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S::tnciarcl distributed cornpuririg models mzke the simplifying assumption that 311 

c r m p m n r s  ofthe ne~ivork  are perfectly reliable. Cnfrtrtunately this is not rea!istic as 

prwxuwr.; and con;mnnlcatictn edges fail: messages are lost and networks become 

tii~c:tnnccted. Ever! when &e mtdt! assumes random edge failures, there is no indicarion as to 

:ii:tch edrrcs - are Iikzly :o hi]. Fa;!/[-iuferant a!_rorizhrns, designed to mn under such models, 

bccctrni. very complex as they rnusr not only contend with lost messages, but a dynarnicaliy 

L - h . s n f r ~ n i z  x,L,.,,;,s, Izbiwork r t . = r  topoiogr-. In &is thesis we inrroduce a new distributed computing nioclel in  
G' 

tvhich e x h  processor has u priori knnwiedge of t-he re!iabi!itp of e x h  ificiden: edge. Sot 

rims this allow us to ai.oid using unreliable edges it enables us to derive a reliable ~ilhiictrrnrk 

zvhich is less vulnerable to failure than the original network. 

Unfoxufiately, eomprriing the reiiabiiiry of a network is a difficult task as the problem of 

computing any of the tradiricnrtl probabilistic relt'sbility measures is NP-hard. Even 

;tpproxinia!ir)n and bounding algorithms, which have polynomial time complexity, tend to be 

quite complex. For these reasons, we introduce a new probabilistic measure of reliability. The 

Averqe  A l l  Pairs reliability measure is defined as the average, over all pairs of processors, of 

the most reliable path between a psir of processors. This new reliability measure can be 

computed in 0(n3) time. 

The reliable subnetwork, based on the previous definition of reliability, can be computed 

exactly with 0fn3) messages. Cnfonunately, this computation results in a large nsmber of 

messages. An approsirnste reliable subnettvork algorithm is introduced, in which each 

processor selects its K most reliable incident edges to be members of the reliable subnetwork. 

The approximate algorithm has a message compIexity of O(e). We show by theoretical and 

experimental analysis that for K > 2 the approximation technique produces solutions which are 

tt!rnost as refiable as the exact solution and very likely to be connected. Finally, we augment the 

;tpproxim;ttion algorithm to ensure conr~ectedness. This algorithm has a message complexity of 

Oinlog,n + el. 

.-- 
Ill 
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Chapter 1 

n u ~ b e r  of connected terninals. hzse E;irgeiy been superseded b:: netnmks of aiitctnor'rious 

processors. As the physical rmctnrss of the cvrnputing systems tr:tt.s ctlangcti so h;tvc t h  

manners in which computers zi: used. Compil:cr networks enable \<.hat were oi:w Itxxlizctl 

. 
functions, such as database mt;lrtxar~ons. rzsoui-cs sharing ;mi so on, t o  be distri1luri.d over ;i 

number of physically indepsnder,! sites. Ntrrsorkh h;ive also made pos.;it:lt tiis:rihiiic>il 

comprttarions in which prxessors xirh incd knoiriedge cooperate to solvc a cornnlon 

problem. As computer netttorks become rurnmonpl;lce in society and ive buuctmt. r r - i c m  

dependent on them, we piace a geatzr demand on the services of the network. It tht-rctitre 

becomes increasingly irnportmr rhzi ntmmrks remain reliable. Although the reliability of 

. . individual netstork compofisn'is ;ns mp:w& rtt-er time, as nettvorkc become rm-e :i:lrl marc 

cornpiex they become incrzasingly ~tllnera'n'ie to unpredictrible failure ( c . . ~ . .  edge rcactiv:rtion, 

F o u s r  failure, hrtrdivax h i lu re ,  ex.;. or h a t i l t  arttick. Consequcnrl:.!. n o  compiitcr network i x  

completely reliable. 

In netrvorks; processors comn~unicste and share information h:; ;;ending mes;;age5 ;llong 

incident edges. When the edger arz diab!, rhe ;a& ib  simple bcanse  rnessagci a x  gt::trantectf 



* .  I he cctrnplexity of a fartft-x&xi;; tiigm-ithr;; codif be significitntfy irnfsroxzd if Lse Itrid 

infimnation as to what types of ftiiiures ~tli!l rake place. ;<;hat components ii-ill fail and \$.hen the 

faiitires ivili occur. Unfortunately, this infomation is generafly impossible to obtain. Hoiszver, 

!f the nriwrxk indude; reli;th!!iry inf~nnarinn, ther! \.ye are able ro predict fdures  and avoid 

using components which are verj; like!? tro fail. fn this thesis we examine ways of using 

reliability informtition to ensure successfi~i mnsrnfssion of messages in  distributed a!gorirhms. 

This rhcsis i(; organized in rhe folioti ir?g m:mner. In chapter 2 we esamine the basic 

distributed rntxfel rind the modsf ti hich a ~ m x . ;  edge kiults. 'A'e then proposz a ne\\. forn1:d 

distributed computing nmdel in t\-.fiich processors are rsiiabk but edges are not. Each edge has 

~isstx.i;ttt.d with it a probability of frtiirxs ts hich is knmvn to both adjacent p iocxs~or~ .  



In chaprer 5 we evduzire t k  appruximariori algorithm in temls of rt3li:kility. The esnct 

reliable subnetwork is id-ntical. in ternms of rejirtbiiity. to the orig~rlrti nerwork. The 

approsimate reliable subne::vork dors not have this guarantee. In this chapter we 

experimentally evaluate the a p m s i m s e  reliable subnetwork and show that in  most ciisC< thc 

reliability is only slightly isss rhsn the exact soItltion. 

In chapter 6 we presenr a more deraikd summary of the results and conclusions reached. 

We end the thesis with a discussion of interesting observations and fittiire research directions. 



Chapter 2 

A Distributed Computing Model with 
Reliability Information 

2.1 Standard Distributed Model Definition: 

T h e  standard distributed computing model, as outlined in [S83] and [LP86], is 

represented by a simple graph G = (V, E), where IVI = n and IEI = e. V is the set of vertices in 

the graph, each representing a processor in the network. In this thesis the terms node, 

processor and vertex may be used interchangeably, although "processor" is generally applied 

when discussing networks and "vertex" is generally used when discussing graphs. The order 

of the network refers to the number of nodes. E is a set of edges of the network, each 

representing a direct bidirectional communication link between two processors, such that E r V 

x t'. eij e E if i = j. The size of the network refers to the number of edges. Two processors, 

r ,y E 1;. 31-63 said to be neiglzhours, or adjacent, if e x ,  E E. The neighbowhood of a processor 

is then the set of all neighbours of that processor. An edge is incident to a processor if it 

direcily connects that processor to a neighbour. 

The st'andard model includes the following basic assumptions concerning processors and 

messages in the network: 



Processor Assumptions: 

PI. Processors are identical 2nd indistinguishable except for a distinct label known ;is thc 

processor identizy. 

P2. The network has no central controller and processors share no cornmon clock. 

P3. Each processor has a local non-shared memory of bounded capacity. 

P4. The number of processors in the network is fixed but unknown to individuzl 

processors. 

T5. Each processor knows how many neighbours i t  has and can distinguis!? ;tmong ?! IC~I .  

Aside from this no other topological information is known. 

P6. Processors may only communicate with each other by passing messages. 

K7. Messages received at a processor are processed in the order that they arrive. I f  mosc 

than one message arrives at a processor at the same time (i.e., via a different edgc) 

then thcy are processed in arbitrary order. 

P8. Processing time is negligible compared with transmission delays. 

P9. Any subset of 0 < j < n processors, called iniriators, may sirirt a distributed 

computation spontaneously. 

P10. Processors are completely reliable and do not fail. 

Message Assumptions: 

M1. The network is asynchronous, which is to say that distribated computations are 

message driven. 

M2. Messages sent along the same edge are delivered in the same order in which they wcrc 

sent. 

M3. Messages are short, on the order of O(log,n) bits. 

M4. Messages are transmitted without error 

M5. Messages are delivered in finite but unbounded time. 
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f n  adifiGaii lij i h e s ~  basic assui i ipi i~i i~,  it.2 extend the standrid mde! t;4' assuming that 

each pr!?cessr?r has a prior!' knnw!edge of i!s niighbnurhnod, which i to say rhar a processor 

knows the identity of each of its neighbours. Notice that this assumption is not essential to the 

model, as neighbourhood information can be computed by ignorant processors with O(e) 

messages. 

In the standard distributed model the assumption is made that the network is completely 

reliable, which is to say that all network operations may be performed successfully. The 

purpose of this simplifying assumption is to enable us to focus on the fundamental aspects of 

the network rather than specific exceptional characteristics. The reliability of the network is 

facilitated by certain assumptions concerning the reliability of both processors and 

communication links. Processors are assumed to be completely reliable (PIO) which is to say 

that no prwessor hardware failures take place for the duration of the computation. As a 

corollary to this condition, we assume that messages received by a processor are never lost and 

always dealt with in the appropriate manner. Notice that this says nothing about the correctness 

of the distributed algorithm, which may contain erroneous statements. 

Edges are assumed to be reliable in two respects. First, message transmission (i.e., the 

physical sending of bits over the communication links) is error free (MI). This implies that the 

message sent by the iniriator is identical to the message received at the intended destination. 

Notice that this assumption does not imply that the message is actually received by the intended 

processor. Consequently, the second edge reliability assumption states that a message sent is 

eventually delivered to the intended recipient ( K f . 5 ) .  This assertion implies that no messages are 

ever lost. However, it is a weaker statement than the assertion that the edge is completely 

rdittble since it allows for the possibility of an edge to fail, provided that it does not remain 

hiled forever and it never causes a message to be lost. This assumption implies that the edge 

must appear to be reliable within the network. For general purposes this is sufficient. 
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2.1.1 Distributed Complexity illeasures: 

In non-distributed environments. tne efficiency of aigorithms is us;iaiiy mensureci in  icntis 

of processor execution time, given in terms of the size of the input. i n  distributed situations t!iis 

measure does not apply since the algorithm is executed among a number of different 

processors, possibly in parallel, and processing time is negligible ~vhell compnred to 

transmission and queuing delays (P8). As a result, the efficiency of a distributed con~putation 

will be measured entirely in terns of communication activities. A distributed algorithm is 

subject to the following complexity measures: 

Message complexity: This is the total number of messages sent during the execution of a 

particular distributed algorithm. This is usually given in terms of the number of 

vertices andfor edges of the network. 

Bit complexity: This is the average number of bits transmitted over the network for the 

duration of the distributed algorithm. As justification of this measure, consider that 

the transmission of a 1K bit message, such as a file transfer, uses considerably more 

network resources than the trrr,?nsmission of a 1 bit message used as an 

acknowledgment, 

Total Execution time: This is the time elapsed between the time the first processor starts 

the execution of a computation and the time the last processor terminates its 

execution. For the purposes of analyzing the execution time complexity we must 

contradict some of the standard mildel assumptions. Specifically, because the 

network is asynchronous and therefore message transmission times are unbounded, 

the total execution time is measured sssuming that the network is synchronous and 

that the sending of a message requires one time unit. Since processors have different 

local clocks, we assume that execution time is measured in global time units with 

respect to an external observer. 

2.2 A Distributed Model With Edge Faults: 

The standard distributed computing model makes the assumption that the network is 

completely reliable and all operations performed on it are done so successfully. But 

realistically, this is not the case; individual components may fail, messages are lost or 
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duplicated and networks become disconnected. In general, network failures may be modeled in 

a variety of different ways. Network failures can range from the simple fail-stop failures to the 

more malicious Byzantine failures. Fail-stop fdures  represent the situation in which a network 

component may fail but never recover for the duration of the distributed computation. With 

Byzantine failures, a processor, or group of processors, communicate in a chaotic or hostile 

manner. Byzantine failures are difficult to predict and harder to prevent. These type of failures 

are relatively uncommon, and we will not consider them further. Fail-stop failures, on the other 

hand, are too restrictive as it is not uncommon for a network component to fail for a short 

period of time and then resume normal operation. For these reasons, we consider internlittetzt 

(also known as transient) failures in which a network component can fail and subsequently 

recover infinitely many times during the distributed computation. More specifically, for the 

duration of this thesis we consider a distributed computing model in which processors are 

completely reliable1 but the edges are subject to intermittent failures. 

The distributed computing model with edge faults can be derived from the standard model 

by withdrawing the message assumption M5 which states that messages are delivered in finite 

but unbounded time. Instead, we place no restrictions on the length of time for which a 

message is in transit. A failed edge is represented as having an infinite transmission delay. This 

model was first introduced by Afek and Gafni [AG88] and is referred to as the -delay model. 

The --delay model is a weaker model than the standard model (the standard model is a special 

case of it). 

Although the =-delay nlodel can model any edge failure which may occur in the 

network, it has an undesirable property; messages sent over non-failed edges experience a 

Although the assumption of completely reliable processors is unrealistic, processor failure can be 
rtpproximatcd in this model by the failure of all adjacent communication links. 



edge. More simply put, with the =-delay model it is impossible to determine wlwthcr or not thc 

edge is functional. This problem is solved by adopting the d~nczrnic distributed network modcl 

fAAG871. The dynamic model has the same basic assumptions as the m-delay mock1 but 

includes the additional assumption that each failure or recovery of an edge is eventually 

reported to both adjacent processors by some underlying edge protocol. The dynm~ic  rncntcl is 

a special case of the 00-delay model. 

Based on the previous assumptions of the dynamic model, the following implications 

concerning the properties of edges within a non-reliable network are apparent [ AEXh]: 

El. The network is dynamic and individual edges may fail and subsequently recover. Thc 

number of times an edge may fail arid recover during the course of an algorithm is 

unbounded. 

E2. Edges have the property of being either in an operational state, in which mess;tges mivc  

error-free in finite time, or rwn-operational state, in which messages are not received 

or take infinite time. The state of a particular edge is known by both acljacent 

processors which furthermore can detect changes in the state of the edge within a f i n  itc 

time of the change. We make no assumption as to the particular medium of the edge 

itself or of the actual mechanism by which a processor can determine functionality of 

an adjacent edge, only that such is possible. 

E3. A message can be sent and received over a edge only during an operational state which 

lasts at least the duration of the particular message transmission. 

E4. When an edge recovers no message may be in transit through i t  and any messages i n  

transit on the edge at the time of the failure are lost. 

The actual transmission delay of a message is influenced by such static factors a$ the throughput of the edge, 
transmission protocol and by time dependent factors such as queuing delay, size of the message and Wansmissiort 
enor rate. For these reasons the time to transmit a message is unbounded. 

9 
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We make no asurnpion concerning the duration of failure 9f any particular edge nor do we 

p!rtce any upper bound on :ke nxnber of times any edge can fail and subsequently recover. In 

zeneral, temporarily failed edges have a finite but unbounded delay due to failure. An edge 
b 

which has permanently failed (i.e., will not again become operational for the duration of the 

algorithm) is said to have infinite deiay. h'evertheless, we adopt the assumption of infinitely 

frequent stability [AAGUf .  Under this condition we assume that the network configuration 

stabilizes for a long enough period of time to allow some constant number of communication 

activities. Kotice that this assumption is not unreasonable as most communication failures are 

infrequent ((3821. 

In addition, we allow both arbitrary topologies and arbitrary edge failures (topology 

changes) within the network, however we assume the network to be eventually connected 

IAEX6I. A network is eventually connected if there exists no edge-cut in which all edges are 

permanently failed (i.e., no edge-cut persists forever). This assumption is necessary since any 

permanent edge-cut disconnects the network. Xotice that the property of eventual connectivity 

does not imply that the network is ever connected as a whole. 

2.3 A Distributed Model with Reliability Knowledge: 

In the previously discussed dismbuted model, edges were assumed to fail randomly and 

at completely unexpected times. Distributed algorithms designed to run under such a model are 

complex because they must not only contend with asynchronous message transn-iission, but 

aIso with lost mcssages due to a dynanucally changing topology. The natural question arises as 

to what difference, if any, the explicit knowledge of the probability that the edge is operational 

will have on the functionality and compiexity of distributed computations. To the best of our 

knowledge, this question has never been addressed within a distributed computing context. 

In this thesis we introduce a new distributed computing model based on the dynamic 

distributed model, with the additional assumption that individual processors have explicit 
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knowledge of the reliability of all incident edges. More fom~ally, each edge e,, E E h;~s 

associated with it a given probability r,,. O 5 r,, 5 1, which is known a priori t o  both prcrrssors 

i j  E V. The quantity r,, is the rdiability of the e d g ~  e,, and is defined to be the proh;lhility that 

the edge is in an operational state. Conversely. ihe probability that the edge e,, is in ;I failed or 

non-operational state is equal to 1 - r,,. An edge el, is completely reliable (i.e., is always i n  an 

operational state) if r,,= 1. An edge e+, is completely unreliable (ix.. is never in an oper;iticw;~l 

state) if r,, = 0. We make the following assumptions regarding the reliability of edges in thc 

network: 

R1. The reliability of an edge is Independect of the reliability of any other edge in the 

network. The assumption is that edges fail due to random fac:ors which affect them 

individually. This assumption is not valid in every circumstance since events, such as 

natural disasters, tend to incapacitate topologically local sections of the network. In the 

absence of this assumption, the reliability calculations would be substantially 

complicated as all applicable conditional probabilities must be known. Also, as pointed 

out in m83], the knowledge of what the conditional probabilities should be are 

generally not available. 

R2. The reliability of an edge is fixed for the duration of the distributed computation. This 

assumption reflects the idea that an edge is a combination of physical components. 'Thc 

reliability of an edge is therefore greatly dependent on the individual reliability of its 

components. Although physical systems are never completely reliable, the reliability 

generally stays fixed or depreciates very slowly over a fixed period of time. This is 

especially true of electronic components, such as those found in communication 

hardware. 

The reliability of an edge is a quantified indication of the probability that the edge is in an 

operational state. The definition is purposely vague so as to encompass more restrictive notions 

of reliability. As an example, the reliability of an edge may represent the availability of the edge 

over a given period of time. The availability of an edge refers to the percentage of the peritxf of 

which the edge is in an operational state. If the period is sufficiently large, we would expect the 

reliability of an edge to be quite high. In contrast, the reliability of an edge may be the 
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prr~hahility that the edge does not fail (i.e.? always in an operatinna! state) for a given per;r~d of 

time. Given this definition of reIiability, as the period increases we expect the reliability of an 

edge to decrease. Although both definitions of edge reliability are quite different, this model 

may be used with either one. Regardless of how edge reliability is defined, the reliability 

attributed to each edge is not an exact value, such as edge length could be regarded as exact, 

but rather an estimation of the true reliability. 

In this thesis we do not specify how the edge reliabilities are determined, nor by what 

nlechanism processors are informed of the reiiabiiities of incident edges. This is done for two 

reasons. First, as previously suggested, the reliability of an edge may be defined in different 

ways. Consequently, the mechanism by which reliability information is gathered may differ 

depending on the definition x e d .  Second, the reliability of an individual edge may be 

determined in different ways. The reliability of an edge may be determined experimentally, by 

monitoring the edge over a given period of time. By keeping statistical information, such as the 

number of lost messages or the amount of time the edge is in an non-operational state, the 

reliability of the edge may be calculated. Alternatively, the reliability of an edge may be 

calculated from an inherent property of the transmission media. For example, fiber optic cable 

tends to be extremely reliable and therefore would have a high reliability value. In contrast, a 

twisted pair cable tends to be much more susceptible to electromagnetic interference [S85]  and 

as a result, may have a iow reliability value. 

In the remaining chapters of this thesis we use the distributed model with reliability 

knowledge as a foundation on which we build our results. 



Chapter 3 

Network Reliability a, 

3.1 Introduction: 

I n  the new distributed computing model, the network is represented by a prohihilis-tic 

graph G = (V,E) where V is the set of vertices or processors representing comn~unicntion sircs 

and E is the set of edges representing communication links between pairs of vertices; let 11'1 = n 

and IE! = e. Associated with each edge eij E E is the reliability rij which is the probability that 

the edge is operational. Assumptions concerning the reliability of edges, as given in section 

2.3, also hold. An example of a network represented by a probabilistic graph is shown in 

figure 3.1. 

The knowledge of individual edge reliabilities enables us to take advantage of the idea of 

nehvork reliability. In this thesis, we use network reliability in order to construct subnetworks, 

from the original network, which do not decrease in reliability. This is discussed further i n  

chapter 4. 

A network is considered to be operational, in the presence of edge failures, provided that 

each processor in the network can conlmunicate with any other. The reliability of the network 

is then a quantitative indicator of how operational the network is. This definition of network 



reliaiiiiiiy is too vague to be workable and consequent1 y requires further clarification. Given the 

network configuration of figure 3.1 we may ask a number of questions: How reliable is this 

network? ti'hich edges may be rernazd from the network without reducing its reliability? and 

SO on. 

I 

Figurc 3.1: Typical Netxvork with 
Edge Rcliabi lilies 

The answers to the above questions are 

unfortunately not obvious m c e  network reliability, in 

the broadest sense of the tern, strongly depends on a 

nurnkr of interdepecdent network characteristics such 

as edge and node reliability, types of expected 

network failures, ratio of edges to nodes, network 

topology and (possibly) expected message traffic. For 

these reasons there exists no universally accepted 

formal definition of reliability. Instead, existing 

measures are defined in relatively narrow terms and seem to capture only certain aspects of 

reliability. In the following section we examine a number of existing reliability measures. 

3.2 Measures of Reliability: 

A network, G, is considered to .be "reliable" if certain fundamental communication activities 

can be performed successfully. Cotbourn [C86] identifies a number of basic network 

operations, but in general the most important criterion for a reliable network is the ability of all 

processors to comrni~nicatr: with ail other processors. A reliability measure based on this 

criterion is a quantification of the connectedness of the network and is known as the all- 

termimf refiability measure. Frank &: Frisch fFF701 and Wilcox [W72] identify a number of 

diffei-iznt approaches for evaluating dl-terminal reliability and related reliabiliry measures. 

Reliability measures can bc nahlrally divided into deterministic and probabilistic measures. 

IVith deterministic reliability measures, the individual reliabilities of network components, such 

95 edges and vertices. arc generally not known. Instead, reliability is defined in terms of 
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discrete measures such as the number of comgcsnent~ rhttt must fail in orilcr to disrupt rictiio~L 

operarion. The simplest acd ~ 3 s :  ivide!:: used ds:c;rr;inistic relkthility mr,tsitre i h  [hi' t*J,yc 

connectivity (or simply connecth iry t of the nerit o:k it hich corrcspctr? J\ to the minimum 

number of edges which m s :  fail i n  order to disconnect the netivork. Dstrrrninistic rnc,isur~.s 

are usually applicable in siruaiions i\ here nstivork components fail for non random rt.;tsons 

such as hosdle action of an inteEigefit adversay [H83]. Pr~babilisric reliability mcarun-s, on 

the other hand, assume specific knov,lsdge of the reliability of app1ic:ible network component\ 

(in our situation only the edge relisbifities are knolvn) and are rtpp1ic:tbIe lvhen cortiporient 

failures occur randomly. Probabilistic measures define reliability to be the prob;ibility that rhc 

network remains operative. Because the reliability of the network is given as it probability o f  

success/Faiiure, probabilisiic measures are more meaningful than their deteninisrrc 

counterparts. Unfortuna:ely, probabiilsrie measures are also much ntore difficult ro computc 

rjV72f. In this thesis we concennate on probabilistic measures. 

The most widely used probabilistic reliabiiir); measure is ihe prohuhifistic conncctccf~zc~ss of 

the network. This reliability measure is closeiy related to edge connectivity and is the 

probability that the network remains connected in  the presence of faiiures. Intuitively, both 

connectivity and probabilistic connectedness are measures of the .szrn.ivahility of the network. 

Survivability refers to the abiriry of the network to remain operational in the presence of edge 

failures. Both measures are most meaningful if all vertices are of equal importance. 

In theory, computing the probabilistic connectedness, Con, of a network G is re1;ttively 

simple. Since the reliability r, ,  corresponding to edge ei,, E E in the network is st:itistic;illy 

independent of the reliability of all other edges, computing the probability of the network being 

in any specific state, defined by the set of operational edges E,  and failed edges E2 = E/E,. is 
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. .  . Evalua~ing T ~ E  probsbtiiiric i.r?zzzctsdn:s.; is then a s r i t t e r  of suzminn, the resulting * L, 

prc15 s~~i.r,;,s $--;.-:+ ij3:er all ttwra;ir:nzi S ~ Z : S S  five., m r e s  in which thz ne twrk  remains connecred). 

Since there are e edges, thex exists ? p s s i b k  sixes which the netnark can be in, all of mthich 

must be enumerated. a!prifh:> hzs an execution time which is exponential in the size of 

the network, rrirking this rr.et l :d imprsciical for zii but small neworks. While it is possible to 

tn?prwc upon the cornpfete srare ei;tin:smtion aigorithrn by computing rninpaths or mincuts, in 

the generd case all known methods which compute exact solutions t&e exponential h e  in the 

twrst case- fn fact, i t  his  been shczu.n rhar computing the probabilistic connectedness, as a 

nerwc-~rk reliability measure, for gznerd networks is #P-complete [CS?]. This has led 

researchers ro develop efficient steorithms + ro compute bounds on the reliability as well as to 

examine restricted ciasses of r,sr:vorks in tvhich esact algorithnx have been found to run in 

poIq-nun;irti time. For a more compicte r m m m t  of the subject of connecti~ity and probabilistic 

connectedness as measures of reliability see {C89j, [H92],1T81] and [j?5'2]. 

Figure 3.2: The effect of configuration on connectivity 

Although the use of probabilistic connectedress as a reliability measure is widespread, i t  

can bs sfirltt.~ to k in;ipprupri;fi;: under cemin ci,c,-umstances. Consider the ttvo networks 

thawn in figure 3.2. IniuIheIy,  on: wodd e s p c :  k e  netlvork s h o w  in figwe 3 . 2 ~  to be less 

rrfid.de than the network in figure 3.26 since my edge hilure, prlrticulxiy one near the center 

of the new ork (i.r.. the rdgz comsc:ing nodes 3 md 31, will disconnect a larger proporiion of 

P32S of ndeS 4;-t n-t..r-- EiL,-d - &m la &e second. r'i is often more serious for a edge failure 

to isolate one half the processors in the network from the other half than a single processor 

from the rest. Hmevsr. in compuring ~1irtbitit)- based on nenvork connectivity both nehvorks 



in figure 3.2 1s-iif bz squaiiy rs!inbie since connscri1,ity reflects the minimum nurnbcr of edges 

&at mrrsr fail to disconnect the nzttvork. Concsquenrly. connecti13y 2nd probabilistic 

connectedness are nor sensir',= to the topology of a network in a \vay that we \vo~~ld  intuitivclv 

expect. 

The inherent problems of connsctivity based reliability measures are p;tnidly remedied by 

generalizeo cohesion. Cohesion is a more general form of connectivity, although less ~videly 

used, In which reliability is defined as the minimum number of edges th3r milst be removed 

from the ne?work in order to isdate m y  subset of ,-t; processors from the rest of the network 

{W72]. When m = 1 cohesion is equivalent to edge connectivity. The analogous probabilistic 

measure is probabilistic cofzesion which is defined as the probability that any subset of tn 

processors remains connected in the presence of edge failures. The benefit of this reliability 

measure is that it enables us to discriminate between different types of failures resulting in it 

disconnection of the nehvork. N'hen rn is small this measure capwres the network's rihility to 

withstand minor failures which only disconnect a proportionately small number of processors. 

When nz is large (i.e., nz = tz/2) it captures the ability of the network to withstand n x ~ j o r  failures 

which disconnect a large proportion of the processors. While this measure is clearly more 

versatik than probabilistic connectedness, in practice it is often difficult to detemline the 

appropriate value of nz. As an added drawback, probabilistic cohesion also suffers from 

exponential time complexity m d m g  it unattractive 2; a reliability measure. 

It was suggested in the example of figure 3.2 that not all network edge-cuts are ecpally 

critical. While connectivity is a particulariy good reliability measure for analyzing the 

probability that d l  processors are able to conmunicate, it f d s  t o  cont cy any information 

regarding the degree of disconnection or the seriousness of the disconnection when edge 

fd.;es NCW. Ofiei;, o x  is ~?iore c ~ i i ~ e i i i d  ihai nos i  communicating pairs; of vertices remain 

connected rather than the whole network remaining connected. Colbourn IC871, has suggested 

that in many applicarions a more appropriate rxasure of reliabi!ity is the expected number of 
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prcmsuor pairs which can communicate. He has termed this measure the resilierzce of the 

network since i t  captures the network's capacity to withstand failures. The resilience, Res, of a 

network, G, can be formafly defined as: 

where G ,  is a subnetwork G. ProS(GJ is the probability that all edges in G, are operational 

and all edges in G,/G fail. Pairs(G,) is the count of all the communicating processor pairs in 

G,. As with connectivity, computing the resilience of a network is conceptually simple. The 

resilience of a network is determined by examining all possible subnetworks of the network. 

For each subnetwork, both the number of communicating processors within the subnetwork 

and the probability that the subnetwork exists are computed. Both of these values may be 

computed in polynomial time. Unfonunately, there exists an exponential number of 

subnetworks in the original network which makes any algorithm using this approach 

impractical for any reasonably sized network. Colbourn in LC871 developed a polynomial time 

dgorithm to compute resilience on a specific class of networks known as series-parallel, 

however he also showed that for planar networks the problem is 8P-complete. 

In general, a number of different smtegies for computing exact probabilistic network 

reliability exist. Unfortunately, exact computation is often prohibitively time-consuming and 

there is sufficient evidence to suggest that traditional probabilistic reliability problems are 

inherently intractable. Nevertheless, some resmcted classes of graphs, such as trees, series- 

parallel graphs and con:plete graphs, enable exact computation of certain measures of network 

relitibi!ity in polynomial time. Such classes of graphs, however, are usually too restrictive and 

therefore not applicable to most networks. 

The intrxtability of computing exact reliability measures has motivated the development of 

nppro.rirtwrinri algorithms, which compute estimated reliability values with a specific 

confidence level. Intractability has also motivated the development of efficient algorithms to 
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compute upper and lower borrnds on the reliability[CMSG]. b'hile approsirnation and bo~rntiiri~ 

techniques achieve polynomial time complexity, the algorithms still tend to be quite complcs. 

as many compute edge connectivity or enumerate edge cut sets. As an ;tckled deterrent, most 

approximation and bounding algorithms apply only when a11 edge prob:ibilities are equnl 

[BC86]. For these reasons the majority of approximation and bounding algorithms are less 

than perfect solutions to the complexity problem. 

In the following section we introduce a new measure of reliability which can be exactly 

computed in polynornid t h e .  

3.3 A New Measure of Reliability: 

The previously discussed methods of computing netwurk reliability were shown to bc: too 

computationally complex to compute the reliability of even moderate sized networks. For this 

reason we introduce an efficiently computable measure of reliability based on the reliability o f  

simple paths, rather than edges, between pairs of processors. In essence, this scheme defirics 

the reliability of the nehvork to be the average of the reliabilities of the most reliable path 

between each pair of processors within the network. 

Aparh in a network is a sequence of edges, el, e,, ..., e, such that ei., an(? c, are ruljncent. 

For the purposes of this thesis we assume that ail paths are simple, which is t o  say that all 

vertices on the path are distinct. We denote by PXJ, a path from vertex x to vertex y. Tl~cri, tlic 

reliability, R,,, of any path P, is the probability that the path is operational. This in  turn is 

the probability that all edges on the path sre themselves operational and is computed as 

This is the product law of retiabilities which is applicable to any series of independent 

components. itre assume that communication between different processes within the same 

processor is completely reliable md therefore R,, = r,, = 1.0. If no path exits between two 

vertices x and y (i-e., the network is disconnected) then RIeY = 0. 
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We define the maximmt reliable path, MPX,, , between processors x and y, as the path 

which is the most reliable of any path between the two processors. The Reliability, A4RX,, , of 

the maximum reliable path is defined as: 

Definition 3.1: Average All Pairs Reliability. The Average All Pairs reliability AR of the 

network G is : 

I i , j ~ v  ; if G is connected 

; otherwise 

The Average All Pairs measure of network reliability is a probabilistic quantification, in the 

range 10 ... 1.01, of the reliability of the network. A network G, is more reliable and thus more 

likely to remain operational in the presence of failures than network G,, if AR(G,) > AR(G,). 

A disconnected network is assumed to have a reliability of 0 to reflect the belief that 

communication from one vertex to any other vertex within the network is the most fundamental 

requirement of a reliable network. 

Because the reliability of a network is dependent upon such factors as topology and 

individual component reliability, we can not expect a true numerical representation of 

reliability. Instead, all reliability measures compute an imprecise value based on some limited 

cri~efia. For example, probabiktic connectedness measures the probability that the network 

remains comected, while r d i e n c e  measures t4e expected number of connected vertices. The 

Average All Pairs reliability measure, on the other hand, measures the average probability that 

the most reliable path between each pairs of vertices is operational. Because the most reliable 
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path is used in the calculation, this measure is essentially an upper bound on the prob;tbility t l i ~  

all pairs of processors can communicate. When reliability information is knoi~n in a distr-ibutcci 

environment, this measure is particularly appropriate since the concept of paths closely 1ncxic.1~ 

the passing of messages throughout the network. 

We make two observations concerning the Average All P&rs reliability measure. First, the 

measure is topology sensitive. By this we mean, the measured reliability of a network ch;lnges 

as the topology changes. Consider again the example in figure 3.2. When connectivity is used 

as areliability measure, the reliabilities of networks a and b are identical, despite having very 

different topologies. The Average All Pairs measure, on the other hand, favors networks with 

short paths between vertices. This is inherent in the reliability definition since rhe reliability o f  a 

path degrades quickly as its length increases. For example, if we assume all edges in networks 

a and b have a reliability of 0.9, then network a has a reliability of 0.78 while network h has ;I 

reliability of 0.84. Clearly, this measure fwors short path lengths and networks of small 

diameter. 

Second, with the Average All Pairs measure, the influence which an individual edge has on 

the overall reliability of the network is directly affected by its number of occurrences in  the 

most reliable paths between vertices. Assuming that a message is always sent over the most 

reliable path between sender and receiver, a very unreliable edge will likely never be used and 

therefore will have no effect on the overall reliability of the network. Clearly this line of 

reasoning is valid since, if the edge is unreliable and thus not used, its failure in the network 

would be of little significance. In contrast, an unreliable edge which is a cut edge of the 

network, will have a large negative influence on the reliability of the network. This fact alonc, 

makes Average All Pairs a particularly good measure for the distributed computing 

environment. 
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3.3.1 Computing Network Reliability: 

The major advantage of the Average All Pairs measure of reliability over more traditional 

measures is found in the computational complexity of computing the exact reliability of a given 

network. While the previously discussed methods have exponential running time, computing 

Average All Pair: relixbility is relatively easy and can be accomplished in polynomial time. The 

algorithm essentially consists of computing the most reliable path between ( l  ) pairs of 

vertices in the network. The problem of computing the most reliable path between two vertices 

is analogous to the problem of finding the shortest path between two vertices. In the shortest 

path problem, each edge has a (positive) weight or cost associated with it rather than a 

reliability. The problem is then to find a path from the source vertex to a target vertex which 

has minimum weight. In the following theorem we show that the most reliable path between 

two vertices can be found bjr the shortest path algorithm. 

Theorem 3.1: The most relia5le path problem is computationally equivalent to the shortest 

path problem. 

Proofi We show that the most reliable path problem, by a simplc algebraic transformation, 

can be solved by any shortest path algorithm and is therefore computationally equivalent. 

The reliability matrix, r, can be transformed to a non-negative edge weight matrix, d , as 

follows: 

J - log r .  . 
1.1 ; if eiVj s E and ri,j + 0 

Let @:, c E be the set of all edges in the shortest path from vertex x to vertex y. The 

reliability, MR,, of the most reliable path connecting vertex x to vertex y in G can be 

computed as: 
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The shortest path problem has been studied extensively and a number of efficient 

algorithms exist for different variations of the problem (see [AJW73]). Although conceptu:illy 

more simple, the basic problem of finding the shortest path between two specific vertices is n o  

easier than finding the shortest path between a specific vertex and all others (single source 

shortest path problem). This can be computed in 0(n2) time, using an adjacency matrix, by 

Dijkstra's algorithm. The problem that most closely resembles what we are trying to compute is 

the all-pairs shortest path problem in which the shortest paths between all pairs of vertices are 

computed. This is evidently a generalization of the single source problem and can be computed 

by n-1 applications of Dijkstra's algorithm. Clearly, the all-pairs shortest path problem can be 

computed in 0(n3) time. If e >> n the time complexity of the algorithm can be improved by 

using Fibonacci heaps rather than adjacency matrices. 

As indicated in theorem 3.1, a shortest path algorithm can be easily transformed into a most 

reliable path algorithm. The algorithm to compute Average All Pairs network reliability, given 

in Algorithm 3.1, is an adaptation of the all-pairs shortest path algorithm of Floyd (Af-IU74j. 

for i = 1 to n do 
for j  = 1 ton do 

PR[i,j] = r[i,j] 

f o r k =  1 t o n d o  
for i = 1 to n do 

forj  = 1 t o n d o  
PR[i,j] = max (PR[i.j], PR[i,k] x PR[k,jj) 

A R = O  
for i = 2 to n do 

for j  = 1 toi-1 do 
AR = AR + PR[i,j] 

Algorithm 3.1: An Algorithm to Compute the Average All Puirs Reliability 
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The algorithm is based on dynamic programming techniques in which locally optimum 

solutions are also globally optimal. The algorithm works by first initializing the adjacency 

matrix ( I  j, then computing the transitive closure of the adjacency matrix (2). In computing the 

transitive closure, a path from vertex i to j is replaced if there exists a more reliable path 

through vertex k. The final step consists of summing the path reliabilities over all pairs of 

vertices and dividing by the number of pairs to produce the network reliability (3). Notice that 

after (2) the adjacency matrix contains the reliability of the most reliable path between all 

vertices. 

Theorem 3.2: The algorithm of figure 3.3 to compute the Average All Pairs network 

reliability has a worst case complexity of 0(n3). 

Prooj The running time of the algorithm is clearly dominated by the second step, 

consisting of three nested for loops, and takes 0(n3) time. 

3.3.2 A Numerical Example: 

To end off the discussion of reliability, we show an example of how the Average All Pairs 

reliability is computed. Consider the five vertex network shown in figure 3.3a. Reliability is 

computed by determining the most reliable path between each pair of vertices as is shown in 

figure 3.3b. Notice that because the reliability of a path decreases rapidly as its length 

increases, paths of length one (single edges) an favored over longer paths. This assertion is 

verified by the example, as half of the paths between vertices consist of single edges. On the 

other hand, wheri local edges are unreliable, such as between vertex a and b, the most reliable 

path may be significantly longer. Finally, the network reliability is calculated by averaging the 

reliabilities of the individual paths. 
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a) original network 

most reliable path 
n.1 t h 
t""" 

reliability 

network reliability = 8.WlO 

b) reliability calculations 

- - - - - -- 

Fijpre 3.3: A Numerical Example: Computing Average All Pairs Reliability. 
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Chapter 4 

Distributed Reliable Subnetworks 

4,l  Introduction and Motivation: 

I n  this thesis we are primarily concerned with ensuring reliable communications. Within a 

network, processors communicate and share information by sending messages along incident 

edges. When the edges are reliable this is a simple exercise since messages always are correctly 

delivered to the intended receiver in finite time. When edges fail randomly, the task of sending 

a message becomes more complex. The sender must not only contend with a dynamically 

changing network topology (due to the failure and subsequent recovery of edges) but also with 

lost messages and the possibility of network disconnection. For a distributed algorithm, any 

one of these problems may result in an incorrect solution, or worse, the failure to terminate. As 

a result, any distributed algorithm which executes within an unreliable network must be 

equipped to contend with unreliable communication. 

A simple, but extreme, technique to ensure the successful transmission of a message in an 

unreliable network isflooding. With flooding, a message is sent from the source processor to 

the receiver through every one of its neighbours. Each neighbour, which is not the intended 

receiver, then broadcasts the message to all neighbours. Barring a network failure which 

disconnects the sender and the receiver, flooding guarantees that the message will reach the 
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intended receiver in minimum time (since the message is sent over all possible paths). Flooding 

is simple to implement and requires only local information, however it is clear that the ~nethtxi 

has serious drawbacks. The amount of message traffic required to send a single message is 

directly proportional to the degree of each processor of the network. Since numerous mess:!ges 

are generally sent during the execution of a distributed algorithm, ,an increase in traffic load 

may result in unacceptable queuing delays at some or all of the processors in the network. 

Consequently, flooding is only practical in networks in which message traffic is very sparse o r  

when it is imperative that the message reach its destination in the minimum amount o f  time. We 

assume neither of these criteria hold. 

A more practical method of handling unreliable communication in the network is to nuke 

the distributed algorithm fault-tolerant. A fault-tolerant distributed algorithm is a distributed 

algorithm which is able to achieve correct results in the presence of specified communication 

failures. This is usually accomplished by sending redundant messages to compensate for 

messages which are lost or delayed due to failed edges. Although fault-tolerant algorithms 

successfully handle the problem of unreliable communication, most have one or more of the 

following shortcomings: 

Fault-tolerant algorithms are not robust in the presence of all possible failures. Fault- 

tolerant algorithms usually restrict the type and/or the number of communication f. '1 ures 

which can be successfully handled during the execution of the distributed computation. As 

an example, some fault-tolerant algorithms assume that processors never fail [AE84], 

[AG88], or that processors never recover when failed [CCK89], or assume a fixed 

number of edge failures [IR84]. When these conditions are not met the fault-tolerant 

algorithm does not guarantee the correctness nor the termination of the computation. 

Fault-tolerant algorithms tend to be much more complex than non-resilient versions and 

therefore that much harder to develop. For example, in certain algorithms, processors 

make use of token messages which they send to other processors. In unreliable networks a 



Chanter 4 - Distributed Relinble Siibnetworks 

taken may k lost due to a failed edge a116 this may lead to a b e a d ~ k  sitiiaiioii. A general 

method of corn-pensating for lost tokens is to send multiple tokens in parallel to ensure that 

at least one token remains active at any giver! time [KWZ86]. Whereas a process had only 

to contend with a single token in the non-resilient algorithm, a process in the multi-token 

algorithm must receive, recognize and eliminate redundant tokens. 

Because of the added redundancy of messages and extra error checking involved in 

sending a message, fault-tolerant algorithms tend to have increased message and total 

execution time complexity as compared to the non-resilient versions. Because edges may 

fail and recover infinitely many times, algorithms which repeatedly retransmit lost 

messages over such e d ~ e s  have unbounded message complexity in the worst case [V83]. 

While fault-tolerant distributed algorithms offer a substantial improvement over flooding 

techniques, the complexity of the computation and the restriction of network failures limit the 

practicality of such algorithms. 

4.1.1 Adding Reliability Knowledge: 

Communication failures complicate and may impede distributed computations. In an 

unreliable network, the topology changes dynamically due to failed or recovered edges. 

Processors become aware of neighbourhood topology changes, in finite time, only after edge 

failures or recoveries occur. As a result, distributed algorithms must incorporate some fault- 

tolerant mechanisms to manage lost messages. If, however, a processor knew the location and 

duration of a failure of an incident edge before the failure occurred, the processor would avoid 

uskg the edge while it was failed. Clearly, communication in an uneliable network could be 

completely reliable if the period of failiue of each edge were known. Unfortunately, edges fail 

random1 y. 

As an alternative te complete failure knowledge, a processor may know the probability of 

failure, or reliability, of an incident edge. Given an edge which is very likely to fail, a 

processor will avoid using the edge if another, more reliable, path exists. Unfortunately, 
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resahility information done rfne not provide enough informtion !n gti:tcr,!nler successft!! 

message transmission over an edge, unless the edge is perfectly reliable. Nevenhe!es:;, e d ~ e  

reliability gives us a useful indication of how likely the failure of any pruticular edge is. Wc ~ s e  

this to our advantage. By sending a message over the most reliable path between processors in 

the network, we avoid sending a message blindly over a path, which is perhaps inclined t o  frtil. 

In this thesis we adopt the distributed model with reliability knowledge, as discussed in 

section 2.3. Reliability knowledge is particularly advantageous in networks where large 

variations in edge reliability exi t .  For example, consider the network of figare 4.1, in whic!~ 

processor a sends a message to processor b. In the absence of reliability inform;ition, the 

inclination is to send the message over the most direct (i.e., minimtlm length) path. When 

reliability information is known however, this turns out to be a particularly poor choice as the 

path ab is extremely unreliable. A much more. reliable path, albeit longer, is the path ~zc,c,c+,c.,h 

which has a reliability of approximately 0.95. 

Figure 4.1: Example Ketwork with Variation in Edge Reliability 

In this thesis, we adopt :he dislributed computing model, as outlined in section 2.3, in 

which completely reliable processors xi connected by unreliable edges. The reliability of each 

individual edge in the network is known by both adjacent processors. 

4.1.2 Reliable Distributed Cummunitations: 

In this thesis we are primarily concerned with the successful transmission of messages 

between pairs of processors throughout the network. However, because the network is 



As ha:, been previou~ly suggested. fault-tolerant mechanisms we resmctive and 

comptitrrtionally burc!e:tsorx. For this reason, tic avoid incorporating them into distributed 

algorithms. Instead, we toilk for other means of providing reliable message transmission over 

rrn unreliable network. Idsaiiy, we desire a physical network which is robust and never fails or 

impedes message trznsmisslon. Unfo~tunarsly, we can nor chznge h e  physical chmcteristics 

of the network (of ivhieh edge reiiabifity is unej. However, we can abstract the network so it 

gives the illusion of reliability. For this purpose, we partition the network services into three 

logical layers of functionrtfity, as shown in figure 4.2. 

The first layer is the pE~~,sicc;l nensork. The physical network is unreliable and is 

characterized by fai!ing edges a d  unreiiablc rr;rnsmission of messages between processors. 

We make the assumption hat  &e pfi.sicaf nzwork conforms to the new distributed model 

outlined in chapter 2. and that edge reliabiliy information is known- 

i Diszibursd Algorithm 
I 

reliase communication 

unreiiaS!e communication # 

Figure 1.2: Layers of Reliable Distributed Communication 

The second hyer is Ehe re/i~E,Ie iqical newurk. This layer is characterized by the 

cmrpletely reliable transmission of messages. Messages sent over this layer are p m x e e d  to 

arrive in finite, but unbun&& time at the intended recipient. The reliable logical layer 

cclnfoms to the sundxd dishbut& computing model. 
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The final layer is the distributed algorithm itself. Despite the unrelishilily of the p!?y:Ic:!l 

network, message transmission rakes place over the reliable logical layer which providcs 

reliable transmission services. 

The layered reliable communication approach offers two significant advantages over fault- 

tolerant methods. The chief advantage is the separation of the responsibility for reliable 

communication away from the distributed algorithm to an independent layer. Not only does this 

make distributed dgorithms easier to develop, 2s fault-tolerant mechanisms are not 

incorporated, it makes &e algori&ms portable to other networks with different failure 

characteristics. Second, the physical topology of the network can be hidden from the 

distributed algorithm. Often it is easier to develop a distributed algorithm if the topology is o f  a 

symmetrical configuration, such as a ring, a binary tree or a complete network. The reliable 

logical layer can provide virtual edges between processors, which appear as a single edge to the 

distributed algorithm, but which are a path constructed from multiple edges. By providing 

virtual edges, the reliable logical layer can provide any topology configuration given any 

physical network. This has the added benefit of making dstributed algorithms topology 

independent and therefore more portable. 

The layered approach of reliable communication does not resolve the issue of lost mess:iges 

due to edge failures, but it does remove the responsibility away from the distributed algorithnr 

designer. The designer of the reliable logical layer must still contend with reliability issues. The 

natural question is how is the reliable logical layer constructed? 

In most networks the reliable logical network layer exists as a specific routing process or in  

the form of routing tables, which are continuously updated as the topology and network 

conditions change. A routing defines a path between every pair of nodes in the network. Wher! 

a processor wants to send a message, it either passes the message to the routing process or 

msrnits  the message over the appropriate edge given in the routing table. When an edge fails 

and a message is lost, the routing is reconstructed and the message is retransmitted. This 

3 1 
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strategy is an ahptive approach since message losses are permitted to happen - - and subsequently 

corrected. In contrast, fault-tolerant methods use apreventative approach in which message 

losses are handled by redundancy. 

When reliability information is not available, a minimum length routing is generally 

computed. Wiiil this method of routing, the path between two processors is the one with the 

minimum length.1 The disadvantage with this scheme is that the shortest length path between 

two processors may also be the most unreliable. As a result, the routing may frequently be 

reconstructed as edges in ble routing fail. tfrheil reliabilitj; information is known, a maxiinzmz 

reliuble routing may be computed With this method of routing, the path between two 

processors is the one which is most reliable. The maximum reliable routing has the advantage 

that network failures are less likely to occur, since the most reliable edges are used. However, 

the most reliable path between processors may also be the path with the maximum length. In 

distrib;lted computations, path length is an extremely important criterion, as processing time is 

negligible as compared to transmission time. 

The shortcomings of the previous routing strategies are straightfonvard. The minimum 

length routing does not take into consideration the reliability of edges, while the maximum 

reliable routing does not take into account the length of edges and paths. We require a routing 

strategy which maximizes reliability while minimizing path length. Unfortunately, because 

minimum path length and maximum path reliability are conflicting constraints, such an optimal 

routing may not exist. As a result, a compromise between the minimum length and maximum 

reliability of a path must be used. A related problem is the shortest weight-constrainedpath 

problem. For this problem, a nonnegative length and weight is associated with each edge. The 

problem is to find a simple path between two specified processors such that the length of the 

path is no longer ihan t and ihe weight of the path is no greater than W ,  where both i and W 

' In the standard distributed computing model all edges a-e of length 1.  However, the model may be easily 
extendcd to include variance in edge length. 
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ai rioniiegative d u e s .  If all edge lengths or d l  edge weights are equai, the probiern is 

solvable in plynnmia! time. In the genera! case, the problem has been shown to k NP- 

complete [GJ79]. The reliability of an edge can be transformed to a nonnegative weight, as 

shown in theorem 3.1, and therefore there exists a one-to-one correspondence between the 

shortest weight-constrained path problem and the problem of computing a path which 

minimizes path length and maximizes reliability. 

We propose to solve the two constraint routing problem in the following way. First, we 

reduce the network by eliminating unreliable edges which are redundant. If the edges are 

chosen carefully, the reduction can be accomplished with no degradation of network reliability. 

Specifically, an edge can be eliminated if a more reliable path, connecting the two adjacent 

processors, can be found. The resulting structure will have fewer edges, but more importantly, 

the remaining edges will be the most reliable edges available in the network. Once the network 

reduction is completed, we perform a minimum length routing on the reduced network. 

Because we have eliminated the most unreliable edges, the resulting routing can not include the 

most unreliable path between two processors, unless no other path between them exists. The 

resulting routing is a compromise between minimizing path length and maximizing path 

reliability, although it favors the latter. 

4.2 Reliable Subnetworks: 

We introduce a network reduction technique based on the Average All Pairs measure of 

reliability, given in chapter 3. Informally, we construct a reliable s~ibnetwork (RSN) by 

including all processors of the original network, but only those edges which are included in at 

least one most reliable path between any pair of processors. More formally, a reliable 

subnetwork is defined as follows: 

Definition: Reliable Sttbnetwork. G' = (V,E1) is a reliable subnetwork of G = (V,E) if 
eU E E' iff eG E E and e,, E MPx,y for some x,y E V, where MP,., is the most reliable 

path from some vertex x to vertex y (see section 3.3). 



Chapter 4 - Distributed Reliable Subnetworks 

We make the fo!!nwing nhsewatinns conccrni~g the RSN of 2 network: 

if the network is connected, the RSN is connected. 

The RSN includes the most reliable path between each pair of processors within the 

network. 

The reliability, as defined in chapter 3, of the RSN is identical to that of the original 

net work.2 

The RSN generally contains only a subset of the edges of the original graph. 

By computing a RSN, we are constructing a reliable backbone or core of the original 

network. Edges not included in the network are logically discarded and not considered unless 

another RSN is constructed. 

Once constructed, the RSN can generally be used in place of the original network. An 

exception to this is a distributed computation which is dependent on a very specific topology, 

such as a complete network or ring. Since the RSN generally does not preserve the topology 

characteristics of the original network, the distributed computation must be modified. Other 

topology dependent distributed computations such as median and center finding algorithms will 

execute correctly, but may produce different results on the RSN and the original network. 

Non-topology dependent distributed computations may be executed on the RSN without 

modification. 

The RSN offers the following advantages over the original network: 

1. The RSN is a subnetwork which contains all the vertices but only a subset of the edges 

of the original network. In a distributed environment, where the performance of an 

algorithm is measured in terms of message complexity, the reduction of edges may realize 

a significant computational savings. 

This observation stems from b e  similarity between the definition of network reliability (section 3.3) and the 
definition of  a reliable subnetwork. 
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2. The RSN is less prone to individual edge failure than the original network. This 

observation stems from the fact that the RSN generally has fewer edges than the original 

network. Let the probability that no edge fails within the original network and the RSN 

be RT and RrT respectively. Then 

RT = n T i j  i f e i , j ~  E and RT = n Ti,j i fe iqje  El 

since E' c E, then R; 2 R,  In addition to having fewer edges than the original 

network, the RSN also has less unreliable edges, since an edge is eliminated if a more 

relizble path joining ~ 5 e  two processors can be found. By virtue of these two fxts,  thc 

RSN will likely experience fewer edge failures over a given period of time. This fact nxty 

be significant, especially if a distributed computation uses edges indiscriminately. Notice 

that this observation does not imply that the RSN is more reliable than the original 

network. If a distributed computation only uses the most reliable path between 

processors, then the number of significant edge failures in the RSN and the original 

network will be identical. 

3. If the network is used to construct a distributed spanning tree or other topological 

structure, then the structure constructed on the RSN may be more reliable than the one 

constructed on the original network. As an example, consider a distributed minimum 

spanning tree computation. The spanning tree constructed on the RSN will likely be more 

reliable, because the most unreliable edges have been eliminated, than the tree constructed 

on the original network. The tradeoff is that the spanning tree, constructed on the RSN, 

may also have a longer total path length, since the shortest edges may also have been the 

most unreliable. 

In the remainder of this thesis we present distributed algorithms to construct an exact RSN 

and a;; approxiillate RSN and examine ihem in icmris of connectivity and reliability. 
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4.3 Constructing A Distributed Reliable Network: 

The problem of distributively computing the reliable subnetwork is determining, at each 

processor throughout the network, the incident edges which are contained in the structure. No 

processor knows the complete structure, but rather the local neighbourhood. 

As previously discussed, the reliable subnetwork is constructed exactly by computing the 

most reliable path between all pairs of processors. The most reliable path problem is similar in 

principle to the classical shortest path problem. In fact, the reliable path problem is slightly 

easier than the shortest path problem in that one never has to deal with negative edge weights. 

In the distributed environment, shortest path algorithms have received considerable attention as 

they form the basis for many routing algorithms. 

A basic distributed algorithm to compute the RSN of a distributed network is shown in 

Algorithm 4.1. The algorithm is an adaptation of the distributed All-Pairs Shortest Path 

algorithm by Chen [C82], which is a distributed implementation of the sequential Ford- 

Bellman-Moore algorithm. Contrary to our assumptions, this algorithm assumes that n, the 

number of processors in the network, is known. In the algorithm, two tables are created and 

maintained locally by each processor. The R P  table is the reliablepath table. This table holds 

the reliability of the current most reliable path between the processor and all other processors 

known to it. The table P is the path table. This table holds the incident edge of the curr, -n t most 

reliable path between the processor and all other processors known to it. The individual entries 

in the RP and P tables of processor i, which specify the most reliable path between nodes i and 

j. are denoted by RP,, and Pi, respectively. The set of neighbours adjacent to a processor i is 

denoted as N(i). 
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- - -  

Distributed algorithm to compute a reliable subnetwork. 
Executed at each processor i. 

I 
I* wake up neighbours and inilialize the tahlcs *! 

INTIAL: 
G (initiator) THEN 

FOREACH j E N(i) I* scnd wakeup msg to all neighhours */ 
jtsend(WAKEUP) 

ELSE 
receive (WAKEUP, j) /* rcccive 3 wakcup msg if not initi:itor */ 
FOREACH k E N(i), k# j /* relay msg to all neighhours */ 

k t send (WAKEUP) 
FOREACH j E N(i) DO r" initialize the tables */ 

R P i j  = r i j  
Pi,, = e i j  

become ACTIVE; 

/* exchange RP table with neighbours n-1 timcs */ 
ACTIVE: 

FOR n-1 iterations DO 
FOREACH j E N(i) DO 

jtsend(RP) I* scnding routing tables to all ncighbours */ 
#msg = 0; 
W H L E  (#msg < IN(i)l) DO 

receivc(msgl) 
IF (msg # WAKEUP) /* ignore old wakc up message */ 

#msg = #msg + 1 
FOREACH RP$,~ E R P ~  
IF (RPij E RP) THEN /*not previously in the tal)lc*/ 

~ p .  . = r n k .  . 
1 J p. . - e. 1.J 

1J  - 1,k 
ELSE /* already exists in thc ublc */ 

IF ( R P ~ ~ , ,  * R P ~ , ~  > RP~,,) THEN P' more rcliablc path found */ 
RP- 1 J - = R P ~ ~ , ~  * R P ~ , ~ ;  
Pi j = ei,k; 

ENDFOR 

Algorithm 4.1: Distributed Algorithm to Compute a Reliable Subnetwork (RSN). 

The basic algorithm works in two phases. In the initial phase initiators spontaneously wake 

up and send WAKEUP messages to all neighbours. Upon receiving a WAKEUP message, a 

processor enters the initial state and forwards the message to all other neighbours; subsequent 

WAKEUP messages are ignored. After the processor awakes, it creates the initial R P  and P 

tables from its local knowledge and becomes active. In the active state, processors exchange 

RP tables. An RP table received from some neighbour k is denoted as RPk. Upon receiving the 

table RPk, processor i computes the new reliability of the path from node i to j through node k, 
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that is (RPkkj x RP,& The processor compares &is value with ?he current most reliable path in 

its local RP table, that is Mi,. If (RPkkj x RP; .,- ,) > RPij or if no previous path between i and j 

exists, then RPij is set to (RPkkj x RP,J and Pij is set to qk. Otherwise, the table entry remains 

unchanged. After the R P  tables have been received from each neighbour, a processor sends its 

updated RP table to all neighbours. The algorithm terminates after each processor has received 

RP tables from each of its neighbours n-1 times. At the completion of the algorithm, the RSN 

is composed of those edges which are in the table P of any processor. 

The basic algorithm has a message complexity of 0(n2d + e), where d,  1 < d c n, is the 

maximum degree of any vertex in the network. This follows from the following facts. At most, 

2e wakeup messages will be required to start the distributed computation. During the 

computation, each of the n processors send reliability information to a maximum of d 

neighbours n times. However, the basic algorithm is somewhat inefficient as each processor 

broadcasts reliability information to all neighbours. Both Toueg [T80] and Lakshmanan et a1 

[LTC89] give distributed algorithms for the All-Pairs Shortest Path problem which improve the 

message complexity to O(ne) by sending path information over a spanning tree rather than the 

complete network. Frederkkson [F85] suggests a simple approach which also has a message 

complexity of O(ne), in which each node broadcasts its local topology to all other nodes in the 

network. With the global topology, a processor computes the shortest paths locally. 

All of the previously mentioned distributed algorithms are based on well known sequential 

algorithms for the All Pairs Slwrtest Parh problem. In a sequential algorithm it is usual to know 

n, the number of processors in the network , and in fact most algorithms need this value in 

order to know when execution can be terminated. However, in the standard distributed model 

we assume that the number of pmessors is fixed but unknown to any processor (assumption 

Mi. The number of processors in a network can be computed, but at expense of extra 

messages. 
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A more serious problem with all h e  previous algorithms is hig!~ ~l?ess:ige csx?plesiy. The 

best known distributed All Pairs Shortest Path algorithm, and thus the best known RSN 

algorithm, has a complexity of O(ne). Since (n-I) < e I (n- I)*, therefore O(n2) I O(ne) 5 

0(n3). Even for a network of moderate size, the number of messages sent will be sig,lificant. 

Since message transmissions take significantly longer than local computations, the time to 

compute the RSN in a dense network may be prohibitive. However, if we examine the 

messages themselves, the message complexity becomes even more critical. All of the previous 

algorithms send complete tables of local information which are counted as a single niessage. I n  

chapter 2 we made the assumption that messages are small, on the order of O(log,n) bits 

(assumption M3). Each table consists of O(n) entries which if sent individually would increase 

the message complexity by a factor of n. Toueg [T80] recognizes this fact and sends only the 

changes, after the initial table has bzen sent. However, in the worst case the number of 

changes will still be O(n). As a result, the actual message complexity of an O(ne) RSN 

algorithm becomes O(n2e) and O(n3) I O(nk) 5 0(n4). Even for small networks, the number 

of messages required to compute the RSN may be prohibitive. 

The problem of constructing the RSN is intrinsically difficult because we are trying to 

construct a global structure using only local information. The problem is therefore constrained 

by how efficiently, in terms of the number of messages, each processor can acquire all global 

information. 

The inefficiency of computing the most reliable paths between all pairs of processors in the 

network, and therefore constructing the RSN, leads us to consider alternative solutions. In the 

following section we outline and examine an approximation algorithm for computing a reliable 

subnetwork. 

4.4 Approximating Reliable Subnetworks: 

Distributively constructing the exact RSN of a given network is a laborious task which is 

prohibitive for most large networks. One could argue that the expense is justified since the 
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RSN is only constructed once or whenever a network topology change causes the RSN to 

become disconnected. However, we must take into account the heavy use of network resources 

while the construction is taking place, leaving the network unusable to perform other functions. 

If failures happen frequently the problem is only compounded. 

The question which must be asked is whether the exact solution is required or whether an 

approximate solution will suffice. First, recall that the reliability information associated with 

each edge in the network is not an exact value, but rather an approximation of the reliability. 

Consequently, even the exact solution will likely be less than perfect. Second, the motivating 

factor for constructing the RSN is to provide a stTucture in which the most unreliable edges are 

eliminated, making the RSN less prone to individual edge failure. If an approximate solution 

meets this criterion and has reduced message complexity, the solution will be expedient. 

Given that the exact RSN is impractical to construct, we concentrate on finding a 

distributed algorithm to construct an Approximate Reliable Subnetwork (ARSN). In 

preparation, we first examine the nature of the distributed environment. Within the network, 

topology information (i.e., processor idzn tity, edge reliability, etc.) is distributed among the 

individual processors with no one processor initially having complete knowledge. Because 

knowledge is localized, the most message efficient distributed algorithms are those which can 

combine a number of locally computed solutions, either by a single processor or a small group 

of neighbouring processors, into a global solution. Notice that this is not possible with the 

exact RSN problem, since the locally most reliable path to a neighbour may not be the globally 

most reliable path. A good approximation algorithm to construct the RSN will be one which 

localizes the computation as much as possible. 

The general idea of ~ l e  algorithm is &at each processor constructs a local solution by 

selecting the K most reliable incident edges, where K is a "small" constant number such as 2 or 

3. When an incident edge is selected, the selecting processor informs the adjacent processor. 

The ARSN is then constnicted by combining the local solutions of each processor. Following 
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the construction, each processor knows which of its incldent edges art: i n  the ARSN but no 

single processor ~ O W S  ifis e i i ik  ~iiilctii~e. me exception to this is when aii edges in rile 

ARSN are incident to a single processor (i.e., such as a star configitration), although i n  this 

case the processor is unaware that it knows the global structure. When two or more edges 

incident to a processor have the same reliability value, the tie is broken by concatenating the 

IDS of both incident processors, larger first, to the reliability of the edge. By changing the tie 

resolution scheme a different M S N  may be constructed. Given the same tie resolutio!i schcrnc 

and value of K, the ARS-N is unique for any given combination of topology, processor labeling 

and edge reliabilities. Changing any of the previous aspects of a network, may result in  a 

different ARSN. As with the RSN, the ARSN can be used in place of th: original network, 

with the exception of topology dependent computations. 

A distributed ARSN algorithm is given in Algorithm 4.2. The details of the algorithm are ns 

follows: initiators wake up spontaneously in the INITIAL state and send WAKEUP messages to 

all neighbours. Upon receiving a WAKEUP message, non-initiators wake up and forward the 

message to all other neighbours. Subsequent WAKEUP messages are ignored. After a processor 

has initiated or forwarded WAKEUP messages to all neighbours, it enters the ACTIVE state. In  

the ACTIVE state, each processor i computes a reliable edge set, REi, containing the K most 

reliable incident edges. For each edge in REi, an INCLUDE message is sent to the adjacent 

processor to indicate that the edge is in the ARSN. The remainder of the neighbouring 

processors are sent a REJECT message. When the appropriate messages have been sent t o  a1 1 

neighbours, the processor waits to receive messages from all neighbours. When processor i 

receives an INCLUDE message such that ei,e REi , it adds that edge to REi. When a processor i 

receives an INCLUDE message or WECT message such that eiiE REi , the message is 

discmled The dgoritLzn terminates when messages have been received from a!! neighbours. 

The ARSN consists of the union of all edges from each local REi. The solution is distributed 

amongst all the processors in the network, with no one processor knowing the complete 

structure. 
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Approximate distributed algorithm to compute a reliable subnetwork. Executed at each processor i for some value 
3f K, 0 < K < n. N; is the set of processors adjacent to processor i. 

'* wake up neighbours */ 
INITIAL: IF initiator THEN 

j c  xnd(WAKELT), for each j  E Ni 
ELSE 

receive (WAKEC'P,ij; 
j t  send (WAKEUF) for each j  E Ni, j  # i 

h o m e  ACTIVE 

* select K most reliable edges and broadcast to neighboi1n"l 
ACTIVE: RE(i) = (e i j  I if j E Xi AND r i j  is one of the K most reliable edges] 

FOREACH j  E Ni DO 
IF (ei E RE(1)) then 

j t  send(INCLUDE) 
ELSE 

j+ scnd(REJECr) 
FNDIF 

/* rcceive responses from neighbouring processors */ 
#msg = 0 
WHILE #msg -c INi! DO 

receive(msg j )  
IF (msg ;t WAKEUP) P ignorc old wakeup message */ 

itmsg = #msg + 1 
IF (msg = Lhr'CLUDE Ah73 e i j  e RE@) THEN 

RE(i) = RE(i) u (ei j) 
ENDIF 

ENDIF 

Algorithm 4.2: Dismbuted Algorithm for the Approximate Reliable 
Subnetwork Problem. 

Algorithm 4.2 constructs an approximation of the reliable subnetwork with a total of 4e 

messages (2e messages to wake up and 2e messages to inform neighburs whether or not the 

edge is in the reliable subnetwork) for a message complexity of O(e), where O(n) I O(e) I 

0(n2). Since messages do not convey information other than the message t p e ,  message 

lengths are short (ix., a minimum of 2 bits to distinguish between message types). As can be 

seen, the ARSN algorithm is a sipificant improvement, in terms of message complexity and 

message length, over the exact RSN algorithm. 



Chapter 4 - Distrib~tred Reliable Srrhnehrvrb 

In the evaluation of the ARSA'we must consider two issues. First. the reliability of the 

RSX is identical to that of the oiiglnal net~vork since both are based on m;lsimum n.ii:tblt. p;tths 

between d l  pairs of processors. The ItRSlV, on the other hand, does not guarantee th:lt thc 

relizbi!i?y is identical to the origind network, nor does it  guarantee that the reliability is evcn 

"good". If the reliability of the ARSN is significantly less than the RSN, the ease of 

computation is of little coasequence. As we increase the value of K we get two conflicting 

results: the reliability of the ARSN increases (or at least does not decrease) and the six o f  thc 

subnetwork increases. Likewise, as we decrease the value of K, the reIirtbility and s i x  01' [he 

ARSN decrease. The god of the approximation scheme is to minimize the number of edges ant1 

maximize the reliability of the subnetwork. The question then arises as to how large K must hc 

in order to construci 2 subnetwork wiih an acceprabk reliabiliiy. In chaprer 5 we examine this 

issue and evaluate the refiabiiity of the ARSN for various values of K experimentally. W e  1e;tvt: 

the discussion of reliability until then. 

Secondly, the RSN is constructed by taking ihe union of the most reliable paths between all 

pairs of processors in the network and therefore is guaranteed to be connected, assuming tl iat  

the original network is connected The ARSN, on the other hand, is constructed by 

amalgamating local solutions and therefore the possibility exists that the structure will not be 

connected As the value of K increases we expect that occurrences of disconnections will 

decrease but not be eliminated. In the following sections we examine the question of 

connectedness and evaluate the ARSX both analytically and experimentally. 

4.4.1 Connectedness of the Approximate Reliable Suhrtetwork: 

Connectedness of a network is a globally defined property. The RSN guarantees 

cannec~dness because it is consmcted with a global algorithm. The ARSN, on the other hand, 

is constructed by piecing together iwai soiutions from each processor. Since no Iocdiy based 

algorithm can ensure connecredness, instances of an ARSN may be disconnected. As an 

example of a disconnected instance of an ARSN, consider the six node network shown in 



a) original wtwork b) two partitions in reliable 
subne~work when k= I .  

I 

Figure 4.3 : Example of a Disconnecrion with the ARSN Algorithm when K=1. 

Tite basic tool we ernploy to theoreticaliy analyze the connectivity of rhe ARSN algorithm is 

graph eturnleration. We model the nenvork as a graph, ignoring the fact that the algorithm will 

be a distributed algorithm running on a network. We count two specific classes of graphs 

consmcted by the ARSN algorithm given an exact number of nodes and edges: all possible 

graphs constructed by the ARSN algorithm and all possible graphs which are connected. Let 

Ta represent the number of all possible gnphs and Tp represent the total number of graphs 

with the property we are looking for. Because T,  > Tp. the value 2 represents the probability 

that the algorithm produces a graph with the d e s i ~ d  property. 

Figure 3.4: Tnnsfomtion of an Cndkcred Graph to a Directed Graph 

44 
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Enumerating connected general Lmphs is, ur?ferrunax!y, a rr,athex:atica!!y con~plex 

probfem. For this reason, we make the sim~lifying restriction that the original graphs 

(networks) are complete. 

To analyze the connectedness of the resulting structure constructed by the ARSN algorithm 

we transform the structure from an undirected graph to a directed graph in the following way. 

In the ARSN algorithm each vertex (processor) selects the K most reliable edges. The edges 

chosen by each vertex in the graph are represented by a directed out edge from that vertex. An 

edge chosen by both adjacent vertices is represented by two directed edges going in the 

opposite direction. An example of the transformation is shown in figure 4.4. The total nurnber 

of possible graphs which can be constructed from any complete graph of n vertices is then 

equivalent to finding the number of labeled3 directed graphs, DGRK, with n vertices such that 

each vertex has out debgee K. The formula for this value is derived in theorem 4.1. 

Theorem 4.1: The number, DG,,K , of labeled directed graphs with n vertices such that 

each vertex has out d e p e  K is: 

Proof. This result follows from the fact that each of the n vertices selects an edge from 
itseIf to K of its n-l neighbours. This selection can be done in ( ) ways. 1f n < K, 

then no graphs are possible since at least K+1 vertexes are required to accommodate 

exactly K outgoing edges from each vertex. . 
The number of connected graphs constructed by the ARSN algorithm is then equivalent to 

the number of weakly connected directed graphs, DC,, of n vertices such that each vertex has 

out degree K. The formula for the value DC,, is derived in theorem 4.2. 

In a labeled graph a vertex is distinguished from all olhers by a unique label (i.e., processor ID). In an 
unlabeled graph, one vertex is indistinguishable from another. 
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- F _ _  

I neorem 4.2: Tne number, DC,,, of iabeied weakly connected directed graphs with n 

Proof. To show that the above recurrence relation holds, consider the number of rwted 

labeled directed graphs of size n and out degree K. A rooted graph is a graph in which one 
vertex is distinguished as the root vertex. Clearly there are nDGRK such graphs since each 

labeled directed graph can be rooted at any of its vertices. The root vertex must be a 

member of some component which has j vertices, where K+1 5 j < n-K-1 if disconnected 

or j=n if connected. When the root vertex is a constituent of a component of j vertices there 

are j ways that the component can be rooted, (I) of choosing the vertices of the group and 

D C j , ~  such components. The remaining n-j vertices of the graph form all remaining 

variations of the directed labeled graph in exactly DGn-j,K ways. Multiplying these factors 

together and summing over j we obtain: 

Rearranging to isolate D C n , ~  we have 

The results of cornputin$ the probability DC".K, that a directed graph constructed by the 
w n ~  

ARSN algorithm applied to a complete graph, is connected, is shown in table 4.1 for various 

values of n and K. When each processor only selects one edge (K=l) the probability that the 

resulting structure will be disconnected is fairly large and increases as the number of vertices 

increases. On the other hand, when K= the probability of a disconnected structure is very 

small and decreases as the number of vertices increases. When K=3, the probability that 

All andyticd results in this thesis are computed using the MAPLE mathematics package. 
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stnlctme is no? connected is vi-'tud!y O fm even graphs of small order. F i ~ i ~ i  i h ~ ~ e  

observations, it would seem that the ARSN algorithmi when K>2, ahost a!w:lys produces ;: 

connected structure. 

While table 4.1 shows encouraging connectedness results for K>1, they are unfortunately 

not completely representative of the ARSN algorithm. The problem is demonstrated by the four 

vertex graph in figure 4.5 when K=l. By the formula of theorem 4.1, all three configurations, 

and their permutations, are counted in the total number of possible graphs consm~cted from 

K,. However, only the two configurations in part b are possible by the ARSN algorithm. The 

problem is that each vertex does not randomly select which K edges it will contribute to the 

ARSN, but rather chooses the K most reliable incident edges. We assume that a total global 

ordering of the edges exist, such that edge i comes before edge j if the reliability of i is grewr 

than the reliability of j.5 If such an ordering exists, then there must be an edge in the network 

Table 4.1: Probability of Connection - Labeled Digraphs of Order n and Out Degree K. 

Notice that this assumption does not imply &at all edge reliabilities must be unique. When two edges h a w  
rhe same reliability, they can be made unique by appending the IDS of both adjacent prmssors Lo !.he rr,!iability. 

k = l  
% 

* Accurate to at least 3 decimal places. 

k = 2 *  
% 

99.90 
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which is the glob! maximurn !i.e., most re!iable). I$ is therefore impossible for :he two 

processors adjacent to the global maximum edge to sele~t different edges. As a resulti  he 

configuration in part a is not legal and the results of table 4.1 are incorrect. Nevertheless, we 

would expect the connectivity of the ARSN to follow a similar pattern as the weakly connected 

directed graph. This is verified, when K=l, in theorem 4.3. 

I a) illegal configuration b) legal configurations 

Figtire 4.5: Legal and Illegal Configurations for n==4 and K=l. 

By considering the ordering of edges, with respect to the edge reliability, an exact formula 

for the expected connectedness of structures constructed by the ARSN algorithm for K=l is 

given in theorem 4.3. 

Theorem 4.3: The number, C l , ,  , of edge and vertex labeled graphs with n vertices, n>2, 

and e edges, e > n- I ,  for which the ARSN algorithm (when K=l) yields a connected 

graph, is given by the following formula: 

where SG,j,ej, the number of edge labeled subgraphs constructed by the ARSN 

algorithm with exactly e edges and il vertices, starting with a subgraph containing i nodes 

and j edges, is given as follows: 

I 1, if e=j and n=i 

0, if e<j and n=i or 
s G n . i , e . ~  

I Se= j  and n#i 

i x (n-1) x SGn.i+l,e,j+l+ [( )-j] x SGn,i,e,j+l, otherwise 

Proof. For ai ,ai E E let ai >aj iff ai is more reliable than a,. There exists a total 

ordering of the edges al > a2 > ... >ae . We first show the following lemma. 
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Lemma 4.1: Each edge ai E E, 2 I i I e,  must be incident to a vertex v, E 1' swh that v,, 

is incident to another edge a. E E such that i+j and a. > ai , for the graph constructed h!. 
I J 

the ARSN algorithm when K=l, to be connected. 

Proof. (by contra&ction) Assume there exists a connected reliable subgraph constnlcted by 

the ARSN algorithm, for K=l, in which the previous restrictions do not hold. Tr-i\*ially, 

both vertices incident to al will choose this edge since it is the globally most reli;~blt. 

edge. Assume there exists an edge ni E E that is locally maximum, which is to say that 

neither of its incident vertices is incident to a more reliable edge. Then by the same 
token, both vertices incident to LYi must choose this edge since neither is incident to rt 

more reliable edge. Since at least two edges are each chosen by both incident vertices, 

the total number of edges possible in the graph is at most n-2. Since at least n-1 edges 

are required to connect n vertices, the resulting graph can not be connected, thus a 

contradiction exists. 3 

The previous lemma is important as it gives us a method to construct and therefore 

enumerate graphs which will be connected when constructed by the ARSN algorithm whcn 

K = l .  Essentially we construct the graphs by iteratively adding edges, in order of 

decreasing reliability, and vertices so the restrictions outlined in lemma 4.1 are not vio1:rtecl. 

The graph is completely constructed when all n vertices and all e edges have been added. 

Initially, each valid graph must have the following configuration for some vertices v,, v,,, 

v, E V and edges q and a2: 

Since the edges are labeled there are exactly six ways they can form unique configurations 
and ( ; ) ways of selecting the three vertices. 

From the initially constructed subgraph the construction continues in either one of the 

following ways: 

1 )  Add verrex: The simplest way of adding a legal edge is to connect a new vertex lone not 

previously in the graph) to an existing vertex. The configuration may look as follows: 
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In this case, the vertex vd is added to the graph by the edge a3 in one of three ways. In 

general, if there are i vertices currently in the graph then there are i*(n-i) ways of adding 

this vertex since the new vertex can be connected to an existing vertex in i ways and the 

new vertex can be chosen from the remaining in (n-i) ways. This edge will be part of the 

reiiable subgraph computed by the ARSN aigorithm. 

2)  Add cycle: The second way of adding an edge is to join two previously existing vertices 

in  the subgraph. The configuration may look as follows: 

In this case the edge a3 is added connecting v, and v, in exactly one way. In general, if 
there are currently i vertices and j edges in the subgraph then there are - j ways of (: I 
adding a cycle. This edge is not in violation of the restriction in lemma 4.1, but will not be 

part of the reliable subgraph. 

Corollary 4 . 3 ~  The number, CEl,, of edge and vertex labeled configurations of Kn with 

n vertices, 02, for which the ARSN algorithm (with K=l)  yields a connected graph, is 

given by the following formula: 

Proof. The number of edge and vertex labeled connected graphs of n vertices and e edges 

which results in a connected ,.tWX, when K = 1, is given by the fo~mula  CI, , .  The total 

number of edge and vertex labeled complete graphs of n vertices which result in the same 
configurations as represented by C l , ,  can be enumerated by adding the remaining - e 

e d g e ~ . ~ e s e m a y b e a d d e d i n [  e!ways. 
(3 

:(;I- I 
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The total number of edge and vertex labeled complete gaphs with n vertices which results 
in a connected ARSN, when K=l, can be enumerated by summing C I  E,,xf( " ) - c]! wqcr r l x  

L \ 2 1  i 

range (n-1) to (nil)+l . The former represents the smallest number of edges required to 

connect n vertices. The latter represents the largest number of edges which can be used to 

connect n vertices in the manner described in theorem 4.3. . 
4.4.2 Connectedness of the Approximate Reliable Subnetwork - Analytical itntl 

Experimental Results: 

We evaluate the ARSN experimentally by simulating a distributed computation o n  a 

randomly generated graph (network). Complete random graphs6 are constructed by un i forml y 

generating a reliability value, in the range 10 ... 1.01, for each of the (:)edges. After each 

random graph is generated, a spanning tree is constructed to verify connectedness. Graphs 

found to be disconnected are discarded. 

I ( Analytical ( Experimental 
96 O/n 

Table 4.2: Percentage of Connected Graphs, Constructed by the 
ARSN Algorithm, when K=l and C is Complete. 

The results of the computations from Corollxy 4.3a arc: shown in table 4.2 along with thc 

ccnespnding experi_n~cata! obse17lations of tee connectedness of reliable subne:woik~ 

constructed by the ARSN algorithm. Because of the exponential time required to calculate 

Refer to Appendix 1 for a reIevant discussion and evaluation of the random number generator 
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CEi ., ihe anaiyiicai resuits could only practicdiy be caicuiated for networks up to 30 vertices. 

T , I I , . ~  is - S U ~ ~ I L ~ L I I ~ ,  ... FC,:,,* however, to show ihat for even small networks, the probability of 

constructing a connected network, when K=l, is very small and rapidly decreases as the 

number of vertices is increased. For the experimental results, 500,000 randomly generated 

complete graphs of order n were generated As can be seen, the experimental observations are 

virtually identical to the analytical results and therefore confm the previous observations. 

From the results of table 4.2 it is obvious that when K=l, the ARSN is extremely unlikely to 

be connected, for even moderate sized networks. 

As previously mentioned, enumeration of graphs is a mathematically difficult problem. 

There is no known exact formula for determining the number of connected approximate reliable 

subnetworks constructed by the ARSN algorithm when K>1. For this reason, we must rely on 

experimental results to analyze the connectedness of the structures. The experiments were set 

LIP as follows: Networks were randomly generated for values of n = 20,40, 60, 80 and 100. 

For each value of n, 100,000 graphs were generated for values of e = 20%,40%, 60%,80% 

and 100%, where 20% means that the graph contained 20% of the possible edges (i.e., a 

complete graph). For each value of n, a total of 500,000 graphs were generated. For each 

group of networks, of size e and order n, the ARSN algorithm was applied and the number of 

disconnected subgraphs were counted. The results are tabulated in tables 4.3a7 4.3b and 4 . 3 ~ .  

Table 4 . 3 ~  Percentage of ARSNs with K=1, for a Given Value of n and e, 
Which were Connected 
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Table 4.3b: Percentage of ARSNs with K=2, for a Given Value of n and e,  
Which were Connected 

Table 4 .3~ :  Percentage of ARSNs with K=3, for a Given Value of n and e, 
Which were Connected 

From the results of the previous tables we make the following observations. Confirming 

the results of table 4.2, table 4.3a shows that when K=l, the probability that the ARSN is 

connected is extremely small. Notice that the probability of disconnection increases as the 

number of vertices in the network increases. Since the K=l ARSN is only connected when the 

selected edges form a spanning tree, this is an expected result. Tables 4.3b and 4 . 3 ~  show that 

when K>1 the probability that the ARSN algorithm produces a connected structure is extremely 

large. When K>2 the probability is so large that a disconnected reliable subnetwork was never 

encountered for values of n 2 60. From these results it can be seen that the ARSN algorithm 

almost always constructs a connected structure when K22. 

The connectivity results from table 4.3 show that, for K22 , the ARSN is practically never 

disconnectzd, yet there still remains a slight possibility that this situation occurs. When a 

disconnected ARSN is discovered, we have two options: the ARSN may be reconstructed, or 

the disconnection may be repaire& Reconstructing the ARSN generally involves increasing the 
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va!ue of K, since the AI2S.N is u n l n l l ~  Y-w ffir A-- a given network and value of K. However, if a 

number of edges in the network have identical reliability, a different ARSN may be constructed 

I components k = 2  k = 3  k = 4  
('1 9 ' 2 ,  '3 ... Pj ) 7% % % 

* components which are IK are not valid and are therefore shown as I-' 

Table 4.4: Probability that a Disconnected ARSN is Partitioned Into Separate 
Components of the Form (31, p2 ,..., pj), whcn n=30. 

by changing the way in which ties are broken when choosing edges. Although, a different 

ARSN may be constructed there is no guarantee that it is connected. If the number of edges in 
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the ARSN is of primary concern or it is critically important that the ARSN be connected, then 

repairing the ARSN is the obvious choice. However, if the number of partitions is large, thc 

repair algorithm may spend considerable time and messages "piecing" the pnrtitions together. 

Given this situation, it may be too expensive to repair the disconnection. If the number of 

partitions is likely to be small, then it may be worth the extra expense to repair the structure. 

From the formulas given in theorems 4.1 and 4.2, we can approximate what the partitions 

will look like when the structure is disconnected. Specifically, the number of directed labeled 

disconnected graphs, EX, with iz vertices, such that two disjoint pariirions exist of size p and 

n-p, and such that each partition is a weakly connected graph with each vertex having out 

degree K is: 

This formula follows as a direct result of theorem 4.2. Similar formulas are easily derived for 

three and four partitions. We use these formulas to determine the characteristics of the 

partitions by simply enumerating all possible combinations of two, three and four partitions. 

By adding these values, we can determine the total number of disconnected graphs, with two, 

three and four partitions. Then, given the number of disconnected graphs for a specific type of 

partition, we can determine the probability with which the specific partition will occur when the 

graph is disconnected. Notice that the formulas are based on theorem 4.2, which does not 

accurately enumerate the number of connected subgraphs, of K,, constructed by the ARSN 

algorithm. Nevertheless, the results will give an indication as to what size and number of 

partitions we can expect when a disconnected subgraph is constructed. 

The results of the computations are displayed in table 4.4 for K = 2 , 3  and 4, when n = 30. 

The results are only partially displayed due to the large number of possible partitions. From the 

results, it can be seen that when the ARSN algorithm constructs a disconnected subnetwork i t  

is very likely to be disconnected into only two partitions. Furthermore, one partition will likely 
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be very small while the other is very large. Because it has fewer processors, the smaller 

partition can more quickly recognize the bsconnection than can a larger partition. 

Consequently, the smaller partition can also more easily repair the disconnection. Given the 

results of table 4.4, when a disconnection occurs, it may require comparatively few network 

resources to repair. 

4.4.3 Connectedness of the Approximate Reliable Subnetwork - Summary: 

As previously shown, the ARSN, for any value of K, is not guaranteed to be connected. A 

disconnected subnetwork is of little benefit, since communication between processors is 

restricted to members of the same fragment. When K=l, the ARSN will almost certainly be 

disconnected, which makes K=l a poor choice for constructing an ARSN. Moreover, because 

the K=l ARSN is likely to be partitioned into a number of small fragments, it is expensive to 

repair. If the user requires a structure with a minimum number of edges, then a maximum 

reliable spanning tree7 can be constructed in 0(nlog2n + e) messages. In terms of 

connectedness, the previous results show that either K=2 or K=3 are good choices to constnict 

the ARSN. Of these, K=2 is likely the better choice, since it has fewer edges than the K=3 

structure, and is almost as likely to be connected. The K>3 ARSN offers no advantages over 

K=3, in terms of connectedness, and therefore should not be used. 

In the following section we present a distributed algorithm to verify the connectedness of 

the ARSN, and when a disconnection exists, connect the partitions. However, it should be 

noted that the verification algori;hm need not be applied in every circumstance. When K=2 ,and 

especially when K>2, the probability of disconnection is virtually nonexistent. In many 

applications this amount of risk is acceptable. Furthermore, a distributed computation, such as 

a routing process, can be modified to recognize the disconnection as it performs other tasks. 

Consequentty, it may be possible to assume connectedness of the ARSN without catastrophic 

results if a disconnection occurs. In other circumstances, however, a disconnected subnetwork 

The maximum reliable spanning tree is analogous to the minimum weight spanning tree. 
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may have serious implications. For this reason and for the sake of completeness, an algorithm 

which consmcts a connected ARSiV is presented. 

4.5 Distributed Construction of a Connected Approximate Reliable 
Subnetwork 

In this section we present an improved distributed algorithm to constnict an ARSN which 

is guaranteed to be connected regardless of rhe value of K. The connecrcd AXSN algorithm 

consists of three phases: 

1. Basic distributed algorithm (Algorithm 4.2) 

2. Verification of connectedness. 

3. Resolution of the disconnection (if one exists). 

3.5.1 Determining the Connectedness of the Approximate Retiable Subnetwork: 

We begin the discussion by describing a method for verifying the connectedness 

of an M S N  constructed on a (non-disrributedj graph. After the completion of the algorithm, 

the vertices of the graph are pw'itioned into one or more grouls  The graph is disconnected i f '  

at least two non-empty groups exist. Edges incident to each vertex of the graph are labeled i n  

one of hvo ways. An edge is labeled as in if it joins two members of t w  same group and out i f  

it joins members of different groups. If no vertex in the graph has an nut edge, only one group 

exists and the ARSN is connected If an OM edge exists, the graph is partitioned into at least 

two groups and the ARSN is disconnected. 

The difficulty of the preceding me&& is in iden~ifying group members. In order to label 

incident edges of a venex, we must be able to identify which of its neighbours belong to the 

same goup. if the ARSz\'contrtins an edge from venex u to vertex 6, [hen cfearly both vertices 

rn mmbers  of the same p u p  and the edge is labeled as in. If an edge connecting vertex u to 

vertex c exists but is not in the ARW, then the local knowledge is insufficient to assign a 

hbel. A path may exist berween verrex a to venex c through a different vertex. This problttm 

can be remedied by giving each member of h e  group the same label. When connscting edges 



' F  hetween neinhhtrufing a"-- s/erGces =,re not in the ARSiV, we simp',y compare vertex to see i~ 

they are members of the same group. Vertex iabeling can be accompfishsd by utilizing a depth- 

first search algorithm beginni~g at an arbitrary vertex in the graph. We assume that each vertex 

has an initial label of 0 and an ID # 0. As the search procedure visits each vertex in the group, 

it assigns the ID of the stating vertex as the group label. When the search is completed each 

vertex, which belongs to the sarne group as the starting vertex, will have the same label. 

In the distributed enviroilment, the tabding procedure is analogous to the distribuied leader 

elecrion problem. In general, leader election is the process of identifj-ing, at each processor in 

the network, the processor wi& the maximum identity. For the purpose of this thesis, it is not 

important that the leader be the processor with the maximum identity and therefore we relax 

this constraint. We verify the connectedness of the ARSN by executing a distributed election 

algorithm over the ARSN. When the election is complete, each processor in the network begins 

the edge labeling process by sending a message, identifying its leader, to each of its 

neighbow. An edge is labeled as in, if both adjacent processors have the same leader. An edge 

is labeled as out, if the adjacent processors have different leaders or if one processor has not 

participated in an election. This last siruation will occur if no processor in a group initiates the 

election algorithm. When a processor receives an identity message from a neighbour and has 

nor participated in an election itseff, it immediately becomes an initiator and starts the election 

algorithm in its group. Therefore it Is not necessary that an initiator exists in each group. 

Election, in an arbinary graph, has been shown to have a message complexity of R(nlog2n 

+ e )  ILP861. The genenl steps of one known algorithm are as foUows: 

1) Construct a spanning me - G(nlogZn i e) messages. 

2 )  Broadcast the identity of ~ ! e  root of &e spanning nee to dall olher processors in the 

network - O(n) messages. 

Constructing a spming  me f a  the elcrion algorithm provides us with an additional 

benefit, If the MSN prows trr be didisconnecred and we decide to repair the discormection, we 
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_ _ _ ^ & C  LI . nC.1 l t 

WUL LU prwzrve the inie,ority of the MJIS ~y connecting two groups by the most rrlt;ible edge 

between them. Because a spmxing ~ e e  is drer;&j coi;strdcied, ihe most ieiie"'- .tult: eugt- - ' --  C311 be 

determined using an echo afgorithm [C79] using O(n) messages. An echo algorithm has t~vo 

stages of execution. The first stage consists of the leader broadcasting a message to all 

neighbours, which is eventidly pmpagated to the leaves of the spanning tree. In the second 

stage, the responses from the leaves are propagated back to the leader. 

The spanning tree may be constructed using a well known minimum spanning tree 

algorithm, such as the algorithm of Gallager, Humblet and Spira [GHS83]. Their algorithm 

has been shown to have optimal message complexity within a constant factor ( i t . ,  5nlog2n + 

2e + 4n messages). Although optimal, the GHS algorithm constructs a minimum spanning trec 

when only a spanning tree is required. Consequently, we pay the price in terms of extra 

messages and extra processing time required. For this reason we present a new spanning trcc 

algorithm, with improved message complexity, in the following section. 

4.5.1.1 Distributed Spanning Tree Algcrithm For Arbitrary Networks: 

To begin the discussion, we briefly outline how to distributively construct a spanning tree 

for the special case of exactly one initiator. The algorithm is based on a depth-first sertrch 

procedure outlined previously: initially all processors are marked as urwisired and all edges arc 

marked as unexplored. The initiator begins the algorithm by marking itself as visited. I t  sends a 

COhh'ECT message over an unexplored edge, chosen arbitrarily, and marks the edge as 

explored. The sending processor remains passive until a reply is received. Uwn receipt of a 

COh%'ECT message, a processor marks the edge as explored and has two possible responses. I f '  

the processor is currently visited, the processor sends back a REJECT message to the sender. If' 

the processor is currently zrnvisited, it marks itself as visited. The sending processor becomes 

its parent and the edge over which the message was sent becomes the parent edge. The 

receiving processor continues the search procedure by sending its own COXNECT message 

over one of its unexplored edges. $\%en the receiving processor has no more unexplored edges 
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ii sends a COMPLETED message io its paieiii to indicate that it has finished. 'Fnen the initiator 

receives a COMPLETED or RFJECT message back from its last unexpbred neighboar, :he 

algorithm is complete. The spanning tree consists of all parent edges. The parent edge of each 

processor leads to the root of the spanning tree. 

a) initial networ b) aftcr 4 connec c )  sending last connect d) resulting spannini 

messages ser message 
tree 

- - -- - - 

Figure 4.6: Example of gencral spanning tree algorithm. 

Figure 4.6 illustrates how the general spanning tree algorithm works. The network consists 

of five processors in which a white node represents a processor in an unvisited state, while a 

black node represents a processor in a visited state. The messages CONNECT, REECT and 

COMPLETE are denoted as c, r and f respectively. Assume that processor a begins the 

algorithm. The sequence of CONRECT messages is as follows: a+b, b+d, d-+e and finally 

e+a (figure 4.6b). The last CO~XECT message from e+a is a situation in which the receiving 

processor is already a member of the spanning tree and consequently it responds with a RETECT 

message (figure 4.6~). Upon receiving the reply, processor e has examined all of its unknown 

neighbours and therefore has completed its role in building the spanning tree. It sends a 

COWLETE message to its parent. The rest of the algorithm follows in the same manner and the 

complete spanning tree is composed of all parent edges (figure 4-63. 

W e n  muhipie initiators are allowed, initiators simultaneously construct fragments of a 

spanning tree and contend for members. Two spanning tree fragments overlap when a 

processor from one fragment sends a COSNZCT message to a processor of another fragment. In 
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initiators we make the following changes to the algorithm: Each fragment is identified by the ID 

of its initiator, which is known to all members of the fragment. When a fragment sends a 

CONNECT message to a sleeping processor (i.e., a non-initiator which is not currently a 

member of any fra,ment), the processor joins the fragment. When a fragment, F 1, sencis a 

COhiCT message to a processor which is already a member of a fragment, F2, the message is 

forwarded to the leader of F2. If LD(F1) < ID(F2) then F l  joins F2. Otherwise, F2 joins 1 2 1 .  

Although not discussed here, the algorithm must also include a mechanism to ensure t h ~  a 

cycle is not formed when joining two fragments. 

The simple method of joining two fragments, outlined above, leads to higher than optirwtl 

message complexity in the worst case. Consider the network in figure 4.7 in which n 

processors, labeled 0 to n, are arranged as shown. Initially, each processor i is the leacier and 

sole member of fragment i. Fragment 1 begins the algorithm by sending a CONNECT meswgc, 

denoted as c, to processor 0 (figure 4.7a). Because O < 1, fragment 0 joins fragment 1 ,  which 

now has two members, by sending a REPLY, denoted as r, message to fragment 1 (figure 

4.7b). Processor 2 continues the algorithm by sending a CONNECT message to processor 0. 

Since processor 0 is not the leader of the fragment, it forwards the message along its parent 

edge to processor 1. Since 1 c 2, fragment 1 joins fragment 2 (figure 4 .7~) .  The spanning tree 

construction continues with each processor i sending a CONNEm message to processor i-2 in 

order. Eventually all processors are annexed into fragment n (figure 4.7d). It  can be seen that 

for each processor i to become the leader of a fragment containing the processors i...O, exactly 

2i messages are required (one connection request and one reply message over i edges). The 
n- 1 

total number of messages to create the spanning tree is 2C i = O(n2). This is clearly not optimal 
1= 1 

since even an PVIST, which is a more tight!y cmsna i~ed  spmning see, can be const~~cte:! with 

0(nlog2n + e)  messages. 
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I 0 - &notes current leader of the fragment. ' I 

Figure 4.7: Distributed Spanning Tree Algorithm, O(n2) Complexity in Worst Case. 

4.5.1.2 Distributed Spanning Tree Algorithm With Optimal Message 
Complexity 

In order to reduce the message complexity of the spanning tree algorithm we implement the 

following two changes: First, unlike the MST algorithms of Gallager, et al. [GHS831, and 

Bar-Yehuda, et al. [BK\;VZS7], in which each fra,ment has one processor which acts as leader 

for the entire existence of the fragment, we introduce the concept of the emissary. For the 

purposes of this algorithm, an emissary is the processor which acts as the current leader of the 

fragment. At some point in the algorithm, each processor in the network is an emissary of 

some fragment. By using an emissary, rather than a fixed leader, a connection request takes 

exactly one message since an emissary can only annex its own neighbour. Second, in the spirit 

of GHS we implement a lekei based mechanism of joining fragments. The level of a fragment 

is sent as part of the COh%ECT message dong ~4th the fragment ID. When a fragment is at 

level i, the number processors in that fragment is at least 2i-I. By using levels we can prevent a 

fragmen:, with a small rrtimkr of members, from annexing a fragment with a larger number of 

members. In this situation, it would be more efficient, in terms of the number of messages, for 

the larger fn-pent to annex the smaller fi-agment. 
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The algorithm begins with all processors in either the sleeping or crnissrrr?; states. Sleeping 

processors have level 0 and do not actively participate in constructing the spanning trt'r. 1j'ht.n 

a sleeping processor is annexed into a fra,pent it becomes the current fragment emissary. 

Initiators, on the other hand, begin the algorithm as an emissary of a single processor 

fragment. Initially, fragments have level 1. With the exception of propagation delay, 311 

processors in a fragment know the current level and identity of the fragment of which i t  is a 

member. The fundamental mechanism by which the algorithm operates is annexation. 

Specifically, a fragment expands by annexing passive processors or whole other fragments. A 

fragment which has been annexed by some other fragment ceases to exist. Fragnwnts annex 

other fragments primarily on the basis of fragment level and in some situations also on the 

b a i s  of frqynent identity (TD). A fragment attempts to annex another fragment, or a sleeping 

processor, by sending a COSXX'T message. The CONNECT message contains the fragment ID 

and its current level. There are four distinct cases of annexation: 

Case 1: Fragment annexing a sleeping processor (trivial case): The simplest annexrtticm cast: 

is when a fragment, F, sends a COhhZCr message to a sleeping processor, as illustrated in 

figure 4.8a. Upon receipt of the connection request, the sleeping processor joins F by 

sending an ACCEFT message, denoted as a, to the ernisscary of F and becomes the new 

emissary of the enlarged fragment F' (figure 3.8b). When the emissary receives an AC<'EIyi' 

message it knows that a new emissary exists and it enters the ntemher state. The level of the 

fragment does not increase as a result of annexing a sleeping processor. 

Figure 4.8 : A fragment Annexing a Sleeping Processor 
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C a ~ e  2 : A smaiier ioeiedfr~gment trying to annex a fragment wirh a larger level: In this 

situation a fragment Ff sends a COP\?YTCT message io a processor of hagmelit F'2, with 

1ewifFI) < levelfF2) (fimre 4.9a). FI must join F2 because its level is smaller. The 

receiving processor in F2 recognizes this, since it knows the level and identity of F2, and 

handles the joining of the two fragments without forwarding the message to the current 

emissary of F2. The justification for this is, although F2 may simultaneously be annexed by 

yet a larger fragment, the level will never decrease and thus FI would join the fragment 

regardless of the outcome, The receiving processor informs  he emissary of Fl  that it is to 

join F2 by sending a CHANGE LEVEUID message, which includes the current level and ID of 

F2. Upon receiving this message, the emissary of F1 relinquishes its leadership and 

broadcasts the change in level and leadership to all members of FI (figure 4.9b). After all 

members are notified FI ceases to exist. The current emissary of F2 remains emissary of the 

enlarged fragment F2' and the level does not increase. 

a) Initid fragment cc b) resulting fragment level(F I )  < level(F2) 

Figure 4.9: A smaller leveled fragment attempting to annex a larger fragment. 

Czse 3: A lurger levcried fragment umexing a fragment of a smaller level: In this situation a 

hgment  FI sends a COhXECT message to F2, where level(F1) > levelfF2). Similar to the 

previous case, when any processor in F2 receives the CONNECT message it realizes that it can 

never be lender of the network and must join FI .  In the distribured MST algorithm of 

G;iIiegerl tiumblet and Spira, the larger leveled fragment is made to wait for the smaller. The 

nuin reason for the delay feature is that, after a lower level h e p e n t  combines into a higher 

level fragment. the other pnressors of the fn-pent are not informed of the change for an 

uncertain period of time [GI-ISS3J. 
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In this d g ~ r i t b m  avoid ma!!ng any fragment wait xxkss It knows i: can no: be 

network leader. Therefore, when a COr\(T\JECT message is received from a larger leveled 

fragment the receiving processor passes a TAKEOVER message to its current emissary. The 

TAKEOVER message is a more aggressive version of the CONNECT message because i t  has the 

added feature that it locks the receiving processor. A locked processor does not process any 

incoming message, including another TAKEOVER message from a competing fragment. 

Buffered messages are processed when the processor becomes unlocked. A processor is only 

unlocked when it receives a CHAIVGE L E W D  message with a larger level then it currently 

knows. In the process of annexing F2 , fragment F1 will encounter one of three situations: 

Figure 4.10: A Larger Leveled Fragment Annexing a Smaller Fragment (normal case) 

normal sitrution: The TAKEOVER message is sent up the fragment to the emissary of F2 

(figure 4.10a). When the message arrives at the emissary it is buffered until i s  current 

processing is completed. When the message is processed, the emissary immediately 

relinquishes its leadership and sends a CHAsGE LEVELAD message, with the level and 111 

of F I ,  over the spanning nee thereby joining F l  and unlocking all processors in the 

process (figure 4. lob), N7hen the emissary of F I  receives the message with its own levcl 

and ID it knows it has captured F2. 

cumpenisg annexation: 'n this sintation another fragment FS, with level(F3) > ievel(F2) 

shiihmeousiy D-ks to mnex FZ. Both Fi and F3 send TAKEO'VER messages over the 

fra,gnent F2 to the emissary. Because a TAKEOVER message locks the receiving 

processor, only one TAKEOVER message will reach the emissary without encountering a 
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locked processor. The locking mechanism allows us to process competing requests in a 

sequential manner. When the emissary of F2 receives the TAKEOVER message, say from 

FI ,  it processes the message as in the first case and sends the CHANGE LEVELbD message 

down the spanning tree. When the message arrives at v it is unlocked and immediately 

processes the TAKEOVER message of F3. If level(F3) < level(FI), the CHANGE LEVELDD 

message is simply sent to F3. In this case the both F2 and F3 are annexed by F I  and its 

level does not increase. If fevel(F3) > level(Fl), a new CHANGE LEVELD message with 

the level and ID of F3 is sent to both Fl and F2. In this case both FI and F2 are annexed 

by F3 and its level does not increase. If level(F3) = level(Fl), then a new fragment is 

created and the level is increased. The leader of the new fragment is the emissary of the 

fragment with the largest ID. The new CHANGE LEtXL/ID message is sent to F l ,  F2 and 

F3. When a fragment receives a CHANGE LEVEWD message with its own ID but different 

level, it broadcasts the message to all of its member and its emissary remains in 

leadership. 

increased level: Because of propagation delay, fragment F2 may have expanded to F2' and 

be in the process of updating the level and ID to its members when Fl tries to annex it. 

When this happens, a TAKEOVER and CH;LXGE LEVELfID message will "collide" at some 

processor of the spanning tree of F2'or at the emissary of F2'. If level(F1) > level(F2') 

or level(F1) = level(F2') and ID(F1) > ID(F2') then the CHANGE LEVEUD message is 

terminated and the TAKEOVER message proceeds to the emissary of F2' as usual. If 

level(F1) < level(F2') then the TAKEOVER message is terminated and F1 is annexed into 

F2' by propagating the C m Y G E  LEVEMD message from F2'to FI. If level(F1) = 

Ievel(F2') and fD(FI) < ID(F23 then Fl is suspended by propagating the CHANGE 

L E W D  message from F2' (see case 4). If level(F1) = level(F2') and ID(F1) = ID(F2 3 

then the TAKEO?%R message has encountered its own identity. This occurs when both the 

larger and smaller simultaneously attempt to annex the other. fn this case F2 sends a 

CONFJECf message, dong a different edge, to Fl and subsequently becomes annexed. 
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-= Ihe TAKEOVER message, propagated by the emissary of F1, is halted and a REJECT 

message is sent tack io indicate that ihe edge cream a cycle. 

Case 4: A fragment tries to anne-x afragment of the same level: In this situation fragnient FI 

sends a CONNECT message to fragment F2 in which level(F1) = level(F2). Unlike 

constructing a MST, in which two fragments may only be connected by the minimum-weight 

edge joining them, two fragments of the same level may simultaneously try to annex each 

other using two different edges. For this reason, a fragment may only annex another 

fra-ment of the same level if it has a larger ID. When a fragment sends a CONNECT message 

to a fragment of the same level but larger ID, the receiving processor replies with a CHANCE 

LEVEL/ID message. When an emissary receives a CHANGE LEVELfID message with the same 

level as its own but larger ID, it knows it has tried to annex a fragment with the same level 

and larger ID and subsequently becomes srrspended. A suspended fragment is passive and 

waits to be annexed by a larger or equal leveled fragment. However, a suspended fragment 

may annex a fragment with a smaller, if the other fragment initiates the annexation. When the 

annexing fragment has a larger ID, a TAKEOVER message is sent to emissary of F2 rind the 

situation is analogous to case 3. 

Each edge in the network is labeled to distinguish those which have been processed 

(examined) from those which have not. InitialIy, every edge is unexplored. When an edge is 

processed it is given a label to identify its status within the network. A reject edge connects a 

fragment to itself (i-e., a cycle) and therefore is not part of the spanning tree. A purent edge is a 

member of the fra,went spanning tree and leads to the current emissary of the fragment. Notice 

that it is always possible to send a message to the current emissary without having to broadcast 

throughout the fra,gnent. A ctrifd edge is a member of the spanning tree and leads to a leaf. A 

completed edge is identical to the child edge except that all edges in the subtree have been 

completely explored and no further processing is required. 
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Because each fragment has a bynaiiie en-iissaii=, rather than a fixed leader, a processor 

relinquishes control before it ha cnrnp!ete!y exalmined d! adjacent edges. PAm-eauer, when a 

fragment is annexed, control is seized from the emissary leaving some edges unexamined. For 

this reason we need a way of passing control back to a processor in our fragment to complete 

processing. This is accomplished by using the RESUME message. The current emissary passes 

leadership of the fragment to another processor in the fragment when it has no unexplored 

edges left. In this case it sends the RESUhE message over a child edge. A leaf in the spanning 

tree is a processor which has at most one child edge and the remainder rejected. When a leaf 

processor has examined all edges then processing at this processor is finished. The leaf 

processor passes control to its child by sending a COMPLETED message. A COMPLETED 

message passes on control, like a RESUME message, but signals the receiving processor that 

processing is finished. A processor which has sent a COMPLETED message will never become 

emissary again. When a processor receives a COMPLETED message it marks that edge as 

completed. When an interior processor (i.e., a processor with more than one child) receives a 

COMPLETED message from all but one of its children, it has finished processing and sends its 

own COhPLETED message to its final child. A processor with only completed and rejected 

edges is the leader of the spanning tree and the algorithm terminates. 

When the algorithm terminates each processor knows the identity of the fragment which 

forms the spanning tree. Moreover, each processor can identify the local edges which form the 

spanning tree (i-e., completed edges). The leader of the spanning tree is the last emissary of the 

fragment. The fragment and the leader of the spanning tree da not necessarily have the same 

identity. 

4.5.1.3 Distributed Spannirtg Tree Atgorithm - Implementation Details 

In the preceding algorithm the following processor states are used: 

skeping -> A processor which knows it is not a local maximum, does not actively participate 
in forming a fraGrr;ment- \?Faits passively to be annexed. 
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missary -> A processor which is actively seeking out new prcxessors or other fmgn;er;ts to 
add to the fragment of which it is a part. The current emissary is the fragment leader. 

member -> A non-leader and non-emissary processor in a fragment. Plays a passive role in 
the fragment and the only role it fulfills is to relay message to the lender or emissary. 

suspended -> When an emissay sends a C'ONNE@T message to another fragment with the 
same level but larger ID, the sending fragment is to be annexed by the receiving process. 
However, the level of the new fragment must increase as a result which requires the 
cooperation of the emissary of the larger fragment, which may be busy annexing other 
fragments. Instead the emissary of the smaller fra,pent enters a suspended state in which 
it waits to be annexed by another fragment. 

The following messages are used in the preceding algorithm: 

CONNECT -> A leader or emissary sends this message over a previously unexplored edge as 
an invitation to join the fragment. 

REJECT -> Sent in response to a CONNECT message by a processor which is already a 
member of the initiator's fragment. 

ACCEPT -> Sent in response to a CONNECT message by a sleeping processor. In this case the 
receiving processor joins the fra,ment and becomes the emissary of the new fragment. 

CHANGE LEVELiID -> Sent to inform the member of a fragment that the level, and possibly 
the ID, of the fra,gnent has increased. When two fragments amalgamate it is sent in place 
of an accept message. Also, this message is sent in response to a CONNECT message 
from an equal leveled fragment with a smaller ID. In this case the fragment with the 
smaller ID is suspended. 

TAKEOVER-> Sent to an emissary of a smaller leveled fragment or a fragment of equal level 
but smaller ID. When a processor receives this message it is locked and will not process 
other messages until it receives a CHANGE LEVEL/ID message with a larger level. 

RESUhfi -> When two f r apen t s  amalgamate only one emissary survives to lead the new 
fragment. As a rcsult a number of edges may be only partially explored (i.e., still in the 
chiid state). The current emissary sends this token message to pass leadership to a child 
when no unexplored edges exist. 

COhPLETED -> An emissary sends this message to its parent in the spanning tree to indicate 
that all possible edges have been examined. When a processor has examined all adjacent 
edges it enters thefinished - member state. 

4.5.1.4: Distributed Spanning Tree Algorithm: 

f+ sleeping state - a sleeping prcxessor waits to bt.. annexed *I 
sleeping: 

receive@-msgm-edge) 
IF msg = CONNECT f t  an invitation from a fragment to join ' 1  

edge_state[edge] c child 
rec-edge t send(ACCEPT) 
become emissary 
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/* create fragment and uy to annex all other processors */ 
emissary: 

IF initialor 
level +- I ,  frag-id c my-id; I* initialize level and fragment identity * 

FOREACH edge e suchthat (edge-stateIe1 = unexplored) DO /* while unexplored edges exist * 
etsend(CONNECT,level,fragid) P send connect message on edge e* 
rcccive(msg,rcc-edge) P receive a message * 
WHILE rec-edge + e /* while the reply is outstanding * 

msgqueue t msg P save message on queue to process later * 
receive(msg,rccCCedge) I* get another message *, 

END WHILE 

PROCESS msg OF TYPE: 
1) ACCEPT: 

edge-statc[rccCCedge] t parent 
become member 

1 2) REJECT: 

I edge-state[explore-edge] t reject 

,r* process the message we were waiting for*, 
I* annexed a sleeping processor * 
P mark the edge as parent edge * 

/* relinquish leadership *, 
/* edge would produce a cycle *, 

/* mark edge as rejected *, 

3) CHANGE LEVELfID: 
IF get-level(msg) = level /* suspended - tried to annex frag with same Ievel but larger ID *, 
edge-state[explore-edge] t unexplored /* reset the edge status *, 
become suspended 

ELSEIF get-id(msg) # frag-id I* different ID - annexed by another fragment *, 
level t get-level(msg); fragid + get-id(nzsg) P get new level and ID *, 
edge-statc[explore-edge] parent; I* set new parent edge *, 
broadcast(CHANGE LEVEL/ID,leve!,fragid) P send new level/ID to all members of frag. *, 
become member /* relinquish leadership *, 

ELSE P we've taken over another fragment *, 
IF get-level(msg) > level P see if the level has changed *, 
broadcast(CHANGE LEVELflD,levei,fragid) 

P send new level/ID to all members of frag. *, 
END PROCESS msg 

P after we have received the expected message process the messages in the message queue *I 
FOREACH msg in msg_queue DO 

PKOCESS msg OF TYPE: 

P received a connect or takeover message - when received at emissary they have the same effect */ 
1) CONNECT: I* connect & takeover message process same way */ 
2) TAKEOVER: 

IF level > get-Ievel(msg) /* smaller level - we annex them */ 
rec-edgctsend(CHiWCE LEVELD, level, fragid) P send new level/lD to fragment */ 
edge-statefm-edge] c child P set edge to child */ 

ELSEIF levcl = get-leveljrnsg) 1' sane level - must increase level *I 
level t level + 1 I* increase the level number */ 
edge-sw[rec-edge] t ck!d /* set edge state to child *I 
rec-edgetsend{CHAp.:GE LE~~L( iD, leve l~g_ id)  P send new level/ID to other fragment */ 
hroadcast(CHAPGE Et"EVLDJeve!,frag-id) P i.tfem our frag of new level/ID */ 

ELSE P level greater - we are annexed & relinquish control*/ 
edge-statekc-edge] c parent I* set edge state to new parent *I 
level t get-level(msg) P new level is level of larger fragment */ 
fragid t get-ID(rnsg) P new ID is ID of larger fragment */ 
=-bgetsend(WYGE LEVEUlDJevelfragid) 

P this tells larger frae. we have joined it */ 







4.5.1.5 Distributed Spaming Tree Aiguriihrn - Correctness a n d  Cornpfesity 

Proof. From the detailed discussion of the afgorithm, it can be seen rhfit an edge is added to n 

fragment if, and only if, rhst edge dozs cot cause a cycle in the fra-ment. hforpover, every 

edge in the network is given an oppon wiry to join a fragment by sending a CONNECT 

message to one adjacenr node. Therefore, if &fie algorithm ternrin:ttss, it tenninsttes correctly. 

The algorithm terminates when all the edges incident to one node are labeled rejccr or 

compleied. E w e  a s s u m  that there is onfy one inifiator, then the spanning tree consists o f  a 

single fragment which is conc~~ctecf  entirely by annexing slerpieg prwessors. Assurni~~g 

t h a ~  the dgorithm visits all n&s of the network and considers all edges appropriarely, i t  is 

obvious that the algorithm terminates, Assum thar more than one initiator exists and at l ~ i l s t  

two fragments exist in the network at one rime. Therefore, to show that the atgorithn~ 

terminates, it is sufficient ~c shou- that no deadlocks exist when combining fragments. From 

the discussion in section 3.5.1.3. each time t ~ v o  fragments combine, one ernissttry 

reItmjuishes leadership and rfie orhzr remains in control of the combined fragment. The 

exception to this is when a fragment tries to mnsx another fragment, with the same levcl but 

larger tD, and is suspended in the process* The suspended fragment is passive, will never 

increase its level and will never form the complete spanning tree. A deadlock can only exist if 

ail fragments in the nertimk are suspended. However, this is impossible sir~ce a fragment can 

onfy be suspended by a fra-wear with the s m e  level and larger ID. E\en if all fragments 

have the s m e  level, there must k one framenr with the largest ID which can not be 

suqmded- ai k i s t  o w  piKegsor is XI active emissw at ail times and n o  

dedlnrk exists. m 
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TL,.,,, A . 
,115.711. -LJ. iota: number of messages used to construct a spanning tree by Algorithm 

4.3 is O(nlog,n + e). 

Proc?f. By definition, the maximum level of any fragment is log2n. During each level, at most 

n- 1 TAKEOVER, RESUME and CEL4SGE LEVELiID messages may be sent for a total of 3(n- 

I)iog2n. The only exception to this is the CHAiGE LEVELRD message which can also be used to 

suspend another fragment. In the worst case, n fragments can exist and therefore at most n-1 

fragments can 'be suspended though the entire execution of the algorithm. A C o m a  

message and its response fi-e., ACCEPT, RUEC?") is sent over each edge in the network for a 

total of 2e messages. Finally, at most n-1 COAIPLETED messages are sent when all processing 

is completed at a node. 

The total number of messages is: 3(n-l)log,n + 2e + 2(n-1) which is O(nlog,n + e). rn 

4.5.1.6 Determining the Connectedness of the Approximate Reliable 

Subnetwork - Algorithm Details: 

Once the spanning tree has been constructed on the ARSN, usink &e previous algorithm, 

the test for disconnection is srnightfonvard. Each processor in the network checks for out 

edges and then repons the results to t f r t  leader. The algorithm may be implemented as follows: 

the leader of the spanning nee broadcssts a request to search for our edges. When a processor 

receives the broadcast it performs the search by sending an IKQCZRE message, containing the 

spanning tree ID, over each edge n-hieh is not in the ARSN. When a processor receives an 

WQLqRE message which coctains the same spanning tree ID, the edge is an in edge and the 

processur replies with a COh3"EGTED message. ff a processor receives an D, different than its 

spanning me ID, the edge is a? otu edge &e nceiving processor rcpties with a 

DlSCOh%TCfED message. A feafprocessor in the spanning m e  sends a COh%TCIED message 

to i s  pmnt,  if it h3s no ottf edges. and a DISCO~?,SXED message otherwise. An interior 

processor in the spanning nee sends a C O ~ X X ~ D  message to its parent, if it has no our edges 

and it received a COitc?IZCII-ID message from each of its children. Otherwise, the interior 
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processor sends a DISCOh>ZCTED message. This communication pattern has been referred to 

as a convergecast in [A85]. The algorithm terminates when the leader receives a reply from 

each of its children. The ARSN is disconnected if the leader receives at least one 

DISCOIWTC~ED message. 

Since the ARSN has a reduced size of at most K(n-1) edges, the spanning tree can be 

constructed with 3nlogp + 2K(n-1) + 2n messages. The convergecast requires exactly 2(n- 1 )  

messages to begin the check for connectedness and return the results. Each edge which is not 

in the ARSN is queried for a total of 2(e - Kn) messages. Therefore, the total number of 

messages to determine if an ARSN is connected is: 3nlog2n + 2K(n- 1 )  + 2n + 2(n-1) + 2(e - 

Kn) which is 0(nIog2n + ej. 

4.5.2 Repairing A Disconnected Approximate Reliable Subnetwork. 

When the ARSN is found to be disconnected we must decide whether to rebuild the ARSN 

or repair the existing structure. As previously discussed, if we rebuild the ARSN i t  generally 

requires that the value of K be increased. The exception to this is if a property of the network 

can be changed, for example processor labeling, or if the tie breaking scheme can be changed. 

In these situations it is possible to reconstruct the ARSN using the same value of K and 

possibly produce a different structure which is connected. If we assume that the value o f  K is 

increased, the new ARSN can be constructed as follows. The leader of the spanning tree 

broadcasts a message to all members of the fragment which informs them to select an addi tionid 

edge. Upon receiving the message each edge selects its K+I most reliable edge and includes i t  

in the ARSN, if it is not already a member. When a processor adds a new edge to the structurc, 

the processor at h e  other end of the edge is informed. Beginning with the leader, the spanning 

tree dgorithm is executed which sends a connect message over each new edge. When the new 

spanning tree is complete, the leader broadcasts the new fragment identity. Upon receiving the 

new fra-pent identity, each processor tests previous out edges to see if they still connect to a 
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different fragment. If at least one edge remains out, then the ARSN remains disconnected and 

K is increased again and the procedure is repeated. 

Although the AHSN can easily be rebuilt, the additional edges required may negate any 

previous advantage which the structure offered. Furthermore, bemuse the ARSN is not 

guaranteed to be connected. it may require that the value of K be incremented numerous times 

before a connected structure is constructed. In general, it will be better to repair the existing 

structure. We justify our choice based on the following observations: 

1. Based on the observations of section 4.3, when an ARSN for KT2 is disconnected it is 

Iikely to be partitioned into only two groups. The repair algorithm can connect two 

fragments by finding the most reliable edge between them. 

2. We have spent considerable network resources already on building the spanning tree and 

checking for connectedness. In Iight of the previous observation and because the 

spanning tree is already in place, it may be a simple task to connect the fra,gnents. 

When the ARSN is disconnected, there exists at least two fragments, and possibly more, 

which must somehow be connected. Each fragment has an active leader and together they must 

cooperate to join into a single connected ARSiV. Joining fragments of the spaiming tree is very 

similar to constructing a spanning tree. The spanning tree algorithm, with minor modifications, 

could be used to join the fragments except that algorithm 4.3 connects two fra,pents by an 

arbitrary edge. In order to maintain the reliability of the ARSN, fragments must be joined by 

the most reIiabIe edge between them. In fact, the algorithm to repair the disconnection will be 

almost identical to a minimum-rveight spmning tree algorithm. Because there are a number of 

distributed hlST algorithms available we wiU not formally define a disconnection repair 

algorithm. However, we briefly ourline the szeps of the algorithm which are as follows. The 

iertder of a fra,ment broadcasts a request for the most reliable out edge in the fragment. Upon 

receiving the request, a processor tests each unused edge to see if it is an out edge and sends, 

by a convergecast, the reliability the most reliable ozu edge in its subtree. When the leader of 

the fragment knows the nlost reliable out edge, it initiates a connection request between the two 



fra,ments. Through an annexation process, similar in concept to that of algorithm 4.3, the two 

fragments are joined. The Ieader of the new fragment again broadcasts a request for the most 

reliable out edge. The process terminates and the ARSN is connected when no our edges are 

reported. 

The number of messages iequired to repair a disconnected ARSN is u1tim:ttely dependent 

on the number of fragments which exist. From the results of table 3.1, when an ARSN is 

disconnected there is likely to be two partitions, one small and one large. In this situation, the 

smaller fragment will likely discover and initiate the repair, before the larger discovers a 

disconnection exists. The spanning tree algorithm can be modified to annex a disconnected 

fragment when a REPAIR message is received. Tne number of extm messages required to rcp:iir 

the disconnection is minim$. In the worst case however, when K=l and each fragment 

contains 2 processors, there can be O h )  fragments. Therefore, the number of messages t o  

repair the disconnection in the worst case is O(nIog,n + e). 
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Chapter 5 

Empirical Results: 
Evaluating the Approximate Reliable Subnetwork 

5.1 Motivation: 

In chapter 4 we gave a disoibu~ed algorithm to compute an approximare reliable 

srrbnetwvrk (ARSN) for a predetermined value of K, of a given general network. The 

algorithm is based on a graph reduction technique whereby all but the K most reliable edges for 

each vertex are eliminated. The primay advantage of the reliable subnetwork is the reduction in 

the size of the network. Since the nerwork is reduced by eliminating the most unreliable edges, 

we can expect the total number of significant edge failures to be reduced (since the most 

unreliable edges are not used a failure of one of these is of little consequence). Because of this, 

we reduce the frequency which local routing tables need to be updatcd or regenerated Also as a 

resuIt of reduced size, a distributed computation, which is measured in terms of message 

eompIexity, would be expected to execute noticeably faster. Unfortunately, both of these 

benefits do not come without a price. Because we are reducing the graph by eliminating edges, 

we unavoidably decrease the reliability of the ARSN with res~cct to the original network (after 

a11 we can not increase the reliability of a graph by taking away edges). Given this invariant, 

the question arises as to how significantly does the ARSN reduce the reliability? 
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In this chapter we empiricdiy evaluate the Ali%ki for various values of K ,  given ntlrtvcrrks 

I  PI r - of Mfeient order, size and idiabiffiy of zomiiiiinieaiioii edges. We evaluate the AKJD i n  icnm 

of reliability, path length and total edge count. We conclude with a discussion of appropsi:irc 

values of K and an overall analysis of the ARSN. 

5.2 Test Philosophy: 

Comparing the reliability of an ARSN to the original nehvork is a re1a:ively straightfonwnl 

task, however, making general observations which apply to all ARSNs is much more difficult. 

The difficulty arises due to the fact that there is an infinite number of network topologies to 

test. Because it is possible to test only a small portion of possible network topolob' 71es, our 

approach is to randomly generate networks to be tested. The intent is to obtain a representative 

sample of general graphs, which may include any number df different classes of graphs. 

However, when graphs are completely random it becomes difficult to make general 

observations as the physical structure of the graph may affect the outcome of the results. For 

this reason, we restrict the types of topologies we look at by making the following 

assumptions, concerning the physical properties of the graphs: 

Graph Order: The primary advantage of the ARSN is in the reduction in edges , or network 

size, without a significant reduction in network reliability. For a distributed algorithm , 

reduction in terms of messages sent may be significant if the order of the network is 

sufficiently large. However, for a small network, say less than 10 vertices as one might 

find in a local area network, the small number of vertices may not justify the overht.at1 

costs of computing the ARSN. &foreover, if the network is sufficiently small, the 

computational savings realized in the reduction of the network size may be insignificant. 

For this reason we consider only network topologies where the number of vertices is 

large. In the specific ~e tworks  which we generate we use values of n = 20,40 , 60, 80 

and 100. 
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compurationaf savings when the size of the network is reduced. However, even when the 

size of the network is large, if each vertex has small degree, the reduction in the size of 

the network will be small even when K= 1. An example of this type of network is the 

ARPAnet where most vertices have 2 or 3 edges. For this reason we restrict ourselves to 

dense networks of large size. In the specific networks which we generate we use values 

of e = 20%,40 %, 60%,80% and 100% of all possible edges. 

E&e reliabilitv: It is difficuft to accurately specify the reliability of a mica! edge in a 

computer network. Recall that we define the reliability of an edge as the probability that it 

is in a operational state. The dehition was left intentionally vague so as to encompass a 

number of more restrictive definitions of reliability. For instance, if edge reliability is 

defined in terms of the availabiliry of an edge for a specific period of time, then we would 

expect the reliability of an individual edge to be quite high. In a study of the ARPAnet, 

by Frank and Chou fFC731, where availability was the reliability criteria, it was found 

that the average edge had a reliability of 98%. In contrast, if we define reliability to be the 

probability that an edge has no failures during a given period of time, then we would 

expect the reliability of a typical edge to be much less. Even the physical properties of the 

transmission medium can affect the reliability of an individual edge. For these reasons it 

is difficult to give @pica1 bounds on the reliability of an edge. We make the assumption 

that the reliability of individual edges can have significant variance' . In our analysis we 

generate graphs in which edges have the following ranges: 1100% ... I%], 

[ 1 0 0 %  . .SO%],  [IOO% ... 75%] and [IOU% ... 95%]. 

The original intent for consmcting an ARSN was to provide a reliable environment in 

which to execute distributed algorithms, Consequently, the ideal environment for evaluating 

an ARSN would be to physically create a network, introduce various edge faults, compute the 

1 After dl , if d1 the edges in the network had the same relhbiliry then an algorithm which randomly chose K 
edges for each vcrtex would produce Ehe same effect as computing the RSN. 
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reliable network and run various distributed algoridlms. Given this envirnnmenr, one cw!d 

then cornpate the types md qumtiriss of edge fdures encountered on the ARSiV with the 

identical algorithms running on the original nettkork. 

Unfortunately, such a setup 1s beyond the scope of this thesis. Accordingly, we must resort 

to evaluating RRSNs of randomly generated networks."; Moreover, because we have no \yay 

of simulating the execurion of a distributed algorithm over a network with edge failures and 

recoveries, we must evaluate the MS.% using other criteria. In particular we yse the followirlg 

three measures in evaluating the M S N :  

1 )  Reliabiliry: By far, the most important evaluation criteria of the ARSN is the reliability, 

as defined in chapter 3, in comparison to the reliability of the origins1 network. By 

definition, the reliability of the original nehvork must be greater than or equal to that o f  

the MSN. However, if the reliability of the ARSN is not significantly less and the 

number of edges has been significantly reduced, then the ARSN offers certain 

advantages for distributed execution over the original network. 

2)  Reliable Path length: Ideally, the ARS:V will be used as a general communication 

network in which routing tables are computed and messages are potentidly passed 

between all pairs of processors. We assume that a message travels over the most reliable 

path between two processors. If path Ienghs differ significantly between the ARSN and 

the original network, then mssages must travel farther to reach their destination and the 

justification for computing the snuctwe is weakened. We examine both average and 

worst case (mit&wm) most reliable path length per graph. 

3) ARSNSize: As previously deliberated, the primary advantage of the ARSN is in the 

computational savings due to the reduction in the size of the network. If the network 

reduction is significant then the cost overhead for computing the ARSN and for 

detemining connectedness can be justified. 

Refer to Appendix 1 for z relevant dkcttssion and evaluation of the random number gcncrator. 
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5.3 Test Setup & Methodology: 

The test was organized in the following manner. Random graphs were generated for each 

of the 100 combinations of order, size and edge reliability (as discussed in the previous 

section). For each graph combination, a 1000 graphs were created and evaluated, for a total 

sample of 100,000 graphs. The random graphs were generated using the algorithm of 

Sijenhuis and Wilf [NW78f which generates random labeled graphs of fxed size and order 

based on the probability model •’3 for random graphs.3 The algorithm uniformly generates, at 

random, a subset of size j from a set of size n, where j5 n. Generating a graph, of order n and 

size e, is then a matter of conceiving a labeling for the (,") possible edges and randomly 

choosing e edges. The reliability of each generated edge is uniformly generated from the given 

range. Afier each random graph is generated a spanning tree is constructed to verify 

connectedness. Graphs Found to be disconnected are discarded. 

Following the generation of a connected graph, the reliability of the graph is computed 

using algorithm 3.1. In addition, if the graph is complete, the most reliable paths between all 

pairs of processors is computed. From these paths, we generate the average and maximum 

path length values. 

The ARSN is constructed, for vdues of K = 1 ... 9, using algorithm 4.2 to choose the K 

most reliable edges for each processor. The ARSN is then checked for connectedness by 

constructing a spanning tree. If it is found to be, disconnected, the ARSN is repaired by 

sequentially adding the most reliable edge, not currently in the ARSN, until the structure is 

connected. For each ARSN constructed, the reliability is computed. The actual reliability 

values for the MSNs computed are only meaningful as a comparison to the reliability of the 

original graph. For this reason, we ~7~)rnmlize the reliability of an instance of the ;2RSN by 

For a complete discussion of  probability models A, 3 and C see fP851. 
Although appronimatc rcfiable subnetaorks were computed for values of K=1 ... 9 it was found that for values 

of K>5 then: was no significant rtiffercnce in reliability or path lengths compared t the original graph. For this 
reason. dl M S N s  with K>5 are removed from f d e r  consideration 
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expressing it as a percentage of the reliability of the original graph. A normalized reliability of 

95% for a particular ARSN. for example, means that the structure is 95% as reliable as the 

original network. 

If the original graph is complete, we compute the most reliable path between all p;iirs of  

processors in the ARSN. From these path lengths we can compute the maximum most reliahlc 

path and the average path length of the most reliable paths. In addition, we count the nt1rnbt.r 

of edges in the ARSN to determine how much the size of the network has been reduced. 

5.3.1 Empirfca! Resu!ts - Reliability: 

The results of the normalized reliabili~y comparison are listed in appendix 2, tables A2.1 

through A2.25. Each table represents the ARSN computations for specific values of n anti c .  

The reliability of each edge was randomly generated once from each of the four reliability 

ranges ([loo% ... 0%], [ lW% ... jO%], [100%..75%] and [100% ... 95%]). This results in  Sour 

individual graphs with the same physical slructure. Each table shows the average of the 

normalized reliability for values of K from 1 to 5. As well, for each reliability and K 

combination, the standard deviation, minimum reliability and maximum reliability are 

recorded. 

As an initial observation, the reliability ARSN, for all values of e, n and K tested, is 

remarkably high. Even in the worst case, (table A2.1, n = 20, e = 38 ) when K=l, the AKSN 

has an average normalized reliability of approximately 82%. When K=2, the worst case 

average normalized reliability is greater than 91%. In the best case, (tnble A2.25: n = I(X1, c = 

4950) with K = 1, the avenge normalized reliability is almost 100%. These results clearly 

indicare that, on average, the reliability of the ARSN is not significantly compromised and 

therefore is a suitable substitute for the original network. Yet, there are specific instances i n  

which the reliability of the ARSN is significantly less then the original (table A2. I ,  n = 20, e = 

38, K= 1, Range = [100%..O%], &%in. Rel. = 51.25). Clearly certain types of networks lend 
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themselves to the c ~ n s ~ u c r i n n  of a good FLRYV. We briefly p_xa~.~?he s m e  ~f the contributing 

factors. 

The predominant factor affecting the reliability of the ARSN is the value of K. As shown in  

each of the tables of appendix 2, the normalized reliability increases as the value of K 

increases , regardless of order, size or reliability range used. This result is obvious if we 

consider that increasing K, increases the number of edges in the ARShr. Choosing an 

appropriate value of K, therefore, is a matter of weighing the benefits of a network of small 

size versus a more reliable network. At one extreme we choose a value of K= 1. This ARSN 

has the least edges and in fact it is a spanning tree (when connected). It has the lowest 

reliability for all values of K, although the reliability is still quite high on average. The major 

drawback of using K = 1 is the high probability that the ARSN is disconnected (refer to table 

4.2). In  all but a few instances, the ARS!V was disconnected and had to be repaired by the 

reconnection algorithm (section 4.5.2). Alternatively, when K=5, the resulting structure is 

more reliable and, for all practical purposes, never disconnected Because the structure is 

assumed to be connected with high probability, we can forgo the check for connectedness 

(section 4.5.1) which may save considerable computational resources. The disadvantage of 

this structure is that it contains significantly more edges than the K=l ARSN and will be 

identical to the original network if each vertex has edge degree 5 or less. A reasonable 

alternative is the ARSN when K=2 . This structure is more reliable than the K=2 ARSN and 

in many instances is "almost" as reliable as the K=5 ARSN. It has far fewer edges than the 

K=5 ARSN and less than twice the edges of the K=l ARSN. The K=2 ARSN is likely to be 

connected with a probability > 99% fgr values of n 2 20 (see table 4.4) and as a result the 

check for connecredness may be unnecessary. 

It can be seen from these results that a significant factor in the consmctior! of a "gwd" 

ARSi'V is the range used to compute the reliability of the edges. In each table ,as the edge 

retiabiliry range decreases h e  overall reliability increases, as we would expect. The ARSX and 
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the original nerwork differ in reiiabiiiy oniy \vhen at least one edge of the origind riet\t.or k is 

not included in :he AWS. In this ease, tk most idia"ue path from at least one t'errex to 

another will not be optimum. IVhen the range of edge reliability is small, the altem;w path is 

likely to be almost as reliable as the optimum. As the range increases we vrlould expect the 

reliability of the non-optimal path to decrease. 

Another significant factor is network size. From the tables in appendix 2, it can bt: stxn 

that when the size of the network is increased the normalizrd reliability increasss almost 

without exception, for smaller values of K. From a combinatorial point of view this seems 

unlikely since as more edges are added the greater the number of paths that exist in the 

network. Therefore: there is less chance of locally choosing the most re!i;t,blc paths. We c ; ~  

offer two possible reasons for this phenomenon. First, the complete network is the tlenscst 

and therefore the most relisble. In this type of network it is often better to use a n~ultiple eilgc: 

path which uses a few very reliable edges rather than an unreliable local edge. Therefore, :IT 

the network approaches cornpkteness it becomes increasingly likely that a few highly reliirble 

edges dominate the most reliable paths betwsen pairs of vertices. Because our algo~iihm is 

greedy, it is almost certain that these edges wiil be chosen. Second, with a network of snlrlfl 

size there can be great variance in the physical structure of the network. Some combinations o f  

edges and edge reliability may produce a pathological structure which can not be reduced 

reliably by a locally based algorithm. As the number of edges in the network increases, the 

number of physic$ t.aiations is reduced and consequently this effect is dimini\hcd. 

The effect of order on nomuiized reliability of an ARSlV is almost negligibfe. From the 

tables in appendix 2, when the percentage of edges is constant there is little disparity in 

nomzlized reliability when n is varied. 





between graphs with different edge reliability ranges and consequently these are not 

considered. 

Table 5.3 : Graph Size for ARSW of Various Values of K, Constructed 
from Complete Graphs of Order n. 



5.4 Summary 

In this chapter we hrtve emt,piriziIEy t:.:t!mrd the ARSN 011 the b:tsis of reliabilitq, pttrh 

length and network size. Ovtni!, the r e d i s  are tery encouraging. Giren rt sttffit~eritly clcnw 

network, it  is possible to reduce a nettcork by choosing only the K most rd iA~le  etfge for c:tcti 

vertex without substantially reducing the reliability of the network. Although different 

extremes of K produced snucrures uith different advantages and disadvantages the best valiic 

seems to be K= 2. The K=3 ARSX is generafly very reliable, has smdl network s iz t~ and 133th 

lenghs and most important. is virtually always connected. This last fact en:ibles us t o  t r t x r :  t h l a  

ARSN withour having to check for connectedness. 
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Conclusion and Future Directions 

Throughout this thesis our primary focus has been to provide reliable message 

rransmission over an unrelidde nehvork. For this purpose, we begin by introducing a new 

distributed computing model. Cniike previous models, the new model assumes that the 

~Iiabil i ty of each edge is knoun  prior to execution. Reliability knotvfedge is the first step in 

achieving reliable transmission since it alloit-s unreliable edges to be avoided when a more 

reliable alternative exisis. 

In chapter 3 we considered nemork reliability. Classical measures of network reliability, 

such as connectivity and resilience are known to be intractable in the general case. For this 

reason, we propose a new definition of newurk reliability. The Average All Pairs measure is 

b~sect on the reliability of the mast reliable path between all processors in the network. The 

new nwsirre is unique for two reasons. Firs:, unlike its predecessors, it can be computed 

exactly in O(n3) time. Second, due to the similarity between the reliability definition and the 



In chapter 4 tvc esan;inzd the issus of message nmsmission over nn t;nrtliahIe i;ct\\.i)r!i. 

Typically, network unreliz'czitie is solved by rnzking the distributed dgtritt-ims hult-rolcrxir. 

Fault-toferafir mechanisms ~;pizaliy mske the a?gori;hm nmre coinpies ;tnd only s o l ~ s  the 

problem in lirnired circumsrances. Sir a solution to unreliable transmission, we propose 

constmcting a Reliable Strhr,efir.ork. The reliable subnetwork is a reducrlttn in the size o f  ttlC 

network bzsed on the Average All Puirs reliability measure. Aside from retaining rhc reli;ibility 

of the original network, the primary advantage of this structure stems from the rcduucri nt~tnbt~s 

of edges. Because we generziiy only keep the most reliable edges, any distribn?ec! algori!hnl 

executing on the reliable subnetwork will encounter fewer edge failures md experience a 

reduced message complexity. 

The exact reliable stibnetwork algorithm unfortunately incurs a large message conlplesity. 

For this rezson, we consmct an approximation to the reliable subnetwork. The approximate 

algorithm is based on a greedy technique whereby processors combine their K most reliable 

Ixa l  edges to form a global structure. The approximate solution can be constructed with O(e) 

messages. Unfortunately, the approxirnate smtcrrue does not retain the reliability of the origin;tl 

network nor does it ensure connectedness. By analq~ical and experimental means, we are able 

to show, with high probsbility, when K> 1 ,  the approximate reliable su bnetwork is cnnnectctl. 

When K=l it is host never connected. T o  ensure that the structure is connected, a new 

algorithm is outlined which gumnress connectedness. The algorithm checks for connectedncs\ 

by constructing a spanning tree and checking for om edges. A new spanning tree algorithm 1s 

proposed, in which larger fragments never wait for smaller fragments. A connected 

approximate reliable subnenvork can 'be constructed with O(nlog,n + ej messages. 

In chapter 5 we again examined the approximate reliable subnetwork. As previous1 y stated, 

the approximate solution does not have the same reliability as the original network. We evaluate 



5.2 Areas of Further Research. 

With any type of resew& there are avenues which remain unexplored for reasons of time, 

complexity nr both. In this section we briefiy ourline a few areas which may provide interesting 

avenues of research. 

First, the network is unrelisble and as such, even typically reliable edges may fail from time 

to time. We have not discussed the implications of an edge failing either during or after the 

consuuction of the reliable subnetwork. 'If the edge fails during the construction phase (i.e., 

before the distributed algorithm has begun execution) the solution is obvious. Since the failed 

edge was only part of :he locd solution. it can be replaced with the next most reliable incident 

edge. When the failure occurs after the consmction is completed and a dismbuted algorithm, 

or even the algorithm to check for connectedness, has begun, the solution is not so simple. A 

distributed algorithm may locally label certain edges, such as member of a spanning tree, and 

therefore a simple replacement scheme is not possible. Unfortunately in this situation, it is not 

possible to complerely dispose of fmlr-tolerant mechanisms. One possible solution is to 

assume an ei.ennrcz& crvmxred nmi-ork, as described by Awerbuck and Even [AE84], in 

which we basically wait until the edge hecomes operational again. If we assume that the reliable 

subnetwork will rarely fail, then a viable alternative is to start the computation again when a 

failure is encountered and the stntcture has been reconstructed. 



A related question concerr?.; hal% ~il7.s r e l l j b l~  .;:lh!~r!~~!nrk s I ~ o ~ ! l j  h, rqyiirccj ~IIC- ;I III~-I:I!I~! 

has fzikd. X possible soi~rior, is ro simply ignore i h ~  fiiilure, since no rebirictictns on rhr  

number of edges for the selirtbie srrbfitr\xork euist. Eventuaily. ho~se\zr. every ectgr. i n  the 

subnetwork is likely to fail. Another solution is to replace the failed edge. This solution ri't.lirl\ 

the number of edges of the smcture. but may cause the reliability of the structure to dr.gr;\rtC 

over time. 

Finaily, we have introduced a new distributed computing model u p i t 1 1  assumed edge 

reiiabiiity. W e  have chosen to use this infommion by constructing the reliable subnetwork. In 

reality, this research has only scratched the surface. Many other solutions and applications art. 

possible. 
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Appendix I 

Evaluation of the Random Number Generator 

Many of the result of this thesis are of direct consequence of esperiment:~l s~rnul:~tion o n  

randomly generated graphs. The graph generation program creates the graphs with the r ~ w  oi' a 

random nuil3er generator which produces uniform deviates. Values genemtcd by tlic rmtlorl~ 

number generator are uniform in the sense that e v e q  number, in a specified rangc o f  tllc 

generator, is just as likely as any other to be generated. Randomly generated valt~es I~PC used 

both to select the edges of a graph, given a specific number of nodes, and tct produce the 

reliability of each edge. 

Unfortunately, random number generators do not produce truly rrindom numbcrs but r;tt her 

pseudo-random numbers based on a seed value and a mathematical calculation. Successive 

random numbers, although appearing random, are in fact related and in some cases may ciilisc 

unwanted correlation between groups of numbers giving rise to in~ccurate results'. I t  is 

therefore imperative thai the random number generator behaves sufficien:ly random and is riot a 

contributing factor in any of the experimental results. In light of this, the random number 

genzrator was subjected to the following three specific empirical tests to test its "rantiomness": 

Chi-square: The chi-square test is perhaps the mos; basic of a11 random generator tests. 

The test statistically compares actual generated sequences of random  umbers with the 

Although correlation between random numbers is a serious problem it does not generally affect values used in 
a one dimensional order. For a more complete discussion of this see Press el al JPre.68 1. 
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Rim test: - h e  rrw tesi tests a sequence of numbers for the length of its monotone 

subscq~iences, either increasing or decreasing. The underlying idea is that for a seqt:ence of 

3 given lerigth the num5er of mimoronic runs of a specific length car! be rheo-eticallji 

predicted. A sequence u i r h  tm few or too ntnng runs of a specific length indicate an 

insufficiently random w y m c r .  As ri.ith the chi-square test, a statistic V is c o n p t e d  to 

evaluate the secpcnce. fn this ii3it 3 ~ ~ i j i f e i ~ ~ t  of 100,000 values was generated and is 

evaltrmd as a chi-stjt::~~ rest is.irf! five degrees of freedom. 

Coltision test: The collision rest has been especially designed to detect the deficiencies of 

poor generators. In this test a small number of random values are generated in comparison 

to the number of predetrrnlined inremals ivhich cover the entire spectrum of possi ble 

rttndorn mlues. When a rzndom number is generated it will usually fall into a previously 

empty interval, but if i: h i f s  into a non-ernpry interval then a collision has occurred. The 

ni~rnber of collisions 3 s  counred ar,d compared with the expected number. In this test 2'' 

intervals tire used and 2!%ranctorn numbers are generated. 

The previously outlined tests are not meant ro be an exhaustive evaluation of a particular 

rmdom number generator but instead ro give a general indication of how random the 

seqrrences are tshich it produces. The reader who wants more informarion on the specific 

tests t and a number of others) should consult Knuth Vo12 [K69]. 
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- 
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Chi-square Test 
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CoIkion Test 
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Reject 0 suspect 0 AImost Suspect 

Figure A.1: Results of random number generatcr tests 



Appendix 2 

Reliability C Anal!-sis of the Approximate Reliable 
Subnetwork 



Appentiix 2 - Reliubiiity Arxzl~sis of the Approximare Relinhle Slthne~vork 

Table A2.l: Normalized Network Reliability N = 20, E = 38 (20 % of maximum) 

- 
I. able A2.2: Normaiized Network Reliability N = 20, E = 76 (40 56 of maximum) 



Appendix 2 - Reliability Analysis q f  the Approximme Reliable S~thrrenr.ork 

Table A2.3: Normalized Network Reliability N = 20, I=, = 114 (60 % of maximurn) 

100% - 
95% 

Table A2.4: Normalized Network Reliability N = 20, E = 152 (80 % of maximum) 

Max. Rel. 1 99.16 99.9 1 
98.74 
0.35 

Reliability 
Std. Dev. 

96.32 
0.92 

100.0 
99.77 
0.18 

Min. Rel. 99.20 
99.96 

95.30 t 97.82 

1M).O 
99.93 
0.05 

Max. Rel. 1 99.57 99.8 1 

100.0 
99.97 
0.02 

99.7 1 
100.0 

99.85 
100.0 



Annendix 2 - Reliahihb A n a h i s  o f  the Annroxirnate Reliable Subnetwork 

- --- -- 

Table A2.5: Normalized Network Reliability N = 20, E = 190 (100 % of maximum) 

Table A2.6: Normalized Network Reliability N = 40, E = 156 (20 % of maximum) 

100% - 
95% 

Reliability I 95.37 I 98.02 
Std. Dev. 
Min. Rel. 

99.96 
0.03 

99.76 
99.99 

99.61 1 99.87 

Max. Rel. 97.29 I 99.36 

1.29 
93.08 

0.15 
99.06 
99.87 

0.45 
97.06 

0.05 
99.62 
99.96 



Appendix 2 - Reliabilig Analysis ofthe Approximate Reliable St~bnehsork 

Table A2.7: Normalized Network Reliability N = 40, E = 312 (40 % of maximum) 

Table A2.8: Normalized Network Reliability N = 40, E = 468 (60 % of maximum) 



Appendix 2 - Relicthilit? A n d p i s  c/f the Approximate Reliable Subnetwork 

Table A2.9: Normalized Network Reliability N = 40, E = 624 (80 % of maximum) 

Tabie AZ.10: Normaiized Nenvork Reiiabiiity N = 40, E = 780 (100% of maximum) 



Appendi-K 2 - Reliabilin Analysis c;f the Approxinzate Reliable Slrhrwwvrk 

Table A2.11: Normalized Network Reliability N = 60, E = 354 (20 % of maximum) 

k =  1 k = 2  k = 3  k = 4 k=5 

100% - 0 Reliability 87.46 94.35 98.85 99.68 00.92 
Std. Dev. 4.57 2.12 0.54 0.23 0.00 
Min. Rel. 71.80 88.02 97.09 98.56 90.44 

P 

Table A2.12: Normalized Network Reliability N = 60, E = 708 (40 % of maximum) 



Appendix 2 - Reliability Analysis of the Approximate Reliable Subnetwork 

Table A2.13: Normalized Network Reliability N = 6C, E = 1062 (60 % of maximum) 

k = l  k = 2  k = 3  k-4 k = 5  

91.64 96.76 99.30 99.8 1 99.94 - 
Std. Dev. 2.5 1 1.07 0.30 0.10 0.04 
Min. Rel. 85.12 93.75 98.21 99.51 99.83 
Max. Rel. 95.95 98.78 99.85 99.97 99.99 

100% - Reliability 93.15 97.78 99.45 99.83 99.95 
508  Std. Dev. 1-43 0.67 0.15 f 0.06 0.03 

Table A2.14: Normalized Network Reliability N = 60, E = 1416 (80 % of maximum) 



Appendix 2 - Reliability Anal~sis of the Approximate Relinble Sirhnehrvrk 

Table A2.15: Normalized Network Reliability N = 60, E = 1770 (100 % of maximi~m) 



Annendix 2 - Reliabilitv Analvsis o f  the Annroximate Reliable Suhnehvork 

Table A2.17: Normalized Network Reliability N = 80, E = 1264 (40 % of maximum) 



Appendix 2 - Reliabili~ Annlvsis of the Apprmirnnre Re!inhle Szthncniwk 

100% - Reliability 97.59 98.99 99.53 99.8 1 99.05 
95 % Std. Dev. 0.50 0.07 0.03 0.03 0.02 

Min. Rel. 96.20 98.71 99.23 99.68 99.86 
Max. Rel. 97.97 99.41 99.75 09.88 00.95 

Table A2.19: Normalized Network Reliability N = 80, E = 2528 (80 % of mrtximumj 

Table A2.20: Normalized Ketwork Reliability N = 80, E = 3160 (100 96 of maximum) 



Appendix 2 - Reliuhilitr: Anulssis of the An~roxirnate Reliable Subnenvork 

Table A2.21: Normalized Network Reliability N = 100, E = 990 (20 5% of maximum) 

-I-- I dds A2.22: N o m d i z e d  Network Reiiabiiity N = 100 E = 1980 (40 % of maximum) 



Std. Dev. f 2.23 I 0.94 I 0.22 1 0.08 0.01 
Min. Rel. 1 83.60 94.87 98.92 90.54 90.8 1 

I 1 Max. Rel. I 97.8 1 I 98.89 I 99.78 I 99-94 I 9o.w 
100% - 1 Reliahilitv 1 91 X9 97 9n I 

Table A2.23: Normalized Network Reliability N = 100 E = 2970 (60 % of maximum) 

100% - 
95% 

Table A2.24: Nofi~alized Network P_dIahilit_y N = 100 , E = 3900 (80 % of rnaxirnumj 

Max. Re!. 
Reliability 
Std. Dev. 
Min. Rel. 

97.93 
96.86 
0.43 
93.5 1 

Max. Rel. f 97.97 

99.14 
99.03 
0.09 
98.59 
99.09 

99.85 
99.57 
0.05 
99.33 
99.83 

99.95 
99,88 
0.03 
W.79 

99.00 
99.96 
0.02 

99.02 
99.95 99 -90 



Tabk A2.25: lu'om-iaikd .t's::vork ReIi~bIIl~y 3 = 1 0 ,  E = 5950 1100 % of maximum) 


