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Abstract 

In this thesis, we investigate several properties of k-tournaments, where k 2 3. These 

properties fall into three broad areas. The first contains properties related to the 

ranking of the participants in a k-tournament, including a representation theorem for 

posets. The second contains properties related to the representation of a finite group 

as the automorphism group of a k-tournament, with varying restrictions on the desired 

representation. The third area answers questions about regularity in k-tournaments. 

Chapter 1 contains an introduction, and the definitions and notation. 

In Chapter 2, we consider the ranking of the participants in a k-tournament. We 

introduce the notions of transitivity and quasitransitivity in a k-tournament, each of 

which extends the notion of transitivity in a tournament in a natural way, and we 

prove that every k-tournament on a sufficiently large number of vertices contains a 

quasitransitive sub-k-tournament on a given number of vertices, thus extending the 

analogous result for tournaments. We then consider ranking the participants in a 

general k-tournament. We define, for a general k-tournament, a binary relation on 

its vertex set, which corresponds to a partial ranking of the participants. We then 

show that any finite poset with cardinality at least k + 1 can be represented by a 

k-tournament, in the sense that there is a k-tournament whose ranking relation is 

isomorphic to the given poset. The construction of this k-tournament suggests an 

interesting generalisation of the dimension of a poset. 

In Chapter 3, we investigate the automorphism group of a k-tournament. We begin 

by characterising those finite groups G for which there exists a k-tournament whose 

automorphism group is isomorphic to G. This extends the theorem of Moon (1964) 

which characterises the finite groups admitting a representation as the automorphism 



group of a tournament. We then consider the problem of finding the 'smallest' k- 

tournament whose automorphism group is isomorphic to G, where we determine how 

'small' a k-tournament is by the number of orbits of its automorphism group acting on 

its vertex set. With this definition of size, our goal is to characterise those finite groups 

admitting a regular representation as the automorphism group of a k-tournament. We 

first construct, for each admissible group G of order at least k, a k-tournament whose 

automorphism group is isomorphic to G and has two orbits of vertices. We then 

show that every admissible cyclic group of order at least k, and every admissible 

group which has a minimal generating set with at least k elements, admits a regular 

representation as the automorphism group of a k-tournament. 

Finally, in Chapter 4 we investigate regular and almost regular k-tournaments. 

We show that there is a regular k-tournament on n vertices if and only if n 2 k and 

(;) I 0 (mod n),  and that there is an almost regular k-tournament on n vertices for 

all n and k satisfying n > k. We then provide some explicit constructions of regular 

and almost regular k-tournaments. 
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Chapter 1 

Introduction 

1.1 Definitions and not at ion 

This section contains definitions and notation which will be used throughout the 

thesis. The definitions are classified into several subjects, roughly corresponding to 

the chapters of the thesis. 

General 

A k-set is a set with k elements, for a positive integer k .  If X is a set, a k-subset of 

X is a subset of X which has k elements. We use (f) to denote the set of k subsets 

of X .  

Graphs 

A graph G consists of a set V(G) of vertices and a set E(G)  of unordered pairs of 

distinct elements of V(G), called edges. A graph G is bipartite if there is a partition 

of V(G) into two sets X and Y such that every edge of G contains one vertex from 

each of X and Y. 

A path in a graph is a sequence (vl, v ~ ,  . . . , vl) of distinct vertices of G, with the 

property that E E(G) for i = 1, . . . , I  - 1. A cycle in G is a path 

(vl, v2, . . . , vl) with the additional properties that 1 2 3 and vlvl E E(G).  
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A matching in a graph G is a set M of edges of G with the property that no two 

edges belonging to M have a vertex in common. If M is a matching in G and 

u E V(G), then u is said to be M-saturated if u belongs to an edge of M .  If M is a 

matching in G, an M-alternating path, or simply an alternating path, in G is a path 

in which alternate edges belong to M. 

A directed graph, or digraph, D consists of a set V(D) of vertices and a set A(D) of 

ordered pairs of distinct elements of V(D), called arcs. If D is a directed graph and 

(u, v) E A(D), then we say that u dominates v in D. The outdegree of a vertex v of 

a digraph D is the number of vertices dominated by v ,  and the indegree of v is the 

number of vertices which dominate v. 

A semicomplete digraph D is one in which, given any pair {u, v) of vertices of D,  at  

least one of (u, v) and (v, u) belongs to A(D). A directed cycle of length 1 in a 

directed graph D is a sequence (vo, vl , . . . , vr-I), I 2 2, of vertices of D such that for 

each i = 0,1 , .  . . , I  - 1, (v;, v ; + ~ )  E A(D), where the subscripts are reduced modulo 1. 

A tournament T is a directed graph in which, given any unordered pair {u, v) of 

distinct vertices of T ,  exactly one of (u, v )  and (v, u) belongs to A(T). A 

tournament T is transitive if whenever u dominates v and v dominates w in T,  then 

u dominates w in T .  Equivalently, a tournament is transitive if its vertices can be 

ordered v1, v2,. . . , v, SO that V; dominates vj in T if and only if i < j .  

The score of a vertex v in a tournament T is the number of vertices dominated by v 

(equivalently, the outdegree of v); the score sequence of T is a list of the scores of its 

vertices, written in non-decreasing order. A tournament T is regular if for each 

vertex v of T, the indegree and the outdegree of v are equal. We say that a 

tournament is almost regular if the difference between the indegree and the 

outdegree of each vertex is at most one. 

An automorphism of a tournament T is a permutation a of its vertex set such that 

(u, v) E A(T) if and only if (a(u) ,  a(v))  E A(T). The automorphism group of T is 

the group of all automorphisms of T and is denoted Aut(T). 
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k-tournaments 

A hypergraph H consists of a set V(H) of vertices and a set E ( H )  of hyperedges, 

where each hyperedge is a subset of V(H).  A k-uniform hypergraph is one in which 

each hyperedge has cardinality k. A complete k-uniform hypergraph is a k-uniform 

hypergraph in which every k-subset of vertices determines a hyperedge. 

Let k 2 3. A k-tournament T consists of a set V(T) of vertices and a set A(T) of 

arcs. Each arc of T is a k-tuple of distinct vertices of T ,  and the set A(T) has the 

property that for any k-subset S of V(T), A(T) contains exactly one of the k! 

k-tuples whose entries belong to S. 

We stress that whenever we use the term k-tournament, we are implicitly assuming 

that k 2 3. 

If T is a k-tournament and S is a k-subset of V(T), then we say that the arc A of T 

corresponds to S if the entries of A are the elements of S. Thus for each k-subset S 

of V(T),  there is a unique element of A(T) which corresponds to S. 

The order of a k-tournament T is the cardinality of V(T). 

If A = (vl, 02, . . . , vk) is an arc of a k-tournament T ,  we say that the vertex v; is the 

ith co-ordinate of A, or that v; is in co-ordinate i in A, and we write v; = A(i). 

The ith degree of a vertex v in a k-tournament T is the number of arcs of T in which 

v is the ith co-ordinate; and we use deg,(v, T) ,  or if there is no possibility of 

confusion, degi(v), to denote the ith degree of v. The degree vector of a vertex v of T 

is the vector of length k whose ith entry is degi(v, T) .  The degree matrix of a 

k-tournament T on n vertices is the n x k matrix whose (i, v)-entry is deg,(v, T) .  

If TI and T2 are k-tournaments, a bijection f : V(Tl) + V(T2) is an isomorphism if 

( v ~ ,  v2,. . . , vk) E A(T1) if and only if (f (vl), f (v2), . . . , f (vk)) E A(T2). If TI = T2, 

then f is called an automorphism. Again, the automorphism group of a 

k-tournament is the group of all automorphisms of T, and is denoted Aut(T). 

If T is a k-tournament and A = (vl, . . . , vk) is an arc of T ,  and f is a permutation of 

V(T) (and, in particular, if f E Aut(T)), we use f (A) to denote the k-tuple 

(f ( ~ l ) , .  . ., f(vk)). 
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A sub-k-tournament of a k-tournament T is a k-tournament TI such that 

V(T1) 2 V(T)  and A(T1) G A(T). If T is a k-tournament and U G V(T),  the 

sub-k-tournament o f T  induced by U is the sub-k-tournament T[U]  of T where 

V(T[U]) = U and A(T[U]) = A(T) n u k .  

Groups 

For a finite group G, we use /GI to denote the order of G. For an abstract group G, 

we use e to denote the identity of G. 

We use 2, to denote the cyclic group of order n. 

If G is a group and S G G, we use g S  to denote the set {gs : s E S ) .  If G is a 

permutation group acting on a set X ,  and S G X ,  then we use g(S) to denote the 

set {g(s) : s E S) .  

We use Sx to denote the symmetric group on a set X ;  and if X = {1,2, .  . . , n), we 

use S, to denote the same group. We use L to denote the identity element of Sx. 

If G is a permutation group acting on a set X ,  then we can also view G as a group 

of permutations of the set (:) of k-subsets of X ,  in which g : S g(S), S E (:), 
for each g E G. 

If G is a permutation group acting on a set X ,  the stabiliser of an element x of X in 

G is the set G, = {g E G : g(x) = x). If g E G,, we also say that x is a fixed point of 

g. We say that G is semiregular, or that G acts semiregularly on X, if for any x E X ,  

G, = {e). We say that g E G is semiregular if the group (9) is semiregular. It is 

easy to see that a permutation g is semiregular if and only if, when g is written as a 

product of disjoint cycles, all of its cycles have the same length. 

An orbit of a permutation group G acting on a set X is a subset of X of the form 

{gx : g E G), for some x E X .  The orbits of G consititute a partition of X .  It is 

well-known that if G is a permutation group acting on X and x E X ,  and if O(x) 

denotes the orbit of G which contains x, then [GI = IG,l lO(x)/; this result is known 

as the Orbit-Stabilizer Theorem. 

A permutation group G acting on X is transitive if for any two elements x and y of 

X ,  there is some g E G such that g(x)  = y. We say that G is regular, or that G acts 
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regularly on X if G is both transitive and semiregular on X. Equivalently, G is 

regular on X if, for any elements x and y of X, there is a unique element g E G such 

that g(x) = y.  

If G is a group, we use GL to denote the left-regular representation of G; GL is, 

therefore, the subgroup of SG given by GL = {gL : g E G), where 

g~ : h + gh, h E G, for each g E G. Where there is no confusion, we use g to denote 

both the element g of G and the permutation gr, of GL. 

If G is a group, a tournament regular representation, or TRR of G is a tournament 

T whose automorphism group is isomorphic to G and acts regularly on V ( T ) .  A 

k-tournament regular representation, or k-TRR of G is a k-tournament whose 

automorphism group is isomorphic to G and acts regularly on V ( T ) .  

Partially ordered sets 

A partially ordered set, or poset, P = (X, P) consists of a set X together with a 

reflexive, antisymmetric and transitive binary relation P defined on X. We also say 

that P is a partial order on X. If x, y E X and (x, y) E P, we also say that x 5 y in 

P (and if x # y we say that x < y in P). We say that x is maximal in P if there is 

no y E X for which x < y in P. If either (x, y) E P or (y, x)  E P then we say that x 

and y are comparable in P ;  otherwise x and y are incomparable in P, and we write 

xlly in P. We use inc(P) to denote the set of pairs of points of X which are 

incomparable in P. 

Let P = (X, P) be a poset. If P = 0, then we say P is an antichain. If inc(P) = 0, 

then we say that P is a chain, or that P is a linear order on X .  We say that a 

subset Y of X is a chain if the poset (Y, P n (Y x Y)) is a chain. 

An extension of P = (X, P) is a poset (X, P') such that P P'. A linear extension 

of P is an extension L = (X, L) of P such that L is a linear order on X. A subposet 

of P is a poset (XI, PI) such that XI & X and PI 5 P. If Y X, we use P[Y] to 

denote the subposet of P induced by Y; that is, P[Y] = (Y, P n (Y x Y)). 

If R is a binary relation on X, we use tr(R) to denote the transitive closure of R, so 

that t r (R)  is the smallest (with respect to inclusion) transitive binary relation on X 
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which contains R. If PI and P2 are partial orders on X, the intersection of Pl and 

Pz is the partial order P on X given by x < y in P if and only if both x < y in PI 

and x < y in P2. 

Let P = ( X ,  P )  be a poset. An alternating cycle in P is a sequence 

S = ( ( 2 1 ,  y l ) ,  . . . , (21, y l ) )  of ordered pairs from inc (P)  such that y; 5 x ; + ~  for 

i = 1 , .  . . , I  (where the subscripts are taken modulo 1 ) .  An alternating cycle is strict 

if y; 5 xj if and only if j = i + 1 (where again the subscripts are taken modulo 1). 

A chain decomposition of P = ( X ,  P )  is a partition of X into chains. The width of P 

is the smallest number of chains in a chain decomposition of P .  We say that a chain 

decomposition of P is minimal if the number of chains in the decomposition is equal 

to the width of P. The dimension of P is the smallest number of linear orders on X 

whose intersection is P ;  it is, therefore, the smallest cardinality of a set 

{ L C 1 , .  . . , L,) of linear orders on X with the property that x < y in P if and only if 

x < y in each of L1, .  . . , L,. 
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1.2 Introduction 

The study of tournaments has generated a tremendous body of research in graph 

theory over the last half-century. Four major surveys of the subject have been written 

during the last thirty years: The theory of round robin tournaments([lO]), by F. Harary 

and L. Moser, which appeared in 1966 and was the first such survey; the well-known 

book Topics on Tournaments, by J. W. Moon ([15]), published in 1968; the chapter on 

tournaments, by L. W. Beineke and K. B. Reid, in Selected Topics in Graph Theory 

( [ 6 ] ) ,  published in 1978; and a recent survey of results in the theory of paths, cycles 

and trees in tournaments, by J. Bang-Jensen and G. Gutin (121). Although much of 

the early research on tournaments was motivated by questions in areas outside pure 

mathematics (for example, the original characterisation of the score sequence of a 

tournament was motivated by research into hierarchies in animal societies ([14]), the 

subject has since developed into one of the fundamental areas of research in graph 

theory. 

The results presented in this thesis are concerned with a natural generalisation 

of tournaments. In terms of graph theory, this is a generalisation of the notion of a 

tournament to hypergraphs; in this setting, we have a complete k-uniform hypergraph, 

each of whose hyperedges is replaced by a k-tuple whose entries are the elements of 

that hyperedge. In terms of round robin tournaments, we have some kind of game in 

which k players compete simultaneously; the 'round robin' tournament is now such 

that each set of k players competes in one game, and the k players are ranked (i.e., 

linearly ordered) by the outcome of that game. We use the term k-tournament to 

denote such a generalised tournament; although a tournament might reasonably be 

called a 2-tournament in this terminology, we reserve the use of the term k-tournament 

for occasions when k 2 3. We present here the results of an investigation of how some 

of the well-known properties of tournaments generalise to the case of k-tournaments. 

Our first area of investigation is the ranking of the participants in a k-tournament. 

As might be expected, ranking the participants in a k-tournament is significantly more 

complicated than ranking the participants in a tournament. To develop a ranking 

scheme, one has to contend with the fact that a ranking of the participants is a 
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binary relation, while the relation defined by the outcomes of the games in the k- 

tournament is a k-ary relation. As a result it can happen, for example, that given 

two players in a k-tournament, neither beats the other in all the games in which both 

players participate. Even comparing the scores of two players in a k-tournament is a 

nontrivial task, since the 'score' of a player now consists of a vector of length k, whose 

ith entry is the number of games in which the player placed ith. Thus even the simplest 

ranking scheme for a tournament, in which the players are ranked as far as possible by 

their scores (i.e., the number of games won), and as many ties as possible are broken 

by considering the outcome of the game played by two players with equal scores, is 

no longer simple in a k-tournament. For this reason, we restrict our attention here to 

more general questions regarding the ranking of the participants. 

A transitive tournament is one in which the vertices can be ranked so that, given 

any two vertices u and v, u is ranked ahead of v if and only if u dominates v in the 

tournament. Thus, a transitive tournament is the very simplest tournament from the 

point of view of ranking its participants. This is therefore a natural place to begin 

our task of generalising the ideas related to ranking in tournaments to k-tournaments. 

We discuss two ways in which the notion of transitivity in tournaments can be gen- 

eralised to k-tournaments, and show that in each case, some properties of transitive 

tournaments are preserved, while others are not. The first results in the definition of 

a transitive k-tournament, in which, much as in a transitive tournament, the partici- 

pants can be ranked so that u is ranked ahead of v if and only if u places ahead of v 

in every game in which both u and v participate. The second leads to the definition 

of a quasitransitive k-tournament . In this case the well-known Ramsey-type property 

of tournaments is preserved: there is a function f (n, k)  such that every k-tournament 

on at least f (n, k)  vertices contains a quasitransitive sub- k-tournament on n vertices. 

The corresponding result is not true of transitive k-tournaments. 

If a k-tournament is not transitive, then it must contain two vertices u and v, 

neither of which places ahead of the other in every game in which the two participate 

(Proposition 2.2.10). With this in mind, given a k-tournament T, we define a binary 

relation on its vertex set by u < v if and only if u places ahead of v in every game 

in which both u and v participate; our aim is to determine what form this relation 
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can take, for an arbitrary k-tournament. To this end, we show in Theorem 2.3.2 that, 

given any finite partially ordered set of cardinality n and any integer k such that 

n > k, there is a k-tournament T for which the vertex set of T together with the 

relation < defined above is isomorphic to the given poset. The construction of such a 

poset.suggests an interesting generalisation of the dimension of a poset. 

The second area in which we present results concerns the automorphism group of a 

k-tournament. An interesting feature of any structure is the symmetry which it might 

possess; thus we often examine the group of automorphisms of that structure. In the 

case of tournaments, it was shown by J. W. Moon in 1964 ([16]) that given a finite, 

abstract group G, there is a tournament whose automorphism group is isomorphic 

to G if and only if G has odd order. We show in Theorem 3.2.1 that there is a k- 

tournament whose automorphism group is isomorphic to G if and only if the order of 

G and k are relatively prime, thus extending Moon's result to all k > 3. As is the 

case with tournaments, the necessity of the condition is easily seen; the majority of 

the proof consists of showing that the required k-tournament exists. 

Having characterised the finite, abstract groups which arise as the automorphism 

group of a k-tournament, it is natural to ask whether, given such a group G, we can 

find a regular representation of G as the automorphism group of a k-tournament. In 

other words, can we find a k-tournament whose automorphism group is isomorphic to 

G and is a regular permutation group? The number of vertices in such a k-tournament 

would necessarily be equal to the order of G. We therefore approach this question 

by asking, for a given finite, abstract group G, whose order is relatively prime to k: 

Over all k-tournaments T with automorphism group isomorphic to G, what is the 

minimum number of vertex orbits of the automorphism group of T? The analogous 

question for tournaments was answered by L. Babai and W. Imrich, who showed 

that every finite, abstract group of odd order, other than Z3 x Z3, admits a regular 

representation as the automorphism group of a tournament ([I]). Their proof uses the 

Feit-Thompson theorem, which states that every finite group of odd order is solvable. 

Since it is not true for general k that the automorphism group of a k-tournament has 

odd order, their methods do not immediately lend themselves to a generalisation to 

k-tournaments. We therefore take a different approach in attempting to extend their 
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result to k-tournaments. 

We show first, in Section 3.3.1, that, given a finite group G whose order is rela- 

tively prime to k and strictly larger than k, there is a k-tournament on 21GI vertices 

whose automorphism group is semiregular and is isomorphic to G. The automorphism 

group of this k-tournament, therefore, has two vertex orbits. We go on to show in 

Section 3.3.2 that if either G is cyclic, or k > 4 and G has a minimal generating set 

of cardinality at  least k, then we can find a regular representation of G as the au- 

tomorphism group of a k-tournament. Thus the real difficulty in completely solving 

this problem lies in finding a regular representation of G when either k = 3 and G 

is not cyclic, or k > 3 and every minimal generating set for G has cardinality lying 

strictly between 1 and k. 

The third area which we discuss concerns the scores of the participants in a k- 

tournament. In a tournament, the score of a participant is defined to be the number 

of games won by that participant; in graph theoretic terms, the score of a vertex is its 

outdegree. The score sequence of a tournament is a list of the scores of its vertices, 

usually in nondecreasing order. As we have already pointed out, in a k-tournament 

the score of a vertex consists of a vector of length k, whose ith entry is the number of 

arcs in which that vertex is the ith co-odinate. The score sequence of a tournament 

is therefore generalised by the degree matrix of a k-tournament, which is an n x k 

matrix in which the entry in row v and column c is the number of arcs in which the 

vertex v is the cth co-ordinate. 

A tournament is said to be regular if the indegree of each vertex is equal to its 

outdegree. If we view the arcs of a tournament as ordered pairs, a tournament is 

then regular if and only if each vertex is the first co-ordinate in as many arcs as it 

is the second co-ordinate. Thus it is natural to define a regular k-tournament as one 

in which each vertex appears in each of the k co-ordinates in some fixed number d of 

arcs. It is easy to see that there exists a regular tournament on n vertices if and only 

if n is odd; and when n is even there exists a tournament in which the indegree and 

the outdegree of each vertex differ by at most one. With this in mind, we define an 

almost regular k-tournament on n vertices to be one in which the number of arcs in 

which any vertex appears in any of the k co-ordinates is one of two fixed integers d 
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and d + 1. Of course, in both cases, the value of d is determined by n and k. 

It is easy to see that if a k-tournament on n vertices is regular, then the number 

of arcs in the k-tournament is divisible by its number of vertices; that is, ( )  is 
divisible by n. E. Barbut and A. Bialostocki asked in [3] whether this condition is also 

sufficient for the existence of a regular k-tournament on n vertices. This question was 

partly motivated by the following problem of R. Graham ([g]). A universal cycle with 

parameters n and k is a sequence a l ,  a2,. . . a(:) of elements of {1,2,.  . . , n),  of length 

(;), with the property that the (;) sets {ai, aj+l, .  . . , ai+,) (where the subscripts are 

reduced modulo n)  are all distinct. The problem is to determine for which values of n 

and k a universal cycle exists. It is easy to see that if a universal cycle with parameters 

n and k does exists, then by interpreting the (;) segments (ai, ai+l, .  . . , a;+t) as the 

arcs of a k-tournament with vertex set {1,2, . . . , n) ,  the k-tournament we obtain will 

be regular. Since it is clear that not every regular k-tournament corresponds to a 

universal cycle, the existence of a regular k-tournament is weaker than the existence 

of a universal cycle. However, since the problem of determining for which n and k a 

universal cycle exists appears to be very difficult, Barbut and Bialostocki proposed 

determining those values of n and k for which a regular k-tournament on n vertices 

exists as a preliminary step. 

We give an affirmative answer to Barbut and Bialostocki's question in Theorem 

4.1.2; in fact we prove a stronger result, namely, that a regular k-tournament on n 

vertices exists for all n and k for which n > k and (;) is divisible by n, and that for all 

remaining values of n and k, with n > k, there exists an almost regular k-tournament 

on n vertices. Since proving this theorem, the author has discovered that the same 

result appeard in the Journal of the Royal Statistical Society in 1948, with a similar 

proof ([I l l ) ;  however, since the earlier paper is written in a different discipline and in 

entirely different terminology, we include here the author's proof. 

The proof of the above theorem does not provide explicit constructions of regular 

and almost regular k-tournaments. This leaves open the problem of finding such 

explicit constructions. When the question of Barbut and Bialostocki appeared, the 

same authors had already found explicit constructions in some cases ([5]). In Section 

4.2 we provide different constructions, also for selected cases; although the cases 
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covered by our constructions and by those of Barbut and Bialostocki overlap, the 

constructions presented here are elementary while those of Barbut and Bialostocki 

are more intricate. 



Chapter 2 

Ranking the participants in a 

k-tournament 

2.1 Introduction 

In this chapter we consider some questions related to the ranking of the participants in 

a k-tournament. In Section 2.2 we discuss two ways in which the notion of transitivity 

in tournaments can be generalised to k-tournaments, and show that in each case some 

of the properties of transitive tournaments carry over to k-tournaments while others 

do not. 

In Section 2.3 we define a binary relation on the vertex set of a k-tournament T, 

in which two vertices u and v are related if u precedes v in every arc of T which 

contains both u and v (where we say u precedes v in an arc A if u is in co-ordinate 

i and v in co-ordinate j of A, and i < j). We then construct, given a finite poset 

P, a k-tournament for which the relation described above is isomorphic to P. This 

construction leads to a generalisation of the dimension of a poset. 
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2.2 Transitivity 

In this section we consider some questions related to transitivity, in the context of 

k-tournaments. The initial problem is to determine the most natural definition of a 

transitive k-tournament . The notion of transitivity occurs most often with respect 

to binary relations; the problem here is to find a reasonable extension to k-ary rela- 

tions, where k > 3. Ideally we would like the notion of transitivity in a k-tournament 

with k 2 3 to generalise that in a tournament; and we would hope that transitive 

k-tournaments might exhibit some of the same properties as transitive tournaments. 

Neither of the generalisations discussed below preserves all of the properties of tran- 

sitive tournaments; however, it is arguable that the reason for this is simply that the 

case k = 2 is degenerate in some sense, since these two distinct notions coincide in 

that case. 

2.2.1 A strict definition of transitivity 

We begin by considering a notion of transitivity which is perhaps the most natural, 

but which at the same time is rather restrictive. We first note that a tournament T is 

transitive if there is a linear ordering of its vertices such that the vertex u dominates 

the vertex v in T if and only if u precedes v in this linear ordering. This approach 

suggests the following definition of a transitive k-tournament, which was also given 

by A. Bialostocki in [7]. 

Definition 2.2.1 Let k 2 3, and let T be a k-tournament with vertex set V(T). We 

say that T is transitive if there is a linear ordering vl < - .  . < v, of V ( T )  such that 

(v;,,. . . ,vi,) is an arc of T if and only if v;, < < v;,. 

Remark 2.2.2 Up to isomorphism, there is only one transitive k-tournament on n 

vertices for any fixed n and k with n > k. 

We now investigate some of the properties of transitive k-tournaments. We begin 

by calculating the degree vectors of the vertices of a transitive k-tournament on n 

vertices. To this end, we let T be a transitive k-tournament with V(T) = (1, . . . , n )  
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and with underlying linear order 1 < 0 .  < n. Then for v E V(T), the cth degree of v 

is given by 

This gives us an easy proof of the following result. 

Proposition 2.2.3 Let T be a transitive k-tournament. If u and v are distinct ver- 

tices of T ,  then the degree vectors of u and v are distinct. 

Proof. Let T be a transitive k-tournament. Without loss of generality we can assume 

that V(T) = (1,.  . . , n) with underlying linear order 1 < . . . < n. Let u, v E V(T) 

with u # v, and assume u < v. We want to show that there is some co-ordinate 

c E (1, . . . , k) such that degc(u) # degc(v). 

To this end, let c be the smallest element of (1,. . . , k) such that degc(u) # 0. 

If degc(v) = 0 then c is the required co-ordinate. Thus we assume that deg,(v) # 
0. Now if c = 1, then degc(u) = (21;) and degc(v) = (;I;), and it is clear that 

degc(u) > degc(v) (because we assumed that u < v). Otherwise c > 1. In this 

case, since degc-,(u) = 0 we have either u - 1 < c - 2 or n - u < k - c + 1. But 

degc(u) > 0 implies that u - 1 2 c - 1 > c - 2 and n - u 2 k - c.  It follows that 

n - u = k - c.  Therefore n - v < n - u = k - c and so (21:) = 0; from this we get 

degc(v) = (:I:) (21:) = 0. Thus again we have degc(u) # degc(v). 

Therefore, in all cases, degc(u) # degc(v), and the proposition follows. 

Remark 2.2.4 Notice that if T is a transitive k-tournament with V ( T )  = 

{1,2,. . . , n) and underlying linear order 1 < 2 < . . . < n, then the degree vector of 

the vertex i of T is the reverse of the degree vector of the vertex n - i + 1 of T.  That 

is, for every c = 1,2, .  . . , k and every i = 1,2 , .  . . , n, degc(i) = degk-c+l(n - i + 1 ) .  

Since it is clear that any automorphism of a k-tournament must map any vertex 

v to another vertex with the same degree vector, the next result follows immediately 

from Proposition 2.2.3. 

Proposition 2.2.5 Let T be a transitive k-tournament on n vertices. Then the only 

automorphism of T is the identity automorphism. 



C H A P T E R  2. R A N K I N G  T H E  PARTICIPANTS IN A I ( -TOURNAMENT 16 

As we shall see in Section 2.2.2, the transitive k-tournament is not alone in having 

the identity group as its automorphism group; in fact there are non-transitive k- 

tournaments with trivial automorphism group on any number n > k of vertices. Its 

automorphism group does not, therefore, characterise the transitive k-tournament. 

Consequently we must look elsewhere for a characterisation. 

It is well-known that a tournament on n vertices is transitive if and only if its 

score sequence is n - 1, n - 2, . . . ,2,1,0. In other words, a tournament is transitive 

if and only if its vertices can be relabelled vl , v2, . . . , v, so that the outdegree of v; is 

n - i ,  1 < i < n. What would be the analogous result for k-tournaments? Since the 

analogue of the score sequence of a tournament is the degree matrix of a k-tournament, 

we ask the following question: If the vertices of a k-tournament, T on n vertices can be 

relabelled vl, . . . , vn so that degc(vi) = (:I:) (;I;), 1 < c < k, must T be transitive? 

In Proposition 2.2.7 below, we answer this question in the affirmative. We first define 

the matrix ID,,k to be the degree matrix of the transitive k-tournament on n vertices. 

Definition 2.2.6 For n 2 k 2 3, we let Dn,k be the n x k matrix whose (v, c)-entry 

is (:I;) (;I:), 1 < v 5 n, 1 < c < k. 

Proposition 2.2.7 Let n > k > 3 and let T be a k-tournament on n vertices, with 

degree matrix D(T).  Then T is transitive if and only if the rows of V(T) can be 

permuted to obtain the matrix Dn,k. 

Proof. Let n, k and T be as in the statement of the proposition, and let V(T) = 

{vl, . . . , v,). By assumption the rows of V(T) can be permuted to obtain the matrix 

Dn,k. Equivalently, there is a bijection f : V(T) -i {1,2 ,  . . . , n)  such that degc(v, T )  = 
f (v)-1 n-f ( v )  ( , -  ) ( - ,  ) Letting TI be the k-tournament defined by V(T1) = {1,2,. . . , n )  

and A(T1) = {(f (vl), f (v2), . . . , f (vk)) : (vl, v2,. . . , vk) E A(T)), it is clear that TI is 

isomorphic to T and that degc(v, TI) = (:I:) (;I:), where 1 < v < n and 1 5 c 5 k. 

We will show that TI is transitive, with underlying linear order 1 < 2 < < n. 

For each v E V(T1) and each c E { I , .  . . , k), let A,,, denote the set of arcs of TI 

which contain v and exactly c - 1 elements of { I , .  . . , v - 1). (Note that Altl denotes 

the set of arcs of T' which contain 1, and that A1,, = 0 if c > 1.) 
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We will prove, by induction on v and c, that if A E A,,,, then v = A(c). 

First, if v = c = 1, then as observed above, A,,, is the set of arcs of T' which 

~ntain the vertex 1. Since degl(l,  TI) = (;I:) = IA1,lI (and degc(l, T') = 0 if c > I ) ,  

then 1 is the first co-ordinate in every arc of T' which contains it. Therefore, 1 = A(l )  

for every A E A1 . 
Now let v E V(T1) and c E (1,.  . . , k), where at least one of v > 1 and c > 1 

holds, and assume that if either v' < v and c' E (1, .  . . , k), or v' = v and c' < c, then 

v' = A(c') for every A E AVj,,j. 

We want to show that v = A(c) for every A E A,,,. To do this, we first show that 

if v E A and A $ then v # A(c). To this end, let S be any k-subset of V(T) 

with v E S ,  and let A be the corresponding arc of T. Let L = {s E S : s < v). Notice 

that A E dv,lLI+l, and hence that A E A,,, if and only if ILI = c - 1. We will show, 

therefore, that if JLJ # c - 1, then v # A(c). 

If L < c-1, then ILI+1 < c, andso v E d,,,~ with c'= ILI+l < c. By hypothesis, 

v = A(c1), and so v # A(c). On the other hand, if I LI > c - 1, then there is some 

v' < v such that v' E S and A E d,~,,; by hypothesis, v' = A(c), and so v # A(c). 

Thus J LJ  # c - 1 implies that v # A(c), as desired. 

Now deg,(v, TI) = (:I:) (;I:), and this is exactly the number of k-subsets S of 

V(T1) for which v E S and ILI = c - 1, where L is defined as above. It follows that 

if A is the arc of T' corresponding to such a set S ,  then v = A(c). But these arcs are 

precisely the elements of A,,,. Therefore, if A E A,,,, then v = A(c), as desired. 

It follows by induction that for all v E V(T') and all c E (1,.  . . , k), if A E A,,,, 

then v = A(c). 

It now follows easily that T' is transitive, for if S = {xl, . . . , xk)  is a k-subset 

of V(T1) with xl < . - - < xk, then the arc A of T' corresponding to S satisfies 

A E A,,,1 n Ax2,2 n . n Axk,k, SO that xc = A(c), 1 5 c 5 k, and consequently 

A = ($1, 22,. . . , ~ k ) .  

Since T' 2 T ,  it now follows immediately that T is transitive. 

Proposition 2.2.7 provides us with one characterisation of the transitive k- 

tournament on n vertices. However, as is the case with the transitive tournament, 

there are several characterisations of the transitive k-tournament; two of these will be 
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presented later in this section. 

One interpretation of a tournament T is as the outcome of a round robin tour- 

nament. In this setting, the vertices of the tournament represent the players, and 

vertex u dominates vertex v in T if and only if player u beats player v in the round 

robin tournament. If the tournament T is transitive, then there is a ranking of the 

players in the round robin tournament such that a player of higher rank will always 

beat a player of lower rank. We can interpret a k-tournament in a similar manner. 

In this case we have some kind of game in which k players compete simultaneously 

(for example, a running race); and every k-subset of players compete together exactly 

once. We then have an arc (vl, .  . . , vk) in T if and only if when the players vl, . . . , vk 
compete together, player vl comes first, player vz comes second, and so on. In order 

to be able to rank all the players so that in any game, a player of higher rank always 

places ahead of a player of lower rank, we would need to know that given any two 

~layers ,  there is one who beats the other in every game in which the two both com- 

pete. It is easy to see that this is the case if T is a transitive k-tournament; and we 

show in Proposition 2.2.10 that this is the only case in which a k-tournament has this 

property. 

Definition 2.2.8 Let T be a k-tournament. If A is an arc of T, we say that u precedes 

v in A if u is the ith co-ordinate of A, v is the jth co-ordinate of A, and i < j. We say 

that u always precedes v in T if u precedes v in every arc of T which contains both u 

and v. 

Remark 2.2.9 Notice that the relation 'always precedes' is a binary relation on 

V(T). 

Proposition 2.2.10 Let T be a k-tournament. Then T is transitive if and only if 

T has the property that given any two distinct vertices u and v of T ,  either u always 

precedes v in T or v always precedes u in T .  

Proof. It is clear that every transitive k-tournament has the stated property. 

On the other hand, let T be a k-tournament which has this property. Then we 

can define a tournament T* on the vertex set of T by letting A(T*) = {(u, v )  : 
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u always precedes v in T). Now if T* is transitive, then there is a linear ordering of 

its vertices, say vl < - < v,, such that (v;, vj) E A(T*) if and only if i < j .  From the 

definition of A(T*) ,  and the fact that V(T*) = V(T), it follows that such an ordering 

of V(T*) exists if and only if T is transitive. Therefore T* is transitive if and only if 

T is transitive. 

If T* is not transitive, then it contains a directed cycle of length 1 > 3, which in 

turn implies that T* contains a directed 3-cycle. Therefore, there are vertices u, v, w 

of T such that u always precedes v, v always precedes w and w always precedes u in 

T .  But since k 2 3, there is at least one arc A of T which contains all of u, v and w; 

and it is clearly impossible that u precedes v, v precedes w and w precedes u in A. 

Therefore T* is transitive, and hence T is transitive. rn 

A second characterisation of the transitive tournament is the following: A tour- 

nament is transitive if and only if it has no directed cycles. What can we say about 

cycles in the case of k-tournaments? Unfortunately, as is the case with hypergraphs, 

it is not clear how we ought to define a path or a cycle in a k-tournament. For the 

purposes of the current discussion, it turns out that one definition of a cycle in a 

k-tournament yields the result we seek. With this in mind, we begin by construct- 

ing, much as in the proof of Proposition 2.2.10, a digraph which encodes the relation 

'always precedes' in a given k-tournament T .  

Definition 2.2.11 Let T be a k-tournament with k > 3. We construct a digraph D 

as follows. We let V(D) = V(T), and we let (u, v)  E A(D) if and only if there is an 

arc of T in which u precedes v. 

It is clear from the definition that given two vertices u and v of T ,  u always 

precedes v in T if and only if u dominates v but v does not dominate u in D. Also, 

for any pair of vertices u, v E V(T) there is at least one arc of T containing both u 

and v, and hence D is a semi-complete digraph (that is, D contains a tournament). 

Therefore T is a transitive k-tournament if and only if D is a transitive tournament. 

Now D is a transitive tournament if and only if D has no pairs of opposing arcs and 

no directed cycles. If we consider a pair of opposing arcs as a directed cycle of length 

two, then D is a transitive tournament if and only if D contains no directed cycles. 
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We now show that there is a notion of 'cycle' in a k-tournament with the property 

that each directed cycle of length 1 >_ 2 in D corresponds to a 'cycle' of length 1 in T. 

Definition 2.2.12 Let T be a k-tournament, where k 2 3. A weak cycle of length 1 in 

T is a sequence (vl, All 0 2 ,  A2, . . . , v1, A/) of vertices and arcs of T ,  where the vertices 

vl, . . . , vl are all distinct, such that v, precedes v;+l in A; for i = 1, . . . , l (where the 

subscripts are reduced modulo 1). 

Since it is clear that D contains a directed cycle of length 1 2 2 if and only if T 

contains a weak cycle of the same length 1, the following result is immediate. 

Proposition 2.2.13 Let T be a k-tournament with k 2 3.  Then T is transitive if 

and only if T contains no weak cycles of length 1 2 2. 

A third well-known property of tournaments is the following: There is a function 

f (n) such that every tournament on f (n) vertices contains a transitive subtournament 

on n vertices. It is natural to ask whether such a result is true for k-tournaments. 

We show below that the answer is no: For any fixed k 2 3 and n 2 k there is a 

k-tournament T on n vertices which contains no transitive sub-k-tournament on more 

than k vertices. This is in direct contradiction to a pulished result of A. Bialostocki 

[7 ] ,  who attempted to use Ramsey's theorem to show that there is a function f (n, k) 

such that every k-tournament on at least f (n, k) vertices contains a transitive sub- k- 

tournament on n vertices. His proof is a direct analogy of the corresponding result 

for tournaments. Given an arbitrary k-tournament T on N vertices, its vertices are 

linearly ordered vl < . - - < VN; and its arcs are coloured with the k! elements of 

Sky SO that (v;, , . . . , vjk ) is coloured with T E Sk if and only if v; =(,, < - < v i n ( k ) '  

It follows from Ramsey's theorem that if N is sufficiently large, there is a set U of 

vertices of T such that IUI = n and the arcs of T[U] are monochromatic. However, 

this does not imply that T[U] is transitive; this is the mistake in the argument given. 

For example, if we let V(T) = {1,2,3,4), with underlying linear order 1 < 2 < 3 < 4, 

and k = 3, then the arcs (2 , l ,  3), (2,1,4), (3,1,4) and (3,2,4) are all coloured with the 

permutation T = (12) of S3, and yet the 3-tournament they define is not transitive. 
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To show that no such function f (n, k) exists, we first make a simple observation 

which provides a straightforward construction of a k-tournament on an arbitrarily 

large number of vertices with no transitive sub-k-tournament on more than k vertices. 

Lemma 2.2.14 If T is a transitive k-tournament with n > k 2 3 vertices, and if 

2 5 i 5 k- 1, then there is no vertex of T which occurs as the ith co-ordinate of every 

arc which contains it. 

Proof. Let T be a transitive k-tournament, with n > k 2 3 vertices, and suppose the 

vertices of T are ordered vl < - .  . < v,. Let v E V(T), and suppose v occurs in co- 

ordinate i in some arc A of T, where 2 5 i 5 k - 1. Let A = (ul, . . . , uk) with u; = v. 

Note that v # ul, uk. Since IV(T)I > k, there is a vertex w E V(T) \ {ul, . . . , uk). If 

w < v then the arc corresponding to the set {w) U {ul , . . . , ~ k - ~ )  has v in co-ordinate 

i + 1; and if w > v then the arc corresponding to the set {u2, .  . . , uk) U {w) has v in 

co-ordinate i - 1. Therefore v is not the ith co-ordinate of every arc which contains 

it. H 

This lemma gives us a simple way to construct arbitrarily large k-tournaments 

which contain no transitive sub-k-tournament larger than a single arc. The original 

proof of Proposition 2.2.15 was greatly simplified by R. Hochberg [13], who suggested 

the proof given below. 

Proposition 2.2.15 Let k 2 3. For all n > k there exists a k-tournament on n 

vertices which contains no transitive sub-k-tournament on more than k vertices. 

Proof. Let n > k > 3 be given. We construct a k-tournament T with no transitive 

sub- k-tournament on more than k vertices. 

We let V(T) = {1,2,. . . , n),  and we order the vertices of T so that 1 < . . . < n. To 
V ( T )  define A(T) we must assign a linear order to each k-subset of V(T). Let S E ( ), 

where S = {vl < v2 < < vk). Then we let the arc of T corresponding to S be 

A = (v2, v1, us,. . . , vk). We do this for each k-subset S of V(T). 

We now show that T contains no transitive sub-k-tournament on more than k 

vertices. 
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Let U C V(T), where (U( > k, and let u be the least element of U with respect 

to the natural order on V(T). Consider T[U], the sub-k-tournament of T induced 

by U .  Let S be any k-subset of U which contains u. Then u is the least element 

of S ,  and so u appears in the second co-ordinate of the arc of T (and of T[U]) 

corresponding to S .  Therefore whenever an arc of T[U] contains u, u appears in the 

second co-ordinate. It now follows from Lemma 2.2.14 that T[U] is not a transitive k- 

tournament. Consequently T contains no transitive sub-k-tournament on more than 

k vertices. 

2.2.2 Quasitransitive k-tournaments 

We have shown in Section 2.2.1 that when k > 3 it is not true that evQy sufficiently 

large k-tournament contains a transitive sub-k-tournament larger than a single arc. 

This suggests the question 'Is there a set 7 of non-isomorphic k-tournaments on n 

vertices, and a function f (n, k), such that every k-tournament on f (n, k) vertices 

contains a sub-k-tournament isomorphic to an element of 7 ? '  We show below that 

the answer to this question is yes, and we provide such a set of k-tournaments which 

is minimal with respect to this property. 

Definition 2.2.16 Let ?r E Sk, where k 2 3, and let n > k. We define a k- 

tournament T," on n vertices, as follows. We let V(T,") = (1,. . . , n), and we think of 

V(T,") as being ordered by the natural order so that 1 < . . - < n. 

To define A(T:), let S = {vl,. . . ,vk)  2 V(T:), where vl < .. .  < vk. Then the 

arc of T," corresponding to the set S is defined to be A = ( v , -~ (~ ) ,  . . . , v , - ~ ( ~ ) ) .  

If there is no ambiguity we omit n and write T,. 

We will show that the set 7 of k-tournaments of the form T,", ?r E Sk,  has the 

property described above. For this reason we make the following definition. 

Definition 2.2.17 Let k 2 3. We say that a k-tournament T on n vertices is qua- 

sitransitive if T 2 T," for some ?r € Sk. 
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Remark 2.2.18 Let T be a k-tournament on n vertices, where k 2 3, and suppose 

T E T,". Then for any subset U C V(T), with IUI = m, T [ U ]  T," (recall that 

T [ U ]  denotes the sub-k-tournament of T induced by the vertices of U). Thus every 

sub- k-tournament of a quasitransitive k- tournament T, is itself a quasitransitive k- 

tournament, with the same defining permutation T .  

Remark 2.2.19 Let T be the transitive k-tournament with vertex set V(T)  = 

(1, .  . . , n)  and underlying linear order 1 < . . < n. Notice that we could equally de- 

fine the k-tournament Tt as follows: Let V(T,") = V(T), and let (vl, . . . , vk) E A(Tt)  

if and only if (v,(~), . . . , v , (~ ) )  E A(T). Using this definition it is easy to calculate the 

ith degree of a vertex v of T:, since deg.(,)(v, T:) = deg,(v, T). From this, it follows 

in the same way as for the transitive k-tournament that the only automorphism of a 

quasitransitive k-tournament is the identity automorphism. 

Before stating Theorem 2.2.21 we introduce notation for the Ramsey numbers 

needed in the proof. 

Definition 2.2.20 Let n, 1 and k be integers. We let R(n, I, k) denote the least 

integer N such that if f is any I-colouring of the k-subsets of an N-set X then there 

is a subset Y X with lYl = n such that f is constant on the k-subsets of Y. 

The existence of the numbers R(n, 1, k) is guaranteed by Ramsey's Theorem ([18]). 

We are now ready to show that the set 7 of quasitransitive k-tournaments has 

the property that there is a function f (n, k) such that every k-tournament on f (n,  k) 

vertices contains a quasitransitive sub-k-tournament on n vertices. 

Theorem 2.2.21 There is a function f (n ,  k) such that if n > k 2 3, then every k- 

tournament on f (n, k) vertices contains a quasitransitive k-tournament on n vertices. 

Proof. Let n > k 2 3 be given, and let T be a k-tournament on N vertices, where 

N = R(n, k!, k). We want to show that T contains a quasitransitive k-tournament on 

n vertices. 

Without loss of generality we can assume that V(T) = (1, . . . , N). We first assign 

an artificial ordering to the elements of V(T), so that 1 < 2 < - .  - < N. We then 
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define a colouring of the arcs of T with k! colours: We let the colours be the elements 

of Sk,  and given an arc A = (211 ,  . . . , v1) of T we assign the colour .rr to A if and only 

if vn(l)  < . - < % ( k ) .  

Now by Ramsey's theorem and the choice of N, there is a subset U of V ( T )  

such that IUI = n and all arcs induced by U have the same colour. Let this colour 

be T .  Then for any ul,.  . . , uk E U ,  we have (u l , .  . . , uk) E A(T[U]) if and only if 

% ( I )  < ' ' * < u,(k). It is therefore clear that the sub-k-tournament T[U] of T induced 
by U is isomorphic to Tz.  This is the required quasitransitive sub-k-tournament of 

T. rn 

Notice that it follows from the proof of Theorem 2.2.21 that a k-tournament T on 

f (n ,  k) vertices contains a quasitransitive sub- k- tournament on n vertices with respect 

to every initial ordering of the vertices of T .  

Having shown that the set 7 of quasitransitive k-tournaments has the Ramsey- 

type property described above, we observe that since every sub-k-tournament of a 

quasitransitive k-tournament is itself quasitransitive, with the same defining permu- 

tation, the set 7 is clearly minimal with respect to this property. 

We now investigate the set of quasitransitive k-tournaments in more detail. The 

first question we consider is the following: How many non-isomorphic quasitransitive 

k-tournaments on n vertices are there? This is answered in Proposition 2.2.23 below. 

Definition 2.2.22 For k 2 3 we define the permutation T E Sk by T : i  + k + 1 - i ,  

l < i s k .  

Proposition 2.2.23 Let n > k > 3, and  T , U  E Sk. Then T," 2 T," if and  only if 

O = T  o r u = w .  

Proof. We first show that if o = T T ,  then T," Z T,". 

Recall that V(Tp)  = ( 1 , .  . . , n )  for each p E Sk. We define a function f : V(T,) + 

V(T,) by f ( i )  = n + 1 - i ,  1 5 i < n. We claim that the function f is an isomorphism 

between T, and To. For we have 
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if and only if 

I which holds, by the definition of f ,  if and only if 

f ( % ( k ) )  < " ' < f ( % ( 1 ) ) .  

Letting b; = f (v,(,(;))), this last inequality is equivalent to 

b1 < . . a  < b k ,  

which holds if and only if 

(b(rr) - l (1) l  - . . 1 b(,r)-yk)) € X4(TTT). 

Now 

( T - 1 )  = f(vTT(TT)-l(;)) 

for each i ,  1 < i  5 k .  Therefore we have ( q , .  . . , v k )  E A(T,) if and only if 

( f ( v l ) ,  . . . , f ( v k ) )  E A(T,,) = A(Tu), and f is indeed an isomorphism between T, 

and To. 

The remainder of the proof consists of showing that if T," S T,", then a = ar 

or a = a. Thus we assume that T," 2 T," for some T, a E Sky and we let f be an 

isomorphism between them. Therefore we have ( v l ,  . . . , v k )  E A(T,) if and only if 

( f  (Vl),. . - 1  f ( ~ k ) )  E A(Tu). 
By definition, we have V(T,") = V(T,") = (1 , .  . . , n ) ,  each with underlying linear 

order 1 < 2 < .. .  < n. 

Now I 
I 

(v1, . . . , ~ k )  E A(%) i 
if and only if 

% ( I )  < . . * < % ( k ) ,  
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if and only if 

f("u(1)) < " ' < f ( " , ( k ) ) .  

Thus we know that 

%(I) < . . ' < %(k) 

if and only if 

f ( ~ u ( 1 ) )  < . ' . < f ( ~ a ( k ) ) .  

We will use this last equivalence to determine the function f .  

Now in T,, the vertex 1 appears only in co-ordinate n ( l ) ,  and is the only vertex 

which has this property. Therefore in T,, the vertex f (1) appears only in co-ordinate 

~ ( 1 )  and is the only vertex of T, with this property. Now in any quasitransitive k- 

tournament T,", there are only two vertices which appear in just one co-ordinate, and 

these are 1 and n. Therefore either f(1) = 1 or f(1) = n. 

Similarly, in T, if the arc A contains the vertex 2 then 2 = A(r(1))  if 1 does not 

belong to A, and 2 = A(r(2)) otherwise. Therefore in T, if the vertex f (2) belongs 

to an arc A, then f(2) is in co-ordinate n(1) if f(1) does not belong to A and in 

co-ordinate 742) otherwise. From above, f(1) = 1 or f(1) = n. If f(1) = 1, then the 

position of f (2) in an arc depends only on the presence or absence of the vertex 1 in 

that arc, and hence it must be that f (2) = 2. Similarly, i f f  (1) = n, then the position 

of f (2) in an arc depends only on the presence or absence of the vertex n in that arc 

and it follows that f(2) = n - 1. 

Now assume, for some i ,  1 5 i < n, that f (1) = 1 , .  . . , f (i) = i. We want to show 

that f ( i+  1) = i+  1. In T,, if the vertex i +  1 belongs to an arc A, then i +  1 = A ( r ( j ) )  

if and only if A contains exactly j - 1 of the vertices 1,. . . , i, for any j E (1, .  . . , i + 1) 

(and note that i + 1 does not occur in any co-ordinate r (c )  for which c > i + 1). 

Therefore in T,, if the vertex f (i + 1) belongs to an arc A, then f (i + 1) = A(r ( j ) )  if 

and only if A contains exactly j - 1 of the vertices { f (1), . . . , f (i)} = (1,.  . . , i}, for 

any j E (1, . . . , i + 1). Now i + 1 is the only vertex of T, whose position in an arc 

depends only on the presence or absence of the vertices 1,2, .  . . , i in that arc; and so 

f ( i  + 1) = i +  1. 
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Similarly, for any i with 2 < i < n, if f (1) = n, f (2) = n - I , .  . . , f ( i )  = n + 1 - i, 

then f ( i + l )  = n - i .  

Therefore, either f ( i )  = i ,  1 L i L n, or f ( i )  = n + 1 - i, 1 5 i 5 n. Having 

determined the isomorphism f ,  we are now able to relate the permutations n and a .  

If f ( i )  = i for all i = 1, ..., n, then it is clear that .rr = a. Otherwise we have 

f (i) = n + 1 - i for i = 1 , .  . . , n. Since f is an isomorphism between T," and T,", we 

have 

(vl , .  . . , vk) E A(TZ) if and only if (f (vl), . . . , f (vk)) E A(T,"), 

or equivalently, 

Since u < v if and only if f (v) < f (u), this implies that 

But now replacing i by ~ ( k  + 1 - i )  gives us 

Since the above is true for any k-subset {vl, . . . , vk)  of (1,. . . , n),  it follows that 

T = ar and hence that a = TT. 

2.3 Ranking in non-transitive k-tournaments 

This section is concerned with comparing the participants in a k-tournament, with a 

view to ranking the participants. In a transitive k-tournament, there is a natural way 

to rank the participants, namely, by using the underlying linear order of the vertices of 

the tournament. This ranking has the property that player u is ranked ahead of player 

v if and only if u places ahead of v in every game in which both players participate. 

This would appear to be a desirable property for any ranking to possess; however, as 

was seen in Proposition 2.2.10, if T has the property that either u always precedes 

v or v always precedes u for every pair {u, v) of vertices of T ,  then T is transitive. 
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We therefore restrict our attention to k-tournaments which do not have this property, 

i.e., to non-transitive k-tournaments. 

Despite this restriction, we might hope to find a partial ranking of the participants 

in a non-transitive k-tournament, in which player u is ranked ahead of player v if (but 

not only if) player u places ahead of player v in every game in which both players 

participate. Thus we would like to find a partial ranking of the participants in a 

k-tournament T ,  with the property that u is ranked ahead of v whenever u always 

precedes v in T. This leads naturally to the following question. Given a k-tournament 

T with k > 3, what can we say about the relation 'always precedes' on V(T)? 

Notice that the relation 'always precedes' is antisymmetric. Therefore, this relation 

is a partial order if and only if it is a transitive relation. Now suppose u always precedes 

v and v always precedes w in some k-tournament T with k 2 3. Then u precedes w in 

every arc which contains all three vertices u, v and w, but u need not precede w in any 

arcs which contain u and w but not v. It is therefore clear that the relation 'always 

precedes' need not be transitive. This suggests two further questions. If the relation 

'always precedes' is a partial order on V ( T ) ,  can we say anything about that partial 

order? And if the relation 'always precedes' is not transitive, can we say anything 

more about it? 

The answer to the first question is no, in the sense that there is no restriction 

on the partial orders which can arise from k-tournaments in the manner described 

above. We prove as much in Section 2.3.2. In answer to the second question, it is 

possible that there is again no restriction on the relations which can arise in this way; 

we hesitate, however, to  conjecture as much. 

Before stating our main theorem we need one more definition. 

Definition 2.3.1 Let P = (X, P )  be a finite poset, and let T be a k-tournament 

with k 2 3. We say that T represents P if there is a bijection f : V(T) -t X such 

that for any u, v E X ,  f (u) < f (v) in P if and only if u always precedes v in T .  

Theorem 2.3.2 Let P = (X, <) be a finite poset, and k an integer satisfying 3 5 
k 5 1x1 - 1. Then there is a k-tournament T such that T represents P. 
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We give the proof of Theorem 2.3.2 in Section 2.3.2. We first give some preliminary 

results which will be used in the proof of Theorem 2.3.2. 

2.3.1 Partially ordered sets 

This section consists of a brief discussion of some preliminary results concerning 

posets. We refer the reader to Section 1.1 for the relevant definitions and notation. 

Recall that the dimension of a finite poset P = (X, P) is the smallest number 

of linear orders on X whose intersection is P .  Since the definition implies that each 

of these linear orders on X contains P, each corresponds to a linear extension of P. 

Thus in finding the dimension of P ,  we are interested in representing P by a collection 

of linear extensions of P .  

Suppose now that we have a k-tournament which represents a poset P. Let P = 

(X, P ) ,  and assume for convenience that X = V(T). Then given any k-subset S of 

X, the arc A of T corresponding to S has the property that for any u, v E S ,  if u < v 

in P ,  then u precedes v in A. We might, therefore, view A as a linear extension of 

the k-element subposet P[S] of P. Viewing each arc of T in this manner allows us to 

view T itself as a collection of linear extensions of k-element subposets of P; and this 

collection has the additional property that it contains exactly one linear extension of 

each such subposet. This suggests the following problem. Let us say that a collection 

C of linear extensions of k-element subposets of P represents P if u < v in P if and 

only if u < v in every element of C which contains both u and v. What is the minimum 

cardinality of such a collection C? It is with this in mind that we make the following 

definition. 

Definition 2.3.3 Let P = (X, P) be a finite poset, and k an integer such that 

3 < k 5 1x1 - 1. The k-dimension of P is the minimum cardinality of a collection of 

linear extensions of k-element subposets of P which represents P .  

We note that 2-dimension would not be of any great interest since it is trivial to 

determine for a given finite poset, and that the 1x1-dimension of P = (X, P) would 

simply be its dimension. 



C H A P T E R  2. R A N K I N G  THE PARTICIPANTS IN A K - T O U R N A M E N T  30 

Theorem 2.3.2 shows that the k-dimension of a finite poset of cardinality n is 

bounded above by (;), the number of k-element subposets of P .  

Before proceeding with the proof of Theorem 2.3.2, we give two lemmas which will 

be useful in what follows. The first is a result of W. T. Trotter and J.  Moore [20], 

which tells us when we can add pairs ( x ,  y )  to a partial order P on X so that the 

resulting relation is again a partial order. 

Lemma 2.3.4 Let P = ( X ,  P )  be a poset, and S C inc (P) .  Then t r ( P  U S )  is a 

partial order on X if and only if S contains no strict alternating cycle. 

The second lemma, which we also state without proof, is a result of T. Hiraguchi 

[12], which is used repeatedly in the constructions in Section 2.3.2. 

Lemma 2.3.5 Let P = ( X ,  P )  be a poset and C a chain in P .  Then there are linear 

extensions L1 = ( X ,  L1)  and L2 = ( X ,  L2 )  of P such that 

1. If x E X and c E C and xllc in P ,  then x 5 c in L1. 

2. If x E X and c E C and xllc in P, then c 5 x in L2. 

2.3.2 Proof of Theorem 2.3.2 

In this section we give a proof of Theorem 2.3.2. The proof of the theorem is by 

induction on the number of points in the poset P ,  for each fixed k. Lemma 2.3.11 

below provides the induction base, and Lemma 2.3.12 provides the induction step. 

We begin with several preliminary lemmas which will be used in the proof. The first 

is a simple observation which is nevertheless quite useful. 

Lemma 2.3.6 Let 1 2 2 and let B be a set such that IBI > 1 + 1, and if 1 = 2 

then JBJ  _> 4. Then there are disjoint classes C I ,  C2 of 1-subsets of B such that 

U{S  : S E C1} = B = u { S  : S E C z } .  

Proof. Let m = JBI and write m = ql+ r ,  with 0 5 r < 1. Without loss of generality 

we assume B = (1 ,  . . . , m}. If r # 0,  we let 

Cl = { { I , .  . . , l } ,  { 1 +  1, .  . . ,2 l} , .  . . , { ( q  - l ) l +  1, .  . . , ql},  { I , .  . . , l - r ,  ql+ 1,.  . . , m}} 

and 
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C2 = { { r + l ,  . . . ,  r + l } , { r + l + l ,  . . . ,  r+21} , . . . ,  { r + ( q - l ) l + l , . . . ,  m } ,  

{ I ,  . . . ,  r , r + 2  ,..., l + l } } .  

Otherwise r = 0, and we let 

Cl = { { I , .  . . , l } ,  { 1 +  I , . .  . , 21},. . . , {(q  - 1)l + 1, .  . . , m } } ,  

and 

c2 = { {2 , .  . . , l  + I } ,  { l  + 2, .  . . ,21+ 1 1 , .  . . , { ( q  - 2)1+ 2, .  . . , (q - 1)l + I } ,  

{ I ,  (q  - 1)l + 2,. . . , m}}.  

It is easy to check that in each case, the classes C1 and C2 have the required 

property. 

The next lemma dispenses with the simple case of Theorem 2.3.2 in which the 

poset P is an antichain. 

Lemma 2.3.7 Let P = ( X ,  P )  be a  finite antichain with 1x1 > 4. Then there is a  

k-tournament which represents P for every k satisfying 3  5 k 5 1x1 - 1. 

Proof. Let P = (X, P )  be as in the statement of the lemma, and let X = {v l ,  . . . , v,). 

If k = 3 and 1x1 = 4, then we let T be the following 3-tournament: 

V ( T )  = {v1,v2,v3,v4~, 

and A ( T )  = {(vl,v2,v3),(v2,v1,~4),(~~,~4,~1),(~~,~3,~2)~. 

It is easy to see that T represents P. 

Otherwise, using Lemma 2.3.6 we let C1 and C2 be disjoint classes of ( k  - 1 ) -  

subsets of { v l , .  . . ,v,-1) such that u{S : S E C;}  = { v l , .  . . ,v,-1) for i = 1,2. We 

then construct a k-tournament T as follows. 

Let V ( T )  = X ,  and let 

A ( T )  = { (v ik ,  . . . , v ; ~ )  : 1  5 il 5 . * .  5 ik 5 n  - 1} 

U {(vn,v i l l  ..., v ; ~ - ~ ) :  15 il 5 . - -  5 ikd1 5 n  - 1  and {vil , . . . ,  vikWl}  € C 1 }  

U { ( v ,  V , ~ - ~ , V , ) :  1 5  i l  5 . . -  5 ik-l 5 n -  1 and {v j1  , . . . ,  vik-l}  @C1} .  



CHAPTER 2. RANKING THE PARTICIPANTS IN A I(-TOURNAMENT 32 

We now need to show that T represents P .  To this end, let v;, vj E X ,  with i < j. 
Since P is an antichain we need only show that there are arcs Al and A2 of T such 

that v; precedes vj in Al and vj precedes v; in AS. 

First suppose i,  j # n. Since 1x1 > k, then n - 1 2 k and so there is at least 

one k-subset of {vl, . . . , v,-1) which contains both v; and vj; so there is at least one 

arc of T of the form (v;, , . . . , vj, . . . , v;, . . . , v;, ) in which vj precedes v;. On the other 

hand, since k > 3 there is at  least one k-subset of X which contains all of v;, vj, and 

v,, and so there is at least one arc of T of the form (v,, v;, , . . . , v;, . . . , vj, . . . , v;,-,) 

or (v;, , . . . , v;, . . . , vj, . . . , v;,-,, vn) in which V; precedes vj. 

Now suppose i = n. Then there are S1 E Cl and S2 E C2 such that vj E Sl n S2. 

Then v, precedes vj in the arc of T corresponding to S1 u {v,), and vj precedes v, in 

the arc of T corresponding to S2 U {v,). 

Therefore T represents P, as desired. w 

We now show that if P contains an isolated point, by which we mean a point x E X 

which is incomparable to every other point of X ,  then we can use a (k- 1)-tournament 

which represents P [ X  \ {x)] to construct a k-tournament which represents P. 

Lemma 2.3.8 Let P = (X, P) be a finite poset and suppose there is x E X such that 

xlly for all y E X \  {x). Let 1x1 2 5 and k = 1x1 - 1. If there is a (k- 1)-tournament 

representing P [ X  \ {x)], then there is a k-tournament representing P .  

Proof. Let P = (X, P), x and k be as in the statement of the lemma. Let TI be a 

(k - 1)-tournament representing P [ X  \ {x)] . Without loss of generality we can assume 

that V(T1) = X \ {x). 

By Lemma 2.3.6 there are classes C1 and C2 of (k - 1)-subsets of X \ {x) such that 

u{S : S E C1) = X \ {x) = u{S : S E C2). Let dl and d2 be the sets of arcs of TI 

corresponding to C1 and Cg, respectively. We now construct a k-tournament T which 

represents P .  

Let V(T) = X ,  and let 

A(T) = {(x,ul , .  . . , uk-1) : (211,. . . , uk-1) E dl) 

u {(v l , . . . , vk-1 ,~)  : (v1,...,vk-1) E d 2 )  
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where A  is any arc corresponding to X \ { x )  with the property that u  < v  in P implies 

u  precedes v  in A. 

This defines the k-tournament T ;  it remains to show that T  represents P .  

First, if y E X \ { x ) ,  then x  precedes y in at least one arc of the form 

( x ,u l ,  . . . ,uk-l), where (u l , .  . . ,uk-1) E dl ,  since by the definition of dl there is 

at least one arc of dl containing y .  Similarly there is at least one arc of dz  which 

contains y ,  and so y precedes x  in at least one arc of the form ( v l ,  . . . , vk-1, x ) ,  where 

( v l ,  . . . , vk-1) E A2. Thus for any y E X \ { x ) ,  x  does not always precede y in T  and 

y does not always precede x  in T. 

Now let y ,  z E X \ { x ) .  It is clear from the definition of A ( T )  that if y < z in 

P, then y always precedes z in T .  If y 1 1  z in P, then since T' represents P [ X  \ { x ) ]  

there are arcs Al and A2 of T' such that y precedes z in Al and z precedes y in A2. 

Without loss of generality we assume Al E dl and A2 E A2. Let Al = ( u l ,  . . . , uk-I ) 

and A2 = ( v l , .  . . , ~ k - ~ ) .  Then y precedes z in the arc ( x ,u l , .  . . ,uk-l) of T ,  and z 

precedes y in the arc ( v l , .  . . , v k - ~ ,  x )  of T .  Therefore y always precedes z in T if and 

only if y < z in P. 

It follows that T  represents P .  

We now investigate what we can require of a chain decomposition of a poset P. 

The following lemma shows that if a minimal chain decomposition of P contains the 

smallest possible number of chains of cardinality one, then we have some information 

about the way in which the vertices belonging to chains of cardinality one are related 

(in P) to the remaining elements of X. 

Lemma 2.3.9 Let P = ( X ,  P )  be a finite poset of width n, and let C1, .  . . , Cn be a 

chain decomposition of P such that (C;( = 1 if and only if 1 5 i 5 t ,  and t is least 

over all such decompositions. Let C, = {v; ) ,  1 5 i 5 t .  Then v;llc for every c E C j  

with lCj 1 > 2 and every i E (1, . . . , t ) .  

Proof. Let P and C1,.  . . , Cn be as in the statement of the lemma. 
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Suppose ICj 1 > 2, and v; < c for some i E (1 , .  . . , t )  and c E C j .  Then letting Ci = 

{vi, C )  and C,! = C j  \ { c ) ,  it is easy to see that ( { C l ,  . . . , C,) \ {C;,  C j ) )  u {Ci,  C j )  is a 

set of n chains which partition X and with t - 1 chains of cardinality 1, contradicting 

the minimality of t .  

An analogous argument shows that c + v; for any c E C j  with ICj( > 2 and 

i E { I ,  ..., t } .  

Lemma 2.3.10 below is a technical result, concerning the construction of two par- 

ticular extensions of a poset P ,  which we will need for the proof of Lemma 2.3.11. 

Lemma 2.3.10 Let P = ( X ,  P )  be a finite poset of width n ,  and let C1, .  . . , Cn be a 

chain decomposition of P ,  where lCil = 1 if and only if 1 5 i < t ,  and t is least over 

all such decompositions. Suppose further that 0 < t < n .  Let Ci = { v ; ) ,  1 5 i < t .  

Then there are posets Pl = ( X ,  P I )  and P2 = ( X ,  P2) with the following properties. 

I .  Each of Pl and P2 is an extension of P .  

2. If c E Cn and i E (1 , .  . . , t )  and v;llc in P ,  then v; < c in PI .  

3. If i ,  j E ( 1 , .  . . , t )  and i < j ,  then v; < vj in PI .  

4 .  If c E Cn and i E { I , .  . . , t )  and v;llc in P ,  then c < v; in P2. 

5. If i ,  j E (1,. . . , t )  and i < j ,  then v; > vj in P2. 

Proof. Let P be as in the statement of the lemma. Let 

Sl = { ( v i , c ) : l < i ~ t , c ~ C n a n d v i ~ ~ c i n P )  

U { ( v ; , ~ ; + ~ ) :  1 5  i 5 t -  1 ) ,  and 

S2 = { ( c , v i ) : l < i ~ t , c ~ C , a n d v i ~ ~ c i n  P )  

U { ( ~ ~ + ~ , v ; ) : l < i < t - l ) .  

Notice that S1,  S2 inc(P) .  Let PI = t r ( P  U S1)  and P2 = t r ( P  U 5'2). By Lemma 

2.3.4, in order to show that each of Pl = ( X ,  P I )  and P2 = ( X ,  P2) is a poset it suffices 

to show that neither S1 nor S2 contains a strict alternating cycle. 



CHAPTER 2. RANKING THE PARTICIPANTS IN A K-TOURNAMENT 35 

We distinguish two cases, depending on the cardinality of the chain C, of P. 

Case 1: ICnI > 3. 

First let Z = { ( X I ,  ~ l ) ,  . . . , (xr, y r ) )  L S1. By the definition of S1,  xh E { v l ,  . . . , vt} 

for each h,  1 < h < 1. Now if Z were a strict alternating cycle in S1,  we would have 

yl 5 2 2  in P ,  and so yl < v; in P for some i E (1 ,  . . . , t }. By the minimality of t ,  

vjllv; in P for any j # i with j E (1,. . . $1;  so yl $! { v l , .  . . , v t ) .  Similarly, since t is 

minimal and IC, I 2 3 we have by Lemma 2.3.9 that v; llc for every c E Cn. Therefore 

yl $! C,. But this implies that ( X I ,  y l )  = (v; ,  yl)  $! S1,  contrary to the definition of Z. 

It follows that Z is not a strict alternating cycle. 

The same argument applied to the set S2 shows that S2 also contains no strict 

alternating cycle. 

Case 2: ICnI = 2. 

Again we let Z = { ( x l , y l ) ,  . . . , (xr, yr)) C S1, and observe that xh E { v l , .  . . , v t )  

for each h,  1 < h 5 1. Suppose Z is a strict alternating cycle. Then we have 

yh < xh+l, 1 < h < 1, in P (where the subscripts are reduced modulo l ) ,  and again 

by the minimality of t we know that yh $! { v l ,  . . . , vt} .  Therefore y l ,  . . . , yl E Cn. Let 

Cn = {cl ,  c2 ) ,  with cl < c2 in P.  Since for h = 1, .  . . , Z ,  yh E Cn and yh < xh+1 = v; in 

P ,  then by the minimality of t we must have yh = cl, since otherwise {cl ,  c2, xh+l) = 

{c l ,  c2, v;} is a chain in P (which would mean we could find a chain decomposition of 

P into n - 1 chains). Thus we have yh = cl, 1 5 h 5 I ,  so that yl = . . -  = Yr. 

Now suppose 1 > 2. Then yh 5 xh+l, 1 5 h 5 I ,  together with yl = . . . = Y [ ,  

imply that yl < xh for each h = 1, .  . . ,Z. This contradicts the assumption that Z is a 

strict alternating cycle. Therefore l = 1; but in that case we get yl 5 xl in P which 

contradicts ( x l ,  y l )  E S1. 

Therefore Z is not a strict alternating cycle, so we have shown that S1 contains 

no strict alternating cycle, as desired. The same argument applied to S2 shows that 

S2 contains no strict alternating cycle. 

Thus in either case, each of Pl and P2 is a poset; and it is clear that these posets 

have the required properties. This completes the proof of the lemma. a 

We are now ready to prove Lemma 2.3.11, which provides the induction base for 

the proof of Theorem 2.3.2. 



Lemma 2.3.11 Let P = (X, P) be a finite poset with 1x1 > 4, and let k = 1x1 - 1. 

Then there is a k-tournament which represents P. 

Proof. Let P = (X, P) be given, where 1x1 2 4, and let k = 1x1 - 1. Let n denote 

the width of P .  

Let X = C1 U - U Cn be a chain decomposition of P ,  where lC,l = 1 if and only 

if 1 5 i 5 t ,  and t is least over all such decompositions. 

Let Ci = {vi), 1 5 i 5 t. Without loss of generality we assume that 1 5 
. . . 5 IC,J. 

The proof of the lemma is divided into several cases, depending on the cardinalities 

of the chains C1, . . . , Cn. We begin by observing that if n = 1, then P is itself a chain, 

and so the transitive k-tournament on vertex set X and with underlying linear order 

P represents P .  Thus we assume for the remainder of the proof that n > 1. 

Case 1: t = 0 ,  and n > 1. 

In this case, lCjl 2 2 for all j E (1,.  . . , n ) .  We construct a k-tournament T which 

represents P .  We let V(T) = X.  

To define A(T) we will define a linear extension L(x) of the subposet P [ X  \ XI, for 

each x E X .  We then define the arc A of T corresponding to X \ x from the linear 

extension L(x) in the obvious way: we let u precede v in A if and only if u < v in 

L(x). We therefore need to define the linear extensions L(x) so that if ullv in P then 

there are L(xl) and L(x2) such that u < v in L(xl) and v < u in L(x2). 

To do this, we will use Lemma 2.3.5. For each chain Cj in the decomposition of 

P, let Lj  be a linear extension of P in which c E Cj and ullc in P imply u 5 c in L;. 

For each x E X, let 

L(x) = Lj[X \ X I ,  where x E Cj 

Let the arc of T corresponding to X \ x be (xl , .  . . , xk), where L(x) = {xl, . . . , xk) 

with xl < . < xk. 

This is enough to define T.  We now need to show that T represents P .  

Let u, v E V(T). Since each Lj is a linear extension of P ,  then each L(x) = 

Lj[X \ x] is a linear extension of P[X \ XI. It follows that if u < v in P ,  then u always 

precedes v in T. 
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Now let ullv in P .  Then u and v do not belong to the same chain in the decompo- 

sitionof P. Let u E Cj and v E CI. Since ICjl,lCll 2 2, thereare u 'E Cj  and V ' E  C1 

such that u # u' and v # v'. 

Consider Lj. We have u E Cj and ullv in P, so that v < u in Lj. Since u' E Cj, 

L(ul) is a subposet of Lj; and since u, v E X \ u', then v < u in L(u1). 

Similarly, since v E Cl and ullv in P, then u < v in Ll; and since v' E Cl and 

U , V  E X \v l ,  then u < v in L(vl). 

Therefore, letting Al be the arc of T corresponding to L(ul) and A2 be the arc of 

T corresponding to L(v1), we have that v precedes u in Al and u precedes v in A2. 

Therefore T represents P. This completes the proof of the lemma in Case 1. 

Case 2: t 2 1 and n > t + 1. 

In this case X is partitioned into the chains C1,. . . , Ct, Ct+1,. . . , Cn, where C; = 

{v;) for i E (1, .  . . , t ) ,  and lCjl 2 2 for j E {t  + 1, .  . . , n). Note that since n > t + 1, 

there are at  least two chains Cj of cardinality at least two. 

In this case we will use the same approach as in Case 1. However the chains 

C1,. . . , Ct must be dealt with differently; for although we can certainly find a linear 

extension L; of P in which u < v, whenever ullv; in P ,  we achieve nothing by letting 

L(v;) = L;[X \ v;] because there is no v' E C; with v' # v;. Thus the problem with 

the approach in Case 1 is that, for u E X and v; E uf=,C; with ullv; in P ,  there is 

no guarantee that there are arcs Al and A2 of T such that u precedes v; in Al and v; 

precedes u in AZ. 

We therefore modify the construction given in Case 1 in the following way. We 

select two chains Cn-l and C, of cardinality at least two (this is the reason for the 

assumption that n > t + 1). We define the linear extension Ln-1 of P corresponding 

to Cn-1 in such a way that not only do c E Cn-l, u 4 {vl, . . . , vt) and ullc in P imply 

u < c in LnW1, but also u E uj",,+,Cj and ullv; in P imply u < v; in Ln-1 (1 I: i I: t ) .  

Similarly, we define the linear extension L, of P so that both c E Cn, u 4 {vl , . . . , vt ) 

and u 1 1  c in P imply u < c in L,, and also u E Uy=,+l Cj and ull v; in P imply v; < u 

in L, (1 5 i 5 t). This will be enough to make sure that for any u E Uj",,+,Cj 

such that u11v; in P ,  there will be an arc of T in which v, precedes u, and another in 

which u precedes v;. This still does not take care of the incomparable pairs {v,,, v,,), 
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1 5 il < i2 I t ;  SO we also require that vl < - < vt in L, and vt < . . . < vl in L,-1. 

We now give the precise construction. As before, for each chain C, in the decom- 

position of P we define a linear extension Li of P ;  but the definition of this extension 

will now depend on the particular chain Ci in question. 

If 1 < i < t ,  we let L; be any linear extension of P .  

If t  + 1 5 i 5 n - 2 (if any such i exists) we apply Lemma 2.3.5 to C, and P to 

get a linear extension L; of P in which c E C; and ullc in P imply u < c in L;. 

To define LnF1 and L,, we let PI and P2 be extensions of P defined as in Lemma 

2.3.10. Recall that Pl has the properties 

1. If C E  C, and i E ( 1  ,..., t }  and v;llc i n P ,  then v; < c in P I ,  and 

and that P2 has the properties 

3. If C E  C, and i E ( 1  , . . . ,  t }  and v;llcin P ,  then c < v; in P2, and 

Therefore D, = C, U {v l ,  . . . , vt)  is a chain in each of Pl and P2; in PI we have 

and in P2 we have 

C l  < .. .  < c, < vt < vt-1 < " '  < v1, 

where Cn = {c l , .  . . , c,) and cl < . . . < c, in P. 

We apply Lemma 2.3.5 to the chain Cn-l in P2 to obtain a linear extension Ln-1 

of P2 in which c E C,-l and ullc in P2 imply u 5 c in L,-l. Note that since P is a 

subposet of P2, then Ln-l is also a linear extension of P.  

We apply Lemma 2.3.5 to the chain D, in Pl to obtain a linear extension L, of 

PI (and hence of P )  in which d E D, and ulld in 7'1 imply u < d in L,. 

Having defined the linear extensions L1,.  . . , L, of P ,  we proceed as in Case 1 to 

define the linear extensions L(x) of P [ X  \ x], for each x E X :  

L(x) = Li[X \ X I ,  where x E Ci. 
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Finally, we construct the k-tournament T by letting V(T) = X ,  and defining the 

arc of T corresponding to a k-subset X \ {x) of V(T) to be A = (x17. .  . , xk ) ,  where 

X \ { x ) = { x l ,  ..., x k ) a n d x l  < . - . < x k i n  L(x). 

We now show that T represents P .  

Let u, u E X. As in Case 1, each L; is a linear extension of P ,  and so if u < v in 

P, then u always precedes v in T. 

Now suppose ullv in P .  Then u and v belong to different chains in the decompo- 

sition of P. 

First let u E C;, and v E C;,, where 1 5 il  < i2 < t. Then u = v;, and v = v,,. 

Let xl E C,-l, and x2 E C,. Since L, is a linear extension of PI and v;, < v;, in PI, 

it follows that v;, < v;, in L(xl),  and hence v;, precedes v;, in the corresponding arc 

of T .  On the other hand, Ln-1 is a linear extension of P2, and v,, < v;, in P2, so that 

v;, < v;, in L(x2). Therefore v;, precedes v;, in the corresponding arc of T.  

Thus if u, v E {vl, . . . , vt) there is an arc of T in which u precedes v, and another 

in which v precedes u. 

Now suppose u E C;, 1 < i < t ,  and v E Cj, t + l  < j < n. Then u = v;, and 

either t + 1 < j 5 n - 2 or j E {n - 1,n) .  In either case, lCjl > 2; so we can find 

x E C j \  {v). If t +  15 j 5 n - 2 ,  then sincev E Cj and ullv in P ,  we haveu < v in 

L(x). Suppose j = n - 1. Since u = v; and v;llv in P, and v 6 C,, then also ullv in 

P2; it then follows from the definition of Ln-1 that u < v in L,-l. Therefore u < v in 

L(x), and so u precedes v in the corresponding arc of T. Now let j = n. In this case 

u = v; < v in PI, so that u < v in L, and hence in L(x). Therefore u precedes v in 

the arc of T corresponding to L(x). 

Thus if u E {vl, . . . , vt) and v E u;==,+,Cj there is an arc of T in which u precedes 

v. We now show that under the same conditions, there is an arc of T in which v 

precedes u. 

If v E C,, then v < v, = u in P2; since L,-l is a linear extension of P2, then v 

precedes u in the arc corresponding to L(x) for any x E Cn-l. Otherwise v E U ~ ~ ~ + ~ C ~ ,  

and so u = v;llv in PI. Now u = v; E D,, and L, has the property that d E D, and 

vlld in Pl imply v < d in L,. Therefore v < v; = u in L,. So v precedes u in the arc 

corresponding to L(x), for any x E Cn. 



CHAPTER 2. RANKING THE PARTICIPANTS IN A I(-TOURNAMENT 40 

Therefore if u E { v l ,  . . . , v t )  and v E Uj"=,+, C j  there is an arc of T in which u 

precedes v ,  and an arc of T in which v precedes u. 

Finally, suppose u,  v E U:=t+lCj. Let u E Cj, and v E Cj2,  and let x1 E C,, \ { u )  

and x2 E Cj2 \ { v ) .  Then v < u in L(x l ) ,  and u < v in L(x2) ;  therefore u precedes v 

in the arc of T corresponding to L ( x l )  and v precedes u in the arc of T corrsponding 

to L(x2) .  

Thus whenever ullv in P,  there are arcs Al and A2 of T such that u precedes v in 

Al and v precedes u in Az. It now follows that T represents P.  

This completes the proof of the lemma in Case 2. 

Case 3: t 2 2  and n < t + l .  

We observe that if n = t ,  then P is an antichain, and 1x1 > 4 implies t > 4. 

Therefore by Lemma 2.3.7 there is a k-tournament representing P .  We therefore 

assume that n = t + 1. 

Notice that since n = t + 1 ,  the chain decomposition of P consists of t chains of 

cardinality 1 and exactly one chain Ct+1 of cardinality at  least 2. 

Again we define posets PI and P2 from P ;  in this case we require only that 

vl < - - < vt in PI and vt < vt-1 < . . . < vl in P2. Therefore we let S1 = { (v; ,  v;+l) : 

15 i < t - 1 )  and S2 = { ( V ; + ~ , V ; )  : 1 < i < t - 1 ) .  It is easy to see that neither S1 

nor S2 contains an alternating cycle; so by Lemma 2.3.4 each of Pl = (X, t r (P  U S 1 ) )  

and P2 = ( X ,  t r (P  U S2) )  is a poset. 

Let X I ,  x2 E Ct+l. 

We apply Lemma 2.3.5 to Ct+l in the poset P1 to obtain a linear extension L1 of 

PI (and so of P )  in which c E Ct+1 and vllc in Pl imply v < c in L1. Therefore if 

i E {I , .  . . , t )  and c E Ct+1, and also v,llc in P,  then v; < c in L1. 

Next we apply Lemma 2.3.5 to Ct+1 in P2 to obtain a linear extension L2 of P2 

(and hence of P )  in which c E Ct+1 and vllc in P2 imply v < c in L2. Thus v; < c in 

L2 whenever i E ( 1 , .  . . , t ) ,  c E Ct+1, and v;llc in P .  

Finally we apply Lemma 2.3.5 to Ct+1 in P to obtain a linear extension L of P in 

which c E Ct+l and vllc in P imply c < v in L (notice that here we are using part 2 

of Lemma 2.3.5). 

We now define the linear extensions L(x )  of P [ X  \ x] for each x E X .  
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We let L(xl) = L1[X \ xl], 

L(x2) = L2[X \ x2], 

L(c) = L2[X \ cl, for c E G+l \ {x1,22), 

and L(v;) = L[X \ v;], 1 5 i 5 t .  

Once again we let the arc A of T corresponding to the set X \ {x) be A = (xl, . . . , xk), 

where X \ {x) = i s l , .  . . , xk)  and xl < . . . < xk in L(x). 

This defines the k-tournament T .  We now show that T represents P .  

First, since each of L1, L2 and L is a linear extension of P ,  then it is clear that if 

u < v in P ,  then u always precedes v in T. 

Now let u 11 v in P .  Then without loss of generality, either u, v E {vl , . . . , vt ) or 

u E {vl,.  . . , vt) and v E Ct+l. 

Suppose U, v E {vl,. . . , vt). Let u = vi and v = vj with i < j. Then u < v in L1 

and so in L(xl), while v < u in L2 and so in L(x2). Thus there is an arc of T in which 

u precedes v, and another in which v precedes u. 

Suppose u E {vl,. . . , vt) and v E Ct+1. Then u < v in both L1 and L2, so that 

u < v in at least one of L(xl) and L(x2). Similarly v < u in L, so that v < u in L(vj), 

where vj E {vl, . . . , vt) \ {u) (here we are using the fact that t > 2). Thus again we 

have an arc of T in which u precedes v and another in which v precedes u. 

It follows that T represents P .  This completes the proof of the proposition in Case 

3. 

Case 4: t = 1 and n 5 t + 1. 

Notice that in this case n > t since otherwise P consists of a single chain of 

cardinality one, contradicting IX I 2 4. Therefore we assume that n = t + 1 = 2. So 

the chain decomposition of P consists of one chain C1 = {vl) of cardinality one, and 

one other chain C2 of cardinality at least three. 

If (C21 2 4, then k - 1 2 3 and the transitive (k - 1)-tournament on vertex set C2 

represents C2; SO by Lemma 2.3.8 there is a k-tournament representing P .  
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Otherwise (C2( = 3. Let C2 = {c l ,  c2,  c3) ,  where cl < c2 < c3. Then X = 

{v l ,  c l ,  c2, c3) and the 3-tournament T represents P,  where T is given by: 

This completes the proof of the lemma in Case 4. rn 

Finally, we prove Lemma 2.3.12, which provides the induction step for the proof 

of Theorem 2.3.2. 

Lemma 2.3.12 Let P = ( X ,  P )  be a finite poset, where 1x1 > 5 ,  and let k be an 

integer satisfying 3 5 k 5 1x1 - 2.  If every poset PI = (XI,  PI) with IX'I = 1x1 - 1 

can be represented by a k-tournament, then P can be represented b y  a k-tournament. 

Proof. Let P and k be as in the statement of the lemma, and assume that every 

finite poset P' on 1x1 - 1 vertices can be represented by a k-tournament. 

We let x E X be maximal in P ,  and let P' be the subposet of P induced by 

X \ { x ) .  Thus we have P' = (XI,  PI), where X' = X \ { x )  and u 5 v in P' if and 

only if u, v E XI and u 5 v in P. By assumption there is a k-tournament T' which 

represents PI, and we assume without loss of generality that V(T1)  = XI. Thus for 

any u,  v E XI, u < v in P' if and only if u always precedes v in T'. 

We will construct a k-tournament T ,  with V ( T )  = X ,  such that A(T1) C A(T) ,  

and such that T represents P. Thus to define T we must define an arc corresponding 

to each k-subset of X which contains x. In order for T to represent P ,  we must ensure 

that u always precedes x in T if and only if u < x in P (recall that x is maximal in 

P ) ,  and that if u, v E X' and u < v in P, then u precedes v in any new arcs which 

contain both u and v.  (Note that since T' represents PI, if u, v E X' and u11v in P,  

then there are arcs All A2 of T' such that u   recedes v in Al and v precedes u in A2.) 

Let S = { S  C X : IS] = k and x E S ) .  We will define a set A of arcs such that A 

contains one arc corresponding to each element of S, and we will let A(T)  = A(Tt)uA.  

Let X' = U U I ,  where 

U = {u  E X' : u < x in P )  and 

I = {u E X I :  ullx in P) .  
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Note that U and I are disjoint, and that if u E U and v E I, then by the transitivity 

of P, v gl u in P. 

We divide the remainder of the proof into two cases, depending on the cardinality 

of I .  In each case, we construct the set A of arcs of T so that for every A E A, 

1. If u,v E A and u E U ,  v E I, then u precedes v in A. 

2. If u,v E A and u < v in P ,  then u precedes v in A. 

3. If u E A and u E U then u precedes x in A. 

4. If v E I then there are Al, A2 E A such that x precedes v in Al and v precedes 

x in A2. 

We first let Lu be a linear extension of ?[U U {x)], and Lz be a linear extension 

of ?[I]. Notice that by the definition of U, u < x in Lv for every u E U. 

Case 1: 111 2 k. 

If 111 = k = 3, then since 1x1 2 5, we have IUI 2 1. We let I = {al,a2,as), and 

A = {(a; ,a j ,x) :  1 2  i , j  5 3,i  # j, and a; < a j  in Lz) 

U { ( u , x , a ; ) : l < i 5 3 a n d u ~ U }  

U {(u, u', x) : U ,  U' E U and u < u' in Lu). 

Otherwise either 111 > k or k 2 4, and by Lemma 2.3.6 we can find disjoint classes 

C1 and C2 of (k - 1)-subsets of I such that u{S' : S' E C1) = I = u{S' : S' E C2). For 

each S' E C1, let A = (vl,. . . , vk-1, x) where S' = {vl, . . . , vk-1) and vl < < vk-1 

in Lz, and let A E A. Thus A will be the arc of T corresponding to S' U {x). 

For each S' E C2, let A = (x, vl, . . . , vk-1) where S' = {vl,. . . , vk-1) and vl < 
. . . < vk-1 in Lz, and let A E A. 

This defines the arc A E A for every S E S of the form S = S' U {x) with 

S' E C1 U C2. It also guarantees us an arc in which x precedes v and an arc in which 

v precedes x, for each v E I. 

Now let S E S be such that S\{x) 4 C1UC2. If SnU # 0, let S n U  = {ul,.  . . ,ui), 

where ul < . . < u; in Lu; and if SnI # 0, let SnI = {vl,. . . , vj), where vl < - .  . < v j  
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in LI .  If S n U # 0 and S n I # 0, we let A = (u,, . . . ,u;, X, vl, . . . , vj). If S n U = 0 
but S n I # 0, we let A = (x, vl, . . . , vj). Finally, if S n U # 0 but S n I = 0, we 

let A = (ul,  . . . , u;, x). This defines an arc A E A corresponding to each remaining 

element S of S. We have therefore defined the set A of arcs of T .  The k-tournament 

T is now given by: 

V ( T )  = X ,  

and A(T) = A(T1) U A. 

We now show that T represents P .  

If 111 = k = 3, it is easy to see that T represents P, so we assume that either 

111 > k or k 2 4. 

First, if u < x in P then u E U ;  therefore any k-subset S of X which contains 

both u and x is of the form S = Sf U {x) , where Sf 4 C1 u C2. Consequently u precedes 

x in the arc corresponding to S. Thus u always precedes x in T. On the other hand, 

if vllx in P then v E I, so there are S: E C1 and Si E C2 such that v E SI n Si. 
Therefore v precedes x in the arc corresponding to Si U {x), and x precedes v in the 

arc corresponding to Si U {x). 

Now let wl, w2 E XI = X \ {x). If wlllw2 in P, then also wlllw2 in PI, and so 

there is an arc of TI in which wl precedes w2 and another in which w2 precedes wt. 

Since A(T1) A(T), the same is true of T.  On the other hand, if w1 < w2 in P ,  then 

wl precedes w:! in every arc of A which contains both wl and w2; and since wl < w2 

also in PI, then wl always precedes w2 in TI. It follows that wl always precedes wz 

in T .  

This completes the proof of the lemma in Case 1. 

Case 2: 111 5 k - 1. 

In this case, there is at most one (k - 1)-subset of I .  We must, therefore, modify 

the construction given in Case 1. Once again we want to make sure that for each 

v E I we construct at  least one arc in which v precedes x, and at  least one more in 

which x precedes v. We achieve this in the following way. We distinguish a subset 

of U, whose cardinality is such that for each v E I we have at least one k-subset 

of X consisting of this distinguished subset of U ,  the element x, and a subset of I 
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containing v,  and at least one more k-subset of X containing both x and v. We use 

these k-subsets of X to construct arcs in which v precedes x and x precedes v. The 

precise construct ion is given below. 

First, let m = max{l, k - 1 - 111). We will distinguish a proper m-subset of U ;  

we can do this provided m < IUI. We show in Claim 2.3.13 below that this is so. 

Claim 2.3.13 Let m = max{l, k - 1 - 111). Then IUI > m. 

Proof. First, we have m = 1 if and only if k - 1 - 111 5 1, which is the case if and 

only if 111 2 k - 2. 

If 111 = k - 1, then 

If 111 = k - 3. then 

Finally, if 111 5 k - 3, then 
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Thus we can find elements u;, . . . , u; of U, and we assume that u; < - .  - < u; in 

Lu. We now proceed to define A. 
First let S E S be of the form S = {u;, . . . , u:) U {x) U {vl,. . . , vk-,-I), 

where vl, . . . , vk-,-l E I and vl < . . . < vk-,-l in LI. (A simple calculation 

shows that /I( 2 k - m - 1.) We define the arc of A corresponding to S to be 

A = (u;, . . . , u;, x, vl, . .  . , Vm-k-1). 

Now let S E S be of the form S = {ul, . . . , urn) U {x) U {vl,.  . . , Vk-rn-l) ,  where 

vl, . . . , vrn-k-l are as in the preceding paragraph, and ul,  . . . , urn E U, {ul, . . . ,urn) # 
{u;, . . . , u&) and ul < . . < urn in Lv. Such a set {ul, . . . , urn) exists since IU/ > m. 

We define the arc of A corresponding to S to be A = (ul, . . . , u,, vl, . . . , vrn-k- l ,  x). 

Finally let S E S be such that ISn U( # m. If S ~ I  U # 0, let Sn  U = {ul, . . . , u;); 

a n d i f S n I f 0 , l e t  S n I =  {vl ,..., vj). I f S n U # 0 a n d S n I # 0 ,  thenwe 

define the arc of A corresponding to S by A = (ul,  . . . , u;, vl, . . . , vj, x). If S n U = 0 
but S n I # 0 then we define the arc of A corresponding to S by A = (vl, . . . , vj, x). 

Finally if S n  U # 0 but S n  I = 0, then we define A by A = (ul , .  . . ,u;,x). 

This defines the set A of arcs of T. Once again we have defined T by 

V ( T )  = X, 

and A(T) = A(T1) U A. 

We now show that T represents P. 

First let u E U. Then u < x in P. It is clear from the definition of A that u 

always precedes x in T (note that every arc of T containing both u and x belongs to 

4. 
Now let v E I. Then there are S1, S2 E S such that Sl n U = {u;, . . . , u;) and 

v E S1, and IS2 n UI = m, S2 n U # {u;, . . . ,u:) and v E S2. It is clear from the 

definitions of the elements of A that x precedes v in the arc corresponding to S1, and 

v precedes x in the arc corresponding to S2. It follows that for any y E X \ {x), y < x 

in P if and only if y always precedes x in T. 

Let wl, w2 E X \ {x), where wl < w2 in P. Then wl 5 w2 in PI and so wl always 

precedes w2 in TI. First suppose wl, w2 E U or wl, w2 E I. Then wl precedes w2 

in every arc of A containing both wl and w2, because w1 precedes w2 in Lu or LI, 
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whichever is appropriate. On the other hand, if wl E U and w2 E I then it is clear 

from the definition of A that wl precedes w2 in every arc of A containing both wl and 

w2. Finally recall that by the transitivity of the relation P ,  we cannot have wl E I 

and w2 E U. 
Now let wl,  w2 E X \ {x), where wl 11 w2 in P .  Then will w2 in P', so that there are 

arcs A1, A2 E A(T') such that wl precedes wz in Al and w2 precedes wl in A2. But 

A(T1) 5 A(T)  so that Al,  A2 E A(T) .  

It follows that T represents P .  This completes the proof of the lemma. w 

Theorem 2.3.2 now follows immediately from Lemmas 2.3.11 and 2.3.12. For 

convenience, we restate Theorem 2.3.2 below. 

Theorem 2.3.2 Let P = ( X ,  5 )  be a finite poset, and k an integer satisfying 

3 5 k 5 1x1 - 1. Then there is a k-tournament T with V ( T )  = X such that T 

represents P .  



Chapter 3 

The automorphism group of a 

k-tournament 

The aim of this chapter is to determine those groups which admit a representation 

as the automorphism group of a k-tournament; we consider various restrictions on 

the representation required. To begin, we determine those finite, abstract groups G 

for which there exists a k-tournament whose automorphism group is isomorphic to 

G. This characterisation extends the well-known result of Moon ([16]), which states 

that there is a tournament whose automorphism group is isomorphic to a given finite, 

abstract group G if and only if G has odd order. We then consider the problem 

of finding the 'smallest7 k-tournament whose automorphism group is isomorphic to 

G, where we measure how 'small' a k-tournament is by the number of orbits of its 

automorphism group acting on its vertex set. With this definition of size, our goal is 

to determine which groups admit a regular representation as the automorphism group 

of a k-tournament. For tournaments it was shown in [I] that every group of odd order, 

other than Z3 x Z3, admits a regular representation as the automorphism group of 

a tournament. The construction given relies on the Feit-Thompson theorem, which 

states that every finite group of odd order is solvable. We cannot hope to use a similar 

construction for k-tournaments, however, because the groups which can be represented 

as the automorphism group of a k-tournament are not all solvable for general k 2 3. 

Nevertheless we are able to show that if a group G admits a representation as the 
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automorphism group of a k-tournament and has order larger than k, then there is a 

k-tournament whose automorphism group is semiregular, has two vertex orbits, and 

is isomorphic to G. This extends a result of L. Babai and W. Imrich [I]. Finally, in 

3.3.2 we show that if either G is cyclic, or k > 4 and G has a minimal generating set 

with at least k elements, then G admits a regular representation as the automorphism 

group of a k-tournament. 

3.1 Preliminaries 

We give here some basic lemmas which will be used throughout the chapter. We refer 

the reader to Section 1.1 for the relevant definitions and notation. 

We first state without proof a lemma of L. A. Nowitz and M. E. Watkins ([17]) 

which we will use repeatedly. 

Lemma 3.1.1 Let G be a group, and A a group of permutations of G which contains 

GL (that is, GL _< A 5 Sc). Let H be a generating set for G. If a E A, implies that 

a fixes each element of H ,  then A = GL. 

The following lemmas will also be useful in several constructions. Lemma 3.1.2 

shows that, given a semiregular permutation group acting on a finite set U and an 

integer k > 3 which is relatively prime to the order of this permutation group, we can 

construct a semiregular permutation group acting on the set of k-subsets of a set V, 

where V consists of some number m of disjoint copies of the set U. We will use this 

lemma in constructing k-tournaments whose vertex sets consist of some number m 

of copies of a given finite group G, and whose automorphism groups have m vertex 

orbits. 

Lemma 3.1.2 Let A be a group of permutations of a finite set U ,  IUI > 1,  let m 

be a positive integer, and let k 2 3 be an integer such that gcd((A1, k) = 1. Let 

V = u~ ,u ( ' ) ,  where u(') = {ti(') : u E U ) .  Let 2 be the permutation group acting on 

V defined by A = { E  : a E A} where 5 is the permutation E : u(') I+ ( a (u ) ) ( ' ) .  If A 

acts semiregularly on U then 2 acts semiregularly on (L). 
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Proof. We must show that E(S) = S implies o = L ,  where L is the identity element 

of A, for any k-subset S of V. 

To this end, suppose that h(S) = S. Then for i E { I , .  . . , m), ~ ( s n U ( ~ ) )  = S ~ U ( ~ ) .  

Now E acts on u(') exactly as o acts on U; and o acts semiregularly on U .  Thus the 

restriction of E to ~ ( ' 1 ,  when written as a product of disjoint cycles, consists of cycles 

of some fixed length t, and t is the order of o in A. Since fixes S n u(') (setwise), 

then S n u(') must be the union of the elements of some number of these t-cycles. 

Therefore (S n ~ ( ' 1 )  is a multiple of t. Thus k = IS1 = Czl IS n U(')I is a multiple of 

t .  But JAl is also a multiple of t; thus t = 1, and so o = L as required. 

Letting m = 1 in Lemma 3.1.2 gives us the following corollary. 

Corollary 3.1.3 Let A be a group of permutations of a finite set U, where IUJ > 1, 

and let k 2 3 be an integer such that gcd(lA1, k) = 1. If A acts semiregularly on U, 

then A acts semiregularly on ( y )  . 
Lemma 3.1.4 below establishes a useful property of a minimal generating set H of 

a finite group G. It gives us some information about the distribution of the k-subsets 

of H U {e) among the orbits of GL acting on (:), where k > 3 and is relatively prime 

to the order of G. 

Lemma 3.1.4 Let G be a finite group, and k > 3 an integer, such that gcd(lG1, k) = 

1. Let H be a minimal generating set for G, where the minimality is with respect to 

inclusion, and assume that /HI > k. Let H+ denote the set H U {e). Then no two 

k-subsets of H f  belong to the same orbit of GL acting on (:). 

Proof. Let S = {cl, . . . , ck) and T = {dl,. . . , dk) be distinct k-subsets of H+. We 

want to show that S = gT, g E G, implies g = e. We divide the proof into three 

cases. 

Case 1: e 4 S u T. Let S = {cl, . . . , ck) and T = {dl,. . . , dk), and assume S = gT, 

where g E G. Without loss of generality we can assume that gc; = d; for i = 1, .  . . , k. 

Thusg=dlc, '  = ... = d  kck 

First notice that if c; = d; for some i then g = e, as desired. Thus we assume that 

c; # d;, 1 2  i < k. 
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Now let i # j .  Since d,c;l = djc;l, then d, = d,c;lc,. By the minimality of H ,  

d, E idj ,  C j 7  c;). But d, # dj, and we assumed d, # c;; it then follows that d, = cj. 

Since k > 3, we now have that both dl = c2 and dl = c3. Since c2 # c3, this is the 

desired contradiction, and completes the proof for Case 1. 

Case 2: e E S fl T. Let S = {el c2,. . . , ck) and T = {e, d2,.  . . , dk). Then S = gT  

implies S = {e, ~ 2 , .  . . ,ck) = {g,gd2,. . . ,gdk).  Assume g # e. Since e E g T  \ {g), 

then e = gd; for some i, and so g = df '. We may assume without loss of generality 

that g = d,'. Now d,' # e and d,' E S ,  so again without loss of generality we may 

assume that dg1 = c2. By the minimality of H ,  c2 = d2, and so g = d,' = d2 = c2. 

Similarly, gd3 = d,'d3 E S \ { e ,  c2), and so without loss of generality dy1d3 = c3. 

Equivalently, d2d3 = cs. By the minimality of H ,  c3 E {d2, d3) = {c2, d3). Since 

c2 # c3, c3 = d3. But c3 = d2d3; consequently d2 = e, a contradiction. This completes 

the proof for Case 2. 

Case 3: e E S \ T. In this case, let S = {e, ~ 2 , .  . . , ck) and T = {dl, d2,. . . , dk). Let 

S = gT. Then {e, ~ 2 , .  . . , ck) = {gdl,gd2,. . . ,gdk). In this case g # e since e $ T. 

Since e E gT, without loss of generality e = gdl, and so g = dr l .  

Now c2 E {gd2,. . . , gdk) = {d;ld2,. . . , dyldk), so we may assume that c2 = dy1d2. 

By the minimality of H, c2 E {dl,d2). If c2 = d2, then dl = e and so g = e, a 

contradiction. If c2 = dl, then ci = dl, which contradicts the minimality unless 

c2 = d2; but we have shown that this also leads to a contradiction. This completes 

the proof in Case 3 and so too the proof of the lemma. rn 

3.2 A characterisat ion of those groups admitting 

a representation as the automorphism group 

of a k-tournament, k 2 3 

We show in this section that for a finite group G and an integer k 2 3, there is a k- 

tournament whose automorphism group is isomorphic to G if and only if IG( and k are 

relatively prime. We observe that this is a generalisation of the corresponding result 
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for tournaments ([16]) which says that there is a tournament whose automorphism 

group is isomorphic to the finite group G if and only if IGI is odd, or equivalently, is 

relatively prime to 2. 

We state the main theorem here; Lemma 3.2.2 and Lemma 3.2.3 comprise its 

proof. . 

Theorem 3.2.1 Let G be a jnite group, and k an integer such that k 2 3. There 

is a k-tournament whose automorphism group is isomorphic to G if and only if the 

order of G is relatively prime to k. 

We begin by showing the necessity of the condition. 

Lemma 3.2.2 If T is a k-tournament, then IAut(T)( and k are relatively prime. 

Proof. Let T be a k-tournament (recall that this implies k 2 3) and suppose, towards 

a contradiction, that (Aut(T)I and k share a common factor. Then IAut(T)( and k 

share a common prime factor, say p, and it follows that Aut(T) contains an element a 

of order p. Consider the permutation of V(T) induced by a ,  written in disjoint cycle 

notation. This permutation must consist of pcycles, and possibly some fixed points. 

Construct a k-subset S of V(T) as follows. If a contains at least klp pcycles, we let 

S be the union of the elements of exactly klp pcycles of a .  If a contains n < klp 

pcycles, we let S consist of the elements of these n pcycles together with any k - np 

fixed points of a. 

Now the set S is fixed by a, but it is not fixed pointwise, since any vertex belonging 

to a pcycle is not fixed. If we now let A be the unique arc of T corresponding to S, 

we see that a(A) is not an arc of T ,  because its elements are also the elements of S, 

but now in a different order. This contradicts a E Aut(T). It follows that IAut(T)I 

and k must be relatively prime. 

To show the sufficiency of the condition, we construct, given an integer k 2 3 

and a finite group G satisfying gcd(lG1, k) = 1, a k-tournament whose automorphism 

group is isomorphic to G. In this section we are not concerned with the order of the 

k-tournament we construct, but rather with providing a general construction which 
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is valid for all k 2 3 and all finite groups satisfying gcd(lG1, k) = 1. It will be shown 

in later sections that much smaller k-tournaments can be constructed in many cases. 

The construction below produces a k- tournament whose automorphism group has k 

orbits of vertices. 

Lemma 3.2.3 Let G be a finite group, and k 2 3 an integer, such that gcd(lG1, k) = 

1. Then there is a k-tournament whose automorphism group is isomorphic to G. 

Proof. Let G and k be given, as in the statement of the lemma. Let H be a minimal 

generating set for G. We construct a k-tournament T with the required property. 

We first define V(T). Following Lemma 3.1.2, we let G(') = {g(') : g E G) for 

i E (1,. . . , k), and we let V(T) = U;=,G('). We also let CL = {g : g E G), where 9 is 
the permutation of V(T) given by ?j : x(') I+ (gx)(i). It follows from Lemma 3.1.2 that 
- 

V(T) GL acts semiregularly on ('!TI), and consequently that if S E ( ) and g(S) = S, 
then g = e. 

In defining A(T), we will find it useful to classify the k-subsets of V(T) in the 

following way. What we are interested in is the manner in which a k-subset is dis- 

tributed among the sets G('), . . . , ~ ( ~ 1 .  Given a k-subset S of V(T), we define the 

partition of S to be the multiset {IS n G(;)l : 1 5 i 5 m and IS n G(')I > 0). Notice 

that if Sl and S2 belong to the same orbit of c acting on ('r)), then & and S2 have 

the same partition (but the converse need not hold). 

We partition ('!TI) into several classes, each of which is fixed by cL; the order 

assigned to a k-subset of V(T) will depend on the class to which it belongs. 

Let K: denote the family of k-subsets of V(T) with partition {k), if any such sets 

exist. These are exactly the k-sets all of whose vertices belong to the same set G('). 

The class K: will be empty if and only if [GI < k. 

Let L denote the family of k-subsets of V(T) with partition {A1, . . . , X I ) ,  where 

1 < 1 < I c .  Note that 1 < k implies that X j  > 1 for some j ,  so these are the k-subsets 

containing at least two vertices from some set ~ ( 9 ,  but which are not contained within 

any G('). 

The k-subsets of V(T) which do not belong to either K: or L are those with partition 

{ I l l , .  . . , I ) ,  i.e., those whose elements all belong to distinct sets G('). These k-subsets 
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we will further classify as follows. 

Let S be the family of k-subsets of V(T) of the form {v( ' ) ,  d2) ,  . . . , ~ ( ~ 1 ) .  These 

are the k-subsets which consist of k copies of the same vertex v ,  one from each set 
($4. 

( 1 )  ( 2 )  Let D be the family of k-subsets of V(T) of the form {vl , v2 , . . . , v p ) } ,  where 

vl,  . . . , vk are a11 distinct. Thus D consists of those k-subsets whose vertices all come 

from different sets G(') and all correspond to different elements of G. 

Let N denote the family of k-subsets of V(T) which have partition (1,. . . ,1} and 
( 1 )  ( 2 )  which belong to neither S nor D. These k-subsets have the form {vl , v2 , . . . , v f ) } ,  

where 1 < l{vl , .  . . ,vk}I < k. 

Finally, we distinguish a subclass of D U N .  Let B denote the family of k-subsets 

of V(T) of the form {x ( l ) ,  ~ h ( ~ ) ,  v r ) ,  . . . , v f ) } ,  where h E H and us, .  . . , vk are all 

different. 

We have now partitioned ('!TI) into the classes E C ,  L ,  S ,  D, and N ,  with a 

distinguished subclass B. Notice that each of these classes (including B) is fixed 

(setwise) by GL. 
We first define the arcs corresponding to elements of L U S .  The ordering of the 

sets belonging to L is intended to force all automorphisms of T to map each set G ( ~ )  

to itself. That the ordering we give here really has the desired effect will be shown 

below. The idea is to order each subset belonging to L so that any elements of G(') 

precede any elements of G(j) whenever i  < j. Let 01 , .  . . , Ut be the orbits of GL 
acting on the elements of L. For each orbit Uj, choose a representative Sj E Uj, 

and let G('l), . . . , G('[) be the sets G(') for which Sj n G(') # 0, where il < . . . < il. 
First, arbitrarily order Sj so that all elements of ~ ( ' 1 )  precede all elements of ~ ( ' 2 ) ,  

all elements of ~ ( ' 2 )  precede all elements of ~ ( ' 3 ) ,  and so on, and call the resulting 

arc Aj. Now assign the order g(Aj) to each other element g(Si) of Uj (g E GL). 

Thus L contributes to A(T) the arcs {g(Aj) : E gL and 1 5 j 5 t ) .  Since GL acts 

semiregularly on ('y)), this procedure assigns a unique order to each element of L. 
We now consider the elements of S .  The ordering of these k-subsets of V(T) will 

force all automorphisms of T to be of the form 7 for some permutation T of G. If 

S = {v( ' ) ,  . . . , d k ) )  E S ,  then we let the corresponding arc of T be (v( ' ) ,  . . . , ~ ( ~ 1 ) .  
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The salient point is that the order assigned to S is given by the order of the sets 

G(l) , .  . . , G(k). 

The order assigned to the remaining elements of ('y)) will depend on the cardi- 

nality of H with respect to k. We distinguish two cases. 

Case 1: [HI > k. Let H+ = {ho, hl,.  . . , hlHI),  where ho = e. 

In this case, the class K is not empty. We want to define a k-tournament T* 

with vertex set G, and put a copy of this k-tournament on each set G(') of vertices. 

The only thing we require of T* is that the subtournament of T* induced by the set 

H+ = H U {e} be transitive, with underlying linear order e = ho > hl > - . > hlHI 

Now we know by Lemma 3.1.4 that the k-subsets of H +  all belong to different 

orbits of GL acting on ( y )  . We therefore define A(TS) as follows. Let O be an orbit 

of GL acting on (F). If O contains a k-subset of H+, then let S denote this k-subset; 

if O contains no such element, then arbitrarily select a k-set S E 0. If S C H+,  

say S = {hi,, . . . , h;, }, where il < . . - < ik, we let the corresponding arc of T* be 

A = (h;,, . . . , h;,). Otherwise S = (91,. . .gk} H+ and we order S arbitrarily to 

produce an arc A. Now let ij(A) be the arc corresponding to g(S) for each element 

g(S) of O. 

This procedure will define an arc for each k-subset of G; we have thus de- 
(4 (i) (4 fined the k-tournament T*. Now let S E K, and write S = {v, , v2 , . . . , vk } 

where (vl,v2,. . . ,vk)  E A(T*).  We define the arc of T corresponding to S to be 
( 1 )  (4 $1) 

(v1 l V 2  ,... 1 k - 
It remains to define arcs corresponding to the k-sets belonging to 27 u N .  In order 

to distinguish these sets from the elements of S, the order assigned to them will be 

chosen expressly to conflict with the order of the sets G('), . . . , G(k). In addition we 

will use the arcs corresponding to the elements of B to distinguish the elements of H 

from the remaining elements of G. 

We first order the sets belonging to the distinguished subclass B. If S E B, then 

S has the form S = {I('), ~ h ( ~ ) ,  v?), . . . , vf)}, where h E H.  We assign to S the arc 
(k)  (3) A = (vk , . . . , v3 , ~ h ( ~ ) ,  I(')). 

Finally for any set S E ( D U N )  \ B  we order S so that so that the (unique) element 

of SnG(2) is in the first co-ordinate, the element of s ~ G ( ' )  is in the second co-ordinate, 
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and for each i = 3 , .  . . , k the element of S n G(') is in the ith co-ordinate. Thus a set 
(1) (2) (3) (2) (1) (3) "i' ) {v, , v2 , v3 , . . . , vf)} would be assigned the order (v2 , v, , v3 , . . . , vk . 
This completes the definition of A(T) in Case 1. 

Case 2: I HI < k - 1. Again we let H = { h l ,  . . . , hlHI}  (notice that in this case we 

consider only H and not H+ ). 

In this case, the class IC might or might not be empty, depending on whether 

IGI 2 k. If [GI 2 k, we will again define a k-tournament T* with vertex set G, and 

put a copy of T* on each of the sets G('). However in this case we require of T* only 

that GL < Aut(T8). Thus we partition ( y )  into orbits under the action of GL, select 

a representative element S of each orbit, order S arbitrarily to produce an arc A, and 

assign the order g(A) to each remaining element g(S) of the orbit in question. This 
(4 defines A(T8). Now given an element S E IC, we write S = {v!'), . . . , vk }, where 

(v,,. . . , vk) E A(T8), and assign the order (v!'), . . . , vf)) to S .  

As in Case 1, the ordering assigned to the elements of D U N is designed both to 

distinguish these k-sets from those belonging to S, and to distinguish the elements of 

H from one another. 

We again begin with the subclass B. Let S = {x('), ~ h ( ~ ) ,  vf), . . . , vr )}  E B. 

The order assigned to S will depend on the element h of H .  If h = hl, the arc 
(k) corresponding to S will be (v, , . . . , u p ) ,  ~ h ( ~ ) ,  d l ) ) .  If h = hi, where 2 < i < k - 2, 

(k) (i+l) the arc corresponding to S will be A = (v, , . . . , v , x h 2 ,  v . . . , v x ) .  If 

h = hk-,, the arc corresponding to S will be (xh(?), v r ) ,  . . . ,up) ,  x(')). Thus if h = hi 

then the element of S is in co-ordinate k - i of A, x(l) is in co-ordinate k, and 
(3) the elements v3 , . . . ,up)  are ordered so that vj') precedes vy) if and only if i > j. 

Finally, the elements of (D  U N) \ 13 will be ordered in the same way as in Case 1. 

This completes the definition of A(T) in Case 2. 

It is clear from the definitions that T is indeed a k-tournament, and also that 
- 
GL < Aut(T). It thus remains to show that Aut(T) < EL. This is done through a 

sequence of claims. The first two show that the ordering of the elements of L does 

indeed force all automorphisms of T to map each set G(') to itself. 
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Claim 3.2.4 Let a E Aut(T). Suppose that for some i E (1,. . . , k), Q(G(')) # G(') 

for any r .  Then there is m < i such that a(G(")) # G(') for any r .  

Proof. Suppose a ( ~ ( ' ) )  # G(') for any r. Then there are u('), v(') E G(') and j < I such 

that CY(U(')) E ~ ( j )  and a(v(')) E ~ ( ' 1 .  Since I G ( ' ) I  = IG(~)I, and a ( ~ ( ' ) )  If ~ ( j ) ,  there 

is m # i and w(") E G(") such that a(w(")) E G(j). Now a(G(")) # G(j) because 

a(u(')) E G(j); however, a(G(")) does intersect G(j). Therefore, a(G(")) # G(') for 

any r ,  and it is sufficient to show that m < i. 
Let S be any k-subset of V(T) containing all of u('), v(') and w("). Then S E L. 

Now a ( S )  contains all of a(u(')), a(v(')) and a(w(")), which belong to G(j), G(') and 

G(j), respectively. Therefore a ( S )  E L also. Since j < 1, both a(u(')) and a(w(")) 

precede a(v(')) in the arc of T corresponding to a(S) .  But since a E Aut(T), this 

implies that both u(') and w(") precede v(') in the arc of T corresponding to S .  Since 

S E L, this can be the case only if m < i. rn 

Claim 3.2.5 If a E Aut(T), then a(G(')) = G(') for each i E (1,. . . , k). 

Proof. We show first that a ( ~ ( ' ) )  = G('). By Claim 3.2.4, we know that a(G(')) = 

G(') for some r ,  1 5 r < k. Consider the family of k-subsets of V(T) which contain 

exactly two elements of G('). There are (I:[) ((*;-)lGl) such k-sets, and they all belong 

to L; so in the corresponding arcs of T ,  the two elements of G(') occupy the first two 

positions. Therefore for any such set S ,  the first two positions of a ( S )  are occupied by 

elements of G('), and a ( S )  contains no other elements of G('). So a ( S )  also belongs 

to L. Since the first two positions of a ( S )  contain elements of G('), a ( S )  contains no 

elements of Ur:: G('). Now there are (I:]) ( ( k ; ~ ) l G l )  k-subsets of V(T) which contain 

exactly two elements of G(') and no elements of u::; G('). But a induces a bijection 

on (":TI), and we have shown that each of the (I:/) sets of the first type is 

mapped by a onto one of the (I:[) sets of the second type. This is clearly 

impossible unless r = 1. Thus a ( ~ ( ' ) )  = G(') as desired. 

We now proceed by induction on i to show that a(G(')) = G(') for each i E 

(2 , .  . . , k). Suppose CY(G(~) )  = G(j) for each j with 1 < j < i - 1. Then a maps the 

set u:,; G(j) onto itself. Using this and Claim 3.2.4, we see that a(G(')) = (G(j)) for 
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some j 2 i. But it now follows by the same counting argument as in the preceding 

paragraph that a(G(')) = ~ ( ' 1 .  This proves the claim. rn 

We now want to show that Aut(T) is of the form Aut(T) = 2 for some group A 

of ~ermutations of G. To do this we need to show that for any x ,  y E G, and any a E 

Aut(T), a(x( ' ) )  = y(')  if and only if cu(x(j)) = y ( j )  for any i ,  j E ( 1 , .  . . , k } .  We show 

in Claim 3.2.6 below that this follows from the definitions of the arcs corresponding 

to the elements of S and to those of V U n/. 

Claim 3.2.6 Let a  E Aut(T), x, y E G and i ,  j E { I , .  . . , k}. Then a(x( ' ))  = y(')  if 

and only if a(x( j ) )  = y ( j ) .  

Proof. Let a ,  x ,  y ,  i ,  and j be as in the statement of the claim. Since the k-set S = 

{ x ( l ) ,  x ( ~ ) ,  . . . , x ( ~ ) }  belongs to S ,  the corresponding arc of T is A = ( ~ ( ' 1 ,  x ( ~ ) ,  . . . , ~ ( ~ 1 ) .  
( 1 )  (a-1) ( k )  Now a(x( ' ) )  = y(')  if and only if a ( A )  is of the form (v, , . . . , v ; - ~  , ~ ( ' 1 ,  v;$l), . . . , vk ). 

Since the elements of S are the only sets with partition { 1 , 1 ,  . . . ,1} which are or- 

dered so that co-ordinate 1 contains an element of ~ ( ' 1 ,  1 = 1,  . . . , k, a ( S )  belongs 

to S .  Therefore vj = y for each j = 1 , .  . . , i  - l , i  + 1 , .  . . , k ,  and a(x( j ) )  = y ( j )  as 

required. rn 

Thus Aut(T) is indeed of the form Aut(T) = 2 for some group A of permutations 

of G. Since GL 5 Aut(T), then GL 5 A. So we have GL 5 A 5 SG. Therefore if 

we can show that any automorphism of T which fixes e ( l )  (and hence e(') for each 

i  = 2, . . . , k) also fixes each element of H('), it will follow from Lemma 3.1.1 that 

A = GL and consequently that Aut(T) = cL 1 G. This constitutes the remainder of 

the proof of Lemma 3.2.3. Since by Claim 3.2.6 the group A is a faithful representation 

of Aut ( T ) ,  for the remainder of the proof we work with either A or Aut ( T ) ,  depending 

on which is more convenient. We again distinguish two cases, depending on the 

cardinality of H. 

Case 1: 1 HI 2 k. Recall that in this case the elements of H(') induce a tran- 

sitive subtournament of T with underlying linear order e(') = hg) > hr) > - .  . > 
h(') IHI' and that each element {x ( ' ) ,  ~ h ( ~ ) ,  vg ) ,  . . . , v f ) }  of B corresponds to the arc 

( v f ) ,  . . . , vg) ,  ~ h ( ~ ) ,  I ( ' ) )  of T .  



C H A P T E R  3. T H E  AUTOMORPHISM GROUP OF A K - T O U R N A M E N T  59 

Claim 3.2.7 If a E A u t ( T )  and a ( e )  = e,  then a ( H )  = H .  

Proof. The proof uses the definition of the arcs corresponding to the elements of B. 
Let a E A u t ( T )  and a ( e )  = e. Notice that the arcs corresponding to the elements 

of B are the only arcs of T containing vertices from both G(')  and G(2)  in which an 

element of G(')  is in the kth co-ordinate. Therefore these arcs are fixed, setwise, by 

a. Since a ( e )  = e ,  the arcs corresponding to elements of B and which contain e ( l )  
(3) 2 are also fixed setwise by a. Each of these arcs is of the form ( u p ) ,  . . . , v3 , h( 1, d l ) ) ,  

for some h E H ,  and certainly each element of H ( ~ )  appears in co-ordinate k - 1 in 

at least one of these arcs. This is enough to show that c ~ ( h ( ~ ) )  E H ( ~ ) ,  and so that 

a ( h )  E H ,  for each h E H .  

To complete the proof in Case 1, we show that each automorphism of T which 

fixes e also fixes each element of H .  

Claim 3.2.8 Let a E A u t ( T )  and let a ( e )  = e. Then a ( h )  = h for each h E H .  

Proof. By Claim 3.2.7, a ( H )  = H .  Therefore the restriction of a to H(')  is an 

automorphism of the subtournament of T induced by the elements of ~ ( ' 1 .  Since 

this subtournament is transitive, it has no non-trivial automorphisms, and so the 

restriction of a to H(')  is the identity. Thus a ( h )  = h for each h E H .  

An application of Lemma 3.1.1 completes the proof of Lemma 3.2.3 in Case 1. 

Case 2: IHJ < k. Recall that in this case the arc corresponding to an element 
( 2 )  (3 )  ( k ) }  of B has x(')  in co-ordinate k, and xhj2) in co-ordinate k - i, {x ( ' ) ,  ~ h ;  , U3 , . . . , V k  

where H = { h l ,  . . . , h l H I ) .  We show in Claim 3.2.9 below that this is enough to ensure 

that if a E A u t ( T )  fixes e,  then a fixes each element of H .  

Claim 3.2.9 Let a E A u t ( T ) .  If a ( e )  = e,  then a ( h )  = h for each h E H 

Proof. As in Case 1, the arcs of T corresponding to the elements of B which contain 

e(')  are fixed, setwise, by a. However in this case, for any fixed i E (1, . . . , IHI), the 

arcs corresponding to elements of B containing both e(') and h!l) are the only arcs of 

T in which e(') appears in co-ordinate k and an element of G(2)  appears in co-ordinate 
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( k  - i). These arcs are, therefore, also fixed setwise by a. But since each of these 

arcs has h, in co-ordinate k - i, it follows that a(h;) = hi. Since the choice of i was 

arbitrary, a ( h )  = h for each h E H. 

Again, an application of Lemma 3.1.1 completes the proof of Lemma 3.2.3 in Case 

2. . 
3.3 Minimizing the number of vertex orbits in a 

representation of a finite group G as the au- 

tomorphism of a k-tournament 

In this section we address the question of finding a 'small' k-tournament with auto- 

morphism group isomorphic to G, for a given finite group G satisfying gcd(lG1, k)  = 1. 

We begin by showing that the construction in Lemma 3.2.3 can be improved in this di- 

rection if the group G satisfies )GI > k. In Section 3.3.1 we construct a k-tournament 

with automorphism group isomorphic to G and inducing two orbits of vertices, un- 

der the above conditions; and in Section 3.3.2 we investigate conditions under which 

there is a regular representation of the group G as the automorphism group of a 

k- tournament. 

3.3.1 Two orbits of vertices 

This section contains a construction of a k-tournament on 2)GJ vertices whose auto- 

morphism group is semiregular and is isomorphic to a given finite group G satisfying 

gcd()G), k) = 1 and )GI > k. The automorphism group of the k-tournament we 

construct therefore has two vertex orbits. 

Theorem 3.3.1 Let G be a Jinite group and k 2 3 an integer such that )GI > k and 

gcd(lG1, k) = 1. Then there is a k-tournament T such that Aut(T) acts semiregularly 

on V ( T ) ,  is isomorphic to G, and has two orbits of vertices. 
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Proof. First, let H be a minimal generating set for G (where the minimality is with 

respect to inclusion), and let H = {hl, . . . , hlHI}. 

We let V(T) = G(') U ~ ( ~ 1 ,  where G(') = ig(') : g E G). We let GL act on V(T) as 

in Lemma 3.1.2, so that GL = {g : g E G), where g is the permutation of V(T) given 

by g(x(')) = (gx)(i). We will also want to consider the induced action of G on ('!TI). 

We point out that it follows from Lemma 3.1.2 that if O is an orbit of acting on 

('!TI), then for any S E O we have O = {ij(S) : ij E G}. 
As in the proof of Lemma 3.2.3, to define A(T) we first partition the k-subsets of 

V(T) into five classes. 

Let 

C1 = {S 2 V(T) : IS1 = k, and S = g(R) for some g E G and R V(T) 

satisfying R n G(') = {e(')} and I R n H ( ~ ) (  = mint1 HI, k - I)}, 

C2 = {S 2 V(T) : IS1 = k, and S = g(R) for someg E G and 

R V(T) satisfying R n G(') = {e(')} and e(2) # R and R # C1}, 

C3 = {S 5 V ( T ) :  IS1 = k, and S =ij(R) for someg E G and 

R 2 V(T) satisfying R n G(') = {e(')} and e(2) E R and R @C1}, 

C4 = {S V(T) : IS( = k, and 2 5 (S n G@)( < k}, and 

C5 = {S 5 V(T) : IS/ = k, and S G(') for i = 1 or i = 2). 

Notice that for each i, S E C; if and only if g(S) E C; for all g E G. 

The ordering assigned to a k-subset S of V(T) will depend on the class C; to 

which S belongs; in addition the ordering will be chosen so that if A E A(T) then 

g(A) E A(T) for all ij  E G. 
Let O be an orbit of G acting on ('r)). 
If 6 2 Cl, then we can choose R E O such that R n  G(') = {e(')) and IRn H ( ~ ) I  = 

min{lHI, k - 1). We first order R. If R n G(2) 2 ~ ( ~ 1 ,  order R so that e(') is in the 

first co-ordinate (the ordering of the remaining elements of R is arbitrary). Otherwise, 

I R n H ( ~ )  I < k - 1, and we order R so that e(') is in the first co-ordinate, h12) precedes 

h(l) if 1 < rn, and h12) precedes g(2) if g 6' H .  In either case, let A be the resulting 

arc. For each k-set ij(R) E (3, we let ij(A) be the arc of T corresponding to ij(R). 
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If O C C2, then we can find R E O such that R n G(') = {e(')) and e(2) 6 R. We 

order R so that e( ' )  is in the second co-ordinate (and the ordering of the remaining 

elements of R is arbitrary), and let A be the resulting arc. For each k-set g(R) E O, 

we let g(A) be the arc of T corresponding to g(R). 

If O 2 C3, then we can find R E O such that R n G(') = {e(')) and e(2) E R. We 

order R so that e(') is in the third co-ordinate and e(2) is in the second co-ordinate (and 

again, the ordering of the remaining element(s) of R is arbitrary). We let A be the 

resulting arc, and for each k-set g(R) E O we let g(A) be the arc of T corresponding 

to g(R). 

If O E C4, we arbitrarily select a representative k-set R E 0, and we order R so 

that any elements of G(') precede any elements of G(2). We let A be the resulting arc 

and let g(A) be the arc corresponding to g(R) for each k-set g(R) E O. 

Finally suppose O C5. Recall that each R f O satisfies R C G('), where i = 1 

or i = 2. If there is some R E O such that R C ~ ( ' 1 ,  we order R so that hi') precedes 

h$ whenever 1 < rn. Otherwise we arbitrarily select R E O and order R arbitrarily. 

In either case we let A be the resulting arc, and for each k-set g(R) E O we let g(A) 

be the corresponding arc of T.  

This defines the arc-set A(T) of T.  We now show that Aut(T) 2 G and that there 

are two vertex-orbits of Aut(T) acting on V(T). It is clear from the definition of A(T) 

that G 5 Aut(T); it follows that Aut(T) is transitive on each of G(') and G(2). We 

want to show, therefore, that Aut(T) = c. We begin by showing that each of G(') 

and G ( ~ )  are fixed blocks of Aut(T). 

Definition 3.3.2 We say that an arc A E A(T) is of type i if A corresponds to a 

k-subset belonging to C;, 1 5 i 5 5 .  

Claim 3.3.3  or any u, v E G, degk(u(ll) < degk(v(2)) 

Proof. First, we observe that since Aut(T) is transitive on each of G(') and ~ ( ~ 1 ,  then 

for any u, v E G, degk(u(')) = degk(e(')) and degk(d2)) = degk(e(2)). Thus it suffices 

to show that degk(e(')) < degk(e(2)). 

Notice that since A E A(T) if and only if $(A) E A(T) for every g E G, and since 

GL is transitive on G, then given any orbit O of acting on A(T), and any co-ordinate 
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c, the set of vertices of T which appear in co-ordinate c in some arc belonging to O is 

either G(') or ~ ( ~ 1 .  That is, either {A(c) : A E 0 )  = G(') or {A(c) : A E 0 )  = G(2), 

l < c < k .  

If k > 3, then A(k) E G(') only if A is of type 5, and hence only if A corresponds 

to a k-subset S of ~ ( ' 1 .  Therefore, degk(e(')) is given by the number of orbits of 

acting on A(T) which correspond to k-subsets of ~ ( ' 1 .  Thus 

On the other hand, A(k) E G(') only if A does not correspond to a k-subset of 

G('); therefore degk(e(2)) is given by the number of orbits of acting on A(T) which 

do not correspond to k-subsets of ~ ( ' 1 ,  and so 

It is now easy to see that degk(e(')) < degk(e(2)). 

Now let k = 3. In this case, A(3) E G(') only if A is of type 3 or of type 5. If A 

is of type 3, then A is of the form (9(2), x(l), x(')), where g # x. If A is of type 5 and 

A(3) E ~ ( ' 1 ,  then A corresponds to a k-subset of G('). Therefore, deg3(e(')) is the 

sum of the number of arcs of the form (g(2), e('), e(')), where g # e, and the number 

of orbits of k-subsets of G('). Therefore, 

On the other hand, A(3) E G(2) only if A belongs to an orbit corresponding neither 

to k-subsets of G(') nor to elements of C3. Thus 

Thus deg3(e(2)) > deg3(e(')) if and only if 
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The left side of this last inequality counts the number of 3-subsets of V(T) which 

intersect both G(') and G('). Since [GI 2 k = 3, then for any x E G there are IGI - 1 

3-subsets of the form {x('), x('), y(')) and another (GI - 1 of the form {x('), x ( ~ ) ,  y(')). 

This gives us 2)Gl(lGI - 1) 3-subsets of V ( T )  which intersect both G(') and G('). In 

addition, since ]GI 2 3, there is at least one more 3-subset of the form {x('), y('), d 2 ) ) ,  

where x, y ,  z E G are all different. Therefore, we have ('yl) - 2 (I:') > 21GI(IGI - l), 

as desired, and consequently deg3(e(')) < deg3(e(')). 

Now it is clear that if a is an automorphism of T and a (u)  = v, then degk(u) = 

degk(v). It therefore follows from Claim 3.3.3 that a(G(')) = G('), i = 1,2, for each 

a E Aut(T). So given a E Aut(T) we can write a = (a l ,  a z ) ,  where a; is the 

restriction of a to G('), i = 1,2. We may then consider each of a1 and a 2  as an 

element of SG, the symmetric group on the elements of G. 

Claim 3.3.4 If a = (a l ,a2)  E Aut(T) then, considering al and 0 2  as elements of 

SG, we have al = a2. 

Proof. Suppose a l (x)  = y,  where x, y E G (equivalently, a(x(')) = ~('1).  We want to 

show that a2(x)  = y. 

Consider the arcs of T of type 3. These are the only arcs of T which contain a 

unique element of G(') and which have this element in the third co-ordinate. They are 

therefore fixed (setwise) by all automorphisms of T.  In addition since a(x(')) = y('), 

the set of arcs of type 3 which contain x(') is mapped onto the set of arcs of type 

3 which contain y('). Now all type 3 arcs containing x(') have x ( ~ )  as their second 

co-ordinate, and all type 3 arcs containing y(') have y(') as their second co-ordinate. 

It therefore follows that a(x(')) = y('), and hence that a1 = a 2 .  

We now know that Aut(T) = A, where GL 5 A 5 Sc and 3 = {Z : a E A). We 

therefore want to show that GL = A. TO do this we will use Lemma 3.1.1, so we need 

the following. 
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Claim 3.3.5 If 5 E A u t ( T )  and a ( e )  = e, then a ( h )  = h for each h E H .  

Proof. Let 5 E A u t ( T )  and a ( e )  = e. Then E(e( ' ))  = e( ') .  

Consider the arcs of T of type 1. These are the only arcs of T which contain a 

unique element of G(')  and in which this element is in the first co-ordinate. They are 

therefore fixed setwise by E. Since E(e( ' ))  = e(') ,  the set of type 1 arcs containing e(') 

is fixed by E. We distinguish two cases. 

Case 1: /HI 2 k. 

Since IHI > k, any type 1 arc containing e(') has its k - 1 remaining elements taken 

from ~ ( ~ 1 .  

Choose any h E H .  There is at least one type 1 arc of T containing both e(') and 

h(2) ,  and the image of this arc under E is also of type 1, and also contains e('). Thus 

the image of h(2)  belongs to H ( ~ ) ,  and so a ( h )  E H. Since h is arbitrary we have 

a ( H )  = H .  

Now consider T[H( ' ) ] ,  the subtournament of T induced by H(' )  (note that this 

subtournament exists since IHI > k). The arcs of this subtournament are all of type 

5 ,  and are all ordered so that hl precedes h, if and only if 1 < m. Thus T [ H ( ' ) ]  

is a transitive k-tournament. Since a ( H )  = H ,  the restriction of a to H(')  is an 

automorphism of T [H( ' )] ;  the transitivity of T [H( ' )]  implies that this automorphism 

is the identity automorphism. Therefore a ( h )  = h for all h E H. 

Case 2: ]HI 5 k - 1 .  

Again, the arcs of type 1 which contain e(') are fixed setwise by E. In this case each 

of these arcs contains e( l )  in the first co-ordinate, and the elements of ~ ( ~ 1 ,  in their 

given order, in the next [HI co-ordinates. It follows that each element of H ( ~ )  is fixed 

by E. Thus we have a ( h )  = h for each h E H. 

By Lemma 3.1.1, we have A u t ( T )  = cL Z G. This completes the proof of the 

theorem. 
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3.3.2 Regular representations 

We now consider the problem of finding conditions under which there is a regular 

representation of a finite group G as the automorphism group of a k-tournament. Of 

course a necessary condition is that gcd(lG1, k) = 1. We show that if in addition either 

G is cyclic, or k 2 4 and G has a minimal generating set with at least k elements, then 

there is a regular representation of G as the automorphism group of a k-tournament. 

Definition 3.3.6 Given a group G, we say that a k-tournament T is a k-tournament 

regular representation of G, or a k-TRR of G, if Aut(T) Z G and Aut(T) acts regularly 

on V(T). Equivalently, T is a k-TRR of G if T T' where V(T1) = G and Aut(T1) = 

GL. 

Theorem 3.3.7 Let k 2 3 be an integer and let G be a finite cyclic group satisfying 

gcd(lG1, k) = 1. Then there is a k-TRR of G. 

Proof. Let G 2 Z,, where gcd(n, k) = 1. We construct a k- tournament T which is 

a k-TRR of G; to do this we construct T so that V(T) = G and Aut(T) = GL. For 

convenience we identify G with Zn. 

Let V(T) = G = {0,1,. . . , n - I ) ,  and define a linear order on the elements of G 

so that 0 < 1 < . . < n - 1. We let GL act on the set of k-subsets of G as before, 

so that g + S = {g + s : s E S) for each g E G and S E ( y ) .  As usual we begin by 

partitioning (:) into orbits under the action of GL. 

We now define A(T). For each orbit 0, let S be the lexicographically least element 

of O (with respect to the ordering of G given above). Let S = {vl , . . . , vk) , where 

vl < - .  . < vk. We let the arc of T corresponding to S be A = (vl, . . . , vk), and we let 

i + A be the arc corresponding to i + S for each remaining element i + S of 0 .  This 

defines A(T). 

It is clear from the definition that GL 5 Aut(T) 5 SG. TO show that Aut(T) = GL 

we will use Lemma 3.1.1, and so we need to show that if a E Aut(T) and a(0) = 0, 

then a(1) = 1. 

Notice that if an arc A = (0, v2, . . . , vk) of T has 0 in the first co-ordinate, then A 

corresponds to the lexicographically least element of its orbit, and so 0 < v2 < . < 
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v,. This follows from the fact that each orbit contains exactly one arc with 0 in the 

first co-ordinate. 

For a (k - 1)-subset X = (0, x2,. . . , xk-1) of V(T) with x2 < . . . < xk, let f (X)  

denote the number of arcs of T of the form (O,x2,. . . , xk-~,  s),  where s E V ( T )  \ X. 

From the observation above, it follows that s > xk-1 in each such arc. Also, the 

elements of Aut(T)O preserve the function f ;  that is, if a E Aut(T)o and X is as 

above, then f ( X )  = f (a (X)) .  We will show that f ((0,. . . , k - 2) > f (X)  for any 

X # (0,. . . , k - 21, and hence that a({O,. . . , k - 2)) = (0, .  . . , k - 2) for all a E 

Aut (T)O. 

Claim 3.3.8 f ((0, .  . . k - 2)) > f ( X )  for any X # (0,.  . . , k - 21, where f and X 

are defined as above. 

Proof. First, for any (k- 1)-subset X = {0,x2,. . . , ~ k - ~ )  of V(T) with x2 < . < xk, 

f ( X )  5 l{xk-l + 1 , .  . . , n - I ) /  = n - xk-1 - 1, since this is the number of k-subsets 

of V(T) containing X and one other element s satisfying s > xk-1. Now it is easy to 

check that f({O,. . . , k-2)) = n-k, since (0,.  . . , k-2, k-1) and (0,.  . . , k-2,n-1) 

belong to the same orbit of GL, and all other sets (0,.  . . , k - 2, s) belong to distinct 

orbits. Thus if xk-1 > k - 1, then 

f (X)  5 n - xk-1 - 1 

< n - k  

= f({O , . . . , k - 2 ) ) .  

Now let xk-1 = k - 1, SO that X = {0,x2, - - , xk-1 = k - I ) ,  where x2 < 
< xk-1. In this case, f ( X )  = n - k only if every set of the form X U {s) with 

k - 1 < s < n is the lexicographically least element in its orbit. Since xk-1 = k - 1, 

t h e n X  = (0, ..., k-1)\{y)forsome y E (1, ..., k-2). Consequent lyX~{n-1)  = 

(0, . . . , y - 1, y + 1, . . . , k - 1, n - 1 ) , and this last set is lexicographically greater than 

the set (0,.  . . , y, y + 2 , .  . . , k) = 1 + ( X  U {n - 1)). Thus X U {n - 1) is not the 

lexicographically least element in its orbit, and so the corresponding arc does not have 

0 in the first co-ordinate. 
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Therefore f (X) < n - k = f ((0, .  . . , k - 2)). w 

By Claim 3.3.8, each cr E Aut(T)o fixes (0, .  . . , k - 2) setwise. Now T contains 

the arc (n - 1,0,1, .  . . , k - 2) (this is because the set {0,1,. . . , k - 2, n - 1) belongs 

to the same orbit as the set (0, . . . , k - I) ,  which is the lexicographically least set 

of all and so is ordered (0,. . . , k - 1)); and this is the only arc of T which contains 

(0,. . . , k - 2) and in which 0 is not in the first co-ordinate. Therefore this arc is fixed 

by every element of Aut(T)O. It follows from this that for any a E Aut(T)O, a ( i )  = i 

for each i E (0, 1, . . . , k - 2, n - 1). In particular, a(1) = 1 for each such a .  

We have shown that a E Aut(T)O implies a(1) = 1. It now follows by an applica- 

tion of Lemma 3.1.1 that Aut(T) = GL. w 

We now show that if G has a minimal generating set with at least k elements, and 

if k 2 4, then G has a k-TRR. The proof of this theorem uses Lemma 2.2.14, which 

was proven in Chapter 2, and which states that if T is a transitive k-tournament, and 

i E (2,. . . , k - I) ,  then no vertex of T is the ith co-ordinate of every arc of T which 

contains it. 

Theorem 3.3.9 Let k > 4, and let G be a finite group such that gcd(lG1, k)  = 1. Let 

G have a minimal generating set with at least k elements. Then there is a k-TRR of 

G. 

Proof. Let G and k be as in the statement of the theorem, and let H be a minimal 

generating set for G with I HI 2 k. We define a linear order on the elements of G 

so that H = {hl < . . -  < h lHI ) ,  and G = {e = ho < hl < . . .  < hlHl  < g1~1+1 < 
- < gIGl),  where the ordering of the elements of H and of G \ H is arbitrary. Let 

H+ = H U {e). We let GL act on (7) , where as before gS  = {gs : s E S) .  

We now construct a k-tournament T ,  and later show that T is a k-TRR of G. 

Let V(T) = G. To define A(T) we first partition the set of k-subsets of V(T) into 

orbits under the action of GL. We then classify these orbits into two types. 

Definition 3.3.10 Let O be an orbit of GL acting on (Vy) ) .  We say that O is of 

type 1 if O contains a k-subset of H + ,  and of type 2 if not. 
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The order assigned to a k-subset of V(T) will depend on the type of the orbit to 

which it belongs. 

Let O be of type 1. Then there is S E O such that S C H+,  and by Lemma 3.1.4, S 

is the only k-subset of H+ lying in 0. Let S = {hil, . . . , hik ), where 0 5 il  < . . < ik. 

We let A = (hi,, . . . , h;,) be the arc of T corresponding to S, and we let gA be the 

arc of T corresponding to each other element g S  of O (where g E G). 

Now let O be of type 2, and let S E O be any element of O satisfying e E S 

(note that there are k elements of O which contain e). Let S = {e = sl , s2, . . . , sk) , 
where sl < - - < s k  (in the linear order defined on G). Notice that e is necessarily 

the least element of S, and that S H+ implies that s k  # H+. We want to order S 

so that e is in the first co-ordinate and s k  is in the third; the order of the remaining 

elements of S is immaterial. For definiteness we let the arc of T corresponding to S 

be A = (e = s l ,  s2, sk, s g ,  s4 , .  . . , ~ k - ~ ) .  (Recall that k > 4.) We then let gA be the 

arc of T corresponding to gS, for each remaining element g S  of 0. 

This defines A(T). We begin with an important observation about the arcs of T. 

Since GL acts regularly on G, then for any given orbit O of GL acting on (f), there 

is exactly one arc of T which corresponds to an element of O and has e in the first 

co-ordinate. Therefore, given any arc A of T which has e in the first co-ordinate, 

there are two possibilities. Either A corresponds to an element of an orbit of type 1, 

in which case every element of A belongs to H + ,  or A corresponds to an element of 

an orbit of type 2, in which case the largest element of A is in the third co-ordinate. 

We now show that T is a k-TRR of G. To do this we must show that Aut(T) = GL. 

It is clear from the definition of A(T) that GL 5 Aut(T) 5 Sc. We will again use 

Lemma 3.1.1; therefore, we need to show that if a E Aut(T) and a(e)  = e, then 

a ( h )  = h for each h E H. 

To this end, let a E Aut(T) and suppose that a (e )  = e. Let L = a ( H ) ,  and 

L+ = L U {e) = a(H+) .  From the definition of the arcs belonging to orbits of type 1, 

it is clear that the subtournament of T induced by H+ is transitive, with underlying 

linear order e < hl < . . . < hlHI .  Since a E Aut(T), the subtournament T[L+] of T 

induced by L+ is also transitive, and since a (e )  = e, e is least in the underlying linear 

order of T[L+].  
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We want to show that L  = H .  Towards a contradiction, suppose L  # H ,  and let 

I be the largest element of L ,  with respect to the intial ordering of G. Then 1 4 H .  

We point out that 1 need not be the largest element in the underlying linear order of 

T[L+], since the two orders bear no relation to one another. 

Let E denote the set of arcs which contain e and which correspond to  a k-subset 

of L+. We transform each of these arcs into a (k - 1)-tuple by deleting the first 

co-ordinate (which contains e). Thus the arc ( e ,  v2,. . . , vk) would become the (k - 1)- 

tuple (v2,. . . , vk). Let E* denote the set of (k - 1)-tuples obtained in this way. Then 

/ & * I  = (!ti), and E* can be viewed as the set of arcs of a (k - 1)-tournament T* 

with vertex set L. Since T[L+] is transitive then T* is also transitive; and every 

subtournament of T* is transitive. 

Let S* be a (k - 1)-subset of L = V(T*) such that 1 E S*. Since 1 is the largest 

element of L (with respect to the order of the elements of G), 1 is also the largest 

element of S*. Let A be the arc of T corresponding to the set S = S* U {e). Then 

A E E*, and so has e in the first co-ordinate; but since S H+, A belongs to an orbit 

of type 2. Therefore A has 1, the largest element of S, in the third co-ordinate. Thus 

the arc of T* corresponding to S* has 1 in the second co-ordinate. Since the set S* 

was arbitrary, 1 is in the second co-ordinate of every arc of T* in which it appears. 

But since k - 1 2 3, this contradicts Lemma 2.2.14. 

It follows that L = H, and so that a(H) = H .  It remains to show that a fixes the 

elements of H pointwise. However this follows immediately from the fact that T [HI, 

the subtournament of T induced by H ,  is transitive and so has identity automorphism 

group. An application of Lemma 3.1.1 completes the proof of the theorem. 



Chapter 4 

Regular and almost regular 

k-tournaments 

In this chapter we consider questions related to the degree matrix of a k-tournament. 

In particular, we are interested in the existence of regular and almost regular k- 

tournaments, and in finding explicit constructions of such k-tournaments. Section 4.1 

deals with the existence of regular and almost regular k-tournaments, and in Section 

4.2 we present some elementary constructions of such k-tournaments for some cases. 

Recall that for a vertex v of a k-tournament T ,  the ith degree of v in T, denoted 

deg,(v, T) ,  is the number of arcs of T in which v is the ith co-ordinate, and that the 

degree matrix of T is the (n x k) matrix whose (v, c)-entry is deg,(v, T). Recall also 

that a k-tournament T is regular if there is an integer d such that deg,(v, T)  = d for 

every c E (1,.  . . , k) and every v E V(T), and is almost regular if there is an integer 

d such that deg,(v, T) E {d, d + 1) for every c E (1,. . . , k) and every v E V(T). 

Notice that every regular k-tournament is almost regular; as we will see below, it 

is not true that every almost regular k-tournament is regular. 
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4.1 The existence of regular and almost regular 

k-tournaments 

The purpose of this section is to present necessary and sufficient conditions on integers 

n and'k for the existence of a regular or almost regular k-tournament on n vertices. 

First, let T be a k-tournament on n vertices. If T is regular, then each vertex 

of T appears in each of the k co-ordinates exactly d times, for some integer d. It is 

therefore a simple matter to calculate the value of d. Since there are in total (;) arcs 

in T ,  and each of the n vertices appears in the first co-ordinate d times, then nd = (;), 
and so d = ! (;). This immediately gives us a necessary condition for the existence 

of a regular k-tournament on n vertices: if there does exist a regular k-tournament 

on n vertices, then (;) E 0 (mod n). 

On the other hand, suppose T is almost regular but not regular. Again we have 

(;) arcs of T ,  and n vertices, each of which appears in the first co-ordinate of T in 

either d or d + 1 arcs. It follows that d = 1: (;)I, and so d + 1 = 1: (;)I. Notice that 

if there exists an almost regular but not regular k-tournament on n vertices, then 

(;) $ 0 (mod n). Thus an almost regular k-tournament is regular if and only if 

(;) 0 (mod n). 

The following question was asked by E. Barbut and A. Bialostocki in [3]: 

Given integers n and k such that n > k > 2 and (;) 0 (mod n),  does there 

exist a regular k-tournament on n vertices? 

An affirmative answer was given in [5] for the case when gcd(n, k) is a prime power. 

In Theorem 4.1.2 below, we give an affirmative answer for all n and k satisfying the 

given necessary conditions. In fact we prove a more general result, namely, that an 

almost regular k-tournament exists for all n and k satisfying n > k > 3; as we observed 

above, this almost regular k-tournament is regular if and only if (;) I 0 (mod n). 

This extends the corresponding result for tournaments: A regular tournament on n 

vertices exists if and only if n > 2 and is odd, and an almost regular tournament 

exists for all even n 2 2. 

For the proof of Theorem 4.1.2, we will need some measure of how 'close' an 

arbitrary k-tournament T is to being regular. This is the motivation for the definition 
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below. 

Definition 4.1.1 Let T be a k-tournament on n vertices. For any vertex v of T ,  and 

any co-ordinate c, we define 

mc(v, T )  = 
[;(;)I - degc(v, TI ,  if d e g C ( ~ , ~ )  5 !(;), 
deg,(v, T )  - r$ (;)I otherwise, 

and 

Notice that m(T)  > 0, with equality if and only if T is regular or almost regular, 

depending on n and k. 

Theorem 4.1.2 There exists an almost regular k-tournament on n vertices for all n 

and k satisfying n > k 2 3. In particular, if n > k > 3 and (;) i 0 (mod n),  then 

there exists a regular k-tournament on n vertices. 

Proof. Let n and k be integers satisfying n > k > 3. Our method of proof is the 

following. Given an arbitrary k-tournament T on n vertices, we show that if m(T)  > 0, 

then there is a k-tournament TI on n vertices such that m(T1) < m(T). Since m(T)  

is finite, this is enough to show the existence of a k-tournament T* on n vertices with 

m(T*) = 0, and hence of an almost regular k-tournament on n vertices. 

Let T be an arbitrary k-tournament on n vertices, with V(T) = (1,.  . . , n),  and 

assume that m(T)  > 0. Then there is some vertex x E V(T) and some co-ordinate . . 

Q such that m,(x, T) > 0; therefore either deg, (x, T) < 1: (;)I, or deg, (x, T) > 
. . 

rt(;)i. 
We first assume that deg,(x, T )  > ( 1 .  Since x lies in (;I:) = kt(;) k- 

subsets of (1, .  . . , n),  there is also some co-ordinate c~ c (1,. . . , k) \ {Q) such that 

deg, (x, T )  < ; (;); and if (;) $ 0  (mod n), then deg,(x, T) < 1: (;)I. 
We want to re-order some of the arcs of T so that deg, (x) decreases, deg,, (x)  

increases, and wherever possible all other degrees degc(v) remain unchanged. The 

idea is to select certain arcs of T ,  and in each selected arc A to exchange A(%) and 
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A(cl). We therefore need to select these arcs rather carefully: we would like the 

number of selected arcs in which x is in co-ordinate Q to be exactly one more than 

the number of selected arcs in which it is in co-ordinate cl; and wherever possible we 

would like each other vertex u # x of T to be in co-ordinate Q in as many selected 

arcs as it is in co-ordinate cl. Of course there will necessarily be at least one other 

vertex y # x such that the number of selected arcs in which y is in co-ordinate cl is 

exactly one more than the number of selected arcs in which it is in co-ordinate Q. 

In order to make this selection of arcs, we construct a bipartite graph G with 

vertex set V(G) = Co U C1, where 

C, = {(u, A) : u E V(T), A E A(T) and u = A(c,)), i = 0 , l .  

If we think of T as an (;) x k array, where each row corresponds to an arc of T and 

each column to a co-ordinate, then Co and C1 represent the cbh and cih columns of 

the array. 

We let E(G) = M U H ,  where 

M = {((u, A), (v, A)) : A E A(T), u = A(%) and v = A(cl)), 

and. 

H = {((u, A),  (u, B) )  : A, B E A(T) and A(@) = u = B(c1)). 

This defines the graph G. We note that possibly H = 0. 
Notice that M is a perfect matching in G. We now construct a second matching 

M', which is disjoint from M.  For each u E V(T) such that both deg,(u) > 0 and 

degcl (u) > 0, let H, be the subgraph of G induced by the vertices {(u, A) : u = 

A(@) or u = A(cl)). Then H, is a complete bipartite graph; and if H # 0, the 

subgraph of G induced by the edges of H is the vertex-disjoint union of the subgraphs 

H,. Now let Mu be a maximum matching in H,, for each u for which the subgraph 

H, is defined, and let M' = U, Mu. Again, we allow M' = 0. Notice that Mu (and 

hence MI) saturates V(H,) n C; if and only if 0 < deg,, (u) 5 degcl-, (u), i = 0, l .  

Consider M U MI. Since ((u, A)(v, A)) E M implies that u, v E A and so are 

distinct, then M and M' are disjoint. The graph M U M' is therefore a union of 
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alternating ~ a t h s  and cycles (by this we mean that the edges of these paths and 

cycles alternate between M and MI). Since M is a perfect matching in G, every 

maximal alternating path begins and ends with an edge of M, and so has odd length. 

Now degc,,(x) > ( )  > degcl (x) implies that there is some arc Al of T such 

that x = Al(co) (hence (x, Al) E CO) and (x,Al) is not MI-saturated. Let P be a 

maximal alternating path containing (x, Al), and let (y,  A,) be the terminal vertex of 

this path. Since P has odd length, (y ,  A,) E C1 (so that y = A,(cl)), and (y, A,) is 

not MI-saturated. Thus degcl (y)  > deg, (y). Note that this implies that x # y. 

We now use the path P to construct the new k-tournament TI. Let 

The arcs Al, . . . ,A, are the selected arcs mentioned above. We construct TI from T 

by replacing the arcs A1,. . . ,A, by the arcs A;, . . . ,A:, where A: is obtained from 

A; by exchanging A;(%) and A;(cl ). Thus if A; = (vl , . . . , v, , . . . , vcl , . . . , vk) then 

A: = (vl, . . . , vcl,. . . , v,, . . . , vk); and TI is defined by 

and 

A(T1) = (A(T) \ {Al, . . . , A,}) U {A;, . . . , A:}. 

We claim that m(T1) < m(T). First, for j = 1, .  . . , s  - 1, degci(xj,T1) = 

deg,, (x j, T). Second, deg, (x, TI) = deg, (x, T )  - 1 and degcl (x, TI) = degcl (x, T )  + 1, 

so that m, (x, TI) < m,(x, T )  and mcl (x, TI) 5 mcl (x, T )  (either degcl (x) = I$ (;)I 
and mCl(x,T1) = mcl(x,T), or degcl(x) < [!(;)j and mcl(x,T1) = mcl(x,T) - 1). 

Finally, since deg, (y , T)  < degcl (y , T),  it is easy to check that one of the following 

must hold: 

Thus m(T1) < m(T), as we claimed. 
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Now suppose that m(T) > 0, that x and Q are such that m,(x,T) > 0, but 

that deg,(x) < ( )  (we note here that there might be no pair v ,  c for which 

deg,(v) > ( 1 ) .  Then proceeding as above, we can find a co-ordinate cl such 

that deg, (2.) > r! (:)I. From this point the proof proceeds along the same lines as 

before, but with the roles of Q and cl reversed. Since degcl(x) > deg,(x), we will be 

able to find a maximal alternating path P in M U MI which begins at some vertex 

(x, A) E C1 and ends at  some vertex ( y , B )  E Co, where deg, ( y ) > deg,, ( y ). We 

re-order the selected arcs (i.e., those of P n M) as before, and again m(T1) < m(T).  

The same method can be used to prove the following generalisation of Theorem 

4.1.2. 

Theorem 4.1.3 Let H be a k-uniform hypergraph in which each vertex lies in qk 

hyperedges, for some fixed integer q 2 1 .  Then the hyperedges of H can be oriented so 

that each vertex occupies each of the k positions exactly q times. 

4.2 Explicit constructions of regular and almost 

regular k-tournaments 

In this section we provide an explicit construction of a regular or almost regular 

k-tournament on n vertices, for cases in which the greatest common divisor of n 

and k is prime. If n and k are relatively prime, the construction is very simple; 

for the cases in which gcd(n, k) is prime, the construction is a modification of the 

preceding construction. We begin, therefore, by looking at the case in which n and 

k are relatively prime. The following lemma is a special case of Corollary 3.1.3 from 

Chapter 3. 

Lemma 4.2.1 Let n > k > 3 be such that gcd(n, k) = 1, and let G denote the cyclic 

group of order n. Then GL acts semiregularly on ( y ) .  

Corollary 4.2.2 Let n > k 2 3 be such that gcd(n, k) = 1. Then (;) I 0 (mod n). 
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We now show that if gcd(n, k) = 1, then, using Lemma 4.2.1, it is easy to construct 

a regular k-tournament on n vertices. 

Proposition 4.2.3 Let n and k be integers such that n > k 2 3 and gcd(n, k )  = 1. 

Then there is a regular k-tournament on n vertices. 

Proof. Let G = (Z,, +), the cyclic group of order n. We construct a k-tournament T. 

We let V(T) = {0,1,. . . , n- 1). To define A(T), we let O1,. . . , O m  be the orbits of GL 

acting on (Vy)) = ( y ) ,  where m = ! (;), and we arbitrarily select a representative 

S; E O;, 1 < i < m. We arbitrarily order S; to produce an arc A;, 1 < i < m, and we 

then let A(T) = {g+A;  : g E G and 1 5  i 5 m).  

To show that T is regular, we note that since by Lemma 4.2.1 each orbit 0; has 

cardinality n, then among the arcs corresponding to an orbit 0; each element of V(T) 

appears exactly once in each co-ordinate. It follows that in T ,  each element of V(T) 

appears exactly m times in each of the k co-ordinates, and so T is regular. 

Remark 4.2.4 In Theorem 3.3.7, in Chapter 3, we constructed a k-tournament 

whose automorphism group is regular and is isomorphic to a given cyclic group of 

order relatively prime to k. This k-tournament is necessarily regular; however, since 

its construction is unnecessarily complicated if we are interested only in the regularity 

of the k-tournament constructed (rather than that of its automorphism group, as was 

the case in Chapter 3), we provide the construction given in Proposition 4.2.3 rather 

than simply quoting Theorem 3.3.7. 

We now proceed to consider the construction of a regular k-tournament on n 

vertices if gcd(n, k) is prime. We will use the same idea as in the proof of Proposition 

4.2.3; that is, we will construct a k-tournament whose vertices are the elements of the 

cyclic group of order n, and in defining the arc set of this k-tournament we will once 

again examine the orbits of ( 2 . ) ~  acting on (?), where 2, denotes the cyclic group 

of order n. 

We begin with a lemma concerning the cardinalitites of the orbits of (2.) acting 
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Lemma 4.2.5 Let n > k 2 3, and let (3 be an orbit of (Zn)L acting on (?). Let 

101 = t .  Then n l t  divides k and hence n l t  divides gcd(n, k). Moreover, each element 

of Zn occurs in exactly kt ln elements of (3. 

Proof. Let n,  k, 0, and t be as in the statement of the lemma. It follows immediately 

from the Orbit-Stabilizer Theorem (see the Introduction) that t divides n, so we let 

n = qt. Now let S E 0, where S =  {x1,x2 , . . .  ,xk) and 0 5 xl 5 . . .  5 xk 5 n - 1. 

Since 101 = t ,  then S + t = S,  and so {XI + t ,  x2 + t ,  . . . , xk + t )  = {xl, 2 2 , .  . . ,xk). 

Therefore, xl + t = xr+l for some 1 E (1, . . . , k - 1). Since 0 5 xl 5 . . . 5 xk, 

this implies that 2 2  + t = X1+2 and that in general xi + t = xr+i, 2 5 i 5 k, where 

the subscripts are reduced modulo k. It follows from this that for any integer a ,  

xi + a t  = x,r+;, 1 5 i 5 k, again with subscripts reduced modulo k. In particular, 

x l+n  = xl+qt = xql+l, and since x l +n  = XI, we then have xql+l = XI. Consequently, 

ql - 0 (mod k). Now if a < q, then a t  < n, and so XI  + a t  # XI; consequently, 

x,r+l # xl, and so a1 $ 0 (mod k). Thus we have ql E 0 (mod k), while a1 + 0 

(mod k) for any a < q. It follows that in fact ql = k. Therefore, q = n l t  satisfies qlk, 

as desired; and so n l t  divides gcd(n, k). 

Since n = qt, we can think of Zn as consisting of q 'segments' of length t, each 

segment consisting of t consecutive elements of Zn of the form {at  + 1, a t  +2, .  . . , (a + 
1 - 1 In addition, we know that k = ql, and that for each i = 1,2 , .  . . , k ,  

x; + t = xl+;, where the subscripts are reduced modulo k. Therefore, we can also 

think of S as consisting of q segments of length I, where in this case each segment 

consists of 1 'consecutive' elements of S of the form {xa/+l, x,1+2,. . . , x ( , + ~ ) ~ - ~ ) .  In 

addition, we can obtain the segment { ~ , ~ + l ,  x,l+2,. . . , x ( , + ~ ) ~ - ~ )  of S from the seg- 

ment { x ( , - ~ ~ ~ + ~ ,  ~ ( , - ~ ) 1 + ~ ,  . . . , x,[-~) by adding t to each of its elements; that is, 

{x,[+l, ~,1+2,. ., x(,+I)z-I) = {x(a-1)1+1 + t1 x(a-1)1+2 + t ,  . . - 1  xal-1 + t ) .  

It follows from this last observation that among any t consecutive elements x - 

t + 1 ,x  - t + 2, .  . . , x  of Zn, there are exactly 1 elements of S .  We use this to show 

that each element of Zn occurs in kt ln = 1 elements of (3. 
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For any fixed element x of Zn, and any j E 1 , .  . . , t ,  we have x E S + j if and only 

if x - j E S, where x - j is reduced modulo n. Therefore, 

Thus x occurs in exactly 1 of the sets S, S + 1,. . . , S + t - 1, and so in exactly 1 

elements of 0. 

It follows from Lemma 4.2.5 that if n and k satisfy gcd(n, k) = p, where p is prime, 

then the orbits of ( Z n ) ~  acting on (2) all have cardinality either n or n/p. 

The following lemma shows that, for general n and k, if we have n l t  orbits of 

(Zn)L acting on (:), each of cardinality t ,  then we can order the n sets belonging to 

these orbits so that each element of Zn occurs in each co-ordinate just once. 

Lemma 4.2.6 Let n > k > 3, and suppose 0 1 , .  . . , On/, are orbits of (Zn)L acting 

on (2) , such that 10il = t for each i = 1 , .  . . , n l t .  Then each element of U:L; 0, can 

be ordered so that, among the n resulting k-tuples, each element of Zn occurs exactly 

once in each of the k co-ordinates. 

Proof. Let n > k > 3 and let O1,. . . , OnIt be as in the statement of the lemma. By 

Lemma 4.2.5, each element of Zn occurs in exactly kt ln > 1 elements of O;, for each 

i = 1 , .  . . , n / t .  

We begin by ordering the n k-sets belonging to UO;, in a way which will not 

necessarily satisfy the requirements of the lemma. For each i E (1, .  . . , n/t) ,  we select 

an element S; of 0; such that S, contains the element (i - l )(n/ t)  + 1 of 2,. If 

Si = {xl , .  . . , xk) ,  where 0 5 xl 5 5 xk 5 n and (i - l ) (n / t )  + 1 = xj, then 

we order S; to produce the k-tuple A; = (xj, xj+l, . . . , ~ k ,  XI ,  . . . , xj-1). Therefore, 

for each i = 1 , .  . . , nl t ,  A; has the element (i  - l ) (n / t )  + 1 in the first co-ordinate. 

Now for each remaining element S; + m (1 5 m I t - 1) of O;, we let the k-tuple 

corresponding to S; + m be (xj  + m, xj+l + m, . . . , xk + m, XI  + m, . . . , xj-1 + m). 

This defines an ordering of each k-set belonging to U O;, and these orderings have 

the property that for each i, the elements of Zn which appear in the first co-ordinate 
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of some element of 0; are exactly (i - l ) (n / t )+  1, (i - l ) (n / t )+2 , .  . . , i (n/ t )  - 1, i (n/ t ) .  

It fdlows that among all n k-tuples, each element of Zn occurs exactly once in the 

first co-ordinate. 

Notice also that, as in the proof of Lemma 4.2.5, a typical k-tuple has the form 

where 1 = ktln and the entries are reduced modulo n. It follows that an element x of 

Zn occurs in co-ordinate c of A if and only if the element x + a t  occurs in co-ordinate 

c + a l  of A, 1 < a < nl t .  

Now suppose that among the n k-tuples we defined above, some element x of Zn 

occurs more than once in some co-ordinate c. From the definition of these k-tuples, 

it is clear that x occurs at most once in co-ordinate c in each orbit 0 ; .  Therefore, the 

k-tuples in which x occurs in co-ordinate c all belong to different orbits. Let r denote 

the number of k-tuples in which x occurs in co-ordinate c. 

It is also clear from the definition of the k-tuples that in any particular orbit 

0;, the 1 co-ordinates in which x appears are consecutive modulo k (here we mean 

cyclically, i.e., we consider k and 1 to be consecutive). Therefore, if x appears in co- 

ordinate c in some k-tuple belonging to o,, then x appears in none of the co-ordinates 

c + a l ,  1 5 a < nl t ,  in 0;. Now there are n l t  co-ordinates of the form c + a l ,  where 

0 5 a < nl t ,  and n l t  orbits 0;; since x occurs in co-ordinate c in r orbits, there are 

at least r - 1 co-ordinates of the form c+ a l ,  1 5 a < nl t ,  in which x does not appear 

in any of the n l t  orbits. There are, therefore, at least r - 1 co-ordinates of the form 

c + a l ,  1 < a < nl t ,  in which x does not appear among our n k-tuples. 

Now consider any k-tuple A in which x occurs in co-ordinate c.  The co-ordinates 

c + 1, c + 21,. . . , c + (n l t  - 1)l of A are occupied by the elements x + t ,  x + 2t,. . . , x + 
(n l t  - l ) t ,  respectively. Let c + /3l be any co-ordinate in which x does not appear in 

any of the n k-tuples. Since x does not appear in co-ordinate c + pl, then x + Pt (the 

current occupant of co-ordinate c + /3l in A) does not occur in co-ordinate c + 2/31, 

and in general x + a t  does not occur in co-ordinate c + ( a  + P)l, 1 5 a < nl t  - 1. We 

therefore re-order the k-tuple A as follows. We define a new k-tuple A' by 
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if j $! { c + a l :  0 < a < nl t ) ,  
A1(j) = { 1 ,  otherwise, 

and we replace the k-tuple A with the new k-tuple A'. The effect of this replacement 

is to reduce the number of times the element x + a t  occurs in co-ordinate c+  a l  from r 

to r - 1, and to increase the number of times the element x + a t  occurs in co-ordinate 

c + (a + p)l  from 0 to 1, for each a E {O,l,. . . , n / t  - 1). It is now clear that if we 

repeat this procedure r - 2 more times, each time selecting a k-tuple in which x occurs 

in co-ordinate c and a co-ordinate of the form c + ,Bl in which x does not occur, we 

will obtain a set of k-tuples in which x + a t  occurs in co-ordinate c  + yl exactly once, 

0 < a , y  < nit. 
We now look for some new vertex y and some new co-ordinate d such that y occurs 

in co-ordinate d more than once among the current set of n k-tuples. If no such vertex 

and co-ordinate exist, then the current set of k-tuples has the desired property. If 

such a vertex and co-ordinate do exist, then either y $ {x, x + t, . . . , x + (n l t  - 1)t) or 

d $ {c, C +  I, . . . , C +  (n/t  - 1)1), or 50th. We now repeat the entire procedure, thereby 

obtaining a new set of k-tuples with the property that each element y + a t  occurs in 

co-ordinate d + yl exactly once, 0 5 a < nl t .  Observe that this new set of k-tuples 

will still have the property that each element of the form x + a t  occurs exactly once 

in each co-ordinate c + a l ,  0 5 a < nit. 
Since there are only t(1 - 1) pairs (x, c) for which some element x + a t  might 

occur more than once in a co-ordinate c + ,Bl in our original set of k-tuples, we will 

need to repeat the above procedure at most t(1- 1) times in total before obtaining 

a set of k-tuples with the property that each element of 2, occurs in each of the k 

co-ordinates exactly once. 

We are now ready to construct an almost regular k-tournament on n vertices for 

any n and k satisfying n 2 k > 3 and gcd(n, k )  = p, where p is prime. This gives us 

an alternate proof of Theorem 4.1.2 for the special case when gcd(n, k)  is prime. 

Theorem 4.2.7 Let n > k > 3 and let gcd(n, k) = p, where p is prime. Then there 

is an almost regular k-tounament on n vertices. 
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Proof. Let n and k be as in the statement of the theorem, and let 01 , .  . . ,0, be 

the orbits of (Zn)L acting on (?) which have cardinality less than n. As observed 

following the proof of Lemma 4.2.5, (Oil = n lp  for each i = 1,2, .  . . , m. Let m = 

qp + r, where 0 5 r < p. We first partition O1,. . . ,Om into q classes of p orbits each 

and, if r > 0, one class of r orbits. We then apply Lemma 4.2.6 to each of the q classes 

containing p orbits, so that among the resulting qn k-tuples each element of Z, occurs 

in each co-ordinate exactly q times. Finally, if r > 0 we order the k-sets belonging 

to the last class of orbits so that each element of Zn occurs in each co-ordinate at 

most once. It is easy to see that the method given in the proof of Lemma 4.2.6 can 

be modified to do this. 

We also apply Lemma 4.2.6 to each orbit of ( 2 , ) ~  acting on (?) of cardinality 

n, to produce, for each such orbit, n k-tuples in which each element of Zn occurs in 

each co-ordinate exactly once. 

We now define the required k-tournament T by letting V(T) = Zn, and letting 

A(T) be the set of (;) k-tuples obtained above. If r = 0 then T is regular, and if 

r > 0, then T is almost regular. 
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