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Abstract

% size and power of small sample inferences usmg estlmated regression coefficients in
the presence of heteroskedastlc errors are examined by means of Monte Carlo
simulations. Six possible procedures are examined under a variety of heteroskedastlcnty

generating processes.

 Inferences using ordinary least squares (OLS) coefficients are }:orﬁputed using two
possible estimators for the variance-covariance matrix: the jackknife estimate, and an
- estimate based on a functional form estimate of the error variance matrix. Estimated
‘generalized least squares (EGLS) inferences are made by transforming the data using a
variety of conventional functional forms to estimate the standard deviations of the
errors. Simulations of EGLS inferences are initially based on the assumption that the
heteroskedasticity generating function is knvan. Further- simulations examine cases
where the heteroskedasticity génerating function is assumed to be unknown. Finally, the
inferences arising*from two pre-test estimators are examined: the Goldfeld-Quandt test

;Js used to choose between OLS and EGLS estimates of the regression coefficients and the
White test is used as a pre-test to select either the standard OLS variance-covariance
matrix estimator or the jackknife estimator of the variance. ‘

The results show no major differences in empirical size among the methods examined,
and empirical sizes of tests were usually found to be not significantly different from‘
nominal sizes. EGLS techniques were found to yield inferences of higher power than all
of the other techniques when the functional form of the heteroskedasticity was assumed
-known. When an incorrect functional was used to obtain EGLS estimates the power of
inferences based on EGLS techniques was reduced substantially, but in many cases EGLS -
inferences still yielded the inferences of highest power. Inferences based on the
jackknife estimate were of superior power only in cases where the functional form
chosen for EGLS was very differerit from the heteroskedasticity generating funcfion.

The major recommendation to researchers indicated by these simulations is to make

inferences using EGLS estimates after some preliminary diagnostic work on‘the OLS

residuals whenever there is empirical evidence or a theoretical basis to relate the
~ -variances of the errors to an exogenous variable.
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Introduction

Much of the research concerning heteroskedasticity has been
directed toward the detection of heteroskedasticity and subsequent
estimation of regression coefficients with improved efficiency.
Rela_tively little research has been done on inference“"”Wit\h respect to
the regression coefficients in the presence of heteroskedasticity.
The consequences of heteroskedasticity for ordinary least squares
(OLS) estimation are well known: the estimates of the regression
coefficients are inefficient but unbiased, while the estimates of the
variance-covariance matrix are biased. The conventional treatment
for heteroskedasticity, where the variances of the error terms are
not known to a constant of proportionality, is to estimate the
regression coefficients using estimated generalized least squares
(EGLS). While the .improvement in efficiency and mean squared error
for the EGLS estimates of the regression coefficents has been well
established over a wide range of cases, the researcher wishing to
make inferences concerning the regression coefficients is forced to
rely upon the asymptotic properties of the EGLS estimates. The
usual t-test statistic will only be asymptotically distributed as a t
distribution, therefore the nominal size of the test may be incorrect
in small samples.  Furthermore, the EGLS “estimates as well as the
small sample properties of their distributi will depend upon the
assumptions the researcher makes about the functional form of the
heteroskedasticity. If an incorrect functional form is chosen to
estimate the variances of the errors, the estimates of the variances
as well as the estimate of the variance-covariance matrix may be
biased asymptotically. The existing literaturs offers little
reassurance that the inferences arising from EGLS do in fact have
the 'propeies of size and power suggested by the asmptotic theory,
and there has been no research at all on the properties of inferences
based on incorrect functional forms.

Recent research by White (1980), and MacKinnon and White (1985)
has suggested that inferences can be obtained using ‘the OLS
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estimates along with a consistent estimator of the OLS variance-
covariance estimator. This technique is attractive in that no
assumptions concerning the functional form of the
heteroskedasticity are required, hence eliminating the botential for
choosing the wrong functional form. ARhough the inferences still
depend upon asymptotic properties, the Monte Carlo studies by
-MacKinnon and White show that for sample sizes as small as 30 the
- size of the statistic approximates the nominal critical value .rather

well.

A disadvantage of M}CKinnon and White's technique of inference
based on OLS estimates lies in the potential for reduced power of
the tests. MacKinnon and White do not examine the power of their
tests, nor do they compare their results with EGLS techniques;
~however, since power increases as the variance of a statistic
decreases, and EGLS estimates are known to have lower variances
than OLS estimates over a wide range of heteroskedasticity
generating processes, it is reasonable to suspect that the cost of
eliminating assumptions concerning the functional form of the
heteroskedasticity is a reduction in power. '

This study will investigéte statistical inference concerning -
regression coefficients in the presence of heteroskedastic errors
using Monte Carlo methods. Several possible procedures for model
estimation are examined:

1. EGLS

Estimates of the coefficients are obtained by assuming a functional
form for the variance of the error. The data are transformed by
dividing each observation through by an estimate of the standard
deviation of the error, and OLS is computed using the transformed
data. Inferences are obtained by computing a t-statistic from the
results of OLS computed on the transformed data. Following the
terminology of MacKinnon and White, this t-statistic is referred to
ds a 'quasi t-statistic'.



2. OLS

The problem m ebtammg m\ences from the OLS estimates in thva
presence of heterqskedastlcny\ns in estimating the variance-
covariance matrix. Twi approaches are examined. ' First, a variation
on White's heteroske sticity- consustent variance-covariance
estimator known as the ‘jackknife' is used. Second, the matrix of the
variances of the errors is estimated using a functional form. This
estimate is then substituted into the general formula for the
variance-covariance matrix of the coefficient estimates when
errors are non-spherical. ' -

3. Pré-test Estimators

The procedures in 1. and 2. above assume that heteroskedasticity is
known to exist a priori. In practice, the choice of the estimation
technique for either the regression coefficients or the variance-
covariance matrix may depend upon a pré'-test for homoskedasticity.
Two pre-test estimators are examined:

The Goldfeld-Quandt test detects heteroskedasticity related to some
exogenous variable. Coefficients are then estimated by EGLS or OLS
depending upon the outcome of the test, and inferences are made
using the EGLS estimate of the variance-covariance matrix, or the
simple OLS variance-covariance estimator as derived from the
assumption of homoskedasticity. In the context of inference, both
the numerator and denommator of the quasi t-statistic are pre- test
estimators. *

The White test detects 'heteroskedas‘ticity only if it is of a form-
- which biases the simple OLS variance-covariance estimator.
Therefore when inferences are to be made using OLS coefficient
estimates as in 2. above, a natural pre-test estimator for the
variance-covariance estimator is the estimator which selects either
the heteroskedasticity-consistent variance-covariance estimato‘r
when the White " test rejects the null hypothesis of
homoskedasticity, or the simple OLS variance-covariance matrix

3



estimate when the White ‘test does not re}ec% the Hyp‘othes%sﬁ dﬁf
homoskedasticity. 7 _ D

Inferences arising from each of the above EGLS, OLS and pre-test
procedures - are made using a variety of heteroskedasticity
generating processes, and a range of sample sizes. Results are
presented to suggest coiclusions on a number of questions of
practical interest to researchers:

1. How close o the sizes of inferences approximate their nominal
sizes using several different critical values, and is there a tendency
for the empirical sizes of tests to underestimate or overestimate
the nominal size the researcher has selected? |

~

2. At what sample size do ‘the asymptotic properties take effect
with regard to the inferences? For example, although Monte Carlo
studies (Goldfeld and Quandt, 1974) have found EGLS coefficient
estimates to be nearly unbiased in samples as small as T=30, this is
no guarantee that valid inferences are possible at such a sample

size.

3. Which inference procedures have higher power? In particular, it
is Qypothesised that EGLS techniques will yield test statistics with
higher power due to the increased efficiency of the coefficient

estimates.

The conclusions arising from the above questions are cémpared for
different heteroskedasticity generating processes, and finally; the
conclusions are tested for their robustness with respect to the
thoice of functional form of the heteroskedasticity. While the
researcher will sometimes have theoretical justification for the
choice of a functional form for EGLS, as in the case of the random
coefficients model, most often economic theory will only suggest
that the variance of the error is related to some exogenous variable,
as for example, .in the case of the variation in expenditure being
positively related to income. Textbooks often provide several
. alternative functional forms- for the heteroskedasticity but little

4



advice on choosing between them in the absence of"theory.
Therefore inferences arising from EGLS estimates are examined for
a number .cases in which the functional form chosen is different
from the hetefoskedasticity generating function. o ‘



A Review of the Literature

The research literature on small sample inference in the presence cf
~ heteroskedasticity using OLS and EGLS techniques consists mainly of |
Monte Carlo studies. No exact small sample distribution theory"
exists for the general case of heteroskedasticity in the linear
regreséion model. . Before discussing the Monte Carlo studies, a brief
summary of the asymptotic theory is presented. |

~ Assume the linear regression model
y = X8+,

' Where y.is a (T x 1) vector of observations on a dependent variable, X
is a (T x k) matrix of observations on independent variables, p is a
(T x k) vector of error terms where

and
. : 2 2 2,
E(up') = Q with Q = diag(o4, 05, ..., 07),

2 . .
and not all c; are identical.

-

Then a set of J linear restrictions on the regression coefficients B
can be described as

RB =,

where R is a (J x k) known matrix, and r is a (J x 1) known Ve&pr.

#
i

Judge et al (1985 p 177) give an asymptotic statistic for tesj})ng'theA
linear restrictions RB = r when_the covariance matrix of the errors
is non-spherical and coefficients are  estimated by EGLS. For the.
EGLS estimate Bedls, the statistic:

6
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A ,

(Begls-B)'R'[R(X'Q1X)-1R']-1R(Begls-B) .

-
sl

“t(

is asymptotically distributed as x2 with- degrees of freedom equal

to the number of restrictions or equivalently, L/J is asymptotically,._

distributed as the .F(yT.k) distribution. For a single restriction,
(VL)/(VJ) is then asymptotically distributed as the t distribution
‘with t-k degrees of freedom and is equivalent to the conventional t-
statistic usually computed by running OLS on transformed data. The

transformation consists of multiplying y and X by P where (P'P)-! =
A

Q. . I

For the OLS estimate B°Is, Judge et al (p 426) present the statistic:

R

(B-BOIS)R'[R(X'X)-1 (X'AX)(X'X)'1 R']"%R( B-Bols)

asymptotically distributed as 2 with degrees of freedom equal to
- A :
the number of restrictions, where (X'QX) is a consistent estimator

of X'QX. Dividing by the number of restrictions and taking the square
root, this can also be expressed as an F-distributed statistic. It is
the -asymptotic distribution of these two statistics which provides
all of the justification for inferences using regression coefficients
in the presence of heteroskedasticity. For small samples, the
. distributions of these statistics are not known, hence they are
investigated by means of Monte Carlo studies.

Some Monte Carlo studies have been conducted in an experimental
design context, where replicated observations are available for each
value of the independent variable. While not directly applicable to
most econometric problems, some conclusions of interest can be
drawn from these studies.

23
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Deaton (1983) compares the power of 'EGLS. inferences to OLS
inferences via a Monte Carlo study where for each value of x, the
independent. variable, there are replications of observations on the
dependent variable. Replications vary from 3 to 25. EGLS in this
study is defined as: | | »

- .
gegls = (X'Q-1X)-1X'Q-Ty,

where each diagonal element of Q is estimated by computing the
sample variance of the OLS residuals within a group of replicated
observations. OLS inferences are made usi"ng s2(X'X)-1 as the
estimate of the variance-covariance matrix, where s2 is computed
as the sum of squared residuals over all observations, divided by T-
k.  Comparing the power of EGLS inferences to OLS inferences,
Deaton finds OLS to be 'surprisingly robust to departures from the
assumptions of homoskedasticity’, however, these results on the
. power of OLS ‘are highly suspect in light of his use of a biased
estimator for V(Bols).

Nozari (1984) examines the size and power of test statistics for a
single coefficien{ -from the model:

y=a+bx +e,

L]

) where x = 1....10, and replications of x \/ary from 1 to 10 (ie the sample

size varies from 10 to 100 as the number of replications is varied from

1 to 10). . .

'l;,he variances of the errors are generated as powers of x, however

the estimates of Q are nhever based on the assumption of any

- functional form. Instead, Q is estimated eith‘er by computing'

 simple sample variances within a. group of replications for a given x

as by Deaton, or by one of several variations of the MINQUE

(minimum norm quadratic unbiased estimator) procedure. EGLS
A

estimates are computed by substituting the various estimates Qinto

the EGLS formula:



A A
Begls = (X'Q-1X)-1X'Q- 1y

The study then compares size and power for three groups - of
: A
estimates: EGLS, OLS using V(Bols) = (X'X)X'QX(X'X)-1, and OLS"

ignoring heteroskedasticity and computing V(BO!S) = s2(X'X)-1, as in
Deaton. -
The major recommendation from Nozari is that the problem of
unequal variances is best dealt with by obtaining more replications;
~a suggestion of little help to econometricians. Of more interest .is
the finding that OLS inferences using the correct form of the
variance-covariance estimator are superior‘to' inference arising
from the EGLS procedure, in that empirical sizes approximate
nominal sizes more closely. In the case with no replications and
sample size of 10, using MINQUE estimators for Q, the size of the
test for the OLS coefficient with nominal size of .10 varies from .12
to .15, whereas the size of the test for the EGLS coefficients are
unacceptably large, ranging from .58 to .81. The results for
inference employing OLS estimates and ignoring heteroskedasticity
contradict Deaton's result, showing low power and poor
approximations to nominal size. No substantial differences in power
were found between EGLS inferences and OLS inferences using the
correct formula for the variance-covariance estimate. |

Kleijnen et al (1985), in a Monte Carlo study similar to that of
Nozari compare the size and power of EGLS and OLS inferences. EGLS

estimates are computed as in the study by Deaton; esti'mafés ¢f the B

error variances within ‘groups of replicated\ observations are ..
" computed as the sample variance of the OLS residuals. The
A

estimates of the error variances become th¢ diagonal elements of Q

A
which is used in the usual EGLS formula. The same estimate, Q,is

used to estimate the variance of the OLS estimates:

9



V(BOIS) = (XX)1X'QX(X'X)1.

Kleijnen et al confirm Nozari's conclusion that OLS with the correct
form of the variance-covariance matrix leads to superior inferences
in terms of approximating the nominal size of the test statistic
when the number of replications is small. But, they find EGLS
inferences to have higher power in all cases. They recommend the
use of EGLS when the number of replications exceeds 25. llt;‘appears |
from these findings that -better estimates of the variance of the
errors, as might result from the use of specific functional forms for
the variance, may lead to the superiority of EGLS over OLS in making
inferences in terms of both size and power. Kleijnen et al also
recommend the use of higher levels of significance in testing
hypOtheses on _r'egression _coefficients, presumably because the
empirical sizes of inferences tend to overestimate the nominal
.sizes, and researchers might wish to avoid these unknown but high
probabilities of type | error. They offer no specific guidelines on
this point.

The cas'eiof non-replicated observations is‘by‘far the more common
case in the analysis of economic data. However, only one major study
of inference in the presence of 'heateroskedasticity with non-
‘replicated observations exists in the literature. MacKinnon and
White (1985) conduct a series of Monte Carlo experiments to study .
the size (but not power) .of tests on OLS regression coefficients in
the presence of heteroskedasticity of unknown form. White (1980)
has shown that the covariance matrix of the OLS estimates in the
presgnée of heteroskedasticity can be consistently estimated by:

A
(X'X)- IX'QX(X'X)-1,

2
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MacKinnon and White use this heteroskedastl‘éuty consistent
variance-covariance matrix estimator and three variations on it
(degree of freedom corrections and the 'jackknife estimator') to
compute test statistics for regression coefficients where the errors
are generated as follows: 8

1. No heteroskedasticity: errors are independent, N(0, o2). The

purpose of this case is to determine how inference is affected by
use of heteroskedasticity consistent variance-covariance matrices
when the variances are homoskedastic. Note that the
heteroskedasticity consistent ~variance-covariance matrix will still
be an unbiased estimator of the variance-covariance matrix when
there is no heteroskedasticity. )

2. Structural change. There are two sets of observations: those
with error variances of o2, and those with error variances of ko2. It
is assumed that it is known to which set an observation belongs, but
that k is unknown. ’

3. Random coefficients: assuming each of the coefficients in the
regression model are random variables, the variance of the error
term is easily derived as a lmear function of the squares of the
exogenous variables.

Some general conclusions from the study are: ,that_the jackknife
estimator of the variance-covariance estimator yields superior
inferences to all of the other estimators considered; that the use of
a heteroskedasticity consistent estimator can lead to misleading
inferences when there is in fact no heteroskedasticity; and,
predictably, that the usual OLS variance-covariance estimator,
s2(X'X)-1, can lead to seriously misleading inferences in the
presence of heteroskedasticity. An important practical observation
which can be made from the results is that the size of the tests for
the smallest sample (T= 50) are often higher than that associated
with the nominal critical values. Rejection proportions at the

11



nominal crmcal value of 1 percent are frequently observed to be as
high as 5 percent. Moreover, in the vast majority of cases shown in
the tables, rejection frequencies are too high relative to the nominal
critical value, a tendency also observed in the .studies of Nozari and

Kleijnen.

Since all of the test statistics examined are asymptotically normal,
we expect good pesults for large samples. MacKinnon and White's
study shows stea improvement in inference as sample size
increases, but at th ximum sample size of 200, several test
statistics for the case of structural change in the variance have
empirical critical values significantly different from the nominal .
critical values, though the jackknife inferences perform well. No
general conclusions are possible concerning the question of how
inferences depend upon the specific form of heteroskedasticity.

A major omission in the Monte Carlo literature is an examination of
power and size under the procedures typically used to correct for
‘ heteroskedasticity in econometric work. For example, a
conventional approach would be to pre-test for heteroskedasticity

with the Goldfeld-Quandt test, then (assuming. the test indicates

heteroskedasticity): to correct the estimates using the Park or
Glejser procedure and test significance based on these final
estimates. Altheugh the literature contains considerable evidence
on the efficacy ,of such a procedure in improving estimates,
research on small 'sample inference on the regression coefficients of
ultimate interest to the researcher have been largely ignored.

12



Design of the Monte Carlo\:Study

Previous studies on inference in the presence of heteraskedasticity
have suggested that hypothesis testing using the OLS regression
coefficients rhight be superior to inference based on EGLS estimates.
In addition, the study by MacKinnon and White (1985) provides
convincing evidence that good inferences employing the OLS
regression coefficients can be obtained by using a
heteroskedasticity consistent variance-covariance estimator, where
knowlege ; of the s‘pecificlform-of the heteroskedasticity is not
required.c Unfortunately none of the the existing research addresses
the pr8blem of inference when a specific functional form for the
heteroskedasticity is assumed. The following series of Monte Carlo
experiments are designed to c'ompare the size and power of several
approaches to inference in the presence of a variety of
heteroskedasticity generating processes. ’

The general approach is to generate data based on a gparticular model
of heteroskedasticity and then to produce inferences from the data
‘based on several different estimation procedures. In the first series
of simulations (Part I) it is assumed that the process generating the
variances of the errors is known: that is, the EGLS estimates are
based on the same functional form as that which generated the data.
In>the second series of simulations (Part f) the EGLS procedure is
computed using a functional form different from the one which is
generating the heteroskedasticity. . [in part | we are therefore
exarﬁining the case where the estimates of Q, the variance-
covariance matrix , and the EGLS estimates, are asymptotically
unbiased; this is the case covered by asymptotic theory. However,
it would be fair to question the practical value of these results
since it can be argued that the practitioner rarely has theorstical
reasons for assuming a specific functional form -for the
heteroskedasticity. @ Therefore the opposite extreme, where we
deliberately choose an incorrect functional form, is also tested.
Note that even as the sample tends to infinity, it will not be

13
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possible for the -incorrect functional form to provide unbiased
estimates of Q, therefore the functional form inferences in this
case are not even justified by asymptotic theory. In practice, the
functional form might be chosen on the basis of testing the fit of -
several standard models and selecting the functional form which
best fits the OLS residuals. Therefore these results may be viewed
as a worst possible case, in the sense that a heuristic examination
of the residuals. would be likely to result in the selection of a
functional form- which better fits the data or possibly even the
‘correct functional form. In these studies the incorrect functional
form has simply been imposed on the data.

All Monte Carlo experiments are based on the model:

yt = Bo + Bixt+ ut,

where ut ~ N(O,otz)‘,
E(ujuj) = 0 for i # Js
and of is determined by one of four models used to generate the
errors. \ |
B = (Bp, B1) is fixed as (1,1).

For the size experiments the null hypothesis is taken as By =1; for
power experiments various false nulls concerning B4 (given in the
results section) are chosen such that the ab e size of the
powers is meaningful over all sample sizes tested. For both size and
power simulations the alternate hypothesis is that Biis greater
than the null hypothesis value. Hypotheses are tested by computing
the conventional t-test: the difference between the “estimated value
of B1 and the null hypothesis value is divided by the estimated
standard deviation of B1. Only hypotheses concerning B4 are tested
_in order to simplify the results, and since economic research is
usually concerned with inferences with respect to slope
coefficients as opposed to intercept coefficients.
14



Each simulation is based on 1000 samples, and, repeated for sample
sizes of 30, 60, and 120. The exogenous variable x; is taken as 30
numbers from a uniform distribution, U(0,1), replicated 2 and 4
times as required for the sample size. The purpose of the
replication of xt, as explained by MacKinnon and White, is to hold the
degree of heteroskedasticity constant as the sample size is
increased. | | ,

[ l I I [‘ Il ,| I I .' I- -I
Model 1: No heteroskedasticity

2
= g2
O =0C

- By applying each of the procedures for estimation and inference in
the pre&sence of heteroskedasticity to data generated by model 1,
information is obtained on how costly the technique is when it is
mistakenly applied to homoskedastic data. ’

Model 2: Multiplicative heteroskedasticity

op =Kx

Model 3: The Random . Coefficients Model and‘ Mixed
Heteroskedasticity

Assuming each of the coefficients B; in the ;gdel are normally
distributed random variables with means equal to (Bg,B1), the
variance of the error term is easily derived as a linear function of
the squares of the exogenous variables:

Bi = Bj + vit, where vit ~ N(0O,wj)

implies yi= Bo + Bixt+ vot + VitXt + U,
15



and assuming all utand v; are independent, the variance of the total
error term can be written as:.

2 2
op =a+ bxt .

where a and b are functions of the w; and o2.

Note that the above model is a special case of mixed
heteroskedasticity, where the variance of the error is related to a
constant and an exogenous variable as in the following model
typically used to model heteroskedasticity:

2
o =a+ bf(xy) .

Model 4: Structural Change

For the sample size of 30 we have: "

ug ~ ,N(O»"é) fort= 1to 15 -
N0, 002) t= 16to 30.

For larger sample sizes the variance of the errors alternates
between o2 and aoc2? every 15 observations, keeping the relationship

between uj and x; constant as sample size increases. Assume it is
known at what points the structural change occurs, but o is unknown.

Estimati | Inf P I
1. OLS ignoring heteroskedasticity
Coefficients are estimated as B°!s = (X'X)-1X'y and the variance-

covariance matrix is estimated as V(B0!s) = s2(X'X)-1. Inferences

using the OLS coefficients are made using the usual t-ratio.
16



2. GLS

Coefficients are estimated as Bg's = (X'Q-1X)-1X'Q-1y and the
variance-covariance matrix is estimated as V(B9!s) = s2(X'Q-1X)-1,
where ™ ) )

s2 = (e'Q-1e)/(T-k), | |
e is the vector of residuals computed by applying the GLS
coefficients to the original data, and Q is the known matrix of the
variance of the errors. Note that when Qis fully known (as opposed
to being known only up to a constant of proportionality) the
variance-covariance matrix |s given by:

(X'Q1X)-1,
the expectation of s2 will be one, and the 't-ratio' will actually be
distributed normally. Since the purpose of the GLS inferences is to
serve a benchmark against which the others are to be compared, it is
convenient to also estimate s2, so that inferences using the GLS
coefficients will be distributed as t-statistics.

3. OLS using functional form estimates of Q

When errors are heteroskedastic, V(B0!s) = (X'X)1X'QX(X'X)-1.

An estimate of Q is computed using an assumpiion about the
functional form of the heteroskedasticity. For multiplicativ'e or
mixed heteroskedasticity Q is estimated by: -

i. regressing the OLS squared residuals on some function of X, as
determined by the functional form chosen to represent the
heteroskedasticity (in part | it will be the correct functional form,
in part Il, incorrect). For example, if we assume multiplicative
heteroskedasticity, then the log of the squared OLS residuals -are
regressed on Inxy and a constant. ~

ii. The predicted squared residuals from i. above are used as
estimates for the diagonal elements of Q. in the case of

2 d
multiplicative heteroskedasticity, where oy = th, Harvey (1976)

17



has shown that the regression in i. above yields an inconsistent

estimate of InK. However, when the errors are normally distributed,"
Harvey shows that E(InK) = -1.2704. This is of no consequence to
EGLS estimation since variances of errors need only be estimated to
a constant of proportionality, but the result is very useful in
gstimating V(Bo!s) where an estimate of Q is required. Harvey's
result is used to adjust the estimates accordingly.

For the case of structural change, where the functional form is
assumed known, the method outlined in Judge et al (1985 p 428) is

followed. Q is estimated by computing one OLS regression for the
set of .observations for which the variance of the errors is 62, and

another independent OLS regression for the set of observations for
which the variance of the errors is «2062. The diagonal elements of Q

are estimated as the sum of squared residuals divided by ( (T/2) - k)
for each group.

Inferences are made by forming the t-ratio using (B°Is-1) in the
numerator and the square root of the appropriate element of the
estimate of V(B°!s) in the denominator. '

4. OLS and the Jackknife Estimator of the Variance-Covariance
matrix

White's (1980) original heteroskedasticity consistent variance-
covariance estimator, given by

L g

(x';<)-1x'fz X(X'X)1,

was examined in the study by MacKinnon and White along with a
number of variations which have also been shown to be

heteroskedasticity consistent.

18
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The best of these estimators across all forms of 'hetemskadasiiciiy B
examined by MacKinnon and White was found to be the jackknife
estimator. Consequéntly, in these simulations, only the jackknife
estimator is examined for the case of non-functional form
estimation of V(Bols), ’

The jackknife estimator is a very general estimator for the variance
~of a statistic based on recomputing the statistic with one

observation deleted. Though rarely used in actual computations, the

‘definition of the jackknife as suggested by Tulfey (1958) provides a

good intuitive rationale for this technique. For any statistic

computed from T observations, we can calculate a series of T

recomputed statistics by deleting each one of the T observations in. °
turn, and recomputing the original statistic from T-1 observations.
The variation among ‘the T recomputed statistics can be used to
obtain an estimate for the sample variance of the original statistic.
The jackknife estimator for the variance of the statistic is defined
as the sum of squared deviations from the mean of these T
recomputed statistics, multiplied by a correction factor of (T-1)/T.
Efron (1982 p13) shows that when the jackknife is applied to the
sample mean; the jackknife estimate for the variance of the mean is
identical to the usual estimate of the variance of the mean given by
s2/T. MacKinnon and White (after considerable algebraic
manipulation) give the jackknife estimator for the variance-

covariance estimator as:
_ : .

((n-1)/n) (XX)1 [X'Q X~ (1/n)(X'ee’X)] (XX)T |

I 2
where Q is a TxT diagonal matrix with diagonal elements of e, . and

off diagonal eiements of zero, and e is the vector of OLS residuals e;.
It is- easily shown that the jackknife estimator is asymptotically
equiveient to White's \ heteroskedasticity consistent variance-
covariance matrix estimztor.

19
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5. EGLS estimation
Three common EGLS procedures are used:

i. The modified Glejser method is used in Part | where we have
mixed heteroskedasticity of the random coefficients model variant.
The médified Glejser method was chosen (as opposed to the Glejser
method) because it more closely models the functional form of the
heteroskedasticity and because according to Kennedy (1984) it is the.

form preferred by most practitioners in the case of mixe‘d

heteroskedasticity. The modified Glejser method consists of

: 2
regressing the squared OLS residuals on a constant and on Xy o and

obtaining predicted values for the squared OLS residuals. The data
is then transformed by dividing through by the square root of these

predicted squared residuals, and OLS is run on the transformed data.

The quasi t-statistics obtained from this regression on transformed
data are used to make inferences. A problem. sometimes encountered
with the modified Glejser method is that the predicted values for
the sqyared residuals, and hence predicted variances of the errors,
are negative. Negative values are replaced with the actual squared
residual, as in the studies by Goldfeld. and Quandt (1975).

ii. The method of Park, also very popljlér.‘i'n_‘ textbooks and among
practitioners, is used in Part | where we have multiplicative
heteroskedasticity, and th’rouéhout Part II. - In Part Hl the objective
is to illustrate how well EGLS techniques‘éberform ‘when the wrong
functional form is used to model the heteroskedasticity. The.method
of ‘Park is thosen as the 'wrong' model here for twb reasons. First,
the functional form is vefy general. The method ;of Park consists of
modelling the heteroskedasticity as: .

2 0
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To estimate oy the log of the OLS squared residuals are regressed

on a constant and Inx. Therefore, the method of Park is a good
choice when the researcher suspects heteroskedasticity related to
the independent variable, but would like a mode! which could
accomodate any power of x. Second, Kennedy 1%85 p159) has found
that in terms of the ratio of OLS variance to EGLS variance, the Park
method performs very well over a variety of cases where the
heteroskedastlcny is not generated by the functional form employed'
by the Park method.

iii. The Constant Variance Within Subgroupsuf‘EGLS procedure

This method, given by Judge et al consists of estimating the
variances for the case of structural change in Part | as has already
been described above (see OLS using the functional form. estimates).
The estimates of the standard deviations of the errors are then Used
to ‘transform the data as.in 1. and 2. above.

6. Pre-test estirpators and inferences

) The Goldfeld-Quandt test is used to detedt heteroskedasticity and
to choose between OLS and EGLS estimators and inferences. The
Goldfeld-Quandt test, rather than some of the more general tests for
heteroskedasticity- (eg. Judge et al, p 450) is used here primarily .
because of the popularity of the test among practitioners, and thej
good results obtained for the test by Goldfeld and Quandt (1972) in
their major study of heteroskedasticity.. For sample sizes of 30, 60
and 120 the recommendations of Goldfeld and Quandt for eliminating
8, 16, and 32 observations are followed. In the case of the
structural change model of part |, where we assume that it is known
where the structural change takes places no observations are
eliminated, since elimination of observations in the case of a
discontinuous change in the error variance would reduce the power

of the test. e
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i) The White test for heteroskedasticity is used to choose between
‘the simple OLS variance-covariance matrix, s2(X'X)-1. when the
 hypothesis of homoskedasticity is not rejected , and the jackknife
estimator when homoskedasticity is rejeCted Inferences are made
using the OLS -toefficient estimates and thns pre-test estimator of
the variance. The White test consists of regressmg the squared OLS
residuals on a constant, the original regressors, the regressors
squared ‘and all the cross products of regressors (In this case we
regress on a constant, X, and X2), and computing the product of T and
the R2 frof this regression. TR2 is shown by White (1980) to be
asymptotically distributed as %2 with degrees of freedom equal to

the number of regressors.

Ea

Measurement of Heteroskedasticity

Kennedy (1985) preéents arguments for the use of an appropriate
measure of heteroskedasticity. 'A measure of heteroskedasticity in
Monte Carlo studies is necessary if: the results are to be applied in
other contexts; the conclusions change as the degree of
heteroskedasticity varies; or if conclusions are drawn from a
number of different heteroskedasticity generating processes.
Previous studies -have used a number of measures, such as the ratio
of largest to smallest variance, or the magnitude of some parameter
in the Function which generates the variance. Kennedy argues that
all of these measures are inadequate, and suggests using the squared
. coefficient of variation of the variances themselves. Af utis the
) variance of the error term for observation t, then :

v

—

S(ui- 92 - .

CV ——
N(y 2
{n part | of the study all khfoaéls'Jciiffheteroskedasticity are chosen
such that CV = .432. According to the examples from other studies
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provided by Kennedy, this would correspond to a moderately high
degree of heteroskedasticity. To give some feeling for the severity
of a CV of .432, notice that this would correspond to a = 4.84 in the
structural change model; that is, the variance for high variability
observations is nearly five times as high as for low variability
observations. In part Il, CV varies over a range of values as shown
in the tables. The reason for varying the CV in this second set of
simulations was to test Park's EGLS method against some worst
case alternatives. In particular, Park's method employs a model
which assumes the variance of the errors decreases to zero when
the value of the independent variable is zero (ie, there is no constant

2 ' ) )
in o, = Kx9, and the inclusion of a constant term would make the

. function impossible to estimate using OLS). To test the efficacy of
Park's method when there is mixed heteroskedasticity and a
substantial constant term implicitly places an upper limit on CV, "
since the constant term has the effect of introducing a fixed
component to the error variance across all values of xi.
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Results

The results 6f the Monte Carlo simulations are presented in tables 1‘/

to 16. Tables 2 to 8 show results for cases where it is assumed the
functional form is known and tables 9 tb- ».16 show the results, ‘for
cases where an incorrect functional form is used. Details of the
coefficient estimates and variance-covariance matrix estimate‘é are
not presented, but in all cases except those specifically mqﬁtioned,
the average variance-covariance estimates exhibi,;t'/ed the

relationship:
V(B9IS) < V(Begls) < V(Bols),

indicating that the results reflect cases of He"teroskedasticity
where the use of EGLS would be advisable .Under the usual
justification of increased efficiency. The tables :S/how the size and
power of inferences using Bi, the slope coefficie’nt, calculated 1000
times for each model under each of the seven techniques. Rejection
proportions computed for cases of a true null hypothesis (ie the
sizes of statistics) are reported for critical values from the t-
" distribution with nominal rejection proportion\s’k of .05, .025, and .01.
Powers are calculated using empirically ‘determined critical values
derived from a ranking & the quasi t-statistics calculated for a true
null hypothesis. - In order to calculate power it is necessary to
assume a false null hypothesis for B4. For all models except the
homoskedastic model the false null;’ is By = 0.6; for the

homoskedastic models the false null was chosen-as 81 =0. The

~choice of false nulls is somewhat arbitrary, however a very false
null hypothesis leads to powers too close to one for comparison, and
a nearly true null leads to very small powers which are also
difficult to compare. The false nulls are chosen here such that for
all sample sizes shown in a given table the powers range from
approximately "0.20 to 0.80. ‘
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Rejection proportions from Monte Carlo simulations . can . be
interpreted statistically by noting that the variance of a sample
proportion is asymptotically normally distributed, and given by: -

p(1-p)/n,

where p is the expected proportlon of rejections, and n is the number

of simulations. For expected rejection proportions of .05, .025 and
.01, the values for two standard deviations of the sample proportion
are .014, .010, .006. Therefore, for the .05 nominal size we can

determined whether a particular empirical proportion is.

statistically different from .05 by noting whether it falls within the
two standard deviation confidence interval ranging from .036 to
.064.

Table 1 shows the effect of the various techniques on the size of

inferences when the errors are homoskedastic. OLS and GLS are

mathematically equivalent in this case. The EGLS procedure

employed here is Park's method. The general conclusion arising from -

this table is that the procedures employed appear t6 have had no
serious effect on the reliablity of the size of inferences. This
agrees with the finding of MacKinnon and White that the jackknife
estimator is only slightly less reliable than OLS in the case of no
heteroskedastiéity. The jackknife yielded the worst inferences in
table 1, particularily for T=30, but the discrepancies are not large,
and in accordance with the asymptotic theory, the problem

disappears for T=120. One might expect that irﬁgrfe_gggfsﬂusingffthe//
jatkknife could be improved-by using the pre-test estimator of the

" “variance-covariance matrix based on the White test, and the results
confirm this. In fact either one of the pre-testing techniques
results in inferences with empmcal sizes almost identical to the
OLS inferences.

Tables 2 through 4 show the size of inferences in the presence  of
the various forms of heteroskedasticity, where it is assumed that
the functional form is known. Several conclusions apply to all three
tables:
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1. Most of the rejection proportions are not significantly different
from the expected proportion of rejections; in terms of empirical
size, the inferences obtained from all the. procedures are quite
. reliable.  This conclusion agrees with MacKinnon and White's
findings for the jackknife, but differs quite dramatically from the
Monte Carlo studies which use replicated observations and no
functional forms to obtain EGLS estimates.

2. There is a tendency for the empirical rejection\f\'!requencies to be
too high, a finding noted in all previous studies.

3. Comparing inferences resulting from the use of EGLS
coefficients with those resulting from the use of OLS coefficients
shows neither one to be consistently superior, contrary to Nozari's
finding that inferences using OLS coefficients were superior.

4. Both pre-tests result in only very small improvement in accuracy
of empirical sizes of inferences.

5. In agreement with Deaton, the inferences arising from the simple
OLS procedure, ignoring hﬁet}ef[g,s}s,edasticity,/are"”d'ljifé"good, and often
~ superior to the EGLS inferences.

6. The most accurate empirical rejection frequencies are observed
_in the case of structural change. This is not surprising in the case
of EGLS, since the estimate of one parameter is based on multiple
observations. The jackknife inferences are also more accurate in

this case.

7. Rejection frequencies for sample size 120 are no more accurate
than the rejection frequencies for sample size 60, indicating that
the asymptotic properties of the test statistic can be assumed to
take effect at sample sizes of less than 60.

&
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Turning now to a comparison of powers (tables 5 to 8), a consistent
and sometimes dramatic advantage for EGLS is observed for all
cases except the model with homoskedastic errors. The superiority
of EGLS is most pronounced in the case of multiplicative

heteroskedasticity (table 6), where the power of the inferences -

using EGLS coefficients sometimes exceeds the power of inferences
using OLS coefficients by as much as 100 percent. The inferences
based on the Goldfeld-Quandt ‘pre-test are very similar to the EGLS
inferences, particfj rily for large samples. In all three models, the
advantage in power of the EGLS technique increases as sample size
increases, a predictable result since EGLS approaches GLS
asymptotically; ie, as sample size increases the variance-
covariance matrix decreases not only due to the effect of increasing
T as if GLS were used, but also due to the fact that there is less
variation in the estimate of Q. For the case of the homoskedastic
error model (Table 5), EGLS vyields inferences with the lowest
power, though for sample sizes of 60 and 120, the power of EGLS

inferences is only slightly. lower than that of the other techniques. —
Use of the Goldfeld-Quandt-pre-test to select between EGLS and OLS |

“results in inferences with power nearly as high as simple OLS
inference.

MacKinnon and White (1985) recommend against the use of the pre-
test estimator based on the White test, and suggest simply using the

jackknife whenever heteroskedasticity is suspected. This™

conclusion is based on the potential for lower power and biased
variance-covariance matrix estimates in cases where existing
heteroskedasticity is not detected. The results of this study
confirm both these findings, but show the loss in power due to use
of the pre-test based on the White test to be small, relative to the
power of the jackknife inferences.

Tables 9 to 16 show the size and power of tests when Park's method
of EGLS is employed for cases where the heteroskedasticity has not
been generated by the functional form used in the Park method.
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Since there was little difference between the results for sample
sizes of 60 and 120, we show results only for T=30 and T=60.
Moreover, as explained above, when the incorrect functional form is

used, the asymptotic theory does not apply.

The functional forms chosen to generate the heteroskedasticity are
shown on each table. Initially, forms were chosen with the same CV
as in part |, but preliminary simulations revealed that the quality of
inferences (as well as estimates) depended upon the absolute size of
the constant term in the heteroskedasticity generating function. In
following the approach of generating worst possible cases for EGLS,
functional forms with relatively large constant terms were tested.
- The large constant term impairs the ability of the Park method to
estimate the errors, since the functional form used in the Park
method has no -intercept. The observation regarding the importance

of the constant term has also besn made by Kennedy (1985) in the

_ context of efficiency. ~Kennedy suggests correcting for the existence
of a constant term when the constant exceeds 15 perceht of the
average variance. The results shown here are based on models where
the constant term as a percentage of the average variance ranges
from a low of 16 percent to a high of 57 percent. For any of these
models with constant terms, the rfesults of some preliminary
simulations showed that EGLS inferences could be improved, both in
terms of size and power, by following the advice of Kennedy and
estimating the errors using the modified Glejser method. These
preliminary simulations also showed that for constant terms of the
relative size used here, the need for an intercept term in the
functional form could be easily detected either by comparing the fit
of the Park model with the modified Glejser model, or by applying
Kennedy's 15 percent rule. Neverthelbss, the intention of these
tables is to show results for the effects of choosing the incorrecl
functional form, and to provide some indication of the robustness of
EGLS inferences to incorrect choices of the functional form.
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In terms of empirical size (tables 9 to 12), the use of an incorrect
functional form has very little effect. All of the findings (points 1
to 6 above) which applied in the case of known functional form apply
here as well. Even for the case of structural change, where we are
estimating a step function with a simple curve, the inferences
arising from EGLS techniques are good.

Comparing powers of inferences (tables 13 to 16), we see there are
some consequences to using the incorrect functional form.
Inferences arising from the use of EGLS estimates still have
generally higher power than the inferences arising from OLS
estimates in tables 13 to 15, but in the case of-structural change
(table 16), the inferences arising from the jackknife estimator of
the variance are of similar power to those of EGLS. It should be

noted however, that it is unlikely that a researcher examining data =~~~

showing heteroskedasticity due to structural change would have
chosen Park's method of EGLS. |t is illustrated here as a worst
possible case, and in fact, the differences do not rule out even this
very unlikey form of EGLS. -

Table 13 c'omparés the power of inferences when heteroskedasticity
is generated by the random coefficients model and estimated by the
Park model. The results show a clear advantage of EGLS inferences
despite the incorrect functional form, and as in part |, no significant
advantage to the Goldfeld-Quandt pre-test. In table 14, the
heteroskedasticity generating function is altered by increasing the
intercept by a factor of 5. These results show only a very slight
advantage in power to using EGLS inferences over jackknife.
inferences. Similar results obtain for the linear model of
heteroskedasticity in table 15. Note that in table 14 the- particular
model of heteroskedasticity has had the effect of reducing the CV
quite substantially from the levels used in Tables 13 and 16 (and all-
of Part I). The effect of this is that the Goldfeld-Quandt test is now
less powerful, hence the power of the inferences using the pre-test
coefficient estimates are also less powerful. R
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it is also interesting to note that all the cases where the EGLS
inferences had less power than the OLS inferences corresponded to
cases where the average variance of the EGLS estimates was higher
than the average variances of the OLS estimates. That is, EGLS
inferences are inferior in cases where EGLS ought not to have been

applied on the basis of reduced efficiency.
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Empirical Size of Inferences

2

Nominal Size
T=30

OLS

GLS

OLS/functidnal form Q
OLS/jackknife

EGLS :

- PRE/ols or egls
PRE/var=ols or jackknife

T=60

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=0ls or jackknife

T=120

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=ols or jackknife
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Table 1

.050

.064
.064
.048
.073
074
062

.056
.056
.052
.064
.060
.056
.056

.047
047
.045
.054
.049
047
.048

.025

.034
.034
.025
.047
.045
034
.031

.028
.028
.028
.037
.033
.028
.028

.020
.020
.023
027
.020
.020
.021

.010

011
011
.013
.022
.020
011
.010.

.015
.015
.014
.017
.020
.015
.015

.007
.007
.008
011
.008
.007
.007
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Table 2
Empirical Size of Inferences

otz . tha , K=1, 3=1.38; CV = .432

Nominal Size .050 .025 .010
T=30
OLS .047 .022 .011
GLS .047 .022 .005
OLS/functional form Q .0569 .036 .015
- OLS/jackknife -, .066 .033 .020
EGLS .071 .028 .008
PRE/ols or egls .068 .031 .010
PRE/var=o0ls or jackknife 045 .023 .012
T=60
OLS : .047 .026 .012
GLS »~ .055 .024 .008
OLS/functional form Q .063 .031 .016
OLS/jackknife .060 .030 .014
EGQS : .061 .028 .010
PRE/ols or egls .058 .027 .009
PRE/var=0ls or jackknife .065 .028 .014
T=120
OoLS 052 .024 .002
GLS .032 .013 .002
OLS/functional form Q .058 .023 .005
OLS/jackknife .065 .027 .009
EGLS ~ .036 .013 .002
PRE/ols or egls .036 .013 .002

PRE/var=0ls or jackknife .055 .027 .009
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2 2 N
Gy =1+ 10)(‘t ; CV = 432

Nominal Size
T=30
OLS

GLS
OLS/functional form Q

"~ OLS/jackknife

EGLS
PRE/ols or egls
PRE/var=ols or jackknife

T=60

OoLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=ols or jackknife.

T=120

OLS

GLS

OLS/functional form Q
OLS/jackknife :
EGLS

PRE/ols or egls

PRE/var=ols or jackknife -
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Empirical Size

.050

.057
.048
.056
.060
.058
..064
.051

.0585
.048
.049
.059
.054
052
.056

.060
.056
.057
.056
.063
.063
.056

f Inferences

.025

.027
.020
.026
.032
.031
.031
.023

.028
015
.021
.029
.029
.029
024

.037
.036

.032.

.032
.037
.037
.032

.010

.007
.010 |
.007
.013
.021
.021
.007

012
.005
.008
012
.014
.015
.010

021
013
.020
020
017
017
.020



- Table 4
Empirical Size of Inferences

2 " ' ,
oy = 1 or 4.84 (structural change model); CV = .432

e -
A -

- ) ‘\ ) Id )
Nominal Size .050 .025 .010
T=30 =~

oS - ' .038 .013 .004
GLSs . .048 .019 .010
OLS/functional form Q .041 .014 .004
OLS/jackknife . .055 .027 .007
EGLS .050 .022 .008
PRE/ols or egls ..049 .022 .008
PRE/var=ols or jackknife .036 .014 .003
T=60

oS ' .046 .026 .007
~GLS ‘ .047 .028 .012
OLS/functional form, Q .061 .026 .007
OLS/jackknife } .065 .031 .010
EGS | .054° .030 .014
PRE/ols or egls - .054 030 .014
PRE/var=ols or jackknife .053 .028 .008
T=120"

oLS | 051 .028 .010
GLS . .059 .031 .013
OLS/functional form Q .050 .027 .010
OLS/jackknife - .049 .025 .013
EGQS - .062 .032 .012

PRE/ols or egls .062 .032 .012
- PRE/var=ols M@e .050 .028 .010
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‘ Table 5
Empirical Power of Inferences

o$=1 Cv=0

Empirical Size 050 .025 .010
- T=30
oS 437 .340 .223
GLS .437 .340 .223
OLS/functional form Q 454 349 .192
OLS/jackknife. | 428 .302 .192
 EGS . .396 .284 .169
PRE/ols or egls 7T 436 .325 .221
. PRE/var=ols or jackknife 437 .344 231
' T=60
OLS : 659 .544 .311
GLS ' .659 .544 311
OLS/functional form Q .652 .528 .323
OLS/jackknife 652 . .320
. EGLS ' 624 507 .280
~ PRE/ols or egls - .651 . 312
PRE/var=ols or jackknife = .650 . .309
T=120 ‘
OLS . - .932 779
GLS ' ‘ ‘ 932 . L779
OLS/functional form Q 935 . .781
OLS/jackknife . .930 . 761
EGLS , - .929 880 .783
PRE/ols or egls .933 . .781

PRE/var=ols or jackknife .932 .879 .776
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Table 6

Empirical Power of Inferences

2

Empirical Size

- T=30

OoLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS ‘

PRE/ols or egis
PRE/var=ols or jackknife

T=60

OoLS

GLS

OLS/functional form Q
OLS/jackknife

EGS

PRE/ols or egls
PRE/var=o0ls or jackknife

T=120

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGS

PRE/ols or egls
PRE/var=o0ls or jackknife

36

a .
o, = th , K=1,‘ 0=1.38; CV = 432

-~

.050

.252
.385
.203
.242
311
.294
.256

.371
573
.348
.367
.523
.521
.362

.527
877
.514
.525
.867
.867
.525

.025

167
.290
.126
173
.238
.208
.169

.259
474
.204
.249
443
425
.262

448
.832
422
.426
.807
.807
426

.010

075
.209
.082
.071
.154
141
.073

147
.384
104
107
.313
.326
115

.342
.739
.333
.309
.699
.699
.309



15

Empirical Rower of Inferences

2 2
G = 1+ 10xt ; CV = 432

Empirical Size
T=30

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGQS .

PRE/ols or egls
PRE/var=o0ls or jackknife

T=60"

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=ols or jackknife

T=120

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=ols or jackknife

37

Table 7

.050

REL)
191
.150
.169
175
172
187

247
.307
246
233
296
.301

231

:368
495
373
.367
476
476
.367

.025

100
131
.099
102
121
120
101

173
219
173
.1589
.196
.199
179

237
.352
.236,
.238
.334
.335
238

.010

.064
.062
.067
.044
.023
.024

065

.100
.169
.100
102
.093
.104
107

[111

222
.104
.098
212
212
.098

v



 Table 8

Empirical Power of Inferences

St

2.‘3

- Empirical Size

T=30

- GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=o0ls or jackknife

T=60

OLS

GLS .
OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls -
PRE/var=ols or jackknife

T=120

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGQLS 5
PRE/ols or egls
PRE/var=0ls or Jackknlfe

38

.0580

229
.249
234
.248
.256
.262
.226

.349
415
.340
316
377
377
.336

.592
.769
.596
.606
.756
.756
613

2 = 1 or 4.84 (structural. change model);

.025

176
178
.181
. 159
.166
.166
175

.240
274 .
.238
.240
.264
.264
241

434
.657
424
.482
.667
.667
434

CV = 432

.010

117
.081
.113
.101
.083
.083
113

16
148
164
178
.150

.149
172

311
518
310
275
518
518
311



Table 9
Empmcal Size Using Park's method of EGLS

2
Gy -1+10xt ; CV = 432

Nominal Size _.050 .025 .010
T=30

OLS .055 .025 .012
GLS .043 .017 .005
OLS/functional form Q@  .058 .030 .016
OLS/jackknife .069 .038 .012
EGLS .069 .033 .016
PRE/ols or egls 071  .032 .016
PRE/var=0ls or jackknife .052 .022 .010
T=60

OLS .061 .0‘41 .015
GLS .052 .027 .015
OLS/functional form Q .064 .036 .022
OLS/jackknife .057 .034 .016
EGLS . .066 .039 .024
PRE/ols or egls .066 .041 .024

RRE/var=oIs or jackknife .054 .031 .014 .

39



Empirical Size Using Park's method of EGLS

2
ot2=5+10xt : CV =.075

Nominal 'Si'ze
T=30

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=0lé or jackknife

T=60

OLS

GLS

OLS/functional form Q
OLS/jackknife

EGLS

PRE/ols or egls
PRE/var=0ls or jackknife

40

Table 10

050

.048
.050
.052
.060
.066
.060
.045

.054
.050
.0585
.0589
.066
.057
.052

.025

.023
.026
.027
.032
.039
.033
.022

.027
.027
.032
.027
.036
.029
.026

.010

.007
.005
010
017
016
013
.007

.009
.010
.014
011
.015
.010
.009



, Table 11
T Empirical Size Using Park's method of EGLS

o, = 1 + 10)&, CV =.20

Nominal Size .050 .025 .010

T=30

OLS - .044 .021 .008
GLS .051  .023 .007
OLS/functional form Q  .044  .024 .009
OLS/jackknife .061 .035 .016
EGLS .060 .029 .014
PRE/ols or egls .054 028 .013
PRE/var=ols or jackknife .046 .021 .009
T=60

OLS .044 .021 .007.
GLS .048 :019 .008
OLS/functional form Q .048 .032 .010
OLS/jackknife .048 .026 .009
BEGS .057 .027 .011
PRE/ols or egls 056 .024 .010

PRE/var=o0ls or jackknife .043 .022 .007
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~ Table 12
Empirical Size Using Park's method of EGLS

2 / .
o, = 1 or 4.84 (structural change model); CV = 432

W[slominal Si;e ' .050 .025 .010
T=30

OLS .058 .024 .011
GLS .046 .029 .011
OLS/functional form Q .058 .039 .019
OLS/jackknife .070 .037 .019
EGS .080 .049 .027
PRE/ols or egls .075 .046 .026
PRE/var=o0ls or jackknife .059 .026 .011
T=60

oLS .051 .021 .010
GLS . .0561 .022 .010
OLS/functional form Q .066 .036 .016
OLS/jackknife .063 .032 .014
EGLS - . .085 .050 .026
PRE/ols or egls .084 .046 .026

" PRE/var=ols or jackknife .054 .025 .011

42



_ Table 13 ‘
Empirical Power Using Park's method of EGLS

2 2
op =1+10x, ; CV = .432

rical Size 050 .025 .010

-

T=3

OLS | 181 .126 .047
GLS 236 .128 .096
OLS/functional form Q 200 .121 .051
OLS/jackknife 171 122 .080
EGLS 232 .131 %077
PRE/ols or egls 216" .128 .079
PRE/var=ols or jackknife .178 .120 .062
T=60

OLS 220 .135 .076
GLS . .288 .162 .088
OLS/functional form Q = .255 .142 .057
OLS/jackknife 239 .129 .077
EGLS _ 286 .157 .077
PRE/ols or egls .275 .155 .076

PRE/var=ols or jackknife .232 .132 .083
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Table 14
- Emplncal Power Usmg Park's method of EGLS

2

Empirical size .050 .025 .010
T=30

OLS 1 .133 .077 .035 - .
GLS ' .149  .099 .051
OLS/functional form Q 129  .072 .027
OLS/jackknife 135 .072 .025
EGLS .125 .083 .026
PRE/ols or egls .144 .089 .033
PRE/var=0ls or jackknife .138 .074 .033
T=60

OLS 170 .114 .063
GLS .188 .107 .056
OLS/functional form Q - .175 .109 .049
OLS/jackknife 150 .115 .057
EGQS - 177 110 .059 .
PRE/ols or egls .164 .108 .065

PRE/var=0ls or jackknife .168 .109 .060
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, Table 15 ] o
Empirical Power Using Park's method of EGLS

2
o = 1+ 10)& ; CV.=.20

Empirical Size .050. .025 .010

.T=30

OLS 157 .086 .048
GLS 160 .102 .054
OLS/functional form Q 158 .105 .047
OLS/jackknife .146 .081 .044
EGLS .1568 .113 .053
PRE/ols or egls 163 .096 .045
PRE/var=ols or jackknife .159 .083 .049
T=60

OoLS o 228 .151 .075
GLS 259 .186 .119
OLS/functional form Q .229 .134 .076
OLS/jackknife 245 151 .082
EGLS ' 238 .171 .091
PRE/ols or egls .234 163 .086

PRE/var=ols or jackknife .234 .148 .079
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: Table 16 ' )
Empirical Power Using Park's method of EGLS

2 .
o = 1 or 4.84 (structural change model); CV =-432

Empirical Size 050 .025 .010

T=30"

OLS .215 .139 .070
GLS .268 .128 .079
OLS/functional form Q 221 139 .047
OLS/jackknife .220 .146 .072
EGLS. o .233 .125 .057
PRE/ols or egls 247 122 .061
PRE/var=ols or jackknife .211 .137 .067
T=60

os 367 .257 .147
GLS : .385 .308 .198
OLS/functional form Q -.372 .244 142
OLS/jackknife 370 .264 .117
EGLS ; .381 .250 .168
PRE/ols or egls . 374 235 .167

PRE/var=0ls or jackknife .377# .258 .149
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Conclusions

The results of these Monte Carlo studies suggest that inferences
using EGLS estimates are superior in terms of power, and equivalent
in terms of size, to several other procedures over a varlety of
heteroskedastucuty generating processes. However, the superior -
power of EGLS inferences depends upon the functional form used to
model the heteroskedasticity. When the functional” form of the
heteroskedastlcny is known a prlon EGLS is unequuvocably the best
technique. When the functional form is unknown, some: caution in
applying EGLS is-required, but these results have shown that EGLS
inferences are somewhat robust to errors in _the selection of the
functional form In particular, the method of Park yieided
inferences of superior or equuvalent power even in the presence of
_mixed heteroskedastlcny with relatively Iarge constant terms. In
practice, a researcher examining the residuals wou\ld very “likely
have detected the mixed heteroskedasticity by comparing. the fit of
functional forms, or by the use of a rule of thumb such as Kennedy's
(1985), and would have produced superior EGLS inferences uSing the
modified Glejser. method. |

In the case of structural change heteroskedasticity, the method of
Park yielded inferences of power very similar to the OLS/jackknife
inferences, but the correct EGLS procedure was superior in terms of
power. Even a‘visual inspection of residuals arising from a case of
structural .change heteroskedasticity would likely have indicated to
the practitioner the inappropriateness of the method of Park. It is
also common in econometric ‘studies to have- some other information
which could identify the exact point (or date) at which the-
structural ghange switching takes place (eg. a policy change tax
changes, price controls, war, etc.).

These resuits indicate that the best procedure is to make inferences-

using EGLS estimates after 'some preliminary diagnostic work on the

OLS residuals’ whenever there is some empirical evidence or
47 |



atheoretic}al reason to relate the variance of the errors to  an
exogenous variable via a simple functional form. This procedure
should be followed even if the functional form- only approxumates the
~true heteroskedastucuty generating process. o
.ln defense of the OLS/jaqkk_hife inferenc_es, it 'should-be noted that
the te’chnli’qué,, yields inferences which are superior in terms of both
size and power to simple OLS inferences, and also that each of the
- cases of heteroskedastiCity tested here involved a known exogenous
" variable (either xi or a 0-1 dummy for structural change) related to
the vanance of the errors in a- rather simple way. The practitioner:
may well -be faced with cases of heteroskedastncny which are
unrelated to the independent vanables in“any simple way, and would
therefcre be well advised to-use the jackknife estimator and ignore
the fuhctional form. MacKinnon- and White suggest that the
jackknife - may “be applied even when errors are homoskedastic,
however they refer”only to size and not power results. These
results show a small reduction in power as a consequence of using
jackknife inferences with homoskedastic data.

»

The  use of critical values from a_ t distribution when the small
sample : statistic is only * approximately distributed as a t
distribution presents no problems for any of the techniques
examined. In agreement with the findings of MacKinnon and White
for the jackknife, the differences between empirical and- nominal
Sizes are not large, even for sample sizes as small as 30, and
disappear as the sample size increases beyerd 100. Moreover, the
empirical size of EGLS inferences is apparently not affected by
choosing the mcorrect functlonal form.

The results show no reason to use the techniqu'e’of making
inferances using OLS coefficient estimates and the functional form-
estimate for Q. For inferences using OLS coefficients, the jackknife
estimate of the variance yielded higher power than did this
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technique, and in any case, where good estimates of Q are possible,
EGLS is by far the recommended procedure“ for estimation - and
inference.  This -study therefore reject the hypothesis suggested by
earlier studies '(Nozari, 1984) that inferences are more accurate in’
terms of size when made using OLS coefficients.

" The use of the Goldfeld-Quandt pre-‘tes't to choose between OLS and
EGLS inferences in the presence of heteroskedasticity rgsulted in
inferences almost identical to EGLS , but resulted in a significant
improvement in power over simple EGLS procedures for the case of
homoskedastic errors. The conclusion from this is to recommend the
use of the Goldfeld-Quandt pre-test whenever there is any -
possibility of heteroskedasticity, since the costs of ignoring
heferoskedasticity, in terms of reduced power and bias, are high,
while the cost of the type | error in the pre-test are low. '
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