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Abstract 

The steady, two-dimensional, laminar flow of an incompressible fluid through a chan- 

nel with an abrupt constriction of ratio 2:l is numerically calculated. The governing 

equations are solved using a second-order central difference scheme and a fourth-order 

compact scheme. The Interior Constraint (IC) Method is employed for the numeri- 

cal treatment of the values at the boundary. The Point Successive Over-Relaxation 

(SOR) Method is used to solve the discrete equations. Due to the combination of 

the IC Method at the boundary and the compact scheme at the interior points over- 

relaxation is now possible. Faster covergence is achieved for higher Reynolds number. 

An evaluation of different approximations for the boundary vorticity is given. Several 

flow parameters are calculated and compared to previous works. 
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Chapter 1 

Introduction 

Fluid dynamics, prior to the computer era, was mainly divided into two branches: 

theoretical and experimental. The mathematical models resulting from fluid mechan- 

ics problems are highly non-linear. Therefore, theoretical solutions are difficult to 

obtain and mainly found for linear problems. On the other hand to reproduce a phys- 

ical phenomenon through experiments is a difficult matter. Wind tunnels have been 

designed to model flows around objects, e.g. cars, airplanes and rockets. Their main 

disadvantage is cost. Wind tunnels are very expensive to run, and a change in the 

parameters flow might imply changes in the layout of the experiment. Even for small 

scale experiments, e.g. flows through channels, the situation is not different. Very 

sophisticated instruments are needed to measure the velocity of the particles, and the 

accuracy of this measurements suffer near boundaries. 

The introduction of computers resulted in the growth of a completely new field, 

termed Computational Fluid Dynamics (CFD). This field has led to the development 

of new mathematical theories for numerical solutions of non-linear differential equa- 

tions. CFD is close to the experimental branch. Improvements in the computer speed 

and the search for more efficient numerical solution procedures allow us to model 

more complex phenomena. But it is still necessary to rely on rigorous mathematical 

analysis of simpler linearized models, on physical intuition and trial-error procedures. 
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In Computational Fluid Dynamics the complex non-linear equations are approxi- 

mated by a system of discrete equations. Many procedures may be used to reduce the 

continuous equations to a set of discrete ones. Finite differences is one of the most 

used methods. A grid or mesh is placed over the domain of interest. At the mesh 

intersections the finite-difference solutions will be defined. Taylor series are applied 

at each grid point, and a set of discrete equations are obtained. The order of accu- 

racy of the approximation may vary. Schemes of first and second-order of accuracy 

are extensively used. A disadvantage is that, for complex flows, very fine meshes are 

needed and, therefore, the number of discrete equations larger. Usually higher order 

of accuracy means more grid points for the scheme, except for high order compact 

schemes. 

Constricted tubes are found in mechanical devices and in our body (due to atheroscle- 

rosis of blood vessel). In this thesis we shall study the flow of a tw+dimensional, 

steady, viscous, incompressible fluid through a constricted channel. Numerical cal- 

culations will be made for a channel with constriction ratio 2 : l. A parabolic ve- 

locity profile is imposed upstream, while horizontal flow and constant pressure are 

assured for the outflow downstream of the channel. Flows in contracting channels 

have attracted considerable attention. Numerical experiments suggest the presence 

of a recirculation region downstream. The flow singularity at the reentrant corner 

makes the prediction of such a region difficult. The values of the Reynolds number 

at which the downstream recirculation appears and the wake's dimensions are still 

open problems. In an effort to solve these problems several flow parameters will be 

analyzed. We will use a second order scheme and a fourth order compact scheme 

and compare their performance. A careful examination of the effects of the boundary 

conditions will be also presented. 

In Chapter 2 we will present an overview of the continuous governing equations 

and their discretization. A derivation of the governing equations of fluid flow, with 

all the hypotheses involved, will be given in Section 2.1. In Section 2.2 we will give 

a description of the numerical schemes employed to compute the flow. The solution 

technique used will also be described. 



CHAPTER 1. INTRODUCTION 

Chapter 3 begins with a description of the model problem, and a review of the pre- 

vious work is given in Section 3.1. The Interior Constraint (IC) method is formulated 

in Section 3.2 for a constricted channel. A variation of the IC method, named the 

Vorticity Interior Constraint (VIC) method, is proposed in Section 3.3. The boundary 

conditions employed on this problem are discussed in Section 3.4 and a series of vor- 

ticity boundary approximations are also given. Section 3.4 is dedicated to the results. 

The effects of different vorticity boundary conditions are studied. Characteristic flow 

parameters are computed, and comparisons with published ones are also.given. 



Chapter 2 

Governing Equations of Fluid 
Mechanics 

2.1 Derivation of Governing Equations 

A fluid in motion is characterized by physical magnitudes or quantities such as the 

velocity, pressure, density, temperature, internal energy, or some other set of variables. 

Such magnitudes, or dependent variables, are subject to universal physical laws of 

conservation. A set of mathematical equations governing the dependent variables, 

based on the physical laws of conservation of mass, momentum and energy, will be 

derived. 

2.1.1 Preliminaries 

A fluid consists of many particles in interaction. The behavior of the particles ulti- 

mately characterizes the motion of the fluid. One could concentrate on the description 

of the interaction of such particles and, using the laws of mechanics and probability 

theory, infer the macroscopic behavior of the fluid. Such an approach is known as 

the statistical method, and is valid for light gases yet incomplete for dense gases and 
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liquids [5].  

Recently a new microscopic approach has been developed. The lattice Boltzmann 

equation (LBE) method [16, 171, a derivation of the lattice gas automaton method 

[30], constructs a microworld in which space, time and velocities are all discrete. The 

particles reside on the lattice's nodes and change their velocities directions according 

to scattering rules. This method allows the use of fully parallel algorithms and is 

easily implemented for complex boundary flows. 

A different approach is to consider a small volume of continuous fluid, where 

individual particles are ignored. The microscopic properties of the particles within 

the volume are averaged to obtain the macroscopic values such as: velocity, pressure, 

density, or other variables that might describe the fluid. The validity of this continuow 

method is conditional upon the satisfaction of the continuum hypothesis. The physical 

quantities of interest must be spread uniformly over the volume in consideration, and 

the mean free path of the particles must be small in comparison with the length of 

the flow field. Only under this continuum hypothesis can the microscopic structure 

of the fluid be ignored, and the average considered valid. 

In this work, the fluid under consideration satisfies the continuum hypothesis. 

Therefore, the continuous method will be used to state the conservation laws. 

The conservation laws could be formulated in either one of the two known coordi- 

nate systems: the Eulerian coordinate system or the Lagrangian coordinate system. 

In the Eulerian system a control volume independent of time is fixed in space. The 

conservation laws are applied to the fluid which passes through the control volume. 

The dependent variables are functions of the spatial coordinates and time. On the 

other hand, the Lagrangian system follows a control volume through its motion in the 

flow. The particles of fluid do not vary, but the shape of the volume might change 

over time. In this formulation, the spatial variables are not independent of time. The 

choice of coordinate system varies from author to author, and mainly depends on the 

problem under consideration. Here the Eulerian coordinate system is used. 

Recalling that the independent variables are the spatial coordinates and time, 
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it is very useful to define the total derivative, also known as convective or material 

derivative. The total derivative gives the rate of change of any physical magnitude 3 
when moving with the flow, and it is defined as 

where u is the velocity of the fluid and V the gradient vector. 

Here we are only concerned with fluids considered to be Newtonian, incompress- 

ible, and for which the changes of temperature in the domain of interest are not 

significant. The definitions and consequences of these assumptions will be addressed 

in the following sections. 

2.1.2 Conservation of Mass 

Consider a fixed control volume V entirely occupied by fluid, and S its surface. The 

volume V is fixed in space. The particles will enter and leave the volume through the 

control surface S. These conditions will also apply in the subsequent sections of this 

work. 

The law of conservation of mass states that the mass within any volume varies 

only as a consequence of the flux across the surface of the volume. The integral form 

of the conservation of mass applied to the fluid confined in V yields the equation 

where p is the fluid density, and n the outward unit normal of the surface S. 

The previous equation holds for any control volume V. A more restrictive form of 

the conservation of mass can be obtained applying the divergence theorem 

+ v . ( p u )  = 0 

which is known as the continuity equation in the conservative form. Equation (2.3) is 

not valid when the quaetities involved are not continuous. 
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A non-conservative form of equation (2.3)  can be obtained by expanding the di- 

vergence term V - ( p u )  in (2 .3)  and using the expression for the total derivative 

In most liquid flows the total variation of the density p may be considered irrelevant 

and, therefore, assumed to be uniform over the entire fluid. In such cases 

holds and the fluid is said to be incompressible. The continuity equation (2.4)  then 

reduces to 

v.u = 0. (2.6) 

2.1.3 Conservation of Momentum 

The principle of conservation of momentum states that the rate of change of momen- 

tum within a control volume V is equal to the sum of forces acting in such a volume, 

and it is expressed by 

where u is the velocity, F the external force acting on the fluid contained in V, and 

a =' (ai j )  represents the surface stress tensor. 

Equation (2 .7)  holds for any choice of volume V. If the integrands are continuous 

functions of x on V the differential equation 

holds at every point, and it is known as the equation of motion. 

As mentioned earlier the fluid is considered to be Newtonian. This means that 

there is a linear relation between the stress acting on the fluid and its rate of defor- 

mation. In the case of Newtonian fluids the surface tensor can be written as 
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where p is the kinematic pressure, 4, is the Kronecker delta, p the dynamic coefficient 

of viscosity, e, = i(e+z) the rate of the strain tensor and A = ekk = V-u the rate 

of deformation. The dynamic viscosity p depends mainly on the temperature changes 

in the flow field. Since we are considering fluids for which the change of temperature 

is not significant the viscosity p can be taken to be uniform over the fluid. 

The above assumption and the incompressibility of the fluid, expressed through 

equation (2.6), simplify the expression (2.9). In this way the term V-u in (2.8) can 

be written as 

V .  a = -Vp + pV2u. (2.10) 

Substitution of (2.10) into (2.8) gives the well known expression of the Navier-Stokes 

equations 

In the majority of the cases the force F represents the gravitational force. The 

term pF in the above equation can be absorbed by the pressure term Vp when the 

pressure is written as 

p = PO + pF-x + p (2.12) 

where po is a constant, pF.x the pressure to balance the force per unit of volume due 

to F and p is the pressure arising from the effect of the motion of the fluid- it is known 

as the modified pressure [I]. 

Substitution of (2.12) into (2.11) gives the formulation of the Navier-Stokes equations 

in ~rimitive variables 

Some authors refer to equations (2.13)-(2.6) as the Navier-Stokes equations. The same 

will be done throughout this work, unless otherwise indicated. 

2.1.4 Conservation of Energy 

The conservation of energy is an application of the first law of thermodynamics to a 

control volume V. It states that the change of internal energy is equal to the sum of 
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the total work done on the system and any heat added. We are interested in fluids 

in which the temperature is uniform, and therefore the energy equation will not be 

necessary here. 

2.1.5 Dimensionless Steady Navier-Stokes Equations 

We are interested in exploring the effects that changing the values of the parameters 

p and C( have on the flow. In this case it is useful to write equations (2.13) and (2.6) 

in terms of dimensionless variables. Taking L as the reference characteristic length 

and U as the reference characteristic velocity, the new non-dimensional variables are 

defined 

Without any loss of generality the same notation for the new variables is kept. 

With these new variables the governing equations (2.13)-(2.6) become 

where Re = is the Reynolds number. 

The system of equations (2.15)-(2.16) is known as the dimensionless Navier-Stokes 

equations in primitive form. 

In many problems it is important to study the long time behavior of the flow. 

The steady state equations are obtained by assuming that the physical magnitudes 

that describe the flow are independent of time. That is, in equations (2.15)-(2.16) the 

velocity u and pressure p are only functions of the position, u = u(x), p = p(x). 

In this case the total derivative can be written as 

Du - - -  
Dt - 

and equations (2.15) and (2.16) become 
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which are the non-dimensional, steady Navier-S tokes equations in primitive variables. 

2.1.6 Two Dimensional Flows and Vorticity-Stream Func- 

t ion Formulation 

In many cases it is enough to consider planar flows. Due to symmetries in the region 

of the. problem, three-dimensional flows could be studied as two-dimensional flows. 

This means that the velocity u is only described by two components u = (u, v, 0). 

It is common practice in fluid dynamics to visualize the flow field by drawing the 

streamlines. Therefore, it is convenient to introduce the scalar magnitude +, named 

the stream function. The stream function is constant along the streamlines and is 

related to the velocity through the equations 

which satisfy the continuity equation (2.19). Vortex creation is also a distinctive 

feature of some flows. It is useful to describe the flow in terms of the distributions of 

the vorticity R, defined as av au R = - - -  ax ay 
which is created on the boundary and diffused away by the viscosity. The Navier- 

Stokes equations in the vorticity-stream function formulation for steady, incompress- 

ible, planar flows take the form 

where V2 is the Laplacian operator. Note that the pressure term disappears from the 

governing equations. The elimination of the vorticity in equations (2.22)-(2.23) leads 

to the formulation of the Navier-Stokes equations in terms of the stream function 

a4 is the biharmonic operator. where V4 = & +2,-# + w 
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2.2 Numerical Treatment 

t ions 

of the Governing Equa- 

The equations of fluid mechanics are highly nonlinear. Analytical solutions are rarely 

obtained. The appearance of computers opened a new era in fluid dynamics research. 

A new field, termed Computational Fluid Dynamics (CFD), has emerged. This field 

has provided new mathematical methods to solve numerous problems of fluid me- 

chanics. Solutions are obtained by first replacing the derivatives appearing in the 

governing equations by appropriate discrete approximations and then solving the dis- 

crete equations by a suitable numerical method. 

2.2.1 Discretization of Equations 

Numerous methods have been developed to discretize the governing equations. Among 

them, the finite difference method is the most commonly used. Finite difference 

approximations of different orders are found with the use of Taylor expansions of the 

quantities involved. 

Let f (x) be a function defined in a 5 x 5 b. A discretization of the interval [a, b] 

is obtained by considering the set of points {xi = xo + ih, i = 0,. . . , N), with zo = a, 

XN = b and h = 9. The discretized values fi of the function f(x) are obtained 

by evaluation at the discrete points xi, i.e. fi = f (xi). Different finite difference 

approximations for the derivatives of f (x) at x = xi can be obtained from these. For 

instance the first derivative could be approximated by any of the following expressions 

centered second-order 

backward first-order 
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10 

7 

6 
13 

(a) Five Points (b) compact (c) Nine Points 

Figure 2.1: Stencils 

forward first-order 
df ('xi) fi+l - fi -- 

dx - h + O(h) 

forward second-order 

Approximations can also be found for higher order derivatives. The classical difference 

approximation for the second-order derivative at x = xi is 

which has second-order accuracy. Combinations of these finite difference approxi- 

mations may be put together to obtain the finite difference approximation of the 

governing equations. 

To discretize equations (2.22)-(2.23) consider a uniform mesh in both the x and y 

directions. Let h be the mesh step size. 

The well known central difference or 5-point scheme for the Poisson equation can 

be obtained using the central difference formula (2.29) in equation (2.22) to obtain 

where the subscripts 0,1,2,3 and 4 represent the grid points (x, y), (x + h, Y), (x, y + 
h), (x - h, y ) and (x, y - h) respectively (see Figure 2.la). Similarly the vorticity 
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(a) Wide (b) Compact 

Figure 2.2: Higher order stencils 

equation (2.23) can be approximated by 

where 

The discrete equations (2.30)-(2.31) have second-order accuracy. 

Higher order schemes for equations (2.22)-(2.23) may be obtained using the same 

procedure. Generally this procedure will produce wide stencils, and special treatment 

near the boundaries is needed. For instance, using fourth-order central difference 

approximations in equation (2.22), a fourth-order scheme for the stencil Figure 2.2a 

is obtained. A special class of schemes are the compact schemes. A fourth-order 

compact scheme on the stencil Figure 2.2b is obtained in reference [23], where the 

grid points (x + h, y + h), (x - h, y + h), (x - h, y - h) and (x + h, y - h), numbered 

5,6,7 and 8 respectively, are also considered (see Figure 2.lb). The fourth-order 

compact scheme for equation (2.22) yields 

which is an example of a Hermitian finite difference method (Mehrstellenverfahren) 

[4l. 
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The approximation for equation (2.23) given in [23] is 

8(R1 + R2 + n, + n4) + n(n5 + n6 + n7 + R.)- Re (s1 + s 2 )  - + s3 

where 

S1 = 

s2 = 

s3 = 

Finite difference approximations of equation (2.24) are obtained on a wider stencil 

(see Figure 2.1~). The grid points (x + 2h, y), (x, y + 2h), (x - 2h, y) and (z, y - 2h) 

are now needed, and they are numbered 9,10,11 and 12, respectively (see, e.g., [21]). 

On this stencil the scheme for equation (2.24) is 

where 

and 

The term V;+;j is a discretization of V49 and the term JBh(Gij) is a discretization of 

JB($) = $,V2$, - +yV2$,. This scheme provides an approximation of second-order 

for equation (2.24). 
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2.2.2 The Point Successive Over-Relaxation (SOR) Method 

Once the governing equations are discretized, it is necessary to employ a suitable nu- 

merical method to solve the system of discrete equations. Several methods are avail- 

able. Direct methods are, generally, memory consuming and difficult to implement 

for complex geometries. Iterative methods are more frequently used in computational 

fluid dynamics. 

The Point SOR method is an iterative method that can be used to solve dis- 

cretized elliptic problems. This method is very easy to implement, requires very little 

memory and is one of the most efficient point-iterative procedures for large systems 

of equations. A sufficient condition for the convergence of this method is diagonal 

dominance. 

Let A$ = b be a system of equations obtained after the discretization of a elliptic 

equation, e.g., equation (2.22). The condition of diagonal dominance is that 

for all i = 1,. ..,n. 

The SOR method, given the most recent calculated value 11,;, makes a correction 

using the the value calculated in the previous iteration 

where w is the relaxation parameter. We refer to this as over-relaxation when 1 < 
w < 2. In some problems under-relaxation, 0 < w < 1, is employed. In the literature 

both cases are often refer to as the SOR method. The choice of an optimal value for 

w (denoted by wWt) could reduce considerably the number of iterations. For Laplace's 

equation on a rectangular domain with Dirichlet boundary conditions, an expression 

for wept has been obtained (see, e.g., [27]). For complex elliptic problems it is not 

possible to obtain wept in advance. In those cases, some numerical experimentation 

should be helpful in identifying the best values of w. Numerical experiments generally 

indicate that it is better to over-estimate the value of wept rather than under-estimate 
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it. Similar remarks apply for the vorticity 

JS OF FLUID 

where A is the relaxation parameter and 0; is calculated from any of the given ap- 

proximations. 

The iterative process (2.36)-(2.37) is stopped when, for a given value e, the condi- 

t ions 

are satisfied at every interior mesh point. 

As mentioned earlier, explicit boundary conditions for the vorticity are not usu- 

ally provided. Some kind of approximation formula may be used to determine the 

boundary vorticity values at each iteration, as it will be discussed later. It is a usual 

procedure to use a boundary damping parameter 6 to achieve or accelerate conver- 

gence of the iterative process. In this case the values of the boundary vorticity are 

given by 

n;+l = sn; + (1 - qn;, (2.40) 

where 0 < 6 < 1 is the damping parameter and Rb is the boundary vorticity com- 

puted. 



Chapter 3 

Flow in a Constricted Channel 

3.1 Review of Previous Work 

Flows in constricted tubes are frequently found in many technological devices and 

even inside the human body, as in the case of blood vessels with stenoses. Such flows 

exhibit complex patterns. Recirculating flow is usually found before and after the 

constriction. This behavior is, in most cases, not desirable. A good understanding 

of the flow structure is vital to prevent unwanted behavior and properly control the 

process. 

Flows in channels with a sudden contraction have been studied by several authors 

[ l l ,  10, 8, 20, 22, 15, 181 and present numerous interesting problems. A downstream 

wake is observed for a certain value of the Reynolds number Re and higher values. 

The fine structure of the flow is not well known yet. The singularity of the flow 

at the reentrant corner makes it difficult to predict the length of the downstream 

recirculation region and the value of Re at which first separation appears. 

The first effort to numerically study separating flows in channels was produced 

by Greenspan [l 11 and Friedman [lo]. They investigated the flow in a channel with 

a square constriction on one wall. Using a finite difference discretization for the gov- 

erning equations in the stream function-vorticity formulation, Friedman [lo] obtained 
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the solution for 0 < Re < 1000. The mesh sizes h = $, $ and f were not fine 

enough to capture the recirculation area after the re-entrant corner. However, a sep- 

aration vortex upstream of the step, not previously described by Greenspan [ll], was 

discovered. 

Later, Dennis and Smith [8] focused their attention on the upstream step. Nu- 

merical solutions for the flow of an incompressible fluid, through a channel with a 

constriction in form of an infinite step, were obtained. A second-order scheme devel- 

oped by Dennis and Hudson [7] was employed to solve the governing equations. This 

scheme introduces artificial viscosity at each mesh point. The local truncation error is 

0(h2Re2), and second-order accuracy is guaranteed only if hRe << 1. It is therefore 

necessary to use a small grid size to obtain dependable results for large values of Re. 
Uniform meshes with sizes h = ft, &, f , $ and & wen employed to find solutions 

for Reynolds numbers up to 2000. Dennis and Smith inferred that the recirculation 

appears primarily at a value of Re between 100 and 500, but they failed to produce 

it in their calculations. 

The effects of Dennis-Hudson's artificial viscosity scheme in the accuracy of the 

solution was explored by Hunt [20]. After discretization of the governing equations, 

Hunt eliminated the vorticity by substitution and obtained a system of equations in 

terms of the stream function. A non-uniform grid with a high concentration of mesh 

points near the corner was used. Reynolds numbers up to 2000 were considered. His 

results predicted a downstream recirculation region starting at Re = 250 not found in 

previous calculations. Hunt, as previously reported by Brarnley and Sloan [3], stated 

that Dennis-Hudson's scheme is less accurate if the artificial viscosity is added. 

Karageorghis and Phillips (221 solved the Navier-Stokes equations in the stream 

function formulation by using spectral approximations for 0 < Re < 500. Collocation 

points are densely distributed in a vicinity of the corner and near the walls. They 

reported that the downstream wake first appears at around Re = 175 and that the 

separation occurs at the corner and not to the right as predicted by Hunt [20]. They 

found a second vortex at the upper corner upstream of the step, which is in agreement 

with Moffatt's theory [25]. 
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Hawken et al. [15] studied this contraction flow using a finite element discretization 

for the governing equations in primitive variables. A high concentration of elements 

is placed close to the re-entrant corner. Even though they failed to visualize the 

downstream vortex, the velocity gradient revealed a very thin recirculation region at 

Re = 250 near the corner. They suggested that separation occurs to the right of the 

corner. Their downstream wake reattachment values are slightly higher than Hunt's 

values, but smaller than Karageorghis and Phillips'. 

In a more recent paper Huang and Seymour [19] employed the Interior Constraint 

(IC) method, proposed by Huang [IS], to solve this problem. A computational bound- 

ary is set up near the physical boundary and the use of vorticity values at  the physical 

boundary is avoided. Both uniform and non-uniform grids were employed in calcula- 

tions with a fine mesh size h = A. The non-uniform grid is generated by local coor- 

dinate transformation, mapping the channel into a unit square before discretization. 

Huang and Seymour found that the uniform grid works better than the non-uniform 

grid when the central difference scheme is used. They predicted a downstream re- 

circulation region starting at Re = 250. The separation occurs after the corner, as 

predicted by Hunt [20] and Hawken et al. [15], and moves towards the corner when 

Re increases. 

The treatment of the singularity of the vorticity function at the sharp corner has 

also been a concern. Roache [27] reviews different methods of handling the corner 

vorticity. A local coordinate transformation near the re-entrant corner was proposed 

by Dennis and Smith [S]. The finite difference approximation was applied along lines 

with 45" of inclination with respect to the main grid lines, to avoid the use of the 

vorticity at  the corner. The use of the vorticity at  the boundary was avoided by Hunt 

[20], who used the equations in terms of the stream function only. But as noted by 

him the singularity of the vorticity leads to a singularity of the second derivative of 

the stream function, that might affect the accuracy of the results. Hunt also proposed 

the use of Moffat t 's expansion [25], successfully employed by Bramley and Dennis [2] 

in a branching channel. 

The vorticity does not appear in Hawken e t  al. [15] equations, since the primitive 
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Figure 3.1: Domain symmetry. 

variable formulation is employed. But the calculations are affected by singularities 

in the derivatives of the velocity components. The vorticity values at the boundary 

are not employed by Karageorghis and Phillips (221 and Huang and Seymour [19] in 

their calculations, but they are used to predict separation and reattachment lengths. 

In reference [14] Gupta et al. obtained a power series solution for the cavity problem 

near the corner, valid for small Reynolds numbers. In a recent paper Ma and Ruth 

[24] developed a vorticity-circulation method to treat the singularity of the vorticity 

at the corner. A review of some other methods is also given in their paper. 

In the present work the Interior Constraint (IC) Method, proposed by Huang [18], 

and a variant of it are considered. Finite difference discretizations of the stream 

function-vorticity formulation of the governing equations on uniform grids are chosen. 

The system of discretized equations is solved by means of an iterative method. Once 

convergence is reached, various wall vorticity formulae are considered to calculate 

parameters that characterize this flow. 

3.2 The Interior Constraint Method in a Con- 

stricted Channel 

We are interested in the simulation of the flow of an incompressible fluid in a con- 

stricted channel, with constriction ratio 2 : 1. Considering that the flow is symmetric 

with respect to the mid line of the channel, we can restrict our calculations to the 

upper half of the channel (see Figure 3.1). The constricted wall of the channel is Wl= 
{ y  = 1, for x 5 0), W2= {z = 0, for f 5 y  5 1) and W3= {y = f ,  for z > 01, 
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and y = 0 is a symmetry wall. The upstream and downstream boundaries are set 

at  x = xin and x = xmt respectively. A parabolic Poiseuille flow is imposed on the 

upstream boundary. 

The Navier-Stokes equations formulated in terms of the stream function and vor- 

ticity are the governing equations 

where J ( $ ,  Q) = +,R, - $,R, and the wall boundary conditions 

+ = o ,  R=O,  on y = 0 ,  (3.3) 
1 

+ = 1 , % = 0 ,  on y = l f o r x < O  and y = - f o r x > O ,  
2 (3.4) 

the inflow boundary conditions 

and the outflow boundary conditions 

1 
on z=x,t and O < y < -  

2' 

The condition (3.9) is obtained from the governing equations imposing v = 0, 
av - 
a9 

- 0 and $ = 0, which give horizontal flow and constant pressure along the 

outflow boundary. 

A uniform mesh is set up with N and M grid points in the x and y directions, 

respectively. The mesh size is taken to be &. The vertical wall W2 is located at  the 
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Figure 3.2: Grid and computational boundary. 

grid line HN,  while the horizontal wall after the contraction W3 is located at the 

H M  grid line. The interior constraint method introduces a computational boundary 

parallel to the contracting wall. The marked grid points with $ in Figure 3.2 represent 

the computational boundary for this met hod. 

Two different finite difference schemes, second-order central differences [27] and 

a fourth-order compact scheme [23], will be employed to discretize the governing 

equations at the interior points. 

Let us consider (xi,yj) as an interior grid point, then +ij = +(zi,yj) and Rij = 

R(xi, yj) are the discretized values of the stream function and the vorticity at the grid 

point, respectively. The discretized equations are as follow 

ViSZij = ReJh(+;j, Rij), (3.10) 

vi+ij = -Rij, (3.11) 

for i = 2  ,..., H N - 1 ,  j = 2  ,..., H M - 1 ,  

and i = H N  ,..., N - 1 ,  j = 2  ,..., H M - 2 ,  

and i = 2  ,..., H N - 2 ,  j =  H M  ,..., M M - 2 ,  

where V i  and Jh are discretizations of V2 and J respectively. 

The vorticity values on the computational boundary are given by discretization of 
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the stream function equation 

for i = 2  ,..., H N - 1 ,  j =  M - 1 ,  

and i = H N l ,  j = H M  ,..., M - 2 ,  

and i = H N  ,..., HN-1, j = H M - 1 .  

The one sided discretizations of the non-slip conditions on the physical boundary are 

used to interpolate the values of the stream function at the computational boundary 

Di$ij = 0 (3.13) 

for i = HN, j = HM, ..., M -  1 

and 

Di$ij = 0 

for i =2 ,  ..., HN- 1, j = M 

and i = HN, ..., H N  - 1, j = HM 

where Dz$ij and Di$ij are the discretization at the grid point (xi, yj) of $, and $,, 

respectively. If, for instance, a second-order approximation for 111, = 0 is employed 

at the physical boundary, the value of the stream function at the computational 

boundary +i-lj can be isolated from the expression QtDij = 3tDij - 4+i-lj + $i-2j = 0. 

3.3 The Vorticity Interior Constraint Method 

The purpose of the IC method is to avoid using the boundary vorticity values in the 

calculations. The values of the stream function at the computational boundary are ob- 

tained by interpolation using the non-slip conditions at the wall. Here we will propose 

a variation of the IC method, which will be named the Vorticity Interior Constraint 

(VIC) method. The computational boundary is kept when vorticity values are calcu- 

lated. For the stream function, the grid points adjacent to the contracting wall are 
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0 Grid Points 
Outliers 

Figure 3.3: Outlier values for the VIC method. 

now treated as interior points. The grid point 8 is now added to the computational 

boundary. 

The biharmonic formulation [27] of the Navier-Stokes equations (2.24) is now im- 

posed at these grid points and interpolation from the non-slip condition is no longer 

necessary. The non-slip conditions at the wall are now used to eliminate the outlier 

values (see Figure 3.3). 

For the VIC method the discretized vorticity values at the computational boundary 

are calculated as in (3.12), and the stream function values are calculated as follows: 

vt$ij = Re JBh($ij), (3.15) 

Q$ij  = 0, (3.16) 

for i = H N ,  j = H M ,  ..., M - 1 

and (3.17) 

V;$ij = Re JBh($ij), (3.18) 

D:$ij = 0, (3.19) 

for i  = 2, ..., H N  - 1, j  = M 

and i =  H N ,  ..., H N - 1 ,  j =  H M  

where V t  and JBh are defined as before. Note that this will give second-order accuracy 

for the stream function for points adjacent to the contracting wall. 
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3.4 Numerical Boundary Conditions 

3.4.1 Boundary Vorticity 

As mentioned earlier, if the IC or the VIC methods are used, the vorticity values 

on the wall are not needed to calculate the flow inside the domain. Nevertheless, 

some characteristic parameters, such as reattachment points, are usually provided to 

establish the validity of the solution. These parameters can be obtained from the 

values of the vorticity at the boundary. Roache [27] mentioned the importance of 

choosing adequate formulae for the vorticity boundary. A wide variety of boundary 

approximation formulae were tested by Gupta and Manohar [12] for the square cavity 

problem. 

It is our concern that the comparison parameters provided might depend on the 

boundary vorticity formula used, even though such formulae are not used throughout 

the calculations. A survey of different formulae for the vorticity at the wall is pr* 

duced. Careful comparisons are made to determine the nonreliable approximations. 

Let us assume that the grid point (xi, y j )  lies on the boundary Wl= { y  = 1 and 

xi, 5 x 5 01, that is j = M and 1 < i  < HN. 
One of the first boundary vorticity formulae was produced by Thom [28] 

This first-order formula has been used extensively in flow calculations and often gives 

results as accurate as higher order formulae [27]. 

The second-order formula, developed by Woods [31], has been widely used 

It also involves a vorticity value adjacent to the boundary. Some unstabilities and 

low convergence rate have been reported for this formula. 

Here we will also consider a whole class of first-order and second-order formulae, 

called the (p, 0 )  and (p, q )  formulae, respectively, proposed in reference [12]. 
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The first-order (p, 0) formulae are defined by 

Note that p = 1 gives us the well known Thom's formula. 

The second-order (p, q) formulae are given by 

where p and q are integers, p > 0, q > 0, p # q and a = - 9)". 

In this work we will consider from the class (3.22) the first-order formulae 

and from the second-order class (3.23) the formulae 

Gupta ant Manohar [12] pointed out that for larger values of p and q convergence 

is achieved faster but the solution becomes less accurate. In our work the boundary 

approximations of the vorticity will not affect the convergence process, since they 

are not used throughout the calculations. However they are expected to affect the 

accuracy of the flow parameters calculated afterward. 
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In previous works the sizes of the recirculation regions are taking as comparison 

parameters. These values depend strongly on the boundary vorticity approximation 

used, since they are usually calculated using the boundary coordinate where the vor- 

ticity is equal to zero. Isolated values of the vorticity are not reliable parameters 

to measure accuracy [12]; therefore, one should provide some other parameters for 

comparison purposes. 

As an alternative parameter the total shear stress on the contracting wall is cal- 

culated. Here a non-dimensional value of the shear stress, introduced in [12], will be 

used. On the contracting walls Wl, W2 and W3 the shear force is defined by 

As shown in [12], the shear stress at the wall reflects the accuracy of the vorticity 

boundary approximations employed. 

3.4.2 Boundary Stream Function Extrapolation 

As ,mentioned earlier when the IC method is used the value of the stream function at 

the computational boundary are extrapolated from the non-slip boundary conditions. 

The most interesting features of the flow in a channel with a contraction appear at 

the contracting wall. In reference [19], one sided second-order approximation formulae 

are used to approximate the non-slip conditions and second-order central differences 

are used at the interior points. Higher order approximations for the non-slip conditions 

are proposed and used here. 

Assuming that our boundary point lies on the upstream contracting wall Wl, 

second, third and fourth-order one sided formulae [6] are defined by 
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For the second-order central differences method, approximations (3.33)-(3.34) are 

employed in the calculations. For the fourth-order compact method formulae (3.34)- 

(3.35) are used. 

In the case of the VIC method the second-order approximation for the biharmonic 

operator [21] is used for both interior methods. Higher order approximations, e.g. the 

compact schemes proposed by Wittkopf [29], could also be used. 

3.4.3 Outflow Boundary Conditions 

One might think that the outflow boundary condition will be the easiest to impose, 

setting the end of the channel far away from the constriction. It has been found 

numerically that instabilities might propagate upstream and invalidate the solution 

if the outflow conditions are too restrictive [27]. On the other hand, the use of large 

values for xOut increases the cost of the calculations and, to reduce the cost, some 

kind of domain transformation will be needed. Therefore, it is very important to use 

economical outflow boundary conditions. 

A reasonable attempt would be to impose Poiseuille flow far downstream. Our 

numerical experiments show that independently of the value of x,,t an abrupt transi- 

tion in the flow is observed at the end of the channel. The horizontal flow condition is 

not satisfied, since Poiseuille flow downstream is far too restrictive. A less restrictive 

downstream condition, $, = 0 and R, = 0, was proposed by Paris and Whitaker [26]. 

The first equation gives horizontal flow downstream but Roache [27], in numerical 

experiments, found the second equation might destabilize the solution. 

In the present work conditions (3.8)-(3.9), formulated by R. E. Meyer and used 
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by Greenspan [ll] and Friedman [lo], are employed. Horizontal flow is guaranteed 

downstream by equation (3.8) and equation (3.9) gives constant pressure along the 

outflow boundary at steady state. 

3.5 Numerical Results 

The calculations were carried out for Reynolds number up to 500 on a uniform mesh 

with size h = &. The upstream and downstream boundaries were set at  xi. = -2 

and xout = 2, respectively. 

Several characteristic parameters are produced for this flow. The length, LI, of 

the upper corner vortex and its width L2 , the separation and reattachement values 

of the downstream wake, L3 and L4,  are all measured from the corners (see Figure 

3.4). The stress on each wall section of the contracting boundary is also monitored. 

Numerical experiments show that the parameters L3 and L4 are sensitive to the grid 

size, and L1 and L2 behave in a more stable way. 

For comparison purposes the outflow boundary condition was also set at xout = 3. 

Calculations were made using the fourth-order compact method with extrapolation of 

fourt h-order. For the Reynolds number employed significative differences in the flow 

parameters were not found, a s  suggested in [8] and [19]. 

The solution is calculated for Re with increments of 50. For Re = 0 the initial 

approximation is taken to be zero at every interior point. For Re > 0 the solution 

Figure 3.4: Characteristic lengths for the flow in a constricted channel. 
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calculated for previous Reynolds number is used as initial approximation. This means, 

for example, that the converged numerical solution for Re = 400 is used as the initial 

approximation to calculate the solution for Re = 450. Continuation on Re is necessary 

because for large values of Re the iterative process is not robust enough to converge 

from an initial approximation of zero everywhere. 

The iterative process considered requires the use of relaxation parameters. For 

both schemes, central differences and compact, the boundary vorticity damping pa- 

rameter b was set at 0.6. 

At the interior points, when using the central differences scheme, overrelaxation 

is possible for the stream function equation and w was set to be 1.4 throughout the 

calculations. Under-relaxation is necessary for the vorticity equation. Initially the 

value of X is set at 0.8, but the iteration process becomes divergent for Re = 450. For 

450 5 Re 5 500 the value of X is set at 0.7 to ensure convergence. 

The compact scheme allows the use of over-relaxation for both equations, and 

parameters were set at  w = 1.5 and X = 1.3 throughout the calculations. 

Another relaxation parameter is needed for the VIC method. The values of the 

stream function at the grid points adjacent to the contracting wall are relaxed using 

p = 0.6. 

The iterative process is stopped when conditions (2.38)-(2.39) are satisfied at the 

interior points. The value of c is set as 0.0005 and 

Figure 3.5 shows the number of iterations required for the iterative process to 

converge for the schemes at different Reynolds numbers. Recall that continuation on 

the Reynolds number is used to calculate the solution. The solution for Re = 0 is 

calculated from an initial interior approximation of zero everywhere. This is the reason 

why the iteration number for Re = 0 is considerably higher than for the rest. Note 

that the compact scheme requires less iterations overall, but the cost per iteration is 

higher than for the central difference scheme. A good feature of the compact scheme 
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Figure 3.5: Iterations number for schemes. 

is that solutions can be found for larger values of the Reynolds number. The central 

difference scheme is limited in that respect [13]. 

The following abbreviations are considered in this and the following sections: 

C2: Central differences scheme, with second-order approximation for the stream 

function on the boundary. 

C3: Central differences scheme, with third-order approximation for the stream func- 

tion on the boundary. 

T3: Fourth order compact scheme, with third-order approximation for the stream 

function on the boundary. 

T4: Fourth order compact scheme, with fourth-order approximation for the stream 

function on the boundary. 

CB: The VIC method for central differences scheme. 

TB: The VIC method fw fourth-order compact scheme. 
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BC1: Thom's formula for the boundary vorticity. 

BC2: Woods' formula for the boundary vorticity. 

BC3: (2,O) formula for the boundary vorticity. 

BC4: (3,O) formula for the boundary vorticity. 

BC5: (2,l) formula for the boundary vorticity. 

BC6: (3,l) formula for the boundary vorticity. 

BC7: (3,2) formula for the boundary vorticity. 

BC8: (4,3) formula for the boundary vorticity. 

3.5.1 Wall Stress and Boundary Vorticity 

Gupta and Manohar [12] found that the numerical boundary vorticity might affect the 

flow structure. It is our interest to find the most appropriate vorticity formula for every 

interior scheme used in the calculations. A theoretical solution is not known for the 

flow in a constricted channel. Reference papers provide, as comparison parameters, 

the lengths of the upstream and downstream wakes. These parameters are calculated 

from isolated values of the vorticity or the velocity. As mentioned before, isolated 

values should not be used to test accuracy. They should be used in combination with 

more reliable parameters. Gupta and Manohar [12] mentioned that, even though 

isolated values of the vorticity on the boundary are not reliable, the integral over the 

boundary is a reliable parameter. This integral gives a non-dimensional stress on the 

wall. The stress on each of the three sections of the contracting wall is calculated. The 

vorticity at  the re-entrant corner is considered bivalued and therefore discontinuous. 

Most figures and tables shown in this chapter make use of abbreviations for schemes 

and boundary vorticity formulae. Refer to pages 32-33 for full description of abbrevi- 

ations. 



CHAPTER 3. FLOW IN A CONSTRICTED CHANNEL 33 

Figure 3.6 shows the wall stress values Fl on Wl for Re < 500. Each plot corre- 

sponds to a different numerical scheme. The stress calculated with different boundary 

vorticity approximations is plotted. 

Figure 3.6: Stress on wall Wl for different schemes and vorticity boundary approxi- 
mations. 

It is obvious that there are no significant differences for Re 5 100. This means that 

all the boundary vorticity approximations should produce similar results for Reynolds 

numbers up to 100. 
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Significant differences are not found for L1 and L2 among the different bound- 

ary formulae when Re < 100. On this wall the stress decreases as the order of the 

boundary vorticity formulae increase. There is a clear separation between first and 

second-order conditions. In the first-order class, Thom's condition gives the small- 

est stress values overall, and they are close to the values given by the second-order 

formulae for Re 5 250. 

The (3,2) formula gives the lowest values of the wall stress for the schemes C3, 

T3  and T4. For schemes CB and TB the lowest stress values is given by the (2,l) 

formula, and scheme C2 is given by the (3,2) formula. 

The stress Fl and vortex length values L1 for Re = 0,250 and 500 are given in 

Table 3.5 and Table 3.6, respectively. 

Plots of the stress F2 on wall W2 are given in Figure 3.7. It is observed that the 

stress values on W2 increase as the accuracy of the boundary formula increases. For F2 

the boundary conditions keep the same relation of order as for Fl, except for scheme 

C2 where formula (3,2) gives now the maximum stress. In this figure there is a bigger 

difference among the values given by the different formulae. 

The first-order formulae give smaller values for F2 than the second-order formu- 

lae. Once again Thom's condition gives the best values among the first-order class 

formulae. The values for F2 for the VIC method are larger than the values obtained 

for the other schemes. In particular CB gives dispersed curves, which might indicate 

that the approximations are not good on W2. 

Table 3.7 gives the wall stress on W2 for Re = 0,250 and 500. For the same range 

of the Reynolds number the widths for the upper vortex are given in Table 3.8. 
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Figure 3.7: Stress on wall W2 for different schemes and vorticity boundary approxi- 
mations. 

The values for the boundary stress F3 on W3 are plotted in Figure 3.8. The 

value of F3 decreases from the first-order to the second-order formulae. A fairly 

good agreement among the boundary vorticity conditions for Re 5 50 is found. Now 

Woods' boundary condition gives the smallest stress values overall. In reference [12], 

Gupta and Manohar described that Woods' boundary condition had the tendency to 

over-estimate the stress values on the moving boundary for the square cavity problem. 
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Figure 3.8: Stress on wall W3 for different schemes and vorticity boundary approxi- 
mations. 

We presume that the same behavior is present in this case. Woods' formula might 

be under-estimating the value of the stress on W3. Since the upstream results are 

more reliable, and the same pattern is not observed on Wl and Wz, we cannot assure 

that Woods' condition is "better" in this case. Values of F3 for Re = 0,250 and 500 

are given in Table 3.9. Since the downstream recirculation region was not found for 

Re 5 250, the values of L3 and L4 for Re = 250 and 500 are given in Table 3.10 and 

Table 3.11. Note that the plots for CB differ totally from the rest. This indicates that 
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scheme CB is not trustworthy on this boundary. A quick inspection of Table 3.10 and 

Table 3.11 shows that the length values obtained for this scheme disagree with the 

values obtained by other schemes. 

In the case of the flow in a channel with a sudden contraction, as reported by 

Gupta and Manohar [12] for the cavity flow, there are differences in the values of the 

wall stress for different boundary vorticity conditions for a fixed scheme. The values of 

Fl and F3 decrease as the accuracy of the boundary condition increases. The opposite 

behavior is found for FZ. 

Figure 3.9 gives the vorticity distribution on W3 for Re = 250 and Re = 500. 

Figure 3.9: Vorticity distribution on wall W3 for CB scheme (Re = 250 and 500). 
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Figure 3.10: Vorticity distribution on wall W3 for C2 scheme (Re = 250 and 500). 

Examining the plots we conclude that scheme CB does not reproduce the expected 

behavior, which is in agreement with the results previously found for the stress on 

that boundary. 

The (4,3) boundary formula suits the best scheme C2. However, this scheme is 

unable to capture the recirculation region for Re = 250 (see Figure 3.10). 

Scheme C3 employs the same interior approximation as scheme C2. They only 

differ in the order of the extrapolation formula for the stream function on the compu- 

tational boundary. The use of a third-order formula changes dramatically the solution 

(see Figure 3.11). 
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Figure 3.11: Vorticity distribution on wall W3 for C3 scheme (Re = 250 and 500). 

Now the recirculation region is visible for Re = 250. Also note that now for 

Thom's formula the boundary vorticity comes close to zero at Re = 250. This means 

that Thom's formula is not good enough to produce recirculation downstream, but 

clearly is the best of all first-order formulae. The analysis of the boundary stress 

suggests that the (3,2) boundary formula suits this scheme the best. 

Schemes T3 and T4 produce very close results (see Figure 3.12 and Figure 3.13). 

It seems that the order of the extrapolation formula used for the stream function on 

the computational boundary does not have a significant effect on the compact scheme. 
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Figure 3.12: Vorticity distribution on wall W3 for T3 scheme (Re = 250 and 500). 

The only difference occurs for the (4,3) formula for both Reynolds numbers con- 

sidered. Recall that the (4,3) formula is the less accurate of all second-order formulae. 

For both schemes the (3,2) vorticity boundary formula seems to work better. Fur- 

thermore, all the second-order formulae seem to work fine with this scheme. Based 

upon the results for the stress on the boundaries the (3,2) formula has been chosen 

as the most reliable. 

There is a significant difference in the minimum value of the boundary vorticity 

for both values of Reynolds numbers Re = 250 and Re = 500. The more accurate the 

scheme, the smaller the minimum value become. 
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Figure 3.13: Vorticity distribution on wall W3 for T4 scheme ( R e  = 250 and 500).  

Note that none of the first-order formulae reproduced the wake after the contrac- 

tion for Re = 250. Also Thom's formula seems to be the best of these. 

The TB scheme produces a very small wake for Thom's formula at Re = 250 (see 

Figure 3.14). This scheme gives the smallest vorticity values of all at the boundary 

W3, and the ( 2 , l )  formula seems to work well with this scheme. 
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Figure 3.14: Vorticity distribution on wall W3 for TB scheme (Re = 250 and 500). 

So far we have determined which vorticity boundary approximation is best to use 

with each scheme. All the boundary formulae chosen are of second-order of accuracy. 

An interesting feature occurs near the upper corner for every scheme. An oscilla- 

tion of the vorticity values is observed for most of the second-order formulae. Figure 

3.15 shows the vorticity values for scheme T4 for two second-order boundary formulae 

at Re = 500. Formula (4,3) behaves in the same way formula (3,2) does on this plot. 

The rest of the second-order formulae, and the first-order Thom7s formula, give a 

similar behavior to the shown in Figure 3.15 for formula (2,l). 

Figure 3.16 shows the boundary vorticity values for Re = 0,150,250,350 and 500 

on Wl and on W3 for schemes C3, T3 and TB. Formula (2,O) is used for the plots on 
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Figure 3.15: Oscillations of the vorticity distribution on wall Wl for scheme T4 . 

Wl and the (3,2) formula for the plots on W3. TB uses the (2, l)  formula on W3. 

Figure 3.6 and Figure 3.8 might lead us to think that Fl has a maximum for 

0 < Re < 50 and that F3 has a maximum for 100 < Re < 200. Further calculations 

were made in that range of Reynolds number using the T4 scheme. It was found that 

Fl attains the maximum value of 4.487 at Re = 15 and that F3 attains a maximum 

of 29.189 at Re = 140. The values of the Reynolds number at  which the wall stress 

attains a maximum on W3 might be related to the value of the Reynolds number at 

which the recirculation first appears. 
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Figure 3.16: Vorticity distribution on walls Wl and W3 for schemes C3, T4 and TB. 
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3.5.2 Length of Recirculation Regions 

Figure 3.17 shows the streamline contours for different values of Re. The calculations 

were made using the compact scheme and fourth-order extrapolation on the boundary. 

A magnification of the streamlines and vorticity contours near the re-entrant corner 

is also given (see Figure 3.18). 

Let us first consider the solution upstream of the step. The vortex in the upper 

corner is present for all values of Re. Fine meshes are not necessary to obtain reliable 

results. In reference [lo] Friedman obtained this vortex using h = &. He stated that 

the vortex reduces its size when 0 5 Re 5 Remin with 10 < Re,;, < 50, and increases 

monotonically for Re > Remin. 

Figure 3.17: Streamlines and vorticity contours for scheme T4-(3,2). 
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Figure 3.18: Magnification of streamlines and vorticity contours for Re = 500 near 
the re-entrant corner for scheme T4-(3,2). 

Dennis and Smith [8] used mesh size h = & and found that L1 attains a minimum 

at about Re = 50, and it increases monotonically for 50 < Re < 2000. They also 

produced the vortex length and width for different values of Re. In reference [22] 

Karageorghis and Phillips set the minimum value of L1 at  Re = 45. Our calculations 

using the scheme T4 and (3,2) formula show that Re,;, = 45 and the wake length L1 

is 0.1286. 

In Table 3.1 and Table 3.2 the values for L1 and L2 as well as those previously 

obtained by other authors are shown. In general L1 and L2 show good agreement. 

Re 
Dennis & Smith [8] 
Hunt (upwind) [20] 
Hunt (central) [20] 

Karageorghis & Phillips [8] 
Hawken et al. [15] 

Huang & Seymour [19] 
Burggraf [19] 

Dennis & Smith [19] 
C3-(3.2) 

Table 3.1: Separation point at upper corner (L1). 
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Re 
Dennis & Smith [8] 
Hunt (upwind) (201 
Hunt (central) [20] 

Karageorghis & Phillips [8] 
Hawken et al. 1151 

Huang & Seymour [19] 
Burmraf 1191 - . a  

'Dennis & Smith 1191 

Table 3.2: Reattachment point at the upper corner (L2). 

Karageorghis and Phillips [22], observed a second vortex near the upper corner 

for Reynolds number as low as Re = 10. This second vortex was not observed in our 

calculations. 

The most interesting and controversial feature for the flow channel appears at 

the re-entrant corner. A downstream recirculation region is formed after the tip of 

the corner. Dennis and Smith in their early work [8], obtained a downstream eddy 

formation for Re = 1000 and Re = 2000 with h = $. They predicted a recirculating 

flow for Re = 500 with separation at a point on the interval 0 < x < 0.3 and 

reattachement point to the right of x = 1.2. They were certain that no downstream 

separation occurs for 0 5 Re 5 100 and therefore such separation must occur for 

100 < Re < 500. Hunt [20] found a downstream vortex for Re= 250, with separation 

to the right of the corner. Karageorghis and Phillips [22] placed the apparition of 

the recirculating flow at about Re = 175, with separation at  the corner. Their 

reattachement values 0.500 and 0.995 are larger than the values obtained by other 

authors. 

In reference [15] Hawken employed a finite element method for primitive variables 

formulation. He predicted a vortex, with separation to the right of the corner, starting 

at Re = 250. His values are slightly larger than predicted by Hunt. 
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, / L - J  

Karageorghis & Phillips [8] 
I Hawken et  al. 1151 
I Huang & Sevmour 1191 1 

Dennis & Smith 1191 

Table 3.3: Separation point after the re-entrant corner (L3) .  

Huang and Seymour [19] also predicted separation after the corner for Re 2 250. 

Their results are in good agreement with Hunt's and Hawken's. Tables 3.3 and 3.4 

show the values of L3 and L4 predicted by our calculations, together with the results 

previously reported in the literature. Our calculations show that there is a downstream 

recirculation region for Re = 250, with separation to the right of the corner. In general 

the values produced by scheme TB are slightly higher that those produced by the other 

schemes. 

Dennis & Smith [8] 
Hunt (uvwind) 1201 I 

I Hunt (central) 1201 1 0.119 1 - 1 - 1 0.414 1 

L J I I I I I Huann & Sevmour 1191 1 0.126 1 - 1 - 1 0.444 1 

, .  . 
~ a r a ~ e o r ~ h i s  & Phillips [8] 

Hawken et al. 1151 

Dennis & smi th  [19] 
C3-(3.2) 

Table 3.4: Reattachment point after the re-entrant corner ( L 4 ) .  

0.995 ' 
0.477 

0.500 ' 0.700 ' 0.924 
0.155 0.301 0.423 
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Figure 3.19: Characteristic lengths. 

The value at which the downstream vortex first appears is not certain yet. The 

recent works show a recirculating flow starting at Re = 250, except for Karageorghis 

and Phillips' which first appears at about Re = 175. Obviously this problem is still 

open. 

Figure 3.19 shows the plots of the characteristic lengths versus the Reynolds num- 

ber. The plots are given for the schemes C3, T4 and TB. These results are in agree- 

ment with experimental ones produced by Durst and Loy [9] for a circular cylinder. 
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Tables 
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Table 3.5: Stress values on boundary Wl. 
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Table 3.6: Separation values at the upper corner ( L 1 )  for Re=O, 250 and 500. 
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Table 3.7: Stress values on boundary W2. 
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Table 3.8: Reattachment values at the upper corner ( L z )  for Re=O, 250 and 500. 
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Table 3.9: Stress values on boundary W3. 
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Table 3.10: Separation values after the re-entrant corner ( L 3 )  for Re = 250 and 500. 
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Table 3.1 1: Reattachment values after the re-entrant corner (L4) for Re = 250 and 
500. 



Chapter 4 

Conclusions 

In this thesis we have studied the flow through a constricted channel for moderate-high 

Reynolds number. The Interior Constraint (IC) Method and the Vorticity Interior 

Constraint (VIC) Method were employed to solve the steady Navier-Stokes equations. 

Both methods were applied using a second-order central difference scheme and a 

fourt h-order compact scheme. The results show that, for the second-order met hod, 

an increase of the order for the stream function extrapolation formula, from second 

to third-order, produces a qualitative change in the solution. The solution using the 

compact scheme is not visibly affected by an increase of order for the extrapolation 

formula from third to fourth-order. The compact scheme allows the use of over- 

relaxation and the number of SOR iterations is reduced considerably. It also allows 

us to compute solutions for higher values of the Reynolds number. Iteration-wise the 

VIC method is similar to the IC method for both schemes. 

Several vorticity boundary approximations are tested for each method. The anal- 

ysis of the boundary stress allows us to choose the most adequate boundary formula. 

Several flow parameters, e.g. separation and reattachement points, are also calcu- 

lated, and comparisons with published results are given. Our results show that the 

combination of the VIC method and the second order central differences scheme is 

not suitable to solve this problem. The compact scheme seems to work well for both 

IC and VIC methods. The results obtained, for each case, agree qualitatively with 
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experiments carried out for a circular cylinder. 

There are still several open questions for this problem. The most important one is 

to determine the value of the Reynolds number at which the downstream recirculation 

region first appears. 

Some possible future improvements of this work are the following 

To analize of a higher order approximation for the stream function at the grid 

points adjacent to the boundary for the VIC method. 

0 To use the most reliable scheme and boundary vorticity to investigate the solu- 

tions for higher values of Reynolds numbers. 
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