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Abstract 

Convex optimization is a branch of mathematics dealing with non-linear optimization prob- 

lems with additional geometric structure. This area has been the focus of considerable 

research due to the fact that convex optimization problems are scalable and can be effi- 

ciently solved by interior-point methods. Over the last ten years or so, convex optimization 

has found applications in many new areas including control theory, signal processing, com- 

munications and networks, circuit design, data analysis and finance. As with any new 

problem, of key concern is visualization of the problem space in order to develop intuition. 

In this thesis we develop tools for the visualization of convex functions. An important oper- 

ation in convex optimization is that of Fenchel conjugation. Earlier research has developed 

algorithms for the symbolic Fenchel conjugation in one dimension, or many separable di- 

mensions. In this thesis these algorithms are extended to work in the non-separable many 

dimensional case. 
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Chapter 1 

Introduction and Preliminaries 

Convex optimization is a branch of mathematics dealing with non-linear optimization prob- 

lems with additional geometric structure. This area has been the focus of considerable 

research due to the fact that convex optimization problems are scalable and can be effi- 

ciently solved by interior-point methods. Additionally, convex optimization problems are 

much more prevalent than previously thought as existing problems are constantly being 

recast in a convex framework. 

Over the last ten years or so, convex optimization has found applications in many new 

areas including control theory, signal processing, communications and networks, circuit 

design, data analysis and finance. As with any new problem, of key concern is visualization 

of the problem space in order to help develop intuition. In this thesis we develop and 

explore tools for the visualization of convex functions and related objects. We provide 

symbolic functionality where possible and appropriate, and proceed numerically otherwise. 

Of critical importance in convex optimization are the operations of Fenchel conjugation 

and subdifferentiation of convex functions. The algorithms for solving convex optimiza- 

tion problems are inherently numerical in nature, but often closed-form symbolic solutions 

exist or symbolic computations may be of aid. There exists a wealth of mathematics for 

assisting the calculation of these operations in closed form, but very little in the way of 

computer aided tools which take advantage of these techniques. Earlier research has devel- 

oped algorithms for the manipulation of these objects in one dimension, or many separable 

dimensions ([2, 31). In this thesis these tools are extended to work in the non-separable 

many dimensional case. 



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 

In this chapter we explore the basics of convex analysis and develop the theory necessary 

for a good understanding of the algorithms we will describe in later chapters. We build the 

subject matter in much the same order as Rockafeller in his classic text [16], but with an 

emphasis on geometric proofs of results, as in [13]. We also intersperse the fundamentals 

with more modern results and examples from [4] and [ 5 ] .  This chapter is intended as a 

reasonably self-contained introduction to convex analysis up to and including basic results 

on Fenchei duality. 

1.1 Notation and Convention 

We begin by discussing the basic geometric and analytic concepts referenced throughout 

this work. The natural setting for any computer algebra system is Rn, by which we mean 

an n dimensional vector space over the reals R. However, wherever possible we will present 

results using an arbitrary Euclidean space E (a  finite dimensional vector space over the 

reals R equipped with an inner product (., .)), as an abstract coordinate-free representation 

is often more accessible and elegant. 

The n o r m  of any point x E E is defined as IIxII = d m .  The un i t  bull is the set 

The fundamental operations of set addition and set subtraction for any two sets C,  D E E 

are defined as 

C + D = { X + ~ : X E C , ~ E  D}, and 

C - D = { x - Y : x E C : Y E  D}. 

Additionally, for a subset A C C we define set scalar rr~uLtiplicr~t.ior~ as 

We also represent the standard Cartesian product of two Euclidean spaces X and Y as  

X x Y and define the inner product as ((e,x), ( f ,  y)) = (e, f )  + (x, y) for e ,  f E X and 

x , y E Y .  

We borrow heavily from the language and standard notation of topology. A point x is 

said to lie in the interior of a set S C E, denoted by int S, if there is a real 6 > 0 such 



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 3 

that N = x + 6B C S. In this case we say that both N and S are neighborhoods of the 

point x. As an example, the interior of the closed unit ball B is simply the open unit ball 

{x E E : llxll < 1). 

A point x E E is the limit of a sequence of points {xi) = xl ,  x2, . . . in El written x j  -+ x 

as j -+ co (or limj,, XI = x) ,  if llxJ - X I /  -+ 0. The closure S, denoted by cl S ,  is defined 

as the set of all limits of all possible sequences in S .  The boundary of a set S is defined as 

cl S \ int S ,  and is denoted by bd S.  A set S is labelled open if S = int S, and closed if 

S = cl S .  Basic exercises in set theory show that the complement of a set S ,  written SC, 

is open if S is closed (and vice-versa), and that arbitrary unions and finite intersections of 

open sets remain open. 

The interior of a set S may be visualized as the largest open set contained in S ,  while 

the closure of a set S is simply the smallest closed set encapsulating S .  

We adopt the usual definition and call a map A : E -, Y linear if all points x, y E E 

and all A, p E R satisfy the equation A(Xx + py) = XAx + pAy. The adjoint of this map, 

A* : Y -+ E ,  is defined by the constraint 

(A* y, x) = (y, Ax), Vx E E, Vy E Y. 

We also adopt the notation A-'H to denote the inverse irnuye of a set H under a mapping 

A, defined as A-IH = {x E E : Ax E H ) .  

In convex analysis it is both natural and convenient to allow functions to take on the 

value of + m .  For the sake of simplicity we introduce the extended real numbers, = 

R U {+cm). We further denote the non-negative reals by IR+ and the positive reals by IR++. 

In allowing functions to take on extended values we are lead to situations in which 

arithmetic calculations involving + m  and -03 must be performed. In dealing with this we 

adopt the following conventions, used in [4, 161: 

(1 :+m=03+(1 :=03for  - m < ( 1 : I + o o ,  

( 1 : - m = - m + c t = - m f o r  - c o I c r < + m ,  

crcc = ma: = m ,  a ( - m )  = (-m)cr = -m for 0 < a: 5 oo, 

(1:m = OQ = -03, a(-CO) = (-W)Q: = 00 for - 03 5 (1: < 0, 

000 = 000 = O(-00) = (-m)O = 0, 

-(-m) = m, inf 0 = + m >  and sup0 = -m.  

The troublesome case of +oo - m is generally avoided, but if encountered we adopt the 
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convention of [4] and say +KI - = +a, such that any two (possibly empty) sets C and 

D on R satisfy the equation inf C + inf D = inf {C + D).  

1.2 Convex Sets and Functions 

Of prime importance in convex optimization is the notion of convexity. We say a s e t C  c E 

is a convex set if all line segments between any two points x ,  y E C are themselves contained 

in the set. In other words, if (1 - X)x + Xy E C ,  for all x, y E C and for all X E [ O , l ] .  

Half-spaces are simple but important examples of convex sets. For any non-zero b E Rn 

and E R, the sets 

{x : (x, b) l PI, {x : (x, b) l PI 

are called closed half-spaces. Similarly, the sets 

are called open half-spaces. All four such sets are plainly non-empty and convex. 

We begin with a few basic results regarding set theoretic operations that preserve con- 

vexity. 

Theorem 1.1 (Intersection of convex sets) ([I 61, Theorem 2.1, page 10) The in- 

tersection C = r) Ci of an  arbitrary collection of convex sets is itself convex. 

Proof: Consider x ,  y E C .  For all i we see that x ,  y E Ci, and trivially the line segment 

joining them is as well. Hence C is by definition convex. 

Theorem 1.2 (Linear images and pre-images of convex sets) ([I 61, Theorem 3.4, 

page 19) Let A be a linear transform from Rn to Rm. Then AC is a convex set i n  Rm for 

every convex set C i n  Rn, and A-'D is  a convex set i n  Rn for every convex set D i n  Rm. 

Proof: Suppose x,  y E C. Since C is convex we know that (1 - X)x + Xy E C for all 

X E [O,l]. Due to the linearity of A we also see that A((1- X)x) + A(Xy) = (1 - X)Ax + XAy 

is in AC for every A*, Ay E C. Hence AC is also convex. A similar argument can be used 

to show that A-'D is convex. 



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5 

The notion of convexity may be extended to real-valued functions but we must first 

introduce the epigraph. The epigraph of a real-valued function defined on a subset S C E 

f : S -+ R is denoted by epi f and consists of all points in E x R that lie above the function: 

epi f = {(x,X) E E x R : x E S,X 2 f (x ) ) .  

The definition for extended real-valued functions f : S C E -, is analogous. 

A function f : E + E is said to be a convex function if epi f is a convex set in E x R. 
A trivial example of a convex function is the indicator function of a convex set. Given a 

convex set S C E ,  consider the following function bs : E -, E: 

i 0, X E S  
6s(x) = 

+m, x g s .  

From the convexity of S in the space E it is apparent that epi bs = S x R+ is convex in 

E x R. 

Stepping outside the language of convex sets, this is equivalent to saying that if the 

mean value of any two function values is greater than the function value of the mean, then 

the function is convex. This notion is captured in the following result. 

Theorem 1.3 (Interpolation characterization of convexity) ([I 61, Theorem 4.1, 

page 25) Consider a function f defined on a set S c El where f : S -, R. It follows that f 

is convex if and onlv i f f  ((1 - X)a+ Xb) < (1 - A)  f ( a )  + X f (b), for all a ,  b E S and X E [O, 11. 

(In fact, for a proof of the convexity of f we need only show that the given relation holds 

for any single fixed X E (0, I).) 

Proof: Suppose that f is convex. By the definition of convexity of a function this is 

equivalent to saying that epi f is a convex set in E x R. Thus we have that all points 

(1 - A) f ( a )  + X f (b) are in epi f for any a ,  b E S and X E [O, 11. By the definition of the 

epigraph, it follows that (1 - A) f (a) + X f (b) 2 f ((1 - X)a + Xb). 

Suppose f is not convex. Then there exists two points a,  b E epi f and some point in 

between them c = (1 - X)a + Xb @ epi f ,  for X E (0 , l ) .  Since a E epi f then a = [xa,ra], 

where r, 2 f (x,), and similarly for b. Since c is outside of epi f then r ,  < f (x,). Thus we 

see that (1 - A )  f (x,) + X f (xb) = (1 - X)ra + Arb = T, < f (2,) = f ((1 - X ) X ~  + XX~).  . 
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Figure 1.1: Interpolation characterization of convexity 

Example 1.4 (Convexity of affine functions) Another example of a convex function 

is any affine function f : Rn -+ R, given by f : x H (a, x) + a. By linearity we have that 

f ((1 - X)x + X y) = (1 - A) f (x) + X f (y) and therefore f is convex by Theorem 1.3. 

This interpolation characterization of convexity is represented graphically in Figure 1.1: 

and an example of its utility is demonstrated in Example 1.4. Note that this characterization 

also brings rise to a stronger notion of convexity. A function is called strictly convex if the 

relation of Theorem 1.3 holds with strict inequality. 

The definition of a convex function implies that the function is defined over a domain 

S which itself must be a convex set. To simplify the issue somewhat we may extend all 

functions to be defined over the whole space E by mapping them to the value +cc where 

they are not otherwise defined. This preserves the original structure of the function and 

allows us to exclude the explicit domain of the function from our definitions of convexity. 

This also allows us to recast problems like 

inf { f (x) : x E S} 

to a simpler representation of inf { f (x) + bs}.  
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Having extended functions to be defined over the whole space E, we may sometimes 

wish to recapture the original domain of the function. We do so by redefining the domain 

of a function f : E + E as the set 

dom f = {x E E : f ( x )  < -too}. 

We say a function is proper if its domain is nonempty. 

Convex functions naturally gives rise to other convex sets in various ways. One of the 

most important of these introduces the concept of level sets. 

Theorem 1.5 (Convex level sets) ([16], Theorem 4.6,  page 28) For any convex 

function f : E + and any  a  E R, the leuel sets {x : f (x) < a } ,  { x  : f (x) 5 a } ,  

{x : f (x) > a }  and { x  : f (x) > a }  are convex. 

Proof: The proof of this follows from Theorems 1.1 and 1.2 by observing that the level 

sets can by created by the intersection of the epigraph and the appropriate open or closed 

hdf-space, projected down to E from E x E. 

1.3 Closures of Convex Functions 

Many topological properties are implied directly by convexity. However, most of these 

results are made more accessible by introducing a little extra structure to the problem. A 

function f : E -+ E is called lower semi-continuous on a set S C E at a point x if 

f ( X I  5 !im f (xZ) 
2-+w 

for every sequence xl, x 2 , .  . ., in S such that limxi = x, and the limit lim f (xi), exists. This 

condition may alternatively be expressed as 

f (x) 5 lim inf f (y) = lim inf { f (y) : 1 1  y - X I (  5 E } .  
Y-2 €10 

Reversing the inequality leads to an equivalent definition for upper semi-continuity. Note 

that when f is finite on a neighborhood of x, the combination of both lower and upper semi- 

continuity at  x implies continuity at  x .  The utility of lower semi-continuity is apparent from 

the theory of Fenchel conjugates (Section 1.6), and the following result. 

Theorem 1.6 ([16], Theorem 7.1, page 51) Consider a function f : E + E. T h e n  the 

following conditions are equivalent: 
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(a) f is lower semi-continuous on E; 

(b) {x : f (x) < cu) is closed for every cu E R; and, 

(c) th,e epigraph o f f  is a closed set.  

Proof: Lower semi-continuity can be readily reexpressed as the condition that u > f (x)  

whenever u = limui and x = limxi for sequences u1,u2, .  . ., and x1,x2, .  . ., such that 

ui 2 f (xi) for every i .  Thus, any sequence of points (x l ,  u l ) ,  (x2, u2), . . ., in the epigraph 

must have its limit in the epigraph, and we see that condition (a) is actually equivalent to 

condition (c). By taking cu = u = u1 = u2 = . . . we see that for any convergent sequence 

x1,x2, .  . . such that cu 2 f (x i )  it follows that cu 2 f (x). In this manner, (a) implies (b). 

Now suppose that (b) holds, and we have sequences xi converging to x and f (xa) converging 

to u. For every real cu > u, f (xi) must ultimately (for large enough i)  be less than a ,  and 

thus 

Eel { Y :  f ( y )  I & )  = { Y :  f ( y )  < a ) .  

Hence we see that f (x) 5 u, and we see that (b) implies (a). 

Given any function f : E + E, we define the closure, denoted cl f ,  as the function 

whose epigraph is itself the closure of epi f .  A function is therefore said to be closed if 

cl f = f .  Note that as implied by Theorem 1.6, for a proper convex function being closed 

is equivalent to being lower semi-continuous. 

1.4 Continuity of Convex Functions 

One of the most surprising results about convex functions is that the global geometric 

property of convexity can yield a local analytic property such as  continuity. This result is 

explored in greater detail in the following theorems. 

Lemma 1.7 (Bounded neighborhood) ((41, Lemma 4.1.2, page 66)  Let A be the 

simplex {x E R"+ xi < 1). If a function g : A -+ R is convex, then it is bounded above 

on A .  
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Proof: Let { e l ,  . . . , en) be the standard basis on Rn. For any x E S it follows that x = 

xy xiei. By the convexity of g we see 

Thus, g is bounded on A. 

Lemma 1.8 (Interior of epigraph) Let x be a point in int dorn f for a convex function 

f .  Consider any point (x, v) such that v > f (x). Then (x, v) E int epi f .  

Proof: We present a geometric argument. Since x E int dorn f there exists a scaled and 

translated simplex N such that N c int dorn f .  By Lemma 1.7 it follows that f is bounded 

on N,  and thus there exists a finite p  such that f (y) 5 p for y E N.  By the definition of the 

epigraph, it follows that C = {(y, p )  : y E N )  E epi f .  Additionally, by convexity, it follows 

that the line segment from (x, f (x))  to any y E C is also in epi f :  thus the vertical cone 

rooted a t  (x, f (x)) and extended to C is entirely within epi f .  Similarly, the area extended 

above C is also entirely contained within epi f .  Since (x, v) lies along the central axis of 

this structure, we can always find a neighborhood around it contained completely within it, 

and therefore completely within int epi f . 

Note that the above Lemma actually holds in both directions, and any interior point of 

epi f can be used to find an interior point of int dorn f .  This stronger result can be found 

in Luenberger [13]. 

Theorem 1.9 (Continuity of convex functions) Let f : E -+ be a convex function. 

Then f is continuous on int dom f. 

Proof: If f is improper, then f is identically m, and trivially continuous. Thus we may 

assume that f is proper and therefore finite on its non-empty int dorn f. 

In a proof parallel to that of Theorem 1.5 we can show that the upper level sets of 

cl epi f are all closed and (by the same logic as Theorem 1.6) that equivalently cl f is 

upper semi-continuous on int dorn f .  The combination of upper semi-continuity and lower 

semi-continuity from Theorem 1.6 shows that cl f is in fact continuous on dorn cl f .  It 

remains only to show that f = cl f on int dorn f. 
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Consider x E int dom f ,  and suppose cl f (x) # f (x). Without loss of generality, shift 

our coordinates such that x is at  the origin. Since epi f c cl epi f ,  then by the definition of 

the epigraph this means that cl f (0) < f (0). Let v be a value arbitrarily close to but less 

than f (0), such that (0, v) is in cl epi f but not in epi f .  Since (0, cl f (x))  E cl epi f we can 

construct a sequence ai = (xi, pi) such that lim a' = (x, cl f ) ,  lim xi = 0, limpi = cl f (0) and 

ai E epi f .  Consider the sequence of points bi = (-xi, 2v - pi). The sequence bi approaches 

the point b = (0, A) where X > f (x). By Lemma 1.8 it follows that b E int epi f ,  thus for 

large enough i the sequence bi is contained completely within epi f . Since (ai+ bi)/2 = (0, v), 

then by convexity (0, v) is in epi f ,  a contradiction. Hence it must be that cl f (x) = f (x) 

for all x E int dom f .  Thus f is continuous on int dom f .  I 

As shown in the above theorem, convexity of a function f : E -+ implies the continuity, 

and hence the lower semi-continuity, on the interior of the effective domain of f .  Thus, in 

order for a function to be lower semi-continuous over the whole space E we need only 

concern ourselves with the definition of the function along the boundary of the domain. 

This suggests that lower semi-continuity is a natural form of normalization which makes 

convex functions more regular and easier to manipulate. It is therefore natural to restrict 

ourselves to the study to closed convex functions, incurring very little loss in generality. 

The functions then gain the three important properties outlined in Theorem 1.6. 

Note that although convexity of a function f implies the continuity of f over the interior 

of its domain, it does not say anything about its differentiability. As an example, the 

one dimensional function f : x - 1x1 is clearly convex, but it is not differentiable at  the 

origin. However, given a function that is twice continuously differentiable on the interior 

of its domain, another characterization of convexity becomes useful. For simplicity we first 

examine the one dimensional case. 

Theorem 1.10 (Second derivative characterization of convexity in ID) 

([16], Theorem 4.4, page 26) Consider a < b E R and a function f : (a, b) + 

that is twice continuously differentiable on (a, b). Then f is convex if and only if ff"(x) is 

non-negative on (a, b). 

Proof: Suppose f" is non-negative on (a, b). Then it follows that f '  is non-decreasing on 

(a, b). Taking a < x < y < b, 0 < X < 1 and z = (1 - X)x + Xy, due to the non-decreasing 
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derivative we have that 

f ( 2 )  - f ( x )  = J,' f l ( t ) d t  I f ( z ) ( z  - X I ,  and 

f ( Y )  - f ( 2 )  = SZY f'W I f ( Y ) ( Y  - z ) .  

Since z - x = X ( y  - x )  and y - z = (1 - X ) ( Y  - x )  we have 

Multiplying the two inequalities by ( 1  - A) and X respectively and adding them together 

yields 

f ( z )  = f ( ( 1  - V a :  + X Y )  I ( 1  - 4 f  (4 + X f  ( Y ) .  

Thus, f is convex. 

Suppose f I f  is somewhere negative. Then by the continuity of f I f ,  there exists some open 

subinterval ( a f ,  b') on which f f  is decreasing. By a similar argument to that just presented, 

it follows that f is strictly concave on this subinterval, and therefore not convex. rn 

A parallel result holds for continuously differentiable functions with non-decreasing first 

derivatives. This result will be explored a little further in the next section. Additionally, 

this one dimensional result can by extrapolated to n dimensions by taking one dimensional 

slices through a point in the direction of each basis vector of the higher space. If each slice 

through every point is convex, then the entire function is itself convex. We first introduce 

the notion of positive semidefinite and positive definite matrices. 

Definition 1.11 (Positive Semidefinite) A matrix M E RnXn is said to be positive 

semidefinite if ( x ,  M x )  2 0 for all x E Rn. Similarly, M is positive definite if ( x ,  M x )  > 0 

for all non-zero x E Rn. 

Theorem 1.12 (Hessian characterization of convexity) ([16], Theorem 4.5, page 

27) Let f : E + be a twice continuously diflerentiable funct ion  defined o n  a n  open d o m  f .  

T h e n  f i s  convex if and only if i t s  Hessian ma t r i x  H ( x )  = v2 f ( x )  i s  positive semidefinite 

everywhere in d o m  f .  

Proof:. The convexity of f on E is equivalent to the convexity of the restriction of f to 

each line in E. This is the same as the convexity of the function g ( t )  = f ( x  + t d )  on R for 

each x, d E E. Vector calculus shows us that g f f ( t )  = (d, H ( x  + t d ) d ) .  Thus, by Theorem 

1.10, g ( t )  is convex for each x ,  d E E if and only if ( d ,  H ( y ) d )  2 0 for every y ,  d E E. rn 
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It is worth noting that the stronger condition of H(x)  being positive definite actually 

guarantees the strict convexity of f on a neighborhood of x. For more details, refer to [4]. 

1.5 Subgradients and the Subdifferential 

The directionul derivative of a function f : E -+ R at  a point x in a direction d E E is 

defined as 

when this limit exists. If the directional limit f r (x ,d)  is linear in d then there exists a 

(necessarily unique) vector a E E such that f r (x ,  d) = (a, d). In this case we say that f is 

(Giteaux) differentiable at x with (Giteaux) derivative V f (x) = a. 

Standard calculus teaches us that a minimizer 5 of an everywhere differentiable function 

f is necessarily a critical point such that V f (5) = 0. However, many interesting convex 

functions are not everywhere differentiable which leads us to pursue different methods for 

representing derivative information. As an alternative to the derivative we instead consider 

the subgradient. A vector x* is said to be a subgradient of a convex function f : E + at 

a point x E E if 

f (Y) 2 f (x) + (x*, Y - x), VY E E. (1.13) 

At points where the subgradient is defined, this subgradient inequality has a simple 

geometric interpretation: it says the affine function f (x) + (x*, y - x) is a non-vertical 

supporting hyperplane to the convex set epi f at  the point (x, f (x ) ) .  In the condition 

where f is differentiable at  x it follows that the only such hyperplane is the one with slope 

defined by the gradient o f f  a t  x ,  in which case the only subgradient to f a t  x is x* = V f (x). 

This geometric interpretation is demonstrated in Figure 1.2. 

At points of non-differentiability it follows that there is more than one subgradient. This 

leads to the definition of the subdifferential o f f  at  x as the set of all subgradients of f a t  

The calculus-like relationship between subgradients and global minimizers is explored in 

the following theorem. 
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Figure 1.2: Some convex subgradients 

Theorem 1.14 (Subgradients at global minimizers) For an?/ proper comiez function 

f : E -, R, the point x is  a global minimizer of f i f  and only i f  the condition 0 E d f ( x )  

holds. 

Proof: This result follows from the definition of a subgradient in Equation 1.13. A global 

minimizer x must satisfy the relation f ( ~ )  2 f (x), for all y E E. This is exactly the 

subgradient relationship for a point z with a vector x* = 0. 

Note the strong parallels between the theory of global minimizers for subdifferentials 

and of local minimizers for differentials. Furthermore, note that Theorem 1.14 reduces to 

the classical and familiar calculus result when f is everywhere differentiable over int dom f .  

The more subtle implication is that convex functions have a single local minimum; this is one 

of the properties that makes convex functions so attractive and tractable as optimization 

problems. 

It is natural to begin by asking questions about the existence and general behaviour 

of directional derivatives on convex functions. Some key properties of these functions are 

presented in the following theorem. 
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Theorem 1.15 (Existence of directional derivatives) ([16],  Theorem 23.1, page 

215) Let f be a convex function and let x be a point in int dom f .  For each d, the difference 

quotient in the definition of f f (x ,d )  is a non-decreasing function o f t  > 0, so that f f (x ,d )  

exists. Moreover, f '(x, .) is convex, f '(x, 0) = 0 and - f '(x, -d) 5 f '  (x, d), for all d. 

Proof: For simplicity let h(y) = f (x + y) - f (x) so that the difference quotient may be 

compactly expressed as t-'h(td). The set epi h is the translate of epi f with (x, f ( x ) )  

moved to the origin, and is therefore also convex. On the other hand, we may also write 

t-'h(td) = (ht-')(d), where by definition ht-l is the convex function whose epigraph is 

t-'epi h. Since epi h contains the origin, the latter set increases, if anything, as t-l 

increases. In other words, for each d, the difference quotient (ht-l)(d) can only possibly 

decrease as t decreases. Hence the limit in the directional derivative is bounded below and 

must exist. 

Since f1(x, .) is defined as the limit of a sequence of convex functions, it too must be 

convex. Moreover, by the definition of the directional derivative, we see that f f ( x ,  0) = 0. 

Finally, by the convexity of f '  (x, .) one has 

and therefore - f '  (x, -d) 5 f1(x, d), for all d. 

It is clear that there is an intimate relationship between directional derivatives and 

subgradients. This relationship is formalized in the following theorem, adapted from [16]. 

Theorem 1.16 (Directional derivatives and  subgradients) Consider a convex func- 

tion f : E + E. Then x* is a subyradient of f at x E i7~t dom f if and only if 

Proof: Suppose that x* is a subgradient of f a t  x. Setting y = x + td we can rewrite the 

subgradient inequality (Equation 1.13) as 

Since the difference quotient decreases to f1(x, t )  in the limit as t decreases to zero we are 

left with the desired inequality from the theorem. 
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Suppose the directional limit inequality holds. By the convexity of f and the non- 

decreasing nature of its directional derivatives from Theorem 1.15, we see that f (y) > 
f (x) + f'(x, y - 2). A direct substitution yields that f (y) > f (x) + (x*, y - x) ,  which is 

exactly the subgradient inequality. 

In the one dimensional case of the above theorem the subgradients are the slopes x* of the 

non-vertical lines in JR2 which pass through (x, f (x)) without meeting int epi f .  These form 

the closed interval of real numbers between fl_ (x) = - fl(s, - 1) and fi (x) = f '(x, + I ) .  We 

will revisit and formalize this result a little later. We first solidify the relationship between 

differentials and subgradients in the following theorem. 

Theorem 1.17 (Differentiability of convex functions) ([I 61, Theorem 25.1, page 

242) Consider the proper convex function f : E + E. Then the function f is Giteaux 

diflerentiable at a point x E in,t dom, f i f  and only iff has (L unique sut)gradient x* at x (in 

which case af (x) = {s*} = {V f (x)}). 

Proof: Suppose that f is differentiable at x. Then from the definition of differentiability 

there exists a unique vector a such that f l(x,  d) = (a, d). Substituting this into Theorem 

1.16 yields the inequality 

(a ,d)  _> (x*,d), b ' d ~ E .  

The only way this can hold for all d is with equality when x* = a,  thus a = V f (x) is the 

only subgradient of f at x. 

Suppose that f has a unique subgradient at s .  Without loss of generality, we may 

consider the translated scaled function g such that g(y) = f (a: + y) - f (x) - (x*, y). This 

function will have the unique subgradient 0 at the origin, and we must show that 

S(Y) lim - = 0. 
y-0 llyll 

Suppose that there exists a direction d such that g1(0,d) = p # 0. Let m = pd/lldlj2. 

then (m, d) = p. It follows that g(td) > (m,td). Similarly, by Theorem 1.15 we have that 

gl(O, -d) 5 -p = (m, -d) thus g(-td) 2 (m, -td) . For any e perpendicular to d it follows 

that (m,e) = 0, thus g(te) _> (m,te).  By the convexity of g it follows that for any y, 

g(y) 2 (m, y). However, this means that m is also a subgradient, a contradiction. It must 

therefore be that g'(0, d) = 0 for all d. 
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Let hx(u) = g(Xu)/X. Let {a l , .  . . , a,) be any finite collection of points whose convex 

hull contains the ball B. Each u E B may be expressed as u = Xlal + . - . + X,a,, and it 

follows that 

5 max{hx(ai) : i = 1, . . . , n ) .  

Since hx(ai) decreases to 0 for each i as X 1 0, it follows that hx(u) does likewise. Hence, 

given any E > 0 there exists a b > 0 such that 

Since each vector y with llyll 5 b may be written as Xu for some u E B, we have that 

g(y)/IIyII 5 E. Hence, the limit of g(y)/(lyll is 0, and thus the zero vector is by definition 

the gradient of g a t  the origin. H 

Note that we are actually proving the stronger notion of F~e'chet difiere7~ti~~hili t~j here. This 

is not completely surprising as on the interior of the domain of convex functions f defined 

over Rn, f is locally Lipschitz and these two notions of differentiability become equivalent. 

For more details refer to Chapter 6 of [4]. 

As alluded to  earlier, the situation is vastly simplified in one-dimension. If a function 

f : R + is proper and convex, by Theorem 1.15 the directional derivatives exist a t  every 

point in the interior. Theorem 1.16 gave us come clues as to how to  completely formulate 

the subgradient of a one dimensional function, and we formalize that result in our next 

theorem. 

Theorem 1.18 (Subdifferential in one dimension) Consider a proper convex function 

f : R -+ E. For each point x E int dom f the subdi;fJerential is given by the (potentially 

singleton) closed interval 

a f  (4 = [fI-(x), f$(x)I. 

Furthermore, the subdifferential is a singleton on1:y at those points x where f is differentiable. 

Proof: Consider any points x at  which f is differentiable. At these points, f: (x) = f;(x) = 

V f (x) and the above set is a singleton equal to {V f (x)) ,  which is the subdifferential of f 

at  x by Theorem 1.17. 
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Consider now any points in x a t  which f is not differentiable. We must have that 

fL(x) # f$(x), and by Theorem 1.15 we have specifically that fi_(x) < f;(x). Consider 

x* E [ fL (x), fL(x)]. It  follows that fi_(x) < x* 5 f;(x), and therefore 

f l (x ,  -1) > -x*, and 

f l (x ,  1) > x*. 

Thus, by Theorem 1.16 it follows that x* is a subgradient o f f  a t  x. Additionally, inspection 

shows that there can be no other x* that satisfy the system of two linear inequalities 

from Theorem 1.16, thus we may represent all of the subgradients of f a t  x as df (x) = 

[f!-(x), f M l .  I 

We finish this section with an example illustrating a practical application of Theorem 

1.18. 

Example 1.19 (Subgradient of absolute value function) Consider the function f : 

IR -+ IR defined by f (x) = 1x1. This function is differentiable everywhere but a t  the origin, 

thus by Theorem 1.17, df(x)  = {fl(x)) ,  for all x # 0. The left derivative a t  the origin is 

easily calculated as fl_(x) = -1, while the right derivative is calculated as f;(x) = 1. Using 

Theorem 1.18 the entire subdifferential is therefore given by 

1.6 The Fenchel Conjugate 

As characterized in Equation 1.13 we may view a convex function as being minorized at  

each finite point f (x) by at least one unique non-vertical hyperplane. This leads to a 

natural alternative representation of a convex function as being defined by the envelope of 

its tangent hyperplanes. Equivalently, we can consider the epigraph of the function as being 

defined by the closed-halfspaces which contain it. This concept is captured in the following 

result from Rockafeller 1161. 
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Theorem 1.20 (Envelope representa t ion of convex functions) 

([16], Theorem 12.1, page 102) A proper closed convex function f is the pointwise 

supremum of the collection of all afine functions h such that h 5 f .  

Proof:  Since epi f is a closed convex set it may be visualized as the intersection of all half- 

spaces containing it. The half-spaces can not all be vertical since that would imply that epi f 

was a union of vertical lines, contrary to properness. There is a one-to-one correspondence 

between each non-vertical half-space and a minorizing affine function describing the half- 

space. The non-vertical half-spaces are the epigraphs of the corresponding affine functions. 

To prove the theorem we must show that the vertical half-spaces (who have no affine function 

counterpart) are redundant in defining f .  In other words, given any vertical half-space V 

containing epi f and a point v outside of V, find a minorizing affine function h that excludes 

the point v. Let V = {(x, u) : 0 _> (5, bl) - P1 = hl(x))  and let v = (xo,uo). By the 

properness of f we know there exists at  least one minorizing affine function h2 such that 

h2 5 f .  For every x E dom f we have h1 (x) 5 0 and h2(x) < f (x) ,  and thus 

Xhl(x) + h2(x) 5 f (x),  VX. 2 0. 

The same inequality holds when x $ dom f because then f (x) = oo. Thus, for any X > 0 

we may define h as 

and have an affine function h such that h 5 f .  Since hl(xo) > 0, choosing X sufficiently 

large will ensure that  uo < h(xO) as desired. 

Corollary 1.21 (Existence of minorizing hyperplanes) Given. n proper convex func- 

tion f : E -t a there exists some b E E and p E a such that f (x)  2 (x, b) - p for every 

x. 

According to  Theorem 1.20 there is a dual way of describing any closed convex function 

f on E: we can describe the set F* consisting of all pairs (x*, y*) in E x R such that the 

affine function h(x) = (x, x*) - y* is majorized by f .  I t  follows that h(x) 5 f (x) for all x 

if and only if 

Y* 2 sup{(x,x*) - f b ) ) .  
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Thus F* is the epigraph of the function f * defined by 

This f *  is called the Fench,el conjugate of f (sometimes referred to as the Fenchel-Legendre 

tmnsfom).  This function can be viewed as the pointwise supremum of the collection of 

affine functions g(x*) = ( x ,  x*) - p such that ( x ,  p) belongs to F = epi f .  As such, f * is 

itself another closed convex function. In a parallel relationship, we see that f may itself 

be defined as the pointwise supremum of the affine functions h ( x )  = ( x ,  x*) - p* such that 

( x* ,pS )  E F* = epi f * ,  and therefore 

f ( x )  =sup{(x ,x*)  - f * ( x* ) )  = f**(x).  
2. 

Inspection shows that the conjugacy operation of Equation 1.22 is order-reversing; that is, 

for functions f ,  g : E + the inequality f 2 g implies that f * 5 g*. 

Example 1.23 (Absolute value function) Consider the function f : R H R defined by 

f ( x )  = 1x1 for all x E R. By definition the conjugate is given by 

Splitting the function at the origin yields the following 

( +m, otherwise. 

.riding the conjugate at a point y can be visualized as fi .nding the point Z at which 

the hyperplane of slope y is furthest above the convex function f . When this supremum is 

attained and unique, we may shift the hyperplane of slope y down by the value f * ( y )  and 

visualize a minorizing hyperplane h(x) = ( x ,  y )  - f * ( y )  touching the original function f ( x )  

at Z. This allows us to take the alternative view that the conjugate value of a function f at 
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Figure 1.3: Vertical intercept interpretation of conjugate 

a point y is equal to the negative of the value a t  the origin of the maximum hyperplane of 

slope y that minorizes f (in other words, which is a subgradient of f a t  the point 2 ) .  This 

interpretation of the conjugate is shown graphically in Figure 1.3. 

An immediate consequence of the definition of the Fenchel conjugate is the well-known 

Fenchel- Young inequulity . 

Theorem 1.24 (Fenchel-Young inequality) Given a function f : E --+ and x E 

dom f ,  the following inequality holds for all s* E E 

Moreover, the preceding holds with equality if a71d only if 

x* E d f  (x) 

Proof: The inequality is immediate from the definition of the Fenchel conjugate in Equation 

1.22: 
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By the definition of the subdifferential (Equation 1.13), x* E df (x) holds if and only if 

or, equivalently 

(x*>Y) - f (Y)  + f (x) I (x*, 4 

for all y E E. Taking the supremum over all y this is equivalent to 

which proves the result. 

As earlier discussed, all closed convex functions f equal their biconjugates f**. These 

functions naturally occur as pairs with proper closed convex functions having conjugates 

which are themselves proper and closed convex functions. We consider now the special case 

of self-conjugate functions. 

Theorem 1.25 (Self-conjugate functions) Consider a proper closed convex function f : 
1 E t E s u c h t h a t  f * =  f .  Then ~ ( X ) = ~ ( X , X ) .  

Proof: Consider the function x H i (x ,x ) .  The Fenchel conjugate of this function is 

given by SU~,{(X, y) - $ (x, x)) = sup,{C (xiyi - is:)) = C supzt {xiyi - ;x:). Taking 

the derivative of the inner function yields yi - xi, thus the maximum occurs a t  xi = yi. 

Substituting this back into the equation yields the conjugate & (x, x) . Thus, we see that 

i (2, x) is self-conjugate. 

Suppose we have a function f such that f = f*.  Then by Theorem 1.24 it follows 

that f (x) > i (x, x). Since conjugation is an order-reversing operation, it also follows that 

f*(x)  2 ( i ( x ,  x , ) )* ,  or equivalently f (x) I $(x, x). Thus it must be that f (x) = i (x ,x ) .  

By the above theorem, it is now evident that there is only one function that is self- 

conjugate, and that all other conjugate pairs must therefore consist of two distinct functions. 

Refer to Table 1.1 for a brief list of some convex functions and their Fenchel conjugates. 
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f (x) = g*(x) 
0 

Table 1.1: Some conjugate pairs of one dimensional convex functions 

4 L 

1.6.1 Concave Functions 

dam f 
R 

ex 

- log x 

All of the theory developed up until this point can be analogously applied to concave 

functions, with minor modifications. I t  should be noted that concave functions are not 

best handled by multiplying by -1 and using the appropriate convex machinery, but rather 

through a completely parallel theory. We cover the salient points here. 

Consider a concave function g defined over a convex subset S of the space E. As with 

convex functions, we can easily extend this function to the whole space by defining it to 

take the value of -oo outside of S. Similarly, we may define the hypograph of f to be the 

set 

hyp g = {(x,X) E E x R: X 5 g(x)}. 

The notion of a subgradient may be replaced with a similar notion of a supergradient, and 

the Fenchel conjugate for concave functions may be appropriately defined as 

I S(Y) = f*(Y) 
0 

R 

R++ 

The geometric interpretation of the concave conjugate is similar to that for convex con- 

jugates. The hyperplane (x,,x) - r = g,(x*) majorizes the set hyp g, and -g,(x,) is its 

vertical intercept. The situation is summarized in Figure 1.4. Furthermore, it can be seen 

that the concave conjugate is related to the convex conjugate in the following manner: 

dom g 

(01 

{ O1 

y = o  
y l n y - Y ,  Y > O  

-1 - log -y 

j 

R+ 

-R++ - 
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Figure 1.4: Conjugate relationship for concave functions 

All of the results proved earlier have concave counterparts of the same form, usually involv- 

ing only a change in the direction of inequality. We will use these results without explicit 

proof. 

1.7 Fenchel Duality 

The theory of Fenchel duality exists in various forms, but we will present here the traditional 

symmetric problem as described in 113, 161. Newer works such as [4, 51 describe related but 

slightly more general duality results involving systems with linear constraints. 

Suppose we seek to minimize the difference between a convex function and a concave 

function. Given a convex function f and a concave function g this amounts to solving 

In a typical convex optimization problem g is uniformly zero (indeed, f (x) - g(x) is itself 

a convex function), but this generalized form of the problem is conceptually useful. The 

problem can be interpreted as finding the minimum vertical distance between the sets epi f 

and hyp g. Imagine vertically displacing epi f until it just touches hyp g. At the point 
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Figure 1.5: Fenchel duality 

of contact these sets may be separated by a (not necessarily unique) hyperplane. Thus, 

geometric intuition tells us that we can consider the minimum vertical distance between f 

and g as being equivalent to the maximum vertical distance between parallel supporting 

hyperplanes that separate f and g. 

The conjugate plays a natural role in expressing this dual relationship algebraically. 

Since - f * (y) is the vertical intercept of the support hyperplane of slope y minorizing epi f 

and -g,(y) is the vertical intercept of the support hyperplane of slope y majorizing hyp g, 

it follows that g,(y) - f *(y) is the vertical seperation between the two parallel hyperplanes. 

This duality is illustrated in Figure 1.5 and detailed in the following theorem. 

Theorem 1.26 (Fenchel duality theorem) ([13], Section 7.12, Theorem 1, page 

201) Assume that f and g are, respectively, convex and concave functions defined on E. 

Assume thut C = int dam f ndom g is non-empty. Suppuse further that the the mir~imization 

is finite. Then it follows that 
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will attain a finite mazimum of p  achieved by some & E D = dom g, n dom f * .  

Addi t iona l ly ,  if t h e  p r i m a l  infimum i s  at tained b y  a point  5 E C ,  t h e n  

Proof: By definition, for all x E C and y E D we see that 

and hence 

The equality in the theorem can be proved if a & E D can be found for which 

infz { f  ( X I  - 9 ( 4 )  = 9*(&) - f*(&).  

By the definition of p  the convex sets epi { f - p )  and hyp g are arbitrarily close, but 

with disjoint interiors. Since these sets have non-empty interior there exists a non-vertical 

hyperplane in E x lR separating them which may be represented as {(x, r) : (&, x) - r = c) 

for some i j  E D and c E R (a vertical hyperplane would imply int dom f n int dom g = 0, 
a contradiction). Since hyp g lies below this hyperplane but arbitrarily close to it, we have 

By a similar argument, it is seen that 

and therefore p  = g, (0) - f * (&). 

If the infimum p  is attained by some Z E C then the set epi { f - p }  and hyp g have the 

point ( g ( I ) ,  2 )  in common. This point lies in the separating hyperplane and gives the two 

final equalities. 
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1.7.1 Examples of Fenchel Duality 

Several other duality results can be seen to  be implied by Fenchel duality. One example of 

this is the well known linear programming duality theorem, stated below. For a proof of 

this theorem and many further results regarding linear programming, refer to [17]. 

Theorem 1.27 (Linear programming duality) Consider a primal linear program 

and its dual 

myax{(b, Y) : A'Y 5 c). 

Exactly one of the following holds: 

the primal attains its optimal solution, in which case so must the dual, and their 

objective values are equal; 

0 the primal is infeasible, in which case the dual is either unfeasible or unbounded; or, 

the primal is unbounded, in which case the dual is infeasible. 

Example 1.28 (Linear programming duality) Consider the following primal linear pro- 

gram: 

min{(c, x) : x 2 0, Ax = b), 
5 

where c E Rn, b E Rm, and A E RmXn. This problem is easily recast into the framework of 

Fenchel duality by first defining 

(c,x), a: > 0 
f (x) = 

oo, otherwise. 

This f is convex on Rn. Secondly, we define a concave indicator function g as 

0, A x =  b 
g(x) = 

-oo, otherwise. 

We can easily see that f and g yield a Fenchel primal problem that is equivalent to the 

Linear Programming primal. 

Straight-forward computation of conjugates yields 

0, x* < c 
fS(x*) = and g,(x,) = inf,{(x,x*) : Ax = b )  

m, otherwise 
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and the dual Fenchel problem 

Making the substitution t = A*y for y E IRm yields 

Since (x, A*y) = (Ax, y) then this is further simplified to 

which is precisely the linear programming dual. 

Fenchel duality yields the linear programming primal/dual relationship, but it is not 

strong enough to guarantee that there is not any duality gap when the primal program 

attains its optimum. In order to fully recover linear programming duality we have to 

appeal to results based on the polyhedrality of the primal domain {x : Ax = b ) .  For further 

details on this, refer to Chapter 5 of [4]. 0 

In a similar manner the classical Min-Max theorem of game theory may be fully recovered 

as an example of Fenchel duality. The following result is presented in [13]. 

Theorem 1.29 (Min-Max) Let A and B be non-empty compact convex subsets o f  E. 

Then 

min max(x, y) = maxmin(x, y). 
XEA ~ E B  Y E B  XEA 

Proof: Define the function f on E as 

This maximum exists and is attained for every x E X since B is compact. The function is 

easily shown to be convex and continuous on E. Let g = -bA.  The Fenchel primal problem 

arising from these functions is therefore 

which exists by the compactness of A and the convexity of f .  We now apply the Fenchel 

duality theorem, yielding 
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by the definition of the concave conjugate. Consider 6 ~ .  The convex conjugate of this 

functional is given by 

We see that bB and f are a conjugate pair, thus f *  = dB. The dual then becomes 

maxg,(y) = maxmin(x, y). 
YEB y E B  xEA 

The final result comes directly from the equivalence of the two expressions under Fenchel 

duality. 

Notice that in this example, the compactness of the solution space allowed us to  guarantee 

that solutions exist and objective values are attained. Because of the potentially unbounded 

or infeasible nature of linear programs, this was not possible in the previous example, hence 

the weaker result. 



Chapter 2 

Convex Analysis in One Dimension 

In this chapter we explore the problem of calculating Fenchel conjugates symbolically for 

functions defined on the real line. We begin with an overview of the work presented in 

[2, 31, and present extensions to that work that enable it to operate on a broader class of 

functions. 

2.1 A Good Class of Functions 

Computer algebra systems are naturally suited to working with functions defined over the 

real numbers that are finite in representation. It is useful to characterize what we mean by 

having a finite representation, and to formalize the space of admissible functions. 

Let 3 be the class of all functions f satisfying the following conditions: 

(i) f is a function from R to E; 
(ii) f is a closed convex function; 

(iii) f is continuous on its effective domain; and, 

(iv) there are finitely many points xi such that xo = - cc < x 1 < . . . < x,- 1 < x, = cc 

and f restricted to  each open interval is one of the following: 

(a) identically equal to cc; or, 

(b) differentiable. 

The class of functions 3 encompasses all closed convex functions that are naturally 

representable (piecewise with finitely many breaks) in a computer algebra system. In this 

manner, it is very well suited to our purpose. Additionally, it is easily seen that 3 is closed 
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under positive scalar multiplication, and addition. As will be shown later, for a given f E 3, 

f * can have at most finitely many points of non-differentiability: thus F is also closed under 

the operation of conjugation. 

2.2 Subdifferentiation 

Subdifferentiation of functions in the class 3 is not very different from calculating standard 

univariate derivatives. In the case where f is a proper convex one dimensional function, 

we may calculate the subdifferential directly as outlined in Theorem 1.18, with the subd- 

ifferential being undefined outside of dom f .  The remaining two improper cases are easily 

handled as exceptions to the general rule. 

The algorithm begins by calculating the derivative f,! along each open interval (xi, xi+l) 

in int dom f ,  which yields the subdifferential by Theorem 1.18. Next, the left and right 

derivatives are calculated at each point xi E int dom f ,  with the subdifferential at these 

points given by the (possibly singleton) closed set 

1 f )  lim fltl(x) . 
zTzi x l z i  J 

For xi not in dom f ,  the subdifferential is defined to  be empty; the remaining cases involving 

points in bd dom f ,  which are not covered under Theorem 1.18, are best illustrated in an 

example. 

Example 2.1 Consider the following function, illustrated in Figure 2.l(a): 

In this example the functior i f is broken into open intervals by the points (xo, . . . ,x5) = 
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(b) 

Figure 2.1: (a) f (x) and (b) df (x) from Example 2.1 
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(-cm, -1,0,1,1 + $, cm). Calculating the derivative along each open interval yields: 

fA(x) = undefined, 

f i (x)  = -1> 

f&) = 0, 

f i(x) = (tan (x - I ) ) ~ ,  and 

f i (x)  = undefined. 

At the points 2 2  and 23 the subdifferential values are easily calculated using left and right 

derivative limits yielding d f (x2) = [-I,  01 and d f (xs) = (0). The point xl is on the left 

boundary of the domain of f ,  and as such is undefined to the left but well defined to the 

right. It can be seen that all lines with slope less than limZl,, f;(x) = -1 are subgradients 

to f at  XI ,  thus the subdifferential is given by d f ( x l )  = [-m, -11. Lastly, the point xe 

falls outside the domain of f ,  and thus has an empty subdifferential. The subdifferential, 

pictured in Figure 2. l(b),  is therefore given by 

2.3 Symbolic Conjugation in One Dimension 

Functions in the class T are extremely well behaved. Most importantly, they are subdif- 

ferentiable on the interior of their domain. Given the subdifferential we may compute the 

value of the Fenchel conjugate at a point y in two steps: 

1. solve y E d f (s.) for x ,  and let : be such a solution; 

2. use the Fenchel-Young inequality (Theorem 1.24) to obtain f*(y) = 5y - f (F). 

The algorithm is most easily illustrated by way of an example. 
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Example 2.2 Consider the convex function 

Calculating the subdifferential results in 

1 -co < x < o  

[-LO],  X = O  

{2x), o < x < m .  

We begin by examining the subdifferential over the first open interval ( m ,  0). On this 

interval the subdifferential takes only one value, namely y = -1, and it does so for all x in 

the open interval. Taking T = -1 and substituting this into the Fenchel-Young inequality 

yields f*(-1) = (-I)(-1) - f(-1) = 1 - 1 =O. 

Next we consider the subdifferential at  the point x = 0. The subdifferential takes on all 

values y E [-1,0]. This yields f*(y)  = (O)(y) - f(0) = 0 for y E [-1,0]. 

Finally, we consider a f (x) over (0, co). Inverting y = a f (l) yields = y. On this 

interval, af (x) takes values from limZlo 2x = 0 to limZt, 2x = m .  Thus, we find that 

f*(y) = iY2 - f ( i Y )  = aY2 for y E ( 0 , ~ ) .  

Gluing together these results and defining the conjugate to be infinite elsewhere yields: 

[ 
co, - W <  y < - 1  

f * ( y ) =  o7 - 1 l y L O  - 
;y2, o < y < m  

In general, each piece of a subdifferential falls into one of four categories: 

1. a f (x) is a constant singleton defined at a point; 

2. af (x) is a closed interval defined a t  a point; 

3. a f ( x )  is a constant singleton over an open interval; or, 

4. a f (x) is a singleton function of x over an open interval. 

As illustrated in the example, cases 2 and 4 translate to defining the conjugate f*(y) over 

intervals, whereas cases 1 and 3 only define f * (y) at  a single point. Note that cases 1 and 3 

essentially contribute no information to the calculation of the conjugate as the conjugate will 

itself be closed, with the behaviour at  these points being implied by lower semi-continuity. 
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2.4 Function Inversion 

In calculating a one dimensional conjugate, the subdifferential must be inverted. However, 

the subdifferential, while guaranteed non-decreasing on each open interval (xi, xi+l) and 

therefore invertible, may be expressed as a piecewise composition of functions that are not 

trivially invertible over their whole range. This leads to the problem of branch selection in 

calculating inverses of non-decreasing functions on finite open intervals. We first give a few 

definitions pertaining to branch points. 

Definition 2.3 (Analytic function) Consider a complex function f : @ --, @, and let 

f ( z )  = u(x, y) + iv(x, y) where z  = x + iy. If the partial derivatives of f at  a point z0 with 

respect to x and y are continuous and they satisfy the (Cauchy-Riemann) conditions 

then the function f is complex differentiable at  the point t o .  The function f is said to be 

analytic over a region R c C if it is complex differentiable at  every point z E R. 
It is worth noting that complex differentiability at a point zo is equivalent to having 

a non-zero radius of convergence for the Taylor series expansion of f about that point. 

Furthermore, the property of Cw on R is weaker than analyticity. For examples and much 

more detail refer to  [I]. 

Definition 2.4 (Branch cuts) A branch cut is a curve in the complex plane across which 

an analytic function is discontinuous. 

Consider the function z  H z 2 .  This function is single-valued and maps every input z to 

a single well-defined value z2 .  Its inverse function 6, on the other hand, is multi-valued 

and maps, for example, 1 H f 1. 

Example 2.5 (Branch cut of square root) Consider the point z  = reie E @. Let us 

adopt the convention that r 2 0, B E (a, 27r + a)  and 6 = f i e i$ ,  where fi is the positive 

square root of r .  Letting a = 5 we see: 
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Thus we have a discontinuity occurring across the angle a = 5. This discontinuity will exist 

for any choice of a. In the complex plane, this corresponds to a branch cut departing the 

origin at an angle a. 0 

A unique principal value can be chosen for multi-valued functions, but the choice can 

never be made such that the resulting function is continuous over the whole of @. Choosing 

which is the principal value is largely an issue of convention, and it is usually done to give 

rise to other simple analytic properties. 

For our purposes (inverting multi-valued functions on the real line), a branch point is a 

point on the real line R at which a branch cut intersects. In Example 2.5, regardless of the 

convention in force, the single branch point of the square root function is the origin. 

Example 2.6 (Simple branch point) We begin with a simple example. Consider the 

convex function 
1 

f (x) = ;x4, x E R. 

The subdifferential of this function is df (x) = {x3), x E R. The function y = x3 has three 

distinct -inverses (one for each cube root of unity), given by 

Obviously, the solution we intend is the real cube root. However, for y  < 0, the value of 

y i  is imaginary under the principal branch conventions in force in Maple. Hence, for y < 0 

another branch must be chosen. In fact, the inverse is found to be 

This example demonstrates that in calculating an inverse one may have to select from 

amongst a finite family of solutions, each being applicable on distinct domains. 0 

Example 2.7 (Infinite inverses) Consider now the convex function 

sinx, . i r < x < 2 n  

co, otherwise 
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Figure 2.2: Subdifferential of sinx on [T, 2n] 

On the interior of the domain, the subdifferential of this function is calculated as 

As seen in Figure 2.2, the subdifferential is increasing and therefore invertible. The general 

form of the inverse of y = cos x is 

x = arccos y - 2b arccos y + 27r.2, 

where b E B = {0,1} and z E Z. Inspection shows the branch we are interested in is 

characterized by b = z = 1, yielding an inverse of 

x = - arccos y + 27r. 

This example illustrates the possibility of having to choose an inverse from amongst an 

infinite family of solutions. 0 

In the most general case, there may be the need to choose inverses from a finite collection 

of infinite families of inverses, with multiple distinct solutions over disjoint subintervals. 
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The first problem that must be solved is that of finding the boundaries (branch points) 

between intervals over which different branches may apply. We appeal first to a result from 

elementary complex analysis. 

Theorem 2.8 ([I], Chapter 3, Theorem 11, page 131) Suppose that f ( z )  is analytic 

at t o ,  f (20 )  = wo, and that f ( z )  - wo has a zero of order n at 20.  If E > 0 is suficiently 

small, there exists a corresponding 6 > 0 such that for all a with la - wol < c5 the equation 

f ( z )  = a has exactky n roots in  the disk lz - zO1 < E .  

Proof: The proof of this theorem is beyond the scope of this thesis. For full details, refer 

to [I]. 

Corollary 2.9 (Location of branch points) Suppose that f is as in  Theorem 2.8. Sup- 

pose furthermore that f ( z )  is analytic on the entire neighborhood It - zO( < E ,  and let 

g l (a) ,  . . . , g,(a) ~epresent the n roots o f f  ( z )  = a on the neighborhood ( a  - wol < 6. Then 

gl(wO) = . . .  =gn(w0)  = 20 .  

Proof: Due to the nth order zero of f ( z )  at  20,  it follows that f ( z )  may be expressed 

as f ( z )  - wo = ( z  - z ~ ) ~ g ( z ) ,  where g ( z )  # 0, for all z with Iz - zol < E .  Due to the 

analyticity of f ( z )  and the existence of exactly n roots by Theorem 2.8, for any a with 

la - woI < b we can write f ( z )  - a = ( z  - gl ( a ) )  . . . ( z  - g,(a)) h ( z ) ,  for some h ( z )  # 0. Since 

lirn,,,, f ( z )  - a = f ( 2 )  - wo, it follows that lirn,,,, ( 2  - g l ( a ) )  . . . ( z  - g,(a))h(z)  = ( 2  - 

~ ~ ) ~ g ( z ) ,  and therefore (z-gl  ( w o ) )  . . . (z-g,(wo))h(z) = ( z - z ~ ) ~ g ( z ) .  Suppose gi(w0) # t o  
for some i. Then, since h(zo )  # 0 ,  it follows that the left hand side of the equation has at 

most n - 1 roots at wo, a contradiction. Thus, it must be that gl (wo) = . . . = g,(wo) = zo. 

Corollary 2.9 tells us that anywhere a function has n inverses, the branches are equal at 

a point with a zero of order n. This tells us that points where two branches are equal occur 

at zeroes of the first derivative. Thus, when wanting to determine the inverse of a function 

f over the interval ( a ,  b) we first find all solutions to  f t ( x )  = 0 ,  for x E ( a ,  b). If we can find 

all of the zeroes then we are guaranteed to have found all of the possible branch points, and 

can proceed to find the unique branch which is the inverse over each disjoint sub-interval. 

In order for Corollary 2.9 to apply for our algorithms we need to restrict ourselves to  input 

functions that are real a.nol?jtic; in other words, functions f that are analytic on dom f c R. 
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Example 2.10 (Branch points) Consider y = x3, x E R from Example 2.6. Taking the 

derivative yields y' = 3x2, x E R. Solving 3x2 = 0 yields the single solution bl = 0. Thus, 

we are assured that the inverse of x3 along the real line has at most one branch point, 

located a t  the origin. 0 

Once the domain of the function has been partitioned into disjoint sub-intervals the 

inverses over each of these may be determined. This can be accomplished by testing each 

possible inverse in G over each distinct interval. When determining the inverses, there are 

two cases to consider as outlined in Examples 2.6 and 2.7. 

2.5 Numerical Methods 

Often, there will exist no closed-form conjugate and in order to gain any insight into the 

nature of a subdifferential or conjugate we must resort to numerical methods. 

Although the Legendre-Fenchel transform is fundamental in convex analysis, until rela- 

tively recently no algorithms were available to compute it efficiently. Early algorithms were 

aimed a t  solving Hamilton-Jacobi equations [7] or Burger's equation [14]. These algorithms 

were designed similarly to Fast Fourier Transforms, and could compute an m point conju- 

gate to a function evaluated at  n points in O((n  + m) log(n + m)) time. More recent work 

by Yves Lucet in [ll] and [12] describes an algorithm (the linear time Legendre transform, 

or LLT) that runs in O(n + m) time. The key innovation of this algorithm exploits the 

already sorted nature of an array of function evaluation points. 

Consider a one dimensional function f : R 4 restricted to a closed finite interval 

[a, b]. The restricted function f[a,bl is defined as f + 6[,:b1. Given a sorted set of points 

X = {xl, .  . . , x,) we define the discrete approximation fx of f as fx(x) = f (x) for x E X ,  

with linear interpolation defining fx at points not in X .  We quote a result from 171 and 

[Ill.  

Proposition 2.11 (Convergence of discrete Legendre transform) 

Let X = {xl, .  . . , x,) be a subset of [a, b] such that for all y E [a, b] there exists xi E X with 

/xi - yl 5 (b - a) /n .  Let f be a function from R @. 

1. If f is upper semi-continuous on a neighborhood of [a, b]? then ( fx)* converges point- 

wise to (f[a,b])*. 
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2. Iff is twice continuously differentiable on a neighborhood of [a, b], then for all y 

The above result states that the conjugate of the discrete approximation o f f  converges 

pointwise to the conjugate of the restriction f to [a, b]. As for convergence of the conjugate 

of the restriction towards the conjugate, we have a much stronger result provided by Hiriart- 

Urruty in [9]: (f[-,,,])* = f *  for sufficiently large a. 

Proposi t ion 2.12 (Convergence of restr icted functions) 

The following are equivalent: 

1. af8(y) n [-a,a] # 0; and, 

2. (f[-a,al)*(~) = f * ( ~ )  

Combining the previous two results tells us that the discrete approximation to the 

conjugate will converge pointwise to the actual conjugate as we increase the range and 

number of evaluation points. 

2.5.1 The Linear-time Legendre Transform 

The problem is to compute ( fx(y))* = gy (y) for y in Y = {yl, . . . , y,}, where xl < . . . < x, 

and yl < . . . < ym. Suppose f is convex. Then we can use the monotonicity of the 

subdifferential df more efficiently than other algorithms by introducing the (increasing) 

sequence of slopes 

Si = f (xi+l) - f (xi) 

Since f is convex finding the support point of the minorizing line with a slope y is rather 

straight-forward (we can perform a search through the increasing si), and together with 

Equation 1.22 yields the value of the discrete conjugate gy a t  y as: 

1. if y < s l ,  then gy(y) = yxl - f ( x l ) ;  

2. if y > s,-1, then gy (y) = yx, - f (x,); and, 

3. if si-1 < y < q, then gy(y) = yxi - f (xi). 

The above logic is assuming that f and hence fx is convex. Since the set X is sorted, we 

may apply any linear time algorithm (see [lo] or [15]) to first calculate the convex hull of 

f x .  
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Thus, given fx, X and Y the entire algorithm can be described as follows: 

1. compute fx, the convex hull of fx; 

2. compute slopes S = isl, . . . , s,-1); and, 

3. for each yj compute g y ( y j )  by finding the index i such that si-1 < y j  5 si. 

Assuming X is stored in sorted order, the first two steps are O(n) .  Since both Y and S are 

in increasing order, the last step can be done in a single O ( n  + m) loop. Thus, the entire 

algorithm runs in O(n  + m) time. For further details of algorithmic performance, refer to 

Ill] and [12]. 



Chapter 3 

Convex Analysis in Higher 

Dimensions 

Recall the definition of the Fenchel conjugate from (Section 1 .6 ) .  In higher dimensions this 

can be rewritten as: 

We introduce the concept of a partial conjugate. Consider an n dimensional function that 

has had a one dimensional conjugate calculated with respect to the variable xi. The notation 

f x i  then represents this partial conjugate of f  with respect xi. The above may be rewritten 

as 

f *  = (-(.. . - ( f X " .  . . ) Q ) " ' .  

This is equivalent to taking the conjugate along the xn variable, negating the result, taking 

the conjugate along the xn-1 variable, negating the result, etc, until the conjugate is finally 

taken along the XI variable. In other words, the conjugate of an n dimensional function can 

be calculated as a sequence of n iterated one dimensional conjugates. While the concept of 

iterated conjugation is straight-forward, various complications arise in practice which must 

be addressed. 
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The notion of iterated conjugation can be likened in many respects to that of iterated 

integration, the standard technique used for calculating multiple integrals. In fact, as will 

be shown in Section 3.3.3, the necessary juggling of partial conjugates between conjugation 

iterations can be equated directly to the problem of changing the variable order in a multiple 

integral. 

Note that in the special case where the function f is separable the conjugate may be 

simplified to 

which allows us  to calculate the conjugate as n separate one dimensional conjugates. How- 

ever, this is not usually the case. 

3.1 A Good Class of Functions 

The natural space to work in is the recursive extension to 3 .  An n dimensional function f 

is in F if: 

(i) f (x l , .  . . , x,) is a function from Rn to E; 
(ii) f (xl, . . . , x,) is a closed convex function; 

(iii) f (xl, . . . , x,) is continuous on its effective domain; and, 

(iv) there are finitely many points ai such that a0 = -cc < a1 < . . , < am-1 < am = cc 

and f restricted to each open interval ( ~ i , a ~ + ~ )  is in F-' (where 3 l  = 3) with 

respect to the variables xz, . . . , xn. 

Consider a function f (XI ,  . . . , x,) E 3" defined on each open interval (ail, ail+1) as fi, . 
Each fil is similarly defined on the open interval a(il,i2+1)) as f(i,,i2). Taking this 
to its extreme, on the n dimensional open interval 

ail+l) (a(ilri2), a(il,iz+l)) ' . . X (a(il, ..., in-]), a(il ,..,, i,,-l+l)), f is given by f(il ,..., ~ ~ - 1 ) .  

The space 3n is very well suited to our purpose as it allows a relatively compact rep- 

resentation of any piecewise continuous convex function defined on Rn. It is also recursive 
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in nature, and therefore naturally representable and manipulated in a computer algebra 

system. 

3.2 One dimensional Conjugation With Bounded Parame- 

t ers 

In order to calculate the conjugate of a function f in F we must first calculate the one 

dimensional conjugate of each f ( i  in-1) .  Each f ( i l  ,.,., in-1) may be dependent upon the 

variables XI,. . . , x,-1. Thus, in calculating the partial conjugate with respect to x,, the 

variables XI,. . . , x,-1 must be treated as real parameters with bounds a(il,,.,,ik) < xk < 
a( i l , , , . ,~k+l) .  The existence of these bounded parameters makes it more difficult to choose 

the appropriate branch when inverting the subdifferential. 

Example 3.1 (Inversion with bounded parameters) Consider f (x2) = xlxi defined 

for 52 > 0. Inverting this with respect to x2 yields 3 possible solutions: 

However, if xl > 0 then 

Thus, the knowledge of any free-parameter bounds is required in order 

decision in calculating the one dimensional conjugates. In practice, we 

to make the correct 

supply any given 0 

3.3 Variable Reordering 

Functions defined in F have an implicit variable order due to their recursive structure. A 

function f E F defined with the variable order XI, x2.. . . , x, may only have the partial 

conjugate calculated along the x, variable, at which point the variables of the new partially 

conjugated function are XI, . . . , x,-l: y,. For this function to be conjugated along any 

other variable, it must first have its variables reordered so that one of XI,. . . , x,-1 is the 

last variable. We illustrate with an example in 3 2 .  
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Figure 3.1: f (xl, xz) from Example 3.2 

Figure 3.2: A plan view of f *(yl,  y2) from Example 3.2 
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Example 3.2 (Product of roots) Consider the two dimensional function (shown in Fig- 

ure 3.1): 

Calculating the partial conjugate with respect to the x2 axis involves calculating two one 

dimensional partial conjugates; one along the line xl = 0 and the other over the half-plane 

0 < XI. Calculating these conjugates (and negating the results) yields: 

We now wish to calculate the partial conjugate along the xl variable in order to complete 

the two dimensional conjugation. However, in order to do this, we must first reorder the 

variables to  (y2, X I ) .  In this example this is easily done through inspection, resulting in: 

We may now proceed to  calculate the complete conjugate by partially conjugating along 

the XI  axis. There are two distinct one dimensional conjugates to be calculated along the 
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line y2 = 0 and the half-plane y2 < 0. This yields: 

It is desirable to have the conjugated function in the same variable order as the original func- 

tion. This involves yet another variable reordering to (yl, y 2 )  The result of this operation 

is the final conjugate: 

The conjugate is easily visualized as the indicator function of a convex set in R2, this set 

being illustrated in Figure 3.2. 0 

To simplify the requirements of variable reordering, we introduce the notion of pivoting. 

A pivot is a change of variable order from (xl, . . . , x,) to (x,, X I ,  . . . , x,-1). Simply stated, 

the penultimate variable becomes the last, and the last becomes the first. Pivoting is a 

constrained form of general variable reordering, but it is sufficient to perform conjugate 

calculations. To further simplify the discussion of pivoting, we first change the space of the 

problem. 

3.3.1 Region Representation 

A function in 3n can be thought of as being defined by a collection of regions, where a region 

r is a pair consisting of a set S Rn and a function f which is continuously differentiable 

over S. 'The set s is'defined as S = {x : xl E Xl,x2 E Xz, . . . ,  x, E Xn}, where the one 

dimensional sets Xi are either open intervals (ai(xl , .  . . , bi(xl,. . . , or singletons 

{ai(xl,.  . . ,xi-l)}. For instance, the function in Example 3.2 may be represented by the 
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following collection of regions: 

For the sake of compactness, we may ignore any region over which the function is identically 

co, and make that value implicit for any point x E Rn that does not fall within one of the 

defined regions. The conversion of a function in F to a collection of regions is a straight- 

forward recursive process. The reverse process is also possible, but much greater care need 

be taken. 

3.3.2 Region Representation to Recursive Representation 

Consider a collection of regions R = {ri) where ri = ((21 E Xi,l, . . . , 2, E Xi,,), fi). 

Partition R into two sets, Rs and R I ,  where 

Rs = {Ti : Xi,l is a singleton), and 

R I  = {Ti : XiTl is an open interval). 

Let E be the collection of interval end-points and singletons (as applicable) along the first 

dimension of each region: 

Let the points in E be indexed by ei, where -m = eo < e2 < . . . < em = co. We construct a 

function g E F defined over the finitely many points ei. Over each open interval (ei, ei+1) 

we define g as g(i,i+l) E F-l, and at each point ei we define g as gi E F-'. We construct 

g(i,$+l) as follows: 

(i) Let be the collection of all regions in RI that overlap the interval (ei, ei+1), reduced 

to n - 1 dimensions by removing the constraint along the first dimension: 
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(ii) Let g(i,i+l) be the function in 3n-1 returned by recursively processing the regions ?? 
using the procedure just described. 

Similarly, we may construct each gi by recursively processing the set of (n - 1) dimensional 

regions given by: 

The final case to consider is the base case, when the dimension has been reduced to 1. 

In this case, region representation and recursive representation are much the same thing 

and we can directly equate the two. Consider f E F in region representation as: 

This is equivalent in recursive representation to: 

The entire procedure is clarified in the following example. 
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Example  3.3 Consider the following set of regions: 

r1 = ( { x  : x1 = -1, 

r2 = ( { x  : x1 = -1, 

r3= ( { x  : X I = - 1 ,  

r4 = ( { x  : x1 = 0,  

7-5 = ( { x  : x1 = 1, 

r6= ( { x  : 2 1  

7-7 = ( { x  : x1 = 1, 

r8 = ( { x  : 5 1  = -1, 

rg= ( { x  : X I  = - I ,  

r10 = ( { x  : x1 = 0,  

r11 = ( { x  : X I  = 1, 

7-12 = ( { x  : X I  = 1, 

r13= ( { x  : xl E ( - l , o ) ,  

r14 = ( { x  : 2 1  E (-1, 1):  

r l j  = ( { x  : X I  E (-1, 1 ) ,  

r16 = ( { x  : 5 1  E (0 ,1 ) ,  

r17 = ( { x  : X I  E (-1, O ) ,  

r i s =  ( { x :  z i E ( O , l ) ,  X2E(O, l )  1 ,  ( 1 4 - ~ 1 ) ~ 2  ) 

r19 = ( { x  : X I  E ( - L l ) ,  2 2  E ( -1 ,0)  1, o ) 

We first partition these regions into the two sets RS = {ri : i = 1,. . . ,12) and Rs = {ri : i = 

13,.  . . ,19). Extracting the end-points and singletons yields the set E = { - a ,  -1,0,1, a).  

We begin with the first open interval (-oo, -1). Since there are no regions that define 

the function over this interval we can infer that g ( ~ , ~ )  = oo, Vx2.  

Consider the point el = -1. We determine that each of { r l ,  7-2, rs, rs: r g }  contain this 

point. Removing the first dimension from these regions yields: 

- 
R = ( ( (22  = -1>,0),  ( ( 2 2  E ( -1 ,0 ) } ,0 ) ,  ((22 = 0 } , 0 ) ,  ((22 E ( 0 , 1 ) 1 , ~ 2 ) ,  ( ( 2 2  = 11, 1 ) )  - 
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This is a one dimensional region representation which is converted to recursive form as: 

oo, 5 2  E (-00, -1) 

0, x 2 = - 1  

0, 2 2  E (-1,O) 

0, 2 2  = 0 

x2, x2 E ( 0 , l )  

1, x 2 = 1  

00, x2 E (1700) 

Next we process the open interval (el,  e2) = (- 1,O). We find that the regions 

{Tl3,TI4, ~ 1 5 ,  T17, T19) overlap with this interval. Reducing by one dimension yields: 

Constructing the appropriate g ( ~ , ~ )  E 3 yields that g(1,2) = gl. 

We may proceed similarly with calculations for 93, g ( ~ , ~ ) ,  94 and g(4,5). Finally, we 

construct g E F2 as: 

With the ability to convert easily between recursive representation and region repre- 

sentation, we may pivot a function in recursive representation by first converting to region 

representation, pivoting the individual regions, and then converting back to recursive r e p  

resent at ion. 
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3.3.3 Region Pivoting 

Consider a region r = (S, f ) ,  with S = {x  : X I  E X I ,  2 2  E X 2 , .  . . , x, E X,}. Let 

V C {xl , .  . . , x,-l} be the set of variables upon which X, is dependent. 

If V = 8, then pivoting the set is as simple as rewriting it in the pivoted order 3 = { x  : 

X, E Xn, XI  E X i , .  . . , xn-l E Xn-i}, as Xn is independent of any previous variables. 

If jV[ = 1, then let V = {xk}. We may pivot the two dimensional set {(xkl x,) : 

xk E Xk, x, E Xn} yielding {(xn,xk) : xk E x,, xn E Tk} ,  and thereby pivot S as 
- 
S = {X : xn E Xn, xl E X I , .  . . , xk E x k , .  . . xn-1 E Xn-1}. We discuss two dimensional 

set pivoting in greater detail in the subsequent section. If IVI > 1 the problem becomes 

much more difficult, and no general solution is currently known. 

As discussed earlier, the operation of changing variable order of a function in is 

completely analogous to that of changing the order of integration in a multiple-integral. 

Consider the integral Js f (x)dx. 

This may be rewritten as the multiple integral 

Jxl. .  .kn f (x )dxn . .  . dx1. 

Changing the order of integration to 

is an equivalent operation to pivoting the original domain S .  Consequently, all of the 

techniques discussed in this section may be applied directly to this problem as well. 

3.3.4 Region Pivoting in Two Dimensions 

Consider the set S = {(xl, x2) : xl E XI ,  x2 E X2(xl)}. Since Xz is dependent on XI ,  it 

follows that X1 can not be a singleton, and is therefore an open interval (a, b). If X2 is an 

open interval, let X2(xl)  = (f (xl ) ,  g(xl)). For further generality, if X2 is a singleton at  

every X I ,  let X2 (x l )  = { f (xl ) )  and define g = f .  

Pivoting a two dimensional region will involve inverting f and g. However, f and g may 

not be monotonic over the interval (a, b) and therefore may not have an inverse. Similarly, 

as in Section 2.4 there may be branch points in (a, b). 
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s 

Figure 3.3: Pivoting two monotone regions 

Prior to pivoting S, we first split S into a collection of disjoint sets, if necessary. Let 

C f  = {xl : f l (xl)  = O,xl E (a,b)} if f is non-constant, and C f  = 8 otherwise. Let 

a = co < cl < . . .  < c,+l = b,  where C f  UCg = { c , : i € { l ,  . . . ,  m}}. Bysplittingthe 

region at  every possible branch point we have assured that f and g have unique inverses 

over each interval (ci, ~ + l ) .  We may therefore partition S into a collection of disjoint sets 

S = S1 U PI U . - .  U Pm-l U Sm, where Si = {(xl, x2) : XI E (G, citl), 2 2  E X2(xl)}, and 

Pi = {(XI, 2 2 )  : XI = Ci ,  2 2  E X2(~i)}.  

Without loss of generality, we may now assume that f and g are either constant or 

strictly monotonic on (a, b). Suppose X2 is a singleton, and therefore f = g. In this 

case f is either strictly increasing or decreasing. If strictly increasing, we may pivot S as 
- 
S = {(x2,x1) : 2 2  E (f (a), f (b ) ) ,  xl = f-'(x2)}. If f is strictly decreasing, this becomes 
- 
S = {(x2, x l )  : 2 2  E (f (b), f (a)), xl = f-'(x2)}. In the rest of the cases, f # g. 

Consider now the case when f is strictly decreasing and g is strictly increasing. Re- 

stricting ourselves to f (x) < g ( ~ ) ,  there are two sub-cases to consider: either f (a) = g ( ~ ) ,  

or f (a) < g(a) (where f (a) implies lim,,,, f (xl)  when a = ho). These two cases are illus- 

trated in Figure 3.3. In the first sub-case we may pivot S by splitting it into the following 
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3 disjoint sets: 

In the second sub-case we may pivot S by splitting it into the following 5 disjoint sets: 

Continuing along this line of logic identifies 23 distinct cases to consider (which may be 

reduced to effectively 12 after considering symmetry) for sets where f # g. 

3.3.5 Region Swell 

In general, after splitting the original S to ensure f and g are monotonic and invertible, 

pivoting a set will result in one to five disjoint subsets. This phenomena can be likened 

to intermediate coefficient swell in many polynomial arithmetic algorithms, and causes the 

number of regions necessary to represent a given function to increase while performing pivot 

and partial conjugate calculations. 

After a pivot operation it is usually possible to simplify and merge adjacent regions 

into one region in an attempt to mitigate region swell. Such an operation helps to reduce 

intermediate region swell, and in most cases produces a pivoted function whose overall 

region complexity is comparable to the original. 

3.3.6 Boundary Point Problem 

While partial conjugates are always convex and lower semi-continuous with respect to 

the last variable conjugated, it is possible that the intermediates may not be lower semi- 

continuous with respect to the whole space. Referring to Example 3.2 we see that the first 

partial conjugate f Z 2  ( x ~ ,  yz) is defined as for X I ,  y2 < 0. Since f x2 (4mz, z )  = m, it 

follows that the limit of f Z 2  as z approaches zero from the left (the limit in the direction 
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-[4m, 11) is m. Thus, for any value m > 0, there is a sequence of points approaching this 

value at  the origin. Hence, f Z 2  is discontinuous at  the origin. 

In order for partial conjugation to succeed the input to the one dimensional partial 

conjugation operation must be lower semi-continuous. Thus, these points of discontinuity 

must be adjusted to be lower semi-continuous with respect to the next partial conjugate 

variable. 

Consider the function f in recursive representation. For our purposes an admissible 

boundary point o f f  is any point (ai,, ail,i2,. . . ,ai l  ,..., in) in the recursive representation o f f  

that occurs on the boundary of do; f .  Letting x = (ail,  ail,i2,. . . , ai ,,..., in)  = (21,. . . ,x,), 

x is a boundary point of f if and only if for all i one or both of f (xl ,  . . . , xi - 6,. . . , x,) = co 

and f (xl ,  . . . , Xi  + 6,.  . . , x,) = oo for sufficiently small 6 > 0 applies, but where for at least 

one i, only one applies. 

To correct the boundary point problem we need only identify any points in the recursive 

representation that are boundary points and replace them with their limit as taken from 

the next partial conjugate variable, from the direction of the defined side, if there is one. 

Let (x l , .  . . , x,) be such a point and consider the function values g- (6) = f (xl ,  . . . , x, - 6) 

and gf(6) = f (xl ,  . . . , x, + 6) for sufficiently small b > 0. If g-(6) = gf (6) = co, then we 

define f (xl , .  . . , x,) = co. If only g-(6) = m, then we define f (x l ,  . . . , x,) = limalogf (6). 

If neither of the former cases apply, then it follows by our definition of a boundary point 

that g+(6) = m, in which case we define f (xl, . . . , x,) = limslo g-(6). This can be seen in 

the different values of f Z 2  a t  the origin for its two distinct representations in Example 3.2. 

After conjugating with respect to x2 we see that fx2(01 0) = limYZfO 0 = 0, whereas in the 

variable order (y2, xl ) (where xl is the next partial conjugate variable) we see that we must 

set f Z 2  (0,O) to co in order to preserve lower semi-continuity with respect to XI .  

3.4 Symbolic Conjugation in Higher Dimensions 

With the ability to  calculate conjugates of parameterized functions in F and the ability to 

pivot the representation of a function in F, we can calculate an n dimensional conjugate 

as follows: 

(1) Calculate the partial conjugate of f (xl , . . . , x,) resulting in f xn (xl , . . . , x,- 1, yn). 

(2) Negate the partial conjugate. 
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(3) Pivot the partial conjugate to the variable order (y,, X I ,  . . . , xn-1). 

(4) Calculate the partial conjugate of fxn(yn,  sl, . . . , sn-1) resulting in 
f (2n-1 F n  '(yn, ~ 1 ,  - .  - r xn-2, yn-1). 

(5) Repeat steps (2) through (4) for xn-2,. . . ,XI .  

(6) Pivot the complete conjugate f*(y2, .  . . , yn, yl) to the original variable order 

f * ( ~ l ~ . . . , ~ n ) .  

3.5 Numerical Methods 

We begin by noting that  the convergence results of Section 2.5 all exist in generalized d 

dimensional forms (which can be found in [7] and [ l l ] ) ,  thus discrete conjugation algorithms 

are equally valid and applicable in multiple dimensions. 

Using the same iterated conjugation concepts as in the symbolic case, the one dimen- 

sional LLT from Section 2.5.1 may be easily extended to the d dimensional case. Consider 

a function f : IRd + El X = X1 x . - .  x Xd, and Y = Yl x - .  . x Yd. The algorithm 

works by calculating the partial one dimensional conjugates along X1 yielding g1 (defined 

over the grid Yl x X2 x . . . x Xd). It then iteratively calculates gi (defined over the grid 

Yl x . . - x Y, x Xi+1 x . . - x Xd) as the partial conjugate along the ith dimension of -9'-l. 

Let nj  = lXil and mi = IY,l Calculating the partial conjugate along the ith dimen- 

sion involves calculating nj,i m j  njzi n j  conjugates, each an O(ni + mi) operation. Sum- 

ming this complexity over all i iterated partial conjugations yields a total complexity of 

o(c~=, nl  . . . nimi+l . . . md). Letting n = nl  . . - nd and m = ml . . . md, this simplifies 

to the time complexity O(d(n + m)).  For further details on algorithmic performance and 

implementation issues, refer to [ll] and [12]. 



Chapter 4 

Applications and Examples 

In this chapter we aim to work through a representative set of examples displaying the 

use and capabilities of these algorithms in practice, as well as illustrating some potential 

applications. 

In addition to  simplifying and attempting to automate atomic convex analysis operations 

the tools may be used in more comprehensive practical settings as well. In some cases, it 

is possible to symbolically solve certain problems. In other cases, the tools can be used to 

aid symbolic solutions or inspire intuition through visualization. 

4.1 Functionality of the SCAT Package 

The algorithms of this thesis have been implemented in Maple as the Symbolic Convex 

Analysis Toolkit (SCAT). This package introduces significant new functionality and integrates 

itself into the Maple environment. 

The following new commands have been introduced: 

0 SCAT [Plot] , for plotting one- and two dimensional convex functions and one dimen- 

sional subdifferentials; 

0 SCAT CPwf Topiecewise ,PiecewiseToPwf , Pwf ToRegions ,RegionsToPwf I ,  for convert- 

ing between different representations of piecewise continuous functions; 

0 SCATCEvall, for evaluating any dimensional convex functions and one dimensional 

subdifferentials at points; 
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SCAT [Subs], for performing substitutions into any dimensional convex functions and 

one dimensional subdifferentials; 

SCATCLimitI, for calculating limits of free parameters in any dimensional convex 

functions and one dimensional subdifferentials; 

SCAT [SubDif f , Integl , for calculating the subdifferentials of one dimensional convex 

functions, and integrating them back to one dimensional convex functions; 

SCAT CConj , P a r t  ialConj1, for calculating complete and partial conjugates of any 

dimensional convex functions; 

SCATCInfConvl, for calculating the infimal convolution of a set of any dimensional 

convex functions; 

SCAT [Convexl , for attempting to prove convexity of a given any dimensional function; 

SCAT [Equal], for comparing any dimensional functions and one dimensional subdif- 

ferentials; 

SCAT [Assume, Addit i o n a l l y ,  Assumpt ions] , for dealing with constraints and assump 

tions on free parameters within SCAT internal data formats for functions; and, 

CCAT [CreateNpwf ,Con j N , SubDif f N l  , for creating numeric NPWF function representa- 

tions, and calculating numeric conjugates and subdifferentials. 

Additionally, the SCAT package has been integrated as much as possible into Maple, 

supporting the following built-in functions: 

type, for type testing of SCAT internal data formats; 

p r i n t ,  for pretty-printing any dimensional convex functions and one dimensional sub- 

differentials; 

convert, for converting piecewise functions to the SCAT internal PWF format; and, 

simplify,  for simplifying algebraic operations applied to one or more any dimensional 

convex functions and one dimensional subdifferentials. 

Standard Maple commands such as norm, eva l f ,  f ac to r ,  expand, etc, also work with 

PWF and SD objects. 

For a complete listing of all commands and their usage, refer to Appendix A. 
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4.2 Ten Classic Examples 

The following examples aim mainly to demonstrate the usage of the software. To this 

end, a representative set of one- and many dimensional examples have been selected from 

[2 ,  3 ,  4, 161. Specific emphasis has been placed on demonstrating introduced or improved 

functionality not possible in earlier packages. 

Example 4.1 (Absolute value) One of the simplest examples of a convex function that 

is not everywhere differentiable is the absolute value function f  : x  - 1x1- Its derivative 

at the origin fails to exist since fL  (0) = - 1  < 1  = f i  (0). The notion of the subgradient 

is able to capture this behaviour and accordingly it is seen that a f  (0) = [ - I ,  11. In order' 

to explore this function we first represent it in a form that SCAT understands; the PWF 

(piecewise function) format: 

> f 1 : = convert (abs (x) , PWF) ; 

1 -2, x < o  

f l : =  0, x = O  

x ,  x > o  
We may easily calculate the subdifferential of f 1 and confirm our earlier calculation from 

Example 1.19: 

> sdfl := SubDiff(f1); 

I 1  x < 0 

s d f l  := [ - I ,  11, x = 0 

( 1 ) :  x > 0 
We may also calculate the conjugate, yielding the expected answer as found in Example 

1.23: 

m7 y  < -1 

0: y =  -1 

0, ( - 1  < 9) and  ( y  < 1 )  

0: y = l  

, W !  l < y  

Example 4.2 (Negative entropy)  The exponential function and the (negative) 

Boltzmann-Shannon entropy function are a well known pair of Fenchel conjugates. Using 

the SCAT package this conjugacy relationship is easily confirmed by entering: 
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> f2 : = convert (exp (x) , PWF) ; 

Example 4.3 (De Pierro and Iusem) 

This function was originally suggested by De Pierro and Iusem on page 438 of [8], and also 

used as an example in [2, 31. The function is easily constructed and its conjugate calculated 

by issuing the following commands: 

> f3 := convert (%,PWF) ; 

f3 := x = 1  

I 2y + iy" f ,  y < -1 

-11 y = - 1  

93 := -1 - 1 - y )  (-1 < y) and (y < 0) 

m, y = 0 

a, 0  < Y 

Example 4.4 (Affine and quadratic) Affine functions on R are those of the form f : 

x  H bx + c where b  and c are both real constants. Being a function of a constant 

slope, there is only one subgradient (that of slope b) that minorizes it. Thus, the con- 

jugates of these functions are finite at only one point, as shown by entering the command 

Conj (convert (b*x+c , PwF, x) ) : 

m, y < b  

-c, y = b  

, b < y  
Similarly, quadratic functions are those of the form f : x H ax2 + bx + c for a  # 0, and real 

constants b and c. The subset of convex quadratic functions (those with a  > 0 )  turns out 

to be closed under the operation of Fenchel conjugation, as shown with the commands f4 

:= convert(a*x'2+b*x+c,PWF,x,{a>O)) and g4 := Conj(f4,y): 
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(a) Plot of f 5 (b) Plot of sdf 5 

Figure 4.1: Plots from Example 4.5 

A specific case of the more general result from Theorem 1.25 may be seen by solving for the 

values of a ,  b and c that make the above pair of conjugates equal. We can quickly generate 

a system of three equations and solve for the parameters with the following commands: 

> F4 := PwfToPiecewise(f4): 

G4 := subs(y=x,PwfToPiecewise(g4)): 

map(i->subs(x=i ,F4=G4) COY 1 ,-11) : 

solve({op(%) ,a>0) ,{a ,b ,c ) )  ; 

subs (op (%) , F4=G4) ; 
1 {c = 0 , a  = 2 , b  = 0) 

1 2 - 1  2  .-jX - TX 

Example 4.5 (An example from 'kockafeller) The following function can be found on 

page 229 of Rockafeller's text [16]. The function is easily constructed using piecewise and 

converted to  the PWF format: 

>.piecewise(-3<=x and x<=l ,abs(x)-2*sqrt (1-x) , i n f i n i t y )  : 

f 5 : = convert (%,PWF) ; 
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f 5  := 

We now use the commanc 

00, x  < -3 

1, x  = -3 

- 2 G  - x ,  (-3 < x )  and (z < 0 )  

-2, x = o  

-2- + z! (0  < x )  and ( x  < 1) 

1: r = l  

00, l < x  
Plot(f5,x=-4..2,scaling=constrained,axes=framed) toplot 

the function, yielding Figure 4.l(a):  Next, to calculate and plot the subdifferential we use 

the commands sdf5 := SubDiff (f5): and 

yielding 

I (1, x  < -3 
1 [-m, - ? I :  x  = -3 

} (-3 < x )  and ( x  < 0 )  { 2-1 

sdf 5 := I [O, 21, x = o  
( l + f i ) f i } ,  (0 < x )  and ( x  < 1)  - 2-1 

and the plot in Figure 4. 

{ I?  x = l  

{ 1, l < x  
(b). Finally, we find the conjugate, the biconjugate and manually 

verify the convexity of f 5 with the following commands: 

true 

> g5 := Conj(f5,y); 

95 := < 

/ 

-3y + 1, 1 
Y < - 2  

5 - y=-l 
2 '  2 

y2+2y+2 
l+y : (2 < Y) and (9 < 0 )  

2: y = o  

2, (0 < 9 )  and (9  < 2)  

y = 2  
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Figure 4.2: Plot of (f 1* + f 6*)* from Example 4.6 

Example 4.6 (An infimal convolution) Given two closed convex functions f and g the 

function (f * + g*)* is called the (closure of the) infimal convolution of f and g. If either 

one of the functions is differentiable then the infimal convolution will be as well; thus, 

the operation is a regularization, which can be used to add additional structure to an 

object while maintaining much of its original shape. In this example we regularize the non- 

differentiable absolute value function from Example 4.1 with i x 2 .  A plot of the regularized 

function can be found in Figure 4.2. Notice that it retains the large-scale features of the 

absolute value function, but with the discontinuity smoothed out by the quadratic. 

> f 6 : = convert (xe2/2 ,PWF) : 

> Conj (simplify(Conj (flsy)+Conj(f6,y)) , X I ;  ' 

> Plot (% , -5. .5) ; 

We can also perform the infimal convolution by calling the command InfConv(f 1 ,f6> 

directly. 0 
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Example 4.7 (Young's inequality) Suppose 1 < p < m and let q be such that :+: = 1. 

The equality 
1 1 
-aP + -bq 2 ab, Va, b >_ 0, 
P 9 

is known as Young's inequality. As we are about to see, since ( A 1  . jP)* = I (  - 19 this is 
P 4 

actually a special case of the stronger Fenchel-Young inequality from Theorem 1.24. In this 

example we show and confirm the above conjugate pair. 

This example elaborates on a similar example provided in [3]. The algorithms developed 

in this thesis are able to handle p as a free parameter while those in [3] were restricted to 

fixed values of p. The general pair of conjugate functions is easily derived using the follow- 

ing commands: 

> f7 := convert (abs(x)-p/p,PWF,x, {p>1)) ; 

g7 := Conj(f7,y): 

f7 := 0: x = o  

ZP o < x  

3 Y < O  
97 := 0: y = o  

In creating f 7, notice that we passed additional parameters consisting of a set of assump- 

tions. In this example, if we do not provide the information that p > 1 then the process 

will fail, producing the following output: 

> f := convert ( abs(x)-p/p, PWF, x ) ; 
Error, (in EvalRel) unable to evaluate relatioo: 

Example 4.8 (Indicator function of t he  unit ball in  R2) We now consider the indi- 

cator function of the unit ball in two-dimensions. Due to the verbose nature of the output 

for multi dimensional PWF objects, we will generally suppress the display of these objects. 

We begin by manually constructing the PWF object, which is recursive in nature, and 

described in section 3.3.2. The indicator function of the unit ball is simply the function that 

has value 0  for all 1x1 5 1, and m elsewhere. The PWF object for this function is constructed 

with the following commands: 
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Figure 4.3: Plot of g8 from Example 4.8 

> [ i n f i n i t y ]  : 

> [ i n f i n i t y  ,O,O, i n f i n i t y ]  : 

> [inf i n i t y , s q r t  (1-xl-2) ,0 ,0  , s q r t  (1-x1-2) ,O,  i n f  i n i t y ]  : 

> [%%%,-1,%%,%,1,%%,%%%3: 

> f 8  := ~ ~ F ( % , [ x l , x 2 ]  , x l : : r e a l , x 2 : : r e a l ) :  

The conjugate of this function is calculated using the command g8 : = Conj (f  8 ,  [yl , y21) , 
which yields the function Jm-. I t  turns out that this and Example 4.1 are simply 

specific cases of the more general result on Rn that 

0,  llvll I 1 
IIxIl* = 

m, otherwise. 

The plot of g8 in Figure 4.3 is generated using the command P l o t  (g8 ,  -1. . l ,  -1. . l ,  

axes=f ramed, o r i e n t a t i o n =  [66,77] ) .  0 

Example 4.9 (An example on R2 from Borwein and Lewis) We consider the follow- 

ing function given in an exercise on page 40 of [4]: 

( m, otherwise. 

Specifically, we consider a variation of the above function defined on the half-plane for 

x2 > a > 0,  and consider the behaviour of this function in the limit as a decreases to 0. 
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(a) Plot of f9b (b) Plot of g9b = f 9b' 

Figure 4.4: Conjugate pair from Example 4.9 

The following code manually creates the PWF object corresponding to this function: 

> [infinity,a,O,Ol : 

> Cinf i n i t y ,  a , x l ^2 / a , x1 -2 /~21 :  

> C%,O,%%,%l : 

> f 9  := PWF(%,[xl,x2] ,{xl::real,x2::real,a>O)): 

We can learn about the behaviour of this function at its limit through the following com- 

mands: 

> g9a := L i m i t  (Conj ( f 9 ,  [yl ,y2] ,a=O,right)  : 

> g9b := Conj(Limit(f9,a=O,right),[yl,y2]): 

> Equal (gga, g9b) ; 

true 

Thus we see that in this example the conjugate of the limit and the limit of the conjugate 

agree. Finally, we can prove convexity (answering the exercise presented in [4]) and visually 

examine the conjugate pair (Figure 4.4) with the following commands: 

> f9a  := Limit(fS,a=O,right):  

> Convex (f 9) ; 

> Plo t  ( fga ,  -10. .10,0 . .  10,axes=framed,orientation=C65,30] ; 

> Plo t  (gga, -10. . lo , -10.  .O,axes=f ramed, orienta t ion= [65,301) ; 

true 
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Example 4.10 (An example on EX3) We consider one final example in higher dimen- 

sions. In this example we demonstrate an alternative construction technique, building the 

PWF object from its (non-recursive) region representation, as discussed in section 3.3.1. It 

is often the case that such a representation is easier and more readable for PWF creation 

purposes. We consider the function - ln(x + 1) + y ln(y) + z2 defined on EX:. The following 

commands generate the PWF and test it for convexity. 

> f := (x,y ,z) -> -log(x+l)+y*log(y)+z-2: 

> R := CCO,infinity, O,infinity, O,infinity, f(x,y,z)l, 

C0,inf inity, 0, infinity, 0,0, f (x,y,O)] , 

[O,infinity, 0,0, O,infinity, f(x,O,z)I, 

LO, 0, 0, infinity , 0, infinity , f (0, y , z) 1 , 
CO,infinity, 0,0, 0,0, f(x,O,O)l, 

[O ,0, 0, infinity , 0,0, f (0, y , O)] , 

[O,O, 0,0, O,infinity, f(O,O,z)], 

CO,O, 0,0, 0,0, f(0,0,0)11: 

v1 := [x,y,z]: 

a1 := convert(map(i->i;:real,vl),set): 

RegionsToPwfPl(R,vl): 

f 10 := PWF(%,vl,al) : 

Convex(f 10) ; 

true 

SCAT is able to extract lower dimensional convex functions from higher dimensional func- 

tions through partial evaluation. We demonstrate this ability in the following example: 

> g := Conj (f, CX,Y,Zl) : 

Eval(g, Y=-1,Z=O) ; 
e(-2), X < -1 

e(-2), X = -1 

- 1 - X - In(-X) + e(-2), (-1 < X )  and ( X  < 0) 

m, X = O  

m, o<x 
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4.3 Horse Racing Problem 

SCAT is powerful enough to handle many functions symbolically, and this can allow for 

certain optimization problems to be solved symbolically. In the following example from 

1131, SCAT is able to find a closed form of the dual which allows us to find quick and 

accurate numerical solutions to the primal. 

Suppose there is a fixed quantity of xo of some commodity that needs to be allocated 

among n distinct activities in such a way as to maximize the return. We may assume that 

the return associated with the ith activity is an increasing concave function gi(x) due to 

diminishing marginal returns. Letting xi represent the amount of commodity allocated to 

the ith activity, the problem may be stated as 

maximize g(x) = EL1 gi (xi) 

subject to Cy=l xi = xo, and xi 2 0, i = 1 , .  . . ,n. 

This problem is easily recast into the framework of Fenchel duality. Let each gi have domain 

R+, and accordingly let g have the domain Rn+. Define the set C = {x : Ekl xi = xo) 

and construct the function f = bc. Since each gi is concave on R, then g is concave on 

Rn. Since C is a convex set it follows that f is convex. We see that dom f n dom g = 

{x : Cy=l xi = xo, x E R?}, thus our problem is defined over the correct domain. In this 

notation, the problem now becomes 

We now consider the convex conjugate f *, given by 

Let a be the index of the yi with the largest magnitude, and similarly let b be the index of 

the yi with the smallest magnitude. Suppose (ybl < ly,l. By setting x, = xo + rsign(y,), 

xb = -rsign(y,) and xi = 0 otherwise, we see that as T tends to infinity, so does (y, x). Now 

consider y such that ' lya 1 = I ybl  There are two subcases to consider. Suppose y, = - yb. 

Without loss of generality, let y, > 0. Taking the same allocation as above yields (y, x) = 

(xo + r)y, - T(-y,) = xo + 2ry,, which tends to infinity as T does. Thus, we are left with 
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the case y, = yb, which implies that y has the form y = X(1,. . . ,1) for X E R. In this case: 

the inner product always has the same value, namely Axo. Thus, we see that 

Axo, y = X(1,. . . .1)  
f*W = oo, otherwise. 

Since g is separable, we may easily calculate g,(y) as 

The dual problem then becomes 

Surprisingly, the n dimensional primal problem is reduced to a single dimension optimiza- 

tion problem in the dual. 

Consider the problem of betting on a horse race. Assuming we know the probability pi 

that the ith horse will win, we wish to know how best to distribute a total bet of XQ dollars. 

Let the track keep a proportion 0 < 1 - C < 1 of.the total amount bet and distribute 

the rest proportionally amongst those who bet on the winning horse. Finally, let si be the 

amount that the rest of the public is betting on horse i. If we bet amount xi on the ith 

horse, we receive 

if it wins. Thus, the expected net return R is calculated as 

The problem then becomes to maximize R, or equivalently 

where 

Inspecting the second derivative of gi shows that it is strictly decreasing, and thus each gi 

is concave. Using the relationship between convex and concave conjugates in Section 1.6.1, 



CHAPTER 4. APPLICATIONS AND EXAMPLES 

SCAT can calculate the concave conjugate of gi yielding: 

I -m, X < O  

-Pi : X = O  

-Xsi + 2 G  -pi,  (0 < A) and (A < 2) 
0, si 

0: E < X  St 

The calculated closed form of each gi may then be used in solving the one dimensional mini- 

mization in Equation 4.11. Unfortunately, no symbolic solution exists to this minimization, 

but any numerical solver will quickly and accurately find the unique minimization point 

because of the symbolic representation of the objective function. 

Given a solution X to the dual problem, we want to find the associated xi values in the 

primal domain. By Theorem 1.26, it follows that the optimal x will maximize the equation 

Thus, each xi will maximize 

xiX - gi (xi). 

Solving for the critical point by differentiation yields 

Since this value is negative (and outside of the domain of gi) if X > 2,  then it follows that 

xi = 
otherwise. 

Thus, we see that  X is chosen such that 

Now S(X) is easily verified as continuous, and it can be seen that S(0) = cm, S ( w )  = 0. 

Thus, there will always exist a X that satisfies this equation. 

It is interesting to note that for small xo, a larger X will need to be found to satisfy this 

equation, and as s o  gets small enough (xo << C s i ) ,  it will eventually be such that X is 
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smaller than only the maximum e .  This means that the entire bet should be placed on the 

single horse with maximum e ,  or equivalently, with maximum piri where 

is the track odds. 

4.4 Future Work 

While progress has been made in extending earlier work on symbolic conjugation to the 

non-separable multi dimensional case, much work remains to be done. The two biggest 

hurdles to successfully completing a conjugation calculation are the inverting of the one 

dimensional subdifferential, and the pivoting operation between partial conjugates. 

Focussing effort on improving the ability to find inverses on a wider variety of functions 

would simultaneously improve the functionality of SCAT on both of these troublesome fronts. 

This is most directly addressed by improving the underlying tools in Maple. 

The operation of pivoting (variable reordering) in two-dimensions has been fully ex- 

plored, and is limited only by the ability to find branch points and inverses. However, there 

remains much room for further exploration into variable reordering in higher dimensions. 

While there is not much hope for a general solution, many special cases and heuristics are 

sure to exist which will extend the class of functions SCAT can handle in closed form. 

There is also the possibility of tackling new related problems. Having the ability to 

symbolically calculate convex hulls of one dimensional functions would greatly improve the 

range of input functions that SCAT could handle, as well as provide useful new functionality 

in its own right. Additionally, it would be interesting to investigate direct algorithms for 

calculating infimal convolutions symbolically instead of using conjugation and addition; a 

direct algorithm would likely be more efficient, and may be able to handle a broader class 

of input functions. 

Other often neglected areas to improve are those of user interface and data structures. 

It is currently rather cumbersome to create symbolic representations of higher dimensional 

functions, as evidenced by the latter examples in Section 4.2. Improved data structures may 

simultaneously yield more intuitive representations and allow for algorithmic improvements. 

This thesis has presented algorithms for symbolically calculating Fenchel conjugates on 

Rn and subdifferentials on the real line. It has provided examples of situations where the 
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algorithms succeed, commented on their shortcoming and identified areas for improvement. 

It is hoped that the SCAT package will be a useful tool that will spur further research into 

both symbolic and numeric algorithms for problems in convex analysis. 



Appendix A 

Command Listing 

This appendix serves as a glossary of all commands introduced in the Convex Analysis 

Toolkit for Maple. Each of the 27 new commands is described with comments on usage, 

input and output. The latest version of the toolkit may be found on the internet in the 

Dalhousie D-DRIVE Docummt S e n w ,  along with commented source code and example 

Maple work-sheets. 

A. l  Symbolic Convex Analysis Toolkit 

A.1.1 Introduction 

The Symbolic Convex Analysis Toolkit was written in Maple 7, but has been tested with 

all versions of Maple up to and including version 9.5. Where there are known issues, they 

have been noted along with the command description. 

A. 1.2 Commands 

A.1.2.1 convert/PWF 

Description: Integrates with Maple convert command to convert functions, expressions 

and piecewise objects to the PWF format. 

Usage: 

convert( f ,  PWF, v, a1 
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Input: 
f 

v 

A function, expression or piecewise object. 

A list of variables and their ranges, as with the plot 

command. If no range specified, the function is as- 

sumed to be defined on the whole real line. If a range 

is specified the function is defined as infinity outside 

the range. 

An (optional) set of assumptions on other parameters 

appearing in the expression. 

Output: A PWF object representing f. 

A.1.2.2 SCAT[PwfI'oPiecewise] 

Description: Converts a one dimensional PWF object to the equivalent piecewise object. 

Usage: 

~wf~oPiecewise( pwf ) 

Input: 

P w f A one dimensional PWF object. 

Output: An equivalent piecewise object. 

A.1.2.3 SCAT[PwfI'oRegions] 

Description: Converts a PWF object to a list of regions. 

Usage: 

PwfToRegions ( pwf ) 

Input: 

pwf A PWF object. 

Output: A list of regions. 
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Description: Converts a list of regions to a PWF object 

Usage: 

~e~ionsToPwf ( R ,  X, A ) 

Input: 
R 

X 

A 

A list of n dimensional regions. 

A list of n variables. 

An (optional) set of assumptions on parameters ap- 

pearing in the list R. 

Output: An equivalent PWF object. 

Description: Calculates the subdifferential of a one dimensional PWF object. 

Usage: 

SubDif f ( pwf ) 

Input: 

pwf A one dimensional PWF object. 

Output: The subdifferential as an SD object 

Description: Integrates a given SD object, and returns a corresponding one dimensional 

PWF object. Arbitrarily choose the constant of integration. 

Usage: 

Integ( sd ) 

Input: 

sd An SD object. 
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Output: A PWF object. 

A.1.2.7 SCAT[Plot] 

Description: Plots one- or two dimensional PWF objects, and SD objects. 

Usage: 

P l o t (  pwfl ,  r ,  op t2 ,  ... ) 

P l o t  ( pwf2, r l ,  r 2 ,  op t3 ,  . . . ) 

P l o t (  sd, r ,  op t2 ,  . . .  ) 

Input: 
pwf 1 

pwf 2  

s d  

r ,  r1, r 2  

opt2 

opt3 

A one dimensional PWF object. 

A two dimensional PWF object. 

An SD object. 

Ranges of the form a .  . b or x=a. . b. 

Any (optional) p l o t  compatible options. 

Any (optional) p lo t3d  compatible options. 

Output: A corresponding plot. 

Description: Erases all previous assumptions associated with a given PWF or SD object, 

and stores any new ones provided. 

Usage: 

Assume( pwf, a ,  . . .  ) 

Assume( sd, a, . . .  ) 

Input: 

PW f 

s d  

a 

A PWF object. 

An SD object. 

An (optional) assumption. 

Output: A new object containing the corresponding assumptions. 
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Description: Adds additional assumptions to an existing set associated with a given PWF 

or SD object. 

Usage: 

Additionally( pwf , a, . . . ) 

Additionally( sd, a, . . . ) 

Input: 

P w f 

sd 

a 

A PWF object. 

An SD object. 

An (optional) assumption. 

Output: A new object containing the corresponding assumptions. 

Description: Returns the set of assumptions associated with a given PWF or SD object. 

Usage: 

Assumptions( pwf 

Assumptions( sd ) 

Input: 

PW f 
sd 

A PWF object. 

An SD object. 

Output: The set of assumptions. 

Description: Evaluates a PWF or SD object at a given location. For higher dimensional 

objects, some portion of the variables may be specified, resulting in a corresponding lower 

dimensional version of the object. 
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Usage: 

Eval( pwf , val l  , va12, . . . 
Eva1 ( sd,  val ) 

Input: 

pwf A PWF object. 
sd An SD object. 

val ,  v a l l ,  va12 A variable value. The nth value is assumed to refer to 

the nth variable, unless directly specified in the form 

x=a. 

Output: The value of the object at the given location, or possibly a lower dimensional 

partially evaluated PWF object. 

Description: Tests two PWF or SD objects for equality. They must be in the same variable 

order. Multi dimensional objects in a different variable order may in fact be equal, but will 

be reported as not equal. 

Usage: 

Equal( pwf 1 ,  pwf2 ) 

Equal( s d l ,  sd2 

Input: 
pwfl, pwf2 A PWF object. 

sd l ,  sd2 An SD object. 

Output: A boolean value. 

Description: Applies a limit to a PWF or SD objects. Due to the object structures, normal 

limit operations will not work, and this procedure must be used instead. Limits may only 

be taken with respect to free parameters (and not variables of the object). 
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Usage: 

Limit(  pwf, x=val,  d i r e c t i o n  ) 

Limit(  sd,  x=val ,  d i r e c t i o n  ) 

Input: 

P w f 

sd 

X 

v a l  

d i r e c t  ion  

A PWF object. 

An SD object. 

A variable. 

A value. 

An (optional) direction from which the limit is taken. 

The choices are l e f t ,  r i g h t ,  r e a l .  If not provided, 

assumed to be rea l .  See ? l i m i t  for more details. 

Output: The object with the appropriate limit taken. 

Description: Performs substitutions on PWF or SD objects. Using a regular call to subs 

may break the underlying structure, so this is a safe wrapper to avoid any problems. The 

syntax is identical to the existing subs routine. 

NOTE: This can't currently properly handle variable substitutions. For example, sub- 

stituting x = -x will result in a malformed PWF object. 

Usage: 

Subs ( xl=al, . . . , pwf ) 

Subs( x l = a l ,  . . . ,  sd ) 

Input: 

P w f 
sd 

x l  

a1 

A PWF object. 

An SD object. 

An expression to be replaced. 

An expression to be substituted. 

Output: The modified object. 
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Description: Performs the partial conjugation of a given PWF with respect to the variable 

that is last in the variable list. Not guaranteed to succeed. 

NOTE: Success of the partial conjugate depends on Maple's ability to invert functions 

and find zeroes of derivatives. Because of the difficulty of this task, the algorithm will not 

always succeed. 

Usage: 

P a r t  i a l C o n j  ( pwf , y 1 

Input: 

pwf 

Y 

A PWF object. 

The conjugate variable name. 

Output: The partial conjugate. 

Description: Pivots a given PWF object. That is, reorganizes the function from the vari- 

able order [xl, .  . . , x,] to [x,, X I , .  . . , x,-I]. 
NOTE: This operation depends on the ability to find inverses, roots of derivatives, etc. 

This operation is not guaranteed to succeed, especially for complex examples in dimensions 

higher than 2. 

Usage: 

P i v o t (  pwf 

Input: 

P w f A PWF object. 

Output: The pivoted object. 

Description: Calculates the Fenchel conjugate of a given PWF. 
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NOTE: This operation depends on the Par t ia lConj  and Pivot operations, and thus 

may also fail, especially for complicated examples in dimensions higher than 2. 

Usage: 

Conj ( pwf , vl ) 

Input: 

P w f 

vl 

A PWF object. 

A list of conjugate variable names. 

Output: The conjugated function. 

Description: Attempts to determine if a given function is convex or not. Currently does 

this by calculating the bi-conjugate, and testing for equality. 

NOTE: May return FAIL if the underlying operations are unable to finish. 

Usage: 

Convex( pwf ) 

Input: 

PW f A PWF object. 

Output: A boolean value upon successful completion, FAIL otherwise. 

Description: Attempts to perform the infimal convolution of one or more functions. 

NOTE: This operation depends on Conj and may therefore not always succeed. 

Usage: 

InfConv( pwfl,  pwf2, . . .  ) 

Input: 

pwf 1 ,  pwf2 A PWF object. 

Output: The infimal convolution of the list of functions, as a PWF object. 
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A.2 Computational Convex Analysis Toolkit 

A.2.1 Introduction 

The Computational Convex Analysis Toolkit was written in Maple 7, but has been tested 

with all versions of Maple up to and including version 9.5. 

While the algorithms implemented in this toolkit are naturally extended to arbitrary 

dimensions, running in an interpreted language places heavy heavy overhead on their imple- 

mentation. Additionally, these numeric algorithms are intended as an aid to visualization, 

which is fundamentally limited to functions defined over IR2. For this reason, all of the 

algorithms in this package will currently only work for dimensions 1 and 2. 

A.2.2 Commands 

Description: Creates an NPWF object. 

Usage: 

CreateN( f , [ r x l ,  . . . , rxnl , m ) 

Input: 
f An n dimensional procedure accepting values of type 

finite, and outputting values in (-co, co]. 

r x l ,  . . . ,  rxn An arrayllist of finite values, or a range of ex- 

tended-numeric values. 

m An (optional) number of points to use per dimension. 

Over-ridden if r x i  is an array or list of points. 

Output: The NPWF object representing f over the given domain. 

Description: Plots a given one- or two dimensional NPWF object. 

Usage: 

PlotN( npwf , opt ) 
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Input: 
npwf 

opt 

An NPWF object. 

Any (optional) plot options (see ?p lo t ,  options). 

Output: A two or three dimensional plot. 

Description: Evaluates an n dimensional NPWF object at a given point in Rn. By con- 

vention, the function is defined to be oo outside of the domain specified when created. Any 

points off the grid of definition are calculated as the appropriate convex combination of 

their neighbors (linear interpolation). 

Usage: 

EvalN ( npwf , X ) 

Input: 
npwf 

X 

An n dimensional NPWF object. 

A list of n finite values. . 

Output: The value of npwf at X. 

A.2.2.4 CCAT [GetDualRangeN] 

Description: Given an NPWF object, returns the interesting ranges for each dual variable. 

To be used as an aid to help determine interesting regions over which to calculate the 

conjugate. Essentially, the minimum and maximum slopes of the convex hull along each 

dimension. 

Usage: 

GetDualRangeN( npwf 

Input: 

npwf An n dimensional NPWF object. 

Output: An n dimensional list of ranges. 
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Description: Calculates the convex hull of the given NPWF object. 

Usage: 

ConvexHullN( npwf ) 

Input: 

npwf An NPWF object. 

Output: The convex hull, as an NPWF object. 

Description: Calculate the conjugate of a given NPWF object. 

Usage: 

ConjN( npwf , [rxl, . . . ,rx21 , m 

Input: 
npwf An NPWF object. 

rxI, . . . , rxn An (optional) array/list of finite values, or a range of 

extended-numeric values. May be completely or par- 

tially omitted, and individual ranges may be specified 

with DEFAULT. Unspecified ranges will be automati- 

cally determined using the function GetDualRangeN. 

An (optional) number of points to use per list of 

points per dimension. Over-ridden if rxi is an ar- 

ray or list. 

Output: The conjugate, as an NPWF object. 

Description: Tests a given NPWF object for convexity. Tests to a slightly lower numerical 

precision than that used in the calculations of the object. Thus, for small non-convexities 
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(of a magnitude on the same order as the precision in use), this routine may return incorrect 

results. 

Usage: 

ConvexN ( npwf 

Input: 

npwf An NPWF object. 

Output: A boolean value. 
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