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Abstract 

'Traclit,iona!ly. Markov r~mdels have not been successfully used for compression of signal 

data ctther than binary image data. Due to the fact that exact substring matches in 

llo~l-l,irlary signal data are rare, using full resolution conditioning inforination gener- 

ally tends to make Markov moclels learn slowly. yielding poor compression. However, 

st1c.11 models ran  Le successfully used for non-binary signal data cornpressio~l by vary- 

i rig l)otll t lie resolution and the order of the conditioning information. 111 contrast 

to variable order methods. the overall model complexity (the number of states) is a 

function not just of the order hut  also the resolution. In the adaptive Markov algo- 

ritllnls proposed. the resolution and order are continually adjusted to minimize the 

cwclelength of the past sarnples in the hope that this choice will best compress the fu- 

ture samples as well, a teclmique inspired Fy Rissauen's Minimum Description Length 

( M D L )  principle. Performance of this method meets or exceeds current approaches. 

l'raditioual teclmiques for adapting order 0 models to non-stationary inputs car1 be 

used iu the order 0 component of the variahle resolution/variable order illodels, or 

a new method of order 0 adaptation, which is presented, could be used. Splitting a 

non-binary input sigr~al into a number of lower resolution subgroups is also explored 

as a technique to accelerate lewning in Markov models. The common non-binary 

image compression t ech~~ique  of Gray coding the input data before splitting into bit 

platies for subseque~lt coding is analyzed and a non-binary pseudo-Gray code is pro- 

posed which cau yield slightly better performance than the standard binary Gray code 

11wt hod. 
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Chapter 1 

Introduction 

Data compression is becoming more and more important. 111 vicw of t,11(. growi r~g 

multimedia industry, compression of still images, video, and audio now 11writ,s c ~ f , s i ~  

attention because the classical tecl~niques fall far s l~ort  of the perforrnmc.t~ tl~at,  earl 

be obtained using a system optimized for co~~lpression of tliesc data. 

This thesis explores adaptive Markov modelling of signal data. I h r  conc*l.c~tgc~rlc~ss, 

particular attention is given to the task of lossless still image co~uprcwiul~ (or, c3ql1iv- 

alently, lossless intra-frame video coding) but is also applicabk to tlic. c.olnl)rcwiior~ of 

all kinds of signal data. 

Data 

First, a definition of what is meant by data. One way to c.atcagosizc. data is irtto two 

groups, text data and signal data. 

Text data appears in the form of machine- or hu~nan-rc~adabIc. strings, on( .  c*x;~~nl)k 

being a sequence of integers, each of w11ich corresponcls to a letter or symlml i l l  a, l i r ~ i l , c b  

alphabet. Another example is the machine language iisccl by a c o ~ n p ~ ~ t c ~ ,  p ( ~ h a p s  i l l  

the form of an executable object code file. Much of tlic- c.lassica,l rcscwc41 i r r  cla,l,;~ 

compression was done with the goal of text compression ill  ~ninrl. 

Signal clata, on the other hand, is assumed to bc formed by qilatitizsit~g samplc*s 

of a physical process. Examples of signal clata are cligitizerl irrlages or soir~~tls, or I,11c* 

digitized output of a pressure gauge. 

One notable difference between signal data and text data is tilt. alwr~c:c* of' iL  



rc:ascrlial~le dista~lce Ineasurc for the latter. Whereas one can say conclusively that the 

two real t~urnGttrs 1.2 anti 1.3 are separated on R1 by 0.1, it is more difficult to  agree 

thct clista~~ci- hetwt-teli t,wo words "airplane" and "planar", or even the two letters "a" 

i t t i c i  'Lli7i. (h11st:qu(-:1~tly, there is 110 (;cn~entio~lally accepted signal-to-noise ratio for 

tc=xl, data. 

Williams (1 991, pages 95-98) puis it another way, saying that the difference be- 

twtm~ a signal compressor ancl a text compressor is that signal data assumes an 

o r h i t ~ g .  If a deterministic one-to-one permutation were applied to  the source, a text 

co~i~psi?ssor would iclentically, whereas a signal compressor would perform 

worst!. For example, i f  everywhere in a sample of text data, we substituted the char- 

i~.~?,t:r "(-1" for the character "I<" ancl vice versa, an adaptive text cornpressor woulcl 

c:o~iilx~'rlss the resliltitlg sample to the same nu~nber of bits as the original. If, however, 

give~i a signal data source, we substituted the value 10 for the value 1000 and vice 

vessa., we wot~lcl expect a signal data compressor to react quite differently. This is 

lwcause c:o~~ventio~lal signal compressors depend on the input being a slowly moving 

psocess, tha,t is, one with a high cc~relation between temporally or spatially adjacent 

symlxh.  

1.2 Compression 

''1'Ile goal of data compression is to reduce the number of bits needed t o  either store 

or transmit data, either losslessly or with some loss. 

1.2.1 Statistical v s  Dictionary Methods 
r 3 I liere are probably hundreds of different methods of compression, but most can be 

classified into two methocls: statistical or dictionary. 

Statistica.1 coding is the class of data compression algorithlns in which explicit 

sta.tistica1 models of the data source are either assumed or are determined from the 

source and are rmxl to a.ssign probabilities to symbols in the data to be compressed. 

The overall optlimal coclelengtli for an input with respect to a particular ,model is the 

sum over d l  the input symbols of the negative logarithm' of the probability assigned 

'Al l  logaritlirns in this thesis are assumed to be base-2 logarithms and will be denoted by log. 



to each symbol. Arithnmic coding (Langdon and RissanCn f !IS 1) is ;t vxll-k11c~\sr1 

techique used to conwrt r he sequence of prolmhiiit ies into a s c ~ l ~ ~ r c - t x  oi' i t i t  s t l l ; i t  

can be then either tra~~smit:eCi or s:orerl. The ctwt rai t a k  i r t  stat ist it-;tl t - t t t l i  t ig .  

therefore. is the coustrucrion of models :Itat ~ . t~pr~st~r t t  : iw s ~ r ~ t ~  cint ;I \\-~.li .  OII(, 

example of a statisticai methocl is tire I7ni\-wsal Llarkov I'oticb (i l : l I f  ') i l{i>~~irlt-ti 

1986a). -4dditio:lally. techniques like differtwt ial pulse milt-- itior111l;tt iwi ( I f  i ' f  ' > I f  c l t ~ r l  

adaptive DPCSI {-4f)Pt'_tI) can also be considered statisticat rilt~tl~oris I) t .c- ; t l i>c .  t I ) ( .  

coefficients of the (adaptive) linear predictor. are drtcrniirid frcm t l t t -  st at ist ic-s ( t  I i ( *  

em~irical  autocorreIatiou functio~l j of xhe source I~eing c.orfeci or froru t 1w stilt  ist irs of 

a set of sources of svhich the source being codrcf is tIwugltt to 11v a ~w~nl) tv . .  

Dictionary methods repface sequences of characters wi th  indic-c*s in1 it t1it.t icmary 

and so form a class of algoi-ithms distinct fro111 those that t ) ~ l i l c l  staiisiic-al rnorl(.Is. 

'cVher-eas dictionary methods exploit the same reciunctai~c_\- in t iw i 1 t l ) l t t  ( l i l t  i~ ;IS (lo 

statistical methods. they do so without estimating s_vmI)oi prnlxtl~ili i s  o r  sot1rt.t. 

statistics. However. relationships exist betwwl the two (-lasses, a ~ d  stat isticit1 t r l c . f l r -  

ods can be made to emulate r!ictionar? methods at the rosi, of liiglti*r c . c ~ ~ l ~ l t l r t , ; ~ t , i o t ~ ~ ~ I  

burden (Rissanen 1S8Sh). The most n-ell-known dictiouary 11letl1ocl is t21ct Ziv-1,c.nlpt.l 

compression algorithm (Ziv and Lenrpel I K X ) .  This n i e t h l  is ~isecl i ~ r  i,Iw J ) O I ) U -  

lar VNIX program compress. Also. perhaps one of thr earlir~st t l ah  wttlprc~ssiotl 

methods, run-lens Iz encodir:g. can be consicleretl a rnenilm- of this grtir 1 p. 

1.2.2 Lossless vs Lossy Methods 

Another way to classifi- conrpressicn ~netttods is by the firlr4ity of tlw ~-t~prorlrti.i,iw. 

Lossless compression means that if the input is co~nl~rrsseci it11~1 t lxw S I I I ~ S ~ Y ~ I I ( W  t ly 

decompressed. the resulting output is exactly the same, I i  t for hit; as thc~ irlpirt. 

In general, for test data, we are interested i n  lossless coding I)wat~w, as 1 1  trvlt.ior rt.(l 

previously, there is no conwntionally arrepted differcw-r. ntc*kstsrirta for t,t.xt chf,a. I n  

some signal compression applications, as in the cvmprrssior~ of I ~ I c ~ ~ c - ~ L I  i 11litg~'1--~ or 
I ' other medical sensof data. no amount of loss7 measurable or !tot, is ar-r-eptatAt~. 1 t I 115, 

there is a need for IossIess coding of Loth signal and text, rlata. 

Howe~er. irt a large number of applications of compression of sigltal riatit so~ric. 

amount of loss is acceptal~le. Such loss is incurred either w h  t , ! ~  cltar~r~c~l st,ri(.t.ly 



i i ~ n t i t s  t f w  rate or V : ~ P I I  i t  15 ~il~?jrl_i. d~slraltle to achieve the highest compression at 

a g i ~ ~ s i  aw~ptaJ~Irz fidelity. Atnong si~cll applications are the coxnpression of non- 

c ritirai t-or~s~lnrr-r sigrrd data (still images, video and audio. for example) for storage 

<JT irarisniission. Lossj- methods are not really applicable to  text data compression. 

1.3 Performance 

'1'rt.r~ f_t.ptss of perfcxrrnance measures will be used in this thesis. One relates to the 

c-oril;~rc-s:iioti of t he  i~tptrt, and the other to the fidelity of the reproduction of the input. 

1.3.1 Compression Performance Measure 

Ht.c.ause we will L r  deatirtg primarily with images. the compression measure used will 

1 ~ e  lits/pixel jbppj. For an input image consisting of N T-bit pixels and an output of 

size )3 (in bits). the compression wifl be reported as /3/iJ-. This performance measure 

is equally applicablr t o  Iossy or lossless coding." 

f -3.2 Fidelity Performance Measure 

f l~ sp i t e  the well-krtorwt fact that the signal to noise ratio (SNR) is not a perfect fi- 

rlclity measure: it is used pres-a1entl;-. Especially for images. some visual artifacts do 

not significantly alter the SXR but are quite obvious to  the viewer. Conversely, other 

artifacts are virtually imperceptible but cause a large change in SNR. Nonetheless, 

for lack of a better measure. and to  use a measure with which we are all comfortable, 

fitIe!ity will Ite expressed iu terms of SSNR. Situations in which this measure is inap- 

propriatr will be noted. Of course. this performance measure is meaningful only in 

t h e  real111 of Iossy coding. 

"nother measure is the compression ratio, i3!,2Tr. This measure is less common but is actually 
Inore useful for comparing methods because it maps the performance into a positive number inde- 
pendent of the entropy of the source. I-ising this metric, smaller values represent better compression, 
a value of 1 represents no compression. and percentage differences between methods can be more 
eady wad. fn this thesis. Iiorusvst. we adhere to the convention in the image compression literature 
and will report conlpresion results in bits/pkel. 



X.4 Goals of this Thesis 

The primary goal of rile i t -~rk  n r ~ c ~ n t ~ d  r------ ill t I l jp  rlIeSiS is tIlf- i.ox311?r4~SSjc:!1 i;f SigI:;+l 

data. specifically images. using variable order anti ilnrtnb/f i .c ,~nf t~ f  ~ort attap t i \.c. X I < I F I ~ L > \ '  

models. 

Ad: ptii-e Markov models start wit11 no irifornlatiotl about t tit- sollrc-c. arlrl grati- 

ually build up estimates of the ro~~ditional probability distribution by 1nai11t:tirritt~ 

histograms. Care must be taken to choose the right co~lditionirtg iinfi)nnat ion mtl 

the right order model as a function of time beca~ise the accuracy of t 11c. pro1)aitility 

distribution estimate varies wirh the number of sample processd met tllt~ orclvr of t 111, 

conditioning information. it-e will call this the l ~ a r n i i ~ g  probirm for atLlptivc. h1;~rl;ctv 

models. Variable order adaptiw 3farkov models have been used q11it.r. stic-(.twf'~~lly for 

text data compression because they overcome the learning proLle~.i~ Ly ~ t i ~ r t i t ~ g  tsii 11 

low order models and by gradually working up  to higher order mcttlels. 

However, adaptive _2iarkov models have not been the method of c-l~oicc. fctr c-oln- 

pression of signal data except for the compression of black and whitv irr~;~gc>s (I,i~~lgtio~i 

and Rissanen 1981). Because the conditional probakilitirs are cstilnattvl 1,iisc~l O I I  t,lrt. 

frequency of exact matches in the input data. and since exact ntatcltcs ;tr1. I n m I t ~  to 

find in signal data, these technitpes do not work as well 011 siguat tlata as ~ I ( J  ot l lc~ 

approaches. 

hdeed, signal data is usuallj- fosslessly compresserl Gy sul~trac-ting ;L prc.tlic-t,iorr 

of the signal from the signal ant1 transmitting the resitlual, as i n  I)I'('M ((:c*rsl~o 

and Gray 1992, pages 206-21 1). Linear prediction is d~sigrted to 1x1  iui riiizt* tllr. rvor  

tretix-een the signal and the prediction, so that the transmit tc~l  s i g d  l~as  IOLWI. c w ~ g y  

than the original signal. The predictio~ ueed only be closr to t i l t ,  ac-ti~al V ~ L I I I ( .  to gd. 

coding gain. Hence, this method works well for signal data be(-ause it dew rtot r l r q ) c - n r l  

on finding exact matches. 

As i d 1  be shown in this thesis. however. if we do not look for t.x;~t.i. ~llitt,c.Itt~~, 

but rather look at reduced mofutiorr matches. the effeitiveriess of arlaptivc Mitrkov 

models on signal data is greatly improved. it will be s l~owrl  that usitlg r c 4 1 l r w l  

resolution conditioning information is similar in intent to variaI)k orc1c.r aciaptiw 

_tfz&ov modelling in that it speeds up learning thr- source statistirs. By i~jcplttitir~g 

ibe fact that there is a distance measure for signal data, we call vary tit(. r cdu t io~ i  c i f  



t,tw t-onditioning idom~atiou givinc o us an even finer control over the number of states 

i ~ i  t hr* ~ric~ctcl. 

A s tn~~ lda ry  god is tct investigate and extend the technique of splitting a non- 

blrlary 11lp11t i ~ ~ t r i  yeparate so~zrces called bit planes. each of which has one bit of 

r tdut ion.  Tltis technique involves pre-coding the data with a binary Gray code 

j~rior to splitting into bit planes. The effect of this pre-coding on subsequent Markov 

rnortellirlg is analyzed and we propose a non-binary pseudo-Gray code that allows us to 

split art i ~ ~ p u t  illto plmes with arLitrary resoiution, preserving relationships between 

bits that, may be useful for i~lcreasing co~npression performance. 

a one Most of tlie emphasis will be placed 011 lossless coding, as this presents itself a- 

of the more naturai results of Markov modelling. Additionally. we will be concerned 

aI111ost excli~sivel_v wit11 natural image data, as this is clzrrently one of the major 

applications of s ig~a l  coders. 

Organization of this Thesis 

Tltis thesis is arranged into 8 Chapters. Chapter 2 provides information on some 

tl~eoretical background of signal data compression. The concept of adaptive Markov 

modelling is presented and the learning problem for both text and signal data is de- 

scribed. The chapter concludes xith a discussion of the minimum description length 

f MDL) principle which is central in overcoming the learning problem and understand- 

ing 110th existil~g techniques and those described in this thesis. Chapter 3 gives a brief 

sur.r-e~ of rurrent work in the field of Markox- modelling for data compression, focusing 

on how variable order tecl;niques haye attempted to solve the learning problem for 

tvst data and how these ~nethocls fall short when modelling signal data. Before de- 

st-riLirig methods for overcoming the learni~lg problem for Marko~ models and signal 

data. C'hapter -1- presents a new method of order 0 adaptation and gives a simple first 

took at hots- usefttl it is for a model to monitor it,; 01s-n performance and adjust itself 

ac-rordingly. Chapter 5 presents the concepts of auaptive variable resolution/variable 

order modetlirtg for fossiess coding of signal data, showing that adaptive Markov mod- 

r4s t-art be etf+ectiveij- used on signal data. Chapter 6 presents one of the traditional 

rnethods of overcomir?g the learning problem in Markov modelling, namely, splitting a 

signal into bit planes. and extends this idea to bit groups of arbitrary size. Chapter 7 





Chapter 2 

Background 

This chapter gives background on some basic concepts required for a discussion of 

statistical data compressio~. We will discuss the decoupling of the model from the 

ct,rlt.r. a11d thc justification for doing so. namely. arithmetic coding. Background on 

lfarkov ~lloclels will be presented i~lriutiing a clescription of two forms of adaptation, 

t k  ronstr~~ctiorr of adaptive Markov rnodels from a source, and most importantly, 

t l lc  AIatkov muclel fearniug problem. The specific problems of using Markov models 

for sigtial data wilt he presented as moti~ation for the work in this thesis. Finally, a 

section will be riesoted to the minimtm~ description length ( M I L )  principle and to  the 

iclea of stochastic complexity. 110th of whit', will be useful in the following chapters. 

Adaptive Modelling and Arithmetic Coding 

Hefixe proceeciing. some notational corlve~ltions need to be explaizled. First, a string 

s of Itwgth .Y is composed of a sequence of symbols x; for 1 < i 5 N: 

a r i d  the substring corlsisting of the first t symbols of x is denoted by xt. With this 

clefittition. .rS car, he used interchangeably with x. Second, n-e will follow the conven- 

t i o n  of using upper case ietters for random variables and lower case for specific values 

of titost- variabIes where nvcessary for clarity. Lsuallp we will just use the lower case 

let  tt.rs a d  assume the reader understands when we are referring to  random variables 

a11d whet1 we are referring to specific instances of them. 





:2ttiirt.r= syrtt t i&  source symbols 
coder coder I + 

liludri ! ! model 
riist~ihutiori distribution 

Figure 2. I : Statistical data rompression 

symi~of with as close fo log P [ ~ . , + ~ j z ~  j hits as possible. per the quantitative definitiou 

of ir~frrr:nat i c m  (2.:3). Thr coder a stream of channel symbols. Let us consicier 

t.arli part  s(-piiraf t4y. 

2.1 -1 Arithmetic Coding 

Ari t  hmctic- cotlirrg is the rerh~lique that a l l o ~ ~ s  the cieconpling of the n:oclel and coder. 

I;ivtw a striltg x' cornprssc-€1 of spnbofs taken from a finite alphabet A of size X .  and a 

~m)rlel that predicts bhv p~oimbility of each symbol in the alphabet. arithmetic coding 

reprcstwts the string as an i n t e n d .  f .  of real numbers in the range 10. I ) .  The size of 

t i i t .  iutt.rva1 is the probabilit_v of the string 

gtwri hy the n-lorlei. The message, C.  is the sum of the probability of ail striugs of 

t i l t *  sarne fength that precede the current string in the lexical order of the strings 

(1,arrgfcrrt ard Rissafne3 1939 i $ 8 . - i i l i  the probability of the uul! string being zero. 

T h t  a igu r i th  starts w i t h  a n  iiilierva'! of size 1.0 and. as each symbol from the  strii~g 

is 1-crfect. t h e *  irrtvra-a! gets smaller in proportion to the probability of the syrnl~ol as 

givcrr L_v the I I E W ~ C I .  Xlore prahbie sj-arrbols reduce the  size of the interval less than 

Etw prcitzAztr syalritiofs. a d  henre arid fewer bits to the message: C. 

-4s a r k  t*sampie, coasicler ail possibk 3 bit sequences generated by a source that 

tmits zeros ~ E t h  probahilit~ pa = 113 and ones with probability pl = 2/13. In Fig- 

a r c  2.2. the range % fO-iT - is hrukm iuta eight intervals. each one corresponding to a 

t r n i q t w  3 bit  sourre seqrtence. The seynerace -I 11" is the most probable (p = 8/27) 



of the symbol. Y ( Z : + ~  ). As stated pre-;Hmsly. i r q -  ~ u ~ z ~ E i t - T .  i l l  t h *  i n t~ r~ . ; t !  ia ;i :,.alifl 



2.13 Adaptive Modelling 
- t  - 1  Sai;~ t i r a t  iw krrw,.; tirat ;:rt ar~tnrtzwtit- c d e r  ran come a ~ b i i r a m ~  ckse ;ti t h e  entropy 

* .  tfw .tiit.re-r= E I E U ~ ~ ~  thex real $ r ~ ~ b ! i ' l l ~  Ela s1aI:st:c-a"riada t-onrpressi~nr becomes deter- 
* .  

E E E : : ~ L I & ~  t Bit' ~ ~ : i j r f t - ! .  TEir &>!k;aviEzrg wr-tioal.-. 2 x 1 3 1  &yi-rjbe zjare r.fa~s of ~-t_pui_iejs, lfarkov 

r m d t ~ f s .  whit-ill iw i4'w?i%-elv ir~ei% $0 e$qrrrair IOV: ro~~dirit lnai entropy tiistrib11- 

t icms. 







Constructing Markuv Models 



tirt- rtrmtfter ctf tirn~': that symliol appeared in  every one of the il possible contexts. 

Hawrl  on t fiwe r-otrnts a d  using one of the  estimation techniques we could generate 

a prrtltattifity rlist~ifiritiofi for each symtjol xt+j conditioned on the p re~ ious  symbol 

St.  

The Learning Problem 

A s  previorAy rtientitmrd. the rhoict of the function a an i~npor ta r~ t  one. Let us 

t.rmsitft.r for the rnoitient only how the model order cl~oice affects the accurdcy of 

the acfaptive Mal-kov ntorirl construrted from the source. 14% will assume that cr 

nierdy rttooses ffte fast  I I  SJ'III~ZOIS front the past string as the context. This particular 

ftlnction wilt t~ r a I M  the id 7 t t i f y  ptr-rnutatiots of order 72. 

('cmsider artaptiveIy rnodellir~g a sample generated by an unknown stationary 

stmrrr,. We present the same sample to  an order 0 model and t o  an order 1 model. 

T h t =  ortit-r 0 ~norfel approsiittat~s the order 0 statistics 

wItcw 8 inrlicates no conditioning information. Similar1)-: the order 1 model approxi- 

mates the order f statistics by 

A Ilistugram hi11 for arl pi-ent ( that occurs wit11 probability 1) = P(I;), counts the 

I I I ~ I ~ I ~ M T  of t i ~ ~ t e s  the event has occurred in t trials. Hence the count in the  histogram 

is h-rontiallj- tlistrit>uted. 

artd has a n  espectetl ratue Eff 1 = fy. 

fk r  t lw ortler O a d  orrirr I models described above, the counters C ' ( X ~ + ~ )  and 

f '(st) art- hinomiai rarrdcrnt \-ariabfes wirh probabilities y = P ( X ~ , ~ )  and 710 = Y ( x t ) ,  

re-spcc-tiveiy. a d  the cu~rater i ' f ~ , + ~ . z ~ )  is binomial with pl = P ( X ~ + ~ , X : ) .  It  is 

signiticaut t o  note that, despite the  fact that the order 1 model approximates the 

c-orditiatrat distribution. it must do so by first approximating the joint distribution. 



clistributions is 

where p, is the 

their cross entropy 

(2.1 ti) 



S~lfrstit ttti~rg f Itis ~.xprc.;siou irito (2. ifi t and taking the expected d u e  resdts in 

r 1 ail I lw r-ross e~ltropy approarhes the etltropy with ir~crezsing 1 .  .As t --+ m. Eflog -5-) -+ 

logy = IogpT(<& 

Tfrt. optimal tnorEef order, n. that should be used to code the input after t sam- 

p I ~ s  hz~vc been seert tieprritfs on the tiistribution and t .  This author knows of no 

rfistribt~tion-i~lrlepertdent f m r t k n  for determining the optimal order. Solving this 

1mutrltw is what motis-aterf tire i f t ~ & q m ~ e n t  of the variatile order tedmiques descril~ecl 

i r t  (7mptt.r 3. For instanre. the I.'Slt' algorithm tends to use low order models at the 

frtyjnni~mg of a sainple and work up to higher order models as more samples are seen. 

This works bvtter than j i i s t  using a high order lnodel because high order models yield 

tmiforrrt ~rrdit- t ior~s (which are bad uufess. of course, the underlying distributions are 

uniform 1 until r~lough s>-mbols haw been processed. 

A~lotlicr tracfitional metfrod for dealing with this poblem is splitting the input 

irtttt ftit plaucs a d  coding then] separately (Joint Bi-level Image Experts Group 1992). 

IJrw tu the sstralfer atphaf-tet sire. the probability is distributed among fewer s\-mbols 

and t h e  cutrrtters for tltosr syr~mbols tend to accurate13 represent the actual probability 

ztttirt- ~j t&-Hily. Howi'w~-, I he probabiIi ty distribution that is being estimated is for the 
I.:* i r r t  p C = u C  -...A% tjii1ilr iiiid i g i i ~ j rz~  any r~lationships between the planes. So. wide sucill models 

It-rrr qtrickly. their restdrimg codelength can be higher than a model that takes into 

ar-i-onrtt the rrlatioaship between the planes. if such a relationship in fact exists. 







H(Oj with a set of k paranreters, O = (&. B2. . . . k lk ) .  whcrr t h e  11111111~r of par;tnwt t'rs 

may i-arj- and influences the codelength of the motit4 tlrscriy;ior~. 

2.2.2 Stochastic Complexity 

If we replace t~he hypothesis H with the parameter vector (-1 in (2.24). t I I P  qual~t i t  y 

to be minimized becontes 

The second term corresponds to the ~notlel cost, and (Kissa1w11 I Wkt ) clct.cw11i i r o r l  

that to encode the k parameters iu an optimal way requires$ log n I>its. K I I I W  r ,  is 

the number of observations in D. The minimization then bcconlc~ 

This form of the minimurn description length is also called the II~-prcv1ic.t i sc. st oc.l~as- 

tic complexity, I,,;s) f Kissanen 1986b). 

To sunlmarize, the stochastic co~npfexity is the shortest coclc4c1igtli for 1,11(* cwt,ircs 

obser\iation sequence relative to a model class and, as stlch. is an al)l,rr,si~~~;tt,io~l to 1,11(1 

algorithmic complexity (Kolmogorov 196.3). a more involved 11otio11 or w l i i c - I 1  r qm~sc~~~t , s  

the length of the smallest input tape that will producc t h e  string w1tc.11 applic.{l 1'0 ;L 

universal computer. For the stochastic complexity, tlie model (-la.;;> is ~ i t ~ t ,  t , l ~ c h  svt, o f  

all possible programs for a universal computer, but rather a set r t f  tlistril,ilf,io~~s. 'I'liis 

makes the stochastic complexity computal~le, iinlike t ? ~  algclrit hmic iwt~ipl(.xit,y ( I , i  

and Vitanyi 1992). 

However: Rissanen (1989) warns that choosing the ~lioctel faniily. a stiy t , l l i ~ t .  (.i~tl~lot, 

be automated if the non-computabiIit_v is to be avoideci. Itas a signifit-a~:t vffwi, 0 1 1  t,11(. 

resulting stochastic complexit> For some problems, the clioicc. is eviric~tr t ,  It1 ~ f ,  t , l ~  is is 

not so for others. On one hand, we worrfd like the ~nodcl class to I jc*  largc* s o  th;tt wcl 

test many different models: however. the more ~nodels we havc in thts class, tlw grr~alt~r 

the danger that the best model maj- fit only the sample ariri 11ot the data soiirc-c, (whic41 

may not be adequately represented bj- the sanlpie~. Tltis is sirriilar t i t  t l i t *  sit.tl;ttittr~ 

\\-here a neural network rernrmlltrrs the training set hut r mrwi  gcmdizt- .  On i,h(- 

other hand: choosing too sntall a family will result in I K J ~  Leing al)lc. to r 1rarac.fr~rizt. 

the data well. unless we have prior kno~ledge of the  data generatirlg r~wc- l~a~~ i s~n .  



Prrdictive coding nrrlea~~s we mcidel the  ronditional density for the possible values 

of the ~ w x t  c-tt~sert-ation sf+! as 

where 63t) is the k component estimate of 8 based on 

for the parameters is only based 011 the past string, 

the string xt. Since the estimate 

the parameters do not need to 

be coded and sent as side information. Adding all the codelengths for the string x of 

* 

which can be n~inirnizect with respect to k to get the optimal model order k ( n ) .  

For each value of k above, the estimate of the best 6(tj for encoding the next 

observation is the value that minimizes 

Ttlat is, it minimizes the codelength of the previously seen string. This is based on 

the hope that the predicted distribution is like it was in the past. This minimiza- 

tion requires an estin~ate for O(0j that is equivalent to the specification of a density 

function, j ( r l ) ,  for the first data point. 

The minimized codelength is not cornplete because the decoder does not know the 

value E chosen by the coder using (2.28). This parameter can be coded using a prefix 

code, which requires a length of log' E + log c~ bits (see Appendix D). 

The semi-predictive stochastic complesiiy of the string z is then 

f,fs) = min{ L ( s ] k )  $ log" k + log cK j . 
k 

(2.30) 

It is called semi-predictive because the estimate for the parameter vector at  sample 

t -+ I is ~nade  based only on the past string, xt  and so does not need to  be transmitted. 

Thus, the term $ log ri does not appear in this expression. However, the order esti~nate 

k is based on the entire string .r. and hence needs to be transmitted as side information. 
A 

If we let k ( f  1 be the d u e  of X; that, minimizes 



then the predictive stochasti< cornpiesit?- is 

A A 

with k ( 0 )  = 0 and OfOj = A, where X is some initial set of xnoclel pariilnctvrs. 111 t,lw 

predictive case. we are given P one samy1e a t  a time and we gradually bui1J up f l ~ t ~  

estimates for both the optima1 mode! order and the opti~nal parameters. Sinw t l o  sidt. 

iriformation is needed, predictive stoclt;lstic complex it^ is  a particttlarfy i ; d i r l  t w t l c y ~ t  

in coding. The predictive stochastic cc~mplexity can be shuw~i  to be all asyntptoi,ic- 

approximation to the smchastic complexity for ergottic sottrces Rissar~tw I!%!)). 

Instead of minimizing based on the entire past. Furlan ( 1  99 1 ) lets b ( ! )  Iw tlw v ; r I i ~ ~  

of k that minimizes 
f - 1  

for some value of the history size y. This results in a for111 of local achptatiot~. 

To make this more concrete. let us consider the special but c-ontn~ort (-;isis of a 

Markov source. Given an alphabet of ill symbols, an order 0 LIarkov soi~rc-r1 is r . o r ~ ~ -  

pletely defined by its JI  transition probabilities. This ~~~~~~c 11a.i rmly o11c- stat,(*, 

or: equivalentI_v, it has on13 o m  contest, g. Sirnilzrly, an o~-rler 1 Markov su~~rcx., i l l  

which the state is defined as the previous symbol, is chararterizcrl Ity .dlt c-rmlitirm;~l 

probabilities. For the general order j 3larkov source with tht* state r l d i r i e c l  as i.h> j 

previous symbols, the source is characterized by MJ cvnditiutial prol~al1i1itic.s. 1 1 1  dl 

these cases, the parameter ~ e c t o r  we seek to estimate is the set of c-crriditior~al proljic- 

biIities that characterize the source. For the general vrtler j Markov sourw, 8 woi~ltl 

be a M j  element vector. 

Since the definition of the  stochastic complexity assii~r~es that a rrrorlr~l r.f;iss 11;~s 

been chosen, the maximum likelihood estimate for the rorlc~lerrgtl~ at a p r t i c . r  1l;u- 

model order is a known function. For a Markos su1lrc.e: tht* maxiumilr li kel il~oo[l 

estimate for the set of conditional probabilities a t  a ~tartir:uIar statta is kiirlwrl fro IN* 

the frequency each symbol xas emitted at  that state dirided hy thr* t m r r t h  o f  t i r r m  

the source was in thxf state- 



Chapter 3 

Survey of Current Methods 

3.1 Description of the Methods 

i V i r i l t b  the Z i v - L e ~ a ~ ~ e i  fa';rrllrBy of P - ~ ~ E E P F ~ W ~ U T ~  Zip: i iud L~mppa4 j 9TS j  i,;: I I I  the i ~ t e ~ r v  .? ., 
. . 

of tlicticmary t e r - t t i i i c p ~ s  mtEter :hag, sia~iniir-al "c4~1~iequt";- i t  8s ul;crSf3d t i 3  iu~lt~de i t  1 1 1  

this tiiswssitm heca~x~t* ii. is c.snrrrnrti>- E ~ W   USE p p : : h ~  n~e3b0d f o r  qe~m-i l~ jjilrj>OS' 

chta t - t :~~i)~essI~m- 
. . 

'I'ltt- algorithm nraizztains a ceEEcriorsay~- <of sril>st sings awl csr~3prsi;r-.:. i 3 ~  t r a r m l ~ ~ t  t I T I ~  

- - ;in E L r t E v x  irkto tilt. g$rc- t l snary  iari;te2g$ n$ h j I i *  srlbstr!nn ;*;14g 
0 = " " " " -  

:-Is rwtt*tI prt-t-It-rrrsly, sine-e t h i ~  nset.Lod. like :xiany c~rre~4f  ~iit?;i.c;fical n~edilittrAs, 
- * * 7 

It,t~-ks htr exact ;rrati:frt*s irk :!re prr~iu-?-it .,s J- sg~s j  iuput, i t  necex+arej)- ill-suited for 

1-ctrrtprt-ssictr.h of sEgrraE data. Tfris casr Be. .;pen itg Srcafon c3.2. 





3.2.4 Universal Markov Coding (UMC) 



repreenting the  ~rrrrrrber of a ~EHEVP €*ac-h ~ E I ' P ~ ~ o !  S, \t.it'j s w n  i l i  I f l t a  ( ' t t ~ l t r - ~ i f  s. 

EssentiafIy. t h e  aIgorithrn cirnttbst ran+: all possiltlc; I larkrl~ t 1 l i i t l t . l ~  rtrl t l i t .  s t t i l 1 . c . c .  

si~n&a~~oetsfp.. Starting %S~':F!B ' e h  ~t ivt  ~ d t - .  i';!tii'fl tw~rt-s~,tmrfs lo i i r i  r x c h -  13 t i w r i t . ! ,  

srz~ressia-~l~ cfeeprr EpweIs u% t h e -  ire*-. st; lGt-f t  4-t~rrcymirrl to I:i~!rr=r tmivr t r w r I t ~ L .  ;in. 



is riw niimixr of rirnes c-cmrexr .s occurs i n  s. z is an index that runs through ail M 

syrtttmls. and .$ is art index that r ~ i r ~ s  through all kJ contexts. The number of contexts, 

k J .  for cach It-vi4 j clepmds on the sorting function. As an example, using the identity 

prrmutatio~~ and an alphabet size of ilf implies that the j th  level has it43 contexts. 

Sott- that (3.31 is vatid only if we use a Laplacian prnf estimator (see Section C.2.3). 

'I"hca origirl of the fartoriais in the expression will become clearer in the example that 

fof lows. 
r i I he stoc-hastir conlpkxity of a string with respect to the model class is the11 given 

by 

t ( x )  = rni~~j log P ( z ] j )  + log'j + c K )  : ( 3 . 5 )  
3 

with  fog' and c~ as presiously defined. 

So, to choose the optimai mode1 order based on the stochastic complexity, the 

c-ontcxt tree should be constructed and. for each level j  of t*he tree, the negative 

logarithm of the probability assigned to the string as in (3.3) should be calculated. 

I'11t.n. using (:3..5), the level which has the ~nini~nurn coclelength is chosen as the 

opt i111a1 model order to code the input. 

The predictive approach is similar. As each symbol at is received, the previously 

ctfw-rit-~erl algorithm is applied to the contest tree T( t  - 1) to find the optimal order 

to use in thp codi~lg of the s_t-mbol. 

Finally. the same method can also be applied to individual contexts. The model 

crrclt*r cliosen is the one that best compressed the past symbols that occurred in the 

specific context, rather than the order that best compressed the entire string. This 

i s  because some reguiar features exist at higher orders, and choosing the overall best 

urckr ig~~ores  the fact that these higher order contexts are good coders. Motivated 

this observatio~i, Rissanen jf986a) chooses the coding node as the highest order 

curttest such that the parent codelength is smaller than the sum of the childrens' 

c-ocleiengtlts. A Inore detailed descriptiorl of the coding node choice is given in Sec- 

tion B.1. 

Xotabte i;t the predicfit.~) i-ersion of the algorithm is the fact that we do not penalize 
*I- -- A -5 - -& 
t r r t -  ~ ~ r ~ r t r ~ l ~ ~ h  based un tire model order. This is because in the predictive case both 

the  corter anri the encoder car1 determine the state from the past string. 

-4s an esamyfe. Let us look at how the string '~00101000" is parsed (Rissanen 



Table 13.2: Order 1 counts for the string -*001011100" 

1986a). This example is iustructive a d  also relet.ant, Lt~airs~ .  t o  tlit. c.stviif. of tliis 

author's understanding. Table I iri the aforetnentiorierl rt%ft-rcwc.t. is i r t  c*rrc>r.. 

To begin, Table 13.1 shows the progression of the counts ri~ailttail~td Iq art ortlvr 0 

model. The first column shows the qmbol ,  ard the sec-onrl m t l  tllircl c -o l~~r~l~ ts  sliow 

the frequency of the symbols '-0" and '-I", respectively. T1w fourth ~ I I I I I ~ I I  S ~ W S  

one possible estimation of the probability from tllp c-ourlts, ~tan~t>lp. tltt. I d ~ ) l i W i ' l l l  

estimator described in Section (".2.3. The fifth cu lu~nn sltows t h  proiiilc.i of' 1,11(- 

probabilities up to and including the current syml_tol.:' The curlelengttt i s  tJw ~it~gittivc* 

logarithm of this number. Likewise. &ble 3.2 shows the prcqp.ssicm o f  f l i t .  c-r,trrlt,s 

maintained by an order 1 model. In Table 3.3, we change to !he riotatir>rt of 'I'altlt. 1 i l l  

(Rissanen lSY6a). I!> assume that the optirrtal rnoriet t-ttrtit-i- is w siiowrt iu t.olttrntl 2. 

The I~verse  d probability that 'r:ro.;!d be assigned by the order 0 a d  i d e r  i i 1 1 0 r l < 4 ~  

3The product af fractions ~ i t b  incrementatly increasing denornis~ators is the origirl c d  ttw filrtr,ri;ils 
in (3.3). 



art3 shown i n  coIrt~r~ns 3 arid 4. respectively. In colurnn -5, the overall codelength (the 

pwclicti ve storha,stic cumplexi ty f resuf ting fron-~ this optimal choice is shown under 

tttc* tleariing I'(x2. The ~mnlbers that are in error in the origirial table are outlined. 

W e *  set. that varyirrg t b  order of the   nod el has an impact on the  overall codelength, 

am1 if wcx choose tfte trrrfer ror~ectfy. KP can reduce the codelength. 

Furlan (1990) presented an modification to the VXIC algorithm that works with 

non-binary alphabets. is locally adaptive. and is less computationally expensive than 

a straigfitfor\sarrl nur-t-binary equivalent to the algorithm in (Rissa~ten 1986a). This 

algorithm is described iu derail in Xpyed i s  B.2. 

3.1.5 JBIG 

.IHIC: [Joint Hi-tevri frttage Experts Group 1992) stai~ds for .Joint Bi-le-s.el linage 

Espprts CIruup. It, toss!esfy mn;prr.sses bbiary image data using an extension of the 

(1-C'utlt-r. The irvtent of JBIG is to replace the current Group III a ~ t d  Group IV FAX 

at~orithtirs. Hampef I !992) report that -On images coritaiiiirtg text and/or hi- art, 

.I W IC: cwmpression i . ~  ge~wrafly 1 - E to 1.5 rhat of !dNK coding. the  nmst efficient of 

the G I J C  3 techrtirps- On3 52-krwf i::rag,~ readering per-scale via ha1 franing. J B  IG's 

wrnpression ratio sdmrr~age typicaEl_v increases to a factor of 2 EU 30." 

Like t_fw s y s t e r ~ ~  eim-r:iH;et3 I;; dRi~safren and Larigdon i98i 1. JBiG derermiws a 

cod  tXst bawd orr some Rrr~ction t be pixels in the neighborhood of t h e  pixel being 

i-ctt lrtf ,  a d  this contest aElcsrr;s a batter prediction for the  current syrnbni probability 

to E3c rstaeft.. Bt~r a n f i k ~  tire ESM in (Kissanen and Larngdon f 981 1, JBIG also has 



adaptii-e templates SO tZiaf the actual structttre of thr. FSlI r-llatr~t-s. 

JBIG ran be successfull>- used on n o ~ ~ - b i ~ x i q  irnag~s It? ;typlyi~tg t f t t b  algttrif h r ~  w t t .  

bit pIane at a time- Hoxsewr. as with binary run-length codills nrtrl 1)irlary vwsio~~ :,f 

VMC. tttc pixel values should be &a>- coded first. Again. (Iiarttpcl l9Wf i-tXltol t t l i t i t  

with this method. -...compression ratios of at least comparal~lt~ to tliosc. o f  Iosslcss 

JPEG roctirtg are obtained- If tfie intensity resolutiorl is coarse, say, I t w  tllan $ /)its, 

JBfG can be significantly better." 

Despite the superiority of tfie afgorithrn. again, and as with arit l trtwtit-  i-odiit,q. t h +  

fact that IBM; XTkT. a d  eseral  other large cornparlies ~ W I I  pait-ltf s t ~ i  ctt~iipur~iwfs 

of the algorithm. it; cannot be used tegaf!y wittiout paying roplt i rs .  This tias liit~tltw~(l 

the acceptance of JEfG 

3.1.6 Multirnodd Data Compression (MMDC) 



;t.ttc.rtb ah* half-life mraris that the effect of the performance of model i at time t - h. 

I ~ t g p , f . ~ - ~ - ~ , f .  oil tlir totai jzerforinarire measure at time t :  is one half the effect of 

the. pt~rf(~r~rtanc-c~ of model i at ti~rle t .  

Af all ti1nt.s tlterr is art uct iw model anci a bfst m o d ~ l .  The active model is defined 

to I , ( %  f l i t .  tdinar-y rrtcrdel whose perforrr~a~~ce measure is the Lest. The best mock1 is 

sldirtrtt to f ~ t *  tlie 1twc1ef irJrifjrm+y or local) whose performance measure is lowest. At 

t-acft s t t y  tht. psedit-tiort of the best ~notfel us used to code the next symbol. 

Each arriving s y ~ ~ ~ b o f  is used EO update only the active ~nodef and the local model. 

Evwy ot1~r.r 1notlt4 generates a prediction for the symbol and updates its local ~lerfor- 

rriaurc. Irwasure f~ut  i t  does 11ot alter its parameters. 

\Vfmiever the lot-a1 model performs significantly better than the active model (and 

h * r t c - r -  tjetttxr tila11 all the orc1inar~- rnodelsj a new model is created. If there are already 

MaxModels 111odc4s. the Ieast reccntly used model is destroyed so as to free a slot for 

t h  I I W  model. The n e ~  ntc~tIe1 starts ;is a copy of the locat model but its parameters 

art* set so that it is as~~nptoticalf_i- adaptive. 

\Vttt-wi-er a new muriel is created, it is put on trial for a fixed period called the 

trial I J ~  r-iod. Only one nlodei can be on trial at a time. New 1node1s carmot be created 

while. a niorleI is on trial. If a trial rnocfef does worse than any ordinary model, it is 

ric~strt>~etf. If. at tile ewcE of the trial period. the local model is performing significantly 

hetier tflarl the trial modef. the trial model is taken to be the local moctel and a new 

trial periocl tregirls- Otherivi~e. t l~e  trial model is  take^ off trial and becomes an 

ortlii~ary rmriel. 

MAiDf ' w a s  dtc;gnecf with the particrtlar goal recognizing distimt modes in het- 

tSsr>gc~nt=tms iriput streanis. Each model reaflj- corresponds to a mode. In the sections 

t h t  folIr>w. tht. itlea of rurming 111odels in competition will be show.n to  be closely re- 

h t c 4  to t f t e  AIDL principle and xd !x used as a cornrenient method of impfemeuting 

st rut-t. t t r d  actaptation. 



Figure 3.1: DPCM encodes 

Figure 3.2: DPChl clecocler 

3.1.7 Differential Pulse Code Modulation (DPCM) 

DPCM is a xell known technique depirted i r i  Figures 3.1.7 a11tl 3.1.7. 1 1 1  l i l Y i M ,  <I 

predictor generates prediction.; based on the past i n  put tIi:~t art. sill1triic.1 ( . ( I  fro111 I I i ( .  

input. The residual sequence is optionally quantized arid tra~isl~iittc=(l. 

DPCM is extremely useful in the context of signal data rotnpn,ssio~~ I)(Y.;LIIs~.  01'1 (111 

signal data like images can Ise quite well reprcsen ted 113. linvar st oc.11;ist ic j,roc-c.ssc3s 

(Maragos, Schafer. and SIerserean 19%). We can use DP1'lI t i~ rc3rrlovt. 11i11c.1i uf 1,11(- 

lower order process energy ill the signaf. and use tlic Inow flcxi hit- l l ;~ rk(~v  ;ilgctri f 11111s 

on the higher order residual. 111 this wax. the task of c-on~prr.ssioll is sclr~ic~wllitl silt)- 

plified. in that the residual repremits only that wl~ic-11 wc. (.il1111(it (':ipliti~i i t l ~ ~ l ~ t  ii, 

signal. 
. . 

For the class of sources that can be arri~ratriy rlr.si.riijcd Iry art orrlt*r .V I i t~ (* i i . l .  

system driven b~ white noise- using a traixierl order JIarkoir r t ~ r ) t l r . l  is c*rjuivaIcwt 

to the order iV linear rncldef. but is inefficient with rcspert trr I ~ W I I I O I - ~  r ~ t l i h 1 1 1 1 1 j ) t  ioll. 

However, for those sources that cannot LC, a r r ~ r a t e l ~  rlesr-ritwrl ity sur-11 a l i r t c w  11wtlr4, 



i F  llarkov n t c h l  may w ~ r k  b ~ t t e r .  

I t  is knorsri f hat, simple unifcirm qtlantization followed hj- an entropy coder can 

yir-iff a system whlcft. for a given distortion, yields a rate within 0.255 bits of the 

oj)t,i~nal achieuaL1~ performance for memoryless sources (Gersho and Gray 1992, page 

301). Farvardin and llodestino (1984) have shown this he true even a t  low rates. 

It is easy to r fe ter~r~i~te  the rharacteristics of the residual sequence if the input is an 

;~utorc~gressivt.: source and rse 1node1 it using a linear predictor. If the linear predictor 

is tlw sanic2 orclcr as tlrr noise source arid its parameters are chosen to  be identical 

to tlw genc-rating parami-ter. the D P t ' l I  residual will be white noise, the order 0 

statistic-s of whir41 t l e p ~ n d  011 the noise driving the generator. More realistically. when 

opwatiug correctly, a11 we know about the DPCXl residual sequence is that i t  is a lower 

puwvr seqtrmce thau the input. and its order 0 statistics in practice are approximately 

I,aplarian ." 

For lossless co~rtprt~ssiou of signals that are already quantized to  7. bits, the pre- 

dictor is ~nodificd to  generate r=-hit predictions, and the cpantizer is chose11 to  be an 

r-hit ~ m i f o r ~ n  q~ml t i ze r  - in effect, it does nothing. For reconstruction. the DPCM 

loop is rlin agdio. 

do lossy coding wit11 DPCM 011 previously quantized signal data, the predictor 

car1 protlure infinite resot ution predictions. lbut the quantizer is chosen to have q bits. 

The clistortion introduced results solely from the quarltization aoise. 

3.1.8 Run Length Coding 

Eitr sequences in which single synrbols are frequently repeated in long runs, run- 

teirgtii cocling is a simple and effective compression method. One simply replaces 

r1111s of i~ieittiriil s j -~~tbols  wit11 the repeated s p b o l  and the number of times it is 

repratrcl. Of course, if symbols do not occur in long runs, its efficiency decreases and 

can at-ttlally expand, rather than compress, an input. Run-length coding is included 

here because i11 the r e a h  of image coding. it compares favorably (see Section 3.2) 

w-it11 other far more cor~qdicated techniques. 

'in Section 7.1 we explore tlw characteristics of the residual for an order 3 linear predictor in the 
contest of joint DYC'Mt-I/Marliov coding. 



6-97 1 5.30 4.84 6.54 
mandril l  I i.25 1 6.47 1 6 2 9  6-57 I lena f 

/ pentagon . 6.60 4 / 5.25 j 5.66 / photog 6-42 i 5.25 1 4.80 ! 6.04 
i t ex tu re  / 6-73 / 6.10 / 5-85 1 6.44 

3.2 Performance of the Methods 

Some performance numbers for each of the methods t1escril)rrl :~l)ovc,. 

According to the manual page for the gzip utility, gzip usvs I,ZX as its tl :~t , i t  c w r i l -  

pression engine. The data in Table 3.4 result from running gzip -9 011 1.11i. it~li~gos i l l  

the test set. 

3.2.2 Fixed Order Markov Modelling 

An order 1 model based 011 (Langdon and ltissaner~ 198 1 ) was ( -oc lc . t l  '1'11(. I W I I  11,s I; )I.  

the images in the test set tlsing the 10 pixel template are slic~wtj i l l  'J'a1)Ii. :t.4 I I I I ~ ~ ( . I .  

the heading "LR81". 

UMC Rissanen 

In (Rissanen 1986aj. an early version of stochastic c-oniplexity was 11sr4 a l o ~ ~ g  wit11 

the algorithm context to  compress text. No explicit ~~urn~r ic -a l  I - W I ~ ~  t,s w ( w  gi vc-li, O I J  ly 

that --...strings defined by Englisll test  can be coinpressed wry wc.11 with  ii rc~ascmat)l(~ 
.. 

workspace size. 

Based on the algorithm in f Rissanen 1986a) rt version of I;M(: was w c i c 4 .  J<;trh 

image in the test set \\-as Gray coded and separated into tit planes art4 c w - 1 1  Lit. p l ; t ~ .  

was presented to the model. The results are shown in Table 3.4. 



CilAPTER 3. SURVEY OF CURRENT METHODS 

~ r a d r *  n u ~ t  rurian 

f;urfa~l ( 1  991)  report.^ that his version of UMC: gives the followir~g results when applied 

to cornpression of grey level images: 

When applied to the comn~on grey scale test image "Lenai' sampled into 

256x256 pixels, o11e gets a reduction of the 0-order entropy 7.60 bitslpixel 

to 5.1 bits/ pixel. This compares favorably with the result in Ho and 

Cersho (Ho and Gersho 1989) who obtained 5 bitslpixel by applying a 

DCT vn t h e  same image but sampled at the resolution 5i2 x 512 which 

permits a greater co~~lpress io~~ than the more coarsely sampled image. 

Based on the algoritllm in (Furlan 1991) a version of Furlan's UMC was coded 

and the test set was presented to it. The results are shown in Table 3.4. The RECMIN 

a d  RECMAX parameters were set to -7..5 and 7.5, respectively, and the non-linear prnf 

rstimator was used. These parameters may or may not be optimal for the test set. 

The author was unable to reproduce the cited 5.1 bits/pixel on the lena image. 

Possible reasons are 1) the lena image used by Furlan is different than the author's 2) 

the algori tlml was improperly coded by the author, 3) the algorithm was improperly 

specified in (Furlan 1991) or 4) the result in (Furlan 1991) is i11 error. Option 2 is 

most likely, although great care was put into developing the code. 

Note that the U U C  Furlan algorithm could also be applied to the Gray coded bit 

planes. 

3.2.4 JBIG 

Fur the  data shown in Table 3-24.  each image in the test set first Gray coded, then 

split into bit planes. Each of these was then coded using .JBIG and the parameters in 

Table :3.5. Note that the  parameter choice was only one of =any possible choices, and 

may have heen suboptimal for the images in the test set. Another factor affecting 

performance is that on some of the iomr  significance bit planes, JBIC expanded 

instead of compressed the input. It ~ o u l d  be quite easy for the algorithm to test for 

this and transmit the  original instead if there is no bound on the amount of delay the 

r d e r  can introduce. Hoxx-ever, to  make a fair comparison with the other methods, 



parameter descriptiori 
deterministic predictio~? 
lowest resolution laj-er t_t-pica1 prediction 
differential Iayer typical prediction 
number of differential layers 
lines per strip at laxer zero 
max horizo~ltal offset for adaptive template pixels 
data orderiug 
lowest resolution layer two line template 

f eagtl: 

the bit planes that JBIG expanded were inclucled in tht. cotictength t-alt-tllittiul~ ;tloilg 

with the planes it compressed. 

3.2.5 MMDC 

Since MMDC is a model manager: its performance depentls heavily cm tfic n r r  )d(.ls i t ,  

manages. Further, in its original incarnation, MMDC was rirsigrted to c l c d  with tli~ta 

streams that are heterogeneous on a large scale; for example t l i r ~  cowatc~~tat  i o ~ i  t l f  21 

PostScript file, a 1-NIX a-out file, and a GIF image. Sillre ivc. art= iritt~restecl i l i  i , l l c .  

performance of the models on single images;: MMD(: is nitt apprt~pri;~tt= a11t1 wr will 

therefore not present any performance data for M M D( :. 

3.2.6 DPCM 

The DPCM performance summarized in Table 3-4 is baseil ori c~ri1c.r 3 prr=dic.f,or c.oc*f- 

ficients determined by a pre-scan of the data. The DYCXM loop rwittairzi-: a prts[lic.tc~r 

that makes integer predictions. the quantizer is disabled, awl ti~c.  r-rlrtt-lcwgt l i  o f  1 . 1 1 ~  

residual as determined by an asymptotically adaptive order 0 r n o c i c = l  is givcw as f , l l r .  

rate. These figures may be different if instearl we used a d  ariaptivr* prtdir-tor i t ,  i , lw  

DPCM tifuup and/or zo adaptive order 1 entropy coder for t f i ~  ri-si;fiiaf- 
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'Far this figure- the data ?t-s s%tongi_v @t*aed for yrf~~iitatirrrt. 111 tiif.  b:i.stf*lll (i(+-ri h i  1 1 1  
Sectfan 4.4. the atering incfudes mist@ iaf~rma~injn frwn t h ~  f f t r i ~ a t i i . ~  of 131e pw->~ff i fJ (J i  ~ ~ ~ c f 4 ~ ~ r ~ g t ~ 1  
signal. but makes the data ~ninorslili,ajbie when pr-nte:i graphically. 
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Fig~rre 4.1: Per-s_vmbol codelength of a bimodal source 





- % 

Ketttrning ttr ow previnrts :r;utateo:; try ~4:i::g yEsa1 = If a n d  aQa) = I : ,  &JE approxima- 

t iou of t ltt* drrivat i\-e uE t2w ~ z - s ~ E E T o ~  COQ!~EP:E~PII is t htis gi~-en b~ 



4.4 Experiments 





barb 
f ena 
mandrill 
pentagon 
photog 
texture  

are shown in Tahk -1.1. Except for ihr texture i~t~agt., t l i t ,  v;iriitl~lt~ ilr-r.ay I I I ~ <  It31 

consistently outperforriled the fixed <kc-a\.- modt4 nit11 i, = ().!I!). altcl c ~ r ~ t ~ ~ t ~ r f ~ r t ~ l c ~ t l  

[although sometimes not by a great margin) the fixccl (1(~.ay rntr(lc.1 i ~ i f 1 1  h = 1.00 ott 

ati sources except the texture image. which was the 11tclst ~~ltifrmit tsit 11 r c ~ j ~ c - c . l  lo i f  s 

order 0 statistics. 

The results for t h e  real images are 11ot as dramatic- as fOr t l r c *  syrti 11c.l ic. so~lrcx~. 

The modes are s~natfer cfue to the fact that. the algoritli~n gvts clata i l l  a t x s t c~  sc.ikt~ 

order while the ntucte boundaries are two ctinier~sionitl ir~stcwl o f  011i. ~ l i~ t~ (~ l t s io~ t i~ l .  

lmagiue that the sy the t ic  source i f r  S e ~ i i o ~ ~  -1.2 was arrar~gcvl first so tltitt, i t  wits a 

"256~2.76 image with the first mode occup_s-ing the first 128 1irir.s anrl ttw sc~t-o~~(l t ~ ~ o ( l ( ,  

tbe last I28 lines. Since we have not f~lnrianlentaIIy cltaugt~l ar~ytl~ittg, t11(% rc.sl~li,s 

would have bee11 the same. If. however. this sanw i rmge wtw. rot ;tt tad !10 clc.grc~, 

the results would have been less ctr-amatic. sirire tlttw \ v c ~ t l t l  IJ( .  a 111otlc. (.flil~tg(' O I I  

every h e  of t be image. Eve13 ttlortgh tim-r art. really cml! t w ,  (list in ( - t  ~rtorlrx wit I t  ;I 

single boundary. the  boundary is two dimensior~;~l a~icl a r;t..;tt*r s t ~ i t t  st*(-\ if its scw~ritl 

bou~zdaries. 

Cf rourse. it is unlikelh- ttfm anyone wttrtlr! choose to rlst* art tmfw f~ 11torlt~l t m  ir~t;igc. 

data anyway. This esperimerlt was rhusert simply to dcwwrlstratc. a11otl1r.r ~ ~ l i a t  11otl of 

dealing with non-statiuatarity in  tilt- data. Kcdistiially. this orr1c.1- f )  ntc~rir4 t v t ~ ~ l l t l  I ) ( *  

used in a higher order system. in which riw-statioiiarib twr-rilrw.; l w - ( l c ~ ~  tit visui~lizc. 

than in a simple order O system. 
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4.5 Comparison to UMC and MMDC 

Thr-rt. is a relatiordljp 11~twee11 I X ( '  Furlari, MMDC'. and the variable decay rate 

r r w l d  of Swtiot~ 4.3. Earl1 wes ~ l ~ a t  is essentially a low pass filtered version of a 

c-c~rldc~r~gtli rliffcre~~re furirticln to determine the system performance. 

Irr I:M(,' Furlan. tfre vdur of the relative efficiency cou~lter for models ikl and rZi 

at, t . i r n c .  t .  K,jg,v.t- is givm hy 

whcw the max arlci rniu serve to constrain Rt withi11 [Rmas. Rmin]- If one re~noves 

this constraint arrqI repiaces the ftlnctio~~ with 

for scme a < I :  making it a low pass fikered version of the differential codelength 

stqt~erice, approsirnately the same behavior results. 

III  11 MDC, the performanre metrir P for model A9 is 

effec-tiwly a low-pass version of tbe per s~mLol  codelength function for model A!. The 

dcc-ision that model -\I is !letter than model ,V is based on the relative magnitude 

of their metrics. That is. if PIIFt < or equidently if P j r . t  - Ph.',t < 0, then we 

cftroosc. inodel M .  However. f.ll,l and are both applied tc  the same linear system 

and  t l t ~ r r  rlifferenced. which is equixalent to applying the difference lltr,t - E N , t  to that 

St'stcIlt. 

FiriaIt>-, in the variatde decal- smodeI, the comparison is applied to the model itself, 

filtczririg ft - and reytliri~lg that the  model should forget more when i t  itself is 

tfoirr,q twrsc artcl n-orse. 

Iitmt-t. we see tire recurriug use of a fiitereci version of the difference of two per- 

s y h l  t-atfelm~t !is as a met bod fur rletermining coding system performam-e. 



CHAPTER 4 .  ORDER ZERO ,4D.4PT.-ITIO:V 

4.6 Summary 

We have seen that we can use the derivative of tile pt~-sy~nI)ol r d t ~ l ( ~ r l g t  11 f ~ ~ ~ l c t  ion 

to make an intelligent choice for the decay rate of an order O histt)gra~ii 1wclt4. ' 1 ' 1 1 ~  

method performed welt both Qn synthetic and natural sourct~s an(I I w t t t ~  tllan f istvl  

decay methods. ?4*e haw also seer] that using the derivative o f  the  ~-oclchgt  l i  ;tppclars 

to be a common theme i11 several successful data compression stralt~gic~s whic-11, 0 1 1  first 

inspection, appear to be quite different. 

It is expected that the XfXIDC algorithm running several orcttr 0 ~ ~ ~ o t l c l s  i r r  c.wnpX- 

tition would perform similarly, and may perform better if an t>rrler O tnotlc. : ' ~ i r - t t t t t l t . t w d  

and learned early in the source reappeared later. This is t lw partic.\il;\r st rt'ufii I )  of 

MMDC. However. as ~nentioned previously, we may wish to us(. a c -o~ l t~s  t arlal)t,i vc. 

algorithm in a larger higher order system in which there would ht. stxvcwd t,ltrt~~sa~rtl 

order 0 models running. The variable decay modcl uses stric-tly less t , l i ; t ~ ~  l l a l f  Ir11(' 

memory of the MMDC algoritttrn (and even less i f  there are several clisti~ic.t ~ttoclt.~), 

while offering reasonable aclaptation to non-stationarity. 



Chapter 5 

Variable Order/Variable 

Resolution Modelling 

Introduction 

As tlescrihed in Section 2-12. signal data presents unique problems for Markov mod- 

els. The existing variable order techniques that were designed for text cornpressiorl 

c-uimteract to some extent the  learning problem for Markov models. but still do not 

give us sufficie~it control over the number of states in the model. We will see in this 

chapter that we need 11ot only to vary the order of the conditioning information as we 

co~npress signal data. but also its resolution. This chapter begins by determining the 

opti~rial resolution/order for some synthetic and natural sources by exhaustive search, 

and tlien presents some nowl methods for choosing the optimal resolution/order com- 

bination without an exhaustive search or even a pre-scan of the data. 

Before proceeding we need to introduce the term st& wight, which is simply the 

~ltlniber of order 0 histogams {or the number of contexts) in a Xlarkov model. Define 

a permutatiort as an ordered set of ra integers as in (Langdon and Rissanen 1981) 



For the context to be causal. each elenlerlt of p  nus st be greater [ha11 z c ~ u .  

Xow let us define a rcsolufiort modification, nl, as an or<ttwtf set oF I !  i1itt.gr.r~ i t 1  

[O; rf where r is the source resolutivn in bits 

This modification is applied to the pre~iously defined contr>sf rc=si~lt irtg i l l  t l l t .  rc.sul~l- 

tion reduced context 

Xote that in performing the  resolution reduction, we truncate the= frat-t io!t;tl l ) i 1 1 . t ,  of 

the individual prociucts. To avoid ambiguity between elrme~its id wntrr..uts i n  wltic.11 

not a11 the resolution modification values r ~ 2 ;  are the same, we wili IISP t h c *  11oi ;l!.iOli 

z/y for the xth element in a y-bit range for 0 5 I < 29. For ~~it1111>1( ' ,  tlw m~~t rx t ,  

specification f lO/f.4/5] defines an order 2 context, the first efernr.nt of wliic.11 is syt~tlml 

10 from a 7-hit alphabet. and the secotld element of wlt_irfi is s y i u l ~ l  4 fnmt it 5 - l ~ i ~  

range. The element 10/7 in the context specification could, for rbsmt plr., rry)rcw~l i, 

symbols 20 or 21 from an &bit alphabet- Similarly, the efenirr~t -1/5 ci,tlitl r tq~rtw111,  

symbols 32 through :39 from an &bit alphabet. 
p. ll 

Choosing a specific d u e  of n and a specific sequerire r r t  rcwtlts in !Y = 2 L ~ = r ~ ' - " " ~  

yossibIe contests. If we cboose tu run a mvclel with these co~ltt*.*:ts. wt* NiLJ' I hi, 1 , 1 1 t a  

model has a sfaft- m i g h t  of -Y. f i n  order :t rilotIel will ~rsrtallp I jt* tlwottd lg+ 

that is. by the resolution in bits of die coztslitioning infonriatiorr. 

The fo2fus~ing four terms wifi he rrseci to descril~e tile mwiefs i r t  this st-r-~ivn. Y'lit,  

Ir-APTI. set of fixed or&r/$~ed R S O ~ U ~ ~ O I Z  f rvr n) techiiy~res it.tcii~dc*s th<tst- ir; tvhic-it a rtmirc. 

of model order rt and resohticm rnodificatiori 7 1 ~  are ~ x l a d ~  I~eft~r(= r ~ d j ~ f q  fwgii~s i d  

remain fixed far the duration of the sample. In fizrd or& ri/r.ariabff rr .w~lrllirtn i l;O V 14 j 

techniques, the order is Rxed but the resolution rnoclificatjori 7rr ma.; vary. I l i  a s w s v 9  



Fixed Order/Fixed Resolution Modelling 

A s  the clisri~ssim in S~ctIoa3 2.l.2 puhtrd out. we are faced sriti-s a iearning problem 

wit1 all atiaptive m&!Ikg OF data. That is, the rttrjdef newr 3zas t he  opportunity to 

artdyze ali the data until after it. h= sent all its predictions to the coder and the data 

is otr the channel, a t  which psiot it is too Hate. Hence. decisions haye to be made on 

partiaf iriforrnation that may be either Ireiphf or misleading. 

Based on the success of the other simplifying methods like splitting the input into 

flit piaues, running a-irriabk arc!er models. or treating the input as aB autoregressiv~ 

sorrrre; we expect that 1;arying the ~eolutior: of the corrdi~isnhig iriformation in a 

hIarkov maclel will in~prave the perfo~rnance. 

To test this conjecture, 2'' samples were generated using an XR(2) model tfrivm 

by white Gaussian noise. The samples 5xre quantized to = 8 bits of resolution 

and translated to fall in t h e  range [8.255;. The parameters for the ARC2) model, 

o = (0.01.0.89), were chosen ta  demonstrate some properties of the models described 

later. The carretation secpmrre for this source is shown in Figure 5.1. -%n eshaustive 

set of order 2 rlrodeEs spamius all reofutions for the order 1 and order 2 conditioning 

information were m a  on the AR(2) source. That is, we ran the models that estimate 

the ;wobaljili!p distributians 

for all0 5 r-I.  r2 5 I., where F- is the source resolution.' The zero resolution case Qr: = 0 
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5.3 Fixed Order/Variable Resolution Modelling I 

Based on these rt-sdts in Set-iion 5.2. >Fstc-.rt; wulci clt.tt.rir~irit- r h -  i,j>t i f f i i t i  i . i~stt l  i t  t ' io i t  

via a pre-scan through iisr ifsth. and tra;~s.lraiit as sitfc i t ~ L m i a t i t i i l  t i l c s  ~ i t i ~ l ( . l  tm11.r  

and the I-esoiut ion nmdifiration serpense at a very s ~ r d  c ~ i . w - l t i w  i. I j i t l  is r his f i s t s c i  

resolution ~20dej t h e  best w.t;g ran r&? Siriiiitionally. is it ptlssihlt. t~ avoid  tl:ta t ~ ~ ( * - ~ f - i l i l : )  

Figure .5.4 shu\.;s the perZ~rrnant-e of sumt of t l i t .  1norfr4s r ~ r  tltc' A l{( i l)  s011r(~~ 

presented earlier. \&ere the d i n a t e  i~ ld i rates rhc avt*r;gv a . r ~ i I t h g t  11  t h r s  i r t r 1 r f i ~ 1  ;is- 

signed t o  tbe Iast 5 i2  samph .  1i-e see that 1~3.wr r~~<sI~lfi<Jl) ~' i i r ,r fc ' f s  { i t ,  lwtfer- i t r  i . I l ( .  

very early portiozt. of tire sarir~pk. -4s E'IBOIP- i f a t i t  is spr*il. t h  h j l r i t w  r ~ d r l t  i i z r l  1 1 i o 1 1 t k  

begin to cmtpertonz the h w r  ri-sdutior.; ~ ~ o r f & .  T f i i l ;  fhi-f. ~ . o i i p j ( ~ r i  i ~ : ' i t ! i  f f i t *  stic.- 

cc-ss of variabie urderjfixed t e x h _ ~ i E ~ ~ ~  t r + h I t j ~ ~ ~ s .  I t w f ~  $15 4 0  ? !:P r - i fs j j i - f - f  i:ri' 1 h;tt f fw 
. 

state xelght irf the optErrraJ mu&! rfroece 3wrt.asfAs rg.tfJxii~tolair-a&  it i t  t Iw s s u ~ r t l w r  

of satrlpies processed ~i;hea ariapt,E~f-fy morieliia~n, a st at iittm-y siqmi w i l w r - .  f"iirt f tc-r. 

it t&js as [frat we ran i r l  f2-c-r do Letter rtras: makirrg a fi:s:~'rI i . ! $ ( t i ~ i *  t ~ f  t i i c a  tt=Ptllt~tjf~~i 

rno&ficat ion. 
* - .  frfeoc-e, w;e svi>eild 1& ttj; rsgtg;r&: a:-.? fox state s';rigl~t 1::cdc4s ~ d i i * ~ .  i t r d  t l s r - ~ i  i lmyfa  



Figure 5-4: Earl,- jierfornrance of FOFR models on .4R(2 f source 

to higher s t a t e  weigfrt az~deis. as mare data is seen. choosing the resoIt~tion in srlch a 

wty as to uptimaI1~- explait the correiation it1 the sample. Onle way of cloing this is t o  

rrlrk scvesal 1t1otleEs in cornpetiriolt arid to choose between them based on their recent 

c-wlelmgth as  i r r  the Sf JiDC aIgoritim3 of Section 3.1 -6.  

h r  the FOVR-I afgorithm we choose an arbitrarx maximum order r r .  At the 

k i t  ializai ion. at1 f 8- + E j F e  niodels are created, one rnodel for each possi bte combination 

of r -  +- 1 ~)ossSif>Ee resointiurts taken rz ar a time. As in the _iiMi)C_' aigorithm. each 

nruriei rttaintairts a rerem yerfosmarmce measure (see ( 3 . i ) f  azld. at each step. the model 

ivft ti thc. ftiwes! rece;,-i cfsdekng~h is chctsen as the ccrdirrg morfel. Hot%-mer. unlike 

tilt= hf 11 ZIC' zttgtrrithrn, r w  mw rrnxxk4s are created. all ;r.,ociefs are asympptotically 

aciapt i\-i=. a d  aIf ~ ~ ~ r r d t ' l ~  at-r rrpdaeeci on eyer?- sample. As a final modification, in the 

t-astB tvitrw s t w m i  r-rarrrlck a-e ~ ~ d # a ~ ~ ~ i ' s i ~ $ g  equal!>- ~-t-ell, the ofie with tile fowest state 

wigitt i s  c-iuosrn as the carifr~g model. For cire dam in Figme 5-5. the Afii[2? source 

p~t~stwt ed t t) the EOi-R-E algurit Inm, Tile PerfomanceDecay parameter p was 

sct wrrespo~rcfirng tr, a Edf-'-I& of E2j: saznples and the Maxtirder \.;as set ro 2. The 

n r rml t tw  i n  p x e ~ ~ t h e ~ i s  indicate the ressIaations cbosen. For exarrspfe, %he notation 

( I-!) irrdic-ates a hat t h e  order J coradiieis~ing information resolutjsn droice s.;a 1 bit 





aiid tfii: order 2 i:~iii!itiiji~iiig i i i f i i i~~at io i~  resoliitioi~ choice was 9 bits. The dots in the 

figtire iuclicate strings of identical resolution pair choices, each dot corresponding to 

c m c -  sample arid the ~iumlier of samples seen increases left to right and top to hottom. 

Olx-m-vi~~g tht: resoltition choice, we see that after a few tens of samples, during which 

t, he resolution choices were diaotic, the model began chose the lower resolution models 

ctarlictr and moved to the higher resolution ~nodels later. Note also that it very rapidly 

c-oriwrged (within around 3000 samples) on the order/resolution choice determined 

for tf~is  sa~nple in the previoris section, resulting in an overall codelength of 5.18 

Li tsJpl~e1. The differertce i n  codelength compared to the best choice (5.19 bits/pixel) 

is riot significant. Since the algorithm converged so quickly on the choice determined 

by a pre-scan, less t h a n  5% of the samples were coded under a model other than 

tlmt clioicc?. Hence, when it is desiralde to avoid a pre-scan of the data or send side 

infor~nation; this system would meet, the recluirernent. 

01ie problem with this approach is that some subset of these models may never 

be clioscw at  all, a d  yet ( a  lot of) resources will be consu~necl updating them. For 

the AK.(2) above source, only 24 out of the 81 models were ever used, and only 12 

twn: r.rsed after arctt~nd 1000 samples. While this has no adverse effect on the coding 

pc.rformance, it does limit it applicability. This problem is addressecl in the next 

section. 

Fixed Resolution Modelling 

S u p p ~ s v  wc again clioose an arbitrary maximunl order n but this time we begin 

r~ioclr~lliitg our signal source u s i ~ ~ g  just the order 0 model defined by 

Sirire i t  is mlr cor~jecturc that the state weight of the optimal model choice increases 

~no~ioto~iically with the number of samples seen, a good guess for the next optimal 

niotIrl is the one that has an incrementally higher state weight than the current 

model. Hotveser. having chosen the arbitrary ~naximum order n,  there are in fact 

12 such models, 11ame1~ (1.0. - - . .0). (0.1. - - - , O), - - . , (0,0, .  - . ? 1); each of which has a 



state weight of 2. To be thorough. the algorithni should creatc tllcst. r ,  Iligllt'r staft '  

weight models and run the order 0 model i n  conlpetitio~i with t l t t ~u  to r lc ' t (*r~l l i l l t -  

when to change to a model wit11 a higher state weight. Ass11nii11~ tha t  t l ~ ( w  (-xist:: 

some redundancy in the signal to be exploited, one of tlw 11 nludtds, wi l l  lw c~llost.~l, 

most likely the one that uses the conditioning inforniation at tht. offsrt wit11 t l l c .  

highest correlation with the current symbol being coded. Once tlie algorit,li~ii sc.lc~-ts 

this model, it should again create and run in competition thost. r~~odcls  t11i11, II ;L\X,  ~ I I I  

incrementally higher state weight compared to the selected modc.1. 

From that starting poi~lt let us define the FOVR-I1 algoritl~un as Sollotvs. Ah 

with the FOVR-I algorithm, each rnodel in the system nerds t.o nliiint,aitl ;t local 

yerfor~nance metric. During tlie initialization, tlie order zero motit-! is c.rcx;lt,c.tl ~ L I I ~ I  is 

designated the best model. Thereafter, the following steps arc repeatctl 

1. read next sample and code it with the best nioclel 

2. update the performar~ce metric for all existing 111oclt.1~ 

3. generate list of rnodels performing the best by comparing ~ , I I ( :  

performance metrics of all existing models 

4. choose the one model from list with lowest state weight m~tl c'lcs- 

- ignate it the best 111ode1 

5. for all models on the list, grow "chilcl" moclels wit11 ~ I I C . ~ ( W ~ V I I  t,i~.lly 

higher. state weight 

6. if there are more samples go to step 1 else quit 

Table 5.2 sunlnlarizes the parameters for the FOVR-I1 algorithm. 

A model is allowed to  grow if it is found to be thc mot!el !,hat pt-shmtis t1lw lwst, 

at  the current instant t .  If there are several that are performing iclcwt,ic.ally, i ~ l l  iLrc1 

allowed to grow. 

Model growth is defined as creation of the n models with ir~c-rc~rrlf~t,aIly trigl~r-I 

state weight than the parent model. Thus the n children of rnotlelvr (3,2, .5)  w o l ~ l d  
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Tahle 5.2: Parameters for the FOVR-I1 algo~ ithrn 

MaxModels I maximum number of niodels in the system before groat11 stops 
P ~ ~ . r f r ~ i ~ e D e c a y  / the half-life h for the performance calculation 

I'aramtter 
MaxOrcler 

I Mmlory llsagr I total algorithm memory usage limit 

Description 
the order n of the models in the system 

lie ( I ,  'L,5), (3,  :3,5),  and (3,2,6). Of course, the maximum resolution of the models is 

limited to the source resolution. Accordi~g to this definition, a node could have been 

created froni several different parents. All of these newly created models have the 

same state weight, but could be anything froni order 1 to order n (in the conventional 

~rs~clerstanclirlg of the term) because the components with resolution zero are skipped. 

Since the models are not all created at the same time, the algorithm should main- 

tain a history of all the past samples to train each ~iewly created model. 

A model is destroyed when there are MaxModels models currently being run and a 

growth is ocxurring, or whe~i the algorithm has exceeded the MemoryUsage limit. In 

citl~er case, the least frecpently used model is destroyed to make space for the new 

  nod el. Note: This has implications on the coding of non-stationary data; a discussion 

follows in the next subsection. 

Because any given model may be considered the child of several different parents, 

and  because lnoclels may be destroyed if they do not perform well, we must make sure 

somehow that we do not recreate models that have been destroyed. 

Tlie evolution of the model for the first 4096 samples of the ,4R(2) source de- 

sc.:ril~ed above is shown in Figure 5.6 in the sa.me manner as in Figure 5.4. For this 

i~xper i~~ient ,  the PerformanceDecay parameter p was again set corresponding to a 

Iialf-life of 128 samples. The ~naximum number of models, MaxModels was set to 128, 

t h e  MemoryUsage to 16 megabytes, and the order of the models, MaxOrder, was set 

to 2. We see that,  like the FOVR-I algorithm, the model converges rapidly on the 

optimal resolution choice. However, when potentially good models need to be cre- 

a t ~ d  anti models that are doing poorly are in the way, the poorly performing models 

arc. destroyed (for example, the (20) model was destroyed to make room for the (07) 

~nodtd). 

Thc overall codelength using the FOVR-I1 model on the AR(2) source was 5.19 
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Figure 5.6: Early FOVK-I1 model clioice arltl g~.owt,l~ for. A H ( 2 )  sollrw. 
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hit,s/pixei which again is the same as the optimal static (O,5j model. 

?'his algori t hrn bas the advantage that, given that our assumptions about station- 

ary soiirrxs are true; only the models that need to be created are created and updated. 

Fixing a11 upper lirnit on the number of models gives us some control on the resource 

irsage of the algorithm, but potentially at the cost of coding performance. 

5.4.1 FOVR Modelling and Non-stationarity 

Tilt-: FOVR-Ii model is expected to perfor111 poorly on non-stationary sources due to 

the fact that the model growth is always in the direction of increasing state weight, 

arid that, depending on the values of MaxModels and MemoryUsage, the lower state 

weight models may have been destroyed. 

Let us return briefly to the initial experiments of Section 5.2. Instead of the 

stationary A R(2) source, let us instead concatenate two AR(1) sources with different 

statistics. The first is an ARfl )  source with dl = 0.9 and the second is an AR(1) 

source with = -0.9, but after generating the source, a non-zero offset was added. 

Hence the conditional probability distributions for orders greater than zero will be 

identical but the order O statistics will be different as will the odd order conditional 

probability distributions because the sign of the correlation of the two sequences at 

odd orders are inverses. 

In Figure 5.7, the model choice is shown starting with a few hundred samples 

before the interface between the modes. Right before the boundary, the algorithm 

had determined that the resolution choice at  that point was to use 4 or 5 bits, but 

right after passing through a non-stationarity, the algorithm began choosing the lower 

stateweight models, whicll have a tendency to learn (and un-learn) more quickly. 

Tlrercafter, when the higher state-weight models had seen enough samples again to 

be reliable, t.hey began to be chosen. 

A possible modification for to  the FOVR-ii algorithm would be to note the deriva- 

t i w  of the per-synbol codelength in Chapter 4. If the derivative is negative, the 

afgoritlint is doing well. However if the derivative of the codelength goes positive, 

it irldicates that a non-stationarity has been encountered. Using a context-adaptive 

orckr 0 model is not enough in this case because the n currently existing models, even 

i f  they were t o  forget what the? had learned from the previous input, may not be of 



Fi,we 5.7: Early FOVR-I model choice for a bimodal AR(1) sourc:~ 
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barb fena mandrill 

FOVR-I1 - 
optrrnal static 

DPCM -..-.. 

pentagon photog texture 

Figure 5.8: FOVR-I1 performance on the test set 

the correct resolution and order. In fact, lower state-weight models would need to be 

created. This is a topic for further research. 

5.4.2 Experiments 

The performance of the FOVR-I1 model on the test set is shown in Figure 5.8. The 

parameters mere the same as in the previous experiment: Perf ormanceDecay was set 

corresponcling to a half-life of 128 samples, MaxModels was set to 128, Memory'Jsage 

was set to 16 megabytes, and MaxOrder was set to 2. For comparison, the DPCM 

coder performance from Section 3.2 is included. Despite our initial hesitation about 

the performance of the algorithm on non-stationary sources, the FOVR-I1 algorithm 

performed well overall 03 the test set, resuftifig in codelengths below the statically 

cl~ose~i optimal value for all sources except lena, for which the codelength was approx- 

imately 3.2% higher. Interestingly. this is also the only source for which the DPCM 

rmdel outperformed t*he FOVR-I1 model. 

fu summarj-. the fixed order/variable resolution model chooses low state weight 

nludels first. grows to higher state weight models, and reaches some limiting value 



of the state ~i-eight jivl-hich is the same as cietennined by eshaustivv stw-(41) \ v h i i t >  

systematically avoiding conditioning informat-ion that is not useful. 111 t llis ~vay t,ht.  

overall performance is optimized to some estent. 

5.5 Variable Order/Variable Resolution Modelling 

The previously described methodology for variable resolution/varial>l(> orctt~ c-oding 

could be described as "coarse-grained" in that the ent i t i~s  that artk ~ I I I I  i11 (wiilp(~titii)~~ 

are the full models, and so the perfor~nances beirlg comparecl i~lcllltlt. the. I I ~ ~ I . ~ c ) I . I I ~ ~ L I I ( . ( ~  

of the model in all contexts. Based on the success of ITMU, wliicli instcwl c-olnparc3s 

order zero models corresponding to individual contexts, we sppculatc t 11a.t pc'rl~al).s 

even better performance could be gained by moclelling at this finer Icvt.1. l 1 ~ 1 ~ 3 ,  t , l ~ ( ~  

task is to define an algorithm that takes into account that models wit11 I;awcr statr~s 

tend to give reliable estimates faster than models with more states and that opt~atc*s 

on the context level. The VOVR algorithm that is described in  the following swtioll 

is inspired by Furlan's (1990) version of IJMC and can he thought of as I J M (  : wit11 

variable resolution extensions. 

Let us begin defining the VOVR algorithm. Like UMCI, the algori tllm nla tIitR($s t i  

tree structure. Each node in the tree corresponds to a context and can I)e 11t~i(l11(.1y 

identified by a k-tuple of pairs 

that defines a path from the root to the node. Recall that herc. the n o t ; ~ t , i o ~ ~  (.I:/!/) 
r l does not indicate division but rather the xth element from a y-bit rallgc*. 1 h v  root is 

the order 0 model or the null context (g). For example, if 7. = 8 hits a11d tllc: jmil, likw 

symbols seen were 

- - -, 15,45,100,122,112 (5.10) 

then all possible order 2 contexts fass~li~i ir~g the identity permutation) consistc:l~t wii,11 

the history are 

(1  12 - 2T17 "1 ,  122 . 2'2-'/.7'2) , (5.11) 

for any 0 > r17 3 T .  When 7.; or are equal to zero, then all symLols get, rna1~j)c~d 

t o  the same conditioning information, and the context is skipped. 



We call two contexts (il and C2 cornmon if, via a resolution modification m, either 

cmtext C1 car1 he chariged to context C2 or vie< versa. ContinGng with the previ- 

ous t:xanipl(~, one of the possible order 2 contexts consistent with the history is the 

c-ontwt (14/.5,122/8). Via successive resolution modifications to the second element 

i r l  thca context, w e  can generate the contexts (14/5,61/7), f 14 /5, 30/6j, (14/5,15/5), 

(14/5,7/4 j, (1415, :3/3j, (14/5,1/2). (141-5,0/1), and (14/5,0) = (14/5), which is 

t:ffectively an order 1 context. Similarly, applying successive resolution modifica- 

tions to  the first element in the context, we can generate the contexts (7/4,122/8), 

(3 f :<,122/8), (1/2,122/8), (0/ 1,122/8), and (0,122/8), which is effectively an order 1 

context. The other possible resolution reduced contexts are determined similarly. All 

these: contexts are common to (14/5,122/8 j. 

Conversely, any context. C2 that could he subjected to a resolution modification to 

produce Cl is common to Cli including specifically all higher order contexts. In our ex- 

ample, the contexts (28/6,122/8), (29/6,122/8), (56/7,122/8) through (59/7,122/8), 

( 1 12/8,122/8) through (1 19/8,122/8), and all contexts with order higher than 2 

whose first two elements are (14/5,122/8) are all common to the order 2 context 

(14/5,122/8). 

The reason for defining common contexts in this way is t*l~at common contexts all 

liave the possibility of cocii~lg the same source context and thus must be compared. 

Each node has an order 0 histogram (which may or may not be adaptive) that 

trraintains frequency counts for the number of times each symbol in the alphabet A 

was seen in the co~ltext corresponding to the node. Each node also has a performance 

list, wl~ich is a list of relative efficiency counters in the style of Furlan (1990) that 

rompare the perfomlance of the node to  all :lodes that have a common context. 

The relative efficiency counter (RECfj for two nodes is updated so that it represents 

ruirtrilative difference in codelength between the two nodes for all symbols in the thus 

far processed sample tliat both of t,hern could have coded." 

"As a matter of implementation, since each node is a pointer to a structure, the '-directionn of the 
REC', that is. whether $5-e add nodel's codefength and subtract node2k, or vice versa, is determined 
by the magnitude of the node pointers. If pi > p2, then we add nodel's codelength to the REC 
and subtract node2.s: if pl < E- then we add node2S codelength to the REC and subtract nodel's. 
Itenre, if yf < pz and the REC is greater than zero. we know that node1 is doing better. Similarly, 
if PI > p? and the REC is greater than zero. we knox that node2 is doing better. Obviously, if the 
node pointers are equal, we are addresing the same node and we will not compare the node to itself. 
lt't have to be careful that we update the REC only once per sample. This can be handled easily 



Table 5.3: VOI-R rtode selection Iogic 

1 fact I meaning / implic a t,. 1011 

I I I I 

initially 1 no iuformation no intplication i R13 = 5 / 1 is better than 3 3 can't Le the hest 
RZ5 = -1  5 is better than 2 2 can't, be the bcst 
Rol = -4 1 is better than 0 0 can't be the  lwst I R12 = -8 1 2 is better than 1 1 can't be t h r  Iwst, 
R42 = -2 1 4 is better tha1-t 2 I 2 can't I>t. tllr ht>st 

RS4 = 1 I 4 is better than 5 / 5 can't be the bpst 

Every node can have up to El='=, 2' = 2'+' - 1 cliildrcw. For c~sarnpl~~, t h i .  tiotl(~ 

(1415) has two 1-bit childre11 (I-Zf5, xjl j. 0 5 .c < 2, four ='-bit chilrlrcw (l.I/T,, . 4 j .  0 5 
z < 4 through to 2' r-bit children (14/5 .~/2) ,0  5 x < 2'. All stic-lt i . l i i l~ lr t* l i  i ir(- 17,- 

lated by their common parent and so are called siblings, that is, r-u!it,(>~t~ o f  t11~ si1.111c- 

order but not the same resolution. 

To code the input. we form the set of all nodes that ~natc-11 tlicl cttrrcnt co~itc-st, iI1i11, 

is, all nodes that have a contest that is common to the full resollit,iori so~~rc-c~ c-ol~tc~xt,. 

The performance lists: taken together: form a set of "facts"'. Wr want, to f i ~ l ( l  1 , 1 1 c .  
r 7 

member of the set that is the best to code the next input. l l w  initial Iiyl)ol,l~c~sis 

is that none is best {or, equidently, that they are all h s t ) .  Thew t u b  go 1,111-or1gl1 

the set of facts one by one and elinlinate the hypotheses that clon't 111i~tf.11 tlw I ' ~ L ( ' I ) S .  

Hopefully we end up with one true hypotilesis. For r*s;tn~plc, in 'fhhk 5.:5, wcS iLri' 

given nodes 0 through 5 with the associated perforrnauce in fomtatio~t . ' 1 ' 1 ~  "Sac-1,s" 

are the value of the REC. So model 4 is tile best choice. Of c-oilrstz, tIlcw= niay I N S  

the case that two nodes have exactly the same perfonnanct.. In this raw, wc* ust' t,11(' 

A .t, sl,;~l,c. rule that has served us best so far, namely, we choose the orw wit.11 t fie* lc>t,c s 

weight. 

Tree growth can grmy ic trvo ways: in resulutitm arid i r ~  orrler. 7'tvi t  rrtr~rlitiol~s 

2) the count for the cmrent symbol in the node's contest tnost Lc. at least, 1 .  Whrw ;I, 

performance list of fpi . 



L 
t j t j ~  rctf~jc=ci ilrc= nr~r)rlt i r r i  rt-asiri< si hie in;eigiii. GI-mi-ing i i ~  orrler iije;ii>s i:i?tt it creates 

t i l t -  t ~ w  I-hit t-hiirire~t thkt  r-or,sesp:ir! to adding ( 0 j 1 )  and i l i l  j to the node's context 

hpccifirariort. For exaxpie.  if  line node with contest (14j.5. I;'?/&) grow irt  order, the 

t wo c I j i l r l r . c ~ n  (!4/.?. i-L',r/~r. O i l  ; artd i l4 f;). 122/8.1/ I )  are created. X node grows i n  
. * 

.r-c-srdtit iorj 115. a.skir1.g !rs parrlrr Tor f ~ v u  f;ii~!i!rgs which are higher resolutiorl equivalents 

rt f  i t  st./[. f :rrtvcirlg t tw rarnft-:.:t i I4/3- I22;8, I f  l j in resolution means rrealing the two 

I J < J C ~ G ~ S  [ I - l  j.5,12%/8,%/2) aald i i-165. 5 22/8.3/2), Because the parent of a node can also 

grow i f !  rt~s01t;tiot~ argci ut-rkr. only tire last element in the contest grows in resolution, 

r ~ r f l i  kr t lic k'OVK-I I algorit hm. From the moment of a node's creation. the ~liernbers 

on its ~ r c ~ r f w m a ~ c ~  I i s  are tirternjirwJ and its REC witfi each on the performance 

list is s u l m ~ ~ u c ~ ~ t l y  ripdattvf. A?icfrfiticmall?-. 0x3 creation of the node, the fiistc~gram is 
P - 

t t p & t e t f  ilsirtg ail arwmrzt or ;!w h k r ~ r y  I rhicil r-ouid he tlw extire llistor_t') specified 

cm irtitiaiizafioil o f  the ateorifhm. Sotca that   re it tier Rissanen j1986a) nur Furlan 

( I9!10) acirlsc~ss f his ir~ieializar ioil prohit-m. 
r t  I 1w tree is i~litiafizeri with tltr order O motfef, the 1m1t contest. Its initial perfor- 

inanrt. list empty sct it: Is iret,ter than i311 members of its performance list z:id ouce 

any syrnlwl llas oc-crrrrerf tivice. it i;rrrr;ediateIy grows the two I-hit rliildren (0/1) and 

f t i 0  
9 c ~  that tve rrrtc'itrsta~d iiuxv the 1-Ot-R 111ode1 is supposed to irork. let us exam- 

itw its pcrformanr-t-* or) tiw AR8 2; S~_~FITTP descril>eci in Section 5.2. Figure 5.9 shows 

r t t c =  t d y  perforntartre of the \ 'Qi-K model on the XR(2) source. The context choice 

is imiicaterl for each new syrraiml, a d  a5 in the previous figures, the numlxr of sam- 

pks s e n  iricreases left to rfgk and top to !~otto:n. t\'ben new children are created, 

i t  is i~rcficattd h~ a titre be@rmnirmg with -*new cl~ilclren-, and lists the newl_v created 

i - ir i i&-w. 'tth see tirat the moitei begins with the order 0 ~ m d e l .  the null context: 

wirich is use.${ for F w r  sarupfes. Tlterr the two 1- l i t  cfiildren of the root node are 

c-watc*rf as 3 1 1 1 ~ 1 1  ~ I L  F i ~ w r  3-10. Batfa of these chilclren are cornpared to the root 

r:rrdc. iwtt thvy ;in* f % r F  i-tmrnpared to each o~iler  because tinere cioes not exist an or- 

t b r  E c-u~ktt-si €bat tfet%>- f m % t  could possibly rode. h r k g  the m s t  f 0 samples: al] 

tErrw txistitrg nrodt4s are used and updated. The (0.1)  ~nodef performs well and so 

it  grtms i~m tzrrfrr and redttaiou, and the fB,dB,OJI). (@jJl. l j _ i  1.  a d  (Of?). ( 1  f2) mocl- 

t.fs art- F-reatetf as sIrrxtrre in Figur~ 5.1 1, After a fen- ;nore samples. t he  (0  f l . l / l )  





Figure .5. l i : VOVR tree after 14 samples 

11iocle1 outperfornis all the other models on its performance list and grows the chil- 

cIre11 (Of  l .  l / l ,0/1).  (0/1. I /I. 111); and (0/1,2/2)(0/1,3/2) as shown in Figure 5.12. 

Within a few saniples the @/I, 212) model grows, creating children (0/1,2/2,0/1), 

(U/t1'L/2, I l l ) ,  (0/1.4/:3). and (0/1,5/3). So we see that, like the FOVR-I1 algorithm, 

the VOVR algorithm rapicily converges on the appropriate order and resolution. After 

a few triore sainples. the ( I  j l )  side of the tree begins to grow also, as samples in that 

region of the state space appear. The tree after 33 sa~nples is shown in Figure 5.13. 

The final codelengtIl for the ,4R(2) source of 5.28 bitsfpixel, which compares to 

5.19 f>its/pixel for the optinla1 static choice and 5.18 bits /pixel for the FOVR-I1 model. 

The cIifference is attributable to ths  fact that the VOVR model cannot completely 

skip c.ortditioning itiformation as sari the FOVR-I1 model, but is instead forced to 

aflor-ate at least one bit to it. 

5.5.1 Experiments 

Figart. 5-14 stlow the performarrce of the VOVR model on the test set. As with the 

Ffli'K-Il algorithm. the performance of the VOVR algorithm was as good or better 

t halt t h c l  opt irnaI st at is resolution choice as determined by exhaustive search, except in 

t be* c-ast- id t lit' lena image, -4lthougfi the VOVR algorithm performed better on lena  

t I m i  tire FO'C-K-I1 algorithm. The performance on the photog image is an anomaly 



Figure 5.12: VOVR tree after I 6  samplcs 

Figure 5.1:3: VOVR tree after 33 samples 
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Figure 5.14: VOVR performance on the test set 

also, although in this case, the VOVR algorithm produced much better results than 

either the optimal static or the FOVR-I1 algorithm. Both these performance increases 

111a.y be attributable to the fact that the VOVR algorithm retains all lower state weight 

models instead of destroying them after they are not used for some time. Because they 

are retained, when the algorithm encounters a non-stationarity, the lower state weight 

models, which may have been already discarded in FOVR-11, still exist. As mentioned 

previously, these lower state weight models learn and un-learn more quickly and are 

more likely to be i~sttd when the algorithm encounters a non-stationarity. 

5.6 Comparison to PPMI 

Thest. algorithms differ in a significant way from PPMI. Instead of using fixed order 

contest, this algorithm espiores both variable order and variable resolution contexts 

mirig a minimum description length criteria. It grows only the contexts that are 

performing well and only to  the extent in resolution and order that is necessary. 

Fiually. instead of using an arbitrary criterion for how many samples is enough to 

c-oustitute a reliable set for a given order/resolution the algorithm uses just the recent 



codelengt h. 
T T unfortunately, none of the results prese~lied by Howard and Vii r c~ j i!N i ) \vrLrr> 

on the same images as those in the test set for this thesis, sncl sinw ~ v t .  clisc-c)vt.rt.tl 

their work as the work in this thesis was being co~nplrted, uu ~lictl~otl for t~~lrllc~rir.al 

comparison was developed. 

5.7 Relationship to Permutation Selection 

Having control over both the context resolution and order is related to pc~111ilt i1tio11 

selection in the following way. A particular perrnutatiori clioscl~ 1)ascd 011 (L priori 

knowledge of the source (say that it is an image with rows of A' pixcls c.ac.11 yit*l(li~lg 

the set of pixels ordered by Euclidean distance from the pisel to 1w wdr-(I) I I I ; I ~  ~ ~ o t ,  

be perfectly suited to the statistics of the source being coded. 111 tl~at, cast., wrb Il1ii.y 

actually waste time and memory collecting statistics for contests s,, b'c E i t  S I I ~ I  1,Ii;i 1, 

P(xlxc) is virtually the same as P ( z ) ;  that is, where the autocorrc~li~t,i~li S I I I I ( ' ~ , ~ ~ ~ I  

R(c) is near zero. For these situations we would ideally like to e l imi~~atc  !,his ~)oorly 

chosen element of our permutation vector. Varying the resollit ion approxi~~~;dc.s t , l i  is 

by assigning as few bits as possible to that permutation element. 

The model growth rules in both FOVR-11 and VOVR are in  fa.1, i ~~~ l ) l ( t t ~~cb t~ t~ i~~g  

a form of permutation function definition, as well as choosing the optirilal twol~ii,iorl 

for the conditioning information. In the case where we have incorrectly st-l(~c~l~ti tllcb 

permutation function, those members of the function that do 1101. I I P I ~ )  as I I W ( . I I  as 

others will have fewer bits of resolution allocated to them by the algorit111n. 'li, Inor(% 

concrete, say we chose a permutation function appropriate for image. data ar~(l a+plitvl 

it instead to scalar data. In this rase, the pernlutation functiol~ con~por~cv~t,s ( losc- i l l  

terms of Euclidean distance in an image would actually b~ qui tc far aj);trt i l l  1<11c.l idc~a t i  

distance for the scalar, and the correlation would most likely bc~ s~~rallc.~.. As sliowr~ 

by their performance on the AR(2) source with parameter vt:ctor 4 = {O.OI,O.X!f)  

and the corresponding correlation sequence in  Figure 5.1 t hrse algori t11 I I IS  r; ki 1) ( I  ~y 

allocating zero bits to the context in FOVR-I1 or very few hits to the c w ~ ~ l ~ ~ x t  in  VOVIj ) 

the conditioning information not strougly correlated to thc valuc. h*irlg c.o(lc4. 'J'IIC 

algorithms would do the same had we poorly cllosrn the per~nutatiori, skippi~~g t.111. 

entries corresponding to the values that would he on tbe l ine  abow tlic c.urrc.111 ]>ixc.l 



werc the scalar smrce rtct:;ally a B  image so;lrcz. 

Ir~tert-lstingly, even if the permutation choice is nearly correct, there still exists a 

fu~ictarrxxrt,al limittltion of tree structured algorithms like URIIC. There may be cor- 

relatio~l that could be exploited at  a different offset from the current value being 

coded than was specified by the permutation funct i~n ,  but the algorithm insists on 

iricreasing the order only if the current order under trial begins to do better. Hence, 

the algorith~n tends to get L L ~ t ~ l c k "  on low correlation conditioning information. The 

IWVFC-I I anti VOVR algorithms solve this problem by using low resolution condition- 

ing i~lfor~nation that will tend to show a trend faster than full resolution conditioning 

information. 

5.8 Computational Complexity 

As noted at  the end of Sectiox~ 5 .3 ,  the expense of maintaining nearly 100 1110deis 

in  the FOVR-I algorithm was greiit enough to merit investigation into a more effi- 

cient algorithm. I t  was seen that the FOVR-I1 algorithm, running a t  most only 16 

~nodels simultaneously, performed equivalently, and consumed correspondi~lgly fewer 

resources. Judging from the description alone, the VOVR algorithm appears more 

c-omplicatecl clue to the list handling overhead. However it is difficult to compare 

the algorithms objectively because they are struct~urally adaptive and the amount of 

resources they consume depends on the nature of the data being coded. However, 

as a purely subjective comment; it appeared that the FOVR-I1 algorithm processed 

a 512 x 512 image comfortably (within a few minutes) on a normally loaded Sun 

SparcStation 10, whereas the FOVR-I and VOVR took significantly longer (tens of 

minutes). As a final disclaimer, the code (especially the VOVR code) was written 

wit.h ~nodula.rity and extensibility in mind, rather than execution speed. 

5.9 Summary 

In  this chapter, we have investigated several methods for solving the Markov model 

learning problem. Instead of adjusting the nu~nber  of states in the model using only 

the r~iodel order, as in VOFR techniques. to  code signal data we have the ability to 



vary the resolution of the coditioning infor~natio:: as :dl. !I; fact. to ijb! i ~ i i i  f hi- ~)r-r-  

for~na~lce obtainable from methods like DPC'RI, we musf vary the rcsoluticw this  wily. 

Due to their flexibility. 1s-e see that on signal sources that cannot hr \vc4l rcpr twntrd  

by a linear model. variable orderjvariable resolution models can out p t~ fo r~ i i  1)1'( ' R I .  

However, it appears that many natural image sources can be well rtyrescw t t ~ 1  1)). l i n -  

ear models. The two classes of techniques, FOVR and VOVR, differ it1 colltl>ilt;ttior~<tl 

complexity, adaptation to the stationary nou-stationary characteristics of tsll(- source., 

but their performance overall is approximately the same. Both i~nple~ncnt a 11sc4ul 

form of permutation selection, and effectively ignore data that docs ~ i o t  hell) c-orltb tIlic 

source. 



Chapter 6 

3324- 
u l b  Group Modelling of Signal 

Data 

6 .  Introduction 

We noted in Chapter 3 that the binary variable order algorithms like UMC and JBIC 

could be made to operate on uon-binary data by splitting the non-binary data into 

planes, each of 1 bit resolution, and passing each plane to a separate instance of 

the algorithm. Tlie UMC algorithm ~erformed quite well in this regard as shown in 

Section 3.2.3. 

In  this chapter we attempt to develop an understanding of why binary modelling 

of 11011-binary signal data is so effective. We investigate the common technique of 

(:ray coding the data first before splitting it into single-bit planes and passing to the 

mock1 and coder, and compare it to  a simple weighted binary coding. We pose the 

qtlestion, is Gray coding the data and splitting into bit planes the best approach to 

modelling signal data or can we do better? We propose a non-binary pseudo-Gray 

code as a method of generating planes of resolution greater than or equal to 1 bit, and 

cornpare it with the other conveutional methods. Finally, we relate the work in this 

chapter to the ideas from Chapter 5 on variable order/variable resolution   nod el ling. 



Consistent with our discussions on the learning problerll with Xlarkox nt* J t + i  ~ p l i i -  

ting an r-input into 7- separate planes results in r sepaiatc stri.a~u:; that art. tw j. t"tsit3r 

to code in the sense that the histogram counts reach t1ml :.ctuat values quit-lie;.; iww- 

ever the sum of the codelength may not be less. Coun8zrs of ones and zero rcac.11 

stable counts faster than higher resolution counters, but because wc Inay 1~ dis t-tx- 

garding some relationships between the planes, the resulting proba1,ility disr rihut i o i~  

(the convolutioa of the lower resolution distributions) Inay not hth the sitlnc- as the, 

higher resolution distribution: which, when properly trained, approsiruatw tlit. ~.i ' i ll  

distribution more closely- 

Two methods of splitting an input into single-bit planes arc now tlesc.sititd. 

Weighted Binary An r-bit input can be split into r separate inyi~ts i~~'(.ot-(li~lg to 

bit placement. We call this method weighted binary  eodi7~g. 

Binary Reflected Gray Code An r-bit source can first 1x3 c-oded with a.11 1.-))it ,  

binary reflected Gray code and then the resulting coded input can be weiglltcd I)iilary 

coded. We will see that the effect of the Gray code is to preserve mow of thc~ cvrrc~lat,io~i 

that exists between two adjacent pixels t11a11 the simple weighted Linai-y c-otl~ woiiltl. 

To construct an r-bit binary reflected Gray code 

1. start with the all zero code word corresponding to thc* sourcc3 z c ~ o  

2. form the next codeword by changing the least significant, bit t l~i~i ,  

results in an unused code word 

A four-bit binary Gray code is shown in Table 6.1. Included i n  llic t;thlr ari- 

corresponding weighted binary code: and, in the first ccrl~~mt!, olw pussil~le ( l ~ ~ f l i t i l l  

in Rf that could be mapped to the binary index. Also incli~derl i n  t l l r .  tahlv arc. tflc* 

number of bit changes in each plane of the weighted binary code and t h  (;ray c:o{l(:. 

We notice that a Gray code tends to minimize: the number of cl~artges per pla~ie ; t ~ i c l  

for the code overall. Also; it; tends to try to concentrate the changes in  thct 1owc:r 



Table 6.1: Four-bit binary Gray code 

real 
1111111 ber 

-7.5 
-6.5 
-5.5 
-4.5 
-3.5 
-2.5 
- 1.5 
-0.5 
0.5 
1.5 
2.-5 
:3.5 
4.5 
5.5 
6.5 - 1.5 

gray cullr decimal 
index 

hits. This has the effect that wit31iin any continuous range of values [x,;,, xmaX], 

more often than not. the values will a!l get mapped into either a to 0  or a to 1, 

preserving boundaries between regions containing similar values as well as possible. 

The likelihood decreases. of course. with the size of the range. 

However, some symbols of similar. but not exactly the same value will get mapped 

in the opposite sense at the region boundaries, and there are more boundaries in the 

lower significance bits. For example, in bit plane 3 (the most significant bit plane) of 

Table 6.1. there is only m e  case n-here two values separated by the minimum Euclidean 

distance get niapped into different symbols (going from index 7 to 8) whereas in bit 

plane 1  there are four instances: contrast this with the weighted binary case for which, 

in bit plane 1 there are seven instances, Similarly, two symbols widely separated in 

Eticlidea~i distance, may be get mapped to the same code in one or more of the bit 

planes. For esan~yltt, iu bit plaue 2 of the binary Gray code, indices 0  and 11 get 

nlapped to the same value 1. 

Overali_ then, the Gra5- code attempts to arrange the values so that when processed 

binary 
index 

0 0 0 0 0  
1  0 0 0 1  
2 0 0 1 0  
3 0 0 1  1  
4 0 1 0 0  
5 0 1 0 1  
6 0 1 1 0  
7 0 1 1 1  
8 i l O O O  
9 1 0 0 1  
10 1 0 1 0  
11 1 0 1 1  
12 1 1 0 0  
13 1 1 0 1  
14 1 1 1 0  
1 5 1 1 1 1  





Nun-Binary Pseudo- Gray Coding 

r . f tlis swticm (16 ti~ws a naethodolog_t' for constructing a non-binary pseudo-Gray code. 

rl'lw stanrlarci rrflerted tziriary Gray rode is a special case. 

'The lugir- of the atqr_tr!tbn; i s  essentiall_v the same as that for the construrtiorl of 

a I~irlary gray t-orlr, except e ~ e r p h e r e  we thought Harmning distance in the binary 

t-aw. t w  t 11in k Euclirtea:l tiistance in the non-binary case. 

\4k arcx given as a specification a set of boundaries d i~id ing the r-bit 1%-ord in  to 

rr = 2 to r groups of 1 to 1- pixels so that the sum of the sizes of tke groups is r. 

I f  1.1 = 7' t11e11 the grotjji size for a11 n groups is 1. and the algorithm recluces to the 

Ijiuary (:ray code. If rr = f tlml the size of the group is r. and the code performs the 

ithrti  t y  operation. To generate tlre non-binary pseudo-Gray code 

I 
1. start tvt-ith f Ite all zero code it-urd corresponding to the source zero 

2. form the next codeword 1 , ~ -  cliauging the least significant group by 

the least azr~ount that results in an unused code word; the change 

can be either an increment (add I f  or decreme~it (subtract 1) of 

the value in the group: if an increment or decrement does riot 

generate a new code \I-ord. move to the next higher significailce 

group 

A (3 .2)  non-hinary pseudo-Gra>- cclcte is show~ in Table 6.3 along with a 5 bit binary 

G r q  code and t lie 5 bit 1%-eiglited binary representation for comparison. l~n~nediately 

notic-cahi~ is the  fact that the most significant group of the non-binary pseudo-Gray 

c-cstte is always the same as the cf~rresponrfing bits in the wzighted binary represents- 

t ion. 

hterpreting the nun-binary pseudo-Grax code in the same way as in the discussion 

of' the himrj- Gray code. xw see that the code tends to assign 1-alms which are close in 

Etdidean distance codexwrds that are close in Euclidean distance. At the same time, 



decimal index 
0 
1 
3 - 
3 
4 
5 
6 
'7 
8 
9 
10 
11 
12 
13 
14 
1.5 
16 
1 7 
18 
19 
20 
2 1 
22 
23 
23 
1 - 23 
26 
2 7 
28 
29 
30 
31 

weighted biriary 
000 00 
000 01 
000 f 0 
000 1 1  
001 00 
001 01 
001 10 
001 1 1  
O f 0  00 
010 01 
Of0 10 
010 1 1  
011 00 
011 01 
011 10 
O f f  1 1  
100 00 
100 O f  
100 10 
I00 1 1  
101 00 
lor 01 
Ifif 10 
iQ1 11 
110 00 
110 01 
110 10 
i f0  11 
I f f  00 
I f !  01 
1 1 1  10 
f l f  I I  

non-binary pseutlct- Gray 



6.4 Experiments 
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Summary 

l \ i a  l z a ~ t ~  invt-stigaterl the mr-tl?utt of splitting an r-bit input into pla~les and coding 

t l i t ,  planes separately a5 a terlmique for owrcoming the learning problem in Llarkov 

rrlt)rIcls. The t ratlition~t met hod of doing this, namel_v Gray coding, was analyzed 

i r r  u r r h  t t ~  get a h ~ t t e r  r~riderstanding of what this technicpe does. Jlotivated by 

i ts  strt ic . t t~rc .  a ~mn-biti i lr~ peuclo-Ch-ay code was proposed. which has the desirable 

cftariicfi~ristic of a l i t x i ~ t g  us to generate planes of resolution greater than 1 hit but 

f t w  t h a n  the. frill sorirct. r-esoiution. Thus. the non-binary pseudo-Gray cocle gives us 

i t r ~ r -  1. ai*iliiy iu presrrvt~ some inter-plane reiaiiuuships. The 11011-binary pseudo-Gray 

c-oi ic  incltitivs the stanriartl binar_\- reflected Gray code as a special case. The non- 

h a r x  pseitiio-Gray cude was used to generate planes of ~ a r y i n g  resolutio~ls for the 

rtwidwrs of the test set a r d  t be planes were coded using a variable order. fixed reso- 

trrt ion llarkuv rnodel. It. was seen that some combinations of planes with resolution 

hi$tcr than  1 bit performed better than the binary Gray cocle method. though this 





Chapter 7 

I1 itis c.liaptc-r. t.spiorc-.. tht-  application of 5larkov modelling to other areas besicles 

c l i  s t ~ t  Iy coni pr.(~ssir~f: signal data. Based on  Section 3.1.7 we know that signal data 

j,rc>riic.t ion is rls~frd the context of DPC51 systems because the prediction is sub- 

trat-ttvI frum t,he signal and the lower power residual signal is optionally quantized and 

trarls~i~it,tt.cl or stcmd. lye wilf see that a convenient side effect of Alarkov moclellix~g 

is t trat wt* can atso we t h e  1-t-iociel5 as preclirtors. and that adaptive Llarkov predictors 

r-ill) f i i w t i ~ m  as v d ' l  as or i>etter than their linear model counterparts, hut that most 

rmt t:raI illtagt. data <-a;; !ie !ietter. repr2se1lted by linear 1110del~. 11-e co~ltillue the dis- 

t.rlssio~t vf rtsiug AIarko~ rilurfel,.; coupieri with DPC'h1, showing that the properties of 

tflv FO\-R and 1-OYR modets presented in Chapter 5 can yield very good compres- 

sicrrl. Firially. we took more carefully at  the structure of these joint L>PCM/Markov 

c . c ) c I t ~ ~  and present a new method of DPC'M. distortion-constrained DPCM. 

7.0.1 Using Non-Binary Markov Models as Predictors 

.-I prot)at>iiity ctcrtsit\- estimate is a\-ailable for each sample J :  namely; the one that 

this c - o t i t ~  isottlcf use to transfor111 the distril>ution and symbol into a sequence of bits 

via all aritllmetir ciirfer. 11-e know that the optimal predictor, linear or non-hear., is 

ip&, ,,, ,, f S-.. ,r;&tii;r;a!j ~xpecxed ;-ahs. E(,X). Instead of usiig the distribution to code the 

input. \t-t. car1 easiiv caicufate the expected value instead. The resulting estimate is 

uric-o~tclit ionally stable. alt huugh not necessarily good. 
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7.0.2 Using Binary Markov Models as Predictors 

we need to form the new probabilitx estirnate 

Given that probability distribution. \ve car] apply 7.1. 

7.0.3 Experiments 

the MemoryUsage to 16 megabytest and the rnaxilnuiri or(1r.r o f  t .1~: rrroclc~ls~ MaxOrder, 

w u e  to the HemorgUsage constraint, setting HaxOrder to 3 did 11ot rrssr~lt i n  i ~ r - t  t r - r  ~v.rforlr~:~rrc.c' 
overall, and in same cases the performance was worse. A s  post~tlxtcd i n  Sect ior~ 5.4.1 . t rrl;ty 111. 

due to the fact that  these sourcs  are non-stationary. 



i .TE/: f ~ v f  f tAr of! t jw barb irmgt- ro l 1% n-ctrse on photog image. Averaged over thp 

t c h s  t ii-t . FOVft-f f pc-rfctrrr~erl aim!rt ::.2% wur<e than ADP('1l. 

'I lie t~qtiisalvwe of ;trctper!:; irairled Markov ~xodels and DPr:AI on stationary 

Iirwar sortrws is t-as? to ~:q)!ai11. TIit ciifferezltial entropy for a Gaussian source with 
1 

1 ~ 1 1 ~ 1  p i t t ~ f l  twianre a is ilii! 2 + li? z + 1 $ 2 In a). The conditional probability 

cfistfiiirtficm o f  t.11c. XIZ(Tj source lias Inear? ~ 2 ,  &x(n - i) and. more importantly, 

v;trimc-t* a ~ .  This has a rfifferential entropy depending on the variance, as above. 

flt.wy co~lrlit iortal protmhilit~ rlistrii~ntion will have the same variance, a , x ~ .  The overall 

c.rrtropy i h i w  is the experteci 1:aiue of the conditional differential entropy, which is a 

c-o~istar~t, so tile ovcraII entropy is the same value. For the DPCM case, if we have 

t.stimatc4 thr parameters correctly. we are just coding the error sequence, which by 

ctefir~itiu~i has power a'v. So the ti~ct approaches are the same. The only difference 

;trisc~s during adaptive coding, but if the Markov model resolution and order are 

c-ontinually acijusted. it can \earn almost as fast as DPCM. 

However, we expect that the adaptive Alarkov model could do better than DPCM 

ou some sources. If we think of DPCLI as if it were a Nlarkov model, all the condi- 

iitlrtal histograms will have the same shape; o~lly their meaas will be different. On 

t l t t  c~tlirr hand, a Markov model has no such restriction; the distribution can be com- 

plctrlj different from o m  context to the next. resulting in greater modelling flexibility. 

('onsiiler a. source. whose symbol probability distributiom are identical in some set of 

ort1t.r 1 contexts, but for the rest of the order 1 contexts the symbols are distributed 

esac-tly as i f  they had been generated by an order 1 linear model, that is, for each of 

those order 1 contests the mean of the distribution is the value of the context. The 

incrrased flexibility of the 3Iarkov   nod el should result in better performance than 

DP('hl on this source. 

i\i generated just such a source. The first 2" samples were generated by an 

order 1 linear   nod el driven by white Gaussian noise, to which was added an offset 

that ~noved tile mean far euough 2 ~ 2 . ~ 7  from zero so that the probability of a symbol 

less t imi zero oc-ci~rring is uegligible. The second 2" samples were white Gaussian 

iwise with the same variance as a b o ~ e ,  but from which was subtracted the same 

otfsrt added to the order 1 source. In this way. over the whole sample, a symbol less 

t h a n  zero is a11nost surely to be followed by another symbol less than zero but the 

two s_vmbols will be independent. At the same time, a symbol greater than zero is 



7.0.4 Summary 

X non-linear adaptive 1Iarkov predictor was seen to perfcm~i slight iy  wt)rsca t l i a r l  l i ~ ~ ( x i l r  

predictors on the test set. However. certain nail-statio~iaritit~s tllat \vor~lti ( + ~ I I I s ( '  i t  

h e a r  predictor to perform poorly. even with a pre-sca11, do not psc~st.l~t ;I ~ ) s o l ~ I r v l l  l i l t .  

a Markov predictor but. based on the test set, such no~~-stat,io~l;tr.it,ic>s (lo nol, i t j t l w ; i r  

to  be conlnlon in  natural images. 

DPCMIMarkov Coding 

As ~nentioned in the introduction aucl in Sectiou :3.1.7, we (-a11 11sc- 1)I'I:M i l l  ( . O I I ~ I I I I ( * -  

tion with Marko~  coding because, while rtin~ling a Markov 1 1 1 o c l c 1  ;is a p l c v 1 i c . t  or is 

theoretically better than using a linear   nod el, for a l a r p  r-lass of i111)u t s t,\rctt, c i L i r  I t ( *  

effectively modelled as a linear stochastic system, a Markov 1nr~rlt4 (witli af~proi~rii~t~(.ly 

chosen resolution and order) appears to do no better, I)ut is rriorca (~0111p11t i ~ t , i ~ l ~ i t l l y  

expensive. This leads us to speculate that Markov models may lw l ) t a t J i ( * r  stiit,cxri f ,r ;  

coding the residual of a DPC51 system. Several authors llitvf. alrcwly r l c w r - i t t c 4  sys 

tems, for example Tischer, Worley; Maeder: and Goodwin (1993) mrl 7odr1, I,a~rg<lorr~ 

and Rissanen (1985). Howe\-er; let us explore in more detail the rIlar;tt-t,c.ri~tit.s o f  1\1(~ 

residual that would be presented to a Markov niorlel. 



7.1.1 Characteristics of the DPCM Residual 

IF  t itt.  I ) W t h I  parairwtr*r< art- exactly matched to the linear ~norlel that generates the 
- - 

W I ~ P C - i L  apjwitriug a; rj.s input, the residual scr!uenct' is ivhite noise with the same 

~ C A W T  ;I-< tfw ~ m i w  dz-ivizlg f he i~lprlt generator. We can still use an order 0 model on 

tIris stBrItlvtirxB artti rctmpress i t  ifown to its mder 0 entropy quite easily. If, hox~ever, 

r 1 ~ .  gtSr~t*ra!r,r I~as h i g k c ~  order t h a n  the model; the model parameters are wrong, or 

t lte grwm.tr,r is sinlpty wli linear. the resulting sequence will not be white. This 

i1ilp1if.s t l~at  we gairl from coffing tlle residual sequence with a Markox- model. Of 

c.(,tlThr'. i t 1  t l l ~  first two  ca..res. we roitid also si~nply increase the order or accuracy of 

tmr l)E'('M ,;ystem. 

For an AR(:V) sorrrre modelled h_i. a order kl linear model. with i\d < !V, it is 

tB;asy to dcterniine the ciiararteristics of the residual. However: for other sources it is 

rttorr* rcj~npticatrcf anti perhaps owraff the exercise is not 'nstructive. W e  do expect, 

I~cmcvrr~ that whatet-er tlie characteristics of the residual, a Markov algorithm like 

FOVH-I1 vioulrt determine ttie proper resolution and order to best code it. 

I t  is significant to  rivte that in practice, we ran represent the residual from an 

I--l i t  il~plit using ouly I' bits instead of I. + 1 bits as o1:e might expect. This is 

the re ly iq  on the fact that the predictor generates integer predictions and using 

~ iwt l rr lo - r .  addition and subtraction. Huwever, the r-bit representation of the resiclual 

is quite different in character from the I- + I-bit representation. The entropies are the 

samp, lztlt it appears from preliminary i11\-estigations that the -.adaptive entropies" are 

iiitftwnt, i-e., when presented to e q u i d e n t  adaptive models, the resulting codele~lgths 

are different. Esploring the differences between the two representations and how 

Ilarkov models react to it is a topic for furtller research. 

I\'hi le lossless c.;iciing has its yl ace. there are many application areas in which 

swmr antormt of distortion call be introduced into the image in order to increase the 

compri>ssion of the data. In the nest section: we will describe in detail yet another 

variant of DP("SI. 



Because signal data is ofteri rwisy. we are liead to s p c ~ ~ ~ l a t c .  1!1at p t ~ ~ . l ~ ; t ~ , ~  c-lt,t~lgirl~ 
- 3 1  a few values in the illput 1 ~ 1 1  rmt cause a pr~rctytihle tIiRt~rt~uc-t. 11) t l t t .  t ~ t . \ v c ~ .  t ' l ~ t ,  

probiern is determining which pixels those are atld wlmt is f l i t .  t*fft-t-t  t t f  r.1i,irtgilig I h t .  

pixels on tile overall rate. Orte tratlitionai inct 110d o f  rrrliit.in3 t h t ,  i.:tir. is i t>*  c l t . l ; t r t  t i~itlg 

the residual. Hoit-ewr. ir-i this section we propose anotlirr. 

S q p o s e  thai iye are alluxvect to altw t h v  input to a losxl~ss \cluaritizt.r i l i s c t l , l t d )  

DPC3I coder by adding a noise sequence nt .  and we c-i1ooxt3 1 1 ~  i i i  s~tc-11 ;I \say as to 

minimize the entropy of the residual sequence while at  t i i t .  sanlc. t i r ~ i c .  l i t ' r ~ l ~ i ~ ~ ~  1,111, 

power of the noise, E ( T X ; ) .  low. 111 other words, we wish to ~liinin~izc t !I(> r h r t t  rol)jr o I  

the residual H(r,f suliject to a ror~straint url the power ctf t l i t  rloist. st.rjllt.rlc-t* l I , ' ( r r f ) ,  

where 7.1 = x t  - it. and if is the prerliction for .rt. 

It is known that the constrained ~ni~l in i iza t i~n  311-01)1e111 mi11 .r givtw ,ti I- : ( ' i l l 1  1)o 
r 3 replaced by the unconstrained ~nini~nizatioa miri(.r + Xy ). 1 11( ,  p a r m l ( ~ i , ( ~  ,\ I I ~ c ,  

adjusted for the particular required of 2.  Hence, t o  sol\,t> t , \ i c x  ~ ) r o l ) l ~ ~ r ~ ~  at ,  Irarl(l, 

we perform a11 unconstrained minimization of min(li(~. ,)  + X l < ( t ~ : ) )  t;)r some. c.lroicx~ 

of A. If A is zero. we end up with an unconstrairir-cl ~liiniltliz;tt~io~t o f  t , l i r*  carrt,~.ol)y. N o  

consideration will be given to the resulting error. If. on rhc. ot,llr~ I t ; ~ r r c I ,  1 1 1 ( 3  virlrrc. 

is non-zero, we include in a penalty for the squarer1 vrror inc.rlr1-t4 1)y rt~plac~i1lf: 1,111. 

original l ~ i t h  another value. If X is very large, wc (-an ovcrwIic4rn tllc. c n f f ( ~ - i .  of i , I r ( .  

ent?royy and just minimize the error. which rrleans that u.cA wurlI<l c~sscvrfiiilly !~c>vc-r 

change any value. et = 0 

Enfortunately. to  solve this proGIem correctly, we wo111d r i w ( 1  to ( I t ~ t , f * r - ~ ~ l i l l ( ~  1 , l 1 ( '  

residual resulting from every possible noise sequence of letlgt,ll A T  ; t r ~ c l  c.11oosc. 1,111. 

~ninirnurn. Obviousfj- this is impractical. A more practical solutioti is 1.0 assilrJics t,ll;rf, 

zt each step. the distribution of the residual doesn't cliangv 1)y r-rtur.h, arlci so cloi~lg i1 

focal miuinxization at ezch step should result i n  a fair! y goor! g1r;Iza.l 11ii riin t iz;~bir,r~. 

The algorithm cat1 be su~nrnarizetf as follows. 



7.2.1 Experiments 

' i  I - D M  y s t e m  clescriheri aLow was applied to the images in the test set. 

'Ttw prt4ir-tor was an order 3 linear preciictor whose coefficients were determined by 

a pr+sr-an of t l ~ c  data and whose output was constrained to integer d u e s .  Based on 

t l ~ v  results ill  Section 7-03. we could have just as effectively used one of the ada!,tive 

Markov motleis ciescribeci earlier in t h e  thesis that, for the sources under consideration, 

pc~rforni almost as welt as a linear prectictor. The rate distortion perfor~nance is 

s l~cnvri  ill  Figure 7.1 in comparison to a standard DPCM system using the same 

predictor but whose integer-~alued outputs were further cp~mtized using a uniform 

qtimtizcr.VThe quantized outputs were passed to an order 0 adaptive entropy coder. 

rlvothcr view of this data is in Figure 7.3. We see that the DC-DPCM system 

cirttj)r~rfor~necl the standarc1 DPCXl on all the test images. For example, on the l ena  

image at 1.5 bits/pixel the DC-DPCXI system provided an approximately 5 dB gain 

over t h e  standard DI'C'hI system. Granted: the performance is nowhere near the 

rate-distortion performance attainable using technicjues like vector quantization, but 

this rest~lt is interesting all the same. 

7-22! Summary 

T)('-DPVh1 was inspired br entropy-constrained vector quantization (ECVQ) (Chou 

1889; i'hou. Lookabaugh. a~ici Gray i989j. in a sta,nciard vector quantizer, the decision 

regions are adjusted to ntinimize the difference between the input for a given codebook 

size. .\I. It is assumed that the codeword indices are put directly octo the channel and 

' t~hite  this quantization rnetlmd is sub-optimal, since both the DC-DPCM predictor and the 
DPC'M predictor operated in the same way, this was considered a fair comparison. 
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Figure 7.1: Rate-distortiori for DCJ-DPCM us stmdard I >  P! '%I 011 t,c.st, scatj 

2.5 
rate. bits 



DPCM - 
DC-DPCM 

Figure 7.3: Rate at :3O dB fur JX'-DP('5I I X  standard DPCSI 



7.3 Summary 

In addition to using llarkol- nlocirl:: for generating proi)al)ilit\, t i i s t  r-ib~lt iorw t 11at tlri\,c. 

an arithmetic coder. xi-e car1 also use the modcls as prcclit.tors. I t  \\.a,-; > l 1 0 ~ 1 1  t l ~ ~ t ~  

adapti-5-e Jlarkov predictors can function as well as or l>c.tttxr tllall tllvir lirlc-~~t. 111otIc.i 

counterparts. but that most natural image data ran tw wr4l sc~l~rt~st.~~tivf 1,). l i ~ ~ t * ( i r  

moclels. Jlarkov models can be as a back-end to a DI'('11 s)rstcwl, nuci 1111. 1 ~ 0 \ ' 1 . 1  

a i d  1-OVR modei. presented in ('iiapter- 5 are espccial1)- ~ v t 4 1  b l i i h i  Sor filitlirlg I l i ( .  

rnnditioniug information rel~lairli~lg in the signal that resnlts i u  t h t .  low~si r i ~ i t . .  '1 '11t .  

new technique of I)<'-DP<'Jl was seeu to offer- aclvmtagc~s o v t ~  t ratlit io~ial I ) / ' (  ' R 1  : I I I ( I  

is an interesting starting point for further- resc~arcli. 



Chapter 8 

Conclusions 

Wl~e~teve l -  adaptive Xal-kov moctels are used to code data, signal or text, careful 

;tttcntion must I)e paid to choosing the number of states in the model appropriately. 

For stationary sources. the optimal number of states appears to increase monotonically 

with the IIUII~IXT of samples thus far seen. For text data compression, variable order 

Markov t,echnicjues have proven to be some of the most effective, their popularity 

lessened only by the fact that they are computationally more complex and require 

morV n~eniory than dictionary tecfiniques. For signal data compression, in addition 

to varying the order of the model to control the number of states, we have at  our 

clisposal other techniques helpful in solving the learning problem. The well accepted 

t t~l tnique of splittiug an ?.-bit input iuto r separate bit planes is effective in this regard. 

This technicjue redluces the number of states in the model by effectively lowering the 

alpllabet size. at the expense of losing relationships between the bit planes which 

potentially co~dd help further compress the source. In this thesis, we have seen that 

LW ran also codta the original )--bit input. sinlultaneously varying the resolution and 

order of the conditioning information to obtain similar perfor~nance. Additionally, we 

hat-e also shown that splitting the r-bit input into planes containing more than one 
I - 
rrtt offers some perfor~nanre gair: over splitting into I-bit planes. 

Throughout this thesis we have exploited the use of running models in competi- 

ticlu and choosing betwee11 them based on their recent codelength. This technique, 

inspired by (1%-illiams 1991). was shown to be an application of the MDL principle. 

Tlie principle can be applied to whole illodels (as in FOVR-11), or to individual con- 

tests within a model (as in VOVR). The work in Chapter 4.3 on variable decay rate 



nlodelling showed that tile 3iDL principle can lw applied temporally as ivc11, ;t!!i,\~i~!g 

a model to use information about its own rvccnt pcrfor~nanc-t> as a nlt't hod of al i t.rirlg 

its parameters. 

This thesis has only scratched the stisfact. of the number of isstic.,s irl\.ol\c\tl i t 1  

moclelling of signal data. Some suggestions for furthrr rescan-11 art- prcwnttvl i l l  t I N S  

next section. 

8.1 Suggestions for Further Research 

VOVR with Zero-Resolution Branches Tlie VOVK algori t 11111 of S(v-t io~~ 5.5 

does not have the ability to completely skip co~~clitioning i~iforniatio~i. 111 t$llt. osigi 11i1l 

implementation, it was expected that assigning only one hit of resoli~t~ior~ w0111tl I N .  

enough to skip conditioning i~lforrnation that does not significantly help coinpwssio~l, 

but in fact this choice makes VOVR suffer from the samt-. pro1)lt.m as othtar t , r ( ~ * -  

structured algorithms. A modification allowing VOVK to completely ski l~ c-ort(lii,io~~irl!: 

information by assigning it zero bits of resolutiorl may solve this prol)l(m. 

Non-stationary sources The proposed euhancement to the IWVl(-1I illgo~.ii,l~~~i 

mentioned in Section 5-41 regarding the performance of the algoritll~n O I I  I I ~ I I - s ~ , ~ L ~ , ~ ~ ~ I ; I I . ~  

sources, should be pursued. Namely, the algorithm s11011ld lw al~lt. t,o t)ot,Ii ir~c.rc~;rsc. 

and decrease the state weight of the rnorlels it is able to crc.at,ck i r l  sr~spotiso t,o t l l l ( .  

input. This raises, also: several more issues &bout the non-st,atio~~;~rit,y o f  t,11(. i r 1 l ) 1 1 1 ~  

data with respect to the model which would he interesting to ptlrstlc. 

Theory The discussion in Section 2.1.2 is intriguing in tliat it, is at, Imst possii)lc l , o  

write down an expression for the expected value of the cotlelengtl~ as a, furlc-t,io~l of 1,!1(. 

joint distribution of the source and the numljer of samples proc:c:sst:(l. Wit,li S I I ~ ~ , ~ I ( : I .  

investigation; there may found be some distribution-independent f~!~tc:tic~~l w1iic:l~ 1~:lIs 

us how to best select a wide range of parameters ranging from t l ~ t :  I ) i r t  wi(lt11 of 1,11c! 

order 0 histograms, through the resolution of the cot~tlitioning i~~for~nat,iorl, to 1,11(: 

order of the conditioning information. 



DC-DPCM with Human Visual System Constraints The distortion-constrai~~ecl 

Of'{ :.tl systrw~ cf~scrilsed i r l  Section 3.1.7 uses the mea11-squared error as t h e  distortion 

Ifiv;tstirv. We would specdate that using a rljstortion measure that takes into consid- 

c.rat,im thc. htrrnan visual system tvould produces suhjectiwly better results than the 

I)Pt-'(1lI system, and ~ ~ e r h a p s  acceptable results at  lower rates. 



Appendix A 

The Test Sources 

This chapter gives some basic informat,iou about the soiirc-c*s i11 t , h c >  test so t .  

Table A. 1: Statistics of the tvst sources 

source 
barb 
mandrill 
texture 
pentagon 
lena 
photog 

size I Ho 
512 x 512 7.63 
512 x 51'2 i.:36 I 
512 x 51% 
512 x .512 
256 x 2.56 
256x256 

6.80 
6-80 
7-45 
17.21 



Figure A. 1: barb 



ilPPE:VDIX -4. THE TEST SOITRCES 

Figure A.2: mandrill 



Figure A.3: t ex tu r e  



APPEM3IX A. THE TEST SOllRC,'ES 

Figure A.4: pentagon 

Figure 14.5: lena 



Figure A.6: photog 



Appendix B 

Algorithms 

This appendix describes the details of the IThiI(' algoritli~ns of I < ~ S S ~ L I I ( * I I  i 1 1 1 t l  l " 1 1 ~ l i l 1 1 ,  

and the MMDC algorithm of 1%-illiams. 

B.1 UMC Rissanen 

The context tree is cozlstructed in the followillg way for a I)i~lary i11j)11;11)(~i,, wit  1 1  

the extension to non-binary alphabets being straigl~tforwastl. ( i i v t 1 1 1  a \ ; L I I ~ I ) I ( -  .r 

XlX2X3 - . -, 

1. Declare the contest tree of the first synll>ol .cl to lw tht. 1 I(.af t s c ~ ~  ' / ' (O) ,  wllc.rc, 

the only node, the root, is marked with the pair of c-oitnts ((((1, fl), (.( 1, f l ) )  -- ( I ,  1 ) 

These counts are initialized to zero. 

2. Let T ( t  - 1) be the most recently co~~structed tree. Aff,t?r tllc. ~lclxt, sy~rllwl . I : ~  i s  

observed, generate the next tree T( t  as follows. (jlin~h tlic: trcxt 'll(l. - 1 ), s I . ~ L I % ~ I I ~ ~ ;  

a t  the root with i = 1 and takiug the branch left for z; = 0 a11d riglit for r:; -- I ,  

indicated by each of the successive symbols i t )  thc? past sttcliic?~lc:<: z c- = ( : r 1 ) .  P'ctr 

each node s visited, increment the c.omponent count c : ( : r t ,  s) I)y 0111.. ~ ~ I I ~ ~ I I I I O  

incrementing .t until a node w is reached whose ro~.:~lt, c:(.ci ,  7nj = 1 llr.f;,rc. l . l l t +  

update. 

3 .  If w is an internal node, with wO as the left, arld w i  as 1,11(. sight s~ic~t.ssor, 

increment the component counts, c (x f2  wO) a n d  c ( z t 2  1111) Ily 011('  a11(1 ( l ( 4 i 1 1 r h  tlrc. 

resulting tree to  he Tit). Goto Step 2. 



4. If ru is not an internal node (it is a leaf), extend the tree by creating two new 

leaves u ~ 0  and 161. Let -u = zt and let u' be the opposite symbol of u. Assign the 

same counts to 110th leaves: c(u: wO) = c(u, w I )  = 1 and c(u', wO) = c(uf, w l )  = 

0. Call the resulting tree T( t ) .  Goto Step 2. 

After pro(-essing a source with this algorithnl, each level the resulting tree cor- 

rPspo~icls to a h4arkov model of a different order. The root node corresponds to an 

order 0 model, the nodes at  a depth of one in the tree correspond to an order 1 model, 

; L I J C ~  SO 011. 

The ro~lnt for a symbol .r at node s, c ( s ,  .s) in the context tree is really one more 

tlia11 tlle number of times the symbol .r was seen in context s.  Hence to use the 

Laplacian probability estimator all the cou~lts that are greater than zero must first 

1~ clrc.re~;wnted. 

;Is an c~~ample .  let us parse input x = 100011010 using the identity permutation. 

The tree starts out with one node. initialized ~ 6 t h  the count (1 , l ) .  When the first 

s?-~nl~ol, .rl = 1, is read. im~nediately the  first 11ocle satisfies the requirement c(xt; 20 )  = 

1.  After incrementing the root count to (1.2): two new nodes: each with the count 

f (1, I ) .  arc created. The resulting tree is shown in Figure B.1. For the next symbol, 

.I.> = 0. agai~i, immediately the first node satisfies the requirement c(st, w) = 1. This 

i i r t l t ,  ito\wver, the node is not a leaf, so no new children are created. After the root 

is updated, the existing child counts for the symbol st = 0 are incremented. The 

restdting tree is shown in Figure B.2. For the next symbol, x3 = 0, the root node 

dews not satisfy the condition c (s t .  w )  = 1. So the tree is traversed according to the 



Figure B. 1 : Tree T( 1 ) 

Figure B.2: Tree T(2)  

history. Referring to Table B.l, at t = 3, zl = 0, so, aftc.r the- root 1 1 0 ( 1 ( 3  i,s i ~ y ) ( l ; ~ t t v l ,  

the left branch is taken. At this node c(.rl, w j  = 1, so, after upciati~~g t,l1:% parc.111, r~ocic. 

count, two new nodes. each with the count 1,0 are created. T11r f i ~ ~ a l  trtsc is sl~owrl i r !  

Figure B.:3. Using only the previous description, the tree (.a11 grow wit,iro~it, I ) o ~ ~ l r c l h .  

Of necessity, however, the tree depth must be limited. In practic-e, a r ~  ;~rl,i t rar y I I I ) ~ ( - I .  

limit on the tree depth is set and Step 4 is rnoclifiect so that the t r w  grow5 o11ly i f '  f l r c -  

maximu~n tree depth would not be esreeclecl. 

The tree resulting from run~ling the previously tlescril)c4 algorit11111 O I I  f . l r c ~  strir~g 

xt is Tjt) .  This tree can be used to choose opti~rlal rnoclt4 ordw for. c-orli~lg 1,11 (~  11cax1 

symbol, sf+l. To choose the coding node, climb the t r r ~  s t a r t i ~ ~ g  ai, t , I1(2 roof,  wit,!^ 

i = 1 according to the string z = a(s t ) .  Each zz defines a notlc, w1ric.h is possi t,I(. 

context for coding the symbol st. If we had chosen the 11ocle 2:' to c d e  i hc* prc.vio~rs 

symbol occurrences at this state, we xoidr l  have obtailierl the !t.~igt!i 

from (3.3) and where j runs through all the syrnhols. 0 1 1  the otller 11aud~ i f  wc* Jla(1 

chosen the l-if children [where ;Vl is the alphabet size) (z1O, z'l: - - - , ::'M - I ) as t . 1 1 ~  



B.2 UMC Furlan 

-4. AtiditirmalEy, at ear-11 node \-kited. calculate the entropy of the syrnbol (the 

pt~-symtwf s-uiiefmg~la) rm arrcf add the difference in entropy between the  rhild's 



As in Section B.1. let US process the string .I. = 10001 1010. Wcx will :HI(I tJo 011r 

representation of the node the  d u e  of the RE(' in sclilarc t~rai-kr.1,~. l.'i)r t l tv  jtiirpc~st~ 

of this example. we choose REC"ilXX=-L ant1 HE(!MIN=-2. 'I1I~t= irtiti;tI trc3c* is l , l ~ t s  

node (O,O)[-21 corresponding to  the null t-otitrxt. 

The first symbol.1. is coded ming tht= 1llr1l cont,ext, who st^ HE:(' i s  I I ~ W T  ~ l l , ( l i ~ i , ( ' ( l .  

, Y 

Since. after the update. the f count is only 1. 110 tree growt 11 oc-curs. I I t c h  st~cw~tcl 

symbol.0. is likewise coded with the 11d1 rontext, and the comts ~ipclatt~l,  1,111, ag:t.i~~, 
c- 2 tbe courrt is not greater thart f after the ttpcfate. I I IP  tltir.4 syrr~lml is t m r l ~ ~ l  w i f , l ~  

the null contest. and this time. after tile uprlate. the 0 c-owlt is 2 ai~rl t 111% f , r ( ~ *  g 1 . o ~ ~  

context [Oil]. Since the RE(' of thr [ O j l ]  context is r~on-r~cyqi.tivr., w e  agaill !-lloosc* 

the null. context for the forrrrh s_\-mLol- 0. The coimts artB upclat,wl a ~ ~ c l  E I ; ~ I ( ' I . ~ * ~ L S  1 , 1 1 ( '  
P - nF;ji PA..+ tvrlLest assipe:! y = 3;:j ti: the sg-:::!id. the [ O / I ]  :-o:jt:*xt ::'o!:l:f 1t;tw' ; L S S I ~ I J { - ( I  

p = 2 / 4 .  tbe difference in cetclt-length being 0.152 bits: i r t  f avc~r  c ~ f  t , l t c b  [(I/ 1 ] c x ~ t ~ l , t ~ x i , .  

Also. because the count for the current symbol is greater t ha11 I at, tltt. fO/  1 ] cwr~i,c.xl,, 

and because its REC is. negative. the [O/'lO/l] context grows, ar.c.nrrlirlg t~ t,lw llis1,or.y. 

Hence after the update. the tree is as s h o ~ i  in Figure H.4. The. final t,rw is sllow~l i r t  

Figure B..Z 



Figure B.5: Final tree for the  s t r i ~ g  10001 1010, TJMC Furlan 



Appendix C 

Estimation Techniques 

1 Introduction 

A fundamental clmracteristic of all learning systems (including I iunla~~ I('i~rilii~~q) is 

the significant dependence of the nature of the inferences made by tile systc~li 011 t , l i ( .  

nature of the training. In this chapter, we will describe several cotn~~ton appro;~clios bo 

the seemingly simple task of estimating a distribution froni a histograni of a s ~ ~ ~ l ) l ( % .  

Usually, when there are many instances in the sample, the task is i+a.sictr. i l owc :vc~ ,  

when there are just a few, as is often the case when we are using lligli orrlcr M;~rlcov 

models, then the task becomes more difficult. For example, assiinling a, 256 sy~iil)ol 

alphabet, having seen just two samples, say 152 and 199, what is oi~lr I,ctsi, gilc!ss f o r  

the probability distribution'? What should be our estimate of thc: pro l~i~l~i l i f ,~  of 1 , l i t '  

symbols that have not occurred'? 

Finding answers to  the previous questions has practical signifit:aric:c-t for st,w,f,isl,ic:ii.l 

data compression. Since we assume that the information cor~veyetl 1)y arl c :vc t~~ t  is 1,I1(1  

negative logarithm of its probability (as in (2.:3)), assigni~ig zero prol~i~l~ility t,v ;I.II 

event leads us to a singularity. Instead, we need to generate "safe", 1,tritt is, ~)osit,ivcb 

and non-zero, predictions. Roberts (1982) calls this t!~e zero frtq11t:ltcy prol)l::ni. 

The discussion that follows is based on (Williams 1991). We will assuinv tl~ai, wcL 

have an alphabet A of size iW. The histogram count for symbol (L is clcmot~tcl l)y ( ! ( a ) ,  

the total count of all symbols seen so far is denoted by C ,  and thc ~ ~ i ~ r r i l ~ c t r .  of syrrll)ols 

with zero frequency (Cfu) = 0) is denoted by z .  



C.2 Linear Estimation 

Lirwar t*sti~r~at,io~t allocates a small amount of probability to all symbols in the al- 

phalwt (whether they have non-zero counts or not) and then divides the remaining 

prol~at~ili ty hetween the sy~nbols with non-zero counts. According to Williams (1 Wl) ,  

it, car1 l ~ e  sl~owt~ that l i i i~ar  estir~lation with X = M is optimal if all possible probability 

tiist,rit~iltions arcA equally likely, but that in practice, X = 1 works the best. 

2 .  General Linear Estimation 

Tlie general linear estimator is given by 

wl~err~ X > 0. The smaller the value of A, the more we trust the histogram to be 

reprwci~tative of the true distribution. The higher the value of A, the more we expect 

a prwio~s ly  u~iseen symbol to appear. 

C 2 . 2  Linear Moffat Estimation 

Linrar hloffat estimation allows the parameter X to vary, effectively decreasing it if 

the I~istogram has a large number of zero frequency symbols, and increasing it if the 

histogram bas a small number of zero frequency symbols. In this way, X is modified 

acwx-cling to the spi kiness or slnoothness of the clistribution, clynarnically adapting to 

tlw c-l~aracteristics of the distribution. 

'I'l~e linear Moffat estinlator is given by 

C.2.3 Laplacian - Estimation 

('lioosing A = I in (C1.1) results in  the familiar Laplacian estimator. As previously 

n~entioned, in practice, this is the best fixed choice for A. 





Appendix D 

Prefix Coding of Integers 

Give11 all integer 71, we would like to form a prefix code. A method for doing this 

(Ftissanen 1989) is described below. 

13acll integer 7~ has a binary representation b(n) consisting of l(b(n)) bits, the length 

of the 1)inary representat ion b(n). However, if the binary representation for an integer 

is folluwetl by the representation for another integer, there is no way for a decoder to 

h o w  when one integer stops and  another begins. One might think of prepending the 

lrllgtll of ~ ( I L ) ,  l(b(n)), to b(7t), but that results in the same problem - except that the 

length is smaller than the original number. Continuing in the same way, we end up 

with a mo~~otonically decreasing sequence of integers as in Table D.1. The problem 

is how to encode the srnallest one. One solution is to let a stored integer j indicate 

that the next. j + 1 positions contain the next length indicator. The resulting prefix 

codt. I L ? ( ~ )  for solne s~nal l  integers is shown in Table D.2. 

A sirnple e~~cocler that outputs the prefix code for the integer p from left to right 

is given Iq 

Table D.1: Attempt at forming a prefix code for tbe integer n = 10256 
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'T~JP It~t~gt,l~ of a prefix-coded irlteger can be show11 to be 

wlterc: the sum ir~cludes all positive terms and c~ is a constant so that the Kraft 

i~leqnality is sat,isfied with equality, CI( = 2.865. 
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