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Abstract 

An ideal fibre-reinforced material is defined to be one which is incompressible in bulk 

and inextensible in one or more directions at each point. This idealization of real 

materials provides an adequate model for those composites in which fibres, having a 

much higher extensional modulus, are bonded to or embedded in a more compliant 

matrix host. Materials possessing such properties cannot be deformed in a completely 

arbitrary manner. Every deformation to which they are subjected is restricted by the 

conditions of inextensibility in the fibre direction and material incompressibility. The 

objective of this thesis is to present a continuum theory describing these deformations. 

Kinematic equations suitable for describing the motion of particles in a general 

fibre-reinforced body are obtained and subsequently modified to reflect the idealized 

constraint conditions. These equations must be satisfied by every admissible deforma- 

tion. The Cauchy stress components as well as the equations of equilibrium are given 

in a form appropriate for an idealized solid. The material response to any deformation 

is assumed to be perfectly elastic. That is, a strain-energy function W, is assumed 

to exist and is found to be a function of three invariants of Finger's tensor and the 

fibre-direction tensor. Examples of simple deformations such as uniform extension 

and shearing of a fibre-reinforced cuboid are presented. 



Contents 

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Abstract 111 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Figures vi 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 
. . . . . . . . . . . . . . . . . . . . . . . .  2.1 General Kinematics 9 

. . . . . . . . . . . . . . . . . . . . . . . .  2.2 The Idealized Solid 15 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 Stress 18 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 Elastic Solids 22 

. . . . . . . . . . . . . . . . . . . . . . .  4.1 One Family of Fibres 22 

. . . . . . . . . . . . . . . . . . . . . .  4.2 Two Families of Fibres 28 

. . . . . . . . . . . . . . . . . . . . . .  4.3 Functional Form of W 30 
. . . . . . . . . . . . . . . . . . . . . . . . . .  5 Example Deformations 32 

. . . . . . . . . . . . . . . . . . .  5.1 Homogeneous Deformations 32 

. . . . . . . . . . . . . . . . . .  5.1.1 One family of fibres 32 

. . . . . . . . . . . . . . . . . .  5.1.2 Two families of fibres 36 

. . . . . . . . . . . . .  5.2 Cylindrically Symmetric Deformations 39 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 Conclusions 45 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  References 47 



List of Tables 

1.1 Applications of fibre composites . . . . . . . . . . . . . . . . . . . . . 2 

1.2 Properties of Some Metallic and Structural Composite Materials . . . 2 

1.3 Fibre and Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 



List of Figures 

2.1 General deformation of a body . . . . . . . . . . . . . . . . . . . . . .  8 

5.1 Rectangular block reinforced by one family of fibres . . . . . . . . . .  33 

5.2 Rectangular block reinforced by two families of fibres . . . . . . . . . .  37 

5.3 Cylinder reinforced by two families of fibres . . . . . . . . . . . . . . .  41 



Chapter 1 

Introduction 

A fibre-reinforced composite material is one which consists of high modulus fibres 

embedded in or bonded to a more compliant matrix material. In the composite both 

fibre and matrix retain their individual mechanical properties while the composite is 

endowed with properties which cannot be attained by either material acting alone. 

In general, composites are designed such that the fibre component carries the highest 

proportion of the lcad. The matrix serves to maintain the position and orientation of 

the fibres but also functions as medium through which the load is transferred. The 

purpose of this thesis is to describe and investigate a continuum theory appropriate 

to model the mechanical behaviour of these materials. 

The study of fibre-reinforced materials is less than four decades old. However, 

materials such as fibreglass and reinforced concrete have been in use for a consider- 

ably longer time. Recerrt advances in science and technology have made possible the 

ability to manufacture high strength fibres and thus produce materials with desirable 

mechanical properties. Currently, fibre composites are used in a grea.t many industrial 

and commercial applications. Table 1.1 is just a brief list indicating their use in such 

products as aircrafts, automobiles, sporting goods and boating equipment. 

Typically, the mmt impartant feature one strives for in the design of composites 

materials is a high modulus to weight ratio. Table 1.2 compares the properties of some 

metallic materials with those of some moderll fibre reinforced composites. Clearly, 

there is a potential to exploit the unique mechanical and physical characteristics which 
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Table 1.1: A sample of products currently manufactured with composite 
materials. 

"Ref. (11 pp.6-11. 

Applicationa 
Aircraft 
Automobile 

Sporting Goods 

Marine 

these materials possess. However, in order to fully realize the benefits these materials 

have to offer, it is necessary to develop appropriate methods to study their mechanical 

behaviour. 

Component 
Wing skins, fuselage, ailerons, rudder. 
Hood and door panels, radiator supports, 
bumper reinforcement beams, 
Leaf springs, drive shaft, wheels. 
Tennis rackets, fishing rods, kayaks, 
bicycle frames, helmets, athletics shoe soles. 
Boat hulls, decks, bulkheads, frames, masts, spars. 

Table I .2: Tensile Properties of Some Metallic and Structural Composite Materials. 
Specific Modulus," Ratio of Modulus 

Materialb - gravity GPa (lo6 psi) to weight, lo6 m 
SAE 1010 steel 7.87 207 2.68 
AL 6061-T6 aluminum alloy 2.70 68.9 2.60 
Ti-6A 1-4V tita~liurn alloy 4.43 110 2.53 
INCO 718 nickel alloy 8.2 207 2.57 

Carbon fibre-epoxy 1.63 215 13.44 
E-glass fibre-epoxy 1.85 39.3 2.16 
Kevlar 49 fibre-epoxy 1.38 75.8 5.60 
Boron fibre-6061 A1 alloy 2.35 220 9.54 

"The modulus for the composite materials is measured in the fibre direction. 
'Ref. [I] pp.3-4. 

There are, essentially, three distinct classes of theoretical problems in the study 

fibre ccmposites. One class is concerned mainiy with the mechanical interactions 

between the individual components. The area of interest is the region at or near 

the fibre-matrix interface. These problems are great importance in the design and 

manufacture of composite materials as well as in the study of their failure mechanisms. 



In most applications, the load is applied only to the matrix. In order for the composite 

to perform effectively, the load must be transmitted through the matrix to the fibres 

by adhesion or friction at the interface. This gives rise t.o complex stress an strain 

distributions in both the fibre and matrix. Recently there has been interest in the 

study of fibre-bridged cra~king in composites. A representative sample of current 

work in this area can be found in papers by Chiang et al. [2], Neumeister [3] and 

Bao and Song (41. The theories under investigation by these, and other authors, seek 

to  predict cracking failure in fibre-composites based on models of debmding and 

frictional sliding which occur during crack extension. 

Another area of study concerns the relation of the properties of the composite to 

the individual properties of the fibre and the matrix. The predominant problem in 

this field: when studying elastic materials, is to obtain an expression for the eflective 

or overall elastic moduli of a composite in terms ~f the moduli of the constituent ma- 

terials. Among the first to stu.dy this problem were Hill [5, 6, 71, Hashin and Rosen [8] 

and Hashin [9]. Their accounts contain bounds and also some exact results for the 

overall elastic moduli of fibre composites with isotropic and transversely isotropic 

phases. These early results apply mainly to materials in which the fibres can be as- 

sumed to be long, continuous and perfectly aligned cylinders. Subsequent research 

has focused on strengthening these bounds for particular materials as well as general- 

izing the theory to more complicated material geometries. As an example, in a recent 

paper, Zhao and Weng [lo] obtain expressions for the elastic moduli of a transversely 

isotropic composite reinforced with two-dimensional randomly-oriented elliptic cylin- 

ders. Other recent advances include the development of a three-dimensional elastic 

constitutive theory for application to fibre composite laminated media, (Christensen 

and Zywicz [ll]) .  Shield and Costello [12] describe a model for a wire rope reinforced 

rubber composite plate. In this case the extension-twisting coupling of the reinforcing 

yard is not neglected in the formulation of the constitutive relation. 



Continuum Model 

The approach taken in this thesis is one in which attention is focussed mainly on 

the overall mechanical behaviour of the composite. The behaviour of the constituent 

components and their interactions are for the most part ignored. The model is strictly 

a continuum model; as such, no distinction is made between the particles of the fibres 

and those of the matrix. The main objective is to formulate equations which describe 

the most important features on the macroscopic scale. 

The theory discussed in this thesis is tailored specifically for those materials in 

which the fibre is, in some way, much stronger than the matrix. Table (1.3) lists 

some of the more common components used in the manufacture of fibre composites. 

It can be seen that it is not uncommon for the fibre to have a modulus two orders 

of magnitude greater than that of the matrix material. We idealize this property by 

making the assumption that the composite is inextensible in the fibre direction. That 

is, the fibre does not change length in any deformation. Also, as is frequently done in 

solid mechanics, we will assume that the composite is incompressible. This is a good 

approximation for many materials but may only be valid when large deformations 

are considered. However, this idealization greatly simplifies some of the mathemat- 

ical formulae and so may allow greater progress to be made. Also, since these two 

assumption are quite idealized, we refer to those materials for which the above two 

assumptions remain valid as idealized solids. 

A continuum theory describing fibre-reinforced materials has been developed in 

a series of papers by Adkins and Rivlin [13] and Adkins [14, 15, 161. Their work is 

concerned mainly with large elastic deformations of materials reinforced with inex- 

tensible cords. The basic theory for elastic materials is summarized in the book by 

Green and Adkins [17]. Mulhern, Rogers and Spencer [18] have proposed a continuum 

model for the behavior of reinforced plastic materials. This model was subsequently 

extended by the same authors to treat plastic-elastic materials reinforced by strong 

elastic fibres [19]. Pipkin and Rogers [20] were the first to discover that for certain 



Table 1.3: Tensile moduli of some commercial 
reinforcing fibres and matrix materials. 

Tensile Modulus, 
Componenta GPa (lo6 psi) 
Fibres 

E-Glass 72 
SAE 1010 steel 207 
Kevlar 49 (DuPont) 13 1 
S i c  400 
Carbon 

GY-70 (BASF) 483 
P-100 (Amoco) 758 

Matrix 
Rubber 0.0005 
Epoxy Resins 

Epon HPT 1072, 3.3 
(Shell Chemical) 
Tactix 742, 3.0 
(DOW Chemical) 

Thermoplastic Resins 
Avimid (DuPont) 3.8 
Udel (Amoco) 2.5 

"Ref. [I], pp.3,18-19,54 ?.ih.l 65. 

types of deformations1 the constraints imposed by incompressibility and fibre inex- 

tensibility are sufficient to determine 5 given deformation. That is, without providing 

a constitutive relation, In this case, the nature of the stress response need only be 

specified when one wishes to  compute the surface tractions required to maintain a 

given deformation. 

The book by Spencer [21] gives a thorough treatment of the subject, more general 

in nature than the previously cited works. A general account of the kinematic con- 

straint conditions and the state of stress in idealized fibre-reinforced solids is given. 

As well, two chapters are dedicated to the discussion of eiwtic and piastic stress re- 

sponse. It is for this reason that we follow the development of the theory in the same 

'Plane and homogeneous deformations are two examples. 



spirit as found in Spencer's book. 

Outline 

A material which is incompressible and reinforced by inextensible fibres cannot be 

deformed in a completely arbitrary manner. These general properties of fibre com- 

posites are constraints that place limits upon the possible motions which a body may 

undergo. In Chapter 2 explicit mathematical relations are obtained which must be 

satisfied in every deformation. The state of stress associated with a reinforced ma- 

terial is discussed in Chapter 3. Here it will be found that the ability to determine 

the stress by way of the equations of equilibrium or motion is dictated by the number 

of distinct families of fibres present in the body. In order to completely determine 

the state of stress in a deformed medium it is usually necessary to specify a constitu- 

tive relation. In Chapter 4 we will consider the form of the constitutive relation for 

an elastic fibre-reinforced material. A strain-nergy function W, of the deformation 

gradient and fibre direction is assumed to exist. It is shown that, in general, W can 

be expressed as a function of certain invariants of the quantities employed to describe 

the deformation. Further, it is found that each of the kinematic constraint conditions 

reduces, by one, the number of invariants upon which W depends. In the final chapter 

we illustrate the idealized theory by considering some example problems. 



Chapter 2 

Kinematics 

In this chapter equations describing the motion of particles in a body are presented. 

We begin with a brief description and mathematical definition of a deformation. In 

$2.1 the presence of the fibres in a body are introduced by assuming that the fibre 

direction at each point can be described by a unit vector field. Other useful defi- 

nitions, such as the measure of fibre density at each point and the fibre extension 

ratio are also introduced. The main purpose of this chapter is obtain relationships 

between the kinematic variables before and during a deformation as well as the time 

rate of change of these variables. At this point no specific material response to a 

deformation is imposed. As such, a more general account is given without explicit 

reference to elastic materials. In $2.2 the form of the kinematic equations are ob- 

tained for ideal fibrereinforced materials. That is, constraints of fibre-inextensibility 

and incompressibility are imposed on the general kinematic equations. The simplified 

relations so obtained are conditions which every admissible deformation must satisfy. 

Definition of Deformation 

A body D is defined to be a compact, regular region in F. A point p fr D is called 

a particle or material point. We suppose that at a fixed reference time t = to, f3 

occupies a fixed regioc of space Do and that at some subsequent time t , it occupies a 

new continuous region D, Fig. 2.1. A deformation (of 23) is a continuous, one-to-one 
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mapping from into V. 

43 

Figure 2.1: General deformation of a body. 

Let a fixed rectangular cartesian coordinate system 0 X 1 X 2 X 3  be chosen. We 

shall use X = ( X I ,  X 2 ,  X 3 )  as the label for the place occupied by a material point p 

at time t = t o .  The configuration of the particles in 23 at t  = t o  is called the reference 

configuration. The vector x = ( x l ,  x2, x 3 )  will be used to label the place occupied by 

p at time t .  The configuration at time t is called the current configu~ation. If the 

motion of B is measured in the reference configuration then X serves to identify p for 

all subsequent times. That is, we assume that every particle is uniquely labeled by 

its position at t = to .  

We describe the motion of B by the dependence of the positions x, of the particles 

of B at time t, on their positions X in the reference configuration. The motion is 

written symbolically as 

xi = x;(X,,  t )  (i, a = 1 ,  2, 3). (2.1) 
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In what follows, unless the contrary is stated, it is assumed that subscripts take the 

values 1,2,3 and that summation over repeated indices is understood. Also, when no 

confusion is likely to arise, the argument t will be omitted. Thus, for example, the 

velocity components 

6 

dt 
of a particle will be denoted by vi. 

If equations (2.1) are to define a deformation they must be invertible. This con- 

dition is met if the Jacobian of the transformation is non-zero. That, is, 

Since we wish to study deformations it will always be assumed that (2.2) is satisfied 

for all time. 

2.1 General Kinematics 

We consider the kinematics of materials in which a matrix or host material is reinforced 

by one or more families of strong fibres. The continuum theory is formulated by 

making the idealization that for a given family of fibres, a member of the family 

passes through every particle of the material. Since the fibres have a direction at 

each point, a family of fibres can be characterized by a field of unit vectors. The fibre 

direction at any material point p in the reference configuration will be referred to by 

a unit vector A(Xa). In the continuum theory we assume that if a particle initially 

lies on a given fibre then it will remain on that fibre throughout a deformation. Thus, 

if a fibre through p at time t has the direction of the unit vector a(X,, t), then 

The cartesian components of A(X,) and a(X,, t) will be denoted A, and ai respec- 

t ively. 

In general, a body may be reinforced by any number of families of fibres. However, 

to develop the kinematic equations it  is sufficient to consider a body reinforced by 
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a single fa-nily of fibres. The extension to the general case is discussed at the end 

of 52.2. 

Fibre Extension Ratio 

Consider a line element through p which has the same direction as a fibre through p 

and in the reference configuration has length 6L. During a deformation the particle 

at Xa moves to x i ( X a )  while the particle at Xa + A,6L moves to the x i (X ,  + Aa6L). 

However, the coordinates of the latter point are also given by x i ( X a )  + ai61 where 61 

is the length of the line element after the deformation. Expanding x;(Xa + Aa6L) in 

a Taylor series about Xa we obtain 

so that, in the limit 6L -, 0 
dl dx; 

a;- = -Aa. 
d L  dXa  

We denote the fibre eztension ratio d l / d L  by A.  Then, since a; is a unit vector, we 

have 

Further, from (2.5) 

We see from (2.6) that A* is just the normal component of the Lagrangian strain 

associated with the direction A. 

Using the above results an expression for the time rate of change of the fibre 

extension ratio A, can be found. By (2.6) we have that 

Substitution from (2.7) gives 

dX2 - - dvi dvi 
dt 

- a;X-A, + aiA-Ap. axa (3x0 



Upon changing repeated indices and using the chain rule we have 

dv; dxk 
= 2a;X--A, 

dxk d x ,  
dv; 

= 2a;X- (akX) 
dxk 

Thus, 

Differentiating (2.7) an expression far a; can be obtained. We have, 

- dvi A ax; - p - A ,  - -- 
ax, h2 axa 

Substituting from (2.7) and (2.8) gives, 

dv; ,i 
; = ak- - - (a,A) 

)r2 

- dv; a; - ak- - - (ajaka) 
d ~ k  
dv j  dv  j 

= ak-Sjj - a;ajak-. 
dxk dxk 

Therefore, 

Continuity Condition 

An important kinematic relation in the continuum theory is the continuity equation. 

This equation describes the behaviour of the mass density during a deformation. We 



denote the mass density at the material point p at time t  by p = p(xi, t ) .  Also, define 

Now, consider the mass m, occupying an arbitrary volume V at time t .  We have 

The law of conservation of mass requires 

Therefore, the continuity equation in the Eulerian form is 

dv; 
P + P G = ~ ,  

where 
OP dP p = z + v k -  

axk 
is the material or convective derivative of p. 

The continuity equation may also be expressed in the Lagrangian form. Let the 

particles which occupied the volume Vo at time t = to, occupy the volume V at time 

t. Then the law of conservation of mass requires 

The result, 

is the material form of the continuity equation. 

Fibre Density 

We introduce a scalar quantity, denoted C(Xa) in the undeformed body a ~ d  a(Xa, t )  

in the deformed body, which is a measure of the density of fibres at the particle p. We 
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can view a ( X , ,  t )  as the number of physical fibres per unit area intersecting a surface 

normal to the vector a at the particle p. Clearly, 

A relationship between C and a can be determined by the following construction. 

Consider three non-collinear paiticles with coordinates given by X, ,  X .  + dXL1), and 

X ,  + dxL2) in the reference configuration. The coordinates of the three particles in 

the deformed body are xi ,  x; + d x l l ) ,  and zi + dxj2) respectively. Let d S  be the area 

of the triangle formed by the three points initially, and ds  be the corresponding area 

after deformation. We denote the components of the unit normal to d S  and ds by N, 

and n; respectively. Then 

1 ( 1 )  ( 2 )  and nids  = - c j j kdx j  dxk  . 
2 

Substituting for d x y )  and d x r )  in (2.14) from (2.12) we have 

Multiplying both sides of (2.15) by B x i / a X ,  gives 

Thus, using (2.13) and (2.16), we obtain the r e ~ u l t , ~  

2Spencer [21, p. 1191 refers to this as Nanson's reiation. 



Now, let dA be the area of the projection of d S  onto the plane normal to A and 

let da be similarly defines with respect to the area of the projection of ds onto the 

plane normal to a. That is, 

dA = N,A,dS 

and 

da = n;a;ds 

Since d S  and ds are composed of the same particles, the surface elements dS, ds, dA, 

and da all intersect the same set of fibres. Consequently, a necessary condition for a 

consistent definition of the fibre density is that 

CdA = ada. 

Substituting for dA and da from (2.18) and (2.19) gives 

Then from (2.5), (2.10), (2.17), and (2.21) we find 

P 
0 = A-C. 

Po 

Now, by differentiating (2.22) and using (2.8) and (2.11) the time rate of change of o 

can be found. We have, 

which simplifies to 

dv; j = (a;aj - S;,) -A-C. 
a x j  PO 

Upon using (2.22) we see that a satisfies 

av; 
& - a (a;aj - 6ij) - = 0. 

ax, 
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2.2 The Idealized Solid 

We now consider the form of the kinematic equations when applied to an idealized 

solid. The assumption of fibre inextensibility results in the condition that during any 

deformation there is no extension of the material along a fibre direction. In terms of 

the defined quantities this implies 6L = 61 or A = 1. If the material is assumed to 

be incompressible in bulk then the density function must satisfy p(X,, t )  = p o ( X a ) .  

Applying these conditions to the general kinematic equations we obtain relations for 

incompressible and inextensible materials. 

Equations (2.5) and (2.6) become 

and 

a x i  
a ,  = -A,  ax, 

a x i  a x i  -- A,AB = 1 ax, ax, 
respectively. The continuity condition, (2.10) and (2.1 I ) ,  implies 

and 

The remaining kinematic equations, (2.8), (2.9), (2.22) and (2.23), take the form 

respectively. 

The above equations are kinematic constraints imposed upon all deformations of 

an incompressible body reinforced by a single family of inextensible fibres. That is 

to say, a given deformation of the body is possible only if it satisfies these constraint 

equations. 
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It is clear that a reinforcement by more than one family cf fibres will, in general, 

be more restricting than a reinforcement by a single family. It is not difficult to extend 

the constraint conditions to this case. If there are, say, N fibre directions associated 

with each particle p then, for example, equation (2.24) becomes 

ax. A ,  foreach y =1, ..., N .  a ,  - ax, 
However, the kinematic equations are not all independent (i.e. equations (2.25) and 

(2.28) are both statements of fibre inextensibility). Therefore, each additional fi- 

bre does not impose as many constraints as the four equations, (2.24), (2.25), (2.28) 

and (2.29) independently, seem to imply. As an example, in the case of elastic defor- 

mations studied in Chapter 4, only the initial and final configurations of the body are 

of interest. It will be seen that each family of fibres imposes only one constraint on a 

given deformation. 

One further result may be obtained from the kinematic constraint equations. First 

consider equation (2.16) which, for an incompressible solid, becomes 

dxi axj axk 
E , j k  = ax, ax, ax, W-Y- 

Differentiating (2.32) with respect to  X, we have 

d2xi axj axk -- d2xj axi axk -- cijk (ax,ax, ax, ax, + ax,ax, ax, ax, + ax,ax, ax. ax, 
Multiplying this result by 

we obtain 

Summing over i, j and k gives 

azxl - ax. alzz - ax, + aZx3 ax, - -- - 0 
ax,ax, ax, + ax,ax, azz ax,ax, as, 
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which is the same as a a x i  - -  ax, (ax,)  = 

Now consider the divergence of a. From (2.24) we see that 

( x ) axi ,Aa +-- ax, ax; ax, axi 

Upon using (2.33) we find 
dai a A ,  --  - -. 
dx; d X ,  

That is, the divergence of the the vector a is constant during a deformation of an 

idealized solid. This result is due to  Pipkin and Rogers [20]. 



Chapter 3 

Stress 

In this chapter we turn to the discussion of the state of stress associated with con- 

strained materials. In particular, we focus here on stress in incompressible, fibre- 

reinforced materials. One consequence of introducing constraints into a body is that, 

in general, the stress field is not completely determinable. The stress in a material 

subject to constraints is determined only to within an arbitrary stress that does no 

work in any motion satisfying the constraints.' For example, it is well known that the 

state of stress associated with an incompressible body is determined by the deforma- 

tion only to within an arbitrary hydrostatic pressure. Similarly, the constraint of fibre 

inextensibility introduces an arbitrary uniaxial tension in the fibre direction. These 

undetermined stresses are available to be chosen such that the equations of motion, 

or equilibrium, and boundary conditions are satisfied. 

Without specifying any particular form for the constitutive equation we hypothe- 

size that the total stress tij may be written as the sum of two parts. One part, referred 

to as the reaction stress and denoted by r;j,  is the reaction to the constraints. That 

part of tij not due to constraints will be referred to as the extra-stress and denoted 

by sij- Mathematically, 

'Truesdell and No11 122, p. 701 present this statement in the form of a general principle. 
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The form of r,, for an idealized solid reinforced by one family of fibres is 

where p is a hydrostatic pressure and T is a uniaxial tension in the fibre direction. 

The total stress in this case is then 

Without loss of generality we may assume that 

since these entities may be absorbed into the arbitrary functions p and T. This mod- 

ification leaves four independent components of si j  which are to be determined by 

constitutive equations. 

In subsequent sections the discussion will be mainly concerned with problems in- 

volving bodies reinforced by either one or two families of fibres. However, for materials 

reinforced by N families of fibres t i j  can be written in the form 

As in the case ol reinforcement by a single fibre family we assume 

and 

aj')ay)sij = O for 7 = 1,  ..., N (No sum on 7 . )  (3.7) 

From the N conditions in (3.7) we may surmise that each family of fibres in a body 

reduces, by one, the number of independent extra-stress components to be determined 

from a constitutive relation. In essence, introducing constraints into a body increages 

the importance of the kinematics of the deformation while decreasing the importance 

of the particular mechanical behaviour of the material. In the extreme case, that 

being a rigid body, the stress is completely indeterminate. 



Equations of Equilibrium 

In Chapter 2 conditions to be satisfied by every kinematically admissible deformation 

have been given. However, every deformation must also satisfy the equations of motion 

or equilibrium. We consider here only problems of equilibrium in the absence of body 

forces. In this case the equations of equilibrium are 

Using tij given by (3.5) we see that for a material reinforced by N fibres (3.8) becomes 

A deformation for which the three equations (3.9) can be satisfied by an appropri- 

ate choice of the N + 1 functions p and T(Y) is referred to as a statically admissible 

deformation. 

With regard to the number of families of fibres present in a body, three cases are 

of particuiar interest. If N = 1 then (3.9) are three equations for the two functions p 

and T which, in general, will not have a solution. That is, in this case an arbitrary 

kinematically admissible deformation will not be statically admissible. The equations 

of equilibrium then serve to place further restrictions on the deformation. When 

N =  2 (3.9) are three equations to be satisfied by the three function p, T( l )  and T(2) .  
In this case, any kinematically admissible deformation is also statically admissible. 

Further, for a given deformation the s;, are assumed to be known. Therefore, the 

deformation is statically admissible without regard to the form of the constitutive 

equation. When N > 2 the total stress involves more than three arbitrary functions. 

Therefore, the equations of equilibrium can be satisfied in an infinite number of ways 

and the stress is statically indeterminate. 

The equations of equilibrium for an 

of fibres take the form 

idealized material reinforced by two families 
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Although the three functions p, T(*)  and T(2) must be chosen to satisfy (3.10) we also 

require some flexibility in satisfying stress boundary conditions in a given problem. 

However, the homogeneous equations obtained from (3.10) by setting s i j  = 0 will have 

non-trivial solutions which can be superimposed on any solution of (3.10). 

Integrals of a Deformation 

A general result may be obtained by resolving the equations of equilibrium in the 

fibre direction. Multiplying (3.9) by ai and noting that aiai = 1 we have 

But, 

where $ is the derivative along the fibre direction. Thus, we have 

However, recall from Equation (2.34) that 

d a .  dA, f -- - 
dxj ax, 

so that if the fibres are initially parallel straight lines, 

In such a case the equilibrium equations reduces to 

which can be integrated along the fibre direction to obtain - p +  T. If the deformation 

is such that the sij are constants then the quantity - p  + T is an integral of the 

deformat ion. 



Chapter 4 

Elastic Solids 

In Chapter 3 it was found that the kinematic equations are not sufficient to completely 

determine the state of stress in a deformed body. In order to find the extra-stress 

components it is necessary to specify the material response to a deformation. In this 

chapter we consider the constitutive equation for elastic solids, in which case the stress 

components are derived from a strain-energy function. 

4.1 One Family of Fibres 

Consider the case of an elastic material reinforced by one family of fibres. As is stan- 

dard in classical elasticity theory, we assume the existence of a strain-energy function 

W, per unit volume which is a function of the deformation gradients. Following the 

formulation described by Spencer [21], we suppose that the effect of the fibres can be 

introduced by letting W depend also on the initial fibre direction. In the case of a 

single family of fibres we have, 

Now, W must be form invariant under rigid rotation of the deformed body. That is, 

an arbitrary transformation of the form 



CHAPTER 4. ELASTIC SOLIDS 23 

where 

X i k A j k  = AkiXkj  = bij7 and det [Aij] = 1. (4.2) 

Thus we require 

W ("-,A,) ax, = W (%,A,) ax, 
for any Xi j  satisfying (4.1). One further point to ncte is that the sense of A is 

unimportant. Thus it follows1 from (4.3) that the functional dependence sf W can 

be written in the form 

W = W (Gap, Aa Ap) (4.4) 

where 

If we further assume that the only anisotropic properties of the composite body are 

due to the presence of the fibres then W is invariant under a rigid rotation of the 

undeformed body. That is, W is invariant under the transformation X -, X' where 

and the Aaa satisfy the same conditions as in (4.2). The transformations of A, and 

Gap are written as 

A; = AapAa (4.7) 

respectively. It then follows from (4.4)) (4.7) and (4.8) that W satisfies 

Using results from the theory of algebraic invariants2, it is possible to express W as 

function of the ten invariants: 

'See Thm. 1, Green and Adkins [17, p. 71. 
2Spencer gives a full account of the theory of invariants in [23]. Tablea listing sets of invarianta 

are also provided. 
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where G and AA are the matrices 

and tr(G) denotes the trace of G ,  

However, since A is a unit vector, 

and so a number of the invariants in (4.10) can be neglected, leaving 

Using the Cayley-Hamilton equation, 

1 
G~ - t r ( ~ ) ~ ~  + 5 { t r ( ~ ) ~  - t r ( ~ ~ ) }  G - det ( G ) I  = 0, 

where Z is the identity matrix, we find 

1 
det (G) = -tr(Gi3) + { l t r ( ~ ) ~  - t r ( ~ ~ ) )  tr(G). 

3 2 3 

Thus, the set of invariants in (4.12) may be replaced by the following equivalent but 

more convenient set: 

The reason that the invariants in (4.13) are more convenient than those in (4.12) can 

be seen at once from the constraint conditions (2.26) and (2.25). They imply, simply, 

K1 = 1 and K2 = 1. Therefore, W may be regarded as a function of J1, Jz and J3 
only. 

Introducing the Finger strain tensor defined by 

a ~ i  axj 
gij = -- ax, ax, 



the expressions in (4.13) may be determined in terms of the deformed body. Us- 

ing, (2.24), (4.5) and (4.14) the strain invariants become 

where aa is the matrix defined by 

The stress components for an unconstrained elastic body is given in terms of the 

displacement gradients by [17, p.261, 

The constraint conditions may be taken into account by an appropriate modification 

of the strain-energy function. We may introduce p and T as two Lagrange multipliers 

and replace W with 
1 1 

W - Z p ( K l  - l ) + V T ( K 2 - l ) .  

Then, (4.16) written out in terms of the invariants becomes, 

where 

Using (4.13), the derivatives of the invariants are found to be 



The terms in (4.17) may be simplified using (4.5), (4.14), and (4.15). For example, 

using the fourth equation of (4.18) we have 

the last two equations following directly from the Cayley-Hamilton equation and the 

fact that det(g) = 1. The remaining terms in (4.17) may be similarly simplified. The 

details are omitted and only the final form is given here as, 

As was stated in Chapter 3, we find that it is not necessary to postulate the existence 

sf reaction stresses for an elastic material. In this case p and T occur naturally as 

Lagrange multipliers in the strain-energy function. Spencer [21] has found that this 

is possible because the strain-energy function is a potential function for the stress. 

Further, it does not happen if the constitutive equation is such that the stress is not 

derived from a potential. In the absence of a potential function the presence of the 

reaction stress has to be postulated. 

One further modification can be made in order to express (4.19) in the form (3.3), 

that is 

tij = -psi, + Taiaj + sij 

where the extra-stress components sij satisfy (3.4), 

s;; = 0 and aiajs;, = 0. 

This may be done by absorbing all terms found by evaluating tii and aiajt;j into - p  

and T respectively. To begin, let 
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then 

and 

To determine s;, we first notice that the components mi; defined by, 

satisfy 

aiajmij = 0 and m;; = 1. 

Also, the components n;j defined by 

Now, sij may be obtained by multiplying (4.20) by m,, and (4.21) by nij and sub- 

tracting the results from i i j .  That is, 
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Simplifying the right hand side we obtain, 

We note here that it is possible to obtain results due to Adkins and Rivlin [13], 

Adkins [14, 15, 161 and Green and Adkins [17] regarding large elastic deformations 

of constrained isotropic elastic materials. In the case of materials reinforced by a 

single family of fibres, that theory is obtained if it is assumed that W depends only 

on J1 and J2 and is independent of J3. Thus, by setting W3 = 0 wherever it appears, 

the results for constrained isotropic materials can be obtained. The equation for the 

stress components reduces to: 

Spencer (211 suggests that such a theory may be appropriate in the case in which the 

fibres are sparsely distributed or, equivalently, are regarded as having infinitesimal 

thickness. 

4.2 Two Families of Fibres 

Following the same argument as in $4.1, we assume the existence of a strain-energy 

function W, which depends on the deformation gradients as well as two initial fibre 

directions A and B. We assume also that the angle subtended between the two fibre 

families at each point in the reference configuration is 2@, where, in general <P is a 

function of position. Then, 

where 
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Taking into account the fact that A and B are unit vectors, it follows from the tables 

of invariants [23] that W can be exp~essed as a function of 

JI, J2, J3, J4 = tr {(BB)G2) = tr {(bb)g) , 

J5 = tr (G(AA)(BB)) = cos (2@)tr(ab), 

J6 = tr {G2(AA)(BB)} = cos (2@)tr { jab)g} , 

and cos2 (2@), where the matrices a b  and A B  are defined by 

and 

cos (26) = A.B, = tr {(ab)g2) - Jltr {(ab)g} + J2tr(ab). 

The last equality above follows from the Cayiey-Hamilton equation. The kinematic 

constraints in this case imply, 

In the same manner as in $4.1 the stress components are found to be, 

where Ta and Tb denote arbitrary tension in the two fibre directions. Equation (4.24) 

may take a simpler form in a number of instances. If the two fibres are initially 

orthogonal then AaB, = cos(26) = 0. Thus, the invariants Js and Je as well as 

cos2 (2@) can be omitted and W is a function of J1, J2, J3 and J.4. In this case the 

stress components are, 
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This form of W is equivalent to that given by Green and Adkins [I?, p.141 for materials 

with rhombic symmetry. That is, the material is orthotropic. A further simplification 

arises if the fibres are indistinguishable except for their directions. If this is the case 

then W is symmetric in J3 and Jq. It follows from the theory of invariants [23] that 

W is a function of J1, J2 and J3 + Jq. 
If the fibres are sparsely distributed or may be considered to have negligible thick- 

new then the strain-energy function depends only on J1 and J2. For materials of this 

type the stress components are, 

which is the same as the result found at the end of 94.1 except for the term involving 

4.3 Functional Form of W 

Equations (4.19) and (4.24) are general expressions for the stress components for 

materials reinforced by one or two families of fibres. Our goal is to provide a math- 

ematical description of a body's behwiour in reaction to any specified deformation. 

The problem is solved if the strain-energy function can be expressed as a known func- 

tion of the invariants. However, one cannot expect all composites to exhibit the same 

reaction to a given deformation. That is, each different fibre-matrix pair will have its 

own characteristic strain-energy function. Further, since the form of W is not known 

a priori, it must be determined experimentally. 

Green and Adkins [I?, Ch.101 discuss methods for determining an empirical form 

of the strain-energy function. The predominant method of finding W is to assume 

that it can be approximated by a multivariate polynomial in the strain invariants. 

The coefficients are determined with the use of (4.17) and experiments which involve 

subjecting materials to special deformations. These experiments may include defor- 

mations such as pure homogeneous strain of a thin sheet, pure shear of cuboid and 

torsion of a cylindrical rod. However, the degree of the assumed polynomial form is 

generally limited by the number of independent experiments which can be performed. 



These authors point out that any approximation so obtained is likely to be valid only 

for a limited range of deformations if the degree of the polynomial must be restricted. 

Pipkin [24] suggest that for moderate deformations it is reasonable to approxi- 

mate the Wi by constants. This form of the strain-energy function can be seen as a 

modification of the Mooney3 form, 

with an additional term to reflect the presence of the fibres. That is, W is given by, 

When the fibres are of negligible thickness or are sparsely distributed, then C3 = 0 

and the form suitable for isotropic materials is regained. 

3Citationfor the original paper is given by Green and Adkins [17, p.26). M.  Mooney, 3. Appl. Phgs. 
11 (1940), 58% 



Chapter 5 

Example Deformat ions 

In this chapter examples of some simple deformations are presented to illustrate the 

theory developed in Chapters 2-4. 

5.1 Homogeneous Deformations 

5.1.1 One family of fibres 

Consider a body in the shape of a rectangular parallelepiped, reinforced by one family 

of fibres. We assume that in the reference configuration the fibres are straight, parallel 

and lie in planes normal to the X3 axis. Further, assume that the fibres are initially 

inclined at an angle to the positive XI axis as shown in Fig. 5.1. The initial fibre 

direction is 

A = (cos O, sin O, 0). (5.1) 

Consider first, simple extension deformations of the form 

where A l l  X2, .A3 are constants. The incompressibility condition, (2.26) requires 
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Figure 5.1: Rectangular block reinforced by one family of fibres 

while the fibre-inextensibility condition, (2.25) gives 

Thus, any deformation of the form (5.2) can be completely determined from (5.3) 

and (5.4) once one of A1, X2, X3 is specified. Further, the constraint conditions also 

provide bounds on admissible values of the A;. We see from (5.4) that every deforma- 

tion must satisfy 

A1 5 lsec 81 and X2 i /csc 01 . 

Also, since 

0 _< (A1 cos 8 - X2 sin 0)' , 

we have 

2X1X2 cos 8 sin 8 5 A: cos2 8 + A: sin2 O = 1. 

Substituting for AIXl from f5.3), we obtain the bound for .A3, 

when X1 > 0 and X2 > 0. Thus the constraint conditions only restrict the amount of 

contraction in the X3 direction as they provide no upper bound for A3. If the fibres 
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are initially aligned so that @ = w/4, then X3 _> 1. In this case the material can be 

extended but not contracted in the X3 direction. 

Using (2.24), the fibre direction in the deformed body is found to be 

a = (A1 cos 9 ,  X2 sin 9, 0) = (cos 4, sin q5,O). (5.6) 

It is seen that the fibres remain straight and parallel and only rotate during a defor- 

mation of this type. 

The most general homogeneous deformat ion possible under which (5.3), (5.4) 

and (5.6) remain valid is given by: 

where a13 and 0 2 3  are constants. This deformation allows for shear in any direction 

on the planes X3 = constant. The components of the Finger strain tensor for this 

deformation is 

The strain invariants are calculated from (4.15) to be: 

JI = A: + X i  + + a:3 + 0i3, 
J2 = A:Ai + A: (A: + 4) + A: (A: + , 
J3 = A: cos2 q5 + X i  sin2 q5 + (al3 cos(q5) + 0 2 3  sin 4)2 

= A: cos2 9 + X i  sin2 9 + (a13Al cos(9) + aZ3A2 sin Q ) ~ .  

The stress components are 
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where the extra stress, sij, are given by 

Deformations under which the body is not subjected to shear have been discussed by 

Spencer [21]. A non-zero shear deformation requires a13 = a23 = 0, in which case the 

extra-stress components reduce to: 

If W can be assumed to  be of the form given by (4.25) then the Wi are constants and 

the equilibrium equations reduce to, 

Therefore, assigning any constant values to p and T produces a statically admissible 

solution. In particular, if any two of tll, tz2, t33, t12 are specified by choosing appro- 

priate values for p and T,  then the remaining stress components can be determined. 
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Uniform Extension 

As an example, suppose that t l l  = 0 and tz2 = 0 are specified. From (5.9), p and T 

are found to be 
9 2 2  cos2 4 - 911 sin2 4 

P = cos 24 

and 

The remaining stress components are obtained by substituting for p and T in (5.9). 

They are, 

sz2 cos2 4 - sll sin2 4 
t 3  = S33 - 

cos 24 7 

t12 = s12 - 2 tan (24) ( a 1  - ~22)  , 

We see that, in general, t12 # 0. Thus, uniform extension cannot be produced by 

applying uniaxial tension only. It will be seen in 55.1.2 that a uniform extension can 

be produced by uniaxial tension alone if the material is reinforced by two families of 

fibres. Another feature to note from (5.11) is that t z  -, oo as 4 -+ In unless sll -, 0 4 

and s 2 2  --' 0 as well. It was noted in 55.1.2 that no further contraction in the X3 
1 direction is possible when 4 = p. 

5.1.2 Two families of fibres 

We consider in this section is the same material as in 55.1.1 but now reinforced by 

two families of fibres. The fibres are assumed to be initially straight, parallel and 

lie in planes normal to the X3 axis. The angle between the two fibre families is 2@. 

Further, the X1 and X2 axes are chosen to bisect the angle between the fibres as 

shown in Fig. 5.2. The initial fibre directions are then 

A = (cos@,sin@,O) and B = (cos @, -sin@,O). 



Figure 5.2: Rectangular block reinforced by two families of fibres. 

Consider the same class of deformation studied in $5.1.2, namely, 

From (2.24), the fibre directions after deformation are 

a = (cos 4, sin 4,O) = (A1 cos O, X2 sin a, 0) 

and 

b = (cos 4, - sin 4,O) = (A1 cos 0 ,  -A2 sin cP, 0). 

The fibre-inextensibility and incompressibility conditions yield the same constraint 

equations a s  in the case of reinforcement by one fibre family, (5.3) and (5.4). In 

addition to the strain invariants J1, J2 and J3 given in (5.8)) the following invariants 

are defined: 

J4 = A: cos2 O + A: sin2 O + (a13A1 cos(O) - a 2 3 X 2  sin 8)2 

Js = (A: cos2 4 - A: sin2 8) cos (20) (5.13) 

J~ = {A: cos2 o (A: + -. A: sin2 0 (A; + a;,)} cos (20). 



The stress components are 

tll = - p + ( T a + T b ) X ; ~ 0 s 2 0 + ~ l ~ ,  

t22 = -p + (To + Tb) X i  sin2 0 + 3 2 2 ,  

t33 = -p+s33, 

t12 = XI X2 sin 0 cos 0 (T, - Tb) + 312, 

t?3 = 513, t23 = 523- 

where the extra stress, sij, are given by 

If it is possible to assume W is of the form given by (4.25) then the Wi are constants 

and the equilibrium equations reduce to 

d?l -- dTo aTb + aiaj- + bibj- = 0.  
a x i  axj axj 

Therefore, any constant p, Ta and Tb will produce a statically admissible solution. As 

in •˜(5.1.1), it is possible to assign values to three of t l l ,  tz2, t33, t12. However, it is not 
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possible to specify all three of i l l ,  tz2, t33 since the resulting system of equations for 

p, T, and Ib has no solution. 

Uniform Extensi~n 

Consider again the example discussed in s(5.1.1). That is, t l l  = 0 and t22 = O are 

specified. Now, though, a third arbitrary function is available for use in fixing the 

stress components. The condition t12 = O may be given. Vsing (5.9), p, T, and Tb are 

found to be 
5 2 2  cos2 4 - sll sin2 4 

P = cos 24 1 

2 sin (24) (522 - 511) - 4 cos (24)912 
T, = 

sin 44 9 

and 
2 sin (24) (sz2 - sll ) -:- 4 cos (24)sI2 

Tb = 
sin 44 

The remaining stress components are obtained by substituting for p, T, and Tb in (5.9). 

They are, as previously found, 

Thus it is possible to  produce a uniform extension in the material by applying a 

uniaxial tension alone. 

5.2 Cylindrically Symmetric Deformat ions 

One method of manufacturing fibre-reinforced composites is to wind fibres onto a re- 

volving drum. This produces a composite with cyiindrical symmetry in its undeforrned 

state. In this section we investigate deformations of a circular cylinder reinforced by 

two families of fibres which preserve this symmetry. 
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Refer the position of a generic particle to a cylindrical polar coordinate system. 

A particle which has coordinates (R ,  O ,  2)  in the undeformed body moves during a 

deformation to the location ( r ,  6, r )  where, 

and 

X I  = r cos 6, x2 = r sin 0; z3 = z. 

Assume that the two families of fibres initially lie in the surface R = constant and are 

inclined at an angles @ and -@ to the Z axis, Fig. 5.3. Then the components of the 

initial fibre directions referred to the cylindrical polar coordinate system are, 

We consider deformations of the form 

The function r(R)  represents an inflation or contraction, Q(R)  a torsion of the cylin- 

drical surface with initial radius R and w(R) an axial extension or contraction of the 

sheet with initial radius R. After deformation the fibres lie in the surface r = constant 

so we may take the final fibre directions to be 

- 
a = (0 ,  sin 4, cos 41, 6 = (0 ,  - sin 4, cos 4).  

In order to discuss deformations of this type it is necessary to express the relevant 

quantities in terms of cylindrical polar coordinates. If we denote 

then 

Also let 
t ,  i r e  trz cost9 sin 8 0 

* =  
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Figure 5.3: Cylinder reinforced by two families of fibres. 

cosO s i n 0  0 

then the rule for the transformation of stress components is 

Also note that q and Q are orthogonal matrices, so that 

If we further define 

@ = q ~ ~ T  = 
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then components of Finger's strain tensor are transformed as 

The transformation of the fibre direction can be similarly obtained. We have, 

M 

a = qa,  (55) = q(aa)qT. (5.18) 

The constitutive equation can be transformed into cylindrical polar coordinates by 

multiplying Equation (4.24) on the left by q and on the right by qT. We obtain, 

where 

Now, referring to the deformation (5.17) the constraint conditions imply that r(R),  

P (R)  and w(R) must satisfy 

wLdr - 
R d R  - 1' 

w2 cos2 8 + $(sin O + R P  cos 0 ) 2  = 1, (5.19) 

w2 cos2 O + $(- sin O + RB cos = 1. 

The second and third equations of (5.19) are compatible only if sin @ = 0 or cos = 0, 
in which case both families of fibres coincide, or if 9 = 0. Thus if the fibres are assumed 

to be distinct then 9 = 0 and torsion is not possible. The deformation then has axial, 

and not just cylindrical symmetry. The constraint conditions then simplify to 
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in which case w may be eliminated between these two equations to give 
r dr -- - cos @ 
RdR - 3 ' 

(1 - ($) sin2 @} 
Now, (5.20) may be used to determine r once @ has been specified. Further, us- 

ing (5.18) we find that the fibre directions in the deformed body are 

i = (0, sin 4, cos 4) = (0, ( r  sin @)/ R, w cos Q T )  

and 

6 = (0, - sin 4, cos 4) = (0, -(r sin @)/ R, w cos a), 
and so 4 and w may also be obtained once r is found. 

The deformation gradient matrix F, for this deformation is 

Thus, the components of are calculated to be 

Using these quantities it is a straightforward matter to calculate the strain invariant 

J1 to J6. We find, 
2 

JI = (-$I2 + (i) + Z2 (g) + w2 

( 2  2 ( 2 ( ) 2 + w 2 ) ( ) 4  } J6 = W COS @ z 
dR 

sin @ cos (2@) 
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The stress components may be obtained in a manner similar to that which was em- 

ployed in Sections 5.1.1 and 5.1.2. 



Chapter 6 

Conclusions 

Fibre-reinforced composites have become increasingly important in the manufacture 

of modern products. Their success is due mainly to their low weight and high modulus 

or strength. The possibility of incorporating these materials into applications exists 

wherever there is a potential for weight savings. However, their development and 

use must be based on a firm understanding of their unique mechanical and physical 

characteristics. Therefore, it is necessary to develop appropriate methods of stress 

and strain analysis. 

In this thesis a continuum theory for fibre-reinforced elastic materials has been 

studied. The two assumptions central to the development of this theory are that the 

fibres are inextensible and the composite is incompressible in bulk. The inextensibility 

condition can be seen as an idealized model for materials in which a more compliant 

matrix is reinforced with very strong fibres. The incompressibility assumption is one 

which is frequently made in continuum mechanic2 and is a good approximation for 

many materials. However, it is probably more appropriate for those composites for 

which finite deformation theories apply. 

The conditions of fibre inextensibility and incompressibility are kinematic con- 

straints which have the effect of restricting the range of possible deformations. The 

kinematic relations obta ixd  in this thesis are sufficiently general and so may be ap- 

plied to any material type. However, in order to completely determine the state 

of stress in a deformed body it is necessary to specify the form of the constitutive 



equation. In this regard, we have considered materials which are perfectly elastic in re- 

sponse to a deformation. The stress components are given in terms of a strain-energy 

function which depends on the deformation gradients and also the fibre directions 

in the undeformed body. Using results from the theory of algebraic invariants, the 

strain-nergy is written as a function of certain invariants of the deformation as well 

as the fibre direction. The result is an equation for the stress components for any 

elastic deformation in terms of the quantities employed to describe the deformation. 

Once the functional form of the strainenergy function is specified for a material the 

problem of finding the associated stress is solved. 

Areas for further study 

We have noted that the ideal approximation of material incompressibility may 

not provide adequate results if the deformations are linear. The ideal theory may 

be better suited to study small deformations if the incompressibility condition 

is relaxed to permit small changes in the density. 

In this thesis, only elastic stress response has been considered. Thusfar there has 

been little research concerning any other material behaviour other than elastic- 

perfectly plastic, and plastic. An investigation of fibre-reinforced visco-elastic 

materials and fibre-reinforced fluids may yield useful results. 
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