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Abstract

An ideal fibre-reinforced material is defined tc be one which is incompressible in bulk
and inextensible in one or more directions at each point. This idealization of real
materials provides an adequate model for those composites in which fibres, having a
much higher extensional modulus, are bonded to or embedded in a more compliant
matrix host. Materials possessing such properties cannot be deformed in a completely
arbitrary manner. Every deformation to which they are subjected is restricted by the
conditions of inextensibility in the fibre direction and material incompressibility. The
objective of this thesis is to present a continuum theory describing these deformations.

Kinematic equations suitable for describing the motion of particles in a general
fibre-reinforced body are obtained and subsequently modified to reflect the idealized
constraint conditions. These equations must be satisfied by every admissible deforma-
tion. The Cauchy stress components as well as the equations of equilibrium are given
in a form appropriate for an idealized solid. The material response to any deformation
is assumed to be perfectly elastic. That is, a strain-energy function W, is assumed
to exist and is found to be a function of three invariants of Finger’s tensor and the
fibre-direction tensor. Examples of simple deformations such as uniform extension

and shearing of a fibre-reinforced cuboid are presented.

i
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Chapter 1
Introduction

A fibre-reinforced composite material is one which consists of high modulus fibres
embedded in or bonded to a more compliant matrix material. In the composite both
fibre and matrix retain their individual mechanical properties while the composite is
endowed with properties which cannot be attained by either material acting alone.
In general, composites are designed such that the fibre component carries the highest
proportion of the lcad. The matrix serves to maintain the position and orientation of
the fibres but also functions as medium through which the load is transferred. The
purpose of this thesis is to describe and investigate a continuum theory appropriate
to model the mechanical behaviour of these materials.

The study of fibre-reinforced materials is less than four decades old. However,
materials such as fibreglass and reinforced concrete have been in use for a consider-
ably longer time. Recent advances in science and technology have made possible the
ability to manufacture high strength fibres and thus produce materials with desirable
mechanical properties. Currently, fibre composites are used in a great many industrial
and commercial applications. Table 1.1 is just a brief list indicating their use in such
products as aircrafts, automobiles, sporting goods and boating equipment.

Typically, the most important feature one strives for in the design of composites
materials is a high modulus to weight ratio. Taole 1.2 compares the properties of some
metallic materials with those of some modern fibre reinforced composites. Clearly,

there is a potential to exploit the unique mechanical and physical characteristics which
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Table 1.1: A sample of products currently manufactured with composite

materials.
Application® Component
Aircraft Wing skins, fuselage, ailerons, rudder.
Automobile Hood and door panels, radiator supports,

bumper reinforcement beams,

Leaf springs, drive shaft, wheels.

Sporting Goods | Tennis rackets, fishing rods, kayaks,

bicycle frames, helmets, athletics shoe soles.
Marine Boat hulls, decks, bulkheads, frames, masts, spars.

9Ref. [1] pp.6-11.

these materials possess. However, in order to fully realize the benefits these materials
have to offer, it is necessary to develop appropriate methods to study their mechanical

behaviour.

Table 1.2: Tensile Properties of Some Metallic and Structural Composite Materials.
Specific  Modulus,  Ratio of Modulus

Material® gravity GPa (10° psi) to weight, 106 m
SAE 1010 steel 7.87 207 2.68
AL 6061-T6 aluminum alloy  2.70 68.9 2.60
Ti-6A1-4V titanium alloy 4.43 110 2.53
INCO 718 nickel alloy 8.2 207 2.57
Carbon fibre-epoxy 1.63 215 13.44
E—glass fibre-epoxy 1.85 39.3 2.16
Kevlar 49 fibre-epoxy 1.38 75.8 5.60
Boron fibre-6061 Al alloy 2.35 220 9.54

2The modulus for the composite materials is measured in the fibre direction.
*Ref. (1] pp.3-4.

There are, essentially, three distinct classes of theoretical problems in the study
fibre cecmposites. One class is concerned mainly with the mechanical interactions
between the individual components. The area of interest is the region at or near
the fibre-matrix interface. These problems are great importance in the design and

manufacture of composite materials as well as in the study of their failure mechanisms.



In most applications, the load is applied only to the matrix. In order for the composite
to perform effectively, the load must be transmitted through the matrix to the tibres
by adhesion or friction at the interface. This gives rise to complex stress an strain
distributions in both the fibre and matrix. Recently there has been interest in the
study of fibre-bridged cracking in composites. A representative sample of current
work in this area can be found in papers by Chiang et al. [2], Neumeister {3] and
Bao and Song [4]. The theories under investigation by these, and other authors, seek
to predict cracking failure in fibre-composites based on models of debonding and
frictional sliding which occur during crack extension.

Another area of study concerns the relation of the properties of the composite to
the individual properties of the fibre and the matrix. The predominant problem in
this field, when studying elastic materials, is to obtain an expression for the effective
or overall elastic moduli of a composite in terms -f the moduli of the constituent ma-
terials. Among the first to study this problem were Hill [5, 6, 7], Hashin and Rosen [8]
and Hashin [9]. Their accounts contain bounds and also some exact results for the
overall elastic moduli of fibre composites with isotropic and transversely isotropic
phases. These early results apply mainly to materials in which the fibres can be as-
sumed to be long, continuous and perfectly aligned cylinders. Subsequent research
has focused on strengthening these bounds for particular materials as well as general-
izing the theory to more complicated material geometries. As an example, in a recent
paper, Zhao and Weng [10] obtain expressions for the elastic moduli of a transversely
isotropic composite reinforced with two-dimensional randomly-oriented elliptic cylin-
ders. Other recent advances include the development of a three-dimensional elastic
constitutive theory for application to fibre composite laminated media, (Christensen
and Zywicz [11]). Shield and Costello [12] describe a model for a wire rope reinforced
rubber composite plate. In this case the extension-twisting coupling of the reinforcing

~ord is not neglected in the formulation of the constitutive relation.
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Continuum Model

The approach taken in this thesis is one in which attention is focussed mainly on
the overall mechanical behaviour of the composite. The behaviour of the constituent
components and their interactions are for the most part ignored. The model is strictly
a continuum model; as such, no distinction is made between the particles of the fibres
and those of the matrix. The main objective is to formulate equations which describe
the most important features on the macroscopic scale.

The theory discussed in this thesis is tailored specifically for those materials in
which the fibre is, in some way, much stronger than the matrix. Table (1.3) lists
some of the more common components used in the manufacture of fibre composites.
It can be seen that it is not uncommon for the fibre to have a modulus two orders
of magnitude greater than that of the matrix material. We idealize this property by
making the assumption that the composite is inextensible in the fibre direction. That
is, the fibre does not change length in any deformation. Also, as is frequently done in
solid mechanics, we will assume that the composite is incompressible. This is a good
approximation for many materials but may only be valid when large deformations
are considered. However, this idealization greatly simplifies some of the mathemat-
ical formulae and so may allow greater progress to be made. Also, since these two
assumption are quite idealized, we refer to those materials for which the above two
assumptions remain valid as idealized solids.

A continuum theory describing fibre-reinforced materials has been developed in
a series of papers by Adkins and Rivlin {13] and Adkins {14, 15, 16]. Their work is
concerned mainly with large elastic deformations of materials reinforced with inex-
tensible cords. The basic theory for elastic materials is summarized in the book by
Green and Adkins [17). Mulhern, Rogers and Spencer [18] have proposed a continuum
model for the behavior of reinforced plastic materials. This model was subsequently
extended by the same authors to treat plastic-elastic materials reinforced by strong

elastic fibres [19]. Pipkin and Rogers [20] were the first to discover that for certain
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Table 1.3: Tensile moduli of some commercial
reinforcing fibres and matrix materials.
Tensile Modulus,

Component® GPa (10° psi)
Fibres
E-Glass 72
SAE 1010 steel 207
Kevlar 49 (DuPont) 131
SiC 400
Carbon
GY-70 (BASF) 483
P-100 (Amoco) 758
Matrix
Rubber 0.0005
Epoxy Resins
Epon HPT 1072, 3.3
(Shell Chemical)
Tactix 742, 3.0

(DOW Chemical)

Thermoplastic Resins
Avimid (DuPont) 3.8
Udel (Amoco) 2.5

aRef. [1], pp.3,18-19,54 ~iud 65.

types of deformations® the constrain's imposed by incompressibility and fibre inex-
tensibility are sufficient to determine a given deformation. That is, without providing
a constitutive relation. In this case, the nature of the stress response need only be
specified when one wishes to compute the surface tractions required to maintain a
given deformation.

The book by Spencer [21] gives a thorough treatment of the subject, more general
in nature than the previously cited works. A gcneral account of the kinematic con-
straint conditions and the state of stress in idealized fibre-reinforced solids is given.
As well, two chapters are dedicated to the discussion of elstic and plastic stress re-

sponse. It is for this reason that we follow the development of the theory in the same

1Plane and homogeneous deformations are two examples.
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spirit as found in Spencer’s book.

Outline

A material which is incompressible and reinforced by inextensible fibres cannot be
deformed in a completely arbitrary manner. These general properties of fibre com-
posites are constraints that place limits upon the possible motions which a body may
undergo. In Chapter 2 explicit mathematical relations are obtained which must be
satisfied in every deformation. The state of stress associated with a reinforced ma-
terial is discussed in Chapter 3. Here it will be found that the ability to determine
the stress by way of the equations of equilibrium or motion is dictated by the number
of distinct families of fibres present in the body. In order to completely determine
the state of stress in a deformed medium it is usually necessary to specify a constitu-
tive relation. In Chapter 4 we will consider the form of the constitutive relation for
an elastic fibre-reinforced material. A strain—energy function W, of the deformation
gradient and fibre direction is assumed to exist. It is shown that, in general, W can
be expressed as a function of certain invariants of the quantities employed to describe
the deformation. Further, it is found that each of the kinematic constraint conditions
reduces, by one, the number of invariants upon which W depends. In the final chapter

we illustrate the idealized theory by considering some example problems.



Chapter 2
Kinematics

In this chapter equations describing the motion of particles in a body are presented.
We begin with a brief description and mathematical definition of a deformation. In
§2.1 the presence of the fibres in a body are introduced by assuming that the fibre
direction at each point can be described by a unit vector field. Other useful defi-
nitions, such as the measure of fibre density at each point and the fibre extension
ratio are also introduced. The main purpose of this chapter is obtain relationships
between the kinematic variables before and during a deformation as well as the time
rate of change of these variables. At this point no specific material response to a
deformation is imposed. As such, a more general account is given without explicit
reference to elastic materials. In §2.2 the form of the kinematic equations are ob-
tained for ideal fibre-reinforced materials. That is, constraints of fibre-inextensibility
and incompressibility are imposed on the general kinematic equations. The simplified

relations so obtained are conditions which every admissible deformation must satisfy.

Definition of Deformation

A body B is defined to be a compact, regular region in R3. A point p € B is called
a particle or material point. We suppose that at a fixed reference time ¢t = ¢y, B
occupies a fixed region of space Dy and that at some subsequent time ¢, it occupies a

new continuous region D, Fig. 2.1. A deformation (of B) is a continuous, one-to-one
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mapping from Dy into D.

Figure 2.1: General deformation of a body.

Let a fixed rectangular cartesian coordinate system OX,X;X3; be chosen. We
shall use X = (X, X2, X3) as the label for the place occupied by a material point p
at time t =ty. The configuration of the particles in B at t =1, is called the reference
configuration. The vector x=(z;,z;,z3) will be used to label the place occupied by
p at time ¢. The configuration at time ¢ is called the current configuration. If the
motion of B is measured in the reference configuration then X serves to identify p for
all subsequent times. That is, we assume that every particle is uniquely labeled by
its position at t =t,.

We describe the motion of B by the dependence of the positions x, of the particles
of B at time ¢, on their positions X in the reference configuration. The motion is

written symbolically as

z; = 2(Xa, t) (,a=1,2,3). (2.1)
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In what follows, unless the contrary is stated, it is assumed that subscripts take the
values 1, 2,3 and that summation over repeated indices is understood. Also, when no
confusion is likely to arise, the argument ¢ will be omitted. Thus, for example, the
velocity components

0z;(Xa,t)

'U:'(Xont) = Ta c oot

of a particle will be denoted by v;.
If equations (2.1) are to define a deformation they must be invertible. This con-
dition is met if the Jaccbian of the transformation is non-zero. That is,

Ba:,-
0Xa

0 (.‘B], Zq, :1:3) —
0 (XI)X2v XS) -

£ 0. (2.2)

Since we wish to study deformations it will always be assumed that (2.2) is satisfied

for all time.

2.1 General Kinematics

We consider the kinematics of materials in which a matriz or host material is reinforced
by one or more families of strong fibres. The continuum theory is formulated by
making the idealization that for a given family of fibres, a member of the family
passes through every particle of the material. Since the fibres have a direction at
each point, a family of fibres can be characterized by a field of unit vectors. The fibre
direction at any material point p in the reference configuration will be referred to by
a unit vector A(X,). In the continuum theory we assume that if a particle initially
lies on a given fibre then it will remain on that fibre throughout a deformation. Thus,

if a fibre through p at time ¢ has the direction of the unit vector a(X,,?), then
a(Xa,to) = A(Xa). (2.3)

The cartesian components of A(X,) and a(X,,t) will be denoted A, and a; respec-
tively.
In general, a body may be reinforced by any number of families of fibres. However,

to develop the kinematic equations it is sufficient to consider a body reinforced by
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a single family of fibres. The extension to the general case is discussed at the end

of §2.2.

Fibre Extension Ratio

Consider a line element through p which has the same direction as a fibre through p
and in the reference configuration has length 8 L. During a deformation the particle
at X, moves to z;(X,) while the particle at X, + A,6L moves to the z;(X, + A,6L).
However, the coordinates of the latter point are also given by z;(X,) + a;6] where 6l
is the length of the line element after the deformation. Expanding z;(X, + A,éL) in

a Taylor series about X, we obtain

Oz; 2
a;6l = X, ——A.b6L + O(8L) (2.4)
so that, in the limit 6L — 0 dl 5
Iy
G{B—Z = a—/YaAa. (25)
We denote the fibre extension ratio di/dL by A. Then, since ¢; is a unit vector, we
have Bz
M= LT A A 2.6
0X,0X; (26)
Further, from (2.5)
0z;
= )-1.9% _
a; =\ X, (2.7)

We see from (2.6) that A? is just the normal component of the Lagrangian strain

associated with the direction A.

Using the above results an expression for the time rate of change of the fibre

extension ratio A, can be found. By (2.6) we have that

dAZ al‘; azl
dt (ax ax;, A")
av, oz; oz; Ov;
T 8X,0X; Aafds + 5% axﬂA afs.
Substitution from (2.7) gives
2
d = @I\ — Ov; Ay + @il —r— Ovi Ap.

dt X, 90X



Upon changing repeated indices and using the chain rule we have

d\? Ov;
@ = 2etgxAe

_ 6v. a:tk
= 2¢a AazkaX A

Thus,

Differentiating (2.7) an expression for @; can be obtained. We have,

. - Oz

“ = @ (’\ 09X, A)

1 0vi _’\__‘Z’_'_
X, © )2 0X,

- Bv.- a:l:k /\ 8:c.~

PR A N 1Y
Orr 0X, A A20X, A

Substituting from (2.7) and (2.8) gives,

il

A

Ao

('l,' = ak; - (a,-/\)

Therefore,
& = (8;j — aia;) ap=—2. (2.9)
Continuity Condition

An important kinematic relation in the continuum theory is the continuity equation.

This equation describes the behaviour of the mass density during a deformation. We
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denote the mass density at the material point p at time t by p = p(z;,t). Also, define

po by
p(.’l:,', to) = pO(Xa)'

Now, consider the mass m, occupying an arbitrary volume V at time t. We have

mz/vp(x,-,t)dV

The law of conservation of mass requires

dm d _ dp Jv; _
dt  dt [/ plait )dv] —/ [dt +p8:r,] v =0

Therefore, the continuity equation in the Eulerian form is

b+ pgv’ 0, (2.10)
where 5 5

_9r 9r

- Bt + vka:rk

is the material or convective derivative of p.
The continuity equation may also be expressed in the Lagrangian form. Let the
particles which occupied the volume V, at time t =1y, occupy the volume V at time

t. Then the law of conservation of mass requires

8:1:,

[ mdvo= [pav = [ o725 v
The result,
8::;
Po=p aXa (2'11)

is the material form of the continuity equation.

Fibre Density

We introduce a scalar quantity, denoted X(X,) in the undeformed body and o(X,,?)
in the deformed body, which is a measure of the density of fibres at the particle p. We
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can view o(Xa,,t) as the number of physical fibres per unit area intersecting a surface

normal to the vector a at the particle p. Clearly,
E(X,) = 0(Xa, to).

A relationship between ¥ and o can be determined by the following construction.
Consider three non-collinear particles with coordinates given by X,, X, +dX{"), and
X, 4+ dX? in the reference configuration. The coordinates of the three particles in
the deformed body are z;, z; + da:(l) and z; + dzsz) respectively. Let dS be the area
of the triangle formed by the three points initially, and ds be the corresponding area
after deformation. We denote the components of the unit normal to dS and ds by N,

and n; respectively. Then

613.'

dz!) = 5% (v=1,2) (2.12)
N,dS = %eamdxg”dxy), (2.13)
and nds = %e,,kd:v( )da:(2) (2.14)

Substituting for d:vJ(»l) and dz'? in (2.14) from (2.12) we have

1  Oz; Oz

l
25X, 5K, ——dXPdx?, (2.15)

n.'ds

Multiplying both sides of (2.15) by dz;/0X, gives

ﬁ:fi ds 1(5 O0z; O0z; Oz
ax, 2% 85X, 0X, X,

dxMax?.

However,

¢ al’, al’l al'k = ¢ 6(1'1,1'2,1'3)
K 9X,0X,0X, P8 (X1, X2, Xs)

Thus, using (2.13) and (2.16), we obtain the result,?

(2.16)

Oz; 0(z1, 2, 3)
n;ds =

O%i | ds = N, dS. 2.17
X, "% = 30X, Xy, Xo) (2.17)

2Spencer [21, p. 119] refers to this as Nanson’s reiation.
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Now, let dA be the area of the projection of dS onto the plane normal to A and
let da be similarly defines with respect to the area of the projection of ds onto the
plane normal to a. That is,

dA = N, A.dS (2.18)

and

da = n;uds (2.19)
Since dS and ds are composed of the same particles, the surface elements dS, ds, dA,

and da all intersect the same set of fibres. Consequently, a necessary condition for a

consistent definition of the fibre density is that

LdA = oda. (2.20)

Substituting for dA and da from (2.18) and (2.19) gives
N,AXdS = n;a;0ds. (2.21)

Then from (2.5), (2.10), (2.17), and (2.21) we find
=Ly (2.22)
Po
Now, by differentiating (2.22) and using (2.8) and (2.11) the time rate of change of o
can be found. We have,

¢ = A2 +als
Po Po

ov; p /\E 0v;
= e a’@x T+ fo (—pg) ’
J t

which simplifies to
dv; Ov;

g = (a a;—— 9z, 33,,) /\pofl

av
= Uy T ! E
(a aJ J) a J PU

Upon using (2.22) we see that o satisfies

& — o (aia; — 6;;) %’% = 0. (2.23)
F)
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2.2 The Idealized Solid

We now consider the form of the kinematic equations when applied to an idealized
solid. The assumption of fibre inextensibility results in the condition that during any
deformation there is no extension of the material along a fibre direction. In terms of
the defined quantities this implies 6L = 6l or A = 1. If the material is assumed to
be incompressible in bulk then the density function must satisfy p(X,,t) = po(Xa).
Applying these conditions to the general kinematic equations we obtain relations for
incompressible and inextensible materials.
Equations (2.5) and (2.6) become

8::.-
a; = B_X;Aa (224)
and bz.
Ty 0T 1
X, 8X5A°Aﬁ =1 (2.25)
respectively. The continuity condition, (2.10) and (2.11), implies
8v.~
=0 2.
o7, (2.26)
and 3
h
ax.| = 1. (2.27)

The remaining kinematic equations, (2.8), (2.9), (2.22) and (2.23), take the form

a,—ak%: =0, (2.28)
d; = a,,g—;’t, (2.29)
oc=%, (2.30)
& =0, (2.31)

respectively.

The above equations are kinematic censtraints imposed upon all deformations of
an incompressible body reinforced by a single family of inextensible fibres. That is
to say, a given deformation of the body is possible only if it satisfies these constraint

equations.
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It is clear that a reinforcement by more than one family cf fibres will, in general,
be more restricting than a reinforcement by a single family. It is not difficult to extend
the constraint conditions to this case. If there are, say, V fibre directions associated
with each particle p then, for example, equation (2.24) becomes

Jz;
" = a—;aAg'), foreach y =1,..., N.

However, the kinematic equations are not all independent (i.e. equations (2.25) and
(2.28) are both statements of fibre inextensibility). Therefore, each additional fi-
bre does not impose as many constraints as the four equations, (2.24), (2.25), (2.28)
and (2.29) independently, seem to imply. As an exampie, in the case of elastic defor-
mations studied in Chapter 4, only the initial and final configurations of the body are
of interest. It will be seen that each family of fibres imposes only one constraint on a
given deformation.
One further result may be obtained from the kinematic constraint equations. First
consider equation (2.16) which, for an incompressible solid, becomes
i O0z; Oz; Oz .
X, 0X50X, T

(2.32)

Differentiating (2.32) with respect to X, we have

€ 621:.‘ 6:::,- a.’tk + 621:5 6:::,- 6mk + 62.’Ek 61.- 61:_,' _ 0
¥ \8X,0X,0X,0X,  0X,0X;0X.0X, ' 0X,0X,0X,0Xs)

Multiplying this result by

0X,0Xp0X,
83:1 63:2 6213
we obtain
Pz; 0X Pz; 09X Pap 09X,
Y ; =626 : 2646 . 26652 ) = 0.
h (ax,,axa 52, 00 5% 5y 2100 T 3X5%; 5 20| =0

Summing over z, 7 and k gives

8%z, 0X, 4 0%z, 0Xj d*zs 0X, 0
0X,0X, 0z, 0X,0Xp 0z, = 0X,0X, 8zs
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or

822,' 6X-y =0
6X,,6X., 6:::,— -
which is the same as |
9 (B=) _, 2.33
6z,~ 6X,, - ( ) )
Now consider the divergence of a. From (2.24) we see that
da; 0 ( Oz A A\ A 0 ( Ox; + O0z; 0Aq
0z; Oz; \0X, a} T Y0, \0X, 0X, Oz;
_ A 6 a:l:,' + 5Ao,
- °'6:c.- 8Xa 8Xo,'
Upon using (2.33) we find
6a.— 6Ao,
'a—xi = EZ. (2.34)

That is, the divergence of the the vector a is constant during a deformation of an
idealized solid. This result is due to Pipkin and Rogers [20].



Chapter 3

Stress

In this chapter we turn to the discussion of the state of stress associated with con-
strained materials. In particular, we focus here on stress in incompressible, fibre-
reinforced materials. One consequence of introducing constraints into a body is that,
in general, the stress field is not completely determinable. The stress in a material
subject to constraints is determined only to within an arbitrary stress that does no
work in any motion satisfying the constraints.! For example, it is well known that the
state of stress associated with an incompressible body is determined by the deforma-
tion only to within an arbitrary hydrostatic pressure. Similarly, the constraint of fibre
inextensibility introduces an arbitrary uniaxial tension in the fibre direction. These
undetermined stresses are available to be chosen such that the equations of motion,
or equilibrium, and boundary conditions are satisfied.

Without specifying any particular form for the constitutive equation we hypothe-
size that the total stress ¢;; may be written as the sum of two parts. One part, referred
to as the reaction stress and denoted by r;, is the reaction to the constraints. That
part of ¢;; not due to constraints will be referred to as the eztra-stress and denoted
by s;;. Mathematically,

ti; = rij + 8i;. (3.1)

"Truesdell and Noll (22, p. 70] present this statement in the form of a general principle.

18



The form of r;; for an idealized solid reinforced by one family of fibres is
Ty = -—p6.~,~ + Ta;aj (32)

where p is a hydrostatic pressure and T is a uniaxial tension in the fibre direction.

The total stress in this case is then

tij = —pbi; + Taia; + s;j. (3.3)
Without loss of generality we may assume that

8;i; =0 and aa;3;; =0 (3.4)

since these entities may be absorbed into the arbitrary functions p and T. This mod-
ification leaves four independent components of s;; which are to be determined by
constitutive equations.

In subsequent sections the discussion will be mainly concerned with problems in-
volving bodies reinforced by either one or two families of fibres. However, for materials

reinforced by N families of fibres ¢;; can be written in the form

N
ti; = —pbi; + Z T(,,)as")ag-”) + 84;. (3.5)

y=1

As in the case of reinforcement by a single fibre family we assume
84 = 0 (36)

and
aS’Y)a;’Y)Sij =0 fory=1,..,N (Nosumon~.) (3.7)

From the N conditions in (3.7) we may surmise that each family of fibres in a body
reduces, by one, the number of independent extra-stress components to be determined
from a constitutive relation. In essence, introducing constraints into a body increases
the importance of the kinematics of the deformation while decreasing the importance
of the particular mechanical behaviour of the material. In the extreme case, that

being a rigid body, the stress is completely indeterminate.
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Equations of Equilibrium

In Chapter 2 conditions to be satisfied by every kinematically admissible deformation
have been given. However, every deformation must also satisfy the equations of motion
or equilibrium. We consider here only problems of equilibrium in the absence of body
forces. In this case the equations of equilibrium are

Bt.-,-

5z = O (3.8)

Using t;; given by (3.5) we see that for a material reinforced by N fibres (3.8) becomes

Op = | 0 (T 9 | 8a”\] | ds;
i MM L 7O [ ) 1 =0. .
Oz; t2 [a, % Oz; + % Oz; 4 Oz; + Oz; 0 (3:9)

A deformation for which the three equations (3.9) can be satisfied by an appropri-
ate choice of the N +1 functions p and T is referred to as a statically admissible
deformation.

With regard to the number of families of fibres present in a body, three cases are
of particular interest. If N =1 then (3.9) are three equations for the two functions p
and T which, in general, will not have a solution. That is, in this case an arbitrary
kinematically admissible deformation will not be statically admissible. The equations
of equilibrium then serve to place further restrictions on the deformation. When
N =2 (3.9) are three equations to be satisfied by the three function p, T and T®.
In this case, any kinematically admissible deformation is also statically admissible.
Further, for a given deformation the s;; are assumed to be known. Therefore, the
deformation is statically admissible without regard to the form of the constitutive
equation. When N > 2 the total stress involves more than three arbitrary functions.
Therefore, the equations of equilibrium can be satisfied in an infinite number of ways
and the stress is statically indeterminate.

The equations of equilibrium for an idealized material reinforced by two families
of fibres take the form

) TV da'V daV
— g+ aPa S O (W g G020
2 2

oz; Y Og;
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(2) F) %)) 9 (2) Os:.
(2),(2 97 7@ [ %% (294, S
+a;"a; 3z, + a; oz, + a; oz, + Bz, 0. (3.10)

Although the three functions p, T®") and T? must be chosen to satisfy (3.10) we also
require some flexibility in satisfying stress boundary conditions in a given problem.
However, the homogeneous equations obtained from (3.10) by setting s;; = 0 will have

non-trivial solutions which can be superimposed on any solution of (3.10).

Integrals of a Deformation

A general result may be obtained by resolving the equations of equilibrium in the

fibre direction. Multiplying (3.9) by a; and noting that a;a; = 1 we have

ap 6T Ba,- 63.','
~Sigy T e Y e, T e,
But,
A
'6::.— - 61,,’
where -5% is the derivative along the fibre direction. Thus, we have
d(-p+T) Ba,- 0s;;
ol, +T3:r,' "~ 9z;
However, recall from Equation (2.34) that
9a; _ 04
0z; 0Xa
so that if the fibres are initially parallel straight lines,
0A,
X, = 0.

In such a case the equilibrium equations reduces to

-p+T) 0si
61,, - a.’l!j

which can be integrated along the fibre direction to obtain —p+ T If the deformation
is such that the s;; are constants then the quantity —p + T is an integral of the

deformation.



Chapter 4

Elastic Solids

In Chapter 3 it was found that the kinematic equations are not sufficient to completely
determine the state of stress in a deformed body. In order to find the extra-stress
components it is necessary to specify the material response to a deformation. In this
chapter we consider the constitutive equation for elastic solids, in which case the stress

components are derived from a strain—energy function.

4.1 One Family of Fibres

Consider the case of an elastic material reinforced by one family of fibres. As is stan-
dard in classical elasticity theory, we assume the existence of a strain-energy function
W, per unit volume which is a function of the deformation gradients. Following the
formulation described by Spencer {21}, we suppose that the effect of the fibres can be
introduced by letting W depend also on the initial fibre direction. In the case of a

single family of fibres we have,

61‘,'
W=W (a—)z,A,,) .

Now, W must be form invariant under rigid rotation of the deformed body. That is,

an arbitrary transformation of the form
I:‘ = /\,'_,'I_,’, (4.1)

22
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where
A;kAjk = Ak,’Akj = 6,‘1', and det [A.'j] = 1. (42)

Thus we require

oz; Oz;
12% (BXG,AQ,) =W (R,AQ) (4.3)
for any \;; satisfying (4.1). One further point to note is that the sense of A is

unimportant. Thus it follows' from (4.3) that the functional dependence of W can

be written in the form

W =W (Gag, AaAp) (4.4)
where Bz:
Ty T
Gap = b—zm (4.5)

If we further assume that the only anisotropic properties of the composite body are
due to the presence of the fibres then W is invariant under a rigid rotation of the

undeformed body. That is, W is invariant under the transformation X — X' where
X;r = AaBXB (46)

and the A,p satisfy the same conditions as in (4.2). The transformations of A, and
Gap are written as
A:: = AapAp (4.7)

and
' 6a:.~ Ba:,-
°f T 9X: 06X},
respectively. It then follows from (4.4), (4.7) and (4.8) that W satisfies

(4.8)

W (Gag, Aafg) = W (Glp, ALAY) . (4.9)

Using results from the theory of algebraic invariants?, it is pcssible to express W as

function of the ten invariants:

tr(G), tr(G?), tr(G?), tr(AA), tr {(AA)?}, tr {(AA)*},
tr{(AA)G}, tr {(AA)G?}, tr {(AA)’G}, tr {(AA)*G?},  (4.10)

'See Thm. 1, Green and Adkins [17, p. 7).
2Spencer gives a full account of the theory of invariants in [23]. Tables listing sets of invariants
are also provided.
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where G and A A are the matrices
G = [Gop], AA = [AsAg], (4.11)
and tr(G) denotes the trace of G,
tr(G) = Gaa-
However, since A is a unit vector,
tr(AA) =tr {(AA)?} = tr {(AA)*} =1,

and so a number of the invariants in (4.10) can be neglected, leaving

te(G), tr(G?), tr(G®), tr {(AA)G}, tr {(AA)G?}. (4.12)
Using the Cayley-Hamilton equation,

G? - tr(G)G? + % {tr(G)? - tr(G?)} G — det (G)T =0,

where 7T is the identity matrix, we find
1

det (G) = -;-tr(Ga) +3 {%tr(G)’ - tr(cﬂ)} tx(G).

Thus, the set of invariants in (4.12) may be replaced by the following equivalent but

more convenient set:

h=tr(G), J=1{tr(G)?-tr(G?)}, Js=tr{(AA)G?}
K, =det(G), K, =tr{(AA)G}. (4.13)

The reason that the invariants in (4.13) are more convenient than those in (4.12) can
be seen at once from the constraint conditions (2.26) and (2.25). They imply, simply,
K, = 1 and K; = 1. Therefore, W may be regarded as a function of J;, J; and J3
only.
Introducing the Finger strain tensor defined by
Oz; Oz;

9i; = 9X. 0X,’ (4.14)
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the expressions in (4.13) may be determined in terms of the deformed body. Us-
ing, (2.24), (4.5) and (4.14) the strain invariants become

Ji=tr(g), Jz2=}{tr(g)? —tr(g?)}, Js=tr{(aa)g}
K, = det(g) =1, K; = tr(aa) = 1, (4.15)
where aa is the matrix defined by
aa = [a.-a_,-] .

The stress components for an unconstrained elastic body is given in terms of the
displacement gradients by [17, p.26],

1 95 dz; (OW | oW
= VK. 0X. 0X, '

ti;
0G.s 0Gpa
The constraint conditions may be taken into account by an appropriate modification

(4.16)

of the strain—energy function. We may introduce p and T as two Lagrange multipliers
and replace W with ) )
W — é-p(Kl - 1) + ET(Kz - 1)

Then, (4.16) written out in terms of the invariants becomes,

ti; = ‘aiazj {Wl(aJl + e )+W2(6J2 + an)

0X,0Xp 0G.p 0Gpa 0G,s 0Gga
5.]3 8J3 1 aKl aKl
+Ws (aGaﬁ + aGﬁa) ~ 3P (aG,,;, + aG;,,,)
1 0K, 0K,
tal (aGa;, * aG;,,,)}’ (.17)
where oW
W.' - 51
Using (4.13), the derivatives of the invariants are found to be
0J; 0J, 0Js

‘a’G‘_a; = 60[31 aGag = Jl(saﬁ Gaﬁ) m = AaGﬂ‘YA’Y + AﬂGG‘YA’H

0K, 0K,

EG_O,; = Jaﬁaﬂ LG af + GmG‘vﬂ’ 55;; =A AB (4-18)



The terms in (4.17) may be simplified using (4.5), (4.14), and (4.15). For example,
using the fourth equation of (4.18) we have
32,' 3:cj 31\’1 _ 6:::.- 6:::,-

0X.0X50Gas ~ 0X.0Xp
= Jgg,-j —_ Jlg.-rgrj + GirGrsgs;j

= det(g)bi; = 6ij,

(J25aﬂ - JlGaﬂ + Ga‘yG‘rﬂ)

the last two equations following directly from the Cayley-Hamilton equation and the
fact that det(g) = 1. The remaining terms in (4.17) may be similarly simplified. The

details are omitted and only the final form is given here as,
tij = 2(Wh + JiWs) gij — 2Wagirgix + 2Ws (ajgikax + a;gikax) — pbi; + T'aia;. (4.19)

As was stated in Chapter 3, we find that it is not necessary to postulate the existence
of reaction stresses for an elastic material. In this case p and T occur naturally as
Lagrange multipliers in the strain-energy function. Spencer [21] has found that this
is possible because the strain-energy function is a potential function for the stress.
Further, it does not happen if the constitutive equation is such that the stress is not
derived from a potential. In the absence of a potential function the presence of the

reaction stress has to be postulated.
One further modification can be made in order to express (4.19) in the form (3.3),

that is
ti; = —pbi; + Taia; + s;j

where the extra—stress components s;; satisfy (3.4),
845 = 0 and aia;8;; = 0.

This may be done by absorbing all terms found by evaluating t;; and a;a;t;; into —p

and T respectively. To begin, let

3ij = 2(Wh + iW) gi; — 2Wagikgik + 2Wa (ajgirar + ajgikar) ,
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then
$; = 2(W + IiWe) gii — 2Wagikgix + 2Ws (aigikax + a;gixax)
= QWi +IiW) Ji =W, (J2 = 20,) +4Wads - 3p+ T (4.20)
= 2W1J1 + 4W2J2 + 4W3J3,
and

a,-a_,-é.-_,- = 2 (W] + J1W2) a;a;9i; — 2W2a.-a_,-g.-kg,-k + 2W3a,-aj (a,-g.-kak + a,'g.-kak)
= 2 (Wl + J1 Wz) J3 - 2W2a,-a_,-g.-kgjk + 4W3J3 (4.21)
2 (W;Js + Wads + 2WaJ;3 — Wg) .

To determine s;; we first notice that the components m;; defined by,
1
mi; = 5 (8; — aia;)
satisfy
a;a;m;; =0 and my; =1.
Also, the components n;; defined by
1
ni; = 5 (3aia; — &ij)
2
sa.fisfy
aia;ng; = 1 and Ny = 0.
Now, s;; may be obtained by multiplying (4.20) by m,; and (4.21) by n,; and sub-
tracting the results from 3;;. That is,
8i; = 8ij — SppMmij — apaedpgnij
= 2(W1 + IWW,) gi; — 2Wagirgir + 2Ws (a;gikak + a;gikak)

- (Wb + 2Wa Ja + 2WsJ3) (655 — aia;)
— (WhJs + Wl 4+ 2W3J3 — W) (3aia; — 6;5) -



CHAPTER 4. ELASTIC SOLIDS 28

Simplifying the right hand side we obtain,

sij = 2(Wh + iWa)gi; — 2Wagiegix + 2Ws (a;gikax + ajgicax)
— {(J1 = YW1 + (J2 + )W, } 6 (4.22)
+ {(J] — 3.]3))/‘/1 - (Jz - 3)W2 - 4J3W3} aia;. '

We note here that it is possible to obtain results due to Adkins and Rivlin [13],
Adkins [14, 15, 16] and Green and Adkins [17] regarding large elastic deformations
of constrained isotropic elastic materials. In the case of materials reinforced by a
single family of fibres, that theory is obtained if it is assumed that W depends only
on J; and J, and is independent of J3. Thus, by setting W5 = 0 wherever it appears,
the results for constrained isotropic materials can be obtained. The equation for the

stress components reduces to:
ti; = 2{(Wh + iW,)é;x — Wagjr} gix — pbi; + Ta,a;.

Spencer [21] suggests that such a theory may be appropriate in the case in which the

fibres are sparsely distributed or, equivalently, are regarded as having infinitesimal

thickness.

4.2 Two Families of Fibres

Following the same argument as in §4.1, we assume the existence of a strain-energy
function W, which depends on the deformation gradients as well as two initial fibre
directions A and B. We assume also that the angle subtended between the two fibre
families at each point in the reference configuration is 2@, where, in general ® is a

function of position. Then,
w (Gaﬂa Aaa Ba) =W ( ;ﬁaA’aa ;) ’

where
B! = AupBs.
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Taking into account the fact that A and B are unit vectors, it follows from the tables

of invariants [23] that W can be expressed as a function of

Jl, J2, J3, J4 ={r {(BB)G2} = tr{(bb)g} s
Js = tr {G(AA)(BB)} = cos (2®)tr(ab), (4.23)
Jo = tr {G?(AA)(BB)} = cos (2®)tr {(ab)g},

and cos? (2®), where the matrices ab and AB are defined by
ab = [a,-bj] and AB = [AaBﬁ]
and
cos (28) = A, B, = tr {(ab)g*} — Jitr {(ab)g} + Jatr(ab).
The last equality above follows from the Cayley-Hamilton equation. The kinematic
constraints in this case imply,
Ki=1, K;=1, K;=tr{(BB)G}=tr(bb)=1.

In the same manner as in §4.1 the stress components are found to be,

ti; = 2(Wi + iWa) gi; — 2Wagikgix + 2Ws (a;gikak + a;jgicax)
+ 2Ws (bjgirbk + b;gikbi) + Wi cos (20) (aib; + a;b;)
+ Ws cos (2®) (aigjrbi + a;gixbi + bigjxbe + b;girar) (4.24)
— pbi; + Taaia; + Tpb;b;,

where T, and T} denote arbitrary tension in the two fibre directions. Equation (4.24)
may take a simpler form in a number of instances. If the two fibres are initially
orthogonal then A,B, = cos(2®) = 0. Thus, the invariants Js and Jg as well as
cos? (2®) can be omitted and W is a function of J;, Jo, J3 and Jy. In this case the

stress components are,

ti; = 2(Wh + JiWy) gi; — 2Wagikgik + 2Ws (ajgivak + ajgirax)
+ 2W, (b;gikbx + bjgirbr) — pbi; + Taaia; + Tibib;.
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This form of W is equivalent to that given by Green and Adkins [17, p.14] for materials
with rhombic symmetry. That is, the material is orthotropic. A further simplification
arises if the fibres are indistinguishable except for their directions. If this is the case
then W is symmetric in J3 and J,. It follows from the theory of invariants [23] that
W is a function of J;, J, and J3 + J,. ,

If the fibres are sparsely distributed or may be considered to have negligible thick-
ness then the strain-energy function depends only on J; and J,. For materials of this

type the stress components are,
ti; =2 {(W1 + J1W2)5jk - ng_jk} gik — pbi; + Taaia; + Tyb;b;,

which is the same as the result found at the end of §4.1 except for the term involving

T.

4.3 Functional Form of W

Equations (4.19) and (4.24) are general expressions for the stress components for
materials reinforced by one or two families of fibres. Qur goal is to provide a math-
ematical description of a body’s behaviour in reaction to any specified deformation.
The problem is solved if the strain-energy function can be expressed as a known func-
tion of the invariants. However, one cannot expect all composites to exhibit the same
reaction to a given deformation. That is, each different fibre-~matrix pair will have its
own characteristic strain-energy function. Further, since the form of W is not known
a priori, it must be determined experimentally.

Green and Adkins [17, Ch.10] discuss methods for determining an empirical form
of the strain-energy function. The predominant method of finding W is to assume
that it can be approximated by a multivariate polynomial in the strain invariants.
The coefficients are determined with the use of (4.17) and experiments which involve
subjecting materials to special deformations. These experiments may include defor-
mations such as pure homogeneous strain of a thin sheet, pure shear of cuboid and
torsion of a cylindrical rod. However, the degree of the assumed polynomial form is

generally limited by the number of independent experiments which can be performed.



These authors point out that any approximation so obtained is likely to be valid only
for a limited range of deformations if the degree of the polynomial must be restricted.

Pipkin [24] suggest that for moderate deformations it is reasonable to approxi-
mate the W; by constants. This form of the strain—energy function can be seen as a

modification of the Mooney® form,
W = Cy(Ji — 3)+ Ca(J3 - 3),
with an additional term to reflect the presence of the fibres. That is, W is given by,
W = Ci(J1 = 3)+ C2(J2 — 3) + C3(J5 = 1). (4.25)

When the fibres are of negligible thickness or are sparsely distributed, then Cs =0

and the form suitable for isotropic materials is regained.

3Citation for the original paper is given by Green and Adkins [17, p.26]. M. Mooney, J. Appl. Phys.
11 (1940), 582



Chapter 5
Example Deformations

In this chapter examples of some simple deformations are presented to illustrate the

theory developed in Chapters 2—4.

5.1 Homogeneous Deformations

5.1.1 One family of fibres

Consider a body in the shape of a rectangular parallelepiped, reinforced by one family
of fibres. We assume that in the reference configuration the fibres are straight, parallel
and lie in planes normal to the X3 axis. Further, assume that the fibres are initially

inclined at an angle ® to the positive X, axis as shown in Fig. 5.1. The initial fibre

direction is
A = (cos ®,sin 9,0). (5.1)

Consider first, simple extension deformations of the form
I, = /\1X1, I = /\QXQ, I3 = /\3X3 (52)
where A;, Az, A3 are constants. The incompressibility condition, (2.26) requires

MA2As =1, (5.3)

32
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X,

Z

/////‘

/ X,
7

Figure 5.1: Rectangular block reinforced by one family of fibres

while the fibre-inextensibility condition, (2.25) gives
Mcos?® + Alsin? @ = 1. (5.4)

Thus, any deformation of the form (5.2) can be completely determined from (5.3)
and (5.4) once one of A, A3, A3 is specified. Further, the constraint conditions also
provide bounds on admissible values of the );. We see from (5.4) that every deforma-
tion must satisfy

M < lsec®| and A; < esc®|.

Also, since
0 < (Mcosd — Aysind)?,
we have
220122 cosPsin® < A2cos® @ + A2sin? @ = 1. (5.5)

Substituting for A\;A; from (5.3), we obtain the bound for A3,
A3 > sin 20

when A; > 0 and A; > 0. Thus the constraint conditions only restrict the amount of

contraction in the X3 direction as they provide no upper bound for \;. If the fibres
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are initially aligned so that ® = x /4, then A3 > 1. In this case the material can be
extended but not contracted in the X3 direction.
Using (2.24), the fibre direction in the deformed body is found to be

a= (A cos®, A2sin ®,0) = (cos ¢,sin ¢, 0). (5.6)

It is seen that the fibres remain straight and parallel and only rotate during a defor-

mation of this type.
The most general homogeneous deformation possible under which (5.3), (5.4)

and (5.6) remain valid is given by:
T = M X1 +a3Xz, 2= A X;+a3X3, T3 = A3X3 (5.7)
where a3 and a3 are constants. This deformation allows for shear in any direction

on the planes X3 = constant. The components of the Finger strain tensor for this

deformation is

2, 2
Al +ai; aizazs  a3);

2, 2
o3tz A3+ a3 s |,

) = | g o | =
il = 0X,0X,|
1373 0233 A%

The strain invariants are calculated from (4.15) to be:
Ji= A +M+ A +af; +ads,
o= A4 (B +ad) + 22 (M2 +ady), (5.8)
J3 = Alcos?’d+ Alsin? ¢ + (ay3c08(¢) + aszsin ¢)?
= A cos? ® + A3sin? @ 4 (a;3); cos(P) + azs)ssin @),

The stress components are

tn = —p+TAcos?® + sy,
tyz = —p+TA2sin?® + sq,
a3 = —p+ sz, (5.9)

Lz = AAsin®cos PT + 3,2,

hia = 813, 123 = S23.



CHAPTER 5. EXAMPLE DEFORMATIONS 35

where the extra stress, s;;, are given by

su = 2XW; (A +ady) +2 (A2 + aky) (Wr + MIW2 + 203 W5 cos? @)
+ 2A122013023W3sin 20,

522 = 2MW, ()‘g + afa) +2 ()‘g + a§3) (Wl + AW, + 202 W; sin® <I>)
+ 2A1 A\2a13023W3 5in 29,

Csm o= 2 (Wi + (M A W),

s12 = 203023 (W) + Wa) + A1 A2 Wssin 28 ()‘f + M 4 ad + 033)

s13 = az38in 20 + 201305 (Wh + AW, + AW cos® @)

893 = 351N 2P + 2a53)3 (W1 + A§w2 + A%Wg sin® (I))

Deformations under which the body is not subjected to shear have been discussed by
Spencer [21]. A non-zero shear deformation requires a;3= a3 =0, in which case the

extra-stress components reduce to:

su o= 20 (Wi + (A2 +A2) Ws + 202 cos? @M, )
s = 20 (Wi + (A +A2) W, + 2X2sin? 8W;)
sss = 222 (Wi + (A + X)),

siz = M (Al +)3)sin20Ws,

So3 = 313-_—0.

If W can be assumed to be of the form given by (4.25) then the W; are constants and

the equilibrium equations reduce to,

_9 9T
' ’sz

e 0. (5.10)

Therefore, assigning any constant values to p and T produces a statically admissibie
solution. In particular, if any two of ¢y, t22, ta3, t12 are specified by choosing appro-

priate values for p and T, then the remaining stress components can be determined.
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Uniform Extension

As an example, suppose that t;; = 0 and t2; = 0 are specified. From (5.9), p and T

are found to be
2 : .2
S92 COS ¢ - 831 8In ¢

cos2¢
and , )
T = —i?g;%ll

The remaining stress components are obtained by substituting for p and T in (5.9).
They are,

b = S — 892082 ¢ — 811 sin? dJ’

cos 2¢

tiz = 812 —2tan(2¢) (s11 — s22), (5.11)

tiz = si3,

taz = S$i3.

We see that, in general, t.n # 0. Thus, uniform extension cannot be produced by
applying uniaxial tension only. It will be seen in §5.1.2 that a uniform extension can
be produced by uniaxial tension alone if the material is reinforced by two families of
fibres. Another feature to note from (5.11) is that ¢33 — o0 as ¢ — %7r unless s;; — 0
and s;; — 0 as well. It was noted in §5.1.2 that no further contraction in the X;

direction is possible when ¢ = %ﬂ'.

5.1.2 Two families of fibres

We consider in this section is the same material as in §5.1.1 but now reinforced by
two families of fibres. The fibres are assumed to be initially straight, parallel and
lie in planes normal to the X3 axis. The angle between the two fibre families is 2.
Further, the X; and X, axes are chosen to bisect the angle between the fibres as

shown in Fig. 5.2. The initial fibre directions are then

A =(cos®,sin®,0) and B = (cos ®,—sin®,0).
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Figure 5.2: Rectangular block reinforced by two families of fibres.

Consider the same class of deformation studied in §5.1.2, namely,
Ty =M X1+ a13X3, T2 = A Xo +a3X3, 3= A3X;. (5.12)
From (2.24), the fibre directions after deformation are
a = (cos ¢,sin ¢,0) = (A; cos @, Az sin @, 0)

and

b = (cos ¢, —sin ¢,0) = (A; cos B, ~ Az sin ®, 0).

The fibre-inextensibility and incompressibility conditions yield the same constraint
equations as in the case of reinforcement by one fibre family, (5.3) and (5.4). In
addition to the strain invariants J, J; and J; given in (5.8), the following invariants

are defined:
Ji = /\‘1' cos’d + /\; sin? ® + (a13)) cos(®) — aq3Azsin <I>)2

Js = (Micos’® — Alsin® ) cos(20) (5.13)
Jo = {AMcas’® (Al +al;) - Msin’ & (A] + aly) } cos (20).
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th = —-p+ (Ta + Tb) Af cos® @ + 311,
lag = —p+ (Ta + Tb) Ag SiIl2 d + 822,
tas = —p+ Sas, (5.14)

tiz = MAz2sin®cos® (T, — 1) + s12,

tiz = 813, taz = S23.
where the extra stress, s;;, are given by

sn = 2 [Wl + W, (Jl - A2 0‘13)] ()\2 + 0113) - 2Wha?, ()\ + 023)
+ 2\ Aza13a235in (28) (W — W) + 2 A2 cos (2®) cos® W
+ 422 cos® ® (W5 + Wy + cos (20)We)

sz = 2[Wi+ Wy (i =02 —ody)] (M2 +ady) — 2Waady (M + o)
+ 2\ A2a13a238in (28) (W5 — W) — 2 A2 cos (2@) sin? @W;
+ 4 A2 5in® ® (W5 + W, — cos (20) W]

s;s = 223 Wi+ (X4 22) Wy

S12 = 2aq3am3 [Wl + Wi + W, + cos (29) (Xf cos? ® — A2sin® (I>) We]
+ A Az sin (20) (Jy — A3) (Ws — W)

s13 = 2a13); [Wl + A3W, + A2 cos? & (Ws + Wy + cos (2(I>)W6)J
+ azssin (29) (W53 — Wy)

s = 2aads [Wh+ AW, + AJsin® @ (Ws + Wi — cos (20) We)]
+ ay3sin (29) (W5 — W)

If it is possible to assume W is of the form given by (4.25) then the W; are constants
and the equilibrium equations reduce to
Op o7, 0T,

S AL S Y YL ) 5.15
61’,‘+a'a16$j+ b’B:v,- 0 (5.13)

Therefore, any constant p, T, and T, will produce a statically admissible solution. As

in §(5.1.1), it is possible to assign values to three of ¢, t2, tas, t;2. However, it is not
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possible to specify all three of t,;, t22, t33 since the resulting system of equations for

p, T, and T} has no solution.

Uniform Extension

Consider again the example discussed in §(5.1.1). That is, ¢;; = 0 and ty; = 0 are
specified. Now, though, a third arbitrary function is available for use in fixing the
stress components. The condition ¢;2 = 0 may be given. Using (5.9), p, T, and T} are

found to be =
S22 COS2 ¢ -— 811 811 ¢

cos 2¢ ’

_ 2sin(2¢) (822 — 811) — 4 cos (2¢)s12
- sin 4¢ '

T,

and

_ 2sin (2¢) (322 - 311) -- 4 cos (2¢)312
- sin 4¢ '

The remaining stress components are obtained by substituting for p, T, and T} in (5.9).

T,

They are, as previously found,

S22 cOs% ¢ — 811 8in ¢

t = s

33 cos? ¢ — sin? ¢ 3
t13 = 3813 (516)
t3 = Sa3.

Thus it is possible to produce a uniform extension in the material by applying a

uniaxial tension alone.

5.2 Cylindrically Symmetric Deformations

One method of manufacturing fibre-reinforced composites is to wind fibres onto a re-
volving drum. This produces a composite with cylindrical symmetry in its undeformed
state. In this section we investigate deformations of a circular cylinder reinforced by

two families of fibres which preserve this symmetry.
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Refer the position of a generic particle to a cylindrical polar coordinate system.
A particle which has coordinates (R, 0, Z) in the undeformed body moves during a

deformation to the location (r, 8, z) where,

X1 =RcosO, X,=RsinO, X3=2
and
zy=rcosf, z,=rsinf, z3=-z.

Assume that the two families of fibres initially lie in the surface R = constant and are
inclined at an angles ® and —® to the Z axis, Fig. 5.3. Then the components of the

initial fibre directions referred to the cylindrical polar coordinate system are,

-~ -~

A = (0,sin ®,cos ), B = (0, —sin ¢, cos ).
We consider deformations of the form
r=r(R), 0=0+2Z¥(R), z=Zw(R). (5.17)

The function 7( R) represents an inflation or contraction, ¥(R) a torsion of the cylin-
drical surface with initial radius R and w(R) an axial extension or contraction of the
sheet with initial radius R. After deformation the fibres lie in the surface r = constant

so we may take the final fibre directions to be
a = (0,sin ¢, cos @), b= (0, — sin ¢, cos ¢).

In order to discuss deformations of this type it is necessary to express the relevant

quantities in terms of cylindrical polar coordinates. If we denote

T = [t;;], F = [0z:/0X,]

then
g =FFT, G=FTF.
Also let
t, teg i, cos@ sinf 0
T=|te tg ts, |, 9=| —sind cosfd 0 |,

trz tﬂz tz 0 0 1
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Figure 5.3: Cylinder reinforced by two families of fibres.

cos® sin® 0
Q=| —sin® cos® 0 |,
0 0 1

then the rule for the transformation of stress components is
T = qTq".
Also note that q and Q are orthogonal matrices, so that
qq" =qq=1, QQ"=Q"Q =1
If we further define

ar
. 3R
F=qFQT = r-@%
gz

o= oy wi=

gIe Ble gl
3

NSRS

Q

41
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then components of Finger’s strain tensor are transformed as
g = qgq” = qFF'q" = qFQTQF”q” = FF”.
The transformation of the fibre direction can be similarly obtained. We have,
a=qa, (aa)=qaa)q’. (5.18)

The constitutive equation can be transformed into cylindrical polar coordinates by

multiplying Equation (4.24) on the left by q and on the right by q7. We obtain,
T = 2(Wh+ JIW,)E — 2W,8% + 2W; {(33)g + g(33)}
+2W, {(bb)g + &(bb)} + W; cos (28) {( B) (ba)}
+ We cos (28) { (ab)g + (ba)g + (ab) + g(ba)}
~ pl + T,(33) + Ty(bb),

where

Ji=tr(g), Ja=3{(tr(§))? —tr(g%)}, Js=tr(ad)g
Jy = tr(BB)g, Js = cos(2¢)tr(55), Je = cos(2¢)tr(55)§

Now, referring to the deformation (5.17) the constraint conditions imply that r(R),
¥(R) and w(R) must satisfy

w%:—}"i 1
w?cos? d + fi—;(smq) + RV cos ®)? =1, (5.19)

w? cos? ® + L3 (—sin ® + R¥ cos 8)? = 1.

The second and third equations of (5.19) are compatible only if sin ® = 0 or cos ® = 0,
in which case both families of fibres coincide, or if ¥ = 0. Thus if the fibres are assumed
to be distinct then ¥ = 0 and torsion is not possible. The deformation then has axial,

and not just cylindrical symmetry. The constraint conditions then simplify to

d 2
w-t-—r=1, __ sin? ®+wlcos?d =1,

R2
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in which case w may be eliminated between these two equations to give

T cos @ . (5.20)

RdR ~ 3
{1 - (%)Qsin?(l)}2
Now, (5.20) may be used to determine r once ¢ has been specified. Further, us-

ing (5.18) we find that the fibre directions in the deformed body are

a = (0,sin ¢,cos ¢) = (0, (rsin )/ R, w cos D)

and

-~

b = (0, —sin ¢,cos ¢) = (0, —(rsin®)/ R, w cos ),

and so ¢ and w may also be obtained once r is found.

The deformation gradient matrix F, for this deformation is

dr
) % 00
F= 0 £ 0
Z%‘-‘i 0 w
Thus, the components of g are calculated to be
dr\? dr dw
(%) o ZiRdR
- 2
g = 0 ¥ 0
2
zd&d 0 2% (%) +w?

Using these quantities it is a straightforward matter to calculate the strain invariant

J1 to Js. We find,

(&) + ()= (i) +
HOEROIGCRS
Js = Jy= (—%)4sin2¢ + w?cos’ ® (Z2 (%)2 + wz)

2
{w2 cos? @ — (%) sin? <I>} cos (29)

2 4
Jo = {w2 cos® (22 (%) + w2) - (-I%) sin2<1>} cos (20)

J1

J2

o
I
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The stress components may be obtained in a manner similar to that which was em-
ployed in Sections 5.1.1 and 5.1.2.



Chapter 6
Conclusions

Fibre-reinforced composites have become increasingly important in the manufacture
of modern products. Their success is due mainly to their low weight and high modulus
or strength. The possibility of incorporating these materials into applications exists
wherever there is a potential for weight savings. However, their development and
use must be based on a firm understanding of their unique mechanical and physical
characteristics. Therefore, it is necessary to develop appropriate methods of stress
and strain analysis.

In this thesis a continuum theory for fibre-reinforced elastic materials has been
studied. The two assumptions central to the development of this theory are that the
fibres are inextensible and the composite is incompressible in bulk. The inextensibility
condition can be seen as an idealized model for materials in which a more compliant
matrix is reinforced with very strong fibres. The incompressibility assumption is one
which is frequently made in continuum mechanics and is a good approximation for
many materials. However, it is probably more appropriate for those composites for
which finite deformation theories apply.

The conditions of fibre inextensibility and incompressibility are kinematic con-
straints which have the effect of restricting the range of possible deformations. The
kinematic relations obtained in this thesis are sufficiently general and so may be ap-
plied to any material type. However, in order to completely determine the state

of stress in a deformed body it is necessary to specify the form of the constitutive

45



equation. In this regard, we have considered materials which are perfectly elastic in re-
sponse to a deformation. The stress components are given in terms of a strain—energy
function which depends on the deformation gradients and also the fibre directions
in the undeformed body. Using results from the theory of algebraic invariants, the
strain—energy is written as a function of certain invariants of the deformation as well
as the fibre direction. The result is an equation for the stress components for any
elastic deformation in terms of the quantities employed to describe the deformation.
Once the functional form of the strain-energy function is specified for a material the

problem of finding the associated stress is solved.

Areas for further study

® We have noted that the ideal approximation of material incompressibility may
not provide adequate results if the deformations are linear. The ideal theory may
be better suited to study small deformations if the incompressibility condition

is relaxed to permit small changes in the density.

® In this thesis, only elastic stress response has been considered. Thusfar there has
been little research concerning any other material behaviour other than elastic~
perfectly plastic, and plastic. An investigation of fibre-reinforced visco—elastic

materials and fibre-reinforced fluids may yield useful results.
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