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Abstract 

Genetic Algorithms are the best known representation of a class of direct random search methods 

called evolutionary algorithms which are widely used to solve complex optimization and adaptation 

problems. They have grown in popularity within economics due to their ability to represent the 

adaptation of individuals to  the underlying parameters of their economic system. This work examines 

three applications of genetic algorithm adaptation in macroeconomic environments. 

In the first of these applications, the Arifovic and Masson (2003) model of currency crisis is 

simulated in controlled laboratory experiments with human subjects. An extended model of agents 

expectations is considered in which each investor has multiple rules, choosing one of them probabilis- 

tically in each period. The properties of time series generated by computer simulations are compared 

to those of human data. In each framework the time series of returns on emerging market debt is 

characterized by fat tails which matches features of empirical data. Additionally, the extended model 

of expectations better matches the duration statistics found in the experimental setting. 

The second application investigates the sufficiency of learning-by-doing for explaining negative 

macroeconomic output shocks in an evolutionary model of technological transition. The model 

allows firms to divide labour between two distinct technologies in a continuous manner. The ability 

of each firm to innovate within each technology is dependent on this choice for the division of labour. 

Contrary to previous literature, innovations are not transferable between technologies. It is argued 

that in such a framework learning-by-doing remains sufficient for periodic observations of negative 

macroeconomic growth. 

Thc final exa~rii~lation represents the first application of two-level learning in an economic envi- 

ronment in which the performance of potential rules is complementary across individuals. Two-level 

learning, or self-adaptation, incorporates certain strategy parameters into the representation of each 

individual. In this work, these strategy parameters determine the level of heterogeneity introduced 

into the environment. They evolve by means of mutation and recombination, just as the object vari- 

ables do. It is argued that self-adaptation over these parameters can replace the election operator 

proposed by Arifovic (1994) in order to attain convergence to a rational expectations equilibrium. 
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Chapter 1 

Introduction 

We use economic theory to calculate how certain variations in the situation are predicted 

to affect behavior, but these calculations obviously do not reflect or usefully model the 

adaptive process by which subjects have themselves arrived a t  the decision rules they 

use. Technically, I think of economics as studying decision rules that are steady states of 

some adaptive process, decision rules that are found to work over a range of situations 

and hence are no longer revised appreciably as more experience accumulates. (Lucas, 

1986) 

The rational expectations hypothesis asserts that economic outcomes do not differ systematically 

from what economic agents expect them to be. Rational agents form these expectations by opti- 

mally using all information pertaining to the expected outcome available. The rational expectations 

assumption has been used with great success in an enormous number of economic problems. It  has 

proved exceptionally powerful in solving economic models and developing comparative statics per- 

taining to important economic relationships. However, its use encompasses assumptions that prove 

very demanding and unrealistic in many applications. Alternatively, the assumption of bounded 

rationality maintains that economic agents form expectations in a manner that is only as optimal 

as information, resource and cognitive constraints will allow. It is argued that bounded rationality 

better describes the actual behavior of economic agents. In reality, individuals do not always behave 

in a truly optimal manner. Furthermore, individuals must discover the manner in which information 

is represented and the strategies for forming expectations using this information (Simon, 1957). 

Though work utilizing the rational expectations assumption typically outlines the comparative 

statics of the economic system in question, it devotes rather little effort to explaining the process 

of moving from one equilibrium to another. Utilizing the less demanding assumption of bounded 

rationality, many economists have turned their attention to the behavior of agents when the system in 

question is out of equilibrium. Models that result from this approach work to explain how equilibrium 
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behavior can emerge as the limit of an adaptation or learning process of boundedly rational agents 

(Dawid (1996), Lucas (1986)). If equilibrium is to result from the limiting nature of an adaptation 

process, this work must begin, of course, with a model of this adaptation. 

Some of these models assume agents behave as if econometricians, forming expectations according 

to econometric methods and based on historical observation. Examples of such work include those 

with expectation updating based on a simple moving average (Lucas (1986)), least squares estimation 

(Sims (1980), Marcet and Sargent (1989)), stochastic approximation (Robbins and Monro (1951), 

Woodford (1990)), or Bayesian learning (Blume and Easly (1982), Turnovsky (1969)). 

This work examines the application of a particular set of adaption models. Originally developed 

by Holland (1975), genetic algorithms are the best known representation of a class of direct random 

search methods called evolutionarg algorithms which are widely used to solve complex optimization 

and adaptation problems. Their use within economics is grounded on their ability to represent the 

adaptation of individuals to the underlying parameters of their economic environment. 

Based on the principles and mechanics of natural evolution, genetic algorithms are a set of 

search algorithms in which a population of potential solutions is encoded and subject to three basic 

genetic operators - selection, crossover, and mutation. These potential solutions may be candidates 

for an optimization problem or - as in economic systems - the belief or decision rules of an agent 

regarding an econo~nic problem. The algorithms cornbine the prirlciplc of 'Lsurvival of the fittest" 

with a "structured yet randomized information exchange to form a search algorithm with some of 

tllc innovative flair of hurnan scarcli." (Goldbcrg, 1989). Tllc initial population of rules is often 

randomly generated. Referred to as generatzons, subsequent populations are created by taking the 

best performing candidates from the old generation (selection) and exploiting these rules to introduce 

new solution candidates (crossover and mutation). 

The selectzon operator determines which candidates from the population of rules will be used to 

create the subsequent population. It is through application of this rule that the idea of "survival of 

the fittest" takes form. The performance of each specific rule is determined according to a fitness 

function. Fitness measures the performance of each rule with respect to the surrounding system 

and facilitates comparison between competing rules within the population. The standard selection 

operator, referred to as proportzonal selectzon, creates a new generation of potential rules by randomly 

drawing (probabilistically) from the old population. The likelihood of each rule being selected for 

use iri the sut)scqucnt population is proportional to its level of fitness. Once a rule is selected, it 

is replaced in the population of potential rules and has the opportunity of being randomly selected 

again. Tllcrein, a rule that has twice the fitness of another candidate has twice the likclihootl of 

being selected for the subsequent population. Over repeated draws on the current population it is 

expected to generate twice as many copies in the new generation. 

The replication inherent in the selection process represents "imitation of the successful" (Dawid, 

1996). It is analogous to the imitation effect within a population. In a population where the payoffs 
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of the individual actions are known to other members of the population, it is very plausible to assume 

that low payoff irldividuals will irnitatc the actions of those irldividuals employirlg highly profitablc 

rules. 

The crossover and mutation operators generate new rules in the population; they introduce and 

maintain diversity over this population. Following application of the selection process, crossover 

works by randomly assigning each rule to a pair. The crossover operator is applied to  each pair 

according to a given probability. If crossover occurs, a portion of the genetic material encoding each 

rule in a pair is swapped, yielding two new rules distinct from the pair that created them. This 

operator is often interpreted as analogous to some process of communication in which information is 

exchanged. Members of the population exchange information regarding their planned action. Some 

agents utilize this information, adopting part of the strategy of the other agent in combination with 

their own plan. The mutation operator is utilized following crossover. The genetic material encoding 

each rule is randomly altered from its current state according to  a given probability. This operator 

incorporates the effect of purposeful innovations, or trembling hand mistakes. 

Though the selection operator reduces the level of diversity over the population of rules comprising 

a generation, the crossover and mutation operators introduce diversity following this replication 

process. Of course, only newly created rules that outperform relative to  the rest of the population 

will be replicated under the selection process in subsequent generations. 

Arifovic (2000) notes that these models of adaptation hold several advantages over competing 

approaches. First, they allow for a population of heterogeneous agents' beliefs. Each belief's prop- 

agation is dependent on performance as measured by the payoff an agent receives in holding that 

belief. Modelling economic agents utilizing these algorithms imposes low requirements pertaining to 

their computational ability. In terms of their ability to explain the observations of actual empirical 

outcomes and experimental economics, they perform better than models with rational agents or 

alternative models of adaptive behavior. 

Arifovic classifies the research questions addressed by the study of these algorithms into four 

different categories. Thc first catcgory contains research related to  thc convcrgcnce and stability 

of equilibria in models with unique rational expectations equilibria. Many examples of this first 

category consider the application of genetic adaptation to the cobweb model. The original rational 

expectations consideration of this model is attributed to hluth (1961). Arifovic (1994) considers 

the learnability and stability of this equilibrium in a model of genetic algorithm adaptation. She 

compares these results to those of other learning algorithms and experimental evidence. This work 

demonstrates that genetic learning provides a better approximation of experimental results than 

other models of adaptation1 

'Arifovic (1994) compares the results of genetic learning to  those of three other commonly used learning algorithms: 
cobweb expectations, sample average of past prices, and least squares learning. 
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The second category contains research where genetic algorithms are used as an equilibrium selec- 

tion device in models with multiple equilibria. Examples of such work include the examinations of 

an overlapping generations framework with fiat money (Arifovic (1995), Bullard and Duffy (1998a)). 

Here, the goveriir~ieiit filialices a constant deficit through seigiiorage. The model has two stationary 

equilibria, one associated with a lower level of inflation than the other. An important characteristic 

of these fraineworks is their convergence to the low stationary inflatioii equilibrium for deficit values 

and initial conditions under which least squares learning exhibited divergent behavior.' 

The third category includes work that examines transitional dynamics that accompanies the 

equilibria selection process. For example, Bullard and Duffy (1998~)  examine the application of 

genetic algorithm learning in the Grandmont (1985) environment. They consider a two period 

overlapping gcnerations model with preferences dependent on the coefficient of relative risk aversion. 

In addition to two steady states, certain parameter choices are associated with periodic and chaotic 

equilibrium trajectories. The work demonstrates qualitatively complicated dynamics for long periods 

of time prior to convergence. 

The final category contains examinations of learning dynamics that are intrinsically different 

from the dynamics of rational expectation considerations. An example of such work is found in 

the modelling of recurrent currency crises. Rational expectations solutions to  the problem are often 

dependent on the existence of sunspot equilibria (Cole and Kehoe (1996), Jeanne and Masson (2000)). 

These solutions, however, do not explain how investors coordinate on a currency crisis path. Arifovic 

and Masson (2003) describe an evolutionary model that results in recurrent episodes of currency crisis 

that are driven solely by changes in investors beliefs; periods of excessive optimism are followed by 

periods of excessive pessimism. Currency crises characterized by recurrent periods of devaluations are 

purely expectationally driven. The model yields predictions regarding the behavior of the distribution 

of beliefs that are linked to recurrent devaluations. 

This dissertation contains three distinct applications of genetic algorithm learning. Each work 

contributes to the literature within one of the categories described above. In the chapters that follow 

this introduction, the second and third examine learning dynamics that are intrinsically different 

from the dynamics of the rational expectations versions of the models. 

In Chapter 2, the Arifovic and Masson (2003) model of currency crisis is simulated in laboratory 

experiments with human subjects. The framework modelling agents' expectations utilized by Arifovic 

and Masson is extended. In this model, each investor has multiple rules and in each period chooses 

one of them probabilistically. The properties of time series generated by computer simulations are 

compared to  those of the experimental data and the original results of Arifovic and Masson. Both the 

simulations and experiments generate times series of returns on emerging debt whose distributions 

2 ~ n  an exlension of lhis work, Bullard and D~iffy (l998b) model agents which live for more than two periods. 
They show that for larger parameter choices for the agents' length of life, convergence to the low inflation stationary 
equilibrium becomes less likely. In this extension, a similar result holds for larger specifications of the government 
deficit. 
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are characterized by fat tails. This feature matches the empirical data. 

Chapter 3 develops an evolutionary model of technological transition in order to investigate the 

sufficiency of learning-by-doing for explaining negative macroeconomic outplit shocks. Contrary to 

previous literature, innovations are not transferable between technologies. The assumption main- 

tained within this work is that thc only manner in which a firm may learn about a newer grade of 

technology is t o  devote resources toward production within it. However, firms are not required to 

fully commit to a single technology at  any given point in time. Firms may divide labour between two 

technological paradigms in a continuous manner. The ability of each firm to innovate within each 

paradigm is dependent on it's choice for the division of labour. Productivity gaps between old and 

new technologies result from a lack of accrued incremental innovations in the newer technologies. In 

all simulations, these gaps result in periods of negative economic growth in real income per capita 

despite the ability of firms to  adopt these new technologies in a non-discrete manner. For selective 

parameterizations of the model, although average quarterly growth statistics match the data  well, 

periods of negative economic growth occur with less frequency than observed in reality. It  is shown 

that in such a framework learning-by-doi~ig remains suficicnt for periodic observations of ncgative 

macroeconomic growth, though not with enough frequency to  match actual data. 

The fourth and final chapter of this work contains research related to  the convergence and stability 

of equilibria in the models with unique rational expectations equilibria. Here we extend the work of 

Arifovic (1994) described in the exposition of this category. 

Thc work corltained in Chapter 4 rcprescnts thc first application of two-level learning in genetic al- 

gorithms in an economic environment in which the fitness value of potential rules are complementary 

across individuals. Two-level learning, or self-adaptation, incorporates certain strategy parameters 

into the representation of each individual. In this work, these strategy parameters provide the like- 

lihood of mutation for the individual. These strategy parameters evolve by means of mutation and 

recombination, just as the object variables do. It  is argued that self-adaptation over the parameter 

governing mutation can replace the election operator proposed by Arifovic (1994) in order to  attain 

convergence to  a rational expectations equilibrium. While both adaptive mutation and the election 

operator are sufficient for convergence, self-adaptation may be more appropriate in non-static envi- 

ronments. This convergence, however, will require a strong selective pressure only attained through 

a transformation of the baseline fitness function. 
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Chapter 2 

Currency Crises 

Evolution of Beliefs, Experiments with Human Subjects 
and Real World Data1 

2.1 Introduction 

The role of investors' expectations has always been emphasized as a very important factor affecting 

the behavior observed in the financial markets. In particular, conventional accounts of the episodes 

of currency crisis focus on changes and shifts in investors' beliefs. However, modeling the changes in 

investors' expectations that might trigger currency crisis, without any apparent change in economic 

fundamentals, has not been given much attention in the existing literature. 

The traditional rational expectations approach leaves little room for modeling endogenous changes 

in investors' expectations that would trigger recurrent speculative attacks on currency.' The excep- 

tion are the models that due to the features of the underlying fundamentals exhibit multiple (static) 

equilibria where it is usually possible to add an exogenous sunspot process that governs switches 

between the neighborhoods of these equilibria. As a result, sunspot models generate dynamics of the 

recurrent currency ~ r i s e s . ~  However, they require coordination of investors' beliefs on a particular 

sunspot process falling short of explanation of why and how this coordination might take place. 

Over the last few years, advances have been made with the models that depart from the rational 

expectations hypothesis, and instead assume that investors are boundedly rational agents who have 

lThis chapter is based on a work co-written with Dr. Jasmina Arifovic, Simon Fraser University. Jasmina Arifovic 
acknowledges the support of the  SSHRC Standard Research Grant Program. We would like t o  thank Dan Friedman, 
Rob Oxoby, as  well as the  participants a t  the CEF  Meetings in Seattle (2003), ESA Meetings in Tucson (2003), and 
the Experimental Workshop held a t  the  University of Calgary (October 2004) for helpful comments. 

2 ~ o d e l s  tha t  incorporate imperfect and asymmetric information can give rise t o  one-time speculative attacks, but 
cannot generate recurrent currency crises. 

3See, for example, Cole and Kehoe (1996, 2000), Jeanne and Masson (2000). 
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to learn and adapt over time. Kasa (2001) introduces adaptive learning into Obstfeld's (1997) 'escape 

clause' model and shows that learning dynamics, rather than sunspots, can generate switches between 

multiple steady states. Cho and Kasa (2003) introduce learning into a model of Aghion, Bacchetta 

and Banerjee (2001). Even when equilibrium is unique in this model, they show that the 'escape 

dynamics' of the learning algorithm produce the kind of Markov-Switching exchange rate behavior 

that is typically attributed to sunspots. Both of these studies assume homogeneity of investors' 

beliefs. 

Arifovic and Masson (2003) take a different approach and study a dynamic model of currency 

crisis in which heterogenous expectations of boundedly rational agents evolve through a very simple 

algorithm that involves imitation and experimentation. Their model generates recurrent crises that 

result from investors' change in expectations; periods of excessive optimism are followed by periods 

of excessive pessimism. Currency crises characterized by recurrent periods of devaluations are purely 

expectationally driven. The model also yields some predictions about the behavior of distributions 

of beliefs over time (that in fact are linked to recurrent devaluations). Direct empirical tests of these 

predictions cannot be done as we do not have any data concerning the behavior of investors' beliefs 

in real markets. 

Arifovic's and Masson's model is based on the idea of social learning where a population of beliefs 

of a large number of agents evolves together over time. This concept captures well the fact that a 

large number of investors participate in trading in real markets. Investors in real markets can also 

observe the behavior of some of the other investors (captured well by imitation). 

We extend Arifovic's and Masson's original framework by using a model (see Arifovic and Led- 

yard, 2003) where each investor has a collection of alternative beliefs and chooses one of them 

probabilistically. (The evolution of beliefs takes place at the level of an individual.) In addition to 

being interested in the robustness of the dyriarnics with respect to two difIerent learning paradigms, 

we employ a model of individual learning as it is better suited for direct mapping into the design of 

the experiments with human subjects. 

We simulate both modcls of social and individual learning for a large number of different pa- 

rameter values, and examine the observed dynamics. It is noteworthy that the model of individual 

learning is also characterized by recurrent currency crises. Other features such as duration of periods 

of devaluation and no-devaluation and the characteristics of the times series of the models' variables 

that are generated vary across diffcrcrit types of sirnulatioxis. 

As the appropriate data regarding investors' beliefs is not available, the approach we take in this 

paper is to test the model's predictions in simulations with the data collected in the experiments 

with human subjects. This way we can directly observe the evolution of investors' beliefs over time 

and compare the properties of the distributions generated in a model and those that result from the 

experiments with human subjects. The observed experimental behavior matches well the behavior 

of the boundedly rational, artificial agents along many dimensions. Most importantly, experiments 
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do result in recurrent instances of currency crises. We also examine the time series properties of the 

returns, both those generated by our model and those collected in the experiments. Both time series 

are characterized by 'fat tails' which is the feature observed in the real data on returns from the 

emerging markets (see Masson, 2003). 

In section 2.2, we first describe a simple balance of payments model with a representative agent 

and characterize its rational expectations equilibrium. This description is followed by an introduction 

of a model in which agents have heterogenous beliefs. We present our two models of learning, social 

and individual, in section 2.3. We describe our simulation and experimental design in section 2.4. 

The results of simulations are presented in section 2.5. The analysis of the results of the experiments 

with human subjects and the features of the dynamics of the changes in expectations are discussed 

in section 2.6. Finally, concluding remarks are given in section 2.7. 

2.2 A Model of Currency Crises 

2.2.1 Representative agent model 

We follow Arifovic and Masson (2003) in describing a simple model of a portfolio allocation between 

mature and emerging markets in which risk neutral investors decide to put their wealth either in an 

emerging market country or the United States. An emerging market central bank defends a currency 

peg using its foreign exchange reserves until those reserves reach some minimum value. 

The U.S. asset is riskless, and pays a known rate r*, while the emerging market asset's return, 

r t ,  is subject to devaluation (or default) risk as well as potentially decreasing returns to the amount 

invested. The agent puts a fraction A t  of hcr fixed wealth W in emerging market assets, such that 

expected returns on the two assets are equalized. 

Making explicit the dependence of r t  on A t ,  letting .irt be the probability of a devaluation and bt 

the size of devaluation, the condition for portfolio equilibrium is4 

Inverting (2.1), we can write this dependence as 

As in the canonical currency crisis model (Krugman, 1979), devaluations are triggered by the decline 

of reserves to some threshold level, which we assume to be zero. The change in reserves is equal to 

the capital inflow plus the trade balance, minus the interest payments on outstanding debt: 

4 ~ o r  convenience, cross product terms are ignored here. 
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where Dt = &W. The trade balance Tl is stochastic and is assumed to follow a Markov process; 

that is, it depends only on its lagged value. 

A rational expectation for the devaluation probability will satisfy 

.irt = Pr(Rt+l < Olno devaluation) 
t (2.4) 

This probability can be rewritten 

Assuming that the reserve level R1 is part of the representative agent's information set, and using 

the notation in Jeanne and Masson (2000), we can write this as 

This latter equation determines the rational expectation for the devaluation probability, given 

the stochastic process for Tt. 

The dynamics of (2.6) are difficult to characterize. However, it is shown in Jeanne and Masson 

that a simplified version of equation (2.6) can have multiple solutions. In particular, in the simplified 

case where B does not depend on .irt (just on nor on Rt, and if transitions between equilibria 

are described by a Markov transition matrix, then there is an unlimited number of rational expecta- 

tions solutions. In particular, for any set of n equilibria, another rational expectations equilibrium 

can also be constructed. 

2.2.2 A Simplified Model 

Arifovic and Masson (2003) have shown that the model of social learning in which heterogenous 

beliefs about 7r1, and bt that evolve over time results in recurrent currency crisis. In order to test 

the robustness of their model, they also examined the behavior of a simplified model in which only 

beliefs about .irt evolved, and the belief about bt was kept at the constant level. This model resulted 

in the same type of dynamics. Finally, a further simplification in which there is no stochastic element 

of the trade balance (resulting in Tt = Tt+l for all t)  did not affect the qualitative features of the 

dynamics. As the main objective of this paper is to compare the results of the simulations with 

5 ~ h e  case where B depends on both rt+l and rt can generate chaotic dynamics, as shown in Jeanne and Masson 
(2000). 
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the experimental data, we will work with this simplified model because it lends itself better to  the 

experimental implementation. 

Thus, we abstract from an evolving trade balance to one in which Tt equals zero for all periods. In 

addition, we assume that  all individuals share the same expectation regarding the size of devaluation. 

Specifically, b;,, = be = 1 for all i and over all periods t .  In this simplified model, equilibrium is 

no longer characterized by an  infinite number of solutions. (The inclusion of a non-stochastic trade 

balance will instead decrease the number of rational expectation solutions to just two.) 

Reserve levels are determined identically to the specification in equation (2.3), setting Tt equal 

to zero for all t.6 The rational expectation solution for an individual's probability assessment is 

therefore still characterized by equation (2.5). We make the following assumption for the function 

A t  = X(rt) 

ensuring that as individuals become more pessimistic, their investment in the emerging market 

decreases (ceteris paribus). We also assume X(0) = 1 and X(r,,,,) = 0. Under these simplifying 

assumptions, the rational expectations solution for rt (equation (2.5)) therefore becomes 

rt = P r t ( R t  + X(r t )W - (1 + r* + ~ ~ - ~ ) X ( r t - l ) W  < 01no devaluation) (2.8) 

In any situation in which Rt  > (1 +r* + T ~ - ~ ) X ( T ~ - ~ ) W  holds, the solution to this assessment has 

a unique solution. Specifically, rt = 0. Here, even as no funds are invested in the emerging market, 

it is impossible for a devaluation to occur. The reserve level of the emerging market's central bank 

is sufficient to cover all of its economy's current debt. 

A unique solution also results in any situation in which it is impossible to meet a shortfall in 

reserves with incoming emerging market investment. That is, when (1 +r*  + r t - l )X(r t - l )W - Rt > 
- 
W > 0 holds, a devaluation is certain, and r t  = IT,,, is the unique solution. 

Multiple solutions exist for situations that fall between these two extremes. That  is, when incom- 

ing emerging market investment can meet reserve shortfalls, or when W > (1 +r* + r t - l ) ~ ( r L - l ) W -  

R t  > 0 holds, there are two possible solutions for r t :  rt = 0 and rt = r,,,. It  is impossible, with- 

out further specification, to select one of these solutions over the other. When r, takes the value of 

r,,,, a sclf-fulfilling devaluation takes place in which X(rt = r,,,) = 0 and through a devaluation 

of currency, Rt+l = o . ~  
GSetting Tt equal t o  T rather than zero does not change the solutions' characterization in any significant manner 
7 ~ h i s  result is in essence a stag-hunt gamc with a payoll dominated equilibrium. In a model incorporating Bayesian 

learning, Chamely (2003) considers speculative attacks in a similar spirit. Agents update their expectations regarding 
the number of other agents that believe the current fundamentals are sufficient for a successful attack. Essentially, 
there are two states of the economy, one in which there is sufficient speculators for devaluation, and one in which there 
is not. The mass of these speculators is an  uncertain parameter of this economy. While both models are essentially a 
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In the period following this devaluation, the above problem simplifies to the following 

As is the nature of self-fulfilling phenomena, when investors do not expect a devaluation, that 

is, when rt takes the value of 0, a devaluation does not take place. Importantly, this cannot occur 

indefinitely, as interest payments on emerging market debt will slowly diminish the level of reserves 

available. Eventlially, the cconomy will find itself with too fcw reserves to  covcr its interest outflow 

and a devaluation occurs. 

All of the above analysis is based on a framework where a one-period model (stage game) is 

repeated over time. In this respect, agents really have expectations of probability of devaluation in 

the following period. However, if we assumed investors were forward looking, then their rationality 

will imply the logic of backward induction, i.e. in case that devaluation can occur in some period t ,  

no investment in the emerging market will ever occur. 

2.2.3 Heterogeneous agents 

We now turn to the model with heterogeneous agents. There are n investors, each with constant 

wealth W, who form expectations of the devaluation probability, . ~ r , i . ~  Since investors are risk neutral, 

they will be indifferent between investing in the two assets when their ex ante returns are equal, and 

choose between putting all their beginning-of-period wealth into the safe foreign asset, at  rate r*, or 

into emerging market claims, a t  rate r t ,  depending on which expected return is greater. 

We assume that each investor is a price taker, and does not influence the marginal product of 

capital in the emerging market economy. Short selling of either asset is ruled out; neither portfolio 

proportion can be negative.' If A: is the share of 2's wealth in emerging market debt, then A: = 0 

or 1 as (1 + r*) > or < (1 + rt)/(l + .rr;).lo Thus, at any period t ,  the amount of emerging market 

deposits held by all foreign investors is 

Erilergirig market banks sct the interest ratc 011 bank deposits to reflect market cxpectatioris of 

the return on emerging market debt. We assume that banks do not form expectations of devaluation 

game of timing, in Chamely's work multiple periods are necessary for the existence of speculative attacks and these 
attacks are not recurrent. However, the emphasis of Chamley's work is examining policies' ability to  defend the 
currency peg, not in explaining recurrence. 

continue to assume that each investor h a s  an identical expectation regarding the devaluation size and that 
this expectation does not change over time, dte'" de = 1. 

'Similar qualitative results can be obtained if borrowing is allowed, but there are limits on leverage (such as a 
minimum capital requirement). 

1•‹1f the US rate were equal to  the gross expected emerging market return discounted by the expected devaluation, 
X i  would be indeterminate. 
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themselves; they just use the average of all investors' expectations as a measure of the expected value 

of devaluation. Thus, the interest rate on emerging market deposits rt is set equal to the U.S. rate 

plus a weighted average of the expected rate of devaluation. This equation, which is analogous to 

an interest parity (no arbitrage) condition, can be written 

rt = (1 + r*) n ( 1  + n;)'/" - 1. 

With different expectations, expected returns will be equalized only for the marginal investor 

whose expectation equals the average expectation. Each individual investor will make her investment 

choice on the basis of a comparison with the average expectation embodied in the interest rate. If she 

is more optimistic on emerging markets, in the sense of estimating a lower probability of devaluation 

than the average, then she will put all her wealth into emerging market debt; otherwise, she will 

put it all into U.S. assets. In this model, investor heterogeneity is key to determining the amount of 

emerging market assets held. 

As in the above described representative agent model, a balance of payments identity relates the 

changc in rcserves to  the trade balance (assumed for simplification to equal zero in all periods) plus 

the purchase of new debt by investors minus the principal and interest on maturing debt; assuming 

that there has been no devaluation or default: 

Reserves earn no interest, but they could just as easily have been assumed to earn r* 

Provided that Rt is above some threshold level (which we assume without loss of generality to be 

zero), there is no devaluation a t  t ,  i.e. ht = 0 (absence of superscript indicates that this is the realized 

value of depreciation, not its expectation). However, if reserves would otherwise be negative, there 

is a devaluation or default which reduces the amount that will be repaid on borrowing undertaken 

at t. That is, the ex post return for the lender will be (1 + rt) /( l  + dl),  where the amount of the 

devaluation is equal to the shortfall in the balance of payments that would have pushed Rt negative, 

divided by Dl: 

or using the above equation for Rt 

ht = 
[(I + rt-i)Di-1 - Rt-i - DL] 

(2.14) 
Dt 

Though the devaluation/default reduces the amount owed at t + 1, not t ,  we assume that, in this 
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case, balance of payments arrears are accumulated within the period such that reserves at t do not 

go negative but instead equal zero. 

2.3 Evolution of Heterogenous Beliefs 

Next, we describe the evolution of beliefs about probability of devaluation in the context of social 

and individual evolutionary learning. 

2.3.1 Social Learning - A Baseline Model 

We first dcscribe Arifovic and Massson's rnodel of social learning with boundedly rational agents who 

acquire the experience and knowledge needed to improve their performance over time. This model 

imposes weak requirements on agents' computational abilities. In this paper, the model of social 

learning will be referred to as our baselme model. The learning algorithm describes imitation-based 

adaptation of the agents' expectational rules (here a rule is just a point estimate for T:. Investors 

consider their own success and that of other investors and try to imitate those rules yielding above- 

average returns. In addition, they occasionally experiment with new expectational rules. 

Realized rates of return determine measures of performance of the expectations used at time t 

that we call fitness values. Performance, pi,  of each investor's rule is evaluated based on the ex post 

return on emerging market assets 

if investor i invested her wealth in the emerging market and to 

if she invested in the US market. In the case that due to devaluation the performance value of an 

expectational rule takes a negative value (& > r t ) ,  it is truncated to zero. Thus all the expectations 

that resulted in X i  = 1 receive the same performance value even though they may have different 

values of T:. Similarly, all those that resulted in A; = 0 receive the same performance value even 

though they may have different ~ t ' s .  

Investors update their expectations of ~f at  the end of each period by imitating rules that have 

proven to be relatively successful and by occasional experimentation with new expectational rules. 

These two aspects of expectations formation are described below. 



CHAPTER 2. CURRENCY CRISES 

Imitation At the beginning of each period t ,  investor i ,  i E [ I , .  . . , n] compares her expectational 

rule to a rule of a probabilistically selected investor j .  The probability, PT:, that an expectational 

rule j is selected for comparison is equal to the expectational rule's relative performance: 

We can think of the selection of an expectational rule j as resulting from a spin of a roulette 

wheel where each expectational rule is assigned a slot proportionate to  its relative performance value 

(proportional selection). Rules that performed better get larger slots than rules that did worse in 

the previous period, and thus well-performing rules have higher probability of being selected. Rules 

are selected with replacement. Once j is selected, investor i, compares the performance of her own 

expectational rule to the performance of investor j 's expectational rule. If the performance of her 

own rule is equal or higher, she keeps her own rule. Otherwise, investor i imitates (adopts) the 

expectational rule of investor j .  

Note that in case of devaluation, if bt > rt, expectational rules of the investors who invested in 

the emerging market yield a negative return, which is truncated to zero. Thus expectations of all 

investors who invested in the emerging market will receive performance values equal to 0 and will 

not be imitated. Only the expectations of those investors who invested in the US market receive 

positive, equal probabilities of being selected in this case. 

Imitation alone represents a type of herd behavior in that on average, over time, well-performing 

expectations will be imitated (followed) by a larger number of investors and on average, investors 

will encounter better-performing expectations more frequently. 

Experimentation Once the imitation is completed, each investor, i E [l, ..., n], can experiment 

with her expectational rule. Experimentation takes place with probability p,,. If the investor 

experiments with the expected probability of devaluation, a new expected probability of devaluation 

is determined by drawing a random number from the uniform distribution over the interval [0, .rr,,,]. 

The above describes the framework which is assumed to govern the interaction of the population 

of investors. If investors are not able to gather enough information to form reliable estimates of 

the future behavior of the markets, and based on that determine their optimal behavior, imitation 

of previously successful strategies seems a plausible behavioral assumption. This type of behavior 

is explicitly modeled in our framework using proportional selection such that expectational rules 

that yielded an above-average payoff' tend to bc used by more ilivestors i11 the following period. 

Experimentation incorporates innovations by investors, done either on purpose or by chance. 
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2.3.2 Individual Evolutionary Learning - An Extended Model 

Next we combine the currency crisis framework of Arifovic and Masson with the model of individual 

evolutionary learning used by Arifovic and Ledyard (2003). We describe the model and the way we 

are going to implement it in our simulations. 

Agent behavior 

At the beginning of period t, each investor, i ,  has a collection At of possible alternative expecta- 

tional rules. Each expectational rule of investor i is given by a real number that represents T;,, a t  

time t. A; consists of J alternatives, a),,, for j E (1, .  . . , J)." At each t ,  an investor selects an 

alternative randomly from At using a probability density n; on At.'' This alternative then becomes 

the expectational rule that agent implements at time period t. We construct the initial set At by 

randomly selecting, with replacement, J expectational rules from the set of all possible rules within 

a predefined range. We construct the initial probability IIi by letting n g ~ i , ~ )  = 1/J. 

After each investor chooses her expectational rule, we compute the emerging market interest 

rate, r l .  The next step is to determine the value of each investor's Ai(t). This is accomplished in the 

same manner as has already been described in the previous section. We use the rest of the model's 

equations to compute the level of reserves in the emerging market and extent of possible devaluation. 

Based on the information obtained at t ,  each investor updates her collection of alternative ex- 

pectational rules. This process consists of three pieces, computing foregone return, and performing 

experimentation and replication. 

Foregone return 

In updating A: and II;, the first step is to calculate what we call foregone returns for each alternative 

expectational rule in the collection. This is the (expected) return, given the information at t ,  that 

the alternative a;,, would have received if it had been actually used, taking the behavior of other 

investors as given. We use the notation ?(a; 1s:) to compute the hypothetical return of the alternative 

j that belongs to investor i's set of alternatives. 

For each alternative j ,  we determine the value of hypothetical A),,, given the value of T),,. Finally, 

using this value of A;,,, we compute the rules' foregone return. In this model, this represents their 

performance measure. 

" . I  is a free parameter of the behavioral model that can be varied in the simulations. It can be loosely thought of 
as a measure of the processing and/or memory capacity of the agent. 

121n essence the pair (A; .n ; )  is a mixed strategy for a at t .  
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Updating Af 

We modify A: with processes of experimentation and imitation analogous to the ones described above 

for social learning. Foregone returns play the role of fitness values. The process of imitation results 

in the increase in frequency of the better performing rules. In case of our extended model, it can be 

interpreted as a reinforcement of those expectational rules that resulted in higher foregone returns. 

While algorithmically the process of experimentation is performed the same way in the two 

models, it has different interpretation and impact on the dynamics. In the baseline model (social 

learning) it is a trembling hand random mutation. However, in the extended model (individual learn- 

ing), newly generated rules will not be automatically tried out when they are generated. They have 

first to increase their frequency, based on high foregone payoffs, in order increase their probability 

of actually being selected. 

We refer to the above described model of individual evolutionary learning as our extended model 

in the subsequent analysis.13 

2.4 Design of Simulations and Experiments with Human Sub- 

jects 

2.4.1 Simulations 

As mentioned earlier, we focus here on simulations in which 6: is n o t  allowed to evolve. This 

algorithm is referred to as the fixed - be case by Arifovic and Masson. Here, the expectational rule 

is characterized by a single real number, .rri (the probability of devaluation), and it is assumed that 

the expected amount of devaluation, 6:", is equal across investors and time. 

Agents (n) and Experimentation Rates (p,,) We first simulate permutations over the rate 

of experimentation and number of agents for the baseline simulation (one rule per agent). Holding 

the experimentation rates at 0.33, 0.165, 0.0825, and 0.04 we simulate over population levels that 

include 100, 75, 50, 25, and 12. As total wealth remains constant throughout these simulations 

(m), decreasing the number of agents has the effect of increasing the per period investment of 

cach individual. Dccreasing the expcrirnentation rate has thc effect of dccreasing thc amount of 

heterogeneity introduced in each period. 

'31ndividual and social learning can be complimentary. It is feasible t o  incorporate both types of learning within 
a single model of adaptation. A model of individual learning can incorporate imitation across individual sets of J 
rules. This intra-individual imitation, occurring between randomly chosen pairs of individuals every ti periods, allows 
individuals to mimic the strategies of other agents utilizing a fitness (payoff) criterion in order to  determine the relative 
success of the two sets of rules. An individual imitates the other pair's rules if, and only if, this criterion is met. 
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S t r a t e g y  S e t  Size - J In the model of learning in which agents have a set of alternative rules 

played probabilistically (A:,  II:), we simulate various permutations over the size of this strategy set 

J .  We allow the strategy set size, J, to equal 45, 15, and 5. For each parameterization of J, we 

simulate over the various permutations of population levels according to 100, 75, 50, 25, and 12, and 

of experimentation rates according to 0.0825, and 0.04. 

Simulations over very low specifications of the population of agents, n = 12, are used to gauge the 

impact of lower population levels on the simulations' dynamics. These are used in order to facilitate 

a comparison to experimental data  where, due to constraints, population levels are below that which 

would be considered appropriate to approximate perfect competition. However, these levels may 

not be sufficient for ensuring the efficacy of the learning algorithm as diversity over rules reaches a 

critically low level. This is a concern, foremost, for social learning where diversity is a direct function 

of population levels. This direct relationship is not a characteristic of individual learning, as J allows 

for a break between the direct relationship between population and diversity over rules. For this 

reason we expect, a priori, the results of the low population individual learning parameterization 

of the model to  be more rhobust with respect to  decreases in the population and therefore oRer a 

more favorable comparison with experimental data. Additionally, social learning entails knowledge 

of other individuals' rules which will not be a feature within the experimental environment. 

R i sk  Averse  Agents  - b, We extend the model of the portfolio choice of agents to one that 

includes a specification of risk averse investors. The equation that  determines investment in the 

emerging market, as derived by Masson (2003), is 

where, A2 is set to unity if the above equation yields a result strictly greater than one, and zero if 

strictly less than zero. Here, bi is a utility parameter negatively related to  the degree of risk aversion 

of thc particular investor. Risk neutrality is equivalent to setting this parameter to infinity. Each 

agent has the same measure of risk aversion (bi = b V i E [l . . . n]). 

We maintain a parameterization of bi equal to 1 and simulate the baseline model of expectations 

including the four population levels described above (100, 75, 50, 25, 12) and an experimentation 

rate equal to 0.0825. Using these parameterizations of population and exerimentation, the extended 

model incorporating bi is simulated with 15 rules per agent. 

Pa r ame te r i z a t i on  of Simulat ions As described above, the permutations over n ,  p,,, J ,  and 

b, include a total of 60 unique parameterizations of the simulations. All of the results of these 

simulations are presented in the Appendix. 
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2.4.2 Experiments with Human Subjects 

Our experimental design follows closely that of our extended simulation design in which 4 is equal 

to one for all investors and over all experimental periods.14 

Subjects were economics SFU undergraduates, third and fourth year. They volunteered, i.e. 

none were participating for fulfillment of any course requirement, and were paid a "show-up" fee 

and awarded an additional payment dependent on performance.15 We used Z-tree software for 

experimental economics developed by Urs Fischbacher to create our experimental environment. 

Initial Condit ions - Instruct ions Prior to the beginning of an experiment, subjects are given 

the following information: ( I )  the balance of payments identity that governs the currency reserves 

of the emerging economy's central bank in the following period; (2) the equation determining the 

rate of return in the emerging economy's asset market; (3) the fixed rate of return in the U.S. 

economy, r*, and an initial value of the emerging market rate of return, ro; (4) the initial level of 

investment in the emerging market, Do; (5) The constant wealth available for investment, W in each 

period; (6) the equation governing their portfolio allocation; (7) and the method according to  which 

experimental payoff is determined. This information is contained in a set of instructions read by, 

and to, participants of the experiment. Each experimental period proceeds in the following way: 

Subjects '  Assessment of T,Z At the beginning of each period, subjects are asked to quantify the 

probability of devaluation. At any time may subjects view the report of variables described in the 

previous section or the experiment pa,rameters and the history of relevant variables. Experimental 

subjects are prompted for their assessment of the probability of devaluation. In order to make this 

assessment more intuitive, they are asked to enter a probability over the span of [O, 101 rather than 

[O, .lo] = [O, T,,,]. Their assessment is then converted to a T:" by dividing by 100.16 The rest of 

the calculations are performed following the equation presented earlier.17 

R e p o r t  of Resul t s  Subjects are shown their resulting portfolio and rate of return, and their 

experimental payoff for that period. Subjects are also informed of that periods' ex  ante and ex post 

14An alternative experimental design may be found in the work of Heinemann, Nagel and Ockenfels (2004). Their 
work tests the predictions of global game theory with respect t o  private information using a reduced form Morris and 
Shin (1998) model. However, as consecutive experimental periods are in no way related in terms of fundamentals, the 
work cannot focus on the recurrence or duration of devaluation and no-devaluation periods. 

1 5 ~ h e  "show-up" fee was equal to  15 dollars. The performance dependent payment was calculated in a manner such 
that the average total payment across subjects amounted to  approximately 25 dollars. Subjects were informed about 
the nature of the total payment prior to  participation in the experiment. 

1 6 ~ h e  parameterization of n,,, is taken from the original work of Arifovic and Masson (2003) in order to  maintain 
comparability of results. It's original specification was in order to  align simulations' interest rate spreads with those 
of monthly emerging market data.  

17Under the unlikely scenario that a subject's assessment equals the geometric mean of all assessments, the subject's 
wealth is invested wholly in the emerging market if nj < nm,,/2, wholly in the domestic market if ni > nm,,/2, and 
split equally between the emerging and domestic markets i f  T: = ~ , , , / 2 .  However, these rules did not have to  be 
implemented in any of the sessions. 
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rates of return in the emerging market (before and after any devaluation, rt, bL and (1 + r t ) / ( l  +bt)), 

and of the total level of investment in the emerging market from the previous period, Dt-l. 

Trea tmen t  Payoffs A per period payoff for each subject is based on earnings in excess of thc per 
- - 

period investment. That is, a subject earns r*: when invested in the domestic market, rL: when 
- 

invested in the emerging market, and [(I + rt)/( l  + &) - 11: when invested in the emerging market 

in periods in which a devaluation takes place. Wealth, W ,  is not accumulating; each subject has the 

opportunity to invest a constant amount in each period that is not dependent on previous investment 

performance. Importantly, as was the case in the simulations' fitness functions, experimental profit is 

bounded below by zero. Cumulative experirr~ental profit translates into cash payment via a cox~versior~ 

factor. Total payment to the subject is the sum of a "show-up fee" and the converted experimental 

profit. 

Exper imenta l  subjects '  information se t  It is important to emphasize which variables are in 

the participants' information set and which are excluded. Each participant knows the complete 

history of total foreign investment, the ex ante and ex post emerging market return, and the extent 

of devaluation. However, they do not have information on the following: (i) the current level of 

currency reserves of the emerging market's central bank, and (ii) the devaluation threshold. We 

a.ssume that in reality, although reserve levels may be known by investors, the threshold under which 

devaluation occurs is unknown. We remove knowledge regarding the current level of reserves in order 

to avoid subjects' learning the devaluation threshold through repeated observation of devaluations. 

2.5 Simulation Results 

Initial Values The values of initial external debt, and reserves, US interest rate, as well as the 

value of total wealth were taken from Arifovic and Masson (2003). Thus, the initial values for external 

debt, and reserves were taken to be those prevailing in Argentina at the end of 1996. In these "fixed - 
be" simulations, the trade balance does not evolve. Interest r aks  and flows are converted to monthly 

data. All stocks and flows are expressed as ratios to GDP, so the relevant interest rates are actually 

the difference between the nominal interest rate and the growth of nominal GDP. For r* ,  the U.S. 

interest rate used was (0.05 - 0.03), or 0.001666. Variables of interest include 

where the value for total wealth, nW, was arbitrarily chosen to be twice Dl, T,,, was chosen as 

0.1, and 6haZ = 6f'i = 1. 
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2.5.1 Spread Statistics 

Masson (2003) studies empirical regularities within the returns on emerging market debt.'' The 

data indicate that daily changes in spreads are definitely not normally distributed, exhibiting much 

fat,ter tails. The study also finds generally significant first-order autocorrclation coefficicnt,.lg Our 

intention is to compare our simulation and experimental results to these two regularities. I t  is worth 

emphasizing that these results are derived from daily (not monthly) observations. 

First Di,ffcrcn,ce i n  In,terest Rate Spread 
S u m m a w  Statistics - Masson (2003) 

Standard  Deviation 0.04832 
Skewness -0.305 
Kurtosis 86.06 
Jarque-Bera 8,004,456 
Observations 27,842 

Table 2.1: First Difference in Interest Rate Spread - Summary Statistics - Masson (2003) 

In Table 2.3, 2.4 and 2.5 of the Appendix, we include distribution statistics for the first difference 

in the emerging market's interest rate spread, [ ( l  + r t ) / ( l  + &) - (1 + r*)]. We will compare the 

qualitative features of these distributions to those of Masson (2003).'O 

Standard Deviation - Second Moment The standard deviation of the first difference in interest 

rate spreads vary between permutations of the simulations. However, all simulations' standard 

deviation fall in the [0.0242,0.0982] range. It is somewhat striking that even for parameterizations 

originally considered extreme, the standard deviation falls in this relatively small range. Notably, in 

the baseline sirriulatiorls (simulations 1 through 20), decreasing thc population levcl has the effect of 

increasing this measured standard deviation. 
- -- 

1 8 ~ e  uses a set of spreads on emerging market debt compiled by J P  Morgan using daily data from 31 December 
1993 to  19 July 2002. This data base comprises virtually the universe of all developing countries issuing Brady 
bonds and Eurobonds. The list of countries is the following (those included in JP  Morgan's so-called EMBI+ index, 
see J P  Morgan, 1995): Argentina, Brazil, Bulgaria, Colombia, Ecuador, Korea, Mexico, Morocco, Panama, Peru, 
Philippines, Poland, Qatar, Russia, South Africa, Turkey, Ukraine, and Venezuela. However, not all countries had 
bonds outstanding during the whole period 1993-2002; what observations existed were pooled to  study the distribution 
of spreads. 

l g ~ a s s o n  notes that this could be due to market inefficiencies that allow arbitrage opportunities to exist, or coi~ld 
reflect lack of trading so that spreads quoted do not correspond to actual transactions. 

''The data  presented in the Apper~dix to  this chapter represer~ts a subset of 120 different pararr~eterizations of 
the simulations. For brevity and parsin~ony, we exclude presenting parameterizations that yield results redundant to  
those considered herein. Distinct parameterizations within the population of simulations are associated with unique 
simulation numbers. Therein, the non-sequential numbering of simulations in the Appendix has been maintained to  
facilitate comparison with the entire sample utilized in other work. 
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Skewness - Third Moment From the distribution of the first difference in the emerging market 

interest rate spread for each permutation, we calculate the measure of skewness. In all of the 

simulations, the skewness statistic from this distribution measures positive falling on the range 

[0.0742,1.6117]; this result does not appear to aligli itself well with the empirical findings based on 

daily data. 

Kurtosis - Fourth Moment From the distribution of the first difference in the emerging market 

interest rate spread for each permutation, we calculate the measure of Kurtosis according to the 

following equation: 

Distributions with a kurtosis measure of 3 are referred to as mesokurtic, of which the normal 

distribution is a prime example. Those distributions with a kurtosis measure exceeding 3 are referred 

to as leptokurtic, and are characterized by slim or long-tails. Finally, those distributions with a 

kurtosis measure less than 3 are referred to as platykurtic (fat or short-tailed). Masson (2003) fixids 

a high value of kurtosis over daily first difference in interest rate spreads. Over all data sets that they 

consider, this measure is in excess of 80. In most of our permutations, the kurtosis measure far exceeds 

that of a normal distribution, reaching a maximum of approximately 56 in the baseline simulation 

with 100 agents, experimentation with probability 0.0825, and with a risk aversion parameter equal 

to 1 (simulation number 96). 

Although the values of kurtosis computed in our simulations do not reach the empirical measure of 

a.round 80, the measures are in excess of that associated with normal distribution (with the exception 

of three parameterizations).21 

Jarque-Bera The normal distribution has a skewness and kurtosis measure of zero and three 

respectively. A simple test of normality is to find whether the computed values of skewness and 

kurtosis depart from the norms of 0 and 3. This is the logic behind the Jarque-Bera (JB) test of 

normality. 

Where S refers to skewness and K ,  kurtosis. Under the null hypothesis of normality, J B  is 

distributed as a Chi-square statistic with 2 degrees of freedom. 

According to Masson (2003), daily change in spreads occur over a non-normal distribution. In all 

of our 60 permutations of the model, we reject the null hypothesis of normality using the Jarque-Bera 

''Parameterizations that do not have Kurtosis measures in excess of 3 are contained in simulations 77 through 79, 
inclusive. 
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test. 

Autocorrelation Coefficients We report the estimates of the first order autocorrelation coeffi- 

cient from an autoregressive regressiou irlcludiilg the first differelm ill spread measures ill Tables 2.3 

through 2.5. The estimated first order autocorrelation coefficient is significantly negative in all of 

our simulations. This contrasts the positive correlation reported in Masson (2003). However, it is 

important to note that the positive correlation in Masson 's work is over daily changes in interest 

rate spreads, rather than the monthly changes expressed in the simulations of this paper. It is quite 

likely that the monthly first difference in spreads are negatively correlated empirically, while daily 

are positively; a result very corrllnorl to fi~larlcial data. However, this conjecture requires validation 

using data not available at this time. 

Summary Overall, the regularities of the spread statistics are extremely robust over the permuta- 

tions of the parameter choices of the simulations, both baseline and extended. The most important 

finding is the robustness across the models of learning. In sum, regardless of the choice of model 

and for its parameterization, the distributiou of the first difirence in interest rate spread is posi- 

tively skewed with a Kurtosis measure well in excess of the normal and the interest rate spread is 

negatively autocorrelated. Although falling short of matching empirical data with respect to skew- 

ness and first order autocorrelation coefficients, standard deviation and kurtosis measures capture 

empirical regularities 

2.5.2 Duration Statistics over Parameter Permutations 

The Baseline Model - Comparison with Arifovic and Masson (2003) In our simulations 

of the baseline model, the observed dynamics are identical to those reported by Arifovic and Masson. 

The model exhibits recurrent instances of devaluations. We now consider the average duration of 

devaluation and no-devaluation periods over the various permutations of parameter specifications, 

using our two models of learning. In each simulation, the baseline initial values described above are 

used.2" 

Tables 2.6 and 2.7 present the average duration of periods of devaluation and non-devaluation for 

each of the simulations. We differentiatc betwecn two definitions of devaluation. Our first definition 

corresponds to the standard definition of devaluation (the same was used in Arifovic and Masson). 

That is, a simulation is within a period of devaluation if bt is greater than zero (or, anytime reserves 

fall below their the threshold value). We refer to these as simply devaluations. They occur whenever 

22However, we would like to point out that  this comparison is made with qualification. The measures of kurtosis 
and skewness reported in Masson (2003) are those of daily data,  while in our simulations, the generated data refers 
to monthly intervals. 

2 3 ~ s  in Arifovic and Masson, each simulation is run for 10,000 periods. 
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the emerging market's currency undergoes a depreciation against the domestic. The ex post emerging 

rate of return is lower than ex ante rate of return. 

However, the fact that the emerging market's currency depreciated does not guarantee that 

the resulting rate of return earned from investing in the emerging market is lower than that of 

investing in the domestic market. A depreciation arising from reserves shortages may not be enough 

to make investing in the domestic market more attractive. Therefore, we also include a definition 

of devaluation periods that only include those in which the ex post rate of return in the emerging 

market is strictly lower than that of the domestic. We refer to these periods as dynamically relevant 

devaluations. 

Why is this distinction important? The answer is related to the evaluation of the payoff (fitness) 

function used in the simulations and experiments with human subjects. Although a devaluation 

may have occurred in the previous simulation period, if it was not large enough to drive the ex post 

emerging market return below that of the domestic market, rules that translated into investment in 

the emerging market will propagate. Therefore, simulation dynamics are more likely to be based on 

the dynamically relevant devaluations rather than the standard definition of devaluation. We discuss 

the results across different types of simulations. 

Baseline Simulations First, consider the baseline simulations (simulations 1 through 20). Con- 

sistent with the results of Arifovic and Masson (2003), holding the numbers of investors constant, 

decreasing the rate of experimentation (p , , )  decreases the average duration of periods of devaluation. 

Upon the onset of a devaluation, those investment rules associated with domestic investment earn 

higher rates of return than those associated with investment in the emerging economy. For a de- 

valuation to continue, investment must favor the domestic market, therein pulling wealth out of the 

emerging economy. This occurs when those rules associated with domestic investment are imitated 

by investors; a process that is inherent in the social learning algorithm. However, with higher rates 

of experimentation, this imitation is not as effective and the favoring of t,he domestic economy is 

less prominent. Increased experimentation decreases the ability of imitation and therefore the swing 

towards domestic investment required for sustained devaluations is less probable. 

Additionally, holding the rate of experimentation constant, lowering the population levels of the 

baseline simulations tends to decrease the average duration of periods of devaluation. However, 

this result does not hold for the two lowest specifications of p,,  where the duration measures for 

these parameterizations are already near their lower bound. As such, no decrease in the duration of 

devaluations is possible. This holds as well when considering periods without devaluations. Generally, 

decreasing the number of investors in the baseline simulation (ceteris paribus) has the effect of 

lowering durations of both devaluation and no-devaluation periods. 
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Extended  Simulations Our extended simulations of individual evolutionary learning result in 

shorter duration of no-devaluation periods when the size of agents' collections of alternative rules 

is relatively small. In these simulations, we observe a more frequent switching between states of 

devaluatiori and those with no devaluation. Specifically, extended sirriulatioris in which agents liave 

a collection of five rules and experimentation rates equal to 0.04 (simulations 76 through 80, inclusive) 

have average durations of successive periods without devaluation two to three times smaller than 

their baseline counterparts (simulations 16 through 20). This result holds across both specifications 

of the experimentation rate. 

This decrease in duration measures from the baseline model does not hold when the number of 

rules in the investors' collections increases to it's largest specification (J = 45, simulations 61 through 

65). Here, duration measures for no-devaluation periods are very comparable to the baseline model 

counterparts. 

We conclude that decreasing the diversity of rules available for each agent is very important for 

decreasing the duration of of no-devaluation periods.24 Smaller collections of rules are associated 

with shorter periods without devaluations. 

Decrcasing the size of cach agent's collection has the cffect of iricreasing the duratiori of devalu- 

ation periods. For both specifications of p,,, the duration of devaluations is longest with the lowest 

spccificatiori of the ~iumber of rules in this collcctiori (and with thc nurnber of investors, n equal to 

100). 

Holding the number of rules per agent and the rate of experimentation constant, decreasing the 

number of agents has the effect of lowering both the duration of devaluation and no-de~aluat~ion 

periods (consistent with the baseline results). 

Decreasing the experirneritation rate does riot seern to have any general effects in the extended 

simulations with high numbers of rules in agents' subsets. However, when these subsets are quite low 

(5 rules), lowering the experimentation rate decreases the duration of devaluation and no-devaluation 

periods. 

One could argue that some of the relatively smaller average durations of devaluation periods 

under the extended model of learning are empirically unrealistic. However, when we consider the 

simulations' duration statistics in light of our experimental data, these lower no-devaluation durations 

must be considered a success. 

Risk  Aversion - Baseline a n d  Extended  Model  From the consideration of risk neutrality, we 

incorporate risk aversion by decreasing the risk aversion parameter (b,) to a value of one. 

Consistent with the conclusions for the baseline and extended simulations considered above, with 

24Note that decreasing the number of agents in the baseline model would have the same effect on diversity. As 
described above, the resulting impact on duration statistics is the same. 
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risk aversion included in simulations, decreasing the number of agents (ceteris paribus) lowers both 

devaluation and no-devaluation duration measures. 

In the baseline model, holding all parameters constant and decreasing the risk aversion parameter 

tends to  increase the duration of devaluation and no-devaluation periods for simulations with larger 

numbers of agents (100, 75 and 50). For simulations in which the population is at one of its lowest 

two specifications, 12 and 25, decreasing the measure of risk aversion decreases the duration of no- 

devaluation periods considerably (duration measures for devaluation periods are already near their 

lower bound for these levels). 

Decreasing the risk aversion parameter in the extended model increases both the duration of 

devaluation and no-devaluation periods at all population levels. 

2.5.3 Average Assessment (T I )  - Regression Analysis 

Stylized facts regarding interest rate spreads leading up to and following currency devaluations are 

considered in the work of Tornell and Westerlnann (2001). In the consideration within this work, it 

is observed that interest rate spreads tend to increase in the period immediately preceding the onset 

of devaluation. This increase is estimated to be one percent. I t  is followed by a further increase in 

the period of devaluation of three and a half percent; a total increase of four and a half percent is 

observed leading up to currency devaluations. Following the onset of the devaluation, interest rate 

spreads tend to decrease. 

This decrease in the interest rate spread following devaluation is considered in the recent work 

of Kasa and Cho (2003). Their work is motivated toward explaining the recession that appears to 

follow periods of currency devaluation. While third generation models of currency crises accounted 

for this obscrvat,ion through their inclusion of "balancc sheet effects", currency crises are still thc 

result of exogenous sunspot affects. Their application of a model of learning and adaptation to the 

beliefs of the policy-maker and the agents makes endogenous the onset of crises; the onset of currency 

crises may be linked to the stochastic properties of their model of learning and the structural features 

of the economy.25 The fall in the interest rate spread may result from a mix of both risk premium 

effects and loose monetary policy. As noted by Kasa and Cho (2003), this loose monetary policy may 

be a concerted attempt to avoid the recession that follows devaluation. Of course, this policy tends 

to worsen the crises, deepening the impact of the initial devaluation of the value of the currency. 

Our test on the first difference in interest rate spreads is related only to changes resulting from 

t.he increases of decreases in the risk prcminm. We attempt to find changes in this spread, derived 

from changes in the premium, that are not predicted by the change in the preceding period. Tables 

2.8 t,hrough 2.14 include regressions on the first diffcrencc. in averagc. assessment (G). There is no 

2 5 ~ o t a b l y ,  in the model considered herein, currency crises are also linked to the  model of learning. However, as 
discussed above, currency crises are only a result of this adaptation on the part of agents; not to  the economic 
fundamentals of the emerging economy. 
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constant term included in these estimations. We include six explanatory variables, including the first 

lag of difference ill average assessmellt, and five durnlriy variables ill two regressions per simulation. 

Each dummy controls for specific periods within the simulations. The details of our analysis are 

contained within Table 2.2. 

Specification o f  Dummv Variables 

D l  bt = 0 and bt+l > 0 
0 2  6 t > O a n d b t - l = 0  
0 3  bt-1 > 0 and 6t-2 = 0 
0 4  b t=Oandbt -1  >O 
0 5  btPl = 0 and St-2 > 0 

D6 rt - bt > r* and r t + ~  - bt+l < r' 
0 7  rt - bt < r* and rt-1 - 6t-1 > r* 
0 8  rt-1 - bt-1 < r' and r t - 2  - bt-2 2 r* 
D9 rt - bt > r* and rt-l - St-l < r* 
Dl0  rt-1 - 6t-1 > r* and r t -2  - bt-2 < r* 

Table 2.2: Specification of Dummy Variables - Regression Analysis 

We use rt - bt as an approximation for [ ( l  + r,,)/(l + bt) - 11. We can interpret the estimated 

coefficient on a dummy variablc as thc change in in simulation periods with the characteristics 

as described in the above that is not explained with the lagged difference in c. The dummy 

variables rlurribered one through five are associated with the standard definition of devaluations, and 

those numbered six through ten are associated with the stricter definition of dynamically relevant 

devaluation. 

Our results for changes preceding devaluations coincide with that observed empirically. In the 

majority of parameterizations of the simulation, the period preceding the onset of a devaluation 

is characterized by a higher than expected interest rate spread. Evidence is found in the positive 

coefficient estimate of the D6 dummy variable. However, in the period in which a devaluation begins, 

0 7 ,  interest rate spreads are lower than would otherwise be predicted. Importantly, this measured 

effect is stronger than that inherent in the period preceding devaluation. As the lag of the first 

difference in intercst ratc spread has an estimatcd cocfficient that is always lcss than one we may 

also conclude that there is an absolute fall in the interest rate spread these periods. This result 

stands in contrast to the data summarized by Tornwell and Westermann (2001). 

Importantly, Kasa and Cho (2003) also find it difficult to model increases in the interest rate 

spread in the onset period of devaluation. Their conjecture is that policy makers "lose control" of a 

mild depreciation attempt.26 In contrast, the fall in the spread we witness stems solely from a fall 

26As noted by Kasa and Cho (2003), an empirical counterpart t o  this conjecture may be found in Britain's departure 
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in the mean investor sentiment regarding the likelihood of devaluation. Similarly, although following 

the onset of a period of devaluation we witness a very strong increase in the interest rate spread, 

0 8 ,  this effect is reflective of only an increase in the risk premium in isolation. Our model does not 

incorporate the potential of expansive rliorietary policy ill an effort to alleviate ecollornic recession. 

2.6 Experimental Results and the Dynamics of Expectations 

In this section we compare the results of our simulations to those obtained in the experiments with 

human subjects. We conducted a total of three experimental sessions. 27 We had 15 subjects in 

our first experimental session, and 11 subjects in the last two experimental sessions. The summary 

statistics are presented in Tables 2.5, 2.6 and 2.15. 

In all expcrimcntal scssions we observe negative correlation between the first difference in spread 

statistics, kurtosis measures greater than that associated with the normal distribution, and positive 

skewness. These regularities match the simulations very well. In the sessions with 11 subjects, 

standard deviation measures are slightly larger than those of the session with 15 subjects. We noted 

above that smaller number of agents in the baseline simulations yielded larger standard deviation 

measures. The 15 subject session has a standard deviation measure within the range of those 

associated with the simulations. Kurtosis measures for all of the sessions fall within the range of 

those for the various permutations of the simulations. 

The average duration of periods of devaluation and periods with no-devaluation are generally 

quite small when compared to those of the baseline Arifovic/Masson simulations (simulations 1, 

6, 11, and 16). Although we conducted only one session with 15 subjects, it is noteworthy that 

the treatment with a larger number of subjects also has larger durations of devaluation and no- 

devaluation periods. These are not unexpected outcomes. Our discussion above refers to falling 

durations for specifications with a smaller numbcr of agents; though these smaller durations are 

still larger than those of the treatments, especially with respect to no-devaluation periods. When we 

allow for smaller number of agents, the baseline simulations reasonably approximate the experimental 

results. 

We have also noted that the simulations of our extended, individual learning model are sometimes 

associated with far more switching between devaluation and no-devaluation states. A final point with 

respect to durations is that simulations of the extended model match the experimental data very 

well. Consider, for example, simulation number 80: an extended, individual learning model with 12 

agents, 5 rules each and an experimentation rate of 0.04. Its duration measures of 2.07 and 4.83 

match the 11 subject sessions quite well with respect to duration of devaluation and no-devaluation 

periods, respectively. Similarly, simulations with slightly larger collections of rules (15 rules per 

from the  EMS following the September 1992 attack; interpreted as allowing Britain t o  embark on a policy of lower 
interest rates 

27We set x,,, 0.10 t o  match the number used in our simulations. 
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agent, simulations 71 through 75) perform well in matching the 15 subject session. 

We now turn to the analysis of the behavior of the average assessment of devaluation in exper- 

iments with human subjects and in simulations of our baseline and extended model. Figures 2.1 - 

2.3 plot the average assessment of devaluation (6) and devaluation size (&) over time. Data for 

a subset of periods of a baseline and extended model simulations are given in Figures 2.1 and 2.2, 

respectively. The results of one of the experimental session are contained in Figure 2.3." 

A defining characteristic of the plots of the experimental average assessment is the relatively small 

range in which these measures fall when compared to those of the standard baseline simulations. 

For example, in the final ninety experimental periods of the session presented in Figure 2.3, average 

assessment is never larger than 0.05, and in only a very few periods does it fall below 0.02.29 A similar 

lower bound exists for the plots associated with the standard baseline simulations. However, in the 

majority of periods of devaluation, the average assessment climbs as high as 0.08. One may argue 

that the baseline simulation and the experimental results share a common lower bound for average 

assessment. It is important to note that within experiments, there are many situations wherein 

the onset of a devaluation is not associated with an average assessment close to the lower bound. 

This is rarely the case for the baseline simulation results. Additionally, the upper bound placed 

on assessment does not appear relevant for reversing these periods of devaluation in treatments, as 

average assessment rarely crosses the 0.05 level. 

The plots of the average assessment for our extended model look much more like experimental 

data. Consider Figure 2.2, plotting the extended model simulation's results. Here, the plot of average 

assessment looks very much like those plotted for the experimental session. Periods of devaluation are 

not necessarily associated with the lower bound on assessment, and the reversal of these devaluation 

periods occurs far before average assessment can climb to its upper boundary. In this respect, 

e~tended~individual learning simulations appear to match the experimental dynamics much better 

than the baseline specification. 

The extended, individual evolutionary learning simulations compare more favorably to the experi- 

mental results with respcct to duration statistics. Specifically, they exhibit more frcquent devaluation 

periods, and substantially shorter durations of no-devaluation periods. The range under which the 

average assessment occurs for the extended model simulations is quite smaller than that of the single- 

rule simulations. In addition to duration of devaluation and no-devaluation periods, this is a key 

characteristic the extended model simulations share with the experimental results. 

Our examination of simulation and experimental data indicates that devaluations result from 

'*1n order to facilitate comparison between simulation and experimental results, the following parameter choices are 
used for the baseline (Figure 2.1) and extended (Figure 2.2) simulation plots. The baseline simulation has 12 agents, 
one rule per agent, and a probability of experimentation set to  0.0825. The extended simulation is one in which 12 
agents have 5 rules in their collections and experiment with a probability equal to  0.0825. Figure 2.3, that of the 
experimental data,  is a session with 11 subjects. 

29With respect t o  average assessment, the results of the other sessions are both qualitatively and quantitatively 
similar. Importantly. there is nothing particular to  the specific experimental session we are discussing that cannot 
also be said of the other two sessions. 
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shifts in skewness of the distribution of .rrF'" Thus, the change of skewness plays crucial role in 

getting into periods of devaluation as well as getting out of them.30 We estimate regressions over 

the time series of the first difference in average assessment. Included as independent variables is the 

first lag of difiereiiced assessirieiit, and the duiniily variables specified above. 

We define as sentiment reversal increases or decreases in average assessments that are n o t  oth-  

erwise predicted b y  the  lag of the  differenced assessment .  The estimated coefficients on the D2,D4 

and 0 7 ,  D9 dummy variables are reported in Table 2.8 through 2.15. The numbers show that there 

is quite some variation over the coefficient estimates across the different simulation permutations. 

There appears little consistency in the coefficient sign of the lagged difference in the assessment, 

regressors. One thing to note is that in the simulations of the baseline model, both decreasing the 

rate of mutation, and decreasing the number of agents puts negative pressure on the 0 2  coefficient, 

often pushing it into negative territory. 

2.7 Concluding Remarks 

We study a model of currency crisis where the only source of volatility that contains potential for 

speculative attacks and devaluation of currency are agents' beliefs. The beliefs are heterogenous and 

evolve ovcr time. Wc use two different fraineworks, social learning arid individual learning. As part 

of our methodology, we conduct a large number of simulations for different parameterization values 

to check for the robustness of the results. 

One of the striking results is that most of the main features of the dynamics are present for the 

whole range of different parameter values and over a wide range of specifications. These include the 

'fat tails', positive skewness, and negative correlation between the first difference in spread statistics. 

The 'fat tails' is also a feature that characterizes empirical data on the returns in the emerging 

markets. 

We also conducted three experimental sessions with human subjects where we simulated the 

same type of the economy. The features of the exhibited dynamics coincide with those of our 

simulations, i.e. fat tails, positive skewness, and negative correlation between the first difference in 

spread statistics. Regarding the duration of devaluation and no-devaluation periods, and the range 

of values within which the assessment of devaluation varies, our extended, individual learning model 

matches the experimental data well. 

3 0 ~ h e  model requires shifts in the skewness of the distribution over individual assessments in order to  obtain 
variation in the flow of investment. Therefore, shifts in skewness are required for devaluations. Import,antly, shifts in 
skewness are not necessarily associated with shifts in the average assessment, utilized to  determine the interest rate in 
the emerging economy. Therein, there is no theoretical link in this model between the shifts in skewness required for 
devaluations and changes in the interest rate spread associated with the average assessment. Importantly, skewness in 
the average assessment over individuals does not necessarily translate into skewness of the interest rate spread. The 
two have no theoretical relation in the model considered herein. 
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2.8 Appendix 

Penod Court 

Figure 2.1: Baseline Simulation - 12 agents, 1 rule per agent, probability of mutation 0.0825 
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Penod Courd 

Figure 2.2: Extended Simulation - 12 agents, 5 rules per agent, probability of mutation 0.0825 
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Figure 2.3: Treatment - 11 subjects 
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Simulation No. Population Rules p ,  b Count(deva1) Avedeval Avemon-deval 

Table 2.6: Count and Duration Measures - Dynamically Relevant Devaluations 
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Simulation No. Population Rules p, b Count(deva1) Ave.deva1 Ave.non-deval 

56 
57 
58 
59 
60 

6 1 
62 
63 
64 
65 

71 
72 
73 
74 
75 

76 
77 
78 
79 
80 

96 
97 
98 
99 
100 

116 
117 
118 
119 
120 

Treatment 
Treatment 
neatment  

Table 2.7: Count and Duration Measures - Dynamically Relevant Devaluations (Cont'd) 
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No. POD. Rules w, b Lfl)?T; D6 D 7 0 8  D9 Dl0 

- -- - -- 

Table 2.8: Regression Arialysis - First Difference in Average .ir - Dynamically Relevant Devaluations 



CHAPTER 2. CURRENCY CRISES 

No. Pop. Rules p,  b L( l )% D6 D 7 0 8  D9 Dl0  

Table 2.9: Regression Analysis - First Difference in Average .ir - Dynamically Relevant Devaluations 
(Cont'd) 
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No. Pop. Rules p ,  b L(l).irt D6 0 7  0 8  D9 Dl0  

Table 2.10: Regression Analysis - First Difference in Average .rr - Dynamically Relevant Devaluations 
(Cont'd) 
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No. POD. Rules v b L f l k  D6 D 7 D 8 D9 Dl0  

Table 2.11: Regression Analysis - First Difference in Average .rr - Dynamically Relevant Devaluations 
(Cont 'd) 
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No. Pop. Rules p, b L ( l ) K  D6 D 7 D8 D9 Dl0  

Table 2.12: Regression Analysis - First Difference in Average .~r - Dynamically Relevant Devaluations 
(Cont 'd) 
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No. Pop. Rules 

Table 2.13: Regression Analysis - First Difference in Average .rr - Dynamically Relevant Devaluations 
(Cont'd) 
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No. Pop. Rules p ,  b L( l )% D6 0 7  0 8  D9 Dl0 

Table 2.14: Regression Analysis - First Difference in Average rr - Dynamically Relevant Devaluations 
(Cont'd) 
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Population Rules p ,  b L(l)% D 1 D 2 0 3  0 4  D5 

Population Rules p ,  b L(l).rrt D6 D 7 D8 D9 Dl0  

Table 2.15: Regression Analysis - First Difference in Average .ir - Treatment Results 



Chapter 3 

Economic Growth 

Modelling economic growth with endogenous transition through tech- 
nological paradigms 

3.1 Introduction 

The purpose of this paper is to model the process of technological transition a t  the firm level, 

and to investigate the implications of this model for macroeconomic aggregates. It will be argued 

that the slow diffusion of new technologies results from the fact that, although potentially more 

productive in the long run, these new technologies initially lack the accrued incremental innovations 

of their predecessor. They therefore are less productive during their infancy and diffusion of this new 

technology is slow. Additionally, this productivity gap between old and new technologies may cause 

temporary negative aggregate output shocks if a sufficient number of firms adopt the new technology 

simultaneously. 

Long-run growth in income per capita requires increases in productivity. Some productivity 

improvements result from incremental innovations within a given technology being employed. They 

are a result of what is referred to as learning-by-doing, or learning-by-using. Improvements to 

productivity through incremental innovations occur with diminishing returns. As the return to 

productivity of learning-by-doing within a given technological paradigm diminishes, the only way 

to achieve further improvements is through technological advancement. Technological advancement 

refers to firm appropriation of ncwly discovcrcd techriologies with higher productivity potential. This 

is often referred to as radical innovation. 

In the pursuit of profit maximization, firm's adopt new technologies only in order to appropriate 

the potential productivity improvements inherent within them. However, this potential level of 
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productivity may only be achieved after considerable accumulation of incremental innovations. Prior 

to the accumulation of these innovations, a newly adopted technology may be less productive than its 

predecessor despite the fact that it has a higher overall productivity potential. Therefore, a firm may 

be required to accept a short run decrease in productivity in order to earn the higher productivity 

level of the new technology through learning-by-doing. 

The manner in which innovation and technological progression is modelled within this work is 

consistent with some key macroeconomic phenomena. In particular, negative shocks to economic 

growth are a possible characteristic of paradigm transition at the firm level. Falls in productivity 

associated with technological progression result in periods of negative economic growth. These 

negative shocks to productivity are not exogenous, as is assumed in many works for simplification, 

but inst,ead a result of the prorcss of technological progression at the firm lcvel. 

Previous considerations of the importance of learning-by-doing include Parente (1994), Lucas 

(1993), and Jovanovic and Nyarko (1996). Each of these works examine the firms' decision regarding 

technological upgrades in light of it's expertise in it's current and potential technological grade. 

In order to highlight the differences between this work and it's predecessors, consider the work of 

Jovanovic and Nyarko (1996). Their work contains a one-agent, Bayesian model of learning-by-doing 

and technological choice. The firm is myopic, and maximizes current period return in each period 

by production utilizing a single technological grade. Experience yields information which raises 

productivity and improves decisions. This is modelled through Bayesian updating. Importantly, this 

information applies not only to the current grade of technology in use by the firm, but also superior 

grades; information is transferable. Finally, there is no recall of old technologies, and the size of the 

upgrade is limited. 

Although firms within the model of this work are myopic, each is heterogeneous in their productiv- 

ity characteristics. Experience yields information which raises productivity. However, transferability 

of this information is not a characteristic of the model herein. This characteristic stems from con- 

sideration of an important question. Is the process governing the transfer of knowledge on prior 

variance of newer grades of technology in the information set of the firm? In previous literature, it 

is assumed that firm's know the process and the manner in which it changes through progression 

of technological grades. This information pertaining to newer grades of technology is available even 

before the firm has devoted any resources toward it. The assumption maintained within this work 

is that the only manner in which a firm may learn about a newer grade of technology is to devote 

resources toward production within it. These resources take the form of productive assets, labour 

and capital. Firm's may contribute a portion of their resources toward a newer technological grade 

while maintaining production in it's predecessor. Therefore, while firms may not gain information 

regarding a newer technology without using it in the production process, it does not need to fully 

commit to a single technology at any given point in time. 

The manner in which technological progression and learning is modelled in this work makes it 
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definitively evolutionary. It is a model characterised by heterogeneity, experimentation, and selection. 

It has important advantages over other rrlodels in the literature in that it offers a natural model of 

experimentation by agents and allows consistency with Nelson and Winter's (1982) interpretation of 

Schumpetarian competition. 

Nelson and Winter's (N&W) conception regarding the metaphorical evolutionary process of 

Schumpetarian competition yields model characteristics that are distinct from their interpretation 

of those inherent within "orthodox" economic considerations. First, they emphasise a population 

perspective wherein an 'industry' or 'economy' is seen as a taxonomic class incorporating a certain 

degree of variety of processes and/or products. This variety must, in principle, be transferable be- 

tween different firms or agents. A certain similarity of the search spaces of firms is required for 

t,his t,o bc possible. Howcvcr, there may be major differenccs with respcct to the 'distance' bctween 

different sources of knowledge (Andersen 1996). 

Second, N&W heavily emphasise the importance of the natural introduction of variety and the 

economic selection over this variety. This variety introduction is founded on the individual's pursuit 

of non-normal profit. However, N&W consider this variety and selection only within an economic 

pattern. In other words, N&W emphasise change which follows "natural trajectories" within given 

"technological regimes" (N&W 1982, 258-262) rather than radical change. 

According to Nelson and Winter, "a vast array of particular models can be constructed within 

the broad limits of the theoretical schema" but the "enormous generality" of the schema cannot 

be exploited immediately (N&W, 1982, 19). In order to obtain real understanding about how to 

handle their powerful family of models, N&W prefer to concentrate on "very simple examples" and 

to "distinguish sharply between the power and generality of the theoretical ideas we employ and the 

much more limited results that our specific efforts have yielded thus far." (N&W, 1982, 20). The 

model presented herein extends the complexity of the N&W examples in a manner that also extends 

what they refer to as their "limited" results. 

The model is built from a simplified version of the MOSES training-and-innovation model pro- 

posed in the work of Ballot and Taymaz (1994, 1996, 1997, 1998). The MOSES model is a complete 

Micro-to-Macro simulation model of the (Swedish) economy. Their model highlights the interac- 

tion between human capital and innovation. Hcrc, firms dccide on thc allocation of funds bctween 

training, R&D and production. These decisions in turn affect macroeconomic growth. 

Our simplification of the model is for reasons of parsimony. In order to model technological transi- 

tion in a manner that is consistent with negative macroeconomic output shocks, firms' investment in 

R&D is not strictly required. Nor, it will be argued, is the emphasis placed on R&D warranted when 

one looks at a significant technological transitions of the past; specifically, the Industrial Revolution. 

In the following section, we highlight the fact that a key element of technological advancement, 

and therein economic growth, is learning and adaptation on the part of economic agents employing 

the new technology. Section 3.3 of this paper will explore the previous examinations by Ballot and 
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Taymaz, and highlight the motivation for the proposed simplification. Section 3.4 will examine in 

detail the algorithm used in order to  model economic growth in this piece. Section 3.5 examines 

some of the key results of the model's simulation, and Section 3.6 concludes. 

3.2 Background - The Industrial Revolution as Transition 

Through Technological Paradigms 

3.2.1 Some empirical regularities and the slow transition to the factory 

system 

Five explanations for the slow transition to the factory system are summarized by Pereira (2002): (1) 

the competitiveness of the putting-out systerri, (2) iritelest groups, (3) the low margin of efficiericy 

of the new factories, (4) social learning and technological spillovers, and (5) the "bandwagon" or 

"gold rush" effect. Herein, our coriccrri will be in capturing the latter three of these five in a model 

of technological progression. We examine these three below. ' 

Low margin of efficiency of the new technologies of factories - Experimentation As 

argued by Pereira, a t  the inception of the Industrial Revolution, early factories were not more 

effective than historic industries. Technologies were crude and took time to  become fully operational 

and productive. Furthermore, tlicrc were lrialiy tcclinical difficulties associated with the development 

of some technologies which prevented their earlier diffusion. Consequently, the efficiency of the new 

technologies was initially low, but slowly improved during a period of highly intensive learning-by- 

doing. After inventors, technicians and factory workers solved these initial technical problems, the 

productivity of the sectors associated with the new technology increased rapidly.2 

Social Learning - Imitation Dissemination of knowledge among potential industrialists was 

crucial for the diffusion of not only new machines, but also of the factory system. As Aghion and 

Howitt argue: 

Thc way that, a, firm typically learns to  use a new technology is not, t o  discover cvcrything 

on its own but to  learn from the experience of other firms in a similar situation, namely 

other firms for whom the problems that must be solved beforc the new technology can 

be successfully be implemented bear enough resemblance to  the problems that must be 

solvcd in this firm. (Alghion and Howitt, 1988, pp.129) 

'Atkenson and Kehoe (2003) examine similar characteristics in their consideration of the slow adoption of tech- 
nologies associated with the Second Industrial Revolution 

2 ~ o r  an  overview of the evidence, See Pereira (2002) 
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Crit ical  Mass  a n d  t h e  "bandwagon" effect - Selection Early examples of proto-factories 

were not totally uncommon before the Industrial Revolution. Industrial success, however, was a 

phenomenon that began mostly after the Industrial Revolution. Most proto-factories did not manage 

to survive for considerable periods of time (Crouzet, 1985). Furthermore, most of them did not 

employ mechanical machines (Landes, 1986). Nonetheless, proto-industrialization shows that there 

was a long trajectory of mechanization that stretches back to earlier decades and, in some cases, 

centuries (Bekar and Lipsey, 2001). 

What changed? After early industrialists such as Arkwright and Watt obtained spectacular profits 

with the new factories, a bandwagon cffcct cnsucd and factories of all sizes sprung up. As argued 

by Rosenberg (1996), pervasive uncertainties are often the norm in the development and application 

of new technologies. As argued above, several technical problems complicated an entrepreneur's 

decision of whether or not to invest in new technologies. Investing in new technologies was an 

expensive and risky business in which the distribution of incomes was truly uncertain. However, 

this distribution of incomes was likely skewed to the lower end, as can be attested by the relatively 

high number of bankruptcies during the end of the process of proto-industrialization and the early 

stages of the Industrial Revolution. Many investors preferred either to invest elsewhere, or to delay 

their investments, rather to engage in the risky endeavor (Crouzet, 1985; Pollard, 1965). These 

problems were eventually solved by social learning and the achievement of a critical mass in the new 

technology, as e~nulatio~i could now occur Inore pro~nineritly and profitably allowi~ig thc survival rate 

to increase. 

In te rmedia te  Adoption In their consideration of the Second Industrial Revolution, the adoption 

of the modern technology of electricity, Devine (1983) and David (1990, 1991) stress the complete 

redesign of the manufacturing process that accompanied this transition. Technology and the or- 

ganization of the manufacturing process are two sides of the same coin. While the manufacturing 

processes associated with old and the new technology were radically different, the transition oc- 

curred through a process of evolution. Between the old manufacturing setup and that associated 

with electricity were two intermediate stages in which the higher technology was mixed with older 

styles of the ~riariufacturirig process. These intermediate stages represent periods in which firrris were 

not fully committed to the newer technology and its ideal form of organization. Their production 

process shared technologies from both the new technology and its predecessor. 

3.2.2 Summarizing the qualitative features of technological transit ion 

Summarizing the above discussion pertaining to the Industrial Revolution, the technologies encom- 

passing the Industrial Revolution were available long before they were broadly appropriated by firms. 

Firms did not invest in new technology, as it was inferior to its predecessors in terms of productivity. 

Those firms that did invest in the new technology were failures. Social learning was an important 
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factor bringing the productivity of new technologies in line with, then surpassing that of old tech- 

nologies. Oncc this occurrcd, thc profits carried by those firms utilizing new technologies drew other 

firms into this new technological paradigm.3 

The Industrial Revolution has been the best documented and arguably the most important tech- 

nological transition. Our goal throughout the remainder of this work will be to model the process of 

technological transition at higher frequencies in a manner consistent with these qualitative features. 

Therein, it is assumed that these important regularities are present in all transitions, though possibly 

in smaller magnitudes depending on the nature of the newer technology. 

3.3 Background - The theoretical framework 

3.3.1 The general approach of Ballot and Taymaz 

A model that captures some of the aforementioned historical regularities of technological transition 

and incorporates the importance of learning is contained in various works by Ballot and Taymaz. In 

these works, long run growth in productivity is achieved only through transition towards superior 

technological paradigms. Each paradigm has an upper bound with respect to improvements in 

productivity obtained through learning-by-doing. 

A technology is represented in the model by a set of techniques. Each technique is assumed to 

take only one of two possible values: 0, or 1. For each technological paradigm, there is an optimal 

organization of techniques that guarantees maximum performance in terms of capital and labour 

productivity. This is referred to as the global technology. The technological level of the firm within 

a paradigm is measured by its closeness to the global technology. A particular paradigm's optimal 

organization of techniques is distinct from that of any other paradigm's. Therein, each paradigm may 

be characterised by the organization of this given set of techniques and the resulting productivity 

that this optimal organization of techniques results in. 

Genetic algorithms are used as a tool to generate new technologies within a paradigm. Firms 

recombine their own sets of techniques to obtain new ones, recombine their sets with those of other 

firms, or invent new sets entirely. These analogies pertain to the genetic opererators of recombination, 

imitation and mutation, respectively. Only innovations that improve productivity are adopted (the 

genetic election operator). 

Firms m~ls t  allocate available resources towards different uses. They must invcst in physical 

3Alcaly (2003) also considers previous cycles of technological change and economic reaction, such as the invention 
of steam power and later electric power, the development of the internal combustion engine and adoption of mass 
production techniques in automobiles and steel. Comparing innovations in semiconductors, software and comn~unica- 
tions technology with those of earlier periods suggests the traumas of the last few years, including the Internet boom 
and crash, are predictable growing pains. He argues that such changes do create new economies that are qualitatively 
better than the economies they replace, but more slowly and erratically than people expect a t  the time and with 
bigger problems along the way. 
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assets since they embody new technology and because they depreciate. They must invest in specific 

and general human capital in order to  facilitate incremental innovations and imitation of other 

firms, respectively. Contrary to  specific human capital, general human capital is transferable and 

not a direct factor in production. Finally, they should invest in R&D in order to facilitate radical 

innovations. Profits result from the market process. It is assumed that the precise relation of the 

above experiditures is far too complex to be fully uriderstood by the firrri. Consequently the firms1 

decisions must be modelled as boundedly rational rules with integrated learning. 

3.3.2 The transition between technologies 

It  is important to  note that for paradigm transition in the Ballot and Taymaz framework requires 

each firm to devote resources directly into accumulation of general hu~rlarl capital and R&D, neitlier 

of which contributes directly to production. This pulls resources away from the actual production 

process. If enough firins crigagc in such irivestmcrit, there is the theoretical possibility of a negativc 

output shock. This possibility interferes with the examination of learning-by-doing for creating falls 

in productivity sufficient for negative output growth. 

Ballot and Taymaz assume that progression requires that at least one firm engages in sl~fficient 

R&D investment to  facilitate a radical innovation. Once this radical innovation occurs, the firm 

in which it took place is forced into producing only in the new technological paradigm. Only then 

may other firins imitate the transition to  the new paradigm.4 Contrary to  the Ballot and Taymaz 

approach, in the model presented in this work, all firms have available the opportunity to  produce 

in the newer paradigm. Firms are not required to  invest in R&D in order to facilitate production in 

the new paradigm. 

Radically innovative firms still face the same difficulties as in the Ballot and Taymaz setup. The 

first firms to implement a radical innovation may not be very successful since it may be less produc- 

tive, as the technology in the lower paradigm has been improved through incremental innovations. 

Notice that the potential for negative macroeconomic output shocks is still inherent. Although a 

new technological paradigm has more productivity potential, it has not undergone the incremental 

innovations that the older paradigm has. It therefore may be less productive. If this is the scenario, 

a negt ive output shock may be observed if a. sufficient number of firms shift production into the 

newer paradigm. Importantly, this captures an aforementioned feature of the Industrial Revolution; 

transition into the new technologies was hampered due to the fact that these were temporarily less 

productive than older ones. Additionally, firms did not require an outright investment in R&D in 

order to take advantage of new technologies. Firms had the technology a t  there disposal and chose 

to continue using its predecessors. 

4 ~ o t e  tha t  if the firm that  originally observed the radical innovation fails, radical imitation is no longer possible. 
A new firm must go through the same process of radical innovation in order to facilitate progression. Although the 
radical innovation has already taken place, because there is no firm producing in the newer paradigm another radical 
innovation must take place before imitation is available. 
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3.3.3 Technological transition without R&D 

In dropping the assumption that R.&D is reqiircd by firms prior to adoption, we require a new 

process for the transition through paradigms. In the model presented here, it is assumed that firms 

may devote a chosen percentage of their labour force to  production in the newer paradigm. This 

simplifying assumption allows for incremental innovation by all firms, regardless of scale. Again, 

they need not discover this paradigm through radical innovation or imitation. However, in order to 

maintain production in a paradigm, they must devote a minimum percentage of their labour towards 

it. 

Each paradigm has a minimal level of labour required in order t o  make it available as a viable 

production technology. If a t  any time the firm does not devote sufficient labour to  a technology, it 

becomes  ina available for use in the production process. Importantly, if a firm splits its labour between 

two technological paradigms, and the minimum labour investment is maintained in each, the firm 

may produce using both technologies. This is distinctly different from the Ballot and Taymaz setup. 

In the model herein, firms devote labour to technological paradigms in a continuous manner. In their 

work, once a firm makes a radical innovation or radically imitates, it is forced into producing with 

the newer technology in full. Firms in their model cannot adopt a new technology incrementally. 

As in the Ballot and Taymaz framework, firms make incremental innovations through learning-by- 

doing and imitation of other firms that are producing using the same technological paradigm. This 

is modelled using genetic learning operators. However, firms learn only according to the relative 

division of labour. That is, their ability to  achieve incremental innovations within a paradigm is 

directly correlated to  their choice regarding the division of labour applied to  production using this 

technology. 

This setup has an important characteristic. A motivation of this work is in detailing the possible 

sufficiency of learning-by-doing for ricgative iriacroecono~riic output shocks. This model of learning 

makes it more unlikely for these to  occur. As noted above, a barrier for firms' progression into 

newer paradigms is the possibility that these technologies are less productive, as they have not 

accumulated the incremental innovations that the preceding paradigms have. If firms are given the 

ability to engage in production using the new technology continuously rather than discretely, they 

may remove this barrier by accumulating incremental innovations in the newer paradigm while not 

dcvoting all of their production capabilities towards it. Essentially, firms have the ability to  lesscri 

the overall productivity effects on their production process by slowly moving into the newer paradigm 

rather than shifting all of their resources in whole. 

It is important to  note that the model presented here differs in another fundamental manner from 

that of Ballot and Taymaz. As discussed below, some markets are simplified from that of the Ballot 

and Taymaz simulations; particularly the labour market and the removal of intermediate goods for 

production. Ballot and Taymaz rely on the MOSES model of the Swedish economy; a model that is 
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beautiful in its complexity.' The work presented in this paper outlines a stand-alone, self-contained 

simulation that is accessible and easily adapted for other considerations. 

3.4 The Model 

3.4.1 Setup 

Firms'  Variables - Initialization 

Prior to  sii~lulation, firm specific variables and characteristics are initialized. This irlitialization 

occurs in what is referred to  as period zero. N firms are created and for each firm, 2x technology 

sets are drawn at randonl. The technology employed by a firm can be represented by a number 

of "techniques", FP = {ff,  f[, ..., f:), where FP is the technology used by the firm in paradigm 

P, and f: is the i 'th technique. A technique is assumed to have only one of two possible values, 

f: E {fjP, f:P) = ( 0 , l ) .  In simulations, the firm and global technology will be represented by a 

k element binary vector. We refer to the global technology as Tp .  Notice that technology sets are 

paradigrn specific, P .  The firm carries with it x sets per paradigm. A firm may only produce in two 

paradigms at  a time. Therefore, they must carry with them 2 2  total sets. 

Each firm is endowed with a paradigm variable, pl ( j  = 1.. N ) ,  which defines the lowest paradigm 

it is currently producing in. This variable is set to 1 for all firms in period zero. Additionally, each 

firm is cndowed with a "switch gcne". This gene is a binary string that will be converted into a real 

number in each period in order to determine the relative use of a firm's labor between two relevant 

paradigms. The relevant paradigms are pl and pl + 1. These are the paradigms that, a t  any given 

point in time, a firm may devote labor and capital for production. For all firms, in period zero it is 

set to a string that when converted is equal to  zero; i.e. the binary null. We refer to  the real value 

equivalent of the "switch gene" for firm j as &. 

All firms undergo selection every m periods (see below). Selection is the process in which firms up- 

date their paradigm variable in order to mimic more successful firms, or experiment with new values 

in order to capture non-normal profits. Firms are separated into groups of equal size, Nlm.. A firm 

undergoes selection with the other members of its group, each group due for selection sequentially. 

Global  Variables - Initialization 

In addition to initializing firm specific characteristics, the global variables of the simulation require 

initialization. By global variable, we refer to variables shared by each firm throughout the entire 

simulation. 

'See Eliasson (1991), and Taymaz (1991) for a description of the MOSES model and data  set 
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First, an upper bound is placed on the number of paradigms, p.6 For each paradigm p < p, the 

global technology set, T ~ ,  is drawn by randomly choosing the bits contained in each binary string. 

Second, a minimal labor investment is created for each paradigm, m p  E [O,1] V p I 1 5 p 5 
P. If at any time a firm does not invest at least nz, percent of its labor in paradigm p, it cannot 

produce in t,hat, paradigm. A firm produccs in two paradigms only if n ~ ~ , + ~  < Gj < 1 - nip,. 

3.4.2 A simulation period 

Following initialization, the simulation cycles through a predetermined number of periods, T. Each 

simulative period is characterised by each firm and household undergoing the period stages outlined 

below. 

Modelling Households - Aggregate Input Supply 

Households are modelled using an overlapping generations framework where the total population in 

every period equals 2L, equally divided between young and old. We use the notation that subscripts 

denote birthdates and parentheses denote real time. Individuals born within a generation are indexed 

by a superscript i E (1,2, ..., L). Utility for the individual is defined over consumption in each period 

of life according to the following equation. 

Only young individuals have the opportunity and ability to work. Each young individual is 

endowed with a normalized unit of time with which she may engage in labour in order to earn wages. 

We abstract from the labour-leisure choice potentially facing individuals and simply assume that each 

agent enjoys no disutility from working. As such, each young individual supplies this normalized 

unit of labour inelastically, earning the wage w(t) when young. 

Other than this normalized labour unit, agents are born with no endowment. The single, perish- 

able good produced in this economy may either be consumed or used as an input into production. 

Therefore, agents have the following lifetime budget constraint over consumption. 

Given the lifetime budget constraint and utility function of the individual, maximization yields 

the following equations for aggregate labour and capital supply. 

no simulations is this upper bound binding. 

-s 
L (t) = L 
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- s  1 
K' ( t )  = :Lw(t - 1) + 

In the above equation, it is assumed that profits, 

wages, w (t  - 1). 

~ ( t  - l), are re-invested a t  the same ratio as 

Modelling Firms 

Pre-production For each firm, the following steps are taken prior to production. First, each 

firms' "switch gene" is converted into its real number equivalent, q j .  Labour is assigned to  produce 

in the paradigm p j  + 1 according to  the ratio given by q j ,  the rest of the labour available to the firm 

(1 - $,) is assigned to  production in paradigm p,.7 

The degree of correspondence (DC)  is calculat~d for the paradigms in which a firm is producing 

(i  = p,, pl + 1) according to the equation 

a, = 0 if t ,  # f,, a, = 1 if t ,  = f,. (3.6) 

where w, is the weight for the technique z ;  t: and ff denote techniques of TP (the global 

technology set) and F~ (the firm's technology sct) respectively. Thc parameter k denotes the size 

of technology sets relevant for the first paradigm of production. Note that the size of technology 

sets is incrernented for paradigms subsequent to  the first. This increrrieiiting is intended to  capture 

the assumption that higher, more productive technological paradigms are more difficult for firms to 

master.' 

Of each firms' z possible technology sets per relevant paradigm, only that with the highest degree 

of correspondence is used in order to determine the technological level. Others are carried in order 

to  capture firms' technological memory, the importance of which will be clear aftcr a discussion of 

the learning process firms' undergo. 

The technological level of the firm is now computed by an exponential function of the D C  value, 

according to 

where A arid X are free parameters of the model. 

7Note that this is determined prior to the firms' labour market activities. 
8 ~ h e  increasing size of the string representing a firms technology is not a characteristic of the original Ballot and 

Taymaz works. 
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T h e  product ion  funct ion Firm production occurs in each of the two relevant paradigms (pj ,pj + 
1) according to the following equations. 

?,pj+l = ( K j , p j + ~ ) ~ ( A j , p , + l I j r j L j )  B (3.9) 

Total productiori for the firm is sinyly the sum of firm productior~ in the two rclevant paradigms. 

Profit maximization occurs myopically with respect to time. That is, it is assumed that each 

firm maximizes intra-period profits at all points in time. Using parentheses to denote discrete time, 

in each period firms maximize the following profit equation. 

The price of the output is normalized to unity. Therefore, r ( t )  and w(t) denote both nominal 

and real rental and wage rates respectively. 

Aggregate I n p u t  D e m a n d  - Profi t  Maximizat ion For each firm, labour demand is determined 

according to the following unconstrained maximizing demand equation. 

Total capital investment for firm j ,  (Kj,pj + Kj,pj+l = Kj) ,  is determined by the following profit 

maximizing equation. 

Each firm is identical in the production function parameters a and 0. However, firms are het- 

erogeneous in their technological levels (Aj,pj ,AjIpj+l) and switch gene (+j) characteristics. 

For each firm j, we define and calculate the following. 
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Summing total labour and capital demand over all firms, we now have the following aggregate 

demand for each input. 

Input Market Clearing 

U7ages and rental rates are determined through the simultaneous solution to the following two equa- 

tions. 

There is no unemployment in this model. The simultaneous solution to these two equations yields 

market clearing wage and rental rates, ,w* ( t )  and r* ( t ) .  

Production 

Each firm hires a profit maximizing quantity of labour and capital, L:(t)* and ~ , d ( t ) * ,  determined 

by the substituting w*( t )  and r * ( t )  into equations (3.12) and (3.13). Given this profit maximizing 

labour demand, each firm divides its total capital demanded into production in the two relevant 

paradigms according to the following equations. 

A firm's total production and profit are now determined by substituting the optimal labour and 

capital demands into the firm specific production function. 
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Selection 

In every period, N/nl  firms consider alt,ering a key characteristic. This 

of labour between paradigms; their "switch gene". This process is 

described above, a firm undergoes selection only every r ) ~  periods. 

different characteristic is dependent not only on a firm's "fitness", 

considering selection. 

~haracterist~ic is their division 

referred to as selection. As 

The liklihood of selecting a 

but also that of other firms 

Fitness Thc fitness of firms is determined by the weighted slim of historical profits during the 

previous m  periods.g The current period's profit level is included in this history. 

Therefore, fitness for firm j a t  time t is determined by 

where aq refers to the weight placed on each individual element of the summation and .rrj,t refers 

to the profits of firm j in period t .  Note that during selection, firms evaluate the performance of only 

t,hc current fitncss level, based on the preceding 7rr. periods, not the complete history of firm profits. 

Although only a subset of N/m firms consider selection, the fitness value for all firms is calculated 

in every period. Fitness values of all firms are required to enable imitation of technology sets and 

"switch genes". In the first m  periods of the simulation, those firms that are due for selection have 

riot lived a full m  periods. In these periods, fitness is based on the summation over only the number 

of periods they have lived. 

Rank and Selection After the fitness values of all firms are calculated, the fitness values of those 

firms considering selection are ranked. The bottom C#I percent of these firms' will replace their current 

"switch gene".1•‹ This selection procedure is analogous to the ( p ,  A)-selection process described in 

the literature of genetic algorithms. While all firms currently considering selection are eligible to 

alter their "switch gene", those firms under-performing relative to the whole necessarily attempt to 

imitate the characteristic from one of the more successful firms. However, this does not preclude 

other firms considering selection from also ah r ing  their division of labour. This process is modelled 

utilizing an evolutionary algorithm outlined below. 

gNote that  there is no reason these weights need necessarily sum to  1 
' O ~ o t e  that the replacement rate at  this point is constant. However, I will be able to  track the distribution of labor 

between paradigms of those firms falling to  the selection process. That is, the $ j  of bankrupt firms. An alternative 
to  this rather simple selection procedure will be outlined below. 
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Evolut ionary Algor i thm 

Thc simulation now progresses into the "genetic-learning" phasc in which firms attempt to  improve 

their profitability by improving their technological capabilities (technology sets) and their choice 

of relative production between their two relevant technological paradigms ("switch gene"). This is 

accomplished by experimenting with new characteristics, or imitating those of other firms. Imitation 

is not done bli~idly; a firm will only attempt to  copy the characteristics of another if it perceives thc 

comparison firm as more profitable. In each period, every firm attempts to  improve their technological 

capabilitics. However, only firms currently corisideririg selection attempt to  irnprove their division 

of labour ("switch gene"). 

Given a firm is attempting to  imitate another's characteristics, it must first select a firm for 

comparison. The probability of firm j is selected for comparison is equal to that firm's relative 

fitness, computed using the following equation 

Technology s e t s  For each firm, learning within a paradigm is a function of the proportion of 

labour that is devoted to  production within that paradigm; equal to  the real value equivalent of the 

"switch gene", Q j .  A random number is drawn from the uniform distribution over the interval [O,l]. 

This number is compared to the real value eqnivalent of the switch gene of each firm. If the number 

is greater than the gene, learning occurs only in paradigm p j .  If it is less than or equal to the gene, 

a firm's learning occurs only in paradigm pj + l.ll 
Once the paradigm in which learning may take place is determined, a firm is drawn from the set 

of all firms that have capital devoted to  production in this paradigm. The probability of firm j is 

selected for comparison is equal to  that firm's relative fitness to  all other firms with production in 

the paradigm in which learning is to occur.12 We refer to  this fin11 as the comparison firm. 

Thc firm has a choice to either spend time working with its own technology sets, or to look to 

other firms' sets. The firm compares its fitness value to  that of its con~parison firm. If its fitness value 

is higher than that of the comparison firm it works solely with its own technology sets; recombining 

them in an attempt to  increase productive efficiency. If the comparison firm's fitness is higher, the 

firm will attempt to imitate thc con~parison firm. 

Notice that the use of relative fitness is an imperfect signal of the comparison firm's degree of 

correspondence. A comparison firm may have a superior degree of correspondence in the paradigm 

in which learning is to  occur, but a lower relative fitness if, for example, they are producing heavily 

 h his is not to  literally imply that learning may only occur in one paradigm a t  a time; only that ,  over many periods 
thc an~oun t  of lcarning that may take placc in a specific paradigm is a function of the amount of labor devotcd to t,hat 
paradigm 

''Notice that the summation in the above equation will not necessarily be over all N firms 
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in a newer paradigm in which accumulated learning is small. We will assume, however, that this is 

the best signal available to  the firm. This assurnptiori requires that it is very costly to  deterlui~ie the 

actual production practices (other than the relevant paradigm) of another firm with respect to the 

division of labour. Although firms call achieve full information regardiug another firm's productioli 

practices, costs are high enough that they are constrained to knowledge pertaining to only a single 

firm in every period. It selects the rival for colnparisou by comparing relative fitness. 

Recombination. If a firm detcrmines it is to  work with its own technology scts, it selects two 

of the x sets randomly from those specific to  the paradigm it is learning in. I t  selects randomly a 

crossover point for one of the technology sets. A bit is selected as a crossover point with probability 

of l / ( k  + p - 1); each bit is equally likely for selection.13 Each of the technology sets is broken at  

this crossover point, yielding four subsets. One of the subsets for each technology set is switched 

with that of the other, giving two new and distinct technology sets. Next, mutation occurs. Each 

binary bit from the two new technology sets is inverted with probability P r f c .  

The firm now has x + 2 technology sets. These sets are ranked by the magnitude of their degree 

of correspondence, DC. The bottom two sets in this ranking are dropped, leaving once again only 

x sets in the paradigm. This final process replaces an "election operator". 

Imitation. If the firm is attempting to  imitate the production process of the comparison firm, it 

takes the technology set used by the cornparisoll firm in wholc mid adds it t o  the n: sets relevant to  

the paradigm of learning. This set then undergoes mutation. Each bit in the binary string of the 

imitated technology set flips with probability prE:.l4 The x + 1 technology sets are then ranked 

according to their DC,  and the lowest one is dropped, leaving once again x technology sets relevant 

to the paradigm in which learning occurred. 

Importantly, Recombination or Imitation with respect to the t,cchniql~es a firm employs occurs 

before that of the "switch gene" (using last periods switch gene) as they are intended to capture 

learning by doing and imitation in the previous period. 

"Switch Gene" Only firms that underwent selection may alter their "switch gene". This is in 

order to capture the assumption that research, development, and learning is a medium to long-term 

agenda. Firms will not make large decisions in technological focus on an inter-period basis, rather 

they commit m periods to  a new technology in order to  reap payoffs; understanding that there is a 

great deal of experimentation and learning-by-doing that must occur before the potential technology 

becomes productive. 

A firm that is eligible to  alter its switch gene may try something drastic or revolutionary (experi- 

mentation, create a new, totally random switch gene); or try to imitate another firm's; or do nothing. 

1 3 ~ h e  length of these binary strings is k + p - 1 ,  where p is the paradigm in which learning takes place 
'"Mutation may hc interpreted hcre as cither dirccted cxperimcntation on thc part of the firm trying to imitate, or 

as representing an imperfect process of mimicking the comparison firm 
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The probability that it will attempt to imitate another firm's switch gene is equal to PT?. Otherwise, 

with probability (1 - PT?), it raridornly selects a ncw switch gcne. If the firm is under-performing 

relative to others considering selection (i.e., a firm ranked in the bottom 4 percent), it may only 

work with imitation. These firms may not experiment with its switch characteristic; it must imitate 

one of a more successful firm; that is, P r y  = 1. 

Imitation. A firm selects another frorn the whole set of firms for comparison. A firm has a 

probability of being select,cd according to it,s relative fitness value described above. The firm then 

compares its fitness to that of the randomly selected firm. If the fitness of the comparison firm 

is highcr, it imitates the. comparison firm's gene with mutation. That is, it takes their gene in 

whole. Each binary bit of this gene has a probability of mutating (binary switching) equal to PT"~. 

Import,antly, if thc firm being imitated docs not have the samc value for pj ,  the switch characteristic 

being imitated is set to binary null if p, > pi, and unity if p., < pi; where firm i is being imitated 

by firin j. If tlic firm l~eiiig compared lias a lower fitness value, the coinparer docs riot imitate. If 

the relative fitness of the comparison firm is lower than the firm attempting to imitate, nothing is 

done to the imitator's switch gem. If tlic iinitating firm is one that is urider-performing, it does not 

compare fitness values; it simply imitates with mutation the switch characteristic of the comparison 

fir in. 

Experimentation If the firm does not attempt t80 improve via imitation of a more fit firm, it 

experiments with a brand new switch gene. A new switch gene is drawn randomly, with each bit of 

the gene having a probability of 0.5 of taking the value of unity. This has the effect of drawing a 

random dlj from the uniform distribution over [0,1], according to the precision dependent on the size 

of the string representing the gene.15 

Finally, if after altering its switch gene, the real value of this gene does not maintain the minimum 

level of labour investment in the lowest applicable paradigm, p3; i.e. 1 - g j  < m,, the switch 

characteristic is set to zero and the firm specific paradigm parameter, pi, is incremented by one. A 

new set of x technology sets are drawn randomly for the paradigm p, + 2, and those technology sets 

for the paradigm p., are dropped. The firm may now only produce in paradigms p j  + 1 and p., + 2. 

After a firm falls below the minimum investment for a specific paradigm, it can no longer produce 

in that paradigm. It has progressed fully into a newcr paradigm. The firm will ncver producc in the 

older paradigm again, it may only progress to newer ones. This is because if it attempts to imitate 

a more successful firm that is still producing in the older paradigin, it will imitate a switch value of 

zero, limiting its progression into the next paradigm, but never pulling it back into an older one. 

Following the evolutionary learning facet of the simulation, a period ends. The simulation pro- 

gresses by moving into the aggregate input supply stage of the algorithm. 

15Notably, an election operator would not quite fit with such experimentation; since we are swimming in true 
uncertainty. The  idea is that the firm is taking a risk; wagering short run losses against future gains. Any elcction 
operator would be required t o  look inlo thc hlturc; a fulure no firm could predict. 
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Selection - Firm Bankruptcy 

As modcllcd, a fixed and exogenous number of firms undergoing the selection process are forced to 

imitate another's switch gene each period. An alternative specification of the model could entail 

cndowing each firm (at its inception) a given level of cash or wealth. As firms accumulate profits and 

losses, this level of wealth would be adjusted accordingly. A firm would only be forced to imitate 

during selection if, and only if, its level of wealth fell below a given level; most intuitively this level 

would be zero. 

While a bankruptcy criterion for selection has some intuitive characteristics, it lacks a notion of 

relative performance. Firms are not only evaluated with respect to their wealth position, but also 

in their performance with respect to similar firms. A firm with positive net equity that is under- 

performing with respect to other firms is ripe for takeovers and mergers. The selection criterion 

modelled within this work captures this idea well. That said, the equity specification outlined above 

has merit and should be evaluated in future work. 

Furthermore, a sufficient level of selection is necessary for evolutionary algorithms to perform in 

a satisfactory manner. The selection process outlined within the model above maintains a level of 

selection regardless of absolute performance. Allowing selection to be based on absolute performance 

may not invoke sufficient selective pressure required for the efficacy of the learning algorithm. 

3.5 Simulation Results 

We begin with consideration of a single parameterization of the model referred to as the reference 

simulations (Simulation 1). The parameter choices for these reference simulations are contained in 

Table 3.2 and Table 3.3. Using the reference simulations' learning parameters specified in Table 3.2, 

the remaining free parameters contained in Table 3.3 are selected in a manner that yields results 

approximating U S .  quarterly growth rates. As there is no empirical basis for the choice of the mini- 

mum labour requirements appropriate for each paradigm (m j ) ,  the reference simulations' parameters 

are utilized over thirty dist,inct and mndomly chosen specifications of minimum investment.16 All 

simulations occur over 500 periods, or 125 years. 

In order to facilitate a con~parison with actual economic data, in Table 3.1 we present summary 

statistics of a sub-sample of the entire simulations' duration. This sub-sample contains only the 

first 190 quarters ill order to limit the time frame to that of available data. Table 3.1 presents a 

summary of the average quarterly growth rate in real income per capita and the ratio of quarters 

in which this growth is negative. These figures represent averages over the entire set of randomly 

chosen specifications for the minimum labour requirements appropriate for each paradigm. Average 

l6while each simulation shares an identical process of random number generation, a unique initial seed value for 
this process is choscrl for each in  order to  cnsiire results arc robust t o  different sequences of random numbers. 
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standard deviations are presented in parentheses. The standard deviation of measures across each 

simulation are presented in italics. The reference simulations (Simulation 1) are characterized by 

an average quarterly growth rate of 0.5814 percent; only 0.0312 percent higher than that of the 

U.S. data (Simulation 0).17 Of course, as mentioned above, given the reference simulations' learning 

parameters (Table 3.2), other simulation parameters have been selected such that the quarterly 

growth rate matches the data well. Although the quarterly growth rate is very similar to that 

observed in actual data, the ratio of quarters in which negative growth occurs is somewhat lower; 

9.96 percent versus 22.53. Although periods of negative growth are a characteristic of the reference 

simulations, they occur with less frequency than observed in actual U.S. data. 

Growth statistics over simulations' entire duration are presented in Table 3.5. Presented in Table 

3.6 are the growth statistics for average paradigm.18 We emphasize that this table represents rates 

of growth in average paradigm, not absolute changes. Table 3.7 contains statistics summarizing 

the ratio of periods with negative output growth to those in which output growth is non-negative. 

Again, these figures represent average values across the randomly determined specifications for the 

minimum labour requirements identical to those appropriate to Table 3.1. 

An important feature of these reference simulations is that despite firms' ability to adopt new 

technologies incrementally, periods of negative growth occur. While the average rate of growth over 

the entire time series equals 1.07 percent, in 13.07 percent of simulative periods negative growth to 

total output occurs (See Tables 3.5 and 3.7, respectively). 

The results of a single simulation of the reference parameters are contained in Figures 3.1 through 

3.3. The minimum labour requirements for this single simulation are presented in Table 3.4. Figure 

3.1 contains a plot of the per period growth rate in total production. As there is no growth rate in 

the population or change in the price level, this figure also represents real per period growth rates 

per capita. The time series for the log of total production is presented in Figure 3.2 and the average 

paradigm of production is presented in Figure 3.3. 

There is a decisive co-movement between aggregate output growth and transition towards newer 

technological paradigms. The transition towards adopting new technologies is gradual. This high- 

lights the important implications of learning-by-doing and inter-firm imitation in the process of 

technological appropriation, as discussed above. 

Periods preceding adoption are characterized by low levels of output growth; in some scenarios 

these low levels of growth border on stagnate. Here, we define periods of stagnate growth as those 

characterized by low levels of aggregate output growth, in absolute terms. Additionally, these are 

periods in which positive levels of growth appear as often as negative and in equal magnitude on 

average. Periods of stagnate growth yield no significant trend in aggregate output. 

1 7 ~ e a l  income per capita da ta  is calculated utilizing population and real gross domestic product figures from the 
U.S. department of Commerce: Bureau of Economic Analysis. 

lsTo calculate the average paradigm of production, we utilize the  lower of the  two relevant paradigms for the firm. 
As production may occur in the lower and upper relevant paradigms, this measure will be negatively biased 
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Figure 3.1: Growth Rate in Total Production Per-Capita. 

Figure 3.2: Log of Total Per-Capita Production. 
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Figure 3.3: Average Paradigm. 

Importantly, prolonged growth stagnation occurs in scenarios where a newer, more productive 

paradigm requires a high level of labour devotcd to it in order to makc it available to a firm. Noticc 

that the stagnation in growth in the log of total output that occurs between the simulative periods 300 

and 350 is associated with a similar stagnation in the level of average paradigm (Figure 3.3). In Table 

3.4, the minimum labour requirements for each paradigm are presented. The stagnation in paradigm 

growth occurs around the sixth paradigm. For availability of the next paradigm, firms must devote 

49.46 percent of it's labour's time to production in it.19 The relatively high requirement makes it 

very difficlllt for firms t,o enter into production in this paradigm. High minimum requirements (mj) 

have two important growth effects. First, they make entering into production utilizing the technology 

associatcd with high rninirnun~ labour rcquirerncnt difficult. As mentioned, this may cause stagriati011 

in growth as transition into this technology occurs very slowly. However, technologies with high 

rrlir~irriurrl rcquiremerits arc easier for firills to abandon. As such, transition out of this technology and 

into its successor is more likely to occur, having a positive impact on growth. Therein, the transition 

between technologies required for long run growth in per capita incomes will be dependent not only 

on the minimum labour requirement of the successive technology, rnjil, but also on its predecessor, 

"j. 

An important question remains. Are these negative growth periods a result of negative shocks to 

productivity? In order to answer this, consider the model simulated without the ability of paradigm 

progression. That is, each firm's value of 11, is set at zero and does not undergo any changes. 

l g ~ h e  upper bound on these requirements, mi, is 50 percent 
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Furthermore, the degree of correspondence is not dynamic. Regardless of the parameterization, it 

should be clear that wages will instantaneously adjust, unemployment will settle a t  a level of zero, 

capital stocks and interest rates will remain constant and no growth will occur. Now, if we add 

the ability for firrns to increase their labour devoted to  the subsequent paradigm ($) and maintain 

that the technological level of the firm in the following paradigm (Aj,p,+l) is greater than the latter 

(Ajlp3), the overall productivity of the firm increases, both labour and capital demand increase, and 

there is no possibility for total output to decrease. The only fundamental cause of negative shocks 

t,o economic growth available in this model is through negative productivity shocks a t  the firm level. 

A firm progressing into a paradigm that it is less proficient in will observe an overall productivity 

decline, a decline in its demand for labour and capital, and its output will decline. Of course, the fall 

in labour demand will put downward pressure on wages, therein dampening this immediate effect. 

Essentially, there are no exogenous shocks or effects inherent in the labour or capital market that 

may give rise to  negative economic growth. Effects observed in these markets must be in response 

to productivity fundamentals. 

3.5.1 Genetic Parameter Effects 

The genetic parameters specific to the model may have important effects on the dynamics of the 

simulation that are unintuitive. As such, the model is simulated with 11 different permutations of 

parameter choices over the reference simulations. These permutations include parameter variation 

over the probability of bit mutation given a firm is recombining their technology sets (Pr:;), 

variation over the probability of bit mutation given a firm is imitating another's technology sets 

(~r:;), variation over the probability a firm will imitate another's switch gene (pry), and variation 

over the likelihood of mutation given the firm is imitating another's switch gene (~ r ; , , ) .  The 

parameter choices for each of these variables is given in Table 3.2. All other simulation parameters 

are identical to  those utilized in the reference simulations. Importantly, each simulation shares an  

identical set of minimum labour investment requirements for each paradigm and an identical process 

of random number generation. The results of these simulations are contained in Table 3.1 (sub- 

sample) and Tables 3.5 through 3.7 (entire simulation). Importantly, in every permutation of the 

genetic parameters, regardless of the resulting average rate of growth, each simulation is afflicted 

with periods of negative growth in total output (See Table 3.7). 

Variation in the genetic parameters results in important variation in the level of growth in real 

output per capita. Over the entire simulations' sample, against the reference simulations with an 

average quarterly growth rate of 1.07 percent, permutations yield a maximum average growth rate 

of 5.13 percent (simulation number 7). Over the sub-sample comparable to  U.S. data  presented in 

Table 3.1, all permutations over the learning parameters yield simulations with average quarterly 

growth rates within a single standard deviation of empirical observations. However, in none of these 

simulations is the ratio of periods characterized by negative growth similar to that of the data. In 
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Simulation No. Average Growth Ratio Negative 

Table 3.1: Simulation Sub-Sample versus Real World Data 
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simulation 8, although this ratio increases from that of the reference (from 9.96 to 16.75), it continues 

to fall short of that observed in actual data (22.53). 

With respect to the baseline simulation, there are some notable effects derived from changes in 

these genetic parameters. First, increasing the probability of mutation given a firm is imitating 

another's switch gene (PT.:~~) appears to increase the level of growth (simulations 2 through 4). 

From the baseline value of 0.05, decreasing this rate to 0.025 also decreases the average rate of 

quarterly growth from 1.07 to 1.02. Increasing this parameter to 0.10 and 0.15 has positive impacts 

on the overall level of average aggregate growth, increasing it from 1.07 to 1.49 and 2.07, respectively. 

Wc conclude that there is a positive relation betwecn the probability of mutation given the firm is 

imitating another's switch gene and average growth. 

There is intuition behind this result. Remember, in every period a given number of firms have 

the ability to alter their switch genes, and choose to imitate another firm's gene with a probability 

determined by PI*!. In fact, of these with the potential to alter this gene, those that fail the selection 

process must alter their gene through imitation. There are two effects mutation has with respect to 

this imitation. 

First, the firm is more likely to imitate firms that are very successful. As such, ~nutatiorl is a 

terrible process that destroys the attempt to mimic the successful firm. Increasing mutation leaves 

thcse firms with labour divisions that arc not as productivc in the short run. This causes decreases 

in average growth rates. 

However, increasing this mutation rate also has the effect of pushing more and more firms into 

the newer technological paradigm even when it is less productive. It forces these firms to begin 

building a competence in the new technology even before it is profitable to do so. The more firms 

that are pushed into this new paradigm, the faster will incremental innovations occur, as firms may 

take advantage of imitation. While these firms will perform terribly with respect to other firms 

that choose not to produce in this paradigm, their competence is available for imitation once these 

firms do progress. In the long run, the ability to imitate this competence has the effect of increasing 

growth rates. 

Although the first of these affects will decrease growth rates in the short run, when considering 

average growth rates over a long horizon, the second affect dominates. 

Decreases in the probability of imitating another's switch gene, (Pr! ) ,  greatly increases the 

overall growth of the economy (simulations 5 through 7). I t  is the strongest of the genetic parameter 

affects discussed in this section. The intuition behind this effect is exactly the same as that behind 

the long run effect of increasing the size of the PI:, parameter. Forcing firms to experiment with 

new switch genes has the effect of pushing a greater nurnber of firms towards adopting the new 

technology, regardless of the productivity of that new technology. While these firms suffer low levels 

of productivity, they build a compctencc in the paradigm that may be imitated by other firms in 

the future. The more firms that experiment with this new technology, the faster the level of this 
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competence can increase through social learning. 

Although not simulated, we would expect that further decreases in the probability of imitating 

another firm's switch gene would eventually lead to d~creases in the avenge level of economic growth. 

This stems from the fact that too many firms would be progressing into new technological paradigms 

for the economy to ever achieve competency in any one of them. Although the economy would 

progress into more potentially productive technological paradigms, it would never spend enough time 

in any particular paradigm to achieve a level of competence that enabled capturing the potential 

productivity of the technology it uses at any given point in time. 

Similar to the positive relation between the probability of mutation given the firm is imitating 

another's switch gene, it appears that increases in the probability of mutation given imitation of 

another's technology (~r::) has positive impacts on average levels of quarterly growth. For the 

parameter values simulated (0.05, 0.10, 0.10 and 0.15), average growth increases directly with larger 

values of mutation (1.04, 1.07, 1.28 and 1.47, respectively). Although mutation decreases the ability 

of firms to imitate the technologies of more profitable firms, it appears that the negative impacts 

on growth this effect has is outweighed by the benefits stemming from the increases in diversity 

associated with high rates of mutation over technologies. Interestingly, this relationship does not hold 

with respect to mutation when a firm is recombining it's own technology sets. Here, a convex relation 

between Pr!$ and growth rates exists, where growth is maximized at  the reference simulations' 

parameterization of mutation. However, the strength of this relationship is weak. Although both 

increases and decreases in this parameter yield a fall in average growth, their magnitude is smaller 

than any other learning parameter effect. 

These results allow for the interpretation of economies characterized by extended periods of 

stagnate growth in terms of the model considered within this work. Differences in growth are 

assumed to be the sole result of diflerences ill the pace of technological appropriation. Two things 

are required for appropriation, experimentation within the new technology and imitation of firms that 

find success within this technology. If an economy is not fostered by an environment conducive to 

either of these two effects, transition t,hrough technologies occurs a t  a slower rate, and growth in per 

capita income is lower than that of other economies. If the conditions relevant for experimentation 

and imitation in an economy suffering from such effects are altered, growth within the economy will 

increase, correlated with an increase in the pace of technological appropriation. 

3.6 Concluding Remarks 

The model examined in this work allows for the investigation of the sufficiency of learning-by-doing 

for explaining negative macroeconomic output shocks in an evolutionary model of technological 

transition. It has been argued that the productivity gap between old and new technologies causes 
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temporary negative aggregate output shocks despite the ability of firms to adopt these new tech- 

nologies in a non-discrete manner. The productivity gap between old and new technologies results 

from the lack of accrued incremental innovations in the newer technologies. These results appear 

highly robust with respect to changes in the underlying parameters of the evolutionary algorithm 

of firm adaptation. While periods of negative growth in real output per capita are a regularity of 

the simulations, they occur with less frequency than found in actual U.S. data. The framework 

outlined within this work has important advantages over other models in the literature in that it 

offers a natural model of experimentation by agents and allows consistency with Nelson and Winter's 

(1982) interpretation of Schumpetarian competition. The manner in which innovation and techno- 

logical progression is modelled within this work is also consistent with key observations of significant 

technological transitions of the past; specifically, the Industrial Revolution. 
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3.7 Appendix 

Simulation No. Pr!$ P,rDC rnli PI PT: 

-- - - 

Table 3.2: Genetic Parameter Specification 
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T - Simulation Periods 
N - Number of Firms 
LI - Total Initial Population 
nl - Growth Rate in Population 

KO - Initial Capital Supply 
b - Depreciation Rate of Capital 

x - Technology sets per Paradigm 3 
k - Bit Length of First Paradigm's Technology Sets 18 
I, - Bit Length of Switch Gene 8 

rn - Number of Periods Used in Fitness Calculation 10 
4 - Percent of New Firms From Those Under Selection 0.20 

X - Parameter in Equation Linking DC to Aj,i 1.15 
A - Parameter in Equation Linking DC to Aj:i 1 
cr - Capital's Share of Output 0.33 
p - Labour's Share of Output 0.60 

Table 3.3: Baseline Parameter Specification 

Paradigm ( j )  Minimum Labour Investment (m i )  

Table 3.4: Minimum Labour Investment 
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Simulation 10-500 10-100 101-200 201-300 301-400 401-500 

Table 3.5: Average Aggregate Growth Rate 
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Simulation 10-500 10-100 101-200 201-300 301-400 401-500 

Table 3.6: Average Paradigm Growth Rate 
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Simulation 10-500 10-100 101-200 201-300 301-400 401-500 

Table 3.7: Ratio of Periods with Negative Growth Rate 



Chapter 4 

The Muth Model 

Intelligent Mutation Rate Control in an Economic Application of Ge- 
netic Algorithms 

4.1 Introduction 

Genetic Algorithms are the best known representation of a class of direct random search methods 

called evolutionary algorithms which are widely used to solve complex optimization and adaptation 

problems. Their use within economics is grounded on their ability to represent the adaptation of 

individuals to  the underlying parameters of their economic environment. They facilitate a departure 

from the rational expectations hypothesis, which requires in it's place a model of learning employed 

in order to describe the manner in which agents make decisions about their economic behavior. 

Gcnetic algorithms describe thc evoliit~ion of a population of rules, representing diffcrent possible 

beliefs, in response to experience. A population of n individual rules are represented by binary 

vectors, :ci = ( x i ,  xi, ..., 2: ; )  E (0, l)k, of fixcd length k. This population of rules may represent 

different agents interacting, referred to as social learning, or a single agent's mutually competing 

ideas, referred to  as individual learning. In each of these representations, the frequency with which a 

given rule is represented in the population indicates the degree to  which it is accepted in a population 

of agents, or the degree of credence attached to it, respectively. The success of a particular rule is 

referred to as it's fitness and is determined according to a specific fitness function. Rules whose 

application has been more successful are more likely to  become represented in the population. This 

occurs according to a classical probabilistic proportional selection operator that uses the relative 

fitness to  serve as selcctiori probability. 

Heterogeneity is introduced into the population through two evolutionary operators, crossover 
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and mutation. The crossover operator works by first randomly assigning each rule in the population 

to a pair. For each pair, the crossover operator cxcl~anges inforrnation between different individual 

rules with a given probability, p,. 

This paper focuses on the mutation operator, which introduces innovation into the population by 

inverting bits of the binary vectors. Each bit has a small and independent probability of inversion, 

p,,. This operator is typically assessed as a secondary one which is of little importance in com- 

parison to crossover. Most applications of genetic algorithms work with small, constant settings of 

p, E [0.001,0.01]. While there are logical and mathematical bounds on the choice of the magnitude 

of p,, it remains a free parameter of the algorithms implementation. 

In a simple, non-economic directed search implementation of genetic algorithms, the choice of 

the mutation rate is of concern in a very practical sense. Many applications favor larger or non- 

constant (though deterministic) settings of the mutation rate for increasing the speed at which the 

algorithm converges on the solution. This practical importance is also a concern for implementation 

in econon~ic settings. 

In an economic system of constant change, there is likely a requirement for constant introduction 

of innovation. It is likely, however, that there is an optimal rate a t  which this innovation occurs and 

that it is dependent on the underlying stochastic nature of the system in question. More dynamic, 

or stochastic, environments may call for a higher level of maintained experimentation. Importantly, 

this rate of experimentation is likely linked to the economic system and not an exogenous parameter 

of human learning. 

In addition, genetic algorithms are used in comparison to an actual human learning process.1 

In these settings, fixing the rate of mutation may be problematic for other, non-practical reasons. 

If bit,wise mut,ation is to  be analogous to some actual human learning operator, fixing the rate of 

this action seems inappropriate, a priori. Learning agents are likely to  adapt the rate with which 

they experiment with new rules as the perceived benefit of this experimentation decreases. Modelling 

economic choices using a genetic algorithm with a fixed mutation rate may introduce a biased amount 

of innovation over the population of rules. 

Ex post, this bias precludes the use of fixed mutation rates for reasons of parsimony. The use 

of fixed mutation rates allows for constant introduction of innovation over a population of rules 

and therefore the ability to adapt to  an economic environment. However, in many cases, fixed 

mutation rates preclude the system's true convergence to an economic equilibrium. Even as the 

system converges to  equilibrium levels, the rate at  which individuals experiment remains the same. 

When compared to actual human behavior, this outcome is problematic. If the system is to converge, 

mutation rates must fall to  zero or an election operator must be used. 

The use of an election operator limits the introduction of innovation to situations in which the 

rnutated rule is associated with an "expected" increase in fitness (Arifovic, 1994). After the crossover 

' ~ x a r n ~ l e s  of such work include Arifovic and Ledyard (2004), and Arifovic and Maschek (2004) 
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and mutation operators have generated potential new rules, the election operator tests these rules 

beforc they are permitted to becorric rnerribcrs of the population. The fitness that each new rule 

would have attained is determined, holding all variables relevant for the calculation fixed at the 

previous period's values. This value is referred to as potential fitness. The potential fitness of the 

new rules is compared to the actual fitness associated with the rule's parents (parents are the pairs 

of rules that are used in the application of the crossover operator). A new rule may only replace a 

parent rule if it's potential fitness is higher than that of a parent's actual fitness. 

The economic use of genetic algorithms is becoming popular for their possible representation 

of a learning process. The use of an election operator is analogous to the acceptance of "simple" 

expectations, and may not capture actual human behavior in a satisfactory manner. If multiple 

equilibria exist, switching between these equilibria is an impossibility with the adoption of the 

election operator in genetic algorithm models of agent behavior. The election operator's efficacy 

is grounded on the control of innovation over rules in the population. The introduction of innovation 

is achieved through the crossover and mutation operators. A more realistic control of the introduction 

of innovation over the population may be found in the control of these operators directly, rather than 

the adoption of simple expectations. 

This work acknowledges the importance of the introduction of innovation, but maintains the level 

with which innovation is introduced should be determined within the framework of the rnodel rather 

than being exogenously imposed or limited through the use of simple expectations. Herein, the focus 

is limited to the mutation operator. An alternative mechanism for controlling mutation lies in the 

on-l ine  learning, or self-adaptation of this parameter. We consider this mechanism below in Section 

4.4. We wish to consider how this mechanism affects an economic application of genetic algorithms 

in terms of variation in aggregate outcomes and convergence. With respect to the latter, we will 

examine the potential for self-adaptation to replace the election opcrator as sufficient for yielding 

convergent results. The economic environment in which we consider these questions is presented 

in Section 4.2, and the application of genetic algorithm adaption in this environment without self- 

adaptation is presented in Section 4.3. Results of the analysis are presented in Section 4.5, and 

conclusions follow. 

4.2 Proposed Environment for Analysis 

We wish to  compare the performance of simple genetic algorithms to ones in which the election op- 

erator is included and those characterized by self-adaptation in an economic setting, or environment. 

The cobweb environment examined by Arifovic (1994) is proposed for the analysis.' Its choice is 

 he rational expectations version of the model has been considered in the work of Muth (1961). Versions of 
the model with alternative formulations of learning have been presented in the works of Nerlove (1958), Carlson 
(1969), Townsend (1978), DeCanio (1979), Frydman (1981), Brandenburger (1984), Bray and Savin (1986), Marcet 
and Sargent (1987), and Nyarko (1990). The model has been simulated in an  experimental setting by Holt and 
Williamil (1986) and Welford (1989). While divergent behavior characterizes most of the above algorithms in the 
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motivated by the following considerations. First, it is a simple environment that lends itself well 

for comparing results of a simple genetic approach, an extended approach including the election 

operator, and the approach of this work (inclusion of self-adaptation). Additionally, the cobweb 

model is easily adapted to one of constant change. Though considered constant in this work, the 

underlying parameters of the model which determine the rational expectations solution could easily 

change according to  some Markov-switching process, or encompass stochastic exogenous shocks. 

In the work of Arifovic, a genetic algorithm is nscd to update the firms' decision rules determining 

production in the following period. Her results show that genetic algorithms in this setting are 

characterized by convergence to the rational-expectations equilibrium for a much wider range of 

parameter values than other algorithms. 

4.2.1 Description of the cobweb model 

The model contains n firms in a competitive market. Firms produce the same good and each is a 

price taker. Each firm has an idcntiral cost function givcn by 

where Ci,t is firm i's cost of production for sale at time t and quantity qi.t. Since the production of 

goods takes time, quantities produced must be decided before a market price is observed. Expected 

profit of an individual firm, ll;,,, is 

where Pf is the expected price of the good at time t .  Each firm chooses a quantity q,,l to maximize 

its expected profit II;,, on the basis of its expectations regarding the prevailing price P,'. The first 

order condition for profit maximization with respect to qi,l is given by the following equation 

where the price Pt that clears the market at time t is determined by the demand curve 

The rational expectations equilibrium is characterized by Pf = Pt and qt,i = qt for all i. By 

rearranging equation x ,  this may be expressed as 

unstable case, this was not observed in the experimental settings with human subjects. 
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Solving the above expression we arrive at the following characterization of the rational expecta- 

tions equilibrium per firm quantity 

A key objective of the Arifovic (1994) work is to determine whether quantities produced by firms 

that are using a genetic algorithm as their learning scheme will converge to  this constant rational 

expectations quantity and how these results compare to the results of other learning and experimental 

behavior (See Arifovic (1994) pp.07). Her application of the genetic algorithm to the above economic 

framework is described in the proceeding sub-section. 

4.3 Application of the basic genetic learning algorithm 

A population of binary strings, At, represents a collection of firms' decision rules at time period t .  

These binary strings are of fixed length, k, written over the {0,1} alphabet. These strings are decoded 

into their integer equivalent and normalized in order to give their production level equivalent. For a 

string i of length k the decoding works in the following manner: 

where a:,, is the value (0,l) taken at the j t h  position in the string. 

After a string is decoded, its integer value is normalized in order to obtain a real number value 

4i,t that represents production levels a t  time t for firm i :  

qi,t = x i , t / Z  

where K is the normalizing coefficient. 

Fitness of a rule i at time t ,  pi , l ,  is determined by the value of firms' profit earned in the period. 

Firms' decision rules are updated using three genetic operators: reproduction, crossover, and 

mutation. Reproduction makes the copies of individual chromosomes according to their relative 

fitness. The probability that a chromosome will get a copy Ci,t is given by 
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In every period, n rules are created from the pool of rules utilized in the preceding period. The 

algorithmic form of the reproduction operator is like a biased roulette wheel where each string is 

allocated a slot sized in proportion to its relative fitness. Thus, rules with a higher fitness value in 

the preceding period having a higher probability of existing in the subsequent period (or existing 

in higher numbers). These copies represent the pool of rules which then undergoes crossover and 

mutation. 

Crossover exchanges the parts of pairs of randomly selected strings. It operates in two stages. 

First, two strings are drawn from the pool of copies a t  random. Then, a random integer is drawn, 

0 E [I, k - 11. Two new strings are formed by swapping the set of binary values to the right of the 

position b. In each of the n/2 randomly determined pairs, this crossover occurs with probability p,. 

Mutation is the process of a random change in the value of a position within a string. Each 

position has a probability, p,, of being altered by mutation, independent of other positions. 

After the members of the new population are determined, the quantity that will be produced 

and offered for salc at tirnc t is corr~puted for each firm. Ir~dividual quantities are surrirned up a r~d  

the market price, PL, is determined. Next, costs associated with each firm's production level are 

calculated and cach firrrl's fitricss level is then dcterrnincd. 

The above described steps are applied iteratively for T generations. The population of chromo- 

somes a t  time period 0 is randomly determined. 

4.4 Two-Level Learning in Genetic Algorithms 

The self-adaptation principle incorporates certain strategy parameters into the representation of each 

individual. The strategy parameter set of an individual provides a parameter setting for mutation 

when applied to this particular individual, and strategy parameters evolve by means of mutation 

(and recombination) just as the object variables do. 

The genealogy of on-line learning may be traced to its origins in the work of Schwefel in the 

context of multimembered evolution strategies (1987, 1992, 1995). Independently of this, Fogel et 

al. (1991) developed an almost identical procedure for evolutionary programming.3 

The specific introductiori of self-adaptation considered herc has been proposed a r~d  tested in 

specific environments by Back and Schiitz. They propose a self-adaptive mechanism of a single 

rnutatiori ratc per individual sudi that the following requirements are fulfilled: 

3See also Fogel (1995). 
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(1) Mutation of the mutation rate p,,, E ] O , 1 [  yields a mutation rate pi, E ]0,1[. 

(2) The expected change of p,, by repeatedly mutating it equals zero. That is, E[pk,] = p,,. 

(3) Small changes are more likely than large ones. 

(4) A modification by a factor c occurs with the same probability as a modification by l lc.  

The first requirement simply maintains that after mutation, the new individual mutation rate 

remains in the mathematical bounds appropriate. Requiring that repeated mutations yield an ex- 

pected change equal to zero is done to ensure that the only force driving the direction of these 

mutations is selection. There is to be no drift in mutation rates not associated with higher levels 

of fitness. The final two requirements give structure to the distribution of changes in the individual 

mutation rates. The distribution of potential changes to p,, is positively skewed (according to the 

fourth requirement) making a given factor increase in the mutation rate more likely than a decrease 

of equal factor. 

Based on these requirements, a logistic transformation of the form 

such that pA is distributed according to a logistic normal distribution with the given probability 

density function 

where C = ln-. We refer to pk as the mutated mutation rate. The learning rate, y, allows for a 
1 -P", 

control of the adaptation speed evolutionary strategies' mutation rate. For a given rate of mutation, 

p,, the variance over the mutated mutation rates, pi,, increases for higher values of the rate of 

learning, y. As such, more heterogeneity over individual mutation rates is introduced in each period. 

The algorithms works as follows. The genotype of an individual consists of a bitstring of length 

k and an individual mutation rate p:,, that controls the bitwise mutation of (xi ,  x:, ..., x;) according 

to the mutated mutation rate pL. 

The mutation process yields a new individual zi' = ( 2 { ,  z$, ..., ~ : , ~ k ) .  Crossover is applied only 

to the binary vector and has no impact on the mutation rate, but this is certainly an area of future 

research. This algorithms allows for incorporation and exclusion of the election operator. 



C H A P T E R  4. T H E  MUTH MODEL 

111 their original application of the algorithm, Back and Schutz use the counting-ones problem, 
k ,f (z) = xi=l n:i --t m.in., to  build a rmdified corltirluous optimizatiorl problern in which switching 

occurs every 250 periods between f and fl(x) = k - f (x) --t m.in. A "cycle" is referred to  as the 

period between switches of the optimization problem. Their results show that during a given cycle 

of the optimization problem, mutation rates decrease drastically from values close to 0.1 to near 

their lower bound. Within only a few generations of the switching, mutation rates increase back to 

this higher value. Convergence velocity increases, driving an improvement in the objective function 

value over simulations in which self-adaptation was not i n ~ l u d e d . ~  

4.4.1 Selective pressure 

Mutation Rates 

As emphasized by Back and Schiitz, self adaptation works by means of the selective advantage or 

disadvantage of mutation rates. This advantage is expressed by its impact on the fitness function of 

the rule it is associated with. Back and Schiitz argue that the self-adaptation mechanism can only 

work effectively if a t  least one bit per binary string is mutated on average. As such, they impose a 

lower bound on the rate of mutation, p,, that is equal to ilk. - 

This argument is particularly sound with respect to convergence velocity, especially in the 

counting-ones framework in which they are working. Here, the problem is altered every 250 periods; 

the population of rules must adapt to  a new solution every 250 periods. Maintaining a sufficient 

level of mutation is required in order to allow sufficient diversity so as to  converge on an alternative 

solution. With respect to velocity of convergence, if self adaptation is to  outperform algorithms with 

constant mutation rates in their environment, this lower bound of 1/k is required.5. 

In the framework considered herein, the parameterization of the model for which these rules 

are required to  adapt to  is held constant over the duration of the simulation. Maintaining a level 

of diversity as high as l/k may not be required for the self adaptation mechanism to work effec- 

tively. Additionally, many economic works utilizing the genetic algorithm have enjoyed success with 

mutation rates lower than that required for average mutation of one bit per binary string. 

Regardless, if given a sufficient duration of simulative periods, selection of better performing rules 

with respect t,o fitncss will occur, cven if the rate of mutation is lower than Ilk. As the environment 

within which these rules are functioning is non-changing, even slight selective pressure will allow 

convergence to rules that will, over the long run, outperform the average. 

4 ~ h i l e  under optimal circumstances the modified problem requires oscillating behavior of the mutation rate, the 
problem does not contain complementarity between rules with respect t o  their fitness; a characteristic of most economic 
environmcnts. This work is t,he first examination of the pcrforrnance of sclf adaptation in an environment in which a 
rule's fitness is also a fimction of the other 71. - 1 rules. 

51t will be argued that even in such a framework, placing a lower bound on the rate of mutation is not strictly 
required if one incorporates f i tness dependent  m u t a t i o n  rr~odi f icatom (see below) 
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We therefore incorporate a lower bound on mutation, p,, but include values that are less than - 
l /k .  If lower bound values around l / k  are required for eflcctive self adaptation in this particular 

environment, then simulation results with lower values will provide evidence supporting such. We 

emphasize that this may not be appropriate in frameworks with model parameters that are changing 

over some period within the simulation. 

Selection 

For the self adaptation principle to work, Schwefel (1987, 1992) has demonstrated that a relatively 

strong selective pressure, such as that provided by (p, A)-selection, is required.6 As such, Back and 

Schiitz utilize simulations incorporating both proportional selection (that which is used within this 

work) and the stronger (p, A)-selection process. 

In their work, Back and Schutz conclude that the only difference between proportional and (p, A)- 

selection consists in the fact that smaller selective pressure of proportional selection allows for a larger 

diversity of the mutation rates and implies a slightly slower convergence velocity. 

In this work, as in the original Arifovic (1994) work, we utilize proportional selection. However, 

in order to increase the selective pressure slightly, we alter the determination of rules' fitness from 

the original. Herc, we apply a monotonic trarlsforrnatiorl to the rules' profit in order to calculate its 

fitness. 

In the above equation, denotes the effective fitness of individual rule i in period t.  The 

rr~axirnal aud rninirrlal fitness value in thc population at the current generation are denoted by pmaz 

and P,~,,,, respectively. The conversion simply rescales the fitness values to the [0,1] interval. 

The conversion to effective fitness has the effect of allowing for diverse fitness values even when 

the absolutc, or raw, fitness levcls of the rules are quite close together. This is likcly to occur when a 

simulation approaches convergence to the economic equilibrium of competitive output. This has the 

effect of favoring replication of rnlcs that perform bettcr in terms of profits, even if the improvements 

in profits are slight in absolute, or raw terms. In order to evaluate the effect of this increase in selective 

pressure, simulations will be run with, and without thc effective fitness modification inherent in the 

above equation. 

The above formulation of effective fitness allows an extension of the algorithm in which alterations 

of individual mutation rates beyond a global rate are associated with an energy cost to fitness. 

6 ~ h i s  selection functions according to  p parent individuals creating X > p offspring by rccombination and mutation. 
Only the best /L offspring individuals arc selected as parents for the next generation 
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4.4.2 Fitness dependent mutation modificators 

In an extension to the evolutionary algorithm described above, we assume that changes in individual 

mutation rates may not occur without cost. In a genetic model of plant evolution, Kim (1998) 

extends the basic modelling concept in a manner that includes an energy cost of mutation rate 

adaptation. This energy cost manifests within the rules' fitness function and is dependent on the 

rules' individual rr~utatio~n modijicuto,r. Hcrein, the adoption of Kim's mutation rnodificator allows 

for a link between mutation rate adaptations and fitness penalties. 

An individual rule's mutation modificator is an implicit function of it's particular mutation rate: 

In the above equation, pilt denotes the individual mutation rate of rule i in generation t .  The 

mutation modificator, ni,t, is a characteristic of each individual rule that is linked to its particular 

mutation rate by the parameters m and q, referred to as the global mutation rate and the mutation 

rate modijicator factor, respectively. 

Solving for ni yields the following equation: 

Thc mutation rnodificator is a positive function of the percent difference between thc individual 

and the global mutation rate. The fitness cost associated with per unit changes in the absolute value 

of the mutation modificator is determined by the parameter p in the following alternative cf•’ective 

fitness equation. 

~ , e  f f = Pi,t - Pmin 
r , l  - pI~i , t I  Pmax - Pmin 

Assuming q is greater than one, the effective cost of mutation rate deviations from the global 

rate is determined by the size of p/ ln(q). 

Fe f f  = Pi,t - Pmin P 
z , t  - -1 l n ( ~ i , t )  - ln(m)l 

m a  - n ln(rl) 

The rescaling of raw profit levels into effective fitness, F;jf, allows for application of the penalty, 

p, that is independent of the absolute raw fitness levels. Setting the mutation rate modification 

penalty to zero permits accordance with the genetic algorithm described in previous sections. 

There exists an economic interpretation for total fitness costs that result when individual mutation 

dcviates from the global rate. Total fitness penalties are the result of two qualitatively distinct costs 

associated with different levels of individual mutation. 
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First, reductions in mutation rates are likely associated with increased effort costs as they would 

require avoiding trembling hand perturbations of the binary encoded rule. Such costs would be a 

decreasing function of the individual mutation rate. That is, such costs can be avoided by adopting 

higher levels for the likelihood of mutation. 

However, adaptation of higher mutation rates requires concerted effort on the part of the indi- 

vidual to continually search out new rules for adoption. Additionally, these larger mutation rates 

increase in frequency in which new rules are adopted and are therefore associated with relatively 

higher effort costs. This second effort cost is an increasing function of the individual mutation rate. 

The addition of these two qualitative costs yields the total fitness cost associated with a particular 

level of mutation. At the global mutation rate, these costs are minimized and equal zero. The 

absolute value of the effort cost a t  the global mutation rate is not important as only relative fitness 

determines evolutionary dynamics. The only important characteristic of the global mutation rate is 

that a t  this value fitness costs associated with mutation are minimized. 

4.5 Simulation Results 

4.5.1 Replicating the Arifovic (1994) Results 

We begin by simulating the original algorithm specified by Arifovic (1994) in order to hold it as a 

benchmark for the alternative of adaptive mutatiom7 This is simply a simulation of the algorithm 

incorporating adaptive mutation where the learning rate, y, takes the value of 0. For all individuals, 

the mutation rate is initialized a t  a value of 0.025. As the learning rate is null, in these baseline 

simulations the mutation rate does not deviate from this value. 

In addition to the binary encoding process utilized in the original work considered above, we also 

incorporate a framework utilizing an encoding process in which adjacent integers differ by only a 

single bit (the hamming distance between adjacent integers equals one). We refer to  the two en- 

coding processes as Binary-Coded and Gray-Coded integers, respectively. Gray codes are a group of 

alternative encoding methods in which this adjacency property holds. Their use in the implementa- 

tion of genetic algorithms has been shown to improve the performance over implementation utilizing 

binary encoding. This performance improvement is grounded on the increased potential for small 

perturbations through successive single mutations of the encoded string.8 

Every simulation is run for a duration of 10,000 periods and contains 100 individual rules ( i r )  

'Arifovic (1994) also considers an application of indiv idual  learning (refer to  section 2.3.2) .  While feasible through 
adjustmenl of the fitness criterion, adaptive mutalion has not yet been investigated in models of i nd i v idua l  learning. 
Additionally, interpreting the algorithm as a reduced form description of human adaptation is more problematic due 
to  the variation of mutation rates within an individual's set of potential rules. We leave this analysis for future work. 

8 ~ e e  Hollstein (1971) for a consideration of genetic algorithm performance utilizing Gray-coded integers in a pure 
mathematical optimization problem. 
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with 30 bits per encoded rule (k) .  They share identical demand and cost parameters fundamental to 

the rational expectations outcome for market price and individual quantity. These include the cost 

parameters, x and y, which are set at 0.00 and 0.016, respectively. Parameters specific to market 

demand, A and B, take the values of 2.296 and 0.0168, respectively. According to the equation 

determining the rational expectations outcome for market price presented in the preceding section, 

the perfectly competitive market price, P*, is equal to 1.12. 

Summary statistics for the time series of price for the baseline Arifovic (1994) algorithm are 

contained within Table 4.1. Simulations occur with a probability of crossover (p,) equal to zero 

("Without Crossover") and equal to 0.60 ("With Crossover"). For each parameterization of the 

probability of crossover, we utilize the algorithm incorporating the election operator, and the algo- 

rithm without its presence. For each simulation, the average price (P* )  and standard deviation of 

price (6) are reported. We also calculate the standard deviation of price over sub-periods of the 

entire simulation equal to 25. The average of these sub-period standard deviations (z) is reported 

for each s i m ~ l a t i o n . ~  

Price Statistics 

Without Crossover With Crossover 
No Election Election No Election Election 

Binary-Coded Integers 

Gray-Coded Integers 

Table 4.1: GA simulations of the Cobweb model - Arifovic (1994) 

The results presented in Table 4.1 are consistent with those reported in the original Arifovic 

(1994) work. Although true convergence does not occur in the simulations not utilizing the election 

operator, the average price over each simulation is within one standard deviation of the rational 

expectations outcome. For each simulation without the election operator, the standard deviation 

of price over the 25 period sub-samples is only slightly smaller than that calculated over the entire 

' ~ n  order to  ensure that the results are robust to different sequences of random numbers, all simulations are 
conducted over multiple runs using different initializing seed values for the random number generator. The set of 
initializing seeds for the random number generating process is identical between simulation frameworks. 
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simulation. Plots of the time series of price for the simulations are contained within Figure 4.1 and 

4.2. As the strength of the similarity between the simulation with and without the crossover operator 

precludes yielding any additional insight, we do not present the analogous plot for the simulation 

that  does not incorporate the crossover operator. 

Historical Price 

t5 i 

Figure 4.1: Market Price (With Crossover) - Arifovic (1994) 

The use of Gray-coded integers improves the performance of the simulations only marginally. 

Average price statistics are slightly closer to their rational expectations level. However, the standard 

deviation of prices does not differ from their binary-coded counterparts in any significant or consistent 

manner. While Gray encoded strings may increase the performance of genetic algorithtns in some 

contexts, they do not appear to do so in the framework considered within this work. We proceed 

using binary-coded integers in the remainder of this work. 

4.5.2 Adaptive Mutation - Baseline Fitness F'unct ion 

Against these baseline simulations of Arifovic (1994), we consider the results for the algorithm 

incorporating adaptive mutation in Table 4.2 and 4.3. 

The dynamics of the simulation are investigated over various permutations of the parameters 

specific to  the evolution of individuals' mutation rates. These will include the rate of learning, y, 

and the minimum allowable value for the individual mutation rate, p,. This minimum allowable - 
value functions as a strict lower bound; any alteration of the individuals' mutation rate that leaves 

it below this threshold is not allowed. Mutation rates that fall below this threshold are reset a t  the 
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Figure 4.2: Market Price (With Crossover) - Election Operator - Arifovic (1994). 

spccific value of this lowcr bound. This lower bound is motivated towards rnairltairiing a ~nirlirnurri 

level of heterogeneity and innovation within the simulation. 

In total, there are thirty-five permutations of these two parameters. We allow the learning rate, 

y ,  to take five different values; 

The lower bound on individual mutation rates takes seven different values, 

p,, E [O.OO, 0.003~,0.0066,0.010,0.015,0.020,0.025] - 

Over the permutations of the learning rate (7) and the lower bound on mutation (p,), we - 
simulate algorithms including the crossover operator ( p ,  = 0.6) and without (p, = 0.0). Price 

summary statistics and summary statistics for the distribution of average mutation rates for the 

simulation without incorporating the crossover operator are contained in Table 4.2 and Table 4.3, 

respectively. These statistics for the simulations including the crossover operator are included in 

Table 4.8 and Table 4.9 of the Appendix. 

The summary statistics for the distribution of average mutation rates include the sample mean 

(g), standard deviation (6,:), and skewness ("i,:). Each of these summary statistics is based on the 

per-period average mutation rate across all individual rules. 
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Price Statistics 

Lower bound on mutation rates 
Y 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.2: GA simulations of the Cobweb model - Adaptive Mutation - Baseline Fitness Function - 
Price Statistics 
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Distribution Statistics - pi. (Mutation Rate) 

Lower bound on mutation rates 
-J 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.3: GA simulations of the Cobweb model - Adaptive Mutation - Baseline Fitness Function - 
Distribution Statistics - p: (Mutation Rate) 
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For comparison with baseline simulation results in Figure 4.1, plots of the time series of price 

and average mutation rates are included in Figures 4.3 through 4.7. 

Figures 4.3 and 4.4 contain simulation output in which (y,p,) - is set equal to (0.05,0.033) and 

the likelihood of crossover, p,, equals 0.0 and 0.60, respectively. Figures 4.5 through 4.7 present 

sinlulations without crossover for the following (y, p,) - pairs - (0.05,0.00), (0.15,0.0), and (0.25,O.O). 

Plots of the average mutation rate are accompanied by the time series of their distributions' minimum 

and maximum values. 

Hisloncal Price 

0.9 I 
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Hisloncal Average Mttation Rate 
0.1 

0.08 1 li 

Figure 4.3: Market Price (Without Crossover) - Learning Rate (y) 0.05, Lower bound on Mutation 
(p,) 0.033. 

Interestingly, in the majority of simulations, calculated over the simulations' entire duration the 

average price is above the rational expectations outcome. However, these mean prices are all within 

a single standard deviation of this equilibrium outcome. That is, the majority of simulations have 

inearl prices that are above the competitive equilibrium outcolr~e, though not 

Importantly, this is an expected result. Consider the rational expectations outcome for individual 

quantity and price, 0.70 and 1.12, respectively. Assume that all rules are currently consistent with 

this rational expectations outcome for individual quantity and that over this population mutation 

occurs. Furthermore, assume that for each mutation that increases an individual quantity by x 

percent, there is an associated mutation over a rule that decreases it by this same x percent. As such, 

the distribution of rules following mutation is centered around the rational expectations outcome 

and is symmetric. Average individual output is unchanged, and the price in the following period will 

1•‹Notably, we find that the Arifovic (1994) framework suffers from the same consistent positive discrepancy in 
average prices over the duration of the simulation (refer to  Table 4.1). 
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Historical Price 

Hlslorical Average Mutation Rate 
0.1 r 

Figure 4.4: Market Price (With Crossover) - Learning Rate (7) 0.05, Lower bound on Mutation (pm) 
0.003. 

Historical Price 

HIStoricaI Average Mutatlon Rate 

r 

Figure 4.5: Market Price (Without Crossover) - Learning Rate (7) 0.05, Lower bound on Mutation 

( ~ m )  0.0. 



CHAPTER 4. THE ni1UTH MODEL 

Hlstoncal Price 

Hlstoncal Average Muiatlon Rate 
0 2 r  

Figure 4.6: Market Price (Without Crossover) - Learning Rate (y) 0.15, Lower bound on Mutation 
( p m )  0.0. 

Hlstoncal Price 

H~slorical Average Mbtallon Rate 

Figure 4.7: Market Price (Without Crossover) - Learning Rate (y) 0.25, Lower bound on Mutation 
( P T ~ L )  0.0. 
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remain a t  its rational expectations value. 

All rules that are associated with a quantity that is not equal to the rational expectations level 

are associated with lower levels of profit, and therefore lower levels of fitness. However, those rules 

that deviated below the rational expectations level of output will be associated with a higher fitness 

than those that deviated above this level by an equal percent. This stems from the specification of 

the cost function. It's second derivative is positive, implying the changes in profit levels from equal 

z percent changes in output will not equal (holding the price constant a t  its rational expectations 

level). Rules associated with the rational expectations outcome are the most likely to be selected 

during the subsequent replication process. However, deviations below this level are more likely to be 

selected than their associated increase, as their fitness values are superior. As such, in the following 

period, replication results in a distribution of rules skewed towards lower values of production. 

This, in turn, favors positive deviations in price from its rational expectations outcome. Eventually, 

assuming no further mutations occur, the continuing favor for rules associated with output levels 

close to the rational expectations solution in the replication process eliminates all mutated rules from 

the population, returning it to the rational expectations level. However, this re-convergence occurs 

only after a positive deviation in the price. 

Discussion 

With respect to the comparison between the baseline and self adaptive simulations, four important 

regularities warrant discussion. 

0 Result (1) - For certain pararneterizations of the self adaptation mechanism, (y,p,), - sample 

distribution statistics pertaining to market price are indistinguishable between simulations 

utilizing fixed and self adaptive mutation. Statistical convergence is unaffected by the adoption 

of endogenous mutation rates. 

That is, for intermediate values of the parameters of the self adaptation mechanism, the mean 

and standard deviation of price over the full duration of the simulation are indistinguishable from 

those of the baseline Arifovic (1994) simulations. If one is only concerned with statistical convergence 

over the entire duration of simulations spanning many generations, including the complexity of self 

adaptation may not be parsimonious. This important regularity, however, holds only over the entire 

simulation sample. Contrarily, over smaller sub-samples of the simulations, these self adaptation 

distribution statistics look quite different from those of the baseline simulations. 

0 Result (2) - Adaptive mutation lowers small duration deviation measures from their population 

equivalent and from those of the baseline simulations. 
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Sub-sample deviation measures do decrease from their population counterparts in the baseline 

simulations. However, this decrease is of the magnitude of only 13.3 and 12.8 percent in the sim- 

ulations with and without crossover, respectively. These magnitudes are far smaller from those of 

simulations with self adaptation, even in those utilizing intermediate values for the (y,p,) - parame- 

ters. For example, consider in Table 2 those simulations in which the rate of learning, y, takes the 

value of 0.10. When the lower bound on mutation, p,, - is set a t  0.025 the difference between the 

full sample standard deviation, 6, and the sub-sample standard deviation, 6, is roughly 9.5 percent. 

Despite the fact that p,, - is set equal to  the rate of mutation in the simulation of the baseline Arifovic 

framework, the difference between full and sub-sample standard deviation measures is slightly lower. 

This stems from the fact that p, acts as a lower bound on mutation rates and that the average - 
rate of mutation over the course of a simulation will always be larger than this value. As the lower 

bound on mutation falls, so to will the average rate of mutation (see Table 4.3). In simulations in 

which the average rate of mutation is lower, the difference between the full and sub-sample standard 

deviation of price will increase. As evidence, consider the simulation for which the rate of learning, 

y, is set equal to 0.10 and the lower bound on mutation, p,, is allowed to be 0.00. Here the difference - 
between full and sub-sample standard deviation of price is approximately 78 percent. 

The substantial decrease in the sub-sample deviation measures from their population counterparts 

is indicative of an important serial autocorrelation inherent within the time series for price that is 

not a factor in the baseline simulations. 

0 Result (3) - When comparing baseline versus simulations incorporating self adaptation, the 

short duration dynamics of price look substantially different. Autocorrelation relationships in 

price become important for determining the intra-period dynamics of price. 

This is clearly a pheliolnelioli in the figures preseiitcd above. In the baselinc simulation, deviations 

from the rational expectations outcome appear to have no constructive relationship with each other. 

That is, these deviations appear to be simply white-noise. This is not the case for deviations 

associated with simulations incorporating self adaptation. In these simulations, negative deviations 

from the rational expectations outcome are very likely to be followed be a subsequent negative 

deviation, indicative of a increasingly significant autoregressive relationship. For research concerning 

short run dynamics, self adaptation may no longer be excluded on the basis of parsimony. 

A very important point is worth noting. Adaptive mutation is not necessary for the relationship 

described above in results (2) and (3); nor is it sufficient. These results are derived from the fact 

that average mutation rates are allowed to fall to an extremely low level. Any application of genetic 

algorithms in which mutation rates are quite low will be characterized in the same manner as we 

have described above. This stems from the fact that for mutation rates below llkrr, less than a single 

mutation is expected in every period across the entire population of rules. For periods in which no 

m~ltation occurs, thoso rules played in the preceding period are no difforent from those played in the 

current. The outcomes between these two periods do not differ; contributing to a autocorrelation 



CHAPTER 4. THE MUTH MODEL 

in results. The results are dependent on the very low mutation rates that result from the adaptive 

mutation mechanism, and not the mechanism itself.'' 

R.esult (4) - The progression towards a significant autocorrelation relationship in outcomes 

inherent with adaptive mutation may be at the expense of lower convergence reliability. 

If true convergence is to be attained in simulations involving genetic algorithm models without 

utilizing the election operator, mutation rates must fall to  levels approaching zero. That is, the 

lower bound on mutation rates, p,, - must be equal to zero. As stressed in the preceding paragraphs, 

this will lead to significant autocorrelation in the time series of simulated outcomes. The timing 

in which this autoregressive relationship is attained has important implications for the convergence 

reliability of simulations incorporating adaptive mutation. This timing is critically related to the 

rate of learning, y. As evidence of this claim, consider Figures 4.5 through 4.7 in which the lower 

bound on mutation, p,, is equal to zero and the rate of learning varies between the values 0.05, 0.15, - 
and 0.25. 

High values of y cause high speeds of adaptation with respect to the individual rate of mutation. 

When the lower bound on mutation rates is too low, this large rate of learning causes a very high, and 

possibly premature adaptation of very low ~rlutation ratcs. This premature adoption has the effect of 

removing the introduction of diversity into the population prior to the widespread adoption of a rule 

consistent with rational expectations. As such, the convergence reliability of the simulations is quite 

low. That is, the reliability of the rational expectations outcome in these simulations is somewhat 

low when compared to those simulations with lower learning rates and/or larger lower bounds on 

the rate of mutation. Though the reliability with respect to the rational expectations outcome is 

somewhat low, the velocity with which these simulations approach a non-rational outcome is very 

high. In comparison, the relative success of simulations with lower learning rates is likely driven 

by the fact that decreases in the mutation rate are much slower, therein avoiding simulative traps 

characterized by very low rates of mutation and non-rational price levels. Mutation rates in such 

simulations stay sufficiently high for a long enough progression of generations so as to allow rules to 

adopt a rational expectations strategy. 

Importantly, such traps never theoretically dismiss the possibility of convergence. As mutation 

rates may never take a value of zero, there will always be some innovation introduced into the 

environment, though this innovation may not occur in every period.'2 All that is required for 

convergence to eventually occur is for an innovation to be introduced that has a high enough relative 

fitness so as to begin the process of replication. The low mutation, non-rational situation is referred 

"The sufficiency of adaptive learning for results (2)  and (3) will be examined alongside f i tness dependent mutation 
modijicators considered later in this work. 

" ~ o t e  that  a deterministic mutation rate of l l k  = 0.033 leads to  an  expected mutation of one binary bit per 
individual in every period. A deterministic mutation rate of l / ( k n )  = 0.00033 leads to  an expected mutation of one 
binary bit over the entire population, therein guaranteeing the expectation of a t  least one innovation in every period. 
Any deterministic mutation rate lower than l / ( k n )  will introduce innovation, though not, in expectation, every period. 
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to as a trap only to emphasize that simulations will escape this trap, though it will occur with very 

low probability in every period. 

In brief, autocorrelated outcomes associated with very low rates of mutation are required for 

convergence to the rational expectations outcome. As such, the lower bound on mutation must be 

set at or very near zero. However, if you approach these low mutation rates too quickly, you are 

likely converging to a non-rational outcome. Even for the lowest parameterization of the rate of 

learning, the reliability of the outcome with respect to the rational expectations equilibrium is far 

from anything warranting implementation of adaptive mutation. 

4.5.3 Adaptive Mutation - Extended Fitness Function 

The importance of selective pressure has already been discussed in Section 4.1. Back and Schutz 

have claimed that for the self adaptation mechanism to work effectively at least one bit per binary 

string must be mutated on average. Of course, as discussed above, this would preclude convergence 

without an election operator. However, the purpose of their lower bound on mutation is to guaran- 

tee enough diversity to ensure significant selective advantage. This need not be the only manner to 

attain selective pressure. Schwefel (1987, 1992) demonstrated that strong selective pressure is nec- 

essary for the self adaptation principle to work. He proposed ( p ,  A)-selection to attain such selective 

pressure, though Back and Schutz have shown only a smaller convergence velocity is associated with 

proportional selection, not a lack of convergence. In any case, as demonstrated in the preceding 

section, as the lower bound on mutation is allowed to fall below the levels proposed by Back and 

Schutz the necessity for significant selective pressure increases beyond that which may be supplied 

by thc bascline fitness calculation considcrcd in previous literature. 

There is the possibility that low-mutation pitfalls may be avoided if one strengthens the selective 

pressure within the algorithm. This stronger selective pressure may preclude the premature adoption 

of very low levels of mutation. With a stronger selection pressure, rules adopting a critically low 

level of mutation before reaching the rational expectations outcome will have a lower likelihood of 

replication. Their propagation is less likely when selection is more strict, as other rules with only 

slightly higher fitness values have a higher likelihood of replication. 

In order to  assess this conjecture, we simulate the same parameterizations of the framework 

considered above. However, instead of the baseline fitness function we adopt the transformed effective 

fitness functiori of equation (8). Table 4.4 arid 4.5 contain pricc arid mutation rate sa~nplc statistics for 

the effective fitness simulations without the crossover operator. These tables are directly comparable 

to Table 4.2 arid 4.3 in which the baseline fitness furictiori was utilized. The appendix contains Tables 

4.10 and 4.11 in which the effective fitness framework is simulated with the crossover operator. These 

tables are directly comparable to Tables 4.8 and 4.9 of the appendix. 

Time series data for select simulations are contained in Figures 4.8 and 4.9. In each of these 
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Price Statistics 

Lower bound on mutation rates 
Y 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.4: GA simulations of the Cobweb model - Adaptive Mutation - Extended Fitness Function 
- Price Statistics 
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Distribution Statistics - pi (Mutation Rate) 

Lower bound on mutation rates 
Y 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.5: GA simulations of the Cobweb model - Adaptive Mutation - Extended Fitness Function 
- Distribution Statistics - pi (Mutation Rate) 
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figures, the lower bound on mutation, p,,, is zero. The rate of learning, y, is 0.15 in Figure 4.8 and - 
0.25 in Figure 4.9. Thcsc two figures have baselinc fitness cou~iterparts presented in Figures 4.6 and 

4.7, respectively. 

Hidotical Pnce 

I 

Historical Average Mutation Rate 
0.2r 

Figure 4.8: Market Price (Without Crossover) - Learning Rate (7) 0.15, Lower bound on Mutation 
(p,) 0.0, Effective Fitness Transformation. 

Discussion 

Comparing Tables 4.4 and 4.5 with their baseline fitness function counterparts, Tables 4.2 and 4.3, 

provides insight into the importance of having very strict selective pressure, especially when one 

considers simulations in which the lower bound on mutation is allowed to be zero. 

0 Result (5) - In algorithms utilizing adaptive mutation with a lower bound below that proposed 

by Back and Schiitz, a high degree of selective pressure is required in order to avoid low- 

mutation non-convergence traps. 

This result becomes even more apparent when one compares Figures 4.7 and 4.8 with their 

bascline fitness function counterparts. Situations in which mutation rates fall to a critically low 

level preceding convergence to the rational expectations outcome are much less likely to occur under 

the effectivr fitness transformation. While these traps bccome far less likely, they are still not an 

impossibility. However, the convergence reliability of the adaptive mutation algorithm with the 

effective fit,ncss transformation represents a significant improvement. over the constant mutation 

algorithm baseline. Simulations with lower bounds of mutation set at zero are characterized by long 
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Historical Price 

Historical Average Muiation Rate 
0.4 r 

Figure 4.9: Market Price (Without Crossover) - Learning Rate (7) 0.25, Lower bound on Mutation 
(p,) 0.0, Effective Fitness Transforma.tion. 

stretches of convergent behavior with periodic deviations. These deviations are relatively short lived, 

with behavior converging with the rational expectations outcome afterwards. 

The constant introduction of diversity proposed by Back and Schiitz is not a necessity if one can 

introduce selective pressure in other ways. Here, the transformation of raw profits into the effective 

fitness function is sufficient for providing such pressure. 

4.5.4 Adaptive Mutation - Fitness dependent mutation modificators ( p  > 
0 > 

While the effective fitness transformation is sufficient in the environment considered within this 

work, it may not necessarily be sufficient in all simulation contexts. However, imposing a limitation 

on mutation rates may not be reql~ircd if one is willing to  incorporate a fitness depcndent mutation 

modificator penalty. Such penalties may replace the need for a lower bound by limiting the reduction 

in mutat.ion rates only to those that increase raw fitness values above the cost associated with their 

adoption. 

As it has been shown that there is no empirical distinction between simulations with, and without 

the crossover operator, the introduction of fitness dependent mutation modificators will be limited 

to  simulations with a likelihood of crossover (p,) equal to  zero. The lower bound on mutation 

rates (p,) is held at  0. For each simulation, the global mutation rate (m) and the mutation rate - 
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modificator factor ( q )  are set equal to 2 and 0.033, respectively.13 Various permutations of the 

remaining underlying simulation parameters are considered. The rrlutatioll rate modificator penalty 

(p) is drawn from the following set. 

The parameter governing the rate of learning, y,  is drawn from the same set as within the above 

analysis. 

As such, there are thirty permutations of these two parameters. Results for each parameterization 

are contained in Table 4.6 and Table 4.7. Varying the mutation rate modificator penalty ( p ) ,  these 

tables are directly comparable to t,he first column of Table 4.2 and 4.3 where the value of p is implicitly 

equal to  zero.14 Plots associated with two specific parameterizations are contained in Figure 4.10 

a.nd 4.11. Figure 4.11 is directly comparable to  Figure 4.9 in which the mut,at,ion modificator penaky 

is implicitly zero. 

Historical Pnce 

Historical Average Mutation Rate 

Figure 4.10: Market Price (Without Crossover) - Learning Rate (y) 0.05, Lower bound on Mutation 
(p, ,)  0.0, Fitness Penalty (p) 0.0001. 

13nefer to  equation (4.9) and (4.12). 
l 4 ~ y  way of illustration, compare the two equations determining relative fitricss in the fitness independent and 

dependent settings; equation (4.8) and equation (4.12), respectively 
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Price Statistics 

Mutation Rate Modificator Penalty ( p )  
Y 0.0001 0.001 0.01 0.05 0.1 0.2 

Table 4.6: GA simulations of the Cobweb model - Adaptive Mutation - Mutation Modificator Penalty 
- Price Statistics 



C H A P T E R  4. T H E  MUTH MODEL 

Distribution Statistics - pi (Mutation Rate) 

Mutation Rate Modificator Penalty ( p )  

?' 0.0001 0.001 0.01 0.05 0.1 0.2 

Table 4.7: GA simulations of the Cobweb model - Adaptive Mutation - Mutation Modificator Penalty 
- Distribution Statistics - pi (Mutation Rate) 
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Historical Price 

H~slorical Average Mufation Rate 
0.4 r 

Figure 4.11: Market Price (Without Crossover) - Learning Rate (y) 0.25, Lower bound on Mutation 
(p,) 0.0, Fitness Penalty (p) 0.0001. 

Discussion 

The addition of fitness penalties has i~nportant impacts on the resulting dynamics of the simulations. 

Although true convergence is not associated with any of the parameterizations, a notable result 

warrants discussion. 

Result (6) - Maintaining diversity without invoking a lower bound on mutation rates is possible 

through the introduction of even very small fitness dependent mutation modificator penalties. 

As already noted, low mutation rates are attained through very high levels for the parameter 

of learning (7) in conjunction with a level for the lower bound of mutation (P,~,,) - set at zero. The 

introduction of the fitriess penalty assures rules with mutation rates below the level associated with 

long run fitness improvements greater in absolute value than their respective fitness penalty are not 

proliferated. The higher the mutation rate modificator penalty (p), the larger must be any fitness 

improvements associated with mutation rate deviations for their proliferation among the population. 

As evidence of this fact, in Table 4.7, for high levels of the rate of learning, y ,  as the mutation rate 

modificator penalty increases (p), so to does the average rate of mutation across all individuals, d. 
For sufficiently punitive levels of p, average rates of mutation approach the parameterization of m, 

the global mutation rate.15 

151Xefer to  equation (4.9) and (4.12). 
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Therefore, even in simulative environments in which an effective fitness transformation is insuf- 

ficient to avoid rlorl-convergent low-mutation rate traps, imposing a lower bound on mutation is not 

necessary for maintaining diversity. Utilizing a modificator penalty guarantees a level of diversity 

that balances the potential fitness benefits of lower mutation rates against their cost. Invoking a 

lower bound on mutation rates is equivalent to placing a very punitive fitness penalty on mutation 

adaptation. While this special case is sufficient for irlairitainiilg a predetermined level of diversity, 

it is not necessary. Even for the very smallest fitness penalty, mutation rates are unlikely to fall 

to levels associated with low mutation rate traps, regardless of the simulative context. While these 

fitness penalties are not required in all environments, in those where an insufficient level of selective 

pressure presents a problem for convergence, introducing such penalties may serve to  replace the 

parameterization of a lower bound on mutation. 

4.6 Conclusion 

Limiting its focus to the mutation operator, this work acknowledges the importance of the introduc- 

tion of innovation, but maintains the level with which innovation is introduced should be determined 

within the framework of the model rather than being exogenously imposed or limited through the 

use of an election operator. The mechanism proposed for determining the rate a t  which innovation 

is introduced is based on the idea of on-line learning, or self-adaptation. 

The performance of simple genetic algorithms to  ones in which the election operator is included 

and those characterized by self-adaptation in an economic setting is compared. The cobweb envi- 

ronment examined by Arifovic (1994) is utilized for the analysis. 

It  is demonstrated that for self-adaptation to  yield results consistent with convergence to the 

rational expectations equilibrium, a high degree of selective pressure is required. In the framework 

considered, a simple fitness transformation is sufficient for providing this required selective pressure. 

In simulations utilizing this fitness transformation, those with lower bounds of mutation set at 

zero are characterized by long stretches of convergent behavior with periodic deviations. These 

deviations are relatively short lived, with behavior converging with the rational expectations outcome 

afterwards. 

Though this fitness transformation is sufficient in the context of this work, it is argued that in 

environments for which it is insufficient, utilizing a lower bound on mutation above zero may not be 

required if the model incorporates f i tness dependent m u t a t i o n  modificators.  Utilizing a modzficator 

penalty guarantees a level of diversity that balances the potential fitness benefits of lower mutation 

rates against their cost. Even for the very smallest fitness penalty, mutation rates are unlikely to  

fall to  levels associated with low mutation rate traps, regardless of the simulative context. 

In an economic system of constant change, there is likely a requirement for constant introduction 

of innovation. It  is likely, however, that there is an optimal rate a t  which this innovation occurs 
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and that it is dependent on the underlying stochastic nature of the system in question. This work 

lends itself to  extensions in which the economic environment is characterized by constant change; 

it's consideration is left for future work. 
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4.7 Appendix 

Price Statist 

Lower bound on mutation rates 

Y 0.00 0.003 0.00G 0.010 0.015 0.020 0.025 

Table 4.8: GA simulations of the Cobweb model (with genetic crossover) - Adaptive Mutation - 
Baseline Fitness Function - Price Statistics 
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Distribution Statistics - p: (Mutation Rate) 

Lower bound on mutation rates 
Y 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.9: GA simulations of the Cobweb model (with genetic crossover) - Adaptive Mutation - 
Baseline Fitness Function - Distribution Statistics - p: (Mutation Rate) 
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Price Statistics 

Lower bound on mutation rates 

Y 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.10: GA simulations of the Cobweb model (with genetic crossover) - Adaptive Mutation - 
Extended Fitness Function - Price Statistics 
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Distribution Statistics - VI (Mutation Rate) 

Lower bound on mutation rates 
Y 0.00 0.003 0.006 0.010 0.015 0.020 0.025 

Table 4.11: GA simulations of the Cobweb model (with genetic crossover) - Adaptive Mutation - 
Extended Fitness Function - Distribution Statistics - pi (Mutation Rate) 


