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Abstract 

This thesis investigates the associated problems of motion estimation, interpolation 

and motion colnpensation when applied to interlaced video sequences. Motion esti- 

mation has many different applications including interpolation, motion compensation, 

and object recognition. Interpolation is important for the purposes of converting in- 

terlaced video to progressive sequences, the "pause" function on video tape recorders, 

and, as will be shown in this thesis, motion compensation. Motion compensation, on 

the other hand, is used in video codecs (such as those based on MPEG and H.261) to 

remove temporal redundancy. This technique is critical if the codec is to operate at 

a low rate. 

In this thesis, a number of different motion estimation methods and de-interlacing 

techniques (both spatial and motion compensated) are considered, and applied to 

different motion compensation algorithms for interlaced sequences. 

Our investigation of motion estimation and interpolation methods focuses on 

Bayesian techniques. Using statistical models for the motion field, the Maximurn 

A Posteriori Probability (MAP) estimate of the motion field is obtained by applying 

simulated annealing. Modifications to this technique are included for use with inter- 

laced sequences. These modifications have proven to provide excellent reconstruction 

of the missing lines in interlaced video. 

Using the interpolation results from the spatial and Bayesian techniques, various 

methods of motion compensating interlaced sequences are considered that use infor- 

mation from two previous fields to improve performance. The new techniques pro- 

vide significant improvement over current methods. However, despite the improved 

interpolation obtained by the Bayesian methods, the performance of the motion conl- 

yensation methods using spatial interpolation techniques is very similar to that of 

the Bayesian methods. This significant result indicates that good interlaced motion 

... 
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compensation algorithms may not need complex motion estimation methods. 
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Chapter 1 

Introduction 

Currently, the cable and teleco~nmunications industry is undergoing a shift in empha- 

sis away from analog methods to new digital video transmission such as those found 

in High Definition Television (HDTV) and in CCIR 601, which is the video standard 

for studio quality digital transmission. In order for digital video transnlission to be 

used over typical channels such as that used by the NTSC standard (equivalent to 

lOMbits/sec), co~npression must be performed. This compression is the practice of 

eliminating redundancy from the original data s t rea~n and/or introducing distortion 

in order to reduce the required data rate. 

One of the most effective and hence most common tools used in source coding 

for digital video is called motion compematiort (MC). Motion co~npensation allows 

the elimination of some of the frame-to-frame redundancy by estimating the motion 

between the two frames. This motion information can then transmitted along with 

the resulting error (lossless coding). While this topic has been studied extensively for 

progressive (non-interlaced) video sequences, there are very few methods specifically 

designed to i~nprove motion compensation for interlaced video. 

1 1 Interlaced Video 

When television progralns or movies are displayed on a screen, it is in the form of 

individual pictures or frames which are rapidly displayed in succession. This method 

takes advantage of the ability of the human visual system (HVS) to temporally inter- 

polate between frames (Netravali and Haskell 1988). This ability is dependent on the 
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arnbient lighting level and the overall brightness of the displayed frames-the brighter 

the display, the more chance of visible flicker. 

In movies, a technique known as progressive video is used where a series of full 

frames are displayed rapidly after one another. To reduce the visible flicker, the 

projector normally flashes each frame onto the screen two or three times. This is 

sufficient for dark movie theaters; however, television cannot do this since it would 

require considerable storage to redisplay frames. Therefore, a new technique is needed 

such as i i~ t e r lac i i~g .  

Interlaced video is an efficient technique that attempts to take advantage of the 

spatial-frequency dependent characteristics of the HVS to eliminate flicker. As shown 

in Figure 1.1, the HVS performs sharper filtering on higher spatial frequencies than 

lower spatial frequencies. In television, 2-to-1 interlace is used. This technique dis- 

plays lower spatial frequencies at  a higher rate than the higher spatial frequencies by 

scanning and displaying first the odd lines of the frame and then the even lines as 

shown in Figure 1.2. Each of these sets of lines is known as a field. Since individual 

lines are only updated every second field, the high spatial frequencies contained on 

individual lines are not displayed as rapidly as the low spatial frequencies represented 

by groups of lines. 

One effect that results from the interlaced technique occurs when a single frame 

is viewed. Since the odd and even fields are scanned at  different times, the edge of 

moving objects can appear serrated since in one of the fields the object will be in a 

slightly different position than in the other field. This effect can be seen when using 

the "pause" feature on a video tape recorder. 

1.1.1 Notation 

Three sets of notation will be used in this thesis to refer to video sequences: 

1. T will be used to designate the frames of progressive sequences. 

2. R will be used for individual fields of an interlaced sequence. 

3. @ will be used to refer to frames of an interlaced sequence. Note that two fields 

of an interlaced sequence are combined to form a frame. 
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Figure 1.1: Spatial filtering characteristics of the human visual system (Netravali and 
Haskell 1988) 

Figure 1.2: Three fields of an interlaced video sequenc,e 
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In each case subscripts will be used to indicated the location in time of a given 

frame or field. For example, T,,, R,,, and a,, all refer to the nth or current frame/field 

in the respective sequence, and R ,  a d  Q all refer to the ( n  - I ) ~ "  or 

previous frame/field in the respective sequence. In addition, individual pixels in a 

frame/field will be referred to by the notation T,,(s, y), Q,(x, y) or R7,(x, Y) where 

the pixel has the spatial location (s, y).  

In interlaced sequences, the current field, R,,, has different parity from the previous 

field, Rl,-l, and has the same parity as the second previous field, The current 

frame in an interlaced sequence, Q,, is composed of the two fields, R,, and R7,-1, 

combined together to for111 a full frame. 

1.2 Motion Compensation 

Motion compensation is a technique that uses the redundancy between frames in 

a video sequence to compress the data. The idea is to predict the next frame by 

estimating the  notion between frames. Once a motion estimate has been made, 

the algorithm only transmits the (usually quantized) difference between two frames, 

which is contained in the motion information and the estimation error. If the motion 

estimation is good, a high rate of compression can be achieved (Hsing 1987). 

In this technique the picture is divided into two parts - the motion vectors, which 

estimate the motion in the picture, and the residual, which is the error between the 

actual image and its estimate. In lossless coding, both the exact motion vector and 

a version of the residual must be transmitted. However, if the motion estimation is 

good, only the motion vector need be transmitted. 

There exist nunlerous different methods for estimating the motion between frames. 

Two major categories of motion compensation are block-based  notion coxnpensatio~l 

and pixel-remrsive motion compensation. Block-based motion compensation is the 

most con~nlon of the methods since it is generally   no re computationally realistic than 

other methods. Therefore, block-based motion compensation is used in MPEG, which 

is the current video compression standard (LeGall 1991), and we will also use block- 

based rnotion compensation as the initial ~netllod in this research. A number of the 

other co~nn~on  techniclues of motion esti~nation are surveyed in Chapter 6. 
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Figure 1.3: Block-based motion compensation 

1.2.1 Block-Based Motion Compensation 

Block-based motion compensation algorithms divide the current frame (progressive 

sequence) into blocks. Then, for each block in the current frame, a search of the 

previous frame or frames is made to find the best matching block (the block which 

has the smallest error measure with respect to the current block). Figure 1 . 3  shows 

two successive frames in a sequence - the current frame (T,) and the previous frame 

(T,,-l). In the current frame, the present block is shown and in the previous frame the 

block in the same location as the current block is shown (dotted line) along with two 

possible matching blocks (dotted lines) and the best (in terms of some error measure) 

~natching block (solid line). In this thesis the error measure that is used is the mean 

squared error (MSE), which will be described later in this chapter. 

Many video sequences are made up largely of stationary objects (such as the 

background in a teleconferencing scene). Therefore, the majority of the motion vectors 

are often zero or close to zero. In order to minimize the number of bits required to 

code the motion vector, it is necessary that we pick not only the lowest error matching 

block but also the motion vector with the smallest magnitude. This means that if 

there are two blocks, both with the lowest error measure, then we should pick the 

match as the one with the lowest motion vector magnitude. The reason for this choice 

of motion vectors is that we want to decrease the entropy of the motion vectors to 
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i~nprove co~npression after entropy coding (Gersho and Gray 1992) and, since the 

motion vectors are most co~nmonly zero, choosing the smallest  notion vector reduces 

the entropy. 

Once the best match has been found, the motion vector ((xOpt, yo,,) in Figure 1.3) 

is calculated and trammitted for each block. If lossless t rans~niss io~~ is required, 

then the error between the current block and its best matching block must also be 

transmitted. This error is known as the residual. In general the error is quantized 

and entropy c,oded before transmission, and therefore, it is desireable to reduce the 

energy of the error as 1nuc11 as possible (find the best match) (Gersho and Gray 1992). 

A lower energy corresponds to lower entropy and hence improved compression. The 

energy of the error will be formally defined later in,this chapter. 

The two main parameters in block-based motion compensation are the block size, 

b, and the search area size, p. The block size is the length of one side of the block, while 

the search size is the length from the middle of the current block to the edge of the 

- area searched in the previous frame(s). Generally, the selection of these parameters 

involves a trade-off between computational complexity and performance. 

Motion Compensation of Interlaced Video 

In progressive video sequences, each frame contains both the odd and the even lines. 

Alternatively, in interlaced video sequences, every frame contains only the odd or even 

lines depending on its parity. For progressive sequences the best match is normally 

found in the previous frame, since the displacement of the motion is normally small- 

est between successive frames. However, in interlaced sequences, the previous field 

(different parity) does not contain the same lines as the current field, and therefore it 

is so~neti~nes advantageous to use the second previous field (same parity). MPEG-2 

does not take full advantage of this relationship since it uses either frame-based (@,, 

is coded) or simple field-based (R, is coded) methods. It does not use both previous 

fields during the search process. This thesis will address this problem along with the 

related problems of motion estimation for interlaced sequences and interpolation of 

interlaced sequences. 
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1.4 Interlaced-to-Progressive Conversion 

Another i~nportant process is conversion from interlaced sequences to progressive se- 

quences. This involves recovering the lines that are missing from the interlaced se- 

quence. 111 previous work, simple schemes have been used such as simply combining 

two successive, different-parity fields to form a frame, or just repeating every line of 

a field to form the frame. Methods such as these give rise to annoying artifacts suc.h 

as jagged object edges and blurring. 

A significant sec.tion of this thesis will investigate interlaced-to-progressive conver- 

sion. Techniques that will be investigated include spatial filtering techniques; however, 

in order to obtain better results than spatial filtering, it is necessary to use motion 

estimates in the conversion process, and therefore, techniques of motion estimation 

for use in interlaced-to-progressive conversion will also be discussed. 

1.5 Test Video Sequences 

The four sequences used in the c.o~nparison of methods in this thesis are the "Ping- 

Pong" sequence (referred to as pongi), the "Miss America" sequence (referred to as 

missa, an artificial sequence known as the "Composite" sequence (referred to as comp) 

and the "Calendar-Train" sequence (referred to as caltrain). All three sequences 

are originally progressive sequences with frames of size 360 x 240 pixels, 360 x 288 

pixels, 360 x 240 pixels, and 512 x 400 pixels. The caltrain sequence, however, has 

been cropped to a size of 360 x 240 pixels (from the bottom right corner) to reduce 

computations. The four sequences are gray-level sequences with pixel amplitudes 

quantized to 8 bits. In order to create interlaced sequences, even and odd lines were 

removed from odd and even frames respectively. This allowed comparison with the 

actual progressive frames for the purpose of performance measurement. 

pongi sequence 

The pongi sequence shows a high xnotion ping-pong game whose scene pans right 

and then left. Included in the background is a poster containing high detail, which 

includes horizontal lines that are a single pixel wide. The first frame of the pongi 
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sequence is shown in Figure 1.4. In addition, the dark background is co~nposed of a 

random texture. 

missa sequence 

The missa sequence shows a speaking person's head and shoulders on a fixed back- 

ground. It is a low motion sequence indicative of the type of video found in applica- 

tions such as video conferenchg. The first frame of the missa sequence is shown in 

Figure 1.4. 

comp sequence 

The comp sequence is composed of the first frame of the pongi sequence with a 50 x 50 

pixel block from the missa sequence superimposed with its upper left corner initially 

at (150,150). The block is then moved by 4 pixels right and 4 pixels down to obtain 

the each following frame of the sequence. This sequence therefore has known  notion 

and is used in evaluation of the motion estimation algorithms. The first frame of the 

comp sequence is shown in Figure 1.4. 

cultrain sequence 

The caltrain sequence contains high motion consisting of a toy train pushing a ball, 

a spinning mobile and a moving calendar. The background is wall-paper with homo- 

geneous regions depicting various objects. The first frame of the caltrain sequence is 

shown in Figure 1.4. 

1.6 Performance Measures 

The perfor~nance of motion compe~~sation/estirnation c,an be measured objectively 

and/or subjectively. Objective n~easureme~~ts  are the easiest to make, but objec- 

tive performance measures do not imply the same subjective performance rating. In 

subjective measurements, the human visual system (HVS) is used to perceive impair- 

ments. As a result, objective and subjective measures of the same sequences may have 

different or even reversed performance ratings. In this thesis, strictly objective mea- 

sures will be used, since these clearly relate the performance of different compression 
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pongi000 

Figure 1.4: First Frames of Sirnulation Test Video Sequences pongi, missa, comp and 
cultrain 

schemes and allow direct comparison with published results. 

One of the most colmnon objective performance measures used in image and video 

comyression research is the mfan squared error (iZ4SE). This parameter is defined as 

where T,,,,(i, j )  is the pixel amplitude a t  location ( i ,  j )  of the original image T,,,,, 

TrecolL(i,  j )  is the pixel amplitude at location ( i ,  j )  of the reconstructed image T,,,,,,, 

and M and N are the width and height of the images respectively. 
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MSE: Motion Compensation Performance Measure 

In the case of nlotion compensation (MC), we are using our motion estimate to predict 

the next frame and therefore the mean squared error is a measure of how much the 

energy of the signal is reduced by removing the predictable information. A predictor 

is said to be optimal within some class of predictors if it minimizes the chosen error 

measure over all predictors in the given class (Gersho and Gray 1992). Therefore a 

motion coinpe~lsation algorithm that results in a lower M S E  than other MC algo- 

rithnls is considered to perform better than other algorithms. For this reason the 

M S E  is the chosen measure for comparison of MC methods in this thesis. 

MSE: Frame Reconstruction Performance Measure 

The M S E  is unable to indicate where in the frame the error occurred and therefore 

does not correspond to HVS perceivable impairments directly. Therefore, in the case 

of frame reconstructio~l (eg. interlaced-to-progressive conversion), it can only be con- 

sidered a reasonable estimate of image quality. A rule of thumb states that the HVS 

can perceive a changes in image quality of 1 dB. 

Peak-Signal-to-Noise Ratio 

The performance is also c,onlrnonly measured in terms of the peak-signal-to-noise ratio 

(PSNR) which is related to the MSE by 

PSNR = 10 log,, - (EL+) 
where the ~lumerator represents the square of the peak input pixel amplitude. Often 

the PSNR is perferred over the MSE since it is independent of the quantization applied 

to the frame or image. 

Contributions of this Thesis 

This thesis has contributed to the areas of motion estimation in interlaced video, 

recor~structio~~ of interlaced video, and motion compensation of interlaced video. The 

major contributions can be summarized as follows: 
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1. A number of spatial interpolation methods have been implemented and corn- 

pared for different video sequences (Chapter 2). 

2. A novel, improved method of motion compensating interlaced video has been 

developed and implemented (Chapter 3). 

3. Using Bayesian motion estimation (Chapter 4) and a number of new modifi- 

cations for interlaced sequences, a better motion estimaton method has been 

presented which leads to better frame reconstruction (Chapter 5 ) .  

4. Two computationally efficient motion estimation methods have been imple- 

mented and applied to the reconstruction and motion compensation of interlaced 

video (Chapter 6). 



Chapter 2 

Spatial Interpolation of Interlaced 

Sequences 

Spatial interpolation of an interlaced sequence is important, since it attempts to regen- 

erate the missing informat ion contained in the unknown fields using only the current 

field. This recovered information is useful in improving motion compensation, in ac- 

curately estimating the motion for the entire frame and in improving the perceptual 

quality when a single frame of an interlaced sequence is viewed alone. 

The simplest methods of spatial interpolation involve considering the colu~nns of 

a field as a one-dimensional signal and then applying a 1-D filter to interpolate the 

rnissing values. This process is shown in Figure 2.1 where y(A)  is the value to be 

interpolated and A is the distance from the origin. The estimate of y(A) will be 

designated ij(A). 

The interpolation process of a single pixel of an interlaced frame can be represented 

Figure 2.1: Interpolation of Interlaced I~nage Columns 
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where $(A) is the interpolated value, A is distance from the origin in Figure 2.1, b (A)  

is the filter as a function of A. The filter, b(A), is multiplied by the sequence to be 

interpolated (samples of y(t) at  t = k j 6 ,  &is, kq6, . . .) where 6 is the sampling period 

as shown in Figure 2.1. Since, in the case of interlaced-to-progressive conversion, we 

are interested in interpolating only the value exactly half-way between two samples 

of y(t), A = 0. For simplicity, the notation b will be used to represent b(0). The 

remainder of this Chapter will discuss different spatial methods for performing this 

interpolation. 

2.1 Linear, Quadratic and Cubic Interpolators 

The linear, quadratic and cubic interpolators (Konrad 1989) are outlined below for 

interpolation of interlaced sequences ( A  = 0). 

2.1.1 Linear 

The linear interpolator is given by 

which, for the case where A = 0, simplifies to 
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2.1.2 Quadratic 

For the case where A = 0, the quadratic interpolator is given by 

i j (o)= [-i a n ]  

2.1.3 Cubic 

The cubic interpolator for the case where A = 0 is given by 

Keys (1981) has also developed a method known as cubic convolution interpolation 

which reduces to Equation 2.5 for A = 0. 

By dividing an interlaced frame into columns, interpolation can be thought of as a 

simple up-sampling process. The perfect interpolation filter then is an ideal low pass 

filter, assuming that there is no aliasing present in the vertical direction of the sampled 

image. This assumption is invalid since most cameras introduce vertical aliasing; 

however, for the purposes of this method, we assume that the aliasing introduced is 

negligible. The impulse response of this filter is then 

In order to reduce the impulse response of the filter to a finite length, two different 

windows, w (n), were used, which resulted in a filter 

The first of these windows was rectangular (Oppenheim and Schafer 1989): 

1 i f O < n < M  
w(n) = 

0 otherwise 
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To improve the transition region, a Hanning window was also used (Oppenheim and 

Schafer 1989): 

1 - icos(2.?r$) if 0 5 n 5 M 
~ ( n )  = 2 

otherwise 

2.3 Least Mean Squared Interpolator 

This method, used in Horvat, Bird, and Goulding (1992), attempts to ~ninimize the 

mean squared error of the estimate, i ( A ) ,  where the mean squared error is given by 

Using (2.1) and taking the gradient of €%with respect to b and setting it equal to zero 

results in the following optimal filter design 

b = (E[YY~I)-~E[Y(A)YI 

For general k, where the filter length is 2k, 

and 

where R(T)  is the autocorrelation function of ~ ( t ) .  Then 

b = Rilr, (2.14) 
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Figure 2.2: Bandlimited White Noise Model 

To simplify the filter design, we assume that the colunlns of each frame are filtered 

white noise processes with flat spectral densities (Figure 2.2). Then the autocorrela- 

tion function is given by 
sin(/3rr) 

where /3 is the oversampling factor as shown in Figure 2.2. Using this model, the filter, 

b can easily be designed. Horvat, Bird, and Goulding (1992) provide an analysis of 

this interpolation method. 

2.4 Line Shift Interpolation 

Vertical spatial interpolation does not work well when non-vertical edges exist in the 

image. In this case it is better to use non-vertical interpolation such as in the method 

outlined in (Martinez and Lim 1989). This method is based on the line shift model, 

where the function 

s(x,  Y )  = s(x - v(Y - YO), YO) (2.16) 

describes the relationship between adjacent lines of a frame. In this equation, ~ ( z ,  y) 

is the pixel intensity at location (2, Y),  v ( y )  is the horizontal velocity as a function of 

the separation between lines, and (xo, yo) is the center of the small region in which 

this model holds. . 

The algorithm involves two steps: 
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Figure 2.3: Line shift interpolation 

1. The velocity, v, is estimated from the known pixel values surrounding the point 

of interest. 

2. The velocity estimate is then used to determine the interpolation line along 

which an average is made of the points on the line above and below the point 

of interest. 

This process is shown in Figure 2.3, where the velocity estimate is $1 pixel. 

2.5 Experimental Results 

In order to test the performance of the various methods of spatial interpolation de- 

scribed in this chapter, simulations were run on the pongi interlaced sequence and the 

reconstructed images were compared with the actual progressive sequence. The results 

are shown in Figure 2.4, which shows the average mean squared error for each of the 

methods over the first thirty fields of the pongi sequence. The up-sampling method 

with the rectangular window has been ignored, since its results are significantly worse 

than the other methods for comparable filter lengths. Note that the "zig-zag" charac- 

teristic of the plots results from the fact that there is more background high-frequency 

detail lost in the odd fields of the sequence than the even. 

The best performing method on the pongi sequence in terms of the MSE measure 

is the linear interpolation technique. This is because there is a lot of high frequency 

detail which dramatically reduces the correlation between pixels as the distance be- 

tween the pixels increases. Therefore, t he shorter filter used in the linear interpolation 

technique is more effective. 
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Average M S E  per pixel 

Frame Number 

Figure 2.4: Performance of Spatial Interpolation Techniques on the pongi sequence 

Results for the missa sequence are not shown since all of the methods perform well 

due to the low spatial detail this sequence. While the difference between methods is 

very small, the best performing technique varies depending on the frame: in odd 

frames, the linear interpolation technique outperforms the other methods, while in 

the even frames, the cubic interpolation technique is more effective. Clearly this 

results from the fact that the missa sequence contains less high frequency detail and 

therefore there is more correlation between pixels. 

It is important to note that in the pongi sequence, the linear interpolation tech- 

nique is only IdB better than the worst (in terms of MSE) technique shown, the line 

shift method, while in the case of the missa sequence, the difference between best 

and worst is much smaller. Subjectively, the line shift method is sometimes better 

than the other methods, since in many cases it results in better recovery along object 

edges. 

Overall, none of these methods are satisfactory, since they all introduce blurring 

and other annoying artifacts into the frames that are easily visible. For this reason, it 

is necessary to examine other techniques such as motion compensated interpolation 
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to obtain better results. 



Chapter 3 

Motion Compensation of 

Interlaced Sequences 

While there exists a great deal of literature on motion compensation of progressive 

sequences, the problem of how best to motion compensate interlaced sequences has 

not been addressed in great detail. This chapter presents some of the simple methods 

that have been used in the past along with some new, better-performing methods. 

Throughout this chapter, block-based motion compensation is used to test the various 

algorithms described. 

3.1 Interlaced Frame-Based Mot ion Compensa- 

tion 

One common method of performing motion compensation on interlaced sequences is 

to simply push each pair of successive fields together forming a progressive sequence. 

(This is also commonly done to provide the pause feature on a video tape recorder.) 

Therefore, if R, contains the odd lines, the current frame is given by 

0, (x, y) for odd y 
K(x7  Y)  = 

(x, i) for even y 

This combining of fields results in a progressive sequence with half the number of 

frames as fields in the interlaced sequence. Normal motion compensation techniques 
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(such as block-based motion compensation, which was discussed in Chapter 1 )  can 

then be performed on the sequence. 

This method of combining fields works well when there is no motion in the se- 

quence, however, when motion is introduced, the edges of objects can become serrated 

causing poor performance as shown in Figure 3.1. 

Figure 3.1: Frame formed from combination of the first two fields of the interlaced 
pongi sequence. 

3.2 Single Field-Based Motion Compensation 

Another simple method of performing motion compensation on interlaced sequences 

is to use block-matching techniques between the fields of of the sequence. 

3.2.1 Different Parity Field 

The first approach to single field motion compensation is to use the previous field, 

R,,-l, in the same way that progressive motion compensation is done. This introduces 

problems because the parity of is different from that of the current field, R,,. 
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The major effect of this parity difference is that regions with no motion in R, do not 

have good matches in For this reason, performance of the motion compensation 

process degrades considerably. 

3.2.2 Different Parity Field-Interpolat ed 

To reduce the degradation due to the poor matches found when On-, is used, the miss- 

ing lines of can be interpolated to form a field of the same parity as R,, which 

is known as a(",. The performance of this method depends heavily on the interpo- 

lation process. For simple spatial interpolation techniques such as those discussed in 

Chapter 2, the performance of this method is better than without interpolation but 

is still poor. 

3.2.3 Same Parity Field 

Significant improvements in the performance of motion compensation of interlaced 

sequences can be achieved if the second previous frame, is used to find the 

tnatches. This improvement over occurs because contains the same parity 

lines as R, and therefore matches for stationary parts of the sequence are good. Where 

this method fails is in the regions of the sequence containing motion. If this motion 

has a y-component that is even, then a good match will still be found; however, 

when the y-component is odd or large, good matches are generally not found and the 

performance degrades accordingly. 

3.3 Multiple Field-Based Motion Compensation 

Previous work on progressive motion compensation has shown that better performance 

can be achieved by searching multiple temporal frames for the best tnatch (Gothe and 

Vaisey 1993). Since, in interlaced sequences there is different information missing from 

0,,-1 and better performance can be expected if both frames are used in the 

motion compensation process. In addition, further improvement is likely if R!:l1 is 

used instead of 

Searching both frames for the best block match introduces an additional cotnpo- 

nent into the motion vector that informs the decoder which of the previous frames to 
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use; however, this additional component is usually outweighed by the improvement in  

the matches. 

3.4 Hybrid Motion Compensation 

Since in many cases the interpolated field, R:!~, produces errors due to the imperfect 

interpolation, it is advantageous to combine the information contained in the two 

fields, On-2 and O!Il. One method is to form linear combinations of these two fields 

such that combination frames given by 

where ( E [0, 11. Two methods can be used to find the best match: 

1. The domain of C can be discretized and limited in size allowing computationally 

realistic searches to be made for the best match. 

2. A prediction algorithm can be used to obtain a best estimate of C which gives 

the best match. 

3.5 Results 

To test the methods described in this chapter, simulations were run using block-based 

motion compensation with an exhaustive search technique. The results presented 

in this section are indicative of the performance relationship between the various 

met hods. 

3.5.1 Previous Frame Performance 

Figure 3.2 shows the average MSE per pixel for the two cases where only is 

used. Clearly, using R!!, (linear interpolation method) achieves better performance 

by approximately ten percent on average. For this reason, all other experiments 

involving the previous field used R$?~ rather than On-l. 
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Average MSE per pixel 

Frame Number 

Figure 3.2: Performance of Motion Compensation Algorithm using only On-l on the 
pongi sequence 

3.5.2 Comparision of Mot ion Compensation Met hods 

Figure 3.3 shows how the methods described in this chapter compare with each other. 

The method using only the previous frame (either Ot!l or is not shown, since 

it is significantly worse than those shown. Using only is the worst of the four 

methods followed by the frame-based method (described in section 3.1). Using both 

fl!:l, and On-2 gives a 15-20% improvement on average over the frame-based method. 

The hybrid method with seven discrete values of ( (every combination is exhaustively 

searched in the search area) gives a further 7-10% improvement. 

Also shown in Figure 3.3 are the performance curves for multiple field MC and 

hybrid MC using the actual field, ~ f " ~ ,  rather than an interpolated one. These are 

the lower bounds for the performance of these methods. Both methods using fl:ll 

are better than the other methods by a significant margin indicating that better 

interpolation methods will lead to better performance of the motion compensation 

algorithms. 
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Figure 3.3: Performance of Various Motion Compensation Algorithms on the pongi 
sequence 

3.5.3 Effect of Interpolation on MC Methods 

In order to discover the effect of various interpolation methods on the MC methods, 

simulations were run using the spatial interpolation techniques described in Chapter 

2. Both the multiple field MC and hybrid MC were tested. 

Figure 3.4 shows the average M S E  per pixel for the multiple field MC algorithm 

for a number of different spatial interpolation methods along with the curve when 

the actual missing lines, 0?jl, are used (lower bound of method). It is clear from 

this figure that no method is significantly better than any of the others although in 

general using the linear interpolator does give the best results. There is, however, a 

significant difference between the spatial interpolators and the actual field indicating 

the potential for improvement with better interpolation methods. 

In Figure 3.5, the average M S E  is shown for the different spatial interpolation 

methods for the hybrid MC algorithm using 7 discrete values for [. There is little 

difference between the interpolation methods with the linear interpolator being the 

best by a small margin. As with the previous figure, there is significant potential 



C H A P T E R  3 .  M O T I O N  C O M P E N S A T I O N  O F  I N T E R L A C E D  SEQliENC'ES 26 

Average MSE per pixel 
240 

220 Line Shift Model - 
Least Mean Squared ..-.--.. 

200 Linear - 
Quadratic - 

180 Cubic - - - -  
Upsampling - Hanning - - - - 

160 Actual 

140 

120 

100 

80 

60 

All 

Frame Number 

Figure 3.4: Performance of Two Field Interlaced Motion Compensation using Spatial 
Interpolation Techniques on the pongi sequence 

improvement by using better interpolation methods. 
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Frame Number 

Figure 3.5: Performance of Hybrid Interlaced Motion Compensation using Spatial 
Interpolation Techniques on the pongi sequence (seven steps) 

Average MSE per pixel 
220 

200 

180 

lS0 

140 

120 

100 

80 

60 

40 

- I I 1 I 1 

- Line Shift Model - - 
Least Mean Squared --.-..-. 

- Linear - - 
Quadratic - 

Cubic - -  - -  - 
Upsampling - Hanning - - - - 

- 
Actual . . - - 

- - 

- - 

- - 
. . 

- - 
I I I I I 

0 5 10 15 20 25 30 



Chapter 4 

Bayesian Formulation of Mot ion 

Estimation 

An excellent approximation of the motion in the video sequence is required in order for 

hybrid motion compensation to work well. Motion approximations can be obtained 

in many different ways including via block-based algorithms. The technique that 

seems to provide one of the best motion estimations is called "Bayesian Formulation 

of Motion Estimation" and can be found in (Konrad 1989). This chapter provides a 

brief outline of the development of the method along with some results. The notation 

in this section is consistent with that of Konrad. 

4.1 Gibbs Distribution and Markov Random Fields 

In this technique of motion estimation, the motion fields are assumed to be Markov 

random fields described by a Gibbs distribution. This section describes the basics of 

Gibbs distributions and Markov random fields. A more complete description of this 

material can be found in (Geman and Geman 1984) and (Konrad 1989). 

4.1.1 Gibbs Distribution 

The Gibbs distribution requires the definition of a number of concepts including a 

neighborhood system, clique, and potential function. 
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Neighborhood Systems 

A neighborhood is a group of sites (locations in a field) around a central site. The 

group of sites is called the neighborhood of the central site. Note that the central 

site is not contained in its own neighborhood. In general, neighborhoods are used to 

introduce some dependence between the central site and its neighbors. For example, 

a desirable quality of motion fields is that they be smooth. This quality can be 

introduced by favouring neighborhoods in which the sites are all similar in value to 

the central site. The following definition formalizes the term neighborhood. 

If we assume that a lattice, A, is a collection of M sites designated s ; ,  where 

i = 1 . . . M, and that X is a sample field from random field X defined over A and 

chosen from a state-space S, then Nk is a neighborhood system if and only if 

Nk = { (77k (~ ; )  : Si E A , ~ ~ ( s ~ )  c A, 1 < i 5 M),  

where the kth order "neighborhood", 7"s;), of site s; E A satisfies 

2. if sj E ~I;(s;) ,  then s; E 77k(sj) for any s; E A 

The kth order neighborhood is formed by taking the (k - l ) th  order neighborhood and 

adding the closest set of sites which are not part of the ( k  - l ) th  order neighborhood. 

For example, the second order neighborhood is constructed by adding the diagonal 

sites to the first order neighborhood. 

In general, the notation 7"s;) will be shortened to ~ ( s ; )  when it is not important 

which neighborhood system we are using. For the purposes of this motion estimation 

technique, only spatial (two-dimensional) neighborhood systems will be used and 

therefore a site may also be referred to by its coordinates, (m, n). The notation 

~ ( m ,  n)  will then be used to refer to the neighborhood of site (m, n). Figure 4.1 shows 

the neighborhoods of order 1 through 3. Note that every higher order neighborhood 

includes all of the sites in neighborhoods of lower order. 

For example, a second order neighborhood system is the set of all second order 

neighborhoods. A second order neighborhood of site at (m, n)  contains the sites at 

(m f 1,n) ,  ( m , n  f 1) and (m f l , n  f 1). Site (m, n) is not contained in its own 

neighborhood (condition 1 above). Also note that since site (m + 2, n) is not in the 
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Figure 4.1: Neighborhoods of order 1 through 3. Note that system of order k includes 
the sites contained in order k - 1 

second order neighborhood of site (m,n) ,  then site (m, n)  is also not in the second 

order neighborhood of site (m + 2, n) (condition 2 above). 

While the details of their use will become clear later in this chapter, at  this point 

it is sufficient to understand that neighborhoods introduce a dependence between 

adjacent sites (in each other's neighborhood) causing a "smooth" motion field to be 

favoured. 

In this thesis, only the first, N ' ,  and second, N 2 ,  order systems were used, since 

higher order systems increase the computational complexity significantly with limited 

performance improvement (Konrad 1989). The neighborhood systems must also be 

redefined at the image boundaries to allow inclusion of the edge sites. 

Cliques 

Included in a neighborhood system is a set of cliques. A clique, c, is defined with 

respect to the neighborhood system such that either 

1. two sites in a clique, c, are neighbors i.e., (m, n) ,  (p, q) E c and (m,n)  # (p,q) + 
(7% 4 E V ( P ,  q) 

2. or, c consists of a single site. 
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Figure 4.2: The First Order Neighborhood system (a) along with associated 
(b) one-element and (c),(d) two-element 

3 1 

cliques: 

The set of cliques is represented by C. Figures 4.2 and 4.3 show the cliques for the 

first and second order neighborhood systems respectively. Each higher order set of 

cliques contains all the cliques from the lower order systems. 

Definition of a Gibbs Distribution 

With the above terminology, a Gibbs distribution with respect to the lattice, A,  and 

the neighborhood system, h/, can be defined as a probability measure on the state 

space, S, such that 

where ,B and Z are constants, and U is the energy function. U is of the form 

where V(X, c )  is the potential function defined over the whole field for clique, c, and 

is only dependent on those samples of X that are in clique c. Z is called the partition 

function, which normalizes the expression to make r ( X )  a probability measure. 

4.1.2 Markov Random Fields 

In this motion estimation method, the motion vector field is assumed to be a Markov 

random field. A Markov random field (MRF) has the following properties: ' 
'The notation Xi and Xi refers to the i th  site in the field 
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Figure 4.3: The Second Order Neighborhood system (a) along with associated cliques: 
(b) one-element , (c) ,(d) ,(e) ,(f) two-element , (g) ,(h) , ( i )  ,(j) three-element , (k) four- 
element 
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2. P ( X ;  = X; / Xj = Xj,Vj # i )  = P(X; = X, I X, = Xj,Vj E ~ ( i ) ) ,  Vi, X E S 

where P is a probability measure. In other words, the probability of site i having a 

certain state (value), is only dependent on the sites in the neighborhood of site i and 

the probability of each state is greater than zero. 

In order to characterize the MRF, the Hammersley-Clifford theorem (Besag 1972; 

Konrad 1989) can be applied. This theorem states that if X is a MRF on lattice A 

with respect to neighborhood systemn/, then the probability distribution of its sample 

realizations (possible configurations) is a Gibbs distribution as given in Equation 4.1. 

The characterization of a MRF is. then dependent on the potential functions, V. 

4.2 Maximum A Posteriori Probability (MAP) 

Estimation 

The purpose of this method is to estimate the motion field for a video frame given 

the current frame, gt,, and the previous frame, gt-, which are considered to be sam- 

ples of the random fields Gt+ and Gt- respectively (see Figure 4.4). This is done by 

attempting to find the "most likely" displacement field, d: E Sd, given the observa- 

tions g,, and gt- . Note that d; is the best estimate of the actual displacement field, 

d t  (one vector of dt is shown in Figure 4.4), while dt represents any given displace- 

ment field (sample of the random displacement vector field process, Dt), and Sd is 

the set of all possible displacement vectors, i.e., the displacement vector state space." 

Also, note that a displacment vector field between two frames can be represented 

by two-dimensional vectors located at each site on the sampling lattice in the video 

sequence. Displacement fields are, in general, different from block-based motion esti- 

mation where there is a displacement vector for each block rather than each point on 

the sampling lattice. The MAP requirement then, is 

~ ( m  = d: I G- = g , - , ~ ,  = gt,) t P ( D ~  = dt I G ~ -  = g , - , ~ t ,  = gt,) vdt E sd 
(4.3) 

2The subscript t on the displacement vector notation indicates that the motion vector is estimated 
for some time instance, t 
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Figure 4.4: The Motion Estimation Process 

By applying Bayes rule, the posterior distribution can be obtained as 

P(G1, = gt, ( Dt = dt,  Gt- = gt-) P(Dt = d t  ( Gt- = gt-) -. 

P(G+ = gt, I Gt- = gt-) 
(4.4) 

Since the denominator in Equation 4.4 is independent of the displacement vector 

process, Dt, it can be ignored and the resulting MAP estimate is the solution to 

In order to evaluate Equation 4.5, the explicit forms of the conditional probability 

distributions must be known. These are outlined in the next section. 

4.3 Models 

There are three models that must be considered to obtain explicit forms of the con- 

ditional probability distributions in Equation 4.5. These are called the structural 

model, the observation model and the displacement field model (Konrad 1989). 



CHAPTER 4. BAYESIAN FORMULATION O F  MOTION ESTIMATION :35 

4.3.1 Structural Model 

For any motion estimation algorithm, it is necessary to assume some relationship 

between the motion vectors and the pixel intensity values. The normal assumption 

that is made is that there are no illumination effects present or, equivalently, that 

the pixel intensity is constant along the path of any motion vector. Therefore, the 

following expression holds 

U(X - d(x, t ) ,  t-) = u(x, t+) (4.6) 

where u (x , t )  is the true underlying continuous image, x is some spatial location in 

the current frame, t- is the temporal location of the previous frame and t+ is the 

temporal location of the current frame. 

4.3.2 Observation Model 

This model takes into account all the distortion that is added between the true un- 

derlying image, u, and the observed image, g. Sources of noise during this process 

include image sensor noise, quantization noise and distortion due to temporal and 

spatial aliasing (Konrad 1989). For the purpose of this method, let the following 

relationship hold: 

dx, t )  = 4x1 t )  + 4x1 t)  (4.7) 

where n(x, t )  is a Gaussian random variable. This relationship has been shown to be 

reasonably valid by (Konrad 1989). Then, using the structural model (Equation 4.6), 

the following relationship can be derived: 

g(x, t+) - g(x - d(x,  t ) ,  t-) = n(x, t+) - n(x - d(x, t),  t-) (4.8) 

where the left side of the equation is called the displaced pel diflerence (DPD) and 

is denoted by r (d (x , t ) , x ,  t).  The right side of the equation is called the displaced 

noise diflerence. Since the right side of Equation 4.8 is simply a sum of Gaussian 

random variables, it is itself Gaussian and therefore the conditional probability (from 

Equation 4.5) can be expressed in the form 

3Note that the displaced noise difference is assumed to be independent for each site. 
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where a q s  the variance of the displaced noise difference, Md is the number of vectors 

in a single displacement vector field, and the energy, Ug, is defined as 

where g(x, t )  is the pixel intensity value at location x at time t. This intensity value 

may be simply the sample value or, in the case where the value is not observed directly 

(eg. missing lines of an interlaced field), it may be an interpolated value. 

4.3.3 Displacement Field Model 

In this method, the proposed model for the displacement field is a vector Markov 

random field (VMRF). This differs from the scalar Markov random field (MRF) de- 

scribed in section 4.1.2 only by the definition of a state. In the case of a scalar MRF, 

each site is from R, while for a two-dimensional VMRF, such as the displacement 

field, each site is taken from R2. Due to the Hammersley-Clifford theorem, the Gibbs 

distribution (described in section 4.1.1) characterizes a random field, Dt. Due to 

computational complexity, this method will be implemented using only the first and 

second order neighborhood systems. In general, any neighborhood system could be 

used but the improvement in performance diminishes as larger neighborhood systems 

are used. 

Within the neighborhood systems, there are a number of different cliques. In both 

the first and second order neighborhood systems used in this thesis, only the two 

element cliques will be used. These cliques are shown in Figure 4.2(c) and (d) for the 

first order system and in Figure 4.3(c), (d), (e) and (f) for the second order system. 

While there are many different choices available for the potential function, the one 

used in this method is 

The symbols dx and dy represent the horizontal and vertical components of the dis- 

placement vector respectively. The potential function in Equation 4.11 was chosen 
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since it favours smooth displacement fields by increasing when the difference between 

neighboring displacement vectors increases. This intuitively matches what would be 

expected for "natura1"motion fields. 

In order to simplify this initial model, it is assumed that the knowledge of a single 

frame does not affect the computation of the motion field, d (x ,  t ) ;  i.e., discontinuities 

in the pixel amplitudes (object edges) in a frame are not used directly to compute the 

motion field. This means that the motion field random process, D t ,  and the frame 

random process, Gt-, are independent and that the probability, P ( D t  = dt  I Gt- = 

gt-), can be written as 

where the set of cliques, Cd, varies depending on the neighborhood chosen (either n/i 

or Ni) .  

4.4 A Posteriori Probability 

To form the a posteriori probability, Equations 4.9 and 4.13 can be inserted into 4.4, 

which results in 

where Z is a normalizing constant composed of the three terms: P(Gt+ I Gt-) from 

Equation 4.4, ( 2 n c ~ ~ ) - ~ d / ~  from Equation 4.9 and Zd from Equation 4.13. The overall 

energy function is 

where A, = 1/2a%nd Ad = l/,Bd. These two parameters control the relationship 

between the observation model and the displacement field model. For example, max- 

imizing Equation 4.5, the MAP estimate, is equivalent to minimizing the "energy 

function" defined by Equation 4.15. This energy is a tradeoff between the displaced 

pel difference, r ,  and the smoothness of the motion field (represented by Ud). The 

4The parameter, Pd, is the constant from the Gibbs distribution (Equation 4.1) 
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parameters A, and Ad are very difficult to compute theoretically, and therefore are 

normally chosen by experience (Konrad 1989). 

4.5 Stochastic Solution to Motion Estimation 

In order to find a good motion estimate, some method of finding the motion field 

that maximizes the a posteriori probability must be used. This estimate is known as 

the maximum a posteriori (MAP) estimate. The method chosen by Konrad (1989) 

and used in this thesis is stochastic in nature and is known as simulated annealing. 

Deterministic methods are also possible but they tend to get trapped in local minima 

that decrease the quality of the estimate. 

4.5.1 Gibbs Sampler 

In order for simulated annealing to be computationally realistic in terms of a frame, it 

is necessary to use a method that generates samples from the a posteriori conditional 

distribution in Equation 4.14. The method used in this thesis is called the Gibbs 

sampler and was developed by Geman and Geman (1984). 

Let r ( 7 )  be a time-indexed random field whose states are distributed according to 

the probability measure T after a sufficiently long period of time. The Gibbs sampler 

is a method of generating these states, where the step I'(r - 1) -+ r(7) is described by 

Equation 4.16. In order to generate these states, the Gibbs sampler makes a change 

at only one site at time r .  The site that is changed or at  which a replacement is made 

is denoted by the index, n,, r;(r) refers to location i in the random field, I'(T), and 

From Equation 4.16, it is clear that only one site changes at each time step. This 

means that I'(r - 1) and r(r) can only differ at site n,. At each step a new state is 

chosen by drawing a sample from the local conditional characteristics of distribution 

n, but because T is a Gibbs distribution, this probability is dependent only on the 

states of the sites in the neighborhood of site.' This means that a state, y,,, E Sd, is 

51n this application (motion estimation), the current state of a site refers to the current value of 
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chosen from the conditional distribution of r,,, (7)  given the states of the neighboring 

sites, F;(T - 1) Vi : X; E qd(xns) (see below for details of this selection process). 

This conditional distribution is (Konrad 1989) 

where the local energy function, U z T ,  is defined as 

Using the selection process described below, the Gibbs sampler process can be 

summarized in Figure 4.5. 

Figure 4.5: Block diagram of Gibbs Sampler algorithm 

Selection from the Conditional Distribution 

- 

Calculate local 
conditional distribution 

at current site 

The selection from the conditional distribution at  each site is implemented as follows: 

Select next state of 
current site from local 

conditional distribution 

--) 

1. For each element of the displacement vector state-space, Sd, the value of the 

energy (Equation 4.18) is calculated. 

2. The minimum energy over Sd is found and all energies are normalized such that 

- 

when the exp(-) function is applied, the minimum energies will fall within the 

Change 

current site 
to next site 

floating point range of the simulation computer. Any energies that are too large 

the displacement vector at that site. Therefore, when a new state is chosten from the conditional 
distribution, a (possibly) new value of the displacement vector is given to the current site (at n,). 
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after this normalization are insignificant and the corresponding probability is 

set to zero. This normalization process is based on the relation 

3. The probability values for each site are then calculated (Equation 4.17). 

4. By dividing the interval, [O, I) ,  according to the probability values, a uniform 

pseudo-random number generator is used to select the next state. 

4.5.2 Simulated Annealing 

To find the best motion field, it is necessary to compute a MAP estimate. This is 

difficult since, for a typical M x N frame, there are M N  sites and for each site there is 

some limited state space of size P. This means that there are M N P  possible states for 

the displacement field, Dt. For a typical frame (360 x 240) with integer displacement 

field components (maximum length 8), this results in approximately 2.5 x lo7 possible 

states. Therefore, some method other than direct computation is necessary. 

The algorithm used in this thesis to find the MAP estimate is called simulated 

annealing and was first proposed in (Kirkpatrick, Gelatt, and Vecchi 1983) and then 

later used by both Geman and Geman (1984) and Konrad (1989). The algorithm is 

based on the annealing of solids, which, when raised to a sufficient temperature at 

which all particles arrange themselves randomly, and then cooled sufficiently slowly, 

will result in the configuration of lowest energy. If a system is in thermal equilibrium, 

then the probability distribution in phase-space is proportional to 

e -U(?)lkT (4.19) 

where U(y) is the energy of state y, k is the Boltzmann constant and T is the sur- 

rounding temperature. This concept can also be applied to motion estimation to find 

the MAP estimate. Figure 4.6 shows a block diagram for the simulated annealing al- 

gorithm used in this thesis. The parameters, Md, T,, To, and Tf represent the number 

of sites, the temperature at the nth iteration, and the initial and final temperatures 

respectively. While there are various different annealing schedules, the one used in 

this thesis is given by 

Tn = q(To, n) = To.  an-' (4.20) 



C H A P T E R  4. B A Y E S I A N  F O R M U L A T I O N  O F  M O T I O N  E S T I M A T I O N  

START 0 
Tn = v(To, n )  

A 

Figure 4.6: Block diagram of simulated annealing algorithm 
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where 0.0 < a < 1.0 and To is the initial temperature. The parameter a is chosen 

as a trade-off between the chance of becoming trapped in a local minimum and the 

computational time (number of iterations to reach convergence). Typical values for 

these parameters are a = 0.9 and To = 5.0. 

4.6 Motion Discontinuities 

One problem with the previous model derivation is that it assumes a smooth motion 

field for the entire frame. Obviously this model introduces problems at the edges of 

moving objects. One suggested method of improving this problem is to introduce a 

line field (Konrad 1989). This field allows discontinuities in the motion field to exist 

at the edge of objects and is designated by l(x, t )  . Since the line field is not known, 

it must be included in the estimation, which results in the most likely displacement 

field, d;, and the most likely line field, k ,  being given by the solution to 

P ( D ~  = d;, ~t = j; I Gt- = gt-, Gt, = gt,) 2 

P ( D t = d t , ~ t = i t I G t - = g t - , G t + = g t + ) ~ d t E ~ ~ , i t E S ~  (4.21) 

Using Bayes rule and a similar approach as used earlier in this chapter, the MAP 

estimate of the pair, (d;, k ) ,  is the solution to 

P(Dt = d t  I Lt = it,  ~ t -  = gt-) - P(Lt  = it I Gt- = st-)] (4.22) 

4.6.1 Displacement Field Model with Mot ion Discont inu- 

it ies 

The introduction of a line field does not affect either the structural model (discussed in 

section 4.3.1) or the observation model (discussed in section 4.3.2). For this reason, 

only the new displacement field model will be discussed here. The changes to the 

displacement field model involve revising the potentials so that if the line element 

between two sites is on (i.e., there is a discontinuity between the two sites), then no 

penalty is introduced as a result of differing displacement vectors between the two 
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Figure 4.7: (a) First order Neighborhood system NfdYr) for vector field dt with line 
field It and the associated (b) horizontal and (c) vertical cliques. 

sites. Therefore the probability, P ( D t  I Lt, Gt-), is defined as 

where the conditional energy term is defined as 

u d ( d t I l t ) =  x v d ( d t , c d ) ' [ l - l ( < x i , x j > , t ) ]  (4.24) 
c ~ = { x S  ,XJ )eCd 

where Vd is the same potential function as before, and 1(< x; ,xj  >, t )  is the site of 

the line element that is located between vector sites x, and xj .  Each line field site, 

1(< x;, xj >, t ) ,  may take on either a value of 1 indicating that there is a discontinuity, 

or a value of 0 indicating that there is no discontinuity. The cliques, cd, are based on 

the first order neighborhood system and associated cliques shown in Figure 4.7. 

4.6.2 Line Field Model 

The line field is assumed to be samples from a binary MRF, Lt, and therefore is 

described by the Gibbs distribution 

The line energy function, U,, is defined as 
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Vector site 

IX] Center line site 

X Line site 

Figure 4.8: Neighborhood system Nl for line field lt of (a) horizontal and (b) vertical 
line element, and the associated (c) ,(d) four-element and (e) ,(f) two-element cliques. 

where cr is a line clique and C1 is the set of all line cliques. The purpose of the line 

potential function, &, is to assign a penalty to the introduction of a line element. 

The line field is of a structure such that there are four elements associated with 

a vector site (above, below, right and left). Each of these elements is shared with 

another vector site except for those sites on the perimeter of the frame. Therefore, 

there are two types of line element: vertical and horizontal. The neighborhoods and 

associated cliques are shown in Figure 4.8. The four element clique in Figure 4.8(c) 

is used to model the shape of motion boundaries, while the four element clique in 

Figure 4.8(d) is used to disallow isolated vector sites. The two element cliques in 

Figure 4.8(e) and (f) discourage the introduction of line elements. 

The costs associated with the possible configurations (within a rotation) of the 

first four element clique (&,) and the two element cliques (K2)  are shown in Figure 

4.9(a) and (b) respectively. The second four element cliques is only used when all 

four line elements are "on" for which the potential is set as K, = ca. These costs 
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Vector site 

- Line element "on" 

Figure 4.9: Potentials associated with various line element configurations (up to a 
rotation) for the (a) four-element and (b) two-element cliques. 

are chosen in such a way as to encourage realistic (i.e. continuous) line fields while 

discouraging isolated sites and line field elements (Konrad 1989). 

Motion discontinuities generally occur at intensity edges and therefore an addi- 

tional potential function is introduced for the single element clique: 

a lh(< x,, xj >, t )  for horizontal cl =< x;, x j  > 
(v"gt-)2 Fl = (4.27) 

a . ~ , ( < x ; , x j > , t )  f o rve r t i c a l c~=<x , , x j>  
(vhgt-)2 

where the spatial gradient can be estimated using numerous different techniques. The 

technique used in this thesis is same as used by Konrad (1989). 
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The total local potential for the line field is then given by 

where K4 and K, are given in Figure 4.9 and F, is given in Equation 4.27. 

4.6.3 Gibbs Sampler for Model with Motion Discontinuities 

In order to reduce the computational complexity, updates of the displacement vector 

field and the line field are done separately, each using the Gibbs sampler   net hod. In 

(Konrad 1989), the conditional probability for the displacement vectfnr at location x,,, 

is given by 

where the local energy function is defined as 

The conditional probability for a line element at location (y,,, t )  is 

where the local line energy is defined as 

The solution to this problem is obtained by using simulated annealing and the 

Gibbs sampler to alternately update the motion and line fields via the two conditional 

probabilities in Equations 4.29 and 4.31 respectively. However, since the local line 

energy is dependent on the motion field, it is necessary to obtain a rough estimate of 

the motion field prior to introducing the line field. This is accomplished by running 

simulated annealing without the line field for a number of iterations until an estimate 

is obtained. 
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Results 

This section presents results of the motion estimation algorithms described in this 

chapter. In all results presented here, the discrete displacement vector state space, 

Sd, is composed of integer vectors in the two dimensional range 

Since the energy values are normalized to ensure that the exponential values fall i n  

the floating point range of our workstations, only the ratio, A d / X g ,  describing the 

tradeoff between matching and smoothing, is required to compute the energies. The 

individual values of Ad and A, do, however, affect the choice of the initial temperature, 

To. 
The annealing schedule used was given by Equation 4.20 with To = 5.0 and a = 0.9. 

Optimization of this schedule could result in slightly improved results and/or a more 

computationally efficient algorithm. 

The motion estimates in this section have been computed using progressive se- 

quences for the case where displacement vectors are estimated only for all known 

pixel amplitudes on the sampling grid, i.e., Ad = A,. 

4.7.1 Results for the comp sequence 

Recall that the comp sequence is composed of the first frame of the pongi sequence as 

its background with a 50 x 50 block from the missa sequence moving at a constant 

displacement of (+4, +4). The displacement vector field for the moving block area of 

the second frame of this sequence is shown in Figure 4.10. 

Figure 4.11 shows the estimated motion field for the moving block area of the 

second frame of the comp sequence. No line field was used in this experiment. It is 

clear from Figure 4.11 and 4.10 that the algorithm has problems estimating motion 

near the edges of moving objects. This problem occurs due to a number of reasons 

including: 

1. New areas are exposed when an object moves, which creates matching errors. 

2. Regions are hidden behind the moving object, which creates matching problems 

in a smooth motion field. 
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Figure 4.10: Actual motion field for moving block area of the second frame of the 
comp sequence. 
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3. Motion discontinuities are disallowed, which results in averaging over the motion 

discontinuity. 

The first two problems are beyond the realm of this thesis. They are, however, 

considered by Dubois and Konrad (1993). The third problem can be reduced through 

the use of a line field as described in this chapter. 

Figure 4.12 shows the resulting motion field for the comp sequence when a line field 

(represented by the dotted line) is used. It is clear that the line field does improve 

the estimate of the motion field. Note, however, that there is a region where the 

boundary is not clearly defined on the left of the field. This is largely due to a small 

discontinuity in the pixel amplitude on the left side of the block, i.e., the background 

is the same colour as the block on this edge. 

Note that while the results using a line field for the progressive test sequences 

were superior to not using a line field, difficulties were encountered using a line field 

on an interlaced sequence. This is likely because of the spatial interpolation error in 

the estimation of the missing lines. This error introduces errors into pixel amplitude 

discontinuities. For example, horizontal edges are smoothed by the spatial interpola- 

tion, which increases the likelihood for an incorrect line field. Incorrect line fields can 

lead to horribly erroneous motion vectors. 

4.7.2 Results for pongi sequence 

Figures 4.13 and 4.14 show the motion fields for the shoulder and upper arm area 

of the second frame of the pongi sequence without a line field and with a line field 

respectively. The upwards motion of the arm and shoulder is clearly shown in both 

figures. In Figure 4.14, the line field corresponds reasonably well to the upper edge of 

the arm and the collar of the shirt. Note that there is more difficulty estimating the 

line field at  the bottom of the arm. This is due to the newly exposed areas below the 

arm, which do not match well with areas in the previous frame. This type of problem 

could be improved by using bidirectional motion estimation (both T,-l and T,+* are 

used). In this thesis, however, the main application of this motion estimation is for 

motion compensation and, in general, the decoder would not have access to future 

frames. 
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Figure 4.11: Motion field for moving block area of the second frame of the comp 
sequence. No line field is used. Ad = 0.3, A, = 0.1. Exponential annealing schedule. 
To = 5.0, a = 0.9,100 iterations. 
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Figure 4.12: Motion field for moving block area of the second frame of the comp - 
sequence. Line field after 39 iterations. Ad = 0.3, A, = 0.1, X r  = 0.5. Exponential 
annealing schedule. To = 5.0, a = 0.9,100 iterations. For line field Ti = 5OT. 
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Figure 4.13: Motion field for shoulder and upper arm area of the second frame of the 
pongi sequence. No line field is used. Ad = 0.07, A, = 0.0025. Exponential annealing 
schedule. To = 5.0, a = 0.9,100 iterations. 
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4.7.3 Computational Cost 

The methods presented in this chapter provide an excellent estimate of the motion 

in a video sequence; however, the computational cost is very high. Let the following 

quantities be defined as follows: 

.FState floating point operations (flops) necessary to calculate Equation 4.17 

for a 

single state in the sample space for one site. 
Then, 

Dd number of states in the sample space, Sd 

Md number of vectors in a frame's displacement field 

ZfTam, number of iterations per frame 
the computational cost is given by 

Depending on the implementation and the choice of parameters, .FState varies be- 

tween 25 and 35 flops. For a first order neighborhood system, FState = 25 and for this 

implementation of the algorithm without the line field, Vd = 289 and ZfTa,,, = 

Then for the pongi sequence ( M d  = 86400) the computational cost is 

[Jsing similar calculations, the approximate computational costs for several other mo- 

tion estimation methods described in this thesis are shown in Table 4.1. Details of the 

Horn & Schunk and Gauss-Newton method of MAP estimation are given in Chapter 

6. The most expensive method is the MAP estimation with the simulated anneal- 

ing technique. Note that both of the simulated annealing methods are significantly 

more expensive than the other three by at least two orders of magnitude. This addi- 

tional expense must be traded-off against the quality of the motion field estimation 

depending on the application. 

Recently, Miller and Rose (1994) have proposed a deterministic annealing algo- 

rithm which seems to work well, and is more computationally efficient than simulated 

annealing. Future application of this algorithm to Bayesian motion estimation would 

reduce the computational cost, with possibly limited performance degradation. 

'The number of iterations could probably be lowered by optimizing the annealing schedule. 
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Table 4.1: Computational Cost of Various Motion Estimation Methods 

Motion Estimation Method 

MAP estimation (simulated annealinnl 

I . , 1 Horn & Schunk 
1 

1 540 Mflopslframe I 0.0087 

L 

1 Block-based matching estimation 1 75 ~ f l o p s j f r a m e  0.0012 

Approximate 
Computational 
cos t  

62 Gflo~slframe 

Parallel Processing 

Relative Cost 

-, 
MAP estimation with line field (simu- 
lated annealing) 
MAP estimation (Gauss-Newton) 

The computational costs shown in Table 4.1 are an indication of the number of floating 

1 .OOOO 

point operations (flops) per frame. After examining the MAP estimation (simulated 

J 
. , 

87 Gflops/frame 

170 Mflom/frame 

annealing) algorithm described in this chapter, it is clear that it could easily be 

1.4000 

0.0027 

implemented in a parallel arrangement. The extreme of this approach would be to 

have a processor for each site in the motion field. The computational cost would then 

be virtually independent of the size of the motion field, and the computational cost 

would be reduced by a factor of Md which in the case of the pongi sequence would 

reduce the computational cost to 

While the monetary cost of such an implementation would be high, it would make 

the computation possible in real time. 



Chapter 5 

Interlaced Bayesian Mot ion 

Estimation 

There are a number of reasons for obtaining good motion estimations for both the 

known and missing fields in an interlaced sequence. These include interpolation of 

the sequence (de-interlacing), hybrid motion compensation prediction and motion 

compensation. The method of Bayesian motion estimation can be applied to these 

interlaced sequences; however, difficulties arise due to the missing information. This 

chapter discusses various approaches of applying Bayesian motion estimation to in- 

terlaced sequences, including a new method that performs significantly better than 

previous methods. 

5.1 Estimating Mot ion in Interlaced Sequences 

In order to perform Bayesian motion estimation in interlaced sequences, the missing 

fields must be reconstructed using spatial filtering to form progressive frames on which 

the method discussed in the previous chapter can be performed. 

5.2 Structural Model Fault 

In Section 4.3.1, a structural model was assumed such that the pixel intensity is 

constant along the path of a motion vector (Equation 4.6). In the case of Bayesian 
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motion estimation applied to spatially interpolated interlaced sequences, this model 

does not hold well. Since vertical 1D filters do not work well in areas of high detail 

(especially areas of high vertical spatial frequency), pixel intensities can vary greatly 

along the motion vectors in this area. This results in very poor motion estimates in 

these areas and consequently inferior interpolations. 

For example, Figure 5.1 shows a small section of a progressive frame containing 

a narrow object cutting across the frame. When the interlaced field corresponding 

to this frame is interpolated using one-dimensional vertical filtering the frame section 

shown in Figure 5.2 is obtained. Note that some parts of the object are lost completely, 

while other parts are averaged to an incorrect value. The missing and incorrect 

values will cause a variation of pixel intensities along motion vectors and will result 

in erroneous motion estimates. 

Three algorithms that provide improvements to this model will be discussed in 

this chapter. Note that all three algorithms are discussed in the context of integer 

displacement vectors. More precise vectors can be used; however, this results in 

increased computational cost since the state space discussed in the previous chapter 

increases in size. 

4 

4 

4 

4 

4 
object + 

4 + known lines 
4 

4 

4 

Figure 5.1: Small section of progressive frame 
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4 known lines 

object 

m jncorrectly 
interpolated pixels 

Figure 5.2: Small section of vertically, spatially interpolated interlaced frame corre- 
sponding to the progressive frame in the previous figure 

5.3 Improved Interpolation 

The first method of improving the validity of the structural model is to improve the 

interpolation of the current frame so that it more closely matches the previous frame. 

This, however, involves more complicated interpolation methods, which leads us into 

a circular problem, since better interpolation methods generally involve some sort of 

motion estimation. 

5.4 Pixel Prediction Along Linear Trajectories 

An improvement to the structural model for interlaced sequences is proposed by De- 

pommier and Dubois (1992). In Equation 4.18, the energy is composed of two terms: a 

matching error term (displaced pel difference) and a smoothness term. The matching 

error term is given by 

The notation, tilde, above, denotes an approximate value since, in the case of inter- 

laced sequences, not all required values of g(x, t )  can be observed. The errors in the 

estimates of g(x, t )  cause the structural model to become less valid. 
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Since the structural model does not hold well in interlaced sequences that have 

been spatially interpolated to form progressive sequences, the matching term can 

increase the energy for the correct displacement vector. This incorrect contribution 

from the matching term is especially prevalent in stationary areas containing high 

detail. In these areas, the spatial interpolation gives rise to high errors and therefore 

the matching term is highly inaccurate. 

Matching can be improved by including the de-interlaced version of the second pre- 

vious field, In stationary areas, spatial interpolation results in approximately 

the same interpolation error in both R, and and good matches are found be- 

tween these two spatially interpolated fields. However, as the y-component of the 

motion increases, it is better to use the spatially interpolated version of a,-*. This 

results in an error matching term in the form of 

Eu(x, d(x)) = G(x, t+)  - a(l dy I)G(x - d(x, t) ,  t-) - [ I -  a(l dy /)]i(x - 2d(x, t ) ,  t-2) 

(5.2) 

where t-2 is the position in time of and a(l d, I )  is some function that changes 

the weighting of the two previous fields in the matching term depending on d,, the 

y-component of the displacement vector, d(x). 

The function, a(/ d, I ) ,  that is used by Depommier and Dubois (1992) is given by 

$(1 - cos(+) when 0 < I  d, I <  Y 

when Y < I  d, I 

and is shown in Figure 5.3. This function causes only the second previous field, 

to be used when dy = 0 and only the previous field, to be used if I d, 12 Y. In 

the region, 0 < I  d, ( <  Y, a combination of the two previous fields is used. 

5.5 Variable Previous Frame Motion Estimation 

A novel approach to improving the structural model for interlaced sequences is called 

variable previous frame motion estimation and involves varying the previous frame 

depending on the candidate motion vector, and whether the current pixel is known 

or interpolated. This variation attempts to introduce the same simple interpolation 

error into the previous frame in order to increase the validity of the structural model 
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Figure 5.3: Weighting Function 

in Section 4.3.1. If the matching error term is given by 

where E is the interpolation error between g and ij, then by using the same interpo- 

lation to compute both j(x,  t+) and ij(x - d(x, t ) ,  t-) ,  this method attempts to have 

non-zero but equal errors such that 

E(x, t+) E E(x - d(x, t), t-)  # 0 ( 5 . 5 )  

The general concept is to sacrifice accuracy in the estimate of ij to get a better motion 

estimate. 

This method assumes that the previous frame has been reconstructed well. If this 

is the case then the implementation of the Bayesian motion estimation method leads 

to three separate cases when calculating the displaced pixel difference (DPD): 

1. The current pixel is on a known line in the current frame - In this 

b 
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case, the best match will be found in the de-interlaced previous frame, which is 

designated 9,-l. 

2. The current pixel is on a missing line in the current frame and the 

y-component of the candidate motion vector is even - In this case, the 

current pixel is interpolated and, since the y-component is even, it is desirable 

to spatially interpolate the same parity field in the previous frame in the same 

way as the current frame. For example, if the even lines are known in the 

current field then the even lines in the previous frame are used in the spatial 

interpolation. This results in a replacement of the known pixels by interpolating 

using unknown (previously interpolated) pixels. The frame generated by this 

process is designated 9 , .  

3. The current pixel is on a missing line in the current frame and the 

y-component of the candidate motion vector is odd - In this case, the 

current pixel is interpolated and the y-component is odd. This means that the 

match will lie on a lie of the opposite parity in the previous field and therefore 

the opposite parity lines are used in the previous field interpolation. This frame 

is referred to as 9,. 

Figure 5.4 and 5.5 show an example of this method on a small 7 x 7 section of 

a frame starting at location (9,5). In Figure 5.4, the three versions of the previous 

spatially, linear interpolated frame, 9, and 9,) are shown. Note that since this 

object is a single-pixel-width line, vertical spatial interpolation is unable to recreate 

the missing pixels accurately. In some cases the pixels are completely eliminated (eg. 

location (10,lO) in Figure 5.4(b)) and in other cases the pixels are interpolated to an 

incorrect value (eg. location (11,lO) in Figure 5.4(b)). 

In Figure 5.5, two possible translations (between the previous field and current 

field) of the object in Figure 5.4(a) are shown. The first of these translations is the 

case where the y-component of the motion vector is even (in this case it is 2 upwards). 

We can see that the best match for the pixels on the unknown lines can be found in 

9,.  This will result in an accurate motion estimation. Similarly, in figure 5.4(b) an 

odd y-translation is shown (1 upwards) and the best match is found in 9,. 

Note that this method will work well if all the pixels used in the vertical interpola- 

tion for any given pixel have approximately equal motion vectors. This is a common 
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known lines 

object 

incorrectly 
interpolated pixels 

Figure 5.4: Three previous frames used in variable motion estimation 

9 9 

5 4 e 5  

4 known lines 

object 4 

incorrectly 
interpolated pixels 

(a) y-component is even (b) y-component is odd 

Figure 5.5: Example of two different current frames 
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feature of many objects and backgrounds and therefore significant improvement can 

be made over other methods. 

5.5.1 Modified Variable Previous Frame Motion Estimation 

One of the most difficult components of motion estimation in interlaced sequences 

is to correctly estimate motion (if any) in the background. In many sequences the 

background motion is zero corresponding to a stationary camera. However, when the 

camer.a is moving, the background will have some non-zero motion. A common type 

of camera movement is horizontal panning, which results in a non-zero x-component 

of the motion with a zero y-component of the motion. Therefore, in two common 

cases (stationary camera and horizontal panning camera), the y-component of the 

motion will be zero and can be used since it is the same parity as On. The 

assumption that is made here is that the camera panning is linear over the three 

fields, fin-2, fln-l, and an. This knowledge can then be used to improve the variable 

previous frame motion estimation algorithm described in the previous section by using 

a spatially interpolated version of when the y-component of the motion vector 

is zero. 

5.6 Dual Frame Motion Estimation 

Figure 5.6 shows the y-t plane of an interlaced sequence of three consecutive fields. If 

linear displacement vectors are assumed over three consecutive fields, then it is clear 

(Figure 5.6) that for odd y-components the best match for a known pixel is found in 

and for even y-components the best match for a given pixel is found in In 

addition, since the same spatial interpolation is used to form estimates of the missing 

pixels, the same rules will apply for the missing pixel matches. Therefore, dual frame 

motion estimation uses two previous spatially interpolated frames: 

1. (from - y-component of the candidate displacement vector is odd. 

2. Qn-2, (from On-2) - y-component of the candidate displacement vector is even. 

Note that this method is an extension of that proposed by (Depommier and Dubois 

1992) since it uses Q,,-2 for more than just zero y-components. 
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071-2 Qn 

known pixels 

o missing pixels 

Figure 5.6: Diagram of the y-t  plane of an interlaced sequence showing different 
displacement vectors. 

5.7 Results 

This section will present two sets of results using the methods for interlaced motion 

estimation described in this chapter. The first set will be the quality of interpolation 

attained using each method. The second set will be results from performing motion 

compensation using the interpolated fields. In order to simplify the descriptions in this 

section, the labels shown in Table 5.1 will be used to refer to the different interpolation 

methods. 

Table 5.2 shows the parameter values for the results presented in this section. Note 

that while some work was done to find good values for these parameters, it is likely 

that better performance could be attained by studying the effects of each parameter in 

detail. The improvement resulting from the "fine-tuning" of these parameters is not 

likely to be significant. The work in this thesis, however, is intended to compare the 

different algorithms of motion estimation and therefore, consistency in the parameter 

values is more important than absolute values. 

5.7.1 Interpolation Results 

As discussed in Chapter 1 ,  interpolation of the missing lines in an interlaced sequence 

is important for many different applications. In this section, interpolation using the 

motion estimation methods in this chapter will be compared with each other and with 

the spatial linear interpolation method described in chapter 2. Detailed results will be 
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Table 5.1: Terminology for various motion estimation methods used in the results 
presented in this chapter. 

Method 
Linear Spatial Interpolation 
Pixel Prediction Along Linear Trajectories 
Variable Previous Frame Motion Estimation 

Table 5.2: Parameters for methods 2 through 5 for the results presented in this 

Modified Variable Previous Frame Motion Estimation 
Dual Frame Motion Estimation 

chapter. 

Label 
Method 1 
Method 2 
Method 3 

1 Parameter I Method 2 1 Method 3 1 Method 4 1 Method 5 0 

Method 4 
Method 5 

presented for the pongi sequence along with limited results for the caltrain and missa 

Section 
2.1 
5.4 
5.5 

5.5.1 
5.6 

sequences. This is mainly because the results for the pongi sequence clearly show the 

1 
L 

potential improvement from Bayesian motion estimation. 

Motion Compensated Interpolation 

Motion compensated interpolation is the interpolation of missing pixels using an es- 

titnated of the motion. In this chapter, several methods of estimating motion for 

the tnissing pixels in an interlaced video sequence have been presented. Once these 

motion estimates have been obtained, there are several methods of implementing mo- 

tion compensated interpolation such as motion adaptive filtering (Delogne, Cuvelier, 

Maison, Caillie, and Vandendorpe l993), motion compensated filtering (Dubois l992), 

adaptive motion compensated interpolation (Weston 1988), and motion-compensating 

field interpolation (Girod and Thoma 1985). 

In this thesis, we are limited to causal motion-compensated interpolation since the 

main application is video coding and the decoder will not, in general, have access to 

future frameslfields of the video sequence. Therefore, for the purposes of comparison 

of the motion estimation methods, the following simple interpolation method will be 
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used, where the interpolated pixel value, j (x i ,  t+),  is given by: 

This means that the estimate of the missing pixel is just taken to be the value of the 

pixel in the previous frame along the estimate of the missing pixel's motion vector. 

Interpolation of the pong i  sequence 

The pong i  sequence is a difficult sequence to interpolate accurately for a number of 

reasons: 

1. The camera is panning horizontally, which makes motion estimation more diffi- 

cult. 

2. The poster in the background has high frequency detail including several places 

where single-pixel-wide dark horizontal lines exist on a light background. 

3. The wall in the background has a "random" texture with pixel amplitudes vary- 

ing over an approximate range between 120 and 190. 

4. Some of the motion (player's arm, spectators' heads and hands) is not transla- 

tion. 

5 .  Motion of the ball is large between successive frames (approximately 50 hori- 

zontal pixels). 

For these reasons, the interpolation error in the pongi sequence is higher than in 

other sequences and there is more potential for improvement by using more complex 

methods of motion estimation. 

Figure 5.7 shows the performance of the five methods on the pongi sequence. 

On average, all four Bayesian algorithms (methods 2-5) are better than the best 

spatial interpolation algorithm, linear interpolation (method 1). The best algorithm 

is method 4, which is 54-70% better than method 1 (best spatial method), and is 

15-30% better than method 5 (next best Bayesian method). 

Figures 5.8, 5.9, 5.10, 5.11, 5.12, and 5.13 show the actual second frame of the 

pong i  sequence along with the reconstructed second frame using methods 1, 2, 3, 4, 
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Frame Number 

Figure 5.7: Performance of motion-estimated interpolation methods on the pongi 
sequence. 

Average MSE per pixel 
300 - I I I I 

250 - 

Figure 5.8: Actual second frame of the pongi sequence. 

200 - - 
Method 1 - / 

......... Method 2 // 
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Figure 5.9: Reconstructed second frame of the pongi sequence using method 1. 

Figure 5.10: Reconstructed second frame of the pongi sequence using method 2. 
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Figure 5.11: Reconstructed second frame of the pongi  sequence using method 3. 

Figure 5.12: Reconstructed second frame of the pongi  sequence using method 4. 
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Figure 5.13: Reconstructed second frame of the pongi sequence using method 5. 

and 5 respectively. The difference in quality is quite clear when comparing the three 

best methods (2, 4, and 5) with the two worst (1 and 3). 

A number of observations can be made regarding the reconstructed frames pre- 

sented here: 

1. Object edges are significantly improved by using the motion estimation methods 

(2, 3, 4, and 5) over the spatial method (1). 

2. The modification made between method 3 and method 4 (section 5.5.1) signif- 

icantly improves the interpolation of the high detail background areas such as 

the poster and the table edge in the pongi sequence. This results from improved 

estimation of the panning motion. 

3. The background wall appears low-pass-filtered in method 1, whereas in methods 

2, 3, 4, and 5, the texture is sharper. 

4. In all cases, the areas of non-translatory motion contain noticeable interpolation 

error. While this degrades the characteristics of individual frames, it is not as 

noticeable when the reconstructed sequence is played. 
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5 .  In the region of the ball, method 1 performs better than methods 2, 3, 4, and 

5 .  This is because the ball moves a greater distance than is contained in the 

sample space, Sd, of the Bayesian methods. 

Interpolation of the caltrain sequence 

The caltrain sequence has a nurnber of characteristics that make it an easier sequence 

to interpolate than the pongi sequence: 

1. The background of the sequence (wall-paper) is composed of homogeneous re- 

gions (objects and animals) that contrast with a light background. The ho- 

mogeneous regions are easily interpolated; however, the object edges introduce 

difficulties. 

2. Non-translatory motion exists in a number of regions in the sequence including 

the rolling ball and the mobile on the left of the sequence. 

3. High frequency detail exists in the calendar; however, the detail in the original 

sequence is blurred reducing the noticeable error in this area. 

In order to compare the Bayesian methods with the spatial methods, only the 

results from the two best methods (1 and 4) are presented here. Figure 5.14 shows 

the performance of methods 1 (best spatial method) and method 4 (best Bayesian 

method) on the caltrain sequence. While method 4 ranges from 29% better to 10% 

worse than method 1, the difference in MSE is not really significant. What are 

significant are the subjective results as shown in Figures 5.15 (actual frame 2), 5.16 

(method I) ,  and 5.17. While these three figures are not as clear as when shown on 

the computer screen, they do demonstrate the differences especially at high contrast 

object edges such as the white mobile in the bottom left section of the frame. The 

error frames for method 1 (Figure 5.18) and method 4 (Figure 5.19) are also shown. 

Once again, a number of observations about the caltrain sequence results can be 

made: 

1. Clearly in the homogeneous regions of the sequence, both interpolation methods 

work reasonably well. There are, however, a number of small regions where 

method 4 does not estimate the motion well and the result are thinly stripped 
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Frame Number 

Average MSE per pixel 

Figure 5.14: Performance of motion-estimated interpolation methods on the caltrain 
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Figure 5.15: Actual second frame of the caltrain sequence. 
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Figure 5.16: Reconstructed second frame of the caltrain sequence using method 1. 

Figure 5.17: Reconstructed second frame of the caltrain sequence using method 4. 
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Figure 5.18: Error frame for the reconstruction of the second frame of the caltrain 
sequence using method 1. 

Figure 5.19: Error frame for the reconstruction of the second frame of the caltrain 
sequence using method 4. 
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patches where the interpolated lines are not well correlated with the known 

lines. These patches are not present in the method 1 results. 

2. Object edges are significantly better in the method 4 results. This can easily be 

seen on the left side of the error frames (Figures 5.18 and 5.19). 

3. Despite the non-translatory motion, the interpolation is acceptable. This is be- 

cause non-translatory motion can be often be approximated well as translatory 

motion between successive frames. There are, however, some "peaky" errors in 

.method 4 in the spots on the ball. 

4. Errors in the calendar region appear to be approximately equal in both methods. 

This is because the high frequency detail does not allow good matches between 

successive frames in method 4. In method 1, the low-pass filtering effect of the 

linear interpolation introduces inherent errors in high spatial frequency areas. 

Interpolation of the missa sequence 

The missa sequence is a typical video-conferencing type of sequence. It contains little 

high spatial frequency detail and small amounts of motion (only in the mouth and 

face area). The average MSE per pixel data is shown in Figure 5.20 for methods 

1 and 4. Clearly the results are almost identical for both methods. The differences 

are insignificant and are not noticeable in the resulting reconstructed frames. Note 

that the "zig-zag" effect is caused by information which is lost in even frames and is 

unrecoverable by either of these methods. Reconstruction using a more complicated 

interpolation scheme (see section 5.7.1) could reduce this effect. 

5.7.2 Motion Compensation Results 

In this section, results will be presented from the application of the motion estima- 

tion and interpolation techniques discussed in this chapter to three different motion 

compensation methods. 

Two Field Motion Compensation 

In this motion compensation algorithm, two fields are searched: 
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Frame Number 

Figure 5.20: Performance of motion-estimated interpolation methods 

Average MS E per pixel 
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1. an-1 - the previous field (different parity from the current field (a,). 
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16 

2. flt?l - the interpolated previous field (same parity as 0,). 
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Method 1 - 
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Ideally if the interpolation is sufficiently good, this method should provide excellent 

results. Figure 5.21 shows the performance of method 1 (spatial interpolation) and 

method 4 (best Bayesian interpolation) on the pongi sequence. As expected, the 

improved interpolation resulting from method 4 results in significantly lower energy 

(MSE) than method 1. The order of results for the caltrain sequence (Figure 5.22) is 

8 ,  

14 - 

12 - 

10 - 

8 - 
6 - 

A I 1 I I 

the same, despite the fact that method 1 and method 4 had very similar quantitative 

interpolation errors. 

Figure 5.23 shows the performance of the Bayesian motion compensated interpo- 

lation methods when applied to two field motion compensation. Method 4 is slightly 

superior to methods 2, and 5 reflecting the order of interpolation quality. Method 3 

is not shown because it is significantly worse than methods 2, 4 and 5. 
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Frame Number 

Figure 5.21: Performance of spatial method 1 and Bayesian method 4 using two field 
motion compensation for the pongi sequence 
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Figure 5.22: Performance of spatial method 1 and Bayesian method 4 using two field 
motion compensation for the caltrain sequence 
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Average MS'E per pixel 
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Figure 5.23: Performance of various Bayesian interpolation methods using two field 
motion compensation for the pongi sequence 

Three Field Motion Compensation 

The second algorithm applied to the interpolation results in this chapter is similar 

to the two field algorithm described above; however, when the y-component of the 

candidate block motion vector is zero, the block that is searched is located in the 

second frame back, The rational for this modification is the same as in section 

5.5.1. Note that this modification does not require any extra information to be sent 

to the decoder, since, whenever the y-component of the transmitted motion vector is 

zero, the decoder will simply use in the reconstruction process. 

The results of this MC algorithm for the pongi sequence are shown in Figure 5.24 

(note the change in scale from Figure 5.21). As can be seen from the figure, there is 

very little difference between the five methods with the addition of the second field. 

This result is repeated in Figure 5.25 for the caltrain sequence. These results show 

the importance of using the second previous field in the motion compensation 

of interlaced sequences. In fact, the simpler spatial interpolation (method 1) performs 

slightly better than the more complex Bayesian methods. This is because matches for 



C H A P T E R  5 .  INTERLACED B A Y E S I A N  MOTION ESTIMATION 

the stationary and background regions are found primarily in so the performance 

difference occurs in the motion regions. While these regions are in general estimated 

better by the Bayesian algorithms, there are a few pixels that have a large estimation 

error. The spatial algorithm (method 1)) however, performs moderately well in all 

areas leading to no large errors. Overall, these characteristics of the two types of 

algorithm result in a slightly better M S E  performance for the spatial algorithm and 

a much lower cost. From these results and conclusions, better results could be obtained 

on certain very complex, high motion sequences from the Bayesian methods, but for 

the majority of sequences, the spatial interpolation will perform well. 

Average M  S  E per pixel 
150 I I I I I I I I 

140 - Method 1 - 
Method 2 ......... 
Method 3 - 

120 - 

4 6 8 10 12 14 16 18 20 

Frame Number 

Figure 5.24: Performance of various interpolation methods using three field motion 
compensation for the pongi sequence 

Another very recent approach that uses similar ideas to those of this chapter to 

perform adaptive de-interlacing for the purpose motion compensation of interlaced 

sequences, was developed by Zaccarin and Liu (1993) (published in May, 1994). This 

approach combines the motion compensated interpolation with the spatial interpo- 

lation using a line correlation technique. Application of such a technique using the 

Bayesian motion estimation methods given here, could improve interpolation by elim- 

inating the "peaky" errors found in the Bayesian methods (see earlier discussion in 
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Figure 5.25: Performance of methods 1 and 4 using three field motion compensation 
for the caltrain sequence 

this section). This improved interpolation has the potential to improve the motion 

compensation of interlaced sequences. 

In addition, Zaccarin and Liu (1993) do not directly search which has proven 

to provide significant improvement (three field motion compensation). Improvements 

in their results would be expected if they included 

Hybrid Motion Compensation 

Hybrid motion compensation was described in 3.4 and proved to be the best method 

of motion compensation from Chapter 3. The results when different interpolation 

methods are applied to hybrid motion compensation, are shown in Figure 5.26 for the 

pongi sequence (five methods) and Figure 5.27 for the caltrain sequence (two methods). 

In both cases, method 1 performs better than the Bayesian methods. Again, this is 

due to the more uniform error in the spatial interpolation (method 1). 

It should also be noted that the hybrid MC algorithm performs better than other 

MC algorithms by approximately 10% for each of the interpolation methods tested. 
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Figure 5.26: Performance of various interpolation methods using hybrid motion com- 
pensation for the pongi sequence 
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Figure 5.27: Performance of methods 1 and 4 using hybrid motion compensation for 
the caltrain sequence 
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-integer locations 

0 -fractional locations 

1 -original block location (d = (0,o)) 
2 -horizontal fractional motion vector (d = ( f , 0)) 

1 1  
3 -diagonal fractional motion vector (d = (5, ;)) 

Figure 5.28: Fractional motion compensation 

Motion Compensation with Fractional Pixel Accuracy 

Girod (1993) has described a technique for vector refinement using fractional pixel 

accuracy. A similar technique is used in the MPEG-2 standard. Initially, an integer 

vector is found for each block using the block matching method described in chapter 1. 

Starting with this vector, all displacements of f? in both the horizontal and vertical 

directions are searched using pixel values on a fractional sampling grid. Figure 5.28 

shows this process for a 2 x 2 block. The pixels labelled "1" compose the block located 

at the best integer vector. These pixels are on the integer sampling grid in the frame. 

The pixels labelled "2" are located at a displacement of (i, 0) from the integer vector 

while those labelled "3" are located at a displacement of (i, i). Displacements of size 

a pixel are then searched around the best f pixel displacement. The process can be 

continued with displacements of size 2-n until the desired accuracy is obtained. 

For the purposes of this thesis, the fractional sampling grid values are generated 

using linear spatial interpolation. Therefore, for a pixel at location (x + i, y) ,  its value 

is given by 
1 1 1 



C H A P T E R  5 .  INTERLACED BAYESIAN MOTION ESTIMATION 

and a pixel value at location (+ + f ,  y + f )  is given by 

Other methods such as Wiener filtering can also be used (Girod 1993). 

This fractional pixel MC algorithm was applied to both two-field MC and three- 

field MC (as described above) using the interpolation methods listed in table 5.1. 

The results are shown for methods 1 and 4 in Figures 5.29 (pongi sequence) and 5.30 

(caltrain sequence). Note that the results for two-field MC are not shown for method 

1 since they were significantly worse than those shown. Note that in the case of the 

pongi sequence, the three-field algorithm is superior, while in the caltrain sequence, 

the three curves shown cross several times with insignificant differences between them. 

Average MSE per pixel 
150 I I I I I I I I 

Frame Number 

Figure 5.29: Performance of various interpolation methods using fractional pixel mo- 
tion compensation for the pongi sequence 

An important observation from Figures 5.29 (pongi sequence) and 5.30 (caltrain 

sequence) is that with fractional pixel MC the three-field curves for methods 1 and 4 

are closer than without fractional pixel MC. This is as expected, because method 4 is 

provides a better interpolation of each frame and therefore the fractional offsets are 

also more accurate. 
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Figure 5.30: Performance of various interpolation methods using fractional pixel mo- 
tion compensation for the caltrain sequence 

While fractional motion compensation does improve the performance (approxi- 

mately 10% in our results), consideration has to be given to the additional compu- 

tational cost associated with it . However, since fractional motion compensation has 

been included in the MPEG-2 standard, the consensus is that the additional compu- 

tation is acceptable. 



Chapter 6 

Reduced Complexity Motion 

Estimation 

There are numerous methods of estimating motion in a video sequence. A good 

overview of motion estimation techniques is given by Aggarwal and Nandhakumar 

(1988). In this chapter, two constraint-based iterative techniques will be investigated. 

These two techniques were chosen since they are intended to estimate the true motion 

in the sequence, which is important for the purposes of motion compensated interpo- 

lation of interlaced sequence. Both methods have been applied to interlaced sequences 

and the resulting interpolated fields have been used in the motion compensation al- 

gorithms discussed in previous chapters. 

In addition, a survey of several other types of motion estimation methods will be 

presented. 

6.1 Determining Optical Flow 

One of the more well known methods of estimating optical flow (motion) was devel- 

oped by Horn and Schunck (1981). The method is based on the assumption that the 

image intensity, g(x, t),  as a function of spatial position, x and time, t ,  is independent 

of time so that 
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This assumption is the same as that found in the structural model described in section 

4.3.1. By using the chain rule for differentiation, a single linear equation with two 

unknowns can be derived as 

gxu +gyV $9  = 0 (6.2) 

where gx, g,, and gt are the partial derivatives of g(x, t )  with respect to x ,  y ,  and t 

respectively and u and v are the velocity components (x-component and y-component 

of the displacement vector, d(x, t ) ,  t ) ,  respectively). 

The second assumption that is made is that the motion field is smooth. This can 

be obtained by attempting to minimize the square of the magnitude of the gradient 

of the optical flow velocity, which is given by 

By forming two error terms: the rate of change of image intensity, 

&b = gxu +g,v +gt  

and the smoothness, 

and combining them together as the total error 

E' = / /(oI'E: + E:) dzdy 

the following iterative solution is obtained 

Estimates of gx, g,, and gt are obtained at the center of the cube of intensity samples 

shown in Figure 6.1. The estimates are then given by 
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In addition, the local averages, ii and v, are defined as 

The parameter, a2, is a weighting factor between the two errors (Equations 6.4 and 

6.5) and only really influences the algorithm in regions where the brightness gradient 

is small. This parameter should be approximately equal to the expected noise in the 

estimate of g2 + g$. 

6.1.1 Results 

This section presents the results obtained by using the algorithm described in section 

6.1. Initially, the algorithm was applied to a modified version of the comp sequence 

in which the block only moves by (+I,  +1) between successive frames. The resulting 

motion field is shown in Figure 6.2, On this low-motion modified version of the comp 

sequence, the motion estimation is very good with errors primarily at the edges due 

to the newly exposed and hidden areas. 

Figure 6.3 shows the motion field resulting from the normal comp sequence (dis- 

placement of block is ($4, +4) between successive frames). As is clear, the algorithm 

does not perform well on higher motion sequences. This type of problem could be 

improved by using some type of hierarchical algorithm as discussed in section 6.3.3. 
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Figure 6.1: Sample location for estimation of the partial derivatives of the brightness 

6.2 Gauss-Newton Minimization of the MAP Cri- 

terion 

Konrad and Dubois (1991) have developed a deterministic solution for minimization of 

the MAP criterion by expanding the displaced pel difference using the first-order terms 

of the Taylor series. The estimation process is described by the following iterative 

update expression: 

where e; and p; are defined as 

The average vector, dn(xi, t ) ,  computed over neighborhood, qd(xi), is defined as 
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Figure 6.2: Motion Field for the moving block area of the second frame of the modified 
comp sequence generated using the Horn & Schunck algorithm. 100 iterations. 
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Figure 6.3: Motion Field for the moving block area of the second frame of the comp 
sequence generated using the Horn & Schunck algorithm. 100 iterations. 
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where J; is the size of the neighborhood. For example, in the first order neighborhood, 

t, = 4. The implementation of this method used in this thesis uses the following 

estimation of the gradient of the displaced pel difference: 

f ( d ( x i , t )  + ( l , O ) , x i , t , A t )  - f ( d ( x i , t )  + ( - l , O ) , x i , t , A t )  
V d F ( d ( x ; ,  t ) ,  X i ,  t ,  A t )  % 

f ( d ( x ; ,  t )  + (0, I ) ,  xi, t ,  A t )  - f ( d ( x ; ,  t )  + (0 ,  - I ) ,  xi, t ,  A t )  1 
This algorithm attempts to maintain a smooth motion field by using the average 

motion vector over the neighborhood as the initial estimate for the next iteration. The 

second term in Equation 6.14 causes the estimate to move towards a lower displaced 

pel difference. 

There are also a number of other computationally less complex algorithms for 

minimizing the M A P  criterion presented and evaluated by Konrad and Dubois (1991), 

Bergeron and Dubois (1991), and Konrad (1989). 

6.2.1 Results 

Figure 6.4 shows the motion field generated using Gauss-Newton minimization of 

the M A P  criterion on the normal progressive comp sequence (block displacement of 

(+4, $4) ) .  While the motion field does reflect the general trend of the motion, there 

are serious defects caused by local minima into which the algorithm falls. 

The algorithm was also applied to interlaced sequences for the purpose of interpo- 

lating the missing fields. The resulting reconstructed fields were both subjectively and 

quantitatively worse than the linear spatial interpolator discussed in Chapter 2. This 

is likely because of the interpolation error in the missing fields when this algorithm is 

used on interpolated sequences. 

6.3 Survey of Other Motion Estimation Methods 

This section presents an overview of several popular types of motion estimation algo- 

rithms. They are presented here since some of the ideas contained in the techniques 

could be applied to the methods presented in this thesis to improve the performance. 
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Figure 6.4: Motion Field for the moving block area of the second frame of the comp 
sequence generated using the Gauss-Newton minimization of the MAP criterion. Ad = 
0.3, A, = 0.0025, 100 iterations. 



C"HAPTER 6. REDUCED ClOMPLEXlTY MOTION ESTIMATlON 93 

6.3.1 Block-based Motion Estimation 

Block matching techniques of motion estimation are generally similar to the the block- 

based motion compensation algorithm described in section 1.2.1. The current frame 

is divided into blocks which are then matched with the previous frame(s) and the best 

match is taken as the motion estimate. Variations include the different search and 

minimization techniques (Orchard 1989) (Zaccarin and Liu 1992), recursive block- 

matching algorithms (de Haan, Biezen, Huijgen, and Ojo 1993) (Xie, Eycken, and 

Oosterlinck 1992), and generalized block-matching algorithms that allow more than 

just translation (Seferidis and Chanbari 1992). 

The main advantage of block-matching algorithms is that they are computationally 

efficient (see section 4.7.3) and therefore are the easiest algorithms to implement in 

real time. Difficulties arise however, when a block overlaps the edge of a moving 

object; i.e., part of the block has different motion from the rest of the block. This can 

lead to a "blocking" effect when used in the reconstruction of interlaced sequences. 

To reduce the computational complexity of the MAP estimation presented in this 

thesis it is possible to use a block-oriented version of MAP estimation as described 

by (Bergeron and Dubois 1991). Together with the interlaced techniques in this 

thesis, block-oriented MAP estimation could perform reasonably well with acceptable 

computational complexity. 

6.3.2 Pixel-recursive Mot ion Estimation 

Pixel recursive algorithms attempt to recursively minimize the displaced pixel differ- 

ence (Hsing 1987). The most common technique uses steepest descent and results in 

the following iteration (Baron 1990): 

Improvements to Equation 6.19 have been suggested by Walker and Rao (1984) that 

improve the performance by varying the parameter, c. In addition, simplifications 

have been made which reduce the computational cost of Equation 6.19 (Netravali and 

Robbins 1979). 

Pel-recursive motion estimation allows for a more accurate estimation of the true 
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motion. However, it is more computationally complex than the block-matching algo- 

rithms. It is comparable to the Gauss-Newton minimization of the M A P  criterion and 

the Hork & Sc,hunck algorithm presented earlier in this chapter. We would expec,t the 

Gauss-Newton algorithm to outperform the pel-recursive technique while the Horn h 

Schunck algorithm would be the worst of the three. 

6.3.3 Hierarchical Motion Estimation 

Hierarchical motion estimation has been examined by several authors including Kou- 

rad (1989), Woods and Han (1991) and Paek, Kim, and Lee (1992). The general idea 

behind the algorithms is to coarsely estimate the motion and then refine the vectors 

to obtain an accurate approximation. 

The advantage of this technique is that it tries to eliminate many of the local 

minima by using a coarse (often low pass) version of the video sequence to obtain 

initial approximations. Then, as more detail is added to the video sequence, the 

motion estimate is refined. This technique has been applied to  interlaced sequences 

by Woods and Han (1991) and has proven to give better subjective performance than 

spatial filtering. By applying hierarchical techniques to the Bayesian techniques in 

this thesis could improve the interpolation and possibly the performance of the motion 

compensation algorithms. 



Chapter 7 

Conclusions 

This thesis has presented three main topics as they relate to interlaced video sequences: 

an interlaced video sequence using Bayesian motion 1. Estimation of motion in 

estimation 

2. Conversion of interlaced 

compensated met hods. 

3. Motion compensation of 

to progressive video using both spatial and motion 

interlaced video for the purposes of data compression. 

7.1 Motion Estimation 

The motion estimation approach taken in this thesis was to apply a statistical model 

to the motion field which allowed the Maximum A Posteriori probability (MAP) to be 

formed. Using the MAP criterion, an "optimal" estimate of the motion field for the 

given data, was obtained using a simulated annealing technique. While this technique 

is computationally expensive, it results in an excellent estimate of the motion which 

was the goal of the research. 

Several modifications have been proposed in this thesis for the application of the 

Bayesian techniques to interlaced video sequence. These techniques have proven to 

give excellent motion estimates on difficult sequences containing high motion, panning 

and difficult textures. 

In addition, the application of a piecewise-smooth model (line field) to the motion 

field was also considered. While this model did improve the quality of the motion field 



estimation for progressive sequences, it did not perform as well in the case of interlaced 

sequences. For this reason, it was not included in the application to interpolation or 

motion compensation. It is possible that with the addition of another concept, perhaps 

a hierarchical procedure, the motion discontinuity model could be implemented with 

greater success. 

Several computationally efficient motion estimation methods were also considered; 

however, all were significantly inferior to the simulated annealing procedure. Other 

algorithms were also mentioned as possible avenues for future work in this area. 

7.2 Interpolat ion of Interlaced Video 

Reconstruction of the missing lines of an interlaced sequence was studied using both 

spatial techniques and the Bayesian motion estimation techniques. As expected, 

the Bayesian motion estimation techniques were significantly better than the spa- 

tial techniques both subjectively and quantitatively. While the computational cost 

of the Bayesian algorithms is high, it was suggested that the algorithms could eas- 

ily be implemented in a parallel fashion reducing the computing time significantly. 

Applications for this implementation would include off-line interlaced-to-progressive 

converters, video motion analysis and object detection/analysis. 

7.3 Mot ion Cornpensat ion of Interlaced Video 

Several different methods of motion compensation of interlaced video were presented. 

The main conclusion from this work was the importance of using the second previous 

field (same ~ a r i t y )  in the motion compensation process. In addition, improved results 

were obtained when linear combinations of fields were used in the process. 

The Bayesian motion estimation techniques were compared to the spatial tech- 

niques using the various motion compensation algorithms and the resulting difference 

was found to be negligible. It was suggested that in the case of very high motion, 

complex sequences, the Bayesian methods may prove superior, but in the majority of 

cases, the spatial techniques perform satisfactorily. This is important since the spa- 

tial techniques are relatively simple. However, results using "perfect" interpolation 

(the actual missing lines) have shown that there is potential for better interpolation 
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methods to significantly improve performance. Further research is needed to discover 

these methods and decide if the computational expense is warranted. 

7.4 Future Work 

While there are many directions for future work in this area, the most promising 

include the development of computationally efficient motion estimation algorithms 

possibly through the use of hierarchical procedures. This may also allow the favorable 

implementation of the piecewise-smooth motion model (line field). Also incorporation 

of characteristics such as newly exposed and hidden regions into the motion model 

could be productive. 

In terms of interpolation, different motion compensated filtering techniques could 

be explored along with the associated concept of using several frameslfields in the 

interpolat ion process. 

There may also be room for improvement in interlaced motion compensation al- 

gorit hms by using multiple fieldslframes and by using some of the ideas presented in 

Chapter 5 of this thesis. 



References 

Aggarwal, J. K. and N. Nandhakumar (1988, August). On the computation of motion 

from sequences of images - a review. Proceedings of the IEEE 76(8), 917-935. 

Baron, A. (1990, April). Motion estimation and compensation. INRS Telecommuni- 

cation. 

Bergeron, C. and E. Dubois (1991, March). Gradient-based algorithms for block- 

oriented map estimation of motion and application to motion-compensated temporal 

interpolation. IEEE Transactions on Circuits and Systems for Video Technology 1 ( I ) ,  

72-85. 

Besag, J. E. (1 972). Nearest-neighbor systems and the auto-logistic model for binary 

data. J. Royal Stat. Soc. B 34, 75-83. 

de Haan, G., P. W. A. C. Biezen, H. Huijgen, and 0. A. Ojo (1993, October). True- 

motion estimation with 3-d recursive search block matching. IEEE Transactions on 

Circuits and Systems for Video Technology 3(5), 368-379. 

Delogne, P., L. Cuvelier, B. Maison, B. V. Caillie, and L. Vandendqe (1993). Im- 

proved interpolation, motion estimation and compensation for interlaced pictures. In 

Proceedings SPIE, Visual Communications and Image Processing, Volume 2094, pp. 

326-336. 

Depommier, R. and E. Dubois (1992, September). Motion-compensated temporal pre- 

diction for interlaced image sequences. In Proceedings SPIE, Visual C~mmunications 

and Image Processing, pp. 264-269. 

Dubois, E. (1992). Motion-compensated filtering of time-varying images. Multidimen- 

sional Systems and Signal Processing 3, 211-239. 



REFERENCES 99 

Dubois, E. and J. Konrad (1993). Estimation of '2-D motion fields from image se- 

quences with applications to motion compensated processing. In M. Sezan and R. La- 

gendijk (Eds.), Motion Analysis and Image Sequence Processing, Chapter :3. Kluwer. 

Geman, S. and D. Geman (1984, November). Stochastic relaxation, Gibbs distribu- 

tions, and the Bayesian estimation of images. IEEE Transactions on Pattern Analysis 

and Machine Intelligence 6(6), 721-741. 

Gersho, A. and R. M. Gray (1992). Vector Quantization and Signal Compression. 

Series in Communications and Information Theory. Kluwer Academic Publishers. 

Girod, B. (1993, April). Motion-compensating prediction with fractional-pel accuracy. 

IEEE Transactions on Communications COM-4 1 (4)) 604-61 1. 

Girod, B. and R. Thoma (1985). Motion-compensating field interpolation from inter- 

laced and non-interlaced grids. In Proceedings SPIE, Image Coding, pp. 186-193. 

Gothe, M. and J. Vaisey (1993, May). Improving motion compensation using multiple 

temporal frames. In IEEE Pacific Rim Conference on Communications, Computers 

and Signal Processing, pp. 157-160. 

Horn, B. K. P. and B. G. Schunck (1981). Determining optical flow. Artijcial Intel- 

ligence 17, 185-203. 

Horvat, D. C., J. S. Bird, and M. M. Goulding (1992). True time-delay bandpass 

beamforming. IEEE Journal of Oceanic Engineering 17, 185-192. 

Hsing, T. R. (1987). Motion detection and compensation coding for motion video 

coders: Technical review and comparison. In GLOBECOM '87, pp. 2.6.1-2.6.4. 

Keys, R. G. (1 981, December). Cubic convolution for digital image processing. IEEE 

Transactions on Acoustics, Speech and Signal Processing ASSP-29, 1153-1160. 

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983, May). Optimization by simu- 

lated annealing. Science 220, 671-680. 

Konrad, J .  (1989, June). Bayesian Estimation of Motion Fields from Image Sequences. 

Ph. D. thesis, McGill University, Montreal, Canada. 



REFERENCES 100 

Konrad, J .  and E. Dubois (1991, August). Comparison of stochastic and deterministic 

solution methods in bayesian estimation of 2d motion. Image and Vision Computing 

9(4), 215-228. 

LeGall, D. (1991, April). MPEG: A video compression standard for tnultimedia ap- 

plications. Communications of the ACM 34 (4), 47-58. 

Martinez, D. M. and J. S. Lim (1989). Spatial interpolation of interlaced television 

pictures. In Proceedings ICASSP'89, pp. 1886-1889. 

Miller, D. and K. Rose (1994, Feb./Mar./Apr.). Combined source-channel vector 

quantization using deterministic annealing. IEEE Transactions on Communications 

42(2/3/4), 347-359. 

Netravali, A. N. and B. G. Haskell (1988). Digital Pictures. AT&T Bell Laboratories. 

Netravali, A. N. and J. D. Robbins (1979, March). Motion compensated television 

coding: Part i. Bell Syst. Tech. J. 58, 631-670. 

Oppenheim, A. V. and R. W. Schafer (1989). Discrete-Time Signal Processing. Pren- 

tice Hall. 

Orchard, M. T.  (1989, November). A comparison of techniques for estimating block 

motion in image sequence coding. In Proceedings SPIE, Visual Communications and 

Image Processing IV, pp. 248-258. 

Paek, H., R. C. Kim, and S. U. Lee (1992, October). On the motion compensated 

transform coding technique employing sub-band decomposition. In Proceedings SPIE, 

Visual Communications and Image Processing, pp. 253-264. 

Seferidis, V. and M. Chanbari (1992, October). Generalized block matching motion 

estimation. In Proceedings SPIE, Visual Communications and Image Processing, Vol- 

ume 1818, pp. 110-119. 

Walker, D. and K. Rao (1984, October). Improved pel-recursive motion compensation. 

IEEE Transactions on Communications 32(10), 1128-1134. 



REFERENCES 10 1 

Weston, M. (1988). Fixed, adaptive, and motion compensated interpolation of inter- 

laced tv pictures. In L. Chiariglione (Ed.), Signal Processing of HDTV, pp. 401-408. 

Elsevier Science Publishers B.V. 

Woods, J .  W. and S.-C. Han (1991, October). Hierarchical motion compensated de- 

interlacing. In Proceedings SPIE, Visual Communications and Image Processing, pp. 

805-8 10. 

Xie, K., L. V. Eycken, and A. Oosterlinck (1992). A new block-based motion estima- 

tion algorithm. Signal Processing: Image Communication 4, 507-517. 

Zaccarin, A. and B. Liu (1992, March). Fast algorithms foir block motion estimation. 

In Proceedings ICASSP'92, pp. 111-449 - 111-452. 

Zaccarin, A.  and B. Liu (1993). Block motion compensated coding of interlaced se- 

quences using adaptively deinterlaced fields. Signal Processing: Image Communication 

5, 473-485. 


