
CONCURRENT ACCESS TO SPATIAL DATA 

Vincent T.Y. Ng 

Master of Mathematics University of Waterloo, 1986 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  DEGREE O F  

DOCTOR OF PHILOSOPHY 

in the School 

of 

Computing Science 

@ Vincent T.Y. Ng 1994 

SIMON FRASER UNIVERSITY 

August 1994 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Vincent T.Y. Ng 

Doctor of Philosophy 

Concurrent Access t o  Spatial Data  

Examining Committee: Dr. J.G. Peters 

Chair 

c- 
/ 

/ 

Dr. T. d m e d s .  Semior Supervisor 

Dr. M.S. Atkins 

,' 6 - 
Dr. M. ~ a m 6 , G t e r n a l  Examiner 

Date Approved: 



SIMON FRASER UNIVERSITY 

PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser University the right to lend my thesis, project 
or extended essay (the title of which is shown below) to users of the Simon 
Fraser University Library, and to make partial or single copies only for such 
users or in response to a request from the library of any other university, or 
other educational institution, on its own behalf or for one of its users. I further 
agree that permission for multiple copying of this work for scholarly purposes 
may be granted by me or the Dean of Graduate Studies. It is understood that 
copying or publication of this work for financial gain shall not be allowed 
without my written permission. 

Title of Thesis/Project/Extended Essay 

Concurrent Access to Spatial Data. 

Author: 

Vincent Ng 

(name) 

August 17,1994 

(date) 



Abstract 

Spatial data consist of points, lines, rectangles, polygons, and volumes, etc. The structure 

by means of which to  organize and access such data is important to  the performance of 

database systems which support applications in computer vision, computer-aided design, 

solid modeling, geographic information system and computational geometry, etc. In the 

past, little work has been done in developing concurrency control algorithms to  access spatial 

data. 

The thesis investigates concurrent operations on spatial index structures. We build our 

work on existing spatial data structures and concurrency control algorithms. Some of the 

concurrency control algorithms we designed has been implemented to  demonstrate their 

effectiveness. 

We first study known index structures for point data, B+-tree,  R-tree,  and K-D-B 

tree. To overcome some drawbacks of the existing index structures, we propose a new 

index structure, called quad-B tree, which combines the advantages of the B-tree and the 

quadtree. We control concurrent access to  these index structures, using the lock-coupling 

or link technique. 

We then study two index structures for rectangular data, R- t ree  and quad -R  tree .  

We discuss different approaches to  supporting concurrent operations on an R-tree, namely, 

the simple, dock-modify, lock-coupling , give-up and the link approaches. We compare the 

search performance of the first three approaches based on their implementations. The link 

technique is adopted for the R-tree to  support recovery after system failures. Finally, we 

use the quad-R tree to  solve the problem of ordering amongst spatial objects. 
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Chapter 1 

Introduction 

1.1 SpatialData 

During the last decade, the research and development in databases have moved into non- 

traditional applications, such as CAD, VLSI (very large-scale integration), multi-media, 

vision, computer-aided design, solid modeling, geographic information system (GIs) and 

computational geometry. In these non-standard applications, large sets of spatial objects 

with geometric attributes have to be stored. There are distinct differences between these 

applications and conventional databases that are developed for inventory, accounting and 

other commercial systems. 

Spatial data consist of points, lines, rectangles, polygons, and volumes, etc. Operations 

supported for geometric manipulations (e.g., rotation and translation of objects) and spa- 

tial queries (e.g., intersection and containment) are much harder t o  implement than the 

operations in conventional database systems. 

A typical GIs contains a database storing a collection of data objects of multi-dimensions. 

These spatial objects intersect with, are neighbor of, or enclose other objects. Typical 

database queries refer to  a spatially clustered subset of the set of objects. For example, 

a query can be: "Find all the towns within the given ranges of longitudes and latitudes." 

Queries of this type are called window queries. A window query selects spatial objects 

which overlap with the given query window. An auxiliary index structure for accessing 

spatial data is particularly important to  the performance of database systems. One of the 

major difficulties in such an index structure is to  organize spatial objects linearly. Spatial 

index structures, which pre-process and store spatial relationships among spatial objects for 
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future queries, do not always have good search performance. 

In order to efficiently find spatial objects by a line parallel to  one of the coordinate 

axes, spatial indices which utilize spatial information have been developed. Even though 

there has been a lot of work on the index structures for spatial data, there is little work 

on concurrency control of accesses to  them. While accessing an index structure, the whole 

index structure is commonly locked. This limits access to  the index information to  one 

process at a time. 

1.2 Objectivesofthe Thesis 

In order to  allow concurrent operations, this thesis develops algorithms and protocols based 

on existing spatial data structures and concurrency control protocols. Some of them will 

be implemented to  demonstrate their effectiveness. To study the problem in as simple a 

framework as possible, our model is limited to  2-dimensional objects, but most results can 

be extended to  higher dimensions along the same principles. 

We first consider index structures for 2-dimensional point data. The first point index 

structure we study is the B+-tree.  The second point index structure is the R-tree which 

allows bounding rectangles of spatial objects to  overlap. An R-tree is a height-balanced tree 

similar to  a B+-tree, with the records in its leaf nodes containing references t o  data objects. 

Bounding rectangles of entries within the same node are allowed to  overlap. The K-D-B 

tree is the third point index structure that we will discuss. A K-D-B tree partitions the 

search space in a manner similar to  a kd-tree.  In a kd-tree, a given a search window is 

partitioned into two smaller windows based on the comparison with some element of one of 

the domains of the coordinates of data points. For the above data structures, we will adopt 

the lock-coupling approach to support concurrent access. In order to  gain a better insight, 

we will implement some of the algorithms. We will develop a new point index structure, 

called the Quad-B tree. It is a B+-tree structure which stored non-empty quadrants, 

which are linearly ordered by some encoding scheme. We will use the link approach and the 

lock-coupling approach in accessing this data structure. 

We study two index data structures for rectangular data. The first data structure 

is the R-tree. We use five different approaches to  support concurrent operations on an 

R-tree. They are the simple approach, lock-modify approach, lock-coupling approach, give- 

up approach and the link approach. We shall compare these approaches with respect to 
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implementation difficulties and locking requirements. We will implement the first three 

approaches to  evaluate their search performance. We will also adopt the link approach to  

the R-tree to support recovery after system failures. We will then introduce the Quad-R 

t r e e  which attempts to  solve the problem of ordering spatial objects. 

1.3 Overview of the Thesis 

In Chapter 2, we review the literature on index structures for point and rectangular data. 

We start with the discussion of the most popular data structures to index point objects. We 

then move on to present the three major classes of representations for rectangular objects. 

We will also discuss the three different approaches to extend a data structure for concurrent 

operations. Finally, we comment on the Parallel-R tree and the  tree, whieh have 

been proposed recently. 

In Chapter 3, we will present a GIs database framework on which our study is based. 

We also describe the types of operations for the index structures we studied. Before the end 

of the chapter, we discuss the different types of locks used on the nodes of index structures 

and introduce some notations to simplify the presentations of algorithms in later chapters. 

In Chapter 4, we study concurrent operations on different point data structures. We will 

show how to use the lock-coupling technique together with the Gray code mapping to  index 

point data by the B+-tree structure. Then, we adopt the same concurrency approach 

to  the R-tree. To reduce the number of multiple search paths, we propose the K-D-B 

tree together with forced splitting to  avoid recursive splits. Finally, we develop a new data 

structure, called Quad-B tree, to  support concurrent access by means of the link technique. 

In Chapter 5, we continue our study of spatial data but change the focus to  the rectan- 

gular data. We extend the R- t ree  with different concurrency approaches, i.e., t o  make it 

amenable to  simple, lock-modify, lock-coupling, give-up and link approaches. We also discuss 

the advantages of and problems with the different approaches. The Quad-R tree is the 

final rectangular index structure that we discuss. This tree utilizes a transformation to  

represent non-empty quadtrees by a B+-tree which enables us to  adopt the link approach 

for concurrent operations. 

In Chapter 6, we discuss and compare the performance of the different spatial data 

structures in the previous two chapters. For the point index structures, we implement the 

algorithms for the Bt-tree, the R-tree and the K-D-B tree in a distributed programming 
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language called SR. For the rectangular index structures, we implement the algorithms 

for the R-tree with the simple, modify-lock and lock-coupling approaches. We will present 

the program modules and the simulation setup for the index structures. The results are 

preliminary but they reflect the trade-offs between different algorithms. 

Finally, in Chapter 7, we summarize our contributions and suggest possible future ex- 

tensions to  our work. 



Chapter 2 

Review of the Literature 

In this chapter, we briefly review different index structures for the point and rectangular 

spatial data. We will discuss three concurrency control approaches: the link technique, the 

lock-coupling approach and the give-up approach. These approaches are adopted to  support 

concurrent operations. Some recent research, such as the Parallel R-tree and  tree, will 

also be described. 

2.1 Point Data 

Multidimensional point data can be represented in a variety of ways. The representation 

chosen for a specific task is heavily influenced by the types of operations to  be performed 

on the data. In [Sam82], three major categories of structures are discussed according to  

different search techniques used. The first category represents structures which linearize 

point data into a sequential list. The second category includes structures which store data 

according to  their embedding space. Examples are the grid method, EXCELL[Tam81], and 

MX quadtree[AbW88]. The third category includes structures which store data according to  

their spatial locations, such as grid file[NHS84], dynamically quantized pyramid[Slo81], point 

quadtree, kd-tree[Ben75], and adaptive kd-tree [MHN84]. There are some hybrid structures 

such as PR quadtree and PR kd-tree[Sam82] which have features of both the second and 

the third categories. Figure 2.1 shows the evolution of the point index structures from top 

to  bottom. 

When point data are organized into a sequential list, in most cases, spatial information 

is not well utilized and the worst performance of a search operation is O(n), where n is the 
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Figure 2.1: Point data structures 

number of points. In general, there is no good way of ordering the data points linearly while 

preserving spatial proximity as much as possible. Some transformation techniques [Hin85, 

SeK881 have been suggested which associate data point locations with scaler values so that 

the resulting values can be stored in a B-tree. One of the most popular transformations is 

bit-interleaving [OrM84] which takes the bits of the binary representations of the coordinates 

alternately to  obtain a scaler value (see Section 4.1). In [Fal86], Faloutous has concluded 

that some pre- and post-transformation using the Gray code before bit-interleaving can lead 

to "improved performance." 

The index structures in the second category organize the data by partitioning the data 

space into a fixed number of cells. The grid method divides the space evenly and the 

Dynamically Quantized Pyramid divides the space with varying sizes of cells. The grid 

method can be refined to  allow varying number of cells. If the cell boundaries are fixed, it is 

the EXCELL structure. All of the above structures are generally represented as arrays. To 

improve the search performance, the EXCELL structure can be further refined to either MX 

quadtree or PR quadtree by allowing the partitioning of a cell into smaller sub-cells without 

affecting its neighbor cells. Data can now be organized as hierarchical structures. The PR 

kd-tree is a further refinement of the PR quadtree by allowing a cell to  be decomposed into 

two sub-cells only and the partitioning at different levels cycle through the attributes in the 

data. 
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Figure 2.2: A Grid file with different cell sizes. 
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Figure 2.3: A point quadtree of 4 levels. 

The grid file structure (see Figure 2.2) belongs to  the third category. It is similar to  the 

EXCELL structure except that cell boundaries are not fixed. Analogous to  the MX quadtree, 

the point quadtree is a refinement of the grid file structure. The kd-tree is an improvement 

upon the point quadtree (see Figure 2.3) obtained by allowing flexible partitioning lines. The 

adaptive kd-tree refines the splitting of nodes in a kd-tree further by choosing a coordinate 

whose values from the points has the greatest spread. Thus, it is not require to  cycle through 

the attributes as is the case with the kd-tree. 

All the point data structures described above are generally limited to static organizations 

and it is difficult to  support insertions and deletions on them, which makes incremental 

reorganization costly at best. Moreover, search paths for data accesses tend to  be long. 
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Figure 2.4: A K-D-B tree 

A bucket approach has been adopted for the kd-tree which then was developed into the 

K-D-B tree[Rob81] (see Figure 2.4). The K-D-B tree combines the properties of a kd-tree 

and B-tree and it was expected to  have the search efficiency of a balanced kd-tree and the 

storage efficiency of a B-tree. The hB-tree [LoSSO] is a variant of the K-D-B tree, which 

attempts to  improve storage utilization and allows better search and insert performance. 

2.2 Rectangular Data 

Rectangles are often used as approximations of shapes for which they are used as the min- 

imum bounding boxes. They find use in GIs applications as well as VLSI design rule 

checking. In cartographic applications, rectangles are used to give a rough indication of 

the extent of an object. They can be the bounding boxes of lakes, forests, hills, etc. In 

VLSI, they present chip components and are used in the analysis of their proper positioning. 

Therefore, a geometric object of an arbitrary shape is usually characterized by its bounding 

box which can be used as a geometric key. In this thesis, we represent any 2-d object by its 

minimum bounding rectangle (MBR) and use it as the access index key. 

In [Sam88], Samet describes three general classes of methods to  represent a large col- 

lection of rectangles. The first class contains the data structures adopting the plane-sweep 

methods. Examples of the first class data structures are the segment trees [Ben771 (see 

Figure 2.5), interval trees[Ede80] and priority trees[McC85]. In Figure 2.5, each leaf node of 

the tree is an end point of the y-interval of the rectangle. Each node carries a set of labels to 

represent the inclusion of a y-interval and a node at a higher level includes all intervals of its 

descendants. The y-interval of rectangle A spans from the leftmost leaf node to  the second 
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Figure 2.5: A segment tree showing the y-intervals of rectangles A and B. 

rightmost leaf node. This class of methods generally use two passes. The first pass sorts 

the data along one dimension, and the second pass sweeps a scan line through the sorted 

data. Rectangles are represented by the intervals that form their boundaries. However, 

the methods have a poor query performance when updating of rectangles occurs frequently. 

The first problem with this approach is that it requires the endpoints of all rectangles to  be 

known a priori and the points to  be sorted before the sweep. A more serious problem is that 

the sweep pass will usually be re-executed, since there is no data structure corresponding 

to  it. 

The second class consists of the point-based methods which transform rectangles to  higher 

dimensional points. Rectangles can be parameterized with location parameters or extension 

parameters [HiN83]. Location parameters specify the coordinates of points such as the cor- 

ners, whereas extension parameters specify size, such as the width and length of a rectangle. 

The choice of representation affects queries differently. Proximity queries involving point 

and rectangular objects are easy to  implement. Their answers are conic-shaped regions in 

the four-dimensional space. However, because the representation is not area oriented, two 

rectangles may be very close or overlap, yet the Euclidean distance between their represen- 

tative points may be quite large. The nearness information is not captured well. In Figure 

2.6, each rectangle is represented by a pair of 2-d points. For a rectangle with center at 

(x,,y,) and size (2x1,2yr), its point representations are (x,, xr) and (y,, yl) in the upper and 

lower graphs correspondingly. In the figure, rectangles A and B intersect the search window 

C, but it cannot be easily observed if they intersect each other except by checking their 
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Figure 2.6: Point representation. 

sizes. 

The last class consists of the area-based methods, which includes MX-CIF Quadtrees[Ked83], 

Multiple Quadtree Blocks[AbS83, Sha861 and R-treesIGut841. The MX-CIF quadtree asso- 

ciates each rectangle (R) with the quadtree node corresponding to the smallest quadrant 

in which R is totally enclosed. Rectangles can be associated with both terminal and non- 

terminal nodes. With the total enclosure property, finding how many rectangles intersect a 

window may be expensive. It is because quadtree nodes that intersect the query rectangle 

may contain many rectangles that do not intersect the query rectangle, yet each one of them 

must be individually compared with the query rectangle to  check for a possible intersection. 

The multiple quadtree block representations attempt to  solve this problem. They include the 

expanded MX-CIF quadtree[AbS83], RR1 quadtree and RR2 quadtree[Sha86]. The R-tree 

is a hierarchical data structure derived from the B+-tree. Rectangles are allowed to  overlap 

and a good storage utilization is maintained. Its difficulties are that it cannot represent 

adjacency, and a large number of nodes need to be examined when there are many overlaps. 

The R+-tree is an alternative to the R-tree which avoids overlap among the bounding rect- 

angles. The cell tree in [Gun871 is similar to  the R+-tree, the principal difference being that 

nonleaf nodes of the cell tree are convex polyhedra instead of bounding rectangles. Gunther 

implemented and investigated the performance of the cell tree [GuBSl]. His results show 

that the cell tree required more storage space when compared with the R-tree and R+-tree. 

However, for search operations, the cell tree need a smaller number of disk accesses than 

the other two index structures. 
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2.3 Concurrent Search Algorithms 

Concurrency control is the activity of preventing inconsistency of data in a database. Algo- 

rithms have been developed for search structures that produce conflict-preserving serializable 

histories [BHG87]. In a hierarchical data structure, there are two phases of work for the 

three operations that we are interested in. The first phase descends the tree from the top 

to  the bottom in order to find the appropriate leaf node. The second phase returns a value 

or updates the tree as needed. 

2.3.1 Lock-Coupling 

Bayer and Schkolnick proposed a lock-coupling [Bas771 protocol that takes advantage of 

the B-tree structure. In this protocol, a search or update operation locks the child of a 

node before releasing its lock on the node itself. Thus, a process always holds at least 

one lock during its execution. Other variants of the protocol have since been developed 

[Ell80, KwW82, MiS781. Otoo further improved lock-coupling by having three types of 

locks so as to  allow more concurrent operations on a node [Oto90]. 

2.3.2 Link Technique 

In [KuL80], Kung and Lehman proposed the link technique, which was adapted by Lehman 

and Yao to  B-trees [LeY81]. I n  this approach, search, insert, and delete operations are 

allowed to  release the lock on a node they hold before they obtain a new lock on the next 

node. It offers more concurrency than lock-coupling, but requires the addition of new edges 

or links to  the structure in order to  avoid anomalies. Other algorithms have been proposed 

that use the link technique in structures such as binary trees [MaL82], hash structures[Ell82], 

and B+-trees [LaS86]. 

2.3.3 Give-Up Technique 

Similarly to the link technique which maintains extra information in the form of a link 

pointer, Shasha [ShG88] suggested the give-up technique which adds redundancy with a 

range field. Before any operation can be done on a node, his protocol checks the range of 

the node. If the operation's argument is not the in the range, the protocol gives up and 

tries an ancestor of that node. 
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To illustrate the above three techniques better, consider a scenario in which we want 

to  locate a book in a library. Lock-coupling is analogous to  having the borrower read the 

library catalog, ensure that no reshelver will be working on the shelf which he wants to  go 

to, and then go to  the shelf indicated by the catalog. The link technique is analogous to  the 

procedure in which, when a reshelver moves books on shelf m to  another shelf, he leaves a 

note a t  m saying where the new shelf is, and updates the catalog. This note constitutes a 

link. When the borrower arrives at  m and sees the note, he will then know which new shelf 

to  go to. The give-up technique corresponds to  the situation where the borrower goes to  the 

shelf and finds a note saying that the books in question have been moved. He would then 

go back to the catalog and try to  locate the new shelf. If the catalog has not been updated 

by the reshelver yet, the borrower would need to keep re-accessing the catalog until he finds 

out the new shelf eventually. 

All of the three techniques described above have been widely discussed and implemented. 

Each of them possesses properties which are advantageous in different situations. Both 

the link technique and give-up technique require additional data structures but offer more 

concurrency than lock-coupling. However, both of them may suffer from livelock. When 

applying these techniques to  spatial index structures, the link technique has the problem 

of merging neighborhood nodes during updates. This is because the indices in the tree are 

not organized in any order at  all. Hence, when there is a rearrangement of link pointers a t  

one level, it may cause a downward propagation of link pointer updates. In this thesis, we 

apply these three techniques to  different spatial index structures. 

2.4 Related Work 

Concurrency control algorithms for spatial data have not been investigated extensively. In 

the past, most researchers in the area of spatial databases have concentrated on developing 

new spatial index structures and improving existing ones. There are only two projects closely 

related to  our work. In 1993, Kame1 and Faloutsos developed the Parallel  R-tree ,  which 

tries to  exploit parallelism with multiple disks to  obtain better search performance[KaF92]. 

However, they did not report any concurrent updating algorithms for the new index struc- 

ture. In their report, they suggested the use of proximities among spatial objects so as to  

cluster them in a small portion of an R-tree. Different portions of the tree are then put on 

different hard drives. When there are multiple search queries, the queries may then utilize 
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different drives simultaneously and this reduces the contention among them. 

More interestingly, in 1994, Zhou [ZhD94] has developed the  tree which uses a 

semantic model. He proposes an evolution tree which is a binary tree representing the evo- 

lution of a sub-R-tree from a single node during reorganization of an R-tree. The evolution 

tree is then incorporated into an R-tree so as to  support concurrent operations. He has 

adopted the link approach to  extend an R-tree with link pointers. Each node in an R-tree 

has the right link pointer pointing to its right sibling. The new data structure supports a 

high degree of concurrency and allows a simpler locking protocol. In an Rlink-tree, nodes 

belong to  different node types. When a node P is split into P and P', the node P will have 

node type L. This is used to indicate that the tree has been changed but the parent of P has 

not been updated. When an operation visits P, by using P's node type, it can determine 

if the right sibling need to  be visited. The Rlink-tree is very similar to our R-link tree in 

Chapter 5, except that each node in an R-link tree has the parent pointer (a pointer refer- 

encing its parent). The parent pointer is used similarly to  the node type in the Rlink-tree. 

In our work, the R-link is used to support concurrent operations as well as recovery after 

system failures. 
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A GIs  Database Framework 

Spatial databases are developed to  manipulate, to store, to  retrieve, to  aialyze and to  

display geometric data. In general, spatial data are defined within a space by specifying 

their spatial coordinates. Geographic systems based on graphical properties of data have 

drawn much interest in recent research developments. 

Geographic applications are characterized by massive volumes of data and deal with 

mostly 2-dimensional data. Spatial objects in these applications can be classified into two 

types: spatial and thematic data. Furthermore, each spatial object has two parts: geometric 

and topological parts. The geometric part represents the spatial object using raster or vec- 

tor formats, while the topological part represents its spatial relationships with the objects 

(e.g., overlapping, adjacency). Geometric data in a GIs represent the spatial features of 

objects, such as towns and cities, highways and streets, administration areas and metropoli- 

tan regions, etc. From these examples, we see that real geometric objects can be abstracted 

by three types of objects: point, line, and region. A point data has no dimension and it 

refers to  an object occupying a specific location in the 2-d space. A line is of one dimension 

and it is a connected set of straight-line segments. Each line segment is enclosed within a 

continuous set of line segments. A region is a two dimensional object which is represented 

by a set of connected line segments. Both raster and vector format can be used to represent 

the three types of objects. However, geometric data are represented most often in vector 

format because data retrieval is easier due to  their spatial characteristics. 

In a GIs, spatial operators such as overlap, enclosure and adjacent are required. These 

operators are very different and much more difficult to  implement than the join and the 
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project operators in conventional database systems. The efficiency of these operations de- 

pends on the representation of the data and the retrieval algorithms. An indexing structure 

which provides fast access to spatial data is often critical in a GIs. Of the many spatial 

operators, we have selected the overlap operator, which is the most popular operator, as the 

main query operator in retrieving spatial information. 

We study point data because of their importance in a GIs. Many GIs queries are lo- 

cation specific. Queries such as "Find all postal stations in the city of North Vancouver" 

and "Where are the fire stations in the downtown district" are some examples of queries 

retrieving point information. We do not study line objects in this thesis, because we believe 

that they can be represented as rectangular objects which are discussed in the Chapter 5. 

Besides queries about point objects, queries about region data from different data sources 

(e.g., overlaying in GIs) are popular. For example, a query like "Find all the buildings that 

overlap with a park" is often asked during city planning. We approximate region data by 

using minimum bounding rectangles (MBR), because the calculation of spatial relationships 

between arbitrary polygons is often hard. A region, as a polygon, may have many sides and 

the orientations of its line segments can vary greatly. In particular, every 2-d object except 

a single point can be associated with an MBR. We therefore study the concurrent accesses 

to  axis-parallel rectangular data instead of general polygonal data. 

3.1 Operations Studied 

Throughout the thesis, we discuss different insert and delete algorithms to  allow updating 

in different spatial index structures. An insertion adds a new spatial object while a deletion 

removes a spatial object from a GIs. 

In our work, we concentrate our effort on achieving good search performance. There are 

two types of searches frequently used in a B+-tree: the exact match search and the range 

search. An exact match search returns data that have the same value as the key. On the 

other hand, the range search retrieves all data falling within a range of specified values. In 

an index structure, the exact match search is analogous to the point query for point data, 

while a range search is analogous to  a window search. A window search in a GIs may be 

either a window search for points or a window search for rectangles. 



CHAPTER 3. A GIs DATABASE FRAMEWORK 

Figure 3.1: Lock compatibility matrix. 

3.1.1 Point Data 

There are three operations which we study in this thesis. The first is the window search 

operation. It finds all the point objects inside a given search window. The second operation 

is the insert operation, which inserts a point object into the index structure. The delete 

operation removes a point object from an index structure. These three operations are 

designated as follows: 

P.Search(W, R)  Search the index structure rooted at R for the objects 

inside the search window W. 

P.lnsert(0, R)  Insert the object 0 into the index structure rooted at R. 

P.Delete(0, R)  Delete the object 0 from the index structure rooted at R. 

3.1.2 Rectangular Data 

For rectangular data, we also have the above three operations. The insert and delete perform 

the same functions as before. However, the window search operation is different. Rather 

than finding objects enclosed by a given search window, it finds the objects which overlap 

with the window. The three operations are designated as follows: 

R.Search(W, R)  Search the index structure rooted at R for the objects 

overlapping the search window W. 

R.lnsert(0, R)  Insert the object 0 into the index structure rooted at R. 

R.Delete(0, R)  Delete the object 0 from the index structure rooted at R. 
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3.2 Locking Protocol 

As in any database system which uses the pessemistic approach, a GIs may need to have a 

locking mechanism to permit concurrent access to  spatial objects. To allow orderly access 

to  a spatial index structure, we normally use three types of locks on the nodes of index 

structures. 

A p lock is a readlshare lock and it can be shared with other read operations1 accessing 

the same node. Unlike a p lock, an t lock is not compatible with any other E or p lock. 

Recently, Otoo has suggested to  use the "warning lock," called the w lock, for update 

operations to  improve concurrency [Oto90]. We use this type of lock for the insert and 

delete operations in different spatial index structures. The compatibility among the three 

locks we use is shown in Figure 3.1. An w lock allows its holder a read but not write access. 

However, unlike a p lock, an w lock is not compatible with another w lock. For all the 

index structures we study, we require that all locks be requested in a top-down, left-to-right 

(among the children of a node) fashion. This order of lock acquisition guarantees deadlock 

freedom. A p lock (E lock) on a data item I is denoted by p(I)  (€(I)). 

3.3 Definitions 

To simplify the subsequent discussions, we now introduce a few short-hand notations. 

REGION(P) The region of a region node P. 

MBR(P) The MBR associated with node P .  

PARENT(P) Node identifier or pointer referencing the parent of P .  

FULL(P) Predicate indicating if node P is full. 

MIN(P) Predicate indicating if node P has the minimum number of entries. 

UNDERFL(P) Predicate indicating if node P has underflowed. 

DELETED(P) Predicate indicating if node P has been marked as deleted. 

PUSH( P, Q ) Push node P onto stack Q (or append P to string Q). 

p o p ( & )  Remove and return the first element of Q. 

If Q is empty, return NULL. 

NEXT( P )  Return the right sibling of P by using a link pointer. 

FOLLO W(P, Q) Return the next node following P in Q. 

'An operation, such as insert may carry out read operations while visiting nodes in an index structure. 



CHAPTER 3. A GIs DATABASE FRAMEWORK 

FREE( (2 ) Empty queue Q .  

P O I N T ( 0 )  Return the point location of object 0. 

NULL Null referencing pointer. 



Chapter 4 

Point Data 

The first point index structure we study in this chapter is the Bf -tree [Com79]. A B+-tree 

of order M is a balanced tree such that each node, except the root, has at most M children 

and has a t  least m children for m = [M/21. The leaf nodes contain the actual key values 

and the internal nodes are used to direct the search for a key value. All leaf nodes are a t  

the same level. An example of a B+-tree is shown in Figure 4.2. The concurrency control 

algorithms for the B+-tree and its variants have been studied extensively for many years. 

Unfortunately, the direct use of a B+-tree for point data in the 2 or higher dimensional 

space is difficult, because, in general, there is no good way of ordering the data points 

linearly, while preserving proximity. Some transformation techniques [Hin85, SeK881 have 

been suggested to  associate a data point location with a scalar value and store the value 

into a B+-tree. We first review some of them and adopt the technique best suited to  our 

purpose. 

4.1.1 Point Transformation 

Let 2) be the given 2-dimensional data space. We assume without loss of generality that 

the coordinates of each data point are integers in the range [0, n] for some n, and that a 

fixed number (b = [lognl) of bits are used to  represent them. Thus, a point (x, y) has the 

representation (x1x2 . . . xb, y1 y2 . . . yb), where the leading O's, if any, are explicitly shown. 



CHAPTER 4. POINT DATA 

Figure 4.1: Z-ordering mapping. 

Figure 4.2: A B+-tree. 

We need some one-to-one transformation 

where R is a range of scalar values of the form [O,r] for some integer r .  One of the most 

popular such transformations is bit-interleaving [lo] given by 

In this case, r < 22b - 1. The transformation ,f3 is also known as the z-ordering (see 4.1). 

We now introduce a measure of goodness for transformations. For a rectangle R in V, 

let J R J  denote the number of "grid points" in R, and define J$(R)J by 

We use J$(R)l/[Rl as our measure of goodness. We clearly have J$(R)J/J RJ  2 1. Obviously, 

we want to use a transformation $ such that I$(R)I/JRJ equals 1 for most R7s. Unfortunately, 

for the z-ordering ,f3, I,B(R)J/I RI can be much larger than 1 for some R's. 
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Figure 4.3: Bit interleaving with Gray code mapping. 

In [Fa186], Faloutsos has surveyed several transformations. One of his conclusions is that 

some pre- and post-transformation used with bit-interleaving can lead to "improved perfor- 

mance." In particular, he recommends using the Gray code representations of x = xlxz . . . xb 
and y = y1 y2 . . . yb as the pre-transformation. After they are bit-interleaved to generate a 

string of 2b bits, this string is converted back to an integer Z (post-transformation), inter- 

preting the string as the Gray code representation for Z. See Figure 4.3 for an example. 

Let us call this transformation (including the pre- and post-transformation) +G. Our exper- 

iments with small samples indicate that for many rectangles R, I/?(R)I/IRI > I$J~(R)I/IRI. 

We, therefore, adopt +G and use it together with the B+-tree index structure. 

We now present a method to  compute the Gray codes for a given binary number. Let b 

be the number of bits used to  express each coordinate. We first construct a labeled, complete 

binary tree of height b, called the p-G conversion tree (cf. the G-tree in [SamSO]). This tree 

clearly has 2b leaves. To each node of the tree, attach two labels, p-label (p for pure binary) 

and G-label (G for Gray), as follows. The p-labels of the nodes at any level, except the root 

level, are from left to  right, 0, 1, 0, 1, 0, 1, ..., while the G-labels of the nodes at any level, 

except the root, are, from left to  right, 0, 1, 1, 0, 0, 1, 1, 0, ... 
With the p-G tree, we can convert a b-bit binary number to  its corresponding Gray code 

as follows. Let X = xlxz ... xb be the given number in binary. Starting at the root, traverse 

the p-G tree visiting the nodes which have xl (at level l ) ,  x2 (at level 2), ..., as the p-labels, 

and record the G-labels of the visited nodes, yl, y2, . . .. We call the path thus traversed the 

X-path. Then Y = ~ 1 ~ 2 . .  . yb is the Gray code for X. For example, when X is 10, Y will 
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Figure 4.4: A p-G tree (b = 2). 

Figure 4.5: Decomposition of a query range. 

be 11 (see Figure 4.4). 

For insert and delete operations, we first transform the point by the transformation $G 

introduced in above. The transformation is assisted by pre-constructing two p-G trees of 

height b and 2b, respectively. We use a p-G tree of height b (2b) for pre- (post-) transforma- 

tion. However, for a window query, we must transform the search window W  into a linear 

range in order to  find the point objects in the given window. After the $G transformation, 

the query range may cover areas which are outside the given search window as we see below. 

Given a search window W, let Low = min{$G(x, y) 1 (x, y) is a point in W )  and High = 

m a ~ { $ ~ ( x ,  y)l (x, y) is a point in W ) .  We can then represent W  by the range [Low,High]. 

Suppose a point object in a leaf node is at position (a, b ) .  If Low < $G(a, b) 5 High, we 

need to test whether it actually lies within W. 

Our concurrency control protocol, BT, for B+-trees is implemented by a collection of 

procedures, for search, insert, and delete operations, as well as those for tree-reorganization. 

In the following sections, we discuss them in detail. 
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4.1.2 Search 

At the beginning of a search operation, we need to  compute the maximum scalar value 

(High) and the minimum scalar value (Low) of the given search window W as explained 

before. Let the four corners of W have the coordinates (Xl ,V),  (Xh, x ) ,  (Xl,Yh), and 

(Xh, Yh), where XI 5 Xh and Yj 5 Yh. In order to represent the range of x, i.e., [XI, Xh], 

we construct the [XI, Xh]-tree as follows. From the p-G tree of height b, remove all nodes 

and edges that lie to the left of the XI-path and those lying to  the right of the Xh-path. It 

is easy to  see that any path in the [Xl, Xh]-tree from the root to a leaf is an x-path for some 

x in the range [XI, Xh] , 
Next, in order to  compute +G(x, y), where XI 5 x 5 Xh and l'j y 5 Yh, we make 

use of three trees, the [XI, Xh]-tree, the [x, Yh]-tree, and a p-G tree of height 2b. For a 

given point (x, y), let gl,g2, . . . ,gb be the G-labels of the x-path in the [XI, Xh]-tree, and 

fl,  f2,  . . . , f b  be the G-labels of the y-path in the [ x ,  Yh]-tree. We then traverse the p-G 

tree of height 2b, starting at its root, visiting its child node with G-label = fl, then its child 

node with G-label = gl,  then its child node with G-label = fi, etc. The sequence of the 

p-labels of the visited nodes is the desired value +G(x, y). Note that there is a one-to-one 

correspondence between a path in the p-G tree and a pair of x-path and y-path. 

Finally, with this preparation, in order to  compute High, we can proceed as follows. Note 

first that, the brute force method would generate gG(z ,  y) for all (x, y) such that there is 

an x-path (y-path) in the [X2, Xh]-tree ( [x ,  Yh]-tree), and set High to  the largest generated 

value. We reverse this procedure by first traversing the p-G tree of height 2b, trying to make 

+G(x, y) as large as possible. This can be accomplished by staying as far to the right of the 

p-G tree as possible, within the constraint that the corresponding x-path and y-path must 

exist in the [XI, Xh]-tree and the [Yj, Yh]-tree, respectively. 

A similar method is used to  find Low except that at each node in the p-G tree of height 

2b, we try to  move as far left as possible. We can show that both High and Low can be 

computed in O(b) time, once the above three trees have been constructed. 

A range query starts at the root of the B+-tree and descends down to the leaf level. At 

each visited node, the query range is compared to the index values and may be decomposed 

into several sub-ranges. In Figure 4.5, a query range is decomposed into two sub-ranges. 

To implement lock-coupling, at each visited node, a p lock on it must be acquired and held 

until the p locks on the child nodes to  be visited are acquired (see Figure 4.6). This is to  
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Figure 4.6: Search operation using the lock-coupling method. 

avoid any change to the current node before the locking of those child nodes is completed. 

To implement this rule, we introduce a lockable variable, Count, which is initialized to  the 

number of subsearch operations initiated at a node. It is decremented by one whenever a 

child node is p-locked. When it reaches 0, the p lock on the parent is released. At the leaf 

nodes, all point objects whose associated $G values are within the query range are returned 

if they are also within W. 

More formally, Search(W, P )  is carried out by calling 

Bt.Search(W, P,Parent, Count, Low, High) given below, after setting Count := 0, Parent = 

NULL, P := R, where R is the root of the tree, and Low and High to  the minimum and 

maximum scalar values associated with W, respectively. Count in the following procedure 

is a call-by-reference parameter associated with Parent.  

Bt.Search(W, P ,  Parent, Count, Low, High) 

1. Acquire p(P). 

2. if Parent # NULL (i.e., P # root) then 

Acquire ~(Count).  

0 Decrement Count by one. 

if (Count = 0) then release  parent). 

Release ~(Count).  

3. if P is a non-leaf node then 

0 Let {Ei = (V,, P;) I i = 1,. . . , k) be the entries in P such that 

[V, + 1, V,+l] n [Low, High] = [Low;, High;] # 4 
0 if (k > 0) then 
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- Mycount:= k. 

- For all entries E; found above, if any, continue the search in parallel, invoking 

Bt.Search(W, Pi, P, MyCount, Lowi, High;). 

else release p(P).  

else 

For all points inside W,  return their object ids. 

Release p(P). 

4.1.3 Insert 

The implementation of an insert operation is very similar to  that in [BaS77, Oto901. There 

are two phases for an insert operation. During the first phase, we locate the leaf node to  

which to add the new object, and put it there. The path in the tree we take is called the 

insertion path. During the downward traversal, some full nodes1 are w-locked to avoid 

updates by other operations. The locked nodes will form a subpath at  the leaf and of the 

insertion path. 

The first phase is carried out by the procedure Bt.Select which locates the leaf node. If 

0 is the point object to  be inserted at  (x, y), a new entry Eo = ($JG(x, y), 0) will be added 

to the selected leaf node. After the point object is added, the €-lock on the leaf node is 

downgraded to  an w-lock to  avoid any possible deadlock with search operations. 

In the second phase, the insert operation backtracks along the insertion path to  reor- 

ganize the tree. The insert operation invokes the procedure Bt.CleanUp to reorganize the 

tree, if necessary. 

More formally, Insert(0, P )  under the lock-coupling method is carried out as follows, 

where 0 is the point object to  be inserted, P is set to  the root of the tree initially and Eo = 

($JG(x, y), 0 )  is the new entry added to  the selected leaf node. 

1. T := A (empty string). 

2. L := Bt.Select(0, P, NULL, r ) ,  /* This procedure returns a w-locked leaf node, L, 

in which to  place object 0. T is changed by call-by-reference and, on return, gives a 

stack of unsafe nodes, which forms a subpath of the insertion path. */ 
 odes which have the maximum number of entries. 
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3. Add entry Eo to node L. 

4. Downgrade c(L) to w(L). 

5. Bt.CleanUp(L, T). 

When Bt.Select(0, P, Parent,  Path) given below is recursively called, Parent is t-locked. 

On exit, P is w-locked and Parent is either placed on Path with an w-lock or  parent) has 

been released. At each step, say at node P ,  Bt.Select first acquires an t-lock on the node and 

finds out the next node (PC) to be visited. The €-lock on P is not released until it finishes 

acquiring the €-lock on PC. This method prevents any other operation from "overtaking" an 

insert operation. In other words, no other operation which locks the root of the tree after 

the insert operation can lock a descendant node of P. 

Bt.Select(0, P, Parent,  Path) 

1. Acquire c(P). 

2. if Parent # NULL then 

if 1 FULL(P) then 

- Release t( Parent). 

- Release all w-locks on nodes in Path. 

- FREE( Path) . 
else 

- Downgrade €(Parent) to  parent). 

- PUSH(Parent,Path). 

3. if P is a non-leaf node then 

Find an entry E, in P, where V,-l < $G(POINT(0))  5 V,. 

Continue the selection with Bt.Select(0, P,, P, Path). 

else returns P. 0 

The procedure Bt.CleanUp given below is used to reorganize the tree after an object is 

inserted into the tree. When it is called, unless L = NULL, L is w-locked, and except when 

PARENT(L) = NULL (i.e., L = root) or Path = A, PARENT(L) is also w-locked. 

Bt. Clean Up(L, Path) 



CHAPTER 4. POINT DATA 

1. if ((L = NULL) or (1 FULL(L)) or (Path = A)) then 

Release w(L). 

Return. 

2. Parent  := POP(Path). 

3. if (Parent = NULL) then 

Create a new root, 

€-lock the new root, 

Make it Parent.  

Add L into Parent.  

4. Acquire  parent). 

5. Acquire E(L). 

6. Split L into L and L'. 

7. Add L' to  Parent.  /* We provide an extra entry in each node to  accommodate 

temporary overflow. Hence L' can be added to Parent even when Parent is FULL. 

*/ 
8. Release E ( L ) .  

9. Downgrade €(Parent) to   parent). 

10. Bt.Clean Up(Parent, Path). 

4.1.4 Delete 

Delete(0, P )  can be carried out in a manner similar to  the insert operation. The first phase 

is to locate the object to  be removed with procedure Bt.Find and remove the object. This 

procedure is similar to  Bt.Select for an insert operation, except that it w-locks the nodes 

which have underflowed. The second phase reorganizes the tree if an underflow occurs as a 

result of removing the object. 

There are two arguments for Bt.Delete, where 0 is the object to  be deleted and P is the 

root of the tree initially. 

Bt. Delete(0, P )  
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1. x := A (empty string). 

2. L := Bt.Find(0, P, NULL, x) ,  /* This procedure returns an w-locked leaf node, L, in 

which object 0 is referenced. x is changed by call-by-reference and, on return, gives 

a stack of under-utilized nodes, which forms a subpath of the deletion path. */ 

3. Remove entry Eo from node L. 

4. Downgrade c(L) to  w(L). 

5. Bt.Condense(L, x). 

When the following procedure Bt.Find(0, P,  Parent,  Path)  is recursively called, Parent 

is €-locked. On exit, P is w-locked, and Parent is either placed on Path with an w-lock or 

~(Parent)  has been released. 

Bt.Find(0, P,  Parent,  Path)  

1. Acquire E(P). 

2. if Parent # NULL then 

0 if not MIN(P) then 

- Release E( Parent). 

- Release all locks on nodes in Path.  

- FREE(Path). 

else 

- Downgrade ~ ( P a r e n t )  to   parent). 

- PUSH(Parent,Path). 

3. if P is a non-leaf node then 

0 Find an entry E, in P ,  where Vs-l < $G(POINT(O)) 5 V,. 

0 Bt.Find(0, P,, P, Path). 

else returns P. 0 

When the following procedure is called, unless L = NULL, L is w-locked, and except 

when PARENT(L) = NULL (i.e., L = root) or Path = A, PARENT(L) is w-locked. 

Bt.Condense(L, Path) 
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1. if (L = NULL) or (not UNDERFL(L) or (Path = A)) then 

a Release w(L). 

Return. 

2. Parent  := POP(Path). 

3. if (Parent = NULL) then 

a Acquire ((L). 

a if (L has no child) then 

- Remove L. 

- Set root of the tree to NULL. 

a Release E(L). 

a Return. 

4. Acquire ~ (Pa ren t ) .  

5. Let Parent  have k children PI, ..., Pk, including L. 

6. Acquire €(Pi) for i = 1, ..., k. 

7. Move the entries of L to  its siblings. 

8. Remove the entry in Parent  which references L. 

9. Mark L as deleted. 

10. Release €(Pi) for i = 1, ..., k. 

11. Downgrade ~ ( P a r e n t )  to   parent). 

12. Bt.Condense(Parent, Path). 

4.1.5 Correctness of the Operations 

The two theorems in this subsection prove the correctness of the concurrency control protocol 

BT for the Bs-tree, which consists of a set of procedures described above. 

Consider a scenario where S1 and S2 are two different search operations. Suppose S1 

and S2 both visit node A at the same time. At node A of the tree, S1 is divided into 

subrange queries SI1 and SI2, which will take two different paths down and visit the leaf 

nodes Pl and P2, respectively, (see Figure 4.7). Similarly, S2 is divided into S21 and S22. 
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Figure 4.7: Multiple sub-searches. 

If the two search operations execute at different speeds, then S21 overtakes Sll, while S12 

overtakes ,922. Furthermore, let there be two update operations (transactions), Ul and U2. 

Ul traverses along the same path as 5'21 and U2 traverses along the same path as S12. At 

the leaf level, Ul modifies PI and U2 modifies P2. If overtaking between search and update 

operations is permitted, Ul (U2) may work on PI (P2) before Sll (SI2) but after ,921 (5'22). 

When this happens, at PI the execution is seen as [S2][Ul][S1], while at P2 the execution is 

seen as [Sl][U2][S2]. Hence, S1 and S2 see different results even if they have the same search 

window and the executions are not serializable [BHG87]. 

For a set of search, insert and delete operations executed on a B+-tree, B, we can denote 

them by Si(W), I j (0 ) ,  and Dk(0 ) ,  respectively, where W is a search window and 0 is an 

object. The subscripts are used to  distinguish among different operations. So, when we need 

to  discuss only the type of operation, we often use S(W), I (O),  and D(0 ) .  An execution 

is defined by a "precedes7' relation among them, denoted <, based on the order in which 

they lock the root of B. Given an execution, •’, we say that an object 0 is available to a 

search operation S(W) in I, such that 0 E W, if the last update operation, if any, accessing 

0 that precedes S(W) is not D ( 0 )  and either 0 was in B before the execution of the set 

of operations under discussion or there is an I ( 0 )  < S(W). With the above definitions, 

we say that a protocol P on an index structure is correct if it satisfies the following two 

conditions. 

1. 'P is deadlock free, and 

2. In any execution •’ that P generates, each search operation S(W) returns object 0 iff 
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0 is available to  it in •’. 

In order to  prove the second condition, it is sufficient to show the following: 

(a): Conflicting operations accessing the same object do not overtake each other. 

(b): If an object 0 is available to  S(W),  then at least one subsearch maintains a 

window W' such that 0 E W', until 0 is returned. 

In the rest of this section, an operation means an insert, delete or a subrange query on 

a leaf node. We sometimes refer to insert ( I (0 ) )  and delete operations (D(0) )  as upda t e  

operations (U(0)).  Furthermore, each operation obtains a timestamp when it first accesses 

the root. We will also call a node unsafe if (with the currently available information) there 

is a possibility that the node will be modified in the second phase of an update operation. 

We next introduce two definitions for later discussions. 

Scope: The scope of an insert operation is the subtree rooted at  the first currently unsafe 

node along its insertion path. 

Overtake: Suppose S1 and S2 are two different operations. Sz overtakes S1 if S1 is younger 

than Sz and S2 visits nodes at deeper levels earlier than S1 along the same access path. 

L e m m a  4.1 With the lock-coupling protocol, a search operation cannot overtake an update 

operation. Similarly, an update operation cannot overtake any other operation. 

Proof: When two update operations visit the same node, because w-locks are incompatible 

with each other, the second update operation has to  wait and cannot overtake the first one. 

Consider the case where a search operation S and an update operation U trying to  lock 

a node P at the same time. If S acquires a p-lock on P first, U, which requests an €-lock 

will wait until S releases its p-lock on P, which occurs after S has acquired all the p-locks it 

needs on P's child nodes. Hence, U cannot overtake S. If U acquires its €-lock first, it will 

hold the lock until it has acquired the c-lock on the node next visited. U may then release 

the lock on P or downgrade the lock to  an w-lock. In both cases, S visits the node after U 

has finished its work at P. Hence a search operation cannot overtake an update operation. 

0 
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Theorem 4.1 Protocol BT is deadlock and live~ock free. 

Proof: Assume that a set of operations is deadlocked under the protocol BT, and let A be 

the set of all deadlocked operations. We derive a contradiction out of this assumption. Let 

T be the oldest operation in A. 

0 a: T is a search operation. Since T uses p-lock-coupling, no update operation can 

overtake T. Therefore, no node that T is trying to  lock is t-locked by an update 

operation in A. T can thus always acquire a p lock it needs, and cannot be blocked 

forever, a contradiction. 

0 b: T is an insert operation in its first phase. Since T uses t-lock-coupling, no operation 

can overtake T .  Thus, T cannot be blocked forever, a contradiction. 

0 c: T is an insert operation in its second phase, executing Bt. Clean Up. In this case, T is 

trying to  upgrade an w-lock to  an t-lock. From Lemma 4.1, T cannot be in conflict with 

any other update operation to upgrade the lock because no younger update operation 

can be within its scope. A younger search operation may have placed a lock on the 

node which T is trying to  acquire, but it will eventually terminate because of the order 

of lock acquisition/upgrade (top-down and left-to-right fashion). Note that individual 

subsearch operations belonging to a search operation can proceed independently, since 

they are executed in parallel. Thus, T cannot be blocked forever by search operations. 

Hence, a contradiction to the assumption. 

0 d: T is a delete operation in its first phase. The argument is the same as in (b). 

0 e: T is a delete operation in its second phase. The argument is the same as in (c). 

In general, lock starvation is possible when an operation continues to fail in acquiring a 

lock on a node due to  unfortunate timing. This can be avoided by having a "fair" locking 

policy such as using the request times of a lock to be the order of granting the lock. 

Lemma 4.2 In the protocol BT, no search operation will miss an available object. 

Proof: To prove the lemma, we will only need to  consider the situation where there is mix 

of search and update operations. 

Let Ul be an update operation in its first phase and S1 be a search operation traversing 

the same path together. During the downward traversal of U17 it does not modify any 
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internal nodes except a leaf node, say L. Hence, S1 will always arrive at L. If S1 acquires a 

p-lock on L first, then Ul will need to  wait. On the other hand, S1 will wait when Ul €-lock 

L first. In either cases, S1 will see the available objects in L correctly. 

We now consider the case where there is a cleanup or a condense operation backtracking 

along the same path that S1 uses. Suppose S1 is visiting node P .  It will first acquire a 

p-lock on P and then determine the nodes to  visit next. Let PC be one of the nodes in 

P I , .  . . , Pk to be visited by S1 next. If Ul is in its second phase, trying to  modify PC, then 

PC can only be changed if Ul has acquired an €(PC). If this happens, S1 will wait until Ul 

modifies and releases the locks. S1 still correctly arrives a t  PC because PC cannot be split 

or removed, since S1 holds a p-lock on P. Ul might have changed the content (e.g., the 

number of entries) in PC. However, this does not affect the results of S1 because Ul has 

already inserted or deleted an object at a leaf node. If S1 gets a p-lock on PC before Ul 

€-locks it, then S1 will works on PC as intended and Ul will wait until S1 finishes. Hence, 

the search operation will not miss any object which is available to  it. 0 

Theorem 4.2 The protocol B T  is correct. 

Proof: From Lemma 4.1, Lemma 4.2 and Theorem 4.1, we can conclude that the protocol 

BT is correct. 0 

In our concurrency control algorithms for R-tree, we also use the lock-coupling method. 

Associated with each leaf node of an R-tree is a minimum bounding rectangle (MBR) 

that encloses all the points pointed to  by the node. Similarly, an MBR is associated with 

each internal node, which encloses the MBRs associated with its child nodes. Thus, the 

locations of the points referenced by a leaf node L are inside the MBRs associated with all 

the nodes on the path from L to the root of the tree. Each node of an R-tree contains a 

number of entries. Each entry in a node contains a MBR and a reference pointer to  another 

node. In an R-tree, the MBRs associated with different nodes may overlap, so that an object 

may be spatially contained in the MBRs associated with several nodes, yet it can only be 

represented by one leaf node. This implies that processing a query often requires traversing 

several search paths before ascertaining the presence or absence of a particular object. An 

example of an R-tree with the corresponding MBRs is shown in Figure 4.8. 
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Figure 4.8: An R-tree. 

Our concurrency control protocol, RT, for R-trees is implemented by a collection of 

procedures, for search, insert, and delete operations, as well as those for tree-reorganization. 

In the following sections, we discuss them in detail. 

4.2.1 Search 

A search starts at the root of an R-tree and descends to  the leaf level to  find objects in a 

given search window. Along its way, it acquires p locks on the visited nodes. The p-lock on 

the parent is released when the locks on its children to be visited have been acquired. We 

use the lockable variable, Count, for the same purpose as for the B+-tree. To find which 

subtrees to  visit, a t  each node, a search operation compares the search window with the 

MBRs associated with the child nodes. 

More formally, Search(W, R) on an R-tree is carried out by calling 

Rt.Search(W, P, Count) given below, where W is the search window and Count is a call-by- 

reference parameter. Initially, P points to the root of the tree and Count := 0. 

Rt.Search(W, P, Count) 

1. Acquire p(P) .  

2. if PARENT(P) # NULL (i.e., P # root) then 

0 Acquire €(Count). 

0 Decrement Count by one. 
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if (Count = 0)  then release p(PARENT(P)). 

Release  count). 

3. if P is a non-leaf node then 

Let {E; = (MBR(P;), Pi) I i = 1, . . . , k}  be the entries in P such that 

MBR(P;) n W # 4. 
if (k  > 0)  then 

- Mycount:= k. 

- For all entries Ei found above, continue the search in parallel, invoking 

Rt.Search( W n  MBR(P;) ,Pi, My Count). 

else release p(P). 

4. if P is a leaf node then 

For all objects inside W,  return their object ids. 

Release p(P). 

4.2.2 Insert 

As with the insert operation on the B+-tree, we carry out an insert operation in two phases. 

During the first phase, we locate the leaf node to  which to  add the new object and insert 

the object there. The path in the tree we take is called the insertion path. In the second 

phase, we may have to  perform some maintenance operations by tracing the insertion path 

back to  

1. reorganization of the tree, and/or 

2. enlarge the MBRs of some nodes on the path. 

If a node visited in the first phase is full, then there is a possibility that it may be split 

during the second phase. If a split does occur, the parent of the split node will have a 

new entry. This information must be available to  the subsequent operations. We can use 

a solution similar to  the one used in the BS-tree. Namely, in the first phase of an insert 

operation, we w-lock the first full node encountered in the insertion path, and its parent, if 
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any. Thereafter, we w-lock consecutive full nodes. Once a non-full node is encountered along 

the insertion path, we release all the existing w-locks and restart the above procedure from 

scratch. So, when we reach a leaf, we will have w-locked a string of zero or more nodes at  

the end of the insertion path. If this string is non-empty, then it starts with a non-full node 

(with one exception mentioned below) and is followed by one or more full nodes. During 

the second phase, splitting will propagate upwards to that only one w-locked non-full node, 

but will terminate there. If the root node is full, it is possible that this string consists only 

of full nodes, and a new root will be created in the second phase. 

Let us call a node unsafe if (with the currently available information) there is a pos- 

sibility that maintenance operations in the second phase may reach that node. What we 

described above can be restated by the following rule: 

Safety rule: In the first phase, w-lock the unsafe nodes along the insertion 

path, and release w-locks from nodes as they become safe (i.e., not unsafe.) 

There is another reason why a node may be unsafe; it is due to  the possibility of main- 

tenance action 2. mentioned above. In the first phase, we change the MBRs of some nodes, 

if the point to  be inserted is not within its current MBR. If the MBR of a node P is up- 

dated and the w-lock on P is released, then P7s MBR may be changed by a subsequent 

delete operation, which may cause a later search operation to  have an incorrect answer. 

This problem is solved by maintaining an w-lock on the node until the second phase of an 

insertion is completed. Incidentally, observe that, if a node's MBR is expanded, then all 

its descendants7 MBRs along the insertion path will also be expanded. The safety rule we 

stated above covers all unsafe nodes. 

As an illustration, consider Figure 4.9, where an insert operation, 11, is visiting node B 

in its first phase. It first acquires an €-lock on B to  prevent other operations from changing 

B. It will then visit node C. After acquiring an €-lock on node C, we expand B7s MBR, if it 

is necessary to  reflect Il. If C is full, we downgrade the €-lock on B to an w-lock; otherwise 

we simply release it. 

During the second phase, after inserting a new point object into the selected leaf node, 

the insert operation backtracks along the insertion path to  split nodes if necessary. In 

Figure 4.9, suppose that node D overflows, after the new point object has been added to  

a leaf node. Before splitting D l  we upgrade the w-locks on nodes C and D to €-locks. If 

D is a non-leaf node, we also €-lock D7s children, because their parent pointers need to be 
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Figure 4.9: Insert operation using the lock-coupling method. 

updated due to  the split. As stated earlier, these locks should be acquired in the top-down, 

left-to-right order. After the split, we release the €-locks on D and its children, if any, 

and downgrade the €-lock on C to  an w-lock. We continue the second phase of an insert 

operation, level by level, until we reach the first unsafe node on the insertion path. 

More formally, an insert is carried out by Insert(0, P )  given below, where 0 is the object 

to be inserted, P is the root of the tree initially, and Eo = (POINT(O), 0 )  is the entry 

referencing the object to be added. 

1. n := A (empty string). 

2. L := Rt.Select(0, P, n), /* This procedure returns an €-locked leaf node, L, in which 

to  place entry Eo. n is changed by call-by-reference and, on return, gives a stack of 

unsafe nodes, which forms a subpath of the insertion path. */ 

3. Add entry Eo. to node L2 

4. Downgrade c(L) to w(L). 

5. Rt.CleanUp(L,x). 

0 

In the following procedure, Rt.Select(0, P,  Path),  we define MBR(NULL) = 4. Note 

that, when this procedure is recursively called, PARENT(P) is €-locked, and on exit, P 

is €-locked. PARENT(P) is either placed on Path with an w-lock, or its w-lock has been 

21f L is full, temporary overflow is allowed and the splitting will be done in Rt. Clean Up. 
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released. The variable unsafe is used to  indicate the safety status of a node. The node is 

safe when it has the value 0. It has the value 1 if the node is full, and the value 2 if the new 

object is outside the MBR of the node. It equals 3 if the node is full and the new object is 

outside its MBR. 

Rt.Select(0, P, Path) 

1. Acquire E(P).  

2. if PARENT(P) # NULL then 

r unsafe := 0. 

r if FULL(P) then unsafe := 1. 

r if 0 is outside MBR(PARENT(P)) then 

- unsafe := unsafe + 2. 

- Update MBR(P) to include 0. 

r if unsafe 2 1 then 

- PUSH(PARENT(P),Path). 

- Downgrade c(PARENT(P)) to  w(PARENT(P)). 

r if (unsafe =O ) then release €-lock on PARENT(P). 

r if ((unsafe = 0) and (Path # A)) then release the locks on all nodes in Path,  

and FREE(Path). 

3. if P is a non-leaf node then 

r Find an entry E, = (MBR(P,), P,) in P ,  where MBR(P,) requires the small- 

est enlargement to  include 0. Resolve ties by choosing E, with the smallest 

MBR(P,). 

r Continue the selection with Rt.Select(0, P,, Path). 

else return P 

0 

When the following procedure is called, unless L = NULL, L is w-locked, and except 

when PARENT(L) = NULL (i.e., L = root) or Path = A, PARENT(L) is w-locked. 

Rt. Clean Up( L, Path)  
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1. if L = NULL then return. 

2. if OVERFL(L) then 

0 if PARENT(L) exists then upgrade w(PARENT(L)) to  c(PARENT(L)) else 

- Create a new root, 

- c-lock the new root, 

- Make it PARENT(L). 

0 Acquire c(L). 

0 Split L into L and L'. 

0 Add entry Ep  representing L' to  PARENT(L) and update its MBR. 

if L and L' together have k children, L1 . . . , Lk then 

- acquire c(L;) for i = 1,. . . , k. 

- Set the parent pointer in L; for i = 1,. . . , k. 

- Release E(L;) for i = 1, .  . ., k. 

0 Release c(L). 

0 Downgrade e(PARENT(L)) to  w(PARENT(L)). 

L := POP(Path). 

0 Rt.CleanUp(L, Path). 

else 

0 Release all w-lock on Path.  

0 FREE(Path). 

4.2.3 Delete 

We use two phases to  carry out a delete operation. The first phase is to  locate the object. 

This phase is almost identical to  the search operation. (Note that the condition "0 is inside 

MBR(P;)" should replace "MBR(P;) n W # @' in Step 3 of RtSearch.) Internal nodes 

are c-locked to  avoid overtaking by other operations and the MBRs are not shrunk when a 

delete operation traverses down the R-tree. Once the object has been found, it is removed 

and the tree is reorganized in the second phase. 
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In the second phase, we backtrack the R-tree, if needed. We now face two problems. 

The first is how to  deal with concurrent insertions and changing parent pointers. The delete 

operation needs to  know how to backtrack to  propagate the change up the tree. The second 

problem is the potentially conflicting lock requests with other updating operations. We need 

to ensure lock requests do not cause deadlocks. 

To solve the first problem, we maintain another piece of information a t  each node of 

the R-tree, i.e., the parent pointer. The pointer of a node is updated whenever its parent 

is involved in splits or merges. The second problem is solved by ordering the lock requests 

and having the procedure Rt.Delete release all of its locks i t  holds from time to  time. The 

ordering ensures delete operations are not in conflict with each other, and the releasing of 

locks permits insert operations to  acquire locks which may be held by a delete operation. 

During deletion, a node is not removed immediately because there can be other delete 

operations working on it. We use the "mark-and-remove" approach. If a node becomes 

empty as a result of removing an entry from it, then it is flagged as "deleted." "Deleted" 

nodes are later garbage-collected periodically. To perform the garbage-collection, we can 

record the deletion time of a marked node and the starting time of each operation. We can 

remove a marked node when all the current active operations are started after the node's 

deletion time. More formally, Rt.Delete(0, R)  under the lock-coupling method is carried 

out as follows. 

Rt. Delete(0, R) 

1. L := Rt.Find(0, R,O) to  locate the leaf node which contains object 0. 

2. Delete entry Eo which points to  object 0. 

3. Downgrade E(L) t o  p(L). 

1. Acquire E(P).  

2. if PARENT(P) # NULL then 

Acquire  count). 

Decrement Count by one. 
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if (Count = 0 )  then release c(PARENT(P)). 

Release  count). 

3. if P is a non-leaf node then 

Let {E;  = (MBR(P;),  Pi) I i = 1, .  . . , k )  be the entries in P such that 

0 is contained in MBR(P;). 

if ( k  > 0 )  then 

- Mycount:= k .  

- For all entries E; found above, continue the search in parallel invoking 

Rt.Find(O,P;,MyCount). 

else release c(P).  

4. if P is a leaf node then 

if there is an entry (POINT(Pi),Pi) such that POINT(0) = POINT(Pi) and 0 

is referenced by Pi then return P. 

else release E(P) .  

Rt. Condense(L) 

1. if DELETED(L) then 

Release p(L). 

Return. 

2. P := PARENT(L). 

3. Release p(L). 

4. if ( P  = NULL) then /* i.e., when L is the root */  

Acquire E(L) .  

Update the MBR of L. 

if ( L  has only one child) then 

- Let LC be the only child. 

- Make LC the new root of the tree. 

- Mark L as deleted. 
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Release E(L) and return. 

5. Acquire E(P). 

6. Acquire E(L). 

7. if ( P  # PARENT(L)) then 

0 Release E(L) and E(P).  

0 Acquire p(L). 

0 Goto Step 1. 

8. if ( 1  UNDERFL(L)) and (MBR(P - L) = MBR(P)) then 

0 Release E(L) and E(P),  and return. 

9. if ( 1  UNDERFL(L)) then 

0 Update the MBR of P 

else 

0 Acquire E ( L ~ ) ,  where L ~ ~ S  are the m siblings of L. 

0 if L is a non-leaf node then 

- Acquire E(L;), where Li7s are the k children of L. 

0 Merge the nodes by re-distributing Li7s among ~ j ' s .  

Update the MBR7s of P and ~ j ' s .  

0 Update the parent pointers in L;'s. 

0 Mark L as deleted. 

0 if L is a non-leaf node then release E(L;) for i = 1, .  . . , k. 
0 Release E(LJ) for j = 1, .  . . ,m.  

10. Release E(L). 

11. Downgrade E(P)  to p(P). 

12. Rt.Condense(P). 

3 ~ ~ ~ ( ~  - L) represents the new MBR when a child node L is removed from node P. 
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4.2.4 Correctness of the Operations 

We prove the correctness of our concurrency control protocol RT for the R-tree by first 

showing it is deadlock-free. We then prove that a search operation can always find the 

available objects. In the following discussions, an update operation means either an insert 

or a delete operation. We start with the following lemma: 

L e m m a  4.3 A search operation cannot overtake an update operation i f  they are traversing 

the same path. Similarly, an update operation cannot overtake any other operation. 

The proof is the same as in Lemma 4.1. 

Theorem 4.3 Protocol RT is deadlock free. 

Proof: Similarly to  the proof for the BT algorithms, we derive a contradiction by first 

assuming there is a deadlock. Let A be the set of all deadlocked operations and T be the 

oldest operation in A. 

a:  T is a search operation. Since T uses p-lock-coupling, no update operation can 

overtake T. Therefore, no node that T is trying to  lock is €-locked by another update 

operation in A. T can thus always acquire a p lock it needs, and cannot be blocked 

forever, a contradiction. 

b: T is an insert operation in its first phase. Since T used 6-lock-coupling, no operation 

can overtake T. Thus, T cannot be blocked forever, a contradiction. 

c: T is an insert in its second phase, executing Rt.CleanUp. In this case, T is trying 

to  upgrade an w-lock to an €-lock. From Lemma 4.3, T cannot be in conflict with any 

younger update operation because no update operation can be within its scope. A 

younger search operation may have placed a lock on the node which T is acquiring, 

but it will eventually terminate because of the order of lock acquisition/upgrade (top- 

down and left-to-right fashion). Note that individual subsearch operations belonging 

to  a search operation can proceed independently, since they are executed in parallel. 

Thus, T cannot be blocked forever by search operations. Hence, a contradiction to  

the assumption. 

d: T is a delete operation in its first phase. The argument is the same as in (b). 
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e: T is a delete operation in its second phase. In this case, T is trying to  acquire 

elocks, say on node P and P7s  child nodes. A younger operation (TI) may have 

placed a lock on P, but it will eventually terminate. It is because of the order of lock 

acquisition and T does not hold any lock before successfully acquires the lock on P. 

Hence, T cannot be blocked forever. A contradiction to  the assumption. 

We like to  point out that the delete algorithm does not prevent the possibility of livelock 

(where one operation runs indefinitely). This can happen when a delete operation backtracks 

and the parent of the currently visited node is kept changing (i.e., the delete operation is 

running very slow and the parent keeps on splitting). However, we believe that the situation 

is unlikely to  happen in a practical system with the following ideas. 

In most systems, an operation is executed as a single process and all processes are run 

with comparable speed. 

Insert and delete operations occur infrequently when compared to  search operations. 

In a short time interval, there is only a small number of new nodes created. 

In the worse situation where operations do run at  different speeds, we can introduce some 

addition mechanism to  prevent livelock. One possibility is to assign lock acquisition priorities 

to each operation according to  the "age'74 of the operation. This would guarantee that an 

operation will finish if it becomes the oldest. 

Lemma 4.4 In  the protocol RT, no search operation will miss an available object. 

Proof: The proof is analogous to  that for Lemma 4.2. When all operations are search 

operations, as there is no modification made to the tree, every search operation will see the 

available objects correctly. 

We then consider when a search operation is traversing the path together with an update 

operation in its first phase. Let Il be an insert operation, S1 be a search operation. If Il is 

younger (has later starting time) than S1, as overtaking is not possible by Lemma 4.3, Il will 

not affect the result of S1 at all. If Il is older than S1, Il will expand the MBRs along the 

insertion path, if necessary. Hence, S1 cannot miss the new object. If the update operation 

is a delete operation, Ul, during the downward traversal of Ul, it does not modify any nodes 

4The elapsed time since an operation started. 



CHAPTER 4 .  POINT DATA 

except a leaf node, say L. Hence, S1 will always arrive at  L. If S1 acquires a p-lock on L 

first, then Ul will need to  wait. On the other hand, S1 will wait when Ul acquires an €-lock 

on L first. In the above cases, S1 will see the available objects in L correctly. 

We now consider the case where there is a cleanup or a condense operation backtracking 

along the same path that S1 uses. Suppose S1 is visiting node P. It will first acquire a 

p-lock on P and then determine the nodes to visit next. Let PC be one of the nodes in 

PI, . . . , Pk to be visited by S1 next. If Ul is in its second phase, trying t o  modify PC, then 

PC can only be changed if Ul has acquired an €(PC). If this happens, S1 will wait until Ul 

modifies and releases the locks. S1 still correctly arrives at  PC because PC cannot be split 

or removed, since S1 holds a p-lock on P .  If Ul is a cleanup operation, then the MBR of 

PC cannot be modified and S1 continues its work correctly. If Ul is a condense operation, 

then the MBR of PC might have been shrunk. However, this does not affect the results of S1 

because the adjustment of the MBR must have been done after U17s removal of an object 

which occupied the missing space. If S1 gets a p-lock on PC before Ul locks it,  then S1 will 

works on PC as intended and Ul will wait until S1 finishes. Hence, the search operation will 

not miss any object which is available. 0 

Theorem 4.4 The protocol R T  is correct. 

Proof: From Lemma 4.3, Lemma 4.4, and Theorem 4.3, we can conclude that protocol RT 

are correct. 0 

4.3 K-D-B Tree 

The K-D-B tree [Rob811 partitions a cube in a k-dimensional space into non-overlapping 

regions to  index point data. The tree is always balanced in the sense that the number of 

nodes on the path from the root node to  any leaf node is the same. However, unlike B+-trees, 

50% storage utilization of nodes cannot be guaranteed because of the splitting conditions. 

There are two types of nodes in a K-D-B tree: the region node and point node. A region 

node is an internal node, which contains entries of the form (region, child-id), where region 

represents a region box in the space and child-id is the reference pointer to  a child node. 

On the other hand, a point node is a leaf node, which contains a collection of (object-id, 

location) pairs, where object-id is a reference to a point object and location gives the spatial 

location of the object. 
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In the previous section, the MBRs of entries within the same node of an R-tree were 

allowed to  overlap. This resulted in the possibility of multiple search paths during data 

access. Unlike an R-tree, a K-D-B tree partitions the data space into non-overlapping 

regions. No pair of nodes at the same level of a K-D-B tree have overlapping MBRs. The 

no-overlap property allows the search operations to  be more efficient, because it reduces 

unnecessary search paths. However, the same property also introduces new problems for 

the insert and delete operations. 

The first problem is the up-and-down splitting of nodes in the tree. During the second 

phase of an insert operation, node splitting may have to  be propagated not only up the tree 

(towards the root) but also down the tree (towards leaves). When a node is full and needs 

to  be split, the split line chosen may cause its children to be split as well. Suppose in Figure 

4.10, C is split into C (the left half) and C1 (the right half). Because the split line crosses 

its children A and B, they need to be split as well. If the children of A and B intersect 

with the line, more splits will occur. We call these splits the recursive splitting of C.  After 

finishing the splits for C ,  A and B,  we may find C1 full and more splitting may be required. 

Thus, several traversals of the K-D-B tree may be required before updating is completed. 

The recurring splits create extra complexities and result in poor performance. To solve the 

problem, we use the forced splitting strategy for the insert operations, to  be explained later 

in more detail. 

The second problem is related to  the merging of entries within a node in the K-D-B tree. 

This problem occurs during the clean-up phase of a delete operation. For any entry in a 

node, its associated region is a rectangular region. If an entry is removed or the child node 

it references underflows, it needs to  merge with other entries in the same node. However, 

the merging of regions is limited by the joinability property. For a given rectangle R with 

sub-rectangles, R1, Rz, ..., Rk, a joinable set of rectangles with respect to R1 consists of a 

subset of these rectangles, including R1, whose union is also a rectangle. In Figure 4.11, 

there are four sets of joinable rectangles with respect to  D. In the discussion on the delete 

operation, we will suggest to  use the minimal joinable set of entries in a node together with 

splitting to  rearrange the entries. 

Our concurrency control protocol, KT, for K-D-B trees is implemented by a collection of 

procedures, for search, insert, and delete operations, as well as those for tree-reorganization. 

In the following sections, we discuss them in detail. 
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Split line 

Figure 4.10: Recursive splitting. 

4.3.1 Search 

The search operation is implemented in the same way as that in the R-tree. It starts at 

the root of a tree and descends to the leaf level. More formally, Search(W, R )  is carried out 

by calling Kt.Search(W, P, Count) given below, where W is a search window, Count := 0, 

by setting P to the root of the tree. 

Kt.Search(W, P, Count) 

1. Acquire p(P). 

2. if PARENT(P) # NULL (i.e., P # root) then 

0 Acquire €(Count). 

0 Decrement Count by one. 

0 if (Count = 0) then release p(PA RENT(P)). 

0 Release  count). 

3. if P is a non-leaf node then 

0 Let {E;  = (REGION(P;), Pi) I i = 1, . . . , l c )  be the entries in P such that 

REGION(P;) n W # 4. 
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1. A 
2 .  B C D  
3 .  E F G  
4 .  B C D E F G  

Figure 4.11: Joinable sets of rectangles. 

0 if (k > 0) then 

- Mycount:= k. 

- For all entries Ei found above, continue the search in parallel invoking 

Kt.Search(Wn REGION(P;),P;, Mycount). 

else release p(P).  

4. if P is a leaf node5 then 

0 For all the points inside W return their ids. 

0 Release p(P).  

4.3.2 Insert 

As with the insert operation on the B+-Tree, we carry out an insert operation on the K-D-B 

tree in two phases. During the first phase, we locate the leaf node to  which to add the new 

object and put the object there. The path in the tree we take is called the insertion path. 

During the downward traversal, we w-lock a node and push it onto a stack if its child, which 

is also on the insertion path, is full. Otherwise, we empty the stack and release the w-locks. 

At the end of the first phase, the entry representing a new point object is added to  a leaf 

node. In phase two, if the stack is non-empty, we have to  reorganize the tree. 

In order to  avoid the up-and-down splitting of nodes, we choose one split line for all 

nodes on the insertion path. When a leaf node, L, is to be split, we calculate the split line 

for L first. Let us assume that the split line is SL. SL is then used to  split all the full nodes 

on the insertion path. Descendants of the split full nodes which intersect with SL will also 

be split. We call these splits forced splits, because the nodes are being forced to split. 

51.e. a point node. 
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In Figure 4.12, the nodes A, B,  C ,  and D form the insertion path and B is the first full 

node on it, i.e., C and D are both full nodes as well. The split line is initially applied to all 

children of B (B1, ..., Bk). Any child of B intersecting with SL will be split. As D is a child 

of C ,  SL will intersect with C ,  which implies that B will have at least one child (i.e., C) to 

be split. During the splittings of the children of B, B is allowed to  temporarily overflow. 

SL is applied to  the children of Bi7s recursively down to the leaf nodes. If a descendant 

node P of B intersects with SL and it has n entries, we split P into PI and P". After the 

split, there will be at most 2n new entries (if each old entry in P is divided into 2 entries). 

The entries that are not divided will be totally in either PI or P". The new entries are 

distributed between PI and P" depending on their locations with respect to  SL. Therefore, 

neither PI nor P" will have more than n entries. Consequently, none of the new nodes after 

splittings will overflow and a descendant node of B will be split at most once. Once the 

splittings have finished, updates will be propagated backward up to  B. At B,  B is split and 

its parent A is updated. The forced splittings simplify the procedures for the updating, but 

it has the same problem as discussed in [Ben75], where good utilization of storage cannot 

be guaranteed. 

For an insert operation, the procedure Kt.Select is invoked to  locate the leaf node to 

which add the new object, and the procedure Kt.Adjust is used to perform the forced split- 

ting. More formally, Insert(0, R)  is carried out as follows, where 0 is the point object, and 

R is the root of the tree. The new entry, Eo = (POINT(O), 0), is added to  the leaf node 

found by procedure Kt.Select. 

1. n := A (empty string). 

2. L := Kt.Select(0, R, NULL, n),  /* This procedure returns an €-locked leaf node, L, 

in which to place object 0. n is changed by call-by-reference and, on return, gives a 

stack of full nodes, which forms a subpath of the insertion path. */ 

3. Add entry Eo to  node L. 

4. Downgrade E(L) to  w(L). 

5. if FULL(L) then 

0 Calculate the split line, SL, for L. 
' 
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Let Fnode be the first node in n.  

Kt.Adjust(Fnode, SL, T). 

In the following procedure, we define REGION(NULL) = 4. Note that, when 

Kt.Select(0, P, Parent, n) is recursively called, Parent is €-locked, and on exit, P is w-locked 

and either Parent is placed on n or €(Parent) has been released. 

Kt.Select(0, P, Parent,  n) 

1. Acquire E(P). 

2. if Parent # NULL then 

if 1 FULL(P) then 

- Release all locks on nodes in n 

- FREE(n). 

else 

- Downgrade  parent) to  parent). 

- PUSH(Parent,n). 

3. if P is a non-leaf node then 

Find an entry E, = (REGION(P,),P,) in P ,  

where POINT(0) is inside REGION(P,). 

Kt.Select(0, P,, P,  n). 

else 

Downgrade  parent) to  parent). 

PUSH(P,T). 

Return P. 

When the following procedure is called, unless L = NULL, L is w-locked. 

1. if (L = NULL) then return. 

2. if (L = Root) and FULL(L) then 
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Figure 4.12: Forced splits. 

Acquire c(L). 

Create a new root. 

Make it Parent. 

Add L to Parent. 

Acquire  parent). 

Downgrade E(L) to w(L). 

else 

Parent := L. 

L := FOLLOW(P,n). 

3. Kt.Split(L, SL, Parent, n). 

4. Release all w-locks for nodes on n. 

5. Empty n (i.e., n := A). 

When the following procedure is called, unless L = NULL, L is o-locked, and except 

when PARENT(L) = NULL (i.e., L = root) or n = A, PARENT(L) is w-locked. 

Kt.Split(L, SL, Parent,  n)  

1. if (L is not a leaf node) then 

Let L have k children, L1, ..., Lk, initially. 
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. For each i = 1, .  . ., k, if L; intersects SL, 

- Acquire w(Li). 

- ~ t . S ~ l i t ( L i ,  SL, L, T) 

2. Acquire €(Parent). 

3. Acquire E(L). 

4. Split L into L and L' with S L . ~  

5. Add L' to Parent. 

6. Update Parent. 

7. Downgrade E(L) to w(L). 

8. Downgrade E( Parent) to  parent). 

9. if [L is not in n] then release w(L). 

10. if [ Parent is not in n] then release  parent). 

4.3.3 Delete 

We use two phases to carry out a delete operation. The first phase is to locate the leaf node 

which points to the object to be deleted. This phase is almost identical to Kt.Select, except 

that it also looks for possible underflow in the nodes on the deletion path. At the end of 

the first phase, the object is deleted. 

In the second phase, we backtrack to reorganize the K-D-B tree as needed. The approach 

is either merging the entries of an underflowed node with its siblings or re-distributing entries 

from the siblings to the underflowed node. As noted previously, rectangular regions cannot 

be joined freely. The union of the regions will need to form a rectangle. This means an 

underflowed node may not be able to distribute its children to its siblings at all times. 

Let R, PI, ..., Pk be the child nodes of the node P. R may have several joinable sets. 

We call the joinable set with respect to R containing the minimum number of nodes the 

minimal joinable set (MJS) of R. In the first approach, if R has underflowed, we first 

find its MJS. If the total number of entries in the nodes in the MJS is less than the maximum 

allowed (M), we can merge the nodes in the MJS together to form a new node, and remove 

the old nodes in the MJS. If the merging of entries is not possible for R, then the second 

6 L  may have more than k children after the splits above. 
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approach is to move some of the children in Pi's to R. One method is to concatenate the 

Pj's with R and recursively split the merged node until there is no overflow. Because of the 

non-overlapping property in the K-D-B tree, there may be many internal splits and up-and- 

down updates. To reduce the work, we first use Pj's to calculate a split line (SL) which does 

not intersect with R. SL is then applied to split the children of the Pi's. All children that 

are on the same side as R with respect to SL become the children of R. However, during 

the calculation of SL, we need to make sure that no more than M children will re-distribute 

to R. If R overflows, it will be split afterwards. With this method, there will be at most 

two downward propagations of splittings from R to the leaf nodes. 

More formally, Delete(0, R) under the lock-coupling method is carried out as follows. 

Kt. Delete(0, R) 

1. n := A (empty string). 

2. L := Kt.Find(0, R, NULL, n), /* This procedure returns a c-locked leaf node, L, in 

which object 0 is referenced. n is changed by call-by-reference and, on return, gives 

a stack of nodes, which forms a subpath of the deletion path. */ 

3. Remove entry Eo in node L. 

4. Downgrade E(L) to w(L). 

5. Let L be the first under-utilized node in n. 

6. Kt.Condense(L,n). 

7. Release all locks in n and empty n. 0 

In the following procedure, we define REGION(NULL) = 4. Note that, when 

Kt.Find(0, P, Parent, n )  is recursively called, Parent is elocked, and on exit, P is w-locked. 

For Parent, it is either placed on n with  parent) or its €-lock has been released. 

Kt.Find(0, P, Parent,  n) 

1. Acquire E(P). 

2. if Parent + NULL then 

0 if not (MIN(P) or FULL(P)) then 

- Release all locks on nodes in n. 
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else 

- Downgrade  parent) to  parent). 

- PUSH(Parent,n). 

3. if P is a non-leaf node then 

0 Find an entry E, in P ,  where 0 is inside REGION(P,). 

0 Kt.Find(0, P,, P, T). 

else 

0 if there is an entry E, in P then return P .  

else return NULL. 

When the following procedure is called, unless U = NULL, U is w-locked, and except 

when PARENT(U) = NULL (i.e., U = Root) or n = A, PARENT(U) is w-locked. 

Kt. Condense( U, n) 

1. if U = NULL then return. 

2. if U has no child then 

Acquire E(U). 

0 Mark U as deleted. 

0 Release E(U). 

0 Return. 

3. if U is a leaf node then return. 

4. if U = Root then 

0 Condense(FOLLOW(U, T), T). 

0 Return. 

5. Parent := PARENT(U). 

6. Let Parent has k children, PI, ..., Pk, where P, = U. 

7. Acquire w(Pi) for i = 1, ..., k. 

i 
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8. Let J be the MJS w.r.t. U. 

9. if number of entries in J < Maxent,, then 

0 Acquire €(Parent). 

0 Acquire €(Pi) for i = 1, ..., k. 

0 Move all the entries of J to U. 

0 Update Parent. 

Downgrade  parent) to   parent). 

0 Release €-locks of the children of Parent  except U. 

Downgrade c(U) to  w(U). 

0 Let L be the first under-utilized node in n. 

0 Condense(L, n). 

else 

Let SL be a split line for J which does intersect with U. 

Release w-locks of the children of Parent except U. 

0 Kt.DSplit(n, U, SL).  

0 Condense(U, n). 

1. if (n = NULL) or (U = NULL) then return. 

2. Let L be the first full node in n. 

3. if (L = Root) then 

0 Create a new root. 

0 Make it Parent. 

0 Acquire €(Parent). 

0 Add L to  Parent. 

else Parent := PARENT(L). 

4. Let L has k children, L1,. . ., Lk. 

5. For each L; where i= l ,  . . . , k and Li intersects SL. 
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Acquire w(L; ) .  

Kt.Split(Li, SL,NULL).  

Downgrade E ( L ; )  to w(L; ) .  

6. Acquire €(Parent). 

7. Acquire E ( L ) .  

8. Now L has k' children, L i ,  . . . , L i .  

9.  Split L into L and L' with SL. 

10. Add L' to Parent. 

11. Update Parent. 

12. Release all locks except for nodes in T. 

13. Remove all nodes in n from L to PARENT(U) .  

4.3.4 Correctness of the Operations 

The structure of a K-D-B tree is similar to the BS-tree discussed in the Section 4.1. The 

major differences between them are the ways the updating process due to  splitting and 

condensation of nodes are done. Most of the correctness proofs for our algorithms for a 

K-D-B tree are the same as those for a B+-tree. Therefore, we will only discuss the issues 

related to  reorganization in detail. In the following discussion, an update operation means 

either an insert or a delete operation. 

Lemma 4.5 A search operation cannot overtake an update operation i f  they are traversing 

the same path. Similarly, an update operation cannot overtake any other operation. 

Proof: The proof is the same as in Lemma 4.1 in the B+-tree. 0 

Theorem 4.5 Protocol KT is both deadlock and livelock free. 

Proof: The proof is the same as in Theorem 4.1. 

Lemma 4.6 In the protocol KT,  no search operation will miss an available object. 
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Proof: We first consider the case where a search operation is traversing the same path 

together with an update operation in its first phase. Let Ul be an update operation and 

S1 be a search operation. Similarly to  the B+-tree, during the downward traversal of U1, it 

does not modify any internal nodes except a leaf node, say L. Hence, S1 will not miss any 

node it should visit and always arrive at L correctly. If S1 p-locks L first, then Ul will need 

to wait. On the other hand, S1 will wait when Ul p-locks L first. In either cases, S1 will 

see the available objects in L correctly. 

Suppose there is a cleanup or a condense operation backtracking along the same path 

that S1 uses. Let S1 visit node P. It will first acquire a p-lock on P and then determine 

the nodes to  visit next. Let PC be one of the nodes in PI , .  . . , Pk to be visited by S1 next. 

If Ul is in its second phase, trying to modify PC, then PC can only be changed if Ul has 

acquired an €(PC). If this happens, S1 will wait until Ul modifies and releases the lock. S1 

still correctly arrives at PC because PC cannot be split or removed, since S1 holds a p-lock 

on P. Ul might have changed the content (e.g., the number of entries) in PC. However, this 

does not affect the results of S1 because Ul must have finished its work at the corresponding 

leaf node already. If S1 gets a p-lock on PC before Ul locks it, then S1 will works on PC as 

intended and Ul will wait until S1 finishes. Hence, the search operation will not miss any 

object which is available. 

Theorem 4.6 The protocol KT is correct. 

Proof: From Lemma 4.5, Lemma 4.6, and Theorem 4.5, we can conclude that the protocol 

KT are correct. 0 

4.4 Quad-B Tree 

All the previous index structures described in this chapter have some serious disadvantages. 

For example, with the K-D-B tree, there is a problem of balancing. Furthermore, the locks 

for many nodes must be hold and up-and-down splitting of nodes also occur frequently. 

The quad-B tree presented below overcomes these problems to  a certain degree; it was 

motivated by the work in [NgK93, Ng94b, NgK951. 

The quad-B tree has two distinguishing properties which affect the concurrency control 

algorithms for it. 

0 The keys within the tree are scalar values which are totally ordered. 
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Figure 4.13: The shaded regions contain one or more point objects. 

0 The MBRs associated with the internal nodes are allowed to  overlap. This makes the 

balancing of a tree easier and avoids excessive partitioning of the data space. 

For many years, quadtrees have been used as the index structure for spatial objects 

such as lines, points, and rectangles. A quadtree [Sam801 presents a region obtained by 

a recursive 4-way subdivisions of the data space into quadrants. If a resulting quadrant 

contains more than a certain number of points, then it is further subdivided. At depth 

i, the height (width) of a quadrant is 2-a times the original height (width) of the data 

space. In Figure 4.13, the regions containing data objects are shaded. The corresponding 

quadtree is shown in Figure 2.3. In [Sam88], Samet describes several variants of quadtree, 

such as the point quadtree, the MX quadtree and the PR quadtree. In general, there are 

three methods to  represent the regions resulting from the 4-way subdivisions. The first 

method, the transformation method [KlR79], encodes the size and coordinate information of 

each region. This method enables the use of an ordered list of keys to  represent the regions. 

The second method [Sam82, HuS79, DRS801 uses some kind of tree. This method is a 

natural representation of a 4-way subdivisions but the tree may not be balanced. The third 

method, as described in [JoI84], uses a hybrid scheme where a region is represented by a set 

of segments and each segment corresponds to  a numeric key. The third method constructs 

a forest of quadtrees, which makes concurrency control algorithms harder to  achieve. Note 

that the second method allows the regions to  be represented by a B+-tree, which is balanced. 
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Figure 4.14: A Quad-B tree. 

The quad-B tree we propose is based on the idea described in [Abe84]. We call a non- 

empty quadrant which does not contain a smaller quadrant a terminal quadrant. We 

represent each terminal quadrant by a scalar value and store it at the leaf level of a B+-tree. 

With the scalar transformation on their sizes and locations in the data space, the terminal 

quadrants can be linearly ordered. We can then use the conventional concurrency algorithms 

for the B+-trees. To support spatial queries better, we also add the MBR information to 

every node in the B+-tree. 

More formally, a quad-B tree is a representation of the terminal quadrants for point 

data. It is a B+-tree such that each non-leaf node contains entries for its children and a 

MBR contains all regions covered by the children. Each entry is of the form (MBR, Value,P). 

MBR is the MBR associated with a child node P7 and Value is a scalar value which is the 

largest scalar values amongst the entries in P. At each level, the rightmost entry of the 

rightmost node has the largest possible value in the subtree. For the internal nodes, MBR's 

are allowed to  overlap. A leaf node contains entries of the form (MBR, Value,B), where B is 

a bucket of point objects, and MBR is the minimum quadrant to  cover all the points in B. 

Value is the corresponding scalar value for MBR. The maximum number of points that can 

be stored in B is M. All entries in the leaf nodes represent different terminal quadrants, 

and, therefore there are no overlap among them. 

We represent each quadrant by a scalar value obtained from an encoding scheme. In 

7 ~ o  be precise, P is a pointer to a child node. We often identify the node and a pointer to it. 



CHAPTER 4. POINT DATA 

our encoding scheme, we use the approach described in [Abe84]. A quadrant at depth d 

(where d > 0) is encoded as follows. Let D be the largest depth of any terminal quadrant. 

Suppose the entire data space is encoded as 0. Let the quadrant q have the key value k and 

its parent qp have the key value kl. Then 

where 

s = 1, if q is the northwest son of qp 

s = 2, if q is the southwest son of qp 

s = 3, if q is the southeast son of qp 

s = 4, if q is the northeast son of qp 

Throughout the section, we will represent the key values in base 5 and the above transfor- 

mation by cp(R), where R is a quadrant. In Figure 4.15, we show the encoded values for 

the shaded regions in Figure 4.13 and the same values are stored at  the leaf nodes shown in 

Figure 4.14. 

We now discuss how to support concurrent operations in a quad-B tree. The lock-coupling 

protocol, which was used in the previous point index structures, is first used. We will also 

use the link technique described in [Ley811 together with the lock-coupling approach. If it is 

done, a search operation is allowed to  release the lock on a node it holds before it obtains a 

lock on the next node. It offers more concurrency than the lock-coupling alone, but requires 

the addition of new edges (link pointers) to  the tree in order to  avoid anomalies. 

When a node overflows, it will be split. However, splitting is handled differently for leaf 

nodes and internal nodes. At a leaf node, when one of its entries has in its bucket more 

than M point objects, the entry will be replaced by the new entries corresponding to  its 

quadrants. Only the quadrants which contain data are transformed to  key values. They are 

then added to  the the leaf node. For an internal node, a node is split when it has more than 

M entries and it is replaced by two new nodes. 

We introduce a new operation on a quad-B tree, in addition to  the first three operations 

discussed in Chapter 3. The new operation is also a search operation but it tries to  find an 

object at a given location (i.e., point search operation). This operation traverses only one 

search path from the root to  a leaf node. The operation is stated below. 

PSearch(P, R)  Search if there is any object at point P in the tree rooted at R 
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Figure 4.15: Scaler values for the terminal quadrants. 

4.4.1 Lock-Coupling 

In this section, the quad-B tree is adopted with the lock-coupling approach. Our concurrency 

control protocol, QB, for quad-B trees is implemented by a collection of procedures, for 

search, insert, and delete operations, as well as those for tree-reorganization. In the following 

sections, we discuss them in detail. 

Search 

In this section, we want to  discuss two types of search operations: the window search and 

point search operations. A window search operation tries to find all the point objects within 

a given window; while a point search operation tries to locate if there is any object at a 

specific point. 

A search operation starts at the root of a tree and descends down to the leaf level. At each 

visited node, a window search operation may branch into multiple sub-search operations. 

For the same reason as for the search operations in the B+-tree and R-tree, we use a lockable 

variable, Count, in the window search operation. 

More formally, Search(W, R) is carried out by calling Qb.RSearch(W, R,Count) given 

below, after setting Count := 0. Count in the following procedure is a call-by-reference 

parameter. 

Qb.RSearch(W, R, Count) 
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1. Acquire p(R). 

2. if PARENT(R) # NULL (i.e., R # root) then 

Acquire €(Count). 

Decrement' Count by one. 

if (Count = 0) then release p(PARENT(R)). 

Release  count). 

3. if R is a non-leaf node then 

Let {Ei = (MBR(R;), R;,V,) I i = 1, ..., k) be the entries in R such that 

MBR(R;) n W # 4. 
if (k > 0) then 

- Mycount:= k. 

- For all entries E; found above, continue the search in parallel invoking 

Qb.RSearch(WnMBR(R;),R;,MyCount). 

else release p(R). 

4. if R is a leaf node then 

For all points inside W return their object ids. 

Release p(R). (7 

A point search operation works similarly to a search operation in a B-tree. There is a 

unique path for it to traverse before reaching a leaf node which may contain the object. 

Similarly to the window search operations, a point search operation starts at the root of a 

tree and descends down to the leaf level. However, at each visited node, the search operation 

compares the key values in the node against the scalar value representing the POINT(P). 

Only one child will be visited next and the Count variable is not needed. More formally, 

PSearch(P, R) is carried out by calling Qb.PSearch(P, SValue, R) given below, where P is 

a point, SValue is the scalar value for P after transformation, and R is the root of the tree. 

The operation is similar to the search operation in a B+-tree. Therefore, the details of the 

operation is omitted here. 
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Insert 

Similarly to  the R-tree, there are two phases for an insert operation. During the first phase, 

we locate the leaf node to  which to  add the new object. The path in the tree we take is 

called the insertion path. After adding a new object to  a leaf node (i.e., in the second 

phase), we may have to  perform some maintenance operations by tracing back the insertion 

path to 

1. reorganization of the tree, and/or 

2. enlarge the MBR's of some nodes. 

The definition of an unsafe node is the same as that for the R-tree. w-locks are used 

to avoid multiple updating operations working in the same scope. The only difference is at 

leaf nodes. Let M be the maximum number of entries allowed at a leaf node. If a leaf node 

contains M - 3 or more entries, then there is a possibility that it may be split during the 

second phase. If a split does occur, the parent of the node may then have from one to  four 

new entries. More formally, Insert(0, R)  under the lock-coupling method for the quad-B 

tree is carried out as follows. 

1. n := A (empty string). 

3. L := Qb.Select(0 ,SValue,R,NULL,n), /* This procedure returns an €-locked leaf node, 

L, in which to  place point 0 .  n is changed by call-by-reference and, on return, gives 

a stack of unsafe nodes, which forms a subpath of the insertion path. */ 

4. if there is an entry Eo whose region contains 0 then 

a Let B be the data bucket referenced by Eo. 

a Add 0 to  B. 

e if B is full then 

- Let A be the region corresponding to  Eo. 

- Split A into quadrant with at most 4 non-empty quadrants as A1, A2, A3, A4. 

- Distribute objects in B to  B;'s for the corresponding Ai7s. 
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- Let Ei7s be the new entries to reference the B;'s. 

else 

0 Create an entry E; which is a neighborhood quadrant of Eo. 

0 Let B be the data bucket referenced by E;. 

0 Add 0 to  B. 

5. if Ei7s exist then add entries Ei7s in node L. 

6. Downgrade €(L) to w(L). 

7. Qb.CleanUp(L, T). 

In the following procedure, we define MBR(NULL) = 4. Note that, when 

Qb.Select(O,SValue,P,Parent,Path) is recursively called, Parent is €-locked, and on exit, P 

is w-locked. For Parent, it is either placed on Path with an w-lock or ~(Parent)  has been 

released. 

1. Acquire E(P). 

2. if Parent  # NULL then 

0 unsafe := 0. 

0 if P is a leaf node then 

- if Size8(P) > Maxalro, - 3 then unsafe := 1. 

else 

- if Size(P) = Maxallo, then unsafe := 1. 

0 if 0 outside MBR(Parent) then 

- unsafe := unsafe + 2. 

- Update MBR(Parent) with 0. 

0 if unsafe 2 1 then 

- Downgrade ~ ( P a r e n t )  to   parent). 

' S i ze  is a function which returns the number of entries in a node. 
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- PUSH(Parent, Path). 

r if (unsafe =O ) then release w-lock on Parent. 

r if ((unsafe = 0) and (Path # A)) then release all locks on nodes in Path, and 

FREE(Path). 

3. if P is a non-leaf node then 

r Find an entry E, in P, where Vs-l < SValue 5 V,. 

r Qb.Select(O,SValue,P,, P,  Path). 

else return P. 0 

When the following procedure is called, unless L = NULL, L is w-locked, and except 

when Parent = NULL (i.e., P = root) or Path = A, PARENT(L) is w-locked. 

Qb.CleanUp(L, Path)  

1. if L = NULL then return. 

2. if OVERFL(L) then 

r if PARENT(L) exists then 

- Upgrade w(PARENT(L)) to e(PARENT(L)). 

else 

- Create a new root. 

- €-lock the new root. 

- Make it PARENT(L). 

r Acquire e(PARENT(L)). 

r Acquire E(L). 

r Split L into L and L'. 

r Add L' to PARENT(L). 

r Update PARENT(L). 

r Downgrade c(PARENT(L)) to w(PARENT(L)). 

Release E(L). 

r L := POP(Path). 
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0 Qb.CleanUp(L, Path).  

else 

0 Release all locks on Path.  

0 FREE(Path). 

Delete 

We use two phases to  carry out a delete operation. The first phase is to  locate the object. 

This phase is almost identical to a point search operation. Internal nodes are p-locked and 

the bounding rectangles are not shrunk on its way down. Similarly to  the insert operations, 

it upgrades the p-locks to  w-locks when the nodes are considered unsafe. For a deletion, a 

node is unsafe if the deletion may cause 

1. reorganization of the tree, and/or 

2. shrinkage of the MBR's of some nodes. 

The first situation may happen when a node has the minimum number of entries. The second 

situation arises when the deletion of the point object results in a change of the MBR. This 

happens at a node if the removal of the next visited node will shrink its MBR. At the end 

of phase one, if the object has been found, it is removed and the tree is reorganized in the 

second phase. 

In the second phase, we backtrack the tree along the path of nodes which are w-locked. 

More formally, Delete(0, R) under the lock-coupling method is carried out as 

Qb.Delete(0, R) where 0 is the object to  be deleted and R is the root of the tree initially. 

Procedure Qb.Find is invoked to perform the first phase of a deletion and w-lock the unsafe 

nodes. The second phase is carried out by the procedure Qb.Condense. 

Qb. Delete(0, R) 

1. n := A (empty string). 

2. SValue := ~ ( 0 ) .  

3. L := Qb.Find(O,SValue, R, NULL,n),  /* This procedure returns a €-locked leaf 

node, L, in which object 0 is referenced. n is changed by call-by-reference and, 

on return, gives a stack of under-utilized nodes, which forms a subpath of the deletion 

path. */ 
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4. Let Eo be an entry in L whose region contains 0. 

5. if (Eo  = NULL) then return. 

6. Let B be the data bucket referenced by Eo. 

7. Remove 0 from B. 

8. if B is empty then 

Remove entry Eo in node L. 

9. Try to merge entries in L by joining different regions of entries. 

10. Downgrade c(L) to w(L).  

11. Qb.Condense(L, x). 

In the following procedure, we define MBR(NULL) = 4. Note that, when 

Qb.Find(O,SValue,P,Parent,Path) is recursively called, Parent is €-locked, and on exit, P 

is w-locked. Parent is either placed on Path with an w-lock or  parent) has been released. 

1. Acquire c(P).  

2. if Parent # NULL then 

unsafe := 0. 

if UNDERFL(P) then unsafe := 1. 

if P is the only child in Parent and POINT(0) is inside MBR(P) then 

- unsafe := unsafe + 2. 

if unsafe 2 1 then 

- Downgrade  parent) to  parent). 

- PUSH(Parent,Path). 

if (unsafe =O ) then release €-lock on Parent. 

if ((unsafe = 0 )  and (Path # A)) then release all locks on nodes in Path, and 

FREE(Path). 

3. if P is a non-leaf node then 
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Find an entry Es in P, where V,-l < SValue 5 V,. 

Qb.Find(0, SValue, P,, P, Path).  

else return P .  0 

When the following procedure is called, unless L = NULL, L is w-locked, and except 

when PARENT(P) = NULL (i.e., P = root) or Path = A, PARENT(L) is w-locked. 

Qb. Condense(L, Path) 

1. if (L = NULL) or ((1 UNDERFL(L)) and (Path = A)) then 

Release w(L). 

Return. 

2. Parent  := POP(Path). 

3. if (Parent  = NULL) and (L is empty) then 

Acquire E(L). 

Mark L as deleted if L has no child. 

Set root of the tree to NULL. 

Release €( I ; ) .  

0 Return. 

4. Acquire €(Parent). 

5. if UNDERFL(L) then 

0 Let Parent  has k children as PI, ..., Pk including L. 

Acquire €(Pi) for i = 1, ..., k .  

Merge the entries of P with its siblings. 

Update Parent and its MBR. 

Update the MBR's of Pi's. 

0 Remove L. 

Release €(Pi) for i = 1, ..., k. 
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0 Update Parent and its MBR. 

0 Release w ( L ) .  

6. Downgrade €(Paren t )  to   parent). 

7 .  Qb. Condense(Parent, Path) .  

Correctness Proof 

The proofs of correctness of the operations are the same as those for the B+-tree. Therefore, 

we will only state a lemma and two theorems without proof. 

Lemma 4.7 A search operation cannot overtake an update operation i f  they are are travers- 

ing the same path. Similarly, an update operation cannot overtake any other operation. 

Theorem 4.7 The protocol Q B  is both deadlock and livelock free. 

Theorem 4.8 The protocol Q B  based on the lock-coupling protocol is correct. 

4.4.2 Link Extension 

The link technique was adapted by Lehman and Yao to  B-trees [LeY81]. They modified the 

B-tree to  the B-link tree by adding a link pointer to  each node. Each node of a B-link tree 

thus has two types of pointers: its child pointers point to  the child nodes, while its link 

pointer points to its right neighbor a t  the same level of the tree. Therefore, link pointers 

provide an alternate path from a node to  each of its child nodes via the leftmost child node. 

We take advantage of this redundancy to  support concurrent operations in a quad-B tree. 

With the link extension, in a quad-B tree, there is a link pointer besides the child 

pointers for each node as shown in Figure 4.16 by dashed arrows. At each level of the 

tree, there is a head link pointer pointing to  the leftmost node of the level. Thus, every 

node in the tree can be accessed either via the child-parent pointers or the link pointers. 

The updating operations, such as insertions and deletions, use the lock-coupling protocol 

as before. However, the search operations utilize the link pointers to  enhance the level of 

concurrency. 

Before visiting a new node, in the link extension, a search operation releases the lock 

on the previous node. This allows overtaking by other operations. For example, an insert 

operation may overtake and make changes to some nodes before a search operation arrives 
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Figure 4.16: A Quad-B tree with link extension. 

Figure 4.17: Lock compatibility matrix for a quad-B tree with link technique. 

at  the next visited node (which can be a leaf node). When this happens, serializability 

may be violated. To solve this problem, we use two methods. The first method is to  

include a timestamp for each point object at  the leaf nodes. The timestamp of an object 

records the time when the object is inserted into the quad-B tree. Using the timestamps, 

search operations are restricted to  see only those objects which are inserted by older insert 

operations. The second method introduces two additional types of locks to  avoid overtaking 

between delete and search operations. Besides the three lock types used in Chapter 3, we 

introduce the X-lock and the wd-lock. A X-lock is used by a search operation to  prevent 

any delete operation from entering its scope and an wd-lock is used by a delete operation 

to  prevent any other operations from overtaking it. The new lock compatibility matrix is 

shown in Figure 4.17. 

The concurrency control protocol, QBL, for quad-B trees is adopting the link technique. 
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Figure 4.18: Using the link pointer to search. 

It is implemented by a collection of procedures, for search, insert, and delete operations, as 

well as those for tree-reorganization. In the following sections, we discuss them in detail. 

Search 

Like the search operations in the previous section, a search operation starts at the root of 

the tree and descends down to the leaf level. However, unlike the former operations, each 

search operation here releases its lock before visiting other nodes in the tree. When a search 

operation, S1, visits node A in Figure 4.18, a p lock on it is first acquired. After it has 

decided which child nodes to  visit next, the p lock is released. When it visits node B, B 

may have been split and the right sibling of B (i.e., C )  is a new node whose corresponding 

entry has not been put in A. When this happens, the link pointer at B provides an alternate 

way to access node C. In our implementation, when a search visits B ,  it verifies the scalar 

value of B stored at A against the scalar value of the rightmost entry of B. If they are 

different, a split must have been occurred, and a new sub-search operation will be spawned 

off to  search the subtree rooted at C.  

A window search operation utilizes the MBRs of nodes to  traverse the tree. However, 

the lockable variable, Count, is no longer required. Instead, we use the scalar values of 

the nodes to  determine if rightward searches are needed because of splitting. If a window 

search operation traverses a single path downward, then an update operation (i.e., either 

an insert or a delete) will not cause any non-serializable execution. However, a problem 

may occur when a search is divided into several sub-searches. In this case, some update 

operations may overtake the sub-searches and reach the leaf nodes first to cause a non- 

i serializable execution as observed in the B+-tree. In the lock-coupling approach, we can 

1 make overtaking impossible. However, because a search operation releases a lock on a node 
t 

before acquiring a lock on the next visited node, overtaking by other update operations 

along the same path is possible. We now will consider insertion and deletion separately. In 
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this section, we present how to prevent overtaking between search and delete operations. 

The solution for the insert operation is discussed in a later section. 

As the problem is due to multiple sub-searches of a search operation, a search may place 

a lock on the node it visits to prevent a delete operation from entering its scope. The lock 

should be compatible with most operations except the delete operations. We define a branch 

node of a search operation as follows. 

Branch Node(BN): A node is a branch node of a search operation S if it is the first node 

visited by S where there are multiple entries in the node whose MBRs overlap with the 

search window. Le., more than one sub-search starts after visiting the node for S. 

Our solution is to place a X-lock on the branch node visited by a window search operation. 

As shown in the lock compatibility matrix, the X-lock is compatible with all other lock types 

except the one used by delete operations. This method is based on the assumption that 

deletions are infrequent; otherwise, they are easily blocked at higher levels of the tree. The 

window search operations are carried out by calling 

QbL.RSearch(W, R, Old Value, Bnode, TotSearch), where W is the search window, R is the 

root of the tree, OldValue is the scalar value of R obtained from the parent of R, Bnode is 

the branch node and TotSearch is the number of sub-search operations. Initially, OldValue 

is the value of the largest possible number, Bnode is NULL and TotSearch is 0. In the 

algorithm, when a search operation divides into several sub-searches, it will place a X-lock 

on Bnode. The counter, Totsearch, is increased (decreased) whenever sub-searches are 

created (finished). When the counter equals 0, the X-lock on Bnode is released if Bnode is 

not NULL. 

QbL.RSearch(W, R, Old Value, Bnode, TotSearch) 

Acquire x(R). 

if R is a non-leaf node then 

- Let {E; = (MBR(R;), R;, V,)  I i = 1,. . . , k) be the entries in R such that 

MBR(R;) n W # 4. 
- if (k  > 0) then 

* if (Bnode = NULL) and (k > 1) then 

- Bnode := R. 
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* Acquire E( TotSearch). 

* TotSearch := TotSearch + k .  

* Release E (  TotSearch). 

* For all entries E; found above, continue the search in parallel invoking 

QbL.RSearch(MBR(R;) n W, R;, V,) .  

else for all points inside W return their object ids. 

0 Let R has n entries. 

if (OldValue> V,) and ( N E X T ( R )  # NULL) then 

- R' := N E X T ( R ) .  

- QbL.RSearch(W, R', Old Value, Bnode, TotSearch). 

else 

- Acquire E( TotSearch). 

- TotSearch := TotSearch - 1. 

- Release E( TotSearch). 

- if ( TotSearch = 0 )  and (Bnode # NULL) then release ~ ( B n o d e ) .  

0 if ( R  # Bnode) then release x(R).  

Insert 

In the link extension, when a node is split, a link pointer is created to  link the two nodes 

first. The link is important because it routes other operations to  the missing part of a split 

node. As illustrated in Figure 4.19, there are two steps in splitting. The first step establishes 

the link pointers and the second step updates the parent of the split nodes. 

In the section on search operations, we discussed a method to  avoid inconsistence between 

delete and search operations. If the same method is used for insertions, then insertions will 

be blocked easily just as deletions. Consider a scenario where S1 is a search operation and 

Il is the insert operation adding object 0. Suppose Il overtakes S1. We observe that 

the first phase of Il does not change the result of S1 if 0 is ignored from the result of 

S1. This observation suggests us to  use time-stamping to  solve the problem. Each insert 

operation will have a timestamp which is the time when it accesses the root of the tree. Each 
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Figure 4.19: Two steps of a split. 

object at  a leaf node is timestamped with the timestamp of the operation which inserted 

the object. When a search operation reaches the leaf node, it compares its starting time 

with the timestamps of the objects. An object with a later timestamp is ignored. The 

result of this procedures makes sure search operations can not see objects added by the 

overtaking insertion. To implement the method, we would need to  make a small change in 

QbL. WSearch accordingly. 

The first phase of an insert operation is carried out by the procedure QbL.Select which 

locates the leaf node and expands the MBRs of some internal nodes. After the insertion 

of the object, if the leaf overflows, the insert operation will split it into quadrants. The 

second phase is then performed by invoking the procedure QbL.CleanUp. More formally, 

Insert(0, R) has two parameters. Initially, 0 is the object to  be added, and R is the root 

of the tree. 

1. SValue := ~ ( 0 ) .  

2. L := QbL.Select(0, SValue, R, Path).  

3. if there is an entry Eo whose region contains 0 then 

Let B be the data bucket referenced by Eo. . 

Add 0 to B. 

Store the starting time of the operation together with 0. 

if B is full then 

- Let A be the region corresponding to Eo. 

- Split A into quads with a t  most 4 non-empty quads as A1, A2, A3, A*. 
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- Split B into B;'s for the corresponding A;%. 

- Let Ei7s be the new entries to  reference the Bi's. 

else 

Create entry E; whose region is a neighborhood quadrant of Eo and 0 is inside 

the region. 

Add 0 to B. 

4. if Ei7s exist then add entries Ei's in node L. 

5. Release c ( L ) .  

6. QbL.CleanUp(L, SValue, 0, Path). 

The supporting procedure QbL.Select and QbL.CleanUp are implemented in the same 

way as Qb.Select and Qb.CleanUp, respectively. Therefore, they are skipped here. 

Delete 

As in the lock-coupling method, there are two phases to  implement the delete operation. 

The first phase is to  locate the leaf node L which contains the point object 0 and to  

delete it. The wd-locks are used to  prevent undesirable overtaking. In the second phase, we 

perform the required cleanup using the "mark-and-remove" approach. If a node becomes 

empty as a result of deleting 0 form L, then it is flagged as "deleted.". The link pointer 

of the node will be changed and pointed to  the head link pointer at the current level of the 

node. "Deleted" nodes are later garbage-collected periodically, because there can be search 

operations working on it. 

There are two parameters for QbL.Delete(0, R) where 0 is the object to  be deleted 

and R is the root of the tree initially. The implementation of QbL.Delete is the same as 

Qb.Delete except wd-locks are used instead of w-locks. Therefore, the details of the algorithm 

is skipped here. 

4.4.3 Correctness of the Operations 

In this section, we prove that the protocol QBL for the quad-B tree is correct. 

Lemma 4.8 A window search operation cannot overtake an update operation along the 

same access path. 
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Proof: Consider a window search operation (S)  and an update operation (U) in its first 

phase visit node P at the same time. If U acquires E(P)  first, because of lock-coupling, it 

will hold the lock until it acquires the €-lock of the node next visited. U may then release 

the lock on P or downgrade the lock to  an w-lock or an wd-lock. In both cases, S visits the 

node after U has finished its work at  P. Hence, a window search operation cannot overtake 

an update operation. 

Lemma 4.9 A n  insert operation can overtake a window search operation. 

Proof: Suppose a window search operation (S)  and an insert operation (I) both visit node 

P. If S acquires its X-lock on P first, I, which request an E(P),  will wait until the X-lock 

is released. S will release the lock right after determining the next visiting node, say P,. 

At the same time, I can acquire its lock on P ,  complete its work, and even overtakes S by 

placing a lock on P, first. 

Lemma 4.10 Two update operations cannot overtake each other. 

Proof: Two update operations traversing along the same path cannot overtake each other 

because E-lock-coupling is used for the insert and deletion operations. 0 

Lemma 4.11 A search operation will always find a node at each level of the tree to continue 

its downward traversal. 

Proof: Consider a search operation (S)  visiting node P. If P is an internal node in the 

tree, the values of its entries are the largest values of the corresponding child nodes of P. 

Furthermore, in a quad-B tree, it is always true that the values in the nodes at the same 

level follow an ascending order from left-to-right. Let S decide to visit node P, (a  child 

node of P )  whose corresponding entry in P is (P,,V,). 

If P, has not been modified, S will arrive at  P, correctly. Suppose P, has been split 

because of a previous insertion. When it happens, the new largest value in P, will be VA 

( 5  V,). If VA = V,, then S arrives at  P, as intended. If VA < V,, then S can use the link 

pointer to  find the correct node whose largest value is greater than or equal to  V,. This is 

possible because a link pointer is introduced simultaneously a t  the time of splitting a node. 

We also need to consider the case where P, is deleted. With the mark-and-remove 

approach, we put a pointer in P, to  reference the head link pointer at  the level of P,. As 
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values in the nodes at the same level follow an ascending order from left-to-right, S can 

traverse via the link pointers until there is a node whose largest value is greater than or 

equal to V,. Therefore, a search operation can always continue its downward traversal at 

each level of the quad-B tree. 0 

Theorem 4.9 The protocol QBL is deadlock and livelock free. 

Proof: Assume that a set of operations is deadlocked under the protocol QBL, and let A 

be the set of all deadlocked operations. We derive a contradiction out of this assumption. 

Let T be the oldest operation in A. 

a: T is a search operation. Since T only acquires a single lock at each step, it cannot 

be blocked forever. Furthermore, livelock of a search operation is not possible, because 

update operations are adopting the lock-coupling approach. The horizontal chase of 

link pointers never goes beyond one extra node as only one update operation can be 

active within its scope. 

b: T is an insert operation in its first phase. Since T used E-lock-coupling, no operation 

can overtake T. Thus, T cannot be blocked forever, a contradiction. 

c:  T is an insert operation in its second phase, executing QbL.CleanUp. In this 

case, T is trying to  upgrade an w-lock to  an €-lock. T cannot be in conflict with 

any other update operation to  upgrade the lock because no update operation can 

be within its scope. A younger search operation may have placed a X-lock on the 

node which T is acquiring, but it will eventually terminate because of the order of 

lock acquisition/upgrade (top-down and left-to-right fashion). Note that individual 

subsearch operations belonging to  a search operation can proceed independently, since 

they are executed in parallel. Thus, T cannot be blocked forever by search operations. 

Hence, a contradiction to  the assumption. 

d :  T is a delete operation in its first phase. The argument is the same as in (b). 

e: T is a delete operation in its second phase. The argument is the same as in (c). 0 

Theorem 4.10 The protocol QBL based on the link technique is correct. 

Proof: From Theorem 4.9, QBL is deadlock free. 
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From the lemma above, there are two overtaking situations. The first situation is where 

an insert operation (I) overtakes a search operation (S). In our implementation, at the 

leaf nodes of a quad-B tree, each object has a timestamp. It is the timestamp of an insert 

operation which inserted the object. There is also a timestamp for each window search 

operation. By using the timestamps, objects which are added by younger operations are 

hidden from an older search operation. Hence, the overtaking does not affect the results of 

S. Therefore, from the perspective of S ,  the overtaking does not take place. The second 

situation is where a delete operation (D) overtakes a search operation (5'). This only 

happens when S has a single search path (i.e., there is no sub-search). Hence, D and S can 

be ordered serially according to  the times they access a leaf node and the overtaking does 

not cause any incorrect results for S. 

Using the Lemma 4.11, a search operation always find a node to  continue its downward 

traversal. Therefore, it will arrive at the leaf nodes and see the available objects. The only 

exception is when there are insert operations overtaking the search operation. As discussed 

in the previous paragraph, a search operation will not see the objects which are added by 

younger insert operations. Hence, a search operation will not see any object which is not 

available to  it. 

From the above discussion, we conclude that the protocol is correct. 



Chapter 5 

Rectangular Data 

5.1 R-Simple Tree 

The R-tree proposed by Guttman [Gut841 is the first index structure we study in this 

chapter. We will extend the R-tree with five different approaches to  support concurrent 

operations accessing the tree. In this section, we discuss the R-simple tree which is a 

modified R-tree to  be used with the simple-lock locking method. 

An R-tree is a hierarchical data structure derived from the B-tree. Each non-leaf node 

in an R-tree represents the smallest d-dimensional rectangle that encloses the rectangles 

represented by its child nodes. The leaf nodes contain pointers to  the actual geometric 

objects in the database. In an R-tree, rectangles associated with different nodes may overlap. 

An object may be spatially contained in the rectangles associated with several nodes, yet it 

can only be represented by one leaf node. This means that processing a query often requires 

traversing several search paths before ascertaining the presence or absence of a particular 

object. 

More formally, it is a height-balanced tree with all the leaf nodes at  the same level. 

Each node in the tree has a t  least m entries and at most M entries (1 < m < M )  where 

m = [M/21. The root may have fewer than m entries, but has at least two entries if it is a 

non-leaf node. Each non-leaf node of the tree contains entries of the form (MBR,P), where 

MBR is the minimum bounding rectangle1 associated with a child node P. A leaf node 

contains entries of the form (MBR,O) where MBR is the MBR associated with object 0. 

'A minimum bounding rectangle of a node is the smallest rectangle which contains all the rectangles 
pointed to by the node. 
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With no modification at all to an R-tree data structure, we can allow concurrent access 

to it by associating a single lock with its root. In the R-simple tree, only the root of the tree 

has a lock associated with it. (This is equivalent to associating a lock with the entire tree.) 

The lock management is very simple. The only difference from sequential access is that 

multiple search operations are allowed using a share-lock (i.e., a search operation requires 

a p lock on the root). But for an insert or delete operation, an exclusive lock (the €-lock) 

must be acquired, which block any conflicting access to the tree. 

Our concurrency control protocol, RS, for R-simple trees is implemented by a collec- 

tion of procedures, for search, insert, and delete operations, as well as those for tree- 

reorganization. We now show how these operations can be carried out on an R-simple 

tree. 

5.1.1 Search 

Search(W, P )  starts at  the root of the tree and descends to the leaf level. When a search 

operation is in progress in an R-tree, updates to the tree are prevented by a p lock. 

1. Acquire p(P). 

2. Rs. Dosearch( W, P).  

3. Release p(P). 

Rs. Dosearch( W, P )  

if P is a non-leaf node then 

- Let {E; = (MBR(P;), Pi) ( i = 1, . . . , I c )  be the entries in P such that 

MBR(P;) n w # 4. 

- if (k > 0) then 

* For each entry E; found above, continue the search with 

Rs.DoSearch(Wn MBR(P;),P;). 

if P is a leaf node then 

- For all entries in P whose MBR's overlap with W, return their object ids. 0 
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5.1.2 Insert 

Insert(0, P )  need first acquire an E lock on the root. Once it holds an E lock, no other 

operation can access the tree. 

1. Let Eo be the entry representing the object 0. 

2. Acquire E(P) .  

3. L = Rs.Select(MBR(O), P ) ,  which selects a leaf node where object 0 is to  be placed. 

4. Add entry Eo to L. 

5. Rs. Update(L). 

6 .  Release E(P) .  0 

1. if P is a non-leaf node then 

Find an entry E, = (MBR(P,), P,) in P, where MBR(P,) requires the small- 

est enlargement to include W .  Resolve ties by choosing E, with the smallest 

MBR(P,). 

Continue the selection with Rs.Select(W, P,). 

2. if P is a leaf node then returns P. 

Rs. Update(L) 

1. if 1 FULL(L) then return. 

2. Split L into L and L', update MBR(L), and add entry (MBR(L'),L1) to  PARENT(L). 

(If L was the root, create a new root first and make it PARENT(L).) 

3. Rs. Update(PARENT(L)). 0 
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5.1.3 Delete 

Delete(0, P) can be carried out in a manner similar to  the insert operation. It first acquires 

an E lock on the root to  block all other operations, and then carries out its steps in two phases. 

The first phase is to  locate the object with the procedure FindLeaf(0). This procedure is 

similar to  a search operation, except that it returns the leaf node which contains the object, 

0 ,  to  be deleted. The second phase removes the object, and reorganizes the tree if an 

underflow occurs. 

5.1.4 Correctness of the Operations 

The proof for the R-simple is straight forward as there can only be one update (either insert 

or delete) operation active at  one time. 

Lemma 5.1 When an update operation is working i n  the R-simple tree, no other operation 

can be active. 

Proof: Because E-locks are incompatible, after an update operation has €-locked the root, 

other update operations will have to wait. Similarly, because E-locks are incompatible with 

p-locks, a search operation will need to  wait. 0 

Theorem 5.1 The R-simple tree is both deadlock and livelock free. 

Proof: Since there is only a single lock, there cannot be any deadlock nor livelock. 0 

Theorem 5.2 The protocol RS is correct. 

Proof: From Theorem 5.1, the R-simple tree is deadlock free. From Lemma 5.1, as an 

update operation cannot co-exist with any other operation. It can only be active before or 

after a search operation. Therefore, overtaking between update and search operations is not 

possible. Furthermore, because of the same reason, a search operation will always see its 

available objects. Hence, we conclude that the protocol RS is correct. 

5.2 R-Lock Tree 

Locking the entire tree whenever an updating operation is invoked reduces concurrency. 

Note that, when there is no splitting or merging of nodes in the tree, the tree remains 
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in a consistent state if individual nodes are locked while being accessed by different types 

of operations. The granularity of locking now becomes at  the node level rather than the 

entire tree. This is the second locking method, called the modify-lock method, and the 

R-lock tree is a modified R-tree to be used with this method. It allows multiple concurrent 

operations accessing the tree. Either an insert or a delete operation can proceed together 

with search operations. If an update (either insert or delete) operation causes any overflow or 

underflow a t  nodes, we lock the whole tree until a splitting and/or merging process has been 

completed. To manage overflows, we add a buffer space in each leaf node to  accommodate 

overflowed entries. We also make use of the maintenance queue, denoted Q, which records 

the nodes at  which an overflow or underflow has occurred, until the tree is re-organized. 

We will need to keep track of and control the number of concurrent search, insert, or 

delete operations operating on the tree. For this purpose, we introduce the in-transaction 

counter, denoted TC;,, which is incremented whenever a transaction invokes an operation 

on the R-tree. We also introduce the out-transaction counter, denoted TCout, which is 

incremented whenever an operation on the tree is completed. Therefore, the difference, 

TC;,- TCout, indicates the number of operations currently accessing the tree. We check for 

TC;,- TCOut = 0 to  see if the whole tree can be locked for reorganization explained below. 

A system process, Maintain, is used to  reorganize the R-tree. It checks for entries in 

the maintenance queue Q and performs the splitting and merging of nodes. The Maintain 

process gets activated after overflows have occurred as a result of insert operations, or 

underflows have occurred as a result of delete operations. 

We lock individual nodes using a p lock or E lock. Each operation must request locks on 

nodes in a top-down and left-to-right fashion; i.e., after locking a node, it cannot request 

a lock on a node that is closer to  the root in the above order. This order of lock requests 

guarantees deadlock freedom. 

In the R-lock tree, overtaking of operations is allowed. Hence, when there are more than 

one update operations active in the tree, the serialization problem described in Chapter 4 

may occur. To solve the problem, the R-lock allows only one update operation (either 

insertion or deletion) active in the tree. A lockable variable, Ul, is used for the purpose. 

Every update operation will need to  acquire an €-lock on Ul before proceeding its work. The 

lock is released after the operation has made the changes a t  a leaf node. 
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Figure 5.1: Search operations using the modify-lock method. 

Our concurrency control protocol, RM, for the R-lock trees is implemented by a col- 

lection of procedures, for search, insert, and delete operations, as well as those for tree- 

reorganization. In the following subsections, we discuss them in detail. 

5.2.1 Search 

As in the simple-lock method, a search operation starts at  the root of the tree and descends 

to  the leaf level. In order to  access a node, a p lock on the node must be obtained to  avoid 

any modification to  it by an update operation (i.e., insert or delete). In Figure 5.1, the 

search operation S1 holds a p lock on node A. It reads the content of A and starts two 

sub-search operations, Sll and S12. The p-lock on A can now be released because there 

cannot be any split or merge in nodes A, B or F, while Sll and S12 are in progress. At 

most one p-lock is needed at  each branch of the search operation. 

More formally, Search(W, P )  under the modify-lock method is carried out as follows. 

1. Acquire E( TC;,), increment TC;, by 1, then release E( TC;,). 

2. Rm. Look( W, P). 

3. Acquire E( TCout), increment TCout by 1, then release E( TCout). 

Rm. Look( W, P )  

Acquire p(P).  
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if P is a non-leaf node then 

- Let {E; = (MBR(P;), Pi) I i = 

MBR(P;) n W # 4. 
- Release p(P). 

k) be the entries in P such that 

- For all entries E; found above, continue the search in parallel invoking 

Rm.Look(W n MBR(Pi), Pi). 

a if P is a leaf node then 

- For all objects whose MBR9s overlap with W, return their object ids. 

- Release p(P).  0 

5.2.2 Insert 

Insertion under the modify-lock method can be carried out much as under the simple-lock 

method, except for the locking operations involved. At the beginning, an insert operation 

first acquires an exclusive lock on Ul to  avoid any other update operation working in the 

tree. In descending down the tree, at  each visited node, it acquires an E lock, update the 

MBR of the node if needed, then choose the next node to  visit, and finally release the 

lock. The reason why we update the MBR of a visited node in the first phase is to  allow 

subsequent search operations t o  find the newly inserted object. 

After adding the new object a t  a leaf node, the exclusive lock on Ul is then released 

to  allow other update operations to  proceed. If no overflow occurs at  the leaf node, the 

second phase is not necessary. As we mentioned earlier, we permit temporary overflows 

and delay the second phase of an insert operation by simply adding a new entry to the 

maintenance queue, Q. The Maintain process will use Q to  reorganize the tree periodically. 

More formally, Insert(0, P) under the modify-lock method is carried out as follows. 

1. Let Eo be the entry representing object 0 .  

2. Acquire E(U[). 

3. Acquire E (  TC;,), increment TC;, by 1, then release c(TC;,). 

4. L := Rm.Select(MBR(O), P )  t o  search for a leaf node t o  which t o  add the object 0 .  
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5. Acquire c(L), add entry Eo to L, then release c(L). 

6. Release E ( U / ) .  

7. if OVERFL(L) then 

Acquire c(Q), A PPEND(Q, L), then release c(Q). 

8. Acquire c(TCout), increment TCout by 1, then release c(TCout). 

1. Acquire p(P). 

2.  if MBR(P) does not contain W then 

Upgrade p(P)  to  c(P) 

Enlarge MBR(P) to accommodate W. 

Downgrade c(P) to p(P). 

3. if P is a leaf node then release p(P)  and return P 

else 

Find an entry E, = (MBR(P,), P,) in P ,  where MBR(P,) requires the small- 

est enlargement to  include W. Resolve ties by choosing E, with the smallest 

MBR(P,). 

Release p(P). 

Continue the selection with Rm.Select(W, P,). 

5.2.3 Delete 

We carry out the delete operation similarly to  the R-simple tree. At the beginning, a delete 

operation first acquires an exclusive lock on Ul to  avoid any other update operation working 

in the tree. We use the same queue, Q, which is used for insert operations, to  record the 

nodes which have been deleted or the nodes whose MBRs should be shrunk. If the size of 

Q exceeds a certain limit, then the Maintain process recomputes the affected MBR7s. 

After removing the object from a leaf node, the exclusive lock on Ul is released t o  

allow other update operations to  proceed. A reorganization of the R-lock tree may be 



CHAPTER 5. RECTANGULAR DATA 

necessitated by underflows. When an underflow occurs at some node, we append the node 

to the maintenance queue, Q. As we discuss in the next subsection, this will be detected by 

the Maintain process, which is constantly checking if Q is empty. 

More formally, Delete(0, P )  under the modify-lock method is carried out as follows. 

1. Acquire c(U1). 

2. Acquire E(TC;,), increment TC;, by 1, then release c(TC;,). 

3. L := Rm.Find(MBR(O), P)2 to search for the leaf node containing the object 0. 

4. MBR.old := MBR(L). 

5. Acquire E(L), remove the entry representing object 0 from L, and set MBR(L) to  the 

MBR of the resulting L. 

6. Relase c(Ul). 

7. if ( UNDERFL(L)) or (MBR.old # MBR(L)) then 

Acquire e(Q), APPEND(Q, L), then release E(Q). 

8. Acquire E( TCout), increment TCout by 1, then release E( TCout). 

5.2.4 Maintain 

The system process Maintain checks the maintenance queue Q periodically. When Q be- 

comes non-empty, Maintain prepares for reorganization of the R-tree by waiting until no 

operation is accessing the tree. For this purpose, it first acquires and holds an exclusive lock 

on TC;,. This prevents other transactions from starting a new access to  the R-tree. It then 

compares the values of TC;, and TCOut. If they are the same, then all previous operations 

accessing the tree have completed and it can proceed to  do the reorganization. Otherwise, 

it releases the lock on TCOut and tries again later. 

When all previous operations have completed, Maintain then takes nodes from Q one 

after another and processes them accordingly to  the reason why they are in the queue (over- 

flow, underflow, shrunken MBR). When all the nodes in Q have been processed, Maintain 

releases the locks on TC;, and TCout to allow resumption of operations on the R-tree. 

'The operations of Rm.Find is the same as Rrn.Look except it returns the node which contains object 0. 
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Rm . Main tain () 

while ( TRUE) do 

end do. 

1. Acquire p(Q). 

2. while (Size(Q) < Q,,,) do 

{Release p(Q), Sleep a while, Acquire p(Q)) End do 

3. Release p(Q). 

4. Acquire E( TCin). 

5. Acquire E( TCout ). 

6. if TCin = TCout then 

- Reset TC;, := TCout := 0. 

- P := The first node in Q. 

- while ( P  # NULL) do 

* if UNDERFL(P) then re-distribute entries of P into its siblings. 

* if PARENT(P) underflows as a result then APPEND(Q,PA RENT(P)).  

* if OVERFL(P) then split P into P and PI. Add a new entry for PI to 

PARENT(P). 

* if PARENT(P) overflows then APPEND(&, PA RENT(P)) .  

* MBR.old := MBR(PARENT(P)). 

* Update the MBR's of P ,  its siblings and PARENT(P), if necessary. 

* if MBR(PARENT(P)) # MBR.old then APPEND(Q, PARENT(P)). 

* P := NEXT(Q). 

end do. 

else 

- Release e(TCout) 

- Sleep a while. 

- Go back to  step 5. 

7. Release c(TCin) and e(TCout). 
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5.2.5 Correctness of the Operations 

In this section, we will show that the protocol RM is correct. In the proof of the correctness 

theorem (Theorem 5.4) given below, we use the concept of serializability [BHG87] instead 

of the non-overtaking condition stated in Section 4.1.5. 

Lemma 5.2 There can be multiple search operations but a single update operation active 

in  the tree at the same time. 

Proof: The in-transaction counter is available to  all operations when the tree is not reorga- 

nizing. Multiple search operations can be active in the tree after they have incremented the 

counter. As each operation, except the maintain operation, will only use the in-transaction 

counter for a short time, it will not block any other operation to become active in the tree. 

On the other hand, an update operation acquires an E ( U [ )  before it starts working in 

the tree. The lock will not be released until the update operation finishes. Therefore, there 

cannot be a second update operation active in the tree. 

Lemma 5.3 There is no deadlock between a maintain operation with any other operation. 

Proof: The maintain operation is invoked periodically to  check the size of the maintain 

queue, Q.  It holds a lock on Q temporarily to  find out its size and quickly releases the lock 

afterwards. 

When the size of Q is large enough, the maintain operation acquires locks on the transac- 

tion counters. It waits until there is no operation active in the tree. It acquires and releases 

the out-transaction counter repeatedly until the out-transaction counter has the same value 

as the in-transaction counter. During that time, the maintain operation does not lock any 

node in the tree. Hence, deadlock between the maintain operation and other operations is 

not possible. If all active operations run at  a fair rate and will not be aborted, they will 

be able to  finish and update the out-transaction counter afterwards. Once the counters 

have the same value, the maintain operation is the only operation working on the tree and 

deadlock is not possible. 

Theorem 5.3 The R-lock tree is both deadlock and livelock free. 

Proof: Each operation, either a search or an update, acquires one lock at  a time. Therefore, 

they cannot be blocking each other. From Lemma 5.3, active search and update operations 
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cannot be blocked by the maintain operation. During the reorganization of the tree, there 

can only be one maintain operation active. Therefore, the R-lock tree is deadlock and 

Livelock free. u 

Theorem 5.4 The protocol RM based on the lock-modify protocol is correct. 

Proof: When there are only search operations working in the tree, a search operation will 

always see the available objects. When there is an insert operation active, it expands the 

MBRs of the nodes along its access path as needed. On the other hand, a delete operation 

does not change the MBRs of the nodes at all. Hence, there is no shrinkage of MBRs and 

any later search operations will not miss any available object. 

When an update operation and a search operation accessing the same leaf node, their 

execution order is dictated by the times they acquire a lock on the node. Furthermore, as 

there is only one active update operation working on the leaf nodes at a time, the serializable 

schedule of the operations is the arrival times of operations reaching the common leaf nodes. 

0 

5.3 R-couple Tree 

The R-couple tree is a modified R-tree to  be used with the lock-coupling approach. In 

the tree, we lock individual nodes rather than the whole tree. With this locking method, a 

search or an update operation locks children of a node before releasing its lock on the node 

itself. Thus, a process always holds at least one lock while accessing an R-tree, but locks 

are acquired locally in different sub-trees of the R-tree. Multiple search, insert, and delete 

operations can be taking place concurrently in different parts of the same tree, regardless 

of overflows and underflows at nodes. 

Our concurrency control protocol, RC, for R-couple trees is implemented by a col- 

lection of procedures, for search, insert, and delete operations, as well as those for tree- 

reorganization. The implementation of the procedures is the same as that in the R-tree in 

Chapter 4. Hence, the details of the procedures are skipped here. 

5.3.1 Search 

A search operation starts at the root of a tree and descends to  the leaf level. At each visited 

node, a p lock on it must be acquired and held until the p locks on the child nodes to  be 
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visited are acquired. If the p lock on the parent is released after a p lock on the first child 

has acquired, the parent may be updated before a p lock on the second child is acquired. 

This will cause an incorrect result. To implement this rule, we introduce a lockable variable, 

Count, which is initialized to the number of subsearch operations initiated at a node. It is 

decreased by one whenever a child node is p-locked. When it reaches 0, the p lock on the 

parent is released. 

More formally, Search(W, P )  under the lock-coupling approach is carried out by calling 

Rc.Search(W, P, C ~ u n t ) . ~  

5.3.2 Insert 

As with the insert operation in the simple-lock approach, we carry out an insert operation 

in two phases. During the first phase, we locate the leaf node to  which to  add the new 

object. The path in the tree we take is called the insertion path. After adding the entry 

representing a new object to  a leaf node (i.e., in the second phase), we may have to  perform 

some maintenance operations by tracing back the insertion path to  

1. reorganization of the tree, and/or 

2. enlarge the MBR's of some nodes. 

In the modify-lock approach discussed in the previous section, we delegated these main- 

tenance chores to  a system process, called Maintain, which periodically carried them out. 

This meant that they were carried out after some delays. In this section, we take a different 

approach and carry them out as a part of the insert operation without help from a system 

process. 

More formally, an insert operation is carried out by Rc.Insert(0, P) where 0 is the 

object to  be inserted and P is the root of the tree initially.4 

5.3.3 Delete 

We use two phases to carry out a delete operation. The first phase is to locate the leaf 

node which points to the object to be deleted. This phase is almost identical to Rc.Search. 

(Note that the condition W MBR(P;) should be used here to  find the next visiting nodes, 

3Rc.Search is implemented the same as Rt.Search in Section 4.2.1. 
4Rc.Insert is implemented the same as Rt.Insert in Section 4.2.2. 
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instead of MBR(Pi) n W # 4.) Only p locks are held on at most two levels of non-leaf nodes, 

and MBR's are not shrunk in this phase. Once the object has been found, it is removed 

and the tree is reorganized in the second phase. 

In the second phase, we backtrack the R-tree if needed. In the R-couple tree, we face 

the same two problems as in the R-tree in Chapter 4. The first problem is how to deal with 

concurrent insertions and changing parent pointers. The second problem is the potentially 

conflicting lock requests with other updating operations. We use the same solution in 

Section 4.3.3 and apply them to the R-couple tree. 

The implementation of Rc.Delete(0, P) is the same as Rt.Delete in Chapter 4. 

5.3.4 Correctness of the Operations 

The proofs of correctness of the operations are the same as those in the R-tree in Chapter 4. 

Therefore, we will only state a lemma and two theorems without proof. 

Lemma 5.4 A search operation cannot overtake an update operation if they are traversing 

the same path. Similarly, an update operation cannot overtake any other operation. 

Theorem 5.5 The R-couple tree is both deadlock and livelock free. 

Theorem 5.6 The protocol R C  is correct. 

5.4 R-opt Tree 

In the previous sections, we have discussed three different approaches to support concurrent 

operations in an R-tree. The three approaches try to avoid conflicting situations between 

different operations and are pessimistic in nature. In this section, we will describe an opti- 

mistic approach to support concurrent operations. In the new approach, search operations 

check its correctness before committing their operations. The validations are done both 

at leaf nodes and internal nodes. As for an internal node, the validation is done with the 

range information. At a leaf node, the validation is done with the range information and the 

timestamp of the node. When the validation fails, a search operation would need to  re-start. 

I Shasha [ShG88] suggested the give-up technique with the help of redundancy introduced 

k by a range field. Before any operation can work on a node, the protocol checks the range of 
5 
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the node. If the operation's argument is not in the range, he gives up and tries an ancestor 

of that node. In the case of a B-tree, the range information is an interval of scalar values. 

However, an R-tree deals with 2-dimensional objects and there is no specific ordering among 

the nodes. The range information of a node, P, can be considered as a flag indicating if a 

change has happened at P. There are seven possible changes to  P :  

r 1: An expansion of its MBR. 

2: A shrinkage of its MBR. 

r 3: Addition of a new entry. 

4: Removal of an entry. 

r 5: Splitting. 

r 6: Merging. 

r 7: Marking it as deleted. 

When we visit a node P while carrying out an operation, we would need to determine if 

backtracking is necessary because of a recent change of P. In Figure 5.2, we list out changes 

which will affect subsequent actions of an operation. Insert and delete operations use the log 

table during their first phase of work. To minimize the storage requirement of bookkeeping, 

we add only two extra pieces of data, the version number and the change type for each 

node in an R-tree. When a node is first created, its version number is 0 and the change type 

is NULL. Whenever a change is made to the node, the version number is incremented by one 

and the type of modification is recorded in the change type. When the change is reflected 

in the parent node, the parent copies the new version number of the updated child. During 

a visit to  a node, an operation compares the version number provided by the parent to  the 

current version number of the node. If they are different, the change type field is used to  

determine if backtracking is necessary. The data structure of each entry in an R-tree node 

is shown in Figure 5.3. 

In the give-up approach, overtaking amongst different operations are allowed. An oper- 

ation releases a lock on its current node before it visits the next one. We use the timestamp 

technique as in the quad-B tree to  solve the serialization problem at  the leaf nodes. At each 

leaf node, we add one additional data which stores the timestamp when the node was last 
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MBR shrank 
Added entry 
Removed entry 
Split 
Merge 
Mark 

MBR expanded 

Figure 5.2: Node changes and their effects to  operations.(* - Changes which will affect 
subsequent operations). 

Search Insert Delete 
- 

A n o d e x p e n d i n g  updates 

Figure 5.3: A node in the R-opt tree. 

modified. This timestamp only affects search operations. When a search operation detects 

an inconsistency at a leaf node, it backtracks and re-starts its operation. 

Our concurrency control protocol, RG, for R-opt trees is implemented by a collection of 

procedures, for search, insert, and delete operations, as well as those for tree-reorganization. 

In the following subsections, we discuss them in detail. 

5.4.1 Search 

As always, a search operation starts at the root of a tree and descends down to the leaf level. 

At each visited node, a p lock on it must be acquired. If there is a change in the node and 

the search is no longer in range, it will backtrack to an ancestor node. Consider the example 

in Figure 5.4, where a search operation S branches into three sub-search operations, S1, S2, 

and S3 at  node D. If at node P2, S2 noticed a change, it would go backward to  an ancestor 

node. It may go back as far as node D. At the node, the new Sz may branch off three 
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Figure 5.4: Search operation in an R-opt tree. 

sub-searches even if S1 and S3 complete. If there are updates in between the completion of 

S1, S3 and the three new sub-searches, there will be inconsistency in the results. If we only 

want to  restrict the new S2 to traverse its previous path only, this requires us to record all 

the relevant logs and the information can be huge and is similar to a tree of logs. During the 

development of the R-opt tree, we argue that update operations are infrequent, therefore a 

simple log table would be desired. Before we describe our solution, we give the following 

definitions. 

Branch Node(BN): A node is a branch node of a search operation S if it is the first node 

visited by S where there are multiple entries in the node whose MBRs overlap with the 

search window. I.e., more than one sub-search starts after visiting the node for S. 

Stable Node(SN): A node is stable to  a search operation S if the version number of the 

node is the same during different visits by S. 

To maintain the range information, a log table as illustrated in Figure 5.5 is used for 

each search operation. Each row in the log table is a tuple of two values as (nodeid, 

versionmumber). It records the version numbers of all the nodes that are visited by a 

search operation. During the downward traversal of a search operation, if it notices the 

version number of the current node is different from what it obtains from the node's parent, 

the current node might have been changed. Depending on the change type which is stored 
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Figure 5.5: Log Table. 

Node Id 
A 

in the node, the search operation starts backtracking at its branch node until a stable node 

is located. Let the stable node be G. At node G, the search operation aborts all the sub- 

searches and purges its results. It then resumes and continues the search downward. In 

Figure 5.4, S2 backtracks to its branch node D which incidentally is also its first stable 

node; otherwise, it continues backtracking until a stable node is reached. 

The log table of a search operation only provides the information to determine if an 

ex-visited node has been changed or not. In order to backtrack, each node will need to 

know how to access its ancestors. We can use a stack for each search path, but several or 

many stacks will be needed because of multiple sub-searches. In our algorithms, we include 

a parent pointer in each node to provide a route for backtracking. However, as a search 

operation only locks a node at a time, it may have a new parent before the operation accesses 

its parent. Therefore, the procedure Getparent repeatedly uses the parent pointer of a node 

until there is no discrepancy. 

If an internal node visited by a search operation is newly modified, the search operation 

backtracks only when the modification will affect its later searches. However, if the node is 

a leaf node, not only the modification will affect the search result, but there is a possibility 

of having the serialization problem as well. When a search operation has no branch node, 

the problem cannot occur. Therefore the timestamps are not used. The timestamps at the 

leaf nodes are needed when a search operation generates multiple sub-searches. If the search 

operation visits a leaf node whose timestamp is younger than that of the operation, then 

there must be an update operation overtaking the search operation. There is also a queue, 

DQ, which contains the timestamps of all un-finished update operations. At a leaf node, 
i if the search operation's timestamp is greater than any timestamp in DQ, then the search 

Version Number 
0 
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to a stable node. When it traverses down again, its timestamp is reset. More formally, Search 

under the give-up approach is carried out by calling Rg.Search(W, P, lastset, Bnode, Stime), 

where lastset is the version number of P from P's parent and Bnode is the branch node of the 

operation, and Stime is the starting time of the search operation. Initially, lastset and Bnode 

are both NULL. Each search operation will have its own log table (LOG) which is shared by 

all its sub-search operations. For the algorithm presented below, TIMPSTAMP(P) returns 

the timestamp of node P and FTIME(DQ) returns the time of the oldest element in queue 

DQ- 

Rg.Search(W, P, lastset, Bnode, Stime) 

1. Acquire p(P). 

2. if (lastset = NULL) or (ctype(P,lastset,  SEARCH)^ = FALSE) then 

Acquire p(Bnode). 

if P is a non-leaf node then 

- Let {E; = (MBR(P;), Pi) I i = 1, .  . . , k) be the entries in P such that 

MBR(P;) n w # 4. 
- if (k > 0) then 

* if (Bnode = NULL) and ( k > 1) then 

Acquire ~(Bnode).  

Bnode := P. 

Downgrade ~(Bnode)  to p(Bnode). 

else if (Bnode = NULL) then 

if P is in the log table then update the version number of P in the 

log table. 

else insert (P, version(P)) into the log table. 

* For all entries E; found above, continue the search in parallel invoking 

Rg.Search(Wn MBR(P;),P,, lastset;, Bnode, Stime) where lastset; 

- Release p(Bnode). 

- Release p(P). 

- Return. 

'A predicate to tell if the previous modification in P affects a given operation. 
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else if ((Bnode = NULL) or 

((TIMESTAMqP) > Stime) and (FTIME(DQ) < Stime)) then 

- For all objects whose bounding rectangles overlap with W return their object 

ids. 

- Release p(P). 

- Return. 

else release p(P). 

3. Release p(P). 

4. F := Bnode. 

5. Acquire p(Bnode). 

6. while (F # NULL) and (version(F) # ~OG(F) .vers ion~)  do 

enddo 

7. if ( F  = NULL) then F := Root? 

8. Abort all sub-searches underneath F and purge their results. 

9. Bnode := NULL. 

10. Stime := Current system time. 

11. Rg.Search(W, F,NULL,Bnode, Stime). 

When the procedure Getparent is called, node L is p-locked. The procedure will read 

the parent pointer of L, releases the lock on it and attempts to  acquire a lock on the parent 

of L. If the new node is indeed the parent of L, the procedure returns the reference and 

maintains the p-lock on the parent. Otherwise, it repeatedly reads the pointer of L until the 

correct parent is found. Even when L is deleted, because of the mark-and-remove approach 

for deletion, the parent will be found. 

1. if (L = NULL) then return NULL. 

'The recorded version number of node F in the log table. 
 h he root of the tree. 
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3. Release p(L).  

4. if ( L ,  = NULL) then return NULL. 

6. while ( L ,  # NULL) and ( L  is not a child of L,) do 

0 Release p(L,). 

0 Sleep a while. 

P(L) .  

0 L, := PARENT(L).  

0 if DELETE(L) then 

- Acquire p(L,). 

- Return L,. 

0 Release p(L).  

if ( L ,  = NULL) then return NULL. 

P(LP). 

enddo 

7. Return L,. 

5.4.2 Insert 

The insert operation works similarly to  that in a B+-tree. After inserting an object in a 

leaf node, if the node overflows, it would then be split, and the split propagates up the tree. 

The first phase is to  select a leaf node to  add the new object. The second phase is to insert 

the object at the leaf level, and propagate the required updates upward. However, a t  the 

time when the object is added, there can be changes in higher level which affect the parental 

relationships among nodes. 

In the first phase, the MBR7s of some nodes will change if the object to  be inserted 

covers additional area. If the bounding rectangle of a node is updated immediately , it 
may be changed by a subsequent delete operation (see the discussion on delete operation), 
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Figure 5.6: Phase one of inserting an object. 

which may cause a later search operation to  have an incorrect answer. This problem is 

solved by delaying the update; instead of updating the MBR of the visited node immedi- 

ately, we record the MBR of the object to  be inserted in a data structure, called pending 

update (see Figure 5.3), associated with the node. We call the MBR stored in pending 

update a pending MBR. The pending MBR is read during the second phase to  enlarge 

the node's bounding rectangle. In the mean time, before the second phase of the insertion 

is completed, subsequent search operations look at  both the bounding rectangle and the 

pending MBR of the node. (The search procedure described in the previous section should 

be modified accordingly.) Incidentally, observe that, if a node has a pending MBR, then all 

its descendants along the insertion path will also have the same pending MBR. 

In some occasions an insert operation has been adding pending updates at high levels. 

However, on its ways towards the leaf level, it finds out the lower level nodes have larger 

bounding rectangles because of previous insert operations. In order to  ensure the updating 

phase will remove all the pending updates, the insert operation continues to  add pending 

updates once it has started. The steps can be illustrated by using Figure 5.6. In the figure, 

an insert operation Il visits PI, it first acquires a p-lock on PI. As the new object ( 0 )  is 

outside the MBR of PI, it upgrades the lock to an €-lock and appends a new pending update 

U .  The operation then releases the lock and visits P2. At P2, another insert operation (say 

12) is working in its second phase and it has just removed its pending update w. This would 

make the MBR of P2 larger than what Il has seen. When Il visits P2, 0 is inside MBR of 

P2. However, because of the previous pending update u, Il will continue adding a pending 

update, x, at P2. 

If there is no overflow at  the leaf node, the insert operation will only backtrack, update 
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bounding rectangles and remove the pending updates. To combine the effort of tree reor- 

ganization amongst insertions and deletions, we permit temporary overflows. The maintain 

operation is used to handle the splitting and updating of nodes. When a node is to be split, 

its reference is added to the maintenance queue Q. The Maintain operation will use Q to 

reorganize the tree. During the reorganization, when there is a pending update associated 

with a node, the node will not be deleted. More formally, Insert has three parameters. The 

first one is 0 which is the objected to be inserted, P is initially set to the root of the tree, 

and SeqNo is a unique sequence number assigned to the operation. 

Rg.Insert(0, P, SeqNo) 

1. Curtime := current system time. 

2. SeqNo := transaction number for the insert operation. 

3. Acquire c(DQ). 

4. Add element (SeqNo, Curtime) to DQ. 

5. Release E(DQ). 

6. L := Rg.Select(MBR(O), P, SeqN o), which returns a leaf node, L, in which to place 

object 0. Let LC be the entry referencing the object. 

7. Acquire c(L). 

8. Insert LC into L and update MBR(L). 

9. TIMESTAMP(L) := M a 4  TIMESTAMP(L), Curtime). 

10. Acquire c(DQ). 

11. Remove element (SeqNo, Curtime) from DQ. 

12. Release c(DQ). 

13. if OVERFL(L) then 

4 ) .  

A PPEND(Q , L). 

0 Release c(Q). 

14. Release E(L). 

15. Rg. Update(L, SeqNo). 
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The procedure RgSelect locates a leaf node to insert a new object. Its implementation 

is similar to  the search operation. However, it only backtracks to its parent when a visited 

node is marked as deleted. 

Rg.Select(W, P, SeqNo)  

1. if ( P  = NULL) then creates and returns P. 

2. Acquire p(P). 

3. if DELETE(P) then 

Lp := PARENT(P). 

Rg.Select(W, L,, SeqNo) .  

Return. 

4. if P is a non-leaf node then 

Find an entry E, = (MBR(P,), P,) in P, where MBR(P,) requires the small- 

est enlargement to  include W. Resolve ties by choosing E, with the smallest 

MBR(P,). 

if (an enlargement is required in E,) or 

(a pending update has added at high levels) then 

- €(PI. 

- Append a pending update to node P. It contains the bounding information 

W and the transaction number. 

- Downgrade to p(P).  

Release p(P). 

Rg.Select(W, P,). 

else return P. 0 

The procedure Rg. Update is invoked to perform the second phase of an insert operation 

partially. When a leaf node is overflowed, its reference will be appended to the maintenance 

queue. At a later time, the system operation, Maintain, will use the queue to perform the 

necessary reorganization of the tree. The RgUpdate removes the pending updates of an 

insert operation deposited in its first phase. It adjusts the MBRs of nodes along the insert 
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path. The procedure UGetParent is invoked to obtain the parent of a node in order to 

backtrack. 

Rg. Update(L, SeqNo) 

1. Acquire p(L). 

3. while (L, # NULL) 

Acquire c(Lp). 

0 Let E, be the entry in L, referencing L. 

0 if there is no pending update with the same SeqNo then 

- Release c(Lp). 

- Return. 

0 At L,, adjust its MBR and that of the entry E,. 

0 Remove the pending update in L,. 

Downgrade c(Lp) to p(L,). 

0 L, := UGetParent(L,). 

enddo 

The procedure UGetParent works similar as the procedure Getparent except it returns 

NULL when the current node L is found to be deleted. 

1. if (L = NULL) then return NULL. 

2 .  L, := PARENT(L). 

3. Release p (L) .  

4. if (L, = NULL) then return NULL. 

5 .  p(L,). 

6. while (L, # NULL) and (L is not a child of L,) do 



CHAPTER 5. RECTANGULAR DATA 

Release p(L,). 

Sleep a while. 

P(L) .  

L, := PARENT(L). 

if DELETE(L) then 

- Release p(L). 

- Return NULL. 

Release p(L). 

if (L ,  = NULL) then return NULL. 

P(L,). 

enddo 

7. Return L,. 

5.4.3 Delete 

Similarly to the insert operation, there are two phases for the delete operation. In the first 

phase, it tries to locate the leaf node which contains the object. It uses the same procedure 

as in the search operation. However, once the leaf node is identified, all other sub-operations 

can be aborted. 

After the removal of the object, the second phase is to update the MBR7s and backtrack 

to the root if needed. The steps are similar to the steps in the second phase of an insert 

operation. It uses the UGetParent routine and quits at the node whose MBR does not 

shrink because of the deletion. 

Besides updating the MBRs, a reorganization of the R-tree may be necessitated by 

underflows. When an underflow occurs at  a leaf node after an object's removal, we append 

its reference to the maintenance queue, Q. 'The maintain operation will later reorganize the 

entries in the node. More formally, Delete(0, P )  is carried out as follows. 0 is the object 

to be deleted and P is the root of the tree. 

1. Curtime := current system time. 
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2. SeqNo := transaction number for the delete operation. 

3. Acquire E(DQ) .  

4. Add an new element (SeqNo,  Cur t ime)  to  DQ. 

5. Release E ( D Q ) .  

6. L := Rg.Find(P, 0 ,  lastset, Bnode, S t i m e )  to  search for the leaf node containing the 

object 0 where lastset and Bnode are NULL initially. 

7. Acquire E ( L ) .  

8. Remove object 0,  and the entry referencing 0 from L. 

9.  Update M B R ( L )  and its version number and change type. 

10. TIMESTAMP(L)  := Max(TIMESTAMP(L),  Curt ime) .  

11. Acquire E(DQ) .  

12. Remove the element (SeqNo,  Cur t ime)  from DQ. 

13. Release E(DQ) .  

14. Downgrade to  p(L) .  

15. if UNDERFL(L) then 

Acquire E(Q) .  

A PPEND(Q , L ) .  

Release E(Q) .  

The procedure Rg.Find is invoked to  locate the leaf node which contains a given object 

0. It has five parameters where P is a node of the tree, 0 is the object, lastset is the 

version number of the node from P's parent, Bnode is the branch node during the downward 

traversal and St ime is the starting time of the operation. Initially, Bnode is NULL, P is 

the root of the tree and lastset is 0.  

Rg.Find(P, 0 ,  lastset, Bnode, S t ime)  

1. Acquire p(P) .  

2. if (lastset = NULL) or (ctype(P,lastset, D E L E T E )  = FALSE) then 



CHAPTER 5. RECTANGULAR DATA 

0 Acquire ~(Bnode) .  

0 if P is a non-leaf node then 

- Let {E; = (MBR(P;), Pi) 1 i = 1,. . . , k) be the entries in P such that 0 is 

inside MBR(P;). 

- if (k > 0) then 

* if (Bnode = NULL) and (k > 1)then 

Acquire ~(Bnode).  

Bnode := P. 

Downgrade ~(Bnode)  to p(Bnode). 

else if (Bnode = NULL) then 

if P is in the log table then update the version number of P in the 

log table. 

else insert (P, version(P)) into the log table. 

* For all entries E; found above, continue the search in parallel invok- 

ing Rg.Find(P;, 0 ,  lastset;, Bnode, Stime) where lastset; is the version 

number of entry Ei. 

- Release p(Bnode). 

- Release p(P). 

- Return. 

else if (Bnode = NULL) or 

((TIMESTAMqP) > Stime) and (FTIME(DQ) < Stime)) then 

- if ( 0  inside P )  then return P. else release p(P). 

- Return. 

3. Release p(P). 

4. F := Bnode. 

5. Acquire p(Bnode). 

6. while ( F  # NULL) and (version(F) # LOG(F).version) do 

enddo 
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7. if ( F  = NULL) then F := Roots 

8. Abort all sub-finds underneath F. 

9. Bnode := NULL. 

10. Stime := Current system time. 

11. Rg.Find(F, O,NULL,Bnode, Stime). 

The procedure Rg.DUpdate performs the second phase of a delete operation partially. 

It backtracks and shrinks the MBRs of the nodes until no more shrinkage is needed. 

Rg. D Update(L) 

2. while (L, # NULL) 

Acquire e(Lp). 

Let E, be the entry in L, referencing L. 

Update MBR of E, and L,. 

if there is no change for MBR(L,) then 

- Release e(Lp). 

- Return. 

Update version number of L,. 

Downgrade to  p(L,). 

L := L,. 

L, := UGetParent(L). 

enddo 

5.4.4 Maintain 

The system operation, maintain, checks the maintenance queue Q periodically. When it is 

awakened, it obtains the references to  nodes from Q one at a time. Each node is processed 

according to  its property (overflow, underflow). At each maintenance step, at most a sub- 

tree consisting of three levels of nodes is locked exclusively. In Figure 5.7, for example, the 

'The root of the tree. 
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Figure 5.7: Re-organize the tree at node L 

maintain operation is working at L. It first acquires a lock at the parent of L (L,) to block 

any other updating operation. It then locks L and its siblings (such as L') to perform the 

merging of nodes if underflow. If L overflows, then its siblings do not need to be included 

in the reorganization. The children of L and/or L' (depending on if merging is needed) are 

locked because of updating their parent pointers. To simplify the algorithm, there is only 

one maintain operation working in the tree. A small modification to the algorithm which 

changes the maintenance queue management will allow multiple maintain operations. 

Rg. Main t ain () 

1. while ( TRUE) do 

Sleep for a while. 

Acquire p(Q). 

while (Size(Q) > Q,,,) do 

- Acquire E(Q). 

- L := NEXT(&). 

- Release E(Q). 

- Acquire p(L). 

- Lp := GetParent(L). 

- Acquire E(L,). 

- Acquire E(L). 

- RECT.old := MBR(L,). 

- Update the MBR of L, with L. 

- if UNDERFL(L) and (L has no pending update) then 
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* Let Lp has kl children including L. 

* Acquire E(L;) for i= l ,  ..., kl. 

* for i= l ,  ..., kl do 

Let L; has kik children. 

Acquire c(Lij) for j= l ,  ..., kik. 

endfor 

* Re-distribute entries of L into its siblings. 

* Update MBRs of L, and L;'s. 

* Update parental references in Li7s and Lij7s. 

* Update version numbers and change types of Lp and Li7s. 

* if L has no entry then mark L as deleted. 

* Release locks on L;j's. 

* Release locks on L;'s. 

- if OVERFL(L) then 

* Let L has k2 children. 

* Acquire €(Lj) for j=1, ..., k2. 

* Split L into L and L'. 

* Add a new entry for L' in L,. 

* Update the MBRs of L, L', and L,. 

* Update parental references in L, L' and LJ's. 

* Update version numbers, change types of L,, L and L'. 

* Release locks on Lj9s. 

* Release locks on L and L'. 

- Release e(Lp). 

- if UNDERFL(L,) or OVERFL(L,) or (RECT.old # MBR(L,)) then 

* Acquire E(Q). 

* A PPEND(Q ,I;,). 

* Release E(Q). 

- Acquire p(Q). 

enddo. 

Release the lock on Q. 



CHAPTER 5. RECTANGULAR DATA 

5.4.5 Correctness of the Operations 

In this section, we show that there is no deadlock between the operations. We then move on 

to  discuss the correctness of the R-opt tree. In the following discussion, an update operation 

can either be an insert or a delete operation. 

Lemma 5.5 A user operation can overtake any other user operation. 

Proof: For the three types of user operations, at  each step, each operation acquires a lock 

on a node (P), works on it,  and releases the lock before visiting another node (P,) .  Before 

an operation successfully acquires a lock on P,, a second operation might overtake it by 

acquiring the lock on P, first. In the R-opt tree, overtaking between different operations is 

possible. 0 

Theorem 5.7 The R-opt tree is deadlock free. 

Proof: A deadlock occurs if two operations each holds partial locks and each waits for the 

other to  release its locks. In an R-opt tree, each user operation (search, insert and delete) 

acquires a single lock on a node at  a time. Hence, deadlock cannot occur amongst them. 

The system operation (maintain) acquires locks on additional nodes, but there is only one 

maintain operation active in the tree. Therefore, it is obvious that deadlock cannot occur 

in an R-opt tree. 0 

We would like to note that livelock may occur if some user operations are much slower 

than other operations due to  unfortunate timing. For example, a search operation may 

always be overtaken by update operations. If the version number and the change type of 

the next visiting node for the search operation change continuously, the search operation 

will need to be restarted all the time. However, with the similar arguments as presented 

for the R-tree in Chapter 4, all operations are running at  similar priority and they will 

terminate eventually. 

Lemma 5.6 A search operation will finish eventually. 

Proof: If there are only search operations active in the tree, all search operations will 

finish their work. Suppose there are some update operations modifying the tree. During the 

downward traversal of a search operation, it fails to  continue when the next node to  be visited 

has disappeared (i.e., removed). However, this is not possible because the mark-and-remove 
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technique is used for deleted nodes (see procedure Rg.maintain). Another situation is where 

a search operation visits a node and finds a different range from what it knows. In procedure 

Rg.Search, the operation will then purge its results and backtrack to a stable node with its 

own log table. In both cases, the operation can continue its work. From Theorem 5.7, 

a search operation cannot be blocked forever. Hence, if there are only infrequent update 

operations and all operations run at similar priority, the search operation will eventually 

finish. 

Lemma 5.7 An update operation will finish eventually. 

Proof: Each update operation has two phases of work. The first phase is to locate a leaf 

node to insert or delete an object. This phase is similar to a search operation. As proved 

in Lemma 5.6, the work will be finished eventually. 

The second phase is to backtrack and update the MBRs of nodes. The work cannot 

continue only when a node has lost its parent or a node is found to have changed during a 

re-visit. Let Ul be an update operation in its second phase trying to obtain the parent of 

node P. Suppose the parent of P is P,. If Pp has been split or deleted, Ul will fail to find 

the parent. However, the parent pointer of P will be adjusted by the maintain operation. 

Therefore, at the next attempt (see procedure Getparent), Ul will find the correct parent. 

Ul releases the lock on P before working on Pp. If Pp is not the correct parent, Ul will 

re-acquire a lock on P .  At that time, P can be deleted or split. Ul will then stop because it 

cannot find the parent of P anymore. The maintain operation, which deleted or split P ,  will 

complete the rest of the work for Ul (see procedure Rg.maintain). In all cases, Ul finishes 

its work. 

Similarly to the proofs in other sections, the correctness of the RG protocol depends on 

the non-overtaking of operations. In the R-opt tree, overtaking is permitted. In the next 

lemma, we show that when a search operation and an update operation access the same leaf 

node, they follow a serial order. Before we proceed, we have the following definition. 

Effective Timestamp(ET): The ET of an insert operation will not change and it is set 

to the time when it first accesses the root. On the other hand, the ET of a search and a 

delete operation changes. Initially, the ET of a search (delete) operation is set to the time 

it accesses the root. If the operation restarts, the ET is reset to  the time when it accesses 

the stable node where it restarts. 
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Lemma 5.8 A search operation and an update operation work on a common leaf node 

according to their ETs. 

Proof: Let there be a search operation (S)  and an update operation (U) arriving at leaf 

node P. Suppose S is younger than U and it acquires a lock on P first (i.e., S overtakes 

U). Before S starts working on P, it checks the queue DQ (Step 2 in procedure Rgsearch). 

U will be found as an entry in DQ. Hence, S restarts and the ET of S is reset. S now 

becomes older than U .  Another situation is where U is younger than S ,  and U acquires a 

lock on P first (i.e., U overtakes S). After modifying P, U will set the timestamp of P to 

its ET. When S arrives at P later and notices P has a younger timestamp, it restarts and 

obtains a new ET. In the two cases above, the final ET of S will be older than the ET of 

U. In other words, S can only complete its work at P after U has finished. 0 

Lemma 5.9 In the protocol RG, no search operation will miss an available object with 

respect to its ET. 

Proof: From Lemma 5.6, a search operation will terminate. Therefore, we only need to 

consider if a search operation (S)  returns all available objects. S will not be restarted if it is 

not overtaken by a younger update operation and all older update operations have completed 

their work. From Lemma 5.8, S successfully works on the leaf nodes only when the two 

conditions are satisfied. Hence, S will see available objects which are insertedldeleted by 

operations of older ETs. 0 

Theorem 5.8 The protocol RG based on the give-up approach is correct. 

Proof: From Lemma 5.6 and Lemma 5.7, all operations will finish their work. From 

Lemma 5.9, a search operation will not miss any available object with respect to its ET 

and there will be no deadlock as proved in Theorem 5.7. Hence, we can conclude that the 

protocol is correct. 0 

I 

5.5 R-Link Tree 

In the previous sections, we presented four different extensions to  the R-tree to  allow con- 

current operations. However, recovery of an R-tree from system failures has not been ad- 

dressed. In this section, we apply the link technique proposed by Kung and Lehman[LeY81] 
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updates 

Figure 5.8: A node of an R-link tree. 

to modify the R-tree to  support recovery after system failures, as well as allowing concur- 

rent operations. We call the new index structure the R-link tree. Our objective is to 

maintain a consistent tree across system crashes. We achieve this by using link pointers and 

decomposing the user operations into smaller atomic actions (cf. [LoSSl]). 

The link technique was adapted by Lehman and Yao to B-trees [LeY81]. They modified 

the B-tree to the B-link tree by adding a link pointer to  each node. Each node of a B-link 

tree thus has two types of pointers: its child pointers point to the child nodes, and its link 

pointer points to its right neighbor at the same level of the tree. Therefore, link pointers 

provide an alternate path from a node to each of its child nodes via the leftmost child node. 

We take advantage of this redundancy for concurrency and recovery. 

Like the B-link tree, each node of an R-link tree contains a number of entries, one for 

each child node, and a link pointer. Using the same idea from the R-opt tree, each node in 

an R-link tree contains a list of pending updates (see Figure 5.8). The pending updates are 

maintained for the lazy updating of MBR7s as a result of insert's. When subsequent user 

operations visit these nodes, the recorded updates are incorporated into the tree level by 

level, starting at the leaf level. When a user requests an operation, we assign a sequence 

number, to the operation. This number will identify the operation and all its sub-operations. 

Each pending update has three fields: the pending MBR, the sequence number (of the insert 

operation that caused the change in the MBR), and the identity of the entry referencing 

the child node on the insertion path. The pending MBR field can be either a MBR or the 

value DONE, the latter indicating the fact that the node's MBR has already been updated 

and the need to update the parent's MBR. If the identity field has the value of 0, the node 

is a leaf node. 

The search operation traverses the tree with the help of the MBR's and pending updates 
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Figure 5.9: Structural changes resulting from an operation 

Insert 

Delete 

Condense 

Reorganize 

at  each visited node. The insert operation may cause the following changes to  the tree: 

(a) splitting nodes and adding new entries to their parents, and (b) adding and removing 

pending updates. These two changes may modify the size of the MBR's associated with 

some nodes. The delete operation removes an object and its corresponding entry in a leaf 

node. It may also cause a node to  become empty, flagging the node as "deleted." Besides 

their main functions, the three user operations also assist in lazy updating, carrying out 

unfinished structural changes to  the R-link tree which are necessitated by earlier insert's 

and delete's. 

The system operation, condense, works on at most two levels of nodes in the tree, while 

the other system operation, reorganize, may lock a sub-tree in order to  rearrange the nodes 

in it. In Figure 5.9, we summarize the changes caused by different operations. In order to 

facilitate the condense and the reorganize operations, at each level of the R-link tree, we 

introduce a head pointer pointing to  the leftmost node. 

Our concurrency control protocol, RL, for R-link trees is implemented by a collection of 

procedures, for search, insert, and delete operations, as well as those for tree-reorganization. 

In the following subsections, we discuss them in detail. 

Concurrency Control 

Changes 
Update MBR's 
Split a node 
Add an entry 
Update MBR's 
Remove a node 
Update MBR's 
Remove a node 
Rearrange nodes 

To allow an orderly access to  an R-link tree by user and system operations, we use p-locks 

and €-locks the nodes. 

During a search, other operations such as insert and/or delete may be in progress. After 

a search read a child pointer, a concurrent insert may have split the child, or a concurrent 

Levels affected 
2 
1 
2 
2 
2 
2 
2 

2 2 
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condense may have removed the child. In such a case, link pointers provide an alternate 

path to  reach a node or provide information that the child no longer exists. Unlike in a 

B-tree, however, the nodes at the same level are not linearly ordered according to  some key 

scalar values. A search needs to move to  the right neighbor, if the current node has been 

split since the child pointer in the parent was consulted. To check for this condition, we use 

a pointer pointing to  its parent; if there has been a split which has not been reflected in the 

parent node, then this pointer is set to  NULL. 

Recovery 

A recovery scheme for a tree allows the tree to  restructure itself into a consistent state after 

a system failure. 

Let us call a state of a B-link tree or an R-link tree complete if every node, except its 

root and the leftmost node at each level, can be accessed both via a child pointer and link 

pointers; otherwise the tree is in an incomplete state. As a system failure can occur at any 

time, a structural change to  the tree may be aborted in the middle, leaving the tree in an 

incomplete state. Shasha and Goodman [ShG88] introduced the concept of the well-formed 

order for a B-tree, which assures that future operations will continue to  perform correctly. 

With the use of the link pointers, Lomet and Salzberg [LoS91] showed that even in an 

incomplete state, the B-link tree is well-formed. They describe a method whereby, after a 

system failure, they reconstruct the B-link tree gradually with the atomic actions invoked 

by normal operations (e.g., search). 

Similarly, we want to  maintain enough information in the R-link tree, so that it can 

always carry out future operations correctly. When the system crashes, the R-link tree may 

be left in an incomplete state. There can be a number of structural changes which were 

under way at the time of the failure. Some operations may have been in the middle of (1) 

splitting, (2) adding an entry to  a node, (3) deleting a node, or (4) updating MBR7s. In the 

second situation, the tree is in an incomplete state, while in all other three situations, the 

updating of the tree has not been finished. 

Each structural change to  the tree can be viewed as a sequence of steps and a step can 

give rise to  one of the four situations above. We implement each step as an atomic action, 

which has the all-or-nothing property. Each action is considered as a database transaction 

in order t o  guarantee serializability as well as atomicity. We adopt write-ahead logging for 

all the actions [GrR92]. Each action is first logged in stable storage before it is allowed to 
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modify the tree. After its successful completion, we write the commit record in the log. 

With the log, the atomic actions can be restarted and all aborted actions can be rolled back 

completely. Locks may be held by some transactions when the system fails. We first release 

all the locks and restart all non-completed operations. 

5.5.1 Supporting Procedures 

Before describing the atomic actions, we first present two supporting procedures: GetParent 

and MarkNode. They are invoked as servicing routines for the atomic actions. 

Get Parent 

The GetParent(L) procedure is called by all atomic actions. It returns the parent of the 

node L. During a system recovery, the parent reference (ParentPtr) in L may not have 

been updated. The GetParent first obtains the parent reference in L, accesses the parent 

and checks if it is the correct parent. If it is not right, it will release the locks and then 

attempt to retrieve the parent reference later. There is only one parameter for the function. 

The parameter, L, is a node in the tree which is p-locked before the function is called. When 

GetParent finishes its work, the lock on L is released. If L has a parent, then the parent 

will be p-locked. 

GetParen t (L) 

1. if (L = NULL) then return NULL. 

3. Release p(L). 

4. if (Lp = NULL) then return NULL. 

6. while (Lp # NULL) and (L is not a child of L,) do 

Release p(Lp). 

Sleep a while. 

Acquire p(L). 
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r Lp := PARENT(L). 

r if DELETED(L) then 

- Acquire p(L,). 

- Return L,. 

r Release p(L). 

r if (L, = NULL) then return NULL. 

r Acquire p(L,). 

7. enddo 

8. Return L,. 

MarkNode 

The procedure MarkNode is called to  record a node as deleted. There are three parameters 

for the procedure. The first parameter is L which is the node to  be marked as deleted and 

has been €-locked by the invoking procedure. The second parameter, L', is the right sibling 

of L'. If L' is a new node and has no parent, then the deletion of L is delayed until the 

update finishes. The third parameter, lock f lag, is used to  indicate if there is any need 

in acquiring the lock on L'. In the compress operations, L' would have acquired the locks 

before this procedure is called. In the following procedure, D C  is a queue to store references 

of underflowed or deleted nodes. 

MarkNode(L, L', lock f lag) 

1. if (lock falg = TRUE)  then acquire p(Lt). 

2. if (L' = NULL) or (PARENT(Lf) # NULL) then 

r Mark L as deleted. 

r Acquire c(DC). 

r APPEND(DC, L). 

r Release E(DC). 

3. if (lock f alg = TRUE)  then release p(Lt). 
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5.5.2 Atomic Actions 

While executing any user operation, we perform four different tests on each node visited. 

We first check if the current node is a DELETED node or is underflowed, and if so, invoke 

UpdeleteAction given below. We then check whether the node is FULL, and if so, invoke 

SplitAction given below. We also test if the MBR's are up-to-date, and if not, invoke 

UpMBRAction given below. In this test, we make use of the lists of pending updates of P 

and PA RENT(P). If there is a pair of pending updates, U for P and U' for PARENT(P), 

such that they have the same transaction number and U has the value DONE in its MBR 

field, this implies that the MBR of PARENT(P) has not yet been updated. Finally, we 

test if there is a new entry representing a "new" node to be posted, and if so, we invoke 

IndexAction given below. (A node is new if its parent pointer field has the NULL value.) 

In order to obtain a higher concurrency for the search operation, updating actions which 

do not affect the results of search are not included. Only the forth test is included in each 

step of a search operation. 

Starting with the root, at each node which a user operation visits, we perform the above 

tests and the corresponding actions depending on the type of operation. Note that there 

are two structural changes involved in splitting P: the first is to split the node into two 

nodes, P and P', and the second is to  post a new entry to their parent. We carry out these 

two changes by two different actions, SplitAction and IndexAction, respectively (see below). 

This reduces the rollback effort if the system crashes. 

UpDeleteAction 

This action is invoked when a node has been marked as deleted or the node is underflowed. 

It first finds the parent of P and updates the corresponding entry. If the parent's MBR 

changes as a result, it may necessitate the change of the grandparent's MBR, and so forth, 

which is carried out by UpMBRAction. When the node is underflowed, its reference will be 

appended to a queue, DC. When the size of DC is more than a preset limit, the condense 

operation will be invoked to re-structure the tree. The action has two parameters, P which is 

a node in the R-tree and SeqNo which is the transaction number of the current transaction. 

UpDeleteAction(P, SeqNo) 

0 Acquire p(P). 
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0 if 1 (DELETED(P) or UNDERFL(P)) then return. 

if ( L P  = NULL) then 

- if ( P  = Root) and DELETE(P) then 

* Acquire E(P) .  

* P := NULL. 

* Downgrade E ( P )  to p(P). 

- Release p(P). 

- Return. 

0 Acquire E(LP) .  

Acquire E(P) .  

if DELETE(P) then 

- Remove the entry in LP which references P. 

- if LP has no entry then 

* P' := NEXT(LP). 

+ MarkNode(LP, P', T R U E ) .  

* Return 

- if we need to shrink MBR(L P )  then 

4 Update the MBR of LP. 

* Let CurPrList be the list of pending updates in L P. 

* Let CurPrList.new be a new element for CurPrList. 

* CurPrList.new.trans := SeqNo. 

* CurPrList.new.MBR := DONE. 

* CurPrList.new.index := 0.  

else 

- Acquire E(DC).  

- APPEND(DC, P) .  

- Release E(DC).  
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Release E(P) .  

Release E(L P) .  

UpMBRAction 

The action is used to  complete the updates due to  the insert and delete operations. It 

updates the MBR of PA RENT(P),  and sets the MBR field of U' to DONE for split nodes. 

(See above for the definition of U'.) When the index field of a pending element is 0, then the 

update is due to a deletion. The MBR updates propagate upwards level by level and it may 

require several invocations of this action to  complete them. There are two parameters for 

the action. The first parameter, P, is a node in the tree and the second one is the current 

transaction number. 

UpMBRAction(P, SeqNo) 

Acquire p(P). 

LP := GetParent(P). 

if ( L P  + NULL)  then 

- Acquire c(LP). 

- Acquire E(P) .  

- Let E; be the entry in LP referencing P. 

- Let PR, be the pending update in P whose transaction number is SeqNo. 

- if (PR,.MBR = DONE) then 

* Remove PRp. 

* Let PRlp the pending update in LP whose transaction number is SeqNo and 

PRlp.index = i .  

* if PRlp exists then 

Update the MBRs of LP and E; 

PRlp.mbr := DONE. 

else 

Update the MBR of LP. 
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Let CurPrList be the list of pending updates in LP.  

Let CurPrList.new be the new element of CurPrList. 

CurPrList.new. trans := SeqNo. 

CurPrList.new.MBR := DONE. 

CurPrList.new.index := 0. 

- Release E(P).  

- Release E(LP). 

else release p(P). 0 

Split Action 

This action performs only the first half of the structural changes, caused by a split. After 

creating a new node PI, it moves about half of the entries of P to it. Initially, P' has no 

parent, which is indicated by its parent pointer, ParentPtr, being set to  NULL. The link 

pointer of P is changed to  point to  PI. There is only one parameter, P ,  which is a node in 

the tree for the action. 

Acquire E(P).  

if ( P  # NULL) and FULL(P) then 

- Acquire E(P).  

- Let P have k children { Pi I i = 1,. . . , k ). 

- Acquire €(Pi) for i = 1, ..., k. 
- Split P into P and PI without re-arranging the order in the entries. 

- PARENT(P1) := NULL. 

- NEXT(P1) := NEXT(P). 

- NEXT(P) := PI. 

- Update the parent pointers of Pi's. 

- Update the MBRs of P and PI. 

Release E(P).  
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IndexAction 

It performs the second structural change after a split. It adds a new entry in P's parent 

and adjust the parent's MBR accordingly. 

Acquire p(P) .  

if ( P  = Root) then 

- Create a new node LP.  

- Acquire c(LP).  

- Acquire r ( P ) .  

- Acquire r (P1) .  

- Insert two new entries in LP for P and P'. 

- Set new root to LP.  

- Update the MBR of LP.  

- Update the parent pointers of P and PI. 

- Release c (P ) .  

- Release c(P1) .  

- Release c(LP).  

else 

- LP := GetParent(P). 

- Acquire c(LP) .  

- Acquire c(Pt ) .  

- Insert a new entries in LP for PI. 

- Update the MBR of LP.  

- Update the parent pointer of PI. 

- Release €(PI) .  

- Release c(LP) .  
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Figure 5.10: Using the link pointer to search. 

5.5.3 Search 

Like all other user operations, a search starts at the root of the R-link tree and descends 

down to the leaf level. At each visited node (e.g., A in Figure 5.10), a p lock on it must be 

acquired. After it has decided which child nodes to  visit next, the p lock can be released. 

If a child node ( C  in Figure 5.10) is a newly created node by a recent split, it is possible 

that no entry representing C has been placed in node A. As shown in Figure 5.10, the 

link pointer at B provides an alternate way to access node C even though A does not yet 

point to C. In our implementation, when a search visits C ,  it will test the value of the field 

ParentPtr in C. If the field is NULL, we start a new sub-search operation to  search the 

subtree rooted at C. If the field is not NULL and MBR(C) overlaps with W, a sub-search 

would have been initiated at A already. 

While executing a search operation, we perform the child split test as stated previously 

on each visited node. It is because the next node to be visited may have been split. The 

search operation would need to include the new areas. As the other three tests do not reveal 

a change in the MBR of the visited node, they are not included in the search. We carry 

out search by calling Rl.Search(W, P) ,  where W is the search window and P is the root of 

a sub-tree. Initially, we set P to the root R of the tree. 

1. Acquire p(P). 

2. if P is a non-leaf node then 

0 Let {E;  = (MBR(P;), Pi) ( i = 1, . . . , k) be the entries in P such that 

(MBR(Pi) U U ; )  n W # 4, where U; is the union of the MBR's of the pending 

updates which point to E;. 

0 if ( k >  0) then 
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- For all entries E; found above, continue the search in parallel, invoking 

Rl.Search((MBR(P;) U U;) n W, Pi). 

else for all objects whose MBR's overlap with W return their object ids. 

3. if (NEXT(P) # NULL) then 

Acquire p(P1). 

0 if (PARENT(P1) = NULL) then 

- R1. Search( W, PI). 

- IndexAction(P, PI). 

0 Release p(P1). 

4. Release p(P). 

5.5.4 Insert 

Given an R-link tree with the root R and an object 0 to be inserted, the insert operation 

adds 0 to an appropriate leaf in the tree. If the leaf overflows, then it is split, and the insert 

propagates up the tree. The first phase is to  select a leaf node to  which to add 0 and insert 

it. The second phase is to propagate the required updates (i.e., splitting and/or enlarged 

MBR) upward along the insertion path. 

The MBR's of some nodes on the insertion path will change if the object to be inserted 

covers additional area. If the MBR's of those nodes are updated immediately in the first 

phase, they may be changed again by a subsequent condense or reorganize operation, oblivi- 

ous of the imminent insertion of 0.  This will cause a subsequent search to miss 0. We solve 

this problem by delaying the update, recording the expanded MBR in the list of pending 

updates, which will be later (in the second phase) used to enlarge the node's MBR. This 

recording is carried out during the first phase as the insert traverses the tree downward along 

the insertion path. In the mean time, before an expanded MBR replaces the node's MBR, 

subsequent operations examine both the MBR of the node and its MBR's of the pending 

updates. 

In our algorithm, the insert operation attempts to carry out the second phase. The 

action, Rl.C2eanUpAction, is used to perform the reorganization of the tree as need. To 
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simplify its work and to  avoid multiple actions working on the same part of the tree, when 

this action is aborted, it will not be restarted. If the system fails during the updating action, 

the remaining part is cooperatively carried out by subsequent user operations. An insert 

itself pitches in to  incorporate the exiting pending MBR's a t  some nodes on its insertion 

path as the nodes' new MBR's. To this end, during the first phase, an insert performs 

the four tests (as described in Section 5.5.2) a t  each visited node. Depending on the test 

outcomes, the appropriate atomic actions will be executed to  complete tree updates. There 

is one atomic action to  be invoked at the end of phase one: Rl. Insertobject, described below, 

is used only by insert to  add an object to  a leaf node. 

More formally, Insert(0, P,SeqNo) has four parameters. Initially, it is carried out as 

follows, where 0 is the object to  be added, P is the root of the tree, and SeqNo is the 

transaction number. 

Rl. Insert(0, P,SeqNo) 

Acquire p(P). 

if DELETED(P) or UNL)ERFL(P) then 

- Rl.Insert(O,PARENT(P),SeqNo). 

- Release p(P). 

- UpDeleteAction(P, SeqNo). 

- Return. 

if FULL(P) then SplitAction(P). 

Let CurPrList be the list of the pending updates of P. 

Let {L; I i = 1,. . . ,1} be the elements in CurPrList such that L;.MBR = DONE. 

For all elements Li found above, invoke UpMBRAction(P, SeqNo;) where SeqNo; is 

the transaction number associated with L;. 

if P is a non-leaf node then 

- Find an entry E, = (MBR(P,), P,) in P ,  where (MBR(P,) U Us) requires the 

smallest enlargement to  include MBR(0) and Us is the union of the MBR's of 

pending updates for E,. Resolve ties by choosing E, with the smallest MBR(P,). 

- If an enlargement is required in E, then 
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* E(P) .  

* Let CurPrList.new be the element to  be added.g 

* CurPrList.new.trans := SeqNo. 

* CurPrList.new. MBR := MBR(0) .  

* CurPrList.new.index := s. 

* Release e(P).  

- Rl.Insert(0, P, ,SeqNo). 

else Rl.InsertAction(0, P,SeqNo). 

if (NEXT(P)  # NULL) then 

- PI := NEXT(P).  

- Acquire p(P1). 

- if (PARENT(Pf)  = NULL) then IndexAction(P, PI). 

- Release p(P'). 

Release p(P). 0 

When the R1.InsertObject is called, it will insert the object 0 into the leaf node P. 

Before the insertion is carried out, it will first verify P has not been deleted. After 0 is 

inserted, it will set up the values of a pending update if updates are needed. 

Acquire p(P). 

if DELETED(P) then 

- Release p(P). 

- Rl. Insert(0,PA RENT(P),SeqNo). 

- Return. 

if ( P  # NULL) then 

- E(P) .  

- MBRl := MBR(P). 

'The element is created when there is no element with the same set of values. 
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- Let LC = (MBR(O),O). 

- Insert LC into P. 

- Update MBR of P. 

- MBR2 := MBR(P). 

- if (MBR1 # MBR2) then 

* Let CurPrList be the list of pending updates in P. 

* Let CurPrList.new be a new element for CurPrList. 

* CurPrList.new.trans := SeqNo. 

* CurPrList.new.MBR := DONE. 

* CurPrList.new.indez := 0. 

- Release E ( P ) .  

else Release p(P). 

Rl. Clean UpAction(L,SeqNo). 

The procedure, Rl.CleanUpAction, is invoked after an objected is added. It will perform 

the second phase of a normal insert operation to update the tree. When the system fails, 

it stops and the updating will be left for future operations. It has two parameters. L is the 

current node it tries to update and SeqNo is the current transaction number. 

R1.CIeanUpAction(L, SeqNo) 

1. if L = NULL then return. 

2. continue := FALSE. 

3. Acquire p(L). 

4. L P  := GetParent(L). 

5. if FULL(L) and (L = Root) then 

Create a new root. 

€-lock the new root. 

a Acquire E(L). 

Make it LP. 

Add L as the single entry in LP. 
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else 

0 if LP # NULL then acquire c(LP). 

0 Acquire E(L) .  

6. if FULL(L) then 

Split L into L and L'. 

0 NEXT(L1) : = NEXT(L). 

0 NEXT(L) := L'. 

0 PARENT(Lt) := NULL. 

continue := T R U E .  

0 Add L' to  LP. 

0 if L has k children, L1 . . . , Lk then 

- Acquire c(L;) for i = 1, .  . ., k. 

- Update the parent pointer in L; for i = 1, . . . , k. 

- Release c(L;) for i = 1 , .  . ., k. 

7. if LP # NULL then 

Let L be the ith child of LP. 

0 Let L, and LP, be the pending elements in L and LP correspondingly where 

L,.trans = SeqNo = LP,.trans, LP,.index=i and L,.MBR = DONE. 

0 if LP, and Lp exist then 

- continue := T R U E .  

- Update the MBR of LP with LP,.MBR. 

- LP,.MBR := DONE. 

- Remove L,. 

8. Release E(L) .  

9. if LP # NULL then 

0 Release E(LP). 

0 if continue then Rl. Clean UpAction(LP,SeqNo). 
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5.5.5 Delete 

We use two phases to  implement the delete operation. The first phase is for locating the 

leaf node L which points to  the object 0 to be deleted. As in the search operation, a t  

each visited node, a delete operation may branch off into multiple sub-delete operations, 

which is similar to  the search operation. There may be multiple descending paths traversed 

before the leaf node, which contains the object to  be removed, can be located. In the first 

phase, only p locks need to be held on at  most two consecutive non-leaf nodes at a time. In 

the second phase, we need to perform the required updates, avoiding interference with the 

concurrent insert's and the changing parent pointers and MBR's. 

We use the "mark-and-remove" approach. If a node becomes empty as a result of deleting 

0 form L, then it is flagged as "deleted." In the first phase, the node is not removed 

immediately, because there can be other concurrent operations working on it. "Deleted" 

nodes are later garbage-collected periodically. If a node underflows after a deletion, we 

append it to  a queue, DC, which is used to  record the underflowed nodes. If its size reaches 

a threshold (M~x , ,~ , ,~ ) ,  the condense operation (see Section 5.5.7) is invoked to  perform 

the delayed updates. 

While descending the tree during the first phase of a delete operation, we perform the 

four tests we described earlier on each visited node. Atomic actions will be executed to  

complete tree updates, including those necessitated by other delete's. The atomic action, 

RLDAction, is used to delete the unwanted object and to  flag the leaf node as necessary. 

There are three arguments for the R1. Delete. 0 is the object to  be deleted, P is the root 

of the tree initially and SeqNo is the transaction number of the current delete operation. 

Rl.Delete(0, P, SeqNo) 

1. Acquire p(P).  

2. if DELETED(P) then 

0 Rl.Delete(W, PARENT(P) ,  SeqNo) 

Release p(P). 

0 UpDeleteAction(P). 

0 Return. 

3. if FULL(P) then SplitAction(P). 
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4. Let CurPrList  be the list of pending updates at P, 

5. Let {L; I i = 1,.  . . , I )  be the elements in CurPrList  such that L;.MBR = DONE. 

6. For all elements Li found above, invoke UpMBRAction(P, SeqNo;) where SeqNo; is 

the transaction number associated with L;. 

7. if P is a non-leaf node then 

0 Let {E; = (MBR(P;), Pi) I i = 1, . . . , k) be the entries in P such that 

(MBR(P;) U U;) f l  W # 4, where U; is the union of the MBR's of the pending 

updates which point to E;. 

if (k > 0) then 

- For all entries E; found above, continue the search in parallel invoking 

Rl.Delete(O,P;,SeqNo). 

else 

Find an entry PC in P where PC = ( M  BR(O),  0 ) .  

0 if PC exists then DAction(0, P, SeqNo). 

8. PI := NEXT(P). 

9. if (PI # NULL) and (PARENT(P1) = NULL) then 

0 Continue with Rl.Delete(0, P', SeqNo). 

0 IndexAction(P, PI). 

10. Release p(P). 13 

The action, DAction, is used to  remove an object from the tree and sets up a pending up- 

date for the updating if needed. It has three parameters. 0 is the object to be removed and 

P is the leaf node containing the reference to the object. SeqNo is the current transaction 

number. 

DAction(0, P, SeqNo) 

1. Acquire E(P). 

2. if (DELETED(P) or ( P  = NULL)) then return. 
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3. if there is an Ed in P such that Ed = (MBR(O), 0 )  then 

Remove entry Ed from P. 

Update the MBR of P. 

else if MBR(P) has been shrunk then 

Let CurPrList be the list of pending updates in P. 

Let CurPrList.new be a new element for CurPrList. 

CurPrList.new.trans := SeqNo. 

CurPrList.new.MBR := DONE. 

CurPrList.new.index := 0. 

4. if P has less than MINall,, entries then UpDeleteAction(P, SeqNo). 

5. Release E(P). 

5.5.6 Compress 

As commented previously, we use two system operations, condense and reorganize. They are 

used to  improve the search performance in an R-link tree by minimizing the overlapping and 

dead spaces between MBR's, and have a balanced tree. The tree is reorganized periodically 

by these two operations. 

Condense 

The condense operation is invoked if the number of nodes in D C  exceeds the threshold, 

The operation retrieves nodes from D C  one at a time. It will first verify if the 

node is still underflowed before merging it to  improve storage utilization. condense starts at 

the leaf level and works its way upward. At each level, it accesses the leftmost node by means 

of a header pointer, which we mentioned earlier, and traverse the level horizontally. When 

an underflowed node is located, its entries are merged with those of some of its siblings. 

MBR's are updated and link pointers are adjusted as necessary. If the node becomes empty, 

it is marked as "deleted." At each step, an underflowed node, say P, moves its entries to 

both its right and left siblings or just one of them depending on the position of P. If a 

sibling of P has a different parent than P, updating of the MBR's for different parents are 

needed. To maintain the simplicity of the operation, only siblings have the same parent as 
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Figure 5.11: Collapsing nodes in a condense operation. 

P are considered. In Figure 5.11, condense is merging the three nodes labeled L, P and R. 

Note that, after the merge, the ordering of link pointers among the child nodes of L and 

R will remain the same. The link pointer between L and P ,  and between P and R are of 

course removed. 

At each step, the operation works on at most three nodes of the same parent and their 

child nodes at the same time. All these nodes are locked to  avoid potential interference 

from other operations. The locks are acquired in the same order as in the insert operation, 

as explained before, to  avoid potential deadlock. 

condense does not attempt to  reduce the dead space or overlapping areas. To do so would 

require rearranging entries within a node, which in turn would cause rearrangement of links 

among its child nodes. As commented earlier, the overhead required would be excessive. 

Only one condense operation is allowed to  be active at a time. This will reduce the effort 

to  re-structure the under-utilized R-tree. There is only one parameter, D C  which contains 

the references of the underflowed nodes, for the operation. In the procedure,   fa^,,^,,^^ 
is a constant whose value of the maximal limit of the number of marked nodes before 

reorganization and Hh is the head link pointer a t  level h of the tree. 

RI. Con dense(DC) 

1. if (Hh = NULL) or ( size(DC)1•‹ < Maxunderfr) then return. 

2. Acquire E(DC). 

3. Let node P be the node referenced by Hh. 

4. DC' := DC. 

''It returns the size (the number of references) in queue DC. 
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5 .  Empty DC. 

6. Release c(DC). 

7. Obtain a new transaction number, SeqNo. 

8. CondAction(NULL, P, h, DC', SeqNo). 

Each step of the condense operation is performed by the CondAction action. It has five 

parameters. The action works on the current node, P, Le f t P  is the left sibling of P and 

h is the current level of the tree. Initially, h equals to  the height of the tree. It is used 

to  obtain the head pointer of the link pointers at each level. At level i, the head pointer 

is represented by Hi. The forth parameter D C  is a queue containing the references of the 

underflowed nodes and SeqNo is the current transaction number. 

CondAction(Le f tP ,  P, h, DC, SeqNo) 

1. if (h = 0) or ( P  = NULL) or (size(DC) = 0) then return. 

2. if (LeftP # NULL) then 

0 Acquire e(Le f tP ) .  

0 Let Pi's be children of Lef tP  where i = 1,. . .,x. 

3. Acquire E ( P ) .  

4. Let Pj's be children of P where j = 1,. . ., y. 

5. if (NEXT(P) # NULL) then 

0 Acquire c(NEXT(P)). 

0 Let Pk's be children of NEXT(P) where k = 1, . . . , z. 

6. if P is in D C  then 

0 if (P is not a leaf node) then 

- if (LeftP # NULL) then acquire €(Pi) where i = 1,. . .,x. 
- Acquire e(Pj) where j = 1,. . ., y. 

- if (NEXT(P) # NULL) then acquire e(Pk) where k = 1,. . . , z. 

0 Move entries Pj's to  Le f t P  and/or NEXT(P). 

0 if ( P  is not a leaf node) then 
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- Adjust link pointers of Pj's, Pi's, and Pk7s. 

- Update parent references of Pj's. 

- Release €(Pi) where i = 1,. . . , x. 
- Release r(Pj) where j = 1, .  . . , y. 

- Release c(Pk) where k = 1,. . . , z. 

0 if P is empty then MarkNode(P, NEXT(P) ,  FALSE). 

0 Remove the reference of P from DC. 

0 Update the MBR of Le f t P .  

0 Update the MBR of NEXT(P) .  

0 if (MBR(Le f tP )  has changed) then 

- Let CurPrList be the list of pending updates in Le f t P .  

- Let CurPrList.new be a new element for CurPrList. 

- CurPrList.new.trans := SeqNo. 

- CurPrList.new.MBR := DONE. 

- CurPrList.new.index := 0. 

0 if (MBR(N EXT(P))  has changed) then 

- Let CurPrList be the list of pending updates in NEXT(P) .  

- Let CurPrList.new be a new element for CurPrList. 

- CurPrList.new.trans := SeqNo. 

- CurPrList.new.MBR := DONE. 

- CurPrList.new.index := 0. 

7. if (NEXT(P) # NULL) then 

0 Release r(Le f tP). 

0 LeftP := P. 

0 P := NEXT(P). 

0 Release r(Le f tP )  and r(P).  

CondAction(Le f tP ,  P, h, DC, SeqNo). 

else 

0 Release r(Le f tP )  and E(P). 
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0 h := h -1. 

0 P := H h .  

0 CondAction(N ULL, P, h, DC, SeqNo). 

Local Reorganization 

The reorganize operation tries to  restructure the tree to achieve better search performance. 

It is an expensive operation which should not be invoked frequently. There are a number of 

possible ways to improve the search performance on an R-link tree, including: 

Cutting down the dead space in the MBR7s associated with the nodes; this will reduce 

unnecessary searches. 

Reducing overlapping among the MBR7s of the child nodes of each node; this will cut 

down the number of sub-searches. 

0 Clustering "near" objects; sub-searches will branch out only at  a low level of the tree. 

Depending on different object sizes and distributions, we can set up different performance 

criteria for nodes. We call a node under-performing if it does not satisfy the criteria. We 

use a queue, DQ, to keep track of the under-performing nodes. For this purpose, we add a 

new field in each node to contain a search performance measure. During the first phase of 

insert and delete, or the descending phase of search, each visited node is tested against the 

performance criteria. The nodes that fail the test are added to DQ. When the size of DQ 

exceeds a threshold, we invoke the reorganize operation. The operation retrieves the nodes 

from DQ for the reorganization. 

There are two parameters for Rl.reorganize.The first parameter is DQ which is the queue 

containing references to nodes whose search performance levels are poor. The second one, 

SeqNo, is a transaction number assigned to the operation. In Figure 5.12, we show the 

nodes used in a step of local reorganization. 

Rl.reorganize(DQ , SeqN o) 

1. Acquire c(DQ). 

2. if (DQ = NULL) then return. 

3. P := NEXT(DQ). 
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Figure 5.12: Local reorganization. 

4. if P # NULL then 

0 Acquire p(P). 

0 Let there be k children of P. 

0 i fk>Othen 

- Acquire p(P;) where i = 1, ..., k. 

- Let Pl and P4 be nodes which have entries to  be re-arranged and neither is 

at the border of of the subtree headed at  P. 

- while such a pair exists do 

* p lock the subtrees rooted at Bl and P4. 

* p lock the subtree rooted at Po which is the left neighbor of PI. 

* p lock the subtree rooted at P2 which is the right neighbor of PI. 

* p lock the subtree rooted at P3 which is the left neighbor of P4. 

* p lock the subtree rooted at P5 which is the right neighbor of P4. 

* During the acquisition of the share locks, replicate the 6 subtrees and let 

them be TO, Tl,...,T5. 

* Remove all link pointers in TI and T4. 

* Re-organize the entries in TI and T4. 

* Update the link pointers of To,Tl,T2,T3,T4,T5 

* Update the parent pointers and MBRs in Tl and T4. 

* E(P).  
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* E lock the subtrees rooted at PI and Pq. 

* 6 lock the subtree rooted at Po, P2, P3 and P5. 

* Replace subtrees rooted at Pl with Tl for 1=0, ..., 5. 

* Update MBRs of P and Pi. 

* Release all elocks in subtrees rooted at Pl for 1=0, ..., 5. For the nodes, 

Pi's, downgrade their locks to p-locks. 

* P(P). 
* Let PI and P4 be the next pair of nodes which have entries to be re- 

arranged. 

end while 
- Release p(P;) for i= l ,  ..., k. 
- Release p(P). 

- Remove reference of P from DQ. 

- if MBR(P) has changed then 

* Let CurPrList be the list of pending updates in P. 

* Let CurPrList.new be a new element for CurPrList. 

* CurPrList.new.trans := SeqNo. 

* CurPrList.new.MBR := DONE. 

* CurPrList.new.index := 0. 

5. Release E(DQ). 

6. Rl.reorganize(DQ, SeqNo). 

5.5.7 Serializability and Multiple Searches 

In the R-link tree, there are two possible ways to  solve the serialization problem which is 

described in Section 4.1.5. The first method is to avoid overtaking of operations which has 

been adopted in the previous index structures. This can be achieved by storing transaction 

numbers in the nodes of the tree. When an operation visits a node, it checks if its preceding 

operation has finished with the node; otherwise it will quit and re-visit the node later. 

However, with this pessemistic method, when an operation is aborted unexpectedly, the 

subsequent operations will starve and cannot continue. We believe that a better solution is 

to assume that such scenarios are infrequent and to validate a transaction after it has finished 

its operation but before it commits. However, if we abort an insert, a lot of recovery work 
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........................................... Time 

Figure 5.13: Overlapping search times. 

would be required. Therefore, we abort only search's to  achieve consistency in the results. 

We maintain a table, which, for each search operation S, records its starting time (SS) and 

ending time (Se). Each inserted object has a timestamp to  show when it was inserted. The 

timestamp can be viewed as the finishing time of an insert operation. Old entries in the 

tables for by search operations are purged periodically. 

If there are two search operations, S1 and S2, and the following conditions are all satis- 

fied, then either S1 or S2 should be aborted and restarted (see Figure 5.13). 

1. Operational times TI of S1 and T2 of S2 overlap. 

2. The search windows of S1 and S2 intersect, i.e., Wl n W2 # q5 where Wl and W2 are 

the search windows of S1 and 5'2, respectively. 

3. There is more than one object addedldeleted inside Wl n W2 and the timestamps of 

the updates are within the overlap of TI and T2. 

No major changes are needed to  the algorithms presented in the previous sections. Before 

a search commits and returns its result, it will need to  check the above conditions. The 

check can be done in the order as shown. If the test fails, then no further test will be needed. 

If all three conditions are satisfied, then the search operation is restarted. 

5.6 Quad-R Tree 

In this section, we present the quad-R tree. A quad-R tree is a hierarchical representation 

for rectangular data. Its structure is similarly to  the quad-B tree in the previous chapter. 

Each entry in a leaf node represents a corresponding terminal quadrant of a quadtree. 

However, only rectangles that are enclosed minimally by the quadrant can be referenced via 
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Figure 5.14: Five types of rectangles within a quadrant. 

the entry. With the encoding scheme, the quadrants can be ordered according to  their sizes 

and locations in the data space. 

The quad-R tree is a B+-tree. Each entry of a node is of the form (Value, P) where P 

is a pointer to  a child node, and Value is a scalar value which is the largest scalar value 

amongst the entries in P. At each level, the rightmost entry of the rightmost node has the 

largest possible value in the subtree. A leaf node contains entries of the form (Value, B )  

where B is a pointer referencing a bucket, and Value is the corresponding scalar value 

for the terminal quadrant. In each terminal quadrant, it can store five different types of 

rectangular objects as shown in Figure 5.14. 

In a quad-R tree, we use the same encoding scheme as in the quad-B tree in the previous 

chapter. The key for a quadrant at level d (where 1 > 0 )  is encoded as follows. Let D be 

the largest depth of any terminal quadrant and the entire data space is encoded as 0. Let 

the quadrant q have the key value k and its parent qp have the key value kt. Then 

where 

s = 1, if q is the northwest corner of qp 

s = 2 ,  if q is the southwest corner of q, 
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s = 3, if q is the southeast corner of qp 

s = 4, if q is the northeast corner of qp 

For the following presentation of the algorithms, we represent the transformation by cp(R) 

where R is either a search window or the MBR of an object. 

Similarly to  the R-link tree, we have adopted the link technique described in [Ley811 

to  support concurrent operations on the quad-R tree. With this technique, operations are 

allowed to  release the lock on a node they hold before they obtain a new lock on the next 

node. However, it requires the addition of new edges (link pointers) to the tree in order to  

avoid anomalies. 

Our concurrency control protocol, QR, for quad-R trees is implemented by a collection of 

procedures, for search, insert, and delete operations, as well as those for tree-reorganization. 

In the following sections, we discuss them in detail. 

5.6.1 Search 

To perform a search operation, we use range queries instead of applying the given search 

window directly. A given search window, W, is divided into different regions. Each region 

will overlap with a number of quadrants which can be at the same or different levels of a 

corresponding quadtree. In Figure 5.15, the search window W generates 4 ranges as [O, 01, 

[1000,1000], [1300,1444] and [4000,4444] if there are 4 levels in the corresponding quadtree. 

During the calculation of the ranges, we try to have a small number of short ranges 

in order t o  have good search performance. In our method, we divide the search window 

continuously until the total length of the ranges cannot be shorten. We first find out the 

smallest quadrant which encloses the window. We then use the center lines of the quadrant 

to  divide the window into smaller regions. Each region can be represented by a range from 

the minimum and the maximum scalar values of the corresponding quadrants it overlaps. A 

region is further divided into sub-regions if the total length of the new ranges is shorter than 

the range before. The procedure is repeated for all regions. At the end, the window search 

query is transformed into a number of range queries. To perform a search operation, we 

call the procedure Qr.Search to compute the ranges and invoke the range query procedure 

afterwards. Formally, the procedure Qr.Search has two parameters where W is the search 

window and R is the root of the tree. In the procedure, Leafstack is a stack which is used 
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Figure 5.15: A search window divided into 4 query ranges. 

Figure 5.16: Using the link pointer to  search. 

to store the references of all the leaf nodes visited by the search operation. 

1. Calculate the set of ranges, {RangeSet) ,  for W. 

2. Let there be k ranges as RangeSetl , .  . . , RangeSetk. 

3. Leaf Stack := NULL. 

4. if ( k  > 0) then 

0 for i = 1, ..., k do 

- Let RangeSet; be represented by [Low;, High;]. 

- OldValue := co. 

- Qr.Search W(W, R ,  Low;, High;, OldValue, Leaf Stack).  

enddo 
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Figure 5.17: Performing a search. 

if (LeafStack # NULL) then 

- Release all p-locks on nodes which are referenced by Leaf Stack. 

- FREE(Lea f Stack). 

The procedure Qr.SearchW carries out the work of each range query. It uses Low to  

descend from the root to a leaf node. At each step, it releases its lock before visiting another 

node in the tree. Let S1 be a range query visiting node A as shown in Figure 5.16, a p lock 

on it is first acquired. After it has decided which child node to visit next, the p lock is 

released. When it visits node B, B may have been split and the right sibling of B ( C )  is a 

new node whose corresponding entries have not have been put in A. When this happens, the 

link pointer at B then provides an alternate way to access node C. In our implementation, 

when a search visits B,  it will verify the scalar value of B in A against the largest scalar 

value of B. If they are different, a split must have been occurred, and a new sub-search 

operation will be created to  search the subtree rooted at C .  

When a search operation reaches a leaf node, it holds the lock on the node and traverses 

along the link pointers until it reaches a leaf node whose first entry has a scalar value larger 

than the range of the search. In Figure 5.17, the search operation S generates two range 

queries S1 and S2. S1 is executed first. When S1 reaches the leaf level, it uses a stack 

(Leaf Stack) to record the leaf nodes it visits. The p-locks acquired at the leaf nodes by S1 

are not released. After S1 has finished its work, S2 starts its traversal similarly to S1 but 

with a different range. After all range queries have been completed, LeafStack is used to 

release all the p-locks on the leaf nodes visited by S. For each invocation of 
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Qr.Search W(W, R, SValue, High, OldValue, Leaf Stack), W is the search window, R is a 

node of the tree, SValue and High are the low and the high value of the range, respectively, 

OldValue is the largest number in the node visited previously, and Leafstack is the stack 

contains the references of leaf nodes. Initially, 0ldValue is the value of the largest possible 

number, and Leaf Stack is empty. 

Qr.Search W(W, R, SValue, High, OldValue, Leaf Stack) 

1. Acquire p(R). 

2. if DELETED(R) then R := FindChild(HeadPtr, SValue)". 

3. if R is a non-leaf node then 

Let {E; = (R;, V, )  I i = 1, .  . . , k) be the entries in R such that 

K-1 < SValue < V,. 

if (SValue > V,) and (NEXT(R) # NULL) then 

- R' := NEXT(R). 

- Qr.Search W(W, R', SValue, High, OldValue, Leaf Stack). 

else Qr.Search W(W, R;, SValue, High, V,, Leaf Stack). 

Release p(R). 

else 

Return alI objects in R inside W. 

PUSH(R, Leaf Stack). 

Acquire p(R). 

Let R has n entries. 

while (R # NULL) and (Vl 5 High) do 

- Return all objects in R inside W. 

- PUSH(R, Leaf Stack). 

- R := NEXT(R). 

11 HeadPtr  is the head link pointer at the current level. 
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- Acquire p(R).  

enddo 

0 if ( R  # NULL) then release p(R).  

The Findchild is invoked to find the correct node to  visit when an intended visiting 

node is deleted. Initially, the procedure starts at  the leftmost link (the head link pointer) 

at  the current level. 

FindChild(L, SValue) 

1. if ( L  = N U L L )  then return NULL.  

2. Acquire p(L).  

3. Next  := NEXT(L) .  

4. Acquire p(Next).  

5. Let Vl, ..., V, be the values of the entries in Next.  

6. while (SValue > V l )  do 

0 Release p(L). 

0 L := Next.  

0 Next  := NEXT(L).  

0 if (Nex t  = N U L L )  then return L. 

0 Acquire p(Next).  

0 Let Vl, ..., V, be the values of the entries in Next.  

enddo 

7. Release p(Next) .  

8. Return L. 
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5.6.2 Insert 

In a quad-R tree, when a node is split, a link pointer is created to  link the two nodes. The 

link is important because it routes other operations to  the missing part of a split node. 

There are two steps in splitting. The first step establishes the link pointer and the second 

step updates the parent of the split nodes. In order to  backtrack in the second phase, we 

use an additional variable, ParentPtr ,  at all nodes in the tree. The Paren tP t r  of node 

P is a reference pointing to  the parent node of P .  Together with the link pointers, they 

provide accesses to parents of all nodes. In the second phase, when a node is split, at most 

a subtree of three levels will be exclusively locked. The ParentPtr7s  and link pointers are 

adjusted for the nodes in each split. 

The work in the first phase is carried out by the procedure Qr.Select which locates 

the leaf node and the second phase is done by the procedure Qr.CleanUp. More formally, 

Insert(0, R) has two parameters where, 0 is the object to be added, and R is the root of 

the tree initially. 

1. SValue := ~ ( 0 ) .  

2. L := Qr.Select(0, SValue, R). 

3. Upgrade p(L) to  c(L). 

4. if there is an entry Eo whose associated value is SValue then 

0 Let B be the bucket associated with Eo. 

0 Add 0 to B. 

else 

0 Create entry Eo whose associated value is SValue. 

0 Add 0 to B which is the bucket referenced by Eo. 

0 Add Eo to  node L. 

0 Downgrade E ( L )  to p(L). 

0 Qr.Clean Up(L, SValue). 

Qr.Select(0, SValue, R)  
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1. Acquire p(R). 

2. if (DELETED(R)) then R := FindChild(HeadPtr, SValue). 

3. Let R has n entries. 

4. if SValue > V, then 

Qr.Select(0, SValue,NEXT(R)). 

Release p(R). 

Return. 

5. if R is a non-leaf node then 

Let E, = (R,, V,) be the entry in R such 

that VSF1 < SValue 5 V,. 

Release p(R). 

Qr.Select(0, SValue, R,). 

else return R. 0 

The procedure Qr.CleanUp is used in the second phase of an insert operation. At each 

level during updating, it invokes procedure Getparent to obtain the correct parent of the 

current node before splitting or adding a new entry. Because the lock on L is released while 

finding the correct parent, the procedure needs to confirm that L is still overflowed before 

performing the split. 

Qr. Clean Up(L, SValue) 

1. if L = NULL then return. 

2. Acquire p(L). 

3. if OVERFL(L) then 

0 if L = Root then 

- Create a new root, 

- €-lock the new root, 

- Add L as the child of Parent. 

- Make it Parent. 



CHAPTER 5. RECTANGULAR DATA 

else Parent := GetParent(L, SVaIue). 

Acquire €(Parent). 

Acquire E(L). 

if OVERFL(L) then 

- Let LI ,..., L,  be children of L. 

- Acquire E(L;)'s for i = 1, ..., n. 

- Split L into L and L'. 

- Add L' t o  Parent. 

- Update the parent pointer of Li's. 

- Update the link and parent pointers of L and L'. 

- Release E(L;)'s for i = 1, ..., n. 

Release E(L). 

Downgrade €(Parent) to  p(Parent). 

a Qr.CleanUp(Parent, SValue). 

else release p(L). 

The procedure GetParent is called to return the parent of the node L. Because of a 

previous splitting or merging of nodes, the parent reference (ParentPtr)  in L may not have 

been updated. The GetParent first obtains the parent reference in L, accesses the parent 

and checks if it is still the right parent. If it is not, the link pointer will be used to  trace for 

the right one. The procedure may be running into a chasing loop if the parent of L is kept 

changing. There are two parameters for the procedure. The first parameter, L, is a node in 

the tree which is p-locked before the function is called. The second parameter, SValue, is 

used to  decide when the search should finish. When GetParent finishes its work, the lock 

on L is released. If L has a parent, the parent will be p-locked after the call. 

GetParent(L, SValue) 

1. if (L = NULL) then return NULL. 

3. Release p(L). 
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4. if ( L ,  = N U L L )  then return NULL.  

5. Acquire p(L,). 

6. Let Vl ,  ..., V, be the values of the entries in L,. 

7. if (SValue < V l )  and ( L  is not a child of L,) then 

0 Release p(Lp).  

0 L, := head of link pointer at the level. 

0 Acquire p(L,). 

8. while (SValue > V,) and ( L  is not a child of L,) do 

0 Next := NEXT(L,). 

0 Release p(L,). 

0 if ( L ,  = N U L L )  then return NULL. 

0 L, := Next.  

0 Acquire p(L,). 

Let Vl, ..., V, be the values of the entries in L,. 

enddo 

9. Return L,. 

5.6.3 Delete 

There are two phases to implement the delete operation. The first phase is to locate the 

leaf node L which contains the rectangular object 0 and deletes it afterwards. In the 

second phase, we need to  perform the required updates while avoiding interference with 

other updating operations. 

We use the "mark-and-remove7' approach. If a node becomes empty as a result of 

deleting 0 form L, then it is flagged as "deleted." "Deleted" nodes are later garbage- 

collected periodically because there can be other concurrent operations working on it. The 

first phase is carried out by the procedure Qr.Select. It locates the leaf node which contains 

the unwanted object. The second phase is done by Qr.Condense which reorganize the tree 
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afterwards. There are two arguments for the Qr.Delete where 0 is the object to be deleted 

and R is the root of the tree initially. 

Qr. Delete(0, R) 

1. SValue := cp(0). 

2. L := Qr.Select(O,SValue, R). 

3. if L # NULL then 

0 Let Eo be an entry in L whose associated value is SValue. 

0 Let B be the bucket associated with Eo. 

0 Remove 0 from B. 

0 Remove entry Eo in node L if B is empty now. 

Downgrade E(L) to p(L). 

4. Release p(L). 

5. Qr. Condense(L). 

The procedure Qr.Condense is used in the second phase of a delete operation. At each 

level during updating, it invokes procedure Getparent to obtain the correct parent of the 

current node before splitting or adding a new entry. Because the lock on L is released while 

finding the correct parent, the procedure needs to confirm that L is still underflowed before 

performing the merge. 

Qr. Condense(L) 

1. Acquire p(L). 

2. if L = NULL then return. 

3. Let L has n entries as El ,  ..., En. 

4. SValue := V, where En = (L,,Vn). 

5. Parent := GetParent(L, SValue). 

6. if (Parent = NULL) and (L has no child) then 

0 Acquire c(L). 
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0 Mark L as deleted. 

0 Set root of the tree to NULL. 

0 Release e(L) .  

Return. 

7. Acquire  parent). 

8. Let Parent has k children as PI, ..., Pk including L. 

9. Acquire €(Pi) for i = 1, ..., k. 

10. if UNDERF(L) then 

Let L has n children as Pll, ..., Pl,. 

Acquire c(Plj) for j = 1, ..., n. 

0 Merge the entries of P with its siblings. 

0 Update the link and parent pointers of Pi's. 

0 Update the parent pointers of Plj9s. 

0 Update Parent. 

0 if L has no child then mark L as deleted. 

0 Release €(Pi) for i = 1, .. . , k. 

0 Release €(Parent). 

Qr. Condense(Parent). 

else 

Release €(Pi) for i = 1, ..., k .  

Release  parent). 

5.6.4 The Secondary Trees 

In the previous discussion of the quad-R tree, a bucket is simply a linear list to store 

rectangles which are embedded in a terminal quadrant. When there are many objects 

stored in a bucket, the bucket overflows and a better organization is needed. In this section, 

we show how to improve the quad-R tree by associating it with secondary data structures. 

In the extended quad-R tree, each entry in a leaf node is associated with a secondary 

tree. A secondary tree is a BS-tree. Each non-leaf node of the tree contains entries of the 
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Figure 5.18: Lock 

DATA 
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0 0 

compatibility matrix for a quad-R tree. 

form (Value, P) where P is a pointer referencing a child node and Value is a scalar value 

which is the largest scalar values amongst the entries in P. A leaf node contains entries of 

the form (Value, 0 )  where 0 is the pointer to  a spatial object and Value is the scalar value 

after transforming the MBR of 0 with the method described later. In later discussions, the 

primary tree refers to  the original quad-R tree. 

In a quad-R tree, a search operation maintains locks on the leaf nodes until the operation 

completely finishes. When secondary trees are used, each leaf node in the primary tree will 

have its entries referencing different secondary trees. Hence, the roots of the secondary 

trees referenced by the entries will need to  be locked as well. Similarly, when an update 

operation inserts/deletes an object in a leaf node, the root of the corresponding secondary 

tree is locked. We observe that once an update operation has done its work at  a leaf node of 

the secondary tree, the lock on the root can be released without affecting other operations. 

To extend the algorithms for the quad-R tree, we introduce a new lock type, the w x .  It is 

the intended-update lock which is only compatible with itself. The new lock compatibility 

matrix is shown in Figure 5.18. 

In general, there is no good way of ordering the MBRs of spatial objects. If the MBRs 

are clustered in different regions in the data space as shown in Figure 5.19, then an index 

structure such as R-tree can be used. However, R-tree does not work well for the situation 

shown in Figure 5.20. In the quad-R tree, we encode a rectangle to  a higher dimensional 

point and store it in a secondary tree. 

To construct a secondary tree, we first transform all intervals of the MBRs of data objects 

along the x-axis t o  points in a 2-d space where the 2 axes represent the left and right end 

points of the intervals. After the transformation, an interval I ([x1,x2]) becomes a 2-d 

point (I,, T,) where I ,  is the left end and r,  is the right end of I, respectively. Furthermore, 

because all intervals would have their left end value smaller or equal t o  the right end value, 

the transformed 2-d points will only be in the area above the diagonal line showed in Figure 
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Figure 5.19: Clusters of rectangles which separated nicely. 

Figure 5.20: Rectangles that are hard to  organize. 

5.21. To determine if a given interval [sl, s,] overlaps with I, one can perform a query in 

the new 2-d space with the following test: 

The query above defines a search area for all the intervals overlap with [sr, sT] in the new 

2-d space. Along the x-axis, there can be three types of intervals, A, B and C as shown in 

Figure 5.22. These three types of intervals correspond to  the three different regions shown 

in Figure 5.23. 

We want to  linearize the points so that a window query can be mapped into a range 

query. Let [xl, x2] be the x-interval of a MBR which is inside a terminal quadrant. The 

center of the quadrant is at [x,, y,]. The linearization can be done as follows: 

If ($1 1 2,) and (x2 > x,) 
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Figure 5.21: Query region for search interval [sly s,]. 

Figure 5.22: Three types of line intervals. 

If (XI > x,) and (22 > x,) 

OX(x1, 22) = (22 - xi + 1) + ((max[+ 1) * m a x ~  - (2 * maxl * xl - x12 + x1))/2 

where mas1 and max, are the largest possible number of the left and right end points of all 

x-intervals (see Figure 5.23). To find out the x-intervals overlaps with a given search inter- 

val [sr, s,], we can use a range query as [Ox(O, s[), O,(s,, mas,)]. For overlappings between 

y-intervals of the MBRs, similar transformations and queries can be applied. The transfor- 

mation (0,) is defined as 0, except the end values (bottom instead of left, top instead of 

right) and the center point (yc instead of x,) are different. 

After transforming the x- and y-intervals of the MBRs, each MBR has a pair of values 

for its corresponding intervals in the data space V. The MBR of an ith object is represented 
. . 

as (xt,yZ) (i.e., (O,(xil, xi2), Oy(yil, yi2))) in the data space V. To complete the encoding, we 

apply the bit-interleaving together with Gray code mapping to  the pair in order to  obtain a 
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center 

center L 

Figure 5.23: Linearization of the 2) space. 
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scalar value. To simplify later discussions, we denote the encoding scheme by &(R) where 

R is a rectangle. 

Search 

When secondary trees are used, a search operation continues to work in secondary trees 

after arriving at the leaf nodes of the primary tree. Locks on the leaf nodes in the primary 

tree are maintained as before. The locks are released after the search operation finishes its 

work in the secondary trees. 

To perform a search operation on a secondary tree, we use 8, and 8, to  obtain a query 

region WR in V from a given search window W. Let Low = rnin(+G(WR)) = min{+G(x)( 

x is a point in WR) and High = r n a ~ ( + ~ ( W ~ ) )  = m a ~ { + ~ ( x ) l  x is a point in WR). 

We can then represent WR by the range [Low, High]. The range can be decomposed into 

sub-ranges of values such that the values outside the sub-ranges represent regions that do 

not intersect with WR. Suppose the associated scalar value of a spatial object is V. If V 

falls into [Low, High] a t  a leaf node, then the object is tested whether it overlaps with the 

search window. The computations of High and Low are similar to those for the B+-tree in 

Chapter 4. 

More formally, the search operation on a secondary tree is invoked by the procedure 

Qr.SearchS(W, R, Low, High, OldValue, Leaf Stack), where W is the search window, R is 

a node of the tree, Low is the starting end of the query range, High is the higher value of 

the range, OldValue is the largest number in the node visited previously, and Leaf Stack is 

the stack contains the references of leaf nodes. Initially, OldValue is the value of the largest 

possible number, and Leaf Stack is empty. 

Qr.SearchS(W, R, Low, High, 0 IdValue, Leaf Stack) 

1. Acquire p(R). 

2. if R is a non-leaf node then 

Let {Ei = (Ri, V, )  I i = 1, . . . , k) be the entries in R such that 

v,-, < Low < V,. 

if (Low > V,) and (NEXT(R) # NULL) then 

- R' := NEXT(R). 

- Qr.SearchS(W, R', Low, High, OldValue, Leaf Stack). 
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else Qr.SearchS(W, R;, Low, High, V,, Leaf Stack). 

Release p(R). 

else 

0 Return all objects in R inside W. 

0 PUSH(R, Leaf Stack). 

0 R := NEXT(R). 

0 Acquire p(R). 

0 Let R has n entries. 

0 while (R # NULL) and (Vl 5 High) do 

- Return all objects in R inside W. 

- PUSH(R, Leaf Stack). 

- R := NEXT(R). 

- Acquire p(R). 

enddo 

0 if (R # NULL) then release p(R). 

Insert 

When an insert operation reaches a leaf node, say P, at the primary tree, it acquires an 

wx-lock on the node. This would disallow a search operation to work on P but other update 

operations can continue to work in the corresponding secondary trees simultaneously. After 

the object has been inserted at a leaf node in the secondary tree, the wx-lock is released. 

Similarly to  the primary tree, there are two phases in a secondary tree for an insert 

operation. The implementations are the same as in the primary tree. Therefore, we only 

show the main algorithm, Qr.InsertS, for the insert operation here. The first phase of work 

is carried out by Qr.SelectS and the second phase is done by Qr.CleanUpS. More formally, 

Qr.InsertS(0, R)  is carried out as follows, where 0 is the object to be inserted, R is the root 

of the secondary tree initially and a new entry Eo will be added to the selected leaf node. 

Qr. InsertS(0, R) 

1. Low := &(MBR(O)). 
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2. L := Qr.SelectS(0, Low, R). 

3. Upgrade p(L) to  E(L). 

4. Let Eo be the new entry for 0. 

5. Add entry Eo in node L. 

6. Downgrade E(L) to  p(L). 

7. Qr.CleanUpS(L, Low). 

Delete 

A delete operation works similarly to  an insert operation in the previous subsection. When 

a delete operation reaches a leaf node at the primary tree, it acquires an wx-lock on the 

node to  avoid any search operation active on the node. After an object is removed from a 

leaf node in the secondary tree, the wx-lock is released. 

In a secondary tree, the first phase of a delete operation is to  locate the leaf node L 

which contains the object 0 and deletes it afterwards. It is done by the procedure Qr.FindS. 

In the second phase, we use the procedure Qr.CondenseS to  perform the required updates, 

if necessary. The "mark-and-remove" approach is used to  delay the actual removal of the 

nodes. Similarly to  the insertion algorithm above, only the main procedure, QrDeleteS, is 

presented here. There are two arguments for the Qr.DeleteS where 0 is the object to be 

deleted and R is the root of the tree initially. 

Qr. DeleteS(0, R)  

1. Low := $,(MBR(O)). 

2. L := Qr.FindS(0, Low, R). 

3. if L + NULL then 

Upgrade p(L) to  E(L). 

Let Eo be an entry referencing 0. 

Remove entry Eo in node L. 

Release E(L). 

else release p(L). 

4. Qr. CondenseS(L). 
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5.6.5 Correctness of the Operations 

In this section, we would like to show the correctness of the operations in a quad-R tree. We 

first work on the primary tree and extend the proofs to  include the secondary trees later. 

A slightly different approach, other than the one used in Section 4.1.5, is used to  prove the 

correctness of the operations. We say that a protocol P on an index structure is correct if 

it satisfies the following two conditions. 

1, P is deadlock free, and 

2, In any execution & that P generates, each search operation S(W) returns object 0 iff 

0 is available to  it in &. 

In order to prove the second condition, it is sufficient to  show the following: 

0 (a): If an object 0 is available to  S(W), then at least one subsearch maintains a 

window W' such that 0 E W', until 0 is returned. 

0 (b): The operations form a serializable schedule. 

Note that, the above conditions are the same as those in Section 4.1.5 except for (b). In 

the rest of this section, an operation means an insert, delete or a subrange query on a leaf 

node. Furthermore, each operation obtains a timestamp when it first accesses the root. 

Lemma 5.10 A n  operation can overtake any other operation. 

Proof: During a downward traversal of a search operation, at each step, it acquires a p-lock 

on a node (P), obtains the relevant information, releases the lock on the node and attempts 

to work on the next one (PI). Throughout its work, only a single lock is held. Therefore, 

a second operation traversing along the same access path can lock the node PI before the 

search operation (i.e., it overtakes the search operation). Similarly, in the first phase of an 

update operation, only one lock is acquired at a time and other operations can overtake it. 

0 

Theorem 5.9 The protocol Q R  for the quad-R tree is deadlock free. 

Proof: Assume that a set of operations is deadlocked under the protocol QR, and let A be 

the set of all deadlocked operations. We derive a contradiction out of this assumption. Let 

T be an operation in A. 
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a: T is a search operation. During the downward traversal, T only acquires a single 

lock a t  each step. Hence, it cannot be blocked. When a search operation reaches 

the leaf level, it may lock multiple nodes, say PI,. . . , Pk. The nodes are p-locked 

from left-to-right at  the leaf level. Suppose there is an update operation, U, works 

at  leaf node Pi. If it €-locks Pi first, T needs to wait. U may cause Pi to  be full or 

deleted, but it will release the €-lock on Pi before any tree reorganization. During the 

reorganization, the locks are acquired from top-down and left-to-right (i.e., in order 

of P ,  PI,. . . , Pk) which is in the same order as for T at the leaf level. Hence, partial 

locking cannot occur. If T acquires the lock on Pi first, T can continue. Therefore, in 

either case, deadlock cannot occur. 

b: T is an insert operation in its first phase. Since T only acquires a single lock a t  

each step, it cannot be blocked forever. 

r c: T is an insert operation in its second phase, executing QR.CleanUp. In this case, T 

is trying to  €-lock node P, P's child and grandchild nodes. Before T has successfully 

acquired the first €-lock, it holds no lock at  all. It acquires the locks in the top-down 

and left-to-right order. If there is another update operation (Ul) trying to  work on P, 

the order of execution depends on the order of acquiring the lock on P. There cannot 

be any deadlock between T and Ul because of the lock acquisition order. A different 

operation may have placed locks on child nodes and/or on grandchild nodes of P, but 

it will not block T because of the order of lock acquisition as well. Thus, T cannot be 

blocked forever. Hence, a contradiction to the assumption. 

d :  T is a delete operation in its first phase. The argument is the same as in (b). 

r e: T is a delete operation in its second phase. The argument is the same as in (c). 

Lemma 5.11 A n  update operation will correctly modify the quad-R tree. 

Proof: An update operation correctly modifies the tree if the tree structure is preserved 

after the operation and it does not cause any later search operation to  visit the wrong nodes 

of the tree. 

During the first phase of an update operation, the tree is not modified at  all. When 

there is only one update operation, the modification is trivially correct. Therefore, we will 
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only need to  consider the situation where there are multiple update operations backtracking 

to perform tree reorganization. 

Let two update operations, Ul and U2 trying to  work on P as shown in Figure 5.24. Due 

to  the order of lock acquisition, U2 (Ul) will need to  wait if Ul (112) E-locks P first. Hence, 

Ul and U2 cannot modify the tree at node P at the same time. Another case is where U1 

works on P and PI while U2 works on PI. If U2 €-locks PI first, Ul will wait. When U2 

finishes, PI will either be added or deleted an entry. This does not affect the work of Ul 

because it will check if PI is still underflowed or overflowed before continuing its work (see 

procedure Qr.Clean Up and procedure Qr.Condense). If Ul E-locks PI first, U2 will need to 

wait. If PI is split into PI and P2, U2 can use the link pointer at PI to  find the correct node, 

if necessary. If Pl is removed, U2 can find the correct parent by using the head link pointer 

at the level of PI (see procedure Getparent). Therefore, in the cases above, both Ul and U2 

can proceed to modify the tree correctly. 

Lemma 5.12 In  the protocol QR, no search operation will miss an available object. 

Proof: We prove the lemma by showing that at every level, a search operation will find out 

the correct node to visit a t  the next lower level in the tree. Furthermore, in a quad-R tree, 

it is always true that the values in the nodes at the same level follow an ascending order 

from left-to-right . 
In Figure 5.24, a search operation S1 visits P. It will first acquire a p-lock on P and 

decides which node to  visit next. Let the node be PI and its entry in P is (Vl, PI). Suppose, 

there is an update operation Ul which is about to  modify PI. If S1 p-locks PI first, PI will 

not be modified and S1 can continue as intended. PI can only be modified by Ul when Ul 

has €-locked PI. If this is true, then after Ul has modified and released the lock, the new 

largest value in Pl will be V; ( 5  Vl). If Vi = Vl, then S arrives at Pl as intended. If V[ < Vl, 

then S can use the link pointer to  find the correct node whose largest value is greater than 

or equal to  V,. This is possible because a link pointer is introduced simultaneously at the 

time of splitting a node. 

Suppose Ul is to delete PI. If S1 p-locks PI before Ul, S1 will visit the node as intended. 

If Ul acquires the lock on Pl first and removes it, S1 will find PI as marked and it will 

use the head link pointer at the current level to start finding the correct node via the link 

pointers of nodes at the current level (see procedure Findchild). 
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Figure 5.24: Restructing of a subtree in a quad-R tree. 

Hence, a search operation is always able to find the correct node to visit at  each level 

of the tree. Consequently, the operation will reach the leaf nodes referencing the available 

objects. 

Theorem 5.10 The protocol QR for the quad-R tree is correct. 

Proof: From Theorem 5.9, the protocol QR is deadlock free. From Lemma 5.12 and 

Lemma 5.11, all operations traverse the tree correctly. Hence, we now show that the oper- 

ations form a serialized schedule. 

Let 7 be the completion order of the operations. If 7 has no update operation, then 7 

is trivially serializable. If I has no search operation, then 7 is also serializable according 

to the sequence of the times when the update operations accessed the leaf nodes. Note that 

individual subsearch operations belonging to  a search operation can proceed independently, 

since they are executed in parallel. Thus, a search operation (S) can have several completion 

times in 7.  

Let S1,.. . ,Sn  be the search operations and Ul,. . ., Um be update operations in 7 .  

If, in I, all search operations are completed consecutively and there is no update opera- 

tion in between two search operations, then 7 will be one of 3 possible schedules below: 

[Sl] . . . [Sn][Ul] . . . [Urn], [Ul] . - . [Urn][Sl] . . [Sn] and [UI] . . . [Ui][Sl] . . . [Sn][Ui+l] . . [Urn]. Each 

of the schedules has two or three parts. As there is only one type of operations, it can be 

serialized as discussed in the previous paragraph. Hence, 7 is serializable. Therefore, 

the interesting situation is where the completion order of the operation is mixed, such as 

[UII[S~][S~][U~] - . . [Sn][Urn-lI[Urn]. 
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Assume that I is not serializable under the protocol QR. This implies that there are at 

least two operations, S1 (a search operation) and Ul (an update operation), have an order 

as TI ([Sl][Ul][S1]) or T;! ([Ul][S1][Ul]). However, T2 cannot occur because each update 

operation can only work on a single leaf node. In the case of TI, if Ul and S1 visit no 

common leaf node, we can re-arrange TI to [Ul][Sl]. Suppose Ul and S1 visit some common 

leaf nodes. In our implementation, S1 does not release the locks on the leaf nodes until the 

end. Ul can only modify a leaf node before or after S1 has completely finished. Hence, a 

contradiction to the assumption. Therefore, 7 is serializable. 

From the discussion above, we conclude that the protocol QR is correct. 0 

Theorem 5.11 The protocol QR extended with secondary trees is correct. 

Proof: The algorithms for the operations in the secondary trees are similar to those in the 

primary tree. The only difference is that an update operation (Ul) needs to hold its lock on 

a leaf node ( P )  of a primary tree. The wx-lock is used by Ul to disallow a search operation 

(S) to work on P node and forces S to wait. After Ul has finished its first phase in the 

corresponding secondary tree, its wx-lock, which is placed on the root of the secondary 

tree, is released. As there is no change to the leaf node in the primary tree, updating in the 

primary tree is not necessary. 

In the extended tree, update operations are using the same protocol except one extra 

lock type (the wX). As wx-locks are compatible to itself, it does not create any deadlock 

between update operations. When an wx-lock is placed on a leaf node of the primary tree, 

it has a similar effect to a search operation as an €-lock. Therefore, we can use the same 

proof presented in Theorem 5.9 and there is no deadlock created. 

Algorithms developed for the primary tree are used for the secondary trees. All opera- 

tions on a secondary tree behave the same as those on the primary tree. Therefore, we can 

extend the proofs used for the primary tree to includes the secondary trees. 



Chapter 6 

Comparisons and Implement at ions 

In this chapter, we compare the different index structures which we have presented in previ- 

ous chapters. In Chapter 4, we have discussed four index structures for point data adopting 

two different concurrency control approaches. In Chapter 5, we have discussed two in- 

dex structures for rectangular data adopting 5 different concurrency control approaches. 

Amongst the index structures, the B+-tree uses no spatial relationships between data ob- 

jects. The R-tree allows bounding rectangles of nodes at the same level of the tree to 

overlap. On the other hand, in a K-D-B tree, the nodes at the same level of the tree cover 

non-overlapping regions. We have also studied some hybrid structures, such as the quad-B 

tree, which is a variant of a quadtree but allows overlapping of regions of nodes at the same 

level. Besides the spatial relationships, the selection of the concurrency control approaches 

t o  be used on an index structure affects the search performance of the index structure. Dur- 

ing our work, we realize that there is no particular index structure that performs the best in 

all circumstances. The selection of an index structure and the concurrency control approach 

depends on the distribution of the spatial data and the types of operations. In Figure 6.1, 

we summarize the characteristics of the index structures presented in the previous chapters. 

Even though we have developed different index structures for point and rectangular data, 

their principle characteristics and problems are similar. To compare them, we look into the 

following two aspects: 

0 Locking protocols. 

Storage utilization. 

For the rest of the chapter, we will investigate the behavior of the index structures according 
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R-tree 
K-D-B tree 
Quad-B tree (I) 
Quad-B tree (11) 
R-simple tree 
R-lock tree 
R-couple tree 
R-opt tree 
R-link tree 
Quad-R tree 

Data Type 

point 
point 
point 
point 
point 
rectangle 
rectangle 
rectangle 
rectangle 
rectangle 
rectangle 

Concurrency control 
approach 
lock-coupling 
lock-coupling 
lock-coupling 
lock-coupling 
link pointers 
single lock 
modify lock 
lock-coupling 
give-up 
link pointers 
link pointers 

Overlapping 

Overlap 
No-overlap 
Hybrid 
Hybrid 
Overlap 
Overlap 
Overlap 
Overlap 
Overlap 

Object 
order 
Yes 
No 
No 
Yes 
Yes 
No 
No 
No 
No 
No 
Yes 

Figure 6.1: Index structures studied in Chapter 4 and 5. 

to  the aspects above. At the end, we present the implementation results of some of the index 

structures.' 

6.1 Locking Protocols 

In total, there are 11 different combinations of the index structures and concurrency control 

approaches. To compare them, we look into the overhead due to  lock types, the number of 

locks acquired, the scope of an operation and the overtaking of operations. 

The overhead for lock management is less when there are a smaller number of lock types. 

Consequently, the performance of operations improves. With the lock-simple approach, 

there are only two types of locks: a share ( p )  lock to  support multiple search operations 

and an exclusive (E) lock to allow a single update operation at a time. The same types of 

locks are used again for the lock-modify approach in the R-lock tree and for the give-up 

approach in the R-opt tree. With the lock-coupling approach, a third lock type, the warning 

lock (w) ,  is introduced to improve the level of concurrency by allowing search operations t o  

enter the scopes of update operations. The link approach does not need the warning locks as 

operations can overtake each other. However, in the quad-B tree where a hybrid approach is 

used , link pointers are used by search operations while lock-coupling is adopted by update 

'The SR program is available by sending a message to either tyvng@cs.sfu.ca or tyvng@terryfox.ubc.ca. 
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operations. In quad-B tree, two additional types of locks (wd and X) are introduced. They 

are mainly used to avoid overtaking between search and delete operations, which may cause 

non-serializability (see Section 4.1.5). In the quad-R tree, search operations perform range 

queries rather than window queries as in other index structures. With this new approach, 

overtakings between operations are allowed. Hence the new lock types used in the quad-B 

tree are not necessary. Besides the p-lock and elock, in order to  improve the support of 

multiple update operations, we proposed a new lock type (the w x )  for the secondary trees 

associated with the quad-R tree. 

Throughout our study, we have assumed that search operations are the most frequent 

operations. When there are few or no update operations, we want the search algorithms to 

have minimal overhead. This has led us to  use a small number of locks at each step of a 

search operation. The lock-coupling approach may not be an efficient approach because at 

each step of a search operation it will hold locks on a node and all its child nodes at the 

same time. Even worse, in a quad-R tree, a given query range may span all possible values, 

which causes a search operation to  acquire locks on all the leaf nodes. With the use of link 

pointers in the quad-B tree and the range information in the R-opt tree, the trees only need 

to  acquire at most two locks at each step of a search operation. If there are only search 

operations active in the tree, the R-simple tree, which uses a single lock for each operation, 

is the best. 

In most database systems, some updating is required from time to time; otherwise, 

concurrency control algorithms are not needed. Even if update operations are infrequent, 

we do not want to  lock too many nodes when an update operation is active. During the first 

phase of an update operation, its lock acquisition behavior is similar to  a search operation. 

The index structures we studied can be divided into four different groups according to  the 

number of nodes locked during the second phase of an update operation. The best group 

consists of the index structures which adopt the lock coupling approach. At each step during 

reorganization, an update operation will lock at  most one node and all its child nodes (i.e., a 

total of 1 + M  nodes). However, in the R-tree variants, frequently there is no single deletion 

path for a delete operation. Hence, the parent pointers are used and this makes every step 

of reorganization involve a node, its child nodes and its grandchild nodes (i.e., a total of 

1 + M + M 2  nodes). In the R-link tree, because of the use of link pointers and because there 

is no ordering amongst nodes in the tree, a reorganization step can involve a sub-tree of 

more than 3 levels (> 1 + M + M~ nodes). In a K-D-B tree, many nodes (> 1 + M + M ~ )  may 
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> I + M + M ~  
1 + M + M 2  

Figure 6.2: Summary characteristics of locking protocols in the index structures ( M  is the 
maximum number of entries within a node and n  is the number of all the leaf nodes). 

need to  be locked because of forced splitting. Among all the index structures, the R-simple 

tree and the R-lock tree are the worst, since the whole tree is locked during reorganization. 

In Figure 6.2, we summarize the above discussion. 

In the previous paragraphs, we have discussed the number of locks needed at each step of 

an operation. At first glance, these numbers appear to  serve as good indicators of overhead 

in the algorithms. However, when there is a mix of search and update operations, the 

fact that search operations can be active in the scope of an update operation becomes 

an important factor. If a search operation cannot work within the scope of an update 

operation, it is blocked and has to  wait until the update operation finishes. Amongst all the 

index structures, the R-simple tree is the worst. Index structures adopting lock-coupling 

allow a search operation to enter the scope of an update operation but overtaking is not 

permitted. For the quad-B tree (11)) the R-link tree, and the quad-R tree, which use the link 

approach, a search operation can both overtake and enter the scope of an update operation. 

In Figure 6.3, we summarize the characteristics of the locking aspect of the index structures 

discussed so far. 

The link technique has been reported in [SrC91, JoS931 as having a good performance 

due to the small numbers of locked nodes at a time in B+-trees. However, when we developed 
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Figure 6.3: Summary characteristics of concurrent operations which can be active in the 
index structures. 

the R-link tree in [Ng94b], we realized the difficulties of re-arranging link pointers during 

insertion and deletion. It is difficult because there is no specific order amongst nodes at the 

same level of a tree. This is true both for rectangular data and point data. Rearrangement 

of link pointers propagates down the tree. In the R-link, during tree reorganization, a sub- 

tree is often needed to be exclusively locked. If deletions are rare, the R-link tree can be a 

good candidate as a spatial index because of its efficient search and insert algorithms. 

A further consideration is the overlapping property of a spatial index. In the R-trees, the 

MBRs of the nodes can overlap and data space is not divided into non-overlapping partitions. 

When a new spatial object is added to an R-tree, besides the changes to the MBRs in the 

tree, there is little complexity in organizing the entries in a node of the tree. In the K-D-B 

tree described in Chapter 4, when a new spatial object causes an overflow, the re-partitioning 

of the data space is often required. If it happens, each reorganization step will work on many 

nodes besides the current node and its two levels of descendants. Furthermore, the up-and- 

down splitting of nodes in the tree can occur as well. We have solved the recursive splitting 

by using forced splits, but it then causes poor storage utilization. 
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6.2 Storage Utilization 

In the previous section, we discussed the consequences in performance when different locking 

protocols are used for different index structures. As usual, there is always a trade-off in the 

design of an index structure: performance versus storage. In the following discussion, m 

(M) is the minimal (maximal) number of entries in a node of a tree. 

The B+-tree and most of the R-tree variants we discussed are always balanced and 

the number of entries in each node is in the range [m, MI. The quad-R tree is the index 

structure which is not balanced because of the associations of secondary trees at the leaf 

nodes of the primary structure. In both the primary tree and secondary trees, each node, 

except the leaf nodes in the primary tree and the roots, may have the number of entries in 

the range [m, MI. The nodes in a quad-B tree behave similarly and only the leaf nodes and 

the root will have less than m entries. The R-lock tree is another index structure whose 

leaf nodes can have their numbers of entries outside [m, MI. This is due to  the delay in 

tree reorganization. A leaf node may have overflowed or underflowed because of several 

insert or delete operations visiting the node previously. An improvement can be made by 

adjusting the size of the maintenance queue but it will cause the whole tree to  be locked 

more frequently for reorganization. In a K-D-B tree, its non-partitioning property causes 

splits to  cascade over lower levels and may create lower level nodes which are usually empty. 

There is no guarantee that each node has at least m entries. Therefore, we expect it to  have 

the worst storage utilization. 

Each concurrency control approach requires some additional data structures a t  the nodes 

of an index structure. The R-simple tree has no overhead but a lockable variable. In the 

R-lock tree, the overhead is two counters and a maintenance queue. As for the other R- 

trees, because of the backtracking due to update operations, each node needs to maintain 

the parent pointer. In the quad-B tree (11), which adopts both link technique and lock- 

coupling, a link pointer is added to each node as well. Similarly, the quad-R tree uses a link 

pointer and a parent pointer at each node. So far, these index structures have relatively 

small storage overhead when compared with the R-opt tree and R-link tree. In an R-opt 

tree, each node has a version number and a change type while each entry has the version 

number of the node it references. Furthermore, every search operation maintains a log table, 

which contains references to  nodes in the R-opt tree. The table is used to  store the range 

information which is used to facilitate the validation of the operation. Similarly to R-opt 
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Figure 6.4: Summary characteristics of storage utilization in the index structures (M is the 
maximum number and m is the minimum of entries within a node). 

tree, in an R-link tree, besides pending updates and link pointers, a log table is used to 

record all operations in order to ensure serializability discussed in Section 4.1.5. 

6.3 Implementations 

To assess the performance of the concurrency control methods described in the previous 

chapters, we have implemented some of the algorithms in SR[And82]. SR is a language 

for writing distributed programs. The main language constructs of SR are resources and 

operations. The resource is similar to the class in an object-oriented language like C++, 

which specifies available procedures, processes and shared data. Creating an instance of a 

resource is analogous to creating an object belonging to a class. SR also supports dynamic 

process creation, message passing, multicast, and semaphores. 

In our implementations, we use the client-server paradigm. The server is implemented 

as a set of multi-threaded processes to serve insert, search, and delete requests on an R-tree. 

A new process is created to provide a service whenever a request is received. Of the several 

resources in our implementation, the lock manager is implemented in the resource Lock 

which handles all lock requests. The scheduling of the processes is handled by the runtime 

library of the SR language. 
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Figure 6.5: Implementation Structure 

We tested our simulation programs on a SUN SPARC 10 Workstation with 64 Mbytes 

of main memory for rectangular data and point data. In our simulations, we generated only 

search and insert requests. The reason for this decision is because we thought deletions 

and insertions required much the same service. We were mainly interested in measuring the 

search performance under different locking methods, since, presumably, they comprise the 

majority of operations in most applications. Batches of pre-generated requests, composed of 

varying numbers of insertions and searches, were tested against trees of different sizes. For 

each batch, we calculated the average response time (atime) of all the search operations. 

Node 

6.3.1 P o i n t  Data 

queue 

We have implemented the search and insert algorithms for the B+-tree, R-tree, and 

K-D-B tree. There are four basic resources for the programs. The first basic resource we 

use is Geometr ic  which defines the data structures of a rectangle and a point and their 

associated operations. The second resource, Node, specifies the content of a node in a tree 

and the related node operations. For the three different trees, this resource uses generic 

procedures and similar data structures. This may not be efficient for a particular type of 

index structure, but it provides fair comparisons for later simulation. Lock is the third 

basic resource which represents a lock manager. The last resource, Queue, specifies linear 

lists and stacks. Based on the four resources, a Tree resource is taylor-made for each type 

of trees described before (see Figure 6.5). 

In each simulation run, initially, a tree was created with a data file containing only 
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Figure 6.6: Search performance with no insert operation. (Average search time in pseconds 
versus the number of nodes). 

insert requests. The locations of the inserted points were generated randomly within a 

2-dimensional space which measured 1000 x 1000. The search windows of the search op- 

erations were generated using a uniform distribution over the range [I, 101. The maximum 

number of entries in each node, M, was set to  5 (a relatively small number), so that there 

would be sufficient number of levels in the tree with a relatively small number of nodes that 

the memory capacity allowed. 

For each type of tree, we first generated 7 different initial trees (of sizes 30, 100, 300, 

600, 1000, 1500, and 2000), and then ran simulations with two different request batches, 

yielding 14 values of atime. The first batch consisted of 100 search operations with no insert 

operation. Each operation in the batch was submitted sequentially. As shown in Figure 

6.6, the K-D-B tree performed best and the R-tree performed better than the B+-tree. The 

second batch we tested consisted of 50 insert operations randomly interleaved with 50 search 

operations. The results shown in Figure 6.7 indicate that, among the three index structures, 

the K-D-B tree again performed best. 

Reviewing the above results, we believe that it is the non-overlapping property of the 

K-D-B which contributes to the speed of its search performance. In the K-D-B tree, a 

search operation may give rise to several sub-searches, but they search in separate regions 

of the data space. On the other hand, for the B+-tree and R-tree, we can have several 

sub-searches working in the same region. In the B+-tree, this may be due to the extra 
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Figure 6.7: Search performance with 50 insert operations. (Average search time in pseconds 
versus the number of nodes). 

space resulting from the transformation of a given search window into a one-dimensional 

range. When the range covers extra space, it requires unnecessary sub-search operations. 

For example, if a search window W is represented by the diagonally opposite corner points 

(01,Ol) and (11, l l ) ,  W covers 4 points. However, the range will have a length of 12 points 

which is 3 times the area covered by W (see Figure 4.3 in Section 4.1.1). We feel that 

we can probably improve the performance of the B+-tree by first decomposing the search 

window W into subwindows such that each subwindow maps to a contiguous range. We 

plan to investigate this possibility in future. In the R-tree, although the MBRs of its nodes 

overlap, a search operation may quit at an internal node once it realizes the search window 

no longer intersects with the node's MBR. This can be the reason why R-tree has better 

search performance than the B+-tree. 

In order to have a better understanding of the results, we have measured the storage 

utilization of the three index structures. Figure 6.8 shows the average occupancy rate in 

percentage (relative to M) of the trees. For the K-D-B trees, the utilization is mostly around 

50% and below 60%, while the other two index structures have better utilization. These 

results show the trade-off between the search performance and the required storage for the 

different index structures. In the implementation of the K-D-B tree, we have avoided the 

up-and-down updating by forced splittings. This may result in many under-utilized nodes 

and low storage utilization but it cuts down the work for the updating phases of insert 
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K-D-B t r m  : I 
Figure 6.8: Storage utilization of different index structures. (Average node size versus the 
number of nodes). 

operations. The B+-tree and R-tree have better storage utilization because they have no 

under-utilized nodes (except the roots). However, the K-D-B tree has much better search 

performance than the other two structures. Since the cost of memory and secondary storage 

is coming down quickly, the K-D-B tree can be a good candidate for window search queries. 

6.3.2 Rectangular Data 

We have implemented the search and insert algorithms for the R-simple tree, R-lock tree 

and R-couple tree. Similar to  the implementation for the point data, we have written pro- 

grams for the three locking methods using four basic resources. The first basic resource we 

use is the Rectangle which defines the data structure of a rectangle and its associated op- 

erations. The second resource, Rnode ,  specifies the content of a node in the R-tree and the 

related node operations. Lock is the third basic resource which represents a lock manager. 

The last resource, Queue, specifies linear lists and stacks. Based on the four resources, we 

implemented different R t r e e  resources for each locking method (see Figure 6.9). 

In each simulation run, initially, an R-tree was created with a data file containing only 

insert requests. The locations and sizes of the inserted rectangles were generated randomly 

within a 2-dimensional space which measured 1000 x 1000. The width and the height 

of each rectangle were generated using a uniform distribution over the range [I, 101. The 

maximum number of entries in each node, M, was set to 3, so that there would be sufficient 
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Figure 6.9: An R-tree implementation. 
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Figure 6.10: Search performance with 10% insert operations (Avg. search time in pseconds 
versus no. of nodes). 
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Figure 6.1 1: Search performance with 50% insert operations. (Avg. search time in pseconds 
versus no. of nodes). 

levels in the tree without too many nodes. In splitting a node, the linear splitting strategy 

of [Gut841 was used in all three programs. 

For each of the 7 different initial trees (of sizes 30, 100, 300, 600, 1000, 1500, 2000), 

we ran simulations with two different request batches, yielding 14 values of atime for each 

locking method. The first batch consisted of 10 insert operations and 90 search operations. 

The insert operations are randomly interleaved with the search operations. The width and 

the height of the inserted object as well as the search windows of the search operations were 

generated using a uniform distribution over the range [I ,  101. Figure 6.10 shows that the 

lock-modify method performed best and the lock-coupling method performed better than 

the lock-simple approach. The second batch we tested consisted of 50 insert operations 

and 50 search operations. The results shown in Figure 6.11 indicate that the search times 

for this batch are generally higher than those in Figure 6.10. Howover, among the three 

locking approachs, the lock-coupling method performed best instead of the 16ck-modify 

method. For both experiments, the lock-simple method performed the worst. 

The different results of the two simulations are related to the percentage of insert opera- 

tions within a batch. When there are only few insertions, there will be infrequent splitting of 

the nodes in an R-tree. Hence, with the lock-modify method, the R-tree is not always com- 

pletely locked and the overhead of the lock-coupling method becomes significant in affecting 

the search performance. On the other hand, when there are many insert operations, there 
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Figure 6.12: Search performance with an R-tree containing 1000 objects (Avg. search time 
in pseconds versus no. of nodes). 

will be many splittings and reorganizations of the R-tree. This will cause the lock-modify 

method to lock the whole tree frequently and a search operation will always be blocked by 

insert operations. In this case, the effect of the overhead of the lock-coupling method is 

relatively smaller. 

In order to verify the above explanation, we carried out the third set of simulation 

experiments. Initially, we constructed an R- tree containing 1000 objects. Five batches, 

which consisted of 10% to 50% of insertions among 100 operations, were tested. As in the 

other two sets of experiments, the width and the height of the inserted object as well as 

the search windows of the search operations were generated using a uniform distribution 

over the range [I, 101. With these experiments, we intended to find where the lock-coupling 

method has a better search performance than the lock-modify method. Figure 6.12 shows 

the results. The two curves crossed at approximately 25% of insert operations. Therefore, 

the lock-modify method appears to perform better when the percentage of insert operations 

is lower than 25%, and the lock-coupling method should be used when there are many 

(25%+) insert operations. 



Chapter 7 

Conclusion 

7.1 Summary 

This thesis extends spatial index structures to  allow concurrent operations. We have studied 

index structures for point data and rectangular data. During our work on point data, we 

are interested in investigating the different spatial properties in different index structures. 

The lock-coupling approach is adopted to all the index structures for point data. We later 

changed our focus when we studied rectangular data. We used different concurrency control 

approaches to  the same index structure (the R-tree). In addition, we developed the quad-R 

tree because it can be adopted to  the link technique effectively. The research is limited to 

2-dimensional objects, but the algorithms can be extended to  higher dimensions along the 

same principles. 

7.1.1 Point Data 

We studied four different index structures for point data, adopting the lock-coupling tech- 

nique to support concurrent operations. The B+-tree is used as a basis for comparison 

with other index structures. In this index structure, data points are transformed into scalar 

values and a window query is mapped into range queries. Depending on the transformation 

selected, the "distance" between two different point varies. We decided to  use the Gray 

code with bit-interleaving to  minimize this "distance". 

Adopting the same lock protocol, we next studied the R-tree. An R-tree tries to  orga- 

nize the spatial objects into clusters. However, because of multiple search paths, the search 



CHAPTER 7. CONCLUSION 

performance is not always satisfactory. In order to improve the search performance, we 

then studied the K-D-B tree. In the K-D-B tree, the data space is partitioned into non- 

overlapping regions, which reduces the number of unnecessary search paths. However, it 

introduces two new problems: additional storage and the up-and-down updating propaga- 

tions. 

We have implemented the three index structures mentioned above using the language 

SR. The results indicate that the K-D-B tree has a good search performance but a poor 

storage utilization. We believe that this is due to  the non-overlapping property of the 

tree. Therefore, we developed a new index structure, the quad-B tree, which has both 

overlapping (at internal nodes) and non-overlapping (at leaf nodes) properties. It is a 

variation of a quadtree where the terminal quadrants of the quadtree are referenced by 

scalar values. The quad-B tree has three distinguishing characteristics: 

The keys in the leaf nodes of the tree are scalar values. 

Internal nodes are associated with bounding rectangles. 

Bounding rectangles at the same level can overlap. 

We first adopted the lock-coupling approach to  the quad-B tree. Its implementation is 

similar to  that of an R-tree except the algorithm for a deletion is different. By exploiting 

the first characteristic given above, the nodes at  the same level can be ordered. This has 

led us to use the link technique in the quad-B tree. The performance of search operations 

is improved because of less locking overhead. 

7.1.2 Rectangular Data 

We investigated the R-tree and the quad-R tree for rectangular data. Five different concur- 

rency control approaches were adopted to  the R-tree. The R-simple tree is a simple extension 

to  the sequential access method. It uses a single lock to  lock the entire tree. When there is 

an active update operation, no other operation can access the tree. We use the tree as the 

basis for comparison with other concurrency control approaches. In the second approach, 

the whole R-tree is locked only when splitting or merging of nodes is required; otherwise, an 

operation only needs to  lock a single node at a time. The second index structure is called 

the R-lock tree. It improves the level of concurrency by allowing concurrent search and 

update operations. We further improved the R-tree to  the R-couple tree by adopting the 
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lock-coupling approach. The R-couple tree has a similar behavior to  the R-tree for point 

data. These three trees have been implemented in SR. The simulation results indicate that 

the R-couple tree has the best search performance when there are many insert operations, 

while the R-lock tree has the best search performance when there are few insertions. 

The preliminary results encouraged us to probe further for better approaches. We then 

developed the R-opt tree, adopting the give-up approach. It is the first concurrency control 

protocol we studied, that utilizes both pessimistic (locking) and optimistic (validation) 

techniques. In an R-opt tree, operations use range information in order to traverse the 

tree. They can overtake each other and the number of locks needed at each step is small. 

Besides the three operations described in Chapter 3, a maintain operation which reorganizes 

the R-opt tree has also been developed. However, the overhead in storage can be high 

and search operations may have to be restarted several times when there are many update 

operations. The fifth index structure we studied is the R-link tree. In addition to supporting 

concurrent operations, this tree supports recovery after a system failure. It adopts the link 

technique and uses pending updates and parent pointers. In the R-link tree, search and 

insert operations lock only a small number of nodes at each step. However, reorganizing the 

tree is complex and exclusive locks need to be placed on many nodes. 

Using the same idea as in the quad-B tree, we have developed the quad-R tree as 

the last index structure for rectangular data. For this tree, we used a different method 

to  perform search operations. As in the BS-tree, a search window is mapped into query 

ranges. We suggested to  associate a quad-R tree with secondary data structures for better 

data organization. 

7.2 Future Work 

A good index structure for spatial data is an integral part of a non-traditional database 

system. Furthermore, a good index structure should not be limited to supporting sequen- 

tial accesses, but be able to serve multiple requests at the same time. In the last several 

years, there has been more and more interest in developing index structures for supporting 

concurrent access to  spatial data [KaF92, ZhD941. 

Another important aspect of a spatial database system is recovery after system fail- 

ures. When a spatial database system crashes due to  hardware and/or software failures, 
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an efficient recovery scheme is needed. The research results about recovery in the tradi- 

tional database systems may not be directly applicable to a spatial database system due to 

geometrical relationships among the data. 

In this thesis, we have only discussed point and rectangular data. There are other spatial 

data objects. Moreover, besides the topology of the spatial data, spatial objects may have 

their own semantic relationships. A spatial index structure that embeds the data semantics 

as well as supports concurrent access is an interesting research topic in future. 

7.2.1 Concurrency Control 

Search operations in a spatial database system, such as containment and intersection queries, 

can use a search window on an index structure to obtain the desired results. The search 

window query is analogous to the range query to a B+-tree which stores only scalar values. 

In both cases, serializability is often required (see Section 4.1.5 and [GrR92]). Moreover, for 

spatial data, because it is difficult to have any order among them, an operation may visit 

leaf nodes in different parts of an index structure. This has limited the direct application 

of the methods of the B+-tree to an index structure for spatial data. 

In the thesis, we have used two methods to solve the problem. The first method is to 

avoid overtaking among operations, but it forces a younger operation not to access any node 

before an older operation. Hence, the level of concurrency is low. The second method allows 

overtaking but operations may need to be re-started and there is storage overhead. It will 

be a challenge to develop a method to resolve all these difficulties. 

7.2.2 Recovery 

A database system is of little value when recovery of the database is not possible. We have 

studied the recovery issue in the R-link tree. The tree can be in an incomplete state but still 

provide correct information. It uses the link pointers to provide alternative routes for tree 

traversals and atomic actions to reorganize the tree to a complete state slowly. However, 

because there is no order among the nodes in the tree, it is costly to reorganize it. More 

work is needed to search for a better method of recovery for a spatial database system. 
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7.2.3 Other Spatial Data 

In [SamSO], Samet describes six different types of spatial data, namely points, lines, rectan- 

gles, regions, surfaces, and volumes. This thesis is focused on the point data and rectangular 

data. Each type of spatial data has its own characteristics and properties. For example, 

a line segment can be represented by a bounding rectangle of a node in an R-tree or by a 

number of smaller line segments stored at the terminal quadrants of a quadtree. The choice 

of a particular representation and the adoption of a concurrency control approach will result 

in different algorithms. Further work is needed to  extend our algorithms or to develop new 

algorithms for other spatial data. 

In a spatial database, a spatial object is frequently a part of another spatial object. 

Furthermore, there can be several layers of information representing different types of spatial 

objects. For example, a city block consists of many building lots. When one of the lots is 

modified, the boundary and/or the size of the city block may be affected. Suppose an R-tree 

is used for all city blocks in the city and another R-tree for the lots. Then, there is a problem 

of synchronizing the operations performed on the two trees. If one R-tree is used for both 

the city blocks and building lots, it may be inefficient when a user is working with city blocks 

only. Using the quad-R tree, we attempted to  solve the problem by partitioning the data 

space into quadrants and putting them in the leaf nodes. Each quadrant can be used for a 

particular layer of information. The associated secondary tree of the quadrant can then be 

used to store the objects in the layer. However, in the quad-R tree, the partitioning is static 

and the concurrency control protocol does not utilize any semantic information about the 

data. It will be a future challenge to  investigate an index structure which allows dynamic 

partitioning of the data space and accommodates data semantics in its structure. 
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