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Abstract

A speech recognizer is a device that translates speech into text. Many current speech
,‘recognizers contain two components, an acoustic model and a statistical language model.
" The acoustic model indicates how likely it is vhat a_certain word corresponds to a part of
the acoustic signal (e.g. the speech). The statistical‘ language model indicates how likely
it is that a certain word will be spoken next, given the ‘words recognized so far. Even
‘though the acoustic model might for example not be able to decide between the acoustically
_similar, words “peach” and “teach”, the statistical laﬁguage,model can indicate that the
~word “peach” is more likely if the previously recognized words are “He ate the”.

Current speech recognizers perform well on constrained tasks, but the goal of continuous,
speaker independent speech recognition in potentially noisy environments with a very large
"voc‘a.blila.ry has not been reached so far. How can statistical language models be improved

‘so that more complex tasks can be tackled? This is the question addressed in this thesis.
Since the knowledge of the weaknesses of any theory often makes improving the theory
easier, the central idea of this thesis is to analyze the weaknesses of existing statistical
-language models in order to subsequently improve them. To that end, we formally define a
wea,kﬁess of a statistical language model in terms of the logarithm of the total probability,
VLTP,Va. term closely related to the standard perplexity measure used to evaluate statistical
language models. This definition is applicable to many probabilistic models, including
almost all of the currently used statistical language models.

We apply our definition of a weakness to a frequently used statistical language model,
called a bi-pos model. This results, for example, in a new modeling of unknown words which
improves the p‘effprmance of the model by 14% to 21%. Moreover, one of the identified
weaknesses has prompted the development of our generalized N-pos language model, which
is also outlined in this thesis. It can incorporate linguistic knowledge even if it extends over
many words and this is not feasible in a traditional N-pos model. This leads to a discussion
of what knowledge should be added to statistical language models in general and we give
criteria. for selecting potentially useful knowledge. These results show the usefulness of
both our definition of a weakness and of performing an analysis of weaknesses of statistical

language models in general.
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Chapter 1
Introduction

- The study of speech recognition is of great importanc,eib"ecause of the social and economic -
' impact speech recognition will have on our society. We humans spend a large fraction of
our lifetime speaking, listening, reading and writing. Already today, computers are involved
in a large part of human communication, be it telephone switching, electronic mail, word
proéésSing, information retrieval or computer bulletin boards. At little extra cost, computers
provide additional features improving the quality of these processes or making hum‘an labour
more effective. The impact of computer technology on s‘ociety‘has its good and bad sides (see
[125], [129] and [38] for a discussion). But because humans will still want to communicate
in the years to come and because computers are very likely to continue-to become cheaper,
it is very likely that an even bigger share of our spokeh' énd written communication will be
~ mediated by computers in the future. As computers continue to penetrate our society, being
able to communicate with computers via speech is therefore of great social and economical
importance.

Moreover, the study of speech recognition is interesting because of the intellectual chal-
lenge posed by a problem whose solution involves many different scientific disciplines. In
the r‘past, the field of speech recognition has benefited from sciences as diverse as bioldgy,
computer science, electrical engineering, linguistics, mathematics, philosophy, physics, psy-
chology and statistics. Thus, the questions raised by speech recognition range from philo—
soprlrli:cé.lr ciﬁestions about the nature of mind to practical design and implementation issues.
Motivated by the study of artificial intelligence, speech recognition can therefore serve as. -
a teStinggr\ound, ‘b'rin'ging many disciplines together in a concrete task, thus avoiding the

dangers of a potentially introspective and subjective undertaking.
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The fascinating interplay between different scientific disciplines and the great social and

7 economic importance of speech recognition make it a very challenging, stimulating and

exciting research field. :
In the following, we 1 will briefly present the main difﬁculties of speech recognition and

the approaches people have used to tackle them. We then give an overview of diﬂ'erent

‘methods of Joming natural language processing and speech recognition and identify the
' topic of this thesrs statistical language models for speech recognrtion, as one of them. In

- the remamder of this thesrs, we will: use the term language model as a short hand for

statisticallanguage models'forispeech'recognition. We conclude this chapter by giving an

~ overview of our work. Most of the material of section 1.1, section 1.2 and of the previous

three paragraphs is drawn from [100, p.10], [151, p.l—f\)]'and [104].

‘1.1 The Difficulties of Sp"e'e'ch 'R‘ecognition

A speech recognizer is ‘a device that translates speech intro written text and the ‘problem
of speech recognition has been studied actively since the 1950’s. Enormous progress has

beén rnade,,but many problems of speech recognition remain unsolved today. What makes

- speech recognition such a diﬁicult task? Here are the main difficulties:

1) Each elementary sound also called a phoneme, is modified according to its context,
- for example the immediately preceding and followmg phoneme This is partly due to a
B 'prop,erty of our vocal apparatus called coarticulation: as one phoneme is pronounced,
the pronunciation of the next phoneme is prepared by a movement of the vocal appa-
“ratus. Modification of a phoneme is also caused by the larger context such as its place

in a sentence.

2) There is no separator, e.g. no silence, between words. This creates additional con-
fusable words and phrases (e.g. “youth in Asia” and “euthanasia”). It also leads to
more coarticulation, e.g. -between words, and to poorer articulation (e.g. “did you”

becomes “didja”).

3) The variability' of the sp‘eeCh sig'na;l"for the same utterance is enormous. For example,

there is 1ntra-speaker var1ab111ty due to the speakmg mode (singing, shouting, with a

T would like to clarify that even though- I use the word “we” throughout this thesis, the work presented

~ here is my own and thus quallﬁes for submlsswn as a the51s
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cold, under stress, speaking rate, etc.), inter-speaker variability (sex, age etc.) and

variability due to the environment (noise, ]jpsmacks etc.).

Because of 1) and 2), it is necessary to. process large sets of data in order to define
what constltutes an elementary sound, despite the dlfferent contexts speaking modes

" For example, it is hard to decide that an “a” pronounced by a male adult is

- more “similar to an “a” pronounced by a child 1n a dn‘ferent word and in a drfferent

) envrronment than an
2

5)

“o” pronounced by the same male adult in the same environment

Because the signal carries different types of ‘inforr’nation(sounds, syntactic structure,

" semantics, identity and mood of speaker etc.), a speech recognition system will have to

differentiate between the information useful for its task and theremaining, irrelevant '

- ~~information.

6)

‘There is no precise formalism that allows us to formalize the knowledge at all the -

different levels (e.g. acoustics, syntax, semantics etc.). However, recent trends suggest

that a probabilistic framework might be used at many levels.

These six points are the main problems a speech recognizer has to face in general. However,

concrete speech recognition tasks may vary greatly in the degree of difficulty they present.

The following six dimensions can be used to classify a speech recognition task according to

its difficulty:

1)

Isolated (with pauses) or continuous speech. Continuous speech recognition is far more

difficult because there are no word boundaries and because the variability of the signal

is much greater.

2)

Vocabulary size. As the vocabulary size increases (from small vocabularies of less than
500 words 2 to very large vocabularies of about 20,000 words), the task becomes more

difficult because the number of acoustlcally confusable words increases and because

- 'more tlme is needed to evaluate all possrble words.

8%, "

2Nevertheless, even if it is the case that the “a” of the male adult is more similar to his “0” than to a
child’s “a”, we do need to recognize‘his “o” as an “0”, but the more different “a” of the child as an “a”.

%It is important to know that “car” and “cars” are counted as two different words in a speech recognizer.
Thus, a speech recognizer with 500 words has far fewer words in the usual sense than the number 500 mlght
suggest. : , :
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| 3) Task and language constrajnts. The size of the vocabulary is not sufficient for deter-
mining the difficulty of a task because some words may not be allowed at a given time.
For example, a task w1th 500 words each of which can appear at any time, may be
more difficult than a task with 700 words with strong restrictions on which words may

follow other words.

4) Speaker dependence (for one speaker only) or speoker independence (for many speak-
ers). A speaker ,independent task is much more difficult because of the additional

inter-speaker variability.

5) A‘coustic'amb’iguity.’ The acoustic confusabllity of words in the vocabulary also influ-
ences the difficulty of the task. For example, a task with 100 words that are highly

“confusable may be harder than a task with 200 words that are very dissimilar.

6) Environmental noise. A task in a very noisy environment is more difficult because the

noise can lead to erbitrary,distortions and modjﬁcations of the speech signal.

1.2 kDifferent' Approaches to Speeoh— Recognition

Having seen the difficulties of speech recognition, how have researchers tried to tackle these
problems? * We can differentiate four different approaches — template-based, knowledge-
~ based, stochastic and connectionist — and we will briefly present each one of them.

In the template-based approach, units of speech (‘e.g. words) are represented in the same
form as the speech input itself. The input is compared to the templates using some distance
metric thus identifying the best match. The problem of temporal variability is tackled by
dynamic programming. For simple applications requiring minimal overhead, this approach
has been quite succe‘ssyful.

In the knowledge based approach proposed in the 70’s and early 80’s, human knowledge
~ is coded into expert systems; ‘Rule-based systems had only limited success, but in more

successful systems, the knowledge is integrated into a sound mathematical approach and
~ this additional knowledge is found to improve the performance.

In the stochastlc approach (e.g. usmg hidden Markov models or HMMs), a template
pattern is represented at-a higher level of abstraction by a reference model thus allow1ng

some ,generallzatlon. HMM’s are based on a sound probabilistic framework that can model
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the uncertainty and variability inherent in speech recognition. Since HMMs simultane-
ously solve the segmentation and classification problem, they are particularly well suited
for continuous speech recognition. Most successful large-vocabulary systems today use the
- stochastic approach.

:’The most recent development in speech recognition is the connectionist approach. This
,a,ppro‘a.ch does not require some of the often incorrect assumptions underlying the stochas-
tic dpproaéh. Even though no large scale, fully intégréted connectionist system has been
demonstrated, this approach holds considerable promise, especially in combination with the
“stochastic approach.

’In the rest of this thesis, we will assume that the speech recognizer is built according to
the widely used stochastic approach. Nevertheless, the ideas of language modeling presented
in this thesis are also applicable to other approaches. A language model could, for example,

be used to rescore hypotheses in a template-based or knowledge-based approach.

1.3 Incorporating Natural Language Constraints into Speech

Recognition

~ Given any one of the approaches mentioned in the previous section, a speech recognizer can
identify a set of candidate words, which are likely to correspond to a part of the signal.
Suppose for example that we have recognized the words “He ate the” covering a certain
part of the signal, how can we extend recognition by another word? Based on the acoustic
properties of the words in the vocabulary, we can, for example, identify the words “peach”
and “teach” as candidates, because they are very similar to the next stretch of the signa.l.
However, we can not identify exactly which one of the candidate words was the one spoken.
We can then use the linguistic context to identify the word that is more likely to appear next.
In this example, it is clear that the word “peach” is far more likely than the word “teach”.
- Using these constraints imposed by context is very important for speech recognition. This
is fpf exa;mple‘ pointéd out in [117, p.33]: “We know that, in a real task, the importance
of the 1an‘guage model is comparable to that of the acoustic module in determining the
final performance”. In general, this kind of reasoning involves constraints on the next word
imposed by syntax, semantics or pragmatics. These constraints are part of the domains
of natural language processing and linguistics. In the following, we will therefore look at

different ways of incorporating natural language constraints into speech recognition.
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There are many different ways of incorporating natural language constraints into a speech
recognizer. Following roughly a classification suggested in [108], we will present four different
approaches for combining a speech recognizer and a natural language processor. We will see

" how each approach acts in our example, e.g., how it chooses between “peach” and “teach”

as possible continuations of the sentence fragment “He ate the”.

1) Serial connection In this approach the natural la,ngua,ge procesSor receives the most
| hkely sentence frorn the speech recognlzer and mterprets it further. The advantage of
this approach is that both systems have no a,dd.ltlona.l computatlonal burden from the
“integration”. The dlsadvantage is that there i is “almost no interaction between the

‘ tWo components. As a result, the natural language processor can not correct errors
~of the speech recognizer. This method is for exarnple used in [132]. In our example
sentence, the speech recognizer would have to choose between “teach” and “peach”

- independently of the natural language processor 4f

2) N-best sentence interface. The speech recognizer outputs the N best scoring sentences
, (for N =1, this is the serial interface). The natural language processor chooses the
sentence that best satisfies the natural language constraints. The advantage is that
this allows some interaction of the two, while adding only some additional computa-
tional burden. The size of N determines the tradeoff between allowed interaction and
additional burden. One disadvantage is that N may be required to rise exponentially
-with the length of the input sentence. This —approach is for example used in [132]. In
~our example,the speech recognizer could use “peach” in one of the N-best sentences
and “teach” in another and this would allow the decision to be taken by the natural

language processor.

3) Word lattice interface. the speech recognizer produces a graph with possible starting
times end times and recognition scores for any word of the vocabulary at any time.
The natural language processor searches this graph for the most likely sentence that

satisfies the natural language constralnts The advantage of this approach is the high
degree of interaction between the two components. The disadvantage is, the additional
: rcomputa,t'iOnal burden for both systems. The speech recognizer has to keep track of

'and output rné,ny'hypotheses rather than concentrating on the best one. The natural

4I-Iowever, the speech recogmzer could use a very simple natural language processor to find the most likely
sentence and this is further dJscussed after this classification.
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4)

language processor has to evaluate many more possible sentences. This method is

used in [146] and [131]. For our example, the speech recognizer does not make the

- decision and both “teach” and “peach” will appear in the word lattice. The natural

language processor will then make the final decision.

Parallel connection. In this approach, the constraints provided by the natural lan-

_guage processor are used directly in the speech recognizer to reduce the search space.

Within this category, we can further distinguish the ',ap'proac'hes with respect to the

complexity of the natural language processor. The natural language processor can be

very complex, attempting to produce a parse and a semantic repyré‘s‘entation of the sen-
tence. Or it can be very simplistic, attempting only to identify which words are likely
to appear given the preceding word. We divide the whole spectrum into two classes,
complex natural language processors and simplistic natural language processors. The
line between the two classes can be drawn in many ways (e.g. whether the natural
language processor attempts a parse or not), but for our purposes we don’t need to

specify exactly where we draw the line in order to continue.

a) Corhplex natural language processor. The advantage of this approach is that
it allows considerable interaction between the two components. The constraints
provided by the natural language processor are used directly during recognition
to rule out some of the word candidates. One disadvantage is the amount of
computation required to check the constraints provided by the natural language
processor for all word candidates in the acoustic search. Another disadvantage
is that very complex natural language processors can usually be built only for
limited domains and this method is thus difficult to use for unrestricted speech.
An example of use with a restricted domain can be found in [134]. Context free
rules are derived automatically from sample sentences and then approximated
by a probabilistic finite state machine. Another way of using this approach is
presentéd in [108]. The natural language constraints are expressed in terms of

~a finite state machine, that is in turn used directly by the speech recognizer.
Howevér,‘since a typical natural language system will produce an enormous or
even infinite number of states, only the parts that are currently searched by the

speech recognizer are dynamically created by the natural language processor.

b) Simplistic natural language processor. The advantage of this approach is that
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it allows considerable interaction between the two components. Moreover, since
the natural language processor is very simplistic, it can efficiently score all the
word candidates during the acoustic search. The disadvantage is that the nat-
ural language processor only captures very few constrajnts thereby for example
allowing ungrammatical sequences of words We will see many examples of this

approach later on.

- In our eXample,the knowledge of the natural language processor and the speech rec-
“ognizer are combined during the acoustic search to choose between the words “peach”

and “teach”.

For more information about this issue, the interested reader can refer to [52], [75], [108],
[113], [116] and [144]. In this thesis, we will focus on the simplistic natural language proces-
~ sors of category 4b), also called language models, and we glve four reasons for this choice.
Flrst language models are used in many existing recognizers and this shows their great
practical importance. Second, language models can be used even if the serial approaches of
category 1) or 2) are chosen. In that case, the speechrecognizer uses a language model to
, a.rrive at the N most likely sentences (for example), which are then further processed by a
more complex natural language processor. Third, if the task at hand does not require the
understanding of the utterance, a parse may not be necessary and language models still
provide a way. of incorporating some natural language constraints into the speech recog-
nizer. Fourth, more cornplex natural language processors (as in 4a) are mostly limited to
one specific domain and they are thus of limited use for unconstrained speech recognition.

It is important to be aware of two different subtasks sometimes lumped together in the
term speech recognition: speech understandlng and speech recognition (proper). The goal
of speech understanding is to understand spoken language and to react to it in a meaning-
ful manner. Since this task is usually limited to a narrow domain, more complex natural
language processors can be used. An exainple of a speech understanding task is that of un-
~ derstanding spoken queries to a database. Contrary to that, the task of speech recognition
s only to transcribe speech into text; Because this task: does not require understanding,
it can and should deal with unrestricted text, not limited to a certain domain. Therefore,
~ more sllanjStic naturallanguageprocessors are commonly used. An example of the speech
recognltlon task is the phonetlc typewriter, a device that is able to output a printed ver-

sion. of a spoken conversatlon Since our work focuses on the simplistic natural language
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processors, it is mostly relevant to speech recognition. But as pointed out above, even a
speech understanding system with a complex natural language processor connected in a
serial manner might use a simplistic language model during recognition.

Now that we have informally ® presented the focus of our work, language models for
' speech recognition, we will give an overview of the rest of this thesis by giving a summary

of each chapter.

1.4 Overview

1.4.1 Chapter 2: Language Modeling for Speech Recognition

. In chapter two, we give an overview of the different components of a speech recognizer, de-

scribe their interaction, define the task of the component central to this thesis, the language
~ model more-formally, and review the most commonly used language models.

After introducing the different components of a speech recognizer, we define the task of
a language model as the construction of one or more probability distributions over all the
words of a vocabulary given the words that have been recognized so far. Intuitively, the
s};eech recognizer uses this distribution to decide which words are likely to appear next, e.g.
‘based on the probability distribution, it chooses the word “peach” over “teach” when the
, préceding sentence fragment is “He ate the”. As this example illustrates, different words are

more likely to appear in different contexts. Therefore, a language model usually has many
different distributions, one for each context. In language modeling, context often means
the two or three words preceding the word to predict. To show the usefulness of such a
- simple cohtext, let us define the context as the immediately preceding word and consider
_what this entails for the following word. Only nouns and adjectives are likely to appear if
the immediately preceding words is for example “the”. Thus, even this simple definition of
context can severely restrict the following word.

During speech recognition, the language model only has to choose a distribution accord-
ing to the current context and to look up the probabilities of words in this distribution. The
important task in constructing the language model is to determine, prior to recognition, the
number of contexts it differentiates and to construct a probability distribution for each one

“of them.

SWe will give a more formal description in the section defining the task of the model (section 2.3).
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Language models are usually described in terms of frequency counts of their probability
distributions, but for the purposes of this thesis, it is more appropriate to describe language
models at the more abstract level of probability distributions and contexts. This is because
we are more interested in the conceptually important aspects, e.g. the way in which a
model defines context, rather than in the details of a particular technique of constructing
probdbility distributions from frequency counts. ‘Theréfore, we only giVe a brief description
of how probability distributions can be estimated from frequénéy data, often referred: to as

training data. The principle of this estimation is that Vo'f counting how often a certain event
Wtappea’rs in a given context in the trajning data-and of dividing this count by the number of
overall bccufrenceé of the context. For example, ‘we can 'estimate the probability of having
sunshme tomorrow given that it was raining today by d1v1d1ng the number of times we had
sunshme given that it was raining the previous day by the overall number of rainy days.

We then give a review of different language models in order to present the state of the art
in language modeling and to set the stage for the remainder of this thesis. For each model,
we give the definition of context it uses, the number of probabﬂities it needs to estimate and
some of its advantages and disadvantages. In particular, we present the class based models
or N ~f)os models; in which words are grouped into classes called .parts of speech, which
roughly resemble their grammatical function. In these class based models, the prediction of
the next word is a two step process: first, the part of speech is predicted by one component,

then the word given the part of speech is predicted by a second component.

1.4.2 Chapter 3: Analysing and Improving Language Models

In chapter three, which contains the central idea of this thesis, we propose to perform error
analyses of language model$ in order to improve the models aftefwards, define what we
mean by “error or weakness of a language model” and present a method to identify the
weaknesses of a given model.

We begin by nOting that error analysis of existing theories about the world often leads
;to improvements of these theories. By analogy to this, we propose in this chapter to analyze
errors of a language model in order- to 1Inprove the model afterwards. But how can we
deﬁne an error of a language model? The definition of an error should be related to the
measure used to evaluate the performance of a language model. If definition and measure
are' not related, we may still identify and then remove an error, but this may not translate

~ into an improvement in performance (since error and performance measure are not related).
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Before defining an error, we therefore first introduce the standard measure used to evaluate
la.nguagé models, called perplexity. ,

Intuitively, the goal of a language model is to predict words in a given context. A
good model should therefore assign a high probability to each word in a piece of text.
‘Hence, the average probability assigned to words ih a testing tezt — the geometric mean of
probabilities to be more precise — is a good measure for the quality of a language model.
Perplexity, the standard measure used to evaluate language models, is just the reciprocal
of the geometric mean of prcbabilities. Besides explaining the perplexity intuitively, we
also"derive the perplexity using methods from information théory and further discuss its
" advantages and disadvantages.

Since the term error does not really apply to a language model, we prefer to use the term
- weakness. We now define a weakness 6 of a language model in terms of the logarithm of the

: tbtal probability (LTP) of a sequence of words, a measure closely related to the perplexity.
Moreover, for models with several components (for example the class based model we use),
we develop the method of probability decomposition, which allows us to identify weaknesses
of the different components separately. '

The main idea of this chapter — applying error analysis to language models — applies to
- any probabilistic model whose performance is measured in terms of perplexity. We conclude

this chapter by giving examples of models to which our method of error analysis applies.

1.4.3 Chapter 4: Analyzing and Impr()ving a Bi-pos Language Model

In chapter four, we apply the central idea of this thesis, our technique of identifying weak-
nesses of a language model presented in the previous chapter, to a commonly used bi-pos
language model and report the results.

In order to apply the technique of identifying weaknesses of a language model to a
concrete modél, we first choose a corpus (the Lancaster-Oslo-Bergen corpus), a model (the
‘bi-pos model) and verify that the section of the corpus we use contains enough data to
train our model. This work prompts an investigation into the issue of sample space, the
set of all possible events considered by a model. We note that it is nct meaningful to use
the perplexity measure to compare language models that differ in their underlying sample

spaces. Yet language models are usually compared with the perplexity measure, even though

S We use the term weakness as a technical term and the intuitions, that still apply to our technical use of
it are discussed on page 42.
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they sometimes differ i in the1r underlying sample spaces, either due to different vocabularies

or due to different ways of dealing with unknown words. We also discuss poss1ble solutlons
to the problem of different sample spaces.

We then apply our method of 1dent1fy1ng weaknesses ofa langua.ge model to our chosen

" bi-pos model and report three results of general interest. Flrst, a very small number of -

olasses 7 are identified as weaknesses of the model. We believe that these results are helpful

" for future effOrts to imrproxrle the model" because ‘we know on'which classes we should con-

, " centrate our efforts. Second unknown words are 1dent1ﬁed as weaknesses. This prompts

- the development of a new modeling of unknown words, which improves the performa.nce
by between 14% and 21%. Third, the word component of our bi-pos model is shown to be
" at least as 1mportant as the class c mponent. This has interesting ramn‘icatlons for using

: probablllstlc ‘context free grammars for language ‘modeling, an approach that has recently

- received a lot of attention. ‘Even though usmg probabilistic context free grammars may

result in an 1mproved predlctlon of a class (or part of speech), it is not likely to improve the

prediction of the actual word given its class. We should therefore improve the word compo-

- nent of a class based model even if probablhstlc context free grammars are being used. The

~additional insight galned from these results also show the usefulness of the central idea of
this thesis, the identification and analysis of weaknesses of language models.

How can we go about improving the word component of a class based language model?
This question leads us to develop our generalized N-pos model; which is shown to be a
true generalization of the N-gram and the N-pos model. Moreover, it can incorporate any
llnguistic knowledge not restricted to the immediate context of the word to be predicted.
This is exemplified by incorporating a very simple knowledge source into our generalized N-
pos model. The results of this example also show that a considerable improvement (around
15%) is achieved in the prediction of words for which our generalized N-pos model actually
differs from the original N-pos model. However, the overall improvement is negligible,
because the cases m which our simple knowledge source can be used are very rare in our
example This leads toa general discussion of what knowledge we should add toa language

model — an issue we address in the next chapter

7'For an mtult ve explanat:on of the use of classes see the summary of chaptpr 2.
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1.4.4 Chapter 5: Adding Linguistic Knowledge to Language Models

In chapter five, we motivate the addition of knowledge tolanguage models,; develop differ-
ent criteria to identify useful knowledge, and preeent methods to combine know1edge in a
language model. ‘

‘We begin by pointing out three reasons for. wantmg to add knowledge to a language

model. First, we would like to improve its performance Second if we apply current speech

recognltlon technology to more complex tasks than the ones tackled today, the number of

acoustically confusable hypotheses will i increase, and we may well need a betterlanguage
model in order to deal with the additional ambiguity. Third, adding knowledgeris more
satisfying than sticking to existing models on psychologicallgrounds because humans seem
to use knowledge to predlct a word other than the knowledge used in current models, namely
the 1mmed1ately preceding two or three words. Hence there is clearly a need for a language
model which 1ncorporates more linguistic knowledge.

Once we have decided to add knowledge to a language model the followmg two questlons
come to mind. First, what knowledge should we add, and second, how can we combine
different types of knowledge in a language model. We address both questions in turn.

Rather than trying to give a necessarily incomplete list of types of knowledge that

we should add, we present four criteria that we think should be used to identify useful
know1edge. First, the knowledge should restrict the number of possible words, otherwise
‘it is not. going to help in solving our task. Second ‘it should be applicable often enough
‘to be of statistical SJgnlﬁcance Third, it should be possible computatlonally to use this
knowledge in real time speech recognltlon Finally, we should be able to acquire and code
this knowledge for use with unrestricted text.

We develop a classification of possibly useful knowledge and apply the criteria for iden-
tifying useful knowledge to one type of knowledge that promises to be useful for improving
language models in general.

~We then move on to the issue of combining different types of knowledge in a language
model. We present three methods of combining knowledge and develop some of the advan-
: tages and disadvantages we see in each method. Following that, we conclude that it is very
unlikely that we will have enough data to estimate distributions that depend on several
knowle,dge,sources,directly, even with the availability of increasingly large corpora. There-

fore, we think that methods that combine distributions from single knowledge sources in a
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meaningful fashion will be very useful and require further investigation. One such method
shown to be very useful in recent work is the maximum entropy method, which will also be

presented briefly in this chapter. It holds great promise for future work.




Chapter 2

Language Modeling for Speech

Recognition

In the last chapter, we described intuitively how the topic of this thesis, language modeling
for speech recognition, relates to speech recognition research in general. In this chapter, we
will make this relationship more precise by introdu‘cing the different components of a speech
recognition system (section 2.1), and, after introducing some notations in section 2.2, by
defining the task of a language model more formally (section 2.3). Since a language model
consists mainly of probability distributions, we present the method of constructing and
'smbothing probabilities distributions we use for our work (section 2.4). Given the notations
infroyducedin section 2.2 and having seen the key issues of language modeling, we then give
an overview of the state of the art in language modeling by reviewing existing language

models (section 2.5).

2.1 The Components of a Speech Recognizer

A spe‘ech recognizer is a device that translates speech into written text. As input, it takes
the acoustic signal recorded by a microphone. As output, it produces a string of words
intended to correspond to the input. The mapping from acoustic signal to a string of words
is a complex task and it involves several stages. To illustrate this mapping in a simplified
way, we will present a set of stages that are very similar to the ones used in one of the

first successful, large vocabulary, speaker independent, continuous speech recognizers, the

15
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Figure 2.1: Components of the SPHINX system

SPHINX system ([95]) k
As we can see from figure 2.1, the acoustlc 31gnal is first given to a signal processmg
component. This component performs several transformatlons, e.g. sampling the signal at
fixed time intervals; reducing the noise etc. Asoutput, it produces one 12 dimensional vector
of floating point values per time interval. These vectors are the input to the next component,

the vector quantizer ! which compares each input vector to stored prototype vectors and

‘outputs the index of the vector that is closest to the input vector. For a sequence of 12

dimensional input vectors, it thus produces a sequence of integers. This sequence constitutes

*the input to the next component, the search algorithm. It is a time synchronous algorithm (a

Viterbi beam search, see [95]), that compares the likelihood of different sequences of units of
speech‘ In order to calculate these likelihoods, the search algorithm uses the acoustic model
and the language model. The acoustic model provides the algorlthm with the likelihood
that a unit of speech (phonemes and words in SPHINX) correspond to parts of the given

- sequence of mtegers The language model prov1dec the algorithm with the likelihood of

" occurrence of .a unit. of speech given the prev10usly identified units. Based on these two

components the search algorlthm ldentlﬁes the most likely sequence of units of speech and

'In recent years, the tendency has been to elmunate the vector quantizer by having continuous density
h:dden Markov Models R ,
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this constitutes the recognized string of words.

- As an example of the interplay of the acoustic model and the language model, suppose
we ha.ve'rec‘ogm'zed the sequence “He ate the” so far. The acoustic model calculates the
probabilities that the words “teach” éorrespondé to a prefix of the se’quence of integer‘s“
it receives as input. Slmllarly, it calculates the probablhtles for the word “peach”. The
~ language model calculates proba.blhtles for ohe words “teach” and “peach”,. glven for example
that the last recogmrzed word is an article. Even if the acoustic model can not decide between.
“teach” a.nd‘ “peach” because they are very similar a.:coiusrtic'a]ly,‘ the language m(’)del‘can have’
a clea.r:p‘ref’érence for “peach” (beca.use'i't is a noun and nouns are far more likely tha.h verbs
to follow artlcles) Based on the probablhtles of the acoustlc model and the language model‘ |
together, we can then choose “peach” as the next- recognized word. ; ‘

V’I‘Vhlswthesrlrsﬂ,ls:, concerned with the language quelr component of a ,speech'rec,dgn‘izeri.
Similar to the language model in SPHINX mentioned above, we can describe a laﬁnguage ‘
model in general as fbllows A speech recognizer has recognized a seqlience of words in the
past and i is now trymg to extend this sequence by another word. Based on the acoustic
signal it Teceives, it can identify a set of candidate words whose acoustic signal is very
similar. However, based on the acoustic signal alone, it can’t identify precisely. which of
these candidate words is the one that was spoken. It therefore uses a language model to
pick the word that is more likely to appear in this context. This likélihdod of appearance '
is formalized in terms of probabilities: each word of the vocdbula.ry has a probability of
appéarihg ne}{t in a given context. We can thus describe the taskof the language ’modeling
- for speech recognition intuitively as thecoynstrucﬂon of ;i probability distribution over all
the words of the vocabulary. As an example, consider the words “He ate the” and twb
candidate words “peach” and “teach”. Humans can easily identify the word “peach” as
the likely continuation of the sentence fragment. The probability distribution constructed
by a language model should (1deally) give a higher probability to “peach” than to “teach”,

allowing it to make the correct choice.

2.2 Frequently Used Notations

In this section we. will mtroduce some notations that we will use for the remainder of the ,
the51s Given these notatlons we can then deﬂne the task of a langua.ge model more formally

in section 2.3.
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V = {wy, ..., wn} will denote the vocabulary of a speech recognizer
1,1 <1< m will denote an index ranging over this vocabulary

w = w(1],...,w[n] will denote a string of‘worlds of V. In other words: Vi : 3l(3),1 <
I(z) < m: wli] = W)

= 1,1 <1 <'n will denote an index ranging over the string of words

w[il :42]: if 21 < 42 it will be a short form for w[il],r..‘.'w[iQ] , else it will denote the

empty strin‘g’

p(::1:|‘y)‘will denote the conditional probability of z given y

let V+ denote one or more symbols of V; argma:cw f(W) will denote the W € V*+ for

which f(W) has the maximum value 2

p(w[z] = wi|c) will denote the probability of the i** word in the sequence being the

. word w; given the context ¢

p(wli]|c) will denote the probability distribution over the vocabulary given the context

c. In order for p(w[i]|c) to be a probability distribution, it has to satisfy the following

two constraints. Each probability must be between 0 and 1, and the sum of the

‘probabilities must be 1:

1. V1 :0 < p(wli] = wile) < 1
2. ¥ p(wli] = wle) = 1
A will denote the acoustic data given to the recognizer

G = {g1,..-,9¢} is a set of classes or parts of speech (we will introduce the notion of

word classes in section 2.5.3)

3,1 <4 <t will denote an index ranging over the set of classes
"g(w) will denote the class of a word w

: g(w[zl 12]), il < 12 is a short hand for g(wl[i1]),..., g(wl[i2])

' 2If there are several W’s for which f(W) has the maximal value, argmazw f (W) will denote one of them
that was picked randomly



CHAPTER 2. LANGUAGE MODELING FOR SPEECH RECOGNITION 19

-2.3 The Task of a Language Model

Given the notations introduced in the previous sectidn, we can now derive the task of a
" language model more formally.
A good speech recognizer should choose the most likely string W*, given the acoustic

data A. This is expressed by the following formula -
W* = argmazwp(W|A). (2.1)

Based on Bayes’ formula (see for example [41, p.150]); we can rewrite the probability from
the right hand side of 2.1 according to the following equation:
W) x p(A|W)

- p(A) S
p(W) is the probability that the word sequence W is spoken, p(AIW) is the probability that

(2.2)

p(w4) = &

‘the acoustic signal A is observed when W is spoken and p(A) is the probability of observing
: the acoustic signal A. Based on this formula, we can rewrite the maximization of equation

2.1 as - ;
p(W) * p(AIW)

p(A)
Since p(A) is the same for all W, the factor p(A) does not influence the choice of W and

(2.3)

W* = argmazw

maximizing equation 2.3 is equivalent to maximizing
W* = argmazwp(W) * p(A|W). (2.4)

The component of the speech recognizer that calculates p(A|W) is called the acoustic model.
The component calcﬁlating p(W) is the language model. |

Why is maximizing equation 2.4 easier than maximizing equation 2.17 Or, in other
words, why did we use Bayes formula to rewrite equation 2.1? For equation 2.1, we would
need to build a model for all possible acoustic signals A. For equation 2.4, we need a model
for every possible word sequence W. Since A is a continuous signal and W is discrete, the
latter is easier.

How can we calculate p(W) for a given string W? Formally, we can decompose the
probability of a sequence of words p(W) as the product of probabilities of each word wfi]
given the preceding words w[l :¢ — 1]:

i=n

p(W)= H p(wli] = wyylw[l : i = 1)) (2.5)
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This decornposition is appropriate for speech recognition for the following reason. It
allows us to evaluate the probability of a prefix w[l : k],1 < k < n of W as the product of

~ probabilities of the k words it contains:

‘ a=k ‘
1'1(10[1 K]) = Hp(w[l] = wz(:)lﬂ)[l i—1]) ' (2.6)

i=1

This is very useful when ‘we try to perform* the' ma.xnmza,tlonm equa.tion 2.4. Rather

~ than having to construct a W covering the entire signe,l before we can evaluate it with the
language model, we can now evaluate nartial strings covering only pé.rts of the'signa,l' as
they are constructed We can thus prune the sea.rch space by never expandlng or evaluating
unlikely partla.l strlngs 3. Using equation 2.6, we can now precisely define the task of a

| lantrua,ge model.

Deﬁnltlon 1 Gwen a set of contexts C = {cl, cp} the task of a language model is to

provide a probability distribution p(wli]|cx) for each conte:ct ck,l < k < p and a way of

choosing a context gzven the words recognized so far.

Durlng recognition, all the la.nguage model has to do is to determine which is the current
- context and to look up the probabilities of words in the distribution for this context. This is
fairly straight forward once the model has been constructed. The important issue, however,
" is to construct the lztnguage model prior to recognition. This requires the definition of
" the set of contexts and the estimation of a probabilityrdistribution for each context. These
' ,c0ntexts can ca.pture any information about the words spoken so far. However, the language
" model must be able to extract this information efficiently during recognition. An example
of such information is whether the subject of the current sentence is animate or not. The
language model must be able to decide efficiently whether the subject of the current sentence
hypothesis is animate or not in order to determine the current context and therefore the
dlstnbutlon it is going to use. 7
As an example of a language model, consider a very 51mphst1c model that constructs
only one dlstnbutlon,,1ndependent,of ‘context. The word “teach” for example will therefore
~be expected with the same probability, whether the previous words were “He likes to” or

;‘He ate the”. This is rclearly not a very good model since the constraints on the following

3Prumng has to be. done ‘with care because it can lead to the pruning of unlikely partlal strings, that
~would become more hkely glven the later, yet unseen parts of the signal.
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words va,ryrsign'iﬁca,ntly with context. A better language model would therefore have several
distributions, one for each context it treats separately.

“Here we can see -two conflicting interests that influence the construction of a language
‘model (see [62]). On the one hand, the more different contexts a language model can
differentiate, the more distributions it has, and the better it.can model a language. On the
other hand, each distribution needs to be estimated from tra.mmg data (see section 2.4). The
more “distributions it has, the more data it needs. In other words given a fixed amount of
training data, the more distributions a language model has, the less accurate the estimates
will be. Trying to balance these conflicting gozﬂs is one of the di'fﬁelfxrlties of constructing

language models and we will encounter this problem 'agaih, in section 2.5.

2.4 Estimation and Smoothing of ‘:Probability‘Disti‘ibutionsr

from Frequency Daia

Because we will be using many probability distributions throughout the rest of this thesis,
we need to examine the estimation and smoothing % of piobability distributions based on
frequency data. All of the probability distributions are produced with similar techniques
-—and once we have dealt with these issues here, we won’t need to address them separately for
- each probability distribution we use. This way, we can describe different language models
on the more abstract level of probability distributions, rather than having to describe them

“on the level of frequency data, requiring many lengthy formulas.

2.4.1 Estimation of Probability Distributions from FreQuency Data

How can we estimate a probability distribution? As a simple example, consider the tossing
of a coin. We would like to know with what probability it comes up head or tails and
this will be its: proba.blhty dlstrlbutlon Intuitively, we can estimate this d1str1butlon in the
‘ followmg manner. Throw the coin' N times, count the number of times it comes up heads
and taals and denote these numbers with H and T respectlvely We can then estimate the
probability of the coin coming up heads or tails as IF\,I or T\T respectively.

‘How can we extend this to the more general issue of estimating probability distributions

of events in certain contexts? A context, in the case of the coin tossing, could be the outcome

' 4Smoothmg attempts to make the probabilities depend less on the particularities of the training data and
- to avoid zero probablhtles for events that were never seen. We will see. smoothing in more detail later cu.
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- -of the previous toss or the fact, that the coin is lying head or tails up in our hand when we
throw it. Let E = {ey, ..., €,} denote a set of events and let C = {cl, ., ¢} denote a set of
contexts. As in section 2.2, we will denote the probability that event ¢;,1 < < p occurs
in context cx,1 < k <7 as p(F = ¢|C = ci). Furthermore we will denote the probablhty
distribution over all events in a given context cj as p(ElC = ¢k). Our goal is to estimate a
probar,bility’ distribution p{E|C = ¢i) for all ¢, 1 <k < r.

If we follow the example of the coin, we simply make a large number of trials N and
count the number of times each event occurs in each context, denoted byO(E = ¢|C = ).
The occurrence counts O(E = ¢|C = ¢k) are often referred to as the training data. We can
then calculate the number of times context Ck occurs denoted as O (C = ci), as the sum of

the number of tlmes each event occurs in that context

I=p : ‘ ' ’
O(C=c)=Y O(E= ellC = cx). (2:7)
=1

The sum of the number of occurrences of each context will be the total number of trials:

k=r

N =35 0(C= ). | (2.8)
k=1

As in the example of the coin, we can then get an estimate of p(E = ¢;|C = c) by dividing
the number of times event e; occurred in context c by the total number of times context
¢, occurred:
' ) O(E=¢|C=c)  O(E=e|C=
E=alc=a)=AEo0lCa)_ gall=a)
S O(C = cx) Y2 O(E = ¢)|C = ¢)

(2.9)

- From all possible values we can estimate for p(E = |C = ¢i), the value estimated above
is the one that has the highest likelihood of producing the observed data ®. This method
of estimation is therefore called maximum likelihood estimation (MLE). As pointed out in
[140], the principle of maximum likelihood estimation was first proposed by Sir R. A. Fisher
in 1926 (see for example [37]). Maximum likelihood estimation is a very simple method that
can ber used for a wide range of problems. Even though more sophisticated methods are
‘, available (see for example [20]), we use the maximum likelihood estimation for reasons of

- srmphcrty for our work

5Stnct;ly speaking; it is the va.lue that has the highest likelihood of producing the observed data given
- 'some addrtlonal assumptions about the distribution of probability values.



CHAPTER 2. LANGUAGE MODELING FOR SPEECH RECOGNITION 23

From now on, we will denote the quotient of the occurrences in equation 2.9 by the
frequency f(E = €|C = ¢k):

OE=elC=c) __O(E=elC =)
O(C = ¢y) PO(E = ¢|C =)

FE =elC =) = (2.10)

2. 4 2 Smoothing of Probability Dlstrlbutlons

In the case of a language model, it is important to av01d zero probabilities for events that

“never occurred in the data. The reason for this is that the speech recognizer should correctly
decode what the user said. Since we cannot prevent the user from saying nonsensical or
ungrammatical words at some point in the sentence, the language model should not give
a zero probability to any of the words at any time. If it did, such a word could not be
i‘ecognized even if it was the one said by the user. If we use the maximum likelihood
_estimation for events that never occurred, they will receive a probability‘ estimate of zero
because their occurrence count is zero. In order to avoid this, the probability estimates have
to be smoothed. This results in giving a small probablhty to unseen events and in reducing
the proba,blhty of other events.

The techniques often used for smoothing are the addition of a small constant probability
(see for example [85]), deleted interpolation ([66]), backing off ([73]), different discounting
~ méthods ([110]), Good-Turirg formula ([48]) or enhanced Good-Turing formula ({20]). In
choosing one of these methods for our work, we had two criteria. First, since smoothing is
not an issue of particular interest to our work, we would like the method to be fairly simple.
Second, in order to ensure that the method is acceptable to other researchers, the method
should be used by other researchers in similar language models. Adding a small constant
probability satisfies both criteria and this is the method we chose. We’will present it in the
following.

Suppose we want to estimate p(E = ¢|C’ = c¢;) based on the frequency counts f(E =

ei|C = c). In a first approach, we can simply use
p(E = ¢|C = cx) = f(E = e|C = k). (2.11)

However, some of the events in £ may never have been observed in a certain context, for
example event e, in context cx. Thus, we would obtain p(E = €,|C = ¢x) = 0. As pointed

out m the preceding paragraph, we should avoid zero probabilities in language models. A
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~ simple way to avoid zero probabilities is to add a small constant value v; to all probabilities:

p(E = e;lC’ = ck) = f(E'i‘eIICV' = ¢x)+ v1. V (2.12)

‘Adding v; indeed avoids zero probabxhtles but the sum of probablhtles of all possible events

is now blgger than 1 and the resultmg dlStl‘lbllthIl is not a probablhty distribution any more

(see sectlon 2. 2)

}: (f(E = ¢|C = ck) +vy) = > f(E = e,gc = ck) + |+ vy = 1 + |E| «v. (2.13)
’ g€l - : ’ ; e €l )

In order to compenSa.te for the extra probability mass of |E|* v;, we will simply multiply

the frequencies f(E = ¢/|C = c) with the constant value vz =1~ |E|* v
PpE=¢€|C=ci)=vy* f(E=e|C=ck)+v. (2.14)
We can verify thay,t the sum of the probabilities of all words now adds up to 1:

E (vo* f(E = e|C = ¢r) +vy) = v2 % Zf(E =¢|C =cx) + |E| *v; (2.15)
‘e€E €k
=vexl+|E|lxvy =1~ |E|l*xv +|E|*v; = 1. (2.16)

Thus, the smoothed estimate in equation 2.14 constitutes a true probability distribution

and avoids zero probabilities.

2.4.3 Assumptions about Probability Distributions in our Work

In the rest of the thesis, we will often refer to probability distributions and all of these
can be estimated using the methods presented above. For example, we will denote with
p(w[i] = wi|w[i — 1]) the probability that the i** word of the sequence is wy, given that the

previous word w[i — 1] is w,(,-__l)‘(see section 2.2). It is understood that this probability is

- estimated approximately as presented above. Summing up, this estimation roughly works
~ as follows: count the number of times iv;'(,-'_,i)‘occu'rs in the training data, count the number

of timés it is fallowed,,by,;the,, word w;, and then estimate the probability as the quotient

of theSe two numbers. Moreover, to ensure that our results are easily reproducible, we will

 give the complete formulas mcludmg the smoothing, for the probability distributions we

actually Implemented



CHAPTER 2. LANGUAGE MODELING FOR SPEECH RECOGNITION 25

2.5 Review of Existing Language Models

Having introduced the key issues of language modeling, we will now review many commonly
used language models. However, rather than giving the often complicated formula in terms
“of frequency counts, we will describe each model on a more abstract level in terms of its

proba.blhty distributions. This way, we don’t have to consider estimation and smoothing

- ,lssues but can focus on the following conceptua.lly 1mportant 1ssues

1) "We saw in section 2.3 that the task of a Ianguage model is to provide a _probability
 distribution for a set of suitably ‘defined contexts. How is the context defined or, in
other words, on what does the probablhty distribution depend in each model? This is

- a crucial point of each model because it shows which lin‘guistié regularities (e.g. those
that involve only the preceding two words) it can capture.” We will pfcvide an intuitive
~description of the contexts as well as the formﬁla{ each model uses to instantiate the

general p(w(¢] = wi|c) with a specific context ¢.

2) How many probabilities have to be estimated in each model? This is important because
it determines the-amount of data needed to train-the model. This in turn determines

the situations and tasks in which each model cra.h'be used.

2.5.1 Context Independent Models

Context independent models have only one probability distribution.. This distribution is
used to assign probabilities to words, independent of the current context.
The most simplistic, context independent model is the model that treats all words as

being equiprobable. Given the vocabulary V/, this results in the following formula:
. 1
p(w[i] = wile) = — 2.17)
i (

This model does not have any probabilities to estimate and therefore does not need any
training data. Even though this model satisfies the requirements of a language model, it
is of no use to a speech récognizer because all words receive the same‘probability. It will
therefore have no inﬂuenCe on the ranking of the words.

A more sensible way to construct a context independent model is to estimate the prob-
ability of each word according to its frequency, but independent of context. This leads to
the 'fqlldWing model:,

| p(wli] = wile) = p(wli] = w). (2.18)
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This model also has only one distribution, but it has |V| probabilities to estimate. Even
~ though this model is very simple, it is actually being used in a commereial speech recognizer
([56])- Because it is a special case (N =1) of the N-gram model (see the next sectlon), it
- is sometimes referred to as the uni-gram model. ,
 The a,dva.ntage of the uni-gram model is that it requires only very little tra.mmg data.
Its djsa,dvanta.ge is tha.t the probablhty of a word will. a.lways be the same, mdependent of

o the context.
2.5.2  N-gram Models

The previous models had enly one distfibution, independent of context. From now on, we -

7 will make the proba,l:uhty distributions depend on context. The dlfferent models we will see

o w1ll mostly differ in the kind of context they cons1der

~ Before lookmg at the genera.l N-gram model We Wlll con31der the Spec1al case of ther e

bl-gram model, where N = 2. When we look at a fragment of a rentence, e.g. “He ate

EaE ’the”, it is quite clear that certain words are not valid continuations of the sentence. For

7' > example, if the last word i in our sentence fragment, namely ‘the’; is belng fo]lowed by a

‘verb it will not lead to a grammatlca.l sentence ©. It i is therefore 1ntu1t1vely appealing to
make the probability distribution depend on the previous word. The context is therefore
- -simply the preceding word. Even though th1_s captures only a very small amount of context,
'it‘ does capture the restrictions in the above example. Moreover, there is considerable
- ‘empirical evidence from e0rpus linguistics that the immediate context of many words is
‘ verj{:predictable (see the discussion in section 5.2.3). This is especially true for fixed word
: "(r)rderla‘ngua.ges like —English (see [23, p.32]), where the local constraints are quite powerful.
Making the probability dlstrlbutlon depend on the previous word leads to the following
formula:

'@m:wm=mwﬂ=www4n" (2.19)

- In the more genel'al form of the model, the $O called N-gram model, the probablhty of
: the it word of an input sentence is made dependent on the precedmg N =1 words. The

context is therefore defined by the precedmg N —1 words:

o] = mm p(wlil = wluli— N +1:i - 1) (2.20)

6Even if a' word can be a noun a.nd a verb, each occurrence of a word has only one grammatical function.
- Thus, if the article is followed by an occurrence of a verb, it will riot lead to a grammiatical sentence.
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For each' N — 1 tuple of words of the vocabulary, the N-gram model has a separate
probability distribution and, at a given point in a sentence, the distribution it chooses is
determined byr the previous N — 1 words. There are [V|V=! different N — 1 tuples-and this is
the number of distributions of the N -gram model. For each dlstrlbutlon we have to estimate
|V| probabilities. This gives a total of !V[N probablhtles to estimate. For a vocabulary size
of 10 000 words, the number of probablhtles that need to be estlmated increases dramatically
‘(exponentially) with N. For example, for N = 3, we have 10'2 probabllltxes Therefore, in
practice, N is usually taken to be two (see for example [79] [34]) or three ([5], [13], [63],
[27], [67], [65])-

~ The advantage of the N-gram model is that it captures all the mformatlon prov1ded by

the preceding N — 1 words. Judging from its success, this is quite an important source of
- lnformatlon esnecrally for fixed word order languages like Enghsh Its dlsadvantage is the
~ enormous amount of training data needed to train all the probabilities. - For exampIe in

[13], several hundred millions of words are used for training.

As pointed out in [63], fifteen years after the first use of a tri-gram model in large
‘vocabulary speech recognition ([5]), the tri-gram model is still considered one of the best

~performing models and it is used as a component in many other models.

2.5.3 N-pos Models

The major problem with the N-gram models is the amount of data required for training.
Moreover, one can argue that some of the local constraints depend less on the identity of
the previous words than on their grammatical function. This leads to the idea of grouping,
words together in classes and making the probabilities depend on these classes. Traditionally,
these classes are called parts of speech (pos) in linguistics which expla.ins the name of the
N ;pos models. Within the class of N-pos models, there are many different variants. In the
following, after starting with a very basic model, we will present two modifications that lead
to the model used in our ‘implementation

 LetG = {q1,-. oy i o gtl denote the set of classes, let g(w) denote the class of a given word
w and let g(w[il:42]),1 < i1 < i2 < 7n be a short form for g(wle1]), g(w[i1+ 1}), ..., g(w[i2])
7. In the N-pos model, the probablhtxes depend on ther classes of the previous N — 1 words.

~TAll of these notations are also.mentioned in the section on notations (2.2).
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Therefore, the context is defined by the preceding N — 1 classes:
p(wli] = wile) = p(uli] = wilg(uli~ N +1:i~1])). (2.21)

This model has |G|V=! distributions and requires the estima.tion of |G|VN-1x |V| proba-
bilities. For common values of |G| = 200, |V| = 10, 000 and N =3, the N-pos (e.g. tri-pos)
model has 8 * 10m probabilities. This is a Sngﬁca.nt reductlon w1th Tespect to the tri-gram
model S

Furthermore, one can argue that the class of the previous word. mostly restrlcts the
class of the next word, but not its identity. Hence we can derlve probabilities in a two-step
process. First, we predict the class of the next word ba»sedron the classes of the previous
N -1 words. rL[‘hen, we predict the actual word given"ite class, but independent of preceding

classes; “This leads to the following formula
p(W[*] = wile) = pg(wlihlg(wli - N +1:i -~ 1])) * P(W[ ] = wi|g(wld))). (2:22)

_ This model has the same definition of a context, but it on}y has |G|V~ % |G| + |G| * |V|
free parameters. For the same values of |G| and |V|,thisr corresponds to 10% probabilities,
a further reduction compared to the previous formula. k

The above model, used for example in [15], [29],’ {30], [60], [78], [112], [156] and [155],
requires disjoint classes. However, one word can belong to several classes. For example, the
word ‘light’ can be a noun, verb or adjective. Hence, the probability of seeing the word
‘light’ is the probablhty of seeing it as a noun plus the probabrhty of seeing it as a verb plus
the probability of seeing it as an adjectlve This leads to the following formula, where the

probabilities are summed over all possible classes in G:

p(w(i] = wle) = Y plg(w] i) = galg( [i= N +1:4i=1]))*p(w(i] = wilg(w[i]) = g;). (2.23)
9;€G
This is equivalent to surnrrring over all classes w(i] can actually belong to since the second
term in the formula will be zero for classes that do not contain w[i].
- In order to relate the N-pos model to the N-gram model, it is quite revealing to look
“ at the extreme cases of N-pos models e.g. at a model with only one class and at a model
- with one class per word (see Figure 2.2). If a N-pos model has only one class, then knowing
‘ the classes of the N — 1 previous words does not contain any information about the context

e because the last N — 1 words always belong to the same single class. Similarly, the class
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number of
lf { : ___,,| classes in a
N-pos model
1 25 500
identical to commonly used range identical to
uni-gram of N-pos models N-gram

Figure 2.2: The relationship between N ;gram énd N-pos model

of the word to predict does not contain any informatibn about the word to predict or the
Cdntéxt, because all words belong to this class. Thus, sihce‘ both factors in equation 2.23
are independent of the context, the prediction of the next word will be independent of the
- context. We therefore obtain a context independent model with only one distribution. This
model is identical to the uni-gram model of section 2.5.1. At the other extreme, we have a
“model with a separate class per word. If a model has one class per word, then predicting
the word given its class becomes trivial, because each class contains only one word. In
this case, defining the context in terms of the classes of the previous N — 1 words actually
means defining the context in terms of the identity of the previous N — 1 words. Thus,
the second factor in equation 2.23 will always be equal to one and the first factor will be
the prediction of the next word given the previous N — 1 words. In other words, we obtain
the N-gram model from section 2.5.2. From these observations, we can see that the N-pos
model is somewheré between the unigram and the N-gram model, depending on the number
'~ of classes it uses. ,

This model, used for example in [85), [32], [62] and [147], has the same number of
distributions and parameters as the previous model — the difference is that the classes it
uses have to be disjoint.

The advantage of the N-pos model is that it requires far less training data than the
N-gram model, while still considering the class information of the previous N — 1 words.
Its disadvantage is that its distributions depend on classes, and not on particular words.
As an example, suppose that the class ARTICLE contains the singular article “a” as well
as other articles like “the”. In the case of a bi-pos model, we will have one distribution,
given that the last word was an article. However, if we knew that the last word was the
article “a”, the distribution would be significantly different since it would not contain plural

nouns. We will come back to this in section 4.4.2, page 84. In general, the performance
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of the N-pos model is not as good as an N-gram model trained on sufficient data, but it
is better than an N-gram model trained with insufficient data. Here, we can see again the

conflicting interests in construycting a language model that we saw on page 21.

2. 5.4 Decision Tree Based Models

In all previous models, the number of distributions is fixed independently of the particular-
ities of the’trajning' data. For example, in the tri-pos model, there is a separate distribution
~ for each pajr of preceding claSses. This is done for all pairs, even though some of the re-
sulting distributions may be very similar. As an example, the distribution in the contexts
[verb, a,rtlcle] and [preposition, article] might be very 51mlla,r to each other and even to the
dlStI‘lbuthIl in the context [article]. This is a serious dlsa,dva,nta,ge because it leads to the
construction of very similar distributions, which de noﬁ resrurlt'in ‘improved performance.
The sta,t‘i,sti’cal technique of decision trees can avoid this problem. It has been used

- recently for different tasks in statistical natural language processing-([7], [9], [150] [148],
[87], [10]). A good lIltI‘OdIlCthIl to a specific method for constructing decision trees, called
CART, is given in [11]. Other recent algorithms are presented in [45] and [16]. More on
decision trees in general can be found in [46]. In the following, we will briefly outline the
basic idea and its application to language modeling.

~ A decision tree contains the probability distributions of a language model and a method
of identifying the distribution that should be used in the current context. In such a tree, each
leaf contains exactly one distribution and each internal node contains exa.ctly one question
about the context. The follo‘vrving'met:hod is used to ﬁnd the distribution (or the leaf) that
should be used in the current context. Starting at the root node, we look at the question
contained in the current node. Based on the answer to this question, we move to one of the
children, making it the current node. This process continues until we arrive at a leaf. We
then use the probability distribution associated with this leaf.
- To construct a decision tree, we start with only one node, the root, containing only one
probablhty distribution. Given a predeﬁned set of possible questions about the context, we
,choose one tha,t ma.xrmrzes some criterion, e.g. performance of the tree on test data. This
questlon is then pla,ced at the root node, the children are created, and separate distributions
are estrmated fqr each child. This process continues recursively until some stopping criterion,
- eg. none_of the"'qnestions‘ lead to improvements, is met. At each leaf, the distribution is

, estiirnated in the yfoll‘ewing manner. Qur training data consists of a set of data points, e.g.
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the occurrence of some word in a given context. Each of these data points starts out at the
. root node and then, by answering the questions at each interhal node it encounters, ends up
at some leaf node. Once all data points have reached the leaves, we estimate a probability
distributjon for each leaf based on the frequencies of events in the data it contains. ,

As an example, suppose we have a set of training data containing the identity of a word
- wig], given‘the'previous word w[i — 1]. One such-data point could be ,(w[i—l],w[i]):(the,
weather). Suppose further, that the set of possibrlei questions we can ask is “Is the part
of speech of the previous word g;?”, where g; can he ény part of speech. Our goal now
is tolﬂrconstru‘ct a language model based on this training,data and on this set of qﬁeétions.
- We will start out with one node containing only dne 'diétribution. As for every other leaf,

" this-distribution is estimated from the frequencies éf events inr‘irts data. In this case, the
distribution will correspond to the uni-gram (see section 2.5.1), giving the relative frequency
of each word. For each question we can ask, we construct the ‘childrre‘n, their separate
distributions and measure the performance of the resulting language model on testing data.
~ We then choose the question that leads to the best performing model and actually put this
quiesti'on in the root node. We then create two childrén, send each data point to the right
or left child, depending on its answer to the question we just chose, émd construct separate
distributions for the children based on the frequency of events in their déta. We can then
apply this process recursively to each child until some stopping criterion is met, e.g. none of
the questions leads to a further improvement. This terminates the process and the resulting
decision tree is our language model.

'All the models we have seen so far can be represented in terms of a decision tree. Decision
trees are therefore more general language models. Their advantage is that the number of
distributions is not fixed in advance, but it is determined by the training data. The number
of distributions is therefore in general more appropriate than if one of the previous models
is used. Its disadvantage is that the task of constructing the tree is computationally very
expensive. And even ‘thbugh the resulting model frequently has less distributions to store,

the improvement in performance is often relatively small (see [7], [150]).

2.5.5 Dynamic, Adaptive and Cache-Based Models

In all of the models we have seen so far, the probability distributions are estimated from
the training data and do not change further when the model is used on different texts or on

different portions of a text. For this reason, they are called static language models ([67]).



CHAPTER 2. LANGUAGE MODELING FOR SPEECH RECOGNITION 32

However, intuitively, it is very clear that some words are very “bursty” of nature: they do
| not occur in a large portion of the text, but then occur frequently in one small section.
There is also strong empirical evidence to support this intuition. In [68] and [69], it is
shown for three different corpora that frequencies of words vary greatly between different
types of text. Language models that try to capture this short term fluctuation of the overall
frequenéies are called dynamic, adapfiVe 6r cache-based 1anguage:m6dels. |

,VSo far, thére has been very little work on dynamic language models in the literature.
The idea was first proposed by R. Kihn in [84], then developed in [85], [86] and [88]. It was
further tested in [67], [79] and [27]. Since all these approaches have a considerable degree
of similarity, we will only present one of them in more detrajl.

In [67], the occurrences of the N most recent words w[i~ N i~ 1] (e.g. N =1000) are
' consi‘defed ‘asr's’épé'rate training data. Based on this data, separate unigram, bi-gram and tri-
gram ’fr‘equency,,distributions are estimated. They are combined using one of the smoothing
methods to obtain a single dynamic tri-gram estimate denoted by pay, (w[i]|w[i—2:i—1]).

This distribution assigns a non-zero probability to all the words that occurréd within the last
N words. To avoid zero probabilities of the remaining words, the model is combined with the
"s‘tatic tri-gram model pg, (w(é]|w[i—1: i~ 1]) to give the combined model peom (w(i]|w[i—2:

¢ — 1]). This combination is performed by a linear interpolation:

Peom(W[E)|w[i—2: 4 —1]) = X ¥ payn(wli]jw[i — 2 : 4 —1]) + (1 = A) * pra (wli]|w[i — 2 : i — 1]).

o (2.24)
A well known estimation algorithm, the forward-backward algorithm ([6]), is used to esti-
mate the interpolation parameter A. A fanges from 0.07 to 0.28 depending on the static
tri-gram model used and on the cache size N.

Using the combined model, the improvement in performance of the language model
ranges between 8% and 23%. As reported in the same paper, for an isolated speech rec-
6gnjzer,3thjs léads to-a re‘duc‘tion'in efror rates ranging from 5% for shorter documents to
- 24% for larger documents. This is because the cache starts out empty at the beginning of
Veachr document and it takes some time before its estimates accurately reflect the particular

document. Improvements of about the same size are reported in [85], [86] and [79].
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2.6 Summary

In this chapter, we gave an overview of the different components of a speech recognizer,
defined the task of the component central to this thesis, the language model, and reviewed
~the most commonly used language models. '

L We began by giving an overview of the different components of a speech recognizer
deSigned according to the stochastic approach (see section 12) We briefly explained the
 tasks of the signal processor, the vector quantizexr',"trhrer acouStic model and the language

model and how they interact to perform the mapping from the acoustic signal to a string

. of words. Moreover, we introduced many of the notations used throughout this thesis.

After havirg described the task of the language model intuitively, we then defined the
- task of the language model more formally as follows. Given a set of contexts, the task of
‘a language model is to provide a probability distribution for each context and to provide a
‘way of choosing a context given the words recognized so far.

~ Since probability distribution are used frequently in this thesis, we explained how prob-
ability distributions can be estimated from frequency data using the maximum likelihood
criterion. Furthermore, we briefly addressed the issue of smoothing probability distributions
and presented a very simple smoothing technique, the addition of a small, constant baseline
probability. The estimation and smoothing methods that have been presented here are the
ones we use for our work.

Having seen the major issues in constructing language models, we reviewed many existing
language models (context independent, N-gram, N-pos, decision tree based and adaptive
models). For each language model presented, we focussed on two cohceptually important
issues: how does the model define the context ¢ for its probability distributions p(w[i]|c)
and how many probabilities does the model have to estimate. The first point is important
because it determines which linguistic regularities (e.g. the ones involving only the two
preceding words) the language model can capture. The second point is important because
it determines the amount of data needed to train the model and therefore the situations in

which the model can be used.



- Chapter 3

Analyzing and Improving

: Language Models

In the,last chapter, we reviewed many existing language models for speech recognition. Even
though some of these models may achieve good performance, the type of speéch recognition
R t:asks we can tackle with existing speech recognition technology, including the language
models, is still limited. How can we improve the language models so that we can tackle
more complex speech recognition tasks? In this chapter, we propose the central idea of this
thesis, namely trying to analyze errors of existing language models in order to subsequently
improve the models. We first present some intuitions on improving language models (section
3.1) followed by a derivation of the standard measure used to evaluate language models
_ (section 3.2). Given a term closely related to this perplexity measure, the logarithm of
the total probability LT P, we then define a weakness of a 1anguage model in terms of
LTP (section 3.3). For models with several components (e.g. the class based models), we
develop the method of probability decomposition (section 3.4) which allows us to analyze
the weaknesses of the components separately. We conclude this chapter by showing that

the idea of ya.nalyzing weaknesses is applicable to many probabilistic models (section 3.5).

34



CHAPTER 3. ANALYZING AND IMPROVING LANGUAGE MODELS 35

3.1 Intuitions on Analysing and Improving Language Mod-

els

Generally speaking, theories about the world remain valid as long as they correctly predict
‘the observed empirical data. But when contradictory evidence is found, new theories are
sometimes found naturally by identifying and analyzing the errors of the old theory. This
can be taken as a very simple, intuitive model of scientific progress. By analogy to this
model of progress, we propose in this chapter the central idea of this thesis, namely trying
to analyze errors or weaknesses of a language model in order to subséquently improve the
model.

~Before developing this line of thought further, we should try to find out whether some-
thing similar has been tried before. In the proceedings of the recent major conference in
North America ([57]) and one of the main European conferences ([35]), we did not find one
paper that attempts an error analysis of a language model. In all of the typical language
‘modeling literature (e.g. proceedings of previous years, workshops, etc.), we have not come
“across a paper that tries to tackle the problem from this angle. Therefore, the current
literature on language modeling shows an apparent lack of interest in error analysis. This
is very surprising, especially when the recent increase in work on the topic is taken into
account.

In order to perform an error analysis of a language model, we first have to define what
constitutes an error. How do we define an error of a language model? Rather than trying to
define an error at this point, we observe that the definition of an error should be related to
the performance measure used to evaluate a language model. If they are not related, we can
still identify and remove an error, but by doing so, we may not improve the performance of
the model because the error is not related to the performance measure. Before defining an
error, we therefore introduce the standard measure used to evaluate the performance of a

language model.
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3.2 Evaluating a Language Model

- 3.2. 1 A Simple Mathematical Measure for the Quallty of a Language
- Model

Since the task of the model is to predict words, it- ‘seems natural to evaluate a model by
looking at the proba.bilities it gives to-words in a sample of text. This text is referred to as |
a ~testing text. The geometric" mean of these probabilities (the “average value”) therefore
seems like a good measure for the a.bﬂity of the model to predict words. Perplexity (see
[62]), the standard yardstlck for comparing performances of language models, is just the
rec1proca.l of the geometrlc mean.

We now present the measure of perplexity in more detail. As mtroduced in section 2.2,

= w(l], ..., w[d], ..., w[n] denotes a sequence of words. Here, the sequence is the sequence
of words in—the'test"ing text. Let cg(;) be the context the;language model chooses for the
prediction of the word w(i] (see section 2.3). Furthermore, p('w’[i] = wy; )lck(i)) denotes the
probability asmgned to the i word by the model. The total probablhty TP of the sequence
B ~i=n

TP = W) = p(wl1: ) = T] (wli] = wrlexcy) (3.1)

i=1

The perplexity PP we just described intuitively as the geometric mean of the probabilities

is then
PP = (TP)%.. , (3.2)

For a large sample of text, the total probability TP can get extremely small. Therefore, from
a practical point of view, it is more convenient to use the logarithm of the total probability
LTP B

1-—-11

LTP = logy(TP) = Zlogz (p(w[d] = wiEyler)) (3.3)

i=1

and the logarithm of the perplexity LP !

LP = logy(PP) = —%logg(TP) = —%LTP. (3.4)

By analogy to TP .and LT P, we would prefer to use the term LPP instead of LP. However, since LP
is the term used by many other researchers, we will be using it as well.
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3.2.2 Information, Entropy and Perplexity from an Information Theoretic
Point of View

In this section, we will derive the logarithm of the probability LP and the perplexity PP
from a,nrin‘formation theoretic point of view as measures for the quality of a language model.
We' will also derive the term of entropy, which we will use later in section 4.2.1, page 64.
Most of Vt'he material here is taken from [62, pp.472}, [122, p.6,p.54] and [135].

Ihformation theory is concerned with sources of infdfmatiohf. In simple terms, a source of
information is a device that outputs symbols chosen frr'ormya finite set V = {z},...,2;} known
to fhe oBserver. The symbols are chosen according to a statistical law underlying the device.
We will write the probability of observing symbol z; as p(z;). When an information source
outputs a symbol, it provides information by removirnygi the uncertainty about the identity
- of that symbol. Thus, a source provides more infqtma,tion if the run‘cértajnty about the
‘next symbol is greater. How can we measure the amount of uncertainty we have about the
next symbol? If there is such a measure, say H(p(z), ..., z1)), it is reascnable to require the

foﬂowing properties:
1) H(p(zy,...,2;)) should be continuous in the p(z;).

- 2) If all the p(z;) are equal (e.g. p(z;) = }), then H(p(zy, ..., z;)) should be a monotonic
increasing function on I. In other words, if all symbols are equiprobable, then there is

more uncertainty if there are more symbols.

3) If the choice of the next symbol is broken down into two successive choices, the original
: H(p(zy,...,7;)) should be the weighted sum of the H values of each choice. The
méaning of this is illustrated in figure 3.1. In case a), we have three possibilities with
probabilities p(z1) = %,p(azg) = % and p(z3) = é. In case b), we first choose between

two possibilities each of which has the probability %, and if we have picked the second

possibility, we will make another choice between two possibilities with probabilities %

and %. We require that

11 11 1 21
3 =GP+ Gy (35)

H >3

DO ==

It is shown in [135, p.116], that the only H(p(z1, ..., 2;)) satisfying the three requirements

is of the form

H=-k Zp(z,) * logp(z;). (3.6)
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Figure 3.1: Breaking one choice into two successive choices

The constant k¥ merely determines the choice of a unit of measure. Quantities of the form

H ==Y p(z;) * logp(;) : (3.7)
play a central role in information theory as measures of infdrmation, choice and uncertainty.
H V:is also used as entropy in statistical mechanics, where p(z;) is the probability of a system
being in cell 7 of its phase space (see for example [145]).

7 One way of understanding intuitively why the logarithm is used is to look at the infor-
mation provided by a source with [ equiprobable symb(ils. According to equation 3.7, the

" information content of such a source is

: =l 4, !
H(X)= Z -}-Iogl = % 1 xlogl = logl. (3-8)
: i=1 k

If the source outputs two symbols in a row, we should get twice as much information.
However, outputting two symbols is equivalent to a source outputting one of [ symbols
independently ‘and‘ with equal probability. The information content of the second source
' shouldjfherefore be twice the information content of the first. Indeed, because we use the
logarithm, we get

logl? = 2 % logl (3.9)
The rlcr)garithmrthérefo’re conforms to our intuitions about the quantities of information.

~ Another way of understanding equation 3.7 is to rewrite it as

H=-= Zp(a:,-) * logp(z;) = ) plz:) * logp(ii). (3.10)
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If X denotes a random variable (our source) over the set V = {z,,...,z;}, then H is in fact
the expected value of Iogﬂi_—i), where H:T‘) is the uncertainty associated with symbol z;. If
z; is very unlikely, then H%f is very big, thereby agreeing with our intuition that unlikely
' events carry a great degree of uncertainty. o 7

As one example of this definition, consider the entropy of a variable that can only take

one value, of course with probability one:

, 1
HX)=1% log-l— = 0. (3.11)

Since ‘the outcome is absolutely certain, no information is provided by the source.
" The logarithms in equation 3.7 are usually taken to the base two and in this case, the
".information is measured in units of binary symbols ,‘(bi,ts). For example, the information

provided by a uniform source with two symbols is one bit:
I =log2 =1. : (3.12)

The fundamental theory of information theory states (rsee [135, p.59, Theorem 9]) that
on the average, it takes H bits to represent a symbol put out by a source of entropy H.
Furthermore a source of entropy H provides as much information as a source that chooses

it symbols independently, with equal probability, from a vocabulary size of
| =2H, (3.13)
This is because, according to equation 3.8, the entropy H' of the latter source is
H =log2" = H. (3.14)

What about information sources that do not choose their symbols independently of
previous symbols? Let z[i] denote the i** symbol output by the source and let z[i : j],i < j
be a short hand for z[¢j, z[i + 1], ..., z[j]. For this more general case, the entropy H is defined

as

H= -limn_,oo-l— Z p(z[1 : n])logp(z[1: n]) (3.15)
z[lin]JeVn

There is a groups of sources, called ergodic sources, for which we can simplify equation
3.15. Even though a rigorous definition of ergodicity 2 is quite complex, the general idea is

simple.

2The interested reader can find more on ergodicity in [135, p.47] and a more rigorous definition in [40].
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“In an ergodic process every sequence produced by the process is the same
in statistical properties. Thus the letter frequencies, digram frequencies, etc.,
obtained from particular sequences, will, as the lengths of the sequences increase,
approach definite limits independent of the particular sequence. Actually, this is
not true of every sequence but the set for which it is false has probabi]ity zero.

'Roughly the ergodlc property means statistical homogenelty” ([135 P 45 46])

~“In the case of ergodic sources, equatlon 3 15 reduces to

H——Izmn_,oo_-logp( [1 n]) - ' ‘ | (3.16)

In other words we can estimate the entropy H from long sequences of symbols that were
V‘generated by the source. : | |
How can we apply lnformatron theory to language models" Language can be seen as an
1nformatlon source Whose output symbols are words from the vocabulary V = {wl, oW}
(see section 2.2). We can use formula 3.16 to estimate the content of information per word
in a large corpus of text:

= %‘logp(m[l : n]) : o (3.17)

But how can we get the probabilities of sequences of words w[1 : n] of the language, that we
- need for equation 3.17? We can approximate them with the probabilities p(w[1 : n]) given
by the language model. If we replace the true probabilities p(w(1 : n}) of equation 3.17, with
their approximations p(w(l : n]) glven by the language model, we obtaln the logarithm of

the probabrhty (logprob) LP that we saw in section 3. 2
LP = —-—logp(w[l n]) ' (3.18)

Intuitively, LP is a measure for the entropy of our model for the language. As pointed out
in [62, p.474], we can show that LP > H if we assume proper ergodic behavior of the source
generating the text. This is clear intuitively, because our model of the language can at most
b‘e as good as the language itself. Frorn the view of the speech recognizer, I P measures the
difficulty in recognizing speech that was generated by the same source that generated the
Ccorpus. 'VT‘hus LP is a very appropriate measure for the quality of a language model.
blmllar to equatlon 3.15, we can say that the difficulty of a speech recognition task is

also grven by the perplexrty PP (see section 3.2):

PP= 2EP = p(wll : n)). (3.19)
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Thus, the speech recognition task with a language model of logprob LP can be thought of
as being as difficult as the recognition of a language with PP equally likely words.

3.2.3 Discussion of the Standard Perp]eiityMeasure ‘

| The ultimate measure for the performance of a speech recognition system is its recognition
accuracy. Why then do we want to measure the qua.hty of a la.ngua.ge model separa.tely"‘
First, because it allows us to measure the quality of o one component of the speech recognizer,
the la,nguage model independently of the characteristics of the other components of the
particular speech recognition system at hand. Not only does this ma.ke language models of
. different speech recognizers directly comparable, but it also allows resea.rchers to work on
~ the two subtasks separately, thus following the well known “divide and conquer” approach.
Second we can measure the quality of language models that are bullt for d1ﬂ‘erent tasks,
e.g. word disambiguation and spelling correction or text encoding.

What do we expect of a measure of the quality of a language model, in particular with
respect to speech recognition? Suppose we have two language models, LM1 and LM2, and
— according to our performance measure — LM1 is better than LM2. We expect that in
- general, the recognition accuracy of a speech recognizer that uses LM1 will decrease if it
uses LM2 instead. In other words, the measure of the quality of the language model should
be highly correlated with the accuracy of any speech recognition system.

The perplexity measure from the previous sections has been shown to correlate well
with the recognition accuracy many times. Moreover, it is a theoretically sound measure
 for the amount of choice in a text generated by the language model. It is therefore a very
appropriate measure to use for the evaluating of language models. However, it also has the

following problems:

1) The perplexity measure does not take the acoustic similarity of the words into ac-
count. Thus, there is no perfect correlation between perplexity and recognition accu-
‘racy. There have been cases reported in the literature (see for example [21]), where
a language model LM1 with a higher perplexity than a model LM2 leads to better

recognition accuracy.

2) The quality o‘f the language model depends on the testing text. If we choose a testing
text that is very different from the text used to train the model, the model will perform

very poorly. However, this does not really mean that the model is bad, but that the
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testing text is very different from the training text. In fact, the language model may

have learned the statistical properties of the training text very well.

. 3) The language model will ultimately be used to discriminate between likely and unlikely
" words. It seems‘ that for this purpose, the difference in prdbability between likely and
unhkely words is more 1mportant than the absolute value of the probablhtles In
general negative information i is useful in language learning tasks (see for example [42]
~and 43]). It therefore seems_appropriate for_the language model to make use of a

g “false”'text (for example— a sequence ef words ehesenr at‘random from a vocabulary or

a permntatlon of an existing text). We could then for example measure the difference

- in perplex.lty on the real and the “false” text.

Even though there are problems with the perplex1ty measure we cho‘ose to use it for our

work for the followmg reasons. Flrst problem 1) is very rare and in the large majority of 7
2) is less severe if we choosea testmg text that is qulte similar to thetralnmg text(and to
- the task the language model is used for in the end). This is common practice. Third, the
amount of work required to investigate problem 3) is beyond the scope of our work here.
Last, but not least, perplexity is still the only widely accepted measure for the quality of a

language model.

3.3 ‘Deﬁning and Identifying Weaknesses of Language Mod-
els | - | |

Now that we have seen the standard measure used to evaluate language models, we can pro-
ceed with our endeavour of defining errors of language models. Since the language model
constructs a probability distribution, we do not think that the word error is appropriate.
Instead, we prefer to use the term weakness, because the intuitive notion of the term weak-
ness as something that should be imprbved is what we want tor express. However, in order
~ to-avoid a future misunderstan’ding’; let us point out that we use the term weakness in a
‘'special, technical sense for the following reason. The commonly used notion of weakness
“implies that'the weak part can be improved. In our usage, this might not always be possible.

Even an intuitively “perfect” language model will not be able to predict the correct next
S e PEr guage m ; p
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word with a probability of one 3. Since our definition of a weakness will be related to the
information theoretic term of perplexity, only a model that can predict the next word with
- absolute certainty (e.g. witha probability of 1) would be perfect. Thus, any model that does
not achieve this will still have weaknesses in the information theoretic sense. So even the
intuitively “perfect” language model will still have a weakness according to our definition.
Even-though this might Be a theoretical drawback of Vlii'nkiri'g the definition of a weakness to
irnform‘ation‘ theory, the disadvantage only appears if the Iangﬁagé model approaches the in--
tuitively “perfect” model. However, current N-gram models havé arguably not yet reached
this étate (see [63] for a brief comparison between thé ﬁerfofxriante of a tfi—gram model and
a human guess). | | - |

We can now describe a weakness of a language model in terms of the logarithm of the
total probability LT P, a term very closely related to the standard perfdfmance' measure for
‘la.nguage models (see section 3.2). Intuitively, a weakness of a Ianguage model is any part
of the model that causes a large fraction of the LT'P.-In the following, we will formalize
this intuitive description. | ,

Let us begin by again pointing out that the performance ofrarlan'guage model depends
~on the testing text used to evaluate the model. This is one of the drawbacks of the standard
performance measure and it was already mentioned in section 3.2.3. As we saw in the
beginning of this chapter, our measure of weakness should be related to the performance
* measure. It is thus very clear that our weakness measure will also depend on the testing
text. In other words, when we speak of a weakness of a language model, this will always be
relative to a given testing text. As pointed .out in séction 3.2.3, the idea is of course that
the testing text should be very similar to the actual data the language model will ultimately
be used for. If this is the case, the above mentioned drawback, both for the performance
measure and for our weakness measure, will be less severe.

‘A language model is evaluated on a testing text W = w[l]...w[¢]...w[n] (see section
3.2) and the probability the language model assigns to word w[i] is denoted by p(w[i] =
’lUg(,')'Ck(,‘)). Furth‘ermore, the LT P of W is calculated as (see equation 3.3)

i=n

LT P = logy(TP) = loga(p(w[z] = wyzlexgsy))- (3.20)

=1

In the following, we will denote the testing text W by its index set Iw = {1,...,n}. This

~ 3Unless we assume an all-knowing oracle and deny the existence of a free will of the speaker.
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way, we can denote any subset W1 of words of W by giving the subset of indices Iw; C Iw.
For a given subset W1, we can easily determine the LT P it causes (LT Pw1) by summing
up the logarithm of the probabilities of all the words in W1:

LTPw1 = Y loga(p(wli] = wigs)lex(s)))- ' (3.21)
- Given LT Pwy, we can then calculate the fractionbffLTPrcal'iséd by w1 (fw1) as

fy < KTPw1

(3.22)

Definition 2 The impact of a subset W1 C W is the fraction le of LT‘P the subset W1

causes.

, The intuitive idea behi:nd;this definition is that we need torimprrorve the language model’s
prediction' of the words that have a big impact, if we want to improve the overall per-
formance significantly. Similarly, if a subset has.a low impact, improving the language
model’s prediction of the onrds in this subset will hqt lead to a signiﬁcant improvemenf in
performance. | , | 7

Given the impact of a-subset W1 C W, we will now derive the part of the language model
used in calculating the probability of W1 and the impact of this part. A language model
contains many probability distributions and each probability distribution contains many
probabilities, We therefore say that a language model is made up of a set of probabilities
S = {p1,.--, 01} Furthérmore, we will call any ‘subsetr S1 C S a part of the model. In order
to calculate the probabirlities of a subset W1 of words (e.g. p(w[i] = wilery) ¢ € Twn),
the language model will use a subset Sw; C § of its probabilities. Given a subset W1, we
can then define the part Sy of the model as the subset of probabilities used to calculate
the probabilities of words in W1. The impact of a part Swy; C S of a language model §
is then given by fwi, the fraction of LTP that W1 causes. Finally, we can now define a

~ weakness of a language model.

' Definition 3 A part Sw ofa languagé model S, defined by a subset W1 of the testing text

W -is called a weakness, if Sw1 has a great impact.

The intuitive idea behind this definition is as follows. If subset W1 causes a large fraction
of LT,P;j‘then' improving it is very imp‘ortant. This conforms to our intuitive meaning of a

. weakness as something that should ,b"e"irrnproved.
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In the next chapter, we will see what useful results we obtain with this definition. For
now, we demonstrate the usefulness of this definition through an example. We define a
simplé language, a simple model of the language, evaluate the model‘ on a simple testing
text and perform the analysis of its weaknesses. We can then verify that, in this case, the
weaknesses identified by our definition -correspond to wh‘atk'We would like to ‘be‘ identified
intuitively as weaknesses. o ‘7 '

7 Consider the language consisting of sequences of 'thejfour,'symbol's, {a,b,c,d}. Suppose
- that We know nothing about this language in general ?,I?d, the frequencies of each symbol in
: partiéular. Werthereforre choose the most simplistirc model introduce‘d in sectioh 2.5.1 as a
model of the language. This model treats all symb(')lsr as equiprobable and ‘the’refore assigns
the pfob‘ability ;11- to each of the symbols, independent of context. As testing text, we use
the string “bddad”. When we evaluate this model (Séerse(‘:ti(‘)n 3.2), we obtain for its total
probability (7'P), perplexity (PP), logarithm of total probability (LTP) and logarithm of
perplexity (LP):

TP = p(W)=p(w[l:5])= ﬁp(w[i]) | | (3.23)
= p(b) * p(d) * p(d) * p(a) * p(d) = % * i * i— * i * i (3.24)

= (i)5 ~ 0.00098 (3.25)

PP = (TP)5=4 (3.26)
ITP = logy(TP)= logg(i) + zogQ(i) + zogg(i) + zogz(i) + logg(zll-) (3.27)
= 54 (=2)=-10 (3.28)

LP = logy(PP)= -%LTP =9 (3.29)
(3.30)

Accbrding to the preceding discussion, we can now try to identify the weaknesses of the
model. Since there are four basic events distinguished by the model, it seems natural to
look at the importance of the subsets A, B, C and D of W that are defined by all occurrences
of éach symbol in the testing text. For the subset A, we thus obtain the index set I4 = {4},
thé set contaim'ng the index of the only occurrence of the symbol “a”. Similarly, we obtain
Ig = {1}, Ic = {},ID = {2,3,5}. The LT P caused by subset A is simply the sum of the
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logarithms of the probabilities of all occurrences of “a”:
, - o X
LTP4 =, loga(p(wlil)) = loga(p(w[4])) = logs(p(a)) = logy(7) = -2 (3.31)
iGIA i E
Similarly, we obtéjn LT Pg,LTPc and LT Pp:
© LTPp = ) loga(p(wli))
- i€lp -
‘ 1
= loga(p(w[l])) = loga(p(b)) = loga(7) = —2

LTP, =  2 loga(p(w[z])) = 0

E BT 1=3 o ] .

LTPp = Y loga(p(w[i])) = loga(p(w[2])) + loga(p(w(3])) + log2(p(w[5]))
. ....... ..€lp . : L L

= Beloga(p(b) = 3+ loga(5) = 6.

We then divide the LTP caused by each subset by the overall LT P = —10 to obtain the
fraction of LT P caused by each subset:

LTPy, -2

fa = LLTIf:?ﬁzoz
N
o = LT1§)=:—1-0=0.6

Because all occurrences of the symbol “d” cause 60% of the total LT P (e.g. fp = 0.60), we
-can see that the prediction of the syrﬁbol “d” is the most important one for the performance
of ouf model on this testing text. But what does this result imply for the model? We will
‘now identify the part of the model that is used in calculating the probabilities of the subset
D. In this example, this will be very straight forward, but as we will see in section 3.4, this
is not aiways the case.

Our 'mo:del has only one probability distribution containing four probabilities. We thus

Writ,e"‘(r)uyr! model S as S = {pa,Ps, e, pa}. The only probability used in calculating the

N probabilities of words in D is p;. We thus obtain the part of the model Sp = {pa}.
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This part causes 60% of the total LTP (e.g. fp = 0.6) and is therefore identified as a
weakness of the model. Intuitively, if we have the chance to increase one of the probabilities
in S = {pa,Pr;Pe,Pa} (and decrease others in return), we would choose py, if we want
to significantly improve the overall performance of the model. This is also the part that
is identified as a weakness using our definition and- the results of our analysis therefore

- ~correspond well to our intuition.

3.4 Probability Decomposition

In the last section, we defined a weakness of a language model as a part of the model that
has a great impact on the overall periormance. A part of the model was in turn defined
~as all the probabilities of the language model that are used in calculating the probabilities
~of a subset of words from the testing text. In some language models (e.g. the N-gram
‘models), the probability p(w[z] = wi|ex;)) of the it" word is just the probability value of the
probability distribution for context c¢i(;). In such models, we can thus measure the impact
of a single probability value of the model and, by considering any set of these probability
values, the impact of any subset of the model. This allows a very fine-grained analysis of
the language model.

However, there are language models in which each probability p(w[i] = wi|eys)) is cal-
culated from several probability values of the language model. An example of such a model
is the last class based model we saw in section 2.5.3. In this model, the probability of seeing
the word ‘light’ is the probability of seeing it as a noun plus the probability of seeing it as

a verb plus the probability of seeing it as an adjective. The exact formula of the model is

p(wli) = wlwli-1]) = Y p(g(wld]) = gjlg(wli = N +1: i =1])) xp(w[i] = wilg(w(i]) = g;).
9;€G
(3.32)

We can see that the probability of the 7t word is calculated as a sum of terms, where
each term is the product of two probabilities. The subset of the model, defined by just one
word w[¢] therefore contains many probability values (as opposed to just one in the N-gram
model, for example). The parts of the model identified as weaknesses thus tend to be large.
But if we want to improve such a large part of the model, which of its probability values are
really important? Is it for example the probability values that predict the next class (e.g.

p(g(wlz]) = g;lg(wli — 1]))) or is it the probability values that predict the word given the
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class (e.g. p(w[i] = wilg(w[i]) = ¢;))? In order to answer this question, we will now develop
a method called probability decomposition. It will allow us to divide the probability of the
ith word into tWo parts, the part used to predict the next class and the part used to predict
the next word given its class. 7

To start with, we are given the sum of the form § = >, a; * b; representing the bi-pos
~ formula (equation 3.32), where S corresponds to p(w[f] = wijw[i — 1]), a; to p(g(w(i]) =
gilg(wli — 1])) and b; to p(w(i] = wilg(w(i]) = gj).' We therefore have 0 < a;,b; < 1. In
our overall analysis of the language model, S will cause a certain percentage fs of the total
LTP Our goal is to split fs up into two parts fA and fB, the fractions of LT P caused
by the a, ’s and b;’s respectively. This will allow us to concentrate our efforts to improve
*the model on the a;’s or b;’s, depending on which one has a bigger impact on the overall
- performance.- In order to split fs into f4 and fp, we need to know the percentage of §
that is given by the a;’s and b;’'s. How can we calculate that percentage? We start with
the most simple case and suppose that the sum is only over one term, e.g. S = a; * b; with
ay = ;,b = ;,S = 5 * 3 = —. What percentage ps of S is given by ;7 To answer this
questlon, we first need to take a closer look at our intuitive notion of percentage. Suppose
we have a sum § = ar + ...+ a,. When we say a, is y*100% of S, e.g. % = y, y is a measure

of how many a;’s make up the total S with respect to the operator ‘+’. In fact

1 1 '
a1 + ... + ai(~times) = a; * — = a; * S S. (3.33)
y Y a,

The same should hold for a product. Suppose we have § = a; * ... ¥ a,. If we say a, is
y*100% of P, we mean
1

1 1
dy * ... % al(gtimes) =a} = P. (3.34)

By solving * the last equation for y, we get the percentage of P given by a;:

1
loga(af) = loga(P) (3.35)
1

st loga(ar) = loga(P) (3.36)

loga(ay)
= 3.37
lOQQ(P) ( )
*We used the logarithin to the base two to solve the equation. But because :222{2) = lo the notion

loga(y) ~ logy(y)’
of percentage does not depend on the base used.
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Figure 3.2: The graph of py

Thus, in our example, the percentage p4 of § = -51; given by a; = % is

)
)

To get a better intuitive understanding of p4, we plot in figure 3.2 the relationship between
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pa and @; for § = %,% < a; < 1. We limit a; to the range -18— < ay < 1 because only in this
range we can find a b; in the range 0 < b; < 1 such that S = @; * b;. Because the curve is
falling, we can see that a smaller a; corresponds to a higher percentage. Thus if we have
§ =% =ay*b witha; = %,bl = 7 and @} = §,b] = 1, then @) causes a higher percentage
of S than a;.

How can we calculate the percentage ps of S given by a; if the sum is over several
terms? As an example, consider § = a; % by + a2 x by with a; = %,bl = i—,ag = %,bg =
1,8 =1x141x1 =2 We can first determine the percentage pa; of a; by given by a, (as
above) and the percentage pas of as * by given by a;. Given pa; and p4g, we could obtain

the overall percentage p4 by simply taking the average, e.g.

1
PA = 5 * (pa1 + Pa2). (3.39)
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- However, since a; * b; and ay * by make up different portions of the total sum §, it is more

fair to weigh p4; and p4; according to the portion of § represented by a; * b; and ay * b,

respectively. This gives the weighted average

ab azb
Pa = igl *pa1 + ;2 *PA2. (3.40)
Similarly, we can calculate the percentage pp of § griven“by b; as
o apb azb
PB = —c *PB1+ — *PB2. (3.41)
In our example, this gives
' | ay *by  loga(ay) | az by loga(ag)
—_ * * = - 3.42
P4 S logy(a1by) S logi(azbs) (342)
_ 5, loga(3) L1, loga(3) (3.43)
§ loga(g)  § loga(3)
1 1 2 1
= 4 4oxz 44
3*313%3 | (3.44)
- g (3.45)
ay by loga(br) | az*by  loga(bs)
— * + * 3.46
P 5 logaanb) T 5" Toga(assa) (3.46)
- 5, lomd) | 5 loa(s) (3.47)
5 loga(3) 5 loga(3)
1 2 2 1
_ 1.2 21 4
3*373%3 (348)
b)
= = 3.49
: (3.49)
(3.50)

Knowing that p4 and pp are the percentages of S given by a; and b;, we can then simply
write S = A * B with

A = SPA B = §75, (3.51)
In our example, we thus get
A = SPa= (g)% ~ 0.6466 (3.52)
B = P8 = (g)% ~ 0.5799 (3.53)
AxB = (.;3)% *(g.)% - -;3 (3.54)

(3.55)
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We have now decomposed the value of § = % into S = Ax B with A = 0.6466 and
B = 0.5799. What is so special about these values, among all the possible values for A and
B? They are special because the percentage of § given by A is §, e.g. pa = f?ﬁi(g) = 3§,
the weighted average of the percentages of a; x b; caused by a;.
We will now extend this method to the general case. Given § = } a; * b;, we will

decompose S as follows:

S =AxB (3.56)

= S§PA (3.57)

B = SPE (3.58)
B a; xb; - loga(a;)

Pa = Z o * Togalabs) (3.59)
B a; xb;  loga(b;)

PB = zt: 5 * logg(a,'b,')' (3.60)

- We can verify that for this choice of A and B, the percentage of S caused by A and B'is
indeed p4 and pp respectively and that the multiplication of A and B indeed gives S:

loga(A) logo(5P4)
SRR LA LA S 3.61
loga(AB) logy(5) pa ( )

logy(B) log,(S7B)
LA Sd AN A S .62
loga(AB) loga(S) PB (3.62)
AsB = SPAxSPP = SRt tisman = g, (3.63)
(3.64)

Given this method of probability decomposition, we can now replace the probability

p(w[i] = wileg)) of the i word with
p(w[i] = wilesy) = S = Ai » B (3.65)

For one, this will allow us to look at the fraction of LT P caused by different contexts.
Moreover, by only looking at all the A;’s (or B;’s), we can now treat each component as a
separate model, and this way, we can analyze the weaknesses of each component separately.

Please note that we can extend the method of probability decomposition to models that
have more than two components. Suppose for example that a language model calculates
the probability of the i** word as

p(wli] = wileyyy) = § = Zai * b; * ¢; (3.66)
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- We can then simply write

S =AxBxC (3.67)

i _ oo | (3.68)

o _ P (3.69)

c _ gpo | (3.70)
| _ a; *b;x i loga(a;)

pa - Z S " logi(aibicy) ()
_ — 0; *b; x¢; logy(b;)

PB - Z,: S '*'logz(a;bi'ci)‘ (372

_ aixbixe logy(c;) | o
pc = Z: S logy(aibi)e; -1
. | (3.74)

3.5 Applicability

The idea of identifying weaknesses of probabilistic models: by measuring the amount of LT P
 caused by different events is very general. It applies to all probabiylistic models that derive
a Score for a sequence of tokens by multiplying the probabilities of individual tokens and
that are evaluated using the perplexity measure. '
| Examples of models to which our idea of identifying weaknesses is applicable are all
the models reviewed in section (2.5), ranging from N-gram over N-pos to models based on
decision trees. Furthermore, the idea is also directly applicable to models that are based on
units different from words, such aé,syﬂable based language models ([105]) and phone based
language models ([96], [130]), or to models like [47], where the language model is made
dependent on the state of a LR parser.
In general, speech recognition systems have been based on phonemes ([142]), diphones
~([103], [22], (1], [133]), syllables ([55], [154], [44], demi-syllables ([127], [124]), and disyllables
([137]). Language models can be built on all of these levels and the idea proposed here is
- applicable to a.ll of thein. “As an example, we will show how the idea of identifying weaknesses
can be applied to a'sy]lable based language model.
‘The basic linguistic unit- in Japanese sentences is the syllable (see [105]), corresponding
. roughly to a consonant-vowel unit. The syllable therefore constitutes a convenient unit for

‘ reéogiﬁtibn of 'Jap';meseispereéh zind is, for example, used in the Japanese phonetic typewriter
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(see [74]). Given the syllable sy,...,s;—1 recognized so far, the acoustic model can decide
which syllables are likely to correspond to the next stretch of the acoustic signal. However,
as in word based recognition, the acoustic model may not be able to decide based on the
signal alone which one of the likely syllables was the one spoken. The phonetic typewriter
therefore uses a syllable based trigram language model to decide which syllables are likely to
appear next, given that the syllables recognized so far are S1y.ey Si—1. As usual, this syllable
trigram language model is trained on large amounts of text and its performance is measured
on a testing text. How can we improve such an eﬁsfing syllable based language model?
Following the idea proposed here, we can first identify the weaknesses of the syllable based
language model. We therefore should identify the syllables whose predictions account for a
large fraction of the LT P. Once these syllables have been identified, we can look at why
they account for such a large fraction of LT P and, more importantly, how we can improve
the language model to avoid this weakness. | '

‘An' example of a model to which our definition of weakness is not applicable is a prob-
abilistic context free grammar (see for example [157])“ This is because the probability of a
sequence of words is not obtained by multiplying the probabilities of each word.
~ Besides language modeling for speech recognitioh, N-gram based probabilistic medels
are also used in the area of optical and handwritten character recognition ([54], [123] and
- [138]). However, according to a recent survey on optical character recognition ({58, p.11}),
the N-gram model does not come under the name of language model, but is referred to as
contextual processing and is one part of the postprocessing in optical character recognition.
'Nevertrheless, the principles are very similar to language models in speech recognition. For
‘exa‘umple, in [138], the Viterbi algorithm ([149]) is used as in speech- recognition, to find
the best sequence of letters according to the probabiﬁstic scores provided by two models
(corresponding to the acoustic model and the language model in speech recognition). The
model that corresponds to the language model is in fact a letter bi-gram language model. In
other words, it calculates the probability of a sequence of letters 2, ..., z, by multiplying the
probabilities of each ’le‘ttér z;, which only depends on the previous letter. This is expressed

in the foilowing formula: ‘

p(21y ey 2n) = Zp(z,-fz;__l). (3.75)

The probabilities p(z;|z;—y) of letter bi-grams are estimated from the Brown corpus. As

with the syllable-based Japanese language model we just saw, we can apply our analysis of
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weaknesses to this letter based language model in order to subsequently improve the model.

3.6 Summary

In this chapter, which contains the central idea of:this thesis, we proposed to perform
analyses of weaknesses of 1anguage models in order to improve the models afterwards, defined
what we meant by ‘weakness of a language model” a;nd presented a method to identify the
weaknesses of a glven model.

We began by noting the widely. accepted idea tha,t 1mprov1ng any klnd of model or theory
is usuaﬂy easier once its shortcommgs are known Moreover, in a very simple, intuitive model
of scientific progress, the knowledge of the errors of an existing theory is crucial. In analogy
~ to this model of progress, we proposed in this chapter to analyze weaknesses of a language

model in order to subsequently improve the model |
 Since the ‘measure of weakness of a language model should be related to the performance
measure used to evaluate the model, we turned to the standard perplexrty measure used for
evaluating language models We introduced perplexrty mtultlvely as the reciprocal of the
geometric mean of probablhtles assigned to the wordsin the testing text, derived the measure
from an information theoretic point of view and discussed its advantages and shortcomings.
Girventhe perplexity and the closely related logarithm of the total probability LT P, we
defined a weakness of a language model in terms of LTP 5. A part of a language model
defined by'a subset of words of the testing text is called a weakness if it causes a large
fraction of the LT P. This conforms to our intuitive meaning of a weakness as something
that should be improved, because if we want to improve the model significantly, it is very
important 10 improve the parts of the m'odel that cause a large fraction of the LT P. For
models with sepzrate components (e.g. the class based models), we also developed the
method of probability decomposition, which allows us to analyze the weaknesses of each
component separately.
- After having defined a weakness of a language model, we noted that this definition
is a.pphcable to any probabrhstlc model that derives a score for a sequence of symbols
by multrplymg the probabrhtres of each symbol and that is evaluated with the perplexity

_ measure. We can- thus apply our definition to almost all of the commonly used language

*For a discussion of which of the commonly associated intuitions of the term weakness also apply to our
technical use of the term; see page 42.
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models, including models based on units different from words (e.g. phonemes, syllables).
As an example, we showed briefly how we can apply our definition to a Japanese syllable
tri-gram model and how this could help in improving the model. Besides language modeling
for speech recognition, our idea of analyzing weakneéses is also applicable to other areas

that use N-gram statistics, e.g. handwriting and optical character recognition.



Chapter‘ 4

‘ Analyzmg and Improvmg a Bl-pOS

| Language Model

- In the la.st chapter, we presented the main idea of this thesis, namely to perform an ana.ly51s

~of the wea.knesses of language models. Moreover, we defined ‘what we mean by a weakness
of a language model. In this chapter, we apply this definition and the idea of analyzlng ‘
~ weaknesses to a concrete language model. For that purpose, we first choose a training and
testi'ng corpus and a language model (section 4.1). We verify that the training data we use
is sufficient to train our model and this leads to a‘discussion of the issue of sample space
- (section 4.2). We then proceed with the ana.ly sis of the weaknesses of our model and present
‘the results (section 4.3). Trymg to improve one of the identified weaknesses leads to the

o development of the genera.hzed N- pos model (sectlon 4. 4)

4.1 ChOOSing a Corpus and a Language Model

The ’corpus used to train and test a language model is the primary source of information
used in the model. It is crucial to the overall undertakmg that the corpus contains sufficient
data to train the model We could of course choose a language model and then a corpus,
> but we would have no guara.ntee that the corpus contains enough trammg data. Since the
corpus size determines the. complexity of the language model that can be adequately trained

~ with this amount of data, we will first choose a corpus and then a model.

56
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4.1.1 Choosing a Corpus

A corpus is a collection of text in machine readable format often annotated with additional
" information. These annotations can supply mformatlon related to, for example, the parts
of speech of each word, the pa.rse tree of each sentence or pl‘OSOdlC information.
- Before focusing on a specific corpus for our work, let us consider the wide range of
. existing corpora. According to a recent review of corpora research and ycons‘tru‘ction,(see
[31]), the three most commonly used corpora are the Brown corpus (see [82], [39], [81]), the
Lancaster- Oslo-Bergen (LOB) corpus (see [71], [70], [97]), and the London-Lund corpus (see
[143)). But a large variety of other corpora exist: the Lancaster Spoken English Corpus
(SEC) (see [80]), the British National Corpus (see [119]), the Wall Street Journal Corpus
(available from the ACL/DCI), and the International Corpus of Enghsh (see [49]) — just
to name a few. Most of these corpora are available’ through institutions and initiatives, -
which have been created recently to oversee the collection of lmgulstlc data, e.g. the data
collection initiative of the Association for Computational ngulstlcs (see [99] [17], [152],
[153]), the Europea.n Corpus Initiative of the Association for Computatlona.l Linguistics and
the Linguistic Data Consortium. B

In choosing one of the available corpora for our work, we will consider two criteria.
First, the corpus should be used for language modeling by other researchers. This makes
the results more widely acceptable and reproducible. Second, we prefer a “small” corpus
(e.g. less than a million words) for the following three reasons.

First, many current speech recognizers are intended for a specific. application domain -
(e.g;' medical texts). As pointed out in [117], the performanee of a language model in such
a specific domain of a,pplioatiou is often better if we train the language model on a small
corpus task from the domain of application than if the language model is trained on a large

‘ corpus not specific to the domain. We therefore need to train language models on small,

domain specific corpora ! . ‘ 7

: * Second, if we find a technique to improve a language model trained on a small corpus, it
is ‘]jkel:y that this technique is also applicable to language models trained on large corpora.

On the other hand, if we find a technique to improve a language model trained on a large

corpus, this teehnique might require the availability of a large amount of training data

!Domain specific corpora are most likely - very small, because corpora are expensive to produce. As an
example consider the TI Digit Corpus ([98]), a collection of a large set of spoken digits. It required an
’~ estlmated $300 000 to $400,000 for its construction. o
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and the technique might therefore not be applicable to language models trained on small
corpora. ‘

Finally, from a practica.l point of view, it is usually easier to understand a complex
~ problem by looking at simple instances of the problem. In the case of a language model, a
7 simple insta;nce'is a sirnple rrrodel,‘ requiring little data to be stored, handled and analyzed.

Using these criteria, the LOB corpusis an adequate choice. It corltajns about one rui]]jon
‘words and is sma.ll compared to, for example, the Wall Street Journa.l Corpus (50 million
. words) or the Brltlsh National Corpus (100 mllhon words) Moreover many researchers

' workmg on language modehng also use the LOB ([85] [109], [34] [106], [78], [1 10]).

Even though we are: bulldmg language models for speech recognltlon the corpus is
constructed from wrltten text This is common practice, mainly for practlcal reasons. Large
| quantltles of written- text are a,lready in a format that can be used for-a corpus, whereas the
, transcnptlon of spokeu text is time cousummgz tedlous and expensrve. ‘ :

The LOB corpus' is divided into 500 samples-of text Each'sample contains slightly
more than 2000 words and each word is tagged with one of 153 poss1b1e syntactic classes.
" These syntactic classes correspond to the parts of speech (pos) that we mentioned when we
mtroduce the N-pos ‘models (see section 2.5.3, page 27) ‘The samples are ‘grouped into 15
different categories, depending on the source of the text. Table 4.1 shows the 15 different
7 categories and the number of samples in each. We see that the corpus covers a wide range of
English prose. An example of the corpus material can be found in Appendix A. We use the
first 50, OOO words of sections Al-A34 as training text and roughly 25,000 words (sections
A35 -A44) as testing text In section 4.2.3, we Justlfy why 50 000 words constitutes enough
trammg data. ' '

It has been reported in the literature (for example [60], [78]) that the number of classes
or tags a language model uses influences the performance of the model. In order to make our
results less dependent on the number of tags provided with the corpus, we therefore decided
to use more than one set of tags. We could have produced different tagsets automatically,
as suggested in [62], [60], [78] and [111] . However, since this is not the main issue addressed
in this thesis, we used the following simple heuristic to construct four different tagsets. The
orlgma.l tagset contams for example four different tags for adverbial nouns (NR, NRS,
‘,NRS NRS$) a.nd twelve dlfferent tags for proper nouns. We construct smaller tagsets by,
for exa.mple, merging all four tags for adverbial nouns into one tag (NR), or by merging

~all twelve tags for proper 'nouns into one tag (NP). We can then construct an even smaller
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- Category Description ' number of samples |
A - Press: Reportage - 44
B Press: Editorials ‘ .27
C Press: Reviews | 17
D Religion 17
E Skills, Trades and Hobbies 38
F , Popular Lore - =~ 44
G Belles Lettres, Biography and Essays 77
H Miscellaneous ' , 30
J Learned and Scientific Writings = | - 80
K General Fiction . : 29
L Mystery and Detective Fiction 24
M Science Fiction 6
N Adventure and Western Fiction | 29
P Romance and Love Story - - : 29
R Humour 3 9

Table 4.1: The different categories of the LOB corpus

tagset by merging the set we just constructed for adverbial hOUﬁS (NR) and proper nouns
| (NP) into one tag for nouns (N). Thus, starting from the original tagset, we construct three
other tagsets by merging tags with the same prefix. The resulting three tagsets have 88, 42
and 24 tags respectively. All four tagsets, together with examples for each tag are shown in

appendix B.

" 4.1.2 Choosing a Language Model

In recent years, a great number of different language models have been developed (see section
2.5). Most conimonly used are bi-gram, tri-gram, bi-pos and tri-pos models. They differ
significantly in their complexity and in the amount of training data needed. Which of the
models should we use for our work? As was pointed out in the last section, we use a rather
- small corpus. Furthermore, the argument in favor of a simpler model making a complex
ptocess easier to understand is also valid for the choice of language model. We therefore
chose the model requiring the least amount of training data, the bi-pos model. As mentioned
in section 2.5.3, existing N-pos models furthermore differ in the fact that the classes the
models use are overlapping or that they are mutually exclusive. Since the classes in the
‘ L}OB are overlapping, we chose a model allowing multiple class membership. For example,

the word ‘light’ can be a noun, verb or adjective depending on the context in which it is
g g
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used.
Now that we have decided which of the models reviewed in section 2.5 we are going to
- use for our work, we will present the chosen model in more detail, describing the probability
~distributions in terms of smoothed frequency counts. But first, let us recall the model in
~ terms of its‘probability distributions, as it was presented in section 2.5.3. The probability
that the ¢** word w{t] is the word w; is calculated as the sum (over all classes g;) of the
probabilities that the i** word w(i] is w;, where w; appéérs with the particular class g;. The
probability of the word w; appearing with a particular tagg; is the probability of having this
tag g; (9(w(i]) = g;) given the tag g(w[i—1]) of the previous word (p(g(w[4]) = g;l9(wli—1])))
times the probability of having word w; given the tag g; (p(w[i] = wi|g(w[?]) = g;)). This

is éxpressed more precisely by the following formula (see section 2.5.3):

p(w(z] = wiw( - 1])

= Y plg(wli]) = g;lg(wli — 1])) * p(w[i] = wilg(w[]) = g;).
9;€G

As shown in section 2.4, we can estimate the probability distributions p(g(w[i]) =
- gilg(wli-1])) and p(w(i] = wi|g(w[i]) = g;) in terms of frequencies f(g(wli]) = g;|g(w[i-1]))
and f(w[?] = wilg(w(i]) = g;) of events:

p(wli] = wilw[i - 1])
= 3 Sl = gilg(wli = 1)) = f(wli = wilg(ull) = g;).
9;€G

“In order to avoid zefo probabilities (see section 2.4), we have to ensure that at least for one
tag 9o E G, both frequencies in formula 4.1 are different from zero. If we suppose that every
word w; of our vocabulary occurred at least once in our training text, then the occurrence of
word w; has one tag go associated with it and the factor f(w[é] = wy|g(w[t]) = go) in formula
4.1 is different from zero. However, if go never occurred after the previous tag g(w[i — 1]),
- the factor f(g(w[i]) = golg(w[z — 1])) in formula 4.1 is zero. In order to avoid the second
. factor to be zero, we therefore smooth the second distribution. As suggested in [85], and
as explained in'section 2.2, we add a small constant probability value of ¢, and then use a

matching constant 761 to ensure that the sum over the probabilities of all the words is one:

p(w(i] = wuli - 1)
= X SoCwll) = giloCuli - 1) x (er + f(wli] = wlg(wli)) = ;) + co)

g9;€G
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The language model is evaluated on a testing text, which may contain words that are not
part of the vocabulary V. We therefore have to adjust formula 4.1 to deal with these so
called unknown words . We again adopt the approach taken in [85] and treat every unknown
word as the occurrence of one special symbol, say unknown. We give a constant probability
value of d to occurrence of this symbol and have to multiply all other probabilities by
(1= d) in order to ensure that the sum of probabilities of all words in the vocabulary plus

the probability of the symbol wunknown sums up to one:

P(w[i] = ww[i - 1])
(1-d) ¥y ecller * fg(wli]) = g;lg(wli — 1])) + ¢2)
= § Hfwll]=wlg(wli])=g;)] fweV

d otherwise .

Following [85], we estimate the value of d by Turing’s formula as the number of unique words
in the training text divided by the total number of words in the training text. d decreases
when the amount of training data increases and for our training text of 50,000 words, we
obtain d = ;0—62‘;30% ~ 0.093. For c;, we chose the arbitrary value of 10™* as suggested in [85].
As explained in section 2.4, we have to choose ¢; = 1 — |G| * ¢z, which gives ¢, = 0.9958 for
the tagset with 42 tags.

In formula 4.1, we need to know the tag of the word w[i — 1] in order to calculate the
probability of word w[7], even if word w[i — 1] is an unknown word. We could simply use
the tags provided with our tagged testing text, but this would be ‘cheating’, because we
would be using a source of information external 2 to the language model to make its task

easier. Following [85], our model uses a heuristic in order to assign a tag to each word and

the following three cases can occur:

1) the word is unknown, e.g. it did not occur in the training text and is not part of the

vocabulary.
2) the word always occurred with the same tag in the training text.
3) the word occurred with several tags in the training text.

The model deals with these cases as follows:

2The tags were assigned to words manually or by a separate program (a tagger), and they are therefore
not part of the information the language model can use.
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1) the model chooses the tag g; which has the highest value of f(g(w(?]) = g;|g(w[i—1])),
e.g. the tag that is most likely to follow the preceding tag.

. 2) the model uses the unique tag of the word.

3) the model chooses the tag g; which contributes the largest probability to the sum over
all possible tags in equation 4.1.

4.2 Differences in Sample Spaces

In section 4.1, we chose a corpus and a language model for our work. Before we can
- proceed with the analysis of the weaknesses of the model, it is important to make sure
tha,f there is sufficient data in the corpus to train the model. Otherwise, the results would
f nb’t'b’e si:g_niﬁ(:a,ntr. As we will see in section 4.2.2, the analysis of the influence of the
amount of training data on the model produces a counter-intuitive result: as the amount
of training data increases, the performance of the model decreases. In order to understand
-this behaviour, it is useful to look at the underlying statistical issue, the issue of sample
space.

In statistics ([41]), the word ‘experiment’ is used in a very wide sense, and it refers
to any process of observation or measurement. The results obtained from an experiment
are called its outcomes. The set of all possible outcomes for each experiment is called the
'sample space. Probabilities are derived as the ratio of successful outcomes to all possible
outcomes and the sum of the probabilities of all events in the sample space has to be one.
In a‘language model, the experiment is the observation of the identity of the word that
occurs next in a given context. One outcome is the occurrence of one particular word and

the sample space is the set of all words that can be observed.

4.2.1 Differences Due to the Modeling of Unknown Words

~As we have seen on page 61, a language model has to deal with unknown words. In the
literature, we can find several ways of approaching the issue of unknown words and we will
presentr four different models, M1 to M4, in the following paragraphs. For our purpose, it is
not crucial how probabilities are derived exactly for these unknown words, but rather what
the underlying sample space is. We will therefore only describe the sample space for each

of the four models.
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We will denote the sample space by S and the number of words in the training and testing
text by Ngrain and nyese respectively. Let V(train[i]) denote the vocabulary derived from the
~ first i words of training text and let V(train) be the shorthand notation for V(train[nirqein))-
Similarly, we define V(test[i]) and V(test). Models, that change vocabularies during the
~ testing will have a sequence of vocabularies denoted by Vg, V1, ..., Viest,. Furthermore, as
introduced on page 61, we will denote the unknown symbol with unknown. The four models

are:

M1 Every occurrence of an unknown word is treated as the occurrence of the symbol
unknown. This gives the sample space § =V(train) U {unknown}. This model was
used by R. Kuhn and R. de Mori in [85).

M2 All unknown words are again treated as one special unknown symbol. However, after

 an unknown word occurs, it is added to the vocabulary. We therefore get a sequence of

vocabularies Vo =V(train), V; =V(train) U V(test[1]), ..., Va,.,, =V(train) U V(test).

~ This corresponds to a sequence of sample spaces S; = V;U {unknown}. Sy is equal to

the sample space of model M1 and 5,,.,,, is equal to the sample space of model M3.
This adaptive model was proposed by Jelinek et. al in [65].

M3 The model that looks at the testing text in advance ([83]). All the words that would
be unknown are added to the vocabulary before the testing begins, giving the sample
space S =V(train) U V(test).

M4 The model that derives a probability for an unknown word based on a character by
character probability. It thus distinguishes between all possible unknown words. This
corresponds to a sample space S =V(train) U{(sy, ..., sx)} for all & > 1 where each
s; is one of the 95 printable ASCII characters. S therefore has an infinite number of

elements. This model was proposed by Brown et al. in [13].

Recall from section 3.2.1 that the quality of a language model is measured by the per-
plexity, the reciprocal of the geometric mean of the probabilities assigned to words in the
testing text. We think that it is not meaningful to compare probabilities that are based on
different sample spaces and we will illustrate this point in three different ways.

First, consider the extreme case of M1 trained on zero words of text. This gives a
sample space that only contains one element, the unknown symbol. Since there are no other

elements, the model gives the probability of 1 to this symbol. All words of the testing text
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will be treated as occurrences of unknown and the text will be reduced to a repetition ef this
symbol. It is clear that the model assigning the probability of 1 to this symbol will ‘achieve’
a perplexity of 1, which would imply that this is a particularly good language model!

" Second, consider the number of different words that are distinguished in the above
sample spaces, but that are not part of V(train). The last model, M4, has a countable
infinite number of these words, whereas the first model, Ml,’ has only one. If we have a
fixed ,a,mount,of probability to allocate to these unknown words, then it is clear that in
models with many unknown words, each one will ‘receive’ a very small probability. To
conclude from the high perplexity of such a model that it is worse at rﬁodeh’ng the language
is not Ijea]ly corfect, because it solves a different task. | ;

E Third, consider all the unknown words in the testing text, that the model M1 treats as the
one symbol unknown. If we treat all these as separate words, therrl‘t‘he sum of probabilities
- of all words will be more than one. The model therefore does not construct a probability
distribution and we therefore can’t compare these ‘probabilities’ with probabilities of models.

All these examples illustrate the point that models with different sample spaces are in
fact solving different tasks and can’t be compared using the standard perplexity measure.

The amount by which the perplexity results are distorted depends on exactly how differ-
ent the sample spaces are and how much of the total perplexity is caused by these unknown
words. For example, if the model has a very big vocabulary, it has a higher coverage of
words in the testing text and the perplexity caused by unknown words is very small. In the
experiments reported in [13], the unknown words only account for roughly 5% of the total
entropy (see section 3.2.2) . If we reduce the sample space by using M1, M2 or M3 (instead
of M4), the entropy could at most be reduced by these 5%. The distortion is so small (at
most 5%), because this model was trained on approximately 583 million words, it has a
vocabﬁlary of roughly 293,000 entries and only about 1% of the tokens in the testing text
are unknown. In order to see how big the distortion is in a model trained on less data, we
implemented and ran M1 and M4 on our 50,000 words of training text. We chose M1 and
M4 because they differ the most in the size of their sample spaces and hence the distortion
should be bigger than between other models. We ran our bi-pos model (see section 4.1.2)
with M1 or M4 as models of unknown words, using our testing text with about 14% of
unknown words. The results are shown in figure 4.2. The overall perplexity was 2.6 * 10?
when using M1 and 4.6 « 10? when using M4 (see section 4.3.2). This huge difference can be

understood by looking at the geometric mean of the probabilities assigned by the two models



CHAPTER 4. ANALYZING AND IMPROVING A BI-POS LANGUAGE MODEL 65

Model | perplexity avg. prob of unknown words
M1 | 2.6+10% 7.4%1072
M4 | 4.6+10° 9.4 10717

Table 4.2: Comparison of models M1 and M4

to unknown words. The first model had a geometric mean of approximately 7.4 * 10~2, the
second model of approximately 9.39 * 10717, The impact on the overall perplexity of this
“ diﬁ'érence in probability is so much bigger in our expefiment because the unknown words
account for roughly 51% of the perplexity when M4 is used (see section 4.3.2).
| We do not try to decide here what the “correct” sample space should be. This should
be done by the research community in general and, as one of the reviewers of our paper
[147] pointed out, researchers seem to favor models like M4 because these models do not
_Tequire researchers to agree on a fixed vocabulary. However, as long as different models
have different sample spaces, one should keep in mind the distortion this can cause to the
pei‘plexity results when comparing language models with this measure.
The focus of this work is the analysis of the main part of the model, not the prediction
of unknown words. For the remainder of the work, we therefore want to choose the model
in which the prediction of unknown words plays the least important role. Hence, we will

use model M1 for the remainder of this thesis.

4.2.2 Differences Due to Different Amounts of Training Text

In our implementation of M1 (see equation 4.1 for the exact equation), we made the following
observation: as the training text increases in size, the performance 3 of the model decreases.
| This can be seen in Figure 4.1, which shows the loga,rithm of the total probability LT P (see
section 3.2.1) of the testing text for different sizes of training texts and a set of 42 tags. LT P
decreases as the training size increases. This behaviour is counter-intuitive because, as the
training text increases, the model should get better at predicting the testing text and the
LTP should increase. In order to find the reason for this behaviour, we look at the parts of

LT P, that are caused by non-vocabulary words, LT P(unknown), and by vocabulary words,

3As pointed out in section 3.2.1, it is more convenient to use LT P instead of PP. Moreover, since LT P
and PP measure the same property, this does not influence the results.
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Figure 4.1: The graphs for LTP, LTP(known) and LTP(unknown)

LT P(known) separately:

CLTP = Y logy(P(wli] = wlwli=1D)+ Y- loga( P(wli] = wyg;ylwli — 1]))
: i,s.twlileV i,s.twi]lgV

= LTP(known)+ LT P(unknown)

Both are also shown in Figure 4.1. LT P(unknown) increases and LT P(known) decreases
as the training text grows. We explain this as follows. As the training size increases, more
and more words that are unknown when a small training text is used, become known. Each
- of these words that is unknown and receives the probability of d when a small training text
is used, will receive the probability value according to the bi-pos formula when a larger
‘training text is used. It turns out that LT P(known) decreases more than LT P(unknown)
" increases. This happens because the probability d our model assigns to unknown words is
higher than‘the average probability assigned to words in the vocabulary.

| This behavior 1s again due to the fact that models trained on different amounts of text
have different underlying sample spaces. We already mentioned this problem in section
4.2.1, when we considered a model trained on zero words of text, which would Lave a

perplexity of one. In above example, the difference in sample spaces leads to a distortion of
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~ the probability measure to the extent that models trained on less data perform ‘better’.
One way to solve this problem is to adjust for some of the distortion caused by different
sample spaces. As we mentioned earlier, by giving the probability of d to every unknown
word, the probabilities sum up to more than one. For example, if we have r different
unknown words in the testing text and distinguish between them, the sum of the probabilities
of the possible words will add up to 1+ (7 —1)*d, 1 —d for the words in the vocabulary, and
~ an extra rd for all the unknown words. Once the testing has been completed, we can adjust
~ for this in the following way. Suppose a language model is tested on a text that contains
s occurrences of these 7 different unknown words. If we suppose a uniform distribution of
the unknown words, for example, as a rough approximation, we can divide the probabilities
~ of the unknown words by r. We call this adjustment the adjusted logarithm of the total
probability, ALT P, and similarly, the adjusted perplexity, APP:

ALTP = ALTP(known)+ ALT P(unknown) 4.1)

= 2 loga(p(wli] = wylwli - 1)) (4.2)
i,s.t.w[t]EV

wli] = wyplwli — 1

Y toga(. (2] z:)l [ Dy (4.3)

i\s.twlilgV
1

= LTP(known)+ LTP(unknown) + s * logg(-r—) (4.4)

= LTP - sx*logy(r) (4.5)

APP = (24LTPy-1/n (4.6)

This will ensure that the probabilities sum up to one, but it will not change the fact that
d is ‘a.lldcated’ to all unknown words. In order to calculate APP, we just calculate LT P
as before and keep a counter for s and . When we reach the end of the testing text, we
calculate ALTP and APP from LT P by adding the factor —s * loga(7) (see equation 4.5).

Figure 4.2 shows the adjusted logarithm of the total probability, ALT P, and its decom-
position into' ALT P(known) and ALT P(unknown). We can see that the ALT P increases
as the training data increases. The difference LT P — ALT P exactly quantifies how much a
language model is ‘chéating’ by allocating d to every unknown word.

Let us summarize the advantages and disadvantages of the adjusted perplexity APP.
First, we can approximately compare language models with different vocabularies. The
APP ensures that the models agree in parts of their sample spaces, namely, that the models

distinguish between all the words that occur in the testing text. Second, from a practical
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Figure 4.2: The graphs for ALTP, ALTP(known) and ALTP(unknown)

point of view, we can write a language model without ha&ing to know the testing text, which
should make it easier to run a language model on any testing text and to compare existing
language models. Third, we can now quantify by how much a model is ‘cheating’ due to its
modeling of unknown words. One disadvantage of this method is that it can not be used to
adjﬁst; the probabilities of words as one goes through the testing text (e.g. during speech
recognition) The adjustment can only be done once the complete testing text has been
seen. However, it is sufficient if one wants to approximately compare two language models
w1th different vocabularies. Another disadvantage is that models trained on different texts
*can still differ in their underlying sample spaces. The AP P measure only ensures that they
distinguish between all the words in the testing text, but can of course not ensure that their
sample spaces are identical. In other words, the two models can still try to solve different
tasks. | ,’ ‘ ‘

Anqther way of solving the problem of different sample spaces is to fix the vocabulary
independently of the training text. This ensures that the underlying sample spaces are
idehtical and that the’perplexity measure is used to evaluate two models that are trying
to solve the same task. In order to fix the vocabulary independently of the training text,

we need to modify our model slightly. If the vocabulary is fixed in advance, it may contain
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Figure 4.3: The graphs for LTP, LTP(known), LTP(unknown) and LTP(unseen) with fixed
vocabulary

words that were never seen in the training text and we will call these words unseen. What
probabilities should we assign to unseen words? We change the model so that it gives a

small, arbitrarily chosen value d; to every unseen word, which leads to the following model:

p(w(t] = wilwlz - 1])
(1 - w*d ~ d2) 3y ecler * f(g(wli]) = g;lg(w[i - 1])) + c2)
* f(w[i] = wjg(w[i] = g;)] if w; € V and w; was seen
dy if w; € V but w; unseen
d ifw gV

All the constants that are part of the standard bi-pos model, for example ¢q1,c; and do
(which corresponds to the former d), are determined as mentioned in section 4.1.2. For
the new constant d; corresponding to the probability of unseen words we arbitrarily chose
d; = 1078. The constant u is set to the number of unseen words in the vocabulary and the
second term u * d; is necessary to ensure that the probabilities of all words sum up to one.

Figure 4.3 shows the LT P of the modified model. We can see that the model improves

as the size of the training text increases. The modified model therefore conforms to our
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~ intuition. Moreover, since the vocabulary is fixed in advance, the LT P caused by unknown
words does not change when the training text is changed. However, we can also see that
LTP rhas LTP(unseen), the entropy caused by unseen words, as an additional component.
As the the size of the training text increases, more @hd more words that were previously
unseen and received the probability of d; become part of the vocabulary and receive a
probabi]jty accord'ing, to the bi-pos formula. This explath"why LT P(unseen) increases and
LT P(known) decreases as the training text gets bigger. Since LTP(unseen) increases more
than LT P(known) decreases, the overall effect on LTP is an increase, which corresponds
to rarnrirr‘lp'rovement in the model. o k

VS‘umming up, we have now seen two ways of dealing with differences in sample spaces
“caused by different arﬂounts of training data. We can alleviate the problem of different
sample spaces by using the adjusted perplexity measure or we can avoid the problem of
differrent sample spaces entirely by fixing the vocabulary independently of the training text.
If it is not possible to agree on a common vocabulary (e.g. because different researchers
working in different locations do not agree), the APP is a flexible way of making the results
| comparable, without ensuring identical sample spaces. However, from a theoretical point
of view, fixing the vocabulary in advance is more satisfying than using the APP. First, it
ensures that the sample spaces are identical for all models. Second, it makes sense that the
sample space should be fixed before one starts to compare probabilities. After all, if one
Warnts‘ to compare probabilities taken from probability distributions; the distributions should
be constructed over the same sample space; Because it is preferable from a theoretical point
of view to fix the vocabulary in advance and because we have no problem in agreeing on a
common vocabulary, we will fix the vocabulary based on the training text in the rest of this

thesis.

4.2.3 Influence of the Amount of Training Data on the Performance of

our Language Model

" As mentioned in the B’eginning of section 4.2, we wanted to ensure that our corpus contains
‘enough data to train our bi-pos model. When we tried to measure the influence of the
amount of training data on the performance of the model, the surprising results prompted
‘a discussion of the underlying issue of sample spaces. Now that we have chosen to fix the
v0carpbulafy‘independently of the training text, we have a meaningful way to measure the

‘influence of the amount of training data on the performance of the model. Figure 4.4 shows
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Figure 4.4: The perplexity for different amounts of training data and different tagsets

the perplexity of the model for different amounts of training data and for four different
tagsets (as mentioned in section 4.1.1). First, we can see that the models do not continue
to improve significantly when the training data is increased from 30,000 to 50,060 words.
We thus assume that all the models are well trained after 50,000 words. This justifies why
we only use 50,000 words of training text in the remainder of this thesis. Second, we can
see that the amount of training data should influence the choice of tagsets. If, in this case,
the available training data contained only 15,000 words, then a smaller tagset (e.g. the 24

tags) would lead to better results than a larger tagset and this confirms our intuition.

4.3 Weaknesses of the Bi-pos Model

In the following, we will apply the method of identifying weaknesses presented in chapter 3
to the chosen bi-pos model (see page 69).

The first weakness we will identify is the prediction of the next word in a very smail
number of contexts. We perform a very detailed analysis of these contexts in order to
understand why they constitute a weakness. Even though we do not proceed in trying

to improve this weakness, the information we uncover by analyzing weaknesses is already



CHAPTER 4. ANALYZING AND IMPROVING A BI-POS LANGUAGE MODEL 72

helpful in showing where we should concentrate future efforts.

The second weakness we will identify is the prediction of unknown words. As with the
previous weakness, this is helpful for future work. Moréover, we actually try to improve this
particular weakness and we develop a new modeling of unknown words. This results in a
reduction of the perplexity ranging between 14% and,21%.

 The third weakness we will identify is the secOnrd' factor in our bi-pos formula (section
2.5.3, equation 2.23), the prediction of the next word given its class. This is important by
itself, because it again identifies a weakness that neéds to be improved for many different
Janguage models, even for the recently used prob'aBilistit context free grammars. Trying
' to actually improve this weakness leads us to the development of a new generalized N-pos

model that we will present at the end of this chapter.

‘4.3".1 - Different Contexts

~ In the bi-pos model we use (see page 69), the current context consists simply of the tag of
the preceding word. To recall the effect this definition of context has, suppose w; and w
are the last words of two sequences of words a and 3. Further suppose that w; and w, have
the same tag (or set of tags). The probability with which the model will expect to see a
certain word next will be the same in both cases, whether the preceding sequence was « or
3. In other words, the model distinguishes between as many contexts as it has classes or
tags and it has a separate distribution for each of these contexts.

When we analyze this model with respect to its weaknesses, it seems natural to ask what
fraction of the LT P is caused Ly each context (or tag g). For that purpose, we group the
elements of the sum in equation 3.3 , page 36, according to the preceding tag ¢g , produce
a separate sum for each (LT F,), and determine what fraction of the total LT P each tag
represents. We can thus calculate the fraction of LT P caused by each context or by each
preceding tag. In table 4.3, we give the ten tags that account for the biggest part of the
LTP when the tagset With 42 tags were used. In order to find out why these are the tags
causing most of the LT P, we performed a more detailed analysis of the first three tags.
For each tag g, we looked at the number n, of times g occurred, the LT P caused by the
prediction of the next word given that the last tag was g (LT F,) and the average LT P per
word given that the last tag was g (avg,). The results are shown in the first three columns
of table 4.4. Moreover, we used the method of probability decomposition to split up LTPF,

into the fraction caused by the prediction of the next tag ( fias), the prediction of the next
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Tag | Description  Fraction of LT P
N noun 0.16
AT article 0.13
IN preposition 0.12
\% verb 0.08
P proncun 0.07
NP | proper noun 0.05-
, comma 0.05
JJ adjective 0.05
. period 0.05
BE | forms of to be 0.04

Table 4.3: The ten tags of the preceding word causing the biggest fraction of the LT P when
the tagset with 42 tags is used

g g LTPQ avg, ftagj fword frest
N {4229 -2.1%10* -49 | 0.48 0.46 0.06

AT | 2448 —1.7%10* -6.9 | 0.29 0.61 0.10
IN | 2925 —-1.6%10* -5.3 | 0.43 0.48 0.09

Table 4.4: A detailed analysis of the three tags causing the highest fraction of LT P

word given its tag (fuord) and the rest (frest). frest contains for example the prediction of
unknown words. These three values are shown in column four, five and six in table 4.4.

We can see that the tag N causes the largest fraction of LT P because it occurs very
often. Even though it is relatively easy to predict the next word given that the last tag was N
(avgn is the highest), this is more than compensated by its frequency of occurrence. When
predicting the next word, about the same fraction of LT P is coming from the prediction of
the next tag (fiag) and the prediction of the next word given its tag ( fuorq)-

The tag AT occurs far less frequently, but predicting the next word knowing that the
last tag was AT is very difficult (avgar is the lowest). Moreover, we can see from columns
- four and five that it is the prediction of the next word given its tag ( fyorq) that accounts
for most of the LT P (61%). This is because articles are often followed by so called open
class words. Open class words are words like verbs or nouns which belong to a class with
a very large, almost unlimited number of members. This contrasts with closed class words
like articles, which belong to a class with a very small, predetermined number of members.
Becaunse the prediction of the actual word given its class is very difficult for open class

words, they account for a large fraction of LT P and the same is true of tags who can often
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g | fitp _ng LTF, . avg,
N |024 517 -50+10° -9.7
IN | 0.24 1479 -5.0%103 -3.4
V011 22 -23+10° -96

, | 0.05 447 —1.0%10% -2.37
0.05 520 —1.0%10% -2.0

Table 4.5: The five tags causing the highest fraction of LTP 'rg'i‘ven' that the last tag was N

be followed by open class words (because predicting the next word is very hard, if the next
word belongs to an open class).

The tag I N is more similar to the tag N in its behavior. It accounts for a large fraction of
" the LT P because it occurs quite frequently (more often than the tag AT'), but the prediction
~ of the next word given that the last tagis I N is easier than for the tag AT (avg;y is higher).

-~ Moreover, we can see from table 4.4 that f;,, is highest if the last word was a noun.

Why is it so difficult to predict the next tag in this particular context? In order to answer
this question, we looked at the tags that follow N and the five tags causing most of the
LTP are shown in table 4.5. For each tag g, we give the fraction of LT P (fLTp), given
that the last tag was N, it causes, the number n, of times g occurred after N, the LT P
caused by the prediction of the word with tag g given that the last tag was N (LT'P,) and
- the average LTP per word given that the last tag was N (avgy). We can see that thereis a
- wide Vr‘ange‘of tags that frequently follow nouns. Given a noun, it is indeed hard to predict
‘what the next tag will be. Information, that would for example allow us to predict better
‘which of the three most important tags will come next, would therefore be very useful in
improving the model. '

- From the more detailed analysis based on table 4.4, we can see that the contexts causing
the largest fraction of LT P are the ones that occur very frequently or that are often followed
by open class words.

. We ca,I‘lralso see from table 4.3, that the first four tags account for 49% of the LTP. In
other words, about 49% of the LT'P is caused by a fraction of roughly % ~ 0.10 of the tags.
In general, F igure 4.5 shows the relationship between the fraction of LT P and the fraction
of tags causing this fraction of LT P. The graph shows clearly that a small number of tags
causes a large fraction of LT P and that a large number of tags only causes a small fraction

- of LTP. ngljtatively, this kind of graph cccurs very often in natural language processing
and it is a typiéal example of a Zipf distribution ([158]). Other quantities having similar



CHAPTER 4. ANALYZING AND IMPROVING A BI-POS LANGUAGE MODEL 75

1 T | T T
08 134 tags - -
88 tags >¢—~
42 tags -e—
‘ 06 F 24 tags —— i
fraction
of
tags
04 F -
0.2 F -
() e~
0 0.2 04 0.6 0.8 1

fi'action of LTP

Figure 4.5: fraction of LT P caused by fraction of tags

distributions can be found at almost all levels of language ranging from the phoneme to
the sentence ([3], [4]). One can argue that the Zipfian nature of the graph shows that the
tags are not well suited for a language modeling task. There is really not much point in
differentiating among most of the 50% of the tags that only account for 10% of the ZT P.
In this section, we have shown on which contexts we should concentrate our efforts to
“improve our bi-pos model. These contexts are the points in the text where the preceding
word was a noun, an article or a preposition. The advantage of knowing these contexts is
that we can now look at each one of them in turn in order to analyze why the prediction
of the following word is so difficult (see for example 4.5) and we can then try to improve
our model on this specific point. It is clear that solving such a specific problem is much
easier than trying to somehow improve the language model in general. However, we will
not explore this issue any further at this point, mainly because we have already shown the
usefulness of identifying weaknesses by showing how it reduces the size of the problem at
hand. Moreover, the additional understanding of the model obtained from this detailed
analysis also shows the usefulness of the central idea of this thesis, the identification and

analysis of weaknesses of language models.
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unknown word model | total LTP LT P(unknown) | LT P(unknown)/LT P
M1 -1.30e+05 -7.78e+4-03 ’ 0.0599
M4 -2.51e4+05 -1.29¢+05 .. 0.514

Table 4.6: LT P caused by unknown words when model M1 and M4 are used

4.3.2 Unknown Words

We "w‘ill now move to the second weakness, the prediction of unknown words.

On page 69, we derive the formula of the bi-pos model we'use. Our r'no‘del gives a constant
probability'to unknown words and this is differént'frdm the rest of the model, which uses
the bi-pos formula. This prompted us to measure hOW‘much impact this separate part of
‘the model, which is only used for unknown words, has on the overall performance.

o In order to inéasure the impact of unknown ‘worrdé, wergroup the elements of the sum
in 'équa;tioﬁ 73.3, pﬁge 36 into two groups, the terms that Coi‘féspdnd to unknown words and
the rest. We ca,lculate each sum separately and measure the fraction of the LT P caused
by unknown words. The result (shown in table 4.6) is that the unknown words account for
approximately 6% of the total LT P, independent of the tagset used, since the probability
given to unknown words does not depend on the number of tags. If we use a different model
for the unknown words, namely the model M4 from section 4.2.1, this fraction is as high as
51%. As in the preceding section, we have now identified a specific weakness, the modeling
of unknown words. We now proceed with trying to find ways of improving the model with
respect to this particular problem. ' 7

‘The current model gives a constant probability to unknown words, independent of the
current context or the most likely tag of the next word. However, it is clear that the
probability of the next word being unknown depends on the hypothesized tag for the next
word. For example, it is clear intuitively that if the next word is an open class word, the

word is much more likely to be unknown. Hence, rather than having
P(wli] = wlw[i— 1)) = dy if w; ¢ V,

we would now like to-make d; depend on the supposed tag g; of the next word. This leads to
a formula similar to the part of the model that deals with words in the vocabulary: first, we
predict a likely next tag (1 * f(g(w[i]) = gj|g(w[i— 1])) + c2), then we predict an unknown
word give this tag (dg;). This leads to the following formula:

P(ufi] = wiloli~ 1)
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number of tags | old model new model | improvement
24 265 229 | 0.14
42 259 218 0.16
88 249 196 0.21
134 243 192 0.21

Table 4.7: The perplexity of the old and the new model

5, calll = ur di — dy,)ex * Fo(wli]) = gilg(uli — 1) + e2)
* f(w]i] = wi]g(w]i]) = g;)] if wy € V and w; was seen
d if w; € V but w; unseen

D g;€G o; ¥ (1 * f(g(wle]) = gjlg(wli = 1])) + c2)  fw ¢V

We can also explain this modeling of unknown words by saying that the unknown word
“is a word of the vocabulary that can appear with all tags. We can estimate the values d;
of formula 4.7 from the training text using the same technique that was used to estimate d»
- (see page 61). We used Turing’s formula again and estimated dy; as the number of unique
words with tag g; over the number of words with tag g;. We show in Appendix C that the
sum of the probabilities is still equal to one.

The perplexity of the new model is shown in Table 4.7. First, we can see that the
improvement is substantial for all sets of tags, ranging between 14% and 21%. Second, the
improvement increases when the number of tags increases. This is because for each tag,
we have a different distribution for unknown words. As the number of tags increases, the
distributions of unknown words can become more and more specific.

In this section, we identified another weakness of our bi-pos model, the modeling of
unknown words. We then improved our model with respect to this particular weakness
by developing a new modeling for unknown words. In this new model, the probability of
seeing an unknown word depends on the context (like the prediction of vocabulary words),
in particular, on the hypothesized tag for the next word. This resulted in an improvement
in performance ranging between 14% and 21%, depending on the number of tags used.
Finding a-new modeling of unknown words, which results in a significant improvement, is an
important result by itself. But equally important for us is that it shows that the identification
of a weakness is, at least in this case, a first step in improving our model. Furthermore, in this
concrete example, the identification of a weakness does lead to a subsequent improvement

of the model. This shows the usefulness of the central idea of this thesis, the identification



CHAPTER 4. ANALYZING AND IMPROVING A BI-POS LANGUAGE MODEL 78

nb of tags | unknown fact word pos
24 0.06 0.01 058 0.35
42 0.06 0.01 0.53 0.40
88 0.06 0.0l 0.45 0.48
134 0.06  0.01 0.43 0.50

Table 4.8: The LT P caused by different components of the model
and analysis of weaknesses of language models.

4.3.3 Different Components

We will now move to the third weakness, the prediction of a word given its tag.

‘The bi-pos model from page 69 calculates the probabilities of words in a two step process.
First, it caléulates the probability of a tag; then, given the tag, it calculates the probability
of 5aj'word. Itrsreéms natural to measure how much of the overall LT P is caused by each of
these components of the model.

~ To be more precise, uSing the method of probability decomposition introduced on page
51, we measure the fraction of LT P caused by unknown words (d,), by the factor for known
words (1 — u*dy — dy), by the term for predicting the next tag (p(g(w(i])|g(w[i - 1]))), and
by the term for predicting the next words given its tag (p(w[i] = wy;)|g(w[i]))). Recall from
~page 69 that unseen words are words of the vocabulary that do not occur in the training
text. Since we fixed our vocabulary based on the 50,000 words of text used to train the
-model, all words of the vocabulary do appear in the training text. Hence, there are no
unseen words and unseen words do not account for any fraction of LT P. We therefore do
not have a column for unseen words in table 4.8. However, the fraction of LT P each other
component causes is shown ih table 4.8.

A first observation is that the LT P tends to shift from the word column to the pos
column as the number of tags increases. This is very understandable. If we have only 24
tags, it is much easier to predict which one of them will appear next than if we have 42 tags.

| By the same token, if we have only 24 tags, more words will belong to each tag and it is
hafder‘to predict the word given the tag than if we use 42 tags. In general, as the number
of tags increases, the prediction of the next tag will be much harder, but given the tag of
the next word, it will be easier to predict the actual word.

A second observation from table 4.8 is that the prediction of the next word, given its
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tag, is a very important part of the bi-pos model, at least when we consider the amount of
LTP caused by each part. Depending on the number of tags used, it accounts for between
35% and 58% of the LT P. This is more than the prediction of the next part of speech when
24 and 42 tags were used. Hence, the prediction of the words given the tag is at least as
important as predicting the next tag and this is a very important fact to note for future
research.

‘The observation that the prediction of the next word, given its tag, is very important also
sheds a different light on using probabilistic context free grammars for language modeling.
Recently, a number of researchers have investigated the use of probabilistic context free

‘grammars (PCFG’s) or stochastic context free grammars (SCFG’s) ([89], [24], [64], [91],
[92), [114], [157), [128]) for language models. The use of these grammars can lead to better
language modeling by improving the prediction of the next tag. However, the problem of
“predicting the actual word given its tag will remain. Furthermore, these grammars rely on
the same mechanisms for estimating the probabilities of words, given their tags, and there
is therefore no reason to believe that these grammars will do better at this prediction than
standard N-pos models. Hence, trying to improve the prediction of the word given its tag is
an important research area, independent of the kind of model used to predict the tag, e.g.
N-pos or PCFG.

How could one go about improving this weakness, the prediction p(w(i] = wy(sylg(wli]) =
g;) of the next word given its tag? In order to answer this question, we will first take a closer
look at p(w[i] = wy(;)lg(w[i]) = g;) by examining which tags g; which account for most of
the LT P caused by this factor (LT Pyorq). For each tag g, we will look at the number ng of
times g is the tag of a vocabulary word 4, the LT P caused by the prediction of these words
given that their tag is g (LT P,), the average LT P of these words (avg,), the fraction f,
of LT P,orq caused by each tag and the fraction f,(total) of the total LT P caused by each
tag. These numbers are given in table 4.9.

We can see that it is a lot harder to predict the word given its tag if the tagis an open
class tag (low avg, for N,V,JJ). The only tag that is not an open class tag in the table is
the tag IN (preposition). Even though it is relatively easy to predict the preposition (e.g.
high dvg_rN), it causes a large fraction of LT P because it occurs more than twice as often

as for example the following tag JJ (adjectives).

*We do not want unknown words to influence the analysis of how difficult it is to predict the word given
the tag.
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Ny LTP, avgy | fg  fo(total)
3201 -2.4x10* -7.4 ]0.35 0.18
1620 —1.1x10* -6.5 | 0.15  0.081
2406 —6.1%10>° -2.5 | 0.09 0.047
JJ| 939 -6.0+10% -6.4 | 0.09  0.047

E<Z‘=:

Table 4.9: A detailed analysis of p(w[z] = wy()lg(w[i]) = g;) for the four tags causing the
_ highest fraction of LT P :

In the light of these results, how can we improve p(w[i] = wy)lg(wli]) = g;)7 The
current model has only one distribution for each g;. However, it seems clear from our
intuition that this probability depends on context in the same manner as the prediction
of p(g(w[z’])|g(w[z' = 1])). As an example, in the context “Peter talked to the NOUN”, the
overall frequency of nouns is not a good indicator for the likelihood of appearance of a noun
in this particular context. Nouns like “money”, that people usually do not talk to, are very
‘unlikely to ap’péér.» The information useful in predicting p(w[i] = wy(;)lg(w(é])) could be
‘entirely different from the information used for predicting p(g(w(i])|g(w(i— 1])). We will try
to improve this particular weakness in the next section (section 4.4).

In this section, we used the method of probability decomposition introduced on page
51 to measure the impact of different components of our bi-pds model on the overall per-
formance. We have shown that the prediction of the next word, given its tag is at least as
important as the prediction of the next part of speech. Again, this information is helpful
for future work because it identifies a weakness of the model. Moreover, this information is
not only’u'seful for improving our bi-pos model, but it also shows that the recent interest
in ‘probabilistic context free grammars as language models does not address an important
part of the model at all. The prediction of the word given its tag therefore is an important
 area of research, even if entirely different models, e.g probabilistic context free grammars,
~are used to predict the next tag. These results show again the usefulness of our definition
of a weakness and of the central idea of this thesis, the analysis of weaknesses of language

models, in general.

4.4 The Generalized N-pos Model

In the last section (section 4.3.3), we identified the prediction of p(w[i] = wy;)lg(w[i])) as

one of the weaknesses. In this section, we will try to improve this weakness by introducing
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the generalized N-pos model. We will first describe the idea behind the generalized N-pos
model in section 4.4.1, followed by preliminary experiments that show its usefulness as a

- framework which can incorporate many kinds of linguistic information.

4.4.1 Introducing the Generalized N-pos Model

We can introduce a more general N-pos model by genéralizing the following two aspects of
‘the N-gram and N-pos models. First, rather than having distributions based on the last
‘word or the last tag, we can base these distributions on any information about the words
seen so far. We will code this information by a variable X. For example, X could stand
for the last word, in which case X would range over all possible words of the vocabulary.

Or X could stand for the state of a simple parser and we could thus make the distributions

 depend on that information. The second aspect that is being generalized relates to the N-

pos model, in which the probability of the next word is made dependent on the hypothesized
tag alone (e.g. p(w[i] = wy;)lg(w[i]) = g;)). It is clear intuitively that the frequencies of
nouns also vary significantly with the context. The example we already used in the previous
section (section 4.3.3) is that in the context “ Peter talked to the NOUN?”, the nouns that
people usually talk to are more likely to appear. Moreover, out intuition indicates that the
immediate context of the NOUN, e.g. the words “to the”, do not constrain the choice of
possible nouns as much as the fact that NOUN is being talked to by Peter. In other words,
even though the immediately preceding word is very useful in predicting the next tag, it
seems likely that the information useful in predicting the actual noun is further away from
the word to predict. This is for example mentioned in [36, p.187]) and [14]. Our generalized
model should therefore allow the prediction of the actual word to depend on contextual
information and it should be possible for this information to be different from the one used
to predict the next tag.

Now that we have seen the intuitive idea behind our generalized model, we will present
it in more detail. The probability of a sequence of words W will again be decomposed as a
product of probabilities of each word (see equation 2.5):

i=n

p(W) = [] p(wli] = wyzlwll : i - 1]). (4.7)

i=1

Then the probability of each word will be modeled as

p('w[i]':: wl(i)‘w[l i = 1]) = p(wli] = wil X1,y Xrys)
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>~ p(g(wli]) = g1 X1, ., X) + p(w[i] = wilg(w[i]) = g5, Xrt150er Xrga)
g;€G ‘

where the X;’, 1 < j < r 4+ s, denote variables coding some information available from
- the words W1, ..., wi_q seen so far. It is 1mportant to verify that the resultlng probabrhtres

constitute a probablhty distribution. In other words we have to ensure that
opwlil= wlXy, o Xe) =1 (48)

weV s
©Ata given point in-the sentence all the X s have a certain fixed value. If the two component
. probablhtles are true probabrhty drstrrbutrons for all combinations of values of X; (and this
 is ensured if they are constructed as usual from frequency counts), we w111 show in Appendix
D that the sum will indeed be one. IR, ‘

The amount of tra.lnlng data needed by the generahzed N-pos model depends of course
' 7 on the knowledge encoded by the different variables. We therefore can not make any general
statement with respect to the amount of training data needed. But as we will see, the model
can reduce to the N- -gram model or the N-pos model and the amount of training data needed
in these cases will be similar to the training data requn‘ed byrthe N- -gram or N-pos model.
 We will now show that the generalized model reduces to N-gram and N-pos model for
a particular choice of variables X;. If we chose s = 0,7 = N =1 and X; = g(wi—;),j =
1, .;.,N — 1, then the generalized N-pos model reduces to the standard N-pos model. As
shown in Appendix E, it will also reduce to the N-gram rnodel forr=N-1,X,4;=X; =
Wi—;,] =1,..,N - 1. For other choices of the variables, we obtain models that can’t be
~ constricted from N-gram or N-pos. This shows that it is a true generalization. Furthermore,
some of the variables could code linguistically relevant facts extending over a longer distance
in the sentence, e.g. the subject of the sentence or the fact whether the verb is transitive.
It therefore is a framework that allows more general linguistic knowledge to be captured.
These points show the theoretical potential of the generalized N-pos model as a framework.
However, from a practrca.l point of view, the generahzed N-pos model is only useful if
we find sources of 1nformatxon for the variables X; that actually help improve the quality
of the model significantly. 'What information should the variables actually capture in order
to improve the qua]rty of the model" The lack of an answer to this question corresponds to
; a lack of knowledge in this area. A lot of work needs to be done in order to find out what
‘kind “of mforymatron is useful for thrs purpose. In the next section (section 4.4.2), we present

- a small step in that Vdirectionb'y' deScribing the information we experimented with so far.
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In the next chapter (chapter 5), we discuss what knowledge might be useful for language

models in general.

4.4.2 Using the Generalized N-pos Model . :

In the usual bi-pos model, the probability distribution for p(w(#]|g(w[?])'= Noun) is con-

structed by countmg the number of occurrences of each noun in the training text. As seen
| in section 2.4, an estimate for the probability of a partlcular noun w is then obtained by
dividing the number of times w occurred as a noun by the total number of noun occur-
rences. The probability distribution obtained in this manner can then be used to calculate
the probablhtles of words in a testing text. o ‘

- In all the experiments described here, we construct one other distribution on top of the
yone just mentioned. A variable X with two values ( ‘general” and “specific”)-is updated as
- we move through training or testing text. We will see later in exactly which situation we
wili have X = general and X = specific. Intuitively, we will have X = specific only if
we are in a very specific context, e.g. if the current noun phrase was introduced with the
preposition “during”. In all other situations, we will have X = general After having read
the training text, we count how often each noun occurred when X had the value “specific”.
We then construct a specific probability distribution by dividing the number of times each
noun occurred with X = specific by the total number of times we had X = specific.
When we go through the testing text, we use the normal distribution when X = general,
but the specific distribution when X = specific. We thus replace p(w[:]|g(w[:]) = Noun)
by p(w[i]|g(w(i]) = Noun, X), where X has two possible values. - 7

‘Please note that this is not the same as having two separate tags, say Noun-general
~and Noun-specific. Having two separate tags would also change the factor p(g(w[i]) =
9il9(w[i— N+1:i-1])), requiring many more separate distributions. Using p(w[i]|g(w[i]) =

Noun, X), however, allows us to have a finer distinction for the prediction of the actual word,
~while still preserving the same level of abstraction for the predicfion of the next tag.

Before we describe what information is coded by X, we would like to address the issue of
smoothing again. The normal noun distribution is a typical example of a Zipf distribution

(['158]7). A very small number of words occur very often and a very large number of words

occur very rarely. As an example, we show the fraction of nouns that occur less than

z,1 < z < 20, times in our 50,000 words of training text in figure 4.6. We can see that

more than 50% of the nouns occur only once. If we construct the specifiz distribution in
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Figure 4.6: Fraction of nouns occurring less than z times in text

the manner described above, many words will not have occurred with X = specific, and
they would get a zero probability. In order to avoid that, we obtain a combined distribution
Peomb(w[i]|g(w[é]) = g;) by smoothing the specific distribution with the normal distribution

in the fo]lowing manner .
Peoms(wlillg(wli]) = 05) = Mp(ulillg(wlil) = ;) + (1~ Np(wlillgwlil) = g;, X = specific)

Rather than using deleted interpolation ([66]) to determine the best value for A, we tried
A'=10.1,0.2,...,,0.9 and used the value of A that gives the best performance on the testing
text.

- Experiment 1: X indicates whether the noun is likely to be singular. Initially, X is

set to “general”. If we come across “this”, “a” or “an” in the text, the following noun
is likely to be singular and X is set to “Speciﬁc”. X retains this value as long as we are
| : likely to not Vha\rze’ finished this noun,phrasé and is then reset to general. We did not have
l a pa.rsed 'coi‘«pus avajlablé and used very primitive techniques to decide what constitutes a
‘noun ,‘phra,ser., Rough'ly, We considered the noun phrase to be ongoing as long as we encounter
. adjectives, adverBS'bf'hoﬁhs.

. ) Expe‘ri'ment' 2: X was ﬁsed to indicate whether the noun phrase was preceded by the
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Exp. || nb. words in S | perpl. on S | specific. perpl on S | improv. on S
Expl || 479 1665 1428 0.178
Exp2 || 16 469 1396 0.156
Exp3 || 237 1365 1394 -0.021

Table 4.10: Results on the subset S of words where X=specific

preposition “during”. We used the same mechanism as above to determine the boundaries
of a noun phrase.

‘Experiment 3: With a very low probability, X was randomly set to specific. This exper-

iment was performed to see whether a random choice for the value of X would lead to an
improvement. o ,

| 7 Experiments one and two make the distribution depend yon information that can be
several words away, depending on the length of the noun phrase. This shows that the gener-
alized N-pos model is a framework that can incorporate linguistically relevant information,
- independent of its distance to the current word. ® k

The resulting change in perplexity on all the approximately 25,000 words of testing text
is 0.031, 0.00012 and -0.0021 for the three experimentsr. The change is very small and this is
“due to the fact that the specific distribution was uséd only a very small number of times (e.g.
X = specific in the testing text). We therefore measured the improvement in perplexity
only on the words that actually used the specific distribution (denoted with S for subset
in the table 4.10). We can see that the improvement in these cases is significant, especially
‘when compared "to experiment 3 where X was set randomly.

A more detailed analysis of the 479 cases of experiment 1 shows that in 195 cases
(approx. 41%), the probability assigned to the word using the specific distribution was
actually lower than the one from the general distribution. These were words that did not
occur with X = speci fic during training, but occurred with X = specific during testing.
According to the specific distribution, they would get the probability zero, but thanks to the

interpolation, they get a probability between zero and the value of the general distribution.

-*However, the linguistic information captured by the variables should depend on the context. If it does
not, then the information will be the same in all contexts and it will therefore not change the probability
distributions. As an example, take the fact that the subject is often followed by a verb. We could try to
use this to increase the probabilities of verbs after we have seen a subject (assuming for the sake of this
argument, that we can identify subjects). Even though one could think that this is a context independent
statement, it does depend on the context in the sense used here: if we have seen a subject, then we will
increase the probability of verbs; if we have not seen a subject, we won’t. The fact that we will increase the
probability of ‘verbs therefore depends on the current context.
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This interpolated value will always be less or equal to that of the general distribution (equal

~_if A =1) and this is why we actually do worse when using the specific distribution for these

- words.

- The critic‘al issue in these experiments is that of capturirlg semantic restrictions on
- possible nouns based on context How much of this can we capture by a purely distributional
analys1s" Can we somehow estimate a. separate distribution for each X and then combine
~them meamngfu]ly so that we wr]l not have to estlmate a separate distribution for each
possible combmatlon of values of the X ’s? These are rmportant questlons that we will
‘address in the next chapter (chapter 5) ' B '
As stated in sectlon 4.4.1, we had two reasons for mtroducmg the more general model.
" One was to lmprove the quality of the language model, the other to capture linguistically
or mtultlvely more satlsfymg mformatlon We: showed that the generahzed N- -pos model
" is a framework that ‘can indeed incorporate linguistic information several words away and
we thereby achreve the second goal The first goal of reducing the perplexity has not been
- achieved on an overall level. However, the small overall improvement does not reflect the
- capabilities of the generahzed N-pos model, but the usefulness of the very simple knowledge
source we used. Moreover, the e}rperiments performed show the significant reduction in
perple)rjty in the cases where the generalized model was actually used. Further research
needs to find other sources of information that are useful in reducing the perplexity in a.
‘larger number of cases and this issue will be addressed in chapter 5. These could then
be added to the generalized N-pos model in the same manner, leading to a bigger overall
"improvyement. Thus, the existence of knowledge that can reduce the perplexity in a large
number of cases will ultimately decide ori the practical usefulness of the generalized N-pos
model, But this applies to any model that tries to ihcorporate more knowledge. If there
is no knowledge that will reduce the perplexity in a large number of cases, then the model

will not lead to a significant improvement.

4.5 Summary‘ |

‘ In thls chapter, we apphed the central idea of this thesis, our technique of identifying
weaknesses of a language model, to a commonly used bi-pos language model, reported the

" results, and thus showed the usefulness of performing analysis of weaknesses of language

5 models
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We started by choosing the Lancaster-Oslo-Bergen corpus and the bi-pos model for our
work and we verified that the 50,000 words of the corpus we use as training data is sufficient
' to train our model. The fact that the perf(‘)rmz‘mce‘ofr our model initially decreased with an’
increase in training data prompted a discussion of the 'i‘ss‘ue of a sample space, the set of all
possible events considered by a model. We nofed that it is not meaningful to compare two
language models Wiﬁ;h the perplexity measure if they diﬁ'er in their- uﬁderlying sample spaces.
Yet Ianguage'mbdels are usually compared with the perplekjty neasure, even though they
do sometimes differ in their sample spaces due to different vocabularies Or due to different
ways of dealmg with unknown words. One way to solve this problem i is to avree on a common
vocabulary. But if this is not possible, we propose to use the adjusted perplex1ty measure
- APP. 1t is a flexible way of making the results more comparable, ‘even. if the underlying
sample spaces are not identical. A |

We then apphed the idea of identifying weaknesses of a language model to our bi- pos

model and reported the following results:

'1) We identified three weaknesses, the prediction of words in a very small number of
contexts, the prediction of unknown words, a.nd the prediction of words given their
part of speech.. We thus gained considerable additional insight into the model. This

“insight is helpful in improving our model, but it is also relevant to other langua.ge
models. The last weakness, in particular, is important with respect to the recent
~ interest in probabilistic context free grammars as language models. Even though
probabilistic context free grammars might improve the prediction of the next part
~ of speech, they are unlikely to improve the prediction of the word gi‘ven" the part of

speech. They therefore do not address this important weakness at all.

2) We improved one of the weaknesses, the prediction of unknown words, by introduc-
- ing a new model for unknown words. This lead to an improvement in the model’s

‘performance ranging between 14% and 21%.

3) In order to address the third weakness, the prediction of words given their part of
speech, ’we developed the generalized N-pos model. It can incorporate linguistic in-
formation, even if it extends over many words. Also, the information used for the
prediction of the word given the part of speech in this model can be different from the
informatibn used to predict the part of speech. It is important that the model allows

for this because even though the immediate context (e.g. the two or three preceding
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words) contains a lot of information about the part of speech of the next word, we can
argue that useful semantic information that restricts the actual word may be further

away.

With these results, we have shown the usefulness of our definition of weaknesses and of

~analyzing weaknesses of a language models in general.



: Chapter 5

Adding Linguistic Knowledge to
Language Models

In the previous chapter, one of the weaknesses of our model prompted the development of
the generalized N-pos model as a framework that can incorporate knowledge into language
models. In this chapter, we will address the issue of adding knowledge in more general
terms. We begin by glvmg reasons for wanting to add knowledge to language models (section
5. 1) We then develop criteria to select knowledge that will be useful for a language model
(sectlon 5.2). We conclude this chapter by rev1ew1ng methods for combining different types

of knowledge in a language model (section 5.3).

5.1 Reasons for Adding Linguistic Knowledge to Language
| Models

Why do we want to add more knowledge to language models than current models contain?
We see the fo]ldwing three reasoné for attempting to add knowledge. First, we would like to
improve the performance of existing models. Our hope is that adding knowledge will lead
to improved perfbrmance. Second, adding more knowledge may well become a necessity
in the future. Current speech recognizers achieve an acceptable recognition rate partly
because they work in a constrained domain with a limited vocabulary. As we move to more
general domains with'larger vocabularies, the complexity of the recognition task and the

number of a,coyustica.]ly; confusable alternatives increases. A language model incorporating

89
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a broader range of linguistic knowledge sources could rule out many of these hypotheses,
thereby helping to cope with the additional complexity. Third, adding knowledge is more
satisfying than sticking to existing models on psychological grounds because humans seem to
‘use other knowledge to predict a word than the knowledge used by current models, namely

the immediately preceding two or three words. “This does not make sense!” is a reaction

- we often have when we look at the sentence a speech recognizer deems the most likely to be

spoken. Subject and verb do not agree, prepositions are not where they should be, the verb
fis‘ missing entirely or a certain combination of words is semanticaﬂy incorrect. Two examples
of such obviously incorrect sént‘ences are shown beidw. They are taken from a recognition
session of the SPHINX system (see [95, p.161,p.165]) in which a bi-gram language model

is used. These utterances were from the resource management task ([118]), which uses a
constrained syntax for inquiring about naval resources. For both examples, we will give the -
utterance spoken as well as the recognized sentence:
Correct: Is the economic speed of apalachicola less than that of the brunswick
Bi-gram: Whose economic speech of apalachicola less than that of the brunswick
Correct: On what day could dubuque arrive in port at his maximum sustained speed
'Bi-grram: What would it take dubuque arrive in port-at his maximum sustained speed
In these examples and in many other cases, humans seem to notice almost without effort the
constraints violated by the proposed output. Adding these constraints to a speech recognizer
is therefore a very natural and tempting endeavour.

‘Once we have decided to add linguistic knowledge to a language model, two questions

come to mind. First, what knowledge should we try to add? Second, how can we combine
the different types of knowledge in a language model? In the following two sections, we will

deal with each question in turn. !

5.2 What Knowledge Should We Add?

In linguistics, khowledge about language can be divided into phonetics, phonology, prosody,
morphology, syntax, semantics and pragmatics. The acoustic model of a speech recognizer
captures some of the phonological knowledge and the part unique to speech recognition, the
signal prdcess’mg. Morphology, syntax, semantics and pragmatics could all be included in

the language model. Therefore, from an abstract point of view, there is a very wide range

1The related question of how to obtain and to encode the knowledge is addressed in the first section.
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| Type of Task-dependent { Conversation-dependent Speaker-dependent Analysis-dependent
knowledge knowledge knowledge knowledge knowledge
Pragmatic and A priori semantic Concept subselection Psychological Concept subselection

Semantic.

knowledge about the
task domain

based on conversation

model of the user

based on partial
sentence recognition

Grammar subselection -

Grammar subselection

of the vocabulary

selection based

selection and ordering |

Syntactic Grammar for the Grammar. subselection
language based on topic based on speaker based on partial
- phrase recognition
Lexical Size and confusability Vocabulary sub- Vocabulary sub- Vocabulary subselection

based on segmental

: § -phonetic

phones and phonemes
of the language

varjability in .
phoneniic character-
istics

-.of the speaker

on topic based on speaker features
preference i -
Phonemic and Characteristics of Contextual Dialectal variations Phonemic subselection

based on segmental

“features

Parametric and
acoustic

A-priori knowledge
~about the transducer
characteristics

Adaptive noise
normalization

Variations resulting
from the size and

Parameter tracking
based on previous
parameters

shape of vocal tract

Table 5.1: Different Types of Knowledgé (taken from Reddy and Newell)

of 'knowle‘dge thaf we could incorporate into a languaﬁgre,model. Wthich knowledge should
weadd? . |
~ For speech recognition, the knowledge has been classified in [120] according to two di-
mensions: the lével described by the knowledge (e.g. parametric, phonemic, lexical, etc.)
and its rarnge'of validity across different situations (e.g. a priori knowledrrge, task dependent
knbwlédge, conversation dependent etc.). This classiﬁcation’ is'shown in table 5.1. One can
see that most of the knowledge of the two lower rows (e.g. paramietric and phonemic) is
captured, at leaét partially, by the acoustic model (e.g hidden Markov model). But all the
othef’typesyof knowledge could potentially be useful for a language model. Which knowledge
should we try to add?

To address this question, we will first present possiblé criteria for selecting useful knowl-
edgé (section 5.2.1). Trhen,'to, give a structure to 'trhe space of possibly useful knowledge,
we will propose a classification of possibly useful knowledge (section 5.2.2). Finally, we will

show for a corcrete example how the criteria from section 5.2.1 can be used to decide about

its usefulness (section 5.2.3).

5.27‘.71 , Criteria fqrf Selecting Useful Knowledge

Rather than giving a necessarily incomplete list of useful knowledge, we will discuss some
criteria that we think can be used to identify useful knowledge. For each criterion, we also

suggest how we can evaluate a given type of knowledge with respect to the criterion:

1) Restrictions of VEoSs'ible Choices. The knowledge must frequently be able to restrict

. thé ‘choice' of words in a sentence. If this is not the case, it will not improve the
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qaality of the language model, at least not with respect to the standard measure
used to evaluate language models (see section 3.2.1). In order to find out whether a
given type of knowledge restricts the possibié‘ choices of words, we can for example
use introspection. Do humans often seem to use the knowledge to restrict the choice
of words Does the knowledge create strong expectations about the words to come?
However, we have to be careful in using introspection. A poiht often made by Jelinek
and others (see for example [85]) is that intuitive:jildgments have often been misleading
in the area of language models. It is alwaysrirmportant to verify these intuitions with
real data and to have the parameters of the model be trained rather than determined by
hand. We can formalize the restriction of possible chojces using information theory.
This is for example done in {122] to define th'e‘s'trength of the selection restriction
between predicates and arguments in terms of relative entropy. We can use the same
method to measure the extent to which a given type of knowledge restricts a word

that occurs later.

Let X denote a random variable encoding the knowledge under investigation and
ranging over the set {zy,...,Zm}. X can for example encode the fact that the subject
of the current sentence is animate or not. Let Y denote another random variable
encoding the identity of the word that is being restricted by X and ranging over the
set {y1,...,m}. Y can for example encode the identity of the verb in the sentence, in
which case the set of possible values would be the set of all possible verbs. We can
now measure the restriction X imposes on Y by looking at the difference between the
prior distribution p(Y) and the posterior distribution p(Y|z;). An appropriate way
of measuring this difference is to use the relative entropy D(p(Y'|z;),p(Y)), which is

defined as
DYz, n(¥)) = 3 p(wle:lon B0 .1)
If we rewrite equation 5.1 as
DAYz, p()) = 3 plaslellog s = log s, (52)

we can see that the relative entropy measures in fact the average difference in infor-
mation (see section 3.2.2) provided by the two distributions p(Y) and p(Y|z;). In
fact, the relative entropy is a measure for the amount of information provided about

the random variable Y (the word that will be restricted) by an event X = z; (the
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observation of one value for a type of knowledge). As mentioned in [122, p.58], it is

discussed in [139] why this measure is the appropriate one to use in this case.

Given the measure of relative entropy, we caxii now quantify how useful a certain type

of knowledge X is for the prediction of some words V. 2 3

2) Error Analysis. There is not much point in adding knowledge that can improve the
prediction of words that almost never occur"or tllat only account for a tiny fraction
of the overall performance measure. In order to ﬁnd out whether a given type of
7knowledge has a significant impact on the overall quahty, we can perform the following
steps. First identify the word whose predlctlon will be improved by the knowledge.
Second, use the technique of error analysis to:det‘ermine'the percentage of the LT P

~ (see section 3.3) these words cause. If this fréﬁction is not signiﬁcant then there is
not much point in adding this knowledge. Tllls point is separate from criterion 1)
for the following reason. Even if a type of knowledge X contains a lot of mformatlon
- about Y, the overall effect this has on the performance of the language model may
“be mmgmﬁcant (see for example our experiments with the generalized N-pos model
in section 4.4.2). For example, the gender of the subject and object in the previous
sentence may have a significant impact on the choice of pronouns in the subsequent
sentence (e.g. he, she, it). However, if the LT P caused by all the pronouns is very

small then improving the prediction will not lead to a significant overall improvement.

3) Computational Effort. The language models discussed in this work (see section 2.3)
- are used together with the acoustic model to narrow down the search space. There-
| fore, many thousands of hypotheses need to be evaluated in a very short time. This

places severe computational restrictions on the kind of analysis that can be used. For
example, given the time required for parsing unrestricted English sentences using the
current technology, it seems unlikely that the language model could use a full parser

_ for unrestricted text. However, it is possible that future work, for example in the area

21t would be very interesting to measure, for example, whether the amount of information a grammar
provides ‘about the part of speech-of the next word is significantly higher than the amount of information
provided by the immediately preceding parts of speech. This could help to explain why N-pos or N-gram
models are so very useful for language models and whether a parser has the potential to improve on this.
3In order to decide the usefulness of a given type of knowledge, we can also measure the performance of
the distribution p(Y|z;) on a testing text. The difference in the PP or LT P between the distribution p(Y’)
and p(Y|z:) will be a quantitative measure for how useful the knowledge X is. However, this means that
~ we actually have to implement the knowledge X, but we are looking for criteria to select useful knowledge
sources before implementing the more promising ones.
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of neural networks or partial parsing, might change this situation (see also p. 104).
In order to determine the computational effort required for a given type of knowl-
edge, we can use the standard techniques of analyzing the computational complexity
of algorithms (see for example [53, chapter 12]); such as the theoretical worst time
complexity of an algorithm. Moreover, if the given type of knowledge is also used in
other areas (e.g. natural language processing), we can also use the actual time and

space requirements of an algorithm as it is repQrtéd in the literature.

4) Knowledge Acquisition and Coding. For a general purpose language model, it is
important that the knowledge can be acquired and coded for the use with unrestricted
text. It may be possible to describe some knowledge (e.g. syntax) in terms of rules
acquired by hand. For others (e.g. semantics and pragmatics), this might be very
difficult.

As an example, consider the restrictions, often called selectional restrictions, a verb
imposes on its direct objects, e.g. ‘to drink X’. One way of capturing this would be
to organize objects in a hierarchy of types. We could imagine a type corresponding to
all drinkable objects and we could then have the restriction that the direct object of
‘drink’ belongs to that type. As pointed out in [19], there are two main problems with
respect to the task at hand. First, these type hierarchies are “large, complicated and
expensive to acquire by hand”. Moreover, attempts at acquiring them automatically
have been only partially successful. “Yet without a comprehensive hierarchy, it is
difficult to use such classifications in the processing of unrestricted text”. Second,
even if we had these type hierarchies, this would not be sufficient to predict patterns
of usage in many cases. Even though peanuts and potatoes may be very similar and
therefore quite close to each other in the hierarchy (both are edible foods that grow
underground), one typically ‘bakes potatoes’ and ‘roasts peanuts’. A distribution-
based analysis could capture these differences automatically and “promises to do better

at least on these two problems”.

On the other hand, such a hierarchy can allow generalizations that may be hard to
describe with a distributional analysis. In the above example, we might be able to
discover from a few data points (e.g. drink cola, drink beer, ...) that all direct objects
of ‘to drink’ belong to the class of liquids or drinkables. We can then generalize the

fact that the words actually seen are likely objects of ‘to drink’ for all elements of
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this class. With a distributional analysis, many data points would be needed for each
element of that class in order to obtain the same effect. This is because it can’t

perform generalizations based on semantically meaningful classes.

“To find out whether a particular type of knowledge can be acquired and used with
- -unrestricted text, we can either look through the existing literature or try to decide

_on the issue ourselves."

5.2. 2 Classn'"icatlon of Possibly Useful Knowledge

In the prev1ous section, we saw different criteria for _]udglng the usefulness of a particular
type of knowledge. But to which types of knowledge are we gomg ‘to apply these criteria?
~ To all the potential sources of knowledge, e.g. morphology, syntax etc., mentiyonedon page
90? To help answer this question; we will construct a classification of all pos‘sible sources
of knowledge in this section. Given this classification, we can then keep track of where the
~ different types of knowledge fall in the classification, which parts of the classification have
been tried already and we can construct a mental i 1mage of the space of possible types of
knowledge

According to which measure are we going to classify our possible types of knowledge?
The most important criterion that we will use to select useful knowledge is the first one given
in section 5.2.1, the restriction of possible choices. If a type of knowledge is not restricting
the choice of possible words, it is not going to be useful for our task. Any knowledge that we
would want to consider therefore must have the property of restricting the choice of words.
Thus we wﬂl classify all possible types of knowledge with respect to this property, namely
according to the distance between the origin of the knowledge and the word it restricts.
This guérantees that our classification will contain all possibly useful types of knowledge.
Moreover, we also find it intuitively appealing. We will now give the resulting classification.
For each class, we will describe an example of knowledge falling into the class. Furthermore,

we will mention whether this class of knowledge has been used for language rhodeling:

1) Knowledge whose constré.ints ‘do not extend across sentences. One example is gram-
' matical,‘know1edger Zurrent language models almost exclusively use knowledge from
this class. 'Most often, the restriction of grammaticality is approximated by the con-
,fst‘ra.i‘nts pronided "rby words from the immediate context, e.g. the two or three preced-

ing words. Judging ffom the success of techniques using this immediate context , this
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must provide quite powerful constraints, especially for fixed word order languages like
English.

2) Knowledge whose constraints extend across sentences but remain within paragraphs.
One example is the knowledge of the gender of a noun phrase. For example, the noun
phrase “Mr. Baker” can not be referred to as “she”‘in a subsequent sentence. Recently
used dynamic language models (see section 2.5.5),éaptuie the fact that words are more

likely to appear again if they appeared before in the current paragraph.

3) Knowledge whose constraints extend across paragraphs but not across documents.
One example is the knowledge of the topic or content of the current paragraph. With

respect to uses for language models, the remark of the previous class also applies here.

4) Knowledge whose constraints extend across texts. One example is the knowledge of
a certain kind of vocabulary or style of writing. It has been shown (see for example
[105], [68], [69]), that the language used in different genres is quite different and this

is actually used for a language model in [79].

5.2.3 The Usefulness of Collocational Constraints

In the following, we will apply the above five criteria to identify useful knowledge from
section 5.2.1 to the knowledge about collocational constraints. We will use the term collo-
cation “quite broadly to include constraints on SVO (subject verb object) triples, phrasal
verbs, compound noun phrases, and psycholinguistic notions of words association (e.g. doc-
| tor/nurse)” as suggested in [19, p.75]. We begin by reviewing work that suggests that
collocational constraints are very frequent and important in language. This is taken as
evidence that criteria one and two (see section 5.2.1) are partly satisfied. However, it does
not replace a study that actually measures this effect quantitatively as suggested in section
5.2.1. |
In [76], G. Kjellmer classifies combinations of words according to how much variability
they allow. The spectrum ranges from fossilized phrases (Anno Domini, aurora borealis) to
semi-fossilized phrases (by and by, by and large, Achilles heel, Achilles tendon) or idioms
(have a weak /soft spot for, do badly/well for) to finally variable phrases (glass of water, go
to college, his approach to, to be appointed by). “So anyone who can be said to be proficient

in a language has command of a great number of set phrases as well as skill in producing
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acceptable variants within the limits drawn up by the selectional rules” ([76, p.126]).

In [77], words are analyzed with respect to their tendency to form clusters. “There is
‘a continuum in English words (including names), from those whose contextual company
' is entirely predictable (Angeles, Fidel) to those whose contextual company is entirely un-
predictable (therefore), but the evidence indicates that most of the words are to be found
towards the Angeles end of the scale™ ([77, p.172]). 4

In [2], a study of the phraseology of spoken English is motivated and presented. “The
native speaker’s ability to speak fluently and idiomatically can thus be ascribed to his
‘command of a great number of such preassembled phrases. This means that linguistic
competence must include a large and important phraseological component ... which acts as
an éla,stic link between the lexicon and the productive rules of grammar” ({2, p.3]).
-~ In [136], the nature of lexical items and their relation to grammar is examined, and two

principles of interpretations are stated in order to explain how meaning arises from text:

1) Principle of Choice. At each completion of a unit, a choice opens up and the only

constraint is grammaticality.

2) Idiom Principle. A language user has a large number of semi-preconstructed phrases

that constitute a single choice, even though it involves more words.

It is argued that the second principle is at least as important as the first, and one of the
reasons for this is the following. It is noted that the more frequent a word is, the less well
defined its meaning becomes. For the most frequent words, we are in fact talking about
usages rather than meanings. This is called progressive delexicalization. Most normal text
is ' made up of frequent words and of fhe frequent senses of less frequent words. This shows
that normal text is often delexicalized and it shows the use of the idiom principle.
In [121], frameworks’ are proposed in order to explain language patterning. It is argued
- that frameworks are very productive and therefore deserve closer examination. The exam-
- ined frameworks are discontinuous but do not extend over more than three words and can
therefore be captured in a traditional N-gram model. Nevertheless, the idea of a framework
éould;be extended to capture constructs that extend across this local context and could

therefore not be captured by a N-gram approach.

*Even though the immediat;é; context can be captured well with for example a tri-gram model, it requires
enormous amounts of data. Moreover, restrictions that extend over more than the two preceding words are

not captured.
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In [19], the usefulness of collocational constraints for natural language parsers is ex-
amined. The constraints provided by syntax as opposed to collocations are described as

follows:

“Syntactic constraints, by themselves, though are probably not very impor-
tant. Any psycholingnist knows that the influence of syntax lexical retrieval is
so subtle that you have to control very carefuﬂy for all the factors that really
matter (e.g., word frequency, word association norrhs, etc.). On the other hand,
collocational factors (word associations) dominate syntactic ones so much that
you can easily measure the influence of word frequency and word association
norms on lexical retrieval without careful controls for syntax” ([19, pp.79-80]).
However, syntax may be necessary to capture stronger constraints. “We be-
lieve that syntax will ultimately be a very important source of constraint, but
in a more indirect way. As we have been suggesting, the real constraints will
come from word frequencies and collocational constraints, but these questions
will probably need to be broken out by syntactic context. How likely is it for
this noun to conjoin with that noun? Is this noun a typical subject of that verb?
And so on. In this way, syntax plays a crucial role in providing the relevant
representation for expressing these very important constraints, but crucially, it
does not provide very much useful constraint (in the information theoretic sense)

all by itself.” ([19, p.80])

In [122], the notion of selectional restriction (see page 94) is formalized. This is achieved
by using an information-theoretic measure and it leads to the following interpretation of
selection constraints: “the strength of a predicate’s selection for an argument is identified
with the quantity of information it carries about that argument” ([122, p.iv]). This allows
us to measure quantitatively the strength of a selectional restriction. Using a manually con-
structed hierarchy of words ([107], [8]), this notion of selection restriction is used to perform
syntactic disambiguation of prepositional phases, coordination and nominal compounds.
The information in selectional restriction must therefore be strong enough to perform this
disambiguation.

Having seen evidence that collocational constraints satisfy the first two criteria of section
5.2.1, we now briefly address the third and fourth criterion.

With respect to the third criterion, computational efficiency, we note that since some of
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the collocational constraints require the identification of subject, verb and object, a parser
seems to be needed. As pointed out in section 5.2.1, it is very unlikely that we will be
able to use a full parser for the kind of language model under consideration in this thesis.
However, with recent progress in the area of partial parsing (see [141], [50], [51], [26]) it
seems possible to get parts of a parse with far less~corhputationa.1 effort. These parts of the
pairsé could be sufficient for our purpose. AlternatiVely, recent work in the area of neural
- networks (see [59]) might be extended to provide an efficient solution in the future.
The fourth criterion is the acquisition and coding of the knowledge for use with unre-
stricted text. Collocational constraints also pose serious problems in that respect. Progress,
~ for .example, in the automatic acquisition of subcategbrization frames (see [12] and [101])
- or in the availability of fully parsed corpora (see [102]):, could again be sufficient to acquire
- and code the knowledge of collocational constraints.
In the light of the evidence presented above, we believe that collocational constraints
are a good candidate to be included in a language model. However, we suggest a further
investigation of the extent to which collocation constraints that can not be captured in the

standard N-gram model, quantitatively satisfy criteria one and two of section 5.2.1.

5.3 How Can We Combine Useful Knowledge in a Language
Model?

In the last section, we saw how we could go about selecting useful knowledge. Once we have
decided on what knowledge is useful, we have to determine how to produce a probability
distribution that depends on the chosen knowledge in a meaningful manner. In section
5.3.1, we will present some traditional approaches to this problem. In section 5.3.2, we will

describe a very successful method that was proposed recently.

'5.3.1 Traditional Approaches for Combining Knowledge in a Language
Model

In Hearsay II ([33]), a typical example of knowledge based speech recogrition, different

types of knowledge are combined using a blackboard, a dynamic global data structure.

~ Different modules, corresponding to different types of knowledge, generate hypotheses, write

hypotheses onto the blackboard, and evaluate the plausibility of hypotheses found on the
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blackboard. This architecture is used to combine types of knowledge at different levels, e.g.
phoneme, word and sentence, which are not necessarily represented in terms of probability
distributions. However, in the case of the language model, we only need to combine different
existing probability distributions and this does not require the complicated asynchronous
architecture of a blackboard. In the following, we will present some simple mechanisms to
combine different probability distributions.

We will encode the event to be predicted (e.g. the next word) and the knowledge used
(e.g. the preceding word, the state of a parser) in terms of variables and their values. Let
Y denote the event to be predicted with a set of possible values {y,...,y,}. Following the
términology of decision trees (see section 2.5.4) and following the specific/general example of
the generalized N-pos model (see section 4.4), we will denote the knowledge by variables X;
with corresponding values {z;1, ..., iy, }. We will focus on the combination of two variables
X; and X3, but the concepts can be extended in a straight forward manner to several

variables.

1) Joint distribution. For each pair (X; = z;, X2 = z2;), this methods estimates a

separate distribution from frequency data.

2) Decision trees. This method estimates a separate distribution for a pair (X; =

T1i, X2 = ;) only if this significantly improves the quality of the model.

3) Deleted interpolation. This method constructs a separate distribution for each pair
(X1 = z1i, X2 = z2;), but not from frequency data of the joint distribution (as method
one). Instead, it combines the distributions of each variable according to A;;p(Y =
wlX1 = z1:) + (1 = Aij)p(Y = n|Xg = z9;). For each pair (X; = z);, X2 = x9;), the

A;j is estimated to optimize some criterion.

We will now illustrate these three methods by giving the probability distributions each
method would calculate in an example. In this example, the variable Y which we need to
predict only has two values ¥ € {N,R}. Y indicates whether the next word is a noun
(value N) or not (value R, R standing for rest). The variable X; also has two values
X, € {Adj,R}. X, indicates whether the previous word was an adjective (value Adj) or
not (value R). Similarly, the variable X3 has the two values X, € {Art, R} and it indicates
whether the second last word was an article (value Art) or not (value R). The values of the

probability distributions in this example were calculated from real data, namely from our



| CHAPTER 5. ADDING LINGUISTIC KNOWLEDGE TO LANGUAGE MODELS 101

X1 X; |p(Y=N) p(Y =R)| distr. name
Adj Art| 084 016 | p
Adj R 0.65 0.35 P2
R Art 0.26 0.74 3
R R 0.25 0.75 P4
~ Table 5.2: The joint distribution for ¥ given X; and X,
X, |p¥=N) p(Y=R)
Adj| 072 0.28
R 0.25 0.75

Table 5.3: The distribution for Y given X,

] trammg text of 50,000 words. The overall dlstrlbutlon for Y, 1ndependent of the variables
X, a.nd X2 is p(Y = N) = 0.28 and p(Y R) = 0 72. Tn other words, 28% of the words in

the text are nouns.

)

4

Joint distribution. This method directly samples the joint distribution and thus esti-

“mates a separate distribution for the four combination of values of X; and X,. The

resulting distributions are shown in table 5.2.

Decision trees. This method will estimate a separate distribution for a pair of values

~of X; and X, only if the resulting distribution is significantly different. As we can

see from table 5.2, the value of X, has a bigger impact on the distribution than the

value of Xj. Since varying X; while 'keeping X, fixed results in a large variation in

‘7 probabilities, the decision tree method therefore estimates a separate distribution for

B

These two resulting distributions are shown in table
= R does not
= Adj

The decision tree method

the two different values of X1.
5.3. Furthermore, we can see from table 5.2, that the distribution for X,
charige significantly for the two values of X,. However, the distribution for X,
does change signiﬁcantly depending on the value of X,.
could ‘theref‘ore split the first distribution in table 5.3 into two distributions, leading

‘to a total of three distributions shown in table 5.4.

Deleted‘i‘nterpdation. This method combines the two distributions of each variable

shown in table 5.5 to get four distributions p},py, p5 and pj that are used as approxi-

: ‘mations of the four joint distributions shown in table 5.2. The interpolation is linear
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X, X2 p(Y =N) pY = R)
Adj  Art 0.84 0.16
Adj R 0.65 0.35

R (R or Art) 0.25 0.75

Table 5.4: The distributions for Y given X; and X, constructed by the decision tree

X, | (Y =N) p(Y = R) | distr. name
Adj| 072 028 P1a

R 0.25 0.75 - P
X2 | p(Y =N) p(Y = R).| distr. name
Art | 0.41 0.59 P2a

R 0.27 0.73 Dab

Table 5.5: The distribution for Y given X and for Y given X,

according to the four parameters Agq, Agp, Ape and App:

/

Pi = Aae*Pra+ (1= Aaa) *P2a
Py = Aab* Pra+ (1 — Aap) * Pab
P = Mo *p1y + (1 — Asa) * P2g
Py = Ak pis+ (1 — Awp) * poy

‘Since value of X has a bigger impact on the resulting distribution, the values of the A’s
- will tend to be bigger than 0.5. We will use the values A,y = 1, Aqp = 0.77,Ape = 0.5

and Ap 1 because the resulting distributions shown in table 5.6 are very good
approximations to the joint distributions shown in table 5.2. In fact, by comparing
table 5.2 and 5.6, we can see that all approximations except for p) are identical to the

joint distribution.

We will now discuss the advantages and disadvantages of the three methods in general.

distr. name | p(Y = N) p(Y = R)
7 0.72 0.28
p’2 0.65 0.35
Ph 0.26 0.74
7, 0.25 0.75

Table 5.6: The approximations to the joint distributions constructed by deleted interpolation
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One advantage of the joint distribution method is its simplicity. It is very easy to im-
plement and it does not require a lot of computational resources to construct the joint
distribution. Moreover, it directly samples the joint distribution. This means that the
method will usually get closer to the true joint distribution than methods that try to ap-
proximate it based on the component distributions (eg the deleted interpolation method).
One big disadvantage is the amoum of data it requires. For each pajf (X, = T1i, Xo = T2;5),
it tries to estimate the entire distribution. It therefore has to estimate | X1] * | Xo] * |Y]
probabilities. Especially in the case of language models, Whére thé number of values for ¥
is very large, this requires an enormous amount of dat'ar.i Consider for é&ample, the tri-gram
language model presented in the review section (section 2.5.2). Y corresponds to the next
word, X to the last word and X to the second last word. It samples the joint distribution
di‘rréc‘i‘;lyrandr may have around 10'? parameters to estimate. This requires many million
words of training text and even then, the tri-gram estimates are combined with bi-gram or
uni-gram estimates using the deleted interpolation mjethod. Another disadvantage of the
joint distribution methiod is that it constructs a Sépafate distribution for all pairs, even if
some of them will lead to very similar distributions.

“The main advantage of the decision tree method is that it only constructs the joint dis-
tribution for a pair (X; = 21;, X2 = z2;) if this will significantly improve the performance.
This will usually result in fewer distributions performing about as well as the joint distri-
bution method. For that reason, the decision tree method can easily be applied to many
variables at a time. thei‘eas method one would not have nearly enough data to sample the
overall joint distribution, this method will only construct it at the point where it results
in a signiﬁca,nt'imp'roveme‘ﬁt for the given data. The main disadvantage is the computa-
tional complexity of the algorithm. It is harder to implement and may require an enormous
amount of computation. As stated in [16], the algorithm for finding the optimal partitioning

for classification and regression trees is exponential in the number of values of the variables
X. However, a loréally'optima.l partition can be found in time linear in the number of value

for X for e‘ach' iteration. |

One of the adVé,ntages of the deleted interpolation method is again its simplicity, making

it easy ‘to implement ‘and' fast to execute. Furthermore, it does not require a lot of data

because it does not attempt to directly sample the joint distribution. Instead, for each pair

(X1 = 214, X2 = @g5), it approxjmates the joint distribution by a linear combination of the
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- two components. For each pair, it therefore only has to estimate the one interpolation pa-

rameter. Its main disadvantage is that the combination of the two component distributions
rmay not get very close to the joint distributions. In cases where there is enough data to
~ sample the joint distribution directly, this may lead to poor performance.

- Adding several knowledge sources to a language model is one instance of the general
trend to construct richer probabilistic models of'lahguage.r As pointed out in [122, p.1], this
appears to be a trend in practical and theoretical work on language. One example of this
trend is that the Penn Treebank is moving towards the annotation of text with predicate-
argument structure, not only with surface linguistic structures (see {102]). Another is the
use of probabilistic models for tagging (see for example [18] [28] and [90]), parsing (see for
~ example [9]), and many other applications.

However, one of the main problems with richer probabilistic models is the sparseness
of data. This is for example pointed out in [115, p.183]: “It is well known that a simple
‘tabulation of frequencies of certain words participating in certain configurations, for example
~ of frequencies of pairs of a transitive main verb and the head noun of its direct object, can
ot be reliably used for comparing the likelihoods of different alternative configurations.
The problem is that for large enough corpora, the number of possible joint events is much
large than the number of event occurrences in the corpus, so many events are seen rarely or
never, making their frequency counts unreliable estimates of their probabilities”.

From this perspective, it seems unlikely that we will be able to sample joint distributions
forrmany different types of knowledge, even with ever growing corpora. We can therefore
expect that approaches that do not require this sampling (like the deleted interpolation
method) will find widespread use. One recently pfoposed method, that can integrate dif-
ferent types of knowledge, will be presented in the next section. A second approach, which
has been shown to integrate constraints from different levels on a smaller task (see [72]) , is
the use of neural networks. Their application to this task could be the subject of a further

study.

5.3.2 The Maximum Entropy Approach to Combining Knowledge in a
Language Model

Trying to use different probability distributions to produce one combined distribution is
a problem that appears in many tasks. The maximum entropy principle from the area of

statistics (see [25], [61]) is a very general approach to this problem. Recently, this approach
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" has been applied successfully to language modeling (see [93], [94], [126]). A summary of this
~ work is given below.

The maximum entropy approach pr‘oposes the following two steps:‘

1) Rewrite the different probablhty estlmates as constra.lnts on the expectatlons of various

functlons, that the comblned estlmate has to satlsfy

2) From the set of all pOSSlble probablhty dlstrlbutlons satlsfylng the constraints, choose
' 7 the one that has the hlghest entropy ' ‘ ‘

Suppose we are trylng to estimate a (joint),probability function p(X = ), = (1,0, Tp)-
Using k constraint funetions fi(z),1 < i<k, wecan impose k constraints coming from dif-

ferent types Of knowledge on the resulting distribution P(X = a:) in the followmg manner:
ZP(X = z)fi(z) = c,,l <ig k

“As an exa;mple,y if we choose
: : 1 ifz= Tp
fi(z) =
@) 0 else ’

the constraint flr imposes that the value of p(zg) is ¢;. In general, f;(z) can of course be of
a different form thus allowing more complicated constraints for p(X = z). Given such a set
of k consistent constrajnts, we can then use the algorithm of generalized iterative scaling
([25]) to find the p(X = z) satisfying these constraints that has the highest entropy. We

can guarantee that a unique function p(X = z) exists and that it is of the form

where the Wi are constants that have to be found by the generalized iterative scaling algo-

‘rithm. , ; , o
- For a model that combines the distribution obtained by the maximum entropy approach

- with a standard tri;gra.m model, a reduction in perplexity of about 30% compared to the
standard tri-gram model was achieved.

~ The advantages of the ma.ximum entropy approach are

1) ‘The maximum entropy' principle is simple, intuitively appealing, imposes all of the

'rrgiven constraints and does not assume anything else.
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2) The maximum entropy principle is extremely general. It can be used for any conceiv-

able linguistic or statistical phenomenon.

3) Information captured by traditional Ianguage models can be incorporated into the

maximum entropy principle.

4) The generahzed iterative scaling algorithm can be adapted mcrementa.lly, thus allowing

the addition of new constraints or the rela.xatlon of old ones

5) The generalized iterative scaling algorithm irsrg'ura,ra,nteed to converge to the unique

solution under assumptions that can be met in practice.
‘The weaknesses of the maximum entropy approach are -

1) The generalized iterative scaling algorithm is computationally very expensive 3. For
the experiments described in [126], the algorithm ran in parallel on an average of 15

high performance workstations and it took three weeks to complete.

2) Even though the algorithm is guaranteed to converge, we do not have a theoretical

bound on its convergence rate.

3) When we add constraints that are not satisfied by the training data — and this is
sometimes desirable — the theoretical results guaranteeing existence, uniqueness and

convergence of the algorithm may not hold.

7 Nevertheless, we can see from the results presented in [126] that this is one of the
rare times a standard tri-gram model is outperformed significantly and consistently. This

epproach therefore holds considerable promise for future work.

5.4 Summary

In this chapter, we motivated the addition of knowledge to language models; developed
different criteria for identifying useful knowledge, and presented methods for combining
knowledge in a language model.

We began by pointing out three reasons for wanting to add knowledge to a language

model. First, we would like to improve the model’s performance. Second, if we apply

SEven though only the training part, which can be done off line, is expensive, its computational complexity
‘may prevent the application of the algorithm to very large data sets for reasons of practicality.
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- current speech recognition technology to more complex tasks than the ones tackled today,
the number of é,couStica,lly confusable hypotheses will increase, and we will need a better
la.ngua.ge model in order to deal with this ambiguity. ‘Third, adding knowledge is more
satisfying than strckrng to existing models on psychological grounds because humans seem
to use knowledge to predrct a word other than the knowledge used in current models, namely
the nnmedlately preceding two or three words. Hence, there is ,clearly’ a need for a language
.. model which incorporates more linguistic knowledge. : ‘ : '

Once we ha.d decided to add knowledge to a language model the followmg two questions
Vca.meto mind. First, what knowledge should we_add, and second,;how can we combine

different types‘ of knowledge 1n a language model. We addressed botlr issues in turn.

‘Rather than trying to give a necessarily incomplete list of 'types of ‘knowledge that
- we should add we presented four criteria that we think: should be used to identify useful
: 'knowledge “First, the knowledge should restrict the. number of possrble words, otherwise
it is not going to help in solving our task. Second, it ;should be applicable often enough
to be of statistical significance. Third, it should be possible computationally to use this
knowledge in real time speech recognition. Finally, we should be able to acquire and code
 this knowledge for use with unrestricted text. Moreover we developed a classification of
~ possibly useful knowledge and applied the criteria for identifying useful knowledge to one
kind of knowledge, that promises to be useful to improve language models in general.

We then moved on to the issue of combining different knowledge in a language model. We
presented three rnethods for combining knowledge and developed some of the advantages and
disadvantages we see in each method. Following Vtha.rt, we concluded that it is very unlikely
that we will hav,e‘enough data to estimate distributions that depend on several knowledge
sources directly, even with the availability of increasingly large corpora. Therefore, we think
- that methods that combine distributions from single knowledge sources in a meaningful
fashion will be very useful and require further investigation. One method shown to be very
useful in recent work is the maximum entropy principle and it shows great promise for future

work. -



Chapter 6

’Summary of Results and Future

Work

The main contribution of this thesis is the idea of applying error analysis to language
models. We define what we mean by error or weakness of a language model and we show
~ how an analysis of weaknesses is useful in improving a concrete model. Thus, in addition to
the concrete results we obtained, we have shown how one can go about improving language
models in general. We could therefore call this “meta language modeling”. In the remainder
of this chapter, we will give a more detailed summary of our results (section 6.1). This will

be followed by possible extensions to our work (section 6.2).

6.1 | Summary of Results

In this thesis, we set out to improve existing language models for speech recognition. Since
it is a widely accepted fact that knowing the errors or weaknesses of any kind of model
makes it easier to improve the model, we proposed to perform an analysis of the weaknesses
* of language models. We defined in general terms what we mean by a weakness of a language
model and analyzed fhe weaknesses of a particular, commonly used model. This analysis
led, among other things, to an improvement in the model’s performance ranging between
14% and 21%. This shbws, in a concrete case, the usefulness of performing an analysis of
weaknesses of a language model.

In order to analyze the weaknesses of a language model, we first needed to define what

108



| CHAPTERO‘. SUMMARY OF RESULTS AND FUTURE WORK 109

we mean by a weakness of a language model. Given a part of the model, we measured its
| impact on the overall performance of the model in terms of the percentage of the LTP, a
‘measure closely related to the standard perplexity measure used to evaluate the language
‘model perforfnance. We then defined a weakness of a rﬂodel as a part of the model that has
- a big imp:ﬁ:t on the overa.ll performance. Does this rdeﬁnition confbrm to the intuitions we
“have about the word weakness? Intﬁitively, a weakness should be something that needs to
be'irﬁprOVed. Given our definition, weaknesses ,c'atrl’se' a considerable fraction of the overall
performance measure and this means that impfovin*g them is important for the overall
performance. Our definition therefore agrees with our intuition.  Furthermore; the definition
is directly ‘applicable to almost all currently used language models .(except probabilistic
conterxt'freé grammars) ax 1 the calculations involved in idehtifying weaknesses are very
stra;irght forWard. 7 7 |

In order to show the usefulness of our definition of weakness and of the analysis of
weaknesses in general, we performed this analysis on a commonly used bi-pos language
model. We chose a corpus and a model for our work and verified that our model is well
~ trained with the amount of training data we use. This led to the development of the
adjusted perplexity measure APP, which gave us a flexible way of making results of models
with different sample spaces more comparable. We then analyzed the weaknesses of our

model giving the following results:

1) We identified three weaknesses, the prediction of words in a very small number of
| ‘contexts, the prediction of unknown words, and the prediction of words given their
_part of speech. We thus gained considerable additional insight into the model. This
insight is helpful in improving our model, but it is also relevant to other language
models. The last weakness in particular is important with respect to the recent interest

‘in probabilistic context free grammars as language models. Even though probabilistic
context free grammars might improve the prediction of the next part of speech, they

are un]_ikely to improve the prediction of the word given the part of speech. They

-therefore do not address this important weakness at all.

2) ‘We improved one of the weaknesses, the prediction of unknown words, by introducing
- a new modeling for unknown words. This leads to an improvement of the model’s

performance ranging between 14% and 21%.

.-3) In order t o addfess the third weakness, the prediction of words given their part of
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speech, we developed the generalized N-pos model. It can incorporate linguistic infor-
mation, even if it extends over many words, and the information used for the prediction
of the word given the part of speech in this model can be different from the informa-
tion used to predict the part of speech. It is important that the model allows for this
because even though the immediate context (e.g. the two or three preceding words)
contains a lot of information about the part of speech of the next word, we can argue

that useful semantic information that restricts the actual word may be further away.

4) Our work, in particular the generalized N-pos model, led us to the following questions

about language models in general:

a) what knowledge should we add to language models in order to improve their

performance?

b) how can we combine different types of knowledge in a language model?

To help answer the first question, we developed four criteria useful in deciding whether
a given type of knowledge is useful. Rather than having to implement all possible types
of knowledge, we can thus select the more promising ones. With respect to the second
question, we presented and evaluated some existing techniques that can be used for

this task.

| 6.2 Future Work

‘'The most immediate extension to our work is to try to improve the bi-pos language model
with respect to the weaknesses identified in section 4.3.1. What information would we need
in order to decide on the tag that will follow a noun? Does this knowledge satisfy the criteria
set out in section 5.2.17 One possibility might be to divide all tae nouns into two groups
~(e.g. two tags) - the nouns that are often followed by other nouns and the ones that are
not. |

Another obvious extension is to apply the idea of analyzing weaknesses of a language
model to other existing models. This can be done for N-gram, N-pos, decision tree based
or cache based models. Furthermore, the idea is applicable to other languages (e.g. French,
German, Japanese etc.) as well as to language models that are not based on the word level

(e.g. syllable, phoneme, etc.). For each model, this can show whether their weaknesses
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are similar to the weaknesses of our model and where the analysis of weaknesses leads to

improvement in these models. This extension should be very straight forward and we do
not anticipate any difficulties. h

| Furthermore, we could apply the criteria for judging the usefulness of one type of knowl-
‘edge to selectional restrictions, a type of knowledge identified as potentially useful for lan-
guage models. We could then decide whether it is W6rth,incorpor;ting selectional restriction
into language models and whether we can expect a sigﬁiﬁcanf :improﬂ'ement in performance
by doing so. To this end, we might be able to use the same data as in [122]. Alternatively,
we éoﬁld‘use a stochastic tagger and a very primitiﬁe'heﬂris:ﬁic to identify, for example,
verbs and their direct objects. This would allow us to extract the necessary data from any
text, rather than being restricted to a fully parsed cdrpﬁs, and this would make the whole
process very flexible. R 7 7

- ~ Moreover, we could perform a systematié study of the usefulness of different types of
knoWledge (e.g. phonological, prosodic, syntactic, semantic) for a language model. Quanti-
tative results of such a study would be very valuable to the research community because it
could help in steering its future research efforts. In order to perform this kind of study, we
would require a corpus annotated with many different kinds of information. Depending on
the required amount of data, this could be hard to find at the moment, but we think that
it will surely become available in the future.

Besides language modeling for speech recognition, we can also apply the idea of analyzing
weaknesses of probabilistic language models to other areas that use N -gram statistics. One
examplé is handwriting and optical character recognition. Analyzing the weaknesses of the
models and irynproving'them afterwards could lead to an improvement in performance in

these areas.



‘Appendix A

Sample Text

“In this section, we give a sample of section A0l of the LOB corpus. Each item in the text

is made up of two parts joined by an underscore (‘). The first part is the word itself (for

-example ‘a’), and the second part is the tag associated with this occurrence of the word

(for example ‘AT’ for article). Any item that has these two parts is part of the text and

‘needs to be predicted by the language model. These items include quotes, commas, colons,

and other punctuation marks. The tags are listed and explained briefly in Appendix B. For

more details on the form of the corpus see [71]).

A01
A01
A01

A0t
A01
A01
A01
A01
A01
A01
A01
A01
A01
A01
A01
A01
A01
A01

2
3
4
4
5
5
6
6
7
7
8
9
9

10
10
11
12
13

~

*’ %’ stop_VB electing VBG life NN peers NNS #*’_#x’> . _
~ by_IN Trevor_NP Williams_NP . _

~ a_AT move_NN to_TO stop_VB \OMr_NPT Gaitskell_NP from_IN
nominating _VBG any_ DTI more_AP labour_NN
life_NN peers_NNS is_BEZ to_TO be_BE made_VBN at_IN a_AT meeting_NN
of _IN labour NN \OMPs_NPTS tomorrow_NR ._.

~ \OMr_NPT Michael NP Foot_NP has_HVZ put_VBN down_RP a_AT
resolution NN on_IN the_ATI subject_NN and_CC
he_PP3A is_BEZ to_TO be_BE backed_VBN by_IN \OMr_NPT Will_NP
Griffiths_NP ,_, \OMP_NPT for_IN Manchester_NP
Exchange_NP ._.

" though_CS they PP3AS may _MD gather VB some DTI left-wing_JJB
support _NN ,_, a_AT large_JJ majority NN
of _IN labour NN \OMPs_NPTS are_ BER likely_JJ to_TO turn_VB down_RP
the_ATI Foot-Griffiths_NP
resolution_NN ._.
© %’ _%’ abolish VB Lords_NPTS #x’_##%’ | _
® \OMr_NPT Foot’s_NP$ line_NN will_MD be_BE that_CS as_CS labour_NN
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A01
A01
A01
A01

 AO01

201
A01
A01
A01
A01

© A01

A01

A01

A01
- A01

~ AO01
"~ AO1

A01
A01
A01
A01
A01
A01
A01
A01

A01
A01

AO1

A01
A01
01
01
01
A01
401
01
201
Aot
A01
A01L

13
14
14
15

‘16

16
17

17

18
19
19
20
20

21
21-

22
23
24
25
25
26
26
27
28
28
29
29
30
30
31
32
32

33

33
34
34
35
35
36
37

\OMPs_NPTS opposed_VBD the_ATI
government_NN bill_NN which_WDTR brought_VBD life_NN peers_NNS into_IN
eiiStence_NN »—» they_PP3AS should_MD
not_XNOT now_RN put_VB forward_RB nominees_NNS‘._.

~ he_PP3A believes_VBZ that_CS the_ATI House_NPL of_IN Lords_NPTS
should_MD be_BE abolished_VBN and_CC that_CS
labour_NN should_MD not_XNOT take_VB any_DTi stéps_NNS which_WDTR
would_MD appear_VB to_TO *7_%’ prop;VB up_RP. *x 7 %x? an_ AT
out-dated_JJ institution NN ._. .

~ since_IN 1958._CD ,_, 13_CD labour_NN liie_NNrpéers_NNS and_CC
peeresses_NNS have_HV been_BEN created_VBN ._.

~ most_AP labour_NN sentiment_NN would_MD still_RB favour_VB the_ATI
abolition_NN of_IN the_ ATI
House_NPL of _IN Lords_NPTS ,_, but_CC while_CS it_PP3 remains_VBZ
labour_NN has_HVZ to_TO have_HV an_AT adequate_JJ
number_NN of _IN members_NNS ._
~ Africans_NNPS drop_VB rivalry_NN to_TO fight_VB Sir NPT Roy_NP ._
~ by_IN Dennis_NP Newson_NP ._.

- the_ATI two_CD rival_JJB African_JNP nationalist_JJ parties_NNS
of _IN Northern_NP Rhodesia_NP
have_HV agreed VBN to_TO get_VB together_RB to_TO face VB the ATI

challenge NN from_IN Sir_NPT Roy_ NP

Welensky NP ,_, the_ATI federal_JJ Premier NPT ._.

~ delegates_NNS from_IN \OMr_NPT Kenneth NP Kaunda’s_NP$ united_JJ
national_JJ
independence_NN party_NN (_( 280,000_CD members_NNS )_) and_CC \OMr_NPT
Harry_NP Nkumbula’s_NPs
African_JNP national_JJ congress_NN (_( 400,000_CD )_) will_MD meet_VB
in_IN London_NP today_NR to_T0
discuss_VB a_AT common_JJ course_NN of _IN action_NN ._

~ Sir_NPT Roy_NP is_BEZ violently_RB opposed VBN to_IN Africans_NNPS
getting VBG an_AT elected_JJ
majority NN in_IN Northern_NP Rhodesia NP ,_, but_CC the_ ATI
colonial_JJ Secretary_NPT ,_, \OMr_NPT Iain_NP
Macléod_NP ,_, is_BEZ insisting_VBG on_IN a_AT policy_NN of_IN
change NN ._.

~ sir_NN Roy’s_NP$ united_JJ federal_JJ party NN is_BEZ
boycotting_VBG the_ATI London NP talks_NNS on_IN
the_ATI protectorate’s_NN$ future NN ._.

~ gaid_VBD \OMr_NPT Nkumbula_NP last_AP night_ NN :_

*’_*x’
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A01
A01
A0l
A01
A01
A01
A01
A01
A0t

A01

A01
A01
A01
" a01
K01
A0t
A01
A01
A01
A01
A01
A01
A01
A01

37
38
38
39
39
40
41
41
42
42
43
44
44
45
45
46

46 .
47

47
48
48
49
49
50

we_PP1AS want_VB to_TO discuss_VB what_WDT to_TO do_DO
if_CS the_ATI British_JNP government NN gives_VBZ in_RP to_IN Sir NPT
Roy_NP and_CC the_ATI talks_NNS fall_VB
through_RP ._. " there_EX are_BER bound_ VBN to_TO be_BE
demonstrations_NNS ._. %%’ _**’ v
~ all_ABN revealed_VBN ._.

- yesterday_NR Sir_NPT Roy’s_NP$ chief_JJB aide._NN.,_, \OMr_NPT
Julius_NP Greenfield_ NP ,_,

telephoned_VBD his_PP$ chief NN a_AT report_NN dn_IN’his_PP$'talks_NNS
with_IN \OMr_NPT Macmillan_NP at_IN
Chequers_NP ._

~ \OMr_NPT Macleocd_NP went_VBD on_RP with_IN the_ATI conference_NN
at_IN Lancaster_ NP House_NPL
despite_IN the_ATI crisis_NN which_WDTR had_HVD blown_VBN up RP ._. ~
he_PP3A has_HVZ now_RN revealed_VBN his_PP$ full_JJ
plans_NNS to_IN the_ATI Africans_NNPS and_CC liberals_NNS attending_VBG

~ these_DTS plans_NNS do_DO not_XNOT give VB the_ATI Africans_NNPS

the_ATI overall_JJB majority NN they_PP3AS ;
are_BER seeking VBG ._. ~ African_JNP delegates_NNS are_BER
studying_VBG them_PP30S today_ NR ._.

~ the_ATI conference NN will_MD meet_VB to_TO discuss_VB the_ATI
function_NN of _IN a_AT proposed_JJ
House_NPL of_IN Chiefs_NPTS ._
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- Appendix B

The Four Tagsets Used in Our

EXperiments

The four tag sets used in our experiments are reproduced here. The first column contains

the tag set as part of the LOB corpus distribution. The second, third, fourth and fifth
column. correspond to the tag sets with 135, 88, 42 and 24 tags each. They were mostly
produced by joining tags with the same prefix and are thus dependent on the original set.

LOB . 135tags 88 tags 42 tags 24 tags example or explanation
oo ! ! PU exclamation mark
&FO &FO &FO &FO F formula
&FW  &FW &FW &FW F foreign word
( ) ) ) BR left bracket
) ( BR right bracket
’ oo® * ® . BR"~  begin quote
* *¥2 **> R BR end quoté
- *. *. *. PU dash
s , , , PU comma
—_ —_ —_ — PU dash
‘ - PU full stop
PU ellipsis
PU colon
; : ; ; ; PU semicolon
7 ' ? ? ? PU question mark
ABL ABL AB AB A pre-qualifier (quite)
ABN. . ABN  AB AB A pre-quantifier (all)
ABX ~ ABX AB.  AB A double conjunction (both)
A post-determiner (few)
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APS$ APS$
APS APS
APS$  APSS$
AT AT
ATI ATI
~ BE BE
BED BED
BEDZ BEDZ
BEG BEG
BEM BM
BEN BEN
BER BER

- 'BEZ BEZ
cC cC

~ CD CD
CD$ CDS$
CD-CD CD-CD
CD1 CD1
CD1$  CDi$
CD1S  CD1S
CDS CDS
Cs CS
DO DO
DOD DOD
DOZ DOZ
DT DT
DT$ DTS$
DTI DTI
DTS DTS
DTX DTX
EX EX
HV HV
HVD HVD
HVG HVG
HVN HVN
HVZ HVZ
IN IN
1 1
JIB JIB
JIR 1R

THE FOUR TAGSETS USED IN OUR EXPERIMENTS

AP
APS
APS
AT
AT
BE
BED
BEDZ
BEG
BEM
BEN
BER
BEZ
cC
CD
CD
CD
CD1
CD1
CD1
CD
Cs
DO
DOD
DOZ
DT
DT
DTI
DTS
DTX
EX
HV
HVD
HVG
HVN
HVZ
IN
1
JIB
JIR

AP
AP
AP
AT
AT
BE
BE

BE
BE
BE
BE
BE
cC
CD
CD
CD
CD
CD
CD
CD
CS

DO
DO
DO
DT
DT
DT
DT
DT
EX
HV

HV

HV
HV
BHv
IN
JJ
JJ
JJ

>

AT
AT
BE
BE
BE
BE
BE
BE
BE
BE

CD
CD
CD
CD
CD
CD
CD

DO
DO
DO
DT
DT
DT
DT

DT -

EX
HV
HV
HV
nv
HV
IN
JJ
JJ
JJ

other’s

others

others’

singular article (a)

singular or plural article (the)
be

were

was

being

am

been

are

is

co-ordinating conjunction (and)
cardinal (2) 7

cardinal with genitive
hyphenated pair of cardinals
one ' '

one’s

ones

cardinal with plural (tens)
subordinating conjunction (after)
do

did

does

singular determiner (another)
singular determiner with genitive
singular or plural determiner (any)
plural determiner {these)

double conjunction {either)
existential there

have

had

having

past participle (had)

has

preposition (about)

adjective

attributive-only adjective (chief)

comparative adjective
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JIT T
JNP  INP
MD MD
NC  NC
NN NN
NN$- NN$
NNP - NNP
NNP$.  NNP$
NNPS. = NNPS
NNPS$- NNPS$
NNS NNS
NNS$  NNS$
NNU  NNU
NNUS- NNUS
NP. - NP
NP$  NP$
NPL-  NPL
NPL$  NPLS$
NPLS .~ NPLS
NPLS$ NPLS$
NPS “NPS
NPS$  NPS$
NPT ~ NPT
NPT$  NPT$
NPTS = NPTS
NPTS$ NPTSS$ -
NR NR
NR$  NR$

' NRS - NRS
NRS$  NRS$
oD oD
OD$ oD$
PN PN
PN$ PN$
PP$. - PP$
PP$$  PP$$
PPIA  PPIA
PP1AS PPIAS
PPIO  PPIO
PP10S

PP10S
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JIT
JIP
MD
NC
NN
NN
NNP

'NNP

NNP
NNP
NNS
NNS
NNU
NNU

. NP

NP
NPL
NPL
NPL
NPL
NPS
NPS
NPT
NPT
NPT
NPT
NR
NR
NRS
NRS
oD
oD
PN .
PN
PP
PP
PP1
PP1
PP1:

PP1

R e

22222222222222222222222222’11%::

o O
o o

" Ba * o Bl < e - Bilie - B < BNg o

superlative adjective
adjective with word-initial capital (English)
modal auxiliary (can)

cited word

singular common noun

singular common noun with genitive

smg c. noun w. word-initial capltal (English)
same as above with gemtlve

plural common noun with word-initial capital
same as above with gemtlve :

plural common noun

same as above with gerﬁtive

abbr. umt of meas. unmarked for number (hr)
abbreviated unit of meaéurement
Sir'igular'properk noun -- - '

same as above w1th gemtlve

sing. locative noun w. word-initial: cap. (Abbey)
same as above with genitive

plural locative noun with word-initial capital
same as above with genitive

plural proper noun

same as above with genitive

sing. titular noun w. word-initial cap. (Archbishop)
same as above with genitive

plural titular noun with word-initial capital
same as above with genitive

singular adverbial noun (January)

same as above with genitiver

plural adverbial noun

same as above with genitive

ordinal (1st)

same as above with genitive

nominal pronoun (anybody)

same as above with genitive

possessive determiner (my)

possessive pronoun (mine)

personal pronoun (1)

personal pronoun (we)

personal pronoun (me)

personal pronoun (us)
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PP2 PP2
PP3  PP3
"PP3A  PP3A
PP3AS PP3AS
PP30  PP30
PP30S PP30S

PPL°  PPL
PPLS  PPLS
QL QL
QLP QLP
RB RB
RB$ RB$
“RBR  RBR
RBT RBT
RI RI
RN RN
RP - RP -
TO TO
UH UH
VB VB

-~ VBD VBD
VBG  VBG
VBN VBN
VBZ VBZ
WDT  WDT
WDTR WDTR
WP WP
WP$ WP$
WPSR  WPSR
WPA  WPA
WPO  WPO
WPOR  WPOR
WPR  WPR
WRB  WRB
XNOT XNOT
77 77
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PP
PP3
PP3
PP3
PP3
PP3
PPL
PPL
QL
QL
RB
RB$
RBR
RBT
RI
RN
RP
TO
UH
VB
VBD
VBG
VBN
VBZ
WD
WD
WP
WP
WP
WP
wP
WP
WP
WR
XNOT
77

T YUY Y YY T

sl -

XTI AT LOO

=
O

UH

ja=Bia -y v Biie~ e e Hie - Rk - Biis s Bl - BE G IR IR

Q
=

personal pronoun (you)
personal pronoun (it)
personal pronoun (she)
personal pronoun (they)
personal. pronoun (him)
personal pronoun (them)

singular reflexive pronoun

oYYV YT YT

plural reflexive pronoun
qualifier (as)
post-qualifier :(enough)

[l

adverb

same as above with geniti’ve

comparative adverb

superlative: adyrverb

adverb (hbmbgraph of preposition: below)
nominal adverb

adverbial particle (back)

infinitival to

IR IAIRITOO

3
Tz O

interjection

base form of berb

past tense of verb

present participle, gerund
past participle

3rd person singular of verb
WH-determiner (what)
ViH-determiner, relative (which)
WH-pronoun (who)
WH-pronoun (whose)
WH-pronoun, relative (whose)
WH-pronoun (whosoever)
WH-pronoun (whom)
WH-pronoun, relative (whom)
WH-pronoun (that)
WH-adverb: (how)

XNOT  not

F letter of alphabet (e)

s~ Tia = Biia - Biia« By < By~ Billa o Biaw Hila e B« B R O T I
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Appendix C

The New Model of Unknown
Words

In this‘r appendix, we will show that the new modeling of unknown words, as proposed in
section 4.3.2, ensures that the sum of probabilities of all possible words is 1.
As stated in section 4.3.2, the probability of the word wy, given the tag g(w[i — 1]) of

the last word is

P(uli] = wiluli - 1))
( Srecl(t—usdy = dy e s flg(wlil) = g5lg(wli~ 1) +e2)
*f(w[i] = w,]g(w[i]) = gj)] if w; € V and w; was seen
dy’ ' if w eV but w; unseen

Zg,ec dg; * (61 « Jo(uli) = gilg(wli— 1) +¢2)  Huw gV

with ¢; = 1—|G|*¢3. The following calculation shows that the sum of the probabilities of all
the words in the vocabulary plus the probability of the generic unknown word ‘UNKNOWN’

~ is equal to one.

8 = Y Pw)+P(UNKNOWN)+ ¥ P(w)
w is unseeﬁ : . weVand seen
= A+4B + C
- ‘ A = ux* dl
B = ) 4 * (01 * f(g(wM) = sulg(w[z = 1)) + c2)-

gJEG
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c = Y Puli]=wlg(wi-1))

wEVand seen

= Y (- wsdi—dy)er* Fg(wlil) = gila(wli~ 1)) + c2)

w€Vand seen g;€G
*f(wli] = wlg(w(z] = g;)]

= S (- uwdy —dy) * (er % fa(wlil) = g5lg(wli — 1])) + e2)

g;€G

* Z P(wlt] = w|g(w[i - 1])

w€Vand seen

= (- usdi - dy,) * (e x Slgwlid) = gilg(wli = 11) + c2)

9;€G

= Y dyy # er % f(g(wli)) = gjlg(wli ~ 1) + e2)

9166

+ D (I—uxdi—dg)+(cr* flg (wlil) = gjlg(wli ~ 1])) + e2)

g9;€G

= Y (1-uxd)*(c*flg (wli]) = g3lg(uli = 11)) + e2)

g;€G

= (l-—uxdy)* (Cl * Z f(g(wle]) = g;lg(wli = 1])) + IG[C?)

g;€G
= (1—u=*d))*(c; +|Gler)
= (l—u*dl).
§=A+B+C

= uxdi+(1—uxdy)=1.
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- Appendix D~

The Generallzed N—pos Model -
‘v]?artI[

: In this appendix, we will show that the generahzed N -pos model mtroduced in section 4.4.1
| ensures that the sum of the probabilities of all the words is one.
As stated in sectxon 4.4, 1 the proba,blhty of the word wy, glven the varlables X 1y~ Xr.,_s

is

wmswmt'xﬂ)

ZpMﬂd - 41X, X0) # (0l = wilg(0li]) = g5, Xet, o Xer

I the following, we will use p;(g;|X,) as a short hand for p(g(w[z])‘- gJIXl, , Xr) and
p2(wi]gj, Xr+4s) as a short hand for p(wli] = wi|g(w[i]) = Gis Xrg1y ooy Xrys).

We assume that p;(g;|X,) and pa(w|g;, Xr4s) are probability distributions for all com-
binations of values of variables X}, 1 S k<r+s and tags g;,1 £ 3 <t. In other words:

j=t

’ ZPI(QJIX ) =1

and -
o I=m

EP2(wl|gJ’ r+s) = 1

: Thxs is for- exa.mple the case if pl(gJIX ) and pg(w1|gj, ,.+,) are constructed from frequency

- “data and it is in gener_al a reasonable assumption.

: .717217
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122

We can now show that the sum S of the probabilities. of all the words in the vocabulary

is one:

Z‘ Z p1(gler)‘* pz,(wdgj’XH-s)

w eV g;€G

Y (@i 3 palw

9,€G

Z pi(g;|Xr)
9;€G

1.

l]gjv er—s)'



Ap‘pendiX E

o The Generallzed N—pos Model —
"‘*'Part II

In this'a,ppendix, we want to show that the generalized'VN -pos model reduces to the N -gram
- model. For ease of reference, we repeat the formula for the generalized model:

p(wli] = whlXa, oo Xim) =

=Y ple(wli)) = 651 X1, .y Xa) * p(wli] = wrlg(wli]) = 95, Xns1, s Xnpm).
9;€G

If we chose n = N — 1, Xop=Xi=w;_,l=1,..., N -1, we obtain

: p('I.U[I]=1UI¢lX1, "‘X—m)=
o= E plg(wli]) = g,|w[1 ~N+1:1i—1])*p(w[i] = wklg(w[s]) = gj,w[i = N + 1:i-1)).
7 gJGG
If we further assume that the probabiljties are estimated from frequency counts denoted
by the function f(), we have

p(wli] = wrl X1, o Xon) =
3 alatw ) = gl = ¥ 4124 = 1)+ (0l = wel(uf]) = gy i = ¥+ 155 -1) =
‘g; €G

Zf(g(w )= guli- N 41 :—11)*f(w[a]wk,g(w[:])—gj,w[:—zv+1 i-1)
fwfi—=N4+1:9-11) fla(wi) =gj,wi—N+1:1-1))

© g9j€G

F(w[i] = wk, g( w[t])——g,,w[i-—N+1 1-—1])
L fWli-N+1:1-1)])

9;€G
- f(w[i) = wk, w[i ‘—‘N +1:i~1])
B R (7= E Y RrE)
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Since the frequency counts are usually smoothed before they are used to estimate the
- probabilities, the generalized N-pos model will not be exactly the same as the N-gram
B model. However, as these calculations show, it will be an approximation of it, based on the

‘same dependencies.
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