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Abstract

Standard distributed computing models make the simplifving assumption that all
components of the network are perfectly reliable. Unfortunately this is not realistic as
processors and communication edges faxl, messages are lost and networks become
disconnected. Even when the model assumes random edge failures. there is no indication as to
which edges are likely to fuil. Fault-tolerant algorithms, designed to run under such models,
become ver 'u)mplex as they must not only contend with lost messages, but a dynamically
changing nctwork topology. In this thesis we introduce a new distributed computing model in
which each processor has a priori knowledge of the reliability of each incident edge. Not only
does this allow us to avoid using unreliable edges it enables us to derive a reliable subnenvork

which is less vulnerable to failure than the original network.

Unfortunately, computing the reliability of a network is a difficult task as the problem of
computing any of the traditional probabilistic reliability measures is NP-hard. Even
approximation and bounding algorithms, which have polynomial time complexity, tend to be
quite complex. For these reasons, we introduce a new probabilistic measure of reliability. The
Average All Pairs reliability measure is defined as the average, over all pairs of processors, of
the most reliable path between a pair of processors. This new reliability measure can be

computed in O(n3) time.

The reliable subnetwork, based on the previous definition of reliability, can be computed
exactly with O(n*) messages. Unfortunately, this computation results in a large number of
messages. An approximate reliable subnetwork algorithm is introduced, in which each
processor selects its K most reliable incident edges to be members of the reliable subnetwork.
The approximate algorithm has a message complexity of O(e). We show by theoretical and
experimental analysis that for K > 2 the approximation technique produces solutions which are
almost as reliable as the exact solution and very likely to be connected. Finally, we augment the
approximation algorithm to ensure connectedness. This algorithm has a message complexity of

O(nlog.n + e).
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Chanterl - Introduction

Chapter 1

on

jumnt ®

Introduct

I recent years traditional computer systems. based on large mainframe computers with @

number of connected terminals, have largely been superseded by networks of autonomous
processors. As the physical structures of the computing systems have changed so have the
manners in which computers are used. Computer networks enable what were once localized
functions, such as database mcdifications. resource sharing and so on, to be distributed over a
number of phvsically independent sites. Networks have also made possible distributed
computations in which processors with local knowledge cooperate to solve a common
problem. As computer networks become commonplace in society and we become more
dependent on them, we place a greater demand on the services of the network. It thercfore
becomes increasingly important that networks remain reliable. Although the reliability of

individual network components has improved over time, as networks become more and more

complex they become increasingly vulnerabie to unpredictable failure (e.g., edge reactivation,
power failure, hardware failure, etc.). or hostile attack. Consequently. no computer network is

completely reliable.

In networks, processors communicate and share information by sending messages along

incident edges. When the edges are reliable, the task is simple because messages are guaranteed
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10 arrive at the intended receiver in finite time and correct order. When edges are unreliable,
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executing on an unreliable network must be fault-tolerant. Fault-tolerant algorithms operate
under the assumption that any edge may fail at any time. Unfortunately, fault-tolerant
mechanisms increase the complexity of the algorithm and do not ensure successful completion

or even termination in all circumstances

The complexity of a fault-tolerant algorithm could be significantly improved if we had
information as to what types of failures will take place, what components will fail and when the
failures will occur. Unfortunately, this information is generally impossible to obtain. However,

nformation, then we are able to predict failures and avoid

1»«-
v-v

if the network includes reliab
using components which are very likely to fail. In this thesis we examine ways of using

reliability information to ensure successful ransmission of messages in distributed algorithms.

This thesis is organized in the following manner. In chapter 2 we examine the basic
distributed mode! and the model which assumes edge faults. We then propose a new formal
distributed computing model in which processors are reliable but edges are not. Each edge has

associated with 1t a probability of failure which 1s known to both adjacent processors.

In chapter 3 we examine the concept of network reliability. We start with a brief survey of
network reliability measures and show that traditional measures of reliability are all
computationally intractable in general. We propose a new measure of reliability based on the
average, over all pairs of processors. of the most reliable path between a pair of processors.

The Average All Pairs measure is shown to be compuzable in polynomial time.

Chapter 4 examines the issue of reliable transmission between processors. We propose
constructing the Reliable Subnenwork, which is a structure based on the new reliability
measure. The reliable subnetwork is shown to be as reiiable as the original network but has far

fewer edges and therefore is less prone to individual edge failure. The algonithm to construct

to
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exact reliable subnerwork 1s shown 10 have high message complexity and consequently we
develop an approximate relizble subnetwork which can be constructed using considerably
fewer messages. The algorithm constructs the reliable subnetwork by selecting the K most
reliable edges of each processor. Unfortunatelv. the approximate reliable subnetwork is not

guaranteed to be connected. We evaluate the connectivity of the approximate reliable

subnetwork and outline an algorithm to repair the disconnection, if it exists.

In chapter 5 we evaluate the approximation algorithm in terms of reliability. The exact

reliable subnetwork is id=ntical, in terms of reliability, to the original network.

The
approximate reliable subnetwork does not have this guarantee. In this chapter we

experimentally evaluate the approximate reliable subnetwork and show that in most cases the

reliability is only slightly less than the exact solution.

In chapter 6 we present a more detaiied summary of the results and conclusions reached.

We end the thesis with a discussion of interesting observations and future research directions.
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Chapter 2

A Distributed Computing Model with
Reliability Information

2.1 Standard Distributed Model Definition:

The standard distributed computing model, as outlined in [S83] and [LP86], is

represented by a simple graph G = (V, E), where IVl = n and |El = e. V is the set of vertices in
the graph, each representing a processor in the network. In this thesis the terms node,
processor and vertex may be used interchangeably, although "processor” is generally applied
when discussing networks and "vertex" is generally used when discussing graphs. The order
of the network refers to the number of nodes. E is a set of edges of the network, each

representing a direct bidirectional communication link between two processors, such that £ c V

x V.e; & Eifi=]j. The size of the network refers to the number of edges. Two processors,
x,v e V,are said to be neighbours, or adjacent, if e, € E. The neighbourhood of a processor
is then the set of all neighbours of that processor. An edge is incident to a processor if it

directly connects that processor to a neighbour.

The standard model includes the following basic assumptions concerning processors and

messages in the network:
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Processor Assumptions:

P1. Processors are identical and indistinguishable except for a distinct label known as the

processor identity.
P2. The network has no central controller and processors share no common clock.
P3. Each processor has a local non-shared memory of bounded capacity.

P4. The number of processors in the network is fixed but unknown to individual

Processors.

P5. Each processor knows how many neighbours it has and can distinguish among then.

Aside from this no other topological information is known.
P6. Processors may only communicate with each other by passing messages.

P7. Messages received at a processor are processed in the order that they arrive. If more
than one message arrives at a processor at the same time (i.e., via a different edge)

then they are processed in arbitrary order.
P8. Processing time is negligible compared with transmission delays.

P9. Any subset of 0 < j < n processors, called initiators, may siart a distributed

computation spontaneously.

P10. Processors are completely reliable and do not fail.

Message Assumptions:

M1. The network is asynchronous, which is to say that distributed computations are

message driven.

M2. Messages sent along the same edge are delivered in the same order in which they were

sent.
M3. Messages are short, on the order of O(log,n) bits.
M4. Messages are transmitted without error.

M5. Messages are delivered in finite but unbounded time.
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knows the identity of each of its neighbours. Notice that this assumption is not essential to the
model, as neighbourhood information can be computed by ignorant processors with O(e)

messages.

In the standard distributed model the assumption is made that the network is completely
reliable, which is to say that all network operations may be performed successfully. The
purpose of this simplifying assumption is to enable us to focus on the fundamental aspects of
the network rather than specific exceptional characteristics. The reliability of the network 1s
facilitated by certain assumptions concerning the reliability of both processors and
communication links. Processors are assumed to be completely reliable (P10) which is to say
that no processor hardware failures take place for the duration of the computation. As a
corollary to this condition, we assume that messages received by a processor are never lost and
always dealt with in the appropriate manner. Notice that this says nothing about the correctness

of the distributed algorithm, which may contain erroneous statements.

Edges are assumed to be reliable in two respects. First, message transmission (i.e., the
physical sending of bits over the communication links) is error free (M4). This implies that the
message sent by the inidator is identical to the message received at the intended destination.
Notice that this assumption does not imply that the message is actually received by the intended
processor. Consequently, the second edge reliability assumption states that a message sent is
eventually delivered to the intended recipient (M5). This assertion implies that no messages are
ever lost. However, 1t is a weaker statement than the assertion that the edge is completely
reliable since it allows for the possibility of an edge to fail, provided that it does not remain
failed forever and it never causes a message to be lost. This assumption implies that the edge

must appear to be reliable within the network. For general purposes this is sufficient.
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2.1.1 Distributed Complexity Measures:

In non-distributed environments, the efficiency of algorithms is usually measured in terms
of processor execution time, given in terms of the size of the input. In distributed situations this
measure does not apply since the algorithm is executed among a number of different
processors, possibly in parallel, and processing time is negligible when compared to
transmission and queuing delays (P8). As a result, the efficiency of a distributed computation
will be measured entirely in terms of communication activities. A distributed algorithm is
subject to the following complexity measures:

Message complexity: This is the total number of messages sent during the execution of a

particular distributed algorithm. This is usually given in terms of the number of
vertices and/or edges of the network.

Bit complexity: This is the average number of bits transmitted over the network for the
duration of the distributed algorithm. As justification of this measure, consider that
the transmission of a 1K bit message, such as a file transfer, uses considerably more
network resources than the ransmission of a 1 bit message used as an

acknowledgment.

Total Execution time: This is the time elapsed between the time the first processor starts
the execution of a computation and the time the last processor terminates its
execution. For the purposes of analyzing the execution time complexity we must
contradict some of the standard mndel assumptions. Specifically, because the
network is asynchronous and therefore message transmission times are unbounded,
the total execution time is measured assuming that the network is synchronous and
that the sending of a message requires one time unit. Since processors have different
local clocks, we assume that execution time is measured in global time units with

respect to an external observer.

2.2 A Distributed Model With Edge Faults:
The standard distributed computing model makes the assumption that the network is
completely reliable and all operations performed on it are done so successfully. But

realistically, this is not the case; individual components may fail, messages are lost or
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duplicated and networks become disconnected. In general, network failures may be modeled in
a variety of different ways. Network failures can range from the simple fail-stop failures to the
more malicious Byzantine failures. Fail-stop failures represent the situation in which a network
component may fail but never recover for the duration of the distributed computation. With
Byzantine failures, a processor, or group of processors, communicate in a chaotic or hostile
manner. Byzantine failures are difficult to predict and harder to prevent. These type of failures
are relatively uncommon, and we will not consider them further. Fail-stop failures, on the other
hand, are too restrictive as it is not uncommon for a network component to fail for a short
period of time and then resume normal operation. For these reasons, we consider intermittent
(also known as fransient) failures in which a network component can fail and subsequently
recover infinitely many times during the distributed computation. More specifically, for the
duration of this thesis we consider a distributed computing model in which processors are

completely reliable! but the edges are subject to intermittent failures.

The distributed computing model with edge faults can be derived from the standard model
by withdrawing the message assumption M5 which states that messages are delivered in finite
but unbounded time. Instead, we place no restrictions on the length of time for which a
message is in transit. A failed edge is represented as having an infinite transmission delay. This
model was first introduced by Afek and Gafni [AG88] and is referred to as the oco-delay model.
The oo-delay model is a weaker model than the standard model (the standard model is a special

case of it).

Although the eo-delay model can model any edge failure which may occur in the

network, it has an undesirable property; messages sent over non-failed edges experience a

! Although the assumption of completely reliable processors is unrealistic, processor failure can be
approximatcd in this model by the failure of all adjacent communication links,
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inite transmission delay, but because the delay is unbounded? it becomes impossible to

edge. More simply put, with the eo-delay model it is impossible to determine whether or not the
edge is functional. This problem is solved by adopting the dynamic distributed network model
[AAGB87]. The dynamic model has the same basic assumptions as the eo-delay model but
includes the additional assumption that each failure or recovery of an edge is eventually
reported to both adjacent processors by some underlying edge protocol. The dynamic model is

a special case of the eo-delay model.

Based on the previous assumptions of the dynamic model, the following implications

concerning the properties of edges within a non-reliable network are apparent [AE&6]:

E1l. The network is dynamic and individual edges may fail and subsequently recover. The
number of times an edge may fail and recover during the course of an algorithm is

unbounded.

E2. Edges have the property of being either in an operarional state, in which messages arrive
error-free in finite time, or non-operational state, in which messages are not reccived
or take infinite time. The state of a particular edge is known by both adjacent
processors which furthermore can detect changes in the state of the edge within a finite
time of the change. We make no assumption as to the particular medium of the edge
itself or of the actual mechanism by which a processor can determine functionality of

an adjacent edge, only that such is possible.

E3. A message can be sent and received over a edge only during an operational state which

lasts at least the duration of the particular message transmission.

E4. When an edge recovers no message may be in transit through it and any messages in

transit on the edge at the time of the failure are lost.

2 The actual transmission delay of a message is influenced by such static factors as the throughput of the edge,
transmission protocol and by time dependent factors such as queuing delay, size of the message and transmission
error rate. For these reasons the time 10 transmit a message is unbounded.
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We make no assumption concerning the duration of failure of any particular edge nor do we
place any upper bound on the number of times any edge can fail and subsequently recover. In
general, temporarily failed edges have a finite but unbounded delay due to failure. An edge
which has permanently failed (i.e., will not again become operational for the duration of the
algorithm) is said to have infinite deiay. Nevertheless, we adopt the assumption of infinirely
Sfrequent stability [AAG87]. Under this condition we assurne that the network configuration
stabilizes for a long enough period of time to allow some constant number of communication
activities. Notice that this assumption 1s not unreasonable as most communication failures are

infrequent {G82].

In addition, we allow both arbitrary topologies and arbitrary edge failures (topology
changes) within the network, however we assume the network to be eventually connected
[AER6]. A network is eventually connected if there exists no edge-cut in which all edges are
permanently failed (i.e., no edge-cut persists forever). This assumption is necessary since any
permanent edge-cut disconnects the network. Notice that the property of eventual connectivity

does not imply that the network is ever connected as a whole.

2.3 A Distributed Model with Reliability Knowledge:

In the previously discussed distributed model, edges were assumed to fail randomly and
at completely unexpected times. Distributed algorithms designed to run under such a model are
complex because they must not only contend with asynchronous message transmission, but
also with lost messages due to a dynamically changing topology. The natural question arises as
to what difference, if any, the explicit knowledge of the probability that the edge is operational
will have on the functionality and complexity of distributed computations. To the best of our

knowledge, this question has never been addressed within a distributed computing context.

In this thesis we introduce a new distributed computing mode! based on the dynamic

distributed model, with the additional assumption that individual processors have explicit

10
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knowledge of the reliability of all incident edges. More formally, each edge ¢;; € F has
associated with it a given probability r,;, 0 <r, <1, which is known a priori to both Processors
ij € V. The quantity r;; is the reliability of the edgz e;; and is defined to be the probability that
the edge is in an operational state. Conversely, the probability that the edge ¢, is in a failed or
non-operational state is equal to 1 - 7;;. An edge ¢, is completely reliable (i.e., is always in an
operational state) if ;;= 1. An edge e,; is completely unreliable (i.e., is never in an operational
state) if r;; = 0. We make the following assumptions regarding the reliability of edges in the
network:

RI. The reliability of an edge is independent of the reliability of any other edge in the
network. The assumption is that edges fail due to random factors which affect them
individually. This assumption is not valid in every circumstance since events, such as
natural disasters, tend to incapacitate topologically local sections of the network. In the
absence of this assumption, the reliability calculations would be substantially
complicated as all applicable conditional probabilities must be known. Also, as pointed

out in [H83], the knowledge of what the conditional probabilities should be are
generally not available.

R2. The reliability of an edge is fixed for the duration of the distributed computation. This
assumption reflects the idea that an edge is a combination of physical components. The
reliability of an edge is therefore greatly dependent on the individual reliability of its
components. Although physical systems are never completely reliable, the reliability
generally stays fixed or depreciates very slowly over a fixed period of time. This is
especially true of electronic components, such as those found in communication
hardware.

The reliability of an edge is a quantified indication of the probability that the edge is in an
operational state. The definition is purposely vague so as to encompass more restrictive notions
of reliability. As an example, the reliability of an edge may represent the availability of the edge
over a given period of time. The availability of an edge refers to the percentage of the period of
which the edge is in an operational state. If the period is sufficiently large, we would expect the

reliability of an edge to be quite high. In contrast, the reliability of an edge may be the

11
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probability that the edge does not fail (i.e., always in an operational state) for a given period of
time. Given this definition of reliability, as the period increases we expect the reliability of an
cdge to decrease. Although both definitions of edge reliability are quite different, this model
may be used with either one. Regardless of how edge reliability is defined, the reliability

attributed to each edge is not an exact value, such as edge length could be regarded as exact,

but rather an estimation of the true reliability.

In this thesis we do not specify how the edge reliabilities are determined, nor by what
mechanism processors are informed of the reliabilities of incident edges. This is done for two
reasons. First, as previously suggested, the reliability of an edge may be defined in different
ways. Consequently, the mechanism by which reliability information is gathered may differ
depending on the definition :1sed. Second, the reliability of an individual edge may be
determined in different ways. The reliability of an edge may be determined experimentally, by
monitoring the edge over a given period of time. By keeping statistical information, such as the
number of lost messages or the amount of time the edge is in an non-operational state, the
reliability of the edge may be calculated. Alternatively, the reliability of an edge may be
calculated from an inherent property of the transmission media. For example, fiber optic cable
tends to be extremely reliable and therefore would have a high reliability value. In contrast, a
twisted pair cable tends to be much more susceptible to electromagnetic interference [S85] and

as a result, may have a low reliability value.

In the remaining chapters of this thesis we use the distributed model with reliability

knowledge as a foundation on which we build our results.

12
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Chapter 3

Network Reliability

3.1 Introduction:

In the new distributed computing model, the network is represented by a probabilistic

graph G = (V,E) where V is the set of vertices or processors representing communication sites
and E is the set of edges representing communication links between pairs of vertices; let [Vl = 1
and IEl = e. Associated with each edge ¢, € E is the reliability r,; which is the probability that
the edge is operational. Assumptions concerning the reliability of edges, as given in section
2.3, also hold. An example of a network represented by a probabilistic graph is shown in

figure 3.1.

The knowledge of individual edge reliabilities enables us to take advantage of the idea of
network reliability. In this thesis, we use network reliability in order to construct subnetworks,
from the original network, which do not decrease in reliability. This is discussed further in

chapter 4.

A network is considered to be operational, in the presence of edge failures, provided that
each processor in the network can communicate with any other. The reliability of the network

1s then a quantitative indicator of how operational the network is. This definition of network

13
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reliabiiity 1s too vague to be workable and consequently requires further clarification. Given the
network configuration of figure 3.1 we may ask a number of questions: How reliable is this
network? Which edges may be removed from the network without reducing its reliability? and

SO 0On.

The answers to the above questions are

unfortunately not cbvious since network reliability, in
the broadest sense of the term, strongly depends on a
number of interdependent network characteristics such
as edge and node reliability, types of expected
network failures, ratio of edges to nodes, network

topology and (possibly) expected message traffic. For

Figurc 3.1: Typical Network with these reasons there exists no universally accepted
Edge Reliabilities

formal definition of reliability. Instead, existing
measures are defined in relatively narrow terms and seem to capture only certain aspects of

reliability. In the following section we examine a number of existing reliability measures.

3.2 Measures of Reliability:

A network, G, is considered to be "reliable” if certain fundamental communication activities
can be performed successfully. Colbourn [CR6] identifies a number of basic network
operations, but in general the most important criterion for a reliable network is the ability of all
processors to communicate with all other processors. A reliability measure based on this
criterion is a quantification of the connectedness of the network and is known as the all-
terminal reliability measure. Frank & Frisch [FF70] and Wilcox [W72] identify a number of

ditferent approaches for evaluating all-terminal reliability and related reliabilitv measures.

Reliability measures can be naturally divided into deterministic and probabilistic measures.
With deterministic reliability measures, the individual reliabilities of network components, such

as edges and vertices, are generally not known. Instead, reliability is defined in terms of

14
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discrete measures such as the number of components that must fail in order to disrupt network
operation. The simplest and most widely used deterministic reliability measure is the edee
connectivity (or simply connectivity) of the network which corresponds to the minimum
number of edges which must fail in order to disconnect the network. Deterministic measures
are usually applicable in situations where network components fail for non random reasons
such as hostile action of an intelligent adversary [H83]. Probabilistic reliability measures, on
the other hand, assume specific knowledge of the reliability of applicable network components
(in our situation only the edge reliabilities are known) and are applicable when component
failures occur randomly. Probabilistic measures define reliability to be the probability that the
network remains operative. Because the reliability of the network is given as a probability of
success/failure, probabilistic measures are more meaningful than their deterministic
counterparts. Unfortunately, probabilistic measures are also much more difficult to compute

[W72]. In this thesis we concentrate on probabilistic measures.

The most widely used probabilistic reliability measure is ihe probabilistic connectedness of
the network. This reliability measure is closely related to edge connectivity and is the
probability that the network remains connected in the presence of faiiures. Intuitively, both
connectivity and probabilistic connectedness are measures of the survivability of the network.
Survivability refers to the ability of the network to remain operational in the presence of edge

failures. Both measures are most meaningful if all vertices are of equal importance.

In theory, computing the probabilistic connectedness, Con, of a network G is relatively
simple. Since the reliability r; ; corresponding to edge ¢; ;€ E in the network is statistically
independent of the reliability of all other edges, computing the probability of the network being
in any specific state, defined by the set of operational edges E, and failed edges E, = E/E . is
simply:

COH(G) = H rij X H (1 -ri,j )
& fE

¢.fE2
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Since there are e edges, there exists 2° possible s which the network can be in, all of which
must be enumerated. The algorithm has an execution time which is exponential in the size of
the network, making this method impractical for aii but small networks. While it is possible to

-orithm by computing minpaths or mincuts, in

(I 3

improve upon the compiete state enumeration alg
the general case all known methods which compute exact solutions take exponential time in the
worst case. In fact, it has been shown that computing the probabilistic connectedness, as a
network reliability measure, for general networks is #P-complete [C87]. This has led

gorithms to compute bounds on the reliability as well as to

&

researchers to develop efficient al
examine restricted classes of networks in which exact algorithms have been found to run in

polynomial time. For a more complete treatment of the subject of connectivity and probabilistic

connectedness as measures of reliability see [C89], [H92],]T81] and [W72].

0,
O—O O : ©, &)
a) © b) ©
Figure 3.2: The effect of configuration on connectivity

Although the use of probabilistic connectedness as a reliability measure is widespread, it
can be shown to be inappropriate under certain circumstances. Consider the two networks
shown in figure 3.2 Intuitively, onz would expect the network shown in figure 3.24 to be less

reliable than the network in figure 3.25 since any edge failure, particularly one near the center

of the network (i.e., the edge connecting nodes 3 and 4), will disconnect a larger proportion of

ot

g\‘yr of nodes

irs of nudes in the first network than in the second. It is often more serious for a edge failure
to isolate one half the processors in the network from the other half than a single processor

trom the rest. However. in computing reliability based on network connectivity both networks
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in figure 3.2 will be equally reliable since connectivity reflects the minimum number of edges
that mast fail to disconnect the network. Consequently, connectivity and probabilistic
connectedness are not sensitive to the topology of a network in a way that we would intuitively

expect.

The inherent problems of connectivity based reliability measures are partially remedied by
generalized cohesion. Cohesion is a more general form of connectivity, although less widely
used, in which reliability is defined as the minimum number of edges that must be removed
from the network in order to isolate any subset of m processors from the rest of the network
{W72]. When m = 1 cohesion is equivalent to edge connectivity. The analogous probabilistic
measure is probabilistic cohesion which is defined as the probability that any subset of m
processors remains connected in the presence of edge failures. The benefit of this retiability
measure is that it enables us to discriminate between different types of failures resulting in a
disconnection of the network. When m is small this measure captures the network's ability to
withstand minor failures which only disconnect a proportionately small number of processors.
When m is large (i.e., m = n/2) it captures the ability of the network to withstand major failures
which disconnect a large proportion of the processors. While this measure is clearly more
versatile than probabilistic connectedness, in practice it is often difficult to determine the
appropriate value of m. As an added drawback, probabilistic cohesion also suffers from

exponential time complexity making it unattractive .5 a reliability measure.

It was suggested in the example of figure 3.2 that not all network edge-cuts are equally
critical. While connectivity is a particularly good reliability measure for analyzing the
probability that all processors are able to communicate, it fails to convey any information
regarding the degree of disconnection or the seriousness of the disconnection when edge
failures occur. Often, one is more concerned that most communicating pairs of vertices remain
connected rather than the whole network remaining connected. Colbourn [C87], has suggested

that in many applications a more appropriate rmeasure of reliability is the expected number of
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processor pairs which can communicate. He has termed this measure the resilience of the

network since it captures the network's capacity to withstand failures. The resilience, Res, of a

network, G, can be formally defined as:

Res(G)= Y Prob(G,) x Pairs( G)
GicG

where G, is a subnetwork G. Prob(G,) is the probability that all edges in G, are operational
and all edges in G,/G fail. Pairs(G,) is the count of all the communicating processor pairs in
G,. As with connectivity, computing the resilience of a network is conceptually simple. The
resilience of a network is determined by examining all possible subnetworks of the network.
For each subnetwork, both the number of communicating processors within the subnetwork
and the probability that the subnetwork exists are computed. Both of these values may be
computed in polynomial time. Unfortunately, there exists an exponential number of
subnetworks in the original network which makes any algorithm using this approach
impractical for any reasonably sized network. Colbourn in [C87] developed a polynomial time
algorithm to compute resilience on a specific class of networks known as series-parallel,

however he also showed that for planar networks the problem is #P-complete.

In general, a number of different strategies for computing exact probabilistic network
reliability exist. Unfortunately, exact computation is often prohibitively time-consuming and
there is sufficient evidence to suggest that traditional probabilistic reliability problems are
inherently intractable. Nevertheless, some restricted classes of graphs, such as trees, series-
parallel graphs and complete graphs, enable exact computation of certain measures of network
reliability in polynomial time. Such classes of graphs, however, are usually too restrictive and

therefore not applicable 10 most networks.

The intractability of computing exact reliability measures has motivated the development of
approximation algorithms, which compute estimated reliability values with a specific

confidence level. Intractability has also motivated the development of efficient algorithms to
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compute upper and lower bounds on the reliability{ CH88]. While approximation and bounding
techniques achieve polynomial time complexity, the algorithms still tend to be quite complex.,
as many compute edge connectivity or enumerate edge cut sets. As an added deterrent, most
approximation and bounding algorithms apply only when all edge probabilities are equal
[BC86]. For these reasons the majority of approximation and bounding algorithms are less

than perfect solutions to the complexity problem.

In the following section we introduce a new measure of reliability which can be exactly

computed in polynomial time.

3.3 A New Measure of Reliability:

The previously discussed methods of computing network reliability were shown to be too
computationally complex to compute the reliability of even moderate sized networks. For this
reason we introduce an efficiently computable measure of reliability based on the reliability of
simple paths, rather than edges, between pairs of processors. In essence, this scheme defines
the reliability of the network to be the average of the reliabilities of the most reliable path

between each pair of processors within the network.

A path in a network is a sequence of edges, ¢, €,, ..., ¢; such that ¢, and ¢, are adjacent.

For the purposes of this thesis we assume that ail paths are simple, which is to say that all
vertices on the path are distinct. We denote by P, ., a path from vertex x to vertex y. Then, the

X,y

reliability, R, ., of any path P 1s the probability that the path is operational. This in turn is

X,y

the probability that all edges on the path are themselves operational and is computed as

eii€ Py
This is the product law of reliabilities which is applicable to any series of independent
components. We assume that communication between different processes within the same
processor 1s completely reliable and therefore R, , =r, , = 1.0. If no path exits between two

vertices x and y (i.e., the network is disconnected) then R = 0.
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We define the maximum reliable path, MP, , , between processors x and y, as the path

which is the most reliable of any path between the two processors. The Reliability, MR, , , of

the maximum reliable path is defined as:

MRy y= H Ty
e, €MP,,

Definition 3.1: Average All Pairs Reliability. The Average All Pairs reliability AR of the

network G is ;

2, MRy

ijeV ; if G is connected
n
AR(G) = (5)
0 ; otherwise

The Average All Pairs measure of network reliability is a probabilistic quantification, in the
range [0...1.0], of the reliability of the network. A network G, is more reliable and thus more
likely to remain operational in the presence of failures than network G,, if AR(G,) > AR(G,).
A disconnected network is assumed to have a reliability of O to reflect the belief that
communication from one vertex to any other vertex within the network is the most fundamental

requirement of a reliable network.

Because the reliability of a network is dependent upon such factors as topology and
individual component reliability, we can not expect a true numerical representation of
reliability. Instead, all reliability measures compute an imprecise value based on some limited
criteria. For example, probabilistic connectedness measures the probability that the network
remains connected, while resilience measures the expected number of connected vertices. The
Average All Pairs reliability measure, on the other hand, measures the average probability that

the most reliable path between each pairs of vertices is operational. Because the most reliable
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path is used in the calculation, this measure is essentially an upper bound on the probability that
all pairs of processors can communicate. When reliability information is known in a distributed
environment, this measure is particularly appropriate since the concept of paths closely models

the passing of messages throughout the network.

We make two observations concerning the Average All Pairs reliability measure. First, the
measure is fopology sensitive. By this we mean, the measured reliability of a network changes
as the topology changes. Consider again the example in figure 3.2. When connectivity is used
as a reliability measure, the reliabilities of networks @ and b are identical, despite having very
different topologies. The Average All Pairs measure, on the other hand, favors networks with
short paths between vertices. This is inherent in the reliability definition since the reliability of a
path degrades quickly as its length increases. For example, if we assume all edges in networks
a and b have a reliability of 0.9, then network a has a reliability of 0.78 while network b has a
reliability of 0.84. Clearly, this measure favors short path lengths and networks of small

diameter.

Second, with the Average All Pairs measure, the influence which an individual edge has on
the overall reliability of the network is directly affected by its number of occurrences in the
most reliable paths between vertices. Assuming that a message is always sent over the most
reliable path between sender and receiver, a very unreliable edge will likely never be used and
therefore will have no effect on the overall reliability of the network. Clearly this line of
reasoning is valid since, if the edge is unreliable and thus not used, its failure in the network
would be of little significance. In contrast, an unreliable edge which is a cut edge of the
network, will have a large negative influence on the reliability of the network. This fact alone,
makes Average All Pairs a particularly good measure for the distributed computing

environment.
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3.3.1 Computing Network Reliability:

The major advantage of the Average All Pairs measure of reliability over more traditional
measures is found in the computational complexity of computing the exact reliability of a given
network. While the previously discussed methods have exponential running time, computing
Average All Pairs reliability is relatively easy and can be accomplished in polynomial time. The

algorithm essentially consists of computing the most reliable path between (; ) pairs of

vertices in the network. The problem of computing the most reliable path between two vertices
is analogous to the problem of finding the shortest path between two vertices. In the shortest
path problem, each edge has a (positive) weight or cost associated with it rather than a
reliability. The problem is then to find a path from the source vertex to a target vertex which
has minimum weight. In the following theorem we show that the most reliable path between

two vertices can be found by the shortest path algorithm.

Theorem 3.1: The most reliable path problem is computationally equivalent to the shortest

path problem.

Proof: We show that the most reliable path problem, by a simple algebraic transformation,
can be solved by any shortest path algorithm and is therefore computationally equivalent.
The reliability matrix, r, can be transformed to a non-negative edge weight matrix, 4 , as

follows:

- log Ti; ; if € ;€ Eand 1;;#0

i)
0 ; otherwise

Let ¢: , C E be the set of all edges in the shortest path from vertex x to vertex y. The
reliability, MR, ,, of the most reliable path connecting vertex x to vertex y in G can be

computed as:

N
t9
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dog (MR )= Y. dij M

€ij€ Oxy

The shortest path problem has been studied extensively and a number of efficient
algorithms exist for different variations of the problem (see [AHU74}). Although conceptually
more simple, the basic problem of finding the shortest path between two specific vertices is no
easier than finding the shortest path between a specific vertex and all others (single source
shortest path problem). This can be computed in O(n?) time, using an adjacency matrix, by
Dijkstra's algorithm. The problem that most closely resembles what we are trying to compute is
the all-pairs shortest path problem in which the shortest paths between all pairs of vertices are
computed. This is evidently a generalization of the single source problem and can be computed
by n-1 applications of Dijkstra's algorithm. Clearly, the all-pairs shortest path problem can be
computed in O(n?) time. If e >> n the time complexity of the algorithm can be improved by

using Fibonacci heaps rather than adjacency matrices.

As indicated in theorem 3.1, a shortest path algorithm can be easily transformed into a most
reliable path algorithm. The algorithm to compute Average All Pairs network reliability, given

in Algorithm 3.1, is an adaptation of the all-pairs shortest path algorithm of Floyd [AHU74J.

fori=1tondo
(1) foryj=1tondo
PR[1,} =1[1,]]
fork=1tondo

) fori=1tondo
forj=1tondo

PR[i,j] = max (PR[i.jl, PR[i,k] x PR[k,j])

AR =0
fori=2tondo
3) forj=1toi-1do

AR = AR + PR[i,j]

AR = AR

5]

Algorithm 3.1: An Algorithm to Compute the Average All Pairs Reliability
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The algorithm is based on dynamic programming techniques in which locally optimum
solutions are also globally optimal. The algorithm works by first initializing the adjacency
matrix (1), then computing the transitive closure of the adjacency matrix (2). In computing the
transitive closure, a path from vertex i to j is replaced if there exists a more reliable path
through vertex &. The final step consists of summing the path reliabilities over all pairs of
vertices and dividing by the number of pairs to produce the network reliability (3). Notice that
after (2) the adjacency matrix contains the reliability of the most reliable path between all
vertices.

Theorem 3.2: The algorithm of figure 3.3 to compute the Average All Pairs network

reliability has a worst case complexity of O(n3).

Proof: The running time of the algorithm is clearly dominated by the second step,
consisting of three nested for loops, and takes O(n®) time. W

3.3.2 A Numerical Example:

To end off the discussion of reliability, we show an example of how the Average All Pairs
reliability is computed. Consider the five vertex network shown in figure 3.3a. Reliability is
computed by determining the most reliable path between each pair of vertices as is shown in
figure 3.3b. Notice that because the reliability of a path decreases rapidly as its length
increases, paths of length one (single edges) are favored over longer paths. This assertion is
verified by the example, as half of the paths between vertices consist of single edges. On the
other hand, wher local edges are unreliable, such as between vertex a and b, the most reliable
path may be significantly longer. Finally, the network reliability is calculated by averaging the

reliabilities of the individual paths.
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a) original network

"e;‘i; most reliable path rel{;i{)l;lity
a,b (a'JL @ @ @ 0.87
a,c 0.89
ad | —O—O—@ | 080
ae | @—@ 0.95
b | O—@ 0.97
bd | @—O—@ 0.87
b, e 0.91
¢.d | @—@ 0.90
ce | @—@ 0.94
de | @—0O 0.85
network reliability = 8.95/10 0.895

b) reliability calculations

Figure 3.3: A Numerical Example: Computing Average All Pairs Reliability.
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Chapter 4

Distributed Reliable Subnetworks

4.1 Introduction and Motivation:

In this thesis we are primarily concerned with ensuring reliable communications. Within a

network, processors communicate and share information by sending messages along incident
edges. When the edges are reliable this is a simple exercise since messages always are correctly
delivered to the intended receiver in finite ime. When edges fail randomly, the task of sending
a message becomes more complex. The sender must not only contend with a dynamically
changing network topology (due to the failure and subsequent recovery of edges) but also with
lost messages and the possibility of network disconnection. For a distributed algorithm, any
one of these problems may result in an incorrect solution, or worse, the failure to terminate. As
a result, any distributed algorithm which executes within an unreliable network must be

equipped to contend with unreliable communication.

A simple, but extreme, technique to ensure the successful transmission of a message in an
unreliable network is flooding. With flooding, a message is sent from the source processor to
the receiver through every one of its neighbours. Each neighbour, which is not the intended
receiver, then broadcasts the message to all neighbours. Barring a network failure which

disconnects the sender and the receiver, flooding guarantees that the message will reach the
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intended receiver in minimum time (since the message is sent over all possible paths). Flooding
is simple to implement and requires only local information, however it is clear that the method
has serious drawbacks. The amount of message traffic required to send a single message is
directly proportional to the degree of each processor of the network. Since numerous messages
are generally sent during the execution of a distributed algorithm, an increase in traffic load
may result in unacceptable queuing delays at some or all of the processors in the network.
Consequently, flooding is only practical in networks in which message traffic is very sparse or
when it is imperative that the message reach its destination in the minimum amount of time. We

assume netther of these criteria hold.

A more practical method of handling unreliable communication in the network is to make
the distributed algorithm fault-tolerant. A fault-tolerant distributed algorithm is a distributed
algorithm which is able to achieve correct results in the presence of specified communication
failures. This is usually accomplished by sending redundant messages to compensate for
messages which are lost or delayed due to failed edges. Although fault-tolerant algorithms
successfully handle the problem of unreliable communication, most have one or more of the

following shortcomings:

« Fault-tolerant algorithms are not robust in the presence of all possible failures. Fault-
tolerant algorithms usually restrict the type and/or the number of communication failures
which can be successfully handled during the execution of the distributed computation. As
an example, some fault-tolerant algorithms assume that processors never fail [AE84],
[AG88], or that processors never recover when failed [CCK89], or assume a fixed
number of edge failures [IR84]. When these conditions are not met the fault-tolerant

algorithm does not guarantee the correctness nor the termination of the computation.

«Fault-tolerant algorithms tend to be much more complex than non-resilient versions and
therefore that much harder to develop. For example, in certain algorithms, processors

make use of foken messages which they send to other processors. In unreliable networks a
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at least one token remains active at any given time [KWZ86]. Whereas a process had only
to contend with a single token in the non-resilient algorithm, a process in the multi-token

algorithm must receive, recognize and eliminate redundant tokens.

» Because of the added redundancy of messages and extra error checking involved in
sending a message, fault-tolerant algorithms tend to have increased message and total
execution time complexity as compared to the non-resilient versions. Because edges may
fail and recover infinitely many times, algorithms which repeatedly retransmit lost
messages over such edges have unbounded message complexity in the worst case {V83].

While fault-tolerant distributed algorithms offer a substantial improvement over flooding
techniques, the complexity of the computation and the restriction of network failures limit the

practicality of such algorithms.

4.1.1 Adding Reliability Knowledge:

Communication failures complicate and may impede distributed computations. In an
unreliable network, the topology changes dynamically due to failed or recovered edges.
Processors become aware of neighbourhood topology changes, in finite time, only after edge
failures or recoveries occur. As a result, distributed algorithms must incorporate some fault-
tolerant mechanisms to manage lost messages. If, however, a processor knew the location and
duration of a failure of an incident edge before the failure occurred, the processor would avoid
using the edge while it was failed. Clearly, communication in an unreliable network could be
completely reliable if the period of failure of each edge were known. Unfortunately, edges fail

randomly.

As an alternative to complete failure knowledge, a processor may know the probability of
failure, or reliability, of an incident edge. Given an edge which is very likely to fail, a

processor will avoid using the edge if another, more reliable, path exists. Unfortunately,
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message transmission over an edge, unless the edge is perfectly reliable. Nevertheless, edge
reliability gives us a useful indication of how likely the failure of any particular edge is. We usce
this to our advantage. By sending a message over the most reliable path between processors in

the network, we avoid sending a message blindly over a path, which is perhaps inclined to fail.

In this thesis we adopt the distributed model with reliability knowledge, as discussed in
section 2.3. Reliability knowledge is particularly advantageous in networks where large
variations in edge reliability exist. For example, consider the network of figure 4.1, in which
processor a sends a message to processor b. In the absence of reliability information, the
inclination is to send the message over the most direct (i.e., minimum length) path. When
reliability information is known however, this turns out to be a particularly poor choice as the
path ab is extremely unreliable. A much more reliable path, albeit longer, is the path ac,c,c,c,b

which has a reliability of approximately 0.95.

Figure 4.1: Example Network with Variation in Edge Reliability

In this thesis, we adopt the distributed computing model, as outlined in section 2.3, in
which completely reliable processors are connected by unreliable edges. The reliability of each

individual edge in the network is known by both adjacent processors.

4.1.2 Reliable Distributed Communications:
In this thesis we are primarily concermned with the successful transmission of messages

between pairs of processors throughout the network. However, because the network is
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iable and complete failure information is not known, we must Incorporate some type of

gested, fault-tolerant mechanisms are restrictive and
computationally burdensome. For this reason, we avoid incorporating them into distributed
algorithms. Instead, we look for other means of providing reliable message transmission over
an unreliable network. Ideally, we desire a physical network which is robust and never fails or
impedes message transmission. Unfortunately, we can not change the physical characteristics
he network (of which edge reliability 1s one). However, we can abstract the network so it
gives the illusion of reliability. For this purpose, we partition the network services into three

logical layers of functionality, as shown in figure 4.2.

The first layer is the physical nenwork. The physical network is unreliable and is

We make the assumption that the physical network conforms to the new distributed model

outlined in chapter 2, and that edge reliability information is known.

Distmibuted Algorithm

¢ refiabie communication ¢

Reliable Logical Network

¢ unreliable communication ¢

Physical Network

Figure 4.2: Layers of Reliable Distributed Communication

The second layer is the reliable logical nenwork. This layer is characterized by the
completely reliable ransmission of messages. Messages sent over this layer are guaranteed to
amve in finite, but unbounded. time at the intended recipient. The reliable logical layer

conforms to the standard distributed computing model.
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The final layer is the distributed algorithm itself. Despite the unreliability of the physical
network, message transmission takes place over the reliable logical layer which provides

reliable transmission services.

The layered reliable communication approach offers two significant advantages over fault-
tolerant methods. The chief advantage is the separation of the responsibility for reliable
communication away from the distributed algorithm to an independent layer. Not only does this
make distributed algorithms easier to develop, s fault-tolerant mechanisms are not
incorporated, it makes the algorithms portable to other networks with different failure
characteristics. Second, the physical topology of the network can be hidden from the
distributed algorithm. Often it is easier to develop a distributed algorithm if the topology is of a
symmetrical configuration, such as a ring, a binary tree or a complete network. The reliable
logical layer can provide virtual edges between processors, which appear as a single edge to the
distributed algorithm, but which are a path constructed from multiple edges. By providing
virtual edges, the reliable logical layer can provide any topology configuration given any
physical network. This has the added benefit of making distributed algorithms topology

independent and therefore more portable.

The layered approach of reliable communication does not resolve the issue of lost messages
due to edge failures, but it does remove the responsibility away from the distributed algorithm
designer. The designer of the reliable logical layer must still contend with reliability issues. The

natural question is how is the reliable logical layer constructed?

In most networks the reliable logical network layer exists as a specific routing process or in
the form of routing tables, which are continuously updated as the topology and network
conditions change. A routing defines a path between every pair of nodes in the network. When
a processor wants to send a message, it either passes the message to the routing process or
transmits the message over the appropriate edge given in the routing table. When an edge fails

and a message is lost, the routing is reconstructed and the message is retransmitted. This
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strategy 1s an adaptive approach since message losses are permitted to happen and subsequently
corrected. In contrast, fault-tolerant methods use a preventative approach in which message

losses are handled by redundancy.

When reliability information is not available, a minimum length routing is generally
computed. Wit this method of routing, the path between two processors is the one with the
minimum length.! The disadvantage with this scheme is that the shortest length path between
two processors may also be the most unreliable. As a result, the routing may frequently be
reconstructed as edges in the routing fail. When reliability information is known, a maximum
reliable routing may be computed. With this method of routing, the path between two
processors is the one which is most reliable. The maximum reliable routing has the advantage
that network failures are less likely to occur, since the most reliable edges are used. However,
the most reliable path between processors may also be the path with the maximum length. In
distributed computations, path length is an extremely important criterion, as processing time is

negligible as compared to transmission time.

The shortcomings of the previous routing strategies are straightforward. The minimum
length routing does not take into consideration the reliability of edges, while the maximum
reliable routing does not take into account the length of edges and paths. We require a routing
strategy which maximizes reliability while minimizing path length. Unfortunately, because
minimum path length and maximum path reliability are conflicting constraints, such an optimal
routing may not exist. As a result, a compromise between the minimum length and maximum
reliability of a path must be used. A related problem is the shortest weight-constrained path
problem. For this problem, a nonnegative length and weight is associated with each edge. The
problem is to find a simple path between two specified processors such that the length of the

path is no longer than L and the weight of the path is no greater than W, where both L and W

! In the standard distributed computing model all edges are of length 1. However, the model may be easily
extended 1o include variance in edge length.
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complete [GJ79]. The reliability of an edge can be transformed to a nonnegative weight, as
shown in theorem 3.1, and therefore there exists a one-to-one correspondence between the
shortest weight-constrained path problem and the problem of computing a path which

minimizes path length and maximizes reliability.

We propose to solve the two constraint routing problem in the following way. First, we
reduce the network by eliminating unreliable edges which are redundant. If the edges are
chosen carefully, the reduction can be accomplished with no degradation of network reliability.
Specifically, an edge can be eliminated if a more reliable path, connecting the two adjacent
processors, can be found. The resulting structure will have fewer edges, but more importantly,
the remaining edges will be the most reliable edges available in the network. Once the network
reduction is completed, we perform a minimum length routing on the reduced network.
Because we have eliminated the most unreliable edges, the resulting routing can not include the
most unreliable path between two processors, unless no other path between them exists. The
resulting routing is a compromise between minimizing path length and maximizing path

reliability, although it favors the latter.

4.2 Reliable Subnetworks:

We introduce a network reduction technique based on the Average All Pairs measure of
reliability, given in chapter 3. Informally, we construct a reliable subnetwork (RSN) by
including all processors of the original network, but only those edges which are included in at
least one most reliable path between any pair of processors. More formally, a reliable
subnetwork is defined as follows:

Definition: Reliable Subnetwork. G' = (V,E') is a reliable subnetwork of G = (V,E) if
e;; € E'iffe;; € E and e;; € MP, , for some x,y € V, where MP,  is the most reliable

path from some vertex x to vertex y (see section 3.3).
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We make the following

« If the network is connected, the RSN is connected.

» The RSN includes the most reliable path between each pair of processors within the

network.

» The reliability, as defined in chapter 3, of the RSN is identical to that of the original

network .2

» The RSN generally contains only a subset of the edges of the original graph.

By computing a RSN, we are constructing a reliable backbone or core of the original
network. Edges not included in the network are logically discarded and not considered unless

another RSN is constructed.

Once constructed, the RSN can generally be used in place of the original network. An
exception to this is a distributed computation which is dependent on a very specific topology,
such as a complete network or ring. Since the RSN generally does not preserve the topology
characteristics of the original network, the distributed computation must be modified. Other
topology dependent distributed computations such as median and center finding algorithms will
execute correctly, but may produce different results on the RSN and the original network.
Non-topology dependent distributed computations may be executed on the RSN without

modification.

The RSN offers the following advantages over the original network:

1. The RSN is a subnetwork which contains all the vertices but only a subset of the edges
of the original network. In a distributed environment, where the performance of an
algorithm is measured in terms of message complexity, the reduction of edges may realize

a significant computational savings.

2 This obscrvation stems from the similarity between the definition of network reliability (section 3.3) and the
definition of a reliable subnetwork.
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2. The RSN is less prone to individual edge failure than the original network. This
observation stems from the fact that the RSN generally has fewer edges than the original
network. Let the probability that no edge fails within the original network and the RSN

be Ry and R’ respectively. Then

Rr=]]r;ifei;e E and Rp=]]rifei e E

since E' ¢ E, then R; 2 Ry. In addition to having fewer edges than the original
network, the RSN also has less unreliable edges, since an edge is eliminated if a more
reliable path joining the two processors can be found. By virtue of these two facts, the
RSN will likely experience fewer edge failures over a given period of time. This fact may
be significant, especially if a distributed computation uses edges indiscriminately. Notice
that this observation does not imply that the RSV is more reliable than the original
network. If a distributed computation only uses the most reliable path between
processors, then the number of significant edge failures in the RSN and the original

network will be identical.

3. If the network is used to construct a distributed spanning tree or other topological
structure, then the structure constructed on the RSN may be more reliable than the one
constructed on the original network. As an example, consider a distributed minimum
spanning tree computation. The spanning tree constructed on the RSN will likely be more
reliable, because the most unreliable edges have been eliminated, than the tree constructed
on the original network. The tradeoff is that the spanning tree, constructed on the RSN,
may also have a longer total path length, since the shortest edges may also have been the

most unreliable.

In the remainder of this thesis we present distributed algorithms to construct an exact RSN

and an approximate RSN and examine them in terms of connectivity and reliability.
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4.3 Censtructing A Distributed Reliable Network:

The problem of distributively computing the reliable subnetwork is determining, at each
processor throughout the network, the incident edges which are contained in the structure. No

processor knows the complete structure, but rather the local neighbourhood.

As previously discussed, the reliable subnetwork is constructed exactly by computing the
most reliable path between all pairs of processors. The most reliable path problem is similar in
principle to the classical shortest path problem. In fact, the reliable path problem is slightly
easier than the shortest path problem in that one never has to deal with negative edge weights.
In the distributed environment, shortest path algorithms have received considerable attention as

they form the basis for many routing algorithms.

A basic distributed algorithm to compute the RSN of a distributed network is shown in
Algorithm 4.1. The algorithm is an adaptation of the distributed All-Pairs Shortest Path
algorithm by Chen [C82], which is a distributed implementation of the sequential Ford-
Bellman-Moore algorithm. Contrary to our assumptions, this algorithm assumes that #n, the
number of processors in the network, is known. In the algorithm, two tables are created and
maintained locally by each processor. The RP table is the reliable path table. This table holds
the reliability of the current most reliable path between the processor and all other processors
known to it. The table P is the parh table. This table holds the incident edge of the current most
reliable path between the processor and all other processors known to it. The individual entries
in the RP and P tables of processor i, which specify the most reliable path between nodes i and

J, are denoted by RP;; and P, respectively. The set of neighbours adjacent to a processor i is

denoted as N(i).
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Distributed algorithm to compute a reliable subnetwork.
Executed at each processor i.

/* wake up neighbours and initialize the tables */
INITIAL:
IF (initator) THEN
FOREACH j € N(1) /* send wakeup msg to all neighbours */
jesend(WAKEUP)
ELSE
receive (WAKEUP,,) /* receive a wakeup msg if not initiator */
FOREACH k € N(i), k+ j /* relay msg to all neighbours */
k « send (WAKEUP)
FOREACH j e N(i) DO /* initialize the tables */
RPij =1
D. .,_. - .,
TLj= 6
become ACTIVE;

/* exchange RP table with ncighbours n-1 times */
ACTIVE:
FOR n-1 iterations DO
FOREACH j € N(i) DO

jesend(RP) /* sending routing tables to all neighbours */
#msg = 0;
WHILE (#msg < IN(i)l) DO
receive(msg,k)
IF (msg # WAKEUP) /* ignore old wake up message */

#msg = #msg + 1
FOREACH RPK; j € RPK

IF (RP; j ¢ RP) THEN /*not previously in the tablc*/
Rpi,j = RPki,j
Pij=eik
ELSE /* alrcady exists in the table */
IF (RPkk’j * RPi,k > RPi’j) THEN /* more reliable path found */
RPi,j = RPkk,j * RPj ;

Pij=eik

ENDFOR

Algorithm 4.1: Distributed Algorithm to Compute a Reliable Subnetwork (RSN).

The basic algorithm works in two phases. In the initial phase initiators spontaneously wake
up and send WAKEUP messages to all neighbours. Upon receiving a WAKEUP message, a
processor enters the initial state and forwards the message to all other neighbours; subsequent
WAKEUP messages are ignored. After the processor awakes, it creates the initial RP and P
tables from its local knowledge and becomes active. In the active state, processors exchange
RP tables. An RP table received from some neighbour £ is denoted as RP%. Upon receiving the

table RP*, processor i computes the new reliability of the path from node i to j through node £,
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that is (RP*,; x RP,,). The processor compares this value with the current most reliable path in
its local RP table, that is RP . If (RP%,;x RP;,) > RP,;or if no previous path between i and j

exists, then RP,; is set to (RP%,; x RP,,) and P; is set to e;,. Otherwise, the table entry remains
unchanged. After the RP tables have been received from each neighbour, a processor sends its
updated RP table 1o all neighbours. The algorithm terminates after each processor has received

RP tables from each of its neighbours n-1 times. At the completion of the algorithm, the RSN

is composed of those edges which are in the table P of any processor.

The basic algorithm has a message complexity of O(n?*d + e), where d, 1 <d < n, is the
maximum degree of any vertex in the network. This follows from the following facts. At most,
2e wakeup messages will be required to start the distributed computation. During the
computation, each of the n processors send reliability information to a maximum of d
neighbours n times. However, the basic algorithm is somewhat inefficient as each processor
broadcasts reliability information to all neighbours. Both Toueg [T80] and Lakshmanan et al
[LTC89] give distributed algorithms for the All-Pairs Shortest Path problem which improve the
message complexity to O(ne) by sending path information over a spanning tree rather than the
complete network. Frederickson [F85] suggests a simple approach which also has a message
complexity of O(ne), in which each node broadcasts its local topology to all other nodes in the

network. With the global topology, a processor computes the shortest paths locally.

All of the previously mentioned distributed algorithms are based on well known sequential
algorithms for the All Pairs Shortest Path problem. In a sequential algorithm it is usual to know
n, the number of processors in the network , and in fact most algorithms need this value in
order to know when execution can be terminated. However, in the standard distributed model
we assume that the number of processors is fixed but unknown to any processor (assumption
P4). The number of processors in a network can be computed, but at expense of extra

messages.
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A more serious problem with all the previous alzorithms is high messag
best known distributed Al Pairs Shortest Path algorithm, and thus the best known RSN
algorithm, has a complexity of O(ne). Since (n-1) < e < (n-1)?, therefore O(n?) < O(ne) <
O(n3). Even for a network of moderate size, the number of messages sent will be sigaificant.
Since message transmissions take significantly longer than local computations, the time to
compute the RSN in a dense network may be prohibitive. However, if we examine the
messages themselves, the message complexity becomes even more critical. All of the previous
algorithms send complete tables of local information which are counted as a single message. In
chapter 2 we made the assumption that messages are small, on the order of O(log,n) bits
(assumption M3). Each table consists of O(n) entries which if sent individually would increase
the message complexity by a factor of n. Toueg [T80] recognizes this fact and sends only the
changes, after the initial table has been sent. However, in the worst case the number of
changes will still be O(n). As a result, the actual message complexity of an O(ne) RSN
algorithm becomes O(nZ%) and O(n?) < O(n%) < O(n?). Even for small networks, the number

of messages required to compute the RSN may be prohibitive.

The problem of constructing the RSN is intrinsically difficult because we are trying to
construct a global structure using only local information. The problem is therefore constrained
by how efficiently, in terms of the number of messages, each processor can acquire all global

information.

The inefficiency of computing the most reliable paths between all pairs of processors in the
network, and therefore constructing the RSN, leads us to consider alternative solutions. In the
following section we outline and examine an approximation algorithm for computing a reliable

subnetwork.

4.4 Approximating Reliable Subnetworks:
Distributively constructing the exact RSN of a given network is a laborious task which is

prohibitive for most large networks. One could argue that the expense is justified since the
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RSN is only constructed once or whenever a network topology change causes the RSN to
become disconnected. However, we must take into account the heavy use of network resources
while the construction is taking place, leaving the network unusable to perform other functions.

If failures happen frequently the problem is only compounded.

The question which must be asked is whether the exact solution is required or whether an
approximate solution will suffice. First, recall that the reliability information associated with
each edge in the network is not an exact value, but rather an approximation of the reliability.
Consequently, even the exact solution will likely be less than perfect. Second, the motivating
factor for constructing the RSN is to provide a structure in which the most unreliable edges are
eliminated, making the RSN less prone to individual edge failure. If an approximate solution

meets this criterion and has reduced message complexity, the solution will be expedient.

Given that the exact RSN is impractical to construct, we concentrate on finding a
distributed algorithm to construct an Approximate Reliable Subnetwork (ARSN). In
preparation, we first examine the nature of the distributed environment. Within the network,
topology information (i.e., processor identity, edge reliability, etc.) is distributed among the
individual processors with no one processor initially having complete knowledge. Because
knowledge is localized, the most message efficient distributed algorithms are those which can
combine a number of locally computed solutions, either by a single processor or a small group
of neighbouring processors, into a global solution. Notice that this is not possible with the
exact RSN problem, since the locally most reliable path to a neighbour may not be the globally
most reliable path. A good approximation algorithm to construct the RSN will be one which

localizes the computation as much as possible.

The general idea of the algorithm is that each processor constructs a local solution by
selecting the K most reliable incident edges, where K is a "small" constant number such as 2 or
3. When an incident edge is selected, the selecting processor informs the adjacent processor.

The ARSN is then constructed by combining the local solutions of each processor. Following
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the construction, each processor knows which of its incident edges are in the ARSN but no

} ntire structure. The exception to this is when all edges in the

(4]
o

single processor knows th
ARSN are incident to a single processor (i.e., such as a star configuration), although in this
case the processor is unaware that it knows the global structure. When two or more edges
incident to a processor have the same reliability value, the tie is broken by concatenating the
IDs of both incident processors, larger first, to the reliability of the edge. By changing the tie
resolution scheme a different ARSN may be constructed. Given the same tie resolution scheme
and value of K, the ARSN 1s unique for any given combination of topology, processor labeling
and edge reliabilities. Changing any of the previous aspects of a network, may result in a

different ARSN. As with the RSN, the ARSN can be used in place of thz original network,

with the exception of topology dependent computations.

A distributed ARSN algorithm is given in Algorithm 4.2. The details of the algorithm are as
follows: initiators wake up spontaneously in the INITIAL state and send WAKEUP messages 10
all neighbours. Upon receiving a WAKEUP message, non-initiators wake up and forward the
message to all other neighbours. Subsequent WAKEUP messages are ignored. After a processor
has initiated or forwarded WAKEUP messages to all neighbours, it enters the ACTIVE state. In
the ACTIVE state, each processor i computes a reliable edge set, RE;, containing the K most
reliable incident edges. For each edge in RE;, an INCLUDE message is sent to the adjacent
processor to indicate that the edge is in the ARSN. The remainder of the neighbouring
processors are sent a REJECT message. When the appropriate messages have been sent to all
neighbours, the processor waits to receive messages from all neighbours. When processor i
receives an INCLUDE message such that e;;¢ RE; , it adds that edge to RE;. When a processor i
receives an INCLUDE message or REJECT message such that e, ;e RE; , the message is
discarded. The algorithm terminates when messages have been received from all neighbours.
The ARSN consists of the union of all edges from each local RE; . The solution is distributed
amongst all the processors in the network, with no one processor knowing the complete

structure.
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Approximate distributed algorithm to compute a reliable subnetwork. Executed at each processor i for some value
of K, 0 < K < n. N;is the set of processors adjacent 1o processor i.

/* wake up neighbours */
INITIAL: IF initiator THEN
Jje send(WAKEUP), foreach j e N;
ELSE
receive (WAKEUP,1);
Je send (WAKEUP) foreach je N;, j#i
become ACTIVE

/* select K most reliable edges and broadcast to neighbours*/
ACTIVE: RE@) = {c;jiif je Nj ANDrj;isonc of the K most reliable edges}
FOREACH j € N; DO

IF (¢; JE REC(i)) then
je send(INCLUDE)

ELSE
je send(REJECT)

ENDIF

/* receive responses from neighbouring processors */
#msg =0
WHILE #msg < IN;l DO
receive(msg,j)
IF (msg # WAKEUP) /* ignorc old wakeup message */
#msg = #msg + 1
IF (msg = INCLUDE AND ¢ JE€ RE(i)) THEN
RE(i) = RE() U {ej j)
ENDIF
ENDIF

Algorithm 4.2: Distributed Algorithm for the Approximate Reliable
Subnetwork Problem.

Algorithm 4.2 constructs an approximation of the reliable subnetwork with a total of 4e
messages (2e messages to wake up and 2e messages to inform neighbours whether or not the
edge is in the reliable subnetwork) for a message complexity of O(e), where O(n) < O(e) <
O(n?). Since messages do not convey information other than the message type, message
lengths are short (i.e., 2 minimum of 2 bits to distinguish between message types). As can be
seen, the ARSN algorithm is a significant improvement, in terms of message complexity and

message length, over the exact RSN algorithm.
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In the evaluation of the ARSN we must consider two issues. First, the reliability of the
RSN is identical to that of the original network since both are based on maximum reliable paths
between all pairs of processors. The ARSN, on the other hand, does not guarantee that the
reliability is identical to the original network, nor does it guarantee that the reliability is even
"good". If the reliability of the ARSN is significantly less than the RSN, the ease of
computation is of little consequence. As we increase the value of K we get two conflicting
results: the reliability of the ARSN increases (or at least does not decrease) and the size of the
subnetwork increases. Likewise, as we decrease the value of K, the reliability and size of the
ARSN decrease. The goal of the approximation scheme is to minimize the number of edges and
maximize the reliability of the subnetwork. The question then arises as to how large K must be
in order to construct a subnetwork with an acceptable reliability. In chapter 5 we examine this
issue and evaluate the reliability of the ARSN for various values of K experimentally. We leave

the discussion of reliability until then.

Secondly, the RSN is constructed by taking the union of the most reliable paths between all
pairs of processors in the network and therefore is guaranteed to be connected, assuming that
the original network is connected. The ARSN, on the other hand, is constructed by
amalgamating local solutions and therefore the possibility exists that the structure will not be
connected. As the value of K increases we expect that occurrences of disconnections will
decrease but not be eliminated. In the following sections we examine the question of

connectedness and evaluate the ARSN both analytically and experimentally.

4.4.1 Connectedness of the Approximate Reliable Subnetwork:

Connectedness of a network is a globally defined property. The RSN guarantees
connectedness because it is constructed with a global algorithm. The ARSN, on the other hand,
is constructed by piecing together local solutions from each processor. Since no locally bascd
algorithm can ensure connectedness, instances of an ARSN may be disconnected. As an

example of a disconnected instance of an ARSN, consider the six node network shown in
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- ntaly < gt Aicinint nartat
nfortunately, the resulting structure has two disjoint partitions.

this section we investigate now often the ARSN algorithm of Algorithm 4.2 produces a

disconnected structure.

a) onginal network b} two partitions in rcliable
subnetwork when k=1.

Figure 4.3 : Example of a Disconnection with the ARSN Algorithm when K'=1.

The basic tool we employ to theoretically analyze the connectivity of the ARSN algorithm is
graph enumeration. We model the network as a graph, ignoring the fact that the algorithm will
be a distributed algorithm running on a network. We count two specific classes of graphs
constructed by the ARSN algorithm given an exact number of nodes and edges: all possible
graphs constructed by the ARSN algorithm and all possible graphs which are connected. Let

T, represent the number of all possible graphs and T, represent the total number of graphs

with the property we are looking for. Because T, > T, the value % represents the probability

that the algorithm produces a graph with the desired property.

0.92

a) original graph b resulting subgraph afier ¢) transformation of subgraph
approximation algorithm 10 correspording directed
when k=1, graph

Figure 4.4: Transformation of an Undirecied Graph 1o a Directed Graph
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Enumerating connected general graphs is
problem. For this reason, we make the simplifying restriction that the original graphs

(networks) are complete.

To analyze the connectedness of the resulting structure constructed by the ARSN algorithm
we transform the structure from an undirected graph to a directed graph in the following way:.
In the ARSN algorithm each vertex (processor) selects the X most reliable edges. The edges
chosen by each vertex in the graph are represented by a directed our edge from that vertex. An
edge chosen by both adjacent vertices is represented by two directed edges going in the
opposite direction. An example of the transformation is shown in figure 4.4. The total number
of possible graphs which can be constructed from any complete graph of n vertices is then
equivalent to finding the number of labeled? directed graphs, DG, g, with n vertices such that
each vertex has out degree K. The formula for this value is derived in theorem 4.1.

Theorem 4.1: The number, DG, g , of labeled directed graphs with n vertices such that

each vertex has out degree K is:

j ("KI }" Cifn>K ]
DG, x =
\o

:otherwise {

Proof. This result follows from the fact that each of the n vertices selects an edge from
itself to K of its n-1 neighbours. This selection can be done in( "}: ) ways. If n <K,

then no graphs are possible since at least K+1 vertexes are required to accommodate
exactly K outgoing edges from each vertex. W

The number of connected graphs constructed by the ARSN algorithm is then equivalent to

the number of weakly connected directed graphs, DC,,, of n vertices such that each vertex has

nK?

out degree K. The formula for the value DC,_y is derived in theorem 4.2.

3 In a labeled graph a vertex is distinguished from all others by a unique label (i.e., processor 1D). In an
unlabeled graph, one vertex is indistinguishable from another.
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Proof. To show that the above recurrence relation holds, consider the number of rooted
labeled directed graphs of size # and out degree K. A rooted graph is a graph in which one
vertex is distinguished as the root vertex. Clearly there are nDG, x such graphs since each
labeled directed graph can be rooted at any of its vertices. The root vertex must be a
member of some component which has j vertices, where K+1 < j < n-K-1 if disconnected
or j=n if connected. When the root vertex is a constituent of a component of j vertices there
are j ways that the component can be rooted, (?) of choosing the vertices of the group and
DC; k such components. The remaining n-j vertices of the graph form all remaining
variations of the directed labeled graph in exactly DG, ; x ways. Multiplying these factors

together and summing over j we obtain:

n-K-1
nDGp k= Z j %

n ) x DG i KX ch,K} +nDCn
=K+1 ‘

Rearranging to isolate DC;,  we have

n-K-1

DCpg=DGpk- L 3 jx
j1=K+1

n

X DGn_j,KX DCJ',K
J

DCn,K
n, K

The results of computing? the probability , that a directed graph constructed by the

ARSN algorithm applied to a complete graph, is connected, is shown in table 4.1 for various
values of n and K. When each processor only selects one edge (K=1) the probability that the
resulting structure will be disconnected is fairly large and increases as the number of vertices
increases. On the other hand, when K>2 the probability of a disconnected structure is very

small and decreases as the number of vertices increases. When K=3, the probability that

4 All analytical results in this thesis are computed using the MAPLE mathematics package.
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structure is not connected is virtually O for even graphs of small order. From these
observations, it would seem that the ARSN algorithm, when K>2, almost always produces a

connected structure.

While table 4.1 shows encouraging connectedness results for K>1, they are unfortunately
not completely representative of the ARSN algorithm. The problem is demonstrated by the four
vertex graph in figure 4.5 when K=1. By the formula of theorem 4.1, all three configurations,
and their permutations, are counted in the total number of possible graphs constructed from
K,. However, only the two configurations in part b are possible by the ARSN algorithm. The
problem is that each vertex does not randomly select which K edges it will contribute to the
ARSN, but rather chooses the K most reliable incident edges. We assume that a total global
ordering of the edges exist, such that edge i comes before edge j if the reliability of i is greater

than the reliability of j.> If such an ordering exists, then there must be an edge in the network

k k=1 k=2*%* k=3*
n % % %
10 69.4 99.90 1.0
20 59.8 99.987 1.0
30 51.1 1.0 1.0
40 45.5 1.0 1.0
50 41.4 1.0 1.0
60 38.3 1.0 1.0
70 35.8 1.0 1.0
80 33.8 1.0 1.0
90 32.1 1.0 1.0
100 30.6 1.0 1.0

* Accurate to at least 3 decimal places.

Table 4.1: Probability of Connection - Labeled Digraphs of Order n and Out Degree K.

5 Notice that this assumption does not imply that all edge reliabilities must be unique. When two edges have
the same reliability, they can be made unique by appending the IDs of both adjacent processors 1o the reliability.
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which is the
processors adjacent to the global maximum edge to sele-t different edges. As a result, the
configuration in part a is not legal and the results of table 4.1 are incorrect. Nevertheless, we
would expect the connectivity of the ARSN to follow a similar pattern as the weakly connected

directed graph. This is verified, when K=1, in theorem 4.3.

OC<«—>0

O<—>0O

a) illegal configuration b) legal configurations

Figure 4.5: Legal and lilegal Configurations for n=4 and K=1.

By considering the ordering of edges, with respect to the edge reliability, an exact formula
for the expected connectedness of structures constructed by the ARSN algorithm for K=1 is

given in theorem 4.3.

Theorem 4.3: The number, C1,, ., of edge and vertex labeled graphs with n vertices, n>2,
and e edges, e > n-1, for which the ARSN algorithm (when K=1) yields a connected
graph, is given by the following formula:

Clne=6x( 1

X SGn,3,e,

where SGy; . ;  the number of edge labeled subgraphs constructed by the ARSN
algorithm with exactly e edges and n vertices, starting with a subgraph containing i nodes

and j edges, is given as follows:

1, if e=jand n=i

$G. .. =10 ife<jandn=ior
"RETif e=jand n#

ix(n-1) x SGn.i+1‘e,j+1+{( ; }j ] X SGp,ie j+1, Otherwise

Proof. For o ,a; € Elet o; >a; iff o; is more reliable than a;. There exists a total

ordering of the edges a; > a, > ...>a, . We first show the following lemma.
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Lemma 4.1: Eachedge o; € E, 2 <i<e, must be incident to a vertex v, € V such that v,
is incident to another edge ¢; € E such that i#j and o; > oy, for the graph constructed by

the ARSN algorithm when K=1, to be connected.

Proof. (by contradiction) Assume there exists a connected reliable subgraph constructed by
the ARSN algorithm, for K=1, in which the previous restrictions do not hold. Trivially,
both vertices incident to o; will choose this edge since it is the globally most reliable
edge. Assume there exists an edge «; € E that is locally maximum, which is to say that
neither of its incident vertices is incident to a more reliable edge. Then by the same
token, both vertices incident to ¢ must choose this edge since neither is incident to a
more reliable edge. Since at least two edges are each chosen by both incident vertices,
the total number of edges possible in the graph is at most n-2. Since at least n-1 edges
are required to connect n vertices, the resulting graph can not be connected, thus a
contradiction exists. =

The previous lemma is important as it gives us a method to construct and therefore
enumerate graphs which will be connected when constructed by the ARSN algorithm when
K=1. Essentially we construct the graphs by iteratively adding edges, in order of
decreasing reliability, and vertices so the restrictions outlined in lemma 4.1 are not violated.
The graph is completely constructed when all n vertices and all e edges have been added.

Inidally, each valid graph must have the following configuration for some vertices v, vy,
ve € Vand edges o and o

Since the edges are labeled there are exactly six ways they can form unique configurations
and( ;‘ )ways of selecting the three vertices.

From the initially constructed subgraph the construction continues in either one of the

following ways:

1) Add vertex: The simplest way of adding a legal edge is to connect a new vertex (one not
previously in the graph) to an existing vertex. The configuration may look as follows:
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In this case, the vertex vq is added to the graph by the edge o3 in one of three ways. In
general, if there are i vertices currently in the graph then there are i*(n-i) ways of adding
this vertex since the new vertex can be connected to an existing vertex in i ways and the
new vertex can be chosen from the remaining in (n-i) ways. This edge will be part of the

reliable subgraph computed by the ARSN algorithm.

2) Add cycle: The second way of adding an edge is to join two previously existing vertices

in the subgraph. The configuration may look as follows:

In this case the edge a3 is added connecting v,4 and v, in exactly one way. In general, if
there are currently i vertices and j edges in the subgraph then there are ( ; ) jways of

adding a cycle. This edge is not in violation of the restriction in lemma 4.1, but will not be
|

part of the reliable subgraph.
Corollary 4.3a: The number, CE1,, of edge and vertex labeled configurations of K, with
n vertices, n>2, for which the ARSN algorithm (with K=1) yields a connected graph, is
given by the following formula:

[
CEl,= (C1,,,ex[( : |- ]')

e =n-1

Proof. The number of edge and vertex labeled connected graphs of n vertices and e edges
which results in a connected ARSN, when K = 1, is given by the formula C1,.- The total

number of edge and vertex labeled complete graphs of n vertices which result in the same
configurations as represented by C1, . can be enumerated by adding the remaining ( ;‘ ) e

edges. These may be added in §r( ;‘ ) e]! ways.

th
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The total number of edge and vertex labeled complete graphs with n vertices which results
in a connected ARSN, when K=1, can be enumerated by summing C1y cx{{ n \’l»c}! over the
’ )

ra

-1 .
range (n-1) to (n2 )+1 . The former represents the smallest number of edges required to

connect n vertices. The latter represents the largest number of edges which can be used to

connect n vertices in the manner described in theorem 4.3. ®

4.4.2 Connectedness of the Approximate Reliable Subnetwork - Analytical and
Experimental Results:

We evaluate the ARSN experimentally by simulating a distributed computation on a
randomly generated graph (network). Complete random graphs® are constructed by uniformly
generating a reliability value, in the range [0...1.0], for each of the () edges. After each
random graph is generated, a spanning tree is constructed to verify connectedness. Graphs

found to be disconnected are discarded.

n Analytical Experimental
% %
5 57.14 57.28
24.24 24.21
10 5.265 5.42
13 0.984 0.97
15 0.306 0.31
18 0.050 0.042
20 0.0149 0.028
23 0.00000021 0
25 47x10° 0
30 ~0 0

Table 4.2: Percentage of Connected Graphs, Constructed by the
ARSN Algorithm, when K=1 and G is Complete.
The results of the computations from Corollary 4.3a are shown in table 4.2 along with the
cerresponding experimental observations of the connectedness of reliable subnetworks

constructed by the ARSN algorithm. Because of the exponential time required to calculate

6 Refer to Appendix 1 for a relevant discussion and evaluation of the random number generator.
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CE1,, the analytical results could only practicaily be calculated for networks up to 30 vertices.
This is sufficient, however, to show that for even small networks, the probability of
constructing a connected network, when K=1, is very small and rapidly decreases as the
number of vertices is increased. For the experimental results, 500,000 randomly generated
complete graphs of order n were generated. As can be seen, the experimental observations are
virtually identical to the analytical results and therefore confirm the previous observations.
From the results of table 4.2 it is obvious that when K=1, the ARSN is extremely unlikely to

be connected, for even moderate sized networks.

As previously mentioned, enumeration of graphs is a mathematically difficult problem.
There is no known exact formula for determining the number of connected approximate reliable
subnetworks constructed by the ARSN algorithm when K>1. For this reason, we must rely on
experimental results to analyze the connectedness of the structures. The experiments were set
up as follows: Networks were randomly generated for values of n = 20, 40, 60, 80 and 100.
For each value of n, 100,000 graphs were generated for values of e = 20%, 40%, 60%, 80%
and 100%, where 20% means that the graph contained 20% of the possible edges (i.e., a
complete graph). For each value of n, a total of 500,000 graphs were generated. For each
group of networks, of size e and order n, the ARSN algorithm was applied and the number of

disconnected subgraphs were counted. The results are tabulated in tables 4.3a, 4.3b and 4.3c.

n\ e 20% 40% 60% 80% 100%
20 0.11 0.02 0.01 0.0 0.0
40 0.01 0.0 0.0 0.0 0.0
60 0.0 0.0 0.0 0.0 0.0
80 0.0 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0

Table 4.3a: Percentage of ARSNs with K=1, for a Given Value of n and e,
Which were Connected
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n\ e 20% 40% 60% 80% 100%
20 98.22 99.24 99.26 99.29 99.32
40 99.25 99.28 99.47 99.51 99.57
60 99.52 99.54 99.59 99.68 99.70
80 99.52 99.55 99.66 99.71 99.80
100 99.57 99.59 99.68 99.75 99.88

Table 4.3b: Percentage of ARSNs with K=2, for a Given Value of n and e,

Which were Connected

n\ e 20% 40% 60% 80% 100%
20 99.90 99.92 99.92 99.94 99.93
40 99.95 99.95 99.97 99.98 99.99
60 100.0 100.0 100.0 100.0 100.0
80 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0

Table 4.3c: Percentage of ARSNs with K=3, for a Given Value of n and e,
Which were Connected

From the results of the previous tables we make the following observations. Confirming
the results of table 4.2 , table 4.3a shows that when K=1, the probability that the ARSN is
connected is extremely small. Notice that the probability of disconnection increases as the
number of vertices in the network increases. Since the K=1 ARSN is only connected when the
selected edges form a spanning tree, this is an expected result. Tables 4.3b and 4.3c show that
when K>1 the probability that the ARSN algorithm produces a connected structure is extremely
large. When K>2 the probability is so large that a disconnected reliable subnetwork was never
encountered for values of n 2 60. From these results it can be seen that the ARSN algorithm

almost always constructs a connected structure when K>2.

The connectivity results from table 4.3 show that, for K>2 , the ARSN is practically never
disconnected, yet there still remains a slight possibility that this situation occurs. When a
disconnected ARSN is discovered, we have two options: the ARSN may be reconstructed, or

the disconnection may be repaired. Reconstructing the ARSN generally involves increasing the
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value of K, since the ARSN is uni

v ki h %2

number of edges in the network have identical reliability, a different ARSN may be constructed

% components k =2 k=3 k=4
% (Py.Py,P3... D)) % % To
327 78.82 - * -
(4,26) 16.54 90.63 A
2 (5.25) 3.42 8.58 92.47
qg (6,24) 0.824 0.70 7.12
) (1,23) 0.235 0.069 0.37
E (8.22) 0.079 0.0091 0.023
©21) 0.031 0.0015 0.0021
(10.20) 0.014 0.00036 0.00025
(3.3,24) 0.164 x 107 - -
(34.23) 0.391 x 107 - -
g 44.22) 0.964 x 1076 0.281 x 10712 -
g (4,5,21) 0237 x10°® 0377 x 1013 -
g (5,5,20) 0.613 x 10°7 0.552 x 10-14 0.635 x 10722
S 5.6,.19) 0.185 x 10°7 0715 x 10°15 0937 x 1023
(6.6.18) 0.593 x 107 0.104 x 10713 0.169 x 1072
(33.321) 6140 x 10710 - -
(33.4,20) 0490 x 107! - -
:E) (4,44,18) 0.812 x 10-12 0.251 x 10725 -
g 44,517 0355 x 10712 0.748 x 1026 -
S, (4,5.6.15) 0.104 x 10712 0802 x 10727 -
< (5.5.5,15) 0.969 x 1013 0.745 x 1027 0.426 x 1043
(6,6,6,12) 0.470 x 10-13 0.113 x 1027 0.183 x 1043

* components which are <K are not valid and are therefore shown as '-'

Table 4.4: Probability that a Disconnected ARSN is Partitioned Into Separate
Components of the Form (p1, p2,...,pj), when n=30.

by changing the way in which ties are broken when choosing edges. Although, a different

ARSN may be constructed, there is no guarantee that it is connected. If the number of edges in
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the ARSN is of primary concem or it is critically important that the ARSN be connected, then
repairing the ARSN is the obvious choice. However, if the number of partitions is large, the
repair algorithm may spend considerable time and messages "piecing” the partitions together.
Given this situation, it may be too expensive to repair the disconnection. If the number of

partitions is likely to be small, then it may be worth the extra expense to repair the structure.

From the formulas given in theorems 4.1 and 4.2, we can approximate what the partitions
will look like when the structure is disconnected. Specifically, the number of directed labeled
disconnected graphs, DX, with n vertices, such that two disjoint partitions exist of size p and
n-p, and such that each partition is a weakly connected graph with each vertex having out

degree K is:

Dxn,p,K=( ; ) x DCpk X DCpp.k

This formula follows as a direct result of theorem 4.2. Similar formulas are easily derived for
three and four partitions. We use these formulas to determine the characteristics of the
partitions by simply enumerating all possible combinations of two, three and four partitions.
By adding these values, we can determine the total number of disconnected graphs, with two,
three and four partitions. Then, given the number of disconnected graphs for a specific type of
partition, we can determine the probability with which the specific partition will occur when the
graph is disconnected. Notice that the formulas are based on theorem 4.2, which does not
accurately enumerate the number of connected subgraphs, of K,,, constructed by the ARSN
algorithm. Nevertheless, the results will give an indication as to what size and number of

partitions we can expect when a disconnected subgraph is constructed.

The results of the computations are displayed in table 4.4 for K=2, 3 and 4, when n = 30.
The results are only partially displayed due to the large number of possible partitions. From the
results, it can be seen that when the ARSN algorithm constructs a disconnected subnetwork it

is very likely to be disconnected into only two partitions. Furthermore, one partition will likely
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be very small while the other is very large. Because it has fewer processors, the smaller
partition can more quickly recognize the disconnection than can a larger partition.
Consequently, the smaller partition can also more easily repair the disconnection. Given the
results of table 4.4, when a disconnection occurs, it may require comparatively few network

resources to repair.

4.4.3 Connectedness of the Approximate Reliable Subnetwork - Summary:

As previously shown, the ARSN, for any value of K, is not guaranteed to be connected. A
disconnecied subnetwork is of little benefit, since communication between processors is
restricted to members of the same fragment. When K=1, the ARSN will almost certainly be
disconnected, which makes K=1 a poor choice for constructing an ARSN. Moreover, because
the K=1 ARSN is likely to be partitioned into a number of small fragments, it is expensive to
repair. If the user requires a structure with a minimum number of edges, then a maximum
reliable spanning tree’ can be constructed in O(nlogyn + €) messages. In terms of
connectedness, the previous results show that either K=2 or K=3 are good choices to construct
the ARSN. Of these, K=2 is likely the better choice, since it has fewer edges than the K=3
structure, and is almost as likely to be connected. The K>3 ARSN offers no advantages over

K=3, in terms of connectedness, and therefore should not be used.

In the following section we present a distributed algorithm to verify the connectedness of
the ARSN, and when a disconnection exists, connect the partitions. However, it should be
noted that the verification algorithm need not be applied in every circumstance. When K=2 ,and
especially when K>2, the probability of disconnection is virtually nonexistent. In many
applications this amount of risk is acceptable. Furthermore, a distributed computation, such as
a routing process, can be modified to recognize the disconnection as it performs other tasks.
Consequently, it may be possible to assume connectedness of the ARSN without catastrophic

results if a disconnection occurs. In other circumstances, however, a disconnected subnetwork

7 The maximum reliable spanning free is analogous to the minimum weight spanning tree.
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may have serious implications. For this reason and for the sake of completeness. an algorithm

which constructs a connected ARSN is presented.

4.5 Distributed Construction of a Connected Approximate Reliable
Subnetwork

In this section we present an improved distributed algorithm to construct an ARSN which
is guaranteed to be connected regardless of the value of K. The connected ARSN algorithm
consists of three phases:

1. Basic distributed algorithm (Algorithm 4.2)

2. Verification of connectedness.

3. Resolution of the disconnection (if one exists).

4.5.1 Determining the Connectedness of the Approximate Reliable Subnetwork:
We begin the discussion by describing a method for verifying the connectedness

of an ARSN constructed on a (non-distributed) graph. After the completion of the algorithm,
the vertices of the graph are partitioned into one or more groups. The graph is disconnected if
at least two non-empty groups exist. Edges incident to each vertex of the graph are labeled in
one of two ways. An edge is labeled as in if it joins two members of the same group and out if
it joins members of different groups. If no vertex in the graph has an out edge, only one group
exists and the ARSN is connected. If an our edge exists, the graph is partitioned into at least

two groups and the ARSN is disconnected.

The difficulty of the preceding method is in identifying group members. In order to label
incident edges of a vertex, we must be able to identify which of its neighbours belong to the
same group. If the ARSN contains an edge from vertex a to veriex b, then clearly both vertices
are members of the same group and the edge is labeled as in. If an edge connecting vertex a to
vertex ¢ exists but is not in the ARSN, then the local knowledge is insufficient to assign a
label. A path may exist between vertex a to vertex ¢ through a different vertex. This problem

can be remedied by giving each member of the group the same label. When connecting edges
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tirst search algorithm beginning at an arbitrary vertex in the graph. We assume that each vertex
has an initial label of 0 and an ID # 0. As the search procedure visits each vertex in the group,
it assigns the ID of the starting vertex as the group label. When the search is completed each

vertex, which belongs 10 the saine group as the starting vertex, will have the same label.

In the distributed environment, the labeling procedure is analogous to the distributed leader
election problem. In general, leader election is the process of identifying, at each processor in
the network, the processor with the maximum identity. For the purpose of this thests, it is not
important that the leader be the processor with the maximum identity and therefore we relax
this constraint. We verify the connectedness of the ARSN by executing a distributed election
algorithm over the ARSN. When the election is complete, each processor in the network begins
the edge labeling process by sending a message, identifying its leader, to each of its
neighbours. An edge is labeled as in, if both adjacent processors have the same leader. An edge
is labeled as out, if the adjacent processors have different leaders or if one processor has not
participated in an election. This last situation will occur if no processor in a group initiates the
election algorithm. When a processor receives an identity message from a neighbour and has
not participated in an election itself, it immediately becomes an initiator and starts the election

algorithm in its group. Therefore it is not necessary that an initiator exists in each group.

Election, in an arbitrary graph, has been shown to have a message complexity of Q(nlog,n
+ ¢) [LP86]. The general steps of one known algorithm are as follows:

1) Construct a spanning tree - G{nlog.n + e) messages.

2) Broadcast the identity of the root of the spanning tree to all other processors in the

network - O(n) messages.

Constructing a spanning tree for the election algorithm provides us with an additonal

benefit. If the ARSN proves to be disconnecied and we decide to repair the disconnection, we

Lh
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etermined using an echo algorithm [C79] using O(n) messages. An echo algorithm has two
stages of execution. The first stage consists of the leader broadcasting a message to all
neighbours, which is eventvally propagated to the leaves of the spanning tree. In the second

stage, the responses from the leaves are propagated back to the leader.

The spanning tree may be constructed using a well known minimum spanning tree
algorithm, such as the algorithm of Gallager, Humblet and Spira [GHS83]. Their algorithm
has been shown to have optimal message complexity within a constant factor (i.e., Snlogon +
2e + 4n messages). Although optimal, the GHS algorithm constructs a minimum spanning tree
when only a spanning tree is required. Consequently, we pay the price in terms of extra
messages and extra processing time required. For this reason we present a new spanning trec

algorithm, with improved message complexity, in the following section.

4.5.1.1 Distributed Spanning Tree Algerithm For Arbitrary Networks:

To begin the discussion, we briefly outline how to distributively construct a spanning tree
for the special case of exactly one initiator. The algorithm is based on a depth-first search
procedure outlined previously: initially all processors are marked as unvisited and all edges arc
marked as unexplored. The initiator begins the algorithm by marking itself as visited. It sends a
CONNECT message over an unexplored edge, chosen arbitrarily, and marks the edge as
explored. The sending processor remains passive until a reply is received. Upon receipt of a
CONNECT message, a processor marks the edge as explored and has two possible responses. If
the processor is currently visited, the processor sends back a REJECT message to the sender. If
the processor is currently unvisited, it marks itself as visited. The sending processor becomes
its parent and the edge over which the message was sent becomes the parent edge. The
receiving processor continues the search procedure by sending its own CONNECT message

over one of its unexplored edges. When the receiving processor has no more unexplored edges
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algorithm is complete. The spanning tree consists of all parent edges. The parent edge of each

processor leads to the root of the spanning tree.

C

d) resulting spanniny

a) initial networ b) afier 4 connec ¢) sending last connect o
ee

messages ser message

Figure 4.6: Example of general spanning tree algorithm.

Figure 4.6 illustrates how the general spanning tree algorithm works. The network consists
of five processors in which a white node represents a processor in an unvisited state, while a
black node represents a processor in a visited state. The messages CONNECT, REJECT and
COMPLETE are denoted as ¢, r and f respectively. Assume that processor a begins the
algorithm. The sequence of CONNECT messages is as follows: a—b, b—d, d—e and finally
e—a (figure 4.6b). The last CONNECT message from e—a is a situation in which the receiving
processor is already a member of the spanning tree and consequently it responds with a REJECT
message (figure 4.6¢c). Upon receiving the reply, processor e has examined all of its unknown
neighbours and therefore has completed its role in building the spanning tree. It sends a
COMPLETE message to its parent. The rest of the algorithm follows in the same manner and the

complete spanning tree is composed of all parent edges (figure 4.6d).

When multiple initiators are allowed, initiators simultaneously construct fragments of a
spanning tree and contend for members. Two spanning tree fragments overlap when a

processor from one fragment sends a CONNECT message to a processor of another fragment. In

60



Chapter 4 - Distributed Reliable Subnetworks

this situation, the sending fragment tries to annex the receiving fragment. To handle multiple
initiators we make the following changes to the algorithm: Each fragment is identified by the 1D
of its initiator, which is known to all members of the fragment. When a fragment sends a
CONNECT message to a sleeping processor (i.e., a non-initiator which is not currently a
member of any fragment), the processor joins the fragment. When a fragment, F1, sends a
CONNECT message to a processor which is already a member of a fragment, F2, the message is
forwarded to the leader of F2. If ID(F1) < ID(F2) then F1 joins F2. Otherwise, F2 joins F1.
Although not discussed here, the algorithm must also include a mechanism to ensure that a

cycle is not formed when joining two fragments.

The simple method of joining two fragments, outlined above, leads to higher than optimal
message complexity in the worst case. Consider the network in figure 4.7 in which n
processors, labeled O to n, are arranged as shown. Initially, each processor i is the leader and
sole member of fragment i. Fragment 1 begins the algorithm by sending a CONNECT message,
denoted as c, to processor O (figure 4.7a). Because 0 < 1, fragment O joins fragment 1, which
now has two members, by sending a REPLY, denoted as r, message to fragment 1 (figure
4.7b). Processor 2 continues the algorithm by sending a CONNECT message to processor ().
Since processor O is not the leader of the fragment, it forwards the message along its parent
edge to processor 1. Since 1 < 2, fragment 1 joins fragment 2 (figure 4.7¢). The spanning tree
construction continues with each processor i sending a CONNECT message to processor i-2 in
order. Eventually all processors are annexed into fragment n (figure 4.7d). It can be seen that
for each processor i to become the leader of a fragment containing the processors i...0, exactly

2i messages are required (one connection request and one reply message over i edges). The

a-1
total number of messages to create the spanning tree is 23 i = O(n2). This is clearly not optimal

=1
since even an MST, which is a more tightly constrained spanning tree, can be constructed with

O(nlogsn + €) messages.
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Figure 4.7: Distributed Spanning Tree Algorithm, O(n2) Complexity in Worst Case.

4.5.1.2 Distributed Spanning Tree Algorithm With Optimal Message
Complexity

In order to reduce the message complexity of the spanning tree algorithm we implement the
following two changes: First, unlike the MST algorithms of Gallager, et al. [GHS83], and
Bar-Yehuda, et al. [BKWZ87], in which each fragment has one processor which acts as leader
for the entire existence of the fragment, we introduce the concept of the emissary. For the
purposes of this algorithm, an emissary is the processor which acts as the current leader of the
fragment. At some point in the algorithm, each processor in the network is an emissary of
some fragment. By using an emissary, rather than a fixed leader, a connection request takes
exactly one message since an emissary can only annex its own neighbour. Second, in the spirit
of GHS we implement a level based mechanism of joining fragments. The level of a fragment
1s sent as part of the CONNECT message along with the fragment ID. When a fragment is at
level i, the number processors in that fragment is at least 2i-1. By using levels we can prevent a
fragment, with a small number of members, from annexing a fragment with a larger number of
members. In this situation, it would be more efficient, in terms of the number of messages, for

the larger fragment to annex the smaller fragment.
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The algorithm begins with all processors in either the sleeping or emissary states. Sleeping
processors have level 0 and do not actively participate in constructing the spanning tree. When
a sleeping processor is annexed into a fragment it becomes the current fragment emissary.
Initiators, on the other hand, begin the algorithm as an emissary of a single processor
fragment. Initially, fragments have level 1. With the exception of propagation delay, all
processors in a fragment know the current level and identity of the fragment of which itis a
member. The fundamental mechanism by which the algorithm operates is annexation.
Specifically, a fragment expands by annexing passive processors or whole other fragments. A
fragment which has been annexed by some other fragment ceases to exist. Fragments annex
other fragments primarily on the basis of fragment level and in some situations also on the
basis of fragment identity (ID). A fragment attempts to annex another fragment, or a sleeping
processor, by sending a CONNECT message. The CONNECT message contains the fragment ID

and its current level. There are four distinct cases of annexation:

Case 1: Fragment annexing a sleeping processor (trivial case): The simplest annexation case
is when a fragment, F, sends a CONNECT message to a sleeping processor, as illustrated in
figure 4.8a. Upon receipt of the connection request, the sleeping processor joins F by
sending an ACCEPT message, denoted as a, to the emissary of F and becomes the new
emissary of the enlarged fragment F’ (figure 4.8b). When the emissary receives an ACCEPT
message it knows that a new emissary exists and it enters the member state. The level of the

fragment does not increase as a result of annexing a sleeping processor.

a) Initial fragment

b) resulting fragment

Figure 4.8 : A fragment Annexing a Sleeping Processor
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Case 2 ; A smaller leveled fragment trying to annex a fragment with a larger level: In this
situation a fragment
level(F1) < level(F2) (figure 4.9a). FI must join F2 because its level is smaller. The
receiving processor in F2 recognizes this, since it knows the level and identity of F2, and
handles the joining of the two fragments without forwarding the message to the current
emissary of F2. The justification for this is, although F2 may simultaneously be annexed by
yet a larger fragment, the level will never decrease and thus £/ would join the fragment
regardless of the outcome. The receiving processor informs the emissary of F1 that it is to
join F2 by sending a CHANGE LEVEL/ID message, which includes the current level and ID of
F2. Upon receiving this message, the emissary of F/ relinquishes its leadership and
broadcasts the change in level and leadership to all members of F1 (figure 4.9b). After all
members are notified FI ceases to exist. The current emissary of F2 remains emissary of the

enlarged fragment F2’ and the level does not increase.

a) Initial fragment
level(F1) < evel(F2) b) resulting fragment

Figure 4.9: A smaller leveled fragment attempting to annex a larger fragment.

Case 3: A larger leveied fragment annexing a fragment of a smaller level: In this situation a

fragment F/ sends a CONNECT message to F2, where level(F1) > level(F2). Similar to the
previous case, when any processor in F2 receives the CONNECT message it realizes that it can
never be leader of the network and must join F1I. In the distributed MST algorithm of
Galleger, Humblet and Spira, the larger leveled fragment is made to wait for the smaller. The
main reason for the delay feature is that, after a lower level fragment combines into a higher
level fragment, the other processors of the fragment are not informed of the change for an

uncertain period of time [GHSS&3].
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In this al

1
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-

network leader. Therefore, when a CONNECT message is received from a larger leveled
fragment the receiving processor passes a TAKEOVER message to its current emissary. The
TAKEOVER message is a more aggressive version of the CONNECT message because it has the
added feature that it locks the receiving processor. A locked processor does not process any
incoming message, including another TAKEOVER message from a competing fragment.
Buffered messages are processed when the processor becomes unlocked. A processor is only
unlocked when it receives a CHANGE LEVEL/ID message with a larger level then it currently

knows. In the process of annexing F2 , fragment F will encounter one of three situations:

a) Initial fragment level(F1)>level(F2)

b) resulting fragment

Figure 4.10: A Larger Leveled Fragment Annexing a Smaller Fragment (normal case)

normal situation: The TAKEOVER message is sent up the fragment to the emissary of F2
(figure 4.10a). When the message arrives at the emissary it is buffered until its current
processing is completed. When the message is processed, the emissary immediately
relinquishes its leadership and sends a CHANGE LEVEL/ID message, with the level and 1D
of F1, over the spanning tree thereby joining F/ and unlocking all processors in the
process (figure 4.10b). When the emissary of F/ receives the message with its own level

and ID it knows it has captured F2.

competing annexation: In this situation another fragment F3, with level(F3) > level(F2)
simultaneously tries to annex F2. Both FI and F3 send TAKEOVER messages over the
fragment F2 to the emissary. Because a TAKEOVER message locks the receiving

processor, only one TAKEOVER message will reach the emissary without encountering a
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locked processor. The locking mechanism allows us to process competing requests in a
sequential manner. When the emissary of F2 receives the TAKEOVER message, say from
F 1, it processes the message as in the first case and sends the CHANGE LEVEL/ID message
down the spanning tree. When the message arrives at v it is unlocked and immediately
processes the TAKEOVER message of F3. If level(F3) < level(¥1), the CHANGE LEVEL/ID
message is simply sent to F3. In this case the both F2 and F3 are annexed by F/ and its
level does not increase. If level(¥3) > level(F1), a new CHANGE LEVEL/ID message with
the level and ID of F3 is sent to both FI and F2. In this case both FI and F2 are annexed
by F3 and its level does not increase. If level(F3) = level(F 1), then a new fragment is
created and the level is increased. The leader of the new fragment is the emissary of the
fragment with the largest ID. The new CHANGE LEVEL/ID message is sent to 1, F2 and
F3. When a fragment receives a CHANGE LEVEL/ID message with its own ID but different
level, it broadcasts the message to all of its member and its emissary remains in

leadership.

increased level: Because of propagation delay, fragment F2 may have expanded to F2' and
be in the process of updating the level and ID to its members when F1 tries to annex it.
When this happens, a TAKEOVER and CHANGE LEVEL/ID message will “collide” at some
processor of the spanning tree of #2° or at the emissary of F2°. If level(FI) > level(F2’)
or level(F1) = level(F2') and ID(FI) > ID(F2") then the CHANGE LEVEL/ID message is
terminated and the TAKEOVER message proceeds to the emissary of F2' as usual. If
level(FI) <level(F2") then the TAKEOVER message is terminated and F/ is annexed into
F2' by propagating the CHANGE LEVEL/ID message from F2'to F1. If level(F1) =
level(F2") and ID(F1) < ID(F2") then F1 is suspended by propagating the CHANGE
LEVEL/ID message from F2' (see case 4). If level(F1) =level(F2") and ID(F1) = ID(F2")
then the TAKEOVER message has encountered its own identity. This occurs when both the
larger and smaller simultaneously attiempt to annex the other. In this case F2 sends a

CONNECT message, along a different edge, to FI and subsequently becomes annexed.
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The TAKEOVER message, propagated by the emissary of F1, is halted and a REJECT

message is sent back to indicate that the edge creates a cycle.

Case 4: A fragment tries to annex a fragment of the same level: In this situation fragment F
sends a CONNECT message to fragment F2 in which level(F/) = level(¥2). Unlike
constructing a MST, in which two fragments may only be connected by the minimum-weight
edge joining them, two fragments of the same level may simultaneously try to annex each
other using two different edges. For this reason, a fragment may only annex another
fragment of the same level if it has a larger ID. When a fragment sends a CONNECT message
to a fragment of the same level but larger ID, the receiving processor replies with a CHANGE
LEVEL/ID message. When an emissary receives a CHANGE LEVEL/ID message with the same
level as its own but larger ID, it knows it has tried to annex a fragment with the same level
and larger ID and subsequently becomes suspended. A suspended fragment is passive and
waits to be annexed by a larger or equal leveled fragment. However, a suspended fragment
may annex a fragment with a smaller, if the other fragment initiates the annexation. When the
annexing fragment has a larger ID, a TAKEOVER message is sent to emissary of F2 and the

situation is analogous to case 3.

Each edge in the network is labeled to distinguish those which have been processed
(examined) from those which have not. Initially, every edge is unexplored. When an edge is
processed it is given a label to identify its status within the network. A reject edge connects a
fragment to itself (i.e., a cycle) and therefore is not part of the spanning tree. A parent edge is a
member of the fragment spanning tree and leads to the current emissary of the fragment. Notice
that it is always possible to send a message to the current emissary without having to broadcast
throughout the fragment. A child edge is a member of the spanning tree and leads to a leaf. A
completed edge is identical to the child edge except that all edges in the subtree have been

completely explored and no further processing is required.
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Because each fragment has a dynamic emissary, rather than a fixed leader, a processor
relinquishes control before it has completely examined all adjacent edges. Moreover, when a
fragment is annexed, control is seized from the emissary leaving some edges unexamined. For
this reason we need a way of passing control back to a processor in our fragment to complete
processing. This is accomplished by using the RESUME message. The current emissary passes
leadership of the fragment to another processor in the fragment when it has no unexplored
edges left. In this case it sends the RESUME message over a child edge. A leaf in the spanning
tree is a processor which has at most one child edge and the remainder rejected. When a leaf
processor has examined all edges then processing at this processor is finished. The leaf
processor passes control to its child by sending a COMPLETED message. A COMPLETED
message passes on control, like a RESUME message, but signals the receiving processor that
processing is finished. A processor which has sent a COMPLETED message will never become
emissary again. When a processor receives a COMPLETED message it marks that edge as
completed. When an interior processor (i.e., a processor with more than one child) receives a
COMPLETED message from all but one of its children, it has finished processing and sends its
own COMPLETED message to its final child. A processor with only completed and rejected

edges is the leader of the spanning tree and the algorithm terminates.

When the algorithm terminates each processor knows the identity of the fragment which
forms the spanning tree. Moreover, each processor can identify the local edges which form the
spanning tree (i.e., completed edges). The leader of the spanning tree is the last emissary of the
fragment. The fragment and the leader of the spanning tree do not necessarily have the same

identity.

4.5.1.3 Distributed Spanning Tree Algorithm - Implementation Details
In the preceding algorithm the following processor states are used:

sleeping -> A processor which knows it is not a local maximum, does not actively participate
in forming a fragment. Waits passively to be annexed.
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emissary -> A processor which is actively seeking out new W processors or other fragments to

add to the fragment of which it is a part. The current emissary is the fragment leader.

member -> A non-leader and non-emissary processor in a fragment. Plays a passive role in
the fragment and the only role it fulfills is to relay message to the leader or emissary.

suspended -> When an emissary sends a CONNECT message to another fragment with the
same level but larger ID, the sending fragment is to be annexed by the receiving process.
However, the level of the new fragment must increase as a result which requires the
cooperation of the emissary of the larger fragment, which may be busy annexing other
fragments. Insteac the emissary of the smaller fragment enters a suspended state in which
it waits to be annexed by another fragment.

The following messages are used in the preceding algorithm:

CONNECT -> A leader or emissary sends this message over a previously unexplored edge as
an invitation to join the fragment.

REJECT -> Sent in response to a CONNECT message by a processor which is already a
member of the initiator’s fragment.

ACCEPT -> Sent in response to a CONNECT message by a sleeping processor. In this case the
recelving processor joins the fragment and becomes the emissary of the new fragment.

CHANGE LEVEL/ID -> Sent to inform the member of a fragment that the level, and possibly
the ID, of the fragment has increased. When two fragments amalgamate it is sent in place
of an accept message. Also, this message is sent in response to a CONNECT message
from an equal leveled fragment with a smaller ID. In this case the fragment with the
smaller ID is suspended.

TAKEOVER-> Sent to an emissary of a smaller leveled fragment or a fragment of equal level
but smaller ID. When a processor receives this message it is locked and will not process
other messages until it receives a CHANGE LEVEL/ID message with a larger level.

RESUME -> When two fragments amalgamate only one emissary survives to lead the new
fragment. As a result a number of edges may be only partially explored (i.e., still in the
chiid state). The current emissary sends this token message to pass leadership to a child
when no unexplored edges exist.

COMPLETED -> An emissary sends this message to its parent in the spanning tree to indicate

that all possible edges have been examined. When a processor has examined all adjacent
edges it enters the finished _member state.

4.5.1.4: Distributed Spanning Tree Algorithm:

f* sleeping state - a sleeping processor waits 1o be annexed */
sleeping:
receive(rec_msg.rec_edge)
IF msg = CONNECT /* an invitation from a fragment to join */
edge_state[edge] « child
rec_edge « send(ACCEPT)
become emissary
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/* create fragment and iry to annex all other processors */

emissary:
IF initiator
level ¢ 1, frag_id « my_id; /* initialize level and fragment identity */
FOREACH edge e suchthat (edge_state[e] = unexplored) DO /* while unexplored edges exist */
e«—scnd(CONNECT level frag_id) /* send connect message on edge c*/
receive(msg rec_edge) /* receive a message */
WHILE rec_edge # ¢ /* while the reply is outstanding */
msg_qucue ¢~ msg /* save message on queue to process later */
receive(msg rec_edge) /* get another message */
END WHILE
PROCESS msg OF TYPE: /* process the message we were waiting for*/
1) ACCEPT: /* annexed a sleeping processor */
cdge_state[rec_edge] « parent /* mark the edge as parent edge */
become member /* relinquish leadership */
2) REJECT: /* edge would produce a cycle */
edge_state[explore_edge] « reject /* mark edge as rejected */
3) CHANGE LEVEL/ID:

IF get_level(msg) = level /* suspended - tried to annex frag with same level but larger ID */
edge_state[explore_edge} « unexplored /* reset the edge status */
become suspended

ELSEIF get_id(msg) # frag_id /* different ID - annexed by another fragment */
level « get_level(msg); frag id « get_id(msg) /* get new level and ID */
edge_state[explore_edge] « parent; /* set new parent edge */
broadcast(CHANGE LEVEL/ID,level.frag_id) /* send new level/ID to all members of frag. */
become member /* relinquish leadership */

ELSE /* we've taken over another fragment */
IF get_level(msg) > level /* see if the level has changed */

broadcast(tCHANGE LEVEL/ID, level frag id)
/* send new level/ID to all members of frag. */
END PROCESS msg

/* after we have received the expected message process the messages in the message queue */
FOREACH msg in msg_queue DO
PROCESS msg OF TYPE:

/* received a connect or takeover message - when received at emissary they have the same effect */

1) CONNECT: /* connect & takeover message process same way */
2) TAKEOVER:

IF level > get_level(msg) /* smaller level - we annex them */
rec_edgee—send(CHANGE LEVEL/ID, level, frag_id) /* send new level/ID to fragment */
vdge_state[rcc_edge] « child /* set edge to child */

ELSEIF level = get_level(msg) /* same level - must increase level */
level « level + 1 f* increase the level number */
cdge_state[rec_edge] « child /* set edge state to child */
rec_edgeesend(CHANGE LEVEL/D Jevel,frag 1d) /* send new level/ID to other fragment */
broadcast(CHANGE LEVEL/ID level frag id) f* inform our frag of new level/ID */

ELSE * level greater - we are annexed & relinquish control*/
edge_state[rec_edge] « parent /* set edge state to new parent */
level « get_level(msg) /* new level is level of larger fragment */
frag_id « get_ID{msg) f* new ID is ID of larger fragment */

rec_edgee—send(CHANGE LEVEL/ID Jevel,frag id)
/* this tells larger frag. we have ioined it */
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broadcast(CHANGE LEVEL/ID,level frag_id) /* inform our frag of new level/1D ¥/
become member

END FOREACH /* no more messages in the queue */
END FOREACH /* no more unexplored edges */

FOREACH edge e DO /¥ if any edge exists which is not completed */
IF edge_statefe] = child /* then pass the leadership on to it */
e—send (RESUME)
become member;
IF edge_state[parent] = child /* when only one child edge is left and all others */
ee—send (COMPLETE) f* arc completed then send a completed message */

become member;

/* if no child edges are left then the spanning tree much be complete */
become finished;

/* a member of the spanning tree - relays messages to the current emissary */

member:
IF initial = true
locked « false
IF locked = falsc AND msg_qucue NOT empty /* process message on the queue first */
Mmsg « msg_queue /* get message from the queue */
ELSE
receive(msg, rec_edge) /* else reccive a new message */
IF locked = true AND msg CHANGE LEVEL/ID /* if locked wait until change Ievel/ID msg */
msg_queue « msg /* save the message on the qucuc */
PROCESS (msg) OF TYPE: /* process the new message */
1) CHANGE LEVEL/ID: /* change the level and ID of fragment */
level « get_level{msg), frag_id « get_id(msg) /* set new level & 1D */
IF locked = true /* in locked mode */
locked « false /* unlock the node */
msg « get_takeover_msg(msg_queuc) f* check for takcover message buffered */
IF level > get_level(msg) /* if level greater than takcover then ignore */
edge_state[msg_edge]e child /* set edge takeover msg arrived on to child */
broadcast{CHANGE LEVEL/ID level frag id) f* inform rest of frag of new level/1D */
ELSEIF level < get_level(msg) /* new takcover msg has higher level */
level « get_level(msg) /* get new level */
frag_id « get_ID(msg) /™ get new fragment 1D */
edge_state[parent] « child /* change old parent edge to child */
edge_state[msg_edge] « parent /* edge that takcover msg came on is now parent */
broadcasi(CHANGE LEVEL/ID, level frag_id) f* inform rest of frag of ncw level/ID */
ELSE /* akeover msg had same level - create new level */
level level + 1 /* increase level */
edge_statefmsg_edge] « child /* edge that takcover msg came on 1s child */
broadcast(CHANGE LEVEL/ID level frag id) /* inform rest of frag of new level/1D */
ELSE /* was not locked */
edge_statefparent] « child /* change old parent edge to child */
edge_state{rec_edge] « pareat /* sct new parent edge */
broadcast(CHANGE LEVEL/ID level frag _id) /* inform rest of frag of new level/ID */
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2) CONNECT:

IF level > get_levelirec_msg) f* attacking frag has smaller level */
rec_edges—send/CHANGE LEVEL/ID, level, frag id)

/* send our level/ID o smaller fragment */

edge_statefrec_edge] — child /* set edge 1o be a child */
ELSEIF level = get_level rec_msgj AND get_idi{rec_msg) < frag_id

/* else if same level but smaller ID then suspend the fragment */

rec_msgesend{(SUSPEND; /* suspend the attacking fragment */
ELSE /* attacking fragment is larger or larger ID */
locked « true /* lock the node */
parenl « send{TAKEOVER) /* send TAKEOVER message to parent */

3) TAKEOVER: /7 in the process of being arncxed by another node */
locked « true /* lock the node */
parent « send(TAKEOVER; /* send TAKEOVER message to parent */

4y COMPLETED: f* this branch is completely explored */

edge_state[rec_edge] « completed
become emissary
5) RESUME: f* the processor becomes emissary of the fragment */
edge_statefrec_cdge] « child_resme
beccome emissary

/* the fragment tried 10 annex a fragment of same level but greater ID - now waits passively to be annexed
however can stilf annex a smaller processor which tries 1o connect 1o ir=/

suspended:

receive(msg, rec_edge) /* geta new message to process */

PROCESS msg OF TYPE:

/* received a connect or takeover message - when received at emissary they have the same effect */
I sary Ingy

1) CONNECT:
2) TAKEOVER:

IF Ievel > get_level(msg) /* smaller level - we annex them */
rec_edgee—send(CHANGE LEVEL/ID, level, frag_id) /* send new level/ID to fragment */
edge_statejrec_edge] « child /* set edge o child ¥/

ELSEIF level = get_level{ msg} /* same level - must increase level */
frag_id « get_ID{msg) /* new ID is ID of annexing fragment */
level « level + | /* increase the level number */
edge_state{parent] « chiid /* set old parent edge to child */
edge_stateirec_edge] « parent /* set edge state 1o parent */
rec_cdgeesend{CHANGE LEVEL/D Jevel frag_id) * send new level/ID to other fragment */
broadcast{CHANGE LEVELAD level frag_id) /= inform our frag of new level/ID */

ELSE 7 level greater - we are annexed & relinquish control*/
edge_statefrec_edge] « parent ¥ set edge state to new parent */
level e get_fevelimsg) /* new level is level of larger fragment */
trag_id « get_ID¢msg) /* new 1D is ID of larger fragment */
rec_edgeesend{CHANGE LEVELAD Jevel frag_id) /* tell larger frag. we have joined it */
broadcastt CHANGE LEVELAD level frag_idy /* inform our frag of new level/ID ¥/

become member

Algorithm 4.3: Distributed Spanning Tree Algorithm



Chapter 4 - Distributed Reliable Subnetworks

4.5.1.5 Distributed Spanning Tree Algorithm - Correciness and Complexity
Thegorem 4.4: Algorithm 4.3 eventually terminates with the complered edges forming a

Proof. From the detailed discussion of the algorithm, it can be seen that an edge is added to a
fragment if, and only if, that edge does not cause a cycle in the fragment. Moreover, every
edge in the network is given an opportunity to join a fragment by sending a CONNECT

message to one adjacent node. Therefore, if the algorithm terminates, it terminates correctly.

The algorithm terminates when all the edges incident to one node are labeled rejecr or
completed. If we assume that there is only one initiator, then the spanning tree consists of @
single fragment which is constructed entirely by annexing sleeping processors. Assuming
that the algorithm visits all nodes of the network and considers all edges appropriately, it is
obvious that the algorithm terminates. Assume that more than one initiator exists and at least
two fragments exist in the network at one time. Therefore, to show that the algornithm
terminates, it is sufficient to show that no deadlocks exist when combining fragments. From
the discussion in section 4.5.1.3. each time two fragments combine, one emissary
relinquishes leadership and the other remains in control of the combined fragment. The
exception to this is when a fragment tries to annex another fragment, with the same level but
larger ID, and is suspended in the process. The suspended fragment is passive, will never
increase its level and will never form the complete spanning tree. A deadlock can only exist if
all fragments in the network are suspended. However, this is impossible since a fragment can
only be suspended by a fragment with the same level and larger ID. Even if all fragments
have the same level, there must be one fragment with the largest ID which can not be
suspended. Therefore, at least one processor is an active emissary at ail times and no

deadlock exists. =
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Theorem 4.5: The total numt i

4.3 is O(nlog,n +e).

essages used to construct a spanning tree by Algorithm

3

Proof. By definition, the maximum level of any fragment is log,n. During each level, at most
n-1 TAKEOVER, RESUME and CHANGE LEVEL/ID messages may be sent for a total of 3(n-
1)log,n. The only exception to this is the CHANGE LEVEL/ID message which can also be used to
suspend another fragment. In the worst case, n fragments can exist and therefore at most n-1
fragments can be suspended through the entire execution of the algorithm. A CONNECT
message and its response (i.e., ACCEPT, REJECT) is sent over each edge in the network for a
total of 2e messages. Finally, at most n-1 COMPLETED messages are sent when all processing
1s completed at a node.

The total number of messages is: 3(n-1)log,n + 2e + 2(n-1) which is O(nlog,n +¢). &

4.5.1.6 Determining the Connectedness of the Approximate Reliable
Subnetwork - Algorithm Details:

Once the spanning tree has been constructed on the ARSN, using the previous algorithm,
the test for disconnection is straightforward. Each processor in the network checks for out
edges and then reports the results to the leader. The algorithm may be implemented as follows:
the leader of the spanning tree broadcasts a request to search for our edges. When a processor
receives the broadcast it performs the search by sending an INQUIRE message, containing the
spanning tree ID, over each edge which is not in the ARSN. When a processor receives an
INQUIRE message which contains the same spanning tree ID, the edge is an in edge and the
processor replies with a CONNECTED message. If a processor receives an 1D, different than its
spanning tree ID, the edge is an our edge and the receiving processor replies with a
DISCONNECTED message. A leaf processor in the spanning tree sends a CONNECTED message
to its parent, if it has no out edges, and a DISCONNECTED message otherwise. An interior
processor in the spanning tree sends a CONNECTED message to its parent, if it has no our edges

and it received a CONNECTED message from each of its children. Otherwise, the interior
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processor sends a DISCONNECTED message. This communication pattern has been referred to
as a convergecast in [A85]. The algorithm terminates when the leader receives a reply from
each of its children. The ARSN is disconnected if the leader receives at least one

DISCONNECTED message.

Since the ARSN has a reduced size of at most K(n-1) edges, the spanning tree can be
constructed with 3nlog,n + 2K(n-1) + 2n messages. The convergecast requires exactly 2(n-1)
messages to begin the check for connectedness and return the results. Each edge which is not
in the ARSN is queried for a total of 2(e - Kn) messages. Therefore, the total number of
messages to determine if an ARSN is connected is: 3nlog,n + 2K(n-1) + 2n + 2(n-1) + 2(c -

Kn) which is O(nlog,n + e).

4.5.2 Repairing A Disconnected Approximate Reliable Subnetwork.

When the ARSN is found to be disconnected we must decide whether to rebuild the ARSN
or repair the existing structure. As previously discussed, if we rebuild the ARSN it generally
requires that the value of K be increased. The exception to this is if a property of the network
can be changed, for example processor labeling, or if the tie breaking scheme can be changed.
In these situations it is possible to reconstruct the ARSN using the same value of K and
possibly produce a different structure which is connected. If we assume that the value of K is
increased, the new ARSN can be constructed as follows. The leader of the spanning tree
broadcasts a message to all members of the fragment which informs them to select an additional
edge. Upon receiving the message each edge selects its K+ most reliable edge and includes it
in the ARSN, if it is not already a member. When a processor adds a new edge to the structure,
the processor at the other end of the edge is informed. Beginning with the leader, the spanning
ree algorithm is executed which sends a connect message over each new edge. When the new
spanning tree is complete, the leader broadcasts the new fragment identity. Upon receiving the

new fragment identity, each processor tests previous out edges to see if they still connect to a
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different fragment. If at least one edge remains out, then the ARSN remains disconnected and

K is increased again and the procedure is repeated.

Although the ARSN can easily be rebuilt, the additional edges required may negate any
previous advantage which the structure offered. Furthermore, because the ARSN is not
guaranteed to be connected, it may require that the value of K be incremented numerous times
before a connected structure is constructed. In general, it will be better to repair the existing
structure. We justify our choice based on the following observations:

1. Based on the observations of section 4.3, when an ARSN for K22 is disconnecied it is

likely to be partitioned into only two groups. The repair algorithm can connect two

fragments by finding the most reliable edge between them.

2. We have spent considerable network resources already on building the spanning tree and
checking for connectedness. In light of the previous observation and because the
spanning tree is already in place, it may be a simple task to connect the fragments.

When the ARSN is disconnected, there exists at least two fragments, and possibly more,
which must somehow be connected. Each fragment has an active leader and together they must
cooperate to join into a single connected ARSN. Joining fragments of the spanning tree is very
similar to constructing a spanning tree. The spanning tree algorithm, with minor modifications,
could be used to join the fragments except that algorithm 4.3 connects two fragments by an
arbitrary edge. In order to maintain the reliability of the ARSN, fragments must be joined by
the most reliable edge between them. In fact, the algorithm to repair the disconnection will be
almost identical to a minimum-weight spanning tree algorithm. Because there are a number of
distnibuted MST algorithms available we will not formally define a disconnection repair
algorithm. However, we briefly outline the steps of the algorithm which are as follows. The
leader of a fragment broadcasts a request for the most reliable out edge in the fragment. Upon
receiving the request, a processor tests each unused edge to see if it is an our edge and sends,
by a convergecast, the reliability the most reliable out edge in its subtree. When the leader of

the fragment knows the most reliable our edge, it initiates a connection request between the two
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fragments. Through an annexation process, similar in concept to that of algorithm 4.3, the two
fragments are joined. The leader of the new fragment again broadcasts a request for the most
reliable out edge. The process terminates and the ARSN is connected when no out edges are

reported.

The number of messages required to repair a disconnected ARSN is ultimately dependent
on the number of fragments which exist. From the results of table 4.4, when an ARSN is
disconnected there is likely to be two partitions, one small and one large. In this situation, the
smaller fragment will likely discover and initiate the repair, before the larger discovers a
disconnection exists. The spanning tree algorithm can be modified to annex a disconnected
fragment when a REPAIR message is received. The number of extra messages required to repair
the disconnection is minimal. In the worst case however, when K=1 and each fragment
contains 2 processors, there can be O(n) fragments. Therefore, the number of messages to

repair the disconnection in the worst case is O(nlog,n + e).
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Chapter §

Empirical Results:

Evaluating the Approximate Reliable Subnetwork

5.1 Motivation:
In chapter 4 we gave a distributed algorithm to compute an approximate reliable

subnetwork (ARSN) for a predetermined value of K, of a given general network. The
algorithm is based on a graph reduction technique whereby all but the K most reliable edges for
each vertex are eliminated. The primary advantage of the reliable subnetwork is the reduction in
the size of the network. Since the network is reduced by eliminating the most unreliable edges,
we can expect the total number of significant edge failures to be reduced (since the most
unreliable edges are not used a failure of one of these is of little consequence). Because of this,
we reduce the frequency which local routing tables need to be updated or regenerated. Also as a
result of reduced size, a distributed computation, which is measured in terms of message
complexity, would be expected to execute noticeably faster. Unfortunately, both of these
benefits do not come without a price. Because we are reducing the graph by eliminating edges,
we unavoidably decrease the reliability of the ARSN with respect to the original network (after
all we can not increase the reliability of a graph by taking away edges). Given this invariant,

the question arises as to how significantly does the ARSN reduce the reliability?
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e

n this chapter we empirically evaluate the ARSN for various values of K, given networks
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different order, size and reliability of communication edges. We evaluate the ARSN in terms

Fa'
.

of reliability, path length and total edge count. We conclude with a discussion of appropriate

values of K and an overall analysis of the ARSN.

5.2 Test Philosophy:

Comparing the reliability of an ARSN to the original network is a relatively straightforward
task, however, making general observations which apply to all ARSNs is much more difficult.
The difficulty arises due to the fact that there is an infinite number of network topologies to
test. Because it is possible to test only a small portion of possible network topologies, our
approach is to randomly generate networks to be tested. The intent is to obtain a representative
sample of general graphs, which may include any number of different classes of graphs.
However, when graphs are completely random it becomes difficult to make general
observations as the physical structure of the graph may affect the outcome of the results. Ior
this reason, we restrict the types of topologies we look at by making the following

assumptions, concerning the physical properties of the graphs:

Graph Order: The primary advantage of the ARSN is in the reduction in edges , or network
size, without a significant reduction in network reliability. For a distributed algorithm ,
reduction in terms of messages sent may be significant if the order of the network is
sufficiently large. However, for a small network, say less than 10 vertices as one might
find in a local area network, the small number of vertices may not justify the overhead
costs of computing the ARSN. Moreover, if the network is sufficiently small, the
computational savings realized in the reduction of the network size may be insignificant.
For this reason we consider only network topologies where the number of vertices is
large. In the specific networks which we generate we use values of n = 20, 40, 60, &0

and 100.
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Graph Size! As
computational savings when the size of the network is reduced. However, even when the
size of the network is large, if each vertex has small degree, the reduction in the size of
the network will be small even when K= 1. An example of this type of network is the
ARPAnet where most vertices have 2 or 3 edges. For this reason we restrict ourselves to

dense networks of large size. In the specific networks which we generate we use values

of € = 20%, 40 %, 60%, 80% and 100% of all possible edges.

Edge reliahilitv; It is difficult to accurately specify the reliability of a typical edge in a

computer network. Recall that we define the reliability of an edge as the probability that it
1s 1n a operational state. The definition was left intentionally vague so as to encompass a
number of more restrictive definitions of reliability. For instance, if edge reliability is
defined in terms of the availabiliry of an edge for a specific period of time, then we would
expect the reliability of an individual edge to be quite high. In a study of the ARPAnet,
by Frank and Chou [FC74], where availability was the reliability criteria, it was found
that the average edge had a reliability of 98%. In contrast, if we define reliability to be the
probability that an edge has no failures during a given period of time, then we would
expect the reliability of a typical edge to be much less. Even the physical properties of the
transmission medium can affect the reliability of an individual edge. For these reasons it
is difficult to give typical bounds on the reliability of an edge. We make the assumption
that the reliability of individual edges can have significant variance! . In our analysis we
generate graphs in which edges have the following ranges: [100%...1%],
[100%...50%], [100%...75%] and [100%...95%].
The original intent for constructing an ARSN was to provide a reliable environment in
which to execute distributed algorithms. Consequently, the ideal environment for evaluating

an ARSN would be to physically create a network, introduce various edge faults, compute the

U Afterall, if all the cdges in the network had the same reliability then an algorithm which randomly chose X
cdges for each verntex would produce the same effect as computing the RSN.
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reliable network and run various distributed algorithms. Given this environment, one could
then compare the types and quantities of edge failures encountered on the ARSN with the

identical algorithms running on the original network.

Unfortunately, such a setup is beyond the scope of this thesis. Accordingly, we must resort
to evaluating ARSNs of randomly generated networks.2 Moreover, because we have no way
of simulating the execution of a distributed algorithm over a network with edge failures and
recoveries, we must evaluate the ARSN using other criteria. In particular we use the following

three measures in evaluating the ARSN:

1) Reliability: By far, the most important evaluation criteria of the ARSN is the reliability,
as defined in chapter 3, in comparison to the reliability of the original network. By
definition, the reliability of the original network must be greater than or equal to that of
the ARSN. However, if the reliability of the ARSN is not significantly less and the
number of edges has been significantly reduced, then the ARSN offers certain

advantages for distributed execution over the original network.

2) Reliable Path length: 1deally, the ARSN will be used as a general communication
network in which routing tables are computed and messages are potentially passed
between all pairs of processors. We assume that a message travels over the most reliable
path between two processors. If path lengths differ significantly between the ARSN and
the original network, then messages must travel farther to reach their destination and the
justification for computing the structure is weakened. We examine both average and
worst case (maximum) most reliable path length per graph.

3) ARSN Size: As previously deliberated, the primary advantage of the ARSN is in the
computational savings due to the reduction in the size of the network. If the network
reduction is significant then the cost overhead for computing the ARSN and for

determining connectedness can be justified.

2 Refer 10 Appendix 1 for 2 relevant discussion and evaluation of the random number generator.
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5.3 Test Setup & Methodology:

The test was organized in the following manner. Random graphs were generated for each
of the 100 combinations of order, size and edge reliability (as discussed in the previous
section). For each graph combination, a 1000 graphs were created and evaluated, for a total
sample of 100,000 graphs. The random graphs were generated using the algorithm of
Nijenhuis and Wilf [NW78] which generates random labeled graphs of fixed size and order
based on the probability model B for random graphs.3 The algorithm uniformly generates, at
random, a subset of size j from a set of size n, where j< n. Generating a graph, of order n and
size e, is then a matter of conceiving a labeling for the (J) possible edges and randomly
choosing e edges. The reliability of each generated edge is uniformly generated from the given
range. After each random graph is generated a spanning tree is constructed to verify

connectedness. Graphs found to be disconnected are discarded.

Following the generation of a connected graph, the reliability of the graph is computed
using algorithm 3.1. In addition, if the graph is complete, the most reliable paths between all
pairs of processors is computed. From these paths, we generate the average and maximum

path length values.

The ARSN is constructed, for values of K = 1...9, 4 using algorithm 4.2 to choose the K
most reliable edges for each processor. The ARSN is then checked for connectedness by
constructing a spanning tree. If it is found to be disconnected, the ARSN is repaired by
sequentally adding the most reliable edge, not currently in the ARSN, untl the structure is
connected. For each ARSN constructed, the reliability is computed. The actual reliability
values for the ARSNs computed are only meaningful as a comparison to the reliability of the

original graph. For this reason, we normalize the reliability of an instance of the ARSN by

3 Fora complete discussion of probability models A, B and C see {P85].

4 Although approximate reliable subnetworks were computed for values of K=1...9 it was found that for values
of K>5 there was no significant difference in reliability or path lengths compared to the original graph. For this
reason, all ARSNs with K>3 are removed from further consideration
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expressing it as a percentage of the reliability of the original graph. A nomalized reliability of
95% for a particular ARSN, for example, means that the structure is 95% as reliable as the

original network.

If the original graph is complete, we compute the most reliable path between all pairs of
processors in the ARSN. From these path lengths we can compute the maximum most reliable
path and the average path length of the most reliable paths. In addition, we count the number
of edges in the ARSN to determine how much the size of the network has been reduced.
5.3.1 Empirical Results - Reliability:

The results of the normalized reliability comparison are listed in appendix 2, tables A2.1
through A2.25. Each table represents the ARSN computations for specific values of n and ¢.
The reliability of each edge was randomly generated once from each of the four reliability
ranges ([100%...0%], {100%...50%], [100%..75%] and [100%...95%}). This results in four
individual graphs with the same physical structure. Each table shows the average of the
normalized reliability for values of K from 1 to 5. As well, for each reliability and K
combination, the standard deviation, minimum reliability and maximum reliability are

recorded.

As an initial observation, the reliability ARSN, for all values of e, n and K tested, is
remarkably high. Even in the worst case, (table A2.1, n =20, e = 38 ) when K=1, the ARSN
has an average normalized reliability of approximately 82%. When K=2, the worst case
average normalized reliability is greater than 91%. In the best case, (table A2.25, n =100, ¢ =
4950) with K = 1, the average normalized reliability is almost 100%. These results clearly
indicate that, on average, the reliability of the ARSN is not significantly compromised and
therefore is a suitable substitute for the original network. Yet, there are specific instancesn
which the reliability of the ARSN is significantly less then the original (table A2.1, n =20, ¢ =

38, K= 1, Range = [100%..0%], Min. Rel. = 51.25). Clearly certain types of networks lend
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themselves to the construction of a good ARSN. We briefly examine some of the contributing
factors.

The predominant factor affecting the reliability of the ARSN is the value of K. As shown in
each of the tables of appendix 2, the normalized reliability increases as the value of K
increases , regardless of order, size or reliability range used. This result is obvious if we
consider that increasing K, increases the number of edges in the ARSN. Choosing an
appropriate value of K, therefore, is a matter of weighing the benefits of a network of small
size versus a more reliable network. At one extreme we choose a value of K= 1. This ARSN
has the least edges and in fact it is a spanning tree (when connected). It has the lowest
reliability for all values of K, although the reliability is still quite high on average. The major
drawback of using K =1 is the high probability that the ARSN is disconnected (refer to table
4.2). In all but a few instances, the ARSN was disconnected and had to be repaired by the
reconnection algorithm (section 4.5.2). Alternatively, when K=5, the resulting structure is
more reliable and, for all practical purposes, never disconnected. Because the structure is
assumed to be connected with high probability, we can forgo the check for connectedness
(section 4.5.1) which may save considerable computational resources. The disadvantage of
this structure is that it contains significantly more edges than the K=1 ARSN and will be
identical to the original network if each vertex has edge degree 5 or less. A reasonable
alternative is the ARSN when K=2 . This structure is more reliable than the K=1 ARSN and
in many instances is “almost” as reliable as the K=5 ARSN. It has far fewer edges than the
K=5 ARSN and less than twice the edges of the K=1 ARSN. The K=2 ARSN is likely to be
connected with a probability > 99% for values of n 2 20 (see table 4.4) and as a result the

check for connectedness may be unnecessary.

It can be seen from these results that a significant factor in the construction of a “good”
ARSN is the range used to compute the reliability of the edges. In each table ,as the edge

reliability range decreases the overall reliability increases, as we would expect. The ARSN and
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the original network differ in reliability only when at least one edge of the original network is
not included in the ARSN. In this case, the most reliable path from at least one vertex to

another will not be optimum. When the range of edge reliability is small, the alternate path is
likely to be almost as reliable as the optimum. As the range increases we would expect the

reliability of the non-optimal path to decrease.

Another significant factor is network size. From the tables in appendix 2, it can be seen
that when the size of the network is increased the normalized reliability increases almost
without exception, for smaller values of K. From a combinatorial point of view this seems
unlikely since as more edges are added the greater the number of paths that exist in the
network. Therefore, there is less chance of locally choosing the most reliable paths. We can
offer two possible reasons for this phenomenon. First, the complete network is the densest
and therefore the most reliable. In this type of network it is often better to use a multiple edge
path which uses a few very reliable edges rather than an unreliable local edge. Therefore, as
the network approaches completeness it becomes increasingly likely that a few highly reliable
edges dominate the most reliable paths between pairs of vertices. Because our algorithm is
greedy, it is almost certain that these edges will be chosen. Second, with a network of small
size there can be great variance in the physical structure of the network. Some combinations of
edges and edge reliability may produce a pathologicat structure which can not be reduced
reliably by a locally based algorithm. As the number of edges in the network increases, the

number of physica: variations is reduced and consequently this effect is diminished.

The effect of order on normalized reliability of an ARSN is almost negligible. From the
tables in appendix 2, when the percentage of edges is constant there is little disparity in

normalized reliability when n is varied.
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3.3.2 Empirical Results - Path Length:

The results of the ARSN most reliable path length comparisons, for values of K = 1.5,
gth) arnd 3.2 (average path length) . For

used. The complete network represents the worst case for path length since there are the
greatest number of individual paths available. Accordingly, these results will apply to other
networks of smaller size. It was found that there was no statistical difference in the results

obtained between graphs with different edge reliability ranges and consequently these are not

£~

considered.

ARSN n=20 n = 40 n = 60 n = 80 n=100

complete 7.8 11.2 13.8 15.6 1¥.1
K=1 11.2 17.5 21.7 29.5 3%.2
K=2 9.1 13.0 16.0 18.3 21.4
K=3 8.2 11.4 14.2 15.8 18.6
K=4 7.8 114 13.8 15.6 18.1
K=5 7.8 11.2 13.8 15.6 18.1

Table 5.1: Maximum Path Length of the Most Reliable Paths of an ARSN for
values of K=1..5, Constructed from a Complete Graph of order n.

ARSN n =20 n =40 n =60 n = &0 n= 100

complete 2.7 3.4 3.9 4.6 5.2
K=1 4.7 6.1 7.2 8.0 9.3
K=2 3.4 4.6 5.5 6.4 7.1
K=3 29 3.7 4.4 5.2 5.7
K=4 2.8 3.5 4.1 | 48 5.3
K=5 2.7 34 4.0 4.7 5.2

Table 5.2: Average Path Length of the Most Reliable Paths of an ARSN for
values of K=1..5, Constructed from a Complete Graph of order n.
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smaller size. Again, it was found that there was no statistical difference in the results obtained

between graphs with different edge reliability ranges and consequently these are not

considered.
ARSN n=20 n=40 n =060 n =80 = 100
complete | 190 (100%) | 780¢100%) | 1770 (100%) | 3160 (100%) | 4950 (100%)
K=1 19.0{10.0%) | 39.0(5.0%) | 59.0(33%) | 79.0(2.5%) | 99.0 (2.0%)
K=2 26.3(13.8%) | 55.7(7.1%) | 804 (4.6%) | 109.9 (3.5%) | 137.0 (2.7%)
K=3 38.1(20.0%) | 78.1 (10.0%) | 1150 (6.5%) | 157.0 (4.9%) | 195.9 (3.9%)
K=4 49.6 (26.1%) 1014 (13.0%) 150.2 (8.5%) | 202.4 (6.4%) | 253.3 (5.1%)
K=5 | 6083207 | 122038 {18590005%) ) . o (7.8%) | 309.2 (6.29%)
Table 5.3 : Graph Size for ARSN of Various Values of K, Constructed

from Complete Graphs of Order n.
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K=1 structure. Since the K=2 ARSN is more likely to be connected, (table 1.2) it is a much

5.4 Summary

In this chapter we have empirically evaluated the ARSN on the basis of reliability, path
length and network size. Overall, the results are verv encouraging. Given a sufficiently dense
network, it is possible to reduce a network by choosing only the K most reliable edge for cach
vertex without substantially reducing the reliability of the network. Although different
extremes of K produced structures with different advantages and disadvantages the best value
seems to be K=2. The K=2 ARSN is generally very reliable, has small network size and path
lengths and most important, is virtually always connected. This last fact enables us to create the

ARSN without having to check for connectedness.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion.

Throughout this thesis our primary focus has been to provide reliable message

transmission over an unreliable network. For this purpose, we begin by introducing a new
distributed computing model. Unlike previous models, the new model assumes that the
reliability of each edge is known prior to execution. Reliability knowledge is the first step in
achieving reliable transmission since it allows unreliable edges to be avoided when a more

reliable alternative exisss.

In chapter 3 we considered network reliability. Classical measures of network reliability,
such as connectivity and resilience are known to be intractable in the general case. For this
reason, we propose a new definition of network reliability. The Average All Pairs measure is
based on the reliability of the most reliable path between all processors in the network. The
new measure 1s unique for two reasons. First, unlike its predecessors, it can be computed

exactly in O(n3) time. Second, due to the similarity between the reliability definition and the
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way messages are passed in a network. the measure s ideally suited to distributed computing

In chapier 4 we examined the issue of message transmission over an unreliable network.
Typically, network unreliability is solved by making the distributed algorithms fault-tolerant.
Fault-tolerant mechanisms typically make the algorithm more complex and only solve the
problem in limited circumstances. As a solution to unreliable transmission, we propose
constructing a Reliable Subnenwork. The reliable subnetwork is a reduction in the size of the
network based on the Average All Pairs reliability measure. Aside from retaining the reliability
of the original network, the primary advantage of this structure stems from the reduced number
of edges. Because we generally only keep the most reliable edges, any distributed algorithm
executing on the reliable subnetwork will encounter fewer edge failures and experience a

reduced message complexity.

The exact reliable subnetwork algorithm unfortunately incurs a large message complexity.
For this reason, we construct an approximation to the reliable subnetwork. The approximate
algorithm is based on a greedy technique whereby processors combine their K most reliable
local edges to form a global structure. The approximate solution can be constructed with O(c)
messages. Unfortunately, the approximate structure does not retain the reliability of the original
network nor does it ensure connectedness. By analytical and experimental means, we are able
1o show, with high probability, when K>1, the approximate reliable subnetwork is connected.
When K=1 it is almost never connected. To ensure that the structure is connected, a new
algorithm is outlined which guarantees connectedness. The algorithm checks for connectedness
by constructing a spanning tree and checking for our edges. A new spanning tree algorithm 1
proposed, in which larger fragments never wait for smaller fragments. A connected

approximate reliable subnetwork can be constructed with O(nlog,n + e} messages.

In chapter 5 we again examined the approximate reliable subnetwork. As previously stated,

the approximate solution does not have the same reliability as the original network. We evaluate
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the size (number of edges) in the network. Network order does not seem to be an important

factor. From the results it can be shown, that the reliability of approximate reliable
subnetworks is not significantly less than the original network. We also evaluate the
approximate structure in terms of maximum path length and average path length. Again, these

were shown not to be significantly greater than in the original network.

6.2 Areas of Further Research.
With any type of research there are avenues which remain unexplored for reasons of time,
complexity or both. In this section we briefly outline a few areas which may provide interesting

avenues of research.

First, the network is unreliable and as such, even typically reliable edges may fail from time
to time. We have not discussed the implications of an edge failing either during or after the
construction of the reliable subnetwork. If the edge fails during the construction phase (i.e.,
before the distributed algorithm has begun execution) the solution is obvious. Since the failed
edge was only part of the local solution, it can be replaced with the next most reliable incident
edge. When the failure occurs after the construction is completed and a distributed algorithm,
or even the algorithm to check for connectedness, has begun, the solution is not so simple. A
distributed algonthm may locally label certain edges, such as member of a spanning tree, and
therefore a simple replacement scheme is not possible. Unfortunately in this situation, it is not
possible to completely dispose of fault-tolerant mechanisms. One possible solution is to
assume an eventually connected network, as described by Awerbuck and Even [AE84], in
which we basically wait untl the edge becomes operational again. If we assume that the reliable
subnetwork will rarely fail, then a viable alternative is to start the computation again when a

failure is encountered and the structure has been reconstructed.
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A related question concerns how the reliable subnetwork should be repaired once a member

number of edges for the reliable subnetwork exist. Eventually, however, every edge in the
subnetwork is likely to fail. Another solution is to replace the failed edge. This solution retains
the number of edges of the structure, but may cause the reliability of the structure to degrade

over time.

Finally, we have introduced a new distributed coinputing model with assumed edge
reliability. We have chosen to use this information by constructing the reliable subnetwork. In
reality, this research has only scratched the surface. Many other solutions and applications are

possible.
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Appendix 1

Evaluation of the Random Number Generator

Many of the result of this thesis are of direct consequence of experimental simulation : on
randomly generated graphs. The graph generation program creates the graphs with the use of i
random nun >er generator which produces uniform deviates. Values generated by the random
number generator are uniform in the sense that every number, in a specified range of the
generator, is just as likely as any other to be generated. Randomly generated values are used
both to select the edges of a graph, given a specific number of nodes, and to produce the

reliability of each edge.

Unfortunately, random number generators do not produce truly random numbers but rather
pseudo-random numbers based on a seed value and a mathematical calculation. Successive
random numbers, although appearing random, are in fact related and in some cases may cause
unwanted correlation between groups of numbers giving rise to inaccurate results!. It is
therefore imperative thai the random number generator behaves sufficiently random and is not a
contributing factor in any of the experimental results. In light of this, the random number

generator was subjected to the following three specific empirical tests to test its "randomness™:

Chi-Square: The chi-square test is perhaps the mos: basic of all random generator tests.

The test statistically compares actual generated sequences of random numbers with the

1 Although correlation between random numbers is a serious problem it does not generally affect values used in
a one dimensional order. For a more complete discussion of this see Press ¢t al [Pres88).
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Appendic ] - Evaluation of the Random Number Generator

numbers. The statistic Vis used to quantify the randomness of the sequence and is
computed as sum of the squares of the differences between the observed number in the
sequence and the expected numbers. A relatively high or low value of V generally indicates
an insufficiently random sequence. In this test a sequence of 100,000 values was generated

[~

with 50} degrees of freedom.

Run test: The run test tests a sequence of numbers for the length of its monotone
subsequences, either increasing or decreasing. The underlying idea is that for a sequence of
a given length the number of monotonic runs of a specific length can be theo-etically
predicted. A sequence with too few or too many runs of a specific length indicate an
insutficiently random sequence. As with the chi-square test, a statistic V is computed to

evaluate the sequence. In this iest a sequence of 100,000 values was generated and is

evaluated as a chi-squure test with five degrees of freedom.

Collision test: The collision test has been especially designed to detect the deficiencies of
poor generators. In this test a small number of random values are generated in comparison
to the number of predetermined intervals which cover the entire spectrum of possible
random values. When a random number is generated it will usually fall into a previously
empty interval, but if it falls into a non-empty interval then a collision has occurred. The
number of collisions are counted and compared with the expected number. In this test 220

intervals are used and 2! random numbers are generated.

The previously outlined tests are not meant 1o be an exhaustive evaluation of a particular
random number generator but instead to give a general indication of how random the
sequences are which it produces. The reader who wants more information on the specific

tests { and a number of others) should consult Knuth Vol 2 {K69].
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For comparison purposes three uriform random number generators were tested. Generator

(’“3

1s an early unix system random number generater rand which is known 10 be msulticienty
random in some cases. Generzior C has a period of 2311 and generates numbers in the range
[0...215-1]. Generator B is the unix system random number generator frand48 which uses the
well known linear congruen:ial algorithm with 48-bit integer arithmetic. Generator 8 has a

1

231.1]. Generator A. which is used i

H

period of 2#8-1 and generates numbers in the range [0...
all the emperical evaluations, is the system routine Irand48 augmented with a shuiffle algorithm,
he shuffle algorithm essentially is used to
break sequential correlations in random number generators. The algorithm works by initially
filling a fixed size buffer with random values. On each call of the random number generator,
the number generated by the system random number generator acts a hash key into the buffer
and the value at that location is returned as the random value. A new random number is

generated to refill the location.

Each of the three random number generators were tested fifteen times with different sets of
data for each of the three specific tests in order to geta realistic evaluation ef the algorithm. The
results of all three tests are identified by one of reject, suspect, almost suspect, describing
varying degrees of non-randomness in the test sequences or by pass, indicated by an empty
box and meaning the sequence is sufficiendy random. The individual random number generator
is evaluated on the basis of the three tests. The generator passes or produces sequences which
are sufficiently random if all three of the tests pass. A test, on the other hand, passes if the

majority of the sequences pass the test.

The results of the tests, shown in figure A.1, indicate that all three random number
generators pass the tests and are sufficiently random. However, it can be seen that generutor C
is somewhat questionable and the worst of the three. Generators A and B are both good

random number generators with A being slightly better than B. Because all the graphs used in
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the experiments are created with generaior A, it can be said that they are sufficiently random

=

- IR SRS DU . in i,
and the results obtained by their evaluation are valid.

Experiment Number

Random Test ] 1 2 314 516 17 8 9 :10/11412/13/14]{15

Chi-Square Test O
A | Run Test
Collision Test O
Chi-Square Test O
g | RunTest O
Collision Test O

Chi-Square Test O O ‘

cC Run Test O O

Collision Test O O o

@ Reject (O Suspect O Aimost Suspect
Figure A.1: Results of random number generator tests
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Appendix 2 - Reliability Analvsis o7 ihe Arproximare Reliable Subnenvork

Appendix 2

Reliability Analysis of the Approximate Reliable
Subnetwork

The tabies of this section show the reliability analysis of the approximate reliable subnetwork
for a number of randomly generated graphs. Graphs were generated by varying the order, size

and edge reliability.
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Appendix 2 - Reliability Analysis of the Approximate Reliable Subnetwork

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 82.62 91.76 99.20 99.64 99.99

Std. Dev. 15.32 6.87 1.63 0.14 0.01

Min. Rel. 58.98 67.83 89.91 98..62 99.50

Max. Rel. 94,74 100.0 100.0 100.0 100.0

100% - Reliahility 39.29 94.70 99.38 99.81 99.99

50% Std. Dev. 12.51 5.61 1.14 0.12 0.01

Min. Rel. 69.62 78.28 93.01 98.99 99.90

Max. Rel, 99.08 100.0 100.0 100.0 100.0

100% - Reliability 92.48 96.35 99 .45 99.89 99.99

75% Sid. Dev. 6.51 2.98 0.79 0.12 0.01

Min. Rel. 78.32 85.04 95.31 99.27 99.95

Max. Rel. 100.0 100.0 100.0 100.0 100.0

100% - Reliability 95.36 98.98 99.81 99.97 99.99

95% Std. Dev. 2.65 0.81 0.23 0.07 0.01

Min. Rel. 86.44 94.99 98.34 99.57 99.70

Max. Rel. 100.0 100.0 100.0 100.0 100.0

Table A2.1: Normalized Network Reliability N =20, E = 38 (20 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 89.74 94.53 99.35 99.90 99.98
Std. Dev. 10.25 4,19 0.77 0.18 0.05

Min, Rel. 68.52 81.52 95.32 98.42 99.62

Max. Rel. 99.51 99.98 100.0 100.00 100.00

100% - Reliability 92.90 96.41 99.41 99.88 99.98
50% Std. Dev. 5.60 2.96 0.61 0.15 0.05
Min. Rel. 77.55 84.31 97.03 99.15 99.69

Max. Rel, 99.88 99.98 100.0 100.0 100.0

100% - Reliability 95.32 97.79 99.61 99.92 99.99
15% Std. Dev, 2.65 1.75 0.36 0.09 0.02
Min. Rel. 84.08 88.86 98.16 99.54 99.86

Max. Rel. 99.46 99.68 100.00 100.0 100.0

100% - Reliability 97.36 99.15 99.79 99.93 99.99
95% Std. Dev. 1.56 0.42 0.13 0.05 0.01
Min. Rel. 9142 97.40 99.42 99.77 99.93

Max. Rel. 99.71 99.81 90,97 100.0 100.0

Table A2.2: Normalized Network Reliability N = 20, E = 76 (40 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=35
Range

100% - 0 Reliability 91.61 95.34 99.38 99.91 99 98

Std. Dev. 10.53 5.13 0.70 0.19 0.08

Min, Rel. 67.16 75.50 96,65 98.75 99.32

Max. Rel. 99.81 100.0 100.0 100.0 100.0

100% - Reliability 93.89 97.54 99.57 99.89 99.97

50% Std. Dev. 4.84 1.84 0.45 0.12 0.07

Min. Rel. 79.21 91.31 97.49 99.34 99,49

Max. Rel, 99.98 99.95 100.0 100.0 100.0

100% - Reliability 95.17 98.40 99.75 99.94 99,98

75% Std. Dev. 1.47 1.45 0.21 0.07 0.03

Min, Rel. 90.92 93.15 98.93 99.58 99.87

Max. Rel. 99.16 99.91 100.0 100.0 100.0

100% - Reliability 96.32 98.74 99.77 99.94 99.97

95% Std. Dev. 0.92 0.35 0.18 0.05 0.02

Min, Rel. 95.30 97.82 99.20 99.71 99.85

Max. Rel. 99.67 99.81 99.96 100.0 100.0

Table A2.3: Normalized Network Reliability N =20, E = 114 (60 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 93.14 96.07 99.39 99.90 99.97
Std. Dev. 7.66 3.52 0.70 0.26 0.01

Min. Rel. 77.51 86.96 95.62 98.60 99.29

Max. Rel. 99 .45 99.98 100.0 100.0 100.0

100% - Reliability 95.40 97.58 99.58 99.91 99.98
50% Std. Dev. 3.25 1.87 0.40 0.09 0.03
Min. Rel. 86.14 90.29 97.60 99.57 99.81

Max. Rel. 99.32 99.81 100.0 100.0 100.0

100% - Reliability 96.52 98.31 99.77 99,94 99.98
75% Std. Dev. 1.43 0.77 0.17 0.07 0.03

Min. Rel. 91.46 96.63 98.86 99.44 99,70

Max. Rel. 99.37 99.95 59.96 100.0 100.0

100% - Reliability 98.03 99.33 99.78 99.95 99.99
95% Std. Dev. 0.72 0.26 0.09 0.05 0.02

Min. Rel. 95.14 98.15 99.46 99.70 99.84

Max. Rel. 98.59 99.74 99.93 99.99 100.0)

Table A2.4: Normalized Network Reliability N =20, E = 152 (80 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

150% - 0 Reliability 93.95 97.35 99.59 99.93 99.99
Sid. Dev., 2.93 1.81 048 0.13 0.03

Min. Rel. 83.54 91.43 97.59 99.26 99.81

Max. Rel. 99.29 59.96 100.0 100.0 100.0

100% - Reliability 95.67 98.71 99.79 99.96 99.99
50% Std. Dev. 1.48 0.91 0.19 0.06 0.02
Min. Rel. 85.12 95.32 99.18 99.72 99.82

Max. Rel. 99.33 99.95 100.0 100.0 100.0

100% - Reliability 97.14 99.23 99.86 99.95 99.99
75% Std. Dev, 0.85 0.51 0.14 0.06 0.02
Min. Rel. 92.41 96.87 99.34 99.72 99.83

Max. Rel. 99.56 99.95 100.0 100.0 100.0

100% - Reliability 98.68 99.86 99.98 99.99 99.99
95% Sid. Dev. 041 0.11 0.02 0.01 0.01
Min. Rel. 96.92 99.38 99.96 99.96 99.98

Max. Rel. 99.59 99.99 100.0 100.0 100.0

Table A2.5: Normalized Network Reliability N = 20, E = 190 (100 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 83.21 91.45 99.22 99.65 99.94

Std. Dev. 12.52 5.11 1.13 0.54 0.18

Min. Rel. 65.31 73.93 93.87 96.18 98.74

Max. Rel. 95.48 98.41 99.90 100.0 100.0

100% - Reliability 88.53 93.99 08.88 99.75 09.96

50% Sid. Dev. 6.44 2.93 0.76 0.25 0.05

Min. Rel. 76.78 86.50 95.85 98.86 99.68

Max. Rel. 97.28 99.06 99.90 100.0 100.0

100% - Reliability 92.06 96.85 99.38 99.85 99.97

75% Std. Dev. 2.83 1.40 0.35 0.16 0.03

Min. Rel. 92.46 92.44 98.09 99.29 99.75

Max. Rel. 97.85 99.33 99.09 99.29 100.0

100% - Reliability 95.37 98.02 99.61 99.87 99.96

95% Sid. Dev. 1.29 0.45 0.15 0.05 0.03

Min. Rel. 93.08 97.06 99.06 99.62 99.76

Max. Rel. 97.29 99.36 99.87 99.96 99.99

Table A2.6: Normalized Network Reliability N =40, E = 156 (20 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=5
Range
100% - 0 Reliability 88.34 93.17 98.91 99.73 99,94
Std. Dev. 6.81 2.67 0.81 0.35 0.10
Min. Rel. 68.26 84.05 95.89 97.21 99.47
Max. Rel. 95.67 98.85 99.87 100.0 100.0
100% - Reliability 02.63 96.44 99.30 99.83 99.96
50% Std. Dev. 3.72 1.75 0.44 0.13 (.05
Min. Rel. 84.00 88.17 97.66 99.33 99.72
Max. Rel. 96.83 99.10 99.91 99.99 100.0
i00% - Reliability 94.34 97.20 99.52 99.87 99.96
75% Std. Dev. 1.88 0.77 0.25 0.07 0.03
Min. Rel. 90.22 95.46 99.62 99.65 999.82
Max. Rel. 97.26 99.18 99.94 99.98 100.0
100% - Reliability 95.76 98.05 99.65 99.88 99.95
95% Std. Dev. 0.94 0.31 0.12 0.05 0.03
Min. Rel. 93.61 97.93 99.21 99.70 99,85
Max. Rel. 97.54 99,51 99.85 99.95 99.98

Table A2.7: Normalized Network Reliability N = 40, E = 312 (40 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 90.68 95.51 99.16 99.80 99.95

Std. Dev. 6.10 2.26 0.51 0.19 0.07

Min. Rel. 78.01 86.21 97.35 98.80 99.63

Max. Rel, 96.89 99.37 99.91 99.99 100.0

100% - Reliability 93.56 97.33 99.41 99.82 99.96

50% Std. Dev. 3.64 1.15 0.30 0.11 0.04

Min. Rel. 87.29 91.97 98.29 99.46 99.75

Max. Rel. 96.71 99.29 99.93 99.99 100.0

100% - Reliability 94 .99 98.31 99.58 99.87 99.95

75% Std. Dev. 1.82 0.62 0.18 0.08 0.03

Min. Rel. 9227 96.25 99.15 99.61 99.81

Max. Rel. 97.66 99.37 99.87 99.99 100).0

100% - Reliability 95.77 99.11 99.65 99.84 99.92

95% Std. Dev. 0.77 0.21 0.08 0.05 0.03

Min. Rel. 93.75 98.32 99.34 99.66 99.83

Max. Rel. 97.73 99.46 99.81 99.91 99.97

Table A2.8: Normalized Network Reliability N = 40, E = 468 (60 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - () Reliability 92 .06 95.88 99.31 99.84 99.97

Std. Dev. 3.37 1.0 0.37 0.13 0.04

Min. Rel. 83.19 89.85 98.13 99.33 99.74

Max. Rel, 96.98 99.15 99.94 99.99 100.0

100% - Reliability 94,28 97.75 99.55 99.88 99.96

50% Std. Dev. 1.93 1.05 0.23 0.07 0.03

Min. Rel. 90.41 93.71 98.88 99.60 99.86

Max. Rel. 57.76 99 44 99.94 99.99 100.0

100% - Reliability 95.27 98.57 99.63 99.87 99.59

5% Std. Dev. 1.24 0.57 0.16 0.03 0.01

Min. Rel. 92.32 97.08 99.18 99.71 99.87

Max. Rel. 97.44 99 48 99.93 99.97 99.99

100% - Reliability 96.86 99.01 99.68 99.86 99.95

95% Std. Dev. 0.75 0.30 0.09 0.05 0.02

Min, Rel. 93.36 97.59 99.44 99.73 99.84

Max. Rel. 97.98 99.66 99.85 99.95 99.98

Table A2.9: Normalized Network Reliability N =40, E = 624 (80 % of maximum)

Edgc Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 92.85 97.75 99.62 99.91 99.98
Std. Dev. 3.24 1.18 0.23 0.07 0.03

Min. Rel. 87.91 93.75 98.57 99.61 99.81

Max. Rel. 97.30 99.54 99.99 100.0 100.0

100% - Reliability 95.63 98.72 99.75 99.93 99.98
50% Std. Dev. 1.89 0.62 0.17 0.05 0.02
Min. Rel. 91.13 96.78 99,08 99.72 99.87

Max. Rel. 97.68 99.79 99.99 100.0 100.0

100% - Reliability 96.41 9941 99.88 99.97 99.97
T5% Sid. Dev. 0.83 0.25 0.07 0.02 0.01
Min. Rel. 91.53 98.71 99.67 99.88 99.97

Max. Rel. 97.89 99.89 99.99 100.0 100.0

100% - Reliability 97.61 99.90 99.98 9.99 99.99
95% Std. Dev. 0.44 0.06 0.02 0.01 0.00
Min. Rel. 63.65 99.96 99.92 99.98 99.98

Max. Rel. 98.23 §9.99 100.0 100.0 100.0

Table A2.10: Normalized Network Reliability N = 40, E = 780 (100% of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 82.81 91.05 98.17 99.64 99,93

Std. Dev., 6.95 3.64 0.99 0.25 0.10

Min. Rel. 69.87 77.58 95.21 98.64 98.80

Max. Rel. 94.27 97.30 100.0 100.0 100.0

100% - Reliability 88.79 94.71 98.97 99.73 99,93

50% Std. Dev. 4.02 1.87 0.46 0.18 0.06

Min. Rel. 77.32 89.99 97.7 99.16 99.95

Max. Rel. 95.84 98.85 99.78 99.99 100.0

100% - Reliability 91.88 96.71 99.31 99.80) 99.95

75% Std. Dev. 1.96 1.03 0.25 0.09 0.03

Min. Rel. 83.94 93.77 98.73 99.54 99.85

Max. Rel. 96.67 98.81 99.81 99.95 100.0

100% - Reliability 94 .47 98.46 99.53 99.82 99.92

95% Std. Dev. 1.12 0.43 0.12 0.05 0.03

Min. Rel. 89.66 97.07 99.07 99.66 99.85

Max. Rel. 96.78 99.26 99.72 99.91 99 85

Table A2.11: Normalized Network Reliability N = 60, E = 354 (20 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 87.46 94.35 08.85 99.68 99.92

Std. Dev, 4.57 2.12 0.54 0.23 0.09

Min. Rel. 71.80 88.02 97.09 98.56 99.44

Max. Rel. 94.25 98.71 99.77 99.97 99.99

100% - Reliability 91.22 96.48 99.31 59.80 99.94

50% Std. Dev. 2.46 1.39 0.23 0.09 (.04

Min. Rel. 83.47 88.40 98.61 99.55 99.78

Max. Rel. 95.38 99.26 99.84 99.97 99,99

100% - Reliability 94.13 97.94 99.52 99.85 99.95

75% Std. Dev. 1.49 .69 0.15 0.06 .02

Min. Rel. 88.38 95.30 99.12 99.66 99.95

Max. Rel. 96.30 99.02 99.86 99.97 99.99

100% - Reliability 94,94 98.91 99.57 99.79 99.89

95% Std. Dev. 0.74 0.20 0.07 0.03 (.02

Min. Rel. 91.06 98.06 99.33 99.70 99.83

Max. Rel. 97.68 99.25 99.69 99.86 99.93

Table A2.12: Normalized Network Reliability N = 60, E = 708 (40 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Rcliability 90.11 95.95 99.18 99.78 99.94

Std. Dev. 3.02 1.45 0.40 0.13 0.05

Min. Rel. §1.49 91.67 97.50 99.44 99.78

Max. Rel. 96.06 98.87 99.78 99,98 100.0

100% - Reliability 92.75 97.45 99.41 99.81 99.94

50% Std. Dev. 1.49 0.84 0.23 0.08 0.03

Min, Rel. 88.77 94.95 98.62 99.52 99.83

Max. Rel. 96.03 98.87 99.82 99.95 99.99

100% - Reliability 93.99 98.32 99.54 99.83 99.93

75% Std. Dev. 0.91 0.48 0.13 0.06 0.03

Min. Rel. 90.44 96.73 99.07 99.60 99.85

Max. Rel. 97.05 99.15 99.82 99.92 99.98

100% - Reliability 94 .45 99.00 99.54 99.76 99.86

95% Std. Dev. 0.55 0.12 0.05 0.04 0.02

Min. Rel. 91.62 98.61 99.65 99.81 99.88

Max. Rel. 95.96 99.23 99.85 99.91 99.96

Table A2.13: Normmalized Network Reliability N = 6C, E = 1062 (60 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 91.64 96.76 99.30 99.81 99.94

Std. Dev. 2.51 1.07 0.30 0.10 0.04

Min, Rel. 85.12 93.75 98.21 99.51 59.83

Max. Rel. 95.95 98.78 99.85 99,97 99.99

100% - Reliability 93.15 97.78 99.45 99.83 99.95

50% Std. Dev. 1.44 0.67 0.15 0.06 0.03

Min. Rel. 88.61 96.26 99.04 99.65 99.85

Max. Rel. 96.51 99.14 99.75 99.94 99.99

100% - Reliability 94.26 98.53 99.57 99.83 99.93

15% Std. Dev. 0.85 0.30 0.09 0.04 0.02

Mm. Rel. 90.76 97.78 99.36 99.71 99.87

Max. Rel. 96.54 99.17 99.79 99.91 99.97

100% - Reliability 96.02 99.02 99.49 99.71 99.82

95% Std. Dev. 0.39 0.08 0.04 0.03 0.02

Min. Rel. 94.55 98.83 99.35 99.60 99.75

Max. Rel. 98.14 99.19 99.61 99.78 99.89

Table A2.14: Normalized Network Reliability N = 60, E = 1416 (80 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=35
| Range

100% - 0 Reliability 9241 98.09 99.66 99.15 99 0%
Std. Dev. 1.68 0.75 0.19 0.06 0.02

Min. Rel. 86.26 95.85 98.68 99.68 99 .98

Max. Rel. 93.39 99.15 99.94 99,98 100.0

100% - Reliability 95.61 99.01 99.82 99.95 99 .98
50% Std. Dev. 0.87 0.44 0.11 0.04 (.02

Min. Rel. 90.79 97.60 99.40 99.72 99.87

Max. Rel. 9742 99.79 99,96 99.99 100.0

100% - Reliability 96.23 99.57 99.92 99,98 99,99
75% Sid. Dev. 0.51 0.19 0.05 0.02 (.01

Min. Rel. 90.92 99.07 99.78 99.9() 99 97

Max. Rel. 98.69 99.95 99.97 99.99 100.0

100% - Reliability 97.21 99.92 99.98 99.99 100.0
95% Std. Dev. 0.32 0.03 0.01 0.01 0.0

Min. Rel. 92.35 99.80 99.95 99.98 99.99

Max. Rel. 99,14 99,99 99.99 100.0 100.0

Table A2.15: Normalized Network Reliability N = 60, E = 1770 (100 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 82.51 91.95 98.41 99.62 99.91

Std. Dev. 5.88 2.79 0.71 0.20 0.07

Min. Rel. 71.66 83.23 96.23 98.91 99.69

Max. Rel. 95.31 97.57 99.54 99.95 99.99

100% - Reliability 89.02 95.17 98.86 99.69 99.91

50% Std. Dev, 3.19 1.53 0.42 0.13 0.06

Min. Rel. 80.06 89.07 96.86 99.22 99.63

Max. Rel. 94.49 97.32 99.52 99.93 99.99

100% - Reliability 92.82 96.91 99.32 99.80 99.93

75% Std. Dev. 1.79 0.89 0.19 0.07 0.04

Min. Rel. 85.19 94.16 98.78 99.59 99.82

Max. Rel. 56.87 98.42 99.75 99.98 99.99

100% - Reliability 94.78 98.56 99.51 99.81 99.93

95% Std. Dev. 1.03 0.31 0.09 0.04 0.02

Min. Rel. 91.32 97.11 99.26 99.65 99.85

Max. Rel. 97.57 99.26 99.71 99.86 99.95

Table A2.16: Normalized Network Reliability N = 80, E = 632 (20 % of maximum)
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Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 88.63 94.95 99.01 99.73 99.91

Std. Dev. 3.12 1.42 0.37 0.13 0.06

Min. Rel. 73.51 91.45 97.72 99.21 99.07

Max. Rel. 95.26 97.89 99.59 99.95 99.99

100% - Reliability. 92.23 96.87 99.32 99.78 99.93

50% Std. Dev. 1.77 0.90 0.20 0.08 0.03

Min. Rel. 8543 94.58 98.45 99.41 99.83

Max. Rel. 95.95 98.57 99.73 99.92 99.99

100% - Reliability 94.35 97.99 99.48 99.82 99.93

75% Std. Dev, 1.08 0.47 0.11 0.05 0.03

Min. Rel. §9.43 96.37 99.18 99.64 99.82

Max. Rel. 97.06 98.91 99.73 99.91 99.99

100% - Reliability 95.34 98.87 99.49 99.85 99.96

95% Std. Dev. 0.58 0.13 0.06 0.04 0.02

Min. Rel. 92.35 98.39 99.30 99.61 99.87

Max. Rel. 97.54 99.17 99.75 99.92 99.99

Table A2.17: Normalized Network Reliability N =80, E = 1264 (40 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 91.15 95.88 99.14 99.75 99,92

Std. Dev., 2.58 1.13 0.25 0.09 0.05

Min. Rel. 83.53 92.92 98.58 99.45 99.73

Max. Rel. 97.15 98.72 99.70 99.91 99.99

100% - Reliability 93.68 97.64 99.41 99.81 99.93

50% Std. Dev. 1.42 0.59 0.16 0.06 0.03

Min. Rel. 89.93 95.77 98.95 99.55 99.84

Max. Rel. 97.36 98.78 99.79 99.93 99.99

100% - Reliability 9491 98.35 99.50 99.80 99.94

15% Sid. Dev. 0.76 0.38 0.11 0.05 0.03

Min. Rel. 91.32 97.23 99.22 99.61 99.87

Max. Rel. 97.07 99.03 99.81 99.94 99.99

100% - Reliability 95.31 98.89 99.52 99.84 99.95

95% Std. Dev. 0.58 0.10 0.05 0.03 0.02

Min. Rel. 9237 98.58 99.26 99.65 99.89

Max. Rel. 96.94 99.09 99.83 99.95 99.99

Table A2.18: Normalized Network Reliability N = 80, E = 1896 (60 % of maximum)
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Appendix 2 - Reliability Analvsis of the Approximate Reliable Subnerwork

Edge Rel. k=1 k=2 k=3 k=4 k=35
Range

100% - 0 Reliability 92.63 96.75 99.27 99.78 99.03

Sid. Dev. 2.65 1.09 0.22 0.09 0.03

Min. Rel. 87.42 92.55 98.61 99.48 99,83

Max. Rel. 96.71 98.55 89,75 99.95 99.99

100% - Reliability 94.56 97.93 99.46 99.80 99 93

50% Std. Dev. 1.21 0.51 0.12 0.05 0.03

Min. Rel. 89.39 96.26 99.08 99.64 99 .85

Max. Rel. 97.13 98.89 99.70 99.92 99.97

100% - Reliability 95.36 98.60 99.52 99.80 Y9 93

75% Std. Dev. 0.73 0.30 0.10 0.05 0.02

Min. Rel. 91.53 97.66 99.23 99.66 99.85

Max. Rel. 97.51 9922 99.73 99 88 99.96

100% - Reliability 97.59 98.99 99.53 99.81 99.95

95% Std. Dev. 0.50 0.07 0.04 0.03 0.02

Min. Rel. 96.20 98.71 99.23 99.68 99.86

Max. Rel. 97.97 99 41 99.75 99.88 99.95

Table A2.19: Normalized Network Reliability N = 80, E = 2528 (80 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 93.16 98.73 99.72 99.92 99.98
Std. Dev. 1.35 0.53 0.13 0.05 0.02

Min. Rel. 87.26 96.80 99.29 99.70 99.91

Max. Rel. 96.36 99.51 99.94 100.0 100.0

100% - Reliability 94.75 99.20 99.85 99.96 99.99
50% Std. Dev. 0.92 0.33 0.07 0.03 0.01

Min. Rel. 91.76 97.69 99.64 99.87 99.92

Max. Rel, 96.97 99.85 99,98 99.99 100.0

100% - Reliability 95.33 99.67 99.94 99.98 99.99
75% Std. Dev. 0.56 0.15 0.03 0.01 0.0}

Min, Rel. 91.55 98.92 59.86 99.96 99.97

Max. Rel. 97.69 99.92 99.99 100.0 100.0

100% - Reliability 95.54 99.85 99.97 99.99 99.99
95% Std. Dev. 0.24 0.06 0.02 0.01 0.00
Min. Rel. 93.54 99.66 99.93 99.96 99.99

Max. Rel. 97.69 99.97 99.99 100.0 J,”,Q-Q

Table A2.20: Normalized Network Reliability N = 80, E = 3160 (100 % of maximum)
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Appendix 2 - Reliability Analysis of the Approximate Reliable Subnetwork

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - () Reliability 83.67 91.55 98.75 99.65 99.94

Std. Dev. 5.63 2.31 0.62 0.14 0.06

Min. Rel. 72.54 8535 97.84 99.04 99.74

Max. Rel. 95.92 97.59 99.61 99.96 99.99

100% - Reliability 89.20 95.61 98.94 99.72 99.94

50% Std. Dev. 2.73 1.40 0.38 0.11 0.06

Min. Rel. 79.61 89.68 97.15 99.35 99.65

Max. Rel. 95.56 97.61 99.57 99.94 99.99

100% - Reliability - 93.38 97.21 99.41 99.84 99.95

75% Std. Dev. 1.53 0.73 0.15 0.05 0.03

Min. Rel, 85.69 94.16 98.78 99.59 99.82

Max. Rel. 97.37 98.42 99.75 99.98 99.99

100% - Rcliability 96.37 98.69 99.67 99.84 99.96

95% Std. Dev. 0.86 0.25 0.07 0.04 0.02

Min. Rel. 91.25 97.11 G9.26 99.65 99.85

Max. Rel. 97.79 99.26 99.71 99.86 99.95

Table A2.21: Normalized Network Reliability N = 100, E =

990 (20 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
‘ Range

100% - 0 Reliability 89.47 95.14 99.21 99.84 99.92
Std. Dev, 2.98 1.20 0.24 0.10 0.06
Min. Rel, 73.84 93.84 97.89 99.31 99.68
Max. Rel. 96.22 97.89 99.59 99.95 99.99
100% - Reliability 93.22 97.51 99.32 99.79 99.94
50% Std. Dev. 1.54 0.82 0.12 0.07 0.03
Min. Rel. 85.31 95.64 08.84 99.52 99.81
Max. Rel. 97.25 98.93 99.73 99.93 99.99
100% - Reliability 95.03 98.28 99.55 99.83 99.95
75% Std. Dev. 0.97 0.39 0.08 0.04 0.03
Min. Rel. 90.30 97.01 99.28 99.71 99.84
Max. Rel, 98.02 98.99 99.78 99.92 99.99
100% - Reliability 96.56 98.87 99.53 99.87 99.97
95% Std. Dev. 0.53 0.11 0.05 0.03 0.02
Min. Rel. 93.66 98.57 99.47 99.64 99.89
Max. Rel. 97.54 99.25 99.87 99.95 99,99

Table A2.22: Normalized Network Reliability N = 100 E = 1980 (40 % of maximum)
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Appendix 2 - Reliability Analvsis of the Approximate Reliable Subnenvork

k=1

k=2 k=3 k=4 k=3

Reliability 92.05 96.71 99.24 99.75 99.92

Std. Dev, 2.24 0.94 0.22 (.08 0.04

Min. Rel. 83.60 94.87 98.92 99.54 99.81

Max. Rel. 97.81 98.89 99.78 99.94 99.99

100% - Reliability 93.89 97.90 99.54 99.84 099,03
50% Std. Dev. 1.42 0.47 0.13 0.05 0.03
Min. Rel. 90.79 96.81 99.00 99.61 99.87

Max. Rel. 98.02 98.87 99.80 99.94 99.99

100% - Reliability 95.06 98.63 99.61 99.88 99.95
5% Sid. Dev. 0.78 0.28 0.07 0.04 0.03
Min. Rel. 92.46 98.54 99.34 99.84 99.89

Max. Rel. 97.93 99.14 99.85 99.95 99.99

100% - Reliability 96.86 99.03 99.57 99.88 99.96
95% Sid. Dev., 0.43 0.09 0.05 0.03 0.02
Min. Rel. 93.51 98.59 99.33 99.79 99.92

Max. Rel. 97.97 99.09 99.83 99.95 99.99

Table A2.23: Normalized Network Reliability N = 100 E = 2970 (60 % of maximum)

Edge Rel. k=1 k=2 k=3 k=4 k=5
Range

100% - 0 Reliability 93.62 97.19 99.33 99.84 99.93
Std. Dev. 2.01 0.89 0.21 0.08 0.03

Min. Rel. 85.12 94.51 98.84 99.50) 99.85

Max. Rel. 95.95 98.64 99.78 99.96 99.99

100% - Reliability 95.11 98.17 99.52 99.85 99.93
50% Std. Dev. 0.92 0.45 0.10 0.05 0.03
Min, Rel. 89.52 97.04 99.18 99.67 99 K88

Max. Rel. 97.29 98.97 99.74 99.96 99.99

100% - Reliability 96.16 98.68 99.66 99.86 99.94
15% Std. Dev. 0.56 0.24 0.08 0.04 (.02
Min. Rel. 92.74 98.06 99.29 99.74 99.9()

Max. Rel. 96.14 99.31 99.78 99.96 99.99

100% - Reliability 97.86 99.15 99.57 99.86 99.97
95% Std. Dev, 0.39 0.07 0.04 0.03 0.01

Min. Rel. 97.12 98.89 99.34 99.73 99.90

Max. Rel. 98.07 99.48 99.81 99.99 99.99

Table A2.24: Norimalized Network Reliability N = 100, E = 3960 (80 % of maximum)
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Appendix 2 - Reliahility Analysis of the Approximate Reliable Subnerwork

% - 6

ge Rel.

A% -
S56%

Hi % -

75%

k=1 k=2 k=12 k=4 k=5
Reliahility Gt 1) 9% .35 99.76 99 0.4 59 98
Std. Dev. 1.23 045 0.11 0.04 0.02
Min. Rel. 5274 96 A£G 99.26 99.78 99.89
Max. Rel. 97.54 99 .1 99 94 99.99 100.0
Reliability 95 %3 G935 99 .89 99.97 99.99
Sid. Dev. n81 .25 0.05 0.02 0.01
Min. Rel. 92 28 93.33 99.71 99.92 99.97
Max. Rel. 98.1% 99 87 99.98 100.0 100.0
Reliabilitv GR.22 69.73 99.06 59.99 99,99
Sid. Dev. 0.0 011 0.02 001 000
Ain. Rel. 133 5923 99.91 9997 09.98

Max. Rel,

100.0

10¥).0)

100% -

95%

Relighility 59,49 G953 99.99 99.99 100.0
Sid. Dev. 1.26 (1.0 0.01 0.0 0.0
Min. Rel. G8.3% G9.68 G9.99 99.99

Max. Rel.

1(X).0

100.0
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