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Abstract 
A speech recognizer is a device that translates speech into text. Many current speech 

recognizers contain two components, an acoustic model and a statistical language model. 

The acoustic model indicates how likely it is &at a certain word corresponds to  a part of 

the acoustic signal (e.g. the speech). The statistical language model indicates how likely 

it is that a certain word will be spoken next, given the words recognized so far. Even 

though the acoustic model might for example not be able to  decide between the acoustically 

similar words "peach" and "teach", the statistical language model can indicate that the 

word "peach" is more likely if the previously recognized words are "He ate the". 

Current speech recognizers perform well on constrained tasks, but the goal of continuous, 

speaker independent speech recognition in potentially noisy environments with a very large 

vocabulary has not been reached so far. How can statistical language models be improved 

so that more complex tasks can be tackled? This is the question addressed in this thesis. 

Since the knowledge of the weaknesses of any theory often makes improving the theory 

easier, the central idea of this thesis is to  analyze the weaknesses of existing statistical 

language models in order to  subsequently improve them. To that end, we formally define a 

weakness of a statistical language model in terms of the logarithm of the total probability, 

LTP, a term closely related to  the standard perplexity measure used t o  evaluate statistical 

language models. This definition is applicable to  many probabilistic models, including 

almost all of the currently used statistical language models. 

We apply our definition of a weakness to  a frequently used statistical language model, 

called a bi-pos model. This results, for example, in a new modeling of unknown words which 

improves the performance of the model by 14% to 21%. Moreover, one of the identified 

weaknesses has prompted the development of our generalized N -  pos language model, which 

is also outlined in this thesis. It  can incorporate linguistic knowledge even if it extends over 

many words and this is not feasible in a traditional N-pos model. This leads to  a discussion 

of what knowledge should be added to statistical language models in general and we give 

criteria for selecting potentially useful knowledge. These results show the usefulness of 

both our definition of a weakness and of performing an analysis of weaknesses of statistical 

language models in general. 

iii 
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Chapter 1 

Introduction 

The study of speech recognition is of great importance because of the social and economic 

impact speech recognition will have on our society. We humans spend a large fraction of 

our lifetime speaking, listening, reading and writing. Already today, computers are involved 

in a large part of human communication, be it telephone switching, electronic mail, word 

processing, information retrieval or computer bulletin boards. At little extra cost, computers 

provide additional features improving the quality of these processes or making human labour 

more effective. The impact of computer technology on society has its good and bad sides (see 

11251, [I291 and 1381 for a discussion). But because humans will still want to  communicate 

in the years to  come and because computers are very likely to continue to  become cheaper, 

it is very likely that an even bigger share of our spoken and written communication will be 

mediated by computers in the future. As computers continue to penetrate our society, being 

able to  communicate with computers via speech is therefore of great social and economical 

importance. 

Moreover, the study of speech recognition is interesting because of the intellectual chal- 

lenge posed by a problem whose solution involves many different scientific disciplines. In 

the past, the field of speech recognition has benefited from sciences as diverse as biology, 

computer science, electrical engineering, linguistics, mathematics, philosophy, physics, psy- 

chology and statistics. Thus, the questions raised by speech recognition range from philo- 

sophical questions about the nature of mind to practical design and implementation issues. 

Motivaked by the study of artificial intelligence, speech recog~rition can therefore serve as 

a testing ground, bringing many disciplines together in a concrete task, thus avoiding the 

dangers of a potentially introspective and subjective undertaking. 
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The fascinating interplay between different scientific disciplines and the great social and 

economic importance of speech recognition make it a very challenging, stimulating and 

exciting research field. 

In the following, we will briefly present the main difficulties of speech recognition and 

the approaches people have used to tackle them. We then give an overview of different 

methods of joining natural language processing and speech recognition and identify the 

topic of this thesis, statistical language models for speech recognition, as one of them. In 

the remainder of this thesis, we will use the term language model as a short hand for 

statistical language models for speech recognition. We conclude this chapter by giving an 

overview of our work. Most of the material of section 1.1, section 1.2 and of the previous 

three paragraphs is drawn from [loo, p.101, [151, p.1-51 and [104]. 

1.1 The Difficulties of Speech Recognition 

A speech recognizer is a device that translates speech intro written text and the problem 

of speech recognition has been studied actively since the 1950's. Enormous progress has 

been made, but many problems of speech recognition remain unsolved today. What makes 

speech recognition such a difficult task? Here are the main difficulties: 

1) Each elementary sound, also called a phoneme, is modified according to its context, 

for examplt the immediately preceding and following phoneme. This is partly due to a 

property of our vocal apparatus called coarticulation: as one phoneme is pronounced, 

the pronunciation of the next phoneme is prepared by a movement of the vocal appa- 

ratus. Modification of a phoneme is also caused by the larger context such as its place 

in a sentence. 

2) There is no separator, e.g. no silence, between words. This creates additional con- 

fusable words and phrases (e.g. "youth in Asia" and "euthanasia"). It also leads to 

more coarticulation, e.g. between words, and to poorer articulation (e.g. "did you" 

becomes "didja"). 

3) The variability of the speech signal for the same utterance is enormous. For example, 

there is intra-speaker variability due to the speaking mode (singing, shouting, with a 

'1 would like to clarify that even though I use the word "we" throughout this thesis, the work presented 
here is my own and thus qualifies for submission as a thesis. 
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cold, under stress, speaking rate, etc.), inter-speaker variability (sex, age etc.) and 

variability due to  the environment (noise, lipsmacks etc.). 

4) Because of 1) and 2), it is necessary to process large sets of data in order to  define 

what constitutes an elementary sound, despite the different contexts, speaking modes 

etc. For example, it is hard to decide that an "a7' pronounced by a male adult is 

more similar to  an "a" pronounced by a child in a different word and in a different 

environment than an "0" pronounced by the same male adult in the same environment 
2 

5) Because the signal carries different types of information (sounds, syntactic structwe, 

semantics, identity and mood of speaker etc.), a speech recognition system will have to 

differentiate between the information useful for its task and the remaining, irrelevant 

information. 

6) There is no precise formalism that allows us to  formalize the knowledge at  all the 

different levels (e.g. acoustics, syntax, semantics etc.). However, recent trends suggest 

that a probabilistic framework might be used at many levels. 

These six points are the main problems a speech recognizer has to  face in general. However, 

concrete speech recognition tasks may vary greatly in the degree of difficulty they present. 

The following six dimensions can be used to classify a speech recognition task according to  

its difficulty: 

1) Isolated (with pauses) or continuous speech. Continuous speech recognition is far more 

difficult because there are no word boundaries and because the variability of the signal 

is much greater. 

2) Vocabulary size. As the vocabulary size increases (from small vocabularies of less than 

500 words to very large vocabularies of about 20,000 words), the task becomes more 

difficult because the number of acoustically confusable words increases and because 

more time is needed to evaluate all possible words. 

2Nevertheiess, even if it  is the case that the "a" of the male adult is more simiIar to his "on than to a 
child's "a", we do need to recognize his "on as an "on, but the more different "a" of the child as an "a". 

'It is important to know that 'kar" and "cars" are counted as two different words in a speech recognizer. 
Thus, a speech recognizer with 500 words has far fewer words in the usual sense than the number 500 might 
suggest. 
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3) Task and language constraints. The size of the vocabulary is not sufficient for deter- 

mining the difficulty of a task because some words may not be allowed at  a given time. 

For example, a task with 500 words, each of which can appear a t  any time, may be 

more difficult than a task with 709 words with strong restrictions on which words may 

follow other words. 

4) Speaker dependence (for one speaker only) or speaker independence (for many speak- 

ers). A speaker independent task is much more difficult because of the additional 

inter-speaker variability. 

5) Acoustic ambiguity. The acoustic confusability of words in the vocabulary also influ- 

ences the difficulty of the task. For example, a task with 100 words that are highly 

confusable may be harder than a task with 200 words that are very dissimilar. 

6) Environmental noise. A task in a very noisy environment is more difficult because the 

noise can lead to  arbitrary distortions and modifications of the speech signal. 

1.2 Different Approaches to Speech Recognition 

Having seen the difficulties of speech recognition, how have researchers tried to tackle these 

problems? We can differentiate four different approaches - template-based, knowledge- 

based, stochastic and connectionist - and we will briefly present each one of them. 

In the template-based approach, units of speech (e.g. words) are represented in the same 

form as the speech input itself. The input is compared to the templates using some distance 

metric thus identifying the best match. The problem of temporal variability is tackled by 

dynamic programming. For simple applications requiring minimal overhead, this approach 

has been quite successful. 

In the knowledge based approach proposed in the 70's and early 80's, human knowledge 

is coded into expert systems. Rule-based systems had only limited success, but in more 

successful systems, the knowledge is integrated into a sound mathematical approach and 

this additional knowledge is found to improve the performance. 

In the stochastic approach (e.g. using hidden Markov models or HMMs), a template 

pattern is represented at a higher level of abstraction by a reference model thus allowing 

some generalization. HMMs are based on a sound probabilistic framework that can model 
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the uncertainty and variability inherent in speech recognition. Since HMMs simultane- 

ously solve the segmentation and classification problem, they are particularly well suited 

for continuous speech recognition. Most successful large-vocabulary systems today use the 

stochastic approach. 

The most recent development in speech recognition is the connectionist approach. This 

approach does not require some of the often incorrect assumptions underlying the stochas- 

tic approach. Even though no large scale, fully integrated connectionist system has been 

demonstrated, this approach holds considerable promise, especially in combination with the 

stochastic approach. 

In the rest of this thesis, we will assume that the speech recognizer is built according to 

the widely used stochastic approach. Nevertheless, the ideas of language modeling presented 

in this thesis are also applicable to other approaches. A language model could, for example, 

be used to rescore hypotheses in a template-based or knowledge-based approach. 

1.3 Incorporating Natural Language Constraints into Speech 

Recognit ion 

Given any one of the approaches mentioned in the previous section, a speech recognizer can 

identify a set of candidate words, which are likely to correspond to a part of the signal. 

Suppose for example that we have recognized the words "He ate the" covering a certain 

part of the signal, how can we extend recognition by another word? Based on the acoustic 

properties of the words in the vocabulary, we can, for example, identify the words "peach" 

and "teach" as candidates, because they are very similar to the next stretch of the signal. 

However, we can not identify exactly which one of the candidate words was the one spoken. 

We can then use the linguistic context to identify the word that is more likely to appear next. 

In this example, it is clear that the word "peach" is far more likely than the word "teach". 

Using these constrail~ts imposed by context is very important for speech recognition. This 

is for example pointed out in [117, p.331: "We know that, in a real task, the importance 

of the language model is comparable to that of the acoustic module in determining the 

final performance". In general, this kind of reasoning involves constraints on the next word 

imposed by syntax, semantics or pragmatics. These constraints are part of the domains 

of natural language processing and linguistics. In the following, we will therefore look at 

different ways of incorporating natural language constraints into speech recognition. 
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There are many different ways of incorporating natural language constraints into a speech 

recognizer. Following roughly a classification suggested in [108], we will present four different 

approaches for combining a speech recognizer and a natural language processor. We will see 

how each approach acts in our example, e.g., how it chooses between "peach" and "teach" 

as possible continuations of the sentence fragment "He ate the". 

1) Serial connection. In this approach, the natural language processor receives the most 

likely sentence from the speech recognizer and interprets it further. The advantage of 

this approach is that both systems have no additional computational burden from the 

"integration". The disadvantage is that there is almost no interaction between the 

two components. As a result, the natural language processor can not correct errors 

of the speech recognizer. This method is for example used in [132]. In our example 

sentence, the speech recognizer would have to choose between "teach" and "peach" 

independently of the natural language processor 4 .  

2) N-best sentence interface. The speech recognizer outputs the N best scoring sentences 

(for N = 1, this is the serial interface). The natural language processor chooses the 

sentence that best satisfies the natural language constraints. The advantage is that 

this allows some interaction of the two, while adding only some additional computa- 

tional burden. The size of N determines the tradeoff between allowed interaction and 

additional burden. One disadvantage is that N may be required to rise exponentially 

with the length of the input sentence. This approach is for example used in [132]. In 

our example, the speech recognizer could use "peach" in one of the N-best sentences 

and "teach" in another and this would allow the decision to be taken by the natural 

language processor. 

3) Word lattice interface. the speech recognizer produces a graph with possible starting 

times, end times and recognition scores for any word of the vocabulary at any time. 

The natural language processor searches this graph for the most likely sentence that 

satisfies the natural language constraints. The advantage of this approach is the high 

degree of interaction between the two components. The disadvantage is, the additional 

computational burden for both systems. The speech recognizer has to keep track of 

and output many hypotheses, rather than concentrating on the best one. The natural 

*However, the speech recognizer could use a very simple natural language processor to find the most Iikely 
sentence and this is further discussed after this classification. 
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language processor has to evaluate many more possible sentences. This method is 

used in [I461 and [131]. For our example, the speech recognizer does not make the 

decision and both "teach" and "peach" will appear in the word lattice. The natural 

language processor will then make the final decision. 

4) Parallel connection. In this approach, the constraints provided by the natural lan- 

guage processor are used directly in the speech recognizer t o  reduce the search space. 

Within this category, we can further distinguish the approaches with respect to  the 

complexity of the natural language processor. The natural language processor can be 

very complex, attempting to  produce a parse and a semantic representation of the sen- 

tence. Or it can be very simplistic, attempting only to identify which words are likely 

t o  appear given the preceding word. We divide the whole spectrum into two classes, 

complex natural language processors and simplistic natural language processors. The 

line between the two classes can be drawn in many ways (e.g. whether the natural 

language processor attempts a parse or not), but for our purposes we don't need t o  

specify exactly where we draw the line in order to  continue. 

a )  Complex natural language processor. The advantage of this approach is that 

it allows considerable interaction between the two components. The constraints 

provided by the natural language processor are used directly during recognition 

to  rule out some of the word candidates. One disadvantage is the amount of 

computation required to  check the constraints provided by the natural language 

processor for all word candidates in the acoustic search. Another disadvantage 

is that very complex natural language processors can usually be built only for 

limited domains and this method is thus difficult to  use for unrestricted speech. 

An example of use with a restricted domain can be found in [134]. Context free 

rules are derived automatically from sample sentences and then approximated 

by a probabilistic finite state machine. Another way of using this approach is 

presented in [108]. The natural language constraints are expressed in terms of 

a finite state machine, that is in turn used directly by the speech recognizer. 

However, since a typical natural language system will produce an enormous or 

even infinite number of states, only the parts that are currently searched by the 

speech recognizer are dynamically created by the natural language processor. 

b) Simplistic natural language processor. The advantage of this approach is that 
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it allows considerable interaction between the two components. Moreover, since 

the natural language processor is very simplistic, it can efficiently score all the 

word candidates during the acoustic search. The disadvantage is that the nat- 

ural language processor only captures very few constraints, thereby for example 

allowing ungrammatical sequences of words. We will see many examples of this 

approach later on. 

In our example, the knowledge of the natural language processor and the speech rec- 

ognizer are combined during the acoustic search to choose between the words "peach" 

and "teach". 

For more information about this issue, the interested reader can refer to [52], [75], [108], 

[113], [I161 and 11441. In this thesis, we will focus on the simplistic natural language proces- 

sors of category 4b), also called language models, and we give four reasons for this choice. 

First, language models are used in many existing recognizers and this shows their great 

practical importance. Second, language models can be used even if the serial approaches of 

category 1) or 2) are chosen. In that case, the speech recognizer uses a language model to 

arrive at  the N most likely sentences (for example), which are then further processed by a 

more complex natural language processor. Third, if the task at hand does not require the 

understanding of the utterance, a parse may not be necessary and language models still 

provide a way of incorporating some natural language constraints into the speech recog- 

nizer. Fourth, more complex natural language processors (as in 4a) are mostly limited to 

one specific domain and they are thus of limited use for unconstrained speech recognition. 

It is important to be aware of two different subtasks sometimes lumped together in the 

term speech recognition: speech understanding and speech recognition (proper). The goal 

of speech understanding is to understand spoken language and to react to it in a meaning- 

ful manner. Since this task is usually limited to a narrow domain, more complex natural 

language processors can be used. An example of a speech understanding task is that of un- 

derstanding spoken queries to a database. Contrary to that, the task of speech recognition 

is only to transcribe speech into text. Because this task does not require understanding, 

it can and should deal with unrestricted text, not limited to a certain domain. Therefore, 

more simplistic natural language processors are commonly used. An example of the speech 

recognition task is the phonetic typewriter, a device that is able to output a printed ver- 

sion of a spoken conversation. Since our work focuses on the simplistic natural language 
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processors, it is mostly relevant to speech recognition. But as pointed out above, even a 

speech understanding system with a complex natural language processor connected in a 

serial manner might use a simplistic language model during recognition. 

Now that we have informally presented the focus of our work, language models for 

speech recognition, we will give an overview of the rest of this thesis by giving a summary 

of each chapter. 

1.4 Overview 

1.4.1 Chapter 2: Language Modeling for Speech Recognition 

In chapter two, we give an overview of the different components of a speech recognizer, de- 

scribe their interaction, define the task of the component central to this thesis, the language 

model more formally, and review the most commonly used language models. 

After introducing the different components of a speech recognizer, we define the task of 

a language model as the construction of one or more probability distributions over all the 

words of a vocabulary given the words that have been recognized so far. Intuitively, the 

speech recognizer uses this distribution to decide which words are likely to appear next, e.g. 

based on the probability distribution, it chooses the word "peach" over "teach?' when the 

preceding sentence fragment is "He ate the". As this example illustrates, different words are 

more likely to appear in different contexts. Therefore, a language model usually has many 

different distributions, one for each context. In language modeling, context often means 

the two or three words preceding the word to predict. To show the usefulness of such a 

simple context, let us define the context as the immediately preceding word and consider 

what this entails for the following word. Only nouns and adjectives are likely to appear if 

the immediately preceding words is for example "the". Thus, even this simple definition of 

context can severely restrict the following word. 

During speech recognition, the language model only has to choose a distribution accord- 

ing to the current context and to look up the probabilities of words in this distribution. The 

important task in constructing the language model is to determine, prior to recognition, the 

number of contexts it differentiates and to construct a probability distribution for each one 

of them. 

5We will give a more formal description in the section defining the task of the model (section 2.3). 



Language models are usually described in terms of frequency counts of their probability 

distributions, but for the purposes of this thesis, it is more appropriate to  describe language 

models at  the more abstract level of probability distributions and contexts. This is because 

we are more interested in the conceptually important aspects, e.g. the way in which a 

model defines context, rather than in the details of a particular technique of constructing 

probability distributions from frequency counts, Therefore, we only give a brief description 

of how probability distributions can be estimated from frequency data, often referred to as 

training data. The principle of this estimation is that of counting how often a certain event 

appears in a given context in the training data and of dividing this count by the number of 

overall occurrences of the context. For example, we can estimate the probability of having 

sunshine tomorrow given that it was raining today by dividing the number of times we had 

sunshine given that it was raining the previous day by the overall number of rainy days. 

We then give a review of different language models in order to present the state of the art 

in language modeling and to set the stage for the remainder of this thesis. For each model, 

we give the definition of context it uses, the number of probabilities it needs to estimate and 

some of its advantages and disadvantages. In particular, we present the class based models 

or N-pos models, in which words are grouped into classes called parts of speech, which 

roughly resemble their grammatical function. In these class based models, the prediction of 

the next word is a two step process: first, the part of speech is predicted by one component, 

then the word given the part of speech is predicted by a second component. 

1.4.2 Chapter 3: Analysing and Improving Language Models 

In chapter three, which contains the central idea of this thesis, we propose to perform error 

analyses of language models in order to improve the models afterwards, define what we 

mean by "error or weakness of a language model" and present a method to identify the 

weaknesses of a given model. 

We begin by noting that error analysis of existing theories about the world often leads 

to improvements of these theories. By analogy to this, we propose in this chapter to analyze 

errors of a language model in order to improve the model afterwards. But how can we 

define an error of a language model? The definition of an error should be related to the 

measure used to evaluate the performance of a language model. If definition and measure 

are not related, we may still identify and then remove an error, but this may not translate 

into an improvement in performance (since error and performance measure are not related). 
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Before defining an error, we therefore first introduce the standard measure used to  evaluate 

language models, called perplexity. 

Intuitively, the goal of a language model is to predict words in a given context. A 

good model should therefore assign a high probability to each word in a piece of text. 

Hence, the average probability assigned t o  words in a testing text - the geometric mean of 

probabilities to  be more precise - is a good measure for the quality of a language model. 

Perplexity, the standard measure used to evaluate language models, is just the reciprocal 

of the geometric mean of probabilities. Besides explaining the perplexity intuitively, we 

also derive the perplexity using methods from information theory and further discuss its 

advantages and disadvantages. 

Since the term error does not really apply t o  a language model, we prefer to use the term 

weakness. We now define a weakness of a language model in terms of the logarithm of the 

total probability (LTP) of a sequence of words, a measure closely related to  the perplexity. 

Moreover, for models with several components (for example the class based model we use), 

we develop the method of probability decomposition, which allows us to identify weaknesses 

of the different components separately. 

The main idea of this chapter - applying error analysis to language models - applies to 

any probabilistic model whose performance is measured in terms of perplexity. We conclude 

this chapter by giving examples of models to which our method of error analysis applies. 

1.4.3 Chapter 4: Analyzing and Improving a Bi-pos Language Model 

In chapter four, we apply the central idea of this thesis, our technique of identifying weak- 

nesses of a language model presented in the previous chapter, to a commonly used bi-pos 

language model and report the results. 

In order to apply the technique of identifying weaknesses of a language model to  a 

concrete model, we first choose a corpus (the Lancaster-Oslo-Bergen corpus), a model (the 

bi-pos model) and verify that the section of the corpus we use contains enough data to  

train our model. This work prompts an investigation into the issue of sample space, the 

set of all possible events considered by a model. We note that it is not meaningful to  use 

the perplexity measure to  compare language models that differ in their underlying sample 

spaces. Yet language models are usually compared with the perplexity measure, even though 

6We use the term weakness as a technical term and the intuitions, that still apply to our technical use of 
it are discussed on page 42. 
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they sometimes differ in their underlying sample spaces, either due to different vocabularies 

or due to  different ways of dealing with unknown words. We also discuss possible solutions 

to the problem of different sample spaces. 

We then apply o;r method of identifying weaknesses of a language model to our chosen 

bi-pos model and report three results of general interest. First, a very small number of 

classes are identified as weaknesses of the model. We believe that these results are helpful 

for future efforts to improve the model, because we know on which classes we should con- 

centrate our efforts. Second, unknown words are identified as weaknesses. This prompts 

the development of a new modeling of unknown words, which improves the performance 

by between 14% and 21%. Third, the word component of our bi-pos model is shown to be 

at least as important as the class ct nponent. This has interesting ramifications for using 

probabilistic context free grammars for language modeling, an approach that has recently 

received a lot of attention. Even though using probabilistic context free grammars may 

result in an improved prediction of a class (or part of speech), it is not likely to improve the 

prediction of the actual word given its class. We should therefore improve the word compo- 

nent of a class based model even if probabilistic context free grammars are being used. The 

additional insight gained from these results also show the usefulness of the central idea of 

this thesis, the identification and analysis of weaknesses of language models. 

How can we go about improving the word component of a class based language model? 

This question leads us to develop our generalized N-pos model, which is shown to be a 

true generalization of the N-gram and the N-pos model. Moreover, it can incorporate any 

linguistic knowledge not restricted to the immediate context of the word to be predicted. 

This is exemplified by incorporating a very simple knowledge source into our generalized N- 

pos model. The results of this example also show that a considerable improvement (around 

15%) is achieved in the prediction of words for which our generalized N-pos model actually 

differs from the original N-pos model. However, the overall improvement is negligible, 

because the cases in which our simple knowledge source can be used are very rare in our 

example. This leads to  a general discussion of what knowledge we should add to a language 

model - an issue we address in the next chapter. 

'For an intuitive explanation of the use of classes see the summary of chapter 2. 
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1.4.4 Chapter 5: Adding Linguistic Knowledge to Language Models 

In chapter five, we motivate the addition of knowledge to  language models, develop differ- 

ent criteria to identify useful knowledge, and present methods to combine knowledge in a 

language model. 

We begin by pointing out three reasons for wanting to add knowledge to a language 

model. First, we would like to improve its performance. Second, if we apply current speech 

recognition technology to more complex tasks than the ones tackled today, the number of 

acoustically confusable hypotheses will increase, and we may well need a better language 

model in order to deal with the additional ambiguity. Third, adding knowledge is more 

satisfying than sticking to existing models on psychological grounds because humans seem 

I to use knowledge to predict a word other than the knowledge used in current models, namely 

the immediately preceding two or three words. Hence, there is clearly a need for a language 

model which incorporates more linguistic knowledge. - - 

Once we have decided to add knowledge to a language model, the following two questions 

come to  mind. First, what knowledge should we add, and second, how can we combine 

different types of knowledge in a language model. We address both questions in turn. 

Rather than trying to give a necessarily incomplete list of types of knowledge that 

we should add, we present four criteria that we think should be used to identify useful 

knowledge. First, the knowledge should restrict the number of possible words, otherwise 

it is not going to help in solving our task. Second, it should be applicable often enough 

to be of statistical significance. Third, it should be possible computationally to use this 

knowledge in red time speech recognition. Finally, we should be able to acquire and code 

this knowledge for use with unrestricted text. 

We develop a classification of possibly useful knowledge and apply the criteria for iden- 

tifying useful knowledge to one type of knowledge that promises to be useful for improving 

language models in general. 

We then move on to  the issue of combining different types of knowledge in a language 

model. We present three methods of combining knowledge and develop some of the advan- 

tages and disadvantages we see in each method. Following that, we conclude that it is very 

unlikely that we will have enough data to estimate distributions that depend on several 

knowledge sources directly, even with the availability of increasingly large corpora. There- 

fore, we think that methods that combine distributions from single knowledge sources in a 



CHAPTER 1 .  INTRODUCTION 

meanindul fashion will be very useful and require further investigation. One such method 

shown to be very useful in recent work is the maximum entropy method, which will also be 

presented briefly in this chapter. It holds great promise for future work. 



Chapter 2 

Language Modeling for Speech 

Recognit ion 

In the last chapter, we described intuitively how the topic of this thesis, language modeling 

for speech recognition, relates to speech recognition research in general. In this chapter, we 

will make this relationship more precise by introducing the different components of a speech 

recognition system (section 2.1), and, after introducing some notations in section 2.2, by 

defining the task of a language model more formally (section 2.3). Since a language model 

consists mainly of probability distributions, we present the method of constructing and 

smoothing probabilities distributions we use for our work (section 2.4). Given the notations 

introduced in section 2.2 and having seen the key issues of language modeling, we then give 

an overview of the state of the art in language modeling by reviewing existing language 

models (section 2.5). 

2.1 The Components of a Speech Recognizer 

A speech recognizer is a device that translates speech into written text. As input, it takes 

the acoustic signal recorded by a microphone. As output, it produces a string of words 

intended to correspond t o  the input. The mapping from acoustic signal to  a string of words 

is a complex task and it involves several stages. To illustrate this mapping in a simplified 

way, we will present a set of stages that are very similar to the ones used in one of the 

first successful, large vocabulary, speaker independent, continuous speech recognizers, the 
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Figure 2.1: Components of the SPHINX system 
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SPHINX system ([95]). 

As we can see from figure 2.1, the acoustic signal is first given to a signal processing 

component. This component performs several transformations, e.g. sampling the signal at 

fixed time intervds, reducing the noise etc. As output, it produces one 12 dimensional vector 

of floating point values per time interval. These vectors are the input to the next component, 

the vector quantizer l ,  which compares each input vector to stored prototype vectors and 

outputs the index of the vector that is closest to the input vector. For a sequence of 12 

dimensional input vectors, it thus produces a sequence of integers. This sequence constitutes 

the input to the next component, the search algorithm. It is a time synchronous algorithm (a 

Viterbi beam search, see [95]), that compares the likelihood of different sequences of units of 

speech. In order to calculate these likelihoods, the search algorithm uses the acoustic model 

and the language model. The acoustic model provides the algorithm with the likelihood 

that a unit of speech (phonemes and words in SPHINX) correspond to parts of the given 

sequence of integers. The language model provides the algorithm with the likelihood of 

viously identified units. Based on these two 

he most likely sequence of units of speech and 

minate the vector quantizer by having continuous density 
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this constitutes the recognized string of words. 

As an example of the interplay of the acoustic model and the language model, suppose 

we have recognized the sequence "He ate the" so far. The acoustic model calculates the 

probabilities that the words "teach" corresponds to a prefix of the sequence of integers 

it receives as input. Similarly, it calculates the probabilities for the word "peach". The 

language model calculates probabilities for the words "teach" and "peach", given for example 

that the last recognized word is an article. Even if the acoustic model can not decide between 

"teach" and "peach" because they are very similar acoustically, the language model can have 

a clear preference for "peach?' (because it is a noun and nouns are far more likely than verbs 

to follow articles). Based on the probabilities of the acoustic model and the language model 

together, we can then choose "peach" as the next recognized word. 

This thesis is concerned with the language model component of a speech recognizer. 

Similar to  the language model in SPHINX mentioned above, we can describe a language 

model in general as follows. A speech recognizer has recognized a sequence of words in the 

past and is now trying to extend this sequence by another word. Based on the acoustic 

signal i t  receives, it can identify a set of candidate words whose acoustic signal is very 

similar. However, based on the acoustic signal alone, it can't identify precisely which of 

these candidate words is the one that was spoken. It therefore uses a language model to 

pick the word that is more likely to appear in this context. This likelihood of appearance 

is formalized in terms of probabilities: each word of the vocabulary has a probability of 

appearing next in a given context. We can thus describe the task of the language modeling 

for speech recognition intuitively as the construction of a probability distribution over all 

the words of the vocabulary. As an example, consider the words "He ate the" and two 

candidate words "peach" and "teach". Humans can easily identify the word "peach" as 

the likely continuation of the sentence fragment. The probability distribution constructed 

by .a language model should (ideally) give a higher probability to "peach" than to "teach7', 

allowing it to make the correct choice. 

2.2 Frequently Used Notations 

In this section we will introduce some notations that we will use for the remainder of the 

thesis. Given these notations, we can then define the task of a language model more formally 

in section 2.3. 
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- V = (w l ,  ..., w,) will denote the vocabulary of a speech recognizer 

- 1, I 5 1 5 m will denote an index ranging over this vocabulary 

- W = w [ l ] ,  ..., win] will denote a string of words of V. In other words: Vi : 31(i), 1 5 
l ( i )  f m : w[i] = wr(;) 

- i,  1 < i < n will denote an index ranging over the string of words 

- w[i l  : i2]: if il 5 i2 it will be a short form for w[ i l ] ,  ... w[i2] , else it will denote the 

empty string 

- p(xly) will denote the conditional probability of z given y 

- let V+ denote one or more symbols of V; argmaxw f ( W )  will denote the W E V+ for 

which f (W) has the maximum value 

- p(w[i] = wllc) will denote the probability of the ith word in the sequence being the 

word wr given the context c 

- p(w[i]lc) will denote the probability distribution over the vocabulary given the context 

c. In order for p(w[i] lc) to be a probability distribution, it has to satisfy the following 

two constraints. Each probability must be between 0 a.nd 1, and the sum of the 

probabilities must be 1: 

- A will denote the acoustic data given to the recognizer 

- G = {g l ,  ...,gt) is a set of classes or parts of speech (we will introduce the notion of 

word classes in section 2.5.3) 

- j, 1 5 j < t will denote an index ranging over the set of classes 

- g(w)  will denote the class of a word w 

- g(w[il  : i2]), il 5 i2 is a short hand for g(w[ i l ] ) ,  ...,g( w[i2]) 

21f there are several W's for which f (W) has the maximal value, argmaxw f (W) will denote one of them 
that was picked randomly. 
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2.3 The Task of a Language Model 

Given the notations introduced in the previous section, we can now derive the task of a 

language model more formally. 

A good speech recognizer should choose the most likely string W*, given the acoustic 

data A. This is expressed by the following formula 

W* = argmaxwp(WIA). (2.1) 

Based on Bayes' formula (see for example [41, p.150]), we can rewrite the probability from 

the right hand side of 2.1 according to  the following equation: 

p(W) is the probability that the word sequence W is spoken, p(A1W) is the probability that 

the acoustic signal A is observed when W is spoken and p(A) is the probability of observing 

the acoustic signal A. Based on this formula, we can rewrite the maximization of equation 

Since p(A) is the same for all f ir ,  the factor p(A) does not influence the choice of W and 

maximizing equation 2.3 is equivalent to maximizing 

W* = argmaswp(W) * p(AI W). (2.4) 

The component of the speech recognizer that calculates p(AIW) is called the acoustic model. 

The component calculating p(W) is the language model. 

Why is maximizing equation 2.4 easier than maximizing equation 2.1? Or, in other 

words, why did we use Bayes formula to rewrite equation 2.1? For equation 2.1, we would 

need to build a model for all possible acoustic signals A. For equation 2.4, we need a model 

for every possible word sequence W. Since A is a continuous signal and W is discrete, the 

latter is easier. 

How can we calculate p(W) for a given string W? Formally, we can decompose the 

probability of a sequence of words p(W) as the product of probabilities of each word w[i] 

given the preceding words w[l : i - 11: 
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This decomposition is appropriate for speech recognition for the following reason. It 

allows us to evaluate the probability of a prefix w[l : k], 1 5 k < n of W as the product of 

probabilities of the k words it contains: 

This is very useful when we try to perform the maximization in equation 2.4. Rather 

than having to construct a W covering the entire signal before we can evaluate it with the 

language model, we can now evaluate partial strings covering only parts of the signal as 

they are constructed. We can thus prune the search space by never expanding or evaluating 

unlikely partial strings 3. ZJsing equation 2.6, we can now precisely define the task of a 

language model. 

Definition 1 Given a set of contexts C = {cl, ..., c,), the task of a language model is to 

provide a probability distribution p(w[i]lck) for each context ck, 1 _< b < p and a way of 

choosing a context given the words recognized so far. 

During recognition, all the language model has to do is to determine which is the current 

context and to look up the probabilities of words in the distribution for this context. This is 

fairly straight forward once the model has been constructed. The important issue, however, 

is to construct the language model prior to recognition. This requires the definition of 

the set of contexts and the estimation of a probability distribution for each context. These 

contexts can capture any information about the words spoken so far. However, the language 

model must be able to  extract this information efficiently during recognition. An example 

of such information is whether the subject of the current sentence is animate or not. The 

language model must be able to decide efficiently whether the subject of the current sentence 

hypothesis is animate or not in order to determine the current context and therefore the 

distribution it is going to use. 

As an example of a language model, consider a very simplistic model that constructs 

only one distribution, independent of context. The word "teach'Vor example will therefore 

be expected with the same probability, whether the previous words were "He likes to" or 

"He ate the". This is clearly not a very good model since the constraints on the following 

3~runing has to be done with care because it can lead to the pruning of unlikely partial strings, that 
would become more likely given the later, yet unseen parts of the signal. 
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words vary significantly with context. A better language model would therefore have several 

distributions, one for each context it treats separately. 

Here we can see two conflicting interests that influence the construction of a language 

model (see [62]). On the one hand, the more different contexts a language model can 

differentiate, the more distributions it has, and the better it can model a language. On the 

other hand, each distribution needs to be estimated from training data (see section 2.4). The 

more distributions it has, the more data it needs. In other words, given a fixed amount of 

training data, the more distributions a language model has, the less accurate the estimates 

will be. Trying to balance these conflicting goals is one of the difficulties of constructing 

language models and we will encounter this problem again in section 2.5. 

2.4 Estimation and Smoothing of Probability Distributions 

from Frequency Daka 

Because we will be using many probability distributions throughout the rest of this thesis, 

we need to  examine the estimation and smoothing of probability distributions based on 

frequency data. All of the probability distributions are produced with similar techniques 

and once we have dealt with these issues here, we won't need to address them separately for 

each probability distribution we use. This way, we can describe different language models 

on the more abstract level of probability distributions, rather than having to describe them 

on the level of frequency data, requiring many lengthy formulas. 

2.4.1 Estimation of Probability Distributions from Frequency Data 

How can we estimate a probability distribution? As a simple example, consider the tossing 

of a coin. We would like to know with what probability it comes up head or tails and 

this will be its probability distribution. Intuitively, we can estimate this distribution in the 

following manner. Throw the coin N times, count the number of times it comes up heads 

and tails, and denote these numbers with H and T respectively. We can then estimate the 
T probability of the coin coming up heads or tails as # or respectively. 

How can we extend this to the more general issue of estimating probability distributions 

of events in certain contexts? A context, in the case of the coin tossing, could be the outcome 

*Smoothing attempts to make the probabilities depend less on the particularities of the training data and 
to avoid zero probabilities for events that were never seen. We will see smoothing in more detail later on. 



CHAPTER 2. LANGUAGE MODELING FOR SPEECH RECOG NITION 22 

of the previous toss or the fact, that the coin is lying head or tails up in our hand when we 

throw it. Let E = {el, ..., e,} denote a set of events and let C = (el, ..., c,) denote a set of 

contexts. As in section 2.2, we will denote the probability that event el, 1 _< 1 5 p occurs 

in context ck, 1 < k _< r as p (E  = ellC = ck). Furthermore, we will denote the probability 

distribution over all events in a given context ck as p(ElC = ck). Our g o d  is to  estimate a 

probability distribution p(E IC = ck) for all ck, 1 ( k 5 r .  

If we follow the example of the coin, we simply make a large number of trials N and 

c ~ u n t  the number of times each event occurs in each context, denoted by O ( E  = etlC = ck). 
The occurrence counts O(E  = eilC = ck) are often referred to as the training data. We can 

then calculate the number of times context ck occurs, denoted as O(C = ck), as the sum of 

the number of times each event occurs in that context: 

l = p  

- O(C = cr) = CO(E = e r ( c  = ck). 
I =  1 

(2.7) 

The sum of the number of occurrences of each context will be the total number of trials: 

k=r 
N = O(G = ck). (2.8) 

k=l 

As in the example of the coin, we can then get an estimate of p(E = eilC = ck) by dividing 

the number of times event el occurred in context cr, by the total number of times context 

ck occurred: 

O(E  = erlC = ck) - - O ( E  = etlC = ck) 
p(E = erlC = ck) = 

O(C = ck) ~ f z ~  O(E = erlC = ck) ' 
(2.9) 

From all possible values we can estimate for p(E = erJC = ck), the value estimated above 

is the one that has the highest likelihood of producing the observed data 5 .  This method 

of estimation is therefore called maximum likelihood estimation (MLE). As pointed out in 

[140], the principle of maximum likelihood estimation was first proposed by Sir R. A. Fisher 

in 1926 (see for example [37]). Maximum likelihood estimation is a very simple method that 

can be used for a wide range of problems. Even though more sophisticated methods are 

available (see for example [20]), we use the maximum likelihood estimation for reasons of 

simplicity for our work. 

5Strictly speaking, it is the value that has the highest likelihood of producing the observed data given 
some additional assumptions about the distribution of probability values. 
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From now on, we will denote the quotient of the occurrences in equation 2.9 by the 

frequency f (E = el lC = ck): 

2.4.2 Smoothing of Probability Distributions 

In the case of a language model, it is important to avoid zero probabilities for events that 

never occurred in the data. The reason for this is that the speech recognizer should correctly 

decode what the user said. Since we cannot prevent the user from saying nonsensical or 

ungrammatical words at some point in the sentence, the language model should not give 

a zero probability to any of the words at any time. If it did, such a word could not be 

recognized even if it was the one said by the user. If we use the maximum likelihood 

estimation for events that never occurred, they will receive a probability estimate of zero 

because their occurrence count is zero. In order to avoid this, the probability estimates have 

to be smoothed. This results in giving a small probability to unseen events and in reducing 

the probability of other events. 

The techniques often used for smoothing are the addition of a small constant probability 

(see for example [85] ) ,  deleted interpolation ([66]), backing off ([73]), different discounting 

methods ([llo]), Good-Turing formula ([48]) or enhanced Good-Turing formula ([20]). In 

choosing one of these methods for our work, we had two criteria. First, since smoothing is 

not an issue of particular interest to our work, we would like the method to be fairly simple. 

Second, in order to ensure that the method is acceptable to other researchers, the method 

should be used by other researchers in similar language models. Adding a small constant 

probability satisfies both criteria and this is the method we chose. We will present it in the 

following. 

Suppose we want to estimate p(E = el[C = ck) based on the frequency counts f(E = 

eilC = ck). In a first approach, we can simply use 

However, some of the events in E may never have been observed in a certain context, for 

example event e p  in context ck. Thus, we would obtain p ( E  = e,)C = ck) = 0. As pointed 

out in the preceding paragraph, we should avoid zero probabilities in language models. A 
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simple way to avoid zero probabilities is to add a small constant value vr to  all probabilities: 

p(E = erlC = ck )  = f ( E  = etlC = ck )  f vl.  (2.12) 

Adding vr indeed avoids zero probabilities, but the sum of probabilities of all possible events 

is now bigger than 1 and the resulting distribution is not a probability distribution any more 

(see section 2.2): 

In order to compensate for the extra probability mass of ]El * vl ,  we will simply multiply 

the frequencies f ( E  = ellC = c k )  with the constant value va = 1 - lEf * vl: 

P(E  = ellC = c k )  = v2* f ( E  = erjC= ck) + v1. (2.14) 

We can verify that the sum of the probabilities of all words now adds up to 1: 

x(vz* f ( E  = e r l C =  cr) + v l ) = v z  * f ( E  = q l C =  ck) t IEl*vl (2.15) 
er EE el E E  
= ~2 * 1 + IEl* v1 = 1 - IEl* v1+ IEl* v1 = 1. (2.16) 

Thus, the smoothed estimate in equation 2.14 constitutes a true probability distribution 

and avoids zero probabilities. 

2.4.3 Assumptions about Probability Distributions in our Work 

In the rest of the thesis, we will often refer to probability distributions and all of these 

can be estimated using the methods presented above. For example, we will denote with 

p(w[i] = wl lw[i - 11) the probability that the i th  word of the sequence is wi, given that the 

previous word w[i - I ]  is wli;-1) (see section 2.2). It is understood that this probability is 

estimated approximately as presented above. Summing up, this estimation roughly works 

as follows: count the number of times w((i-1) occurs in the training data, count the number 

of times it is fdlowed by the word wl, and then estimate the probability as the quotient 

of these two numbers. Moreover, to ensure that our results are easily reproducible, we will 

give the complete formulas, including the smoothing, for the probability distributions we 

actually implemented. 



2.5 Review of Existing Language Models 

Having introduced the key issues of language modeling, we will now review many commonly 

used language models. However, rather than giving the often complicated formula in terms 

of frequency counts, we will describe each model on a more abstract level in terms of its 

probability distributions. This way, we don't have to  consider estimation and snoothing 

issues, but can focus on the following conceptually important issues: 

1) We saw in section 2.3 that the task of a language model is to  provide a probability 

distribution for a set of suitably defined contexts. How is the context defined or, in 

other words, on what does the probability distribution depend in each model? This is 

a crucial point of each model because it shows which linguistic regularities (e.g. those 

that involve only the preceding two words) it can capture. We will provide an intuitive 

description of the contexts as well as the formula each model uses to  instantiate the 

general p(w[i] = wllc) with a specific context c. 

2) How many probabilities have to  be estimated in each model? This is important because 

it determines the amount of data needed to train the model. This in turn determines 

the situations and tasks in which each model can be used. 

2.5.1 Context Independent Models 

Context independent models have only one probability distribution. This distribution is 

used to  assign probabilities to words, independent of the current context. 

The most simplistic, context independent model is the model that treats all words as 

being equiprobable. Given the vocabulary V,  this results in the following formula: 

1 
p(w[i] = utllc) = - 

IVt 
(2.17) 

This model d ~ e s  not have any probabilities to estimate and therefore does not need any 

training data. Even though this model satisfies the requirements of a language model, it 

is of no use t o  a speech recognizer hecause all words receive the same probability. It will 

therefore have no influence on the ranking of the words. 

A more sensible way t o  construct a context independent model is to estimate the prob- 

ability of each word according to its frequency, but independent of context. This leads to 

the following model: 

p(w[i] = wllc) = p(w[i] = wa). (2.18) 
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This model also has only one distribution, but it has lV[ probabilities to  estimate. Even 

though this model is very simple, it is actually being used in a commercial speech recognizer 

([56]). Because it is a special case (N = 1) of the N-gram model (see the next section), it 

is sometimes referred to as the uni-gram model. 

The advantage of the uni-gram model is that it requires only very little training data. 

Its disadvantage is that the probability of a word will always be the same, iridependent of 

the context. 

2.5.2 N-gram Models 

The previous models had only one distribution, independent of context. From now on, we 

will make the probability distributions depend on context. The different models we will see 

will mostly differ in the kind of context they consider. 

Before looking at the general N-gram model, we will consider the special case of the 

bi-gram model, where N = 2. When we look at  a fragment of a tmtence, e.g. "He ate 

the", it is quite clear that certain words are not valid continuations of the sentence. For 

example, if the last word in our sentence fragment, namely 'the', is being followed by a 

verb, it will not lead to  a grammatical sentence 6 .  It is therefore intuitively appealing to 

make the probability distribution depend on the previous word. The context is therefore 

simply the preceding word. Even though this captures only a very small amount of context, 

it does capture the restrictions in the above example. Moreover, there is considerable 

empirical evidence from corpus linguistics that the immediate context of many words is 

very predictable (see the discussion in section 5.2.3). This is especially true for fixed word 

order languages like English (see 123, p.32]), where the local constraints are quite powerful. 

Making the probability distribution depend on the previous word leads to the following 

formula: 

In the more geneml form of the model, the so called N-gram model, the probability of 

the ith word of an input sentence is made dependent on the preceding N - 1 words. The 

(2.20) 

rrence of a word has only one grammatical function. 
b, it will not lead to a grammatical sentence. 
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For each N - 1 tuple of words of the vocabulary, the N-gram model has a separate 

probability distribution and, at  a given point in a sentence, the distribution it chooses is 

determined by the previous N - 1 words. There are fvIN-l different N - 1 tuples and this is 

the number of distributions of the N-gram model. For each distribution, we have to estimate 

IV\ probabilities. This gives a total of IY I N  probabilities to estimate. For a vocabulary size 

of 10,000 words, the number of probabilities that need to  be estimated increases dramatically 

(exponentially) with N. For example, for N = 3, we have 1012 probabilities. Therefore, in 

practice, N is usually taken to be two (see for example 1791, 1341) or three ([5j, [13], [631, 

~71,1671, ~ 5 1 ) .  
The advantage of the N-gram model is that it captures all the information provided by 

the preceding N - 1 words. Judging from its success, this is quite an important source of 

information, especially for fixed word order languages like English. Its disadvantage is the 

enormous amount of training data needed to train a?d the probabilities. For exampIe, in 

[13], several hundred millions of words are used for training. 

As pointed out in [63], fifteen years after the first use of a tri-gram model in large 

vocabulary speech recognition ([5]), the tri-gram model is still considered one of the best 

performing models and it is used as a component in many other models. 

2.5.3 N-pos Models 

The major problem with the N-gram models is the amount of data required for training. 

Moreover, one can argue that some of the local constraints depend less on the identity of 

the previous words than on their grammatical function. This leads to the idea of grouping 

words together in classes and making the probabilities depend on these classes. Traditionally, 

these classes are called parts of speech (pos) in linguistics which explains the name of the 

N-pos models. Within the class of N-pos models, there are many different variants. In the 

following, after starting with a very basic model, we will present two modifications that lead 

to the model used in our implementation. 

Let G = {gl, ...,gj, ...gt) denote the set of classes, let g(w) denote the class of a given word 

w and let g(w[il : i2]), 1 < i l  < i2 f n be a short form for g(w[il]),g(w[il$ I]), ...,g( wfi2j) 

7. In the N-pos model, the probabilities depend on the etasses of the previous N - 1 words. 

7 ~ 1 1  of these notations are also mentioned in the section on notations (2.2). 
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Therefore, the context is defined by the preceding N - 1 classes: 

p(w[i] = wllc) = p(w[i] = wtlg(w[i - N f I. : i - I])). (2.21) 

This model has (GIN-' distributions and requires the estimation of * IV/ proba- 

bilities. For common values of IGI = 200, IVI = 10,000 and N = 3, the N-pas (e.g. tri-pos) 

model has 8 * 101•‹ probabilities. This is a significant reduction with respect to the tri-gram 

model. 

Furthermore, one can argue that the class of the previous word mostly restricts the 

class of the next word, but not its identity. Hence, we can derive probabilities in a two-step 

process. First, we predict the class of the next word based on the classes of the previous 

N - 1 words. Then, we predict the actual word given its class, but independent of preceding 

classes. This leads to the following formula 

This model has the same definition of a context, but it only has * IGI + * fVI 
free parameters. For the same values of /GI and JVt, this corresponds to lo8 probabilities, 

a further reduction compared to the previous formula. 

The above model, used for example in [15], [29], [30], [GO], [7S], [Il2], [156] and [155], 

requires disjoint classes. However, one word can belong to several classes. For example, the 

word 'light' can be a noun, verb or adjective. Hence, the probability of seeing the word 

'light' is the probability of seeing it as a noun plus the probability of seeing it as a verb plus 

the probability of seeing it as an adjective. This leads to the following formula, where the 

probabilities are summed over all possible classes in G: 

This is equivalent to  summing aver all classes w[i] can actually belong to since the second 

term in the formula will be zero for classes that do not contain w[i]. 

In order to relate the N-pos model to the N-gram model, it is quite revealing to look 

a t  the extreme cases of N-pos models, e.g. at a model with only one class and at a model 

with one class per word (see Figure 2.2). If a N-pos model has only one class, then knowing 

the classes of the N - 1 previous words does not contain any information about the context 

because the last N - 1 words always belong to the same single class. Similarly, the class 
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number of 

I- ... .-+--, ... 4 classes in a 

N-pos model 
1 25 500 v 

identical to commonly used range identical to 

uni-gram of N-pos models N-gram 

Figure 2.2: The relationship between M-gram and N-pos model 

of the word to  predict does not contain any information about the word to  predict or the 

context, because all words belong to this class. Thus, since both factors in equation 2.23 

are independent of the context, the prediction of the next word will be independent of the 

context. We therefore obtain a context independent modei with only one distribution. This 

model is identical t o  the uni-gram model of section 2.5.1. At the other extreme, we have a 

model with a separate class per word. If a model has one class per word, then predicting 

the word given its class becomes trivial, because each class contains only one word. In 

this case, defining the context in terms of the classes of the previous N - 1 words actually 

means defining the context in terms of the identity of the previous N - 1 words. Thus, 

the second factor in equation 2.23 will always be equal to  one and the first factor will be 

the prediction of the next word given the previous N - 1 words. In other words, we obtain 

the N-gram model from section 2.5.2. From these observations, we can see that the N-pos 

model is somewhere between the unigram and the N-gram model, depending on the number 

of classes it uses. 

This model, used for example in [85], [32], [62] and [147], has the same number of 

distributions and parameters as the previous model - the difference is that the classes it 

uses have to be disjoint. 

The advantage of the N-pos model is that it requires far less training data than the 

N-gram model, while still considering the class information of the previous N - 1 words. 

Its disadvantage is that its distributions depend on classes, and not on particular words. 

As an example, suppose that the class ARTICLE contains the singular article "a" as well 

as other articles like "the". In the case of a bi-pos model, we will have one distribution, 

given that the last word was an article. However, if we knew that the last word was the 

article "a", the distribution would be significantly different since it would not contain plural 

nouns. We will come back to  this in section 4.4.2, page 84. In general, the performance 
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of the N-pos model is not as good as an N-gram model trained on sufficient data, but it 

is better than an N-gram model trained with insufficient data. Here, we can see again the 

conflicting interests in constructing a language model that we saw on page 21. 

2.5.4 Decision Tree Based Models 

In all previous models, the number of distributions is fixed independently of the particular- 

ities of the training data. For example, in the tri-pos model, there is a separate distribution 

for each pair of preceding classes. This is done for all pairs, even though some of the re- 

sulting distributions may be very similar. As an example, the distribution in the contexts 

[verb, article] and [preposition, article] might be very similar to each other and even to the 

distribution in the context [article]. This is a serious disadvantage because it leads to the 

construction of very similar distributions, which do not result in improved performance. 

The statistical technique of decision trees can avoid this problem. It has been used 

recently for different tasks in statistical natural language processing (171, [9], 11501, [148], 

[87], [lo]). A good introduction to a specific method for constructing decision trees, called 

CART, is given in [Ill. Other recent algorithms are presented in [45] and [16]. More on 

decision trees in general can be found in [46]. In the following, we will briefly outline the 

basic idea and its application to language modeling. 

A decision tree contains the probability distributions of a language model and a method 

of identifying the distribution that should be used in the current context. In such a tree, each 

leaf contains exactly one distribution and each internal node contains exactly one question 

about the context. The following method is used to find the distribution (or the leaf) that 

should be used in the current context. Starting at the root node, we look at  the question 

contained in the current node. Based on the answer to this question, we move to one of the 

children, making it the current node. This process continues until we arrive at a leaf. We 

then use the probability distribution associated with this leaf. 

To construct a decision tree, we start with only one node, the root, containing only one 

probability distribution. Given a predefined set of possible questions about the context, we 

choose one that maximizes some criterion, e.g. performance of the tree on test data. This 

question is then placed at  the root node, the children are created, and separate distributions 

are estimated for each child. This process continues recursively until some stopping criterion, 

e.g. none of the questions lead to improvements, is met. At each leaf, the distri~ution is 

estimated in the following manner. Our training data consists of a set of data points, e.g. 
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the occurrence of some word in a given context. Each of these data points starts out a t  the 

root node and then, by answering the questions a t  each internal node i t  encounters, ends up 

a t  some leaf node. Once all data points have reached the leaves, we estimate a probability 

distribution for each leaf based on the frequencies of events in the data it  contains. 

As an example, suppose we have a set of training data containing the  identity of a word 

w[i] ,  given the previous word w[i - 11. One such data point could be (w[i-l],w[i])=(the, 

weather). Suppose further, that the set of possible questions we can ask is "Is the part 

of speech of the previous word gj?", where g j  can be any part of speech. Our goal now 

is to  construct a language model based on this training data and on this set of questions. 

We will start out with one node containing only one distribution. As for every other leaf, 

this distribution is estimated from the frequencies of events in its data. In this case, the 

distribution will correspond to  the uni-gram (see section 2.5.1), giving the relative frequency 

of each word. For each question we can ask, we construct the children, their separate 

distributions and measure the performance of the resulting language model on testing data. 

We then choose the question that leads to  the best performing model and actually put this 

question in the root node. We then create two children, send each data point t o  the right 

or left child, depending on its answer to  the question we just chose, and construct separate 

distributions for the children based on the frequency of events in their data. We can then 

apply this process recursively to  each child until some stopping criterion is met, e.g. none of 

the questions leads to' a further improvement. This terminates the process and the resulting 

decision tree is our language model. 

All the models we have seen so far can be represented in terms of a decision tree. Decision 

trees are therefore more general language models. Their advantage is that the number of 

distributions is not fixed in advance, but it is determined by the training data. The number 

of distributions is therefore in general more appropriate than if one of the previous models 

is used. Its disadvantage is that the task of constructing the tree is computationally very 

expensive. And even though the resulting model frequently has less distributions t o  store, 

the improvement in performance is often relatively small (see [?I, [150]). 

2.5.5 Dynamic, Adaptive and Cache-Based Models 

In all of the models we have seen so far, the probability distributions are estimated from 

the  training data and do not change further when the model is used on different texts or on 

different portions of a text. For this reason, they are called static language models ([67]). 
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However, intuitively, it is very clear that some words are very "bursty" of nature: they do 

not occur in a large portion of the text, but then occur frequently in one small section. 

There is also strong empirical evidence to  support this intuition. In [68] and [69], it is 

shown for three different corpora that frequencies of words vary greatly between different 

types of text. Language models that try to capture this short term fluctuation of the overall 

frequencies are called dynamic, adaptive or cache-based language models. 

So far, there has been very little work on dynamic language models in the literature. 

The idea was first proposed by R. Kuhn in [84], then developed in [85], [86] and [88]. It was 

further tested in [67], [79] and [27]. Since all these approaches have a considerable degree 

of similarity, we will only present one of them in more detail. 

In [67], the occurrences of the N most recent words w[i - N : i - 11 (e-g. N = 1000) are 

considered as separate training data. Based on this data, separate unigram, bi-gram and tri- 

gram frequency distributions are estimated. They are combined using one of the smoothing 

methods to obtain a single dynamic tri-gram estimate denoted by pdyn(w[i]lw[i - 2 : i - 11). 

This distribution assigns a non-zero probability to all the words that occurred within the last 

M words. To avoid zero probabilities of the remaining words, the model is combined with the 

static tri-gram model pSt,(w[i]lw[i - 1 : i - 11) to give the combined model p,,,(w[i]lw[i - 2 : 

i - 11). This combination is performed by a linear interpolation: 

pco,(w[i]lw[i - 2 : i - 11) = X * p d y n ( ~ [ i ] I ~ [ i -  2 : i - 11) + (1 - A)  *pSt,(w[i]lw[i - 2 : i - I]). 

(2.24) 

A well known estimation algorithm, the forward-backward algorithm ([6]), is used to esti- 

mate the interpolation parameter A. X ranges from 0.07 to 0.28 depending on the static 

tri-gram model used and on the cache size N. 

Using the combined model, the improvement in performance of the language model 

ranges between 8% and 23%. As reported in the same paper, for an isolated speech rec- 

ognizer, this leads to  a reduction in error rates ranging from 5% for shorter documents to 

24% for larger documents. This is because the cache starts out empty at  the beginning of 

each document and it takes some time before its estimates accurately reflect the particular 

document. Improvements of about the same size are reported in [85], [86] and [79]. 
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2.6 Summary 

In this chapter, we gave an overview of the different components of a speech recognizer, 

defined the task of the component central t o  this thesis, the language model, and reviewed 

the most commonly used language models. 

We began by giving an overview of the different components of a speech recognizer 

designed according t o  the stochastic approach (see section 1.2). We briefly explained the 

tasks of the signal processor, the vector quantizer, the acoustic model and the language 

model and how they interact to  perform the mapping from the acoustic signal to  a string 

of words. Moreover, we introduced many of the notations used throughout this thesis. 

After havicg described the task of the language model intuitively, we then defined the 

task of the language model more formally as follows. Given a set of contexts, the task of 

a language model is to provide a probability distribution for each context and to  provide a 

way of choosing a context given the words recognized so far. 

Since probability distribution are used frequently in this thesis, we explained how prob- 

ability distributions can be estimated from frequency data using the maximum likelihood 

criterion. Furthermore, we briefly addressed the issue of smoothing probability distributions 

and presented a very simple smoothing technique, the addition of a small, constant baseline 

probability. The estimation and smoothing methods that have been presented here are the 

ones we use for our work. 

Having seen the major issues in constructing language models, we reviewed many existing 

language models (context independent, N-gram, N-pos, decision tree based and adaptive 

models). For each language model presented, we focussed on two conceptually important 

issues: how does the model define the context c for its probability distributions p (w[ i ] ) c )  

and how many probabilities does the model have to estimate. The first point is important 

because it determines which linguistic regularities (e.g. the ones involving only the two 

preceding words) the language model can capture. The second point is important because 

it  determines the amount of data needed to  train the model and therefore the situations in 

which the model can be used. 



Chapter 3 

Analyzing and Improving 

Language Models 

In the last chapter, we reviewed many existing language models for speech recognition. Even 

though some of these models may achieve good performance, the type of speech recognition 

tasks we can tackle with existing speech recognition technology, including the language 

models, is still limited. How can we improve the language models so that we can tackle 

more complex speech recognition tasks? In this chapter, we propose the central idea of this 

thesis, namely trying t o  analyze errors of existing language models in order to subsequently 

improve the models. We first present some intuitions on improving language models (section 

3.1) followed by a derivation of the standard measure used t o  evaluate language models 

(section 3.2). Given a term closely related to  this perplexity measure, the logarithm of 

the total probability LTP, we then define a weakness of a language model in terms of 

LTP (section 3.3). For models with several components (e.g. the class based models), we 

develop the method of probability decomposition (section 3.4) which allows us to  analyze 

the weaknesses ol' the components separately. We conclude this chapter by showing that 

the idea of analyzing weaknesses is applicable to  many probabilistic models (section 3.5). 
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3.1 Intuitions on Analysing and Improving Language Mod- 

els 

Generally speaking, theories about the world remain valid as long as they correctly predict 

the observed empirical data. But when contradictory evidence is found, new theories are 

sometimes found naturally by identifying and analyzing the errors of the old theory. This 

can be taken as a very simple, intuitive model of scientific progress. By analogy t o  this 

model of progress, we propose in this chapter the central idea of this thesis, namely trying 

t o  analyze errors or weaknesses of a language model in order to  subsequently improve the 

model. 

Before developing this line of thought further, we should try to  find out whether some- 

thing similar has been tried before. In the proceedings of the recent major conference in 

North America ([57]) and one of the main European conferences ([35]), we did not find one 

paper that attempts an error analysis of a language model. In all of the typical language 

modeling literature (e.g. proceedings of previous years, workshops, etc.), we have not come 

across a paper that tries to tackle the problem from this angle. Therefore, the current 

literature on language modeling shows an apparent lack of interest in error analysis. This 

is very surprising, especially when the recent increase in work on the topic is taken into 

account. 

In order to  perform an error analysis of a language model, we first have to  define what 

constitutes an error. How do we define an error of a language model? Rather than trying to  

define an error a t  this point, we observe that the definition of an error should be related to  

the performance measure used to  evaluate a language model. If they are not related, we can 

still identify and remove an error, but by doing so, we may not improve the performance of 

the model because the error is not related to the performance measure. Before defining an 

error, we therefore introduce the standard measure used to evaluate the performance of a 

language model. 
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3.2 Evaluating a Language Model 

3.2.1 A Simple Mathematical Measure for the Quality of a Language 
Model 

Since the task of the model is to  predict words, it seems natural to evaluate a model by 

looking at  the probabilities it gives to words in a sample of text. This text is referred to as 

a testing text. The geometric mean of these probabilities f the "average value") therefore 

seems like a good measure for the ability of the model to predict words. Perplexity (see 

[62]), the standard yardstick for comparing performances of language models, is just the 

reciprocal of the geometric mean. 

We now present the measure of perplexity in more detail. As introduced in section 2.2, 

W = w[l], ..., w[i], ..., w[n] denotes a sequence of words. Here, the sequence is the sequence 

of words in the testing text. Let ck(;) be the context the language model chooses for the 

prediction of the word w[i] (see section 2.3). Furthermore, p(w[i] = wr(i)lck(i)) denotes the 

probability assigned to the ith word by the model. The total probability TP of the sequence 

i= 1 

The perplexity PP we just described intuitively as the geometric mean of the probabilities 

is then 

For a large sample of text, the tot a1 probability TP can get extremely small. Therefore, from 

a practical point of view, it is more convenient to use the logarithm of the total probability 

L T P  
z=n 

L T P  = log2(TP) = log2(p(w[i] = wl(i) lck(i) ) 
i=l 

(3.3) 

and the logarithm of the perplexity LB ' 

'By analogy to T P  and LTP, we would prefer to use the term LPP instead of LP.  However, since LP 
is the term used by many other researchers, we will be using it as well. 
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3.2.2 Information, Entropy and Perplexity from an Information Theoretic 
Point of View 

In this section, we will derive the logarithm of the probability LP and the perplexity PP 

from an information theoretic point of view as measures for the quality of a language model. 

We will also derive the term of entropy, which we will use later in section 4.2.1, page 64. 

Most of the material here is taken from [62, pp.4721, [122, p.6,p.54] and [135]. 

Information theory is concerned with sources of information. In simple terms, a source of 

information is a device that outputs symbols chosen from a finite set V = {xl, ..., xr) known 

to the observer. The symbols are chosen according to a statistical law underlying the device. 

We will write the probability of observing symbol xi as p(xi). When an information source 

outputs a symbol, it provides information by removing the uncertainty about the identity 

of that symbol. Thus, a source provides more information if the uncertaiaty about the 

next symbol is greater. How can we measure the amount of uncertainty we have about the 

next symbol? If there is such a measure, say H(p(xl, ..., xl)), it is reasonable to require the 

following properties: 

1) H(p(xl, ..., xl)) should be continuous in the p(x;). 

2) If all the p(xi) are equal (e.g. p(xi) = f ) ,  then H(p(xl, ..., 21)) should be a monotonic 

increasing function on 2. In other words, if all symbols are equiprobable, then there is 

more uncertainty if there are more symbols. 

3) If the choice of the next symbol is broken down into two successive choices, the original 

H(p(xl, ..., xl)) should be the weighted sum of the H values of each choice. The 

meaning of this is illustrated in figure 3.1. In case a), we have three possibilities with 

probabilities p ( q )  = $, p(xz) = 5 and p(xg) = a. In case b), we first choose between 

two possibilities each of which has the probability $, and if we have picked the second 

possibility, we will make another choice between two possibilities with probabilities $ 
and 9. We require that 

It is shown in [135, p.1161, that the only H(p(xl, ..., xi)) satisfying the three requirements 

is of the form 
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Figure 3.1: Breaking one 
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The constant k merely determines the choice of a unit of measure. Quantities of the form 

H = - C p ( x i )  * logp(xi)  (3.7) 

play a central role in information theory as measures of information, choice and uncertainty. 

H is also used as entropy in statistical mechanics, where p(x; )  is the probability of a system 

being in cell i of its phase space (see for example [145]). 

One way of understanding intuitively why the logarithm is used is to  look at  the infor- 

mation provided by 

information content 

a source with 1 equiprobable symbols. According to equation 3.7, the 

of such a source is 

- - 1  1 
H ( X )  = $091 = 7 * l * logl = logl. 

If the source outputs two symbols in a row, we should get twice as much information. 

However, outputting two symbols is equivalent to a source outputting one of E%ymbols 

independently and with equal probability. The information content of the second source 

should therefore be twice the information content of the first. Indeed, because we use the 

logarithm, we get 

log12 = 2 * log1 (3 .9 )  

The logarithm therefore conforms to our intuitions about the quantities of information. 

Another way of understanding equation 3.7 is to rewrite it aa 
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If X denotes a random variable (our source) over the set V = { x l  , ..., xr), then H is in fact 

the expected value of log&, where & is the uncertainty associated with symbol xi. If 

xi is very unlikely, then is very big, thereby agreeing with our intuition that unlikely 

events carry a great degree of uncertainty. 

As one example of this definition, consider the entropy of a variable that can only take 

one value, of course with probability one: 

1 
H ( X )  = l * b o g -  = 0. (3 .11)  

1  

Since the outcome is absolutely certain, no information is provided by the source. 

The logarithms in equation 3.7 are usually taken t o  the base two and in this case, the 

information is measured in units of binary symbols (bits). For example, the information 

provided by a uniform source with two symbols is one bit: 

f = log2?= 1. 

The fundamental theory of information theory states (see [135, p.59, Theorem 91) that 

on the average, i t  takes N bits t o  represent a symbol put out by a source of entropy H. 

Furthermore a source of entropy H provides as much information as a sowce that chooses 

it symbols independently, with equal probability, from a vocabulary size of 

This is because, according to  equation 3.8, the entropy H'  of the latter source is 

H f  = 1 0 ~ 2 ~  = H .  (3 .14)  

What about information sources that do not choose their symbols independently of 

previous symbols? Let x [ i ]  denote the i th  symbol output by the source and let x [ i  : j], i  5 j 
be a short hand for ~ [ i j ,  x [ i  $11, ..., alj]. For this more general case, the entropy H is defined 

as 

There is a groups of sources, called erggodie sources, for which we can simplify equation 

3.15. Even though a rigorous definition of ergodicity is quite complex, the general idea is 

simple. 

2The interested reader can find more on ergodicity in [135, p.471 and a more rigorous definition in [do]. 
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"In an ergodic process every sequence produced by the process is the same 

in statisticd properties. Thus the letter frequencies, digram frequencies, etc., 

obtained from particular sequences, will, as the lengths of the sequences increase, 

approach definite limits independent of the particular sequence. Actually, this is 

not true of every sequence but the set for which it is false has probability zero. 

Roughly the ergodic property means statistical homogeneity'' (f135, p.45,46]) 

In the case of ergodic sources, equation 3.15 reduces t o  

In other words, we can estimate the entropy H from long sequences of symbols that were 

generated by the source. 

How can we apply information theory to  language models? Language can be seen as an 

information soarce whose output symbofs are words from the vocabulary V = (wl, ..., w,) 

(see section 2.2). We can use formula 3.16 to estimate the content of information per word 

in a large corpus of text: 
1 

H = -logp(x[l : n]). 
n 

(3.17) 

But how can we get the probabilities of sequences of words w[l : n] of the language, that we 

need for equation 3.17? We can approximate them with the probabilities $(w[l : n]) given 

by the language model. If we replace the true probabilities p(w[l : n]) of equation 3.17, with 

their approximations @(w[l : n]) given by the language model, we obtain the logarithm of 

the probability (logprob) LP that we saw in section 3.2: 

1 
LP = - -logj(w[l : n]). 

n 

Intuitively, L P  is a measure for the entropy of our model for the language. As pointed out 

in 162, p.4741, we can show that L P  2 H if we assume proper ergodic behavior of the source 

generating the text. This is clear intuitively, because our model of the language can at, most 

be as good as the language itself. From the view of the speech recognizer, LP measures the 

difficulty in recognizing speech that was generated by the same source that generated the 

corpus. Thus, LP is a very appropriate measure for the quality of a language model. 

Similar to equation 3.15, we can say that the difficulty of a speech recognition task is 

also given by the perplexity PP (see section 3.2): 

PP = 2LP = @(w[l : n]). (3.19) 
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Thus, the speech recognition task with a language model of logprob L P  can be thought of 

as being as difficult as the recognition of a language with PP equally likely words. 

3.2.3 Discussion of the Standard Perplexity Measure 

The ultimate measure for the performance of a speech recognition system is its recognition 

accuracy. Why then do we want to  measure the quality of a language model separately? 

First, because it altows us to  measure the quality of one component of the speech recognizer, 

the language model, independently of the characteristics of the other components of the 

particular speech recognition system at  hand. Not only does this make language models of 

different speech recognizers directly comparable, but it also allows researchers to work on 

the two subtasks separately, thus following the well known "divide and conquer" approach. 

Second, we can measure the quality of language models that are built for different tasks, 

e.g. word disambiguation and spelling correction or text encoding. 

What do we expect of a measure of the quality of a language model, in particular with 

respect t o  speech recognition? Suppose we have two Iangaage models, LM1 and LM2, and 

- according to  our performance measure - LM1 is better than LM2. We expect that in 

general, the recognition accuracy of a speech recognizer that uses LM1 will decrease if it 

uses LM2 instead. In other words, the measure of the quality of the language model should 

be highly correlated with the accuracy of any speech recognition system. 

The perplexity measure from the previous sections has been shown to correlate well 

with the recognition accuracy many times. Moreover, it is a theoretically sound measure 

for the amount of choice in a text generated by the language model. It is therefore a very 

appropriate measure to use for the evaluating of language models. However, it also has the 

following problems: 

1) The perplexity measure does not take the acoustic similarity of the words into ac- 

count. Thus, there is no perfect correlation between perplexity and recognition accu- 

racy. There have been cases reported in the literature (see for example [21]), where 

a language model LM1 with a higher perplexity than a model LM2 leads to  better 

recognition accuracy. 

2) The quality of the language model depends on the testing text. If we choose a testing 

text that is very different from the text used to train the model, the model will perform 

very poorly. However, this does not really mean that the model is bad, but that the 
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testing text is very ciifFerent from the training text. In fact, the language model may 

have learned the statistical properties of the training text very well. 

3) The language model wiU ultimately be used to discriminate between likely and unlikely - 

words. It seems that for this purpose, the difjrerenee in probability between likely and 

unlikely words is more important than the absolute value of the probabilities. In 

general, negative information is useful in language learning tasks (see for example (421 

and 1431). It therefore seems appropriate far the language model to make use of a 

"fa3sen text (for example a sequence of words chosen at random from a vocabulary OF 

a permutation of an existing; text). We could then for example measure the difference 

in perplexity on the real and the "false" text. 

Even though there are problems with the perplexity measure, we choose to use it for our 

work for the following reasons. First, problem 1) is very rare and in the large majority of 

cases, the perplexity a,nd the recognition accuracy are highly correlated. Second, problem 

2) is less severe if we choose a testing text that is quite similar to the training text (and to 

the task the language model is used for in the end). This is common practice. Third, the 

amount of work required to  investigate problem 3) is beyond the scope of our work here. 

Last, but not least, perplexity is still the only widely accepted measure for the quality of a 

tanguage model. 

3.3 Defining and Identifying Weaknesses of Language Mod- 

els 

Now that we have seen the standard measure used to evaluate language models, we can pro- 

ceed with our endeavour of defining errors of language models. Since the language model 

constructs a probability distribution, we do not think that the word error is appropriate. 

Instead, we prefer to use the term weakness, because the intuitive notion of the term weak- 

ness as something that should be improved is what we want to express. However, in order 

t o  avoid a future misunderstanding, let us point out that we use the term weakness in s 

special, technical sense for the following reason. The commonly used notion of weakness 

mplies that the weak part can be improved. In our usage, this might not always be possible. 
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word with a probability of one 3. Since our definition of a weakness will be related to the 

information theoretic term of perplexity, only a model that can predict the next word with 

absolute certainty (e.g. with a probability of 1) would be perfect. Thus, any model that does 

not achieve this will still have weaknesses in the infopmation theoretic sense. So even the 

intuitively "perfect" language model will still have a weakness according to our definition. 

Even though this might be a theoretical drawback of Enkirrg the definition of a weakness to 

information theory, the disadvantage only appears if the language model approaches the in- 

tuitively "perfect" model. However, current N-gram models have arguably not yet reached 

this state fsee f63] for a brief comparison between the performance of a tri-gram model and 

a human guess). 

We can now describe a weakness of a language model in terms of the logarithm of the 

total probability LTP, a term very closely related to the standard performance measure for 

language models fsee section 3.2). Intuitively, a weakness of a language model is any part 

of the model that causes a large fraction of the LTB. In the following, we will formalize 

this intuitive description. 

Let us begin by again pointing out that the performance of a language model depends 

on the testing text used to evaluate the model. This is one of the drawbacks of the standard 

performance measure and it was already mentioned in section 3.2.3. As we saw in the 

beginning of this chapter, our measure of weakness should be related to the performance 

measure. It is thus very clear that our weakness measure will also depend on the testing 

text. In other words, when we speak of a weakness of a language model, this will always be 

relative to a given testing text. As pointed out in section 3.2.3, the idea is of course that 

the testing text should be very similar to the actual data the language model will ultimately 

be used for. If this is the case, the above mentioned drawback, both for the performance 

measure and for our weakness measure, will be less severe. 

A language model is evaluated on a testing text W = w[l] ... w[i] ... w[n] (see section 

3.2) and the probability the language model assigns to word w[i] is denoted by p(w[i] = 

w ~ ( ~ ~ ~ c ~ ( ~ ) ) .  Furthermore, the LTP of W is calculated as (see equation 3.3) 

In the following, we will denote the testing text W by its index set IW = (1, ..., n). This 

3Unless we assume an all-knowing oracle and deny the existence of a free will of the speaker. 
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way, we can denote any subset W1 of words of W by giving the subset of indices Iwl c Iw. 

For a given subset W1, we can easily determine the L T P  it causes (LTPwl) by summing 

up the logarithm of the probabilities of all the words in W1: 

Given LTPwl, we can then calculate the fraction of L T P  caused by W l  (fwl) as 

f w 1 =  
LTPw1 

L T P  ' 
(3.22) 

Definition 2 The impact of a subset W1 C W is the fraction fwl of L T P  the subset W1 

causes. 

The intuitive idea behind this definition is that we need to improve the language model's 

prediction of the words that have a big impact, if we want to improve the overall per- 

formance significantly. Similarly, if a subset has a low impact, improving the language 

model's prediction of the words in this subset will not lead to a significant improvement in 

performance. 

Given the impact of a subset W1 C W, we will now derive the part of the language model 

used in calculating the probability of W1 and the impact of this part. A language model 

contains many probability distributions and each probability distribution contains many 

probabilities. We therefore say that a language model is made up of a set of probabilities 

S = {pl , ..., pl } .  Furthermore, we will call any subset S1 C: S a part of the model. In order 

to  calculate the probabilities of a subset W1 of words (e.g. p(w[i] = wI(;~Ick~;~), i E Iwl), 

the language model will use a subset Swl S of its probabilities. Given a subset W1, we 

can then define the part Swl of the model as the subset of probabilities used to calculate 

the probabilities of words in W1. The impact of a part Swl & S of a language model S 

is then given by fWlr the fraction of L T P  that W1 causes. Finally, we can now define a 

weakness of a language model. 

Definition 3 A part Swl of n language model S, defined by a subset W1 of the testing text 

W, is called a weakness, if Swl has a great impact. 

The intuitive idea behind this definition is as follows. If subset W1 causes a large fraction 

of LTP,  then improving it is very important. This conforms to our intuitive meaning of a 

weakness as something that should be improved. 
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In the next chapter, we will see what useful results we obtain with this definition. For 

now, we demonstrate the usefulness of this definition through an example. We define a 

simple language, a simple model of the language, evaluate the model on a simple testing 

text and perform the analysis of its weaknesses. We can then verify that, in this case, the 

weaknesses identified by our definition correspond to  what we would Eke to be identified 

intuitively as weaknesses. 

Consider the language consisting of sequences of the four symbols ( a ,  b, c, d}. Suppose 

that we know nothing about this language in general and the frequencies of each symbol in 

particular. We therefore choose the most simplistic model introduced in section 2.5.1 as a 

model of the language. This model treats all symbols as equiprobable and therefore assigns 

the probability f to  each of the symbols, independent of context. As testing text, we use 

the string "bddad". When we evaluate this model (see section 3.2), we obtain for its tot& 

probability (TP),  perplexity (PP ) ,  logarithm of total probability (LTP)  and logarithm of 

perplexity (LP): 

According to  the preceding discussion, we can now try to identify the weaknesses of the 

model. Since there are four basic events distinguished by the model, it seems natural to  

look at the importance of the subsets A, B, C and D of W thae are defined by all occurrences 

of each symbol in the testing text. For the subset A, we thus obtain the index set IA = (43, 

the set containing the index of the only occurrence of the symbol "a". Similarly, we obtain 

Ig = (11, IC = { } , ID  = {2,3,5). The LTP caused by subset A is simply the sum of the 
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logarithms of the probabilities of all occurrences of "a": 

Similarly, we obtain LTPB , LTPc and LTPD: 

We then divide the LTP caused by each subset 

fraction of LTP caused by each subset: 

LTPA 
f A  = -- - 

LTP 
LTPB 

f B  = - - - LTP 
LTPc 

fc = - -- - LTP 
LTPD IfD = -- - 
LTP 

by the overall LTP = -10 to obtain the 

Because all occurrences of the symbol "d" cause 60% of the total LTP (e.g. f D  = 0.60), we 

can see that the prediction of the symbol "d" is the most important one for the performance 

of our model on this testing text. But what does this result imply for the model? We will 

now identify the part of the model that is used in calculating the probabilities of the subset 

D. In this example, this will be very straight forward, but as we will see in section 3.4, this 

is iioi always the case, 

Our model has only one probability distribution containing four probabilities. We thus 

write our model S as S = {p,,ps,p,,pd). The only probability used in calculating the 

probabilities of words in D is pd. We thus obtain the part of the model SD = { p d ) .  
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This part causes 60% of the total LTP (e.g. fD = 0.6) and is therefore identified as a 

weakness of the model. Intuitively, if we have the chance to increase one of the probabilities 

in S = (p,,pb,p,,pd) (and decrease others in return), we would choose pd, if we want 

to  significantly improve the overall performance of the model. This is also the part that 

is identified as a weakness using our definition and the results of our analysis therefore 

correspond well to our intuition. 

3.4 Probability Decomposition 

In the last section, we defined a weakness of a language model as a part of the model that 

has a great impact on the overall periormance. A part of the model was in turn defined 

as all the probabilities of the language model that are used in calculating the probabilities 

of a subset of words from the testing text. In some language models (e.g. the N-gram 

models), the probability p(w[i] = wllck(i)) of the ith word is just the probability value of the 

probability distribution for context ck(;). In such models, we can thus measure the impact 

of a single probability value of the model and, by considering any set of these probability 

values, the impact of any subset of the model. This allows a very fine-grained analysis of 

the language model. 

However, there are language models in which each probability p(w[i] = wllck(;)) is cal- 

culated from several probability values of the language model. An example of such a model 

is the last class based model we saw in section 2.5.3. In this model, the probability of seeing 

the word 'light' is the probability of seeing it as a noun plus the probability of seeing it as 

a verb plus the probability of seeing it as an adjective. The exact formula of the model is 

We can see that the probability of the ith word is calculated as a sum of terms, where 

each term is the product of two probabilities. The subset of the model, defined by just one 

word w[ij therefore contains many probability values (as opposed to just one in the N-gram 

model, for example). The parts of the model identified as weaknesses thus tend to be large. 

But if we want to  improve such a large part of the model, which of its probability values are 

really important? Is it for example the probability values that predict the next class (e.g. 

~ ( ~ ( w [ i ] )  = gjlg(w[i - 11))) or is it the probability values that predict the word given the 
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class (e.g. p(w[i] = wllg(w[i]) = gj))? In order to answer this question, we will now develop 

a method called probability decomposition. It will allow us to divide the probability of the 

ith word into two parts, the part used to predict the next class and the part used to predict 

the next word given its class. 

To start with, we are given the sum of the form S = C, a; * b; representing the bi-pos 

formula (equation 3.32), where S corresponds to p(w[i] = wrlw[i - I]), a; to p(g(w[i]) = 

gj lg(w[i - 11)) and b; to p(w[i] = wr lg(w[i]) = gj). We therefore have 0 < a;, b; 5 1. In 

our overall analysis of the language model, S will cause a certain percentage fs of the total 

LTP. Our goal is to  split fs up into two parts fA and fB, the fractions of LTP caused 

by the a;'s and bi's respectively. This will allow us to concentrate our efforts to improve 

the model on the a;% or hi's, depending on which one has a bigger impact on the overall 

performance. In order to split fs into fA and fB, we need to know the percentage of S 

that is given by the ai's and hi's. How can we calculate that percentage? We start with 

the most simple case and suppose that the sum is only over one term, e.g. S = a1 * bl with 

b = 1 S = $ * a = i. What percentage pa of S is given by al?  To answer this a1 = 2, 1 4 ,  

question, we first need to  take a closer look at our intuitive notion of percentage. Suppose 

we have a sum S = a1 + ...+ a,. When we say a1 is y*100% of S, e.g. 3 = y, y is a measure 

of how many al's make up the total S with respect to the operator '+'. In fact 

The same should hold for a product. Suppose we have S = a1 * ... * a,. If we say a1 is 

y*lOO% of P, we mean ' 

1 1 - 
a1 * ... * al(-times) = a[ = P. (3.34) 

Y 

By solving the last equation for y, we get the percentage of P given by al:  

k9~M - the notion 'We used the logarithm to the base two to solve the equation. But because loga(y) - l o g b ( y ) ,  

of percentage does not depend on the base used. 
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Figure 3.2: The graph of p-4 

Thus, in our example, the percentage p~ of S = given by a1 = $ is 

To get a better intuitive understanding of p ~ ,  we plot in figure 3.2 the relationship between 

p ~  and a1 for S = i, i < a1 < 1. We limit a1 to the range < a1 5 1 because only in this 

range we can find a bl in the range 0 < bl < 1 such that S = a1 * bl .  Because the curve is 

falling, we can see that a smaller ul corresponds to  a higher percentage. Thus if we have 

S = Q = a1 * bl with a l  = I 47 b 1 -  - 1 2 and a; = Q, b; = 1, then a: causes a higher percentage 

of S than a l .  

How can we calculate the percentage p ~  of S given by a; if the sum is over several 
1 terms? As an example, consider S = a1 * bl t a2 * b2 with a1 = $, bl = z, a2 = i, bt = 

1 27 S = i * a + $ * = $. We can first determine the percentage p ~ l  of a1 * bl given by a1 (as 

above) and the percentage p,42 of a2 * b2 given by a*. Given p ~ 1  and pA2, we could obtain 

the overall percentage p ~  by simply taking the average, e.g. 
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However, since a1 * bl and a2 * b2 make up different portions of the total sum S, it is more 

fair t o  weigh p ~ l  and according to the portion of S represented by a1 * bl and a2 * b2 

respectively. This gives the weighted average 

Similarly, we can calculate the percentage p~ of S given by b; as 

In our example, this gives 

Knowing that p~ and p~ are the percentages of S given by a; and b;, we can then simply 

write S = A * B with 

A = SPA,B = S p B .  (3.51) 

In our example, we thus get 
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We have now decomposed the value of S = $ into S = A * B with A = 0.6466 and 

B = 0.5799. What is so special about these values, among all the possible values for A and 
1092(A) = q B? They are special because the percentage of S given by A is $, e.g. p~ = , cg2(B)  9 ,  

the weighted average of the percentages of a; * bi caused by a;. 

We will now extend this method to the general case. Given S = Ca; * bi, we will 

decompose S as follows: 

We can verify that for this choice of A and B, the percentage of S caused by A and B is 

indeed p~ and p~ respectively and that the multiplication of A and B indeed gives S: 

Given this method of probability decomposition, we can now replace the probability 

p(w[i] = w , ~ c ~ ( ~ ) )  of the ith word with 

For one, this will allow us to look at  the fraction of LTP caused by different contexts. 

Moreover, by only looking at all the Ai7s (or Bi7s), we can now treat each component as a 

separate model, and this way, we can analyze the weaknesses of each component separately. 

Please note that we can extend the method of probability decomposition to models that 

have more than two components. Suppose for example that a language model calculates 

the probability of the ith word as 
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We can then simply write 

3.5 Applicability 

The idea of identifying weaknesses of probabilistic models by measuring the amount of LTP 

caused by different events is very general. It applies to  all probabilistic models that derive 

a score for a sequence of tokens by multiplying the probabilities of individual tokens and 

that are evaluated using the perplexity measure. 

Examples of models t o  which our idea of identifying weaknesses is applicable are all 

the models reviewed in section (2.5), ranging from N-gram over N-pos to  models based on 

decision trees. Furthermore, the idea is also directly applicable to models that are based on 

units different from words, such as syllable based language models ([105]) and phone based 

language models ([96], [130]), or to models like [47], where the language model is made 

dependent on the state of a LR parser. 

En general, speech recognition systems have been based on phonemes ([142]), diphones 

([103], [22], [I], [133]), syllables ([55], [154], [44], demi-syllables ([127], [124]), and disyllables 

([137]). Language models can be built on all of these levels and the idea proposed here is 

applicable to  all of them. As an example, we will show how the idea of identifying weaknesses 

can be applied t o  a syllable based language model. 

The basic linguistic unit in Japanese sentences is the syllable (see [105]), corresponding 

roughly t o  a consonant-vowel unit. The syllable therefore constitutes a convenient unit for 

recognition of Japanese speech and is, for example, used in the Japanese phonetic typewriter 
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(see (743). Given the syllable s1, ..., 9;-1 recognized so far, the acoustic model can decide 

which syllables are likely t o  correspond to the next stretch of the acoustic signal. However, 

as in word based recognition, the acoustic model may not be able to  decide based on the 

signal alone which one of the likely syllables was the one spoken. The phonetic typewriter 

therefore uses a syllable based trigram language model to  decide which syllables are likely to 

appear next, given that the syllables recognized so far are 31, ..., s;-1. As usual, this syllable 

trigram langnage model is trained on large amounts oftext and its performance is measured 

on a testing text. How can we improve such an existing syllable based language model? 

Following the idea proposed here, we can first identify the weaknesses of the syllable based 

language model. We therefore should identify the syuables whose predictions account for a 

large fraction of the LTP. Once these syllables have been identified, we can look at  why 

they account for such a large fraction of LTP and, more importantly, how we can improve 

the language mode1 t o  avoid this weakness. 

An example of a model to which our definition of weakness is not applicable is a prob- 

abilistic context free grammar (see for example [157]). This is because the probability of a 

sequence of words is not obtained by multiplying the probabilities of each word. 

Besides language modeling for speech recognition, N-gram based probabilistic models 

are also used in the area of optical and handwritten character recognition (1541, [I231 and 

[138]). However, according to a recent survey on optical character recognition ([58, p.ll]),  

the N-gram model does not come under the name of language model, but is referred to as 

contextual processing and is one part of the postprocessing in optical character recognition. 

Nevertheless, the principles are very similar to  language models in speech recognition. For 

example, in [138], the Viterbi algorithm (11491) is used as in speech recognition, to find 

the best sequence of letters according to the probabilistic scores provided by two modeIs 

(corresponding to the acoustic model and the language model in speech recognition). The 

model that corresponds to  the language model is in fact a letter bi-gram language model. In 

other words, it calculates the probability of a sequence of letters z1, ..., zn by multiplying the 

probabilities of each letter z, ,  which only depends on the previous letter. This is expressed 

The probabilities p ( . ~ ~ l z ; - ~ )  of letter bi-grams are estimated from the Brown corpus. As 

with the syllable-based Japanese language model we just saw, we can apply our analysis of 
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weaknesses to  this letter based language model in order t o  subsequently improve the model. 

3.6 Summary 

In this chapter, which contains the central idea of this thesis, we proposed to perform 

analyses of weaknesses of language models in order to  improve the models afterwards, defined 

what we meant by "weakness of a language model" and presented a method to  identify the 

weaknesses of a given model. 

We began by noting the widely accepted idea that improving any kind of model or theory 

is usually easier once its shortcomings are known. Moreover, in a very simple, intuitive model 

of scientific progress, the knowledge of the errors of an existing theory is crucial. In analogy 

t o  this model of progress, we proposed in this chapter to analyze weaknesses of a language 

model in order to  subsequently improve the model. 

Since the measure of weakness of a language model should be related to  the performance 

measure used to  evaluate the model, we turned to the standard perplexity measure used for 

evaluating language models. We introduced perplexity intuitively as the reciprocal of the 

geometric mean of probabilities assigned to the words in the testing text, derived the measure 

from an information theoretic point of view and discussed its advantages and shortcomings. 

Given the perplexity and the closely related logarithm of the total probability LTP,  we 

defined a weakness of a language model in terms of LTP 5 .  A part of a language model 

defined by a subset of words of the testing text is called a weakness if it causes a large 

fraction of the LTP. This conforms to our intuitive meaning of a weakness as something 

that should be improved, because if we want to improve the model significantly, it is very 

important to  improve the parts of the model that cause a large fraction of the LTP. For 

models with sep~ra te  components (e.g. the class based models), we also developed the 

method of probability decomposition, which allows us to  analyze the weaknesses of each 

component separately. 

After having defined a weakness of a language model, we noted that this definition 

is applicable to  any probabilistic model that derives a score for a sequence of symbols 

by multiplying the probabilities of each symbol and that is evaluated with the perplexity 

measure. Wre can thus apply our definition to almost all of the commonly used language 

'For a discussion of which of the commonly associated intuitions of the term weakness also apply to our 
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models, including models based on units different from words (e.g. phonemes, syllables). 

As an example, we showed briefly how we can apply our definition to  a Japanese syllable 

tri-gram model and how this could help in improving the model. Besides language modeling 

for speech recognition, our idea of analyzing weaknesses is aIso applicable to other areas 

that use N-gram statistics, e.g. handwriting and optical character recognition. 



Chapter 4 

Analyzing and Improving a Bi-pos 

Language Model 

In the last chapter, we presented the main idea of this thesis, namely to perform an analysis 

of the weaknesses of language models. Moreover, we defined what we mean by a weakness 

of a language model. In this chapter, we apply this definition and the idea of analyzing 

weaknesses to  a concrete language model. For that purpose, we first choose a training and 

testing corpus and a language model (section 4.1). We verify that the training data we use 

is sufficient to train our model and this leads to a discussion of the issue of sample space 

(section 4.2). We then proceed with the analysis of the weaknesses of our model and present 

the results (section 4.3). Trying to improve one of the identified weaknesses leads to the 

development of the generalized N-pos model (section 4.4). 

4.1 Choosing a Corpus and a Language Model 

The corpus used to train and test a language model is the primary source of information 

used in the model. It is crucial to the overall undertaking that the corpus contains sufficient 

data to train the model. We could of course choose a language model and then a corpus, 

but we would have no guarantee that the corpus cont;ains enough training data. Since the 

rpus size determines the complexity of the language model that ean be adequately trained 
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4.1.1. Choosing a C~rpus  

A corpus is a collection of text in machine readable format, often annotated with additional 

information. These annotations can supply information related to, for example, the parts 

of speech of each word, the parse tree of each sentence or prosodic information. 

Before focusing on a specific corpus for our work, let us consider the wide range of 

existing corpora. According to a recent review of corpora r2search and construction (see 

[31]), the three most commonly used corpora are the Brown corpus (see [82], [39], [$I]), the 

Laneaster-Oslo-Bergen (LOB) corpus (see [71], 2701, [97]), and the London-Lund corpus (see 

[143]). But a large variety of other corpora exist: the Lancaster Spoken English Corpus 

(SEC) (see [go]), the British National Corpus (see [119]), the Wall Street Journal Corpus 

(available from the ACL/DCI), and the International Corpus of English (see [49]) - just 

to  name a few. Most of these corpora are available through institutions and initiatives, 

which have been created recently to oversee the collection of linguistic data, e.g. the data 

collection initiative of the Association for Computational Linguistics (see [99), [17], [152], 

[153]), the European Corpus Initiative of the Association for Computational Linguistics and 

the Linguistic Data Consortium. 

In choosing one of the available corpora for our work, we will consider two criteria. 

First, the corpus should be used for language modeling by other researchers. This makes 

the results more widely acceptable and reproducible. Second, we prefer a "small" corpus 

(e.g. less than a million words) for the following three reasons. 

First, many current speech recognizers are intended for a specific application domain 

(e.g. medical texts). As pointed out in [117], the performance of a language model in such 

a specific domain of application is often better if we train the language model on a small 

corpus task from the domain of application than if the language madel is trained on a large 

corpus not specific to the domain. We therefore need to train language models on small, 

domain specific corpora . 
Second, if we find a technique to improve a language model trained on a small corpus, it 

is likely that this technique is also applicable to language models trained on large corpora. 

On the other hand, if we find a technique to improve a language model trained on a large 

corpus, this technique might require the availability of a large amount of training data 

'Domain specific corpora are most likely very small, because corpora are expensive to produce. As an 
example consider the TI Digit Corpus ([98]), a collection of a large set of spoken digits. It required an 
estimated $300,000 to $400,000 for its construction. 
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and the technique might therefore not be applicable to  language models trained on small 

corpora. 

Finally, from a practical point of view, it is usually easier to understand a complex 

problem by looking a t  simple instances of the problem. In the case of a language model, a 

simple instance is a simple model, requiring little data to  be stored, handled and analyzed. 

Using these criteria, the LOB corpus is an adequate choice. It contains about one million 

words and is small compared to, for example, the Wall Street Journal Corpus (50 million 

words) or the British National Corpus (100 million words). Moreover, many researchers 

working on language modeling also use the LOB ([85], [log], [34], 11061, [78], [110]). 

Even though we are building language models for speech recognition, the corpus is 

constructed from written text. This is common practice, mainly for practical reasons. Large 

quantities of written text are already in a format that can be used for a corpus, whereas the 

transcription of spoken text is time consuming, tedious and expensive. 

The LOB corpus is divided into 500 samples of text. Each sample contains slightly 

more than 2000 words and each word is tagged with one of 153 possible syntactic classes. 

These syntactic classes correspond to the parts of speech (pos) that we mentioned when we 

introduce the N-pos models (see section 2.5.3, page 27). The samples are grouped into 15 

different categories, depending on the source of the text. Table 4.1 shows the 15 different 

categories and the number of samples in each. We see that the corpus covers a wide range of 

English prose. An example of the corpus material can be found in Appendix A. We use the 

first 50,000 words of sections A1-A34 as training text and roughly 25,000 words (sections 

A35-A44) as testing text. In section 4.2.3, we justify why 50,000 words constitutes enough 

training data. 

It has been reported in the literature (for example [60], [78]) that the number of classes 

or tags a language model uses influences the performance of the model. In order to make our 

results less dependent on the number of tags provided with the corpus, we therefore decided 

to  use more than one set of tags. We could have produced different tagsets automatically, 

as suggested in [62], [60], [78] and [I1 11 . However, since this is not the main issue addressed 

in this thesis, we used the following simple heuristic to construct four different tagsets. The 

original tagset contains, for example, four different tags for adverbial nouns (NR, NR$, 

NRS, NRS$) and twelve different tags for proper nouns. We construct smaller tagsets by, 

for example, merging al l  four tags for adverbial nouns into one tag (NR), or by merging 

all twelve tags for proper nouns into one tag (NP). We can then construct an even smaller 
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Category 
A 
B 
C 
D 
E 
F 
G 
H 
J 
K 
L 
M 
N 
P 
R 

Description 
Press: Reportage 
Press: Editorials 
Press: Reviews 

Religion 
Skills, Trades and Hobbies 

Popular Lore 
Belles Lettres, Biography and Essays 

Miscellaneous 
Learned and Scientific Writings 

General Fiction 
Mystery and Detective Fiction 

Science Fiction 
Adventure and Western Fiction 

Romance and Love Story 
Humour 

number of samples 
44 

Table 4.1: The different categories of the LOB corpus 

tagset by merging the set we just constructed for adverbial nouns (NR) and proper nouns 

(NP) into one tag for nouns (N). Thus, starting from the original tagset, we construct three 

other tagsets by merging tags with the same prefix. The resulting three tagsets have 88,42 

and 24 tags respectively. All four tagsets, together with examples for each tag are shown in 

appendix B. 

4.1.2 Choosing a Language Model 

In recent years, a great number of different language models have been developed (see section 

2.5). Most commonly used are bi-gram, tri-gram, bi-pos and tri-pos models. They differ 

significantly in their complexity and in the amount of training data needed. Which of the 

models should we use for our work? As was pointed out in the last section, we use a rather 

small corpus. Furthermore, the argument in favor of a simpler model making a complex 

process easier t o  understand is also valid for the choice of language model. We therefore 

chose the model requiring the least amount of training data, the bi-pos model. As mentioned 

in section 2.5.3, existing N-pos models furthermore differ in the fact that the classes the 

models use are overlapping or that they are mutually exclusive. Since the classes in the 

LOB are overlapping, we chose a model allowing multiple class membership. For example, 

the word 'light' can be a noun, verb or adjective depending on the context in which it is 
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used. 

Now that we have decided which of the models reviewed in section 2.5 we are going to 

use for our work, we will present the chosen model in more detail, describing the probability 

distributions in terms of smoothed frequency counts. But first, let us recall the model in 

terms of its probability distributions, as it was presented in section 2.5.3. The probability 

that the ith word w[i] is the word wl is calculated as the sum (over all classes gj)  of the 

probabilities that the ith word w[i] is wl, where wr appears with the particular class gj. The 

probability of the word wl appearing with a particular tag gj is the probability of having this 

tag gj (g(w[i])  = g j )  given the tag g(w[i- I ] )  of the previous word (p(g(w[i])  = gj Ig(w[i- 11))) 

times the probability of having word wr given the tag g, (p(w[i]  = wrlg(w[i]) = g,)). This 

is expressed more precisely by the following formula (see section 2.5.3): 

p(w[i] = wrlw[i - 11) 

= C ~ ( g ( w [ i l )  = gjlg(w[i - 11)) * ~ ( ~ [ i l  = wrlg(w[il) = ~ 7 , ) .  
93 EG 

As shown in section 2.4, we can estimate the probability distributions p(g(w[i])  = 

gjIg(w[i- 11)) and p(w[i] = wllg(w[i]) = g,) in terms of frequencies f (g (w[ i ] )  = gj Ig(w[i- 11)) 

and f (w[ i ]  = wllg(w[i]) = g j )  of events: 

= C f (g(w[il)  = g j l g ( ~ [ i  - 11)) * f ( ~ [ i l  = w~lg(w[i l )  = gj). 
g, EG 

In order t o  avoid zero probabilities (see section 2.4), we have to ensure that at  least for one 

tag go E G, both frequencies in formula 4.1 are different from zero. If we suppose that every 

word wl of our vocabulary occurred at  least once in our training text, then the occurrence of 

word wr has one tag go associated with it and the factor f (w[ i ]  = w1 Ig(w[i]) = go)  in formula 

4.1 is different from zero. However, if go never occurred after the previous tag g(w[i  - I ] ) ,  

the factor f (g(w[i])  = golg(w[i - I ] ) )  in formula 4.1 is zero. In order to  avoid the second 

factor t o  be zero, we therefore smooth the second distribution. As suggested in [85], and 

as explained in section 2.2, we add a small constant probability value of c2 and then use a 

matching constant cl to  ensure that the sum over the probabilities of all the words is one: 
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The language model is evaluated on a testing text, which may contain words that are not 

part of the vocabulary V. We therefore have t o  adjust formula 4.1 t o  deal with these so 

called unknown words . We again adopt the approach taken in 1851 and treat every unknown 

word as the occurrence of one special symbol, say unknown. We give a constant probability 

value of d  t o  occurrence of this symbol and have to  multiply all other probabilities by 

(1 - d )  in order t o  ensure that the sum of probabilities of all words in the vocabulary plus 

the probability of the symbol unknown sums up to  one: 

Following [85], we estimate the value of d by Turing's formula as the number of unique words 

in the training text divided by the total number of words in the training text. d  decreases 

when the amount of training data increases and for our training text of 50,000 words, we 

obtain d = - s 0.093. For c2, we chose the arbitrary value of low4 as suggested in [85]. 

As explained in section 2.4, we have to choose cl = 1 - [GI * c2, which gives cz = 0.9958 for 

the tagset with 42 tags. 

In formula 4.1, we need to  know the tag of the word w[i - 11 in order to  calculate the 

probability of word w[i], even if word w[i - 11 is an unknown word. We could simply use 

the tags provided with our tagged testing text, but this would be 'cheating7, because we 

would be using a source of information external to the language model t o  make its task 

easier. Following [85], our model uses a heuristic in order to assign a tag to  each word and 

the following three cases can occur: 

1) the word is unknown, e.g. it did not occur in the training text and is not part of the 

vocabulary. 

2) the word always occurred with the same tag in the training text. 

3) the word occurred with several tags in the training text. 

The model deals with these cases as follows: 

2The tags were assigned to words manually or by a separate program (a tagger), and they are therefore 
not gait of the information the language model can use. 
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1) the model chooses the tag gj which has the highest value of f (g(w[i]) = gj Ig(w[i - I])), 

e.g. the tag that is most likely to  folow the preceding tag. 

2) the model uses the unique tag of the word. 

3) the model chooses the tag gj which contributes the largest probability to the sum over 

all possible tags in equation 4.1. 

4.2 Differences in Sample Spaces 

In section 4.1, we chose a corpus and a language model for our work. Before we can 

proceed with the analysis of the weaknesses of the model, it is important to make sure 

that there is sufficient data in the corpus to train the model. Otherwise, the results would 

not be significant. As we will see in section 4.2.2, the analysis of the influence of the 

amount of training data on the model produces a counter-intuitive result: as the amount 

of training data increases, the performance of the model decreases. In order to  understand 

this behaviour, it is useful to look at  the underlying statistical issue, the issue of sample 

space. 

In statistics ([41]), the word 'experiment' is used in a very wide sense, and it refers 

t o  any process of observation or measurement. The results obtained from an experiment 

are called its outcomes. The set of all possible outcomes for each experiment is called the 

sample space. Probabilities are derived as the ratio of successful outcomes to all possible 

outcomes and the sum of the probabilities of all events in the sample space has to be one. 

In a language model, the experiment is the observation of the identity of the word that 

occurs next in a given context. One outcome is the occurrence of one particular word and 

the sample space is the set of all words that can be observed. 

4.2.1 Differences Due to the Modeling of Unknown Words 

As we have seen on page 61, a language model has to deal with unknown words. In the 

literature, we can find several ways of approaching the issue of unknown words and we will 

present four different models, M1 to  M4, in the following paragraphs. For our purpose, it is 

not crucial how probabilities are derived exactly for these unknown words, but rather what 

the underlying sample space is. We will therefore only describe the sample space for each 

of the four models. 
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We will denote the sample space by S and the number of words in the training and testing 

text by nt,,i, and nt,,t respectively. Let V(train[i]) denote the vocabulary derived from the 

first i words of training text and let V(train) be the shorthand notation for V(train[ntrai,]). 

Similarly, we define V(test [ i ] )  and V(test). Models, that change vocabularies during the 

testing will have a sequence of vocabularies denoted by Vo, Vl, ..., Kest,. Furthermore, as 

introduced on page 61, we will denote the unknown symbol with unknown. The four models 

are: 

M1 Every occurrence of an unknown word is treated as the occurrence of the symbol 

unknown. This gives the sample space S =V(train) U {unknown). This model was 

used by R. Kuhn and R. de Mori in [85]. 

M2 All unknown words are again treated as one special unknown symbol. However, after 

an unknown word occurs, it is added to  the vocabulary. We therefore get a sequence of 

vocabularies Vo =V(train), Vl =V(train) u V(test[l]), ..., Vnte,, =V(train) U V(test). 

This corresponds to a sequence of sample spaces Si = V,U (unknown). So is equal to  

the sample space of model M 1 and S,,,,, is equal to  the sample space of model M3. 

This adaptive model was proposed by Jelinek et. a1 in [65], 

M3 The model that looks a t  the testing text in advance ([83]). All the words that would 

be unknown are added to  the vocabulary before the testing begins, giving the sample 

space S =V(train) U V(test). 

M4 The model that derives a probability for an unknown word based on a character by 

character probability. It thus distinguishes between all possible unknown words. This 

corresponds to a sample space S =V(train) ~ { ( s ~ ,  ..., s k ) )  for all k > 1 where each 

si is one of the 95 printable ASCII characters. S therefore has an infinite number of 

elements. This model was proposed by Brown et al. in [13]. 

Recall from section 3.2.1 that the quality of a language model is measured by the per- 

plexity, the reciprocal of the geometric mean of the probabilities assigned to  words in the 

testing text. We think that it is not meaningful to  compare probabilities that are based on 

different sample spaces and we will illustrate this point in three different ways. 

First, consider the extreme case of M1 trained on zero words of text. This gives a 

sample space that only contains one element, the unknown symbol. Since there are no other 

elements, the model gives the probability of 1 to  this symbol. All words of the testing text 
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will be treated a s  occurrences of unknown and the text will be reduced t o  a repetition of this 

symbol. It is clear that the model assigning the probability of 1 to  this symbol will 'achieve7 

a perplexity of 1, which would imply that this is a particularly good language model! 

Second, consider the number of different words that are distinguished in the above 

sample spaces, but that are not part of V(train). The last model, M4, has a countable 

infinite number of these words, whereas the first model, MI, has only one. If we have a 

fixed amount of probability to allocate to these unknown words, then it is clear that in 

models with many unknown words, each one will 'receive' a very small probability. To 

conclude from the high perplexity of such a model that it is worse at  modeling the language 

is not really correct, because it solves a different task. 

Third, consider all the unknown words in the testing text, that the model M1 treats as the 

one symbol zmkraown. If we treat all these as separate words, then the sum of probabilities 

of all words will be more than one. The model therefore does not construct a probability 

distribution and we therefore can't compare these 'probabilities7 with probabilities of models. 

All these examples illustrate the point that models with different sample spaces are in 

fact solving different tasks and can't be compared using the standard perplexity measure. 

The amount by which the perplexity results are distorted depends on exactly how differ- 

ent the sample spaces are and how much of the total perplexity is caused by these unknown 

words. For example, if the model has a very big vocabulary, it has a higher coverage of 

words in the testing text and the perplexity caused by unknown words is very small. In the 

experiments reported in [13], the unknown words only account for roughly 5% of the total 

entropy (see section 3.2.2) . If we reduce the sample space by using MI, M2 or M3 (instead 

of M4), the entropy could at  most be reduced by these 5%. The distortion is so small (at 

most 5%) ,  because this model was trained on approximately 583 million words, it has a 

vocabulary of roughly 293,000 entries and only about 1% of the tokens in the testing text 

are unknown. In order t o  see how big the distortion is in a model trained on less data, we 

implemented and ran M1 and M4 on our 50,000 words of training text. We chose M1 and 

M4 because they differ the most in the size of their sample spaces and hence the distortion 

should be bigger than between other models. We ran our bi-pos model (see section 4.1.2) 

with M1 or M4 as models of unknown words, using our testing text with about 14% of 

unknown words. The results are shown in figure 4.2. The overall perplexity was 2.6 * lo2 

when using M I  and 4.6 * lo4 when using M4 (see section 4.3.2). This huge difference can be 

understood by looking a t  the geometric mean of the probabilities assigned by the two models 
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Table 4.2: Comparison of models M1 and M4 

to  unknown words. The first model had a geometric mean of approximately 7.4 * low2, the 

Model 
M1 
M4 

second model of approximately 9.39 * 10-17. The impact on the overall perplexity of this 

difference in probability is so much bigger in our experiment because the unknown words 

perplexity avg. prob of unknown words 
2.6* 102 7.4 * lo-2 
4.6 * lo4 9.4 * 10-l7 

account for roughly 51% of the perplexity when M4 is used (see section 4.3.2). 

We do not try t o  decide here what the L'correct" sample space should be. This should 

be done by the research community in general and, as one of the reviewers of our paper 

[I471 pointed out, researchers seem to favor models like M4 because these models do not 

require researchers t o  agree on a fixed vocabulary. However, as long as different models 

have different sample spaces, one should keep in mind the distortion this can cause to the 

perplexity results when comparing language models with this measure. 

The focus of this work is the analysis of the main part of the model, not the prediction 

of unknown words. For the remainder of the work, we therefore want to choose the model 

in which the prediction of unknown words plays the least important role. Hence, we will 

use model M1 for the remainder of this thesis. 

4.2.2 Differences Due to Different Amounts of Training Text 

In our implementation of M I  (see equation 4.1 for the exact equation), we made the following 

observation: as the training text increases in size, the performance of the model decreases. 

This can be seen in Figure 4.1, which shows the logarithm of the total probability L T P  (see 

section 3.2.1) of the testing text for different sizes of training texts and a set of 42 tags. L T P  

decreases as the training size increases. This behaviour is counter-intuitive because, as the 

training text increases, the model should get better at predicting the testing text and the 

L T P  should increase. In order to find the reason for this behaviour, we look at  the parts of 

LTP,  that are caused by non-vocabulary words, LTP(unknown), and by vocabulary words, 

3 ~ s  pointed out in section 3.2.1, it is more convenient to use LTP instead of PP. Moreover, since LTP 
and PP measure the same property, this does not influence the results. 
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Figure 4.1: The graphs for LTP, LTP(known) and LTP(unknown) 

LTP(known) separately: 

L T P  = logz(P(w[i] = wrci,lw[i - 11)) + log2(P(w[i] = W ~ ( ~ ~ / W [ ~  - I])) 
i , s . t . w [ i ] ~ V  i,s.t .w[i]@V 

Both are also shown in Figure 4.1. LTP(ur4known) increases and LTP(known) decreases 

as the training text grows. We explain this as follows. As the training size increases, more 

and more words that are unknown when a small training text is used, become known. Each 

of these words that is unknown and receives the probability of d when a small training text 

is used, will receive the probability value according to the bi-pos formula when a larger 

training text is used. It turns out that LTP(known) decreases more than LTP(unknown) 

increases. This happens because the probability d our model assigns to unknown words is 

higher than the average probability assigned to  words in the vocabulary. 

This behavior is again due to  the fact that models trained on different amounts of text 

have different underlying sample spaces. We already mentioned this problem in section 

4.2.1, when we considered a model trained on zero words of text, which would have a 

perplexity of one. In above example, the difference in sample spaces leads to  a distortion of 
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the probability measure to  the extent that models trained on less data perform Lbetter7. 

One way to  solve this problem is to  adjust for some of the distortion caused by different 

sample spaces. As we mentioned earlier, by giving the probability of d t o  every unknown 

word, the probabilities sum up to  more than one. For example, if we have r different 

unknown words in the testing text and distinguish between them, the sum of the probabilities 

of the possible words will add up to  1 + ( r  - 1) * d, 1 - d for the words in the vocabulary, and 

an extra r * d  for all the unknown words. Once the testing has been completed, we can adjust 

for this in the following way. Suppose a language model is tested on a text that contains 

s occurrences of these r different unknown words. If we suppose a uniform distribution of 

the unknown words, for example, as a rough approximation, we can divide the probabilities 

of the unknown words by T .  We call this adjustment the adjusted logarithm of the total 

probability, ALTP, and similarly, the adjusted perplexity, APP:  

ALTP = ALTP(known) f ilLTP(unknown) (4.1) 

= L T P - s * l o g 2 ( ~ )  

ALTP l l n  A P P  = (2 )- 

This will ensure that the pr~ba~bilities sum up to one, but it will not change the fact that 

d is 'allocated' to all unknown words. In order to  calculate A P P ,  we just calculate L T P  

as before and keep a counter for s and r.  When we reach the end of the testing text, we 

calculate A L T P  and A P P  from L T P  by adding the factor -s * log2(r) (see equation 4.5). 

Figure 4.2 shows the adjusted logarithm of the total probability, ALTP, and its decom- 

position into ALTP(known) and ALTP(unknown). We can see that the ALTP increases 

as the training data increases. The difference L T P  - A L T P  exactly quantifies how much a 

language model is 'cheating' by allocating d to  every unknown word. 

Let us summarize the advantages and disadvantages of the adjusted perplexity A P P .  

First, we can approximately compare language models with different vocabularies. The 

A P P  ensures that the models agree in parts of their sample spaces, namely, that the models 

distinguish between all the words that occur in the testing test. Second, from a practical 
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Figure 4.2: The graphs for ALTP, ALTP(known) and ALTP(unknown) 

point of view, we can write a language model without having to know the testing text, which 

should make it easier t o  run a language model on any testing text and to  compare existing 

language models. Third, we can now quantify by how much a model is 'cheating' due to its 

modeling of unknown words. One disadvantage of this method is that it can not be used to 

adjust the probabilities of words as one goes through the testing text (e.g. during speech 

recognition). The adjustment can only be done once the complete testing text has been 

seen. However, it is sufficient if one wants to approximately compare two language models 

with different vocabularies. Another disadvantage is that models trained on different texts 

can still differ in their underlying sample spaces. The A P P  measure only ensures that they 

distinguish between all the words in the testing text, but can of course not ensure that their 

sample spaces are identical. In other words, the two models can still try to solve different 

tasks. 

Another way of solving the problem of different sample spaces is to  fix the vocabulary 

independently of the training text. This ensures that the underlying sample spaces are 

identical and that the perplexity measure is used to evaluate two models that are trying 

to solve the same task. In order to fix the vocabulary independently of the training text, 

we need to  modify our model slightly. If the vocabulary is fixed in advance, it may contain 
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Figure 4.3: The graphs for LTP, LTP(known), LTP(unknown) and LTP(unseen) with fixed 
vocabulary 

words that were never seen in the training text and we will call these words unseen. What 

probabilities should we assign t o  unseen words? We change the model so that it gives a 

small, arbitrarily chosen value dl to  every unseen word, which leads to the following model: 

All the constants that are part of the standard bi-pos model, for example cl,cz and d2 

(which corresponds to  the former d), are determined as mentioned in section 4.1.2. For 

the new constant dl corresponding to the probability of unseen words we arbitrarily chose 

dl = The constant u is set to  the number of unseen words in the vocabulary and the 

second term u * dl is necessary to ensure that the probabilities of all words sum up to  one. 

Figure 4.3 shows the LTP of the modified model. We can see that the model improves 

as the size of the training text increases. The modified model therefore conforms t o  our 
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intuition. Moreover, since the vocabulary is fixed in advance, the LTP caused by unknown 

words does not change when the training text is changed. However, we can also see that 

LTP has LTP(unseen), the entropy caused by unseen words, as an additional component. 

As the the size of the training text increases, more and more words that were previously 

unseen and received the probability of dl  become part of the vocabulary and receive a 

probability according to  the bi-pos formula. This explains why LTP(unseen) increases and 

LTP(known) decreases as the training text gets bigger. Since LTP(unseen) increases more 

than LTP(known) decreases, the overall effect on LTP is an increase, which corresponds 

t o  an improvement in the model. 

Summing up, we have now seen two ways of dealing with differences in sample spaces 

caused by different amounts of training data. We can alleviate the problem of different 

sample spaces by using the adjusted perplexity measure or we can avoid the problem of 

different sample spaces entirely by fixing the vocabulary independently of the training text. 

If it is not possible to agree on a common vocabulary (e-g. because different researchers 

working in different locations do not agree), the APP is a flexible way of making the results 

comparable, without ensuring identical sample spaces. However, from a theoretical point 

of view, fixing the vocabulary in advance is more satisfying than using the APP. First, it 

ensures that the sample spaces are identical for all models. Second, it makes sense that the 

sample space should be fixed before one starts to compare probabilities. After all, if one 

wants to  compare probabilities taken from probability distributions, the distributions should 

be constructed over the same sample space. Because it is preferable from a theoretical point 

of view to  fix the vocabulary in advance and because we have no problem in agreeing on a 

common vocabulary, we will fix the vocabulary based on the training text in the rest of this 

thesis. 

4.2.3 Influence of the Amount of Training Data on the Performance of 

our Language Model 

As mentioned in the beginning of section 4.2, we wanted to ensure that our corpus contains 

enough data to  train our bi-pos model. When we tried to measure the influence of the 

amount of training data on the performance of the model, the surprising results prompted 

a discussion of the underlying issue of sample spaces. Now that we have chosen to fix the 

vocabulary independently of the training text, we have a meaningful way to  measure the 

influence of the amount of training data on the performance of the model. Figure 4.4 shows 
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Figure 4.4: The perplexity for different amounts of training data and different tagsets 

the perplexity of the model for different amounts of training data and for four different 

tagsets (as mentioned in section 4.1.1). First, we can see that the models do not continue 

t o  improve significantly when the training data is increased from 30,000 to  50,000 words. 

We thus assume that all the models are well trained after 50,000 words. This justifies why 

we only use 50,000 words of training text in the remainder of this thesis. Second, we can 

see that the amount of training data should influence the choice of tagsets. If, in this case, 

the available training data contained only 15,000 words, then a smaller tagset (e.g. the 24 

tags) would lead t o  better results than a larger tagset and this coxlfirms our intuition. 

4.3 Weaknesses of the Bi-pos Model 

In the following, we will apply the method of identifying weaknesses presented in chapter 3 

t o  the chosen bi-pos model (see page 69). 

The first weakness we will identify is the prediction of the next word in a very s m d  

number of contexts. We perform a very detailed analysis of these contexts in order t o  

understand why they constitute a weakness. Even though we do not proceed in trying 

t o  improve this weakness, the information we uncover by analyzing weaknesses is already 
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helpful in showing where we should concentrate future efforts. 

The second weakness we will identify is the prediction of unknown words. As with the 

previous weakness, this is helpful for future work. Moreover, we actually try to improve this 

particular weakness and we develop a new modeling of unknown words. This results in a 

reduction of the perplexity ranging between 14% and 21%. 

The third weakness we will identify is the second factor in our bi-pos fornzula (section 

2.5.3, equation 2.23), the prediction of the next word given its class. This is important by 

itself, because it again identifies a weakness that needs to be improved for many different 

language models, even for the recently used probabilistic context free grammars. Trying 

t o  actually improve this weakness leads us to the development of a new generalized N-pos 

model that we will present at  the end of this chapter. 

4.3.1 Different Contexts 

In the bi-pos model we use (see page 69), the current context consists simply sf the tag of 

the preceding word. To recall the effect this definition of context has, suppose wl and wz 

are the last words of two sequences of words a and p. Further suppose that wl and w2 have 

the same tag (or set of tags). The probability with which the model will expect to see a 

certain word next will be the same in both cases, whether the preceding sequence was a or 

p. In other words, the model distinguishes between as many contexts as it has classes or 

tags and it has a separate distribution for each of these contexts. 

When we analyze this model with respect to its weaknesses, it seems natural to ask what 

fraction of the L T P  is caused t y  each context (or tag g). For that purpose, we group the 

elements of the sum in equation 3.3 , page 36, according to the preceding tag g , produce 

a separate sum for each (LTP,), and determine what fraction of the total L T P  each tag 

represents. We can thus calculate the fraction of LTP caused by each context or by each 

preceding tag. In table 4.3, we give the ten tags that account for the biggest part of the 

L T P  when the tagset with 42 tags were used. In order to find out why these are the tags 

causing most of the LTP,  we performed a more detailed analysis of the first three tags. 

For each tag g, we looked at  the number ng of times g occurred, the L T P  caused by the 

prediction of the next word given that the last tag was g (LTP,) and the average L T P  per 

word given that the last tag was g (avg,). The results are shown in the first three columns 

of table 4.4. Moreover, we used the method of probability decomposition to split up LTF, 

into the fraction caused by the prediction of the next tag (ft,,), the prediction of the next 
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Tag Description Fraction of LTP 
N noun 0.16 

AT article 0.13 
IN preposition 0.12 
V verb 0.08 
P proncun 0.07 

NP proper noun 0.05 
, comma 0.05 

J J adjective 0.05 
period 0.05 

BE forms of to  be 0.04 

Table 4.3: The ten tags of the preceding word causing the biggest fraction of the LTP when 
the tagset with 42 tags is used 

9 1 ng LTPg avgg f t ag  fword  f r e s t  
N ! 4229 -2.1 * lo4 -4.9 0.48 0.46 0.06 

Table 4.4: A detailed analysis of the three tags causing the highest fraction of LTP 

word given its tag ( fword) and the rest ( freSt). freSt contains for example the prediction of 

unknown words. These three values are shown in column four, five and six in table 4.4. 

We can see that the tag N causes the largest fraction of LTP because it occurs very 

often. Even though it is relatively easy to  predict the next word given that the last tag was N 

(avgN is the highest), this is more than compensated by its frequency of occurrence. When 

predicting the next word, about the same fraction of LTP is coming from the prediction of 

the next tag (ftag) and the prediction of the next word given its tag (fword). 

The tag AT occurs far less frequently, but predicting the next word knowing that the 

last tag was AT is very difficult (myAT is the lowest). Moreover, we can see from columns 

four and five that i t  is the prediction of the next word given its tag (fWord) that accounts 

for most of the LTP (61%). This is because articles are often followed by so called open 

class words. Open class words are words like verbs or nouns which belong t o  a class with 

a very large, almost uniimited number of members. This contrasts with closed class words 

like articles, which belong t o  a class with a very small, predetermined number of members. 

Because the prediction of the actual word given its class is very difficult for open class 

words, they account for a large fraction of LTP and the same is true of tags who can often 
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Table 4.5: The five tags causing the highest fraction of LTP given that the last tag was N 

be followed by open class words (because predicting the next word is very hard, if the next 

word belongs to  an open class). 

The tag I N  is more similar to  the tag N in its behavior. It accounts for a large fraction of 

the LTP because it occurs quite frequently (more often than the tag AT), but the prediction 

of the next word given that the last tag is I N  is easier than for the tag AT (avgrlv is higher). 

Moreover, we can see from table 4.4 that ftag is highest if the last word was a noun. 

Why is it so difficult to predict the next tag in this particular context? In order to answer 

this question, we looked at the tags that follow N and the five tags causing most of the 

LTP are shown in table 4.5. For each tag g, we give the fraction of LTP (fLTP), given 

that the last tag was N ,  i t  causes, the number ng of times g occurred after N ,  the L T P  

caused by the prediction of the word with tag g given that the last tag was N (LTP,) and 

the average LTP per word given that the last tag was N (avg,). We can see that there is a 

wide range of tags that frequently follow nouns. Given a noun, it is indeed hard to predict 

what the next tag will be. Information, that would for example allow us to predict better 

which of the three most important tags will come next, would therefore be very useful in 

improving the model. 

From the more detailed analysis based on table 4.4, we can see that the contexts causing 

the largest fraction of L T P  are the ones that occur very frequently or that are often followed 

by open class words. 

We can also see from table 4.3, that the first four tags account for 49% of the LTP. In 

other words, about 49% of the LTP is caused by a fraction of roughly 6 z 0.10 of the tags. 

In general, Figure 4.5 shows the relationship between the fraction of LTY and the fraction 

of tags causing this fraction of LTP. The graph shows clearly that a small number of tags 

causes a large fraction of LTP and that a large number of tags only causes a small fraction 

of LTP. Qualitatively, this kind of graph occurs very often in natural language processing 

and it is a typical example of a Zipf distribution ([158]). Other quantities having similar 
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Figure 4.5: fraction of LTP caused by fraction of tags 

distributions can be found at almost all levels of language ranging from the phoneme to 

the sentence ([3], [4]). One can argue that the Zipfian nature of the graph shows that the 

tags are not well suited for a language modeling task. There is really not much point in 

differentiating among most of the 50% of the tags that only account for 10% of the LTP. 

In this section, we have shown on which contexts we should concentrate our efforts to 

improve our bi-pos model. These contexts are the points in the text where the preceding 

word was a noun, an article or a preposition. The advantage of knowing these contexts is 

that we can now look at  each one of them in turn in order to analyze why the prediction 

of the following word is so difficult (see for example 4.5) and we can then try to improve 

our model on this specific point. It is clear that solving such a specific problem is much 

easier than trying to  somehow improve the language model in general. However, we will 

not explore this issue any further at  this point, mainly because we have already shown the 

usefulness of identifying weaknesses by showing how it reduces the size of the problem at 

hand. Moreover, the additional understanding of the model obtained from this detailed 

analysis also shows the usefulness of the central idea of this thesis, the identification and 

analysis of weaknesses of language models. 
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unknown word model total L T P  LTP(unknown) LTP(unknown)/LTP 
' 

M1 - 1.30e+05 -7.78e+03 0.0599 

Table 4.6: L T P  caused by unknown words when model M1 and M4 are used 

4.3.2 Unknown Words 

We will now move t o  the second weakness, the prediction of unknown words. 

On page 69, we derive the formula of the bi-pos model we use. Our model gives a constant 

probability to  unknown words and this is different from the rest of the model, which uses 

the bi-pos formula. This prompted us to  measure how much impact this separate part of 

the model, which is only used for unknown words, has on the overall performance. 

In order to  measure the impact of unknown words, we group the elements of the sum 

in equation 3.3, page 36 into two groups, the terms that correspond to unknown words and 

the rest. We calculate each sum separately and measure the fraction of the L T P  caused 

by unknown words. The result (shown in table 4.6) is that the unknown words account for 

approximately 6% of the total LTP,  independent of the tagset used, since the probability 

given to  unknown words does not depend on the number of tags. If we use a different model 

for the unknown words, namely the model M4 from section 4.2.1, this fraction is as high as 

51%. As in the preceding section, we have now identified a specific weakness, the modeling 

of unknown words. We now proceed with trying to find ways of improving the model with 

respect t o  this particular problem. 

The current model gives a constant probability to unknown words, independent of the 

current context or the most likely tag of the next word. However, it is clear that the 

probability of the next word being unknown depends on the hypothesized tag for the next 

word. For example, it is clear intuitively that if the next word is an open class word, the 

word is much more likely to  be unknown. Hence, rather than having 

we would now like to make d2 depend on the supposed tag gj of the next word. This leads to 

a formula similar to  the part of the model that deals with words in the vocabulary: first, we 

predict a likely next tag (cl * f (g(w[i]) = gj lg(w[i - 11)) + cz), then we predict an unknown 

word give this tag (dg,). This leads to the following formula: 

P(w[i] = wllw[i - 11) 
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We can also explain this modeling of unknown words by saying that the unknown word 

is a word of the vocabulary that can appear with all tags. We can estimate the values dg3 

number of tags 
24 

of formula 4.7 from the training text using the same technique that was used to  estimate d;! 

(see page 61). We used Turing's formula again and estimated dg3 as the number of unique 

words with tag gj over the number of words with tag g j .  We show in Appendix C that the 

old model new model 
265 229 

sum of the probabilities is still equal to one. 

The perplexity of the new model is shown in Table 4.7. First, we can see that the 

improvement is substantial for all sets of tags, ranging between 14% and 21%. Second, the 

improvement 
0.14 

improvement increases when the number of tags increases. This is because for each tag, 

we have a different distribution for unknown words. As the number of tags increases, the 

distributions of unknown words can become more and more specific. 

In this section, we identified another weakness of our bi-pos model, the modeling of 

unknown words. We then improved our model with respect to this particular weakness 

by developing a new modeling for unknown words. In this new model, the probability of 

seeing an unknown word depends on the context (like the prediction of vocabulary words), 

in particular, on the hypothesized tag for the nest word. This resulted in an improvement 

in performance ranging between 14% and 21%, depending on the number of tags used. 

Finding a new modeling of unknown words, which results in a significant improvement, is an 

important resuit by itseif. But equaily important for us is that it shows that the identification 

of a weakness is, at  least in this case, a first step in improving our model. Furthermore, in this 

concrete example, the identification of a weakness does lead to a subsequent improvement 

of the model. This shows the usefulness of the central idea of this thesis, the identification 
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Table 4.8: The LTP caused by different components of the model 

nb of tags 
24 
42 
88 
134 

and analysis of weaknesses of language models. 

4.3.3 Different Components 

unknown fact word pos 
0.06 0.01 0.58 0.35 
0.06 0.01 0.53 0.40 
0.06 0.01 0.45 0.48 
0.06 0.01 0.43 0.50 

We will now move t o  the third weakness, the prediction of a word given its tag. 

The hi-pos model from page 69 calculates the probabilities of words in a two step process. 

First, it calculates the probability of a tag; then, given the tag, it calculates the probability 

of a word. It seems natural to measure how much of the overall LTP is caused by each of 

these components of the model. 

To be more precise, using the method of probability decomposition introduced on page 

51, we measure the fraction of LTP caused by unknown words (da) ,  by the factor for known 

words (1  - u + dl - dz), by the term for predicting the next tag (p(g(w[i])lg(w[i - I]))), and 

by the term for predicting the next words given its tag (p(w[i] = wl(;] lg(w[i]))). Recall from 

page 69 that unseen words are words of the vocabulary that do not occur in the training 

text. Since we fixed our vocabulary based on the 50,000 words of text used to train the 

model, all words of the vocabulary do appear in the training text. Hence, there are no 

unseen words and unseen words do not account for any fraction of LTP. We therefore do 

not have a column for unseen words in table 4.8. However, the fraction of LTP each other 

component causes is shown in table 4.8. 

A first observation is that the LTP tends to shift from the word column to the pos 

column as the number of tags increases. This is very understandable. If we have only 24 

tags, it is much easier to  predict which one of them will appear next than if we have 42 tags. 

By the same token, if we have only 24 tags, more words will belong to each tag and it is 

harder to predict the word given the tag than if we use 42 tags. In general, as the number 

of tags increases, the prediction of the next tag will be much harder, but given the tag of 

the next word, it will be easier to predict the actual word. 

A second observation from table 4.8 is that the prediction of the next word, given its 



the tag. 

tag, is a very important part of the bi-pos model, at least when we consider the amount of 

L T P  caused by each part. Depending on the number of tags used, it accounts for between 

35% and 58% of the L T P .  This is more than the prediction of the next part of speech when 

24 and 42 tags were used. Hence, the prediction of the words given the tag is a t  least as 

important as predicting the next tag and this is a very important fact t o  note for future 

research. 
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The observation that  the prediction of the next word, given its tag, is very important also 

sheds a different light on using probabilistic context free grammars for language modeling. 

Recently, a number of researchers have investigated the use of probabilistic context free 

grammars (PCFG's) or stochastic context free grammars (SCFG's) ([89], [24], [64], [91], 

[92], [114], [157], 11281) for language models. The use of these grammars can lead to better 

language modeling by improving the prediction of the next tag. However, the problem of 

predicting the actual word given its tag will remain. Furthermore, these grammars rely on 

the same mechanisms for estimating the probabilities of words, given their tags, and there 

is therefore no reasor, to believe that these grammars will do better at this prediction than 

standard N-pos models. Hence, trying to  improve the prediction of the word given its tag is 

an important research area, independent of the kind of model used to predict the tag, e.g. 

N-pos or PCFG. 

How could one go about improving this weakness, the prediction p(w[i] = ~ ~ ( ; ~ I g ( w [ i ] )  = 

gj) of the next word given its tag? In order to answer this question, we will first take a closer 

look a t  p(w[i] = ~ ~ ( ; ~ l g ( w [ i ] )  = gj) by examining which tags g3 which account for most of 

the L T P  caused by this factor (LTPWord). For each tag g, we will look a t  the number ng of 

times g is the tag of a vocabulary word 4 ,  the L T P  caused by the prediction of these words 

given that their tag is g (LTP,), the average L T P  of these words (avg,), the fraction f, 

of LTPWord caused by each tag and the fraction fg( total)  of the total L T P  caused by each 

tag. These numbers are given in table 4.9. 

We can see that it is a, lot harder to  predict the word given its tag if the tag is an open 

class tag (low avg, for N, V,  JJ). The only tag that is not an open class tag in the table is 

the tag I N  (preposition). Even though it, is relatively easy to  predict the preposition (e.g. 

high aVgIN), it causes a large fraction of L T P  because it occurs more than twice as often 

as for example the following tag JJ (adjectives). 

4We do not want unknown words to influence the analysis of how difficult i t  is to predict the word given 
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Table 4.9: A detailed analysis of p(w[i] = w1(;)lg(w[i]) = gj) for the four tags causing the 
highest fraction of LTP 

In the light of these results, how can we improve p(w[i] = wl(;)lg(w[i]) = gj)? The 

current model has only one distrihution for each gj. However, it seems clear from our 

intuition that this probability depends on context in the same manner as the prediction 

of p(g(w[i])lg(w[i - 11)). As an example, in the context "Peter talked to  the NOUN", the 

overall frequency of nouns is not a good indicator for the likelihood of appearance of a noun 

in this particular context. Nouns like "money", that people usually do not talk to, are very 

unlikely t o  appear. The information useful in predicting p(w[i] = ~ ~ ( ~ ~ l g ( w [ i ] ) )  could be 

entirely different from the information used for predicting p(g(w[i])lg(w[i - I])). We will try 

t o  improve this particular weakness in the next section (section 4.4). 

In this section, we used the method of probability decomposition introduced on page 

51 t o  measure the impact of different components of our bi-pos model on the overall per- 

formance. We have shown that the prediction of the next word, given its tag is a t  least as 

important as the prediction of the next part of speech. Again, this information is helpful 

for future work because it identifies a weakness of the model. Moreover, this information is 

not only useful for improving our bi-pos model, but it also shows that the recent interest 

in probabilistic context free grammars as language models does not address an important 

part of the model a t  all. The prediction of the word given its tag therefore is an important 

area of research, even if entirely different models, e.g probabilistic context free grammars, 

are used to predict the next tag. These results show again the usefulness of our definition 

of a weakness and of the central idea of this thesis, the analysis of weaknesses of language 

models, in general. 

4.4 The Generalized N-pos Model 

In the last section (section 4.3.3), we identified the prediction of p(w[i] = wl(;)lg(w[i])) as 

one of the weaknesses. In this sectio~:, we will try to  improve this weakness by introducing 
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the generalized N-pos model. We will first describe the idea behind the generalized N-pos 

model in section 4.4.1, followed by preliminary experiments that show its usefulness as a 

framework which can incorporate many kinds of linguistic information. 

4.4.1 Intruducing the Generalized N-pos Model 

We can introduce a more general N-pos model by generalizing the following two aspects of 

the N-gram and N-pos models. First, rather than having distributions based on the last 

word or the last tag, we can base these distributions on any information about the words 

seen so far. We will code this information by a variable X. For example, X could stand 

for the last word, in which case X would range over all possible words of the vocabulary. 

Or X could stand for the state of a simple parser and we could thus make the distributions 

depend on that information. The second aspect that is being generalized relates to the N- 

pos model, in which the probability of the next word is made dependent on the hypothesized 

tag alone (e.g. p(w[i] = q(;)lg(w[i]) = gj)). It is clear intuitively that the frequencies of 

nouns also vary significantly with the context. The example we already used in the previous 

section (section 4.3.3) is that in the context " Peter talked to  the NOUN", the nouns that 

people usually talk to  are more likely to  appear. Moreover, out intuition indicates that the 

immediate context of the NOUN, e.g. the words "to the", do not constrain the choice of 

possible nouns as much as the fact that NOUN is being talked to by Peter. In other words, 

even though the immediately preceding word is very useful in predicting the next tag, it 

seems likely that the information useful in predicting the actual noun is further away from 

the word to  predict. This is for example mentioned in [36, p.187]) and [14]. Our generalized 

model should therefore allow the prediction of the actual word to depend on contextual 

information and it should be possible for this informafion to be diflerent from the one used 

to  predict the next tag. 

Now that we have seen the intuitive idea behind our generalized model, we will present 

it  in more detail. The ;>robability of a sequence of words iV will a,gain be decomposed as a 

product of probabilities of each word (see equation 2.5): 

d=n 

p(W) = rj p(w[i] = ~ ~ ( ~ ~ l w [ ) .  : i - I]). 
i= i 

Then the probability of each word will be modeled as 
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= C P(g(w[i]) = 9jIx1, -..,Xr) * P(w[i] = wrk?(w[i]) = g j ,Xr+~ ,  ..-, Xr+s) 
S, EG 

where the Xj's, 1 5 j 5 r + s, denote variables coding some information available from 

the words zul, ..., w;-I seen so far. It is important to verify that the resulting probabilities 

constitute a probability distribution. In other words, we have to  ensure that 

p(w[i] = ~1x1, ..., Xr+.) = 1. 
wEV 

(4.8) 

At a given point in the sentence, all the Xj7s have a certain fixed value. If the two component 

probabilities are true probability distributions for all combinations of values of X j  (and this 

is ensured if they are constructed as usual from frequency counts), we will show in Appendix 

D that the sum will indeed be one. 

The amount of training data needed by the generalized N-pos model depends of course 

on the knowledge encoded by the different variables. We therefore can not make any general 

statement with respect to  the amount of training data needed. But as we will see, the model 

can reduce to the N-gram model or the N-pos model and the amount of training data needed 

in these cases will be similar to the training data required by the N-gram or N-pos model. 

We will now show that the generalized model reduces to N-gram and N-pos model for 

a particular choice of variables Xj. If we chose s = 0, r = N - 1 and X j  = g(w;-j), j = 

1, ..., N - 1, then the generalized N-pos model reduces to the standard N-pos model. As 

shown in Appendix E, it will also reduce to the N-gram model for r = N - 1, X,+j = Xi = 
w;-~, j = 1, ..., N - 1. For other choices of the variables, we obtain models that can't be 

constructed from N-g-am or N-pos. This shows that it is a true generalization. Furthermore, 

some of the variables could code linguistically relevant facts extending over a longer distance 

in the sentence, e.g. the subject of the sentence or the fact whether the verb is transitive. 

It therefore is a framework that allows more general linguistic knowledge to be captured. 

These points show the theoretical potential of the generalized N-pos model as a framework. 

However, from a practical point of view, the generalized N-pos model is only useful if 

we find sources of information for the variables X j  that actually help improve the quality 

of the model significantly. What information should the variables actually capture in order 

to  improve the quality of the model? The lack of an answer to this question corresponds to 

a lack of knowledge in this area. A lot of work needs to be done in order to find out what 

kind of information is useful for this purpose. In the next section (section 4.4.2), we present 

a small step in that direction by describing the information we experimented with so far. 
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In the next chapter (chapter 5), we discuss what knowledge might be useful for language 

models in general. 

4.4.2 Using the Generalized N-pos Model 

In the usual bi-pos model, the probability distribution for p(w[i]lg(w[i]) = Noun) is con- 

structed by counting the number of occurrences of each noun in the training text. As seen 

in section 2.4, an estimate for the probability of a particular noun w is then obtained by 

dividing the number of times w occurred as a noun by the total number of noun occur- 

rences. The probability distribution obtained in this manner can then be used to calculate 

the probabilities of words in a testing text. 

In all the experiments described here, we construct one other distribution on top of the 

one just mentioned. A variable X with two values ("general" and "specific") is updated as 

we move through training or testing text. We will see later in exactly which situation we 

will have X = general and X = specific. Intuitively, we will have X = speci f ic only if 

we are in a very specific context, e.g. if the current noun phrase was introduced with the 

preposition "during". In all other situations, we will have X = genernl. After having read 

the training text, we count how often each noun occurred when X had the value "specific". 

We then construct a specific probability distribution by dividing the number of times each 

noun occurred with X = speci f ic by the total number of times we had X = speci fic. 

When we go through the testing text, we use the normal distribution when X = general, 

but the specific distribution when X = specific. We thus replace p(w[i]lg(w[i]) = Noun) 

by p(w[i](g(w[i]) = Noun, X), where X has two possible values. 

Please note that this is not the same as having two separate tags, say Noun-general 

and Noun-specific. Having two separate tags would also change the factor p(g(w[i]) = 

gjlg(u;[i- N +  1 : i - l])), requiring many more separate distributions. Using p(w[i]Ig(w[i]) = 

Noun, X), however, allows us to have a finer distinction for the prediction of the actual word, 

while still preserving the same level of abstraction for the prediction of the next tag. 

Before we describe what information is coded by X, we would like t~ address the issue of 

smoothing again. The normal noun distribution is a typical example of a Zipf distribution 

(11581). A very small number of words occur very often and a very large number of words 

occur very rarely. As an example, we show the fraction of nouns that occur less than 

x, 1 5 x < 20, times in our 50,000 words of training text in figure 4.6 We can see $hat 

more than 50% of the nouns occur only once. If we construct the specific dist4mtim in 
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Figure 4.6: Fraction of nouns occurring less than x times in text 

the manner described above, many words will not have occurred with X = speci fic, 

they would get a zero probability. In order to avoid that, we obtain a combined distribution 

pconb(~[ i ] lg (~[ i ] )  = gj) by smoothing the specific distribution with the normal distribution 

in the following manner 

~comb(Uf[i]11g(w[i]) = gj) = Ap(w[i]lg(w[i]) = gj) -k (1 - X)p(w[i]lg(w[i]) = gj, X = specific). 

Rather than using deleted interpolation ([66]) to determine the best value for A, we tried 

X = 0.1,0.2, ..., 0.9 and used the value of X that gives the best performance on the testing 

text. 

Experiment 1: X indicates whether the noun is likely to be singular. Initially, X is 

set to "general". If we come across "this", "a" or "an"in the text, the following noun 

is likely to be singular; and X is set to "specific". X retains this value as long as we are 

likely to  not have finished this noun phrase and is then reset to general. We did not have 

a parsed corpus available and used very primitive techniques to decide what constitutes a 

noun phrase. Roughly, we considered the noun phrase to be ongoing as long as we encounter 

adjectives, adverbs or nouns. 

Experiment 2: X was used to indicate whether the noun phrase was preceded by the 

and 
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Table 4.10: Results on the subset S of words where X=specific 

preposition "during". We used the same mechanism as above to  determine the boundaries 

Exp. 
Expl 
Exp2 
Exp3 

of a noun phrase. 

specific perpl on S 
1428 
396 
1394 

Experiment 3: With a very low probability, X was randomly set to  specific. This exper- 

iment was performed to see whether a random choice for the value of X would lead to an 

nb. words in S 
-.-- 

479 
16 
237 

improv. on S 
0.178 
0.156 
-0.021 

improvement. 

Experiments one and two make the distribution depend on information that can be 

several words away, depending on the length of the noun phrase. This shows that the gener- 

perpl. on S 
1665 
469 
1365 

alized N-pos model is a framework that can incorporate linguistically relevant information, 

independent of its distance to  the current word. 

The resulting change in perplexity on all the approximately 25,000 words of testing text 

is 0.031,0.00012 and -0.0021 for the three experiments. The change is very small and this is 

due to  the fact that the specific distribution was used only a very small number of times (e.g. 

X = spec i f i c  in the testing text). We therefore measured the improvement in perplexity 

only on the words that actually used the specific distribution (denoted with S for subset 

in the table 4.10). We can see that the improvement in these cases is significant, especially 

when compared to  experiment 3 where X was set randomly. 

A more detailed analysis of the 479 cases of experiment 1 shows that in 195 cases 

(approx. 41%), the probability assigned to the word using the specific distribution was 

actually lower than the one from the general distribution. These were words that did not 

occur with X = speci fie during training, but occurred with X = spec i f i c  during testing. 

According to  the specific distribution, they would get the probability zero, but thanks to  the 

interpolation, they get a probability between zero and the value of the general distribution. 

5However, the ling.uistic information captured by the variables should depend on the context. If it does 
not, then the information will be the same in all contexts and it will therefore not change the probability 
distributions. As an example, take the fact that the subject is often followed by a verb. We could try to 
use this to increase the probabilities of verbs after we have seen a subject (assuming for the sake of this 
argument, that we can identify subjects). Even though one could think that this is a context independent 
statement, it does depend on the context in the sense used here: if we have seen a subject, then we will 
increase the probability of verbs; if we have not seen a subject, we won't. The fact that we will increase the 
probability of verbs therefore depends on the current context. 
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This interpolated value will always be less or equal to that of the general distribution (equal 

if X = 1) and this is why we actually do worse when using the specific distribution for these 

words. 

The critical issue in these experiments is that of capturing semantic restrictions on 

possible nouns based on context. How much of this can we capture by a purely distributional 

analysis? Can we somehow estimate a separate distribution for each X j  and then combine 

them meaningfully so that we will not have to estimate a separate distribution for each 

possible combination of values of the Xj's? These are important questions that we will 

address in the next chapter (chapter 5). 

As stated in section 4.4.1, we had two reasons for introducing the more general model. 

One was to improve the quality of the language model, the other to capture linguistically 

or intuitively more satisfying information. We showed that the generalized N-pos model 

is a framework that can indeed incorporate linguistic information several words away and 

we thereby achieve the second goal. The first goal of reducing the perplexity has not been 

achieved on an overall level. However, the small overall improvement does not reflect the 

capabilities of the generalized N-pos model, but the usefulness of the very simple knowledge 

source we used. Moreover, the experiments performed show the significant reduction in 

perplexity in the cases where the generalized model was actually used. Further research 

needs to find other sources of information that are useful in reducing the perplexity in a 

larger number of cases and this issue will be addressed in chapter 5. These could then 

he added to the generalized N-pos model in the same manner, leading to a bigger overall 

improvement. Thus, the existence of knowledge that can reduce the perplexity in a large 

number of cases will ultimately decide on the practical usefulness of the generalized N-pos 

model. But this applies to any model that tries to incorporate more knowledge. If there 

is no knowledge that will reduce the perplexity in a large number of cases, then the model 

will not lead to a significant improvement. 

4.5 Summary 

In this chapter, we applied the central idea of this thesis, our technique of identifying 

weaknesses of a language model, to a commonly used bi-pos language model, reported the 

resalts, and thus showed the usefulness of performing analysis of weaknesses of language 

models. 
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We started by choosing the Lancaster-Oslo-Bergen corpus and the bi-pos model for our 

work and we verified that the 50,000 words of the corpus we use as training data is sufficient 

to train our model. The fact that the performance of our model initially decreased with an 

increase in training data prompted a discussion of the issue of a sample space, the set of dl 

possible events considered by a model. We noted that it is not meaningful to compare two 

language models with the perplexity measure if they differ in their underlying sample spaces. 

Yet language models are usually compared with the perplexity measure, even though they 

do sometimes differ in their sample spaces due to different vocabularies or due to different 

ways of dealing with unknown words. One way to solve this problem is to agree on a common 

vocabulary. But if this is not possible, we propose to use the adjusted perplexity measure 

A P P .  It is a flexible way of making the results more comparable, even if the underlying 

sample spaces are not identical. 

We then applied the idea of identifying weaknesses of a language model to our bi-pos 

model and reported the following results: 

1) We identified three weaknesses, the prediction of words in a very s m d  number of 

contexts, the prediction of unknown words, and the prediction of words given their 

part of speech. We thus gained considerable additional insight into the model. This 

insight is helpful in improving our model, but it is also relevant to other language 

models. The last weakness, in particular, is important with respect to the recent 

interest in probabilistic context free grammars as language models. Even though 

probabilistic context free grammars might improve the prediction of the next part 

of speech, they are unlikely to improve the prediction of the word given the part of 

speech. They therefore do not address this important weakness at all. 

2) We improved one of the weaknesses, the prediction of unknown words, by introduc- 

ing a new model for unknown words. This lead to an improvement in the model's 

performance ranging between 14% and 21%. 

3) In order to address the third weakness, the prediction of words given their part of 

speech, we developed the generalized N-pos model. It can incorporate linguistic in- 

formation, even if it extends over many words. Also, the information used for the 

prediction of the word given the part of speech in this model can be different from the 

information used to predict the part of speech. It is important that the model allows 

for this because even though the immediate context (e.g. the two or three preceding 
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words) contains a lot of information about the part of speech of the next word, we can 

argue that useful semantic information that restricts the actual word may be further 

away. 

With these results, we have shown the usefulness of our definition of weaknesses and of 

analyzing weaknesses of a language models in general. 



Chapter 5 

Adding Linguistic Knowledge to 

Language Models 

In the previous chapter, one of the weaknesses of o& model prompted the development of 

the generalized N-pos model as a framework that can incorporate knowledge into language 

models. In this chapter, we will address the issue of adding knowledge in more general 

terms. We begin by giving reasons for wanting to add knowledge to language models (section 

5.1). We then develop criteria to select knowledge that will be useful for a language model 

(section 5.2). We conclude this chapter by reviewing methods for combining different types 

of knowledge in a language model (section 5.3). 

5.1 Reasons for Adding Linguistic Knowledge to Language 

Models 

Why do we want to  add more knowledge to language models than current models contain? 

We see the following three reasons for attempting to add knowledge. First, we would like to 

improve the performance of existing models. Our hope is that adding knowledge will lead 

to  improved performance. Second, adding more knowledge may well become a necessity 

in the future. Current speech recognizers achieve an acceptable recognition rate partly 

because they work in a constrained domain with a limited vocabulary. As we move to more 

general domains with larger vocabularies, the complexity of the recognition task and the 

number of acoustically confusable alternatives increases. A language model incorporating 
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a broader range of linguistic knowledge sources could rule out many of these hypotheses, 

thereby helping t o  cope with the additional complexity. Third, adding knowledge is more 

satisfying than sticking t o  existing models on psychological grounds because humans seem to  

use other knowledge to  predict a word than the knowledge used by current models, namely 

the immediately preceding two or three words. "This does not make sense!" is a reaction 

we often have when we look at the sentence a speech recognizer deems the most likely t o  be 

spoken. Subject and verb do not agree, prepositions are not where they should be, the verb 

is missing entirely or a certain combination of words is semantically incorrect. Two examples 

of such obviously incorrect sentences are shown below. They are taken from a recognition 

session of the SPHINX system (see [95, p.161,p.165]) in which a bi-gram language model 

is used. These utterances were from the resource management task ([118]), which uses a 

constrained syntax for inquiring about naval resources. For both exan~ples, we will give the 

utterance spoken as well as the recognized sentence: 

Correct: Is the economic speed of apalachicola less than that of the brunswick 

Bi-gram: Whose economic speech of apalachicola less than that of the brunswick 

Correct: On what day could dubuque arrive in port at his maximum sustained speed 

Bi-gram: What would it  take dubuque arrive in port at his maximum sustained speed 

In these examples and in many other cases, humans seem to  notice almost without effort the 

constraints violated by the proposed output. Adding these constraints to  a speech recognizer 

is therefore a very natural and tempting endeavour. 

Once we have decided to  add linguistic knowledge to  a language model, two questions 

come t o  mind. First, what knowledge should we try to add? Second, how can we combine 

the different types of knowledge in a language model? In the following two sections, we will 

deal with each question in turnt 

5.2 What Knowledge Should We Add? 

In linguistics, knowledge about language can be divided into phonetics, phonology, prosody, 

morphology, syntax, semantics and pragmatics. The acoustic model of a speech recognizer 

captures some of the phonological knowledge and the part unique to  spewh recogaition, the 

signal processing. Morphology, syntax, semantics and pragmatics could all be iwcluded in 

the language model. Therefore, from an abstract point of view, there is a very wide range 

'The related question of how to obtain and to encode the knowledge is addressed in the first section, 
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Type  of Task-dependent Conversation-dependent Speakei-depe?dent Analysis-dependent 
knowledge knowledge knowledge knowledge knowledge 

Pragmat ic  and  A priori semantic Concept subselection Psychological Concept subselection 
Semantic knowledge about  t he  based on conversation model of t he  user based on partial 

task domain sentence recognition 
Syntactic Grammar for the  Grammar subselection Grammar subselection Grammar subselection 

language based on topic based on speaker based on partial 
phrase recognition 

Lexical Size and  confusability Vocabulary sub- Vocabulary sub- Vocabulary subselection 
of the  vocabulary selection based selection and ordering based on  segmental 

on topic based on speaker features 
preference 

Phonemic and Characteristics of Contextual Dialectal variations Phouemic subselection 
phonetic phones and phonemes variability in of the  speaker based on segmental 

of t h e  language phoneniic character- features 
istics 

Parametric and A priori knowledge Adaptive noise Variations resulting Parameter  tracking 
acoustic about  t h e  transducer no rmaha t ion  from t h e  size and based on previous 

characteristics shape of vocal tract parameters 

Table 5.1: Different Types of Knowledge (taken from Reddy and Newell) 

of knowledge that we could incorporate into a language model. Which knowledge should 

we add? 

For speech recognition, the knowledge has been classified in [I201 according to two di- 

mensions: the level described by the knowledge (e.g. parametric, phonemic, lexical, etc.) 

and its range of validity across different situations (e.g. a priori knowledge, task dependent 

knowledge, conversation dependent etc.). This classification is shown in table 5.1. One can 

see that most of the knowledge of the two lower rows (e.g. parametric and phonemic) is 

captured, at least partially, by the acoustic model (e.g hidden Markov model). But all the 

other types of knowledge could potentially be useful for a language model. Which knowledge 

should we try to add? 

To address this question, we will first present possible criteria for selecting useful knowl- 

edge (section 5.2.1). Then, to  give a structure to the space of possibly useful knowledge, 

we will propose a classification of possibly useful knowledge (section 5.2.2). Finally, we will 

show for a concrete example how the criteria from section 5.2.1 can be used to  decide about 

its usefulness (section 5.2.3). 

5.2.1 Criteria for Selecting Useful Knowledge 

Rather than giving a necessarily incomplete list of useful knowledge, we will discuss some 

criteria that we think can be used to identify useful knowledge. For each criterion, we also 

suggest how we can evaluate a given type of knowledge with respect to the criterion: 

1) Restrictions of Possible Choices. The knowledge must frequently be able to restrict 

the choice of words in a sentence. If this is not the case, it will not improve the 
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quality of the language model, at  least not with respect to the standard measure 

used to evaluate language models (see section 3.2.1). In order to find out whether a 

given type of knowledge restricts the possible choices of words, we can for example 

use introspection. Do humans often seem to use the knowledge to restrict the choice 

of words Does the knowledge create strong expectations about the words to come? 

However, we have to  be careful in using introspection. A point often made by Jelinek 

and others (see for example [85]) is that intuitive judgments have often been misleading 

in the area of language models. It is always important to verify these intuitions with 

real data and to  have the parameters of the model be trained rather than determined by 

hand. We can formalize the restriction of possible choices using information theory. 

This is for example done in [I221 to define the strength of the selection restriction 

between predicates and arguments in terms of relative entropy. We can use the same 

method to measure the extent to which a given type of knowledge restricts a word 

that occurs later. 

Let X denote a random variable encoding the knowledge under investigation and 

ranging over the set {xl , . .. , x,). X can for example encode the fact that the subject 

of the current sentence is animate or not. Let Y denote another random variable 

encoding the identity of the word that is being restricted by X and ranging over the 

set {yl, ..., yl). Y can for example encode the identity of the verb in the sentence, in 

which case the set of possible values would be the set of all possible verbs. We can 

now measure the restriction X imposes on Y by looking at  the difference between the 

prior distribution p(Y) and the posterior distribution p(Y lx;). An appropriate way 

of measuring this difference is to  use the relative entropy D(p(Ylxi),p(Y)), which is 

defined as 

If we rewrite equation 5.1 as 

we can see that the relative entropy measures in fact the average difference in infor- 

mation (see section 3.2.2) provided by the two distributions p(Y) and p(Y lx;). In 

fact, the relative entropy is a measure for the &mount of information provided about 

the random variable Y (the word that will be restricted) by an event X = x; (the 
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observation of one value for a type of knowledge). As mentioned in [122, p.581, it is 

discussed in 21391 why this measure is the appropriate one to use in this case. 

Given the measure of relative entropy, we can now quantify how useful a certain type 

of knowledge X is for the prediction of some words Y. 

2) Error Analysis. There is not much point in adding knowledge that can improve the 

prediction of words that almost never occur or that only account for a tiny fraction 

of the overall performance measure. In order to find out whether a given type of 

knowledge has a significant impact on the overall quality, we can perform the following 

steps. First identify the word whose prediction will be improved by the knowledge. 

Second, use the technique of error analysis to  determine the percentage of the LTP 

(see section 3.3) these words cause. If this fraction is not significant then there is 

not much point in adding this knowledge. This point is separate from criterion I) 

for the following reason. Even if a type of knowledge X contains a lot of information 

about Y, the overall effect this has on the performance of the language model may 

be insignificant (see for example our experiments with the generalized N-pos model 

in section 4.4.2). For example, the gender of the subject and object in the previous 

sentence may have a significant impact on the choice of pronouns in the subsequent 

sentence (e.g. he, she, it). However, if the LTP caused by all the pronouns is very 

small then improving the prediction will not lead to  a significant overall improvement. 

3) Computational Effort. The language models discussed in this work (see section 2.3) 

are used together with the acoustic model to narrow down the search space. There- 

fore, many thousands of hypotheses need to be evaluated in a very short time. This 

places severe computational restrictions on the kind of analysis that can be used. For 

example, given the time required for parsing unrestricted English sentences using the 

current technology, it seems unlikely that the language model could use a full parser 

for unrestricted text. However, it is possible that future work, for example in the area 

'It would be very interesting to measure, for example, whether the amount of information a grammar 
provides about the part of speech of the next word is significantly higher than the amount of information 
provided by the immediately preceding parts of speech. This could help to explain why N-pos or N-gram 
models are so very useful for language models and whether a parser has the potentiai to improve on this. 

3 ~ n  order to decide the usefulness of a given type of knowledge, we can also measure the performance of 
the distribution p ( Y l x ; )  on a testing text. The difference in the PP or LTP between the distribution p ( Y )  
and p ( Y l x i )  will be a quantitative measure for how useful the knowledge X is. However, this means that 
we actually have to implement the knowledge X, but we are looking for criteria to select useful knowledge 
sources before implementing the more promising ones. 
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of neural networks or partial parsing, might change this situation (see also p. 104). 

In order t o  determine the computational effort required for a given type of knowl- 

edge, we can use the standard techniques of analyzing the computational complexity 

of algorithms (see for example [53, chapter 12]), such as the theoretical worst time 

complexity of an algorithm. Moreover, if the given type of knowledge is also used in 

other areas (e.g. natural language processing), we can also use the actual time and 

space requirements of an algorithm as it is reported in the literature. 

4) Knowledge Acquisition and Coding. For a general purpose language model, it is 

important that the knowledge can be acquired and coded for the use with unrestricted 

text. It may be possible to  describe some knowledge (e.g. syntax) in terms of rules 

acquired by hand. For others (e.g. semantics and pragmatics), this might be very 

difficult. 

As an example, consider the restrictions, often called selectional restrictions, a verb 

imposes on its direct objects, e.g. 'to drink X7. One way of capturing this would be 

to organize objects in a hierarchy of types. We could imagine a type corresponding t o  

all drinkable objects and we could then have the restriction that the direct object of 

'drink' belongs to  that type. As pointed out in [19], there are two main problems with 

respect t o  the task at hand. First, these type hierarchies are "large, complicated and 

expensive to  acquire by hand". Moreover, attempts at acquiring them automatically 

have been only partially successful. "Yet without a comprehensive hierarchy, it is 

difficult t o  use such classifications in the processing of unrestricted text". Second, 

even if we had these type hierarchies, this would not be sufficient to predict patterns 

of usage in many cases. Even though peanuts and potatoes may be very similar and 

therefore quite close to each other in the hierarchy (both are edible foods that grow 

underground), one typically 'hakes potatoes' and 'roasts peanuts7. A distribution- 

based analysis could capture these differences automatically and "promises to  do better 

a t  least on these two problems". 

On the other hand, such a hierarchy can allow generalizations that may be hard t o  

describe with a distributional analysis. In the above example, we might be able t o  

discover from a few data points (e.g. drink cola, drink beer, ...) that all direct objects 

of 'to drink7 belong t o  the class of liquids or drinka.bles. We can then generalize the 

fact that the words actually seen are likely objects of 'to drink' for all elements of 
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this class. With a distributional analysis, many data points would be needed for each 

element of that class in order to obtain the same effect. This is because it can't 

perform generalizations based on semantically meaningful classes. 

To find out whether a particular type of knowledge can be acquired and used with 

unrestricted text, we can either look through the existing literature or try to decide 

on the issue ourselves. 

5.2.2 Classification of Possibly Useful Knowledge 

In the previous section, we saw different criteria for judging the usefulness of a particular 

type of knowledge. But to  which types of knowledge are we going to apply these criteria? 

To all the potential sources of knowledge, e.g. morphology, syntax etc., mentioned on page 

90? To help answer this question, we will constrwt a classification of all possible sources 

of knowledge in this section. Given this classification, we can then keep track of where the 

different types of knowledge fall in the classification, which parts of the classification have 

been tried already and we can construct a mental image of the space of possible types of 

knowledge. 

According to  which measure are we going to classify our possible types of knowledge? 

The most important criterion that we will use to select useful knowledge is the first one given 

in section 5.2.1, the restriction of possible choices. If a type of knowledge is not restricting 

the choice of possible words, it is not going to be useful for our task. Any knowledge that we 

would want to consider therefore must have the property of restricting the choice of words. 

Thus, we will classify all possible types of knowledge with respect to this property, namely 

according to the distance between the origin of the knowledge and the word it restricts. 

This guarantees that our classification will contain all possibly useful types of knowledge. 

Moreover, we also find it intuitively appealing. We will now give the resulting classification. 

For each class, we will describe an example of knowledge falling into the class. Furthermore, 

we will mention whether this class of knowledge has been used for language modeling: 

1) Knowledge whose constraints do not extend across sentences. One example is gram- 

matical knowledge. Zurrent language models almost exclusively use knowledge from 

this class. Most often, the restriction of grammaticality is approximated by the con- 

straints provided by words from the immediate context, e.g. the two or three preced- 

ing words. Judging from the success of techniques using this immediate context , this 
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must provide quite powerful constraints, especially for fixed word order languages like 

English. 

2) Knowledge whose constraints extend across sentences but remain within paragraphs. 

One example is the knowledge of the gender of a noun phrase. For example, the noun 

phrase "Mr. Baker" can not be referred to as %he" in a subsequent sentence. Recently 

used dynamic language models (see section 2.5.5) capture the fact that words are more 

likely to  appear again if they appeared before in the current paragraph. 

3) Knowledge whose constraints extend across paragraphs but not across documents. 

One example is the knowledge of the topic or content of the current paragraph. With 

respect to  uses for language models, the remark of the previous class also applies here. 

4) Knowledge whose constraints extend across texts. One example is the knowledge of 

a certain kind of vocabulary or style of writing. It has been shown (see for example 

[lO5], [68], [69]), that the language used in different genres is quite different and this 

is actually used for a language model in [79]. 

5.2.3 The Usefulness of Collocational Constraints 

In the following, we will apply the above five criteria to  identify useful knowledge from 

section 5.2.1 to  the knowledge about collocational constraints. We will use the term collo- 

cation "quite broadly to  include constraints on SVO (subject verb object) triples, phrasal 

verbs, compound noun phrases, and psycholinguistic notions of words association (e.g. doc- 

tor/nurse)" as suggested in [19, p.753. We begin by reviewing work that suggests that 

collocational constraints are very frequent and important in language. This is taken as 

evidence that criteria one and two (see section 5.2.1) are partly satisfied. However, it does 

not replace a study that actua-lly measures this effect quantitatively as suggested in section 

5.2.1. 

In [76], G. Kjellrner classifies combinations of words according to how much variability 

they allow. The spectrum ranges from fossilized phrases (Anno Domini, aurora borealis) to  

semi-fossilized phrases (by and by, by and large, Achilles heel, Achilles tendon) or idioms 

(have a weak/soft spot for, do badly/well for) to  finally variable phrases (glass of water, go 

t o  college, his approach to, t o  be appointed by). "So anyone who can be said to  be proficient 

in a language has command of a great number of set phrases as well as skill in producing 
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acceptable variants within the limits drawn up by the selectional rules" ([76, p.1261). 

In [77], words are analyzed with respect to  their tendency to form clusters. "There is 

a continuum in English words (including names), from those whose contextual company 

is entirely predictable (Angeles, Fidel) to those whose contextual company is entirely un- 

predictable (therefore), but the evidence indicates that most of the words are to be found 

towards the Angeles end of the scale" ([??, p.1721). 

In 121, a study of the phraseology of spoken English is motivated and presented. "The 

native speaker's ability to  speak fluently and idiomatically can thus be ascribed to his 

command of a great number of such preassembled phrases. This means that linguistic 

competence must include a large and important phraseological component ... which acts as 

an elastic link between the lexicon and the productive rules of grammar" ([2, p.31). 

In [136], the nature of lexical Items and their relation to grammar is examined, and two 

principles of interpretations are stated in order to explain how meaning arises from text: 

1) Principle of Choice. At each completion of a unit, a choice opens up and the only 

constraint is grammat icali ty. 

2) Idiom Principle. A language user has a large number of semi-preconstructed phrases 

that constitute a single choice, even though it involves more words. 

It is argued that the second principle is at  least as important as the first, and one of the 

reasons for this is the following. It is noted that the more frequent a word is, the less well 

defined its meaning becomes. For the most frequent words, we are in fact talking about 

usages rather than meanings. This is called progressive delexicalization. Most normal text 

is made up of frequent words and of the frequent senses of less frequent words. This shows 

that normal text is often delexicalized and it shows the use of the idiom principle. 

In [12l], 'frameworks' are proposed in order to  explain language patterning. It is argued 

that frameworks are very productive and therefore deserve closer examination. The exam- 

ined frameworks are discontinuous but do not extend over more than three words and can 

therefore be captured in a traditional N-gram model. Nevertheless, the idea of a framework 

could be extended to  capture constructs that extend across this local context and could 

therefore not be captured by a N-gram approach. 

'Even though the immediate context can be captured well with for example a tri-gram model, it requires 
enormous amounts of data. Moreover, restrictions that extend over more than the two preceding words are 
not captured. 
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In [19], the usefulness of collocational constraints for natural language parsers is ex- 

amined. The constraints provided by syntax as opposed to collocations are described as 

follows: 

"Syntactic constraints, by themselves, though are probably not very impor- 

tant. Any psycholinguist knows that the influence of syntax lexical retrieval is 

so subtle that you have to  control very carefully for all the factors that really 

matter (e.g., word frequency, word association norms, etc.). On the other hand, 

collocational factors (word associations) dominate syntactic ones so much that 

you can easily measure the influence of word frequency and word association 

norms on lexical retrieval without careful controls for syntax" ([19, pp.79-801). 

However, syntax maty be necessary to  capture stronger constraints. "We be- 

lieve that syntax will ultimately be a very important source of constraint, but 

in a more indirect way. As we have been suggesting, the real constraints will 

come from word frequencies and collocational constraints, but these questions 

will probably need to  be broken out by syntactic context. How likely is it for 

this noun to  conjoin with that noun? Is this noun a typical subject of that verb? 

And so on. In this way, syntax plays a crucial role in providing the relevant 

representation for expressing these very important constraints, but crucially, it 

does not provide very much useful constraint (in the information theoretic sense) 

all by itself." ([19, p.801) 

In [122], the notion of selectional restriction (see page 94) is formalized. This is achieved 

by using an information-theoretic rneasure and it leads to  the following interpretation of 

selection constraints: "the strength of a predicate's seIection for an argument is identified 

with the quantity of information it carries about that argument7' ([122, p.iv]). This allows 

us t o  measure quantitatively the strength of a selectional restriction. Using a manually con- 

structed hierarchy of words ([107], [8]), this notion of selection restriction is used to  perform 

syntactic disambiguation of prepositional phases, coordination and nominal compounds. 

The information in selectional restriction must therefore be strong enough to  perform this 

disambiguation. 

Having seen evidence that collocational coilstraints satisfy the first two criteria of section 

5.2.1, we now briefly address the third and fourth criterion. 

With respect to  the third criterion, computational efficiency, we note that since some of 
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the collocational constraints require the identification of subject, verb and object, a parser 

seems t o  be needed. As pointed out in section 5.2.1, it is very unlikely that we will be 

able t o  use a full parser for the kind of language model under consideration in this thesis. 

Bowever, with recent progress in the area of partial parsing (see [141], [50], [51], 1261) it 

seems possible to get parts of a parse with far less computational effort. These parts of the 

parse could be sufficient for our purpose. Alternatively, recent work in the area of neural 

networks (see f591) might be extended to provide an efficient solution in the future. 

The fourth criterion is the acquisition and coding of the knowledge for use with unre- 

stricted text. Collocational constraints also pose serious problems in that respect. Progress, 

for example, in the automatic acquisition of subcategorization frames (see [12] and [101]) 

or in the availability of fully parsed corpora (see [102]), could again be sufficient to  acquire 

and code the knowledge of coLlocationa1 constraints, 

In the light of the evidence presented above, we believe that collocational constraints 

are a good candidate to  be included in a language model. However, we suggest a further 

investigation of the extent to which collocation constraints that can not be captured in the 

standard N-gram model, quantitatively satisfy criteria one and two of section 5.2.1. 

5.3 How Can We Combine Useful Knowledge in a Language 

Model? 

In the last section, we saw how we could go about selecting useful knowledge. Once we have 

decided on what knowledge is useful, we have to  determine how to produce a probability 

distribution that depends on the chosen knowledge in a meaningful manner. In section 

5.3.1, we will present some traditional approaches to this problem. In section 5.3.2, we will 

describe a very successful method that was proposed recently. 

5.3.1 Traditional Approaches for Combining Knowledge in a Language 

Model 

In Hearsay I1 ([33]), a typical example of knowledge based speech re~ogr~ition, different 

types of knowledge are combined using a blackboard, a dynamic global data structure. 

Different modules, corresponding to  different types of knowledge, generate hypotheses, write 

hypotheses onto the blackboard, and evaluate the plausibility of hypotheses found on the 
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blackboard. This architecture is used to  combine types of knowledge a t  different levels, e.g. 

phoneme, word and sentence, which are not necessarily represented in terms of probability 

distributions. However, in the case of the language model, we only need t o  combine different 

existing probability distributions and this does not require the complicated asynchronous 

architecture of a blackboard. In the following, we will present some simple mechanisms t o  

combine different probability distributions. 

We will encode the event t o  be predicted (e.g. the next word) and the knowledge used 

(e.g. the preceding word, the state of a parser) in terms of variables and their values. Let 

Y denote the event to be predicted with a set of possible values {yl, ..., y,). Following the 

terminology of decision trees (see section 2.Fj.4) and following the specificlgeneral example of 

the generalized N-pos model (see section 4.4), we will denote the knowledge by variables Xi 

with corresponding values {xil, ..., xi,,). We will focus on the combination of two variables 

X1 and X2, but the concepts can be extended in a straight forward manner to several 

variables. 

1) Joint distribution. For each pair (XI = XI;, X2 = x2.j), this methods estimates a 

separate distribution from frequency data. 

2) Decision trees. This method estimates a separate distribution for a pair (XI = 

XI;, X2 = xzj) only if this significantly improves the quality of the model. 

3) Deleted interpolation. This method constructs a separate distribution for each pair 

(XI = XI;, X2 = xzj), but not from frequency data of the joint distribution (as method 

one). Instead, it  combines the distributions of each variable according to  Xijp(Y = 

~11x1 = 21;) + (1 - Xij)p(Y = yllX2 = x2j)- For each pair (XI = XI;,  X2 = x2.j), the 

X i j  is estimated to  optimize some criterion. 

We will now illustrate these three methods by giving the probability distributions each 

method would calculate in an esample. In this example, the variable Y which we need to 

predict only has two values Y E {N, R}. Y indicates whether the next word is a noun 

(value N)  or not (value R,  R standing for rest). The varia.ble X1 also has two values 

X1 E (Adj,Il). X1 indicates whether the previous word was an adjective (value Adj) or 

not (value R). Similarly, the variable X2 has the two values S2 E {Art, R} and it indicates 

whether the second last word was an article (value Art) or not (value R). The values of the 

probability distributions in this esample were calculated from real data, namely from our 
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' X1 X2 p(Y = N )  p(Y = R) distr. name ---- 
Adj Art 0.84 0.16 Pl 
Adj R 0.65 0.35 P2 

R Art 0.26 0.74 P3 

R R 0.25 0.75 P4 

Table 5.2: The joint distribution for Y given X1 and X2 

0.25 0.75 

Table 5.3: The distribution for Y given X1 

training text of 50,000 words. The overall distribution for Y, independent of the variables 

XI and X2 is p(Y = N) = 0.28 and p(Y = R) = 0.72. In other words, 28% of the words in 

the text are nouns. 

1) Joint distribution. This method directly samples the joint distribution and thus esti- 

mates a separate distribution for the four combination of values of X1 and X2. The 

resulting distributions are shown in table 5.2. 

2) Decision trees. This method will estimate a separate distribution for a pair of values 

of XI and X2 only if the resulting distribution is significantly different. As we can 

see from table 5.2, the value of X1 has a bigger impact on the distribution than the 

value of X2. Since varying X1 while keeping X2 fixed results in a large variation in 

probabilities, the decision tree method therefore estimates a separate distribution for 

the two different values of X1. These two resulting distributions are shown in table 

5.3. Furthermore, we can see f ~ o m  table 5.2, that the distribution for X1 = R does not 

change significantly for the two values of X2. However, the distribution for X1 = Adj 

does change significantly depending on the value of X2. The decision tree method 

could therefore split the first distribution in table 5.3 into two distributions, leading 

t c  a total of three distributions shown in table 5.4. 

3) Deleted interpolation. This method combines the two distributions of each variable 

shown in table 5.5 to get four distributions pi ,ph, p& and pi that are used as approxi- 

mations of the four joint distributions shown in table 5.2. The interpolation is linear 
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1 ~ d j  0.65 
R (R or Art) 1 0.25 0.75 0.35 1 
x1 x2 

Adj Art 

Table 5.4: The distributions for Y given X 1  and X 2  constructed by the decision tree 

p(Y = N )  p(Y = R )  
0.84 0.16 

Table 5.5: The distribution for Y given X 1  and for Y given X 2  

XI 
Adj 
R 

X z  
Art 
R 

according to  the four parameters Xaa , Xab7 Xba and Xbb: 

Since value of X I  has a bigger impact on the resulting distribution, the values of the X's 

will tend to  be bigger than 0.5. We will use the vdues Xaa = 1, Xab = 0.77, X b a  = 0.5 

and Abb = 1 because the resulting distributions shown in table 5.6 are very good 

approximations to  the joint distributions shown in table 5.2. In fact, by comparing 

table 5.2 and 5.6, we can see that all approximations except for pi are identical t o  the 

joint distribution. 

p ( Y = N )  p ( Y = R )  
0.72 0.28 
0.25 0.75 

p(Y = N )  p(Y = R )  
0.41 0.59 
0.27 0.73 

We will now discuss the advantages and disadvantages of the three methods in general. 

distr. name 

P I  a 

P lb  
distr. name 

P2a 

P2b  

- 
distr. name p(Y = N )  p(Y = R)  

0.72 0.28 

Table 5.6: The approximations t o  the joint distributions constructed by deleted interpolation 
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One advantage of the joint distribution method is its simplicity. It is very easy to  im- 

plement and it does not require a lot of computational resources t o  construct the joint 

distribution. Moreover, it directly samples the joint distribution. This means that the 

method will usually get closer to the true joint distribution than methods that try to ap- 

proximate it based on the component distributi~ns (e.g. the deleted interpolation method). 

One big disadvantage is the amount of data it requires. For each pair (XI = xli, X2 = xzj), 

it tries t o  estimate the entire distribution. It therefore has to estimate jXll * )X21 * IY) 

probabilities. Especially in the case of language models, where the number of values for Y 
is very large, this requires an enormous amount of data. Consider for example, the tri-gram 

language model presented in the review section (section 2.5.2). Y corresponds to the next 

word, X1 to  the last word and X2 to  the second last word. It samples the joint distribution 

directly and may have around 1012 parameters to estimate. This requires many million 

words of training text and even then, the tri-gram estimates are combined with bi-gram or 

uni-gram estimates using the deleted interpolation method. Another disadvantage of the 

joint distribution method is that it constructs a separate distribution for all pairs, even if 

some of them will lead t o  very similar distributions. 

The main advantage of the decision tree method is that it only constructs the joint dis- 

tribution for a pair (XI = zl;, X2 = ~ 2 ~ )  if this will significantly improve the performance. 

This will usually result in fewer distributions performing about as well as the joint distri- 

bution method. For that reason, the decision tree method can easily be applied to many 

variables at  a time. Whereas method one would not have nearly enough data to sample the 

overall joint distribution, this method will only construct it at  the point where it results 

in a significant improvement for the given data. The main disadvantage is the computa- 

tional complexity of the algorithm. It is harder to  implement and may require an enormous 

amount of computation. As stated in [16], the algorithm for finding the optimal partitioning 

for classification and regression trees is exponential in the number of values of the variables 
- 

X. However, a locally optimal partition can be found in time linear in the number of value 

for X for each iteration. 

One of the advantages of the deleted interpolation method is again its simplicity, making 

it easy t o  implement and fast to  execute. Furthermore, it does not require a lot of data 

because It does not attempt to directly sample the joint distribution. Instead, for each pair 

(X1 = xli, X2 = x ~ ~ ) ,  it approximates the joint distribution by a linear combination of the 
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two components. For each pair, it therefore only has t o  estimate the one interpolation pa- 

rameter. Its main disadvantage is that the combination of the two component distributions 

may not get very close to  the joint distributions. In cases where there is enough data  to  

sample the joint distribution directly, this may lead to  poor performance. 

Adding several knowledge sources to  a language model is one instance of the general 

trend t o  construct richer probabilistic models of language. As pointed out in 1122, p.11, this 

appears t o  be a trend in practical and theoretical work on language. One example of this 

trend is that the Penn Treebank is moving towards the annotation of text with predicate- 

argument structure, not only with surface linguistic structures (see 11021). Another is the 

use of probabilistic models for tagging (see for example [18], [28] and [go]), parsing (see for 

example [9]), and many other applications. 

However, one of the main problems with richer p~obabilistic models is the sparseness 

of data. This is for example pointed out in [115, p.1831: "It is well known that a simple 

tabulation of frequencies of certain words participating in certain configurations, for example 

of frequencies of pairs of a transitive main verb and the head noun of its direct object, can 

not be reliably used for comparing the likelihoods of different alternative configurations. 

The problem is that for large enough corpora, the number of possible joint events is much 

large than the number of event occurrences in the corpus, so many events are seen rarely or 

never, making their frequency counts unreliable estimates of their probabilities". 

From this perspective, it seems unlikely that we will be able to  sample joint distributions 

for many different types of knowledge, even with ever growing corpora. We can therefore 

expect that approaches that do not require this sampling (like the deleted interpolation 

method) will find widespread use. One recently proposed method, that can integrate dif- 

ferent types of knowledge, will be presented in the next section. A second approach, which 

has been shown to  integrate constraints from different levels on a smaller task (see 1721) , is 

the use of neural networks. Their application to this task could be the subject of a further 

study. 

5.3.2 'The Maximum Entropy Approach to Combining Knowledge in a 

Language Model 

Trying t o  use different probability distributions to produce one combined distribution is 

a problem that appears in many tasks. The maximum entropy principle from the area of 

statistics (see [25], [61]) is a very general approach to  this problem. Recently, this approach 
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has been applied successfully to language modeling (see [93], [94], [126]). A summary of this 

work is given below. 

The maximum entropy approach proposes the following two steps: 

1) Rewrite the different probability estimates as constraints on the expectations of various 

functions, that the combined estimate has to satisfy. 

2) From the set of all possible probability distributions satisfying the constraints, choose 

the one that has the highest entropy. 

Suppose we are trying to estimate a (joint) probability function p(X = x), x = (xl , ..., x,). 

Using k constraint functions fi(x), 1 5 i < L, we can impose k constraints coming from dif- 

ferent types of knowledge on the resulting distribution p(X = x) in the following manner: 

Cp(x = x ) ~ , ( x )  = ci , l  5 i < b. 
5 

As an example, if we choose 

I.(.) = { if = "" 
0 else 

the constraint fl imposes that the value of ~ ( 2 0 )  is cl .  In general, fi(x) can of course be of 

a different form thus allowing more complicated constraints for p(X = x). Given such a set 

of k consistent constraints, we can then use the algorithm of generalized iterative scaling 

([25]) to find the p(X = x) satisfying these constraints that has the highest entropy. We 

can guarantee that a unique function p(X = x) exists and that it is of the form 

f (5) P(X = x) = JJPi , 
i 

where the pi are constants that have to be found by the generalized iterative scaling algo- 

rithm. 

For a model that combines the distribution obtaiaed by the maximum entropy approach 

with a standard tri-gram model, a reduction in perplexity of about 30% compared to the 

s tmdwd tri-gram model was achieved. 

The advantages of the maximum entropy approach are 

1) The maximum entropy principle is simple, intuitively appealing, imposes all of the 

given constraints and does not assume anything else. 
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2) The maximum entropy principle is extremely general. It can be used for any conceiv- 

able linguistic or statistical phenomenon. 

3) Information captured by traditional language models can be incorporated into the 

maximum entropy principle. 

4) The generalized iterative scaling algorithm can be adapted incrementally, thus allowing 

the addition of new constraints or the relaxation of old ones. 

5) The generalized iterative scaling algorithm is guaranteed to converge to the unique 

solution under assumptions that can be met in practice. 

The weaknesses of the maximum entropy approach are 

1) The generalized iterative scaling algo~ithrn is computationally very expensive '. Far 

the experiments described in 11261, the algorithm ran in parallel on an average of 15 

high performance workstations and it took three weeks to  complete. 

2) Even though the algorithm is guaranteed to converge, we do not have a theoretical 

bound on its convergence rate. 

3) When we add constraints that are not satisfied by the training data - and this is 

sometimes desirable - the theoretical results guaranteeing existence, uniqueness and 

convergence of the algorithm may not hold. 

Nevertheless, we can see from the results presented in [I261 that this is one of the 

rare times a standard tri-gram model is outperformed significantly and consistently. This 

approach therefore holds considerable promise for future work. 

5.4 Summary 

In this chaptel, we motivated the addition of knowledge to language models, developed 

different criteria for identifying useful knowledge, and presented methods for combining 

knowledge in a language model. 

We began by pointing out three reasons for wanting to add knowledge to a language 

modei. First, we would like to  improve the model's performance. Second, if we apply 

'Even though only the training part, which can be done off line, is expensive, its computational complexity 
may prevent the application of the algorithm to very large data sets for reasons of practicality. 
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cu~rent speech recognition technology to more complex tasks than the ones tackled today, 

the number of acoustically confusable hypotheses will increase, and we will need a better 

language model in order to  deal with this ambiguity. Third, adding knowledge is more 

satisfying than sticking to existing models on psychological grounds because humans seem 

to use knowledge to predict a word other than the knowledge used in current models, namely 

the immediately preceding two or three words. Hence, there is clearly a need for a language 

model which incorporates more linguistic knowledge. 

Once we had decided to  add knowledge to  a language model, the following two questions 

came to  mind. First, what knowledge should we add, and second, how can we combine 

different types of knowledge in a language model. We addressed both issues in turn. 

Rather than trying to give a necessarily incomplete list of types of knowledge that 

we should add, we presented four criteria that we think should be used to identify useful 

knowledge. First, the knowledge should restrict the number of possible words, otherwise 

it is not going to  help in solving our task. Second, it should be applicable often enough 

to  be of statistical significance. Third, it should be possible computationally to use this 

knowledge in real time speech recognition. Finally, we should be able to acquire and code 

this knowledge for use with unrestricted text. Moreover, we developed a classification of 

possibly useful knowledge and applied the criteria for identifying useful knowledge to one 

kind of knowledge, that promises to be useful to improve language models in general. 

We then moved on to the issue of combining different knowledge in a language model. We 

presented three methods for combining knowledge and developed some of the advantages and 

disadvantages we see in each method. Following that, we concluded that it is very unlikely 

that we will have enough data to estimate distributions that depend on several knowledge 

sources directly, even with the availability of increasingly large corpora. Therefore, we think 

that methods that combine distributions from single knowledge sources in a meaningful 

fashion will be very useful and require further investigation. One method shown to be very 

useful in recent work is the maximum entropy principle and it shows great promise for future 

work. 



Chapter 6 

Summary of 

Work 

Results and Future 

The main contribution of this thesis is the idea of applying error analysis to language 

models. We define what we mean by error or weakness of a language model and we show 

haw an analysis of weaknesses is useful in improving a concrete model. Thus, in addition to 

the concrete results we obtained, we have shown how one can go about improving language 

models in general. We could therefore call this "meta language modeling". In the remainder 

of this chapter, we will give a more detailed summary of our results (section 6.1). This will 

be followed by possible extensions to our work (section 6.2). 

6.1 Summary of Results 

In this thesis, we set out to improve existing language models for speech recognition. Since 

it is a widely accepted fact that knowing the errors or weaknesses of any kind of model 

makes it easier to improve the model, we proposed to perform an analysis of the weaknesses 

of language models. We defined in general terms what we mean by a weakness of a language 

model and analyzed the weaknesses of a particular, commonly used model. This analysis 

led, among other things, to an improvement in the model's performance ranging between 

14% and 21%. This shows, in a concrete case, the usefulness of performing an analysis of 

weaknesses of a language model. 

In order to analyze the weaknesses of a language model, we first needed to define what 
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we mean by a weakness of a language model. Given a part of the model, we measured its 

impact on the overall performance of the model in terms of the percentage of the LTP, a 

measure closely related to the standard perplexity measure used to evaluate the language 

model performance. We then defined a weakness of a model as a part of the model that has 

a big impact on the overall performance. Does this definition conform to the intuitions we 

have about the word weakness? Intuitively, a weakness should be something that needs to 

be improved. Given our definition, weaknesses cause a considerable fraction of the overall 

performance measure and this means that improving them is important for the overall 

performance. Our definition therefore agrees with our intuition. Furthermore, the definition 

is directly applicable to almost all currently used language models (except probabilistic 

context free grammars) at 3 the calculations involved in identifying weaknesses are very 

straight forward. 

In order to show the usefulness of our definition of weakness and of the analysis of 

weaknesses in general, we performed this analysis on a commonly used bi-pos language 

model. We chose a corpus and a model for our work and verified that our model is well 

trained with the amount of training data we use. This led to the development of the 

adjusted perplexity measure A P P ,  which gave us a flexible way of making results of models 

with different sample spaces more comparable. We then analyzed the weaknesses of our 

model giving the following results: 

1) We identified three weaknesses, the prediction of words in a very small number of 

contexts, the prediction of unknown words, and the prediction of words given their 

part of speech. We thus gained considerable additional insight into the model. This 

insight is helpful in improving our model, but it is also relevant to other language 

models. The last weakness in particular i s  important with respect to the recent interest 

in probabilistic context free grammars as language models. Even though probabilistic 

context free grammars might improve the prediction of the next part of speech, they 

are unlikely to improve the prediction of the word given the part of speech. They 

therefore do not address this important weakness at all. 

2) We improved one of the weaknesses, the prediction of unknown words, by introducing 

a new modeling for unknown words. This leads to an improvement of the model's 

performance ranging between 14% and 21%. 

3) In order to address the third weakness, the prediction of words given their part of 
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speech, we developed the generalized N-pos model. It can incorporate linguistic infor- 

mation, even if i t  extends over many words, and the information used for the prediction 

of the word given the part of speech in this model can be different from the informa- 

tion used t o  predict the part of speech. It is important that the model allows for this 

because even though the immediate context (e.g.  the two or three preceding words) 

contains a lot of information about the part of speech of the next word, we can argue 

that useful semantic information that restricts the actual word may be further away. 

4) Our work, in particular the generalized N-pos mvdel, led us t o  the following questions 

about language models in general: 

a )  what knowledge should we add t o  language models in order to improve their 

performance? 

b) how can we combine different types of knowledge in a language model? 

To help answer the first question, we developed four criteria useful in deciding whether 

a given type of knowledge is useful. Rather than having t o  implement all possible types 

of knowledge, we can thus select the more promising ones. With respect to  the second 

question, we presented and evaluated some existing techniques that can be used for 

this task. 

6.2 Future Work 

The most immediate extension to our work is to try to  improve the bi-pos language model 

with respect t o  the weaknesses identified in section 4.3.1. What information would we need 

in order to  decide on the tag that will follow a noun? Does this knowledge satisfy the criteria 

set out in section 5.2.1? One possibility might be to divide all tiis nouns into two groups 

(e-g. two tags) - the nouns that are often followed by other nouns rtnd the ones that are 

not. 

Another obvious extension is to  apply the idea of analyzing weaknesses of a language 

model t o  other existing models. This can be done for N-gram, N-pus, decision tree based 

or cache based models. Furthermore, the idea is applicable to other languages (e.g. French, 

German, Japanese etc.) as well as t o  language models that are not based on the word level 

(e.g. syllable, phoneme, etc.). For each model, this can show whether their weaknesses 



are similar to  the weaknesses of our model and where the analysis of weaknesses leads t o  

improvement in these models. This extension should be very straight forward and we do 

not anticipate any difficulties. 

Furthermore, we could apply the criteria for judging the usefulness of one type of knowl- 

edge to  selectional restrictions, a type of knowledge identified as potentially useful for lan- 

guage models. We could then decide whether it is worth Incorporating selectional restriction 

into language models and whether we can expect a significant improvement in performance 

by doing so. To this end, we might be able to use the same data as in f2221. Alternatively, 

we could use a stochastic tagger and a very primitive heuristic to  identify, for example, 

verbs and their direct objects. This would allow us to  extract tbe necessary data from any 

text, rather than being restricted to a fully parsed corpus, and this would make the whole 

process very flexible. 

Moreover, we could perform a systematic study of the usefulness of different types of 

knowledge (e.g. phonological, prosodic, syntactic, semantic) for a language model. Quanti- 

tative results of such a study would be very valuable to  the research community because it 

could help in steering its future research efforts. In order to perform this kind of study, we 

would require a corpus annotated with many different kinds of information. Depending on 

the required amount of data, this could be hard to find at  the moment, but we think that 

it will surely become available in the future. 

Besides language modeling for speech recognition, we can also apply the idea of analyzing 

weaknesses of probabilistic language models to other areas that use N-gram statistics. One 

example is handwriting and optical character recognition. Analyzing the weaknesses of the 

models and improving them afterwards could lead to  an improvement in performance in 

these areas. 



Appendix A 

Sample Text 

In this section, we give a sample of section A01 of the LOB corpus. Each item in the text 

is made up of two parts joined by an underscore ('-'). The first part is the word itself (for 

example 'a'), and the second part is the tag associated with this occurrence of the word 

(for example 'AT' for article). Any item that has these two parts is part of the text and 

needs t o  be predicted by the language model. These items include quotes, commas, colons, 

and other punctuation marks. The tags are listed and explained briefly in Appendix B. For 

more details on the form of the corpus see [71]). 
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Appendix B 

The Four Tagsets Used in Our 

Experiments 

The four tag sets used in our experiments are reproduced here. The first column contains 
the tag set as part of the LOB corpus distribution. The second, third, fourth and fifth 
column correspond to the tag sets with 135, 88, 42 and 24 tags each. They were mostly 
produced by joining tags with the same prefix and are thus dependent on the original set. 

LOB 135 tags 88 tags 42 tags 24 tags 

1 1 I , 
? ? ? ? 

ABL ABL AB AB 

ABN ABN AB AB 

ABX ABX AB AB 

A P  A P  AP A P  

example or explanation 

exclamation mark 

formula 

foreign word 

left bracket 

right bracket 

begin quote 

end quote 

dash 

comma 

dash 

full stop 

ellipsis 

colon 

semicolon 

question mark 

pre-qualifier (quite) 

pre-quantifier (all) 
double conjunction (both) 

post-determiner (few) 
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AP$ 

APS 

APS$ 

AT 

AT1 

BE 

BED 

BEDZ 

BEG 
BEM 

BEN 

BER 

BEZ 

CC 
CD 

CD $ 

CD-C3 

CD1 

CD1$ 

CDlS 

CDS 

CS 

DO 

DOD 

DOZ 

DT 

DT$ 

DTI 

DTS 

DTX 

EX 

HV 

HVD 

HVG 

HVN 

HVZ 

IN 

J J  

JJB 

J JR 

AP$ 

APS 

APS$ 

AT 

AT1 

BE 

BED 

BEDZ 

BEG 

BM 

BEN 

BER 

BEZ 

CC 

CD 

CD$ 
CD-CD 

CD1 

CD1$ 

CDlS 

CDS 

CS 

DO 

DOD 

DOZ 

DT 

DT$ 
DTI 

DTS 

DTX 

EX 

HV 

HVD 

HVG 

HVN 

HVZ 

IN 

J J  

JJB 

J JR  

AP 

APS 

APS 

AT 

AT 

BE 

BED 

BEDZ 

BEG 

BEM 

BEN 

BER 

BEZ 
CC 

CD 

CD 

CD 

CDl  

CD1 

CD1 

CD 

CS 

DO 

DOD 

DOZ 

DT 

DT 

DTI 

DTS 

DTX 
EX 

HV 

HVD 

HVG 

HVN 

HVZ 

IN 

J J  

JJB 

JJR 

other's 

o thers 

others' 

singular article (a) 

singular or plural article (the) 

be 

were 

was 

being 

am 

been 

are 

is 

co-ordinating conjunction (and) 

cardinal (2) 

cardinal with genitive 

hyphenated pair of cardinals 

one 

one's 

ones 

cardinal with plural (tens) 

subordinating conjunction (after) 

do 

did 

does 

singular determiner (another) 

singular determiner with genitive 

singular or plural determiner (any) 

plural determiner (these) 

double conjunction (either) 

existential there 

have 

had 

having 

past participle (had) 

has 

preposition (about) 

adjective 

attributive-only adjective (chief) 

comparative adjective 
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J J T  J J T  J J T  J J  J J  superlative adjective 

J N P  J N P  J JP J J  J J  adjective with word-initial capital (English) 

MD MD MD MD MD modal auxiliary (can) 

NC NC NC NC F cited word 

NN NN NN N N singular common noun 

NN$ NN$ NN N N singular common noun with genitive 

NNP NNP NNP N N sing. c. noun w. word-initial capital (English) 

NNP$ NNP$ NNP N N same as above with genitive 

NNPS NNPS NNP N N plural common noun with word-initial capital 

NNBSI NNPS$ NNP N N same as above with genitive 

NNS NNS NNS N N plural common noun 

NNS$ NNS$ NNS N N same as above with genitive 

NNU NNU NNU N N abbr. unit of meas. unmarked for number (hr) 

NNUS NNUS NNU N N abbreviated unit of measurement 

N P  NP N P  N P  N singular proper noun 

NP$ NP$ NP N P  N same as above with genitive 

NPL NPL NPL N P  N sing. locative noun w. word-initial cap. (Abbey) 

NPL$ NPL$ NPL N P  N same as above with genitive 

NPLS NPLS NPL N P  N plural locative noun with word-initial capital 

NPLS$ NPLS$ NPL N P  N same as above with genitive 

NPS NPS NPS N P  N plural proper noun 

NPS$ NPS$ NPS NP N same as above with genitive 

N P T  N P T  N P T  N P  N sing. titular noun w. word-initial cap. (Archbishop) 

NPT$ NPT$ N P T  N P  N same as above with genitive 

NPTS NPTS N P T  NP N plural titular noun with word-initial capital 

NPTS$ NPTS$ N P T  NP N same as above with genitive 

NR NR NR NR N singular adverbial noun (January) 

NR$ NR$ NR NR N same as above with genitive 

NRS NRS NRS NR N plural adverbial noun 

NRS$ NRS$ NRS NR N same as above with genitive 

OD O D  OD OD O D  ordinal (1st) 

OD$ OD$ OD OD OD same as above with genitive 

P N  P N  P N  P P nominal pronoun (anybody) 

PNL PN$ P N  P P same as above with genitive 

P P $  PP% PP P P possessive determiner (my) 

PP$$ PP$$ P P  P P possessive pronoun (mine) 

P P l A  P P l A  PP1 P P personal pronoun (I) 

P P l A S  P P l A S  PPl P P personal pronoun (we) 

P P l O  P P l O  PP1 P P personal pronoun (me) 

10s P P l O S  PP1 P P personal pronoun (us) 
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PPL 

PPLS 

QL 

QLP 

RBR 

RBT 

RI 

RN 

RP 
TO 

UH 

VB 
VBD 

PP2 

PP3 

PP3A 

PP3AS 

PP30 
PP30S 

PPL 

PPLS 

QL 

QLP 
RB 

RB$ 

RBR 

RBT 

RE 

RN 

RP 
TO 

UH 
VB 

VBD 

VBG VBG 

VBN VBN 

VBZ VBZ 

WDT WDT 

WDTR 

WP 

WP$ 

WP$R 

WPA 

WPO 

WPOR 

WPR 

WRB 

XNOT 

WDTR 

WP 

WP$ 
WP$R 

WPA 

WPO 

WPOR 

WPR 

WRB 

XNOT 

ZZ 

THE FOUR TAGSETS USED IN OUR EXPERIMENTS 

P P  P P 

PP3 P P 

PP3 P P 

PP3 P P 

PP3 P P 
PP3 P P 
PPL P P 

PPL P P 

QL QL QL 

QL QL QL 
RB R R 

RB$ R R 

RBR R R 
RBT R R 
RI R R 
RN R R 
RP R R 

TO TO TO 

UH UH UH 
VB V V 

VBD V V 

VBG V V 

VBN V V 

VBZ V V 

WD P P 
WD P P 

W P  F P 
WP P P 

WP P P 

WP P P 
WP P P 
W P  P P 
WP P P 
WR P P 

XNOT XNOT XNOT 

ZZ ZZ F 

personal pronoun (you) 

personal pronoun (it) 

personal pronoun (she) 

personal pronoun (they) 

personal pronoun (him) 

personal pronoun (them) 

singular reflexive pronoun 

plural reflexive pronoun 

qualifier (as) 

post-qualifier (enough) 

adverb 

same as above with genitive 

comparative adverb 

superlative adverb 

adverb (homograph of preposition: below) 

nominal adverb 

adverbial particle (back) 

infinitival to 

interjection 

base form of berb 

past tense of verb 

present participle, gerund 

past participle 

3rd person singular of verb 

WH-determiner (what) 

V:H-determiner, relat,ive (which) 

WH-pronoun (who) 

WH-pronoun (whose) 

WH-pronoun, relative (whose) 

WH-pronoun (whosoever) 

WH-pronoun (whom) 

WH-pronoun, relative (whom) 

WH-pronoun f that) 

WH-adverb (hew) 

not 

letter of alphabet (e) 
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The New Model 

Words 

of Unknown 

In this appendix, we will show that the new modeling of unknown words, as proposed in 

section 4.3.2, ensures that the sum of probabilities of all possible words is 1. 

As stated in section 4.3.2, the probability of the word wi, given the tag g(w[i - I ] )  of 

the last word is 

P(w[i]  = wl 1 w [i - 11) 

C g J E ~ [ ( l  - u * dl - dg, )(el * f (g(w[il)  r=. gjlg(w[i - 11)) + ~ 2 )  

= I * f (w[i]  = wllg(w[i]) = gj ) ]  if wr E V and wl was seen 

dl if w1 E V but W( unseen 

C g J E ~ d g J  * (el * f ( g ( w [ i ] )  = gj(g(w[i - 11)) + e l )  if wl $ V 

with cl = 1 - IGl *cz. The following calculation shows that the sum of the probabilities of all 

the words in the vocabulary plus the probability of the generic unknown word 'UNKNOWN' 

is equal to  one. 

S = P ( w )  + P ( ' U N K N 0 W N ' )  + P ( w )  
w is unseen zuEVand seen 

= A + B + C  
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N-pos  Model - 

troduced in section 4.4.1 

ensures that the sum of the probabilities of all the words is one. 

As stated in section 4.4.1, the probability of the word wl, given the variables X1, ..., Xr+, 

p(w[i] = wllX1, a * . ,  Xr+s) 

In the following, we will use pl(gjlXr) as a short hand for p(g(w[i]) = gjlXl, ..., Xr) and 

pz(Wlgjt &+s) as a short hand for p(w[i] = wrlg(w[i]) = gj, X-9 .-., Xr+s). 

We assume that pl(gjlXr) and p2(w1lgj, Xr+,) are probability distributions for all com- 

binations of values of variables Xk, 1 5 b < r $ s and tags g j ,  1 5 j 5 t .  In other words: 

j=t  

Cpl(gjIxr) = 1 
j=1  

l=m 

C ~~(wl lgj ,  xr+s)  = 1. 
1=1 

structed from frequency 
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We can now show that the sum S of the probabilities of all the words in the vocabulary 

is one: 



Appendix E 

The Generalized 

Part I1 

N-pos Model - 

In this appendix, we want to show that the generalized N-pos model reduces to the N-gram 
model. For ease of reference, we repeat the formula for the generalized model: 

p(w[i] = w ~ ~ X I ,  ..., Xm) = 

= C ~ ( g ( w [ i ] )  = gjlX11 . . . lXn) * P ( w [ ~ ]  = wklq(w[il) = g j ,Xn+~l  .- . ,Xn+m). 
9, EG 

If we chose n = N - 1, Xn+[ = XI = wi_[, I = 1, ..., N - 1, we obtain 

p(w[i] = wklX1, ..., Xm) = 

= p(g(w[i]) = gJIw[i - N + 1 : i - 11) * p(w[i] = wrlg(w[i]) = g J ,  w[i - N + 1 : i - 11). 
gjEG 

If we further assume that the probabilities are estimated from frequency counts denoted 
by the function f 0, we have 

p(w[t] = w ~ I X I ,  ..., Xm) = 
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Since the frequency counts are usually smoothed before they are used to estimate the 

probabilities, the generalized N-pos model will not be exactly the same as the N-gram 

model. However, as these calculations show, it will be an approximation of it, based on the 

same dependencies. 
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