
FORMALIZING THE TEMPORAL DOMAIN WITH 
HIERARCHICAL STRUCTURES OF TIME UNITS. 

Diana Cukierman 

Computer System Engineer, Universidad de la Republica, Uruguay, 1989 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS F O R  T H E  DEGREE O F  

MASTER OF SCIENCE 
in the School 

of 

Computing Science 

@ Diana Cukierman 1994 

SIMON FRASER UNIVERSITY 

August 1994 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: Diana Cukierman 

Degree: Master of Science 

Title of thesis: Formalizing the Temporal Domain with Hierarchical 

Structures of Time Units. 

Examining Committee: Dr. Arvind Gupta 

Chair 

. - - .  
I 

ames Delgrande 

Senior Supervisor 

Dr. Veronica 

Supervisor 

- 
I / 1 - 
/ 

Dr. Frederick Popowich 

S.F. U. Examiner 

Date Approved: 



SIMON FRASER UNIVERSITY 

PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser University the right to lend my thesis, project 
or extended essay (the title of which is shown below) to users of the Simon 
Fraser University Library, and to make partial or single copies only for such 
users or in response to a request from the library of any other university, or 
other educational institution, on its own behalf or for one of its users. I further 
agree that permission for multiple copying of this work for scholarly purposes 
may be granted by me or the Dean of Graduate Studies. It is understood that 
copying or publication of this work for financial gain shall not be allowed 
without my written permission. 

Title of Thesis/Project/Extended Essay 

Formalizing the Temporal Domain with Hierarchical Structures of Time Units. 

Author: ,+, - , 

d a n a  Cukierman 

(name) 

August 26,1994 

(date) 



There was nothing so remarkable in that, nor did Alice think it so very 
much out of the way to hear the Rabbit say to itself, " Oh dear, oh dear, 
I shall be too late!"; ... But when the Rabbit actually took a watch 
out of its waist-coat-pocket, and looked at  it, and then hurried on, Alice 
started to her feet, ... and burning with curiosity, she ran across the field 
after i t  ... 
Alice in Wonderland, Lewis Carroll. 
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Abstract 

We investigate a formal representation of calendars and time units as restricted tem- 

poral entities for reasoning about activities. Calendars can be considered as repetitive, 

cyclic temporal objects. We examine the characteristics of time units as particular 

classes of time intervals, and provide a categorization of relations among them. The 

motivation for this work is to ultimately be able to reason about schedulable, re- 

peated activities, such as going to a specific class every Tuesday and Thursday during 

a semester. 

Calendar Structures are defined as an abstract hierarchical structure of time units. 

We investigate the structural and mathematical properties of this framework and the 

specific relations among the units that compose it. We propose this formal apparatus 

as a system of measures which subsumes calendars and any other system that can be 

based on discrete units and a repetitive containment relation. One of the abstractions 

introduced in this thesis is that of relations among classes of intervals. This is an ex- 

pansion of the interval algebra framework defined by J. F. Allen and used throughout 

temporal reasoning, particularly in scheduling applications. 
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Chapter 1 

Introduction 

The White Rabbit put on his spectacles. 
"Where shall I begin please your Majesty?" he asked. 
"Begin a t  the beggining, " the King said gravely, 
"and g o  till you come to  the end; then stop." 
Alice in  Wonderland, Lewis Carroll. 

The motivation for this work is to ultimately be able to reason about schedulable, 

repeated activities, specified using calendars. Examples of such activities include 

going to a specific class every Tuesday and Thursday during a semester, attending a 

seminar every first day of a month, and going to swim every other day. Defining a 

precise representation and developing or adapting known efficient algorithms to this 

domain would provide a valuable framework for scheduling systems. 

In a representation scheme for such activities, one would ideally be able to deter- 

mine consistency among several repeated activities or verify whet her an activity is 

conflicting with others or not. Another complex task that would result in a useful 

automated facility is to find a minimal set of potential ways repeated activities may 

interact. Work has been done on repeated activities, for example [PB91], where a 

main concern is the implementation of variants of constraint propagation algorithms 

to detect overlapping repeated activities. We search for a different, more general 

and formalized representation of the temporal entities. We explore further the date 

concept, building a structure that formalizes dates in calendars. 



CHAPTER 1 .  INTRODUCTION 2 

Human schedulable activities are based on conventional systems called calendars. 

We use as a departure point "calendar" in the traditional sense of the word, that is: "a 

system for fixing the beginning, length, and divisions of the civil year, and arranging 

days and longer divisions of time (as weeks and months) in a definite order" [Web]. 

Examples of calendars include the traditional Gregorian calendar, university calen- 

dars, and business calendars, the last two groups defined in terms of the Gregorian. A 

goal of this work is to define a generic calendar abstract structure, which subsumes the 

mentioned calendars, and arguably any system of measures based on discrete units. 

Therefore we also take into account calendars of historical interest to extrapolate their 

general characteristics and provide completeness to the developed framework. Exam- 

ples include the French Revolution calendar, the World (or Universal) calendar and 

the Hebrew calendar [Co171]. 

Calendars can be considered as repetitive, cyclic temporal objects. We define an 

abstract structure that formalizes calendars as being composed of time units, which 

are related by a decomposition relation. The decomposition relation is a containment 

relation involving repetition and other specific characteristics. Time units decompose 

into contiguous sequences of other time units in various ways. A calendar structure 

is a hierarchical structure based on the decomposition of time units. This structure 

expresses relationships that hold between time units in several calendars. 

At this point it is worth introducing the concept of time unit instances, how they 

relate to time units and the different levels we encounter. Scheduling applications 

are concerned with specific time unit instances; single or repeated activities occurring 

in the time line during specific days, weeks, hours, etc. Whereas "month" refers to 

a time unit, "March" is referred to as a named time unit. March is one of the 12 

occurrences of the notion of month with respect to year, and viewed extensionally it 

represents the set of all possible occurrences of March. Finally, "March 1994" is one 

specific instance of a month. Hence, calendar structures provide a formal system of 

units on which date-based temporal objects can be built. Intervals, time points and 

moments in the time line can be represented in terms of these units. 

In this thesis we explore calendar structures and systematically analyze the struc- 

tural and mathematical properties they hold. We suggest a notation to express specific 
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time unit instances. We envision that this notation should provide a straightforward 

way of representing the temporal counterpart of repeated activities. We define chains 

in the time unit hierarchy corresponding to time units that decompose in a specific 

way. It is expected that reasoning with instances of such time units will produce very 

efficient operations. 

We envision this formalism as a basis for reasoning about repeated activities; 

however, we also intend the structure to be sufficiently general that it may be used 

for representing any system of measures based on discrete units with a repetitive 

containment relation. Hence a goal of this work is that it also be applicable to 

systems of (spatial) measures, such as the Metric or Imperial systems. 

To wrap up this introduction, we comment on our work as viewed from a knowledge 

representation perspective, extracted from [MB83], 

"There are two major requirements for a time specialist: First, it must be 

formally adequate and second it must be computationally eflective. The 

first condition is met if the formal system is coherent and consistent, and 

contains sufficient mechanisms to be able to represent all temporal specifi- 

cations and perform all the deductions we want. The second requirement 

is essential in order to have a program produce answers with a reasonable 

amount of effort." 

This thesis tackles the knowledge representation aspect of the temporal domain, 

based on calendars and units within. We define time unit hierarchies or calendar 

structures, a formal framework of time units which has been shown to be coherent 

and consistent. Calendar expressions are suggested to represent time unit instances 

so that the temporal counterpart of repeated and simple activities can be represented. 

We leave for further research the definition of a formal system where deductions can 

be done in the defined language. Nonetheless, the necessary basis for the definition 

of a language is exposed in this thesis. As for the implementation aspect of the time 

specialist, we analyze computational aspects of dealing with calendar structures per se 

and we envision that efficient algorithms are possible to develop. Particularly efficient 

results should be expected when dealing with time unit instances that come from 
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specific sequences of time units, which we define as chains. 

1.1 Organization of the thesis 

The next section presents background material and related work. Specially we present 

Allen's interval algebra [A1183]. Characteristics of our approach are compared to the 

different research results as they are exposed. 

Chapter 2 builds an extension to the interval algebra. In this thesis we define 

relations between classes of intervals and particularly decomposition. 

Chapter 3 develops the concept of time unit class. The main attributes are de- 

scribed both informally and functionally. The duration of a time unit and the naming 

of time unit instances are the main issues dealt with. Numerous examples accompany 

the development of these concepts. 

Chapter 4 describes and defines decomposition relations between the particular 

class of intervals: time units. Constancy and alignment are proposed as the only 

aspects needed to characterize this decomposition. The formal definition is based on 

the decomposition relation defined in Chapter 2 applied to the particularities of time 

units. 

Chapter 5 presents the definition of calendar structures or time unit hierarchies. 

Examples of several calendar structures are given, such as Gregorian and university 

calendars. The structure is systematically analyzed, resulting in a parallelism with 

divisibility concepts. An alternative structural characterization is studied, providing 

for a starting point for the definition of a formal language of time units. In the final 

sections, computational aspects of using the calendar structure are addressed and a 

particular notation is suggested to represent time unit instances. 

The last chapter highlights the main contributions and special issues of interest 

in this thesis. Moreover, it is worth emphasizing that this thesis leaves open an 

important amount of further research venues. Suggestions and research possibilities 

that are laid at by this thesis conclude the last chapter. The appendix contains the 

proofs of the main theorems in Chapter 4. 
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1.2 Background 

The choice of time points or time intervals as primitive temporal objects is an issue 

that has been long discussed in philosophy (see for example [Van83]). It is also a 

matter dealt with extensively in the A1 literature. Discussions that are related to 

ontological aspects include for example whether or not there exist in reality instanta- 

neous events, which would occur during a time point, by nature having zero-duration. 

Another concern is how assertions that occur in the time line should be interpreted. 

An objection that Allen [A11831 poses over interpreting assertions over time points is 

that this leads to paradoxical situations. The proposed example is that of a time in- 

terval during which a light bulb is on, meeting another interval during which the same 

light bulb is off. Where these two intervals meet, there is a transition of the truth 

value of the property on(light). The question that arises is, what is the truth value 

of this property in the meeting point? Is the light on, off, both or neither? Having 

assertions interpreted only over intervals, the law of excluded middle is maintained, 

that is, at all times a property is either true or false. Our formalism deals with time 

units, which are a special kind of time interval, with inherent durations. Therefore 

we will base our research on time intervals as the basic temporal objects. 

The next sections present background material of the interval algebra and further 

related work. Different issues of our work are compared in perspective with the 

material presented. 

1.2.1 Interval algebra 

[A11831 defined an interval algebra of relations between (convex) time intervals, with 

intervals considered as primitive temporal objects1. There are 13 basic relations be- 

tween convex intervals; these are the combinatorial possibilities of how two intervals 

can relate, like for example before, during, etc. The elements of the algebra are the 

relations that may exist between intervals of time. Temporal relations can be indefi- 

nite, therefore there are 213 possible relations between convex intervals. A transitivity 

'Convex intervals are those that do not have any gaps within them. 
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table, expressing the results of composing any of two basic relations appears in [A1183]. 

These relations appear in Table 2.1, Chapter 2. The transitivity table forms part of 

the algebra definition, as it defines one of the operations between relations, referred 

to as composition or multiplication. This table is the basis of the implementation 

of algorithms for propagation of temporal constraints among intervals. [LM94] sub- 

sumes results related to the formalization of Allen's work [A11831 in terms of relational 

[A11831 presents a precise computational model of a temporal inference system. 

Different axiomatizations of interval relations have appeared in the literature, which 

subsume those of Allen's with the 13 basic relations among intervals. Allen and Hayes 

[AH85, AH891 define a first-order formal theory where they express every possible 

basic relation among intervals with only one relation, meets, considered as primitive. 

Other axiomatizations take into account a basic distinction between interval relations: 

those relations of strict precedence as opposed to those that share common points. The 

case of relations with common points has been axiomatized with the overlap relation or 

with the inclusion relation, respectively Kamp's and Van Benthem's axiomatizations 

[BL92]. 

The problem of determining consistency of assertions in the full interval algebra 

was proven to be NP-complete, as well as determining all consequences of these asser- 

tions [VK86]. Allen's polynomial constraint propagation closure algorithm in [A11831 

was proven to be incomplete. In [VK86], the time point algebra is developed, based 

on the notion of time point in place of interval. The time point algebra has known 

(complete) polynomial closure algorithms (see also [VKV89]). There are only three 

basic relations among points: before, equal and after. Convex intervals can be rep- 

resented by their two extreme points and consequently, the 13 basic relations among 

intervals, and disjunctions of them, are expressible in terms of the point algebra. How- 

ever, there are certain disjunctive combinations of interval-to-interval relations that 

are not expressible with the point algebra. The paradigmatic example used in the 

2The term "relational algebra" refers to algebras in Tarski's sense, [JT52]. Briefly, they are 
structures based on boolean algebras, where the elements are relations. (These are not the algebraic 
formulation of operations on relational data bases). 
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related literature is that of an interval being before or after another. This situation 

is common in scheduling applications. 

The tradeoff is then between a more expressive NP-complete, full interval algebra 

vs. a less expressive, tractable point algebra. More specifically, the efficiency that 

can be obtained depends on which disjunctive combinations of relations are allowed 

between intervals and/or points. Without disjunction, both interval and point based 

representations have the same expressive power and have closure algorithms of 0 ( n 2 )  

time, where n is the number of points or intervals. If disjunction of interval relations 

is allowed then the problem becomes NP-hard [VK86]. Disjunctions of point relations 

are less expressive, but tractable, with a closure of 0 ( n 3 )  time. Allowing for only cer- 

tain specific disjunctions among intervals, interval relations can be expressed with the 

time point algebra, thereby obtaining a tractable interval subalgebra. This subalgebra 

has been called pointisable interval algebra [VKV89]. If relations are combined with 

conjunctions and disjunctions arbitrarily, then both point and interval representations 

are equivalent, and the closure problem is NP-hard in both cases. 

Nonetheless, some specific applications do not require the full expressive power 

of the interval algebra, and can benefit from efficient representations. Research has 

been done on finding efficient and yet useful subalgebras of the full interval algebra by 

limiting the allowable relations. The above mentioned pointisable interval algebra is 

one such example, and others have been studied as well [GS92]. Work has also been 

done restricting the temporal structure to specific characteristics of the intended ap- 

plication. For example, [MS90] have developed a sequence chain representation taking 

into account the time structure originating from narrative texts. This represent ation 

based on points allows for very efficient operations. Also work has been carried out 

organizing intervals into a hierarchy so that constraint propagation among intervals 

is more efficient [Koo89]. Hence it is of interest to study restrictions of the interval 

algebra. In this respect, the present framework deals with restricted kinds of inter- 

vals within a hierarchical structure. These restrictions are based on the particular 

characteristics of the motivation problem: reasoning with repeated activities within 

calendars and dates. The intent is that the hierarchy provides a basis for obtaining ef- 

ficient algorithms for certain operations. This may be contrasted with [Koo89] which 
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considers a hierarchical structure in the general interval algebra. 

1.2.2 Further related work 

Non-convex intervals are employed when using time units in a repetitive way or when 

referring to recurring periods [Lad86a, Lad86bl. We envision that only a narrow 

subset of the set of non-convex relations is required to relate schedulable repeated 

activities. Again, such a restriction could allow for efficient, yet useful inferences. 

[Lad86b] also defines a concept of time units as a unique linear hierarchy of sequences 

of integers corresponding to "[year, month, day, hour, . . . I". Thus these sequences 

have a fixed order, closed at the left and open at the right. Interval types are defined 

from these units, based on an axiomatization that relies on the fixed format of the 

sequences. Units that do not appear in the sequence are defined through iterating 

the meets operation combined with operators like convexify. (Convexify produces the 

smallest convex time interval containing two subintervals). In contrast, we consider 

our building block to be a "time unit class" (for example year or week). The time 

unit hierarchy proposed in our work generalizes [Lad86b], in that temporal objects in 

the time line can be represented by any sequence of composed time units, as opposed 

to fixed in Ladkin's approach. Thus valid temporal objects in our framework include 

sequences which represent, for example, February 1st 1994, the 32nd day of 1994, the 

5th day within the 17th week of the year 1994. Moreover, we are able to combine 

systems of measurement, and so talk about the third month of a company's business 

year as corresponding with June in the Gregorian calendar. Duration of time units 

is axiomatized in [Lad86b]. This approach, however, does not take into account the 

varying duration of specific time instances, for example, the duration of a generic 

month in days (28 to 31 days) is different from February's duration (28 or 29 days), 

which in turn is different from the duration of February 1994 (28 days). This matter 

is addressed and formalized in our work. 

[MSK93] elaborate on the notions of non-convex interval relations defined in 

[Lad86a7 Lad86bl. They define an algebra of relations between what they call n- 

intervals, a subclass of Ladkin's non-convex intervals. The operations defined for 
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the algebra allow for the application of a variation of Allen's constraint propagation 

algorithm to their relations. In this respect, our work defines operations relating de- 

composition relations which constitute a basis for defining a relational algebra of such 

relations. [Liggl] proposes a generalization of non-convex intervals. This work defines 

a generalized interval as an ordered, finite sequence of points in a linear order. Re- 

lations among these generalized intervals are expressed as conjunctions of conditions 

on the interval defining points. The study of these relations as they constitute an or- 

dered structure and the definition of a calculus of these relations is a main concern in 

Ligozat's paper. One motivation of this study is the understanding about the topology 

of relations. This motivation is also present in our thesis. In our case, we study the or- 

der structure and algebraic operations among decomposition relations. [LMF86] deals 

with repetition and time units. This work relies on sequences of consecutive intervals 

combined into "collections". The collection representation makes use of "primitive 

collections" (essentially circular lists of integers), and two basic operators, slicing and 

dicing, which subdivide an interval and select a subinterval respectively. The problem 

of months and weeks not fitting exactly is addressed in Leban et al's paper. They 

distinguish strict from relaxed dicing operators, allowing for example to differentiate 

the first week of a month (whether it is complete or not) from the first complete week 

of a month. One of the characterizations of the decomposition relation we define deals 

with time units fitting exactly or not among others. 

[PB91] is mainly concerned with the implementation of algorithms to detect over- 

lapping repeated activities. This work relies on temporal constraint satisfaction re- 

sults and algorithms [DMPSl]. [PB91] also introduces the concept of using dates 

as reference intervals to make constraint propagation more efficient. From a differ- 

ent perspective, we envision that our proposed formalism also profits from dates and 

calendars to establish a sound basis that will lead to efficient temporal reasoning op- 

erations. [CR88] expose a set theoretic structure for the time domain with a calendar 

perspective. They formalize the temporal domain with sets of "constructed inter- 

vallic partitions" which have a certain parallel to our decomposition into contiguous 

sequences. However, in their case only time units that decompose in an aligned way 
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are considered; (in their terminology, their model excludes weeks). This is to be con- 

trasted with our formalism which is more complete and general. To mention some of 

the differences; our work takes alignment and non-alignment of time units as a special 

concern, abstracts time units and decomposition relations. We also address the issue 

of naming and durations of classes of time units and time unit instances, study the 

calendar structures with a mathematical perspective. As well, we set up a basis for 

developing a formal language for time units, a matter not included at all with their 

work. Their work builds the formalism with a different perspective than ours, and 

in fact they were conceived completely independently. It is interesting to observe 

however that in formalizing the same domain, some of the problems encountered are 

similar. 

Preliminary reports of the research developed for this thesis appear in [CD94a, 

CD94bl. 



Chapter 2 

Classes of intervals and 

decomposition 

This method is, t o  define as the number o f  a 
class the class o f  all classes similar to the given 
c h ~ .  Principles of Mathematics, pt .II, ch. 11, 
sect.iii (1903). Bertrand Russell. 

In this chapter we define some specific relations between intervals based on the 

basic relations of the interval algebra [A1183]. Of special interest are the decomposition 

relations of an interval into a contiguous sequence of intervals. We also introduce the 

concept of classes of intervals and relations between them. Finally decomposition 

relations between (generic) classes of intervals are defined. The objects of study in 

this chapter constitute the formal building blocks for the definition of decomposition 

between time units, a central issue in this work. As well, we envision that the concepts 

developed here have potential utility for other applications in temporal reasoning, 

aside from the usage in this thesis. 

2.1 Basic interval relations 

This work takes time intervals as primitives and bases definitions on interval algebra 

basic relations [A1183]. These relations appear with the notation that will be used in 
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this document in Table 2.1. 

Relation 
before .before. 
after .be f ore-'. 
meets .meets. 
met by .meets-'. 
starts I .starts. 
started by .starts-'. 
during .during. 
contains I .durina-'. 
overlaps I .overlaps. 

finished by . finishes-'. 
equals .equals. 

Graphical Representation1 11 

Table 2.1: Basic 13 binary interval relations 

New interval relations 

Two containment relations, .strict-in. and .in. are defined as specific disjunctions of 

basic interval containment relations. The relation .in. also appears for example in 

[AH89]. 

Definition 1 (Interval relations "strict-in" and "in") 
Let i and j be two intervals, 

i .strict-in.j i.durin9.j V i.starts.j V i.finishes.j 

i.in.j E i.strict-in.j V i.equa1s.j. 

Table 2.2 shows a graphical representation of these relations. 

'Direct relations are graphically represented between intervals i and j: i .r. j, therefore, the 
inverse holds between j and i: j .r-'. i. 

'Direct relations are graphically represented between intervals i and j: i .r. j 
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strict in 

Table 2.2: Strict-in and Equals relations. In includes both, strict-in and equals. 

r 

- 

Theorem 1 Relations .equals. and .strict-in. are disjoint. 

equals 

Proof: Allen's 13 basic interval relations are disjoint. By definition, the new 

relation .strict-in. is disjoint with the relation .equals.. 

Definition 2 (Ordered sum of intervals) Given two time intervals that meet, 

there exists a unique longer interval that constitutes these two intervals. This longer 

interval is called the "ordered union" or "sum" of the adjacent intervals. 

.equals. 

The ordered sum ( k )  of two meeting intervals i and j is denoted as k = i + j .  
The existence and uniqueness of such longer interval covering two adjacent ones is 

guaranteed for example within the axiomatization of the time interval algebra in 

terms of meet, by two of the axioms in this theory, namely axioms [Md] and [M5] in 

[AH89], page 227. 

j 
i 
i 

Definition 3 (Contiguous sequence of n intervals) A contiguous sequence of n 

intervals is the ordered union of n adjacent intervals: 

< jl,. . . , jn  > (j l  + . . . , +jn) .  

By definition of ordered sum, it holds that: 

3This definition is based on [AH891 
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2.2.1 Decomposition into contiguous sequences of intervals 

Two relations are defined that relate one interval with a contiguous sequence of in- 

tervals: aligned decomposition into a sequence, and non-aligned decomposition into a 

sequence. 

Definition 4 (Aligned decomposition into sequence) An interval decomposes in 

an aligned way into a contiguous sequence of intervals i$it is equal to the ordered sum 

of the intervals in the sequence. This is denoted by: i .dec-dig-into-seq. < j l ,  . . . , j, > 
i f l i  = (j l  + .  .. ,+jn). 

The first and last interval in the sequence relate with the interval ( i )  as follows: 

( j l  .starts. i )  and (j, .finishes. i ) .  

Figure 2.1 .a graphically shows this relation. 

Figure 2.1: Graphical representation of aligned and non aligned decomposition 

Definition 5 (Non-aligned decomposition into sequence) An interval decom- 

poses in a non-aligned way into a contiguous sequence of intervals, i.e. 

i .dec-non-alig-into-seq. < jl, . . . , j, > i$ 

1. The interval i relates with a .strict-in. relation with the ordered sum of the 

intervals in the sequence. 

k = (j  1 + . . . , j,) and i .strict-in. k .  
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2. The following relations hold between the interval and the extreme intervals in 

the sequence: 

( j l  .overlaps. i )  A ( j ,  .finishes. i )  or 

( j l  .overlaps. i )  /\ ( i  .overlaps. j,) or 

( j l  .starts. i )  l\ ( i  .overlaps. j,). 

3. There is at least one subinterval completely contained in the sequence: 

3 j,, 1 5 x 5 n such that i .contains. j, (or simply varying the notation, i 
.during-'. j,). 

Figure 2.1.b graphically shows this relation. 

The reason why the third additional constraint is imposed on non-aligned decom- 

position is to enforce the intuitive notion holding in a decomposition relation that 

a composed interval indeed decomposes into the component and not the other way 

around. Figure 2.2 shows the problematic situation that would arise if non-aligned de- 

composition were defined without this restriction. It should be noted that non-aligned 

decomposition cannot include the limit case of an interval decomposing into itself 

(which is correct and is not eliminated in the case of aligned decomposition). 

Figure 2.2: Example of problematic situation avoided 
decomposition 

with definition of non-aligned 

Theorem 2 An interval decomposes in an aligned way into a sequence of intervals 

i$ it does not decompose in a non-aligned way into that same sequence of intervals. 

i .dec-alig-into-seq. < j l , .  . . , j, > i$ 
not i .dec-non-alig-into-seq. < jl, . . . , j, >. 

Proof: It follows from the definition of these two relations, and the fact that 

.equals. and .strict-in. are disjoint relations. Hence, an interval is either equal or 
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exclusively strictly in a contiguous sequence of intervals (into which it decomposes). 

rn 

Theorem 3 (Number of subintervals in a non-aligned decomposition) If an 

interval i decomposes into a sequence of intervals < jl, . . . , j, > in a non-aligned way, 

then n 2 2. More precisely, 

1. if ( j l  .overlaps. i )  A (j, .finishes. i )  or 

( j l  .starts. i )  I\ (i .overlaps. j,) then n > 2. 

2. if ( j l  .overlaps. i )  A (i .overlaps. j,) then n 2 3. 

Proof: It follows from the definition of non-aligned decomposition. More pre- 

cisely, this follows from the fact that there is always at least one complete subinterval 

contained in the composed interval (guaranteed by the third characteristic in the 

non-aligned decomposition definition). rn 

2.3 Classes of intervals 

Basic binary interval relations are generalizable to relations among classes of intervals. 

This generalization is clearly also applicable for the new definitions developed at the 

interval level, such as ordered sum of intervals. In addition, a binary decomposition 

relation among classes of intervals is defined based on decomposition of a class of 

intervals into sequences of classes. 

Definition 6 (Class of intervals) A class of intervals is a set of intervals with 

some common properties. The intervals are said to be instances of the class. 

Two predicates are defined relating instances of intervals and classes, in-class and 

subclass. These two predicates are to be interpreted as follows: in-class(i, I) iff i is 

an instance of I, and subclass(J,, J) iff V j  in-class(j, J,) > in-class(j, J). 
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2.3.1 Generalization of interval relations to class relations 

Definition 7 (Binary relations between two classes of intervals) A class of in- 

tervals relates to another class with a generalization of a basic binary interval relation 

i$ for all instances of the former, there is an instance of the latter such that they 

relate with that basic relation. More precisely, I and J are classes of intervals and 

.R. is a relation between the two classes, 

(I. R. J )  i$ V i  3 j  (in-class(i, I )  A in-class(j, J )  > i.r. j ) ,  

where .r. is one of the 13 basic interval relations in Table 2.1. In terms of notation, 

. R. is the generalized relation corresponding to r .  

Any disjunction of the 13 basic relations is generalizable from the interval level 

to the class of intervals level in an analogous way, particularly also the relations .in. 

and .strict-in. above defined. The notation convention used is that relations between 

two intervals are written with lower case letters, (for example .meets.), and relations 

between two classes of intervals are denoted with upper case letters, (for example 

.MEETS. ) .  Likewise, intervals are represented by lower case letters, for example i ,  

j ,  and classes of intervals with upper case letters, for example I ,  J .  

According to the definition presented, when generalizing a relation from the inter- 

val (instance) level to the class of intervals level it is not required that every instance 

of one class relates to every instance of the other, but only that for every instance of 

the former, there exists an instance of the latter such that the relation at the instance 

level holds. (The generalization has a universal/existential formulation.) 

An example with decomposition relations among time units should give an intu- 

ition of why generalization is done in this manner. Month from the Gregorian calendar 

is considered to be a class of time intervals: the class representing all possible months, 

January 1900, February 1994, December 2000, and so on. January for example still 

is a class, subclass of month, representing all possible January's. We may want to 

express that the subclass January .MEETS. the subclass February. Clearly, not all 

instances of January meet all instances of February, but only those belonging to the 

same year. The universal/existential generalization of the relation applies to this case: 

for all instances of January, there exists one instance of February such that January 



CHAPTER 2. CLASSES O F  INTERVALS AND DECOMPOSITION 18 

meets February. It should be noted that unless additional constraints are imposed 

in relations at the class level, there can be more that one possible binary relation 

between the same two classes. 

For example another possible relation between February and January is that Febru- 

ary .BEFORE. January. This in fact holds for every instance of February, consider- 

ing any January instance in a subsequent year. 

Based on the meets relation between two classes, the notions of ordered sum of 

intervals and contiguous sequence of intervals above defined are also generalizable 

from the instance level to the class level. The universal/existential generalization is 

also applied. 

Definition 8 (Ordered s u m  of classes of intervals) K equals the ordered sum 

( I  + J) i$ Vk 3i 3 j  (in-class(k, K) A in-class(i, I) A in-class(', J ) )  > ( k  = i + j ) .  

Definition 9 (Contiguous sequence of n classes of intervals) A contiguous se- 

quence of n classes of intervals is the ordered union of n classes of intervals: 

< J1, ..., Jn > = ( J1  + ..., Jn) .  

By definition of ordered sum, it holds that: 

J; .MEETS.  Ji+l V i ,  i = 1,. . . , n  - 1. 

Furthermore, the relations "aligned decomposition into a sequence" and "non-aligned 

decomposition into a sequence" are extensible to classes. 

Definition 10 (Aligned decomposition into a sequence. Class level) A class 

of intervals I decomposes in an aligned way into a contiguou~ sequence of classes of 

intervals if 

1. I is equal to the ordered sum of the classes of intervals in the sequence. This is 

denoted by the uppercase version of the corresponding instance level, i.e: 

I.DEC-ALIG-INTO-SEQ. < J1, .  . . , Jn > i$ I = (J1 + . . . , J n ) .  

2. Neither of the classes of intervals J, contain the class I .  In terms of instances, 

there is no instance of any of the classes J, that contains an instance of the 

class I. 
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VJ,, 1 5 x 5 n, i[J,.CONTAINS. I] which can be expressed also as: 

V j  Vi (in-class(j, J,) A in-class(i, I)) > 7 ( j  . contains. i) 

The last restriction in the definition of decomposition at the class level is essential 

to guarantee that decomposition is a containment relation, as is presented in the 

following theorem. It should be noted that this is essential to include as part of the 

definition at the class level and not at the interval level, to ensure a unique relation 

between the classes of intervals involved. Recall that two classes may relate with more 

that one relation given the universal/existential generalization of relations between 

classes of intervals. Figure 2.3 shows a scenario that could occur in case of an aligned 

decomposition of a class I into a sequence of subclasses of J if this restriction was 

not imposed on the decomposition definition of classes. In this scenario, there is 

an interval il ,  instance of the class I that decomposes aligned into < jl, j2 >, both 

instances of J. If the above mentioned restriction is not imposed, there could be 

another interval i2, of a larger extension than i l ,  that decomposes into < j3, j4 >. 
But in this scenario j3 has in fact a larger extension than i l ,  and therefore it holds 

that an instance of I decomposes into an instance of J and reciprocally, an instance 

of J decomposes into an instance of I. This scenario does not seem reasonable, and is 

avoided with the restriction. This restriction can be exemplified within a university 

calendar like the one from Simon Fraser University. This calendar has units which 

we call periods of two weeks, three weeks, and thirteen weeks (corresponding to exam 

periods, break periods and class periods respectively). Periods can not be said to 

decompose into months nor reciprocally. 

Figure 2.3: Example of problematic situation avoided with the definition of class 
decomposition 
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Theorem 4 (Aligned decomposition as containment) Aligned decomposition into 

sequences at the class level is a containment relation. If a class of intervals I de- 

composes into a sequence of intervals < J1, .  . . , Jn > in an aligned way, then every 

subinterval J,, 1 < x 5 n, is contained in it, and I is not contained in any of the 

classes J,. 

1.e. V J,, 1 < x < n ,  (J,.IN. I )  /\ 1 (I.CONTAINS. J,). 

Proof: The result follows from the definitions of the decomposition relation. The 

second restriction in the definition plays an essential role so that this theorem holds. 

1. If n = 1 then I.equals. J1, which is a particular case of the . IN.  relation. 

2. I f  n > 1,  then all classes of subintervals J,, 1 5 x 5 n, are contained in I .  1 

is not contained in any of the J,. 

Definition 11 (Non-aligned decomposition into sequence. Class level) A class 

of intervals I decomposes in a non-aligned way into a contiguous sequence of inter- 

vals, i.e. I .DEC-NON-ALIG-INTO-SEQ. < J1, .  . . , Jn > i$ 

1. The class I relates with a .strict-in. relation with the ordered sum of the intervals 

in the sequence, i.e. 

I .STRICT-IN. K ,  where K = ( J1  + . . . , Jn) 

2. The following relations hold between the class of intervals and the extreme classes 

of intervals in the sequence: 

( J l  .OVERLAPS. I )  /\ (Jn  .FINISHES. I )  or 

(J l  .OVERLAPS. I )  I\ ( I  .OVERLAPS. J,) or 

(J l  .STARTS. I )  /\ ( I  .OVERLAPS. Jn) 

3. At least one of the classes in the sequence (J,, 1 5 x 5 n)  is completely 

contained in the class I :  3 J, such that I.CONTAINS. J,, 1 5 x < n 
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4. Neither of the classes of intervals J, contain the class I .  In terms of instances, 

there is no instance of any of the classes J, that contains an instance of the 

class I .  

VJ,, 1 < x < n ,  -[J,.CONTAINS. I ]  which can also be expressed as: 

V j  V i  (in-class(j, J,) A in-class(i, I ) )  3 1 (j.contains. i )  

Just as in the case of aligned decomposition of classes, it should be noted that 

the last restriction in the definition is essential at the class level and not at the 

interval level, because two classes may relate with more that one relation given the 

universal/existential generalization of relations between classes of intervals. 

Theorem 5 (Non-aligned decomposition as containment) Non-aligned decom- 

position at the class level is a containment relation. If a class of intervals I decomposes 

into a sequence of intervals < J1, .  . . , Jn > in a non-aligned way, then every subin- 

terval J,, 1 < x < n is contained in it, and I is not contained in any of the classes J,. 

1.e. V J,, 1 5 x < n ,  (J,.IN. I )  A 1 (I.CONTAINS. J,). 

Proof: This theorem is analogous to the aligned case. It follows from the 

definitions of the decomposition relation of I .DEC-NON-ALIG-INTO-SEQ. < 
J1, .  . . , Jn >. All classes of subintervals J,, 1 < x 5 n, are contained in I .  I is 

not contained in any of the J,. 

2.3.2 Decomposition: a binary relation between classes of 

intervals 

Based on the decomposition relations (aligned and non-aligned) of a class of intervals 

into a sequence of classes, a new binary relation between classes of intervals is defined. 

This decomposition relation plays a central role in the formalism developed in this 

thesis. 

Definition 12 (Decomposition relation between two classes) A class of inter- 

vals is said to decompose into another i$ the former (or composed class) decomposes 
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into a sequence of subclasses of the latter (or component class) either in an aligned 

or in a non-aligned way. 

I.DECOMPOSES-INTO. J i$ there exist r subclasses J1, . . . , Jr of J such that 

I.DEC-ALIG-INTO-SEQ. < J1, .  . . , J, > or 

I.DEC-NON-ALIG-INTO-SEQ. < J1,. . - 9  Jr >. 
The number of classes, r is referred to as the repetition factor of the contiguous se- 

quence and also of the decomposition. Given the two classes of intervals, I and J ,  a 

lower and a higher bound for the repetition factor are uniquely determined. 

Theorem 6 (Decomposition is a containment relation) If one class of inter- 

vals decomposes into another (I.DECOMPOSES-INTO. J ) ,  the composed class ( I )  

contains or is equal to the component class (J) ,  and the component class does not 

contain the composed class. 

Proof: The result follows from the definition of the .DECOMPOSES-INTO. rela- 

tion, i.e. decomposition in an aligned or non-aligned way into a sequence of subclasses 

of the component class. Therefore this theorem summarizes the theorems above of 

decomposition of classes as containment relation. 

More intuitive and concrete examples of decomposition between classes of intervals 

and other concepts defined in this chapter are presented in Chapter 4, where the classes 

of intervals are time unit classes, a particular case of general classes of intervals. 

Table B.l in Chapter 3 summarizes and compares concepts of time intervals and 

classes of time intervals with time unit instances and time unit classes. 



Chapter 3 

Time units and time unit instances 

Thirty days hath September, 
April, June, and November; 
All the rest have thirty-one, 
Excepting February alone, 
And that has twenty-eight days clear 
And twenty-nine in each leap year. 
Stevins HS.  (c.1555). 

The central element of our formalism is that of a time unit. Time units represent 

classes of time intervals, each with certain commonalties and which interact in a 

limited number of ways. For example, year and month are time units. Something 

common to every year is that it can be decomposed into a constant number of months. 

A characteristic of month is that it decomposes into a non-constant number of days, 

which vary according to the instance of the month. Properties that are common to 

time units determine the time unit class attributes. Some of the attributes clearly 

belong to the time unit class, like for example an identifier. Some others correspond 

(in essence) to the time unit class, however they strictly belong to the relation between 

two classes. For example, the duration of a time unit in terms of another one is an 

attribute of the relation between this time unit and the one acting as the unit of 

measure. 

In the following sections, the identifier of a time unit class and the (general) 

duration are presented. Relative and general durations are compared. Related to 
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durations, the concept of an atomic time unit is introduced. Time unit instances and 

their numbering and naming is described as well. The reference of a time unit, a 

concept closely related to instance values (which are numbers or names), is defined. 

All attributes are formally defined in a functional way. Numerous examples are in- 

tercalated among the different definitions, and the final section presents a summary 

with examples from the Gregorian and Simon Fraser university calendars which show 

how all the definitions apply. 

3.1 Identifier of a time unit 

The first attribute of the time unit class we consider is a unique identifier, which is 

composed of a time unit name, for example year or month. If different calendars have 

different time units that happen to be named the same (for example a week in the 

Gregorian calendar is 7 days, while in the French Revolution calendar a week is 10 

days), some convent ion will distinguish them, for example the mentioned weeks would 

be: weekGc and weekFRc. This is to say, they really are different time units. 

Also we will distinguish time unit names when the time units have the same 

duration but differ in their origin. For example, years in the Gregorian calendar 

start in January, but school years, in university calendars in the northern hemisphere, 

start in September. However these two years differ from each other in a more subtle 

way than the previous weeks example. Year and school year have several properties 

in common that we want to contemplate. They have the same duration, and they 

decompose into several common time units. We consider year and school year to 

belong to two different, but yet very closely related calendars, the Gregorian calendar 

and a university calendar. A university calendar is called a variant of the Gregorian, 

and as such, it is based on it, and shares some time units, for example: week, month, 

day. 

Functional definition of a time unit identifier 

A function id is defined on the sets of time units; 
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id : Set of time units + Set of time unit names 

Let T be a time unit, id(T) = Name 

However, we will usually overload notation. The identifier of the time unit class 

will be used to refer to the class itself, usually in italics, unless otherwise specified. 

3.2 Duration of a time unit 

A common characteristic of time units is that they inherently involve durations; a 

time unit expressly represents a standard adopted to measure periods of time. In 

passing, this confirms the notion that time units are special kinds of time intervals 

(as opposed to time points). 

Different time unit instances of the same time unit class can have different dura- 

tions. For example different months have different number of days, from 28 to 31. 

Accordingly, the attribute representing a duration of a class is a range of possible 

values. We will represent this range by a pair of integers, the extremes of the range of 

possible lengths any time unit instance can have. Thus, month as a class has a dura- 

tion of (28,31). It should be noticed that we are using the term "duration" to express 

a range of "possible lengths" of instances of a class. Sometimes the range associated 

to a time unit class contains one single value, and we will also call it duration. This 

is the case for example of week, having a duration of (7,7) days. Finally, a specific 

time unit instance as opposed to a class, has one specific length, and therefore not a 

range of possible lengths. When there is no problem of ambiguity we will overload 

notation, and also refer to a unique length as "duration". An example in this situation 

is February 1994 having 28 days. Formally, one function is defined to associate the 

pair indicating the range of possible lengths to the time unit class, (dur). Another 

function is defined to associate the unique length to a time unit instance, (dur@). 

3.2.1 General vs. relative duration 

A duration referred to as general will be expressed in a basic unit, common to all the 

time units in one calendar. For example, using day as a common or basic unit, month 
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has a (general) duration of (28,31) days, week has a (general) duration of (7,7) days. 

A specific month, for example, February 1994, has a duration of 28 days. 

We also define another kind of duration; a duration relative to another time unit. 

Relative durations are, strictly speaking, attributes of the relation between the two 

time units involved. A time unit can have several relative durations expressed with 

respect to several others. For example, year can have its duration expressed in terms 

of months, or seconds; respectively (12,12) or (365 * 24 * 60 * 60,366 * 24 * 60 * 60). 

A time unit can be measured in terms of another one if the former decomposes 

into the latter. 

It follows from the description of general and relative durations that the general 

duration is in fact a relative one, expressed in units of a special basic unit in the 

calendar. One property we impose on a time unit to be suitable as a basic unit is 

that it be atomic for the intended application, as explained below. Other properties 

of basic time units are analyzed when describing calendar structures or time unit 

hierarchies, in Chapter 5. An important reason why (general) durations of all time 

units in a calendar are defined based on the same basic measure unit is to be able to 

compare them. This notion plays a fundamental role in the partial order among time 

units in the same calendar or variants of a calendar. 

Equal and non-equal durations time unit 

A time unit class can have the property of being of equal duration or of non-equal 

duration. Strictly, this property depends on the basic measure time unit selected, and 

so, again, it is not an absolute characteristic of a time unit. However, the intuition 

is quite strong in considering certain time units as of equal durations and certain 

others as of different durations. For example, days are usually considered as always 

having the same length. In the examples we consider days as of equal durations. Any 

measure of time is completely conventional however, and it is of equal duration if it 

is defined so. It is interesting to point out some astronomical facts in this respect. 

In fact, the Earth does not rotate at a uniform rate, and thus day is not an exactly 

constant measure. From January 1972 there is the "international atomic time", with a 
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second defined as "9192631770 periods of the radiation corresponding to the transition 

between two hyperfine levels of the ground state of the caesium atom 133." [Moe82]. 

Interestingly, current days are occasionally inserted a "leap second", to ensure that 

noon is at 12 o'clock. 

Definition 13 (Equal duration and non-equal duration time units) General du- 

rations of all time units in a calendar are expressed in terms of a predetermined basic 

time unit. Any time unit class in the calendar is of equal duration i f  all its instances 

have the same (general) duration. A time unit is of non-equal duration if there exist 

instances with digerent (general) durations. 

For example, if day or hour are taken as the basic time unit for the Gregorian 

calendar, week is of equal duration. Any week lasts 7 days or 7 * 24 hours; a week 

(general) duration is expressed by the pair (7,7) in days, (7 * 24,7 * 24) in hours, etc. 

Year is of non-equal duration; the range of possible year-instance lengths includes 

more than one value. A year general duration is (365,366) in days, (365 * 24,366 * 24) 

in hours, etc. 

Atomic time units: Moments of time 

In this thesis, the time intervals under study are very special ones: they are time 

units, they represent a class of temporal objects with pre-defined names, inherent 

durations, etc. It seems reasonable that time units be considered to decompose into 

smaller units up to a finite level after which a time unit is atomic - a non-divisible 

interval. When the time interval is non-decomposable it is called a time moment, 

following related ideas and terminology of [AH89]. 

Time units therefore model time in a discrete fashion. Time units may be con- 

sidered atomic in one application and decomposable into smaller time units in other 

applications. This depends on the intended granularity for the application [Hob85]. 

We impose the convention that a basic time unit in a hierarchy used to measure 

(general) durations be atomic. In doing so, all general durations of any time unit in 

a hierarchy are expressible in terms of a time unit into which they decompose. Also, 
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as a consequence, all durations are representable with integer numbers. For example, 

if day was considered as a basic time unit but decomposable into hours, the general 

duration of the class hour would have to be expressed with non-integer numbers, in 

terms of a time unit higher in the hierarchy. (Recall that day decomposes into hour, 

so day is higher in the decomposition hierarchy than hour.) 

The option of modeling time units as intervals that decompose down to a certain 

atomic level excludes the possibility of intervals having zero duration, i.e. we exclude 

the existence of instantaneous events. The issue whether or not intervals can be 

considered to have zero duration has appeared in Philosophy and Artificial Intelligence 

(AI) temporal reasoning literature frequently. See [AH891 and references therein. 

3.2.2 Functional definition of duration 

Initial definitions 

We first define the concept of min-max pair, which will be later used. 

Definition 14 (Min-max pair) A min-max pair is an ordered pair of natural num- 

bers (a ,  b) such that a < b. a is called the minimum component of the pair, b is called 

the maximum component of the pair. 

Definition 15 (Order relation between min-max pairs) A strict order relation 
P 

between min-max pairs is denoted b y  <. Equality between min-max pairs is denoted 
P p P by =. 2 abbreviates < or =. 

Let (al,  bl) and (a2, b2) be two min-max pairs. 

1. (al,bl) (a2,b2) i f f  a1 = a2 and b1 = b2. 
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Examples of relation between min-max pairs 

P 
Theorem 7 < is a partial order. 

Proof: See Appendix A.1. w 

A function dur associates a time unit class to the range of possible lengths any time 

unit instance can have. A function dur@ associates a time unit instance to its unique 

duration value. The sets of time units and of time unit instances are associated to  

one calendar and its variant calendars. 

Definition 16 (Duration functions) Two functions are defined, dur and dur@. 

1. dur is a function that associates a min-max pair to a time unit class in terms of 

a measure time unit. This min-mas pair represents the minimum and maximum 

value of the length that any instance of the time unit can have, in units of the 

measure time unit. 

2. dur@ is a function that associates a unique length to a specific time unit instance 

measured in terms of a measure time unit. 

More precisely, let TUS be a set of time units in a certain calendar and its variants 

and let TUINS be the set of all associated instances. 

dur : TUS x TUS -+ N x N 

dur@ : TUINS x TUS + N 
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Let T be a time unit and t@ be a time unit instance of T,  let M be a time unit in 

the calendar that can be a measure of T; 
dur(T, M) = (a, b) e d , f  dur@(t@, M) E {a, . . . , b). 

where a and b are measured in units of M. 

Examples 

The following are examples of the previous functional definition of durations of time 

units: 
dur(week, day) = (7,7) 

dur(month, day) = (28,31) 

dur(year, day) = (365,366) 

dur(year, month) = (12,12) 

dur(century, month) = (1200,1200) 

dur@(year 1994, day) = 365 

dur@(month February 1994, day) = 28 

V year-instances y, dur@(month March y, day) = 31 

V week-instances w, dur@(w, day) = 7. 

When the same time unit is used as the measure unit, durations can be compared 

using the order defined for min-max pairs. 

dur(week, day) 2 dur(month, day), since (7,7)2 (28,31) 

dur(month, day) 2 dur(year, day), since (28,31)< (365,366). 

3.3 Instance names, Reference time unit 

A time unit is a class of objects; a time unit instance is a specific temporal object in 

the time line. There is, however, more than one level of generalization for time units. 

Consider for example the notion of month. First, there is the time unit class month, 

the class of all months. A particular or named month (such as March) is a subclass 

of the time unit month. "March" then (extensionally) corresponds to the set of all 
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specific instances of the month March. Finally "March 1994" is a specific instance 

of a month. Notice that via this distinction we obtain appropriate refinements of 

the domains of attributes of the time unit class. For example, month has associated 

with it possible lengths of 28-31 days. February has a possible length of 28-29 days. 

Specific instances of February will have a duration 28 or 29 days. 

The name or number a time unit instance has can be expressed in several ways. 

Similarly to durations, the name is relative to another time unit, a reference time unit. 

For example, a day instance can be named from Sunday to Saturday or numbered 1 to 

7 if week is the reference time unit of day. (Names can be thought of as abbreviations 

of the numbers). More specifically: 

Definition 17 (Reference t i m e  unit)  Let R and T be two time unit classes such 

that instances of T can be given names or numbers within R, then R is called a 

reference time unit for T .  The characteristic a time unit must have to be a reference 

of another one is that the reference decomposes into the latter. 

Instances of time units which do not have any reference time unit are numbered 

relative to a conventional reference point or zero point of the calendar. A zero point 

marks the beginning of an Era. For example, March 1994 is a specific instance in the 

Gregorian calendar, where 1994 accounts for 1994 years from the beginning of the 

Christian Era. 

The concept of reference (as opposed to reference time unit), adds the possibility 

of reference time points and reference time unit instances: 

Definition 18 (Reference of a t ime  unit)  Let T be a time unit. There are three 

possible naming or numbering references for T .  A reference can be another time 

unit class. A reference can also be a specific time unit instance, (which would be an 

instance of a reference time unit class). Finally a reference of a time unit can be a 

conventional reference point. If a time unit T is top-most in the time unit hierarchy 

(and therefore has no reference time unit), its reference is a conventional reference 

point. 
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For example, a possible reference time unit for days is week, and within this refer- 

ence, a possible instance is Monday. A possible reference time unit instance for days 

is a specific year, for example year 1994, and within this year a possible instance is 

day 147. Finally the Christian Era acts as a reference point for year. 

One time unit can have more than one reference time unit. Referring again to the 

previous examples, days can be numbered within a week or within a year. Therefore, 

the domain of possible names or numbers within a reference (i.e. all the possible names 

or numbers a time unit can have) is in fact an attribute of the relation between the 

reference and the time unit class. A main reference is defined for a class, which is 

clearly an attribute of a time unit class (and not of the relation). 

Definition 19 (Main reference of a time unit) There are several references pos- 

sible for the same time unit. One is selected as a main reference. 

For example, day has year as the main reference (time unit), year has the Christian 

Era, (or zero-point of the Gregorian calendar) as the main reference (time point). 

Sequences of names and cardinality 

All the possible names or numbers the instances of a time unit can take within a refer- 

ence can be expressed extensionally by a sequence of names (if there are names associ- 

ated to the time unit class). Names are indeed abbreviations of instance numbers. For 

example days can be named with a name from the sequence {Sunday, Monday, . . . , 
Saturday) within a (reference) week. 0 t her time units don't have names associated 

to them, but only numbers. For example days within year are numbered from 1 to 

366 but not named. 

A pair of numbers can represent the range of maximum possible instance numbers 

of a class. For example, the range of maximumpossible days within a month is (28,31). 

In case of time unit instances referable by names, this range represents the maximum 

cardinalities of the sequence of all possible names. For example, the sequence of day 

names within week is {Sunday, Monday, . . . , Saturday) , with cardinality 7. (In this 

example the range of possible maximum numbers (7,7) contains only one value, since 

every week lasts 7 days.) 
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A function associates a time unit class and a reference with the sequence of all 

possible instance names (name). This is a partial function, since not all time units 

have names associated. Another function associates a time unit class and a reference 

with the range of possible numbers (number). name@ and number@ are respectively 

the functions that associate name and number to a specific time unit instance and a 

reference. 

Instances values and origin of counting 

A particular instance name or number of a time unit within a reference reflects the 

relative position of the instance within the reference, given a certain origin where 

counting of instance values starts. For example, months are counted from 1 to 12 in 

a year in the Gregorian calendar, starting from 1, (or equivalently they are named 

{January, February,. . . , December) starting from January). But, in case of months 

counted within a school year, the origin of instance numbering is not the month 

number 1, but rather the 9th (or September), so the 3rd month of a school year is 

the 11th month of all the possible months name sequence, (or November). Circular 

counting is assumed. Following the example, Month 1 comes after Month 12, (or 

January after December). It should be noted that Month 1 (or January) is a possible 

number (name) for a month within a school-year, it is just that it will not be the 

first month within the school-year. In fact January is positioned 5th with respect to 

school- year. 

We define one function that associates the origin of instance name (or number) 

counting to a time unit class and a reference (origin). For example, origin maps 

month and the reference year to the origin position 1, whereas origin maps month 

and the reference school-year to the origin position 9. Another function maps a time 

unit class, a reference and a relative position to the instance name (or number) in 

that relative position (value-wrt-rel-position). Thus for example, value-wrt-rel-position 

maps month, the reference year and the 5th relative position to May. On the other 

hand, value-wrt-rel-position maps month, the reference school-year and the 5th relative 

position to January. Precise definition of these functions and more examples appear 
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below. 

3.3.1 Connect ion between durations and instance values 

Possible lengths of a time unit A are measured in units of another time unit B, 

which acts as a measure time unit. Possible instance names or numbers of a time 

unit B are those relative to a reference A. In fact the two notions express somehow 

the same concept: in the first case the concept is taken from the point of view the 

"decomposition" relation, in the latter one from the point of view of a "composition" 

relation between two time units. In the first case, B is seen as the measure time unit 

for A, in the second case, A is seen as the reference for B. 

For example, day has as possible instance numbers (within a week) the range from 

1 to 7, and week has a duration of (7,7) days. Days have as possible numbers 1 to 365 

or 366 within a year, the class year has a duration of (365,366) days, and a specific 

year has a duration of 365 or 366. 

Possible implementations can profit from this inter-relation; however conceptually 

they have their own characteristics. Furthermore, there is a difference which also 

justifies the existence of two series of definitions and concepts. The correspondence of 

definitions does not apply when time unit instances of B are numbered with respect 

to a conventional reference point A. There is no such thing as the relative duration 

of a reference point with respect to a measure time unit. 

3.3.2 Functional definition of instance values 

The following functions are related to the numbering or naming of time units and time 

unit instances: number, number@, name, name@, origin and value-wrt-rel-position. 

Definition 20 (Instance numbers  functions) Functions associating instance num- 

bers to time units and time unit instances. 

1. number is a function that associates a min-max pair to a time unit and a refer- 

ence. The reference can be either another time unit, a time unit instance or a 

conventional reference point. In fact this pair is exactly the same as the duration 
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of the reference in terms of the time unit, when the reference is a time unit or 

a time unit instance(i.e., not a reference point). In general, the pair rejects the 

range of possible maximum values of instances. That is to say, it indicates the 

minimum and maximum cardinality of the instance values domain within the 

reference. 

2. number@ is a funct.ion that associates a number to a specific time unit instance 

within a reference. 

More precisely, let 

TUS be a set of time units in a certain calendar and its variants, 

TUINS be the associated set of time unit instances, 

REF-POINT be a set of conventional reference points, and 

REFS = TUS U TUINS U REF-POINT, 

number: TUS x REFS + N x N 

number@ : TUINS x REFS + N 

Let T be a time unit and t@ be a time unit instance of T ,  

let R be a reference of T;  
number(T, R) = (min-card, max-card) e d , f  

number@(t@, R) E (1, . . . , max-card) 
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Examples 

month E TUS,  

February E TUS,  (subclass o f  month),  

February 1994 E TUINS, 

Christian-era E REF-POINT 

number(day, month) = (28,31) 

number(day, February) = (28,29) 

number(day, February 1994) = (28,28) 

number(day, year) = (365,366) 

number(day, year 1994) = (365,365) 

number(month, year) = (12,12) 

number(month, school-year) = (12,12) 

number(month, century) = (1200,1200) 

number(year, Christ ianera) = (3000,3000) (3000 is  an application-dependent bound) 

i f  m is a month and number@(m, year) = 3, then m is an instance of  March. 

Definition 21 (Instance names functions) Functions associating instance names 

to time units and time unit instances. These are partial functions, since not every 

time unit instance has a name associated to it. 

1. name associates all possible instance names to a time unit and a reference. The 

possible instance names are conceived as a sequence and not as a set, since their 

ordering is relevant, and indicates the relative position of the instance within the 

reference. 

2. name@ associates the name to a specific time unit instance within a reference. 

More precisely, let 

TUS be a set o f  time units in a certain calendar and its variants, 

TUINS be the associated set o f  time unit instances, 
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REF-POINT be a set o f  conventional reference points, and 

REFS = TUS U TUINS U REF-POINT, 

name : TUS x REFS 4 Set o f  sequences of  instance names 

name@ : TUINS x REFS --+ Set o f  instance names 

Let T be a time unit and t@ be a time unit instance of  T ,  

let R be a reference of  T ;  
name(T, R )  =<  name^, . . . , namemax-card > U d e f  

name@(t@, R )  = name;, with 1 5 i 5 max-card e d e f  

number(T, R) = (min-card, max-card) 

Examples 

week, year, school-year E TUS,  

name(day, week) =< Sunday,. . . , Saturday > 
numbedday, week) = (7,7) 

name(month, year) =< January,.  . . , December > 
name(month, school-year) =< January, . . . , December > 
numbedmonth, year) = (12,12) 

number(month, school-year) = (12,12) 

name@(a Sunday day, week) = Sunday 

number@(a March month of any year, year) = 3 

name@(a March month of any year, year) = March 

Definition 22 (Instance values counting) Function associating origin of instance 

number counting to a time unit class and function associating a specific instance given 

a relative position. 

1. origin associates a relative position from where counting of instance values start 

to a time unit and a reference. 
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2. value-wrt-rel-position is a function that associates a specific instance of a time 

unit given a reference and a relative position. This relative position is evaluated 

from the origin where counting starts. 

More precisely, let TUS be a set of time units and TUINS be the associated set of 

time unit instances. 
origin : TUS x (TUS U TUINS) ---t N 

value-wrt-rel-position : TUS x (TUS U TUINS) x N -4 N 

Let T be a time unit and R be a reference of T ;  
value-wrt-rel-position(T, R ,  i )  = ( i  + origin(T, R )  - 1) mod card, 

where min-card 5 card 5 max-card 

Examples 

origin(month, year) = 1 

value-wrt-rel-position(month, year, 3)  = ( 1  + 3 - 1) mod 12 = 3 

origin(month, school-year) = 9 

value-wrt-rel-position(month, school-year, 3)  = (9 + 3 - 1) mod 12 = 11 

value-wrt-rel-position(month, school-year, 6 )  = (9 + 6 - 1) mod 12 = 2 

Connecting instance numbers  and  durations 

The connection between the notions of relative duration and numbering within a 

reference can be expressed with the functions defined for the case when a time unit 

is named or numbered within a time unit or time unit instance (and not a reference 

point): 

P rope r ty  1 (Connecting duration and  instance value functions) Let R be a 

time unit reference of T and R@ an instance of R .  Then the number of an instance 

of T within a reference R (or R@) is contained in the same range as the duration of 

R (or RQ) in terms of T .  

More precisely, 

number(T, R) = ( a ,  b)  i f f  dur(R,  T )  = (a ,  b) .  

number(T, RQ)  = (d ,  d )  i f f  dur@(R@, T )  = d. 
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Examples 

number(day, year)  = (365,366) iff dur(year ,  day)  = (365,366).  

number(day, year1994) = (365,365) iff dur@(yearl994,  d a y )  = 365. 

3.4 Summary - attributes of a time unit 

As a summary of the description about attributes of time units, several time units 

from the Gregorian calendar and from a university calendar are presented in Table 3.1 

and Table 3.2. The correspondence between relative duration and possible instance 

numbers above discussed can be observed in Table 3.2. The general duration is the 

duration relative to the same time unit (day) for all the time units in the table. 

Appendix B summarizes main concepts related to time units. 

month 

school- year 

year 
year 
week 

(general) Duration 
(365,366) 

Main reference 
zero-point 

Table 3.1: Examples of attributes of some time units 

(364,371) ' 
(119,133) 

lThe general duration of the school year is calculated in terms of number of weeks, and is therefore 
a loose bound of it. 

zero-point 
school-year 
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Reference 
year 
year 
year 
month 

Christian-era 
year 1994 
February 
February 1994 

school- year 
school- year 
semester 

Measure T U  
month 
week 

day 
day 

year 

day 
day 
day 

semester 
month 
week 

Relative duration Possible instance values 
{Jan, Feb,. . . , Dec} 
1 to 53 
1 to 366 
1 to 31 

1 to 3000 (application) 
1 to 365 
1 to 29 
1 to 28 

{Fall, Spring, Summer) 
{Jan, Feb,. . . , Dec} 
1 to 19 

Origin 
1 
1 
1 
1 

(appl.) 
1 
1 
1 

1 
9 
1 

Table 3.2: Examples of attributes related to durations and instance names or numbers 
of time units. 



Chapter 4 

Decomposition of time units 

- Y que' necesidad de carnbiar de a6o? Acaso este no sirve? Total, son todos lo 
rnisrno, no? 
- No, lo rnisrno no, este fue bisiesto, as; que el 65 tendra' un dia rnenos. 
- Ah! Encirna nos encajan un aiio de inferior calidad! 

- And what's the need of  changing the year? Isn't this one useful? Aren't they 
all the same thing? 
- No, not the same. This one was a leap year, so year 65 will have one day less. 
- Ah! So on top of that, they impose on us a lower quality year! 

Uaialda questioning her mother, i n  Hafalda inhdita, by Quino. 

The primary relation among time units is that of decomposition. When A decom- 

poses into B, A will be referred to as the composed timeunit, and B will be referred to 

as the component unit. For example, a year decomposes into months and a month into 

days. Also a month decomposes into weeks, a week into days, etc. Clearly there are 

different kinds of decompositions: a year decomposes exactly into 12 months, whereas 

a month decomposes in a non-exact way into weeks - between 4 and 6, where the 

extreme weeks of the month may be complete or incomplete weeks. Also, the number 

of components can vary: months decompose into different numbers of days depending 

on the specific month. In the case of February, the number of days even depends on 

specific month-instances. We propose that all these variations in the decomposition 

relation can be captured with two different aspects of the relation: Alignment and 

Constancy. 
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First we present intuitions of these two aspects and later we present them in a 

formal way, as part of the definition of the decomposition relation. Decomposition 

between time units is defined as a particular case of decomposition between classes 

of intervals. (We claim and justify that decomposition is the main relation of interest 

between time units.) Definitions therefore will combine those concepts of abstract 

decomposition introduced in Chapter 2 as well as concepts associated to time units 

and time unit instances, developed in Chapter 3. The last part of this chapter com- 

bines ideas related to time units, particularly their durations, with the decomposition 

relation. The main result of this formal development is a group of theorems where 

decomposition is shown to be a partial order on the set of time units. 

4.1 Introduction: Aspects of the decomposition 

relation 

4.1.1 Alignment 

A time unit may decompose into another in an aligned or non-aligned fashion. The 

decomposition is aligned just when the composed time unit starts exactly with the 

first component and finishes exactly with the last component. Consequently, a certain 

number of complete components fit exactly into the composed time unit. Examples of 

aligned decompositions include year into months, month into days, and week into day. 

A time unit decomposes into another in a non-aligned way when the composed time 

unit does not start exactly with the first component time unit and/or does not finish 

exactly with the last component time unit. Examples of non-aligned decompositions 

include year into weeks and month into weeks. A graphical picture of an aligned and 

non-aligned decomposition can be seen in Figure 4.1. This figure in fact looks exactly 

like Figure 2.1 in Chapter 2. The one in the previous chapter was introduced for time 

unit instances, this one associated to time unit classes. 
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Figure 4.1 : Graphical representation of Alignment 

4.1.2 Constancy in the number of components 

A time unit may decompose into another in a constant or non-constant fashion. The 

decomposition is constant when the component time unit is repeated a constant num- 

ber of times for every time unit instance. Examples of constant decompositions include 

year into months and week into days, since any year decomposes into 12 months and 

any week decomposes into 7 days. A time unit decomposes into another in a non- 

constant way it decomposes into different numbers of component time units. Examples 

of non-constant decompositions include month into days and year into days. 

A month decomposes into 31 or 30 days depending on which named-month it is, for 

example respectively January and April. It can also depend on the specific instance 

of the month, it can decompose into 28 or 29 days if it is February, depending on 

whether the year is a normal year or a leap year respectively. 

4.1.3 Combining the two- aspects of the decomposition 

There are four possible combinations resulting from these two aspects of alignment and 

constancy. These combinations cover examples from the various calendars analyzed. 

Some calendar structures are graphically represented in Chapter 5, Figures 5.1 and 

5.2. These graphs show how the combination of these two aspects provides enough 

expressive power to  describe decomposition alternatives between time units. 

The constancy aspect of decomposition also covers the very important attribute 

of a time unit, its (general) duration. Recall that the general duration of a time unit 
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has been defined as a relative duration where the measure unit is a basic time unit 

in the calendar. Furthermore, a time unit has been classified as of equal durations or 

non-equal durations based on its general duration. The relation of these definitions 

and the constancy aspect of decomposition is straightforward; a time unit is of equal 

duration if it decomposes in a constant way into the basic time unit. Non-equal 

duration is the parallel concept to non-constant decomposition into the basic time 

unit. 

One goal of our work is to represent relationships encountered in any system 

based on discrete units and holding a repetitive containment relation among them. 

(Arguably) all the relationships of interest in such systems are covered by the variants 

resulting from combining alignment and constancy of decomposition. 

One may wish to consider the decomposition of time units into different types of 

time units - for example the astronomical year decomposing into a special universal-year 

of 365 days and a universal-day. Again, constancy and alignment cover this varia- 

tion, adding no further complication to the formal apparatus, since it is effectively 

an elaboration of a decomposition into a non-equal durations time unit. However, a 

detailed analysis is beyond the scope of this thesis. 

4.2 Decomposition between time units 

Decomposition relations were defined in Chapter 2 in an abstract fashion, based on 

the interval algebra basic binary relations. In general terms, two main levels of ab- 

straction were distinguished: intervals on the time line and classes-of-intervals, which 

constitutes a higher level of abstraction introduced in this thesis. Correspondingly, 

decomposition relations have been defined at both levels, at the instance level and 

at the class-of-intervals level. In Chapter 2 no special characteristic is imposed on 

the classes-of-intervals. Relations between them result from a universal/existential 

generalization from the instance level. The following sections in this chapter define 

decomposition between special classes-of-intervals; time units. 
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4.2.1 Contiguous sequences definitions 

Contiguous sequences of time unit instances and time unit classes will be defined based 

on concepts and definitions related to numbering (or naming) of time unit instances. 

These definitions respectively extend those of contiguous sequence of intervals and 

contiguous sequence of classes of intervals. 

Definition 23 (Contiguous sequence of time unit instances) A contiguous se- 

quence of time unit instances of the same time unit class is a contiguous sequence 

of intervals, where the intervals are instances of the same time unit class, named 

or numbered with respect to a reference. The number of time unit instances in the 

sequence is referred as the repetition factor of the sequence. 

Since it is a sequence of instances, (and not classes) the reference for numbering 

them is a reference time unit instance or a conventional reference point (and not a 

time unit class). 

Formally, a contiguous sequence of time unit instances can be denoted as follows: 

Let T be a time unit class, let R@ be a reference time unit instance of T (or conven- 

tional reference point) 

T@&) =< to , ,  . . . , t@,+,-l > is a contiguous sequence of r intervals, where each 

interval t@;, with s 5 i 5 s + r - 1, is a time unit instance of T numbered or named 

with respect to RQ. 

It should be noted that in a contiguous sequence of time unit instances, names or 

numbers of the instances relative to the reference will be in increasing order. When 

the reference R@ is a time unit instance (as opposed to reference point), this is a 

special restricted case of a contiguous sequence of intervals. In this case the intervals 

in the sequence are time unit instances of T that span over at most one time unit 

instance, the reference RQ. The repetition factor is then bounded by the cardinality of 

the domain of T numbered within the reference time unit instance R@. For example, 

there will not be more than 12 specific months within one specific year. 

This can be expressed using the function number which associates the minimum 

and maximum cardinality of the domain of T numbered within a reference, defined 
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in Section 3.3.2: 

If number(T, R@) = (min-cardinality, max-cardinality), then 1 5 r 5 max-cardinality. 

(As a detail, since R@ is an instance, min-cardinality = max-cardinality). 

Examples 

The following are examples of contiguous sequences of time unit instances within one 

reference time unit instance. 

(4 3) 1. r n ~ n t h @ ~ ~ , , ~ ~ ~ ~  = <April 94, May 94, June 94> 

(1  20) 2. = <May 1 1994, . . . , May 20 1994> 

(1990 4) 3. y e ~ r @ ~ ~ , & , ~  Era = <year 1990, . . . , year 1993> 

Specific time intervals which span more than one specific time unit instance, as for 

example days numbered with respect to two different, specific months, (for example 

from May 15 1994 until June 15 1994) are also contiguous sequences of day instances. 

The representation of this is suggested in a later chapter. The definition of contiguous 

sequences of time unit instances as presented so far acts as a preamble for the definition 

of contiguous sequences of time unit classes. Classes in these contiguous sequences 

are named or numbered time units. 

Definition 24 (Named (or numbered) t ime  uni t )  A named (or numbered) time 

unit is a subclass of a time unit. All the instances in this subclass have a unique 

instance name (or number) with respect to some reference time unit. A named time 

unit is not yet a specific instance, rather it represents a set of specific instances (all 

with the same name). 

Since a named (or numbered) time unit class has a unique name (or number) 

by definition, the function that associates a unique number or name to a time unit 

instance can be applied to it. (even though a named time unit is a subclass of the 

time unit and not yet an instance). The property defining a named (or numbered) 

time unit can then be expressed as: 
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1. if names are associated to a time unit, 

V time unit instance t @  of a named time unit Named-T, 

there exists a name m common to all the instances in the subclass: 

3 m name@(t@, R) = m = name@(Named-T, R) 

2. V time unit instance t @  of a numbered time unit Numbered-T 

3 n number@(t@, year) = n = number@(Named- T ,  R) 

Examples of named time units 

Named-month relative to year: February 

(extensionally it represents the set of all the specific instances of the months 

February) 

number@(subclass of February, year) = 2 

name@(subclass of February, R) = "February" 

a Named-day relative to week Monday 

Named-day relative to month: First day of a Month 

Definition 25 (Contiguous sequence of named time units) A contiguous sequence 

of named time units i s  a contiguous sequence of subclasses of the same time unit class. 

More precisely, i t  is a contiguous sequence of named time units of the same class. 

Names or numbers are relative to a reference (which is a time unit class). Number- 

ing (or naming) i s  cyclic. The number of classes in the sequence is referred as the 

repetition factor. 

Formally this can be expressed as follows: 

Let T be a time unit class, let R be a reference of T .  

T$") =< T., . . . , T,+,-l > is a contiguous sequence of r subclasses of T ,  where each 

subclass T;,  with s 5 i 5 s + r - 1 ,  is a named time unit of T numbered or named 

(in cyclic, increasing order) within R. 
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The fact that numbering (or naming) of the components of the sequence is cyclic 

can be expressed using the functions defined as follows: 

Let (min-cardinality, max-cardinality)= number(T, R)  

number@(z, R)  = n~rnber@(Z+,,~, R),  

name@(K, R)  = name@(Ti+,a,d, R) , 
where min-cardinality 5 card 5 max-cardinality. 

Examples 

The following are examples of contiguous sequences of named time units. 

1. monthFi i  = <April, May, June> = <month,$, month5, month6> 

3. monthvi?) = <April, May, . . . , December, January, . . . , April, . . . , June> 

4. rnonthg::) = <December, January, February> = < rnonthl 2, rnonthl, month* 

As the examples above show, the repetition factor is not restricted by cardinality 

bounds in case of contiguous sequence of classes (as opposed to contiguous sequences 

of instances). The 3rd example is a sequence of 15 months named relative to year. 

The cyclic nature of numbering can be seen in examples 3 and 4. Furthermore, 

cyclic counting is important in the definition of time unit classes having the origin of 

instance number counting different than 1, like for example months numbered within 

a school- year. 

4.2.2 Decomposition, relation of interest between time units 

Having defined contiguous sequence of time unit classes as special classes of intervals 

other relations between classes of intervals can be defined for this particular case. 

The main relation we will define between time units is that of decomposition. We 

argue that when classes of time intervals are time units, decomposition is sufficient to 

cover all relations of interest between them. That  is to say, time units are related by 
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a special inclusion relation and not by any precedence relation. We state this fact in 

the following claim: 

Claim 1 Time units do not relate with precedence relations. As a consequence, the 

possible binary interval relations that will hold between time units are those charac- 

terizable with inclusion. 

These ideas can be intuitively explained as follows: time units are classes of time 

intervals. Hence a time unit does not precede other time units; rather it is specific 

instances that precede other instances. For example, the year 1993 is before 1994, but 

year is not before nor after month; rather year can be decomposed into a sequence 

of months. Precedence among subclasses of time units as opposed to specific time 

unit instances (for example, Monday as opposed to Monday, May 16 1994) is not 

straightforward. For example, it could be said that Mondays precede Tuesdays, but 

this is true if there is an implicit assumption that both belong to the same week. In this 

case however, the ones compared are in fact specific time unit instances. Therefore, 

this issue does not alter the assumption taken in this research: time units do not relate 

with precedence relations. Precisely, one of the axiomatizations of the interval algebra 

is that of considering two main kind of relations: precedence and inclusion. Given that 

precedence relations do not correspond, decomposition, an inclusion relation should 

be enough to cover the interesting relations among time units. 

The situation of time units with the same duration but a "different origin", like 

for example year in the Gregorian calendar and school-year in a university calendar 

is not of decomposition, but rather overlapping. (In the generalized class level sense 

defined year .OVERLAPS. school-year.) It should be noted that time units in the 

same calendar don't present this situation. All time units in the same calendar have 

different durations; decomposition accounts for the main interesting relation between 

them. 

But even in case of variant time units, decomposition plays an important role, 

determining their relation. Variant time units are different ones, but closely related. 

Both year and school-year decompose into month, and they differ in the origin of 

instance number counting, as was analyzed in Chapter 3. 
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4.2.3 Definitions, alignment and constancy 

Two main characteristics are the ones distinguished in decomposition of time units: 

alignment and constancy. 

The aligned and non-aligned distinction of decomposition concerns the specific 

instance level; we can conceive a specific year decomposing in an aligned way or 

non-aligned way into specific months or specific weeks. Also, alignment is a charac- 

teristic to consider in the class level. For example year as a class can decompose in 

an aligned or non-aligned way into other time unit classes. Constancy, however, is 

a matter that concerns only the class level, since it is related to all instances of the 

class decomposing into the same number of subintervals or not. 

Aligned and non-aligned decompositions of a time unit class into a sequence of 

time units are definable based on the general case (aligned and non-aligned decompo- 

sition into a sequence of classes of intervals, in Chapter 2). Furthermore, also based 

on the general definition of decomposition between two classes in that chapter, the 

decomposition relation between two time unit classes can be defined. 

Binary decomposition between two time unit classes will be denoted with a special 

symbol,(D), resembling a symbol associated to an order relation. Indeed, a main 

theorem about the decomposition between time units is that this relation is a partial 

order on this set. Alignment and Constancy will be expressed as binary predicates 

holding between time units. Alignment is definable directly based on the abstract 

decomposition definitions in Chapter 2. Constancy is formally defined as a property 

that depends on the repetition factor. 

Definition 26 (Decomposition relation between time units) Let A and B be 

two time units in the same calendar or variant of the calendar. (A, B E TUScAL). 
A decomposes into B, written A D B, iff A .DECOMPOSES-INTO. B. 

A is called the composed time unit and B is called the component time unit. 

Decomposition of time units can be aligned or non-aligned into a contiguous sequence 

of subclasses of the component time unit. The repetition factor of the contiguous 

sequence is also considered the repetition factor of the decomposition. 
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Alignment of decomposition 

Definition 27 (Aligned and non-aligned decomposition of two time units) 

Let A and B be two time units in the same calendar or variant of the calendar. 

( 4 B  E TUSCAL) 

A decomposes into B in  an aligned way (2.e. Alig(A,B)) i f l A  decomposes aligned 

into a contiguous sequence of named B 's, i.e. 

A.DEC-ALIG-INTO-SEQ. < B1,. . . , B,. >. The number r is the repetition 

factor of the sequence and of the decomposition. 

A decomposes into B in  a non-aligned way (2.e. Non-Alig(A,B)) ifl  A decom- 

poses non-aligned into a contiguous sequence of named B's ,  i.e. 

A.DEC-NON-ALIG-INTO-SEQ. < B1,. . . , B,. >. The number r is the repeti- 

tion factor of the sequence and of the decomposition. 

Examples 

year k month, 

month k day, 

week k days, 

year week, 

month D week, 

Alig(year, month) 

(year.DEC-ALIG-INTO-SEQ. < January,.  . . , December >). 

Alig(month, day) 

Alig(week, days) 

Non- Alig (year, week) 

Non-Alig(month, week) 

Theorem 8 Aligned and non-aligned are two mutually exclusive relations. Let A, B E 

TUScAL, such that A B. Alig(A, B) i f  not Non-Alig(A,B). 

Proof: This follows from the analogous theorem about aligned decomposition 

between general classes of intervals (Chapter 2). 

Constancy of decomposition 

Definition 28 (Constant and non-constant decomposition of two time units) 
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Let A and B be two time units in the same calendar or variant of the calendar. 

(A,B E TUSCAL) 

1. A decomposes into B in a constant way with a unique repetition factor r 

(i.e. Cons(A, B,r)) i$ every A-instance decomposes into a contiguous sequence of 

r named B 's. 

2. A decomposes into B in a non-constant way 

(i.e.Non-Cons(A,B, (lower-r,higher-T))) iff 

0 Every A-instance decomposes into a contiguous sequence of r named B's, 

where the number r is the repetition factor of the contiguous sequence (and 

extending notation, the repetition factor of the decomposition). The repe- 

tition factor is bound such that lower-r < r < higher-r and 

0 There exist at least two A-instance decompositions into B with a diferent 

repetition factor. 

Examples  

year D month, Cons(year,month, 12) 

week D days, Cons(week, dn ys, 7) 

month D day, Non-Cons(month,day, (28,31)) 

year day, Non-Cons(year, day, (365,366)) 

The repetition factor can be considered as a min-max pair (lower-r,higher-r) in both 

cases, constant and non-constant decomposition. In the constant situation, lower-r = 

higher-r. This pair corresponds exactly to the duration of the composed time unit in 

terms of the component one, as the following property expresses: 

P r o p e r t y  2 (Equivalence of repet i t ion factor a n d  dura t ion)  Let A and B be 

two time units in the same cnlendar or variant (A, B E TUScAL). A decomposes 

into B with a repetition factor (lower-r,higher-r) ifl dur(A,  B )  = (lower-r,higher-r) 
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The following property relates the equal or non-equal duration of a time unit with 

the constancy aspect, as was already discussed intuitively. This property outlines 

the fact that a time unit is of equal durations if it decomposes into the basic time 

unit (measure for general durations), in a constant way. A time unit is of non-equal 

durations if it decomposes in a non-constant way into the basic time unit. 

Property 3 If a time unit A decomposes into the basic time unit of a calendar in 

a constant way, then A will be of equal durations. I.e., all A-instances will have the 

same general duration. 

If a time unit A decomposes into the basic time unit in a calendar in a non-constant 

way, then A will be of non-equal durations. I.e., there exist A-instances with diferent 

general durations. 

Proof: This property follows from the definition of general duration and constancy 

of the decomposition relation. 

4.3 Connecting decomposition and durations 

Definitions of time units, time unit instances, their durations and decomposition re- 

lation were done to formalize the following idea: when a time unit decomposes into 

another, the composed time unit instances are all of a larger duration span than any 

of the component time unit instances. Based on the fact that this holds, the for- 

malization presented in this thesis is consistent with the fact that decomposition is 

a partial order on the set of time units. Because decomposition on time units is a 

partial order, a hierarchy is definable, based on it. This is the structure this thesis 

proposes as the basic structure time units relate. Moreover, the time unit hierarchy 

and its properties will lead to other alternative structur.es which show how time units 

relate. 

The rest of the chapter is organized as follows. First, some properties that derive 

from definitions and assumptions taken so far are presented. A central theorem in 

this thesis is presented next, relating duration and decoinposition of time units. The 
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precise proof of the theorem appears in Appendix A.2.  Corollaries from this theorem 

lead to the theorem proving that decomposition is a partial order. 

4.3.1 Decomposition: a partial order 

Property 4 Let A and B be two time units in the same calendar or variant (A, B E 

TUSCAL). Then they have the same duration only if they are the same time unit or 

if they are variant time units. I.e., If dur(A,  Basic) = dur(B ,  Basic) then A = B or 

A and B are variant time units. 

The assumption taken in this work is that different time units in the same calendar 

have different (general) durations. Recall that a general duration is the one measured 

relative to a "Basic" time unit in the calendar, i.e. in the hierarchy associated to 

TUSCAL. 

Time units with the same duration but "different origin" are not considered to 

be different time units, but rather variant time units, as for example year in the 

Gregorian calendar and school year in a university calendar 

Property 5 Variant time units are not related b y  deco,mposition but rather b y  the 

.OVERLAPS. relation. The relation is determined b y  decomposition. 

This issue has been discussed previously ( i n  section 4.2.2). It appears here as a 

property to stress that the next theorem 9, deals with two time units that decompose 

into each other. This includes time units within the same calendar (i.e. all time 

units in the Gregorian calendar, for example year into day). It also includes time 

units from variant calendars. For example school-year from a university calendar 

decomposes into month, in the Gregorian calendar. The case that is not included 

in the theorem, because they do not decompose into each other, is that of variant 

time units. For example, year and school-year. However, they both decompose into 

month, and the relation between them is precisely based on how month-instances are 

numbered. 

Property 6 A time unit decomposes into itself only in a constant aligned way, with 

repetition factor 1. 
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The only situation that a time unit can decompose into itself is if every instance 

of the composed time unit is exactly the same as the (single) instance of the com- 

ponent time unit. There is only one possibility in this situation, a constant/aligned 

decomposition with repetition factor one. 

Theorem 9 (Decomposition and  duration) Let A and B be two time units in 

the same calendar or variant (A, B E TUSCAL) such that A decomposes into B 

(A B). Then A has a greater or equal general duration than B. 

Considering that durations are min-max pairs, this theorem can be reformulated 

using the order relation defined between min-max pairs: 

Let A and B be two time units in the same calendar or variant ( A ,  B E TUSCAL) such 
P 

that A decomposes into B (A r> B), then dur(A, Basic) > dur(B, Basic). "Basic" 

is the time unit used to measure general durations in the hierarchy associated to 

TUSCAL. 

Proof: We mainly give here an idea of the the proof of this theorem and specially 

the implications of it in the corollaries. The precise proof of this theorem appears in 

Appendix A.2. 

Rephrasing the theorem statement, we restrict the parameters of the decomposi- 

tion relation so that if A decomposes into (a sequence of) B's, then any A instance 

has a larger time span than any single B instance. The idea we follow is to restrict 

the time units and decomposition parameters so that the theorem holds. Specifically, 

we relate the duration of the component time unit and the repetition factor of the 

decomposition. The restrictions are not arbitrary, they reflect the essence of decom- 

position of a unit into a contiguous sequence of another unit. An example of the 

kind of restrictions is that no time unit can decompose into a single occurrence of 

an incomplete time unit. That is, in case of a non-aligned decomposition, at least 

one complete occurrence of the component time unit must be part of the component 

sequence. 

Corollary 10 Component time units do not contain composed time units. 
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Proof: In this case of decomposition of time units and not just any class of inter- 

vals, the constraint imposed in the decomposition relation about component classes 

not containing the composed class (f. ex. a day not containing a month) is not nec- 

essary. (This detail is taken into account in theorems 4 and 5, chapter 2 in case of 

decomposition between generic classes). The reason relies precisely on this previous 

theorem, which associates decomposition with duration, and the fact that duration 

min-max pairs are related with a partial order. 

Corollary 11 Decomposition is a particular case of an inclusion relation. Let A, B E 

TUSCAL. If A decomposes into B, (A D B) then 

1. B is contained or is equal to A, I.e. B .IN. A, where . IN.  is the extension of 

the relation .in. defined between intervals to the class level. 

2. A .IN. ~ 2 " )  I., the composed time unit is equal or is contained into the con- 

tiguous sequence of (complete) components. 

Proof: 

1. B is contained or is equal to A (B .IN. A) - This is a direct consequence of the 

previous theorem. Refer to Figure 4.2 for a graphical view. 

2. A .IN. B?") - This is a consequence of decomposition being either aligned 

or non-aligned. The relation .IN. is defined as the union of .EQUALS. and 

.STRICT-IN. The relations .EQUALS. and .ST RICT-I N. are precisely the 

relations that hold between A and ~ 2 " )  in the aligned and non-aligned case 

respectively. 

Theorem 12  (Decomposition - a partial order on t ime  units) The decomposi- 

tion relation is a partial order on the set of time units in a calendar or a variant 

calendar. 

Proof: When a composed time unit A decomposes into a component time unit B, 

the composed time unit A has a bigger (general) duration than the component time 
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Figure 4.2: If A decomposes into a sequence of B7s, then A contains B 

unit B. This the main result just presented. I.e., for any A, B E TUSCAL, A (> B iff 
P 

dur(A7 Basic) 2 dur(B, Basic) This duration has been defined in terms of min-max 
P 

pairs. These pairs relate with a partial order (2). Based then on the partial order 

between min-max pairs, decomposition is a partial order. 

Or, another proof: 

Proof: Decomposition is a containment relation. 1.e) for any A, B E TUSCAL7 

A B iff B .IN. A, from theorem 6. Since containment is a partial order, decompo- 

sition is a partial order. 



Chapter 5 

Calendar Structures: time unit 

hierarchies 

"And how many hours a day do you do lessons?" - said Alice in a hurry to  
change the subject. 

"Ten hours the first day," - said the Mock Turtle: "nine the next and so on." 
"What a curious plan!" - exclaimed Alice. 

"That's the reason they are called lessons, " the Gryphon remarked, "because 
they lessen from day t o  day." 

This was quite a new idea to  Alice, and she thought it over a little bit before 
she made her next remark. "Then the eleventh day must have been a holiday?" 
"Of course it was" - said the Mock Turtle. '(And how did you manage on the 
twelfth?" Alice went on eagerly. 

"That's enough about lessons" - the Gryphon interrupted. 
Alice  i n  Wonderland, Lewis Carroll 

A calendar structure is basically a pair: a set of time units and a decomposition 

relation. A result proved in the previous chapter is that decomposition is a particular 

case of containment, and constitutes a partial order on the set of time units. Therefore, 

a calendar structure is defined as a containment t ime  unit hierarchy. 

The structure is defined so that variants of a specific calendar can be defined in 

terms of a basic one. Such would be the case of a university or business calendar, 

based on the Gregorian calendar. Such calendars have the same time units as the 

basic one, with possible new time units or a different conventional beginning point. 
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For example, many university calendars would have a semester time unit, where the 

school year begins in September. 

The systematic analysis of the transitivity properties of the decomposition relation 

between the time units in the hierarchy gives rise to properties that hold in the 

structure. For example, we analyze the composition (or product) of two decomposition 

relations. Thus, if two aligned decomposition relations are multiplied, the resulting 

decomposition relation is also aligned. An interesting result arises when composing 

two decomposition relations which are non-constant. The result is a third relation 

which can be either constant or non-constant. But, the result of the composition 

operation is not arbitrarily constant or non-constant ; rather, the resulting relation 

follows a pattern in the time unit hierarchy. Periodic relations, cycles and chains 

become apparent as a direct consequence of these characteristics of transitivity of 

alignment and constancy. 

The sections in this chapter present the definition of calendar structures and ex- 

amples of different calendars: the Gregorian, the SFU, the World or Universal and 

the Hebrew calendars. Graphs and tables with the attribute values are used to show 

these structures. Subsequently we study operations on decomposition. Transitivity of 

constancy and alignment is a result of this study. The hierarchy is then characterized 

structurally in terms of the constancy and alignment of decomposition, with cycles, 

higher and lower time unit bounds, etc. This study makes apparent a parallelism of 

decomposition in the hierarchy with divisibility concepts. Definitions and properties 

highlighting this parallel are developed. We then define the concept of chains of time 

units as an alternative structural characterization of the hierarchical structure. This 

characterization provides for a different point of view, and we envision that it consti- 

tutes a basis for a formal language of time units. In the final section computational 

aspects of using the calendar structure are addressed. In addition a particular nota- 

tion is suggested to  represent time unit instances which exposes the expressive power 

of the developed formalism. 
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5.1 Definitions and examples of calendar struc- 

t ures 

Definition 29 (Calendar s t ruc ture  o r  t ime  unit hierarchy) A calendar struc- 

ture or time unit hierarchy is essentially a poset, a pair composed of a set (of time 

units) and a (decomposition) relation, which is a partial order on the set. The pair 

will be written as: < TUSCAL, >. As it was previously expressed, TUScAL denotes 

the set of time units in a calendar CAL and its variants. 

Since calendar structures are partial orders, they can be represented by a directed 

acyclic graph. The set of nodes in a calendar structure represents the set of time 

units. Edges represent the decomposition relation. 

Definition 30 (Readings of a n  edge in t h e  t ime  unit  hierarchy) An edge in the 

time unit hierarchy is directed from a time unit A to a time unit B i$A decomposes 

into B, (written A B). This can also be read in other ways: A is greater than B, 

or A is higher in the time unit hierarchy than B, or A is a predecessor of B. 

Depending on the application, a certain level in the time unit hierarchy is defined 

as the lowest level in the hierarchy. Time units in that level were defined as atomic 

in Chapter 3. A non-atomic time unit decomposes into one or more time units. An 

atomic time unit does not decompose. 

In terms of the time unit hierarchy, the level of granularity desired prunes the 

structure so that lower level time units than the atomic ones are not taken into 

consideration. In the same way, high level time units can be pruned for a particular 

application, so that only the units involved in the application are included in the time 

unit hierarchy. 

Definition 31 (Height of t h e  t ime  unit  hierarchy) The height of the structure 

is the longest path from an atomic level time unit up to the top-most time unit. 

For example, the Gregorian calendar structure, as represented in Figure 5.1, has 

an height equal to 5. . 
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Examples in this thesis are mainly based on the Gregorian calendar. As an ex- 

ample for a variant calendar we use a university calendar structure, particularly, as 

organized at  Simon Fraser University (SFU). Figure 5.1 represents the Gregorian cal- 

endar structure. Figure 5.2 represents the SFU calendar structure. Edges are labeled 

with the two decomposition characteristics, constancy and alignment. C stands for 

constant, nc stands for non-constant and similarly, a and nu stand for the alignment 

possibilities; not all edges are drawn for clarity purposes. The complete description 

of these graphs in terms of constancy and alignment of decomposition appear in Fig- 

ure 5.8 and Figure 5.9 with the adjacency matrix of both graphs. It can be noticed 

that month and period in the SFU calendar structure do not relate with decomposition. 

Period stands for class period, exam period and break period, lasting respectively 13 

weeks, 2 weeks and 2 or 3 weeks. That is to say, period is a non-equal durations 

time unit, as is month. They are not comparable exactly because their respective 

durations are not comparable. The duration of month, (28,31), is not comparable to 

the duration of period, (2 * 7,13 * 7) = (14,91), an expected result which confirms the 

soundness of the whole apparatus defined. (Some instances of month are larger than 

some instances of period and viceversa.) 

n Time Unit 

11 century 
year 
month 
week 

day 

(general) Duration1 
(146097,146097) 
(36524,36525) 
(365,366) 
(28,311 
(777) 
(191) 

Main reference time unit 11 
zero-point 
zero-point 
zero-point 
year 
year 
whole-week 

Table 5.1: Attributes of time units in the Gregorian calendar 

To completely define these two calendars the attributes of the time units and of 

the decomposition relations have to be specified. These have appeared in examples 

in Chapter 3 and are summarized in Tables 5.1, 5.2 and 5.3. 

lIn this case, durations are measured in days, the atomic time unit in the structure 
2These time units are related to  time units in the Gregorian calendar 
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\I References: 

d a  constant, aligned 
ncla non-constant, aligned 
clna constant, non-aligned 
nclna non-constant, non-aligned - 

Figure 5.1 : Gregorian calendar structure 

References: 

d a  constant, aligned 
ncla non-constant. aligned 
dna constant, non-aligned 
nclna non-constant, non-aligned 
X " time unit from Gregorian calendar 

Figure 5.2: Simon Fraser University calendar structure 
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n Time Unit2 I (general) Duration I Main reference time unit 11 
\- I school-yew j (52*7,53;7) 

I I zero-point 1 
)I semester 1 (17*7,19*7) 1 school-year 1 1 
1 period 1 (2*7,13*7) ' I semester 

Table 5.2: Attributes of special time units in the Simon Fraser university calendar 

The graphs of two other calendar structures, the World calendar and the Hebrew 

calendar appear in figures. The World calendar is a proposal that came as a result 

of inter-governmental initiatives in cooperation with some non-governmental parties, 

such as the International Astronomical Union, and religious authorities, from the 

1920's till 1940's. This reform has been proposed for example at the United Nations 

(1947), and treated at Vatican Councils (in 1963). However this reform has not finally 

been approved. (see [Co171, Rus821). This calendar attempts to address two main 

"problems" of the Gregorian calendar; inequalities of the divisions of the year (months 

having different number of days), and the changes of the day of the week (thus if 

the first day of one year is a Monday, the first day of the next year is a Tuesday 

or Wednesday). In terms of the terminology introduced in this thesis, this reform 

attempts to deal with the non-constancy and non-alignment of the decomposition 

between time units. We present this calendar here as a note about related material 

to  calendars. A key point in studying this calendar however has been to have a 

more complete set of study cases. The apparatus developed in this thesis takes into 

consideration the structure of the World calendar. Briefly, the astronomical year is 

divided exactly into four three-months periods, of ninety-one days each, with more 

(fixed) internal structure. This makes a total of 364 days. The odd remaining day 

is out of the scheme of days and months. It is a spare day, a holiday called L'world 

day". Leap years have an extra world day. January 1st is always a Sunday, Christmas 

Day comes on a Monday. More details can be found in the referenced literature. In 

our formalism we would treat the special world day as a unit of another type into 

which the astronomical year decomposes. However, this adds no further complication 

to the formal apparatus, since it is effectively an elaboration of a decomposition into 

non-equal duration time units. 
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The Hebrew calendar is an example of a lunar-based calendar, where other decom- 

position variations appear, all of them contemplated by our formalism. This calendar 

has 12 months of 29 and 30 days alternating, having a total of 354 days per year. 

The calendar is corrected adding an extra month to seven years of the nineteen-years 

"Metonic cycle". These years are the so called "embolismic" years, the 3rd, 6th, 8th, 

l l t h ,  14th, 17th and 19th of the cycle. The zero point of this calendar is the "Creation 

of the World", established as October 3761 B.C. So for example 1969 of the Gregorian 

calendar was 5730 in the Hebrew calendar. Another example not represented in this 

chapter, but also contemplated by the developed formalism (and of historical curious 

interest), is that of the French Revolution calendar. This calendar was introduced 

in 1793 by the French revolutionaries and abolished in 1806. It is based on a more 

"rational", decimal system. They proposed a year composed of 12 months of 30 days, 

composed in turn by three weeks of 10 days each. Five or six revolution days end the 

year. Hours, minutes and seconds are also based on the decimal system. 

5.2 Operations on decomposition relations 

Three operations will be considered between decomposition relations; composition, 

inverse and intersection. The composition operation between relations shouldn't be 

confused with the name of the relation, which happens to be "decomposition". Com- 

position will be referred also as product of decomposition relations and intersection 

as sum, following the terminology used in the definition of relational algebras (for 

example [VK86]). 

The operation that we specially want to study is composition. With composition, 

transitivity properties about constancy and alignment are studied, and these in turn 

are the basis for the analysis of structural properties in the time unit hierarchy. 

The other two operations are presented here for completeness purposes. It should 

be noticed that these three operations (composition, intersection and inverse) are 

here defined among decomposition between time unit classes. This is to be con- 

trasted to the relational algebras defined in the literature, and constraint propagation 

algorithms, which deal with relations between time intervals in the time line, i.e., at  
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d a  
ncla 
clna 
ndna 
nclalt 
X "  

constant, aligned 
non-constant, aligned 
constant, non-aligned 
non-constant, non-aligned 
non-constant. aligned, different type 
time unit from Gregdan calendar 

Day" 

Figure 5.3: World calendar structure 

19-H-Years 

H-Year 

References: 

cla constant, aligned 
nda non-constant, aligned 
dna constant, non-aligned 
ndna non-constant, non-aligned 
X (") - ALMOST same tu as in the gregorian. 

different beginning 

Figure 5.4: Hebrew calendar structure 
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the instance level (for example [A1183, MSK93, GS92, LM941.) 

5.2.1 Composition or product 

The composition or product of two decomposition relations is defined when the com- 

ponent time unit of one of the relations is the same time unit as the composed time 

unit of the other relation. For example year decomposes into month, month decom- 

poses into day. These two decomposition relations can be composed (or multiplied) 

to obtain the relation of year decomposing into day. 

Decomposition characteristics like constancy, alignment and repetition factor can 

be analyzed when multiplying these relations. 

Definition 32 (Composit ion o r  p roduc t  of decomposit ion) Let A, B, C be time 

units E TUSCAL, such that A Dl B and B k2 C. The composition or product of 

the two decomposition relations Dl and k2 is a third decomposition relation E3 such 

that A e3 C. This will be written as D3 = 8 k2. 

Cons tancy  a n d  a l ignment  

A systematic study of each possible product of decomposition relations with respect 

to  constancy and alignment is schematically presented in Figure 5.5 and Figure 5.6. 

Examples are from the Gregorian calendar unless otherwise specified. Combinations 

that are not possible are crossed out. The results are summarized in Table 5.4 and 

Table 5.5. 

Some situations are determined. The product of a constant decomposition relation 

with another constant decomposition relation is a third constant relation. For exam- 

ple, (week D l  day) and (day  E 2  hour), with both decompositions being constant 

Cons(week, day) and Cons(da y, hour). Multiplying these two relations produces D3 
such that (week k3 hour) and Cons(week,hour). 

Some other situations are undetermined; for example, the product of a constant 

decomposition with a non-constant decomposition relation can be either constant or 

non-constant. (For example ,$-centuries, year, day and year, month, day respectively.) 
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p 
week, day,hour 4centuries.year.day year, month, day 

cons 

non-c 

' year.month.day 
month, day, hour 

Hebrew calendar 

Figure 5.5: Transitivity of Constancy 

However, this non determinism is not random. As it will be analyzed in detail, (in 

section 5.3) the resulting relation follows a precise pattern in the structure; periodic 

relations and cycles become apparent as a direct consequence of these characteristics 

of the transitivity. 

n 2 11 cons non-cons n 
II non-cons II non-cons I non-cons I I 

1 8  
cons 

Table 5.4: Transitivity of constancy of decomposition relations 

The results above shown analyze constancy and alignment separately. There are 

23 = 8 possible combinations in each separate case. A complete analysis combining 

constancy and alignment involves the study of 43 = 64 scenarios. Several of those cases 

are a direct consequence of the behavior of each aspect separately. Some cases however 

present situations that show the inherent interconnection between these two aspects. 

cons {cons, non-cons) 
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Year.Month, Day 28-Centuries.Year,Week Year. Month. Week 

non-a 

alig non-a 

non-a 

non-a 

H 
Year. Week. Day 

H H 
I I .  I . I  

Figure 5.6: Transitivity of Alignment 

1 non-alig I( {alig, non-alig) I {alig, non-alig) 

1 8  
alig 

Table 5.5: Transitivity of alignment of decomposition relations 

alig {alig, non-alig) 



CHAPTER 5. CALENDAR STRUCTURES: TIME UNIT HIERARCHIES 70 

We present one pattern of such an interconnection between alignment and constancy. 

These examples suggest that if the product of two decomposition relations is non-exact 

(either non-constant or non-aligned) and one of the relations is exact (either constant 

or aligned), then the other decomposition relation must be non-exact. Figure 5.7 

graphically shows this situation with associated examples. A complete study of all 

the possible scenarios would prove this pattern and others relating transitivity with 

constancy and alignment. This is left for future invest i g a t i ~ n . ~  

non-cons & 
Figure 5.7: Interconnection between constancy and alignment 

Repetition factor 

The repetition factor of the product of two decomposition relations can be obtained 

by multiplying the respective repetition factors. Sometimes only a bound of the 

repetition factor can be deduced. Repetition factors have been defined as min-max 

pairs, and we define multiplication as multiplying respectively the minimums and the 

maximums. 

3I would like to thank Andrew Fall for his enthusiasm in discussing these and different interesting 
patterns. 



CHAPTER 5. CALENDAR STRUCTURES: TIME UNIT HIERARCHlES 71 

If the relations that are composed (or multiplied) are constant and aligned, the 

repetition factor obtained as the multiplication of the two pairs is exactly the repe- 

tition factor of the product relation. For example, century decomposes into year in 

a constant and aligned way, with a repetition factor of (100,100). Year decomposes 

into month also in a constant and aligned way, with a repetition factor of (12,12). 

Century-month is the resulting composition (or product) of these decomposition rela- 

tions. It has a repetition factor of (12 * 100,12 * 100). 

However, when some of the relations composed (or multiplied) are non-constant or 

non-aligned, the multiplication of the repetition factors does not produce exactly the 

repetition factor of the product relation, but a looser bound. For example, year-month 

has a repetition factor of (12,12), is constant and aligned; month-day has a repetition 

factor of (28,31), is non-constant and aligned. Multiplying the repetition factors, 

produces the pair (12 * 28,12 * 31) = (336,372) which is in fact a looser bound of the 

year-day repetition factor: (365,366). Multiplication of repetition factors can be used 

when creating or modifying calendar structures, see Section 5.5 .  

5.2.2 Intersection 

The intersection or sum of two decomposition relations is defined if both decomposi- 

tion relations have the same composed and component time unit. 

Definition 33 (Intersection or sum of decomposit ion) Let A,  B be time units 

E TUSCAL, such that A Dl B and A k2 B. The intersection or sum of the two 

decomposition relations Dl and D2 is a third decomposition relation p3 such that 

A p3 B, and the attributes of e3 are common to the other two. This will be written 

as tl3= !?I@ D2. 

Intersection in this context is a limit case operation. Time units are in fact 

classes of intervals, and likewise, decomposition relations are classes of decomposi- 

tions. Therefore two time units only have one possible decomposition relation be- 

tween them. For example year always decomposes in a constant and non-aligned way 

into day, with a repetition factor of (365,366). Therefore, there is only one single 



CHAPTER 5. CALENDAR STRUCTURES: TIME UNIT HlERARCHIES 72 

decomposition relation between two classes, and thus intersection is not of so much 

interest from a computational point of view. Contrast this to intersection of relations 

between intervals at  the instance level, an issue dealt extensively in the literature to 

deal with scheduling of activities occurring during specific time intervals. Time unit 

instances can relate in several possible ways. For example, specific weeks can occur 

before, after, during, or mostly any of the basic interval relations with respect to a 

specific year. That is to say, there are several possible consistent scenarios of relations 

between specific time unit instances. At this point in our discussion, we are not deal- 

ing with relations among specific time intervals, but rather with relations about the 

time units classes, which constitute the basis of a formal system of measures. 

Intersection of two decomposition relations between time unit classes is still an 

interesting operation if relations are not yet defined completely, i.e., it is not yet 

determined whether a decomposition relation is aligned or non-aligned. For example, 

this could be the case while the time unit hierarchy is created, or if a new time unit 

is added to  the structure. 

The characteristics of the sum of two decomposition relations results from inter- 

secting their characteristics in the usual set-theoretic way. For example, if is 

{constant, non-constant} and t3 is constant then k3 = $ is constant. 

5.2.3 Inverse 

The inverse of a decomposes relation is the composes relation. (Not to be confused 

with composition or product!). The characteristics of decomposition and its inverse 

are the same, constancy, alignment, etc. It is only a matter of how things are ex- 

pressed, from the composed time unit point of view or the component time unit point 

of view. 
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5.3 Structural properties in a time unit hierarchy 

This section develops a series of definitions intercalated with examples and properties 

about the calendar structures related to propagation of constancy and alignment. Cy- 

cles, higher and lower bounds are defined. A parallelism is presented with divisibility 

concepts. At the end of this section all the properties are summarized. 

5.3.1 Cycles in the time unit hierarchy 

In a time unit hierarchy we find cycles. These are related to the transitivity of 

constancy and alignment of the decomposition relations in the hierarchy as they are 

composed (or multiplied). 

Up cycles 

A constancy up cycle appears when a time unit decomposes in a constant way into 

some "extreme" time unit even though there may be "intermediate" time units in the 

hierarchy that decompose in a non-constant way into that extreme one. 

For example, sequences of four centuries decompose into (365 * 400 + 4 * 25 - 3) 

days. This formula comes from considering all years as non-leap years (i.e. with 365 

days) and then adding the additional leap days. So 400 years contain 400 "years of 

365 days", plus 4 times the leap days in a century. (4 times comes from 4 centuries). 

Since there is a leap year every 4 years, each century has (in general terms) 10014 = 25 

leap years. However, years that are multiple of 100 are not leap years, except those 

that are multiple of 400. (Year 2000 is a leap year, year 1900 is not). That is why, 

every 400 years there are 3 less leap days than according to the general rule of "every 

four years", and that is reflected by the "-3" in the formula. For example, any 

sequence of 100 year could have different number of days, depending whether the year 

which is multiple of 100 is also multiple of 400 or not. It is only every 400 years that 

there is a fixed number of days. This explains why 4-Centuries decompose into a 

constant number of days, but not 100-years, nor year, etc. 4-Century sequences and 

day are the extremes of the cycle. We can also say that 4-Centuries closes the cycle. 
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Intermediate time units in this cycle are century, year and month which decompose 

in a non-constant way into day. 

Definition 34 (Constancy up-cycle) There is a constancy up-cycle in the time 

unit hierarchy involving time units A, C and B;, with 0 5 i 5 n E N, when A 

decomposes in a constant way into C, and considering the time units B; and A, A is 

the least time unit that so decomposes. That is, if there exists any time unit B; lying 

in the hierarchy between A and C, such a time unit decomposes in a non-constant way 

into C. A is referred to as a Higher bound o f C  (in a constancy sense). The cycle is 

formed by the extreme time units (A and C) and the intermediate time units (B;). 

In the previous example,4-centuries stands for A, day stands for C, and there 

are 3 intermediate B;'s: century, year and month. Figure 5.8 shows a graphical 

representation of this cycle. 

Another example showing a limit case is week decomposing into 7 days. Week and 

day are the extremes of the cycle, there are no "intermediate" time units. 

These two previous examples also illustrate that the same time unit (in this case 

day) can participate in more than one cycle. 

4-Centuries 
(constancy) UPCycle Closing TU 

Century 

Year 

Month 

Day 

Figure 5.8: Constancy up-cycle: 4-Centuries and day are the extremes of the cycle 

Analogously, the concept of an alignment up-cycle is defined. 
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Definition 35 (Alignment up-cycle) There is an alignment up-cycle in the time 

unit hierarchy involving time units A, C and B,, with 0 < i < n E N when A 

decomposes in an aligned way into C ,  and considering the time units Bi and A,  A is 

the least time unit that so decomposes. That is, if there exists any time unit B; lying 

between the two extremes of the cycle ( A  and C ) ,  they decompose in a non-aligned 

way into C .  A is referred to as a Higher bound of C (in an alignment sense). The 

cycle is formed by the extreme time units ( A  and C )  and the intermediate time units 

(B;) . 

For example, sequences of 28 centuries decompose in an aligned way into week (28- 

Centuries is the least time unit in the hierarchy that so decomposes.) 28-Centuries 

and week are the extremes of the cycle; 4-Centuries, century, year and month are 

intermediate time units in the cycle, they decompose in a non-aligned way into week. 

Figure 5.1 of the Gregorian calendar includes this cycle. 

Property 7 (Existence of a higher bound) Any time unit hierarchy can be ex- 

tended so that any given time unit has a higher bound, both in the constancy and 

alignment sense. 

Proof: This stems from the fact that it is always possible to add to a time unit 

hierarchy a time unit which is equal to a contiguous sequence of the given time unit. 

This added time unit decomposes in an aligned and constant way into the given one. 

For example centuries has as a higher bound %centuries, both in the constancy 

and alignment sense. 

Down cycles 

We also define down-cycles. Alignment and constancy differ in their down-cycles. In 

case of alignment, there exists a lower bound into which some time unit decomposes 

in an aligned way, even though this time unit decomposes in a non-aligned way into 

intermediate time units. In case of constancy, if there are intermediate time units 
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decomposing in a non-constant way, the cycle is not closed. More precise definitions 

and examples follow. 

Definition 36 (Alignment down-cycle) There is an alignment down-cycle in the 

time unit hierarchy involving time units A, C and B;, with 0 5 i 5 n E N when A 
decomposes in an aligned way into C ,  and considering the time units B; and C ,  C is 

the highest time unit into which A so decomposes. That is, if there exists any time 

unit B; lying between the two extremes of the cycle (A and C ) ,  A decomposes into 

them in a non-aligned way. C is referred to as a lower bound of A (in an alignment 

sense). The cycle is formed b y  the extreme time units (A  and C )  and the intermediate 

time units (B;). 

For example, year, week, day is a cycle. Year decomposes into week in a non-aligned 

way, whereas year decomposes into day in an aligned way. Hence, day closes the 

non-aligned down-cycle. 

Non-constancy behaves differently than alignment with respect to down cycles. 

Property 8 (Propagation of non-constancy down) Let A be a time unit that 

decomposes in an non-constant way into another time unit B. A will also decompose 

in a non-constant way into any time unit into which B decomposes. 

Proof: This property can be seen as a result of the transitivity properties seen in 

the composition (or product) of decomposition relations. A non-const ant decomposi- 

tion composed with either a constant or a non-constant one results in a non-constant 

decomposition relation. (See Table 5.4) 

For example, month decomposes into day in a non-constant way. Month also de- 

composes into hour in a non-constant way. Still going further down in the hierarchy, 

month also decomposes into second in a non-constant way. And this could continue 

further down. Intuitively, the idea is that since different month-instances can decom- 

pose into a different number of days, different month-instances will decompose into 

a different number of hours and different number of whatever time unit composes a 

day, hence there is no lower time unit closing such a non-constant cycle. 
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From this property, it follows that there exist constancy down-cycles, but only in 

a limit case: 

Property 9 (Constancy down-cycle: no intermediate time units) There are 

constancy down-cycles only with no intermediate time units. I.e. there exist only 

limit constancy down-cycles, a cycle involving only two time units, the extremes of 

the cycle, so that they decompose in a constant way. In this case the lower extreme is 

the lower bound of the higher extreme (in the constancy sense). 

Proof: The result is a direct consequence of the previous property, of propagation 

of non-constancy down. 

The same example of month decomposing into day and hour applies as in the 

previous property. 

Property 10 (Existence of lower bound) Any time unit hierarchy can be extended 

so that any given time unit has a lower bound, in both, the alignment and constancy 

sense. 

Proof: This stems from the fact that it is always possible to add to a time unit 

hierarchy a time unit so that the given time unit is equal to a contiguous sequence of 

the added one. That is, the given time unit decomposes in an aligned way into new 

added time unit. The fact that there are no constancy down-cycles with intermediate 

time units does not alter this result. This result simply comes from adding a (pos- 

sibly artificial) new time unit to the hierarchy. (And thus creating a cycle with no 

intermediate time units between the given time unit and the created lower bound.) 

For example, if the given time unit is second, a lower bound (in an alignment and 

constancy sense) of it could be mili-second . In passing, it should be noticed that 

adding a new time unit in a lower level in the hierarchy may change the atomicity 

level, and therefore the granularity considered. 
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Cycles viewed as propagation 

To further clarify intuitively the defined cycles, we illustrate them as a "propagation 

movement" of a "non-aspect" (non-constancy or non-alignment) in a hierarchy struc- 

ture. In an up cycle, the non-aspect propagates upwards, until a time unit "stops" 

the propagation, or "closes the cycle". The closing unit is a higher bound of the 

time unit from where the propagation movement started. Figure 5.9.a abstractly 

shows propagation going upwards, where non, denotes a decomposition relation that 

is non-constant going upwards in an ith "iteration", up to a time unit closing the 

cycle. The example in Figure 5.8 can be paraphrased following this intuition of prop- 

agation movement. Month decomposes into day in a non-constant way. Going up 

in the hierarchy, year also decomposes into day in a non-constant way. Still going 

further up in the hierarchy, century also decomposes into day in a non-constant way. 

So far, non-constancy propagated upward in the hierarchy. 4-Centuries decomposes 

in a constant way into day, thus closing the cycle. 

(a) Propagation of noncondancy 'up' (b) Propagation of non-alignment 'down' 

Figure 5.9: Propagation 

Analogously, Figure 5.9.b abstractly shows propagation going downwards, where 

non, denotes a decomposition relation that is non-aligned going downwards in an 

ith "iteration" down to a time unit closing the cycle, (i.e. a lower bound.) The 

alignment down-cycle year, week, day can be paraphrased with this view point. Year 
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decomposes into week in a non-aligned way. Going down in the hierarchy, day stops 

the propagation of non-alignment, since year decomposes in an aligned way into day. 

The non-existence of constancy down-cycles with intermediate time units can be 

paraphrased as follows: non-constancy propagates downwards and there is no time 

unit stopping that propagation. 

5.3.2 Relation with divisibility concepts 

Higher bounds - Multiples 

The results obtained reflect the fact that given two time units, there is a "least common 

higher bound" that decomposes constantly (aligned) into both. The two given time 

units may decompose in a constant or non-constant (aligned or non-aligned ) way 

between them. 

Two series of definitions are possible, either in the constancy or alignment sense. 

Definition 37 (Least common higher bound - constancy) Given two time units 

B and C so that B decomposes into C either in a constant or non-constant way, A 

is the least common higher bound (in the constancy sense) if it simultaneously is a 

higher bound (in the constancy sense) of both B and C, and it is the least time unit 

with that characteristic. That is to say, A decomposes into both B and C in a constant 

way, and it is the least time unit in the hierarchy that so decomposes. 

From the previous example, 4-Centuries is the least common higher bound that 

decomposes constantly into the two time units year and day (with year decomposing 

in a non-constant way into day). 

The limit case occurs when the two given time units already decompose in a 

constant way. In this case, the least common higher time unit that decomposes 

in a constant way into both is the given composed time unit. For example, year 

decomposes into month in a constant way. The common time unit that decomposes 

in a constant way into both, (year and month) is year itself. 

Analogously, a least common higher time unit to two time units also exists related 

to alignment. 
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Definition 38 (Least common higher bound - alignment) Given two time units 

B and C so that B decomposes into C either in an aligned or non-aligned way, the 

time unit A is the least common higher bound (in the alignment sense) if it simulta- 

neously is a higher bound (in the alignment sense) of both B and C ,  and it is the least 

time unit with that characteristic. That is to say, A decomposes into both B and C 

in an aligned way, and it is the least time unit in the hierarchy that so decomposes. 

The characteristics of higher bounds and least common higher bounds parallel 

divisibility among integers. Higher bounds parallel to "multiples" and least common 

higher bounds with least common multiples. Again, two definitions apply, in the 

constancy and alignment sense. 

Definition 39 (Multiple of a time unit) A time unit A is a multiple of B (or B 

divides A )  if A decomposes in an constant (aligned) way into B.  

For example, year is a multiple (in both constancy and alignment sense) of month. 

Year is a multiple of day in the alignment sense, but not in the constancy sense. 

Definition 40 (Relative prime time units) Relatively prime time units are those 

time units decomposing in a non-constant (non-aligned) way. 

E.g. Year is relatively prime to day in the constancy sense. 

Definition 41 (Least common multiple) The least time unit in the hierarchy de- 

composing in a constant (aligned) way into two time units corresponds to a least 

common multiple of those time units. 

E.g. 4-centuries is the least common multiple of year and day in the constancy 

sense. 

Property 11 (Existence of a least common multiple) Any time unit hierarchy 

can be extended so that any two given time units have a a least common higher bound, 

and therefore, a least common multiple, both in the constancy and alignment sense. 

Proof: This follows from the existence of higher bounds of any time unit. rn 
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Lower bounds - Divisors 

In analyzing down-cycles, we define the concept of a greatest common lower bound 

of two given time units. 

Definition 42 (Greatest  common lower bound - alignment) Given two time units 

A and B so that A decomposes into B either in an aligned or non-aligned way, the 

time unit C is the greatest common lower bound if it simultaneously is a lower bound 

of both A and B, and it is the greatest time unit with that characteristic. That is to 

say, both A and B decompose into C in an aligned way, and C is the greatest time 

unit in the hierarchy into which they so decompose. 

The following example illustrates the situation: year decomposes into week in a 

non-aligned way. There exists a common lower time unit into which both decompose in 

an aligned way, day. (And it is the greatest time unit into which they so decompose). 

As expected, the existence of a greatest common lower bound in the constancy 

sense is a limit case. Only time units that relate with a constant decomposition have 

a greatest common lower bound, and it is the component time unit itself, as the 

following definition expresses: 

Definition 43 (Restricted greatest  common lower bound - constancy) Given 

two time units A and B so that A decomposes into B (only in a constant way), the 

time unit C is the greatest common lower bound if it simultaneously is a lower bound 

of both A and B, and it is the greatest time unit with that characteristic. That is to 

say, both A and B decompose into C in a constant way, and C is the greatest time 

unit in the hierarchy into which they so decompose. In fact B = C, given that A 

decomposes in a constant way into B, thus A, B constitutes a limit case cycle, with 

no intermediate time units. 

E.g. the greatest common lower bound in the constancy sense of year and month 

is month. 
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Analogously to the up-cycles, a parallel can be established with divisibility concepts 

for down-cycles. 

Definition 44 (Greatest common divisor) The greatest time unit in the hierar- 

chy into which two time units decompose in an aligned (constant) way corresponds to 

a greatest common divisor of those time units in the alignment (constancy) sense. 

For example, day acts as a greatest common divisor of year and week. In case of 

constancy, only limit cases apply, for example month is the greatest common divisor 

of year and month itself. 

Property 12 (Existence of a greatest common divisor - alignment) Any time 

unit hierarchy can be extended so that any two given time units have a a greatest com- 

mon lower bound, and therefore, a greatest common divisor, in the alignment sense. 

Proof: This follows from the existence of alignment lower bounds of any time 

unit. 

Property 13 (Restricted existence of greatest common divisor - constancy) 

Any time unit hierarchy can be extended so that two given time units that decompose 

in a constant way have a a greatest common lower bound, and therefore, a greatest 

common divisor, in the constancy sense. 

Proof: This follows from the restricted existence of constancy lower bounds of 

any time unit. 

5.3.3 Summary of results cycles-divisibility 

Table 5.6 and Table 5.7 summarize the results exposed in the previous sections. 
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Alignment sense 
Up-cycle with intermediate time units 
3 higher bound for any time unit 
3 least common higher bound for any pair of time units - 

G 3 least common multiple for any pair of time units 

Table 5.6: Summary of structural/mathematical results in the alignment sense 

- 

Constancy sense 
Up-cycle with intermediate time units 
3 higher bound for any time unit 
3 least common higher bound for any pair of time units - 3 least common multiple for any pair of time units 

Down-cycle with intermediate time units 
3 lower bound for any time unit 
3 greatest common lower bound for any pair of time units E 

3 greatest common divisor for any pair of time units 

Table 5.7: Summary of structural/mathematical results in the constancy sense 

- 

Down-cycle with no intermediate time units 
3 lower bound for any time unit 
3 restricted greatest common lower bound for any pair of time units r - 3 restricted greatest common divisor for any pair of time units 



CHAPTER 5. CALENDAR STRUCTURES: TIME UNIT HIERARCHIES 84 

Intuit ions abou t  t h e  parallel decomposition-divisibility 

If a time unit decomposes into another in an aligned way, intuitively it can be seen 

that the composed time unit can be divided into an integer number of component 

time units. If the decomposition is non-aligned the composed time unit is divided in 

a certain integer number of component time units "plus" a certain "fraction" of com- 

ponent unit. This intuition strongly suggests that there is a parallel between aligned 

decomposition and divisibility in the positive integer numbers. Hence a composed 

aligned time unit can be considered a multiple of the component, and so on. For 

example, one (expected) property that holds in a time unit hierarchy is that there 

always exists a common multiple time unit of any pair of given time units. 

The constancy aspect does not have such a straightforward parallel with divisi- 

bility, although a parallel can be established. Time units decomposing in a constant 

way are multiples, those decomposing in a non-constant way are relatively prime, etc. 

Thus the constancy-divisibility parallel results in a natural counterpart of the aligned- 

divisibility and analogous results to alignment hold as well. For example, it holds that 

for any pair of time units there exists a (constancy) common multiple, i.e. a time unit 

that decomposes in a constant way into any pair of time units. Intuitively, this result 

is guaranteed by the very nature of the conventional cycles that have been imposed 

in calendars to adapt to astronomical facts. (see for example [Moe82, Ped821). "Pe- 

riod relations" are an intrinsic part of calendars, they state a relation between two 

time periods, such that an integer number of the first period equals another integer 

number of the second period. For example, the "Metonic cycle" assumes that 19 solar 

years equal 235 lunar months. The example used in the previous section is that of 4 

centuries having an integer (constant) number of days. 

Hence, we parallel a time unit that decomposes in a constant way as a "multiple" 

of the component unit. We thus obtain the expected result that any pair of time units 

in the hierarchy has a common multiple in the constancy sense. We can restate this 

in terms of the introduced terminology; propagation of non-constancy upwards from 

any pair of given time units is always stopped by some (closing cycle) time unit. 
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Basic measure time unit in a hierarchy 

A unit that divides all units in an alignment sense in the hierarchy is in fact the 

one preferred to be used as the basic unit to measure general durations. Defining a 

basic unit as the greatest common divisor in the alignment sense of all the time units 

produces that general durations be defined with integers and with no need of special 

numbering conventions. That would not be the case if the unit chosen as basic is not 

a common divisor. For example, a year contains 51 complete weeks (from Sunday 

to Saturday), and two incomplete pieces of week. (Or in some particular years 52 

complete weeks and an incomplete one). Should general durations be expressed with 

integers, then the incomplete weeks have to be conventionally included or not as part 

of the year. 

A basic unit should also be atomic for the intended application, as explained in 

Chapter 3. 

Property 14 (Characterization of a basic measure time unit) A basic time unit 

in a time unit hierarchy used to measure general durations of the units in the hierarchy 

should divide all units, i.e. all time units should decompose into it in an aligned way. 

That is, a basic time unit in a hierarchy is the greatest common divisor of all time 

units in the hierarchy. 

For example, in the Gregorian calendar structure of Figure 5.1, day is the basic 

time unit. If the hierarchy included hour as a time unit, hour would be the basic 

measure time unit. Notice that in defining the measure time unit as atomic all general 

durations are expressible with integer numbers. 

5.4 Chains 

We have built a formal apparatus of a hierarchical decomposition of time units. This 

gave birth to the precise definition of a calendar structure or time unit hierarchy. We 

have studied structural and mathematical properties that this hierarchy holds, and 

paralleled concepts to those of divisibility. 
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In this section we propose an alternative categorization based on the subrelations 

of decomposition, i.e., considering only constant/aligned decompositions, or aligned 

only, or constant only. Calendar substructures result from these subrelations. 

New entities become apparent in these substructures, chains and chain extreme 

time units. Chains and chain extreme time units are envisioned as possible building 

blocks to characterize a language of time units in a constructive and recursive way. 

The term "chains" has been inspired in work by [MS90], however in their case 

chains are defined on time intervals on the time line. In our case we are referring 

to chains of time unit classes. Nonetheless, chains of time unit classes are directly 

related to expressions that represent time unit instances, and influence greatly in 

efficiency matters. To give an immediate example, the operation of converting time 

unit instances from one time unit to another will be more efficient when the time units 

decompose in a constant/aligned way; divisions and multiplications can be done, 

whereas it is necessary to have some iterative process of additions or subtractions 

when the decomposition is not exact. We will introduce the concept of "calendar 

substructures" in the following sections as a basis to define chains, as well as to 

provide an alternative structural categorization of time unit hierarchies. 

5.4.1 Aspects of decomposition as different relations 

The original structure defined as "calendar structure" is the one that relates time 

units by the decomposition relation including any variation of constancy and align- 

ment. Other alternative structures rise from considering subsets of the decompo- 

sition relation. There can be several possible subsets of the decomposition rela- 

tion. The following are all the possibilities: constant/aligned, non-constant /aligned, 

constant Inon-aligned, non-constant Inon-aligned, constant and aligned. The last two 

relations are defined as unions of the previous; constant is the union of constantlaligned 

and constant/non-aligned, and analogously, aligned is the union of constant/aligned 

and non-const ant /aligned. 
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Adjacency matrix of the calendar structure 

Table 5.8 shows the adjacency matrix of the Gregorian calendar structure as one 

way of visualizing all the elements in the structure (time units) and how they relate. 

Table 5.9 shows the analogous matrix of the Simon Fraser University calendar struc- 

ture. The matrix representation provides for another display to represent a calendar 

structure. Ca stands for const ant /aligned, nc, na for non-constant and non-aligned 

respectively. We find this display useful in visualizing the different subsets of decom- 

position relations and paths in the graph as explained in the following paragraphs. 

n 2 1) day 1 week I month / year I century 1 4-centuries 1 &&centuries 1 

,, 

Table 5.8: Adjacency matrix of the Gregorian calendar structure 

4-centuries 
28-centuries 

day 
week 
month 
year 
cen tur~  

Table 5.9: Adjacency matrix of the Simon Fraser University calendar structure 

ca 
ca 

2 
1 t> 

Adjacency matrices represent the decomposition relation by its two aspects; con- 

stancy and alignment. We use the convention of referring first to the composed time 

unit (in the "matrix row") and then the component unit (in the "matrix column"). 

Thus for example the entry associated to (month,week) is non-constant/non-aligned, 

ca 
ca 
nc-a 
nc-a 
nc-a 

c-na 
ca 

ca 
nc-na 
c-na 
c-na 

day 

ca 
ca 

month week 

ca 
ca 
ca 

ca 
ca 

period 

ca 
ca ca 

ca 
ca 

semester school-year 

ca 
ca ca 

i 
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which is the way month decomposes into week. The adjacency matrix is, as expected, 

a triangular matrix, since decomposition is an antisymmetric relation (i.e., if a time 

unit A decomposes into a time unit B then B can not decompose into A, unless they 

are equal). Hence, if there is an entry in position ( A ,  B),  there is no entry in position 

(B, A) unless A = B. For example, there is no entry for (week,month). The main 

diagonal corresponds to the limit case of a time unit decomposing into itself. The 

entries there are all constantlaligned, since a time unit decomposes into itself in a 

constantlaligned way, with repetition factor equal to 1, (a result was already exposed 

in Chapter 4). 

One characteristic that can be observed in the matrix is the presence of paths 

with the same decomposition aspect in the structure. For example 28-centuries, 

4-centuries, century, year all relate with a constant/aligned decomposition in the 

Gregorian structure. This can be seen in the matrix in the entries (28-centuries, 

4-centuries); (4-centuries, century), etc. 

5.4.2 Calendar substructures 

Substructures of the complete calendar structure are defined as a subgraph considering 

one particular subrelation. We refer to them as calendar substructures of a particular 

aspect (constant, aligned or constant /aligned). 

Definition 45 (Aspect  calendar subst ructure)  Given a calendar structure and 

an "aspect" (either constant, aligned or constant/aligned), a calendar aspect sub- 

structure is defined by the graph composed b y  the same set of time units and the 

"aspect" decomposition subrelation. 

The graphical representation of the Gregorian constant /aligned substructure ap- 

pears in Figure 5.10. 

Substructures induced by aligned only decomposition (i.e. without taking con- 

stancy into account) of the Gregorian calendar appears in Figure 5.1 1 .a. Figure 5.11.b 

shows the substructure induced by constant only decomposition. 
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Figure 5.10: Constant /aligned Gregorian calendar substructure 

Given a specific aspect the calendar substructure is unique, since the aspect defines 

a subrelation, (subset of the general decomposition) and thus a (unique) graph relating 

all time units with that particular sub-relation is determined. 

5.4.3 Chains 

Chains can be aligned, constant, or both (i.e. constant/aligned.) They are composed 

by time units in a path in the corresponding "aspect" calendar substructure. 

Definition 46 (Chain of time units) An "aspect" (constant, aligned or constant/- 

aligned) chain of time units is composed by all those time units in the hierarchy that 

form a consecutive linear sequence such that each time unit decomposes into the next 

one in  the aspect way. Or, equivalently, an aspect chain is a path or sequence of 

connected time units in the corresponding aspect calendar substructure. 

For example, Figure 5.10 shows three constantlaligned chains in the Gregorian cal- 

endar structure: <28-centuries, 4-centuries, century, year, month>, <28-centuries, 
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(a) aligned chains (b) constant chains 

Figure 5.11: Aligned and constant Gregorian calendar substructures 
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4-centuries, day> and <28-centuries, week, day>. 

Figure 5.12 shows the constantlaligned chains in the Simon Fraser university cal- 

endar structure: <school year, semester>, <month> and <period, week, day>. 

Semester I 
Day " II 

Figure 5.12: Constantlaligned chains in the SFU calendar structure 

Property 15 All pairs of time units within one chain decompose in the same way. 

Proof: This property follows from the definition of chains as belonging to  paths in 

a calendar substructure. Also, the transitive characteristics of constancy and align- 

ment ensure this result, since the product of two constant decomposition relations 

results in a constant relation and analogously this happens with alignment. 4 

Property 16 All time units in the hierarchy form part of at least one chain. 

Proof: In general, chains of a single time unit it can be conceived, thus proving 

this property. rn 
For example < month > in the SFU calendar structure is a one time unit chain, 

(Figure 5.12). 

Property 17 A pair of time units belonging to two diflerent chains either decom- 

pose diferently than the aspect characterizing the substructure or do not relate by 

decomposition. 
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Proof: These property follows from the definition; all time units decomposing in 

the characterizing aspect of the substructure belong to the same chain. 

For example, Century and week are two time units that belong to two different 

constantlaligned chains and decompose in a constantlnon-aligned way. Period and 

month in the SFU calendar structure, belong to different aligned chains and they do 

not relate with decomposition (in any aspect). 

5.4.4 Chain extremes 

Definition 47 (Chain extremes) A time unit is a chain extreme if it is a chain 

top-extreme or  a chain bottom-extreme. 

A chain top-extreme is the highest time unit in the hierarchy that belongs to that 

chain. Analogously, a chain bottom-extreme is the lowest time unit in the hierarchy 

that belongs to that chain. 

For example, in the Gregorian constant/aligned substructure, 28-centuries is a 

top-extreme of three chains. Day is a bottom-extreme of one of the chains. 

Property 18 A top-most time unit in the hierarchy is a particular case of a chain 

top-extreme. Analogously a bottom-most unit in the hierarchy is a particular case of 

a chain bottom-extreme. 

Proof: Both, the top-most and bottom-most time units belong to some chain, 

since every time unit in the hierarchy belongs to some chain. And since they are the 

respectively highest and lowest in the hierarchy they must be extremes of the chain(s) 

they belong to. H 

Property 19 (Existence of unique common extreme of all  chains) In  any time 

unit hierarchy, it is possible to add a time unit acting as a common extreme to all the 

chains in the structure. 

Proof: The existence of a top-extreme is guaranteed by the existence of a common 

higher bound to any pair of given time units in the time unit hierarchy in both, the 
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constancy and alignment sense. The existence of a lower bound of all time units in 

the hierarchy guarantees the existence of a common bottom-extreme of every chain, 

although only in the alignment sense. rn 
For example, the Gregorian calendar structure as depicted in Figure 5.10 shows 

that 28-centuries is a common top-extreme of the three chains in the structure. 

All the development of calendar substructures and chains just presented provides 

for a better understanding of calendar structures and also establishes a foundation to 

define a formal language of time units, for example, extreme time units are envisioned 

as possible candidates for primitive time units to define a formal language. 

5.5 Creating and modifying calendar structures 

In this section we analyze the characteristics of the calendar structures defined that 

concern algorithms to create and update them. Updating a time unit hierarchy would 

include for example adding new time units to existing calendars, and derive new 

decomposition relations relating the added time unit to existing ones in the hierarchy. 

This is to be contrasted with algorithms dealing with time unit instances which are 

based on the units of this formalism, a topic addressed later. 

A few comments are worth mentioning with respect to this (definitional) usage of 

the calendar structures. 

The calendars analyzed, i.e. the Gregorian calendar, a university calendar, and 

others, typically have less than 10 time units. In fact, any measurement system will 

have a small, finite number of units. Many reasonable algorithms will do a good job 

obtaining the characteristics of new decomposition relations. Variations of temporal 

constraint propagation algorithms, (i.e. path consistency algorithms) could be used 

for propagating the decomposition characteristics, using the operations defined in 

Section 5.2 above, i.e. composition, intersection and inverse of decomposition. [VK86, 

PB91, MSK931 are examples of work within particular sub-cases of [A1183], where such 

algorithms are used on time intervals (on the time line). 

In Section 5.2 we observed that time units relate in a unique way. They are 

classes of time intervals. For example, year  always decomposes into d a y  in an aligned, 
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non-constant way. That is to say, there are not several possible scenarios for two time 

unit classes to relate, but only one. In fact, the way one time unit decomposes into 

another can be seen as defining the time units involved. For example, it could be said 

that an hour is defined as a time unit so that a day decomposes into it in a constant 

and aligned way, with repetition factor 24. This restricted situation occurring with 

the decomposition relation results in intersection of decomposition relations being a 

trivial operation to perform in propagating constraints between time units. 

Another issue to take into account is related to the results that can be obtained 

through composition, hence using the alignment and constancy transitivity tables, as 

well as calculating repetition factors via multiplication. In some cases composition re- 

sults are deterministic, for example, a non-constant decomposition relation composed 

with any other decomposition relation will result in a non-constant one. These cases 

provide for useful constraint propagation. Other cases provide disjunctive informa- 

tion; for example the result of composing an aligned decomposition relation with a 

non-aligned one can result in either an aligned or a non-aligned decomposition.Non 

determined cases correspond to the existence of cycles in the calendar structure, as 

it was already addressed in previous sections. Thus, in those cases it must be known 

whether the time unit closes a cycle or does not. But in that case, we know (a priori) 

how this time unit relates to any other time unit, so there wouldn't be a need of using 

the transitivity tables. 

Therefore, because of the (small) size of calendar structures and the characteristics 

just exposed, we can conclude that efficiency is not an issue in updating the calen- 

dar structures themselves. Furthermore, obtaining information from these structures 

shouldn't pose any problem either. The characteristics of the decomposition relation 

between every two time units can be recorded in an initial definition stage of a calen- 

dar in an auxiliary structure accessible by any pair of time units. A possible structure 

could be the adjacency matrix previously introduced. This information would occupy 

very little space. If m is the number of time units in the calendar (most likely less 
em m! that lo),  a structure with f = ,*,!(_-,)! entries would record the information of all 

decomposition relations. Accessing to this auxiliary structure is an O(1) operation. 
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5.6 A suggested notation to represent specific time 

unit instances 

We here address the issue of how to represent a specific time unit instance, for example 

August 18, 1994, in terms of the developed formalism. As it was already discussed, 

a simple instance of a time unit subclass is not yet a specific time unit instance. 

For example, an instance of month in the Gregorian calendar could be the fourth 

month (abbreviated as April) - but this instance does not represent a specific month 

yet (unless of course the application is dealing with a specific year only). Viewed 

extensionally, it represents a set of all specific instances of the month "April". 

A specific time unit instance representation will require a sequence of expressions, 

which we call calendar expressions. 

A calendar expression is defined by a conventional beginning reference point or 

zero point associated to the calendar and a finite sequence of pairs: z e r o c ~ ~  $ 

[(tl, xl), . . . , (t,, x,)]. Each pair (ti, xi) contains a time unit ti from the calendar 

structure and a numeric expression xi. Expressions include numbers and variables 

ranging in the set of integers. The pairs in the sequence are ordered so that any time 

unit in a pair decomposes into the time unit in the following pair in the sequence. 

The numeric expression x in a pair (t, x) (other than the first pair in the sequence) 

represents the xth time unit t relative to the beginning of the preceding time unit in 

the sequence. The first pair in the sequence is numbered with respect to a beginning 

reference point. The last time unit in the sequence provides the precision of the time 

unit instance. The length of the sequence is limited by the number of levels in the 

calendar structure. 

The following examples express simple calendar expressions in the Gregorian cal- 

endar. The zero point is the beginning of the Christian Era (CE). 

Examples of calendar expressions 

1. CE $ [(year, 1994)l 

2. CE $ [(year, X), (month, 4)] 



CHAPTER 5. CALENDAR STRUCTURES: TIME UNIT HIERARCHIES 96 

Fourth month within any year. (Viewed extensionally, it represents the set of 

all specific instances of the month "April"). X is a free variable. 

3. CE $ [(year, X), (day, 175)] 

The 175th day from the beginning of any year. 

4. C E  $ [(year, 1994), (week, 17), (day, 5)] 

5th day within the 17th week of the year 1994. 

5. C u r r  $ [(month, 4), (day, 3)] 

(In this example, "Curr" stands for the current year. The current year is num- 

bered with respect to the zero point). 

It can be observed that a calendar expression with no variables is a time unit 

instance of the last time unit in the calendar expression. Consequently, z e r o c ~ ~  $ 

[ ( t  xl), . . . , (t,, x,)] is a t,-instance. Examples 3, 4 and 5 above are day-instances. 

Also, a calendar expression with variables is a set of time unit instances; it represents 

the temporal counterpart of a date-based repeated activity, a specific case of a non 

convex interval. Example 2 above represents the non convex interval containing the 

occurrences of the month April. 

Simple calendar expressions similar to the ones exemplified above could be com- 

bined with logical operations like disjunction for example. Thus the temporal coun- 

terpart of more complex expressions could be represented. The following example 

corresponds to  a repeated activity, within the Simon Fraser university calendar. 

Example 

The course CMPT 823 is offered every Tuesday at nine and every Thursday at eight 

every year, every semester: 

V Y, S, W (CE $ [(year, Y), (semester, S), (period, Classes), (week, W), 

(day, Tuesday), (hour, 9)] ) V (CE $ [(year, Y), (semester, S), (period, Classes), 

(week, W), (day, Thursday), (hour, 8)] ) 
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Three free variables are associated to year, semester and week, respectively Y, S, W. 

Notice that "classes" is a period-instance name which abbreviates the number 1, it is 

the first type of period within the reference time unit semester in the SFU calendar, 

i.e. classes, exams and break periods. 

The computation of different useful operations using calendar expressions will be 

influenced greatly by the way the time units in the calendar expression decompose 

into each other. Corresponding to aligned (constant/aligned) chains in the time unit 

hierarchy, we define aligned (constant/aligned) calendar expressions. These particular 

cases are expected to behave very efficiently. An example of an operation that will be 

more efficient with a constantlaligned calendar expression is the transformation from 

one format in a variant calendar to a format in the basic calendar associated. 

For example a calendar expression expressed in the SFU calendar can be trans- 

formed to a certain format in the Gregorian calendar. 

CE $ [(year, 1993), (semester, I ) ,  (month, I)] = CE $ [(year, 1993), (month, 9)] 

The development of a formal language to represent time unit instances with cal- 

endar expressions and algorithms to reason with them appears as a very promising 

future research venue. 



Chapter 6 

Conclusion 

Suppose time is a circle, bending back on itself. The world repeats itself, precisely, 
endlessly.. . 
In this world, there are two times. There is the mechanical time and there is the 
body time. The first is as rigid and metallic as a massive pendulum o f  iron that 
swings back and forth, back and forth. The second squirms and wriggles like a 
bluefish in a bay. .. 
Suppose that time is not a quantity but a quality, like the luminescence o f  the 
night above the trees just when the rising moon has touched the treeline. Time 
exists, but it cannot be measured ... 
Imagine a world ... EinsteinJ s Dreams, Alan Lightman 

This research was inspired by current efforts to develop a system for reasoning 

about activities that occur within calendars or using dates. The ultimate goal is to be 

able to represent and reason efficiently about repeated activities using the formalism. 

Much of our work is dedicated to defining a hierarchical structure of time units, and 

elaborating on decomposition among the time units, systematically analyzing their 

mathematicalproperties. We take into consideration the distinction between time unit 

classes, named time units and specific time unit instances. (For example "month", 

"August", and "August 1994".) Durations of time units are precisely defined taking 

this distinction into consideration. We have developed a hierarchical structure based 

on these time units, allowing for the definition of different calendars, such as business 

calendars or university calendars, based on the Gregorian calendar. The detailed 

study of this domain provides a useful basis for further abstraction and specification 
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of a formal theory dealing with time units and time unit instances. The temporal 

counterpart of repeated activities is envisioned to be represented in a straightforward 

way with time unit instances. 

The framework developed, including all the structural properties studied, consti- 

tutes an extensive study of the temporal domain with time measured in a discrete 

way, based on calendars and dates. Some of the related research we have referenced 

(in chapter 1) propose some kind of formalization of time units. Such is the case in, 

for example, [Lad86b, LMF86, PB91, MSK931. However, these works mostly treat 

the representation of temporal entities of a calendar as a simplified side issue; it is not 

their main concern, whereas it is a main component of our work. Still, [Lad86b] pro- 

poses a way of defining time units, but as we commented in chapter 1, it is essentially 

different from our work and it is based on a more rigid schema than ours. In any 

case, the extensive study we do of this domain is not present in any of the literature 

reviewed. We have developed a different, general and formalized representation of 

temporal entities and time units, building a coherent and consistent structure that 

formalizes dates in calendars. 

In the following section we highlight some issues that are of special interest in this 

thesis. Finally, future research venues are proposed. 

Highlights 

Classes of intervals As part of the process of defining the elements of the domain 

under study, we propose an initial definition of relations between generic classes of intervals. 

Classes of intervals and the relations among them extend those of the basic interval 

algebra of [A1183]. The generalization is done in a universal/existential formulation. 

For example, a generic class of intervals MEETS another when every instance of the 

former meets at  least one instance of the latter, where meets is one of the thirteen 

basic interval relations in the above mentioned algebra. We envision that this abstrac- 

tion has a potential utility for other applications in temporal reasoning independent 

of calendar structures, such as reasoning about recurrence and non convex intervals, 

and relations between them, and leaves an interesting open venue for future research. 
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Interconnection of time units and decomposition The main objects in the 

temporal domain as formalized in this thesis are very interconnected. For example, 

time units are entities related by the decomposition relation, but also decomposition 

can be seen as defining the time units. This interconnection is clearly seen when 

considering, for example, the time units d a y  and week. In fact, week is inherently 

a series of seven days: ua series of 7-day cycles used in various calendars" [Web]. 

Having in mind this interconnection, we have taken special care to develop the formal 

apparatus and definitions in a bottom up way, avoiding any possible circularity. 

Global idea on how definitions have been organized In the following we 

present a global idea on how we based the definition of the main elements in the do- 

main in a bottom-up fashion. The decomposition relation is defined based on Allen's 

interval relational algebra (Chapter 2). More precisely, we define relations between 

classes of intervals and further define decomposition on top of this abstraction. Inde- 

pendently, time units have been defined as classes of objects with certain attributes 

(Chapter 3). These attributes are presented in a functional manner. Such is the case 

of the "range of possible durations" of time unit instances (referred as "duration" 

of the class). The two independently developed concepts of decomposition relations 

and time units and their durations are compared in Chapter 4. Decomposition re- 

lations and durations are proven to have strong commonalties, as expected. Of key 

importance, decomposition is proven to define a partial order among time units, thus 

giving rise to the calendar structures or time unit hierarchies (Chapters 4 and 5). The 

set of time units can be formally characterized in a logical language. We envision a 

language to define the set of time units in a manner such that there are some prim- 

itive time units and all the others are defined recursively based a particular case of 

the decomposition relation. This idea is extended further in the section addressing 

possible future extensions of this research. 

Mathematical foundation One problem that had to be faced is that durations of 

time units (as a class) are not necessarily fixed given the time unit and the measure. 

For example, a year lasts 365 or 366 days. We defined the concept of min-max pairs 
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to represent range of possible values the instances durations can have, and hence a 

basis to define durations of classes. These pairs are defined as a mathematical entity, 

and a partial order is defined on that set. The partial order of decomposition on the 

set of time units is based on the partial order of min-max pairs. At another level of 

definition, the calendar structure is proposed as a system of measures, and a parallel 

of the relations between the units and divisibility concepts is developed. This parallel 

reflects expected properties of systems of measures, regarding multiple and divisor 

units. 

Concise characterization of decomposition It is worth mentioning that the de- 

composition relation between time units is captured with only two aspects: constancy 

and alignment. Each aspect only has two possible values: positive and negative, (con- 

stant and non-constant and analogously aligned and non-aligned), thus generating 

four possible cases time units can relate with decomposition. We claim that this char- 

acterization covers any system of measures based on discrete units and a repetitive 

containment relation. Operations on decomposition relations have also been analyzed 

taking into account these two aspects. These operations are composition or product, 

intersection or sum, and inverse. As part of the study of these operations, transitivity 

of constancy and alignment is systematically analyzed. As well, these operations are 

a basis for defining a relational algebra, in an analogous way as a relational algebra 

has been defined on the basic interval relations. The elements of the algebra in this 

case would be the four possible decomposition variations. 

Structural  properties - cycles, chains and  other  beasts A detailed study has 

been done regarding the structural properties in the time unit hierarchies. Cycles and 

cycle-closing time units are related to how constancy and alignment behave "propa- 

gating" up and down in the hierarchy. We corroborate that certain properties hold in 

present-day and historical calendars and propose such properties as a characteristic 

that holds in any calendar structure. An example of such properties in any hierarchy 

is that all time units should have a common time unit into which they decompose in 
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an aligned way. An alternative characterization of the hierarchical structure consid- 

ers subrelations of decomposition according to the different aspects of decomposition: 

aligned, non-aligned, constant, non-constant and the possible combinations. Calendar 

substructures are defined then associated to one particular aspect. A path in such a 

substructure is referred to as a chain. Chains therefore are a sequence of time units 

that decompose in the same way with respect to constancy and/or alignment. We 

find chains useful to provide more insight into calendar structures, and also as a basis 

for future work defining a formal language to characterize time units. As well, we 

envision that reasoning with instances of time units in one chain will produce very 

efficient operations. Constant/aligned chains are expected to be particularly efficient. 

6.2 Future work 

There are many possible venues to continue exploring based on this research. We 

envision that the structural properties studied of calendar structures provide for a 

direct basis to define a formal language characterizing temporal units, or eventually 

any unit in a discrete system of measures that relate with containment repetitive 

relations. Calendar structures can be organized according to different kinds of chains, 

i.e. aligned, constant, constant/aligned. Based on chains, a characterization of the set 

of time units can be conceived on a set of primitive time units and the decomposition 

relation. Extremes of chains could be potential primitive time units of the language. 

Also, research should be done formalizing a language to represent time unit in- 

stances. We have suggested a starting point for a possible notation which we called 

calendar expressions to represent specific time unit instances (in Chapter 5). The 

examples there show the expressive power of this suggested notation. We envision 

that these expressions should provide for a straightforward way of representing the 

temporal counterpart of repeated activities. 

Another important research direction is that of studying algorithms that would 

best fit with this formalism, so that we may obtain efficient inferences when reasoning 

about repeated activities. Algorithms developed for qualitative and/or quantitative 

temporal constraint satisfaction problems, or variations, could be considered in this 
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matter [DMP91, KL91, COS931 

Other possible continuations of this work include exploring the results exposed in 

this thesis in other domains, for example the spatial domain. As well, the extension 

of the interval relational algebra to relations among classes of intervals constitutes a 

first step in a certain abstraction direction that should be further explored. 

We believe that this thesis contributes to clarify the inner structure of conven- 

tionally measured time, providing a deeper understanding of the temporal domain as 

based on calendars and dates. It provides a coherent and consistent foundation to 

develop practical and efficient time specialists for dealing with scheduling problems 

and sets the stage for continuing research in numerous venues. 



Appendix A 

Proof of theorems 

"Manners are not taught in lessons" - said Alice. "Lessons teach you t o  do sums, 
and things o f  that sort." 

"Can you do Addition? " - the White Queen asked. "What's one and one and 
one and one and one and one and one and one and one? " 

"I don 't know. "- said Alice - "I lost count." 
"She can't doAdditionn - theRed Queen interrupted. "Can you do Subtraction? 
Take nine from eight. " 
"Nine from eight I can't, you know "- Alice replied very readily: "but -" 
"She can't do Subtraction" - said the White Queen. "Can you do a Division? 
Divide a loaf by a knife" ... 
Through the Looking glass ,  and what Alice found there, Lewis Carroll 

A.1 Partial order between min-max pairs 

In Chapter 3 min-max pairs were defined as: " an ordered pair of natural numbers 

(a, b) such that a 5 b". As well, an order relation was defined. We prove here 

Theorem 7, i.e. that this relation is indeed a partial  order. 

First, we recall the definition of this relation between min-max pairs: (Definition 15 

in chapter 3) 
P 

An order relation between min-max pairs is denoted by <. 
Let (al, bl) and (a2, b2) be two min-max pairs. 

P 1. (al, b l )  = (a2, b2) i f f  a1 = a2 a n d  bl = b2. 



APPENDIX A. PROOF OF THEOREMS 

2. 1 , l  2 2 i f f  

bl < a2 or 

(bl = a2 and (a1, b l )  F (a2, b2) 

P 
Theorem 7 5 is a partial order. 

Proof: The relation has to be proven to be reflexive, antisymmetric and transitive. 

Reflexive 
P 

V min-max pair ( a ,  b) ,  ( a ,  b) 5 ( a ,  b) - This holds as a direct consequence of the 

definition. rn 

Aratysimmetric 

For any two min-max pairs it must be proved that: 
P 

if ( a l ,  b l )  2 (a t ,&! )  and ( a 2 , b )  < (a l , b l ) ,  then ( a 1 , h )  g b2) .  

P 
By definition, ( a l ,  b l )  < (a2,b2) iff ( a l ,  b l )  2 (a2,b2) or ( a 1 , h )  (a2, b2), 

iff bl < a2 or ( a l ,  b l )  g (a2 ,  b2). 
P 

Similarly, (a2 ,  b2) 5 ( a l ,  b l )  iff b2 < a1 or ( a z ,  b2) g ( a l ,  bl) .  

But, by definition of a min-max pair, it holds that: a1 2 bl and a2 I b2, 

So it is not possible that simultaneously bl < a2 and b2 < a1 (or, rephrasing it, 

a1 5 bl < a2 5 b2 is inconsistent with b2 < a l . )  

Therefore, is the only relation holding between the two pairs. H 

Transitive 

For any two min-max pairs it must be proved that: 
P P P 

if ( a ~ ,  b l )  5 (a2,b2) and ( a 2 , b )  l (as,b3), then (a l , b l )  l (a3,b3)- 

P 
On one hand, ( a l ,  b l )  5 (a2 ,  b2) iff bl < a2 or ( a l ,  b l )  (a2, b2). 
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P 
Similarly, (a2, b2) 5 (a3, b3) iff b2 < a3 or (a2, b2) (as, b3). 

If either pair is equal to another, then transitivity holds trivially. Else, from the def- 

inition of min-max pair, a2 5 b2, therefore, bl < a2 < b2 < as and it follows that 

bl < a3, which holds when (al, bl) 2 (03, b3). . 
Not a total order 

To prove that the order defined is not total it suffices to observe that there exist pairs 

that are not comparable. For example, (1,3) and (2,4). . 
A.2 Decomposition and duration theorem 

We prove here Theorem 9 from Chapter 4. 

Theorem 9 (Decomposition and duration) Let T and S be two time units in 

the same calendar or variant (T, S E TUSCAL) such that T decomposes into S 

(T D S). Then T has a greater or equal general duration than S. 

Proof: 

Considering that durations are min-max pairs, this theorem can be reformulated 

using the order relation defined between min-max pairs: 

Let T and S be two time units in the same calendar or variant (T, S E TUSCAL) such 
P 

that T decomposes into S (T t> S). then dur(T, Basic) 2 dur(S, Basic). "Basic" 

is the time unit used to measure general durations in the hierarchy associated to 

TUSCAL. TO simplify the notation in the proof, we define the general duration of the 

class T as d(T) dur(T, Basic) and the general duration of instances t of a 

class T as d@(t) =notation dur@(t, Basic). 

The idea we follow is to restrict the time units and decomposition parameters so 

that the theorem holds. Rephrasing the theorem statement, we restrict parameters so 

that if T decomposes into (a sequence of) Ss ,  then any T instance has a larger time 

span than any single S instance. Specifically, we relate the duration of the component 

time unit (S) and the repetition factor of the decomposition of T into S. 
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Four cases are analyzed, those stemming from the combination of the two as- 

pects of decomposition; alignment and constancy. In the four cases, the methodology 

followed is analogous and can be summarized as follows: The duration of the com- 

ponent time unit (S) is assumed known (parametrically). Then, the duration of the 

composed time unit (T) is expressed as a function of the former. (This is based on 

the decomposition case; aligned or not, constant or not). 1.e. it is assumed that 

d ( ~ ) g  (a, b) and d(T) is expressed as a function of (a, b), and the repetition factor of 

the decomposition. Then, the duration of S is imposed to be less than the duration of 
P 

T: d(S)< d(T). Restrictions among the parameters involved are obtained and thus, 

with decomposition restricted in this way, the theorem holds. 

Case (I): constant/aligned decomposition 

Let T and S E TUSCAL , T D S. 

Cons (T, S, n) 

A lig (T, S) 

( T  decomposes into S in a constantlaligned way with a fixed repetition factor n) 

Let d ( ~ ) g  (a, b) (iff Vs (in-class(s, S)) it holds that a 5 d@(s) 5 b)) 

Since it is an aligned and constant decomposition, with repetition factor n, the dura- 

tion of T is bounded by: d ( ~ ) g  (nu, nb) (iff Vt (in-class(t, T)) it holds that na 5 
d@(t) < nb). This is so because T is composed of exactly n S's. 

P 
Next we impose d ( S ) s  d(T) and analyze the two possibilities: d ( ~ ) z  d(T) or 

d ( ~ ) i  d(T). 

1. d ( ~ ) g  d(T) iff ( a ,  b)g (nu, nb) iff a = na and b = nb, which only holds if n = 1. 

By property 6, this holds iff T = S, i.e., it is the case of constant aligned 

decomposition of a time unit into itself. 

2. d ( ~ ) %  d(T) iff (a, b); (nu, nb), iff by definition, 

i) b < na or 
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ii) b = nu and (a, b) F ( n a ,  nb). 

The second case (ii) only happens if 3s (in-class(s, S))/d@(s) = b = nu and if 

3t (in-class(t, T))/d@(t) = nu, with n # 1 (since (a, b) F (na ,  nb) ) 

That is to say, there exists an instance of S with the same duration as an 

instance of T and T and S are different time units. This is counterintuitive 

with the class T decomposing into the class S.  So only case (i) applies, and the 

constraint b < nu must be imposed. 

This constraint reflects the intuition that the largest possible instance of S (with 

duration b) must have a shorter duration than the shortest instance of T, with 

duration na. w 

Case (11): non-constant/aligned decomposition 

Let T and S E TUSCAL , T D S. 

Non- Cons (T, S, (l, u)) 

Alig (T, S) 

( T  decomposes into S in a non-constant/aligned way with a repetition factor bounded 

by a lower bound 1 and an upper bound u) 

Let d ( ~ ) g  (a, b) (iff Vs (in-class(s,S)) it holds that a 5 d@(s) 5 b)) 

The duration of T is bounded by: 

d ( ~ ) g  (la,ub) (iff Vt (in-class(t,T)) it holds that la < d@(t) _< ub). 

This is so because there are instances of T composed of r S's, with 1 5 r 5 u. 

P 
Next we impose d(S)< d(T) and analyze the two possibilities: d ( ~ ) g  d(T) or 

d (~) -?  d(T). 

1. A time unit can not decompose into another in a non-constant way and have 

the same duration. This option is not possible in this decomposition case. 
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2. d ( ~ ) <  d(T) iff (a, b): (la, ub), iff by definition, 

i) b < la or 

ii) b = la and (a, b) F(Za, ub). 

The second case (ii) only happens if 3s (in-class(s, S))/d@(s) = b = la and if 

3t (in-class(t, T))/d@(t) = la, with 1 # 1 (since (a, b) p ( l a ,  ub) ) 

That is to say, there exists an instance of S with the same duration as an 

instance of T and T and S are different time units. This is counterintuitive 

with the class T decomposing into the class S .  So only case (i) applies, and the 

constraint b < la must be imposed. 

This constraint reflects (just as in the first case of constantlaligned decomposi- 

tion) the intuition that the largest possible instance of S (with duration b) must 

have a shorter duration than the shortest instance of T, with duration la. The 

results obtained, resemble (as expected) the results obtained when the decom- 

position is constant. In this case, the constraint applies to the lower bound of 

the decomposition repetition factor instead of the (unique) repetition factor. 

Case (111): constant /non-aligned decomposition 

Let T and S E TUSCAL , T S. 

Cons (T, S, n) 

Non-Alig (T, S) 

( T  decomposes into S in a constant/non-aligned way with a repetition factor n) 

Let d ( ~ ) g  (a, b) (iff Vs (in-class(s, S)) it holds that a < d@(s) < b)) 

By theorem 3, n 2 2. (This result follows from the fact that there exists at least one 

complete s interval in the decomposition of t, Vt in-class(t, T). (See Figure A. l ) .  

The duration of all instances t of T is (not strictly) bounded by: 

a) (n - 2)a < d@(t) < nb 

This situation occurs when there exist instances where both extreme intervals of the 
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Figure A. 1: Two situations of non-aligned decomposition 

s sequence overlap with t (as in Figure A.1.a). n > 3 in this case. 

p )  (n - l ) a  < d@(t) < nb 

This situation occurs when for all instances only one extreme interval of the s se- 

quence overlaps with t and the other either starts or finishes t .  (as in Figure A.1.b). 

n 2 2 in this case. 

Considering the two situations (a) and (P) together, the duration of all t instances 

is bounded by: 

( n -  k)a < d@(t) < nb), where k = 1 or k = 2 and n -  k > 1. 

1.e in a non-strict sense, d ( ~ ) z  ((n - k)a, nb). 

(intuitively, n - k stands for the number of complete s intervals contained in t .  n - Ic > 
1, since the definition (and intuition) of non-aligned decomposition requires at least 

one complete subinterval) 
P 

Next we impose d(S)L d(T) and analyze the two possibilities: d ( s ) g  d(T) or 

d(s): d(T). 

1. d ( s ) Z  d(T) can not hold, since (a, b) ((n - k)a, nb), since for any a ,  b it can 

not simultaneously hold that a = (n - k)a and b = nb, with k = 1 or k = 2. 

2. d(s): d(T) iff (a, b); ((n - k)a, nb), iff by definition, 

i) b < (n - k)a or 
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ii) b = (n - k)a and (a, b) ((n - k)a, nb). 

The second case (ii) is applicable; as it was just explained (a, b) ((n- k)a, nb) 
with k = 1 or k = 2. 

So both cases (i) and (ii) apply, and the constraint b 5 (n - k)a must be 

imposed. k depends on the style of non-aligned decomposition as discussed, 

k = l o r k = 2 .  

This constraint reflects the intuition that the largest possible instance of S (with 

duration b) must have a shorter or equal duration than the (strict) bound of the 

duration of the shortest instance of T, (n - k)a. 

Case (IV): non-constant/non-aligned decomposition 

Let T and S E TUSCAL , T t> S. 

Non- Cons (T) S, (1) u)) 

Non-Alig(T,S) 

(T  decomposes into S in a non-constant/non-aligned way with a repetition factor 

bounded by a lower bound 1 and an upper bound u) 

This case combines the characteristics of non-alignment and non-constancy ad- 

dressed separately in the previous two cases II and 117. We therefore directly write 

down the result in this case: 

Let d ( ~ ) g  (a, b) (iff Vs (in-class(s, S)) it holds that a 5 d@(s) < b)) 

then d ( ~ ) s  ((1 - k)a, ub) in a non-strict sense, where k = 1 or k = 2 and 1 - k > 1. 

1.e. Vt (in-class(t, T)) it holds that (I - k)a < d@(t) < ub). 

Reasoning analogously to the previous cases, the constraint that must be imposed 

is obtained: b < (1 - k)a. k depends on the style of non-aligned decomposition. 

The results obtained with this theorem are summarized in Table A.1. They cor- 

respond to the intuition that certain restrictions must be imposed on the repetition 

factor in case that the component time unit S is of non-equal durations, that is, when 

there exist in fact instances of S with different durations ( d ( ~ ) g  (a, b) with a # b.) 
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The constraints avoid the situation when S instances vary so much in their duration 

that some instance of S could decompose into some instance of T. In case that S is 

of equal duration, that is, all instances of S have the same duration ( d ( ~ ) g  (a, a ) ) ,  

the constraints are trivial in the four cases: a < na with n > 1, a < la with 1 > 1, 

a < ( n -  k)a with ( n -  k) > 1 and a < (1 - k)a with (1 - k) > 1. 
- 

aligned, non-constant 

Case 
aligned, const ant 

L 

Table A.l: Summary theorem: constraints of the decomposition of T into S. 

A.2.1 Example with results of the theorem 

bounds of rep. fact. I,  u 

a, b / d ( ~ ) g  (a, b) 

non-aligned, non-constant 

We present here an example of the situation that would arise in case that the re- 

Parameters Involved 
repetition factor = n 

a,  b / d ( ~ ) g  (a, b) 

b < la 
1 > 1  

non-aligned, constant 

strictions were not taken into consideration. This shows the reasonable nature of the 

Constraints 
b < na 
n > l  

bounds of rep. fact. I, u 

a, b / d ( ~ ) g  (a, b) 

restrictions obtained. 

Let T and S E TUSCAL , T S. 

Cons (T, S, n) 

Alig (T, S) 

d(S)E (1, 2). 

repetition factor = n 

a,  b / d ( ~ ) g  (a, b) 

b < (1 - k)a 
k = l o r k = 2 , 1 - k > l  

The constraint imposed by the theorem in this case requires 2 < n. 

b < (n - k)a 
k = l o r k = 2 , n - k > l  

These parameters indicate that Vs (in-class(s, S) )  it holds that 1 5 d@(s) 5 2)), 

and given these durations the repetition factor of T decomposing into S must be 

greater than 2. 
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To illustrate, we analyze what would happen if n = 2. 

Since d ( ~ ) g  (1,2), 3sl, s2 (in-class(sl, S) A in-class(sl, S)) with d@(sl) = 1 and 

d@(s2) = 2. If the repetition factor of the decomposition of T into S is 2, there exist 

3 different possible lengths for instances of T: 

t l  =< sl,sl > so that d@(tl) = 2 

t2 =< S I , S ~  > (or t2 =< s2,sl >) SO that d@(t2) = 3 

t l  =< s 2 , s 2  > SO that d@(t3) = 4 

But then, there would exist one instance of T ,  t l ,  with the same length as s 2 ,  an 

instance of S, which is not reasonable. 



Appendix B 

Summary of concepts related to 

time units 

Table B.l summarizes main concepts related to time units. 
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Concept 
time unit 

time unit class 

named time unit 

time unit instance 

time interval 

class of time intervals 

time unit hierarchy 

chain of time units 

Examples 
"month" 

"month" 

February 

February 1994 

Months from 
February 1994 
to April 1994 

All September's 
and October's 
of years 1994, 
1995 and 1996. 
Gregorian calendar 
structure 
< 28-centuries, 
week, day> 

Presented in 
Chapter 3 

Chapter 3 

Chapter 3 and 
Section 4.2.1 

Chapter 3 

Chapter 2 

Chapter 2 

Chapter 5 

Section 5.4 

Comment 

Same as time unit, 
stressing its class nature, 
particular case of class 
of time intervals. 
Subclass of a time unit 
class, all instances have 
the same name. 

A specific instance, 
particular case of 
time interval. 
Any interval on the time 
line, not necessarily 
instance of one 
single time unit . 

Set of time intervals 
with some characteristic 
in common. 

Structure relating time 
units with decomposition 
Sequence of time units 
decomposing into each 
other in the same way. 

Table B.l: Main concepts related to time units 
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