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Abstract 

I present a visual hand tracking system that can recover 3D hand shape and motion 

from a stream of 2D input images. The hand tracker was originally intended as part 

of a computer interface for (American) sign language signers, but the system may also 

serve as a general purpose hand tracking tool. 

In contrast to some previous 2D-to-sign approaches, I am taking the 3-dimensional 

nature of the signing process into account. My main objective was to create a versatile 

hand model and to design an algorithm that uses this model in an effective way to 

recover the 3D motion of the hand and fingers from 2D clues. 

The 2D clues are provided by colour-coded markers on the finger joints. The 

system then finds the 3D shape and motion of the hand by fitting a simple skeleton- 

like model to the joint locations found in the image. This fitting is done using a 

nonlinear, continuous optimization approach that gradually adjusts the pose of the 

model until correspondence with the image is reached. 

My present implementation of the tracker does not work in real time. However, 

it should be possible to achieve at least slow real-time tracking with appropriate 

hardware (a board for real-time image-capturing and colour-marker detection) and 

some code optimization. Such an 'upgraded7 version of the tracker might serve as 

a prototype for a Lcolour glove7 package providing a cheap and comfortable-though 

maybe less powerful-alternative to the data glove. 
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Chapter 1 

Introduction 

Eye movement tracking experiments show that the objects we pay most attention to 

are our fellow human beings, especially their faces and upper body parts. This is not 

surprising, considering that as members of a social species our success as individuals 

and as a group largely depends on how well we can communicate. The first step 

towards communication is to spot another individual as soon as possible and correctly 

infer the other's intentions. Our vision system, accordingly, is very well tailored to 

detect, identify, and analyze humans and their motion. In contrast, computer vision, 

until recently, has shown comparatively little interest in human targets. The only area 

that has received major attention is face location and recognition for identification 

purposes. The so called 'inverse problem'-extracting 3D spatial information from 

an image (a '2D projection')-that a computer vision system, and in fact any vision 

system, has to solve, is a very hard, underconstrained problem. Naturally researchers 

attacked easier instances of the problem first. The choice was-and largely is-objects 

and scenes that can be well approximated by simple geometrical shapes. Humans do 

not fit very well in this category. 

Also most practical robot vision systems were developed to perform tasks that 

humans would like to delegate, such as sorting and handling industrial parts or nav- 

igating through living rooms for cleaning purposes. Such tasks usually involve very 

little, if any, interaction with humans. 

Of course, humans always have had to communicate with robots and computers. 
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For some time a keyboard and a screen were thought to be sufficient for this purpose, 

but as information processing capabilities increased and computers were used for a 

wider range of tasks by a more diverse group of users the need for more task-specific 

and user-friendly interfaces became apparent. On one hand this meant presentation 

of information in a style that humans would find easier to handle, usually some form 

of graphic representation reflecting the fact that vision is our most important sense. 

On the input side progress has not been that dramatic; although typing is slow and 

bothersome, the keyboard is still largely in place. This bottleneck is the main culprit 

causing communication between humans still to be much faster than between humans 

and computers. 

In this work I will describe a system that can track a human hand and recognize its 

3D shape and position. (I have presented preliminary results on this system in [13]). 

The major motivation was, and is, to make a first step towards a more user-friendly 

interface for the deaf or hearing impaired. These people can talk to each other in 

sign language just as freely and easily as others in spoken language, but problems 

arise in the communication with people not able to understand sign language. Even 

though most deaf people learn to write English (or the native spoken language of their 

country), it is a second language for them, and communicating through writing would 

be tedious and slow in any case, even in the written form of the spoken language. 

A computerized sign language interface would help in making communication easier 

at least with the computer; it could also serve as a front end for a sign-language-to- 

spoken-language translation system. 

Before a successful sign language interface can actually be built there are several 

other hard problems to be solved: much like in oral speech understanding, the stream 

of hand shape information has to be segmented into sign language signs, and signs and 

sign combinations actually have to be interpreted in context. Thus, a sign language 

interface is a rather long term goal, but the hand tracker in itself has several other, 

more immediate applications as well: it could be used as a maybe less powerful, but 

cheaper and more comfortable version of a data glove. As such it could be used, for 

example, as an input device in virtual reality or to teach a computer realistic hand- 

motion sequences for animation or robotics. Hand tracking could also be helpful in 
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videophoning: the transmission of images requires much higher capacities than the 

transmission of sound, and current technologies cannot provide sufficient bandwidth 

to allow videophoning on a larger scale. An encoding of hand shapes in terms of joint 

angles would be very efficient to transmit and relatively easy to reconstruct using a 

graphical hand model. 

The ideal system: requirements 

1.1.1 Sign language characteristics 

It is not my goal here to actually build a full sign language interface, or even to 

interpret hand motion in terms of sign language signs. However, the hand tracker 

is designed with mainly such an application in view. Sign language offers a well 

structured set of meaningful human gestures. If nothing else, this constitutes an 

ideal pool of test examples for a hand tracking system. The goal of sign language 

understanding also provides specifications about what kind of output the tracker has 

to deliver and how much precision is necessary. To clarify this, I will give a short 

overview of American Sign Language (ASL)l. 

In a sign language the signer has two different way of expressing him- or herself: 

by fingerspelling words in English or some other spoken language and by signing. Sign 

languages are genuine languages and can be very different from the spoken language 

of the country in which the signer lives. There is not necessarily a word-to-sign 

correspondence, and even if there is, the word might not cover all the meanings of the 

sign and vice versa. 

Even though many signs mimic or exaggerate characteristic features and actions, 

it is possible to describe at least most of the signs in terms of three parameters. 

According to Stokoe et al. [45], the action of an 'active' hand in an ordinary2 ASL 

'1 am mainly concerned with American Sign Language, but most of what is said here about the 
structure of ASL is valid for other sign languages as well. 

2The main category of signs that do not fit that pattern is signs that involve people or places. 
When, for example, a person not present in the room is introduced into a signers sign flow, the signer 
selects a location in signer space where s/he 'establishes' the person (by spelling the name or making 
a nickname sign). This person can then be referred to as to a person present in the room. If, for 
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sign can be uniquely described by: 

0 tab (tabula), the position of the hand at the beginning of the sign, 

0 dez (designator), the hand shape of the hand at  the beginning of the sign, and 

0 sig (signation), the action of the hand(s) in the dynamic phase of the sign. 

The tab can be anywhere in the signer space, which extends from the hips upwards, 

roughly speaking as far as the signer can conveniently reach with the hands. The 

signer space is most differentiated around the face, distinguishing about 5 regions 

there (depending on the classification system), but partitions the remaining regions 

rather crudely. A list of 12 possible locations for tab is given in [45] (p. x). In addition, 

the tab can also be somewhere on or near the other (non-active) hand. In this case the 

tab stands for the shape the non-active hand is in and is described by a dez position. 

The dez gives a hand shape, i.e., the position of the fingers and the orientation of 

the hand in space. Stokoe lists 19 different designators (p. xi), most of them similar 

or identical to characters in fingerspelling (described on p. xxii of the same book). 

The dez is often the first letter of the English word for what the sign represents. 

The sig describes the direction of the hand movement (e.g. up and to the right), 

a possible rotation of the hand, and the change the hand shape undergoes during 

this movement. Luckily, the ways in which the hand shape can change during a sign 

are very limited. There are only two main types, open and close, along with some 

variations, plus special-purpose sigs such as wriggling fingers. Stokoe lists 24 different 

sigs (p. xii), two or more of which can be combined to describe fully the dynamic part 

of a sign, if necessary. Seven of the sigs describe the interaction of the two hands. In 

general, either one or both hands can be 'active' during a sign. 

1.1.2 Difficulties waiting around the corner 

As mentioned above, sign language recognition can be viewed as speech recognition 

with visual input data. As such, it has to face most of the problems of traditional 

example, the signer wants to express that A gives something to B s/he establishes locations for A 
and B and then makes the sign for give, starting at A's location and terminating at B's location. 
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speech recognition. One such problem is segmentation: the input is a continuous 

stream of signs, and the system has to decide when one sign ends and a new sign 

begins. Another typical problem is the influence of context on the execution of a 

sign, analogous to differing pronunciation of a word depending on its neighbours and 

factors such as emphasis, position in the sentence, type of sentence etc.. Signs also 

vary from person to person and from dialect to dialect. 

While all these problems do not directly affect the hand tracking system as such, 

they do imply requirements for its design: for one thing, we cannot assume that the 

hand is always in the process of making a regular sign; there will be transitions and 

irregularities, and the tracker must be able to follow these since it will be impossible 

to say a priori when exactly the next sign begins. 

The large variation in sign execution makes it difficult to describe the character- 

istics of a sign in terms of 2D images of the signer, a warning that can be found in 

virtually any book or dictionary on sign language. The essence of a sign is conveyed in 

terms of the 3+1D3 properties hand shape, position, and orientation and their change 

during the execution of the sign. Thus, signing is essentially a 3+1D process, and 

a sign interpreter will most likely need this kind of 3+1D input (which, of course, 

implies that the hand tracker has to provide it somehow). 

The analysis of the visual input data itself, i.e., the computer vision aspect of the 

tracker poses a different set of problems and requirements. The human hand is not 

an easy object to track. It does not have a simple geometrical shape. Moreover, it 

can move fast and change its shape very quickly. A short experiment shows that it 

is possible to open or close a hand in 3-4 frames, assuming a frame rate of 60 Hz4. 

In the same time the hand itself can make a 30cm sweep through the air. This is 

an extreme example, though. Humans cannot perceive any details of hand motion at  

this speed and sign language signs are (usually) executed at a slower pace. Moreover, 

the hand shape tends to change only slowly, if at all, during a fast, sweeping motion 

of the hand as a whole, while a rapid change in hand shape is usually performed in 

place. This alleviates the problem of tracking fast motion, but we still have to expect 

33D space + time component 
4i.e., 60 frames per second. 
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a displacement of more than a few pixels between consecutive frames. On top of that, 

hand motion is sufficiently intricate that there is almost always occlusion of some 

part of the hand or other. And human motion is complicated in the sense that it is 

muscle controlled and thus neither describable by a simple physical model with a few 

parameters nor predictable over more than a few frames. 

All these unpleasant qualities make visual hand tracking a hard problem and also 

exclude many general motion-tracking-and-pose-recognition algorithms that can be 

found in the literature. In fact, it seems to be even beyond the capability of the 

human vision system to keep always track of exact hand pose and motion. Thus, it is 

probably more realistic to go for general robustness and a good ability to recover from 

failures instead of aiming for a perfect system. Preferably, this robustness should take 

the form of graceful degradation behaviour when the system has to deal with difficult, 

fast shape changes, massive, prolonged occlusion, and/or poor image quality (low 

resolution of the hand itself as part of an upper body image, motion blur, etc.). 

1.2 Previous work 

1.2.1 General: motion tracking 

There is a vast amount of literature on motion in computer vision. Most work seems 

to concentrate on analyzing motion between two or three frames rather than tracking 

objects over long sequences of frames. I will not attempt to give a complete overview, 

but only describe some of the approaches that seem particularly relevant for my 

project. 

The most relevant work to be mentioned here is an iterative, nonlinear optimiza- 

tion approach to model based object tracking presented by Lowe [32] (see also [31,49]). 

In this approach a 3D model of the object to be tracked is generated. Relevant prim- 

itives (lines), are extracted from the image frames. Tracking is then performed by 

an optimization loop that involves calculating the model's current 2D projection to 

obtain the expected contour and comparing this contour to the detected primitives. 

The result of this comparison is used to calculate a correction of the model's 3D pose, 
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and the loop is repeated. My system follows Lowe in using an optimization approach 

and, at  least partially, in his choice of the particular mathematical algorithm, an ex- 

tension of Newton's algorithm for finding the zero crossings of a function to several 

dimensions. 

The other area of special interest that should be mentioned here is tracking feature 

points of known or unknown objects. Sethi and Jain [44] develop an algorithm that 

recovers the trajectories for a set of feature points over a sequence of frames using 

smoothness constraints on direction and speed of the motion. Rangarajan and Shah 

[40] use a similar approach. Other authors have described extensions including pre- 

dictions about the expected locations of tracked feature points in subsequent frames 

(see, for example, [50, 20, 191 and the references given there). 

1.2.2 Special: human motion and sign language 

There are some systems that track and recover human pose and/or motion, using 

various techniques (see, e.g., [15, 35, 30, 12]), but they concentrate on motion of the 

body as a whole, especially limb motion, and are not designed to track the intricate 

motion of human hands. 

Existing approaches to hand tracking and sign language interpretation in particu- 

lar can be roughly divided into 2D-'direct' (or trajectory-based) and 3D model-based. 

Direct approaches as in [47, 4, 11, 91 try to identify signs directly from 2D trajectories 

and silhouettes of hand shapes. 

Tamura and Kawasaki [47] develop a classification scheme for signs based on lo- 

cation and/or motion of the hand and the hand shape. Tracking is accomplished 

by segmenting the skin area from the background. Only one hand and the face are 

assumed to be in the image, and the background is assumed to be dark to allow easy 

segmentation and identification of segmented regions. A polygon approximation of 

the hand contour is calculated for hand shape classification. The system is tested on 

standard sign language videos, in which the signer starts each sign from a neutral 

start position and returns to the neutral position after finishing the sign. Sign iden- 

tification is accomplished using a dynamic programming approach. The system can 
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recognize twenty words of Japanese sign language, though in about half the cases it 

is only able to extract a set of best candidates. 

Charayaphan and Marble [4] use a similar approach, but with more sophisticated 

techniques. Signs are executed from a neutral start position with two stop positions 

on the way before the signer returns into the neutral position. The hand is tracked in 

real time on a PC with special image processing hardware by subtracting successive 

frames and calculating the center of motion. Signs are then classified by hand location 

in the two stop positions and shape of trajectory, if necessary. If the system cannot 

make a definite decision, the hand shape in stop positions is used as an additional 

means of classification, using the general Hough transform. This system was tested 

on 31 different signs. 

Dare11 and Pentland [9, 101 use a set of view templates to model the hand. Cor- 

relation indices for these templates are calculated for each frame, and gestures are 

represented as correlation profiles for a (time warped) signing sequence. The system 

works in real time with special-purpose correlation hardware. The authors show recog- 

nition rates for two gestures that are performed interleaved with five other unfamiliar 

gestures. 

Fletcher, Warwick, and Mitchell [20] describe a hybrid algorithm for feature point 

tracking and demonstrate its performance by recovering the trajectories of a set of 

light markers on a hand during a simple waving motion. The authors also announce 

their intention to use their system for ASL understanding. 

The gesture recognition system of Davis and Shah [ll], another real time system, 

uses light markers in combination with Rangarajan's and Shah's feature tracking 

algorithm [40] to find the trajectories of the finger tips. These trajectories are com- 

pared to stored gesture models by means of a finite-state automaton. The system's 

performance is demonstrated on a set of 7 gestures corresponding to ASL signs. 

In contrast, model-based approaches try to recover some 3D description of the 

signer's actions from the sequence of frames. Lowe [32] hints at the possibility of 

using his system for tracking hand movements, but does not develop this idea further. 

Downton and Drouet [15] use a 3D model-based approach to track human upper 

body motion, with the goal of developing a system for sign language analysis. They 
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use a cylindrical body model and line segments as primitives to be matched (the 

matching process itself is not described in detail). The system can find a static pose 

of a signer when the model is initially placed closely enough, but it fails to track a 

signer in motion "due to propagation of errors". 

Cipolla, Okamoto, and Kuno [6] describe a robust algorithm for structure from 

motion. Their algorithm uses motion parallax to recover structure and motion pa- 

rameters for a rigid object from a set of two views. The authors show a real-time 

application in which hand motion is used to steer a computer graphics model of a 

plane. Four color markers are used as reference points for the algorithm. Since the 

tracked object is assumed to be rigid, however, the system is of limited use as a hand 

tracking tool. 

Tracking with markers 

General human-motion tracking systems often use some kind of marker attached to 

the major joints of the tracked person (see, e.g., [16, 12, 301). These systems also 

sometimes employ more than one camera to eliminate occlusion and ambiguities in 

identifying markers as much as possible. Trajectories of markers are then used for 

applications such as medical diagnosis and improvement of athletic performance. This 

marker method is mainly used for whole body motion tracking where markers are 

far apart and follow simple trajectories. Two of the systems mentioned above use 

reflective markers to track hand motion [20, 111, but the examples given only show 

gestures without marker occlusion and with simple, easy-to-disentangle trajectories. 

1.2.3 The rest of the body 

All the systems mentioned above concentrate mainly on the hands (or rather, one 

hand). The face is considered more as a reference point and only given marginal 

attention. There is evidence (see [48]) that facial expressions might carry mostly 

redundant information in ASL, but this need not be the case for other sign languages, 

e.g. German Sign Language (see [36]). 

As a prerequisite to face recognition there has been considerable effort to find 
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faces and facial parts in an image (see, e.g., [8, 25, 42, 43]), and the recent interest of 

the vision community in human gestures has also lead to increased interest in facial 

expressions as something more than a mere nuisance for face identification. Pent- 

land et al. [37] and Ralescu and Iwamoto [39] describe two different approaches for 

recognizing human facial expressions-eigenfaces and the analysis of expressive facial 

regions using fuzzy logic. Both systems would be able to provide enough information 

about facial expressions for ASL understanding. 

1.3 Towards a hand tracking system 

1.3.1 Decision 81: a 3D approach 

Reconstructing the 3D structure of an object from its 2D projection is not easy, 

especially when the object is as complicated as the human hand. The 2+1D-to- 

gesture approaches show promising results, more promising anyway than attempts at  

3+1D, so why try to recover the 3D structure at all? 

As suggested above, the reason is that signs and gestures are performed in a 3+1D 

world, for human recipients who understand space as 3-dimensional. We perceive signs 

and gestures in this 3D space and we classify them intuitively according to a natural 

metric that is easily described in terms of 3+1D properties (though it is not identical 

to the Euclidean metric in 3D or in 3+1D). 

Gestures may be called similar because they differ only in palm orientation, hand- 

edness, duration, etc.. The exact form of this natural metric depends on the set 

of gestures or the sign language in question. The metric tells us what-in which 

context-is considered as relevant information. If we want to build a system for sign 

language understanding we need to recognize a huge number of signs, from noisy and 

incomplete input data, and the execution of these signs may vary considerably from 

our prototype examples. The ideal metric for this task provides a search space for 

gesture matching in which prototype samples are optimally distributed, and the in- 

tuitive metric that we use as humans is probably as close to this ideal as we can get. 

Hence it would be wise to use it as a base for sign recognition. 
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Since the signer is observed with a camera the projection of the 3+1D signer space 

into 2+ 1D can hardly be avoided. Some information is irretrievably lost in this process 

(due to occlusion etc.), and the rest is crammed into a much smaller space. Searching 

and matching in this cluttered space is more sensitive to errors, and the intuitive 

metric we would like to use does not translate very well into this lower dimensional 

space: for example, the similarities between a fist facing the viewer and a fist held 

parallel to the viewer are easily recognized in 3D, but not in 2D. Thus, a system that 

identifies gestures in 2+1D has to work in a cluttered feature space and without the 

benefit of a good metric. 

Of course, reconstruction of 3+1D information cannot give the lost information 

back, but, after all, most of this information is also lost for human observers, after 

all, who always recognize gestures and signs without having a full 3D view. Though 

I have to start out from 2+1D space and hence cannot completely avoid the clut- 

tering effect and its implications either, I can employ knowledge about the hand's 

properties and projective geometry to disentangle noise from relevant information. 

Once back in 3+1D, it is possible to choose a good metric for sign identification. The 

3+1D approach also has the advantage that the tracking system can be used for any 

desired sign language or set of gestureslhand motion, with or without a high-level 

interpretation process. 

1.3.2 Looking for a hand model 

My system follows the traditional model-based-object-tracking-and-pose-recovery cy- 

cle of 
project model compare to image data 

update model 

but unlike most other approaches of this kind my system does not include a model 

that can be directly matched to the image. 

The human hand is not a simple geometrical object. Even just to model its surface 

adequately is difficult: fingers are cylinder-like and the palm can be approximated 
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by some sort of box or polyhedron, but such a representation would hardly be good 

enough to produce contours that can be matched directly to the image without further 

processing and abstraction of image data such as connecting edge pixels into lines. 

This preprocessing of image data would be a difficult task as well since the outlines of 

finger segments do not always fit a description as a line or another simple mathematical 

object. The matching problem is further aggravated by additional features of the 

hand, such as finger nails, creases and patterns on the skin, variations in skin colour 

etc.. They all create spurious edges that have to be accounted for somehow. 

Of course there are more sophisticated building blocks available on both sides of 

the fence: there are methods that allow better description of arbitrary contours and 

may even be able to follow these contours from frame to frame (e.g., snakes, see, 

e.g., [29]), and geometrical objects such as geons or generalized cylinders allow much 

more sophisticated models without significantly increasing model complexity. Still, 

it is hard to imagine that any of these one-primitive-object-per-rigid-segment, low- 

complexity approaches to modeling could provide flexible enough basics for an object 

like the human hand. 

An alternative approach to modeling, as it is proposed by Lowe [32], would be 

to give up a simple, globalized representation in favour of a computer-graphics-like 

approach featuring a localized surface representation. This sure is (or can be made) 

sufficiently flexible to model a human hand well enough that its projection could be 

compared to the image data even on a pixel by pixel base. Unfortunately it is costly 

to compute the projection of such a local representation, and the task of creating such 

a model in the first place is daunting. 

Keeping the model simple means one can do fast and easy projection, a rather 

important feature: the size of the search space for possible candidate poses grows 

exponentially in the number of interdependent free parameters5. To reduce complexity 

one could consider fitting in a hierarchical way, but with a crude hand model it is 

advisable to include as much correspondence information as possible right from the 

start, to reduce the influence of false matches and to avoid getting trapped in false 

5For a human hand one would typically assume 5 chains of 10-11 interdependent parameters each 
(see chapter 4), though these parameters have a limited range of possible values 
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minima. 

The question is whether or not it is really necessary and/or desirable to include 

any detail of an object that is likely to leave significant traces in the image, even 

though the detail is irrelevant to the kinematic structure of the object. Models get 

more unwieldy with every detail that is included, they use up more storage space, and 

they get more user-specific. If even warts cannot be left out one has to adapt much 

more than a few simple parameters, such as finger length, to switch to  a different 

user. 

1.3.3 Decision #2: a simple model 

A simple model is hard to compare to the image data, while a realistic model is 

expensive to build and use. My modeling approach was originally motivated by the 

hope of finding a way out of this dilemma without having to give up the advantages 

of a 3D model-based approach. 

Additional inspiration came from psychological experiments on human motion 

perception, especially so-called biological motion (rotation of limbs around joints) 

pioneered by Johansson [27, 281. These experiments show that humans can recognize 

the motion of a test person in three dimensional space just from the motion of light 

markers, commonly known as MLDs (Moving Light Displays). 

Tartter and Knowlton [48] showed that such joint markers on the hand and fingers 

even provide enough information for humans to understand hand motion: two test 

subjects, fluent ASL signers, were provided with gloves with protruding light markers. 

Although each of them only saw a live video image of the light spots of the other's 

hand (plus a light marker on the tip of the nose) they were able to conduct a natural 

conversation after a short period of acc~mmodat ion.~ 

MLD experiments may well lead to interesting insights into psychological aspects 

of motion perception and possible internal abstractions we make somewhere in our 

'The main objective of the experiment was to investigate possibilities for data compression to  
reduce the bandwidth required for videophone transmissions. Hence the transmission of the data via 
video; if the subjects had been allowed to actually see each other they might have used 3D stereo 
clues that cannot be transmitted over a videophone. 
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cortex to represent the characteristics of a particular motion. Independent of such 

speculations we can at least conclude, though, that biological motion is well described 

by the motion of two points on the limb-the point where the limb connects with the 

joint around which it is moving, and another fixed point further out on the limb, 

preferably the end point. 

From a mathematical point of view this is no big surprise, of course, but it sug- 

gests that a hand model need not necessarily contain more than joints and finger tip 

locations to represent the hand adequately for motion tracking purposes. Of course, 

there is the difficulty of comparing this kind of model to the image data as joint 

locations and finger tips are not a priori identifiable in an image. If they are not 

specially emphasized, as in the MLD experiments, they may not even be recognizable 

as primary features of one single image; a joint may reveal itself only as a fixed point 

of motion over a sequence of frames. Thus a joints-only hand model demands con- 

siderable preprocessing and data abstraction before the actual fitting process can be 

started. There is a crucial detail, though: the preprocessing can all be done in 2D. In 

particular, it should be possible to identify joints and their 2D motion by an analysis 

of image flow or related 2D motion descriptions. 

1.3.4 Decision #3: colour-coded markers 

This said, I still decided to start out with a system that uses markers to provide the 

locations of joints and finger tips. Unfortunately, existing MLD systems may not be 

adequate for something like hand and finger tracking, though. From the viewpoint 

of computer vision MLDs provide enhancement of relevant feature points and hence 

eliminate detection problems, but the correspondence problem-which marker belongs 

to which joint-is still very much there. 

In fact, even humans sometimes have difficulties keeping track of individual mark- 

ers in MLD experiments. In a walking sequence, the marker attached to the wrist of 

a walking person seems periodically to turn into that person's knee, giving the over- 

all impression of an arm-swinging chimpanzee, and in the sign language experiment 

described above the signers had considerable difficulties with the more intricate hand 
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movements used in fingerspelling. Although the authors do not offer an explanation 

for these difficulties, they may well be due to marker confusion. 

The MLD systems for hand tracking mentioned in section 1.2 do not attempt to 

track any signs that involve intricate marker trajectories or occlusion. Even though 

the feature-point-tracking algorithm of Fletcher and Mitchell [20]) can handle some 

limited occlusion, it would probably fail when whole parts of the hand are hidden for 

a longer time. 

I suggest a simple method of disambiguating markers: colour coding. Special 

hardware makes it possible to detect a set of colour coded markers in real time (see 

[6]), but colour identification does have its problems (lighting conditions, cast shadows, 

etc., see 2.1). Since the vision system can be placed in a well controlled environment 

for this application, however, such difficulties should be manageable. 

I do not attach my markers directly to the skin (as it is sometimes done with MLD 

markers), but use painted cotton gloves. Since the straight forward encoding-one 

colour per marker-requires too many distinct colours I experimented with two ver- 

sions of colour coding that use fewer colours: a simple one-colour-per-finger scheme 

that allows easy marker detection, but does not completely eliminate the correspon- 

dence problem, and a scheme in which a marker is encoded by a combination of a 

joint- and a finger-colour. These colour markers are described in more detail in section 

2.1.2. Here it should be just noted that even colour coding can only alleviate, but not 

eliminate, the correspondence problem unless one can achieve a 100% correct marker 

identification rate. Thus I had to include means to deal with correspondence ambi- 

guities into my system, even for the experiments with the unique encoding scheme. 

1.3.5 How to get from 2D to 3D 

Back to the fitting cycle at the beginning of this discussion: reconstruction of a 

3D (or even a 2 + i d )  scene from a 2D image is known to be a hard and usually 

underconstrained problem. Even if we have a model of the object in the image, 

together with a set of correspondence pairs between points in the model and in the 

image, this does not necessarily remove ambiguities; there might still be more than 
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one possible 3D pose of the object that projects onto the same 2D description. 

In any case it is far more difficult to write down a set of equations that render the 

3D pose of an object from a set of projected points than it is to calculate the projection 

of a 3D object. Mathematically speaking, projection is a nonlinear, non-invertible 

operation (though it is usually possible to get at least partial information about the 

original pose). Even to extract the six pose parameters for a simple rigid object from 

a set of projected points requires some inventiveness (see [26, 61). Although it would 

be nice to have such an explicit set of formulas allowing reconstruction of the hand 

shape from the marker correspondence pairs, this is a daunting task.7 

The next best (or next worst) possibility is to reformulate the pose recovery prob- 

lem as a search or optimization problem: if we cannot directly infer the 3D pose of the 

model from its 2D image, we can at least calculate what the projection of any pose of 

the model would look like. Thus it is possible to find a hand shape that comes at least 

close to the image by simply trying out a number of different shapes. One could do 

an exhaustive search over all possible hand shapes (after a proper discretization of the 

search space) to find the correct solution, or any set of alternative solutions in case 

the problem does not have an unique solution. Unfortunately, the size of the search 

space grows exponentially in the number of interdependent parameters, though. With 

only two values for each parameter that makes 24 = 16 possibilities just for the shape 

of one finger and 23(24 x 5) = 640 possible hand shapes. 

Even if such a coarse description of hand shape should prove sufficient for sign 

language understanding-not that it is likely that it would-it might well happen 

that the closest hand shape in terms of marker proximity on this rough search grid 

would have little to do with what one would like to get: something that is is at least 

close to the shape one would get by taking the correct hand shape and mapping each 

parameter onto a binary space. 

I am attacking the problem in a different way, using a gradient descent method 

that moves the model closer to the pose in the image through a series of iterative steps. 

'pose recovery requires at least three linearly independent points per rigid object (assuming the 
position of the points on the object is known). Hence we cannot use the marker scheme to simply 
reconstruct the 3D hand shape segment by segment. 
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This kind of local optimization approach sifts through the search space of possible 

hand shapes in an intelligent way, and it only searches a small part of this search 

space, but its result depends on the initial shape of the model and it may not find 

the correct solution. My optimization algorithm is based on an extension of Newton's 

method for finding the zero crossing of a function to several dimensions (see [22]) that 

is especially suited for least squares problems (the model fitting problem can easily 

be formulated as a least squares problem, see chapter 3).  

1.4 Finally: The complete hand tracking system 

1.4.1 Overview in pictures and words 

The hand tracking system can be roughly divided up into two parts: marker extraction 

from the image and fitting of the model according to the marker locations. 

The first module (box A) extracts 2D marker, or rather, colour blob positions from 

the raw image. As mentioned, the correspondence problem can hardly be eliminated 

completely. Thus, box B, a module that resolves ambiguities in marker correspon- 

dence, is necessary even for the version with uniquely encoded markers. As far as 

positioning of box B inside the system is concerned one has to consider a tradeoff be- 

tween efficiency and reliability: on one hand, ambiguous marker assignments should 

be detected and resolved as early as possible, preferably already in box A, to avoid 

additional work for covering each alternative in the fitting routine. Unfortunately, 

in difficult cases knowledge of the physiology of the human hand is needed to find 

the correct assignment. This kind of knowledge is embedded in the hand model and 

can only be accessed by way of the fitting routine (box C).  Thus box B belongs to  

both stage 1 (marker detection) and stage 2 (model fitting), and it may be needed 

more than once for each image. The feedback loop B -+ C -+ D -+ B is used to put 

'questions' to the hand model: "which marker assignment looks better?" (see chapter 

5 for details). 

Once the correspondence problem is solved the actual fitting can begin, and the 

output, a description of the current shape and position of the hand, can be passed 
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on for further processing. Before the next image is tackled, however, box E, the 

prediction module, becomes active. Its purpose is to predict the hand motion in the 

time interval to the next frame and, accordingly, what hand shape to expect next. 

Box D projects the hand model onto an imaginary image plane and thus translates 

information about marker positions in the hand model into 2D image coordinates. 

This projection is used at many points in the system, whenever the hand model has 

to be compared to 2D image data. 

In the following chapters I will provide more detailed descriptions of these modules 

and their interactions: 

Chapter 2 deals with the issues relevant for stage 1: glove design and marker 

detection [box A (and, to some extend, box B)].  

Chapter 3 provides insights into the mathematical wheels and springs that 

make the fitting algorithm tick [box q. 

Chapter 4 traces the design of the hand model, from the properties of the life 

original down to the details of mathematical formulation as it is needed for the 

fitting algorithm [box C, D, and 4. 

Chapter 5 is all about the uglier instances of the correspondence problem that 

can not be tackled at an earlier stage and have to be handed on to the fitting 

algorithm. It describes two versions of the B -+ C -+ D -+ B feedback loop, 

one for the simple-marker version, the other for the uniquely encoded marker 

version [box B]. 

In chapter 6 the fruit is reaped and inspected: test runs on both simulated 

and real image data show successes and limitations. 

Last but not least, chapter 7 sums it all up and provides some further outlook. 
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1.4.2 The bigger picture: ASL interface 

Figure 1.2 shows the hand tracker in the context of a,  so far, hypothetical ASL 

interface. (A preliminary account of such an ASL interface, joint work with Eli Hagen, 

will appear in [14].) 

The visual interface has to provide low-level interpretation and abstraction of 

the visual input data. Information contained in the image that is relevant to ASL 

understanding-hand shape and motion and facial expression-has to be extracted 

and cast into a form suitable for further processing. The design of at least part of 

this visual interface is the topic of this thesis. 

The information extracted from the visual input is then handed on to a sign 

segmentation (and interpretation) system. The purpose of this module is similar to 

speech segmentation and phoneme identification in the processing of spoken language: 

the module has to find out when a new sign begins and it has to recognize the 

particular sign. With sufficient information from the visual interface this last part is 

relatively easy, given reasonable input and a good 'dictionary' (see sections 1.1.1 and 

1.3.1). As in speech recognition the trickiest part is sign segmentation. It is tempting 

and, for a start, reasonable, to avoid the issue and deal only with isolated signs, but 

this should not be taken as an excuse to assume the 'isolated-signs' hypothesis for 

the hand tracker as well.' Ultimately, the goal is to understand fluent signing, and 

a visual interface that requires artificial isolation of signs, such as start and/or stop 

positions, maneuvers itself into a dead end. There are several interesting prototype 

systems based on input from a data glove that recognize human gestures and/or sign 

language signs [18, 17, 2,461. Since the information provided by the data glove-hand 

position, palm orientation, and two flex angles for each finger-is very similar to the 

output provided by the hand tracker the data glove could be easily replaced with the 

more comfortable colour glove in any of these systems. 

The ASL interpreter, finally, has to 'understand' what the signer wants to express 

and translate this information into some internal representation suitable for further 

processing. Depending on the range of possible context or complexity of expected 

'Of the gesture and sign recognition systems described in section 1.2, only the systems of Davis 
and Shah [ll] and Dare11 and Pentland [9] work on continuous sign streams. 
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Figure 1.2: Tentative outline for a complete ASL interface: the hand tracker would 
roughly fill up the black box labeled 'visual interface', though a complete system 
would also have to have some rudimentary understanding of facial expressions. 
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expressions this can be a straight forward or a very difficult endeavor. Again there 

is a strong parallel to understanding more conventional spoken or written languages, 

though ASL expressions can have a number of peculiarities, such as quasi-parallel 

execution of signs, that are not found in any spoken language (see [24]). 



Chapter 2 

From Image Sequence to Marker 

Posit ions 

2.1 The gloves 

2.1.1 Hardware 

Even though the painted glove may be seen as a main characteristic of the hand 

tracker, it is not an integral part of the system in itself-only the markers are. In 

fact, the one-size-fits-all cotton lab gloves I am using in my experiments are far from 

optimal since the markers hardly ever lie where they are intended to  be. The major 

recommendation of cotton gloves is that they can be easily painted with fabric paint. 

This fit problem has a nice side effect though: the system is tested under rather adverse 

conditions. That it still works shows some robustness. The switch to a different user 

should only require minor adjustments, if any. 

Still, it would definitely help to use tight-fitting rubber gloves (surgeons, painters?) 

if there was a feasible way to colour them. Markers directly attached to (or painted 

onto) the fingers would be even better, of course, though maybe not from the viewpoint 
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Figure 2.1: Marker design: round or square markers are sensitive to orientation of 
the joint. Markers of this type will correctly indicate the actual joint location only as 
long as their surface is turned towards the camera. Ring-shaped markers always give 
a correct joint location, no matter which way the joint is turned. 

of the user. l 

2.1.2 Designer markers 

Traditional MLD markers are typically round or square reflectors. This makes them 

very much features of the surface, which is fine, as long as the markers face the camera. 

In most of the standard MLD applications (whole body tracking, gait analysis), where 

the target is moving in a line more or less parallel to the image plane, this is not a 

problem. The actual joint, could it be seen, would appear pretty much at the same 

position in the image as its marker. 

In ASL signing hand and fingers are constantly rotated in space, however, and 

markers will often turn away from the camera. Thus, a round or square blip attached 

to the surface would be occluded (though the joint is perfectly visible), or at least it 

would not indicate the real position of the joint any more (see figure 2.1). 

My suggestion is to use (the center of) ring-shaped markers instead, wherever 

possible2. No matter which way the joint is turned, the markers will be visible and 

its center still roughly correspond to the joint position. With this trick it is possible 

' ~ a r t t e r  and Knowlton [48] used gloves with dice-shaped, protruding markers sown on for their 
ASL experiments and Davis and Shah [ll] mark their gloves with something that looks like tape, 
but in other light marker systems the markers actually are stuck right onto the subject (e.g. [19]). 

2The markers for CMC, MCP2, and MCP5 (see figure 4.1) can at least be made semi-ring-shaped. 
The only joints for which I had to resort to traditional round patches are the inner MCPs (MCP3 
and MCP4). 
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to keep the hand model free from any kind of surface representation and concentrate 

on the essentials, the joints. 

As mentioned in the introduction (see page 15) the second idea is to use colour 

coding to identify markers. Potentially this provides a 3D space to distribute the 

markers in (instead of the 1D intensity space). Unfortunately, colour is not only a 

property of the object's surface, but also of the spectral distribution and intensity of 

the light illuminating the surface. The dependency on spectral distribution only would 

create problems if the light source changes during the experiments, though. Variations 

in intensity can be neutralized by using chromaticity values, i.e., +, -&-, instead 

of raw r-g-b values, but this means that we have to sacrifice one dimension of the 

colour space3. 

How many, and which colours are actually distinguishable in chromaticity space 

ultimately depends on the quality of the equipment: the camera sensors, but also 

(uniformity of) glove colouring and lighting conditions. I found it impossible to  use 

a distinct colour for each joint on the hand (the 16 joints + 5 finger tips, to be more 

precise), but even with much better equipment it would be hard to implement this 

simplest of encoding schemes and accommodate yet another 21 distinct markers for 

the other hand. 

Thus, there are two alternatives: either allow more than one marker with the same 

colour or use more than one colour per marker to encode markers. Alternative one 

allows easy marker detection without any further processing on the detection level, but 

reintroduces the correspondence problem. Alternative two keeps the correspondence 

problem to a minimum, but requires a more sophisticated marker detection algorithm 

and some thought about a good encoding scheme. 

Such an encoding scheme is harder to find than one might think: since the hand is 

very flexible and can appear from virtually any perspective it is surprisingly difficult 

to prevent unexpected popping up of 'impostor markers'. Colour patches on any two 

parts of the hand can easily become neighbours in the image to create the unexpected 

and undesired illusion of a marker; and there is no way-short of restricting hand 

movement-to avoid this. And such incidental markers are not the only problem; 
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Figure 2.2: Encoding scheme for unique markers: the scheme requires 10 distinct 
colours, 5 to indicate the finger (+1 for the wrist), another 4 to determine joint type 
or indicate a finger tip. A marker consists of three rings: the actual marker in finger 
colour in the center surrounded by two joint-indicator rings. 

sophisticated patterns tend to disappear, courtesy of motion blur or lack of resolution, 

and an encoding that requires visibility of the whole marker is of doubtful value as 

one may be left with little information to fit the model to. 

After some experimenting I found an encoding scheme that, even though it is far 

from perfect, reduces marker detection problems to a tolerable amount4. It developed 

out of the scheme of simple one-colour markers that I tested as an alternative-one 

colour for each finger plus one colour for the wrist. These are still used as the actual 

joint markers, and their center is taken as the location of the joint. An additional pair 

of rings-one ring on each side of the ring with the main colour-indicates the joint 

type. With three joints plus tip for each finger this requires four additional colours. 

Thus the encoding requires ten colours altogether (for one hand), not including the 

background colour for the glove (black) (see figure 2.2 and 2.5). 

Rings can be made wide enough to resist even considerable motion blur and low 

resolution. The two joint-indicator rings ensure good marker recognition rates even 

for partially occluded markers, and the matrix-like scheme of colouring minimizes 

*'Tolerable' in the sense that it is possible to  build a reasonable tracking system on top of the 
marker detection module. The error rate for the sequences presented in chapter 6 lies at about 1 to 2 
minor errors per frame, i.e., errors, that can be detected and corrected by the system. Major errors 
that lead to  serious 'misinterpretations' of hand shape occurred in 2 out of 10 of the sequences with 
the unique encoding scheme. 
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Figure 2.3: Difficult cases for the marker identification algorithm: in both cases the 
main ring of marker m would probably be paired with joint-indicator rings from the 
occluding finger (f2), but in the first case-the more common one-this still leads to 
correct marker labeling. 

creation of spurious markers or incorrect marker labeling. Problems of this kind are 

likely to occur when the hand is seen from the side and a marker is partially occluded. 

If the finger-coloured ring is still visible it may be paired with the joint-indicator of a 

marker on the occluding finger (see figure 2.3). For most hand shapes this joint will 

be the joint of the same type and hence with the same joint colour, though, and the 

marker is still labeled correctly. 

2.2 Marker detection algorithm 

In order to save time and eventually build a real time system the marker detection 

algorithm should be as simple as possible.5 

In fact, for the simple one-colour-per-finger encoding scheme all there is to do is 

to detect 'blobs' of a specific colour, which could be done in many ways, preferably 

with special-purpose hardware (see [6]). Failing this (and having therefore to rely on 

a software solution) I decided for a simple region-growing algorithm: the image is 

searched for a 'seed pixel' of one of the desired marker colours and the marker around 

the seed is then expanded into a maximal contiguous area of the seed colour: 

5Yet another argument against fancy encoding schemes: any kind of shape and/or pattern analysis 
would be too time consuming. 



Figure 2.4: Glove with si~rlyle markers 

Figure 2.5: Glove with uniquely encoded markers 
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searching the image for simple colour markers 

for each pixel p = (x, y, colour) in the image: 

if (pixel has marker colour) and (pixel is not marked) 

\*  reset cumulative pixel coordinate counters: 

they will be needed to determine the marker center *\ 
xsum = ysum = 0 

current colour = this marker colour 

grow-region-around-pixel(x, y, colour) 

if (region large enough) 

\* [i.e., # of pixels on marker > THRESHOLD VALUE] *\ 
xsum sum 

marker center = ( fl o f pixels o n  marker  7 fl o f pix:. on  marker  1 
add marker to candidate markers for current colour 

recursive region-growing 

grow-region-around-pixel(x, y, col) 

if (pixel at (x, y) is marked as visited) or 

(pixel at (x, y) does not have marker colour col) return 

xsum = xsum + x 

ysum = ysum + y 

mark pixel at (x, y) as visited 

grow-region-around-pixel(x+ 1, y, col) 

grow-region-around-pixel(x- 1, y, col) 

grow-region-around-pixel(x, y+ 1, col) 

grow-region-around-pixel(x, y- 1, col) 
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The colour of a pixel in the image is determined by its Euclidean Distance in chro- 

maticity space to the nearest marker colour. If this distance is less than a threshold 

value6 the pixel is accepted as a marker pixel. 

Chromaticity space does not allow any distinction between white and grey-or 

black, for that matter-so, strictly speaking, I should not have used the white marker 

for the wrist and the blue-grey for the finger tips. However, the bright white usually 

reflects enough intensity to saturate all three camera sensors and black will be black, 

i.e., near zero intensity, no matter what illumination. One does not risk too much by 

searching for white, black, and grey by thresholding in raw r-g-b space. 

2.2.1 Searching for 3-ring markers 

To detect and identify the markers used in the unique encoding scheme requires some 

additional effort: after the finger-indicator ring in the middle is established, which 

can be done using the simple region-growing algorithm described above, we need to 

find at  least (part of) one of the two joint-indicator rings to identify the marker. 

A simple extension of the above algorithm will do the job: "do not stop when 

the edge of the marker is reached, but search the next n pixels in the direction away 

from the marker". These pixels then vote for a joint colour, and the marker is finally 

identified with the joint that gets the most votes. 

revised and extended version of the region-growing algorithm: 

grow-region-around-pixel(x, y, col, direction) 

if (pixel at (x, y) is marked) return 

if (pixel at (x, y) does not have colour col) 

search-vicinity-of(x, y, direction, depth = 0) 

return 

xsum = xsum + x 

ysum = ysum + y 

60.05 for seed pixels, 0.15 for region growing. 



CHAPTER 2. FROM IMAGE SEQUENCE TO MARKER, POSITIONS 3 1 

mark pixel at (x, y) as visited 

grow-region-around-pixel(x+ 1, y, col, 'right ') 
grow-region-around-pixel(x- 1, y, col, 'left') 

grow-region-around-pixel(x, y+l ,  col, 'up') 

grow-region-around-pixel(x, y- 1, col, 'down') 

searching for joint-indicator rings 

search-vicinity-of(x, y, direction, depth) 

if (depth > MAXDEPTH) return 

if (pixel at (x, y) has any joint colour 'j? add 1 vote for joint 'j' 

case (direction) of 

right: search-vicinity-of(x+l, y, 'right', depth+l) 

left: search-vicinity-of(x-1, y, 'left', depth+l) 

up: search-vicinity-of(x, y+ 1, 'up', depth+l) 

down: search-vicinity-of(x, y-1, 'down', depth+l) 

The actual search depth depends on the expected size of the marker, resp. its 

rings, in the image. The pixels immediately at the edge of two rings usually do not 

have the pure colour of either joint- or finger-indicator ring and are therefore useless 

for marker identification. A large search depth, on the other hand, slows down the 

algorithm and increases the risk that a marker is assigned to the wrong joint because 

the search region contains part of another marker's joint-indicator ring(s) (see figure 

2.3). A MAXDEPTH of around 10 produced good results for the type of images 

shown in chapter 6, but this might have to be adapted for lower-resolution images. 



Chapter 3 

The Fitting Algorithm 

To find the optimal shape and position of the hand (i.e., the shape and position 

of then hand that is 'closest' to the image) I use a standard NAG-library routine 

for nonlinear, continuous optimization known as Quasi-Newton Algorithm (see [34], 

section 3.2). I will shortly describe the basic principle and then show how the method 

can be applied to solve our fitting problem. 

3.1 Newton in ID 

Given a smooth function f (x), we want to find an x* such that f (x*) = 0. Developing 

f (x) in a Taylor series around x yields 

Assuming that f (x) is 'close enough' to f (x*) and that the function is 'sufficiently' 

linear in this neighbourhood we can approximate 

Thus, setting f (x*) = f (x + Ax) = 0 implies 
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and we have obtained a correction vector Ax such that x + Ax z x*. If f is really 

a linear function, these equations are exact, and the method finds the zero crossing 

in one step1. Otherwise we have to repeat the calculation, replacing x ( ~ )  by x (~+ ' )  = 

x ( ~ )  + in each iteration step, until f ( ~ ( ~ 1 )  z 0. 

If the function is reasonably well behaved and we have a good initial guess, New- 

ton's method is extremely efficient (convergence is quadratic), though there are a few 

pathological cases where the algorithm fails to converge. The routine is less likely to 

succeed, however, when the initial guess is too far away from the desired result and 

the search interval includes local maxima and minima. Luckily we need not worry 

too much about these bad global convergence properties since our goal is model based 

object tracking, which usually guarantees a good initial approximation to the desired 

solution. 

3.2 Applied to our least-squares problem 

We want to adjust the pose of our hand model in such a way that the difference 

between the projected joints and finger tips of the hand model and the actual marker 

positions in the image becomes minimal. More precisely, let G be a vector containing 

the n parameters that describe shape, orientation, and position of the hand (see 

chapter 4, for my hand model n = 26) and let ?(G) be a vector describing the 

projection of the hand model, i.e., a vector containing the projected positions of 

joints and finger tips. Then the difference between projected marker positions and 

marker positions in the image can be written as a vector 

-+ 

5(5) = ?(G) - A2 (3.4) 

where n? is the vector of observed marker positions. The function 

a scalar, gives the least-squares error, or the square of the Euclidean distance between 

projection and image markers. Thus, .F is a measure for the quality of the recovered 

'Except for the degenerate case f (x) = const., of course 
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shape. 

Our goal is to find an 2 that minimizes F (Z ) ,  

Let g'(Z) be the gradient vector (the vector of first derivatives) of .F(G), i.e., 

and G3(G) be the Hessian matrix (matrix of second derivatives) of .F(G), i.e., 

Then we can write down the following (sufficient) conditions for 2 to be a mini- 

mum of F(Z) :  

1. Ilg'(2)ll = 0. ( 1 1  . 1 1  denotes the Euclidean norm.) 

2. IIG3(Z*)II is positive definite. 

3.2.1 Basic Gauss-Newton algorithm 

Following Newton's idea, we want to construct a sequence 

converging towards Z*, where f$) is a correction vector for dk) that determines the 

direction of search (or descend) and s ( ~ )  is a scalar steplength. Analogous to equation 

3.3 we can find using 
~ ~ ( z ( ~ ) ) j $ )  = -G(G(~))  (3.10) 

-+ 
The gradient vector g'(G) can be written in terms of V and its derivatives as 

where J(G) is the Jacobian matrix of 3 ( Z ) ,  i.e., 

dV, (G) 
Jij(6) = 

d a j  ' 
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and for the Hessian matrix we find 

G ~ ( G )  = 2 [ J ( G ) ~ J  (G) + B(G)] , 

with 

B (G) = C Vi (G) Gi  (G) 

and G;(EU') F G ~ ' ( G )  the Hessian matrix of Vi(G). 

Since we expect F(8) to be small around 2, ll$(G) 1 1  should be small compared to 

1 1  J ( G ) ~ J ( G )  1 1 .  Hence, we may approximate G ~ ( G )  by ~ J ( C ~ ) ~ J ( G )  and get by without 

actually having to calculate second derivatives of $(G) 

Substituting equations 3.11 and 3.13 into equation 3.10 we get 

-4k) a linear equation for pN . 

If the rank of J is < 26 (the length of G: the number of parameters in the hand 

model) the problem is underconstrained and there is no unique solution, a situation 

one would naturally like to avoid. The set of constraints added to enforce a solution 

close to the shape predicted for this frame -one constraint per parameter (see section 

4.6)-also has the virtue of preventing such disasters, even when there are not enough 
+ 

markers visible to guarantee 26 independent entries into 27. 

Hence the rank of J can be assumed to be > 26, which means the problem is 

overconstrained and we have to settle for a least-squares approximation of SN. Thus, 

There seems to be a consensus in the numerics community that 

do this is to use Singular Value Decomposition of J :  to find U, S, 

the proper way to 

and V such that 
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where S is a diagonal matrix containing the singular values ('pseudo eigenvalues') of 

J ,  U is an m x m orthonormal matrix, and V is an n x n orthonormal matrix. Further 

details and an alternative method of solving this linear least-squares problem can be 

found in [22] resp. [32]. 

3.2.2 Quasi-Newton extension 

Unfortunately, our approximation of G ~ ( Z )  as 2J(d)TJ(E;) may not be valid any 

more when dk) is too far away from 2 or when F ( Z )  is too 'flat' around 6'. The 

Quasi-Newton algorithm takes this into consideration by calculating a Newton-style 

approximation to B(Z). The idea is to avoid costly numerical estimation of GF(E;), 

but nevertheless include some information about the curvature of F ( d )  along the latest 

search direction when slow convergence of the basic routine indicates that 2J(E;)TJ(Z) 

does not provide a good approximation of G3(d). In a Quasi-Newton scheme the 

Ic + lst approximation to B ,  ~ ( ~ " 1 ,  is given by 

Gill [22] describes several such Quasi-Newton schemes that make use of the current 

gradient vector to compute a correction matrix c ( ~ )  of rank one or two. For details, 

see also [23]. 

3.2.3 Steplength 

All that remains to be done now is to select a proper steplength ~ ( ~ 1 ) .  We have to solve 

a one-dimensional optimization problem. NAG'S Quasi-Newton algorithm does this 

by fitting a cubic polynomial to .F (as a function of ~ ( ~ 1 ) ;  for details, see [34], section 

3.2.4 and 2.4.1). 



Chapter 4 

Modeling a Human Hand 

4.1 Anatomy of the human hand 

My hand model describes a simplified version of the anatomy of a human hand in 

mathematical terms. 

A human hand (normally) consists of 15 joints (including the wrist) and some 

20+ bone segments in between, constituting palm and fingers. The joints are named 

according to their location on the hand as MetaCarpoPhalangeal (joining fingers to 

the palm) or InterP halangeal (joining finger segments) (see figure 4.1). 

A short self-inspection confirms that the nine interphalangeal joints can be ac- 

curately described as having only one degree of freedom, flexion-extension. The 

situation is more complicated for the metacarpophalangeals, though: all five of them 

are described in the literature (see, e.g., [3, 11) as saddle joints with two degrees of 

freedom, with the capability of abduction-adduction or yaw in the plane defined by the 

palm, in addition (and perpendicular) to flexion-extension as in the interphalangeals. 

This is clearly the case for the four Lproper' fingers, but the abduction-adduction 

capability of the thumb at the metacarpophalangeal seems to be very restricted. 

Most of the thumbs flexibility originates in the C arpoM etaC arpal joint. Buchholz 

and Amstrong [3] confirm this to be another saddle joint with the two degrees of 

freedom described above, but also claim that "because of incongruity between the 

trapezium and the metacarpal base and laxity of the ligaments in the area" it would 
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Figure 4.1: View of a human hand (back of right hand). The icon coordinate systems 
represent the joints and their respective degrees of freedom. The joints are named after 
their position on the hand: Interphalangeal joints-Proximal InterPhalangeals and 
Distal InterP alangeals-join finger segments, M etaC arpoP halangeal joints connect 
fingers to the palm; the CarpoMetaCarpal joint of the thumb is optically part of the 
palm. In the mathematical hand model, the joints are represented as ideal, i.e., all 
rotation takes place around a common origin, the idealized center of the joint. Each 
hand segment is assigned its own local coordinate system, located in the center of 
the joint that connects it to the previous segment. The relationship between two 
adjoining segments (i.e., the transformation from one local coordinate system to the 
other) is expressed in terms of a unified matrix that represents the current rotation 
at the connecting joint and the translation necessary to shift the origin of one local 
system into the next. 
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Figure 4.2: Local coordinate systems for one finger: the x-axis corresponds to the 
main axis through the bone of the finger segment. The coordinate system is defined 
in such a way that a flexion-extension movement at the joint corresponds to rotation 
around the z-axis. 

be more appropriate to assign a third degree of freedom-rotation around the main 

axis of the thumb-to this joint. 

Both this pseudo-rotation at the CMC and the abduction-adduction at  the MCP 

of the thumb are ignored in my hand model. The variation in hand shape effected 

by any of the two parameters seems to be negligible for sign language interpretation 

purposes. Including them would only increase the complexity of the hand model, and 

thus of the fitting algorithm. 

4.2 A mathematical model 

For the mathematical description of the hand skeleton an approach commonly used 

in computer graphics comes handy: the hand is seen as consisting of various rigid 

subparts-the palm and finger segments-living in their own local coordinate systems. 

These subparts are connected via coordinate transformations relating their coordinate 

systems. In this scheme the hand is a hierarchical tree of skeleton segments, starting 

with the palm as the root and ending in the finger tips. 
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Figure 4.3: Summary of relevant hand parameters: the chart gives the fixed relations 
between the local coordinate systems of adjoining segments (translation of origin 
and, for the CMC, rotation into opponent position). The number and specification 
of parameters attached to each joint (its degrees of freedom), together with range 
limits on these parameters, can be found in the parameter  box attached to each joint. 
The dotted arrows indicate the most import ant interdependences between parameters 
incorporated into the hand model. 
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The position of features such as joints (and markers) Fan be given in the local coor- 

dinate system of the segment, independent of the current hand shape, since the infor- 

mation about the hand shape is contained in the coordinate transformations. These 

coordinate transformations are best formulated in terms of homogeneous coordinates1 

describing rotations of the main axes followed by a translation of the origin. 

The reference coordinate system for the hand model is located in the idealized 

center of the wrist joint. This is yet another complicated saddle joint with three 

degrees of freedom, but the wrist is not actually included into the hand model. Rather, 

the hand is viewed as a disconnected object moving freely in space, and the six degrees 

of freedom (3 for translation + 3 for rotation) assigned to the wrist actually express 

the relation between object-centered and viewer-centered coordinate systems (or, in 

other words, the position and orientation of the hand in space). 

4.2.1 Coordinate systems 

As mentioned above, the origin of the hand's reference coordinate system is set in the 

wrist. The x-axis points from the wrist through the fully extended middle finger, the 

y-axis gives the direction perpendicular to the palmar plane, pointing out of the back 

of the hand, and the z-axis lies in the palmar plane, pointing away from the thumb. 

Thus, a right handed coordinate system describes a right hand, and vice versa. 

The local coordinate systems of the various finger segments are located in the cen- 

ter of the (idealized) joints connecting the segment to the palm or to the next segment 

towards the palm. The x-axis always corresponds to the main axis or the segment's 

bone. The remaining two axes are positioned in such a way that flexion of the joint 

corresponds to a rotation around the z-axis (see figure 4.2; the local coordinate system 

inherits the handedness of the main system of the hand.) According to Buchholz and 

Amstrong ([3]) abduction-adduction can be described as rotation around the y-axis in 

this local system, provided it is considered before flexion-extension in the composition 

'In a world of 3x3  matrix operations translation would have to be represented by a vector 
addition. For the sake of a simpler formalism we can add an additional row (and column) to our 
matrices instead, which also allows us to express translation by a matrix multiplication and thus get 
a homogeneous representation for both rotation and translation (for details, see [21]). 
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of the transformation matrix. 

The 'reference hand shape' relative to which all transformations are given looks 

much like figure 4.1: fingers and thumb are extended in the palmar plane, but all four 

fingers are aligned with the x-axis of the main coordinate system, not abducted as 

in the picture. For this reference shape the local coordinate systems for all fingers, 

except the thumb, are simply translated versions of the main system (see table 4.3 

for details). An additional (fixed) rotation at the CMC brings the thumb into its 

opponent position; Buchholz and Amstrong [3] give flex = 48", yaw = 38", and 

roll2 = 80". 

4.2.2 What we have so far 

We now have a mathematical description of the hand skeleton in terms of idealized 

joints and rigid segments. The joints constitute the origins of local coordinate systems 

for the adjoining finger segments. The shape of the hand is defined by the set of 

transformation matrices that relate the local coordinate systems of the segments; 

or, more precisely, by the respective amount of flexion-extension and abduction- 

adduction at the various joints, which enters the transformation matrices in form of 

rotation angle values. The hand has 15 joints, each capable of flexion-extension, and 

5 of these are also capable of abduction-adduction. Thus, a particular hand shape 

is determined by 15 + 5 = 20 parameters, plus 3 + 3 parameters for position and 

orientation of the hand in signer space. 

4.3 How to marry Newton and the hand model 

4.3.1 Prerequisite: project ion operator 

In order to compare a given 3D pose of the hand model to the evidence in the image, 

the hand model has to be projected onto the image plane of a virtual camera, i.e., we 

have to simulate the process of taking a picture or video image of the hand model. A 

2rotation around the x-axis; should be considered last in composing the transformation matrix. 
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Figure 4.4: A simple camera model: the point p, located at [z,, y,, zPlT is projected 
along a ray through the center of an imaginary lens or pinhole (in the origin of the 
coordinate system) onto the image plane located at z = f (the focal length of the 
camera). p', the projection of p has coordinates [ X I ,  y', f I T .  
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simple 'pinhole' camera model will do just fine for this purpose: in figure 4.4, imagine 

a camera with its lens (the pinhole) sitting at the origin and its image plane parallel to 

the x-y-plane at z-value f (the focal length of the camera). A point p  with coordinate 

vector [x, y, zIT is projected along a ray of light through the pinhole at the origin onto 

the image plane at [XI, y', f I T .  Solving the resulting equation 

for x' and y' respectively yields 

To get the projection of a point on any segment of the hand one first has to 

calculate its position in terms of the viewer coordinate system (the coordinate system 

of the camera) using the ladder of transformation matrices. Then equations 4.2 can 

be used to get the point's position in the image plane. 

Thus, the function that describes the projection of the hand model-or, more 

exactly, of a joint marker p  with local coordinates [x, y, zIT in the hand model-onto 

the image plane is defined as 

where 

[XI, y') 2') 1IT =  MA(^) [x, y,z,  1IT (4.4) 

and MA(d) is the product of transformation matrices relating the local coordinate 

system of the finger segment on which p lies to the viewer coordinate system (A can 

be viewed as an index selecting the appropriate M for the finger segment containing 

P ) .  
As it is, this function describes the projection of one point, respectively marker, 

only. To get the projection function P needed for the Quasi-Newton algorithm as 

described in section 3.2, we simply have to cram the projections of all markers into 

one long vector. Since the marker positions on the hand (the [x, y, 21s) depend only 

on the user's hand measures and are fixed during the whole tracking process we can 

write P(d) instead of P(d, [x, y, .IT). 
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4.4 Derivatives 

Unfortunately, the Quasi-Newton algorithm does not only call for @(d), but also for 

its derivatives with respect to the components of Z3 With some additional computa- 

tional effort (evaluating 3 twice, at a' and at d + hi, for each column of the Jacobi 
sv (a) 

matrix) the partial derivatives of - can be evaluated numerically, but deriving an 
603 

analytical formula for these partial derivatives is not as forbidding as it may look at  

the first glance: 

The partial derivatives for the x component are given by 

Analogous for the y component. 

Since, by equation 4.2, 

with mij(d) the i j th  element of MA(d), we have to calculate a f f k  ("I or, equivalently, 
aM,(a) 

affk ' 

Now each MA(d) is a product of rotation and translation matrices and can be 

decomposed into basic components Mj that are either constant or depend on one 

parameter a; only. For example, such a decomposition for the MCP2-PIP2 segment 

would look like 

position in space 

orientation 

Mtransturist-MCPZ x M y a W ( a l ~ )  x Mf[eZ(a l l )  - " 
distance wrist-MCP2 pose of MCP2-PIP2 segment 

+ 
3Actuallyl what is required is the derivatives of + V(6) = F(6) - G I  of course; but since G is a 

constant these are identical to the derivatives of P(6). 
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&b3 only the one component matrix actually depending on ai has In forming 

to be considered; the rest can be treated as a constant with respect to a;. 
dM The derivatives are easily obtained. E.g., for a flexion matrix (rotation 

around the z-axis) 

Mfrez(a) = 

and 

aMA - To get = n Mj(G), simply replace the M depending on ax, by its derivative. 

aM,(a) Using this kind of decomposition, computation of MA(Z)  and its derivatives 
aoi 

can be done in parallel. Let MI, be the component matrix in MA that depends on a k ,  

i.e., Mk(G) = Mt(ar) .  To get a transformation matrix MA, and its derivative e, 
for each parameter a k  (k E A) 

1. compute 

M<k(Z)  = II 
j before k in MA 

Mj (4 

and the derivatives for all a; that occur in MKr. 

2. compute Mk(ax) and w. 
3. compute 

M > k ( ~ )  = n 
j after k in MA 

Mj ( G )  

and the derivatives for all a; that occur in M>x 
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4. multiply together: 

and 
-~k(ak)M>k(Z) d a ,  i before k 

da;  M ~ ( z ) M ~ ( z )  d a k  i = k (4.13) 
&Ld3 i after k M < k ( w k ( a k )  aai 

As an illustration, figure 4.5 shows the calculation tree for Mhrlcp2-p1p2, i.e., for 

the MCP2-PIP2 segment. 

4.5 Adding some ad hoc physiology 

In its present form the hand model has a serious flaw: it does not distinguish between 

reasonable and absurd hand shapes. This provides the Quasi-Newton algorithm with 

many tempting false minima. What constitutes a reasonable hand shape is determined 

by the hand's physiology, the functionality of the joints and the interaction of muscles 

and tendons that impose restrictions on possible hand motion and the flexibility of the 

various joints. A set of constraint functions that model the most significant aspects 

of this physiology make the fitting process more stable and results more reliable. 

These constraint functions all work by penalizing hand configurations that involve 

undesirable angle values with large residual errors. They must, of course, correspond 

to the requirements listed in chapter 3: they must be smooth and should be at least 

locally linear. Constraint functions are weighted according to their relative importance 

in comparison to each other and the residuals generated by the marker correspondence 

pairs. 

4.5.1 Range limits 

One of the most obvious ways to introduce physiological aspects into the hand model 

is to impose range limits on the joint angles. This can be done by adding a series of 
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read off derivatives in these columns 
M M M  - - - . . a .  > 
Sa, Sa, 6a2 

read off 

M wrist 
+ 

M wrist - 
&ai 
here 

read off 

here on to PIP2-DIP2 segment 

Figure 4.5: Calculation tree for the transformation matrix that describes the MCP2- 
PIP2 segment: the calculation proceeds from the root (translation in x: M, and 

u) and spreads out towards the fingers as more parameters have to be Mdz = a. 

considered. Partial derivatives of the a; are handed down through the columns. The 
transformation matrices and their partial derivatives can be read off in their respective 
rows, with the actual transformation matrix in the last element of the row. Thus, the 

and so on, and the last element first element in row 6 is *, the second is 
of row 6 is MWrist itself. 
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residual 

angle range constraint 

joint angle 

100 

Figure 4.6: Residual error generated by the constraint function that enforces range 
limits on joint angle values. The function increases the residual error for any hand 
shape that involves out-of-bounds angle values and thus prevents that such a shape 
from being accepted as a minimum. 

1 1 

residual(x) - 

- 

pot-shaped functions 
Q; - mznffi 1 

f(%) = [2 - -IN4 maxa, - minffi 2 

to the hand model, one for each parameter (see figure 4.6). The bottom area of the 

pot corresponds to the range of admissible angle values. The residual error generated 

by the pot function increases steeply for out-of-bound angle values. Hand shapes that 

involve out-of-bound angle values therefore produce large residual errors and are not 

attractive for the fitting routine. 

4 N  determines the steepness of the pot's wall. If N is too small the function imposes an unde- 
sirable preference for angle values in the middle of the permissible range. A large N ,  on the other 
hand, creates very sharp edges at the sides of the pot and thus generates strong nonlinearities (which 
have a negative effect on the performance of the Quasi-Newton algorithm (see chapter 3)). N = 15 
provides a good compromise. 
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4 

3 

residual error 2 

1 

0 

PIP flex 5 DIP flex constraint 

+ 
-100 flexion at PIP 0 10 

flexion at DIP 

Figure 4.7: The last two segments of each finger do not move independently; to flex 
the finger stronger at the DIP than at  the PIP is almost impossible. The constraint 
function described in equation 4.15 (plotted here as a function of DIP flexion for a 
fixed DIP flexion) reflects this fact. 

4.5.2 Interdependences 

Closer observation of hand and finger motion suggests further constraints: fingers and 

finger segments do not move independently of each other. This is most conspicuous 

for the last two segments of each finger. The flexion at PIP and DIP of the same finger 

tends to be the same and it is virtually impossible to bend the last segment without 

bending the middle one. Thus we may design a constraint function that favours hand 

shapes where PIP=DIP and punishes any atteinpt to flex the DIP more than the DIP: 

This constraint does not add any additional residual error for hand configurations 

where PIP=DIP and only adds a very moderate punishment for configurations where 

the flexion at the PIP is stronger than at the DIP. It increases rapidly, however, for 

flex at DIP < flex at PIP (flexion of the fingers towards the palm results in negative 

flex angles) (see figure 4.7). 
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Another interdependence concerns the flexion at neighbouring MCPs. The effect 

is not as marked as in the case of PIP and DIP, but a finger bending at the MCP 

does tend to drag its neighbours along. A 'MCPxMCP' rule should not be used as a 

hard constraint, but it is useful as a weak, probabilistic rule: "if marker locations do 
(~ 

not prompt otherwise fingers tend to move together." A simple way of implementing 

this is to add a constraint function 

but to give it a low enough weight that it does not interfere with the fitting process 

unless the markers do not provide sufficient constraints. 

There are other useful interdependences that are just as weak as the MCP-MCP 

relation, but can be utilized as stabilizing, probabilistic rules. Whether any of them 

should actually be included and how much weight they should get depends on the 

difficulty of the input sequence, on factors such as frame density, reliability of marker 

detection, and on how many markers are available. For easy-to-track, model-generated 

test sequences these additional constraints actually increase the overall error in re- 

covered pose because they introduce artifacts when the shape would otherwise be 

recovered perfectly. However, for real-image sequences with, among other things, 

very imprecise marker locations these constraints have a stabilizing effect. 

fingers do not cross rule: 

this can be implemented by adding a constraint function similar to the PIPSDIP 

constraint to keep the yaw values of adjacent MCPs in line. Since there are signs 

in ASL where fingers do cross we have another lenient condition. The rule can be 

very helpful, however, since the Quasi-Newton algorithm tends to make heavy 

use of the degrees of freedom provided through the yaw at the MCPs to adapt 

to the marker positions in the image when it follows a false r n in im~rn .~  

MCPfl,, x PIPfle, rule: 

just as the MCPEMCP rule, this is a heuristic rule that does not reflect any 

real physiological constraint. It is perfectly possible to adopt a hand shape 

5The resulting shape is reminiscent of a dead spider, crushed legs sticking out at impossible angles. 
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that contradicts this rule (e.g., the E h a n d  in ASL). The rule rather reflects a 

tendency of hand motion: when the hand is closed into a fist this is usually not 

done by flexing first the DIP, then the PIP, and then the MCP (or vice versa), 

but rather by flexing all three joints at the same time. 

PIP; = PIPj rule: / 

another stabilizing rule that does not correspond to an actual physiological 

constraint. 

4.6 Motion constraints 

So far, everything described in this chapter was intended to capture as much knowl- 

edge as possible about the physiology of the human hand and put it into a mathe- 

matical form for the Quasi-Newton algorithm. It is also helpful, however, to consider 

the motion-over-time aspect of the hand tracking problem. Knowledge of position 

and shape of the hand at time (or frame) t, together with the knowledge that the 

hand may only move with a certain maximum speed drastically reduces the search 

space for frame t + 1. And we can do even better. As mentioned in the introductory 

chapter (see section 1.1.2), hand motion is controlled by a complicated interaction of 

muscles and tendons, and it is impossible to write down equations that fully describe 

the dynamics of hand motion in terms of only a few parameters. Still, Newton's first 

law guarantees us at least short-range motion continuity for any massive object. This 

is reflected in short-range continuity in joint angle motion and can be described, or 

at least approximated, in terms of speed, and maybe to second order in terms of 

acceleration. 

An estimate for the current angular speed is easily computed from the angle values 

of the preceding frames. We can use such estimates to obtain a prediction for the 

angle values in the current frame: 

(At stands for the time elapsed between frame t and frame t + 1. Given a constant 
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frame rate it is easiest to use a time unit of 'time-to-next-frame', rather than, say, 

seconds to make the Ats cancel out.) 

Such a prediction of the new hand shape and position provides a better initial 

point for the fitting routine than just starting with the current shape. It also provides 

a good clue as to  where to look for the various markers in the image and thus can 
f 

reduce search time and resolve at least part of the ambiguity arising when there 

are multiple marker candidates. But most importantly, favouring a hand shape and 

position for the current image that is close to the predicted one effectively means 

enforcing a motion-continuity constraint. Formulated for the fitting algorithm, this 

constraint translates into another residual 

for each joint angle a .  

The motion-continuity constraint also serves another, although related purpose: 

it provides default values for joint angles. This is crucial whenever there are not 

enough markers visible to constrain the optimization problem properly (see section 

3.2). Thus, there is a guarantee that the Quasi-Newton algorithm returns a pre- 

dictable and plausible solution even for occluded fingers or finger segments. 

4.6.1 Estimating speed (and acceleration) 

The interpolated speed for the time interval t - 1 to t is 

and the acceleration is given as 

acceleratzon,(t) = (a ( t )  - a ( t  - 1)) - ( a ( t  - 1) - a ( t  - 2)) = (speed,(t) - speed,(t - 1)). 

(4.20) 

Hence, it takes at least one previous frame to estimate speed and at least two to 

estimate acceleration. 

Substituting into equation 4.17 yields 
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Unfortunately, this kind of estimate is very sensitive to noise. It registers and 

amplifies small tracking errors and it would throw the system co~npletely off track after 

a major tracking error. The standard solution in such a case-taking the average over 

a number of frames-is to be used with caution here: with hand and finger motion 

the emphasis is rather on short term continuity, especially when motion may become 

very fast or the frame density is relatively low. 

Since the test sequences in chapter 6 are not derived from actual video sequences, 

but made up of a pseudo-motion sequence of consecutive stills, the system had to deal 

with low effective frame density, and there was little room for extended averaging. I 

used a weighted6 average of the last two speed estimates, without any attempt to 

include acceleration. If one can rely on higher frame density it would probably be a 

good idea to use more sophisticated means of prediction such as Kalman filtering (see 

[ 5 ] )  to get a better estimate and maybe even adjust the recovered hand shape on the 

fly to reduce the noise in the output. 

4.6.2 Digression: the 2D alternative 

The motion continuity constraint is employed in most visual tracking systems in one 

form or another. For tracking feature points in two dimensions it takes the form of 

a 'smoothness-of-trajectory' constraint. This is justified by the observation that the 

projection of a smooth 3D trajectory is again a smooth 2D trajectory. Would there 

be any advantage in using one of the 2D feature-tracking algorithms described in the 

literature to find marker correspondences (see, e.g., [4l, 191) in addition to, or maybe 

instead of, joint angle prediction? 

Obviously, a 2D feature-tracking algorithm would not have the stabilizing proper- 

ties of joint angle prediction; motion continuity as a constraint would only be visible 

to the marker search and identification algorithm, but not to the fitting routine. Also, 

a prediction algorithm based on joint angles implicitly takes into account that markers 

'Weights are 0.8 for speed,(t) and 0.2 for speed,(t - 1). 
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can only move in a coordinated way as points on one object. A 2D tracking algorithm 

cannot use this kind of knowledge to correct its results. 

Another problem is occlusion of markers and thus interrupted trajectories. Occlu- 

sion can be handled reasonably well in 2D as long as it does not occur too often or 
1, 

too long (see, e.g., [20]), but cases like the disappearance of a whole finger with all its 

markers for several frames would create serious problems. 

On the other hand, 2D-trajectory-based methods have the advantage that they 

do not depend on the correctness of shape recovery in previous frames. The link 

between shape recovery and joint angle prediction is especially problematic when the 

system gets stuck in a false minimum, in which case predicted marker locations are 

not much use any more and on top of that the prediction enforcement tries to hold 

the system in the false minimum. 2D tracking of image markers could help find the 

correct correspondences in such a case. 2D tracking of markers could also be used as 

a go-between in a slightly modified system that does not do model fitting for every 

single frame. 



Chapter 5 

The Correspondence Problem 

Revisited 

We have seen before (see section 1.3.4) that it is not possible to eliminate ambiguities 

in image-marker correspondence completely. When all the markers on a finger are of 

the same colour the correspondence problem has to be solved for each frame and each 

finger, but even when the markers are uniquely encoded in the 3-ring scheme one has to 

account for false markers (spots in the image that are identified as markers because 

they resemble markers, but are actually background noise, or misinterpretation of 

ring colours under bad lighting condition) and errors in marker identification (correct 

identification of the main marker-ring and hence the finger it belongs to, but incorrect 

joint assignment, see figure 2.3). The result of either of these errors are two (or more) 

markers with the same label-one of which is hopefully the correct one-or a marker 

with the wrong label, posing for the (occluded) rightful owner of that label. 

In the latter case-and in general, when the correct marker is not among the 

candidates found for the   articular joint-there is little one can do, unless the impostor 

marker(s) are actually far enough away from where one would expect the marker in 

the image to exclude them from consideration. This maximum-distance constraint is 

a dangerous measure, however. After all, there is a slim chance that it was actually 

the marker in the frame before that was not assigned correctly and/or the system 

has lost track of the hand shape. In this case the predicted position of a marker 
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may not even be near the actual position of this marker in the image, and rejecting 

the correct marker as too far away will effectively prevent the system from getting 

back on track. Thus, the main protection against rogue markers is to  be conservative 

in selecting candidate markers in the image: better reject a few correctly identified 

markers because they are too small or do not get unambiguous votes than allow false 

candidates to creep in. 

If, on the other hand, the true marker is actually among the set of candidates it 

is possible to clear up the situation by choosing the candidate t4at fits best into the 

general picture. This should (hopefully) be the correct marker. 

5.1 Measure gl: using predicted position as a cri- 

t erion 

The first, and cheapest, measure for solving the correspondence problem is to make 

use of the predicted hand shape for the current frame. Since this prediction should 

be very near the actual hand shape the 2D locations of the joints should be equally 

near to the actual marker locations when projected onto the image. 

The correct assignment for a set of candidate image-markers for one or more joints 

should be the one with the minimal net distance between candidate marker-joint pairs, 

i.e., 

min{C(marker candidate; - projected j o ~ n t i ) ~ ) .  (5.1) 

For the unique encoding scheme this means comparing a few distances and choos- 

ing the candidate nearest to the projected location. In the simple one-colour-per-finger 

encoding scheme with m markers per finger there are m! possible assignments for each 

finger, and hence just as many net distances to compare. For a glove with 4 markers 

per finger this amounts to 24 possible assignments per finger, and maybe a few hun- 

dred if more than 4 candidates have been found in the image. Such a check is still 

cheap since exhaustive search does not cost much on this level. 

Unfortunately, the shortest-net-dist ance criterion only works well for hand shapes 

where the markers are far apart (more or less extended fingers) or when the prediction 
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is very accurate. In these cases there is a fairly large difference between the net 

distance for the correct assignment and the net distance for the next-best assignment. 

When we have an open shape and the prediction is not very accurate this tends to 

increase the overall error in net distance, but the correct assignment will still look 

much better than the next best. For fist shapes, however, the differences in net 

distance are never as marked, and a slight over- or under-estimation of angular speed 

in MCP or PIP flexion can easily lead to confusion and wrong marker assignments. 

It is not easy to make the prediction more accurate: consider the typical case of 

having to estimate the speed with which fingers that may just have started to curl will 

be closing into a fist. The whole movement may take as much as 20-30 or no more than 

3-4 frames. Especially for very fast motion it is impossible to get more than a crude 

prediction under these circumstances. But even if we had a good enough prediction 

for most cases, there is still the possibility that the shape in the last frame was not 

correct and the system has to be dragged out of a wrong minimum. If one wants 

to rely solely on prediction to solve the correspondence problem it would therefore 

be advisable to also consider 2D prediction based on 2D trajectory smoothness (see 

section 4.6.2) that would not be affected by tracking difficulties. Then there would 

be the question which prediction to believe in the particular case, of course, and 

especially in cases with partial prolonged occlusion neither prediction is likely to be 

very reliable. 

It should be possible in most cases to refute a wrong assignment that happens 

to have the shortest net distance on grounds that it would enforce an impossible 

finger shape, though. Thus, it would help to employ the knowledge about the hand's 

physiology that is embedded in the hand model for difficult marker assignments-both 

for the uniquely encoded markers and the one-colour-per-finger case. 

5.2 Measure 112: asking the hand model 

The knowledge about the hand that is contained in the hand model is only accessible 

through the fitting routine. Hence, if we want to utilize this knowledge to solve the 

correspondence problem we have to do this via the fitting routine, one tentative fit 
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for each possible assignment. This amounts to asking the hand model how it 'likes' 

the assignment in question, i.e., how well it can adapt its shape to it. The answer 

comes back in the form of the residual error of the fit, a composite of residual marker- 

joint distance and strain in the model (the residual error generated by the constraint 

functions described in chapter 4). Since the motion-continuity-constraint pulls the 

model towards the predicted shape a test score based on residual error also subsumes 

the net distance score from the last section. 

It is not surprising that the success rate for the residual-error measure is better 

than for the net distance score. However, there is a price: a whole model-fitting cycle 

for each assignment to be tested. This may be acceptable in the case of the uniquely- 

encoded 3-ring markers as a last measure to resolve the occasional difficult ambiguity, 

but it is far too costly to use it for a regular exhaustive search on all 24 x 5 possible 

assignments in the case of one-colour-per-finger markers-let alone try all the (5 x 4)! 

possible net combinations. Hence the reduction to three, instead of four markers per 

finger that is mentioned in chapter 2. This leaves 3! = 6 possible assingments per 

finger, 6 x 5 = 30 for the whole frame; which is still way too much. 

To go further in that direction and reduce the number of markers per finger to 

2 unfortunately endangers the stability of the model and the hand shape recovery. 

Experiments with model-generated test data quickly show that even under ideal con- 

ditions the system does very poorly when it is only given two markers on each finger.' 

There is another option though for cutting down on complexity for the one-colour- 

per-finger glove: since the possible assignments we have to test and compare come 

finger by finger and the shape of other fingers has at  most a mild influence on the 

shape of the finger currently looked at we might just as well do the test fitting for 

that one finger only, fixing the joint angles of the remaining fingers at their predicted 

values. This reduces the number of internal parameters from 26 to 10 per fit2 and 

lThe MCP markers cannot be left out without creating havoc. Putting the second marker on the 
PIP may give reasonably stable tracking results, but it does not convey essential information about 
the shape of the fingers from the PIP onwards. A marker only on the DIP or the TIP, on the other 
hand, means too much freedom-and hence instability-in the recovery of finger shape. 

24 for the finger plus 6 for hand position and orientation. The latter may be left out, but there 
is some danger that holding them fixed may not allow the model to adapt enough to the marker 
positions to provide useful test scores, especially if the prediction was not very accurate. 
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increases the speed of the fit accordingly. 

Still, even such a minimalist version of the fitting process is not something that one 

would want to use for each possible assignment and each single frame; it is more an 

emergency measure for cases where the predicted-position criterion does not provide 

a clear decision. The system reverts to tentative fitting only when each of the possible 

assignments gets bad scores from the distance measure or when the best assignment 

in terms of distance measure is not clearly better than the next best assignment. 



Chapter 6 

The System in Action 

6.1 Quantitative evaluation with simulated input 

data 

In order to test various aspects of the system during development, I designed an 

interface for graphical visualization of hand-shape d&criptors (see figure 6.1)-in 

other words, I implemented a crude version of a computer-animated hand. 

It would not be difficult to render this hand more realistic. In its present form, 

though, it reflects the system's view of a human hand. This makes it easier to un- 

derstand why the system has difficulties with certain gestures and to see, whether a 

particular problem can be corrected by revising physiological constraints or whether 

it is due to fundamental limitations of the hand model.' 

The interface in figure 6.1 also has facilities that allow the user to manipulate 

the current hand shape interactively and to 'hide' and 'uncover' joints and finger 

tips at will. The user can then print out the current joint locations after they are 

projected through a camera model that is set up to reflect a typical setting of a real 

camera-input-scene2. Thus it is possible to generate input for the fitting routine that 

lThe latter seems to be the case only when the signer's hand is facing the camera, palm forward. 
Letting the hand drop backwards from this position, dropping the hand slightly forward while curling 
the fingers into a fist, and dropping the hand to point towards the viewer with extended fingers all 
generate very similar joint location patterns for the visible joints. 

2focal length: 6.0cm,; initial distance wrist-camera: l m .  The dimensions of the hand are rough 



CHAPTER 6. THE SYSTEM IN ACTION 

Figure 6.1: Display program to visualize hand-shape descriptors: the user can select a 
file to animate the stick model of the hand with a sequence of hand-shape descriptors. 
S/he can also manipulate the hand by changing joint angle values or position of the 
hand and thus generate input sequences to test the fitting routine. 
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would normally have to come from the marker-detection module (see figure l . l ) .3 The 

advantage of this procedure-apart from saving time and storage space for images-is 

that the original hand shape is available not only as a visual 2D impression to the 

human viewer but as a hand-shape descriptor that can be directly compared to the 

descriptor obtained by the fitting routine. This allows a quantitative evaluation of the 

tracker's performance that would be impossible, or at  least very difficult, for input 

from real image sequences. 

6.1.1 Tracker versus original 

Figures 6.2 and 6.3 show the tracker in action on a 10 frame hand-motion sequence, 

ASL fingerspelling of the letter 'A' (see [7], page 13). The original sequence is shown 

in the first column, the tracking result in the second column. (The third column con- 

tains tracking results for a test run without using any of the physiological constraint 

functions. This experiment will be discussed in the next section.) 

The images shown are enlarged snapshots taken from the hand animator in figure 

6.1. Black dots represent 'visible' markers. The 2D location of these markers has 

been available to the tracker. The slightly bigger grey dots indicate occluded markers 

invisible to the tracker. For this and all further examples the observer's viewpoint 

of the hand is chosen to correspond to that of the tracker, i.e., the reader has the 

same view of original and tracking result as the tracker (except that the images are 

enlarged). This way it is easiest to compare the original and the tracking result, 

though a 'walk' around the result can sometimes be useful to show tracking errors 

that are not clearly visible from the camera perspective. The hand shape shown on 

the display in figure 6.1 is in fact a different view of the tracking result for the first 

frame of the image sequence in figure 6.21 (ASL fingerspelling of 'D' and 'E'). 

measures of my own hand. The length from wrist to the tip of the middle finger is assumed to be 
16.5cm (for more details see figure 4.3). 

3This simulates an ideal marker-detection system for a glove with uniquely encoded markers: the 
fitting routine is provided with exactly one candidate location for each joint and finger tip, unless 
the joint or tip is occluded in which case there are no candidates reported for that particular joint 
marker. 
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The quantitative evaluation of tracking results for the model-generated spelling- 

'A' sequence in figures 6.2 and 6.3 can be found in figures 6.4 to 6.10. The plots, 

one for each parameter, show the absolute tracking error in cm resp. degrees for each 

frame. 

6.1.2 Do we need constraints? 

It should be noted that most of the tracking error in the spelling-'A' sequence is 

actually due to the influence of the constraint functions. For example, the relatively 

high initial error for MCP, DIP, and PIP flexion in the first frame reflects a strain 

of the hand model against a hand shape that is close to the range limits for flexion 

in the interphalangeals. The tracker was run on the model-generated sequences with 

the same setup as for the real image sequences shown at a later point in this chapter. 

One could easily get better results for these model-generated sequences by lowering 

the relative weight of the constraint functions. 

Since the 2D joint and tip positions are exact, the fitting algorithm converges to 

the exact position and constraint functions are only needed in this case as a guard 

against false minima. This is not the case when working with real image sequences, 

though, where the marker centers only approximately indicate joint and tip locations. 

There the optimal solution according to proximity of joint positions is not always 

correct, and constraint functions help to stabilize the result. 

The rightmost column in figures 6.2 and 6.3 and the respective error plots (figures 

6.11 to 6.17) show what happens when the same sequence is tracked without using any 

constraint functions, i.e., neither prediction nor physiological or 'pseudo-physiological' 

constraints. The results exhibit a typical pattern: tracking is still good most of 

the time-often better, in fact, than with strong constraint functions. The tracker 

becomes more unstable, however, more likely to drift off into a false minimum. For 

example, watch the thumb in frames 3 to 6 and the index finger in frames 6 to 8.4 

This instability has much more serious consequences for tracking real image sequences, 

though, where errors in joint locations flatten out the correct minimum and introduce 

4Note the different scaling for the error graphs here! The maximum angle error is now 50'. 
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additional false minima. 

6.1.3 Loosing track and finding it again 

Even when it is allowed to use all it's knowledge about constraints the tracker is 

not infallible. Figure 6.18 and 6.19 show the first 10 frames of another gesture: the 

signer starts with her hand in front of the body and sweeps it outwards/upwards into 

the position used for fingerspelling. (This is again followed by fingerspelling 'A' (not 

shown), for which tracking performance is similar to the example above.) Again, the 

original sequence is leftmost, the middle column shows the tracking result for 'normal' 

tracking, and the rightmost column shows tracking without constraints. 

Because of its preference for slightly bent fingers (see the discussion above), the 

tracker consistently misunderstands this sweep with extended fingers as a hand-closing 

motion. When the constraint functions are left out the tracker does not make this 

mistake, but comes up with a series of impossible hand shapes. 

As mentioned above (see footnote on page 61) pointing gestures are difficult for 

the tracker, and it may not be possible with this kind of system to get reliable tracking 

results in such a situation. The tracker still provides useful information, however- 

the position and orientation of the hand-that signal that tracking results may be 

unreliable, at  least as far as hand shape is concerned. Maybe more importantly, 

the system recovers without any additional measures as soon as the gesture becomes 

unambiguous again.5 The abrupt change in hand shape when the system snaps back 

into the correct shape can be used as further indication that the tracker had been 

following a false interpretation and is now back on track again. 

5Results for tracking the rest of this sequence without constraints have the usual wobbly look. 
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original image normal tracking tracking without constraints 

Figure 6.2: tracking 'A' from model-generated input, frame 0 to 4 
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normal tracking tracking without constraints original image 

Figure 6.3: tracking 'A' from model-generated input, frame 5 to 9 
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Figure 6.4: tracking 'A': errors in recovered position 
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Figure 6.5: tracking 'A': errors in palm orientation 
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Figure 6.6: tracking 'A': errors in joint angles for thumb 
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Figure 6.7: tracking 'A': errors in joint angles for finger 2 
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Figure 6.8: tracking 'A': errors in joint angles for finger 3 
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Figure 6.9: tracking 'A': errors in joint angles for finger 4 



CHAPTER 6. THE SYSTEM IN ACTION 
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Figure 6.10: tracking 'A': errors in joint angles for finger 5 
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Figure 6.11 : tracking 'A' without constraints: errors in recovered position 
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Figure 6.12: tracking 'A' without constraints: errors in palm orientation 
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Figure 6.13: tracking 'A' without constraints: errors in joint angles for thumb 
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Figure 6.14: tracking 'A' without constraints: errors in joint angles for finger 2 
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MCP3 yaw 
50 

error in deg 0 A A A A A A A A 
V Y V Y v Y V Y 3 

0 2 4 6 8 frame 

MCP3 flex 

A A A A A A A A 
v Y v Y v Y v Y 3 

0 2 4 6 8 frame 

PIP3 flex 

error in deg 0 q  A A A A A A A A 
v Y v Y V Y v Y 3 

0 2 4 6 8 frame 

DIP3 flex 

error in deg 03 A A A A A A A A 
V Y V Y v Y v Y 3 

0 2 4 6 8 frame 

Figure 6.15: tracking 'A' without constraints: errors in joint angles for finger 3 
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Figure 6.16: tracking 'A' without constraints: errors in joint angles for finger 4 
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Figure 6.17: tracking 'A' without constraints: errors in joint angles for finger 5 
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original image normal tracking tracking without constraints 

Figure 6.18: tracking 'A7 from model generated input, frame 0 to 4 



CHAPTER 6. THE SYSTEM INACTION 

original image normal tracking tracking without constraints 

Figure 6.19: tracking 'A' from model-generated input, frame 5 to 9 
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6.2 Tracking real image sequences 

6.2.1 Using the glove with uniquely encoded markers 

Figures 6.20, 6.21, and 6.22 show the tracker in action on input derived from digital 

color images. The first example (figure 6.20) is again (part OF) a sequence that shows 

ASL fingerspelling of the letter 'A'. Figure 6.21 shows an excerpt7 of another spelling 

sequence, the transition from 'D' to 'E' (see [7], page 13), and figure 6.22 shows part 

of8 the ASL sign for 'time' or 'what's the time?' (see [7], page 109). 

Altogether, the tracker was tested on more than 20 sequences ranging in length 

from 6 to 10 frames. As there was no real-time image-capturing equipment available, 

these series are actually series of stills made to resemble frames of a movie sequence as 

closely as possible. With this technique it would have been very difficult to generate 

test sequences that contain one or more complete signs at  high frame density. Hence, 

the tracker was effectively tested on what corresponds to low-density image sequences. 

It is difficult to give quantitative statistics for the tracker's performance on a real 

image series. In general, the behaviour is qualitatively the same as for model-generated 

input data: the recovered shape is close to the original shape, but a complicated 

motion or an error in marker assignment may throw the system off track. 

When an error in marker assignment causes a problem the system recovers imme- 

diately as soon as the assignment is correct again (usually in the next frame). This is 

indicated by two sudden jumps in hand shape, when the tracker tries to adapt to the 

wrong marker assignment and then again when the system 'snaps back' into correct 

tracking. 

Recovery after a difficult motion exhibits the same sudden change in shape, though 

the point of divergence from the correct shape is not always as marked. The same 

is true for errors due to occlusion (see, e.g., the position of the finger tips during the 

time sequence). 

In any case, a sudden change of shape or, more correctly, a strong deviation from 

'frames 0 to 5 of a 9 frame sequence 
7frames 4 to 9 
8frames 2 to 7 
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the predicted shape is a useful trouble indicator. 

Performance of the marker-detection algorithm 

In 151 frames (15 sequences) the marker detection algorithm made 62 wrong as- 

signments (a marker was labeled incorrectly or noise in the image was labeled as a 

marker). In 56 cases this resulted in two or more alternative choices of marker position 

for some joint (one of them being the correct one), i.e., there were only 6 cases where 

an error in marker detection automatically led to an error in pose recovery. In 12 of 

the remaining 56 cases the correct choice could be identified without using tentative 

fitting. 

I did not monitor the fitting algorithm for all 151 frames, but due to the motion- 

continuity-constraint its behaviour shows the expected pattern: whenever tentative 

fitting does not select the correct marker candidate the selected impostor is very close 

to the correct candidate, and the resulting error in shape recovery is small. 

6.2.2 Using the glove with simple markers 

The simple-marker version was tested on a 60 frame spelling sequence that was cre- 

ated in the same manner as the test sequences for the glove with uniquely encoded 

markers. Figure 6.23 shows the first 6 frames of this sequence (turning of the hand 

into position and, again, spelling 'A'). Figure 6.24 shows another excerpt from this 

spelling sequence, the transition from 'C' to 'D' (see [7], page 13).' To speed up the 

fitting process the DIP markers were eliminated by hand in this spelling sequence to 

reduce the number of alternative marker assignments from 24 to 6 per finger (see the 

discussion in section 5.2). In spite of this reduction of shape information the tracking 

results are almost as good as for the glove with uniquely encoded markers. Tracking 

'The reader may have wondered about the selection of examples; I have tried to choose interesting 
sequences, or parts of sequences. Since many ASL signs start with initial shapes that correspond to 
the first letter of the English equivalent of the word or phrase being signed (see section 1.1.1 and 
also [&I) fingerspelling makes a good test example for the tracker. The ASL spelling of 'A', the fist 
gesture, is generic, in a way, a s  the purest of closing (and opening) gestures. The signs for 'B' and 
'C' are relatively simple and are therefore skipped (see [7], page 13). The sign for time was selected 
because it shows the hand in a different perspective and gives an example of two-handed signing. 
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is less stable, however, and average model-fitting time per frame is longer (see section 

6.4). 
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Figure 6.20: spelling 'A' 
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Figure 6.21: spelling 'D-E' 
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Figure 6.22: signing 'time' 
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Figure 6.23: spelling 'A' 

Figure 6.24: spelling 'C-D' 

Getting started 

As indicated by it's name, the hand tracking system is designed for tracking rather 

than for finding a hand, and it makes use of its knowledge about the hand's previous 

shape and position to accomplish its task. 
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The system's behaviour when it is stripped of all its knowledge about the hand's 

physiology suggests that the fitting problem is a relatively well-behaved optimization 

problem: even though the constraints are essential to ensure successful tracking of 

difficult movements (see section 6.1.2), for many hand shapes the system finds the 

correct minimum even when there is a big jump between frames (and hence the initial 

position is not very near to the result). Thus, it is not surprising that the system does 

not require a special initial position or hand shape. To be on the safe side, most of the 

sequences tested begin with an open shape where most markers are visible, but any 

unambiguous shape should do.'' The only special measure required for the startup is 

to disable the motion-continuity constraint for the first frame. 

Speed 

The main goal of this project has been to test the viability of a 3D model-based ap- 

proach for hand tracking. At this stage there has been little emphasis on optimization 

for speed and real-time processing. Accordingly, I have made no effort to get exact 

benchmarks of CPU runtime; the following estimates reflect average system-response 

time and are intended to give the reader a rough idea of the tracker's performance. 

6.4.1 Marker detection 

There is special hardware for real-time color-marker detection available on the market 

(see [6]). Hence, the use of colored markers should be no impediment to building a 

real-time system based on the prototype presented here, though the marker-labeling 

algorithm for the unique-encoding scheme will have to be adapted. 

6.4.2 Model fitting 

In the experiments-all run on an IRIS 4d-the system needed 112 to 1 sec. per frame 

on average for the model-generated input sequences, and 5 to 6 sec. per frame for real 

'"Since the simple-marker version is generally more fragile than the version with uniquely encoded 
markers it is advisable to be conservative in this respect when using the simple-marker version. 
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image input for the unique-encoding scheme. For the glove with the simple-marker 

scheme the system took up to 40 sec. when it had to do tentative fitting for all 5 

fingers. 

One iteration step of the Quasi-Newton takes approximately constant time and 

the cost for one such iteration step is largely determined by the number of parameters 

in the hand model." 

The factor mainly responsible for the differences in execution time-apart from 

the additional tentative fits for the simple-marker version-is the number of iterations 

needed to reach an acceptable minimum. This took - 10 - 15 iterations per frame 

for the model-generated sequences. For the real image sequences the numbers are 

anywhere between 20 and 120 iterations12 for a full hand fit (- 40 iterations for a 

single-finger fit). 

The slower convergence for real image sequences is a direct result of the inexact 

marker locations that make the fitting process less stable and may force the Quasi- 

Newton algorithm to estimate the Hessian matrix (see chapter 3). A simple measure to 

reduce the number of iterations would be to relax threshold values for the acceptance 

of a minimum. It certainly does not make sense to expect a solution that is more 

accurate than the input data, and the current thresholds are on the tight side. There 

should be no harm in setting these thresholds to match the expected accuracy of the 

tracker, though one should keep in mind that the accuracy of prediction will also be 

affected and the advantage gained may be lost again due to a bad initial position for 

the fitting. 

In summary, one can say that the system is currently not fast enough for real- 

time applications, but there is some room for improvement. It should be possible 

without too much effort to make at least the version with uniquely encoded markers 

fast enough for real-time tracking on low frame rates, and tracking results indicate 

that the tracker can perform well on such low-density sequences. 

"Calculation of constraint functions and derivatives is the main cost factor for each iteration (see 
[34, 221). The calculation scheme in section 4.4 was designed to make this calculation more efficient, 
but I have not further optimized any details of the implementation. 

''The fitting routine was stopped after 120 iterations even if the conditions for a minimum were 
not fulfilled. 



Chapter 7 

Conclusion 

7.1 Summary: what has been accomplished so far 

I have designed and implemented a system that can track a human hand over extended 

image sequences. The system recovers the position, orientation, and shape of the 

hand in 3 dimensions for each frame. It represents this information about the hand in 

form of a 26-dimensional (hand) shape descriptor: 3 dimensions each for position and 

orientation in signer space and 20 dimensions for joint angles. After shape recovery 

is finished the resulting shape descriptor can be used for various purposes, though 

the application that originally motivated this research is American Sign Language 

understanding. 

The system is based on a simple 3D skeleton model of the human hand. This model 

is fitted to match the hand shape in the image frame with a standard numerical routine 

for nonlinear optimization. The metric used to measure convergence is (the sum of 

squares of) the Euclidean distance between joint and finger tip positions in the image 

and their backprojected counterparts in the model, augmented with functions that 

describe physical and physiological constraints on possible shape and motion of the 

hand. 

The fitting routine aims to minimize a function that describes the position of the 

hand model in this metric space in terms of the parameters contained in the shape 

descriptor. Its output is a shape descriptor that brings the model closest to the shape 
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observed in the image while maintaining all constraints on possible hand shape and 

motion. 

Location of joints and finger tips in the image is facilitated by colour-coded markers 

painted on a glove that the signer wears during tracking. To minimize errors in joint 

location the markers are ring shaped wherever possible. I have tested two different 

marker schemes. The first scheme uses simple colour rings, one distinct colour per 

finger. The second scheme relies on more sophisticated encoding-3 colour rings per 

marker-to provide a unique marker for each joint and finger tip. 

In both versions the knowledge about the hand, its current hand shape and possible 

motion, is used to eliminate errors and ambiguities in marker detection that could not 

be resolved at  an earlier stage. 

The hand tracker has been successfully tested on both synthetic data and real- 

image sequences. It can follow most hand gestures and it can recover from tracking 

failures after a few frames without any external interference or need for special recov- 

ery procedures. 

7.2 Outlook: what remains to be done 

There are several points that may be addressed here. The most important one, per- 

haps, is speed since most of the possible applications of the hand tracker require 

real-time performance. As stated above (section 6.4), tracking speed was not a high 

priority issue in the development of this prototype system, and, although I have tried 

to make the implementation reasonably efficient, there should be plenty of room for 

improvement. This includes simple things like code optimization and adaptation of 

threshold parameters. One might also want to consider more serious restructuring of 

the system, however. 

Since the tracker can handle fairly large jumps between hand shapes it might be 

a good idea to go through the model-fitting cycle only when the marker locations 

indicate a sufficiently large change in hand shape and track the markers in the image 

with a 2D feature-tracking algorithm over intermittent frames (see section 4.6.2). 

Another possible candidate for improvement is the fitting routine itself. There is a 
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well known alternative/extension to the Quasi-Newton algorithm suggested by Leven- 

berg and Marquardt ([33, 38, 321) that enforces convergence in problematic cases. The 

idea is to add a linear term that transforms the Newton algorithm into a steepest- 

gradient-descent algorithm. The weight of this term is adjusted after each iteration, 

according to the algorithm's convergence rate. Although the fitting routine never 

actually failed to converge, convergence was sometimes rather slow for the real-image 

sequences (see section 6.4), and the Levenberg-Marquard algorithm may help to im- 

prove this situation. 

The second major issue that comes to mind when talking about improvements 

is the question of tracking failures. Additional and/or better constraint functions 

could help there, but it is unlikely that tracking failures can be completely prevented. 

Luckily, the tracker's behaviour in this respect is predictable (see section 6.1.3), and 

it should be easy to  implement a routine that monitors the tracker's behaviour and 

warns of possible tracking problems. One may even go a step further and try to 

correct these problems by re-running the fitting routine with a different initial shape 

or with a modified set of constraints. 
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