiased in samples as small as T=30, this is 
no guarantee that valid inferences are possible at such a sample 
size. 

3. Which inference procedures have higher power? In particular, it 
is eypothesised that EGLS techniques will yield test statistics with 
higher power due to the increased efficiency of the coefficient 
estimates. 

The con~lusions arising from the above questions are compared for 
different heteroskedasticity generating processes, and finally, the 
conclusions are tested for their robustness with respect to the 
Choice of functional form of t heteroskedasticity. While the 
researcher will sometimes have theoretical justification for the 
choice of a functional form for EGLS, as in the case of the random 
coefficients model, most often ecowmlc theo~y wi-CI only ftcggeff 
that the variance of the error is related to some exogenous variable, 
as for example, in the case of the variation in expenditure being 
positively related to income. Textbooks often provide several 

. alternative functional forms for the heteroskedasticity but little 



advice on' choosing between them in the absence of theory. 
Therefore inferences arising &om EGLS estimates are examined for 
a number .cases in which the functional form chosen is - different - 

from the heteroskedasticity generaiting - function. 



A Review of the Literature 

The research literature on small sample inference in the preseqce 07 
heteroskedasticity using OLS and E G L ~  techniques consists mainly of 
Monte Carlo studies. No exact small sample distribution theory' 
exists for the general ase of heteroskedasticity in the linear 
regression model. -Before discussing the Monte Carlo studies, a brief 
summary of the asymptotic theory is presented. 

Assume the linear regression model 

where y .is a (T x 1) vector of observations on a dependent variable, X 
is a (T x k) matrix of observations on independent variables, p is a 
(T x k) vector of error terms where 

and 
2 2 2 

E(ppl) = i2 with R = diag(ol, 02, . . . , oT) 1 

2 
and not all oi are identical: 

4 

 hen a set of J linear restrictions on the regression coefficients I3 
can be described as 

where R is a (J x k) known matrix, and r is a (J x 1) known vector. 
B 

i 
Judge et 'a1 (1985 p 177) give an asymptotic statistic for testjng *the 
linear restrictions RB = r when. the covariance matrix of the errors 
is non-spherical and coefficients are estimated by EGLS. For the. 
EGLS estimate Begis, the statistic: 

,> 



4 is asymptotically distributed as ~2 with degrees of freedom equal 
to the number of restrictions or equivalently, LIJ is asymptotic@&,- t 

i" 

distributed as the . F(J,T-k) distribution. For a single restriction, 
(.IL)I(~J) is then asyrypfotically distributed as the t distribution 
with t-k degrees of freedom and is equivalent to the conventional t- 
statistic us"ally computed b; running OLS on transformed data. t h e  
transformation consists of multiplying y and X by P where (PIP)-1 = 
A 

R. - C 
. - 

For the OLS estimate 43ds1 Judge et al (p 426) present the statistic: 

i 

asymptotically distributed as ~2 *with degrees of freedom equal to 
A 

- the number of restrictions, where (X'RX) is a consistent estimator 

of X'RX. Dividing by the number of restrictions and taking the square 
root, this can also be expressed as an F-distributed statistic. It is 
the asymptotic distribution of these two statistics which provides 
all of the justification for inferences using regression coefficients 
in the presence of heterosbedasticity. For small samples, the 

' distributions of these statistics are not known, hence they are 
investigated by means of Monte Carlo studies. 

Some Monte Carlo studies have been conducted in an experimental 
design context, 'where replicated observations are available for each 

e 
value of the independent variable. While not directly applicable to - 
most econometric problems, some conclusions of interest can be 
drawn from these studies. 



Deaton (1983) compares t.he power of ,EGLS, inferences to OLS 
inferences = ,  via a Monte Carlo study where for each value bf xr, the 
independent- variable, there are replications of observations' on the 

6 
deben'dent variable. Replications vary from 3 to 25. EGkS in this 
study is defined as: 

5 

where each diagonal element of R is estimated by computing the 
sample variance of the OLS residuals within a group of replicated 
observations. OLS inferences are made using s2(X1X)-1 as the -" 

estimate of the variance-covariance matrix, where s2 is computed 
as the sum of squared residuals over all observations, divided by T- 
k. Comparing the power of EGLS inferences to OLS inferences, 
Deaton finds OLS to be 'surprisingly robust to departures from the 
assumptions of homoskedasticity', however, these results on the 
power of OLS are highly suspect in light of his use of a biased 
estimator for V(f3ols). 

Nozari (1984) examines the size and poker of test statistics for a - 

single coefficie'nf. .from the model: 
, 

y = a + b x + e ,  
-- e < 

where x = 1 .... 1 0, and replications of x vary from 1 to 10" (ie the sample 
' 

size varies from 10 to 100 as the number of replications is varied from 
1 to 10). 
$he variances of the errors are generated as powers of x, however 
the estimates of R are hever based on the assumption of any . 
functional form. Instead, R is estimated either by computing 
simple sample variances within a+ group of replications for a given x 
as by Deaton, or by one of  severat variations of the MINQUE 
(minimum norm quadratic unbiased estimator) procedure. EGLS 

A 

estimates are computed by substituting the various estimates R into 
b, 

the -EGLS formula: 
8 



The study then compares size and power for three groups of 
A 

estimates: EGLS, OLS using V(O0ls) = (XIX)X'PX(X'X) - 1  , and OLS 

ignoring heteroskedasticity and computing V(B0ls) = s2(X8X)-1, as in 
Deaton . 

1 

The major -commendation from Nozari is that the problem of 
unequal variances is best aealt with by obtaining more replications; 
a suggestion of little help to econometricians. Of more interest is 
the finding that OLS inferences using the correct form of the 

1 

variance-covariance estimator are superior to inference arising 
from the EGLS procedure, in that empirical sizes approximate 
nominal sizes more closely. In the case with no replications and 
sample size of 10, using MINQUE estimators for R ,  the size of the 
test for the OLS coefficient with nominal size of .I0 varies from .I2 
to ,15, whereas the size of the test for the EGLS coefficients are 
unacceptably large, ranging from .58 to .81. The results for 
inference employing OLS estimates and ignoring heteroskedasticity 
contradict * - Deaton's result, showing low power and poor " 

approximations to nominal size. No substantial differences in power 
were found between .. EGLS inferences and OLS inferences using the 
correct formula for the variance-covariance estimate. Y 

- ~ 

- Kleijnen et al (1985), in a Monte Carlo study similar to that of 
Nozari compare the size and power of EGLS and OLS inferences. EGLS 
estimates are computed as in the study by Deaton; estima%s l f  the 
error variances within ' groups of replicated ' observations are .+' 

- computed as the sample variance of OLS residuals. The 
A 

estimates of the error variances become diagonal elements of Q 
A 

which is used in the usual EGLS formula. The same estimate, R ,  i s  

used to estimate ths  variance of the OLS estimates: F 



Kleijnen et al confirm Nozari's conclusion that OLS with the correct 
form of the variance-covariance matrix leads to superior inferences 
in terms of approximating the nominal size of the test statistic 
when the number of replications is small. But, they find EGLS 
inferences to have higher power in all cases. They _recommend the 
use of EGLS when the number of replications exceeds 25. lt-appears 
from these findings better estimates of the variance of the 

2 

d errors, as might resu m the use of specific functional forms for 
the variance, may lead to the superiority of EGLS over OLS in making 
inferences in terms of both size and power. Kleijnen et al also 
recommend the use of higher levels of signif icancein testing 
hypotheses on regression coefficients, presumably because the 
empirical sizes of inferences te id  to overestimate the nominal 
sizes, and researchers might wish to avoid these unknown but high 
probabilities of type I error. They offer no specific guidelines on 
this point. 

The casea of non-replicated observations is by- far the more common 
case in the analysis of economic data. However, only one major study 
of inference in the presence of heteroskedasticity wiih non- 
replicated observations exists in the literature. MacKinnon and 
White (1985) conduct a series of Monte Carlo experiments to study 
the size (but not power) of tests on OLS regression coefficients in 
the presence of heteroskedasticity of unknown form. White (1980) 
has shown that the covariance matrix of the OLS estimates in the 

1 
presence of heteroskedasticity can be consistently estimated by: 

A '  2 2 2 
where R - diag(el , ep, ....., e,-), and ei is the OLS residual. 

Y 
9 

10 



MacKinnon and White use this heteroskedastitity consistent - 0  
variance-covariance matrix estimator and three variations on it 
(de$ree of freedom corrections and the 'jackknife estimator') to 
compute test statistics for regression coefficients where the errors 
are generated as follows: 

1. No heteroskedasticity: errors are independent, N(0, a*). The 

purpose of this case is to determine how inference is affected by 
use of heteroskedasticity consistent variance-covariance matrices 
when the variances are homoskedastic. Note that the 
heteroskedasticity consislent variance-covariance matrix will still 
be an unbiased estimator of the variance-covariance matrix when 
there is no heteroskedasticity. 

2. Structural change. There are two sets of observations: those 
with error variances of 02, and those with error variances of ka2. It 
is assumed that it is known to which set an observation belongs, but 
that k is unknown. 

3. Random coefficients: assuming each of the coefficients in the 
regression model are random variables, the variance of the error 
term is easily derived as a linear function of the squares of the 
exogenous variables. 

%Some general conclusions from the study are: that the jackknife , 

estimator of the variance-covariance estimator yields superior 
inferences to all of the other estimators considered; that the use of 
a heteroskedasticity consistent estimator can lead to misleading 
inferences when there is in fact no heteroskedasticity; and, 
predictably, that the usual OLS variance-covariance estimator, 
s2(X1X)-1, can lead to seriously misleading inferences in the 
presence of heteroskedasticity. An important practical observation 
which can be made from the results is that the size of the tests for 
the smallest sample (T=50) are often higher than that associated 
with the nominal critical' values. Rejection proportions at the 

5 

1 1  



nominal critical value of 1 percent are frequently observed to be as 
high as 5 percent. Moreover, in the vast majority of cases shown in 
the tables, rejection frequencies are too high relative to the nominal 
critical value, a tendency also observed in the studies of Nozari and 
Kleijnen. 

Since all of the test statistics examined are asymptotically normal, 
we expect good esults for large samples. MacKinnon and White's 

i".,, 
- 

study shows stea improvement in inference as sample size 
increases, but at th ximum sample size of 200, several' test 
statistics for the case of structural change in the variance have 
empirical critical values signifi~antly different from the nominal 
critical values, though the jackknife inferences perform well. No 
general conclusions are possible concerning the question of how , 

inferences depend upon the specific form of heteroskedasticity. 

A major omission in the Monte Carlo literature is an examination of 
power and size under the procedures typically used to correct for 
heteroskedasticity in econometric work. For example, a 
conventional approach would be to pre-test for heteroskedasticity 
with the Goldfeld-Quandt test, then (assuming t h e  test indicates @ 

' 6  d 
heteroskedasticity). to correct the estimates using the Park or 

- -  -Wu . 
% 

Glejser procedure and test significance based on these final 
estimates. Althdugh the literature contains considerable evidence 
on the efficacy ,Of such a procedure in improving estimates, 
research on small 'sample inference on the regression coefficients of 
ultimate interest to the rgsearcher have been largely ignored. 



Design of the Monte Carlo ktudy 

Previous studies on inference in the presence of hsteroskedasticity 
have suggested that hypothesis testing using the OLS regression 
coefficients might be superiqr to inference based on EGLS estimates. 
In addition, the &udy by MacKinnon and White (1985) provides 
convincing evidence that good inferences employing the OLS 
regression coefficients can be obtained by using a 
heteroskedasticity consistent variance-covariance estimator, - where 
knowleget of the specific form of the heteroskedasticity is not 
required.& Unfortunately none of the the existing research addresses 
the pdblem of inference when a specific functional" form for the 
heteroskedasticity is assumed. The following series of Monte Carlo 
experiments are designed to compare the size and power of several 
approaches to inference in the presence of a variety of 
heteroskedasticity generating processes. 

0 

The general approach is to generate data based on a particular model 
of heteroskedasticity and then to produce inferences from $the data 
based on several different estimation procedures. In the f ir4 series 
of simulations (Part I) it is assumed that the process generating the 
variances of the errors is known; that is, the EGLS estimates are 
based on the same functional form as that which generated the data. 
In7the second series of simulations (Part \I) the EGLS procedure is 
computed using a functional form' different from the one which is 
generating the heteroskedasticity. . 'In part I we are therefore 

? 

examining the case where the estimates of iZ, the variance- 
covariance matrix , and the EGLS estimates, are asymptotically 
unbiased; this is the case covered by asymptotic theory. However, 
it would be fair to .question the practical value of these' results 
since it can be argued that the practitioner rarely has theoretical 
reasons for assuming a specific functional form " for  the 
heteroskedasticity. Therefore the opposite extreme, where we 
deliberately choose an incorrect functional form, is also tested. 
Note that even as the sample tends to infinity, it will not be 



,/' 
,f 
i 

possible for the - incorrek functional form to provide unbiased 
estimates of R,  therefore the functional form inferences in this 
case are not even justified by asymptotic theory. In practise, the 
functional form might be chosen on the basis of testing the fit of 
several standard models and selecting the functional form which 
best fits the OLS residuals. Therefore these results may be viewed 
as a worst possible case, in the sense that a heuristic examination 
of the residuals would be likely to result in the selection of a 
functional form. which better fits the data or possibly even the 
correct funotional -form. In these studies the incorrett functional 

- form has simply been imposed on the data. 

AII Monte Carlo experiments are based on the model: 

E(uiuj) = 0 for i + j, 
2 

and a is determined by one of four models used to generate the 

errors. 
13 = (00, 01) is fixed as (1,l). 

For the ,size experiments the null hypothesis is t h e n  as 01 = 1 ;  for 
power experiments various false nulls concernir/g B l  (given in the 
results section) are chosen such that the ab$skffe size of the 
powers is meaningful over all sample sizes tested. For both size and 
power simulations the alternate hypothesis is that 01 is greater 
than the null hypothesis value. Hypotheses are tested by computing 
the conventional t-test: the difference between the"estimated value 
of 01 and {he null hypothesis value is divided,:~by the estimated 
standard deviation of 01. Only hypotheses concerning 01 are tested 

, in order to simplify the results, and since economic research is 
usually concerned with inferences with respect to slope 
coefficients as opposed to intercept coefficients. 

1 4  



Each simulation is based on 1000 samples, and, repeated for sample 
sizes of 30, 60, and 120. The exogwots variable xt is taken as 36 
numbers from a uniform distribution, U(0,1), replicated 2 and 4 
times as required for the sample size. The purpose of the 
replication of xt, as explained by MacKinnon and White, is to hold the 
degree of heteroskedasticity - constant as the sample size is 
increased. t 

. . 
odels of H e t e r o s k e m  

Model 1 : No' heteroskedasticity 

By applying each of the procedures for estimation and inference in 
the presence of heteroskedasticity to data generated by model 1, 
information is obtained on how costly the technique is when it is 
mistakenly applied to homoskedastic data. 

Model 2: Multiplicative heteroskedasticity 

Model 3: The Random Coefficients Model and Mixed 
Heteroskedasticity 

Assuming each of the coefficients Oi in the m h el are normally 
distributed randam variables with means equal to (Bo, B 1 ), t h e  
variance of the error term is easily derived as a linear function of 
the squares of the exogenous variables: 

implies Yt  = Bo + Blxt + vot + vitxt + ut, 

I ,. 

1 5  



and assuming all ut and vt are independent, the variance of the tota 
error term can be written as: 

4 where a and b are functions of the wi and 02. 

Note that the above model is a special case ' o f  mixed 
- heteroskedasticity, where the variance of the error is related to a 

constant and an exogenous variable as in the following model 
typically used to model heteroskedasticity: 

Model 4: Structural Change 

For the sample size of 30 we have: Y 

ut - N(0, 02) for t = I to 15 
- - 

N(0, a o 2 )  t = 16 to 30. 

For larger sample sizes the variance of the errors alternates 
between 02 and a 0 2  every 15 observations, keeping the relationship 
between ut and xt constant as sample size increases. Assume it is 
known at what points the structural change occurs, but a is unknown. 

on and Inference Procedures 

I. OLS ignoring heteroskedasticity 

Coefficients are estimated as 001s = (XiX)-1X'y and the variance- 
covariance matrix is estimated as V(0ols) = s2(X1X)-1. l nferences 
using the OLS coefficients are made using the usual t-ratio. 

16  



2. GLS 

Coefficients are estimated as Bats = (X'R-1X)-lXIQ-l y and the 
variance-covariance matrix is estimated as V(R@s) = s~ , ( xX~ -~X) - I .  - 

' 
where ?" 

s2 = (e'R -1  e)/(T- k), 
e is the vector of residuals computed by applying the GLS 
coefficients to the original data, and R is the known matrix of the 
variance of the errors. Note that when R is fully known (as opposed 
to being known only up to a constant of proportionality) the 
variance-covariance matrix is given by: 

(xu-lx)-1, 
the expectation of s2 will be one, and the It-ratio' will actually be 
distributed normally. Since the purpose of the GLS inferences is to 
serve a benchmark against which the others are to be compared, it is 
convenient to also estimate s2, SO that inferences using the GLS 
coefficients will be distributed as t-statistics. 

3. OLS using functional form estimates of R 

When errors are heteroskedastic, V(B0ls) = (XtX)-lX1RX(X1X)-1. 
An estimate of R is computed using an assumption about the 
functional form of the heteroskedasticity. For multiplicati;e or 
mixed heteroskedasticity R is estimated by: 
i. regressing the OLS squared residuals on some function of X, as 
determined by the functional form chosen to represent the 
heteroskedasticity (in part I it will be the correct functional form, 
in part II, incorrect). For example, if we qssume multiplicative 
heteroskedasticity, then the log of the squared OLS residuals #are 
regressed on lnxt and a constant. 
ii. The predicted squared residuals from i. above are used as 
estimates for the diagonal elements of R.  In the case of 

2 a 
multiplicative heteroskedasticity, where a = Kxt , Harvey (1 976) 



has shown that the regression in i. above yields an inconsistent 
estimate of InK. However, when the errors are normally distributed, 
Harvey shows that E(lnK) -= -1.2704. This is of no conseqqence to 
EGLS estimation since variances of errors need only be estimated to 
a constant of proportionality, but the result is very useful in 
estimating V(f3o's) where an estimate of R is required. Harvey's - 
result is used to adjust t h g  estimates accordingly. 

G 

For the case of structural change, where the functional form is 
assumed known, the method outlined in Judge et al (1985 p 428) is 
followed. R is estimated by computing one OLS regression for the 
set of -observations for which the variance of the errors is 02 , a n d  
another independent OLS regression for the set of observations for 
which the variance of the errors is a%2. The diagonal elements of R 
are estimated as the sum of squared residuals divided by ( (Tl2) - k) 
for each group. 

Inferences are made by forming the t-ratio using (801s-1) in the 
numerator and the square root of the appropriat,e element of the 
estimate of V(O0ls) in the denominator. 

4. OLS and the Jackknife Estimator of the Variance-Covariance 
matr ix 

White's (1,980) original heteroskedasticity consistent variance- 
covariance estimator, given by 

C 

A 2 2 2 
where R - diag(e,, e2, ....., eT), and e i  is the OLS residual, 

B 

was examined in the study by MacKinnon and White along with a 
number of variations which have also been shown to be 
heteroskedasticity consistent. 



[$ 2 
where l2 is a TxT diagonal matrix with diagonal elements of et  , and 

off diagonal eiements of zero, and e is the vector of OLS residuals el. 
It i s s  easily shown that the jackknife estimator is asymptotically 
equivsient to White's heteroskedasticity consistent variance- a 

covariance matrix estim 

The best of these estimators across all forms of hetemskadasticity - -  

examined by MacKinnbn and White was found to be the jackknife 
estimator. Consequ6fWy, in these simulations, only t h e  ~ a c k n i f e  
estimator is examined for the case of non-functional form 
estimation of V(D0ls). 

The jackknife estimator is a very general estimator for the variance 
of a statistic based on recomputing the statistic with one 
observation deleted. Though rarely* used in actual computatioris, the 
definition of the jackknife as suggested by ~ u k e ~  (1958) provides a 

'C 

good intuitive rationale for this technique. For any statistic 
computed from T observations, we can calculate a series of T 
recomputed statistics by deleting each one of the T observations in. 
turn, and recomputing the originat statistic from T-1 observations. 
The variation among *the T recomputed statistics can be used to 
obtain an estimate for the sample variance of the original statistic. 
The jackknife estimator for the variance of the statistic is defined 
as the sum of squared deviations from the mean of these T 
recomputed statistics, multiplied by a correction factor of (T-1)lT. 
Efron (1982 p13) shows that when the jackknife is applied to the 
sample mean; the jackknife estimate for the variance of the mean is 
identical to the usual estimate of the variance of the mean given by 
s*/T. MacKinnon and White (after considerable algebraic 
manipulation) give the jackknife estimator for the variance- 
covariance estimator as: 



5. EGLS estimation s 

% Three common EGLS procedures are used: 

i.  he modified Glejser method is used in Part I where we have 
mixed heteroskedasticity of the random coefficients model variant. 
The m;dified Glejser method was chosen (as opposed to the Glejser 
method) because it more closely models the functional form of the 
heteroskedasticity and because according to Kennedy (1984) it is the 
form preferred by most practitioners in the case of mixed , L - 

heteroskedasticity. The modified Glejser method consists of 
2 

regressipg the squared OLS residuals on a constant and on x t ,  and 

obtaining predicted values for the squared OLS residuals. The data 
is then transformed by dividing through by the square root of these 
predicted squared residuals, and OLS is run on the transformed data. 
The quasi t-statistics obtained from this regression on tr<ansformed 
data are used to make inferences. A problem. sometimes encountered 
with the modified Glejser method is that the predicted values for 
the squared residuals, and hence predicted variaqces of the errors, 
are negative. Negative values are replaced with the actual squared 
residual, as in the studies by Goldfeld and Quandt (1975). 

. . 
1 1 .  The method of Park, also very in textbooks and among 
practitioners, is used in Part I where we have multiplicative 
heteroskedasticity, and th'roughout Part II. In Part II the objective 
/s to illustrate how well EGLS technique &@ perform when the wrong 
functional form is used to model the heteroskedasticity. The;method 
of Park, is Chosen as the 'wrorrg' model here for t v h  >reasons. First, - 

the functional form is very general. The method .of Park consists of 
- 

r modelling the heferoskedasticity as: + 



2 
To estimate ot the log of the OLS squared residuals are regressed 

on a constant and lnxt. Therefore, the method of Park is a geod 
choice when the researcher suspects heteroskedasticity related to 
the independent variable, bdt would like a model which could 
accomodate any power, of x. Second, Kennedy (1385 p159) has' found - 
that in terms of the ratio of OLS variance to EGLS variance, the Park . "tk 

method" performs very well over a variety of cases where the 
hetero&edasticity is not generated by the functional form employed 
by the Park method. 

iii. The Constant Variance Within Subgroupsa EGLS procedure 

This method, given by Judge et' consists of estimating the 
variances for the case of structural change in Part I as has already 

. been described above (see QLS using the functional form. estimates). 
The estimates of the standard deviations of the errors are then Csed 
to transf~rm the data as in 1. and 2. above. 

6. Pre-test estimators and inferences 

i) The Goldfeld-Quandt test is used to d e t a t  heteroskedasticity and 
to choose between OLS and EGLS estimators and inferences. The 
Goldfeld-Quandt test, rather than some of the more general tests for 
heteroskedasticity- (eg. Judge et al, p 450) is used here primarily 
because of the popularity of the test a w n g  practitioners, and the/ 
good,results obtained for the test by Goldfeld and Quandt (1972) in 
their major study of heteroskedasticity.. For sample sizes of 30, 60 
and 120 the recommendations of Goldfeld and Quandt for eliminating 
8, 16, and 32 observations are followed. In the case of the 
structural change model of part I, where we assume that it is known 

+ ,  where the structural change takes placep no observations are 

eliminated, since elimination of 
discontinuous change in the error 

- -- - of the test. - - - -- -- - - - --- - 

observations in the case of a 
variance would + reduce the power 

_ - - - 
-- - 



ii) The White test for heteroskedasticity is used to choose between 
the simple OLS variancetovariance matrix, s2(X1X)-1, when the 
hypothesis of homoskedasticity is not rejected , and the jackknife 
estimator when homoskedasticity is rejected. Inferences are made 
using the OLS coefficient estimates and this pre-test estimator of 
the variance. The White test consists of regressing the squared OLS 
residuals on a constant, the original regressors, the regressors 
squared, and all the cross prpducts of regressors (In this case we - 

regress on a constant, X, and X2), and computing the product of T and 
the R2 from this regression.. TR2 is shown by White (1980) to be 
asymptotically distributed as ~2 with degrees of freedom equal to 
the number of regressors. 

* 

Measurement of Heteroskedasticity 

Kennedy (1985) presents argumepts for the use of an appropriate 
measure of heteroskedasticity. ' A measure of heteroskedasticity in 
Monte Carlo studies is necessary if: the results are to be applied in 
other contexts; the conclusions change as the degree of 
heteroskedasticity varies; or if conclusions are drawn from a 
number of different heteroskedasticity generating processes. 
Previous studies have used a number of measures, such as the ratio 
of larg st to smallest variance, or the magnitude of some parameter 
in the h un ion which generates the variance. Kennedy arg'ues that 
all of these measures are inadequate, and suggests using the squared 
coefficient of variation of the variances themselves. ,If ut is the 
variance of the error term for observation t, then : 

b 

- 
Z(ui - ;O2 ,- 

cv = 

~ ( ; g 2  
i - 

- -- 
- - 

- -- 

trt part t of the study all models of heteroskedasticity are chosen 
such that CV = .432. According to the examples from other studpes - X 

2 2 - - 



provided by Kennedy, this would correspond to a moderately high 
degree of heteroskedasticity. To give some feeling for the severity 
of a CV of .432, notice that this would correspond to a = 4.84 in the 
structural change model; that is, the variance for high variability 
observations is nearly five times as high as for low variability 
observations. In part 11, CV varies over a range of values as shown 
in the tables. The reason for varying the CV in this second set of 
simulations was tg test Park's EGLS method against some worst 
case alternatives. In particular, Park's method employs a model 
which assumes the variance of the errors decreases to zero when 
the value of the independent variable is zero (ie, there is no constant 

2 
in ot = K X ~ ,  and the inclusion of a constant term would make the 

function impossible to estimate using OLS). To test the efficacy of 
Park's method when there is mixed heteroskedasticity and a 
substantial constant term implicitly pl'aces an upper limit on CV, 
since the constant term has the effect of introducing a fixed 
component to the error variance across all values of xt. 



Results 

The results of the Monte Carlo simulations are presented in tables l f  
to 16. Tables 2 to 8 show results for cases where it is assumed the 
functional form is known and tables 9 d 6 4 6  show the results for 
cases where an incorrect functional form i s  used. Details of the 
coefficient estimates and variance-covariance matrix estimates are . 
not presented, but in all cases except those specifically mentioned, 
the average variance-covariance estimates exhibited the 
relationship: 

indicating 
where the 
justification 

that the results reflect cases of heieroskedasticity 
use of EGLS would be advisable $under the usual 
of increased efficiency. The tables show the size and 

power of inferences using D l ,  the slope coefficient, calculated 1000 
times for each model under each of the seven techniques. Rejection 
proportions computed for cases of a true null hypothesis (ie the 
sizes of statistics) are reported for critical values from the t- 
distribution with nominal rejection proportions of .05, .025, and .01. 
Powers are calculated using empirically determined critical values 
derived from a ranking 8 the quasi t-statistics calculated for a true 
null hypothesis. - In order to calculate power it is necessary to 
assume a false null hypothesis for 01. For all models except the 
homoskedastic model the false null is 01 =0.6; for the 

- - 
A 

homoskedastic models the false - -- null- -chosen as = 73 e 
- ehoice 07 fabe nulk i s  ;ornewhat arbitrary, however a very false 

null hypothesis leads to powers too close to one for comparison, and 
a nearly true null leads to very small powers which are also 
difficult to compare. The false nulls are chosen here such that for 
all sample sizes shown in a given table the powers range from 
approximately '0.20 to 0.80. 



Rejection proportions from Monte Garlo simu'latians can .. be 
interpreted statistically by noting that the variance of a sample 
proportion is asymptotically normally distributed, and given by: 

~ ( 1  -p)/n, 
where p is the expected proportion of rejections, and n is the number 
of simulations. For expected rejection proportions of .05, .O25 and 
.01, the values for two standard deviations of the sample proportion 
are .014, .010, .006. Therefore, for the .05 nominal size we can 
determined whether a particular empirical proportion is 

- statistically different from .05 by noting whether it falls within the 
two standard deviation confidence interval ranging from .036 to 
.O 64. 

$ 

Table 1 shows the effect of the various techniques on the size of 
inferences when the errors are homoskedastic. OLS and GLS are 
mathematically equivalent in this case.  he EGL$ procedure 
employed here is Park's method. The general conclusion arising from 
this table is that the procedures employed appear t6 have had no 
serious effect on the reliablity of the size of inferences. This 
agrees with the finding of MacKinnon and White that the jackknife 
estimator is only slightly less reliable than OLS in thh case of no 
hetero~kedasticit~. The jackknife yielded the worst inferences in 
table 1, particularily for T=30, but the discrepancies are not large, 
and in accordance with the asymptotic theory, the problem 
disappears for T=120. might expect that inference5 usiag- the --- 
jackknife could be improved by using the p&ez  estimator af the- 
variance-covariance matrix based on the White test, and the results 
confirm this. In fact either one of the pre-testing techniques 
results in inferences with empirical sizes almost identical to the 
OLS inferences. 

Tables 2 through 4 show the size of inferences in the presence-of 
the various forms of heteroskedasticity, where it is assumed that 
the functional form is known. Several conclusions apply to all three 
tables: 



1. Most of the rejection proportions are not significantly different 
from the expected proportion of rejections; in terms of empirical 
size, the inferences obtained from all the procedures are quite 
reliable. This conclusion agrees with MacKinnon and White's 
findings for the jackknife, but differs quite dramatically from the 
Monte Carlo studies which use replicated observations and no 
functional forms to obtain EGLS estimates. 

.-- i 
2. There is a tendency for the empirical rejection\frequencies to be 
too high, a finding noted in all previous studies. 

3. Comparing inferences resulting from the use of EGLS 
coefficients with those resulting from the use of OLS coefficients 
shows neither one to be consistently superior, contrary to Nozari's 
finding that inferences using OLS coefficients were superior. 

4. Both pre-tests result in only very small improvement in accuracy 
of empirical sizes of inferences. 

- - - 

5. In agreement with Deaton, the inferences arising from the simple - - 

OLS procedure, ignoring heteroskedasticity; -- are quite good, and often 
superior to the €&s inferences. 

- 

6. The most accurate empirical rejection frequencies are observed 
in the case of structural change. This is not surprising in the case 
of EGLS, since the estimate of one parameter is based on multiple 
observations. The jackknife inferences are also more accurate in 
this case. 

7. Rejection frequencies for sample size, 120 are no more accurate 
than the rejection frequencies for sample size 60, indicating that 
the asymptotic properties of the test statistic can be assumed to 
take effect at sample sizes of less than 60. 



Turning now to a comparison of powers (tables 5 to 8), a consistent 
and sometimes dramatic advantage for EGLS is observed for all 
cases except the model with homoskedastic errors. The superiority 
of EGLS is most pronounced in the case of multiplicative 
heteroskedasticity (table 6), where the power of the inferences 
using EGLS coefficients sometimes exceeds the power of inferences 
using OLS coefficients by as much as 100 percent. The inferences 
based on the ~o ld fe ld -~uand t  pre-test are very similar to the EGLS 
inferences, particu rily for large samples. In all three models, the '3 
advantage in power of the EGLS technique increases as sample size 
increases, a predictable result since EGLS approaches GLS 
asymptotically; ie, as sample size increases the variance- 
covariance matrix decreases not only due to the effect of increasing 
T as if GLS were used, but also due to the fact that there is less 
variation in the estimate of Q. For the case of the homoskedastic 
error model (Table 5), EGLS yields inferences with the lowest 
power, though for sample sizes of 60 and 120, the power of EGLS 
inferences is only slightly- lower than that of the other techniques. - 

- 
- 

Use of the Goldfeld-Quandt-pre-test to select between EGLS and OLS 
6sults in jnferences with power nearly as high as simple OLS 
inference. 

MacKinnon and White (1985) recommend against the use of the pre- 
test estimator based on the White test, and-suggest simply using the , , = -=. 

b 

jackknife whenever heteroskedasticity is suspected.  his" @ 

conclusion is based on the potential for lower power and biased 
variance-covariance matrix estimates in cases where existing 
heteroskedasticity is not detected. The results of this study 
confirm both these findings, but show the loss in power due to use 
of the pre-test based on the White test to be small, relative to the 
power of the jackknife inferences. 

Tables 9 to 16 show the size and power of tests when Park's method 
of EGLS'is employed for cases where the heteroskedasticity has not 
been generated by the functional form used in the Park method. 



Since there was difference between the results for sample 
sizes of 60 and 120, 'we show results only for T-30 and T=60. 
Moreover, as explained above, when the incorrect functional form is 
used, the asymptotic theory does not apply. 

The functional forms chosen to generate the heteroskedasticity are 
shown on each table. Initially, forms were chosen with the same CV 
as in part I, but preliminary simulations revealed that the quality of 
inferences (as well as estimates) depended upon the absolute size of 
the constant term in the heteroskedasticity generating function. In 
following the approach of generating worst possible cases for EGLS, 
functional forms with relatively large constant terms were tested. 
The large constant term impairs the ability of the Park method to 
estimate the errors, since the functional form used in the Park 
method has no intercept. The observation regarding the importance 
of the constant term has also besn made by Kennedy (1985) in - the - 

context o t  efficiency. K e m d y  suggests correcting for the existence 
of a constant term when the constant exceeds 15 percent of the 
average variance. The results shown here are based on models where 
the constant term as a percentage of the average variance rangbs 
from a low of 16 percent to a high of 57 percent. For any of these 
models with constant terms, the fesults of some preliminary 
simulations showed that EGLS inferences could be improved, both in 
terms of size and power, by following the advice of Kennedy and 

s 4 

. , estimating the errors using the modified Glejser method. These 
preliminary simulations also showed that for constant terms of the 
relative size used here, the need for an intercept term in the 
functional form could be easily detected either by comparing the fit 
of the Park model 'with the modified Glejser model, or by applying 
Kennedy's 15 percent rule. ~everthei'ess, the intention of these 
tables is to show results for the effeck of choosing the incorrec 1 
functional form, and to provide some indication of the robustness of 
EGLS inferences to incorrect choices of the functional form. 



In terms of empirical size (tables 9 to 12), the use of an incorrect 
functional form has very little effect. All of the findings (points 1 
to 6 above) which applied in the case of known functional form apply 
here as well. Even for the case of structural change, where we are 
estimating a step function with a simple curve, the inferences 
arising from EGLS techniques are good. 

Comparing powers of inferences (tables 13 to 16), we see there are 
some consequences to using the incorrect functional form. 
Inferences arising from the use of EGLS estimates still have 
generally higher power than the inferences arising from OLS 
estimates in tables 13 to 15, but in the case of &wtura l  change 
(table 16), the inferences arising from the jackknife estimator of 
the variance are of similar power to those of EGLS. It should be 
noted however, that it is unlikely that a researcher examining data - 

showing heteroskedasticity due to structural change would have 
chosen Park's method of EGLS. It is illustrated here as a worst 
possible case, and in fact, the differences do not rule out even this 
very unlikey form of EGLS. 

-\a 

Table 13 compares the power of inferences when heteroskedasticity 
is generated by the random coefficients model and estimated by the 
Park model. The results show a clear advantage of EGLS inferences 
despite the incorrect functional form, and as in part I, no significant 
advantage to the Goldfeld-Quandt pre-test. In table 14, the 
heteroskedasticity generating function is altered by increasing the 
intercept by a factor of 5. These results show only a very slight 
advantage in power to using EGLS inferences over jackknife 
inferences. Similar results obtain for the linear model of 
heteroskedasticity in table 15. Note that in table 14 the" particular 
model of heteroskedasticity has had the effect of reducing the CV 
quite substantially from the levels used in Tables 13 and 16 (and all 
of Part I). The effect of this is that the Goldfeld-Quandt test is now 
less powerful, hence the power of the inferences using the pre-test 
coefficient estimates are also less powerful. + I 



It is also interesting to note that all the cases where the EGLS 
inferences had less power than the OLS inferences corresponded to 
cases where the average variance of the EGLS estimates was higher 
than the average variances of the OLS estimates. That is, EGLS 
inferences are inferior in cases where EGLS ought not to have been 
applied on the basis of reduced efficiency. 



Empirica 

Nominal Size 

Table 1 
I Size of Inferences 

T=30 
< 

-. 

OLS 
GLS 
OLSIfunctibnal form R 
OLSIjackknife 
EGLS 
P R El& or egls 
PRE/var=ols or jackknife 

OLS 
GLS 
OLSIfunctional form R 
OLSIjackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife 

OLS 
GLS 
OLSIfunctional form R 
OLSIjackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife 



Tabte 2 * 

Empirical Size of Inferences 

\ 
Nominal Size .050 .025 .010 

OLS .047 .022 .011 
GLS .047 .022 .005 
OLSIfunctional form R .059 .036 .015 
OLSIjackknife .066 .033 .020 
EGLS .071 .028 .008 
PREIOIS or egls .068 .031 .010 
PRE/var=ols or jackknife .045 .023 .012 a 

T=60 

OLS .047 -026 .012 
GLS # ,055 .024 .008 \ 
OLSIfunctional form i2 .053 .031 .016 
OLSljackknife .060 .030 .014 
EGLS .061 .028 .010 
PREIols or egls .058 .027 .009 
PRE/var=ols or jackknife .055 .028 .014 

OLS .% 052 .024 .002 
GLS .032 .013 .002 
OLSIfunctional form R .058 .023 .005 
OLSIjackknife ,055 .027 .009 
EGLS .036 .013 .002 
PREIols or egls .036 .013 .002 
PRE/var=ols or jackknife .055 .027 .009 



* Empirical Sire \gf Inferences 

< * 
- 

Nominal Size .050 .025 .010 

OLS ,057 .027 .007 
GLS ,048 .020 .010 , 
OLSIfunctional form Q .056 .026 .007 
OLSljackknife .060 .032 .013 
EGLS .058 .031 .021 
PREIols or egls .064 .031 .021 
PRE/var=ols or jackknife .051 .023 .007 

OLS 
GLS 
OLSIfunctional form Q 
OLSljackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife, 

OLS .060 .037 .021 
GLS .056 .036 .013 
OLSIfunctional form i2 .057 .032 .020 
OLSIjackknife .056 .032 .020 
EGLS .063 .037 .017 

b PREIols or egls .063 .037 .017 
PRE/var=ols or jackknife ' .056 .032 .020 



- Table 4 
Empirical a Size of Inferences 

2 
Ot = 1 or 4.84 (structural change model); CV 4 .432 

J -? *  

3-- 

--zw 

XY C 

7 

Nominal Size 

OLS .038 .013 .004 
P. 

GLS .048 ..019 .010 
OLSIfunctional f-orm R .041 .014 .004 b 

OLSljackknife -055 .027 .007 
K;LS .050 .022 .008 
PREIols or egls .049 .022 .008 
PRE/var=ols or jackknife .036 .014 .003 

s 

a s  
%LS 
OLSIfunctional form, R 
OLSIjackknife 
K;LS 
PREIols or egls 
PRE/var=ols or jackknife 

as 
GLS 
~ ~ s ~ f u n c t i d n a l  form R 
OLSIjackknife 
EGLS 
PRE/ols or egls 
PRE/var=ols 



Table 5 
\ I 

~mpi i i ca l  Powm of Inferences 

Empirical Size 

h, b OLS .437 .340 .223 
. J. GLS .437 .340 .223 

OLSIfunctional form f2 .454 ,349 .I92 
OLSIjackknife, .428 .302 .I92 

I 

EGLS 
cw--% 

.396 .284 .I69 
PREIols or egis .436 .325 .221 

i - . PRE/var=ols or jackknife .437 .344 .23,1 

, , 
T=60 

OLS 
GLS 
OLSIfunctional form f2 
OLSIjackknife 

. L  EGLS 
PREIols or egls 
PRE/var=ols or jackknife 

a s  L 

GLS 
OLSIfunctional form iZ' 
OLSIjackknite 
EGLS 
PRElols or egls 
PRE/var=ols or jackknife 



/ 

C Table 6 
> 

a Empirical Power of Inferences 
2 a 

1 Ot - K X ~  , K-I, a-I .38; cv = .432 

~mpi r ica l  S i z e  - .050 .025 .010 

OtS .252 . I67 .075 

i 

-GLS .385 .290 .209 
O~S/functionai 6 r m  !J .203 . I26 .082 - 
OLSIjackknife .242 . I73  .071 
K;LS .311 .238 . I54  
PREIols or egis .294 .208 .I41 
PRE/var=ols or jackknife .256 .I69 .073 

OLS .371 .259 . I47  
GlS .573 .474 .384 
OLS_/functional form R .348 .204 . I04  
OLSljackknife .367 .249 . I07  
EGLS .523 .443 .313 
PREIols or egls .521 .425 .326 
PRE/var=ois or jackknife .362 .262 .I 15  

T=120 

as i .527 ,448 .342 
GLS .877 .832 .739 
OLS/functional form R .514 .422 .333 
OLSljackknife .525 .426 .309 
EGLS ,867 .807 .699 h 

PREIols or egis .867 .807 .699 
PRE/var=ols or jackknife .525 .426 .309 



Table 7 
Empirical Power of Inferences 

Empirical Size 

OLS 
GLS 
OLSIfunctional form R 
OLSIjackknife 
EGLS* \l. 

PREIols or egls 
- PRE/var=ols or jackknife 

OLS 
GLS 

/ OLSIfunctional form R 
OLSIjackknife 
EGLS 
PREIols or egls 
~ ~ ~ l v a ~ = o l s  or jackknife 

a s  * 

GLS 
OLSIfunctional form R 
OLSIjackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife 



Table 8 
Empirical Power of Inferences 

2 
Ot = 1 or 4.84 (structural change model); CV = .432 ' 

A 

empirical Size .050 .025 .010 
\ 

OLS 
GLS 
OLSIfunctional form Q 
OLSIjackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife 

as 
GLS 
~ i ~ l f u n c t i o n a l  form R 
OLSljackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife 

OLS .592 .434 .311 
GLS .769 .657 .518 
OLS/functional form Q .596 .424 .310 
OLSljackknife .606 .482 .275 
EGLS I .756 .667 .518 
PREIols or egls .756 .667 .518 
PRE/var=ols or jackknife .613 .434 - .  .311 



Table 9 
Empirical Size Using Park's method of EGLS 

Nominal Size .050 .025 .010 

OLS .055 .025 .012 
GLS .043 .017 .005 
OLSIfunctional form R .058 .030 .016 
OLSljackknife .069 .038 .012 
EGLS .069 .033 .016 
PREIols or egls .071 ,032 .016 
PRE/var=ols or jackknife .052 .022 .010 

OLS 
GLS 
OLSIfunctional form l2 
OLSljackknife 
EGLS 
PREIols or egls 
PRE/var=ols or jackknife 



. *  Table 10 
Empirical Size Using Park's method of EGLS 

Nominal Sire .050 .025 .010 

OLS .048 .023 .007 
GLS .050 .026 .005 
OLSIfunctional form !2 .052 .027 .010 
OLSIjackknife .060 .032 .017 
EGLS .066 .039 .016 
PREIols or egls .060 .033 .013 
PRE/var=ol$ or jackknife .045 .022 .007 

OLS ,054 .027 .009 
GLS .050 .027 .010 
OLSIfunctional form !2 .055 .032 .014 
OLSIjhckknife .059 .027 .011 
K;LS .066 .036 .015 
PREIols or egls .057 .029 .010 
PRE/var=ols or jackknife .052 .026 .009 



Table 11 

\ Empirical Size Using Park's method of EGLS 
2 

Ot = 1 + 101; CV=.20 

Nominal Size ,050 

OLS .044 
GLS .051 
OLSIfunctional form i2 .044 
OLSIjackknife .061 
EGLS .060 
PRE/ols or egls .054 
PRE/var=ols or jackknife .046 

OLS .044 
GLS 

% 

.048 
OLSIfunctional form i2 .048 
OLSljackknife .048 
EGLS .057 
PREIols or egls .056 
PRE/var=ols or jackknife .043 



Table 12 
Empirical Size Using Park's method of EGLS 

2 
9 = 1 or 4.84 (structural change model); CV = .432 

Nominal Size ' --- 
.050 .025 .010 

OLS .058 -024 .011 
C G  ,046 .029 .011 
OLSIfunctional form R .058 .039 .019 
OLSIjackknife .070 .037 .019 
EGLS .080 .049 .027 
PREIols or egls .075 .046 .026 
PRE/var=ols or jackknife .059 .026 -01-1 

OLS .051 .021 .010 
GlS .051 .022 .010 
OLSIfunctional form R .066 .036 .016 
OLSIjackknife .063 .032 .014 
K3-S . .085 .050 .026 
PREIols or egls .084 .046 .026 
PRE/var=ols or jackknife .054 .025 .011 



Table 13 
Empirical Power Using Park's 

2 2 
ot = 1 + loxt  ; CV = .432 

OLS 
GLS 
OLSIfunctional form R 
OLSljackknife 
K;LS 
PRElols or egls 
PRE/var=ols or jackknife 

a s  
GLS 
~ ~ ~ l f u n c t i o n h  form i2 - 

OLSljackknife 
E a s  
PREIols or egls 
PRE/var=ols or jackknife 

method of EGLS 



Table 14 
- Empirical Power Using Park's method of EGLS ' 

Empirical size .050 

OLS 133 
GLS 149 
OLSIfunctional form Q 129 
OLSIjackkn ife 1 35 
EGLS 1 25 
PREIols or egls 1 44 
PRE/var=ols or jackknife .I38 

OLS 170 .I14 .063 
GLS 188 .I07 .056 
OLSIfunctional form Q 175 .I09 .049 
OLSljackknife 150 .I15 .057 
K ; L S v  177 .I10 .059 
PREIols or egls 164 .I 08 .065 
PRE/var=ols or jackknife .I 68 .lo9 .060 



Table 15 
Empirical Power Using Park's method of EGLS 

2 q = 1 + 105 ; cv- .20 

Empirical Size .050. .025 ,010 

OLS 157 .086 .048 
GLS 160 .I02 .054 
OLSIfunctional form 52 158 .I05 .047 
OLSljackknife -.I46 .081 .044 
K;LS 158 .I13 .053 
PREIols or egls 163 .096 .045 
PRE/var=ols or jackknife .I59 .083 .049 

OLS , .228 .I51 .075 
GLS .259 .I86 .I19 
OLSIfunctional form iZ .229 .I34 .076 
OLSIjackknife .245 .I51 .082 
EGLS .238 . I71  .091 
PREIols or egls .234 .I63 ,086 
PRElvar=ols or  jackknife .234 .I48 .079 

r; 



Table 16 
Empirical Power Using Park's method of EGLS- 

2 
Ot - 1 or 4.84 (structural change model); CV = :432 

Empirical Size .050 .025 .010 

OtS 215 .I39 .070 
GLS .268 .I28 .079 
OLSIfunctional form SZ .221 ,139 .047 
OLSljackknife .220 .I46 .072 
EGIS .233 .I25 -057 
PREIols or egls -. .247 .I22 .061 
PRE/var=ols or jackknife .211 .I37 .067 

OLS .367 .257 .I47 
PLS .385 -308 .I98 
OLSlfunctional - form i2 .372 .244 -142 
OLSIjackknife .370 .264 .I17 
EGLS .381 .250 .I68 
PREIols or egls .374 .235 .I 67 
PREIvar-01s or jackknife .377> .258 .I49 



Conclusions 

The results of these ~ o n k  Carlo studies suggest that inferences 
using EGLS estimates are superior i.n terms of power, and .equivalent 
in terms of size, to several other .,procedures over a variety of 
heteroskeda~t ic i t~  generating processes. HowevGr, the ~ " ~ e r i o r  
power of EGLS inferences depends upon the functional form used to 
model the heteroskedzisticity. When the functisnal- form of the 
heteroskedasticity is known a priori, EGLS is unequivocably the best 
techniqui. When the functional form is unknown, some caution in 
applying EGLS is-required, but these results have shown Mat 3EGLS 
inferences are somewhat robust to errors in ,the selection of the 
functional form. In particular, the method of Park yieided 
inferences o f  superior or equivalent power even in the .presence of 
mixed heteroskedasticity with relatively large constant terms. In 
practice, a researcher examining the residuals wou,ld very -likely 
have detected the mixbd heteroskedasticity by compa)ingL the fit of 
functional forms, or by the use of a rule of thu'mb such as Kennedy's 
(1985), and would have produced superior EGLS inferences using the 
modified Glejser. method. - ., 

In the case of structural change heteroskedasticity, the method of 
Park yielded inferences of power very similar to the OLSIjackknife 
inferences, but the 2orrect EGLS procedure was superior in terms of 
power. Even a visual inspection of .residuals arising from a case of 
structural change heteroskedasticity would likely have indicated to 
the practitioner the inappropriateness of the method of Park. It is 
also common in econometric studi'es to have. some other information 
which could identify the exact % point (or date) at which the 
structural fhange switching takes place (eg.  a policy change, tax 
changes, price controls, war, etc.). 

I 

These results indicate that the best procedure is to make inferences - 
using EGLS estimates after -some preliminary diagnostic work on the 
OLS residuals whenever there is some empirical evidence or 

4 7 



theoreticid reason to relate the' variance of the errors to an 
exogenous variable via a simple functional form. This procedure 
should be followed even if the functional form only approximates the 
true heteroskedasticity generating process. 

r' 
/r 

I" defense of the ~ ~ ~ l j a c k k n i f e  inferences, it should - be notdd that 
the technique, yields inferences which are superior in terms of both 
size and power tq simple OLS inferences, and also that each of the 
cases of heteroskedqstieity tested here involved a .known exogenous 
variable (either xt or a 0-1 dummy for structural change) related to 
the variance of the errors in aXrat'her simple way. The practitioner 

-. 
may well -be faced with cases of heteroskedasticity which are 
unrelated to the independent variables in'any simple way, and would 
therefcre be well advised to use the jackknife estimator and ignore 
-the fuhctional forb. MacKinnom and White suggest that the 
jackknife - may ' be applied even when errors are homoskedastic, 
however they refer only to size and not power "results. These 
results show a small reduction in power as a consequence of using 
jackknife inferences with homoskedastic data. 
", 

The ,use of critical values from a. t distribution when the small 
sample s ta t i~ t i c  is only app~ox imate ly  distributed as a t 
distr.ibution presents no problems for any of the techniques 
examined. In agreement with the findings of MacKinnon and White 
for the jackknife, the differences between empirical and nominal 
sizes are not large, even for sample 
disappear as the sample size increases 
empirical size of EGLS inferences is 
choosing the ihcorrect functional form. 

sizes as small as 30, and 
beyeid 100. Moreover, the 
apparently not affected by 

The results show no reason to use the technique of making 
inferences using OLS coefficient estimates and the functional form 
estimate for 52. For inferences using OLS coefficients, the jackknife 
estimate of the variance yielded higher power than did this 



technique, and in any case, where good estimates of R are possible, 
EGLS is by far the recommended procedure' for estimation and 
infere'nce. This . study therefore reject the hypothesis suggested by 

1 

earlier studies (Nozari, 1-984) that inferences' are more accurate in 
terms of size when mad6 using OLS coefficients. 

The wse of the Goldfeld-Quandt pre-test to choose between OLS and 
EGLS inferences in the presence df heteroskedasticity resulted in 
inferences almost identical to EGLS +, but resulted in a significant ' 

improvement in power over simple EGLS procedures for the case of 
homoskedastic errors. The conclusion from this is to recommend the 
use .of the Goldfeld-Quandt pre-test whenever there is any 
possibility of heteroskedasticity, since the costs of ignoring 
heteroskedasticity, in 'terms of reduced power and bias, are high, 
while the cost of the type I error in the pre-test are low, 



.- 
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