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Abstract

Traditionally, Markov models have not been successfully used for compression of signal
data other than binary image data. Due to the fact that exact substring matches in
non-binary signal data are rare, using full resolution conditioning information gener-
ally tends to make Markov models learn slowly, yielding poor compression. However,
such models can be successfully used for non-binary signal data compression by vary-
ing both the resolution and the order of the conditioning information. In contrast
to variable order methods, the overall model complexity (the number of states) is a
function not just of the order but also the resolution. In the adaptive Markov algo-
rithms proposed, the resolution and order are continually adjusted to minimize the
codelength of the past samples in the hope that this choice will best compress the fu-
ture samples as well, a technique inspired by Rissanen’s Minimum Description Length
(MDL) principle. Performance of this method meets or exceeds current approaches.
Traditional techniques for adapting order 0 models to non-stationary inputs can be
used in the order 0 component of the variable resolution/variable order models, or
a new method of order 0 adaptation, which is presented, could be used. Splitting a
non-binary input signal into a number of lower resolution subgroups is also explored
as a technique to accelerate learning in Markov models. The common non-binary
image compression technique of Gray coding the input data before splitting into bit
planes for subsequent coding is analyzed and a non-binary pseudo-Gray code is pro-
posed which can yield slightly better performance than the standard binary Gray code

method.
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Chapter 1
Introduction

Data compression is becoming more and more important. In view of the growing
multimedia industry, compression of still images, video, and audio now merits extra
attention because the classical techniques fall far short of the performance that can
be obtained using a system optimized for compression of these data.

This thesis explores adaptive Markov modelling of signal data. For concreteness,
particular attention is given to the task of lossless still image compression (or, equiv-
alently, lossless intra-frame video coding) but is also applicable to the compression of

all kinds of signal data.

1.1 Data

First, a definition of what is meant by data. One way to categorize data is into two
groups, text data and signal data.

Text data appears in the form of machine- or human-readable strings, one example
being a sequence of integers, each of which corresponds to a letter or symbol in a finite
alphabet. Another example is the machine language used by a computer, perhaps in
the form of an executable object code file. Much of the classical research in data
compression was done with the goal of text compression in mind.

Signal data, on the other hand, is assumed to be formed by quantizing samples
of a physical process. Examples of signal data are digitized images or sounds, or the
digitized output of a pressure gauge.

One notable difference between signal data and text data is the absence of a
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reasonable distance measure for the latter. Whereas one can say conclusively that the
two real numbers 1.2 and 1.3 are separated on R' by 0.1, it is more difficult to agree
the distance between two words “airplane” and “planar”, or even the two letters “a”
and “p”. Consequently, there is no conventionally accepted signal-to-noise ratio for
text data.

Williams (1991, pages 95-98) puts it another way, saying that the difference be-
tween a signal compressor and a text compressor is that signal data assumes an
ordering. If a deterministic one-to-one permutation were applied to the source, a text
compressor would perform identically, whereas a signal compressor would perform
worse. [or example, if everywhere in a sample of text data, we substituted the char-
acter “e” for the character “k” and vice versa, an adaptive text compressor would
compress the resulting sample to the same number of bits as the original. If, however,
given a signal data source, we substituted the value 10 for the value 1000 and vice
versa, we would expect a signal data compressor to react quite differently. This is
because conventioual signal compressors depend on the input being a slowly moeving

process, that is, one with a high correlation between temporally or spatially adjacent

symbols.

1.2 Compression

The goal of data compression is to reduce the number of bits needed to either store

or transmit data, either losslessly or with some loss.

1.2.1 Statistical vs Dictionary Methods

There are probably hundreds of different methods of compression, but most can be
classified into two methods: statistical or dictionary.

Statistical coding 1s the class of data compression algorithms in which explicit
statistical models of the data source are either assumed or are determined from the
source and are used to assign probabilities to symbols in the data to be compressed.
The overall optimal codelength for an input with respect to a particular model is the

sum over all the input symbols of the negative logarithm! of the probability assigned

'All logarithms in this thesis are assumed to be base-2 logarithms and will be denoted by log.
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to each symbol. Arithmetic codiug (Langdon and Rissanen 1981) is a well-known
technique used to convert the sequence of probabilities into a sequence of bits that
can be then either transmitted or stored. The central task in statistical coding,
therefore. is the construction of models that represent the source data well. One
example of a statistical method is the Universal Markov Code (UMC) (Rissancn
1986a). Additionally. techniques like differential pulse code modnlation (DPCM) and
adaptive DPCM {ADPCM) can also be considered statistical methods becanse the
coefficients of the (adaptive) linear predictor are determined from the statistics (the
empirical autocorrelation function) of the source being coded or from the statistics of
a set of sources of which the source being coded is thought to be a member.
Dictionary methods replace sequences of characters with indices into a dictionary
and so form a class of algorithms distinct from those that build statistical models.
Whereas dictionary methods exploit the same redundancy in the input data as do
statistical methods. they do so without estimating symbol probabilities or sonrce
statistics. However, relationships exist between the two classes, and statistical meth-
ods can be made to emulate dictionary methods at the cost of higher compntational
burden (Rissanen 1983b). The most well-known dictionary method is the Ziv-Lempel
compression algorithm (Ziv and Lempel 1978). This method is used in the popu-
lar UNIX program compress. Also, perhaps one of the earliest data compression

methods, run-length encoding, can be considered a member of this gronp.

1.2.2 Lossless vs Lossy Methods

Another way to classify compression methods is by the fidelity of the reproduction.

Lossless compression means that if the input is compressed and then subsequently
decompressed, the resulting output is exactly the same, bit for bit, as the inpul.
In general, for text data, we are interested in lossless coding because, as mentioned
previously, there is no conventionally accepted difference measure for text data. In
some signal compression applications, as in the compression of medical imagery or
other medical sensor data, no amount of loss, measurable or not, is acceptable. Thus,
there is a need for lossless ceding of both signal and text data.

However, in a large number of applications of compression of signal data, some

amount of loss is acceptable. Such loss is incurred either when the chaunel strictly



CHAPTER 1. INTRODUCTION 4

limnits the rate or when 1t 15 simply desirable to achieve the highest compression at
a given acceptable fidelity. Among such applications are the compression of non-
critical consumer signal data {still images, video and audio, for example) for storage

or transmission. Lossy methods are not really applicable to text data compression.

1.3 Performance

Two types of performance measures will be used in this thesis. One relates to the

compression of the input, and the other to the fidelity of the reproduction of the input.

1.3.1 Compression Performance Measure

Because we will be dealing primarily with images, the compression measure used will
be bits/pixel (bpp). For an input image consisting of N 7-bit pixels and an output of
size A {in bits), the compression will be reported as #/N. This performance measure

is equally applicable to lossy or lossless coding.?

1.3.2 Fidelity Performance Measure

Despite the well-known fact that the signal to noise ratio (SNR) is not a perfect fi-
delity measure, it is used prevalently. Especially for images, some visual artifacts do
not significantly alter the SNR but are quite obvious to the viewer. Conversely, other
artifacts are virtually imperceptible but cause a large change in SNR. Nonetheless,
for lack of a better measure, and to use a measure with which we are all comfortable,
fidelity will be expressed in terms of SNR. Situations in which this measure is inap-
propriate will be noted. Of course, this performance measure is meaningful only in

the realm of lossy coding.

?Another measure is the compression ratio, 3/Nr. This measure is less common but is actually
more useful for comparing methods because it maps the performance into a positive number inde-
pendent of the entropy of the source. Using this metric, smaller values represent better compression,
a value of 1 represents no compression, and percentage differences between methods can be more
easily read. In this thesis. however, we adhere to the convention in the image compression literature
and will report compression results in bits/pixel.
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1.4 Goals of this Thesis

1 of the work presented in this thesis is the compression of signal

k8

data. specifically images. using variable order and variable resolution adaptive Markov
models.

Adeptive Markov models start with no information about the source and grad-
ually build up estimates of the conditional probability distribution by maiutaining
histograms. Care must be taken to choose the right couditioning information and
the right order model as a function of time because the accnracy of the probability
distribution estimate varies with the number of sample processed and the order of the
conditioning information. We will call this the learning problem for adaptive Markov
models. Variable order adaptive Markov models have been used quite successfully for
text data compression because they overcome the learning problem by starting with
low order models and by gradually working up to higher order models.

However, adaptive Markov models have not been the method of choice for com-
pression of signal data except for the compression of black and white images (Langdon
and Rissanen 1931). Because the conditional probabilities are estimated based on the
frequency of exact matches in the input data, and since exact matches are harder to
find in signal data, these techniques do not work as well on signal data as do otlier
approaches.

Indeed, signal data is usually losslessly compressed by subtracting a prediction
of the signal from the signal and transmitting the residual, as in DPCM (Gersho
and Gray 1992, pages 206-211). Linear prediction is designed to minimize the error
between the signal and the prediction, so that the transmitted signal has lower energy
than the original signal. The prediction need only be close to the actual value to get
coding gain. Hence, this method works well for signal data because it does not depend
on finding exact matches.

As will be shown in this thesis, however, if we do not look for exact matches,
but rather look at reduced resolution matches, the effectiveness of adaptive Markov
models on signal data is greatly improved. It will be shown that using reduced
resolution conditioning information is similar in intent to variable order adaptive
Markov modelling in that it speeds up learning the source statistics. By exploiting

g 1

the fact that there is a distance measure for signal data, we can vary the resolution of
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the conditioning information giving us an even finer control over the number of states
g 2

in the mmodel.

A sccondary goal is to investigate and extend the technique of splitting a non-
binary input into separate sources called bit planes, each of which has one bit of
resolution. This technique involves pre-coding the data with a binary Gray code
prior to splitting into bit planes. The effect of this pre-coding on subsequent Markov
modelling is analyzed and we propose a non-binary pseudo-Gray code ihat allows us to
split an input into planes with arbitrary resolution, preserving relationships between
bits that may be useful for increasing compression performance.

Most of the emphasis will be placed on lossless coding, as this presents itself as one
of the more natural results of Markov modelling. Additionally, we will be concerned
almost exclusively with natural image data, as this is currently one of the major

applications of signal coders.

1.5 Organization of this Thesis

This thesis is arranged into 8 Chapters. Chapter 2 provides information on some
theoretical background of signal data compression. The concept of adaptive Markov
modelling is presented and the learning problem for both text and signal data is de-
scribed. The chapter concludes with a discussion of the minimum description length
(MDL) principle which is central in overcoming the learning problem and understand-
ing both existing techniques and those described in this thesis. Chapter 3 gives a brief
survey of current work in the field of Markov modelling for data compression, focusing
on how variable order techniques have attempted to solve the learning problem for
text data and how these methods fall short when modelling signal data. Before de-
scribing methods for overcoming the learning problem for Markov models and signal
data, Chapter 4 presents a new method of order 0 adaptation and gives a simple first
look at how useful it is for a model to monitor its own performance and adjust itself
accordingly. Chapter 5 presents the concepts of auaptive variable resolution/variable
order modelling for lossless coding of signal data, showing that adaptive Markov mod-
els can be effectively used on signal data. Chapter 6 presents one of the traditional
methods of overcoming the learning problem in Markov modelling, namely, splitting a

signal into bit planes. and extends this idea to bit groups of arbitrary size. Chapter 7
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presents applications of the work in adaptive Markov modelling to the task of stgnal
prediction and then describes distortion-constrained DPC'M (DC-DPCM). which can
be considered a recursive Markov model. Chapter 8 summarizes the work contained

in this thesis and gives suggestions for further research.

1.6 Contributions of this Thesis

The main contributions of this thesis are

e coding a non-binary signal data input by simultaneously varying the resolution
and order of the conditioning information in a Markov model, using as a guide

the local performance of the sub-models

e splitting a non-binary signal data input into planes containing more than one
bit using a non-binary pseudo-Gray code, and passing the resulting bil groups

to a variable order model

e using a function of the derivative of the per-symbol codelength of an order zero
histogram model as the histogram count decay to counteract order zero non-

stationarity



oo

Chapter 2
Background

This chapter gives background on some basic concepts required for a discussion of
statistical data compression. We will discuss the decoupling of the model from the
coder, and the justification for doing so, namely, arithmetic coding. Background on
Markov models will be presented including a description of two forms of adaptation,
the construction of adaptive Markov models from a source, and most importantly,
the Markov model learning problem. The specific problems of using Markov models
for signal data will be presented as motivation for the work in this thesis. Finally, a
section will be devoted to the minimum description length (MDL) principle and to the

idea of stochastic complexity. both of whiclh will be useful in the following chapters.

2.1 Adaptive Modelling and Arithmetic Coding

Before proceeding. some notational conventions need to be explained. First, a string

r of length N is composed of a sequence of symbols z; for 1 <7 < N:
I = IyIyT3 - IN , (2.1)

and the substring consisting of the first ¢ symbols of z is denoted by z!. With this
definition, 2% can be used interchangeably with z. Second, we will follow the conven-
tion of using upper case letters for random variables and lower case for specific values
of those variables where necessary for clarity. Usually we will just use the lower case
letters and assume the reader understands when we are referring to random variables

and when we are referring to specific instances of them.
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Given two random variables X and Y. we are interested in quantifving the amount

of information conveyved by a particular outcome y of ¥ about ihe outcome o of .
If X and Y are independent. then we get no information about X given the ontcome
of Y. If, however. the random variables are completely dependent. then the onteome
of Y tells us exactly the outcome of X. and so the only information conveved by
that outcome is whatever information would have been conveyed by r. Oue wayv of

quantifying the amount of information is then

, P(xly)
Hxiy) = log —— | 2.2
(v:y) = log Plr) (2.2)
which is called the mutual information.
As desired, when the random variables are independent, P(X = ]} = y) =

P(X = z) and [{x:y) is zero. Whenever P(X = &|¥ = y) is different from P(N =
z) some information conveved. Finally, when the random variables are completely
dependent, P(X = r|Y = y) = 1 and the mutual information is log 1/P(r), the
information conveyed by the outcome z alone. This special case does not depend on

y, and is called the self information,

H{zr)=log — = —logp(x) . (2.9)

With this definition of information, a high probability event conveys less information
than a low probability event. While the choice of the measure is somewhat arbitrary,
it is intuitively attractive and it is this definition that forms the basis of statistical
data compression.

In statistical compression, we are able to decouple the model from the coder as
in Figure 2.1. The only means by which the model and the coder commumnicate is
via symbols and symbol distributions. The model accepts a stream of sonree symbols

and at each time t generates the distribution
Plregs|(ze = o(«'))) (2.4)

for all ;21 € A, where A is the source alphabet and o is a function that chooses some
set of symbols from the entire past sequence as the conditioning information or the

contezt z;.' The coder accepts this distribution and a source symbol and codes the

'The notion of a function o that generates the conditioning information is based on {Rissanen
1986a} in which it is called the “sorting function” {see Section 3.1.4 for more details).
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chanmnel source symbols
coder coder
7y 7
> nodel model €
distribution distribution

ure 2.1: Statistical data compression

symbol with as close to log P{x.41]z,) bits as possible. per the quantitative definition
of information (2.3). The coder produces a stream of channel symbols. Let us consider

each part separately.

2.1.1 Arithmetic Coding

Arithmetic coding is the technique that allows the decoupling of the model and coder.
Given a string x' composed of symbols taken from a finite alphabet A of size M, and a
model that predicts the probability of each symbol in the alphabet, arithmetic coding
represents the string as an interval. I, of real numbers in the range [0.1). The size of

the mnterval 1s the probability of the string

P2y =] Plzipalz) (2.5)
=0

given by the model. The message. (. is the sum of the probability of all strings of
the same length that precede the current string in the lexical order of the strings
{Langdon and Rissanen 1931} with the probability of the null string being zero.

The algorithm starts with an interval of size 1.0 and, as each symbol from the string
is ceded. the interval gets smaller in proportion to the probability of the symbol as
given by the model. More probable symbols reduce the size of the interval less than
less probable symbols. and hence add fewer bits to the message, C.

As an example, consider ail possible 3 bit sequences generated by a source that

emits zeros with probability p; = 1/3 and ones with probability p; = 2/3. In Fig-

[oS—y

ure 2.2, the range [0.i] is broken into eight intervals, each one corresponding to a

unique 3 bit source sequence. The sequence ~1117 is the most probable (p = 8/27)
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Figure 2.2: An example of arithmetic coding

and its interval is the largest o w intervals. On the other haud! the sequence

“0007 is the least probable {p = its interval is the smallest. Sequences with
equal probability have equal-sized intervals.

Since both the encoder and decoder have the same probability model for the source,
only the interval corresponding to the source seqnence needs to be transmitted. This

. Ay value would do, but

is done by transmitting a value that falls in the interva
since the goal is compression. we of course transmit the value with the fewest digits
its binary representation. Smaller intervals will require more bits to specify and larger
intervals will require fewer bits to specif_’. so arithmetic coding achieves compression

v assigning long messages to infrequent source sequences and short messages to
frequent source sequences.

To define arithmetic coding more rigorousiy. let

= (2.6)

Iigi=1 (2.7)

indicate the initial conditions of the message aud the interval. For any new symbol
z:+1 and previous string x*

Hefryy = HePleglz) (2.0

DN (2.9)

We see that each new symba% £y reduces the interval in proportion to the probability

of the symbol, Plr,. 1}. As stated previously. any munber in the imterval is a valid

{2.10)
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string £ must be coded

. -

sent the message € grows with the ?e*i'igﬁs of r'. However. these g)roi)?ems are not

19571 have mmplemented

unsurmonntable. For example. Witten, Neal. and Clearv
a practical fixed-precision arithimetiec codec with incremental transmission and re-

ception. There also exist variants that avold the mu?i%piif tion operations inherent

in arithmetic coding ¢ Rissanen and Melhinddin 1989: Langdon and Rissanen 1931),

reducing the commitational resources reqguired. i disadvantage of arithmetic
coding {and all non-immediatelys decodable ¢ at matter} is that a single bit
error in the coded arith-
metic coding {Teuhola and Raita 19913 avoids this problem by sending codewords of

aied overhead. this method mav in {act be

woth bit error rate and compression ratio} 1o an dlﬂhi]]f’tl(‘

ey

equivalent in performance |

coder followed by an error correcting coder.

2.1.2 Adaptive Modelling

New that we know that an arithmetic coder can come arbitranily close 1o the entropy

of the souree model. the real problem in statistical dala compression becomes deter-

muning the model. The following sections will deseribe one class of models. Markov

1

mmftvfs. which can be ef generate low conditional entropy distribu-

trons.
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A finite. diserete-time Mar

of ¢ states numbered [ thros . is
at a particular state s. and at the pext moment. the chain changes state according
to a set of probabifities £ . chain = in state 7 3t will change to

robabilitios are constrained so that

state 7 with probab
- .pg‘; = T]_p !’ =1

Lo S &

Markov souree 1s essentially

change, a unigue symbol be

A Markov model is
sotiree, it has a set of ov model as an
Known sonrce
sy other
Langdon and Rissanen 19515 we miake
the stmph‘“ a Markov souree s determined by the

This techuicaily makes the Markov source o fimte

previous symbc:%s it has e

e Lhe terms state and

uwn
o

context autormaton. bt for convenlence, 1n this thesis we will

context interchangeablyv. i corresponding Markov moded s 0.
The first problem i M s determining the nusber of states

the Markov model. The next problem is detenmming the transition probabilities
Assuming that the source is in fact 2 Markov source, solving these two problems
allows us to compress the sequenee of svmbols emitted by the Markov source down 1o
the source eutropy. Even if the data generating mechanism > not & Markov source,

modelling it as such may allow us to effect

Adaptive Models

s nnnecessary (o perforim a pre-scan of

the data. and no side information meed be sent. This Is appropriate for compressors

omnnication system, for example)
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Witliams (1991 ) devotes much effort 1o rigorously defining adaptation. Asit will be

used in this thesis. a2 summary of his terminology, tailored for appiica.tion in particular

to Markov models, follows.

Context Adaptation A model can use counts of the number of times each symbol
in the alphabet has appeared in a particular context, and from these make an estimate
of the pmbahii ty that the source being modelled will emit each symbol when in that

es these counts as the Input is processed, it is said to be

context. If the model chan
contertnally adaptive. I the count for a symbol 1s simply incremented each time the
symbol appears in the context, the model is said to be asymptotically adaptive. If,
on the other hand. the counts in a context only represent the frequeucy of occurrence
chiring the last b svimbols, the model is locally adaptive. Local adaptation can also be
achieved by decaying the counts so that more recent samples have more influence on
the model than less recent samples. One method is to increment the count of each
unew sample while simulianeously decrementing that of the & most recent symbols.
Alternatively, each time 2 new sample arrives, all the counts are first multiplied by a

FE, .
mo5/E nd then the count for the current svymbol i1s incremented. The

coltstant & = €

parameter k is the half-life of the sample. which is the time (in samples) before the

effect of a sample becomes half that of }*e current sample. This method requires a

lot of caleulation. which may not be practical. so the decayv could be done at a larger
.

interval than every sample. but with a smaller half-life. Alternatively. the decay

operation could be done only when a count reaches some threshold.

Structural Adaptation A model that alters its structure {its order, for example)
based on the nature of the tuput is said to be structurally adaptive. One exampleof a
structurally adaptive algorithm is UMC because it is a tree-structured algorithm and
has defined growth rules based on the performance of the model on the input. {See
Appendix B for details of the operation of the UMC algorithm.)

Context adapta‘cian and structural adaptation are interrelated. The goal of context
adaptation is to counteract any non-stationarity within a context, but the contexts

4

ft el structure. It may be that the struciure is correct but that the

are part of the mode
data generating mechanism is non-statioparyv. Or it may be that the data generating

mechanism is stationary. but that the structure of the model is incorrect. In both
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-

cases. the statistics at each context appear non-stalionary. necessitating the use of

z

context adaptation.

Constructing Markov Models

The most important factor to consider in constructing a Markov model is the choice
of the conditioning information: i.e.. choosing the function o in (2.4). Choosing the
function o corresponds to choosing the number of states ¢ in the Markov model and
also to what those states correspond. For example, if the function o alwavs maps
the previous string z* to the previous symbol r; so that the context =, = ., then the
model would realize the conditional probability P(a;4;]r): this would be the standard
order 1 Markov model.

An estimator for the probability P(r, 1z(r")) is the number of thines cach symbol

in A occurred in each of the @ confexts

W P L 1<t
Plrialz)) “(—;3‘%“) (2.11)
C i =) ,
—— (2.12
) (2.12)

where the notation ('((} is the number of times the event ¢ has occurred 1 the past
string . Hence, the estimate of the probability distribution for a symbol gy in a
particular context z; is the number of times the symbol ry; oceurred in the same
context z, in the past string. divided by the number of times the context =, oceurred
in the past string. The approximation is based on the assumption that from one
sample to the next, the data generation mechanism does not change much and so the
conditional distribution in the past is a good guess {or the conditional distribution
for the sample to be coded. Note that given the counts ("(ryy, 2 ) and C(z). there
are several methods of estimating the distribution P(r,.3]z). some of whicly are de-
seribed in Appendix (. The main concerns are that sum of the probabilities in the
resulting distribution is unity. as required by the defiuition of a random variable, and
§7...1

zero probability, as required by stalistica

[

that no symbol or context gets assigne
data compression. Unless otherwise noted, the non-linear pmf estimator deseribed i
Section C.3.1 will be used in all models in this thesis.

To make the previous discussion a bit more concrete let us return to the order |

model just described. For each symbol in the alphabet we would maintain a count of
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the number of times that symbol appeared in every one of the A possible contexts.
Based on these counts and using one of the estimation techniques we could generate
a probability distribution for each symbol x,4, conditioned on the previous symbol

I,

The Learning Problem

As previously meniioned, the choice of the function o an important one. Let us
consider for the moment only how the model order choice affects the accuracy of
the adaptive Markov model constructed from the source. We will assume that o
merely chooses the last n symbols from the past string as the context. This particular
function will be called the id. ntity permutation of order n.

Consider adaptively modelling a sample generated by an unknown stationary
source. We present the same sample to an order 0 model and to an order 1 model.
The order 0 model approximates the order 0 statistics

Clxe41)

2.13
: (2.13)

Plzi41|0) = Plzen) &

where ) indicates no conditioning information. Similarly, the order 1 model approxi-
mates the order | statistics by

C(-'L'H—Iart)

i) (2.14)

Plregrfa) =
A histogram bin for an event ( that occurs with probability p = P((), counts the
number of times the event has occurred in ¢ trials. Hence the count in the histogram

is binomually distributed.
e i . oL
PIC =k) = i (1 —p)F, (2.15)

and has an expected value E{C) = ip.

For the order 0 and order 1 models described above, the counters C{z,;1) and
€’(r;} are binomial random variables with probabilities p = P(x;41) and py = P(z,),
respectively. and the counter C{r;yq.x;) is binomial with p; = P(zyy1,2:). It is
signiticant to note that. despite the fact that the order 1 model approximates the

couditional distribution. it must do so by first approximating the joint distribution.
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Iayy.d) and O, are ip
and tpg, respectively. Since the value of the counters are integers, it is possible that p,
is siall enough that after # samples the expected value of the counter /py is less than
one. In fact, it may be that it takes many more than ¢ samples before the even one
instance of the pair {r;;;.x¢) occurs. However, in the same number of samples, it is
possible that {pg 1s greater than one. Continuing with this reasonme and remembering
that, for any events (; and (. P((3-¢) < P((). it will always be the case that the
histogram bins corresponding to joint probability will never have greater counts than
the bins of the corresponding marginals. Because this is the case. the lower order
joint probabilities will usually be more accurate than the higher order ones.

But what do we mean by accurate? A measure of the difference between two

distributions is their cross entropy

Dip,llpa) = =3 p(C) log pa(() (2.16)
¢

where p, is the “real” or actunal distribution and p, s the approximatioun. If the dis-
tributions are identical. the cross entropy is the entropy of the distribution. However,
if the distributions are different. the cross entropy is always higher than the real dis-
tribution. We of course want the approximation to be as close as possible to the real
distribution, so that cross entropy is the same as the source entropy. This means the
approximation is doing as well as possible.

In the context of the current problen, let us define then py, and py., as the real
and approximated order 0 distributions and py , and py , as the real and approximated
order 1 distributions. We will assume that the source is stationary so that the real
distributions do not change with time. The approximated distributions, however,
are recalculated at each time ¢ based on the past symbols. If we can determine the
expected value of cross entropy at any time ¢, we can deterniine how well a histogram
is modelling the distribution at that time, and with this information make a sensible
choice when to use the order 0 model and when to use the order I model.

If we let D(t) = E(D{p.lip.)) be the expected value of the cross entropy at time

1, then the expected valiue of the codelength at time ¢ is given by

[
Lity=> D). (2.17)
=0
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As before, the approximation 1s based on a histogram, and is really a random
variable p,(() = ~—€—‘1 where 1 is the number of samples seen so far. C'(() is a binomial

with probability p. ().
. ¢ -k -y 518
PIc =k = | ) plc) =m0 (2.18)

Substituting this expression into (2.16) and taking the expected value results in

‘ C(¢ .
E(D(ppe)) = El= Y pdQ)log ) (2.19)
=~ (0)Elog ) (2.20)
i ; ]
[y ~yyE—k v 9 <
= “’Zf)r{ Z pr(€ (1 —p.(€)) log? . (2'21)
¢ k=0 \k
The cross entropy approaches the entropy with increasing . Ast — oo, E(log 9@) —

Pr(() = log Pr(@}

I‘he optimal model order. n. that should be used to code the input after { sam-

log

ples have been seen depends on the distribution and ¢. This author knows of no
distribution-independent function for determining the optimal order. Solving this
problem is what motivated the development of the variable order techuiques described
in (‘hapter 3. For instance. the UMC algorithm tends to use low order models at the
beginuing of a sample and work up to higher order models as more samples are seen.
This works better than just using a high order model because high order models yield
uniform predictions {which are bad unless, of course, the underlying distributions are
uniform} until enough symbols have been processed.

Another traditional method for dealing with this problem is splitting the input
into bit planes and coding them separately {Joint Bi-level Image Experts Group 1992).
Due to the smaller alphabet size. the probability is distributed among fewer symbols
and the counters for those svmbols tend to accurately represent the actual probability
mwre quickly. However. the probability distribution that is being estimated is for the
plane only. and ignores any relationships between the planes. So, while such models
learn quickly, their resulting codelength can be higher than a model that takes into

account the relationship between the planes, if such a relationship in fact exists.
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Both the variable order approach and the bit plane approach will be extended

n this thesis for tl

e

ata compression.  The variable order
approach will be augmented by variable resolution conditioning information and the
bit plane approach will be extended to planes of higher resolution.

Now that we understand the learning problem in terms of model order. let us

consider the learning problem in terms of the resolution of the input data.

Markov Models and Signal Data

As previously noted in the introduction, the current vpinion (Williams 1991, page
96) is that Markov models are inappropriate for all but binary signal data. This
opinion is based on the very real fact that when we are doing Markov modelling,
we are looking for exact matches in the data, having made the assumption that the
state of the Markov source can be determined by the past n symbols it emitted.
However signal data is the result of quantizing measurements of physical processes.
Quantization adds noise, and measurements are inherently noisy representations of
physical processes that have infinite resolution. The learning problem deseribed in the
previous section is exacerbated because the alphabet size A is essentially increased,
but no information is added to the signal. Consider the case of binary data corrupted
by white Gaussian noise; for example, if one were to digitize to 256 levels of grey a
black and white photograph of a text-only facsimile. Suppose we know that really
there are only two levels in the generating mechanism, Lut due to the measurement,
we end up with many more, up to 256. Each histogram in each context will thus see
correspondingly fewer samples and will take longer to gencrate accurate probability
estimates.

Traditionally, DPCM (Section 3.1.7) has been used in an attempt to separate the
mput into signal and noise. Only the residual is coded, so that the model only has to
deal with information that cannot be easily represented by a linear model. Iy later
chapters we will see that there are other methods, and this thesis presents some new

methods.
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2.2 Complexity

The following sections take us through the derivation of the minimum description
length and stochastic complexity. In the sections that follow, the MDL principle will
be seen to be the basis for several good data compression algorithms from which the

new techniques described in this thesis are derived.

2.2.1 Minimum Description Length (MDL) Principle

The Minimum Description Length (MDL) principle (Rissanen 1983b) states that the
best theory to explain a set of data is the one that minimizes the sum of the length
of the description of the theory (the parameters) and the length of the data when
encoded using the theory. Li and Vitanyi (1992) derive the MDL principle starting

from Bayes’ rule:

P(DIH)P(H)
P(D)

where H is a random variable that represents possible hypotheses to explain the data.

(2.22)

P(H|D) =

The distribution associated with H. P(H), is the prior distribution and represents
what we know about the truth of each of the hypotheses that form the support of H.
D is the observed data that is explained by the hypothesis /. We want to choose the
hypothesis H such that the a priori probability P(H|D) is maximized. Taking the

logarithm of both sides results in
—log([(H|D)] = — log[ P(D|H)] - log[ P(H)] + log[P(D)] . (2.23)

The term P(D} is some constant we don’t know, and can’t know, and can be ignored
for the purposes of the maximization. Maximizing P(H|D) is the same as minimizing

— log[P(H|D)] and an equivalent problem is thus to find the minimum of
—log[P(D|H)] — log[P(H)] . (2.24)

The first term, — log[P{D}{H)]. is readily seen to be the codelength that would be
assigned to the data using the hypothesis H. Applying the same logic, the second
term would then be the codelength of the hypothesis H. But what does this mean?

In the original approach by Solmonoff (1978). H is. in general, a Turing machine;

however, to get a computable result, Rissanen (1986b) assumed that H is some model
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H(O) with a set of k parameters, © = {#,.8,,...6;}. where the number of parameters

may vary and influences the codelength of the model description.

2.2.2 Stochastic Complexity

If we replace the hypothesis H with the parameter vector © in (2.21), the quantity

to be minimized becomes
~ log[P(D]©)] — log[P(O)] . (2.25)

The second term corresponds to the model cost, and (Rissanen 1933a) determined
that to encode the k parameters in an optimal way requires £ log n bits, where n is

the number of observations in D. The minimization then becomes

k
MDL = 1gip —log{P(D|O)] + 5 logn| . (2.26)

This form of the minimum description length is also called the non-predictive stochas-
tic complexity, [, x) (Rissanen 1986b).

To summarize, the stochastic complexity is the shortest codelength for the entire
observation sequence relative to a model class and, as such, is an approximation to the
algorithmic complexity (Kolmogorov 1965), a inore involved notion of which represents
the length of the smallest input tape that will produce the string when applied to a
universal computer. For the stochastic complexity, the model class is not the set of
all possible programs for a universal computer, but rather a set of distributions. This
makes the stochastic complexity computable, unlike the algorithimic complexity (Li
and Vitanyi 1992).

However, Rissanen (1989) warns that choosing the model family, a step that cannot
be automated if the non-computability is to be avoided, has a significaut effect on the
resulting stochastic complexity. For some problems, the choice is evident, but this is
not so for others. On one hand, we would like the model class to be large so thal we
test many different models; however, the more models we have in the class, the greater
the danger that the best model may fit only the sample and not the data source (which
may not be adequately represented by the sample}. This is similar to the situation
where a neural network remembers the training set but cannot generalize. On the
other hand, choosing too small a family will result in not being able to characterize

the data well, unless we have prior knowledge of the data generating mechanism.
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Predictive coding means we model the conditional density for the possible values

of the next observation ;51 as
- t &
fk,é(t)($t+ll$ ) (2-27)

where O(1) is the £ component estimate of @ based on the string z'. Since the estimate
for the parameters is only based on the past string, the parameters do not need to
be coded and sent as side information. Adding all the codelengths for the string = of

length n results in

—

n—

Lizlk) = — Y_ log[,

t=0

oz lzh)] (2.28)

1

which can be minimized with respect to k to get the optimal model order Il(n)
For each value of k above, the estimate of the best O(t) for encoding the next

observation is the value that minimizes

— S loglfolile)] (2.29)

i=0

That is, it minimizes the codelength of the previously seen string. This is based on
the hope that the predicted distribution is like it was in the past. This minimiza-
tion requires an estimate for (:)(O) that is equivalent to the specification of a density
function, f(z;), for the first data point.

The minimized codelength is not complete because the decoder does not know the
value k chosen by the coder using (2.28). This parameter can be coded using a prefix
code, which requires a length of log™ k + log cx bits (see Appendix D).

The semi-predictive stochastic complexity of the string x is then
l,(z) = mkin{L(;r}k) +log™k +logex} - (2.30)

It 1s called semi-predictive because the estimate for the parameter vector at sample
t+1 is made based only on the past string, z* and so does not need to be transmitted.
Thus, the term glog n does not appear in this expression. However, the order estimate
k is based on the entire string x, and hence needs to be transmitted as side information.

If we let k(f) be the value of k that minimizes

t—1
L{z'|k) = _Zlog[fk,é(;)(;zi-mlf)} ) (2.31)
=0
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then the predictive stochastic complexity is
n—1 )
Lz ==Y log fiy .o il . (2.32)
t=0

with £(0) = 0 and ©(0) = A, where \ is some initial set of model parameters. In the
predictive case, we are given x one sample at a time and we gradually build up the
estimates for both the optimal model order and the optimal parameters. Since no side
information is needed, predictive stochastic complexity is a particularly useful concept
in coding. The predictive stochastic complexity can be shown to be an asymptotic
approximation to the stochastic complexity for ergodic sources (Rissanen 1989).
Instead of minimizing based on the entire past. Furlan (1991) lets &(¢) be the value

of k that minimizes
-1

L(z'|k) = = 3 log[f o(xin1]47)] (2.33)

i=t—q
for some value of the history size ¢. This results in a form of local adaptation.

To make this more concrete, let us consider the special but common case of a
Markov source. Given an alphabet of M symbols, an order 0 Markov source is com-
pletely defined by its M transition probabilities. This source has only one state,
or, equivalently, it has only one context, §. Similarly, an order 1 Markov source, in
which the state is defined as the previous symbol, is characterized by A% couditional
probabilities. For the general order 7 Markov source with the state defined as the j
previous symbols, the source is characterized by M7 conditional probabilities. In all
these cases, the parameter vector we seek to estimate is the set of conditional proba-
bilities that characterize the source. For the general order j Markov source, © would
be a M’ element vector.

Since the definition of the stochastic complexity assumes that a model class has
been chosen, the maximum likelihood estimate for the codelength at a particular
model order is a known function. For a Markov source, the maximum likelihood
estimate for the set of conditional probabilities at a particular state is known to be

the frequency each symbol was emitted at that state divided by the number of times



Chapter 3

Survey of Current Methods

This chapter is a survey of the current dat

iy

thesis. First the set of methods will be described and then i
a comparison of the perfurmance of the methods on the test set isee Appendix A) is

presented.

-

3.1 Description of the Methods

3.1.1 Ziv-Lempel

i1 the o

we

While the Ziv-Lempel family of compressors {Ziv and Lempel 1878} 15 "ategory

of dictionary techniques rather thaw statistical techniques. 1t 15 u<eful to inclnde it in

72

this discussion because it Is currently the most popular method for general purpose

data compression.

The algorithm maiutains a dictionary of substrings and compresses by transmitting

an index into the dictionary tnstead

As noted previously. sinece this method. like many current statistical methods,

looks for exact matches tn the previ
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which each symbol in the source occurs and the associated occurrence counts. The

contexts are subsets of the past string. are of varying size. and overlap cach other.

What is unigue about this algorithm is the sorting function. ol which permutes
the past string r'into a %ring = whose elements are in decreasing order of importance
to the prediction of the following svmbol. Each string = thus defines a unique context.
This feature differentiates the algorithm context from block models and allows one to
best take advantage of any knowledge of the structure of the input data. For example,
the identity permutation of the string =¥ is the string = = ro_yr_or_y---. This is
an appropriate s sorting function for a one-dimensional seqnence whose autocorrelation
finction decreases monotonically. On the other hand, a potentially good sorting
function for image data, where the image horizontal dimension is W', maps the string
rfinto z = b1 Ti—w Lo oW1 L2 r—ay - - - This mapping sorts the past pixels
into order of increasing Euclidean distance {from the current pixel ;. This idea really
goes all the way back to {Langdon and Rissaneu 19381). where the term “templates”
was used. A template could be considered a type of function thal maps the past
string into a fixed order permutation of the recent symbols.

The algorithm context stores the information it learns abont the source in a tree.

{For a detailed explanation of the algorithm. inclnding an example, see Appendix B.1.)

Each node 5 in the tree represents a unique context, and has a set of A/ conuts,

g 58 - elirg, s) ). (3.2)

| W1 % £
1ctr.sh ol

representing the number of times each svmbol r, was seen in the context s

Essentially. the algorithm context runs all possible Markov models on the souree

simultaneously. Starting with the root node. which corresponds to an order § model,

{

JTA

successively deeper levels of the tree. which correspond to higher order maodels, are
examined.
Each level 7 of the context tree (i.e.. each order j Markov model) assigns a proba-

bility
c‘@,‘é‘.sjf{ M—1j!

Plrify = : (3.3
to the string r where
clsp= ) cli.s) (3.4)
FE=y:

label, we have adopted it and will use 1t instead of the original. more ammbiguous term “rontext”.

=
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is the number of times context s occurs in z, ¢ is an index that runs through all M
symbols, and s is an index that runs through all £; contexts. The number of contexts,
k;, for each level 7 depends on the sorting function. As an example, using the identity
permutation and an alphabet size of M implies that the jth level has M7 contexts.
Note that (3.3) is valid only if we use a Laplacian pmf estimator (see Section C.2.3).
The origin of the factorials in the expression will become clearer in the example that
follows.
The stochastic complexity of a string with respect to the model class is then given
by
Hx) = mjin{]og P(z|j)+log”™j + ek}, (3.5)

with log™ and cx as previously defined.

So, to choose the optimal model order based on the stochastic complexity, the
context tree should be constructed and. for each level j of the tree, the negative
logarithm of the probability assigned to the string as in (3.3) should be calculated.
Then, using (3.5), the level which has the minimum codelength is chosen as the
optlimal medel order to code the input.

The predictive approach is similar. As each symbol z; is received, the previously
described algorithm is applied to the context tree T(t — 1) to find the optimal order
to use in the coding of the symbol.

Finally, the same method can also be applied to individual contexts. The model
order chosen is the one that best compressed the past symbols that occurred in the
specific context, rather than the order that best compressed the entire string. This
is because some regular features exist at higher orders, and choosing the overall best
order ignores the fact that these higher order contexts are good coders. Motivated
by this observation, Rissanen (1986a) chooses the coding node as the highest order
context such that the parent codelength is smaller than the sum of the childrens’
codelengths. A more detailed description of the coding node choice is given in Sec-
twon B.1.

Notable in the predictive version of the algorithm is the fact that we do not penalize
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the coder and the encoder can determine the state from the past string.

As an example, let us look at how the string “00101000” is parsed (Rissanen
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Table 3.1: Order 0 counts for the string 80101000

] e(0) ] ()] ple) | IIp(r)
0[0 10 |12 [1/2
6l1 1o (23 |13
tl2 o i 112
ol2 11 [3/5 |1/2
13 11 (26 | 1760
o3 |2 |47 |1/105
ol4 |2 |s/8 |1/168
ol5 |2 |6/9 |1/252

o

c(0[0) | c(1]0) | ¢(0[1) | e(1}1) | p(x) | TTp(x)

Table 3.2: Order | counts for the string “001010007

1/2 11/2
2/3 11/3
1/4 | 1/12

1/2 | 1/24
2/5 | 1/60
2/3 | 1/90
3/6 | 1/180
4/7 | 1/315

OO OO ON
Lo N I N DN N e D
o b= - OO D
BN = e © O D D2
[ R e S s R s B e B o B v S

1986a). This example is instructive and also relevant, because, to the extent of this
author’s understanding. Table I in the aforementioned reference is in crror.

To begin, Table 3.1 shows the progression of the counts maintained by an order 0
model. The first column shows the svmbol, and the second and third columns show
the frequency of the symbols “0” and *17, respectively. The fourth column shows
one possible estimation of the probability from the counts, namely, the Laplacian
estimator described in Section C.%Z.3. The fifth column shows the product of the
probabilities up to and including the current symbol.?> The codelengtls is the negative
logarithm of this number. Likewise, Table 3.2 shows the progression of the counts
maintained by an order 1 model. In Table 3.3, we change to the notation of Table I'in

Rissanen 1986a). We assume that the optimal model choice 1s as shown i cobimn 2.

he inverse of probability that would be assigned by the order 0 and order 1 models

3The product of fractions with incrementally increasing denominators is the origin of the factorials
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Table 3.3: Corrected Tabie I

x| Optimal order | 1/P(z|0) | 1/P(z|1) | I'(z)
010 2 ) Tog2
010 3 3 log3
1o 12 12 logl2
00 20 94 log20
11 60 log50
011 105 90 logT5
010 168 180 log120
010 1252 315 log130

are shown in columns 3 and 4, respectively. In column 5, the overall codelength (the
predictive stochastic complexity) resulting from this optimal choice is shown under
the heading I’(z). The numbers that are in error in the original table are outlined.
We see that varving the order of the model has an impact on the overall codelength,
and if we choose the order correctly. we can reduce the codelength.

Furlan (1990} presented an modification to the UMC algorithm that works with
non-binary alphabets, is locally adaptive, and is less computationally expensive than
a straightforward non-binary equivalent to the algorithm in (Rissanen 1986a). This

algorithm is described 1 detail in Appendix B.2.

3.1.5 JBIG

JBIG {Joint Bi-level Image Experts Group 1992) stands for Joint Bi-level Image
Experts Group. It losslessly compresses binary image data using an extension of the
Q-Coder. The intent of JBIG is to replace the current Group 11 and Group IV FAX
algorithms. Hampel (1992} report that ~On images containing text and/or line art,
JBIG compression is generally 1.1 to 1.5 that of MMR coding. the most efficient of
the G3/G4 technques. On bi-level images rendering grevscale via halftoning. JBIG’s
compression ratio advantage tvpically increases to a factor of 2 to 30.7

context based on some function the pixels in the neighborhood of the pixel being
caded, and this context allows a better prediction for the current symbol probability

to be made. But unlike the FSM in {(Rissanen and Langdon 1981). JBIG also has
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adaptive templates so that the actual structure of the FSM changes.

JBIG can be successfully used on non-binary images by applying the algorithm one
bit plane at a timme. However. as with binary run-length coding and binary version of
UMC. the pixel values should be Gray coded first. Again, (Hampel 1992) report that
with this method. “...compression ratios of at least comparable to those of lossless
JPEG coding are obtained. If the intensity resolution is coarse, say. less than 8 bits,
JBIG can be significantly better.”

Despite the superiority of the algorithm. again, and as with arithmetic coding, the
fact that IBM, AT&T, and several other large companies own patents on components
of the algorithm, it cannot be used legally without payiug rovalties. This has hindered

the acceptance of JBIG.

3.1.6 Multimodal Data Compression (MMDC)

The multimodal data compression algorithm (MMDC) (Williams 1991) maintains
from 1 to MaxModels asympiotically adaptive models (the ordinary models) and a
single locally adaptive mode {the local model). Each model generates a prediction for
each arriving symbol. The predictions are used to maintaim a performance measiure
for each model.

In MMDC, the selection methodology is to choose the model whose recont per-
formance is the best as measured by the entropy of the recent symbols (i.e., the
codelength of the recent samples} relative to the models prediction. Given that p;(uar)
is the probability assigned to sample r, by model 7 based on the thus far seen mput

rt. and ¢ is a locality parameter, a performance measure is
Hii=— Z log pi{x,) . (3.6)
=t—7

that is, the codelength is summied over the last ¢ samples. I 1t 1s undesirable to store
k previous entropy values. then the performance measure can be decayed by a factor

s B

i In thsg eroce (26 Laromes
Fo. 20 RIS € as, [er.UF Bt CHINCS

p before updatin

(1} . (3.7)
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equivalent expressions

—
| st

log 1/ 10g -
Elogz/i — h =
log p

L ¥

(3.8)

f):

where the half-life means that the effect of the performance of model ¢ at time t — h,
log pi(£,-y), on the total perforinance measure at time ¢, f;,, is one half the effect of
the performance of model ¢ at time ¢.

At all times there is an active model and a best model. The active model is defined
to be the ordinary model whose performance measure is the best. The best model is
defined to be the model {ordinary or local) whose performance measure is lowest. At
each step the prediction of the best model us used to code the next symbol.

Each arriving symbol is used to update only the active model and the local model.
Fvery other model generates a prediction for the symbol and updates its local perfor-
mance measure but it does not alter its parameters.

Whenever the local model performs significantly better than the active model (and
hence better than all the ordinary modelsj a new model is created. If there are already
MaxModels models, the least recently used model is destroved so as to free a slot for
the new model. The new model starts as a copy of the local model but its parameters
are set so that it is asvimptotically adaptive.

Whenever a new model is created, it is put on trial for a fixed period called the
trial period. Only one model can be on trial at a time. New models cannot be created
while a model is on trial. If a trial model does worse than any ordinary model, it is
destroyved. If, at the end of the trial period. the local model is performing significantly
better than the trial model. the trial model is taken to be the local model and a new
trial period begins. Otherwise, the trial model is taken off trial and becomes an
ordinary model.

MMDC was designed with the particular goal recognizing distinct modes in het-
erogeneous input streams. Each model really corresponds to a mode. In the sections
that follow. the idea of running models in competition will be shown to be closely re-
lated to the MDL prineiple and will be used as a convenient method of implementing

structural adaptation.
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Figure 3.1: DPCM encoder
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Figure 3.2: DPCM decoder

3.1.7 Differential Pulse Code Modulation (DPCM)

DPCM is a well known technique depicted in Figures 3.1.7 and 3.1.7. 1In DPCM, a
predictor generates predictions based on the past input that are subtracted from the
input. The residual sequence is optionally quantized and transmitted.

DPCM is extremely useful in the context of signal data compression becanse often
signal data like images can be quite well represented by linear stochastic processes
(Maragos, Schafer, and Mersereau 1984). We can use DPCM to remove nimch of the
lower order process energy in the signal, and use the more flexible Markov algorithims
on the higher order residual. In this way. the task of compression is somewhat sim-
plified, in that the residual represeuts only that which we cannot explain abont a
signal.

For the class of sources that can be accurately described by an order N lincar
system driven by white noise, using a trained order N Markov model is equivalent
to the order N linear model, but is inefficient with respect to memory consumption.

However, for those sources that cannot be accurately described by such a lincar model,
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a Markov model may work better.

It is known that simple uniform quantization followed by an entropy coder can
yield a systemn which, for a given distortion, yields a rate within 0.255 bits of the
optimal achievable performance for memoryless sources (Gersho and Gray 1992, page
301). Farvardin and Modestino (1984) have shown this be true even at low rates.

It is easy to determine the characteristics of the residual sequence if the input is an
autoregressive source and we model it using a linear predictor. If the linear predictor
is the same order as the noise source and its parameters are chosen to be identical
to the generating parameter, the DPCM residual will be white noise, the order 0
statistics of which depend on the noise driving the generator. More realistically, when
operating correctly, all we know about the DPCM residual sequence is that it is a lower
power sequence than the input, and its order 0 statistics in practice are approximately
Laplacian.t

For lossless compression of signals that are already quantized to r bits, the pre-
dictor is modified to generate r-bit predictions, and the quantizer is chosen to be an
r-bit uniform quantizer — in effect, it does nothing. For reconstruction, the DPCM
loop 1s run again.

To do lossy coding with DPCM on previously quantized signal data, the predictor
can produce infinite resolution predictions, but the quantizer is chosen to have g bits.

The distortion introduced results solely from the quantization noise.

3.1.8 Run Length Coding

For sequences in which single symbols are frequently repeated in long runs, run-
length coding is a simple and effective compression method. One simply replaces
runs of identical symbols with the repeated symbol and the number of times it is
repeated. Of course, if symbols do not occur in long runs, its efficiency decreases and
can actually expand. rather than compress, an input. Run-length coding is included
here because in the realm of image coding, it compares favorably (see Section 3.2)

with other far more complicated techniques.

*In Section 7.1 we explore the characteristics of the residual for an order 3 linear predictor in the
context of joint DPCM/Markov coding.
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Table 3.4: Performance on the test set

image LZ77 | LRSI | UMC-R | UMC-F | JBIG | DPCM | RLE
barb 7.18 1559 |5.35 6.51 6.07 | 5.57 H.86
lena 6.97 | 530 | 4.84 6.54 5.83 1 4.92 5.72
mandrill | ¥.25 | 6.47 | 6.29 6.57 719 16.23 6.42
pentagon | 6.60 {545 | 5.25 5.66 5.98 | 5.29 5.59
photog 6.42 {525 |4.90 6.04 5.85 | 5.30 n.22
texture |6.73 | 6.10 | 5.85 6.44 6.67 | 5.67 6.39

3.2 Performance of the Methods

Some performance numbers for each of the methods described above.

3.2.1 Ziv-Lempel

According to the manual page for the gzip utility, gzip uses LZ77 as its data cow-
g pag BZ1p Y, g21p
pression engine. The data in Table 3.4 result from running gzip -9 on the nnages in

the test set.

3.2.2 Fixed Order Markov Modelling

An order 1 model based on (Langdon and Rissanen 1981) was coded The results for
the images in the test set using the 10 pixel template are shown in Table 3.4 under

the heading “LRS1”.

3.2.3 UMC
UMC Rissanen

In (Rissanen 1986a), an early version of stochastic complexity was used along with
the algorithm context to compress text. No explicit numerical results were given, only
that “...strings defined by English text can be compressed very well with a reasonable
workspace size.”

Based on the algorithm in {Rissanen 1986a) a version of UMC was coded. Iach
image in the test set was Gray coded and separated into bit planes and each bit plane

was presented to the model. The results are shown in Table 3.4.
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1

MC Furlan

Furlan (1991) reports that his version of UMC gives the following results when applied

to compression of grey level images:

When applied to the common grey scale test image “Lena” sampled into
256x256 pixels, one gets a reduction of the 0-order entropy 7.60 bits/pixel
to 5.1 bits/pixel. This compares favorably with the result in Ho and
Gersho (Ho and Gersho 1989) who obtained 5 bits/pixel by applying a
DCT on the same image but sampled at the resolution 512 x512 which

permits a greater compression than the more coarsely sampled image.

Based on the algorithm in (Furlan 1991) a version of Furlan’s UMC was coded
and the test set was presented to it. The results are shown in Table 3.4. The RECMIN
and RECMAX parameters were set to -7.5 and 7.5, respectively, and the non-linear pmf
estimator was used. These parameters may or may not be optimal for the test set.

The author was unable to reproduce the cited 5.1 bits/pixel on the lena image.
Possible reasons are 1) the lena image used by Furlan is different than the author’s 2)
the algorithm was improperly coded by the author, 3) the algorithm was improperly
specified in (Furlan 1991) or 4) the result in (Furlan 1991) is in error. Option 2 is
most likely, although great care was put into developing the code.

Note that the UMC Furlan algorithm could also be applied to the Gray coded bit

planes.

3.2.4 JBIG

For the data shown in Table 3.2.4, each image in the test set first Gray coded, then
split into bit planes. Each of these was then coded using JBIG and the parameters in
Table 3.5. Note that the parameter choice was only one of many possible choices, and
may have been suboptimal for the images in the test set. Another factor affecting
performance s that on some of the lower significance bit planes, JBIG expanded
instead of compressed the input. It would be quite easy for the algorithm to test for
this and transmit the original instead if there is no bound on the amount of delay the

coder can introduce. However, to make a fair comparison with the other methods,
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parameter description setting
deterministic prediction enabled
lowest resolution layer typical prediction enabled
differential layer typical prediction enabled
number of differential lavers 5
lines per strip at layer zero 4
max horizontal offset for adaptive template pixels | 8
data ordering 0
lowest resolution layer two line template 0
variable length {

the bit planes that JBIG expanded were included in the codelength calculation along

with the planes it compressed.

3.2.5 MMDC

Since MMDC is a model manager, its performance depends heavily on the models it
manages. Further, in its original incarnation, MMDC was designed to deal with data
streams that are heterogeneous on a large scale, for example the concatenation of a
PostScript file, a UNIX a.out file, and a GIF image. Since we are interested in the
performance of the models on single images, MMDC is not appropriate and we will

therefore not present any performance data for MMDC.

3.2.6 DPCM

The DPCM performance summarized in Table 3.4 is based on order 3 predictor coef-
ficients determined by a pre-scan of the data. The DPCM loop contains a predictor
that makes integer predictions, the quantizer is disabled, and the codelength of the
residual as determined by an asymptotically adaptive order 0 model is given as the
rate. These figures may be different if instead we used and adaptive predictor in the

DPCM loop and/or an adaptive order | entropy coder for the residual
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3.2.7 Run Length Coding

For the data in Table 3.4, the data was first Gray coded. then split into bit planes.

Each of these was then run length encoded. The run length encoding was performed

by writing the run identification {1 bit) followed by the number of samples in the run

as a prefix coded integer (see Appendix D).

3.3 Summary

We have seen several approaches to data compression. each with Varying Success in
losslessly coding signal data. A summary of the data is shown in Figure 3.3. In
the following chapters we will gain insight on why techniques like coding g the DPCM

&

residual and high-order Markov modelling of Gray coded bit planes war%; so well in
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comparison to the other techniques by investigating other techuiques thar attempt to

solve the learning problem in Markov modelling.

&
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4.2 P

Given a source r that generates a sample r, for each time f and a2 model that generates

a probability estiinate plr,) for x;, the per-symbol codelensth sequence is
¥ 1 s 5 g
i = —logp{r,) v

If the model is doing well and if the source is stationary. the per-symbol codelength

sequence should be either constant or decreasing. implyving that the model is becoming
better at predicting the input. and hence can code it more efficiently. Il we ook at
the derivative of the per-symbol codelength. we should therefore see a function that

is either negative OF ZeTo.

Most real sources are not stationary. however, and so the per-symbol codelength is
not as well behaved. Consequentiy, the derivative takes on both positive and negative
values, and these values tell us something about the state of the model. Specifically,
if the derivative is above zero. we see that the per-symbol codelength is increasing;
the model is doing worse and worse. If the derivative is negative. the model s doing
better and better.

We can base our choice of the decay factor on this information. If the model
is doing well. we should not decay at all. 1l it is doing poorly. we should decay in

proportion to how poorly it is f.ioiﬁg.

Let us consider the case of a non-stationary but still fictitious source. This source
consists of the concatenation of two Gaussian noise sources. cach consisting of 2!°
samples and with different means, u; and ps. We present this source 1o an asyimp-
totically adaptive order 0 model. Figure 1.1 shows that at the very beginning of the

sample, the model. séartmg from a zero information case. is learning the first mode

-

of the source. With each sample the model becomes better at coding the sonrce, that
is, the per-symbeol €a(ie§eng£§z sequence is decreasing and the derivative is negative as
shown in Figure 4.2.2 This is the case until enough samples have been secn so that the

B - . 51
othed derivative of the per-symbol codelength

model is no longer chan; ]

,y-

stavs near zero. Notice however that when the model encounters the second mode, the

per-symbol codelength soes up sharply. During this initial pertod, the new samples

*Far this figure, the data was strongly filtered for presentation. In the system deseribed i
Section 4.4, the fltering an‘ des more information from the derivative of the per-symbol rodelngth
stgnal, but makes the data unintelligible when presented graphically.
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are serving two purposes 1} to overwhelm the effect of the previously learned sample
and 2} to build up a good model of the new sample. The per-symbol codelength
increases until such a time that the state of the model begins to represent the source.
Then the per-symbol codelength sequence begins to decrease again.

Observing the codelength sequence for this fictitious source is instructive. Woe
could argue that while we are in the first mode, we should not decay because the
derivative of the per-symbol codelength is zero or negative. but when we pass into
the second mode, we should decay strongly at first, and then gradually less once we
have sufficiently counteracted the effect of the first mode. The following sections will

explore this conjecture.

4.3 Variable Decay Rate Model

To be more concrete, in a practical system the decay rate at time { should be a

function of the smoothed derivative of the per-symbol codelength sequence
&= flglly)) , {(1.2)

where f is the decay function and g is the smoother and differentiator. The following

sections investigate the form these two functions.

4.3.1 Form of the Decay Function

Qualitatively, the requirements for the decay function f are as follows:

e [ should map [—oc,0] to I; if the derivative of the codelength is less than zero
the model is doing weil and no decay is necessary nor is any auginentation of

the existing counts desirable

¢ f should map [0, oc] to [6puin. 1] for some 0 < &5, < 1: 8,5, represents the

strongest factor by which the histogram counts are decayed

e f should be monotonicaliy decreasing from 1 to é,,;, in the range H) ]

Requirement [ uniquely defines the behavior of f in [—oc.0] but several functions
could satisfy requirements 2 and 3 for the range {), oc}. One possible chojee is

g

flr)y = épin + (1 — épinie ™ . any p> 0. {4.3)
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of length M + 1 centered

M = 2. scaling the magni-

(1.6)

the images in the test set
low-pass. but to guarantec

lowpass 1R filter

{1.8)

approxima-

4.9}
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The filter should be a gooe

A plot of the frequeney response of this filter for various choices of the cocflicient

over the effective Trequency of the signal.

a is shown in Figure 4.3. Such a simple filter is desirable becanse 1) we may con-
sider emiploving this order §f model in a larger system in which it may be replicated
tens of thousands of times and a svstenm with hitle memory and correspondingly low

computation v 4 the performance of the algorithims and 2)

a filter with

klv to chanees 1 the data and 1 oour

apphcatzon a significant delay is undesirable.

4.4 Experiments

For the purposes of the following expernnents. we will use £4.33 {or the decay funetion

0O el e — QT I 0 — 0 g}c}
= [R€E OF =— w0

with éin = 0.90 and p s were chosen

empirically. If the spectrum of the per-svmbal codelength sequence is signifieantly

low pass, the choice of a is practically ‘rpé ant as it controls the amount of high

frequency information passed to the decay function. Empirically. the performance is

v

affected less by the é,;, parameter chotee than by the choice of po A full exploration
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of the form of the decay function and its parameters is a subject for future research.
We will begin by examining the performance of the system in comparison to fixed
decay methods on the bimodal source pwsem,ed earlier. In Figure 4.4, we see that the

V

tixed decay model has the desired effect of making the model converge on the second

1]

miode statistics quickiv. but at the expense of adding to the codelength when no decay
is necessary {(in the quiescent regions on either side of the boundary between the two
modesy. Conversely, the fixed decay model learns the source well in the first mode,
but takes a lung time to recover from the mode switch in the middle of the sample.
The variable decay model. on the other hand. does not decay when the model is doing
well, amd so in the tirst region. performs exactly like the no decay model. However,
at the interface between the first and second modes it decays strongly as it should,
bt then goes back to normal for the second region. The final codelengths for the
no decay, fixed decay. and vartable decay models were 5.86. 5,95, and 5.06 bits/pixel,
respectively. The variable decay model does clearly better.

We mml d expect many tmage sources to be order 0 multimodal by virtue of the fact

that ditferent objects in the scene have different intensities andfor colors (otherwise

it would be more diffieult to distinguish them as objects). Results for the test sources
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Table 4.1: Order 0 model with fixed and variable decay

6=1.0018=0.99 | variable
barb 7.64 7.73 T4
lena AT .54 7.29
mandrill | 7.36 7.69 7.32
pentagon | 6.80 T.27 6.78
photog 7.23 7.66 6.38
texture | 6.31 7.56 6.93

are shown in Table 4.1. Except for the texture image. the variable decay model
consistently outperformed the fixed decay model with & = 0.99, and outperformed
(although sometimes not by a great margin) the fixed decay model with & = 1.00 on
all sources except the texture image, which was the most mniform with respect to its
order 0 statistics.

The results for the real images are not as dramatic as for the synthetie source.
The modes are smaller due to the fact that the algorithm gets data in a raster sean
order while the mode boundaries are two dimensional instead of one dimensional.
Imagine that the syvnthetic source in Section 4.2 was arranged first so that it was a
256256 image with the first mode occupying the first 128 lines and the second mode
the last 128 lines. Since we have not fundamentally changed anything, the results
would have been the same. I, however. this same image were rotated 90 degrees,
the results would have been less dramatic, since there would be a mode change on
every line of the image. Even though there are really only two distinet modes with a
single boundary. the boundary is two dimensional and a raster scan sces it as several
boundaries.

Cf course, 1t is unlikely that anvone would choose to use an order § model on image
data anyway. This experiment was chosen simply to demonstrate another method of
dealing with non-stationarity in the data. Realistically, this order O model would be
used in a higher order system, in which non-stationarity becomes harder to visualize

than in a simple order @ system.
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4.5 Comparison to UMC and MMDC

There is a relationship between UMC Furlan, MMDC, and the variable decay rate
model of Section 4.3. Each uses what is essentially a low pass filtered version of a
codelength difference function to determine the system performance.

In UMC Furlan, the value of the relative efficiency counter for models M and N

at time £, Ran . is given by

r = Runi+ (e — Ing) (4.10)
Rarv: = max(min(r, Rmax), Bmin) » (4.11)

where the max and min serve to constrain R; within [Rmax, Rinin]- 1f one removes

this constraint and replaces the function with
Rarvie = aBarnva—1 + v — Iny (4.12)

for some a < [, making it a low pass filtered version of the differential codelength
sequence, approximately the same behavior results.

In MMDC, the performance metric P for model M is
Pae=aPayir + luy (4.13)

effectively a low-pass version of the per symbol codelength function for model M. The
decision that model M is better than model N is based on the relative magnitude
of their metrics. That is, if Py < P or equivalently if Py, — Pn: < 0, then we
choose model M. However. Iy, and Iy, are both applied tc the same linear system
and then differenced. which is equivalent to applying the difference lr; — Iy, to that
system.

Finally, in the variable decay model. the comparison is applied to the model itself,
filtering {, — {,_y and requiring that the model should forget more when it itself is
doing worse and worse.

Hence we see the recurring use of a filtered version of the difference of two per-

svinbol codelengths as a method for determining coding system performance.
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4.6 Summary

We have seen that we can use the derivative of the per-symbol codelength function
to make an intelligent choice for the decay rate of an order 0 histogram model. The
method performed well both on synthetic and natural sources and better than tixed
decay methods. We have also seen that using the derivative of the codelength appears
to be a common theme in several successful data compression strategies which, on first
inspection, appear to be quite different.

It is expected that the MMDC algorithm running several order 0 models in compe-
tition would perform similarly, and may perform better if an order 0 mode encountered
and learned early in the source reappeared later. This is the particular strength of
MMDC. However, as mentioned previously, we may wish to use a context adaptive
algorithm in a larger higher order system in which there would be several thonsand
order 0 models running. The variable decay model uses strictly less than half the
memory of the MMDC algorithm (and even less if there are several distinct modes),

while offering reasonable adaptation to non-stationarity.



Chapter 5

Variable Order/Variable
Resolution Modelling

5.1 Introduction

As described in Section 2.1.2, signal data presents unique problems for Markov mod-
els. The existing variable order techniques that were designed for text compression
counteract to some extent the learning problem for Markov models, but still do not
give us sufficient control over the number of states in the model. We will see in this
chapter that we need not only to vary the order of the conditioning information as we
compress signal data. but also its resolution. This chapter begins by determining the
optimal resolution forder for some synthetic and natural sources by exhaustive search,
and then presents some novel methods for choosing the optimal resolution/order com-
bination without an exhaustive search or even a pre-scan of the data.

Before proceeding we need to introduce the term state weight, which is simply the
number of order 0 histograms {or the number of contexts) in a Markov model. Define

a permutation as an ordered set of n integers as in (Langdon and Rissanen 1981)
P:{plvp?-:"'apn} - (51)
The source to be coded is given by (as in Section 3.1.4)

' =rrg. .y (5.2)
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We define the order n context of x at ¢ using permutation p as the sequence
LiopyLimpyst "y Lhep, - (h.3)

For the context to be causal. each element of p must be greater than zero.
Now let us define a resolution modification, m, as an ordered set of n integers in

[0, 7], where 7 is the source resolution in bits
m = {m,my,---,m,} . (h.4)

This modification is applied to the previously defined context resulting in the resoln-

tion reduced context

N Sy —T SMiz—7T . i —T
{lg_?az fl'g_pi.z 7”'3‘1’1—;0,1-)‘ ) .

,.\
]
|

e

Note that in performing the resolution reduction, we truncate the fractional part of
the individual products. To avoid ambiguity between elements of contexts in which
not all the resolution modification values m; are the same, we will use the notation
x/y for the 2th element in a y-bit range for 0 < = < 2Y. For example, the context,
specification (10/7.4/5}) defines an order 2 context, the first element of which is symbol
10 from a 7-bit alphabet, and the second element of which is symbol 4 from a 3-bit
range. The element 10/7 in the context specification could, for example, represent,
symbols 20 or 21 from an 8-bit alphabet. Similarly, the element 4/5 could represent,
symbols 32 through 39 from an 8-bit alphabet.

Choosing a specific value of n and a specific sequence 1 results in N = D2y =)
possible contexts. If we choose to run a model with these contexts, we say that the

model has a state weight of N. An order n model will usnally be denoted by
(m=r—myro=r—img,--,r, =1 —1m,)} . (5.6)

that is, by the resolution in bits of the conditioning information.

T

The following four terms will be used to describe the models in this seciion. The
set of fized order/fired resolution (FOFR) techniques inclndes those in which a choice
of model order n and resolution modification m are made before coding begins and
remain fixed for the duration of the sample. In fized order/variable resolution (FOVR)

techniques, the order is fixed but the resolution modification m may vary. Iu a sense,
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a choice of zero for any element of m effectively reduces the order. but we will still
describe the order as “fixed” because it is constrained to some maximum. Techniques
like UMC are variable order/fized resoluiion {(VOFR) and, since we have described
them in the background and survey chap%eri. we will just note them here for symmetry.
In VOFR models, the resolution of the conditioning information is fixed {usually
at the source resolution) but the order can vary and is essentially unconstrained.
Finally tn variable order/fvariable resolution {VOVR) modelling. neither the resolution

modification m nor the order n are specified or constrained.

5.2 Fixed Order/Fixed Resolution Modelling

As the discussion tn Section 2.1.2 pointed out, we are faced with a learning problem
witl all adaptive modelling of data. That is. the model never has the opportunity to
analyze all the data until after it has sent all its predictions to the coder and the data
is ou the channel, at which point it is too late. Hence, decisions have to be made on
partial information that may be either helpful or misleading.

Based on the success of the other simplifving methods like splitting the input into
bit plaues, running variable order models, or treating the input as an autoregressive
source, we expect that varying the resolution of the conditioning information in a
Markov model will improve the performance.

To test this conjecture, 2!* samples were generated using an AR{2} model driven
by white Gaussian noise. The samples were quantized to r = 8 bits of resolution
and translated to fall in the range [0,255]. The parameters for the AR{2) model,
¢ = {0.01,0.89}, were chosen to demonstrate some properties of the models described
later. The correlation sequence for this source is shown in Figure 5.1. An exhaustive
set of order 2 models spanning all resolutions for the order 1 and order 2 conditioning
information were run on the AR(2) source. That is, we ran the models that estimate

the probability distributions
plroe 12777 252777 (5.7)

for all 0 < ry, 71y <1, where r is the source resclution.! The zero resolution case {ry = 0

“In this experiment and in all subsequent ones, the pmf estimator used for the individual order 0
histograms constituting the higher order models was the non-linear pmf estimator described in
Section €'.3.1 as this seemed to consistently produce the lowest codelengibs.
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or r» = ) means that all symbols are mapped to the same context {zero). and henee,
it corresponds teo ignoring that element of conditioning information. Specifically, the

(0.0} model impfemeﬁﬁs the standard order 0 model.
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The procedure used v e deseribed. First, for each sample ;. the prediction

made by each model was saved. Then after the entire sample # nad been coded, we
went back and analyzed the performance of all models, ax judged by the sum of the
negative logarithm of the predictions. The model with the lowest overall codelength
was called the opfimal siatic choice. If more than one model perforined equally well,
the one with the lower state weight was chosen. The performance of the models

is shown in Figure 5.2. The best performance attained by a single maodel on this

.. -

source was with the ({,5} model at 5.19 mts:’pr\el That is, the best order 2 model

for this sample ignored the erder 1 conditioning information altogether, and used 5
bits for the order 2 conditioning information. Heferring to the correlation sequence
of this test source, this choice makes sense, in that the sample immediately prior

to the current sample is not sirongly correlated to the carrent sample. where as the

i
models, the order 3 conditioning information would likewise be skipped and the order 4
information would be used.

This optimal static choice represents a savings of Z1.67 over the {0.0) model,
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Figure 5.3: Performance of optimal FOFR model on the test set

5.3 Fixed Order/Variable Ikesolution Modelling 1

Y

Based on these results in Section 3.2. a svstem could determine the uptimal resolution
via a pre-scan through the data, and transmit as side information the model order
and the resolution modification sequence at a very small overhead. But is this fixed
resolution model the best we can do? Additionally. is it possible to avoud the pre-scan?

Figure 5.4 shows the performance of some of the models on the AR{2) sonrce
presented earlier. where the ordinate indicates the average codelength the model as-
signed to the last 512 samples. We see that lower resolution models do better in the
very early portion of the sample. As more data is seen. the higher resohution models
begin to outperform the lower resolution models. This fact. conpled with the sue
cess of variable order/fixed resolution techniques, leads us to the conjecture that the
state weight of the optimal model choice increases monotonically with the munnber
of samples processed when adaptively modelling a stationary signal source. farther,
it tefls us that we can in fact do better than making a fixed choice of the resolation
modification.

Hence, we would like to inttially use low state weight models earlier and then move
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Figure 5.4: Early performance of FOFR models on AR(2) source

to higher state weight models as more data is seen, choosing the resolution in such a
way as to optimally exploit the correlation in the sample. One way of doing this is to
run several models in competition and to choose between them based on their recent
codelength as in the MMDC algorithm of Section 3.1.6.

For the FOVR-I algorithm we choose an arbitrary maximum order n. At the
mnitialization, all {r + 1}* models are created. one model for each possible combination
of r + | possible resolutions taken n at a time. As in the MMDC algorithm, each
moidel maintains a recent performance measure (see (3.7)} and. at each step, the model
with the lowest recent codelengih is chosen as the coding model. However, unlike
the MMDC algortthm. no sew models are created. all models are asyvmptotically
adaptive, and all models are updated on every sample. As a final modification. in the
case where several models are performing equally well. the one with the lowest state
weight 1s chosen as the coding model. For the data in Figure 5.5, the AR(2)} source
was presented to the FOVR-I algorithm. The PerformanceDecay parameter p was
set corresponding to a half-life of 1238 samples and the MaxOrder was set to 2. The
numbers in parenthesis indicate the resolutions chosen. For example. the notation

(14} indicates that the order | conditioning information resolution choice was 1 bit
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Table 5.1: Parameters for the FOVR-1 algorithm

Parameter Description

MaxOrder

PerformanceDecay
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the order n of the models in the system
the half-life & for the performance calculation
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and the order 2 conditioning information resolution choice was 4 bits. The dots in the

figure indicate strings of identical resolution pair choices, each dot corresponding to
one sample and the number of samples seen increases left to right and top to bottom.
Observing the resolution choice, we see that after a few tens of samples, during which
the resolution choices were chaotic, the model began chose the lower resolution models
earlier and moved to the higher resolution models later. Note also that i1t very rapidly
converged (within around 3000 samples) on the order/resolution choice determined
for this sample in the previous section, resulting in an overall codelength of 5.18
bits/pixel. The difference in codelength compared to the best choice (5.19 bits/pixel)
is not significant. Since the algorithm converged so quickly on the choice determined
by a pre-scan, less than 5% of the samples were coded under a model other than
that choice. Hence, when it is desirable to avoid a pre-scan of the data or send side
information, this system would mneet the requirement.

One problem with this approach is that some subset of these models may never
be chosen at all, and yet (a lot of) resources will be consumed updating them. For
the AR(2) above source, only 24 out of the 81 models were ever used, and only 12
were used after around 1000 samples. While this has no adverse effect on the coding
performance, it does limit it applicability. This problem is addressed in the next

section.

5.4 Fixed Order/Variable Resolution Modelling
I1

Suppose we again choose an arbitrary maximum order n but this time we begin

modelling our signal source using just the order 0 model defined by
(7'],7'25"‘ 37’n) = (0, 0,"',0) . (58)

Since it is our conjecture that the state weight of the optimal model choice increases
monotonically with the number of samples seen, a good guess for the next optimal
model is the one that has an incrementally higher state weight than the current
model. However. having chosen the arbitrary maximum order n, there are in fact

n such models, namely (1.0,---,0),(0,1,---,0),---,(0,0,---,1), each of which has a
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state weight of 2. To be thorough, the algorithm should create these n higher state
weight models and run the order 0 model in competition with them to determine
when to change to a model with a higher state weight. Assuming that there exists
some redundancy in the signal to be exploited, one of the n models, will be chosen,
most likely the one that uses the conditioning information at the offset with the
highest correlation with the current symbol being coded. Once the algorithm selects
this model, it should again create and run in competition those models that have an
incrementally higher state weight compared to the selected model.

From that starting point let us define the FOVR-II algorithm as follows. As
with the FOVR-I algorithm, each model in the system needs to maintain a local
performance metric. During the initialization, the order zero model is created and 1s

designated the best model. Thereafter, the following steps are repeated:

1. read next sample and code it with the best model
2. update the performance metric for all existing models

3. generate list of models performing the best by comparing the

performance metrics of all existing models

4. choose the one model from list with lowest state weight and des-

-ignate it the best model

5. for all models on the list, grow “child” models with incrementally

higher state weight

6. if there are more samples go to step 1 else quit

Table 5.2 summarizes the parameters for the FOVR-II algorithm.

A model is allowed to grow if it is found to be the model that performs the hest
at the current instant . If there are several that are performing identically, all arc
allowed to grow.

Model growth is defined as creation of the n models with incrementally higher

state weight than the parent model. Thus the n children of modeler (3,2,5) would
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Table 5.2: Parameters for the FOVR-II algorithm

Parameter - Description

MaxOrder the order n of the models in the system

MaxModels maximum number of models in the system before growth stops
PerformanceDecay | the half-life A for the performance calculation

Memory Usage total algorithm memory usage limit

be (4,2,5), (3,3,5), and (3,2,6). Of course, the maximum resolution of the models is
limited to the source resolution. According to this definition, a node could have been
created from several different parents. All of these newly created models have the
same state weight, but could be anything from order 1 to order n (in the conventional
understanding of the term) because the components with resolution zero are skipped.

Since the models are not all created at the same time, the algorithm should main-
tain a history of all the past samples to train each newly created model.

A model is destroyed when there are MaxModels models currently being run and a
growth is occurring, or when the algorithm has exceeded the MemoryUsage limit. In
cither case, the least frequently used model is destroyed to make space for the new
model. Note: This has implications on the coding of non-stationary data; a discussion
follows in the next subsection.

Because any given model may be considered the child of several different parents,
and because models may be destroyed if they do not perform well, we must make sure
somehow that we do not recreate models that have been destroyed.

The evolution of the model for the first 4096 samples of the AR(2) source de-
scribed above is shown in Figure 5.6 in the same manner as in Figure 5.4. For this
experiment, the PerformanceDecay parameter p was again set corresponding to a
half-life of 128 samples. The maximum number of models, MaxModels was set to 128,
the MemoryUsage to 16 megabytes, and the order of the models, MaxOrder, was set
to 2. We see that, like the FOVR-I algorithm, the model converges rapidly on the
optimal resolution choice. However, when potentially good models need to be cre-
ated and models that are doing poorly are in the way, the poorly performing models
are destroyed (for example, the (20) model was destroyed to make room for the (07)
model).

The overall codelength using the FOVR-II model on the AR(2) source was 5.19
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Figure 5.6: Early FOVR-II model choice and growth for AR(2) source

(1




......

bits/pixel which again is the same as the optimal static (0,5) model.

This algorithm has the advantage that, given that our assumptions about station-
ary sources are true, only the models that need to be created are created and updated.
Fixing an upper limit on the number of models gives us some control on the resource

usage of the algorithm, but potentially at the cost of coding performance.

5.4.1 FOVR Modelling and Non-stationarity

The FOVR-II model is expected to perform poorly on non-stationary sources due to
the fact that the model growth is always in the direction of increasing state weight,
and that, depending on the values of MaxModels and MemoryUsage, the lower state
weight models may have been destroyed.

Let us return briefly to the initial experiments of Section 5.2. Instead of the
stationary AR(2) source, let us instead concatenate two AR(1) sources with different
statistics. The first is an AR(1) source with ¢; = 0.9 and the second is an AR(1)
source with ¢, = —0.9, but after generating the source, a non-zero offset was added.
Hence the conditional probability distributions for orders greater than zero will be
identical but the order 0 statistics will be different as will the odd order conditional
probability distributions because the sign of the correlation of the two sequences at
odd orders are inverses.

In Figure 5.7, the model choice is shown starting with a few hundred samples
before the interface between the modes. Right before the boundary, the algorithm
had determined that the resolution choice at that point was to use 4 or 5 bits, but
right after passing through a non-stationarity, the algorithm began choosing the lower
state-weight models, which have a tendency to learn (and un-learn) more quickly.
Thereafter, when the higher state-weight models had seen enough samples again to
be reliable, they began to be chosen.

A possible modification for to the FOVR-II algorithm would be to note the deriva-
tive of the per-symbol codelength as in Chapter 4. If the derivative is negative, the
algorithm is doing well. However if the derivative of the codelength goes positive,
it indicates that a non-stationarity has been encountered. Using a context-adaptive
order 0 model is not enough in this case because the n currently existing models, even

if thev were to forget what they had learned from the previous input, may not be of
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Figure 5.8: FOVR-II performance on the test set

the correct resolution and order. In fact, lower state-weight models would need to be

created. This is a topic for further research.

5.4.2 Experiments

The performance of the FOVR-II model on the test set is shown in Figure 5.8. The
parameters were the same as in the previous experiment: PerformanceDecay was set
corresponding to a half-life of 128 samples, MaxModels was set to 128, MemoryUsage
was set to 16 megabytes, and MaxOrder was set to 2. For comparison, the DPCM
coder performance from Section 3.2 is included. Despite our initial hesitation about
the performance of the algorithm on non-stationary sources, the FOVR-II algorithm
performed well overall on the test set, resulting in codelengths below the statically
chosen optimal value for all sources except lena, for which the codelength was approx-
imately 3.2% higher. Interestingly, this is also the only source for which the DPCM
model outperformed the FOVR-II model.

In summary, the fixed order/variable resolution model chooses low state weight

models first, grows to higher state weight models, and reaches some limiting value
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of the state weight (which is the same as determined by exhaustive search) while

systematically avoiding conditioning information that is not useful. In this way the

overall performance is optimized to some extent.

5.5 Variable Order/Variable Resolution Modelling

The previously described methodology for variable resolution/variable order coding
could be described as “coarse-grained” in that the entities that are run in competition
are the full models, and so the performances being compared include the performance
of the model in all contexts. Based on the success of UMC, which instead compares
order zero models corresponding to individual contexts, we speculate that perhaps
even better performance could be gained by modelling at this finer level. Hence, the
task is to define an algorithm that takes into account that models with fewer states
tend to give reliable estimates faster than models with more states and that operates
on the context level. The VOVR algorithm that is described in the following section
is inspired by Furlan’s (1990) version of UMC and can be thought of as UMC with
variable resolution extensions.

Let us begin defining the VOVR algorithm. Like UMC, the algorithim manages a
tree structure. Each node in the tree corresponds to a context and can be uniguely

identified by a k-tuple of pairs

(e1/11,efr2s €3, /) (5.9)

that defines a path from the root to the node. Recall that here the notation (z/y)
does not indicate division but rather the zth element from a y-bit range. The root is
the order 0 model or the null context (@). For example, if » = 8 bits and the past few
symbols seen were

-, 15,45,100,122,112 (5.10)

then all possible order 2 contexts {assuming the identity permutation) consistent with
the history are
(1122777 [,122 - 27277 [1rq) (h.11)

for any 0 > ry, 75, > r. When r; or ry are equal to zero, then all symbols get mapped

to the same conditioning information, and the context is skipped.
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We call two contexts €| and U common if, via a resolution modification m, either
context Yy can be changed to context Cy or vice versa. Continuing with the previ-
ous example, one of the possible order 2 contexts consistent with the history is the
context (14/5,122/8). Via successive resolution modifications to the second element
in the context, we can generate the contexts (14/5,61/7), (14/5,30/6}, (14/5,15/5),
(14/5,7/4), (14/5,3/3), (14/5,1/2), (14/5,0/1), and (14/5,0) = (14/5), which is
effectively an order 1 context. Similarly, applying successive resolution modifica-
tions to the first element in the context, we can generate the contexts (7/4,122/8),
(3/3,122/8), (1/2,122/8), (0/1,122/8), and (@), 122/8), which is effectively an order 1
context. The other possible resolution reduced contexts are determined similarly. All
these contexts are common to (14/5,122/8).

Conversely, any context (', that could be subjected to a resolution modification to
produce C is common to ), including specifically all higher order contexts. In our ex-
ample, the contexts (28/6,122/8), (29/6,122/8), (56/7,122/8) through (59/7,122/8),
(112/8,122/8) through (119/8,122/8), and all contexts with order higher than 2
whose first two elements are (14/5,122/8) are all common to the order 2 context
(14/5,122/8).

The reason for defining common contexts in this way is that common contexts all
have the possibility of coding the same source context and thus must be compared.

Each node has an order 0 histogram (which may or may not be adaptive) that
maintains frequency counts for the number of times each symbol in the alphabet A
was seen in the context corresponding to the node. Each node also has a performance
list, which is a list of relative efficiency counters in the style of Furlan (1990) that
conmpare the performance of the node to all nodes that have a common context.
The relative efficiency counter (REC) for two nodes is updated so that it represents
cumulative difference in codelength between the two nodes for all symbols in the thus

far processed sample that both of them could have coded.?

2As a matter of implementation, since each node is a pointer to a structure, the “direction” of the
REC, that is, whether we add nodel’s codelength and subtract node2’s, or vice versa, is determined
by the magnitude of the node pointers. If p; > p», then we add nodel’s codelength to the REC
and subtract node2’s; if py < p». then we add node2’s codelength to the REC and subtract nodel’s.
Hence, if p; < p» and the REC is greater than zero, we know that nodel is doing better. Similarly,
if py > p> and the REC is greater than zero, we know that node2 is doing better. Obviously, if the
node pointers are equal, we are addressing the same node and we will not compare the node to itself.
We have to be careful that we update the REC only once per sample. This can be handled easily
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Table 5.3: VOVR node selection logic

fact meaning implication choices
remaining
initially | no information no implication 012345
Riz=5 1 1s better than 3 can’t be the best | 012 45

3
Rys = —1 | 5 1s better than 2 | 2 can’t be the best | 01 45
Roy = —4 1 1 1s better than 0 | 0 can’t be the best | 1 5
Ry, = —8 | 2 is better than 1 { 1 can’t be the best 15
R4y = —2 | 4 1s better than 2 | 2 can’t be the best 45
Rss =1 4 is better than 5 | 5 can’t be the best 4

Every node can have up to 3.I_,2" = 2"*! — | children. For example, the node
(14/5) has two 1-bit children (14/5,2/1).0 < 2 < 2, four 2-bit children (1:{/5,x/2),0 <
z < 4 through to 2" r-bit children (14/5.2/2),0 < x < 27. All such children are re-
lated by their common parent and so are called siblings, that is, contexts of the same
order but not the same resolution.

To code the input, we form the set of all nodes that match the current context, that
is, all nodes that have a context that is common to the full resolution source context.
The performance lists, taken together, form a set of “facts”. We want to find the
member of the set that is the best to code the next input. The initial hypothesis
is that none is best (or, equivalently, that they are all best). Then we go through
the set of facts one by one and eliminate the hypotheses that don’t match the facts.
Hopefully we end up with one true hypothesis. For example, in Table 5.3, we are
given nodes 0 through 5 with the associated performance information. The “facts”
are the value of the REC. So model 4 is the best choice. Of course, there may be
the case that two nodes have exactly the same performance. In this case, we nse the
rule that has served us best so far, namely, we choose the one with the lowest state
weight.

Tree growth can grow in two ways: in resolution and in order. Two conditions
must be met: 1) the node must be better than all the nodes on its performance list and
2} the count for the current symbol in the node’s context must be at least 1. When a

node does grow, it grows simultaneously in order and in resolution, i accordance with

by, given the matching set {p;, ps,---.p:), going through the list sequentially starting with p; and
updating RECj; for all 7 > k. if nodes p; and pi need to be compered, that is, if node py is on the
performance list of p;.
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our cronjecture about increasing state weight. Growing in order means that it creates
the two 1-bit chiidren that correspond to adding (0/1) and (1/1) to the node’s context

3

specification. For example, if the node with context (14/5,122/8) grows in order, the
two children (14/5. 122/5, f,?f pand (14/5,122/8,1/1) are created. A node grows in
resolution by asking its parent for two siblings which are higher resolution equivalents
of itsell. Growing the context {14/5 122/8.1/1) in resolution means creating the two

nodes (1475, 122/8.2f2}3 and (14/5122/8.3

2). Because the parent of a node can also

..._a\

grow in resolution and order. only the last element in the context grows in resolution,
unlike the FOVR-II algorithm. From the moment of a node’s creation, the members
on its performance hist are determined and its REC with each on the performance
list is subsequently updated. Additionally. on creation of the node. the histogram is
updated using an amount of the history {which could be the entire history) specified
on initialization of the algorithm. Note that neither Rissanen {1986a) nor Furlan
(1990} address this imtialization problem.

The tree is initialized with the order {) model, the null context. Its initial perfor-
mance list empty so it is better than all members of its performance list and once
any symbol has occurred twice, it inmediately grows the two 1-bit children (0/1) and
(1/1).

Now that we understand how the VOVR model is supposed to work, let us exam-
e its performance on the AR{2} source described in Section 5.2. Figure 5.9 shows
the early performance of the VOVR model on the AR(2) source. The context choice
is indicated for each new svmbol. and as in the previous figures, the number of sam-
ples seen increases left to right and top to bottom. When new children are created,
tt is indicated by a line beginning with “new children™. and lists the newly created
children. We see that the model begins with the order 0 model, the null context,
which is used for four samples. Then the two 1-bit children of the root node are
created as shown in Figure 5.10. Both of these children are compared to the root
node. but they are not compared to each other because there does not exist an or-
der | context that thev both could possibly code. During the next 10 samples, all
three existing models are used and updated. The (0. 1) model performs well and so
it grows in order and resolution. and the {0/1.0/1), {8/1.1/1}. and (0/2).{1/2) mod-

els are created as shown in Figure 5.11. After a few more samples. the (0/1.1/1)
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Figure 5.11: VOVR tree after 14 samples

model outperforms all the other models on its performance list and grows the chil-
dren (0/1,1/1,0/1), (0/1,1/1,1/1), and {0/1,2/2)(0/1,3/2) as shown in Figure 5.12.
Within a few samples the (0/1,2/2) model grows, creating children (0/1,2/2,0/1),
(0/1,2/2,1/1), (0/1,4/3), and (0/1,5/3). So we see that, like the FOVR-II algorithm,
the VOVR algorithm rapidly converges on the appropriate order and resolution. After
a few more samples, the (1/1) side of the tree begins to grow also, as samples in that
region of the state space appear. The tree after 33 samples is shown in Figure 5.13.
The final codelength for the AR(2) source of 5.28 bits/pixel, which compares to
5.19 bits/pixel for the optimal static choice and 5.18 bits/pixel for the FOVR-II model.
The difference is attributable to the fact that the VOVR model cannot completely
skip conditioning information as can the FOVR-II model, but is instead forced to

allocate at least one bit to it.

5.5.1 Experiments

Figure 5.14 shows the performance of the VOVR model on the test set. As with the
FOVR-1I algorithm. the performance of the VOVR algorithm was as good or better
than the optimal static resolution choice as determined by exhaustive search, except in
the case of the lena image. Although the VOVR algorithm performed better on lena

than the FOVR-1I algorithm. The performance on the photog image is an anomaly
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Figure 5.13: VOVR tree after 33 samples
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Figure 5.14: VOVR performance on the test set

also, although in this case, the VOVR algorithm produced much better results than
either the optimal static or the FOVR-II algorithm. Both these performance increases
may be attributable to the fact that the VOVR algorithm retains all lower state weight
models instead of destroying them after they are not used for some time. Because they
are retained, when the algorithm encounters a non-stationarity, the lower state weight
models, which may have been already discarded in FOVR-II, still exist. As mentioned
previously, these lower state weight models learn and un-learn more quickly and are

more likely to be used when the algorithm encounters a non-stationarity.

5.6 Comparison to PPMI

These algorithms differ in a significant way from PPMI. Instead of using fixed order
context, this algorithm explores both variable order and variable resolution contexts
using a ninimum description length criteria. It grows only the contexts that are
performing well and only to the extent in resolution and order that is necessary.
Finally, instead of using an arbitrary criterion for how many samples is enough to

constitute a reliable set for a given order/resolution the algorithm uses just the recent
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codelength.

Unfortunately, none of the results presented by Howard and Vitter (1991) were
on the same images as those in the test set for this thesis, and since we discovered
their work as the work in this thesis was being completed, no method for numerical

comparison was developed.

5.7 Relationship to Permutation Selection

Having control over both the context resolution and order is related to permutation
selection in the following way. A particular permutation chosen based on a priori
knowledge of the source (say that it is an image with rows of N pixels each yiclding
the set of pixels ordered by Euclidean distance from the pixel to be coded) may not
be perfectly suited to the statistics of the source being coded. In that case, we may
actually waste time and memory collecting statistics for contexts x., Ve € A such thal
P(z|z.) is virtually the same as P(z); that is, where the autocorrelation function
R(c) is near zero. For these situations we would ideally like to eliminate this poorly
chosen element of our permutation vector. Varying the resolution approximates this
by assigning as few bits as possible to that permutation element.

The model growth rules in both FOVR-1I and VOVR are in fact implementing
a form of permutation function definition, as well as choosing the optimal resolution
for the conditioning information. In the case where we have incorrectly selected the
permutation function, those members of the function that do not help as much as
others will have fewer bits of resolution allocated to them by the algorithm. To be more
concrete, say we chose a permutation function appropriate for image data and applied
it instead to scalar data. In this case, the permutation function components close in
terms of Euclidean distance in an image would actually be quite far apart in Euchdean
distance for the scalar, and the correlation would most likely be smaller. As shown
by their performance on the AR(2) source with parameter vector ¢ = {0.01,0.89}
and the corresponding correlaticn sequence in Figure 5.1 these algorithins skip (by -
allocating zero bits to the context in FOVR-IT or very few bits to the context in VOVR)
the conditioning information not strongly correlated to the value being coded. The
algorithms would do the same had we poorly chosen the permutation, skipping the

entries corresponding to the values that would be on the line above the current pixcl
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were the scalar source actually an image source.

[nterestingly, even if the permutation choice is nearly correct, there still exists a
fundamental limitation of tree structured algorithms like UMC. There may be cor-
relation that could be exploited at a different offset from the current value being
coded than was specified by the permutation functicn, but the algorithm insists on
increasing the order only if the current order under trial begins to do better. Hence,
the algorithm tends to get “stuck” on low correlation conditioning information. The
FOVR-1I and VOVR algorithms solve this problem by using low resolution condition-

ing information that will tend to show a trend faster than full resolution conditioning

information.

5.8 Computational Complexity

As noted at the end of Section 5.3, the expense of maintaining nearly 100 models
in the FOVR-I algorithm was great enough to merit investigation into a more effi-
cient algorithm. It was seen that the FOVR-II algorithm, running at most 'only 16
models simultaneously, performed equivalently, and consumed correspondingly fewer
resources. Judging from the description alone, the VOVR algorithm appears more
complicated due to the list handling overhead. However it is difficult to compare
the algorithms objectively because they are structurally adaptive and the amount of
resources they consume depends on the nature of the data being coded. However,
as a purely subjective comment, it appeared that the FOVR-II algorithm processed
a 512 x 512 image comfortably (within a few minutes) on a normally loaded Sun
SparcStation 10, whereas the FOVR-1 and VOVR took significantly longer (tens of
minutes). As a final disclaimer, the code (especially the VOVR code) was written

with modularity and extensibility in mind, rather than execution speed.

5.9 Summary

In this chapter, we have investigated several methods for solving the Markov model
learning problen:. Instead of adjusting the number of states in the model using only

the model order, as in VOFR techniques, to code signal data we have the ability to
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o

vary the resolution of the conditioning information as well. In fact, to obtain the per-

;
L

formance obtainable from methods like DPCM, we must vary the resolution this way.
Due to their flexibility. we see that on signal sources that cannot be well represented
by a linear model, variable order/variable resolution models can outperform DPCM.
However, it appears that many natural image sources can be well represented by lin-
ear models. The two classes of techniques, FOVR and VOVR, differ in computational
complexity, adaptation to the stationary non-stationary characteristics of the souree,
but their performance overall is approximately the same. Both implement a nseful
form of permutation selection, and effectively ignore data that does not help code the

source.
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6.1 Introduction

We noted in Chapter 3 that the binary variable order algorithms like UMC and JBIG
could be made to operate on non-binary data by splitting the non-binary data into
planes, each of 1 bit resolution, and passing each plane to a separate instance of
the algorithm. The UMC algorithm performed quite well in this regard as shown in
Section 3.2.3.

In this chapter we attempt to develop an understanding of why binary modelling
of non-binary signal data is so effective. We investigate the common technique of
Gray coding the data first before splitting it into single-bit planes and passing to the
model and coder, and compare it to a simple weighted binary coding. We pose the
question, is Gray coding the data and splitting into bit planes the best approach to
modelling signal data or can we do better? We propose a non-binary pseudo-Gray
code as a method of generating planes of resolution greater than or equal to 1 bit, and
compare 1t with the other conventional methods. Finally, we relate the work in this

chapter to the ideas from Chapter 5 on variable order/variable resolution modelling.
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6.2 Bit Group Modelling

VAL

Consistent with our discussions on the learning problem with Marko: ms.dels. split-
ting an r-input into r separate planes results in 7 separate streams that are cach casier
to code in the sense that the histogram counts reach their »ctual values quicker; how-
ever the sum of the codelength may not be less. Coun‘ers of ones and zero reach
stable counts faster than higher resolution counters, but vecause we may be disre-
garding some relationships between the planes, the resulting probability distribution
(the convolution of the lower resolution distributions) may not be the same as the
higher resolution distribution, which, when properly trained, approximates the real
distribution more closely.

Two methods of splitting an input into single-bit planes are now described.

Weighted Binary An r-bit input can be split into r separate inputs according to

bit placement. We call this method weighted binary coding.

Binary Reflected Gray Code An r-bit source can first be coded with an r-bit
binary reflected Gray code and then the resulting coded input can be weighted binary
coded. We will see that the effect of the Gray code is to preserve more of the correlation
that exists between two adjacent pixels than the simple weighted binary code would.

To construct an r-bit binary reflected Gray code

1. start with the all zero code word corresponding to the source zero

2. form the next codeword by changing the least significant bit that

results in an unused code word

A four-bit binary Gray code is shown in Table 6.1. Included in the table are the
corresponding weighted binary code, and, in the first column, one possible domain
in R! that could be mapped to the binary index. Also included in the table are the
number of bit changes in each plane of the weighted binary code and the Gray code.
We notice that a Gray code tends to minimize the number of changes per plane and

for the code overall. Also, it tends to try to concentrate the changes in the lower
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Table 6.1: Four-bit binary Gray code

real decimal | binary | gray
number | index index code
-1.5 0 0000{0000
-6.5 1 000170001
-5.5 2 00100011
-4.5 3 00110010
-3.5 4 0100]0110
-2.5 5 0101}0111
-1.5 6 101100101
-0.5 7 011110100
0.5 8 1000171100
1.5 9 100111101
2.5 10 101011111
3.5 11 101111110
4.5 12 1100(1010
5.5 13 110111011
6.5 14 111071001
7.5 15 1111{1000
changes 1378 1‘248:

bits. This has the effect that within any continuous range of values [Z(min, Zmax]
more often than not, the values will all get mapped into either a to 0 or a to 1,
preserving boundaries between regions containing similar values as well as possible.
The likelihood decreases, of course, with the size of the range.

However, some symbols of similar, but not exactly the same value will get mappead
in the opposite sense at the region boundaries, and there are more boundaries in the
lower significance bits. For example, in bit plane 3 (the most significant bit plane) of
Table 6.1, there is only one case where two values separated by the minimum Euclidean
distance get mapped into different symbols (going from index 7 to 8) whereas in bit
plane 1 there are four instances; contrast this with the weighted binary case for which,
in bit plane 1 there are seven instances. Similarly, two symbols widely separated in
Euclidean distance, may be get mapped to the same code in one or more of the bit
planes. For example, in bit plane 2 of the binary Gray code, indices 0 and 11 get
mapped to the same value 1.

Overall then, the Gray code attempts to arrange the values so that when processed
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Table 6.2: Entropy and conditional entropy for bit planes of Gray coded and original
lena image

weighted binary binary Gray
bit plane | H(x:) | H(xi|zi—1) | H(xy) | H(xelei_y)
0 (LSB) | 1.000 | 1.000 1.000 | 1.000
1 1.000 | 1.000 1.000 | 0.998
2 1.000 | 1.000 0.999 | 0.972
3 1.000 ' 0.973 1.000 | 0.380
4 1.000 | 0.906 1.000 | 0.787
5 1.000 | 0.745 1.000 | 0.521
6 0.984 | 0.599 0.815 | 0.401
7 (MSB) | 1.000 | 0.380 1.000 | 0.380
total 7.984 | 6.603 7.814 | 5.939

by an algorithm or by visual inspection, the features that were distinct to order 1 in
the original data are reproduced as distinct in binary form. The binary Gray code
is useful for Markov modelling because it maintains correlation between values fairly

well, but reduces the resolution so that the learning problem is reduced.

Comparison Let us continue the discussion of weighted binary versus Gray coding
by looking at the entropy of the bit planes generated using the two methods. For the
lena image, Table 6.2 shows the entropy of weighted binary coded and Gray coded
bit planes. Per the previous discussion, the increased in compression performance
is attributable to the fact that the binary reflected gray code preserves more of the
sample to sample correlation than does the weighted binary code. Contrast, however,
these numbers with the entropy and conditional entropy of the original lena, 7.146
bits/pixel and 5.5052 bits/pixel, respectively. The difference is due to the fact that
splitting the r-bit input into r separate planes ignores any inter-plane relationships.
Hence, this result leads us to speculate that using the original greyscale pixels is
superior to using the bit planes and is the motivation for the work in Chapter 5.
But from this work, we know that the two frequency counters for a one bit alphabet,
will approximate their distribution faster than say, the four counters for a two bit
alphabet, i.e., the learning problem. So, is there a middle ground? Can we the input,

into groups of bits of different sizes than just one bit per group in attempt to keep the

inter-plane relationships that may be useful, but also keep the resolution low enough
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o that the learning problem is not so great?

6.3 Non-Binary Pseudo-Gray Coding

This section defines a methodology for constructing a non-binary pseudo-Gray code.
The standard reflected binary Gray code is a special case.

The logic of the algorithm is essentially the same as that for the construction of
a binary gray code, except evervwhere we thought Hamming distance in the binary
case, we think Euclidean distance in the non-binary case.

We are given as a specification a set of boundaries dividing the r-bit word in to
n = 2 to r groups of 1 to r pixels so that the sum of the sizes of the groups is r.
If 2 = » then the group size for all n groups is 1, and the algorithm reduces to the
binary Gray code. If n = 1 then the size of the group is r, and the code performs the

identity operation. To generate the non-binary pseudo-Gray code

1. start with the all zero code word corresponding to the source zero

2. form the next codeword by changing the least significant group by
the least amount that results in an unused code word; the change
can be either an increment (add 1) or decrement (subtract 1) of
the value in the group: if an increment or decrement does not
generate a new code word. move to the next higher significance

group

A (3.2) non-binary pseudo-Gray code is shown in Table 6.3 along with a 5 bit binary
Gray code and the 5 bit weighted binary representation for comparison. Immediately
noticeable is the fact that the most significant group of the non-binary psendo-Gray
code 1s always the same as the corresponding bits in the weighted binary representa-
tion.

Interpreting the non-binary pseudo-Gray code in the same way as in the discussion
of the binary Gray code. we see that the code tends to assign values which are close in

Euclidean distance codewords that are close in Euclidean distance. At the same time,
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Table 6.3: The non-binary pseudo-Gray code (3.2)

decimal index

weighted binarv

non-binary pseudo-Gray

binary Gray

<

=T U s W

000 00
000 01
000 10
000 11
001 00
901 01
001 i0
001 11
010 00
010 01
010 10
010 11
011 00
011 01
01110
011 11
166 00
160 01
100 10
100 11
101 00
101 01
161 10
101 11
110 00
110 01
110 10
110 11
111 00
it 01
111 10
11111

000 00
000 01
000 10
000 11
001 11
001 10
001 €l
001 60
010 00
010 01
010 10
010 11
011 11
011 10
01101
011 00
100 00
100 01
100 10
100 11
101 11
101 10
101 01
101 00
110 00
110 01
110 10
110 11
111 11
111 10
111 01
111 00

000 0V
000 01
000 11
000 10
001 10
001 11
001 01
001 00
011060
01101
01111
011 10
010 10
010 11
010 01
010 00
110 00
110 01
110 11
110 10
HIT 10
11111
11101
11100
101 00
101 0t
101 11
101 10
100 10
100 11
100 01
100 00
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code gives us an advantaze over using single-bit planes i adaptive Markov maodelling,

6.4 Experiments

In this set of experiments. we separate an 3-bit source into all possible gronps of

adjacent bits. Table 6.4 sumnmarizes. For the disenssion that follows, the wdentilication
in colummn 5 of the table will be used. The notation { — b means a bit group of length
[ starting with bit 4. Hence. the group identification “5-67 means the five-bit group
starting with bit 6, i.e.. pits 65,413, and 2.

1

The conventional z‘e;‘:;oéo%ag

‘-m,h

<

[

sphit an r-bit mput into r separate planes and
pass each plane to a Markov model. We would like to explore the continnm beiween
this method and using the full » bits of information all at once. To be fair, we will
choose the maximum allowable order of the Markov model such that the number of
states is held (nearly) constant. The model maximum allowable order as a function
of the group size is also shown in Table 6.1,

The coder we will use is a simple variable order, fixed resolution algorithm. This
coder uses the highest-order matching context that has at least one symbol ocenrrence,
up to the maximum allowable order.

In Table 6.5. the results of using several combinations the groups identified in
Table 6.4. In column 1. r = 3 separate planes of 1 bit each were nsed, correspouding
to the standard method. In columns 2 and 3, the results of coding one ¢-bit plane and
8 — ¢ 1-bit planes are given. In columns 4 and 5, the results of coding one ¢-bit plane

and one 8 — ¢-bit plane are shown. The result of coding four 2-bit planes 1s shown in

column 6. There

= 8 choices for g for each image, but the one that resalted in
the lowest codelength is shown. A subset of these results arc shown in Figure 6.1 along
with the rate of the optimal static order 1 and order 2 resohition-reduced coders (as
might be determined by the FOVR-1I algorithm, for example) for comparison. There
are several things to notice. First, except for the lena and barb nmages. the optimal
static order 1 codelength was close to the performance attained by Gray coding the

bit planes first. Second. there was always a slight performance inerease over simple
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Table 6.5: Performance of several bit groupings

image | Grav code | ¢ | rate

-

4 gronps ol 2 1

barb 5.44 21540
lena | 5.31 20 a0
mandrill . 652 416.26
pentagon 543
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Figure 6.1: Comparison of bit group techunignes
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Cirav codine, bt senerslle less than 5% in coding some larser oroun of bits the
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coding just the bit planes. aud the optimal bit grouping varied from image to 1mage.
Those images whose perforipance was not increased significantly by coding larger bit
oroips were the saine inages for which the performance of the FOVR-IT algorithm was
poorer than Gray eodiug the bit planes. namely barb and lena. This suggests that in
those ttnages there is 2 more complex mechanism operating than simply the learning
problem. Indecd. examiuing the codelength profile of those images. both appear to be
non-stationary with respect to an order 1 model. The most striking improvement was
obtained on the texture image. significantly the most homogeneous in appearance of
all the nnages. Coding {our planes of two bits consistently outperformed simple Gray
coding also. and was pearly the same as coding ¢ bits together and the remaining
% —~ ¢ bits separatelv. ('oding two groups. one of ¢ bits and the other of 8 — ¢ bits were
again anomalous for barb and lena. performing werse than the Gray code, but for
other 1mages, it performed shghtly betier. though consistently worse than the other
Eroupings.

Unfortunately, not all combinations of bit groupings were explored, only the ones

that were intuilively attractive. This is an area of future research.

6.5 Summary

We have investigated the method of splitting an r-bit input into planes and coding
the planes separately as a technique for overcoming the learning problem in Markov
models. The traditiona! method of doing this, namely Gray coding, was analyzed
in order to get a better understanding of what this technique does. Motivated by
its structure. a non-binary pseudo-Gray code was proposed, which has the desirable
characteristic of allowing us to generate planes of resolution greater than 1 bit but
less than the full source resolution. Thus. the non-binary pseudo-Gray code gives us
the ability to preserve some inter-plane relationships. The non-binary pseudo-Gray
code includes the standard binary reflected Gray code as a special case. The non-
binary pseudo-Gray code was used to generate planes of varying resolutions for the
menbers of the test set and the planes were coded using a variable order, fixed reso-
lution Markov model. It was seen that some combinations of planes with resolution

higher than 1 bit performed better than the binary Gray code method, though this
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. . e e
performance increase was generally less than 3% However It s desirable to ey to
get the extra performance. one could of course use the methodology upon which most
of Chapter 5 was based. namely. run the models in competition and select between

them based on their recent codelength.
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Chapter 7
Applications

This chapter explores the application of Markov modelling to other areas besides
directly compressing signal data. Based on Section 3.1.7 we know that signal data
prediction is usefu} in the context of DPCM systems because the prediction is sub-
tracted from the signal and the lower power residual signal is optionally quantized and
transmitted or stored. We will see that a convenient side effect of Markov modelling
is that we can also use the models as predictors, and that adaptive Markov predictors
can function as well as or better than their inear model counterparts, but that most
natural image data can be better represented by linear models. We continue the dis-
cussion of using Markov models coupled with DPCM, showing that the properties of
the FOVR and VOVR models presented in Chapter 5 can yield very good compres-
sion. Finally, we look more carefully at the structure of these joint DPCM/Markov

coders and present a new method of DPCM, distortion-constrained DPCM.

7.0.1 Using Non-Binary Markov Models as Predictors

A probability density estimate 1s available for each sample z, namely, the one that
the coder would use to transtorm the distribution and symbol into a sequence of bits
via an arithmetic coder. We know that the optimal predictor, linear or non-linear, is
the {conditional) expected value, F{X). Instead of using the distribution to code the
mput. we can easily calculate the expected value instead. The resulting estimate is

unconditionally stable. although not necessarily good.



CHAPTER 7. APPLICATIONS 3

Table 7.1: Prediction of test set
PSNR
nnage s order 3 DPCM | order 3 ADPCM | FOVR-1I
barb 24.54 2499 2.4.30
lena 27.22 27.08 25.33
mandrill | 22.45 22.36 22,04
pentagon : 27.62 27.48 26.76
photog | 22.58 22.53 20.06
texture | 26.03 25.52 25.95

For a model that operates on r-bit streams, the expected value is calenlated simply,

E(X)=> aP(X =a). (7.1)

g A

7.0.2 Using Binary Markov Models as Predictors

A bmary Markov model gives us predictions for a single bit plane of an image with »
bits/pixel. If we want to form an r-bit prediction for a particular pixel in the image,
we need to form the new probability estimate

r—1
P(X=a¢)=[[ P(Xi =) ,Ya€ A. (7.

1=0

-1
|8
S

Given that probability distribution. we can apply 7.1.

7.0.3 Experiments

The inpits to the model were the members of the image test set. The inages were
predicted using 1) order 3 DPCM (after an initial pass to determine the hnear predic-
tor coefficients, 2) order 3 ADPCM, and 3) the FOVR-II algorithim of Chapter 5. lor
the FOVR-II algorithm. we set the maximum number of models, MaxModels to 128,
the MemoryUsage to 16 megabytes, and the maximum order of the models, MaxOrder,
to 2.1

The order 3 DPCM system worked the best overall, followed closely by the adaptive

DPCM system. The FOVR-II algorithm yielded generally poorer results, ranging from

!Due to the MemoryUsage constraint, setting MaxOrder to 3 did not result in better performance
overall, and In some cases the performance was worse. As postulated in Section 5.4.1, this may be
due to the fact that these sources are non-stationary.
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[.7% better on the barb image to 11% worse on photog image. Averaged over the

test set. FOVR- performed about 3.2% worse than ADPCALL

The equivalence of properly trained Markov models and DP”M on stationary
linear sources is easy to explain. The differential entropy for a Gaussian source with
mean g and variance o is 1(In2 +In7 + 1 4+ 2Ino). The conditional probability
distribution of the AR(N} source has mean 3., ¢;z(n — i) and, more importantly,
variance oy. This has a differential entropy depending on the variance, as above.
Lvery conditional probability distribution will have the same variance, o. The overall
entropy then is the expected value of the conditional differential entropy, which is a
constant, so the overall entropy is the same value. For the DPCM case, if we have
estimated the parameters correctly, we are just coding the error sequence, which by
definition has power oy. So the two approaches are the same. The only difference
arises during adaptive coding, but if the Markov model resolution and order are
continually adjusted, it can learn almost as fast as DPCM.

However, we expect that the adaptive Markov model could do better than DPCM
on some sources. If we think of DPCM as if it were a Markov model, all the condi-
tional histograms will have the same shape; only their means will be different. On
the other hand, a Markov model has no such restriction; the distribution can be com-
pletely different from one context to the next, resulting in greater modelling flexibility.
Consider a source whose symbol probability distributions are identical in scme set of
order | contexts, but for the rest of the order 1 contexts the symbols are distributed
exactly as if they had been generated by an order 1 linear model, that is, for each of
those order 1 contexts the mean of the distribution is the value of the context. The
increased flexibility of the Markov model should result in better performance than
DPCM on this source.

We generated just such a source. The first 2'7 samples were generated by an
order | linear model driven by white Gaussian noise, to which was added an offset
that moved the mean far enough away from zero so that the probability of a symbol
less than zero occurring is negligible. The second 2!7 samples were white Gaussian
noise with the same variance as above, but from which was subtracted the same
offset added to the order 1 source. In this way. over the whole sample, a symbol less
than zero is almost surely to be followed by another symbol less than zero but the

two symbols will be independent. At the same time, a symbol greater than zero is
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almost surely to be followed by another symbol greater than zero but the two svmbols

will be correlated. Hence. the conditional histograms that correspond to the order |

model are effectively {though not 1deally) localized m one half of the two-dimensional

g
support of the sample. In the other half of the support, the conditional histograms are
identical in mean and variance. This source should present a problem to the DPOM
model because it assumies that the autocorrelation 1s constant over the sample. 1t
would, in fact, appear bimodal to an order | DPCM system. but it would appear
stationary to an order I Markov model, since the two characteristics of the source are
in distinct regions of the support.

We ran the FOVR-II model, and adaptive and non-adaptive order 3 DPCM models

on the source. As expected, the Markov model performed better. The PSNR for the

three methods were 29.62, 28.30. and 28.26 dB, respectively.

7.0.4 Summary

A non-linear adaptive Markov predictor was seen to perform slightly worse than lincar
predictors on the test set. However, certain non-stationarities that would canse a
linear predictor to perform poorly, even with a pre-scan, do not present a problem for
a Markov predictor but, based on the test set, such non-stationarities do not appear

to be common in natural 1mages.

7.1 DPCM/Markov Coding

As mentioned in the introduction and in Section 3.1.7, we can use DPCM in conjunc-
tion with Markov coding because, while running a Markov model as a predictor is
theoretically better than using a linear model, for a large class of inputs that can be
effectively modelled as a linear stochastic system, a Markov model (with appropriately
chosen resolution and order) appears to do no better, but i1s more computationally
expensive. This leads us to speculate that Markov models may be better suited to
coding the residual of a DPCM system. Several authors have already described sys-
tems, for example Tischer, Worley, Maeder, and Goodwin (1993) and Todd, Langdon,
and Rissanen (1985). However, let us explore in more detail the charactenistics of the

residual that would be presented to a Markov model.



CHAPTER 7. APPLICATIONS 91

7.1.1 Characteristics of the DPCM Residual

If the DPOM parameters are exactly matched to the linear model that generates the
source appearing at its input. the residual sequence is white noise with the same
power as the noise driving the input generator. We can still use an order 0 model on
this sequence and compress it down to its order 0 entropy quite easily. I, however,
the generator has higher order than the model, the model parameters are wrong, or
the gencrator is simply not linear, the resulting sequence will not be white. This
implies that we can gain from coding the residual sequence with a Markov model. Of
conrse, in the first two cases, we could also simply increase the order or accuracy of
our PDPCM system.

For an AR(N) source modelled by a order M linear model, with M < N, it is
casy to determine the characteristics of the residual. However, for other sources it is
more complicated and perhaps overall the exercise is not ‘nstructive. We do expect,
however, that whatever the characteristics of the residual, a Markov algorithm like
FOVR-IT would determine the proper resolution and order to best code it.

[t is significant to note that in practice, we can represent the residual from an
r-bit input using only r bits instead of » + 1 bits as one might expect. This is
done relying on the fact that the predictor generates integer predictions and using
modulo-r addition and subtraction. However, the r-bit representation of the residual
is quite different in character from the r + 1-bit representation. The entropies are the
same, but it appears from preliminary investigations that the “adaptive entropies” are
different, i.e., when presented to equivalent adaptive models, the resulting codelengths
are different. Exploring the differences between the two representations and how
Markov models react to it is a topic for further research.

While lossless coding has its place, there are many application areas in which
some amonunt of distortion can be introduced into the image in order to increase the

compression of the data. In the next section, we will describe in detail yet another

variant of DPCM.
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7.2 Distortion-Constrained DPCM

Because signal data is often noisy, we are lead to speculate that perhaps changing
a few values in the input will not cause a perceptible difference to the viewer. The
problem is determining which pixels those are and what is the effect of changing the
pixels on the overall rate. One traditional method of reducing the rate is by gnantizing
the residual. However, in this section we propose another.

Suppose that we are allowed to alter the input to a lossless (quantizer disabled)
DPCM coder by adding a noise sequence n,, and we choose n, in such a way as to
minimize the entropy of the residual sequence while at the same time keeping the
power of the noise, E(n?). low. In other words, we wish to minimize the entropy of
the residual H(r;) subject to a constraint on the power of the noise sequence I£(n?),
where ry = z;, — 7, and £, is the prediction for z;.

It is known that the constrained minimization problem min.r given y < z can be
replaced by the unconstrained minimization min(xz + Ay). The parameter A can be
adjusted for the particular required value of z. Hence, to solve the problem at hand,
we perform an unconstrained minimization of min(H(r;) + AE(r#)) for some choice
of A. If A is zero, we end up with an unconstrained minimization of the entropy. No
consideration will be given to the resulting error. If, on the other hand, the value
is non-zero, we include in a penalty for the squared error incurred by replacing the
original with another value. If A is very large, we can overwhelm the cffect of the
entropy and just minimize the error, which means that we would essentially never
change any value, ¢; = 0

Unfortunately, to solve this problem correctly, we would need to determine the
residual resulting from every possible noise sequence of length N and choose the
minimum. Obviously this is impractical. A more practical solution is 1o assume that
et each step, the distribution of the residual doesn’t change by much, and so doing a
local minimization at each step should result in a fairly good global ninnmization.

The algorithm can be summarized as follows.
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‘ . calenlate the prediction I,
2. for each integer 7y in {—nmax, Pmax), calculate the cost function

—log(P(&, =z, + n,)) + An}

3. choose the value of n, that results in the minimum cost function

7.2.1 Experiments

The DC-DPCM system described above was applied to the images i the test set.
The predictor was an order 3 linear predictor whose coefficients were determined by
a pre-scan of the data and whose output was constrained to integer values. Based on
the results in Section 7.0.3, we could have just as effectively used one of the adantive
Markov models described earlier in the thesis that, for the sources under consideration,
perform almost as well as a linear predictor. The rate distortion performance is
shown in Figure 7.1 in comparison to a standard DPCM system using the same
predictor but whose integer-valued outputs were further quantized using a uniform
guantizer.? The quantized outputs were passed to an order 0 adaptive entropy coder.
Another view of this data is in Figure 7.3. We see that the DC-DPCM system
ontperformed the standard DPCM on all the test images. For example, on the lena
image at 1.5 bits/pixel the DC-DPCM system provided an approximately 5 dB gain
over the standard DPCM system. Granted, the performance is nowhere near the
rate-distortion performance attainable using techniques like vector quantization, but

the result is interesting all the same.

7.2.2 Summary

DC-DPCM was inspired by entropy-constrained vector quantization (ECVQ) (Chou
1989; Chou, Lookabaugh. and Gray 1989). In a standard vector quantizer, the decision
regions are adjusted to minimize the difference between the input for a given codebook

size. M. It 1s assumed that the codeword indices are put directly or:to the channel and

“While this quantization method is sub-optimal, since both the DC-DPCM predictor and the
DPCM predictor operated in the same way, this was considered a fair comparison.
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su the achievable rate is log Al bits. To differentiate the techniques. Chou (1989) calls
this first method rate-constrained vector quantization. In contrast. ECVQ explicitly
assumes that the vector quantizer will be followed by an entropy coder which produces
-ariable length channel symbols and hence. instead of minimizing the distortion given
a fixed rate, the distortion is minimized subject to a constraint on the entropy. In
this way. choosing the parameter A allows one to choose relatively high distortion at
very low entropy, very low distortion at very high entropy. or somewhere in between.

e DC-DPCAMLL we try to find the smallest rate given a restriction on the distor-
tion by assuming thai the channel symbols are not the actual values of the residual,
but rather. as in ECVQ. the variable length strings produced by an entropy coder.
In traditional DPCM. distortion is introduced via the quantizer. and. while we can
estimate approximnately what the quantizer noise power will be for some classes of
» and Gray 1992, pages 151-166), we do not know what effect the
quantizer has on the entropy of the output sequence. In DC-DPCM. on the other

hand. the distortion is introduced explicitly and in a controlled way.
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7.3 Summary

In addition to using Markov models for generating probability distributions that drive
an arithmetic coder. we can also use the models as predictors. 1t was shown that
adaptive Markov predictors can function as well as or better than their linear model
counterparts, but that most natural image data can be well represented by linear
models. Markov models can be as a back-end to a DPCM system, and the FOVR
and VOVR models presented in Chapter 5 are especially well suited for inding the
conditioning information remaining in the signal that results in the lowest rate. The
new technique of DC-DPCM was seen to offer advantages over traditional DPCM and

is an interesting starting point for further research.
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Whenever adaptive Markov models are used to code data, signal or text, careful
attention must be paid to choosing the number of states in the model appropriately.
For stationary sources, the optimal number of states appears to increase monotonically
with the number of samples thus far seen. For text data compression, variable order
Markov techniques have proven to be some of the most effective, their popularity
lessened only by the fact that they are computationally more complex and require
more memory than dictionary techniques. For signal data compression, in addition
to varying the order of the model to control the number of states, we have at our
disposal other techniques helpful in solving the learning problem. The well accepted
technique of splitting an r-bit input into r separate bit planes is effective in this regard.
This technique reduces the number of states in the model by effectively lowering the
alphabet size, at the expense of losing relationships between the bit planes which
potentially could help further compress the source. In this thesis, we have seen that
we can also code the original »-bit input, simultaneously varying the resolution and
order of the conditioning information to obtain similar performance. Additionally, we
have also shown that splitting the r-bit input into planes containing more than one
bit offers some performance gain over splitting into 1-bit planes.

Throughout this thesis we have exploited the use of running models in competi-
tion and choosing between them based on their recent codelength. This technique,
inspired by (Williams 1991). was shown to be an application of the MDL principle.
The principle can be applied to whole models {as in FOVR-II), or to individual con-

texts within a model (as in VOVR). The work in Chapter 4.3 on variable decay rate
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modelling showed that the MDL principle can be applied temporally as well, allowing
a model to use information about its own recent performance as a method of altering
its parameters.

This thesis has only scratched the surface of the number of 1ssues mvolved in
modelling of signal data. Some suggestions for further research are presented in the

next section.

8.1 Suggestions for Further Research

VOVR with Zero-Resolution Branches The VOVR algorithm of Section 5.5
does not have the ability to completely skip conditioning information. In the original
implementation, it was expected that assigning only one bit of resolution would be
enough to skip conditioning information that does not significantly help compression,
but in fact this choice makes VOVR suffer from the same problem as other tree-
structured algorithms. A modification allowing VOVR to completely skip conditioning

information by assigning it zero bits of resolution may solve this problem.

Non-stationary sources The proposed enhancement to the FOVR-II algorithi
mentioned in Section 5.4.1 regarding the performance of the algorithim on non-stationary
sources, should be pursued. Namely, the algorithm should be able to both increase
and decrease the state weight of the models it is able to create in response to the
input. This raises, also, several more issues about the non-stationarity of the input,

data with respect to the model which would be interesting to pursue.

Theory The discussion in Section 2.1.2 is intriguing in that it is at least possible to
write down an expression for the expected value of the codelength as a function of the
joint distribution of the source and the number of samples processed. With further
investigation, there may found be some distribution-independent function which tells
us how to best select a wide range of parameters ranging from the bin width of the
order 0 histograms, through the resolution of the conditioning imformation, to the

order of the conditioning information.
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DC-DPCM with Human Visual System Constraints The distortion-constrained
DPOM system described in Section 3.1.7 uses the mean-squared error as the distortion
measure. We would speculate that using a distortion measure that takes into consid-
cration the hnman visual system would produces subjectively better results than the

DPCM system, and perhaps acceptable results at lower rates.
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The Test

Sources

This chapter gives some basic information about the sources in the test set.

Table A.1: Statistics of the test sources

100

size

min

source Hq H,y max | Ox 70y Tio "

barb 512x512 1 7.63 | 5.80 | 12 | 246 | 117.4 | 54.7 | 0.955 | 0.892 | 0.877
mandrill | 512x512 | 7.36 { 6.15 | 0 230 | 129.1 | 42.4 |1 0.751 | 0.863 | 0.716
texture | 512x51216.80 15950 233 | 158.6 | 31.9 1 0.859 | 0.790 | 0.711
pentagon | H12x512 | 6.80 | 5.23 | 46 | 238 | 134.3 | 30.9 | 0.892 | 0.891 } 0.815
lena 206x256 | 7.45 | 5.05 | 11 252 | 1227 1 47.8 | 0.960 | 0.927 | 0.877
photog 256 %256 | 7.21 | 4.59 | 4 255 | 141.1 | 87.2 1 0,960 | 0.827 | 0.900
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Figure A.1: barb
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Figure A.2: mandrill
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Figure A.3: texture
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Figure A.6: photog



Appendix B

Algorithms

This appendix describes the details of the UMC algorithms of Rissancen and Furlan,

and the MMDC algorithm of Williams.

B.1 UMC Rissanen

The context tree is constructed in the following way for a binary alphabet, with
the extension to non-binary alphabets being straightforward. Given a sample @ =

T1L2L3 """,
1. Declare the context tree of the first symbol z; to be the 1 leal tree 7'(0), where
the only node, the root, is marked with the pair of counts (¢(0,0), ¢(1,9)) = (1, 1)

These counts are initialized to zero.

2. Let T'(¢ — 1) be the most recently constructed tree. After the next symbol a, is
observed, generate the next tree T'(¢) as follows. Climb the tree T'(L—1), starting
at the root with = 1 and taking the branch left for z; = 0 and right for =, = 1,
indicated by each of the successive symbols in the past sequence z = a(z!). For
each node s visited, increment the component count ¢(ry, s) by one. Continue
incrementing ¢ until a node w is reached whose count (e, w) = 1 before the

update.

3. If w is an internal node, with w0 as the left and wl as the right successor,
increment the component counts, ¢(z;, w0) and ¢(z,, wl) by onc and define the

resulting tree to be T'(t). Goto Step 2.
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ALGORITHMS

Table B.1: Parsing the string 100011010

t z; | 2

111 110

2110 011

31100 0 {01
411000 0 | 001

51 10001 1 {0001

6 | 100011 1 | 10001
711000110 0 | 110001

8 | 10001101 1 10110001
91100011010 1 0 | 10110001

4. If w is not an internal node (it is a leaf), extend the tree by creating two new
leaves w0 and wl. Let v = z; and let «’ be the opposite symbol of u. Assign the
same counts to both leaves: ¢(u,w0) = c(u,wl) = 1 and ¢(v', w0) = (v, wl) =

0. Call the resulting tree T'(t). Goto Step 2.

After processing a source with this algorithn., each level the resulting tree cor-
responds to a Markov model of a different order. The root node corresponds to an
order 0 model, the nodes at a depth of one in the tree correspond to an order 1 model,
and so on.

The count for a symbol x at node s, ¢(x,s) in the context tree is really one more
than the number of times the symbol = was seen in context s. Hence to use the
Laplacian probability estimator all the counts that are greater than zero must first
be decremented.

As an example, let us parse input z = 100011010 using the identity permutation.
The tree starts out with one node, initialized with the count (1,1). When the first
symbol, x; = 1, is read, immediately the first node satisfies the requirement ¢(z;, w) =
1. After incrementing the root count to (1,2), two new nodes, each with the count
{0,1), are created. The resulting tree is shown in Figure B.1. For the next symbol,
ry = 0, again, immediately the first node satisfies the requirement ¢z, w) = 1. This
time, however, the node is not a leaf, so no new children are created. After the root
is updated, the existing child counts for the symbol z; = 0 are incremented. The
resulting tree is shown in Figure B.2. For the next symbol, z3 = 0, the root node

does not satisfy the condition ¢(xy, w) = 1. So the tree is traversed according to the
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/ \m

Figure B.1: Tree T(1)

/ “)\

(1.1)

(0.1)

Figure B.2: Tree T(2)

history. Referring to Table B.1, at ¢t = 3, z; = 0, so, after the root node is updated,
the left branch is taken. At this node ¢z, w) = 1, so, alter updating the parent node
count, two new nodes, each with the count 1,0 are created. The final tree is shown in
Figure B.3. Using only the previous description, the tree can grow without bonnds.
Of necessity, however, the tree depth must be limited. In practice, an arbitrary upper
limit on the tree depth is set and Step 4 is modified so that the tree grows only if the
maximum tree depth would not be exceeded.

The tree resulting from running the previously described algorithim on the string
z' is T(t). This tree can be used to choose optimnal model order for coding the next
symbol, z;47. To choose the coding node, climb the tree starting at the root with
i = 1 according to the string z = o(r!). Each 2* defines a node, which is a possible
context for coding the symbol z,. If we had chosen the node z* to code the previous
symbol occurrences at this state, we would have obtained the length

3 H C(J7"’ '( [—1)' .
Lparent(> )=1lo (=) + )M"U! - (15.1)

from (3.3) and where j runs through all the symbols. On the cther hiand, if we had

chosen the M children (where M is the alphabet size) {z'0,2'1,---,2'M — 1} as the
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Figure B.3: Final tree for the string 100011010, UMC Rissanen

contexts, we would have spent

M1

L eyildren (=" Z Lz (B.2)

- extrecsel e s RN o I NN Y r 7 -1 )
for encoding the same svmbols. So. we choose the node - 1f],parpm(~ } < Lepildren(Z'):

otherwise we increment 1 until a decision 1s made.

B.2 UMC Furlan

The enhancement to the UM algorithm as proposed by Furlan (1991) is as follows:

The context tree for the first symbol r; is the 1 leaf tree T(0). consisting solely

of the root node. with all counts equal to zero: this i1s the zero information case.

I
.

When the next symbol u = #; 15 observed. climb the previous tree. starting at
the root and taking the branch corresponding to each of the past symbols oz,

where o is the permutation as defined in the algorithm of {Rissanen 1986a).
3. For each node = visited. increment the count c{u, =)

4. Additionally. at each node visited. calculate the entropy of the symbol (the

per-svmbol codelength) v and add the difference in entropy between the child’s
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(2.0){-0.152]

d

(1.0}

Figure B.4: Tree T(4)

svmbol entropy and the parent’s svmbol entropy to the child’s REC. Limit the

resulting REC so that it falls within (RECMIN, RECMANX).

5. Continue until the terminal node: if. at that node, the count for the current
symbol is greater than 1 {indicating it is a coding node) AND its REC is negative

(indicating that it is a better coder than its parent) grow the tree.

As in Section B.1, let us process the string = = [00011010. We will add to our
representation of the node the value of the REC in square brackets. For the purpose
of this example. we choose RECMAX=2 and RECMIN=-2. The initial tree is the
node (0, 0}[—2] corresponding to the null context.

The first symbol.l. is coded using the null context, whose REC is never updated.
Since. after the update. the 1 count is only 1, no tree growth oceurs. The second
symbol.0. is likewise coded with the null context, and the counts updated, but again,
the count is not greater than 1 after the update. The third symbol is coded witli
the null context, and this time. after the update, the 0 count is 2 and the tree grows
context [0/1]. Since the REC of the {0/1] context is non-negative, we again choose
the null context for the fourth symbol. 0. The counts are updated and whereas the
null context assigned p = 3/5 to the symbol, the [0/1] context would have assigned
p = 2/3, the difference in codelength being 0.152 bits, in favor of the [0/1] context.
Also, because the count for the current symbol is greater thau 1 at the [0/1] context,
and because its REC is negative, the [0/10/1] context grows, according to the history.
Hence after the update. the tree is as shown in Figure B.4. The final tree is shown m

Figure B.5.
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(1,2)[0.414] (2,1)[0.579]

(1,1)[-0.415)

Figure B.5: Final tree for the string 100011010, UMC Furlan
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Appendix C

Estimation Techniques

C.1 Introduction

A fundamental characteristic of all learning systems (including human learning) is
the significant dependence of the nature of the inferences made by the system on the
nature of the training. In this chapter, we will describe several common approaches to
the seemingly simple task of estimating a distribution from a histogram of a sample.
Usually, when there are many instances in the sample, the task is easier. lHowever,
when there are just a few, as is often the case when we are using high order Markov
models, then the task becomes more difficult. For example, assuming a 256 symbol
alphabet, having seen just two samples, say 152 and 199, what is our hest gness for
the probability distribution? What should be our estimate of the probability of the
symbols that have not occurred?

Finding answers to the previous questious has practical significance for statistical
data compression. Since we assume that the information conveyed by an event is the
negative logarithm of its probability (as in (2.3)), assigning zero probability to an
event leads us to a singularity. Instead, we need to generate “safe” ) that is, positive
and non-zero, predictions. Roberts (1982) calls this the zero frequency problem.

The discussion that follows is based on (Williams 1991). We will assume that we
have an alphabet A of size M. The histogram count for symbol ¢ is denoted by C/(a),
the total count of all symbols seen so far is denoted by €', and the mumber of symbols

with zero frequency (C(a) = 0) 1s denoted by z.
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C.2 Linear Estimation

Linear estimation allocates a small amount of probability to all symbols in the al-
phabet (whether they have non-zero counts or not) and then divides the remaining
probability between the symbols with non-zero counts. According to Williams (1991),
it can he shown that linear estimation with A = M is optimal if all possible probability

distributions are equally likely, but that in practice, A = 1 works the best.

C.2.1 General Linear Estimation

The general linear estimator is given by

Cla)+ A/M

pla) = Cla) + A/M (C.1)
C'+A

where A > 0. The smaller the value of A, the more we trust the histogram to be

representative of the true distribution. The higher the value of A, the more we expect

a previously unseen symbol to appear.

C.2.2 Linear Moffat Estimation

Linear Moffat estimation allows the parameter A to vary, effectively decreasing it if
the histogram has a large number of zero frequency symbols, and increasing it if the
histograin has a small number of zero frequency symbols. In this way, A is modified
according to the spikiness or smoothness of the distribution, dynamically adapting to
the chiaracteristics of the distribution.
The linear Moffat estimator is given by
Cla)+ AXM —z2)/M

PlO) = = =) (€-2)

C.2.3 Laplacian Estimation

Choosing A = I in (C.1) results in the familiar Laplacian estimator. As previously

mentioned, 1 practice, this is the best fixed choice for A.
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C.3 Non-Linear Estimation

Non-linear estimation divides the probability in two parts. The first part is divided

equally between the symbols of zero frequency and the second part is divided between

the symbols of non-zero frequency in proportion to their frequency. Non-lincar esti-

mation 1s useful in situations where there are many zero frequency symbols which,

under linear estimation, would needlessly take away more of the available probability

mass.

C.3.1 'General Non-Linear Estimation

The general non-linear estimate 1s given by

12 Cla)=0
A _ ZC+
pla) = { C(a) Cla)> 0

CH+A

C.3.2 Non-Linear Moffat Estimation

The non-linear Moffat estimator is given by

Z C+A(M—2)

Cla v
m%f—%j (/((l)>0

o 1 _AMM-z) C(a)=0
pla) =

(CA)
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Prefix Coding of Integers

Given an integer n we would like to form a prefix code. A method for doing this
(Rissanen 1989) is described below.

Iach integer n has a binary representation b(n) consisting of [(b(n)) bits, the length
of the binary representation b(n). However, if the binary representation for an integer
is followed by the representation for another integer, there is no way for a decoder to
know when one integer stops and another begins. One might think of prepending the
length of b(n), [(b(n)), to b(n), but that results in the same problem — except that the
length is smaller than the original number. Continuing in the same way, we end up
with a monotonically decreasing sequence of integers as in Table D.1. The problem
is how to encode the smallest one. One solution is to let a stored integer j indicate
that the next j 4+ 1 positions contain the next length indicator. The resulting prefix
code w(n) for some small integers is shown in Table D.2.

A simple encoder that outputs the prefix code for the integer p from left to right

Is given by

Table D.1: Attempt at forming a prefix code for the integer n = 10256

n b(n) [(b(n))
10256 | 10010000010000 | 14

14 1110 4
4 100 3
3 11 2
2 10 2
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Table D.2: Prefix code for some small integers

n | w(n)

1 10

2 1100

3 ]110

4 1101000
5 | 101010
6 | 101100
T 1101110
g8 | 1110000
9 | 1110010
10 | 11 1010 0
11 {11 10110
12 111 1100 0
1311111010
14 1 11 1110 0
1511 11110
16 | 10 100 10000 O

1. output 0
2.1t p <2 quit

3. output p, set p = w(p) — 1, and goto step 2

and a simple, recursive prefix-coded integer decoder is given by

1. initialize p =1
2. read 1 bit, b
3. 1f b= 0, report p and quit

. read p more bits, interpret the resulting p + 1 bits as the new p

s

and goto step 2
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The length of a prefix-coded integer can be shown to be
L (n—1) =logek + logn + loglogn + - -+, (D.1)

where the sum iucludes all positive terms and cg is a constant so that the Kraft

inequality is satisfied with equality, cx = 2.865.
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